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ABSTRACT

To satisfy the ever-increasing demand for higher data rates, as well as to allow more
number of users to simultaneously access a common channel using the entire frequency
spectrum allocated for transmission, interest has peaked in the direct sequence code division
multiple access (DS-CDMA) techniques. In DS-CDMA transmission, the multipath
propagation through linear dispersive media introduces intersymbol interference (ISI), which
results in the bit error rate (BER) performance degradation. In addition to ISI, the non-

orthogonal properties of signature sequences and asynchronism (i.e., the random time offsets

for the received signals of different users) lead to multiple access interference (MAI) along
with additive white Gaussian noise (AWGN). The problem of MAI is not only due to the
known intra-cell users, but also from the unknown inter-cell users. The unpredictable nature
of MAI limits the capacity and performance of the multiuser system. Thus, even if the
receiver thermal noise goes to zero, the error probability of the conventional receiver exhibits
a non-zero floor because of MAIL. Due to the propagation mechanism, the received signal
from a user close to the base station can be stronger than the signal received from desired
user located far from the base station. The near-far problem arises as the weaker signal can be
overwhelmed by MAL

The multiuser detection (MUD) has become a topic of extensive research interest since
1986, when Verdi formulated an optimum MUD receiver based on the maximum likelihood
sequence detection criterion. However the solution involves a joint Viterbi processor with
exponential complexity in the number of users, which has motivated the design of sub-
optimum detectors with linear complexity. The decorrelating and minimum mean square
error (MMSE) detectors are the most useful sub-optimum detectors. Though the decorrelating
detector is near-far resistant, but it also enhances the background noise.

The MMSE detector, which minimizes the mean square error between the actual and
estimated data bits, provides greater ability to combat noise at the cost of reduction in the
near-far resistance. However the difficulty in the estimation of covariance matrix of the time-
varying received signals has given rise to the use of adaptive MMSE techniques, which
directly processes the samples of received signal at the chip interval without the explicit
knowledge of MAI, and can be implemented using the tapped delay line filter. The adaptive
MMSE techniques are analogous to the adaptive equalization of dispersive channels by virtue

of the analogy between MAI and ISI. For very large loads ie., K/N >>70% (K = number of



strong users, and N = processing gain or signature sequence length), the substantial
degradation in the performance of adaptive linear multiuser detector is observed. The
adaptive non-linear MMSE techniques (decision feedback) are more affective than the linear
techniques because latter is having only feedforward filter, whereas former is having
feedforward as well as feedback filters to combat ISI.

In the case of a multiuser system, ISI not only originates from the past symbols of
. desired user, but also from the past symbols of interfering users, which can be suppressed by
using the non-linear adaptive decision feedback detectors (ADFDs). At high signal to noise
ratios (SNR) and loads, the non-linear techniques outperform the linear multiuser detection
techniques. However the ADFDs suffer due to the error propagation problem, which leads to
degradation in the BER performance. “The requirements imposed on the CDMA systems in
terms of capacity and flexibility necessitate the advanced signal processing solutions for the
multiuser interference suppression and data detection in the presence of ISI, MAI and
AWGN. In the presented work, adaptive decision feedback structures based on the MMSE
criterion are considered to solve the problems inherited in both non-adaptive and linear
multiuser detection techniques.”

Starting with the linear MMSE sub-optimum MUD, we focus on its probability of error
performance analysis, and investigate the behavior of MAI in terms of the leakage
coefficients. The MMSE linear multiuser detector considers MAI asymptotically Gaussian
for a large number of users in the asynchronous DS-CDMA system. For this asymptotic
condition, the MMSE detector outperforms the decorrelating detector only if the value of
normalized cross-correlation (NCC) for any pair of signature sequence is less than or equal to
the numerically derived upper bounded value. The available results in the literature have been
derived for the two-user case. We have presented a general formula to calculate the upper
bound on NCC for the arbitrary number of users under the near-far situation. The upper
bound and optimum NCC ranges for 7> K >2 have been derived. We also propose the
Chernoff bound on the error probability of MMSE multiuser detector for Binomial as well as
Gaussian distributed leakage coefficients. Its proof based on the Kullback-Leibler divergence
theorem and study of the leakage coefficients for more than two users impose the stringent
condition on SNR of the desired user for unbiased output of the linear MMSE MUD receiver.
We have shown that the SNR of the desired user should be greater than the minimum
bounded value, which depends on the number of users and NCC. The derived results depict
that the MALI follows binomial distribution for a small number of users.

For adaptive implementation of the linear MMSE detector and for the channel
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estimation, the least mean square (LMS) algorithm is normally used under the slowly time-
varying multipath fading environment. However the Kalman filtering algorithm is used for
the fast time-varying channel estimation, which increases the computational complexity of
the receiver. Our motivation is to develop a novel two-step least mean square type adaptive
algorithm, with low computational complexity O[N ], for the Markovian channel
identification problem. In this work, we present a modified version of the two-step LMS-type
adaptive algorithm motivated by the work of Gazor in [60]. We describe the nonstationary
adaptation characteristics of this modified two-step least mean square (MG-LMS) algorithm
for the system identification problem. It ensures stable behavior during convergence as well
as improved tracking performance in the smoothly time-varying environments. The estimated
weight increment vector is used for the prediction of weight vector for the next iteration. The
proposed modification includes the use of a control parameter to scale the estimated weight
increment vector in addition to a smoothing parameter used in the two-step least mean square
(G-LMS) algorithm, which controls the initial oscillatory behavior of the algorithm. The
analysis focuses on the effects of these parameters on the lag-misadjustment in the tracking
process. The mathematical analysis for a nonstationary case, where the plant coefficients are
assumed to follow a first-order Markov process, shows that the MG-LMS algorithm
contributes less lag-misadjustment than the conventional LMS and G-LMS algorithms.
Further, the stability criterion imposes upper bound on the value of the control parameter.
These derived analytical results are verified and demonstrated with simulation examples,
which clearly show that the lag-misadjustment reduces with the increasing values of
smoothing and control parameters under permissible limits. It also supersedes the NLMS
algorithm in tracking by combating the lag noise, which consequently reduces the lag-
misadjustment at the cost of slight increase in the gradient-misadjustment. At the optimum
value of control parameter, the MG-LMS algorithm provides approximately 3dB
performance advantage over the G-LMS algorithm.

The G-LMS and MG-LMS are developed by exploiting the Kalman filtering algorithm.
By combining the strategy used for MG-LMS and spread spectrum technique, we next
present an adaptive decision feedback equalizer (ADFE) based multiuser receiver for the DS-
CDMA systems over the smoothly time-varying multipath fading channels using the reduced
Kalman least mean square (RK-LMS) adaptive algorithm. The frequency-selective fading
channel is modelled as a tapped delay line filter with smoothly time-varying Rayleigh

distributed tap-coefficients, which are considered to be auto-regressive processes varying at
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the data rate. The receiver uses an adaptive MMSE multiuser channel estimator to predict the
coefficients of the tapped delay line filter. We consider first the design of adaptive MMSE
feedforward and feedback filters by using the estimated channel response. We next present
the convergence characteristics and the tracking performance of the proposed multiuser
channel estimator using the RK-LMS algorithm. Unlike the previously available Kalman
filtering algorithm based approach, the incorporation of the RK-LMS algorithm reduces the
computational complexity of the multiuser receiver. The computer simulation results are
presented to show the substantial improvement in its tracking as well as BER performance
over the conventional LMS algorithm based receiver. The simulation results depict that the
performance of the proposed multiuser receiver is dependent on the channel estimation errors
because the residual ISI adversely affects the BER performance. The increasing load and
velocities of the mobile users deteriorates the performance of DS-CDMA system. The BER
performance also degrades for a large number of multipaths because the SNR per path
reduces, which results in high channel estimation errors. However for a small number of
multipaths, the feedforward filter provides performance advantage by exploiting the
multipath diversity. It may be inferred from the presented results that the proposed multiuser
receiver proves to be robust against the nonstationarity introduced due to the channel
variations, and is beneficial for the multiuser interference cancellation and data detection.

Subsequently, we consider the mitigation of error propagation effect in the decision
feedback detection te.chniques. We present an ADFE with erasure algorithm (E-DFE) for the
asynchronous DS-CDMA transmission using the LMS algorithm, which not only combats IS]
and MAI but also reduces the effects of error propagation in the presence of Gaussjan
background noise. To reduce the possibility of feeding back the wrong decisions, the output
of feedforward filter of the E-DFE is processed before it is fed back to the feedback filter.
Specifically, the focus is on the performance of E-DFE using the soft-slicer based on a novel
erasure algorithm. In addition, the fully connected feedback filter of E-DFE has been used to
eliminate ISI due to other active users. We use the over-sampling technique to deal with the
asynchronous reception of users. Comparison of the performance of conventional decision
feedback equalizer and E-DFE over the slowly varying frequency-selective fading channel is
presented to show the advantages of E-DFE in terms of the reduced BER. Simulation results
are also presented to demonstrate the substantial improvement in its performance under the
near-far and high load situations. The receiver also proves to be effective against sudden
changes in the SNR of the desired user.

We next present a novel ADFD based on the parallel interference cancellation approach
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(ADFD-PIC) using the LMS algorithm for the DS-CDMA system, which is motivated by the
previous work on P-DFD (parallel-) in [128]. It not only combats ISI and MAI, but also
suppresses other-cell interference. The multiuser P-DFD uses the estimated covariance matrix
of the received signal vector, but the ill-conditioned nature of the covariance matrix
introduces numerical problems. In P-DED, the tentative decisions of K users obtained from
the linear MMSE receiver are used for the parallel interference cancellation. The tentative
decisions may be unreliable due to the residual MAI, which leads to error propagation in the
multistage detector. The erasure algorithm may be used to generate the time-variable partial
cancellation factors depending on the soft-output of multiuser linear filter. The presented
ADFD-PIC structure using the channel estimator and erasure algorithm based soft-slicer (EC-
ADFD-PIC) offers performance improvement by mitigating the adverse effects of error
propagation. The simulation results are presented to demonstrate the substantial improvement
in the BER performance of MMSE EC-ADFD-PIC over other multiuser detection techniques.
Previously reported results depict that the P-DFD offers approximately 2dB gain relative to
the MMSE MUD receiver. However, the presented EC-ADFD-PIC provides approximately
3dB performance advantage over the linear MMSE multiuser receiver under the smoothly
time-varying multipath fading channel. The results also demonstrate that EC-ADFD-PIC may
be used for the slow mobile users.

The two-stage DFD using the S-DFD (successive-) and P-DFD in concatenation (S-P-
DFD) suffers due to the error propagation effect for a small number of users. In this work, we
present a novel two-stage MMSE multiuser DFD for the DS-CDMA system working under
the frequency-selective multipath fading environment. The first stage of the proposed
cascaded structure is the noise-predictive successive DFD (NP-S-DFD), in which the active
users are demodulated and detected successively using the conventional Bell Labs Layered
Space-Time (BLAST) ordering criterion. The second stage includes an adaptive
successive/parallel DFD (SP-DFD), which uses the tentativeé decisions obtained at the first
stage for the multiuser interference cancellation and data detection. Therefore, the presented
two-stage detector may be called the noise-predictive successive SP-DFD (NP-S-SP-DFD).
The first user is detected using the linear MMSE transformation in NP-S-DFD, which may
lead to the error propagation at successive stages due to the wrong detection of data symbol
corresponding to the first user. However at the second stage of NP-S-SP-DFD, the first user
is detected using the parallel interference cancellation approach, which leads to reduction in
the bit error rate. Simulation results are presented to show the substantial improvement in the

BER performance of NP-S-SP-DFD over the conventional single-stage S-, P-, NP-S-, and



cascaded S-P-DFDs. The presented DFD provides performance improvement, when the order
in which the users are detected is optimized according to the BLAST ordering based on
MMSE criterion. However under the low SNR conditions, significant degradation in the BER
performance of NP-S-SP-DFD is observed due to the error propagation effect. On the other
hand, its performance substantially improves under the high SNR conditions, and the
presented results demonstrate that the NP-S-SP-DFD based on MMSE criterion outperforms
the conventional single-stage and two-stage DFDs.
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CHAPTER 1

INTRODUCTION

Direct-sequence code-division-multiple-access (DS-CDMA) systems . are finding

applications in wireless communications, due to the merits of spread spectrum systems over
the conventional time-division-multiple-access (TDMA) and frequency-divisi.on-multiple-
access (FDMA) techniques, where a number of users are assigned different code sequences
(also known as signature sequences), and simultaneously transmit the information over a
common channel using the entire frequency spectrum allocated for transmission [1], [2]. It
has been investigated widely during 1980’s, which finally led to the commercialization of N-
CDMA (Narrowband-) in IS-95 standard for the cellular communications. To satisfy the ever
increasing demand for the high data rates to transmit the multimedia traffic for a large
number of users in the network, interest has peeked in W-CDMA (Wideband-) for the third
generation (3G) wireless communication (IMT-2000 standard) due to its enhanced
performance by utilizing the frequency-selective nature of channel [3]-[6].

The DS-CDMA detector receives a composite signal consisting of contributions from
different users, which overlap in time as well as in frequency domain. In conventional DS-
CDMA detector (matched filter receiver), the desired user’s signal is detected by correlating
the composite received signal with that of the desired user’s code sequence waveform.
However, the non-orthogonal properties of the code sequences and aéynchronism (ie., the
random time offsets for the received signals of different users) lead to the multiple-access-
interference (MAI) along with the additive-white-Gaussian-noise (AWGN). As the number of

interferers increases, the MAI becomes substantial, causing degradation in the system

performance [7].



The problem of MALI is not only due to the known intra-cell users, but also from the
unknown inter-cell or other-cell users. Due to propagation mechanism, the received signal
from a user close to the base station can be stronger than the signal received from the desired
user located far from the base station. The near-far problem arises as the weaker signal can be
overwhelmed by MAI, and hence the detection is rendered unreliable. However, the
unpredictable nature of MAI limits the capacity and performance of the DS-CDMA system.
Thus, even if the receiver thermal noise goes to zero, the error probability exhibits a nonzero
floor because of MAI.

One common strategy to deal with the near-far problem is to use power control. In a
mobile cellular environment, the base station periodically sends information to each of the
mobiles, directing them to adjust théir transmitted power in such a manner that all the signals
will be received at the base station at approximately same power level [8], causing wastage .of
precious bandwidth.

In addition to MAI, the multipath propagation through the linear dispersive media
introduces intersymbol-interference (ISI) at the high data rates, which severely limits the
performance of the conventional receiver [9], [10]. Turin [11] has shown that in a typical
urban environment, the fading may cause severe performance degradation in the DS-CDMA
network, because the conventional matched-filter (MF) receiver is unable to exploit the
multipath diversity.

Multiuser-detection (MUD) techniques are used to overcome the effects of MAI and
near-far problem. In MUD techniques, the receiver jointly detects all the active users in order
to mitigate the non-orthogonal properties of spreading code sequences. The MUD techniques
have become a topic of extensive research interest since 1986 when Verdu formulated an
optimum multiuser detector based on the maximum-likelihood-sequence-estimation (MLSE)

criterion [12]. However the solution involves a joint Viterbi processor with exponential



complexity in the number of users, which motivates the design of sub-optimum detectors
with complexity linear in the number of users by applying the linear transformations to the
output of matched filter bank to remove MAI [13].

However, the requirements imposed on the DS-CDMA systems in terms of the capacity
and flexibility necessitate the advanced signal processing solutions for the multiuser
interference suppression and detection. The adaptive minimum-mean-square-error (MMSE)
techniques are analogous to the adaptive equalization of the dispersive channels by virtue of
the analogy between MAI and ISI [14]. The MMSE non-linear decision feedback techniques
are more f_f_fg:}_iy_e than the linear techniques because the latter is having only feedforward
filter, whereas the former is having feedforward as well as feedback filters to combat ISI
[15]. Thus, the multiuser interference cancellation and detection using the decision feedback
structures in the presence of MAI, ISI and AWGN may be considered as an interesting area
for further research. In this thesis, adaptive decision feedback structures based on the MMSE
criterion are considered to solve the problems inherited in both non-adaptive and linear
multiuser detection techniques.

In the following, we present a brief summary of the earlier work carried out in the
related area, followed by the statement of problem and the organization of material embodied

in this thesis.

1.1 Review of the earlier work

The conventional MF receiver is vulnerable under the near-far situation. Verdu [12] proposed
and analysed the optimum MUD for asynchronous CDMA system (similar work also
appeared in [16]). The MUD techniques can be divided into two categories: joint-detection
(JD) techniques and interference-cancellation (IC) techniques [7]. In JD techniques, the front

end of the receiver is traditionally (but not necessarily) a bank of MFs followed by filters that



perform linear or non-linear transformations, which are usually computationally expensive.

Lupas and Verdu [17], [18] proposed a computationally efficient linear sub-optimum
decorrelating detector (also known as decorrelator), which possesses ideal near-far resistance
at the cost of noise enhancement analogous to the zero-forcing (ZF) equalizer [15].
Moreover, it requires the knowledge of interference parameters and the inverse of cross-
correlation matrix. Xie et al. [19] first proposed the MMSE DS-CDMA receiver in 1990
using the linear transformation under the AWGN channel. The MMSE detector attempts to
minimize »the mean-square-error (MSE) between the transmitted and estimated bits. This
receiver is non-adaptive, and requires the knowledge of the noise variance in addition to the
user parameters and the inverse of correlation matrix.

The decorrelating (ZF) detector chooses the linear filter to eliminate the output MAI
(18], and the MMSE detector chooses the linear filter to minimize the average mean-squared
value of the output MAI-plus-noise mixture [19]. Tsatsanis and Giannakis [20] have
thoroughly studied the decorrelating receiver for MAI and ISI suppression. The authors have
identified the conditions under which FIR solutions are possible, and have also presented the
optimal MSE solutions subject to the decorrelating constraint. However, the MMSE receiver
performs better than the decorrelating receiver in the noisy environment. It has been shown in
[21] that the MMSE MUD technique offers significant practical advantages, and can be
adapted blindly ie., without the use of training sequence and the knowledge of interfering
signature waveforms. However, since the MMSE criterion is not directly related to the error
probability or to the distribution of background noise, it is of considerable interest to study
the error probability of MMSE detector in an environment of back ground Gaussian noise.
The design of the linear MUD techniques also depends on the distribution of MAI, which
may be Gaussian or Binomial. In [22] and [23], the authors have presented a useful way to

quantify the non-Gaussianness by analysing the (Kullback-Leibler) divergence of the



distribution of the random variable and the Gaussian random variable with same variance.

Monk et al. [24] have considered MALI as the colored noise, and have used the noise-
whitening approach as well as the MAI noise rejection approach to maximize the signal-to-
noise-ratio (SNR). However, the SNR maximization does not guarantee low probability of
error for the non-Gaussian noise. Pursley and Geraniotis [25], [26] have analysed the spread
spectrum techniques, and have also derived the probability of error by considering MAI along
with AWGN.

Using the divergence theorem and the probability of error analysis, Poor and Verdu [27]
have demonstrated that the MAI-plus-noise mixture at the output of MMSE linear multiuser
receiver is approximately Gaussian for a large number of users, large SNR values and severe
near-far scenario. This property is very useful in the performance analysis of MMSE

multiuser detectors. The MMSE MUD technique supersedes the decorrelator, if the
—— e

normalized cross-correlation between the signature sequences is less than [w/ 2/ 3 J /2 for

the two-user case. Similar to the intersymbol interference error bounds for the bandlimited
signals presented in [28], the authors have proposed Chernoff upper bound on the error
probability of linear multiuser detectors.

Moustakides and Poor [29] have shown that MMSE MUD technique does not
uniformly outperform the decorrelator and the conventional MF receiver. However, the
former detector provides higher spectral efficiencies under severe conditions [30]-[34].
Zhang et al. [35] have further extended these results to fading channels, and have
demonstrated that the MAI at the output of MMSE receiver is asymptotically Gaussian for
almost every realization of the signature and the received power for both synchronous and
asynchronous DS-CDMA systems. However, Wang et al. [36], [37] have shown that the
output SNR and the near-far resistance of MMSE MUD techniques depend on the cross-

correlation matrix of the spreading code waveforms. Their work suggests a number of



interesting problems for further research, including the extension of the results presented in
[27] for more than two-user case under the near-far situation.

A major limitation of the non-adaptive detectors is that they require the knowledge of
spreading code sequences, timings and amplitudes (power) of all the active users. But
unpredictable activities of some users, such as asynchronous mode of data transmission,
make it more difficult to estimate their received power over a given time interval. Moreover,
the use of non-adaptive receivers will result in a wasted resource of unnecessary
computations if only a subset of possible users is active. An important subject in MUD is the
design of adaptive detectors that self-tune the detector parameters from the observation of
received signal waveform. Moreover, the difficulty in the calculation of cross-correlation
matrix of the time-varying received signals has given rise to the adaptive MMSE techniques
for the multiuser detection.

Adaptive multiuser DS-CDMA receivers based on the MMSE criterion have been
proposed by many researchers [38]-[40]. These detectors have been implemented without the
knowledge of user parameters, except the timing information of desired user and the training
sequence. The typical operation of these adaptive multiuser detectors requires each
transmitter to send a training sequence at start up, which the receiver uses for the initial
adaptation. After the training phase, the adaptation during actual data transmission occurs in
the decision directed mode. In [38], an N -tap MMSE receiver is presented, where N is the
processing gain (signature sequence length). Two computationally efficient MAI suppression
schemes have been considered, namely: the cyclic shifted filter bank scheme and the over-
sampling technique. If the received signals from different intra-cell users are chip
asynchronous, then the different timing offsets across users is an important issue. However in
principle, it can be solved using the fractional chip sampling with the use of the excess

bandwidth. Madhow [41] has suggested a near-far resistant time delay estimation method.



The delay is estimated by running N -parallel adaptive algorithms, and then finding the
delay, which provides lowest MSE. The only requirements are a training sequence for the
desired user and a finite uncertainty regarding the symbol timing.

Miller [39] has proposed an adaptive receiver for combating the near-far problem. The
receiver is a chip matched filter followed by an adaptive equalizer structure to perform the
despreading operation. The receiver is shown to be immune to the near-far problem in the
sense that its performance without any power control is hearly identical to its performance
with perfect power control. This receiver increases the capacity by two fold relative to the
conventional receiver with power control. The training analysis of the adaptive MMSE
receiver is given in [40].

Rapajic and Borah [42] have presented an adaptive MMSE maximum-likelihood
(MMSE-ML) receiver structure, where the conventional front end of the MF maximum-
likelihood (MF-ML) detector is replaced by an adaptive MMSE filter, for the generation of
sufficient statistics. It is shown that the replacement of MF bank with the MMSE filter results
in advantages, like ability to perform the joint synchronization, channel parameter estimation,
and signiﬁcént improvement in the bit-error-rate (BER) performance. However the receiver
requires the knowledge of spreading sequences of all the active users, and its computational -
complexity increases substantially with the increasing number of users.

As real world communication channels are stressed with higher data rates in the
multiuser systems, the ISI becomes a dominant limiting factor along with MAI and AWGN.
The DS-CDMA systems using the non-linear interference cancellation schemes have shown
even better performance if the receiver has the knowledge of spreading sequences of all the
active users, the received power level of some interferers and some of the channel
parameters.

To combat ISI, the decision-feedback-equalizers (DFEs) are designed to compensate



channel distortions, which consider the MAI as noise. Instead of using the direct adapting
DFE, one may first estimate the channel impulse response, and then design an equalizer
based on the estimated channel. The estimation of channel parameters is difficult, especially
in the fast time-varying channel of mobile communications and when the SNR changes take
place rapidly. Traditionally, the receivers and equalizers rely on a transmitter assisted training
session to extract the desired reference signal for the channel estimation or equalization.
However, the channel estimation depends on the adaptive algorithm being used in the time-
varying environment.

The optimum solution for the adaptive filtering problem is provided by the Wiener-
Hopf equations. For obtaining the optimum filter tap weights, the correlation matrix needs to

be inverted, which involves high computational complexity O(Nﬁ ), where N, is the number

of filter taps. The least-mean-square (LMS) and recursive-least-square (RLS) algorithms are
normally used to approach this solution. The LMS algorithm is simple to implement, model-
independent, and offers robust performance [43], but its main drawback is its slow rate of
convergence. The LMS filter suffers from the gradient noise amplification problem, when the
dimension of the tap input vector is large. The normalized-LMS (NLMS) algorithm is used to
overcome these problems, in which the step size is adjusted by normalizing it with respect to
the squared Euclidean norm of the tap input vector. The LMS algorithm involves

computations of the order of O(N, ). On the other hand, the RLS algorithm offers faster

convergence but its computational complexity is O(NT2 )

The RLS, extended RLS and Kalman algorithms are commonly used for the time-
varying channel tracking [44]-[47]. Chen and Wang [48] have analysed RLS algorithm based
fast fading channel tracking schemes for the multichannel MLSE equalizer. Sayed and
Kailath have delineated the relationship between the RLS and the Kalman filter in [46].

Under nonstationary environment, the Kalman and RLS algorithms require the system model



parameters to solve the system identification problem [45]. They are extremely sensitive to
the parametric ambiguities, and hence become unstable under the parameter mismatching
situation. Sayeed and Aazhang [49], [50] have proposed an optimal technique to exploit the
Joint multipath-Doppler diversity for the DS-CDMA systems, which can be used to develop
algorithms for the tracking of channel statistics, and thus authors provide an alternative to the
Kalman filter based approaches proposed in [51] and [52]. However, the computational
complexity is the main limitation for its implementation in the multiuser detection scenario.
Lindbom and Ahlén er al. [53]-[55] have proposed adaptation algorithms with constant
gains for the smooth tracking of time-varying parameters of the linear regression models with
prior information. The parameters are modelled as correlated auto-regressive-moving-average
(ARMA) processes with the known dynamics. The design of presented algorithm is
transformed into a Weiner filtering problem. It gives improved tracking performance with
——

computational complexity less than the Kalman and RLS algorithms. Over rapidly fading
channels, the proper choice of hypermodel (model for parameters) gives significant
improvement in the tracking process. This technique has found limited applications, because
its complexity depends on the hypermodel.

The time-varying Rayleigh fading channels may be modelled by using the first-order

autoregressive process AR(I) ie., first-order Markov model [56]. Haykin [43] has shown
that the LMS algorithm outperforms the RLS algorithm under typical conditions for AR(])

channel. Moreover, the LMS is a model independent adaptive algorithm. But, it suffers due to
the lag noise in the tracking process [57]. Under nonstationary‘ environment, the LMS
algorithm has been analysed by various authors in [43] and [58]-[64]. The degradation in its
performance is observed due to the lag-misadjustment in addition to the gradient-
misadjustment. Macchi and Bershad [65], [66] have evaluated its performance by using the

complex chirp exponential signals buried in the AWGN, and have also developed the



tracking theory based on the random-walk model [67].

Gazor [60] has presented a two-step LMS-type adaptive algorithm for the system
identification problem, which is developed by exploiting the Kalman filtering algorithm. The
channel is considered to be the first-order Markov process. It supersedes the conventional

e

LMS algorithm under the nonstationary environment (time-varying plant coefficients) by
combating the lag noise. Benveniste [59] has proposed the multistep algorithms for the time-
varying channel tracking. But, their designs depend on the prior information about the time-
variations of the true system. However, Gazor’s two-step LMS-type (G-LMS) adaptive
algorithm does not require such information [60]. It is implemented using the conventional
LMS algorithm in two steps, which track the moving minimum point on the MSE surface
according to the Wiener theory [43]. But it suffers due to oscillatory behaviour in the
convergence as well as tracking mode, which results in the longelr learning period and the
high value of MMSE. This work motivates the development of a modified version of the G-
LMS algorithm, which may track the time-varying channels efficiently by damping the
oscillatory behaviour. However for the G-LMS and the conventional LMS algorithms, a
general tracking theory for the first-order Markov model is yet to be developed. This
algorithm may also be applied to the direct adapting DFE structures to cancel MAI and IS in
the nonstationary environment.

George et al. [68] have proposed an adaptive-decision-feedback-equalizer (ADFE) to
detect information transmitted by the pulse-amplitude-modulation (PAM) through a noisy
dispersive linear channel, which outperforms the linear equalizers working under the slow
varying environment. Further, Monsen [69] has shown that the MMSE ADFE sacrifices
diversity for the interference suppression. However, the multipath reception helps to reduce
the diversity sacrifice for ISI suppression provided enough equalizer taps are available.

Mulgrew and Chen [70] have introduced an ADFE using the minimum-bit-error-rate

10



(MBER) as cost function, which may outperform the MMSE approach under the typical
conditions. In general, the relative performance of equalizers designed using the MMSE and
MBER criteria is dependent upon specific channel conditions. At low SNR values in
particular, there may be no significant benefit in using the MBER criterion.

For DS-CDMA systems under the Rayleigh fading environment, an effort is made by
Abdulrahman et al. [14] to solve the problem of interference suppression and equalization
by using a fractionally spaced ADFE based on the MMSE criterion, as all the users are
transmitting at the same chip rate. The ADFE minimizes the effects of MAI as well as ISI by
trying to force zeros in the impulse response of interferers at the decision instants. The use of
MMSE ADFE instead of the ZF equalizer may reduce the enhancement of background noise
and sensitivity to the weight inaccuracy due to the finite number of taps and the crude power
control. Like linear fractionally spaced equalizers, the feedforward filter of ADFE can act as
a RAKE combiner, and also exploits the inherent multipath diversity of the spread spectrum
signalling and the over-sampling techniques. Moreover, the finite length MMSE ADFE with
chip matched lowpass filtering is shown to outperform the code sequence matched filtering
approach under the asynchronous conditions due to the non-orthogonal properties of
signature waveforms.

Chaudhary et al. [71] have investigated the perfonnanée of DS-CDMA system in an
overlaid cellular environment, in which the processing gain is varied with data rate of the
selected service. It is shown that a MMSE ADFE receiver can be used to integrate dual-rate
services without adversely affecting the system-capacity. Klein et al. [72] have proposed
four sub-optimal detectors based on the MMSE and ZF equalization criterions, with and
without decision feedback, to combat both MAI and ISI. The MMSE DFE receiver has been
shown to perform better than the ZF DFE detector and the linear MUD techniques in terms of

the probability of error performance.
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In [73] and [74], the authors consider a centralized adaptive-decision-feedback-detector
(ADFD) using the MMSE criterion, where in addition to a fractionally spaced feedforward
filter that processes the chip matched filter output, a feedback filter processes previous
decisions from all the active users to cancel both MAI and ISI. Honig and Tsatsanis [75] have
reviewed adaptive techniques in the multiuser detection. At very high loads and with
sufficient SNR, the MMSE ADFD offers a significant performance improvement relative to
the linear MMSE receiver. The main drawback of ADFD is the error propagation, which can
significantly compromise performance under the low SNR conditions.

An ADFE/MLSE structure has been suggested in [76], in which the fractionally spaced
forward filter acts as (pre) error whitening matched filter, and the feedback filter acts as
channel impulse response estimator using the MLSE criterion. It has lower complexity than
the conventional MLSE technique, and is more efficient than the conventional DFE. But, the
rapid frequency-selective fading severely affects its performance. Although extending the
maximum a posteriori (MAP) technique to the DS-CDMA systems seems natural, yet it will
not give good performance unless some kind of MAI cancellation is performed.

Wong et al. [77] have developed an efficient way to apply the MAP technique to the
DS-CDMA systems for the time-selective flat fading channels, in which the receiver contains
a code sequence matched filter, whose impulse response is matched to the signature
waveform of desired user. The output samples from the matched filter are fed into a delayed-
decision forward recursive MAP demodulator, which exploits the channel memory by
delaying the decision and using a sequence of observations. Since the processing gain is
designed to be large in most of the practical DS-CDMA systems, it is reasonable to assume
that the matched filter output samples are the Gaussian random variable, which simplifies the
development of MAP receiver. However its design depends on the distribution of MAI, and it

can not be used for the frequency-selective fading channels. Lee and Cox [78] have proposed
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the MAP selection diversity scheme for ADFE, in which the output of the branch with the
lowest estimated a posteriori probability of bit error is used as the final decision, which is
used to adapt the DFE for all diversity branches. But, its application is limited to the
frequency-selective slow fading channels. The proposed scheme is suitable for indoor
wireless environment.

In a different approach, Smee and Schwartz [9], [10] considered the design and the
performance analysis of non-linear (feedback) MMSE detectors for the asynchronous W-
CDMA/DS-CDMA in the quasi-static multipath fading channel for suppressing both MAI
and ISI. The feedforward filter processes samples of the chip matched filter output, and the
feedback filter processes the detected symbols. It may be noted that by increasing the
connectivity of the feedforward filter, so that each user has access to more received samples,
additional diversity advantage can be obtained. Four different structures have been proposed
based on the connectivity of feedforward and feedback filters. The error propagation severely
affects the performance of decision feedback structures presented in [10].

Chiani [79], [80] has proposed E-DFE (erasure-), which reduces the effects of error
propagation by using two thresholds instead of one, in contrast to the conventional-decision-
feedback-equalizer (C-DFE) with single threshold slicer. A symbol is considered unreliable
for feedback, if its absolute value is less than the threshold value. It performs well over
channels with long memory, and gives substantial reduction in the probability of error. In
case of DS-CDMA systems, the threshold value may be obtained by taking the behaviour of
MALI into account, and may develop an erasure algorithm to control the error propagation
effect in the decision feedback receivers.

The blind deconvolution and the blind channel estimation have been developed to treat
the problem of detection under the situation of unknown channel [21], [81]. In [21], Honig et

al. have introduced a blind adaptive receiver design by minimizing the mean output energy.

13



Torlk and Xu [81] have employed the blind identification method to estimate the channel
response by using the signal subspace technique [82]. However in the blind designs [83]-[86],
the channel is assumed to be unknown but time-invariant in a transmitted frame. Therefore,
their method is not suitable for the time-varying fading channel case. Diggavi et al. [87]
have proposed an adaptive delayed-decision feedback and joint data estimation scheme to
combat the time-varying multipath fading channels in the presence of undesired co-channel
interference. The adaptive receiver uses the quasi-Newton algorithm for the improved
channel estimation, which enhances its performance. The conventional strategy for treating
the slowly fading channel problem is to design an adaptive equalizer using the LMS or the
RLS algorithm [88], [89]. But, both algorithms fail to perform well in a fast fading
environment.

The Kalman-filter (KF), which is known to be the best-linear-unbiased-estimator
(BLUE), has been proposed in the literature for equalization and interference excision under
the frequency-selective time-varying channels [90], [91]. In [92], a discrete Kalman filter has
been considered for the equalization of digital binary transmission in the presence of noise
and ISI. The Kalman filter has also been used in the channel estimation and demodulation of
binary signals. Kozminchuk and Sheikh [93] have presented a Kalman filtering approach for
the suppression of narrowband interference in the DS-CDMA communication systems. This
approach is based on the digital phase-locked-loop Kalman filter. The application of this
concept to the DS-CDMA detection is also described in [94], in which an extended-KF
(EKF) based detector is used for the joint symbol and time delay estimation of all the active
users in the tracking mode. In [95], a multiuser receiver for the asynchronous DS-CDMA
signals based on the KF is introduced, in which the improved performance of this detector
over the MMSE detector is demonstrated.

In [96], it has been shown that the use of KF produces symbol estimates with the lowest
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possible MSE among all the linear filters in long- or short-code systems for a given detection
delay, and with a complexity that is fixed for a given detection delay unlike the case of
MMSE detector. Iltis [51] has described a code-tracking algorithm for a DS-CDMA receiver
based on the EKF, which provides both code synchronization and joint estimation of the
interferers and channel parameter. Iltis et al. [52] have developed a multiuser DS-CDMA
detector without the knowledge of delays and amplitudes of the signals. The algorithm is
made adaptive, and the likelihood function in the symbol-by-symbol metric is updated using
a set of EKF innovations. However the detector possesses high computational complexity,
and moreover it requires the knowledge of noise variance.

McLaughlin [97] has presented an adaptive DFE structure working under the time-
varying environment using the Kalman filtering approach [98]-[100]. Chen and Chen [101]
have proposed an adaptive DFE receiver design to combat the multipath fading. The time-
varying channels are modelled as Rayleigh fading processes to simulate the frequency-
selective fading channels. The Kalman filtering algorithm is employed to estimate the tap-
coefficients of the frequency-selective fading channels. Then, an adaptive DFE receiver is
developed using the Kalman algorithm. In general, the dynamic characteristics of fading
channels cannot be characterised exactly by the system identification method. The presented
receiver takes the channel estimation errors into consideration to improve the performance.
[itis [51] has modelled the interference as an Nth-order autoregressive process. A composite
channel that is equivalent to the convolution of pre-whitening filter and multipath channel
coefficients is estimated by an EKF. However in [101], the receiver is designed for multiuser
detection, and the channel model can be directly derived from the Doppler spread of the
fading channel.

Further, Chen et al. [102] have extended the above work by considering effects of

both multipath time-varying fading and the impulsive noise for the design of a channel
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estimation and symbol detection algorithm for the DS-CDMA systems. In contrast to the
conventional autoregressive channel model [103], the proposed linear-trend channel model
with a scheme for tuning the variance of the driving noise is less sensitive to the channel
variations due to the changing Doppler frequency. There is no need to identify the
coefficients of transition matrix of the linear-trend model. The time-varying fading channels
are estimated by the Kalman algorithm based channel estimator with a self-tuning scheme to
track the time-varying fading. Moreover, a decision feedback based multiuser algorithm
using the Kalman algorithm is presented by taking the channel estimation errors into account.

Komninakis et al. [104] have used the Kalman algorithm to estimate the multi-input-
multi-output (MIMO) channel response using the time-varying frequency-selective model
proposed by Bello in [105], which subsequently performs the equalization task in the
multiuser systems. A low order autoregressive model is used to approximate the MIMO
channel variations to facilitate tracking via Kalman filtering algorithm.

The Kalman algorithm is a model dependent algorithm, and also possesses high
computational complexity, particularly in the multiuser detection scenario. However, a new
set of adaptive decision feedback equalizers and multiuser detectors may be developed by
exploiting the Kalman filtering technique to incorporate the two-step LMS-fype algorithms.

The multiuser decision feedback techniques exhibit higher spectral efficiency than the
linear MUD receivers, and may handle higher load than the linear MMSE multiuser detectors
[106]-[108]. In the absence of error propagation, Miiller et al. [106], [107] have
demonstrated that the capacity of DS-CDMA system with the MMSE DFD is close to the
capacity of an orthogonal-frequency-division-multiple-access (OFDM) technique for the high
load values, which enables power saving relative to the linear techniques. The multiuser
decision feedback strategy for the DS-CDMA was first proposed in [109], and was motivated

by the earlier work on MIMO DFEs [110]. Duel-Hallen [111] has presented two multiuser
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DFDs: P-DFD (Parallel-) using the parallel-interference-cancellation (PIC) scheme and S-
DFD (Successive-) using the successive-interference-cancellation (SIC) scheme.

Koulakiotis and Aghvami have discussed the IC techniques in [7], which are
characterized by the regeneration and subtraction of definite or tentative data decisions. But,
these techniques require the knowledge of channel parameters (phase, amplitude, and delay).
Viterbi [112] first suggested the processing of received signal by a SIC scheme, where one
interferer is cancelled at each stage from the received signal [113]. It offers less complexity,
and provides reliable detection of the weak users. But its disadvantages include the long
delay associated with the detection of last (weakest) user, and the error propagation if the
channel parameter estimates are not reliable. Moreover, there is a need to reorder the signals
when ever the power profile changes. Patel and Holtzman [114], [115] have analysed the SIC
scheme.

On the contrary, the interference cancellation for all the active users takes place
simultaneously in the PIC approach. In this scheme, all the K active users create replicas of
their interference contributions to the other X —1 users’ signals. Then, their replicas are
subtracted simultaneously from the K —1 users’ signals. This scheme can completely remove
interference if the original interference estimates are correct. This scheme offers low delay
for the detection of all users. The different PIC schemes proposed in the literature use the
tentative decisions obtained form the linear MMSE MUD techniques or the conventional MF
detectors for the multiuser interference suppression and data detection.

Two types of PIC schemes are classified according to the tentative decision device:
hard-decision PIC (HPIC) scheme, in which the output of slicer is used for IC, and soft-
decision PIC (SPIC) scheme, in which the soft-output of correlator or linear receiver is used
for IC [116]. The results presented by Buehrer and Nicoloso in [117] depict that the HPIC

scheme performs better than the SPIC scheme because the decision statistic is biased when
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the linear estimate of the symbol or channel is used for IC. However, the BER performance
degradation is observed because of the error propagation effect due to the unreliable tentative
decisions.

The cancellation of spurious signals with incorrect decision feedback leads to the
interference enhancement. An intuitive approach is to cancel a fraction of the estimated
interference, if a symbol estimate is thought to be unreliable. Divsalar et al. [116] have
proposed the partial PIC approach, in which the partial-cancellation-factors (PCFs) are
introduced to control the interference cancellation level.

The partial HPIC scheme based on the hyperbolic tangent device (optimal from the
MMSE considerations based on a Gaussian interference assumption) provides superior
performance than the linear and null-zone non-linear device based HPIC schemes. On the
other hand, we may improve the performance of SPIC schemes by reducing the decision
statistic bias using cancellation with PCFs. The simplest approach is to multiply all the
symbol estimates by the constant PCFs with value less than unity. However, this approach
may be modified by using the variable PCFs based on the value of correlator output.

Renucci and Woerner [118] have presented a detailed discussion for the optimization of
PCF value. Guo and Li [119] have determined the optimal PCF value under some simplifying
assumptions. But, its application is limited to a small number of users. In [120] and [121],
PCFs are obtained adaptively by using the LMS algorithm. However, this scheme is valid
under slowly varying environment. Li ef al. [122] have derived the optimal PCFs for the
partial SPIC schemes. This method is only applicable under the perfect power control
condition. Ghotbi and Soleymani [123] have presented a combination of soft and hard PIC
detectors, whose performance is superior to the SIC receivers and other sub-optimum
techniques. In the first few stages of this scheme, the received composite signal is refined

using the partial SPIC schemes to improve the signal-to-interference-ratio (SIR), and at the
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final stage, the partial HPIC scheme is used to suppress the interference. However in this
technique, the multistage processing delay is more relative to the available adaptive PIC
techniques.

In another adaptive scheme, Hou et al. [124] have proposed a recursive least square
algorithm based PIC structure to improve the SIR, and to handle the MAI effect. This
adaptive PIC structure includes the narrow-band-interference (NBI) cancellation filters
followed by the MALI cancellation filters. In order to avoid performance degradation due to

the unreliable initial detection, a robust coefficient 7 has been introduced in the proposed

design. The drawback of this method is that it is impossible to determine the theoretical

optimal value of coefficient 7. Therefore, its value is determined using the extensive

simulations at the different values of SIR for the AWGN channel.

In a more sophisticated approach, Hsieh and Wu [125] have proposed a two-stage
decoupled partial SPIC receiver, which outperforms not only the two-stage full SPIC
receiver, but also the three-stage full SPIC. Using MBER criterion, a complete set of optimal
PCFs is obtained for the periodic and aperiodic spreading codes under the AWGN and
multipath channels. The respreading strategy is used in the receiver design, which requires
the knowledge of spreading sequences. The optimal PCFs can be calculated online efficiently
in the time-varying environment, when the exact channel response and the noise variance are
assumed to be known at the receiver end. The two-ray multipath channel model has been
used to verify the theoretically derived results. It has been observed that the optimal partial
SPIC schemes have good immunity in the presence of channel estimation errors. However,
the power control scheme imposes extra burden on the cellular system. Moreover, the
respreading technique increases the complexity of the receiver.

Hou and Chen [126] have addressed the multiuser interference suppression and data

detection by using the parallel interference cancellation scheme, which provides multipath
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diversity and processing gain protection. The forward filter is proposed, in combination with
the feedback filter, to remove the effects of MAI and ISI by parallel cancellation using the
RLS algorithm. Host-Madsen and Cho [127] have analysed the linear and non-linear MMSE
PIC schemes for the multiuser detection in the DS-CDMA systems. The combined
MMSE/PIC detector provides considerable gain over the MMSE detector. The MMSE/PIC
detector is shown to possess robustness to the large code cross-correlations. However, it
requires the knowledge of code sequences at the receiver end. For asynchronous DS-CDMA
system, Ratasuk ef al. [128] have presented an adaptive P-DFD using the least-squares
algorithm. But, it needs to have the knowledge of covariance matrix of the received signal
vector, and it converges slowly in the time-varying environment. Further, Woodward et al.
[129] have analysed the detection procedure of a single undetected user using the MMSE PIC
scheme in the decision feedback scenario.

In all the above discussed PIC schemes, the MAI is considered as the main factor in the
system performance degradation. We may use the time-variable PCF values to control the
error propagation effect in the MMSE PIC scheme by replacing the tentative hard-decisions
with  soft-decisions. However, the PIC scheme requires a large number of
regenerations/cancellations, and moreover it requires fast power control for all the active

users in a particular cell ie., sirgle stage PIC scheme is not near-far resistant. Varanasi and

Aazhang first suggested a multistage PIC technique in [130], and have also studied different
multistage detectors in [131] and [132], which achieve considerable improvement over the
linear multiuser detectors. But they require accurate estimation of the channel parameters,
which increases the complexity of multiuser receiver.

Duel-Hallen [109]-[111] has introduced the multiuser zero-forcing decision-feedback-
detector (ZF-DFD). It performs linear pre-processing (partially decorrelates the users)

followed by SIC detection. The interference from the strongest user is removed by the use of
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decision feedback leading to the signiﬁcént performance improvement as compared to the
decorrelating detector. The ZF-DFD can be implemented by computing the Cholesky
decomposition and the matrix inversion operation. It also requires the estimate of received
signal amplitudes, as all the active users are arranged in the descending order according to
their received power level.

Varanasi and Guess [133] have analysed the decision feedback multiuser equalizer with
successive decoding, which achieves the total capacity of the Gaussian multiple access
channel. The S-DFD is more beneficial than the P-DFD if processing delay is not the
constraint. However, the detection ordering of all the active users for S-DFD in the presence
of MAIJ, ISI and noise is an independent issue for further research. Waters and Barry [134]
have proposed a noise-predictive S-DFD (NP-S-DFD) for the MIMO channels, which uses
the Vertical-Bell-Labs-Layered-Space-Time (V-BLAST) ordering criterion. The MMSE
based approach is shown to outperform the ZF approach in the SIC scheme.

The receiver setting of V-BLAST architecture for very high spectral efficiencies over
the wireless channels with rich scattering may be viewed as the MMSE generalized-decision-
feedback-equalizer (G-DFE, [135]) as applied to a MIMO channel [136], because the G-DFE
employs reordering of the received sub-streams, which is an inherent feature of V-BLAST.
Therefore, the G-DFE may be used to remove MAI and ISI in the DS-CDMA transmission.

Although the performance of the noncausal infinite length DFE is always better than
that of the realizable (causal and stable) DFE with finite decision delay [137], yet both
designs have different advantages from the viewpoint of realizability and application of
adaptive algorithms for the optimum performance over the frequency-selective fading
channels. Cioffi e al. [138] have shown that the MMSE DFE (biased or unbiased
configuration) performs significantly better than the ZF DFE, particularly at moderate-to-low

SNR values and on severe ISI channels. Al-Dhahir and Sayed [139] have extended the work
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presented in [137] to analyse a finite length MMSE DFE in 2 MIMO environment. Fast and
parallelizable algorithms for computing the finite length MMSE MIMO DFE are presented
for the multiuser detection with the modified SIC and PIC schemes for the DS-CDMA
systems. However, it requires the knowledge of multiuser multipath channel coefficient
matrix.

Foschini er al. have introduced the V-BLAST architecture for highly spectrally
efficient wireless communications in [140] and [141], in which the user’s bit stream is
mapped to a vector of independently modulated equal bit rate signal components that are
simultaneously transmitted in the same band. A signal detection algorithm similar to the
multiuser detection has been employed to detect the desired signal component in the presence
of AWGN. Wai et al. [142] have proposed the replacement of the optimal detection order in
V-BLAST by a sub-optimal one and the utilization of Gram-Schmidt orthogonalization to
substitute the computations of pseudo-inverse in finding the weight vector. The V-BLAST
ordering provides motivation to use this concept to order the active users in SIC schemes.
Moreover, the NP-S-DFD based on MMSE criterion may be implemented for multiuser

detection in the DS-CDMA systems.

1.2 Statement of problem

The presented work encompasses a study of adaptive decision feedback detection techniques
based on the MMSE criterion for the multiuser interference suppression and detection of DS-
CDMA signals. The aim of the work is to study and develop adaptive decision feedback
architectures for the high data rate wireless transmission under the multipath fading
environment, which can combat intra-cell as well as inter-cell interference (MAI and ISI) in
the presence of AWGN; and to develop an adaptive algorithm, which requires low
computational complexity, possesses faster convergence rate, provides efficient tracking of

the smoothly time-varying channels with minimum misadjustment, and may be incorporated
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in the adaptive non-linear multiuser detection techniques.

The problem, as treated in this work, may be broken up into five main parts as follows:

i)

iii)

A study of the probability of error performance in the MMSE multiuser detection for
the DS-CDMA systems. The analysis of asymptotic conditions, under which the
behaviour of MAI can be assumed to be Gaussian. The evaluation of bounds on the
error probability of MMSE MUD technique using the SNR of desired user and the
cross-correlations of code sequence waveforms under the near;far situation.

A comparative study of LMS, NLMS and two-step LMS-type adaptive algorithms in
the nonstationary environment. The development of a novel two-step LMS-type
adaptive algorithm to track the time-varying channels, and the study of its nonstationary
characteristics.

A study of adaptive decision feedback equalizer for the multiuser detection using the
two-step LMS-type algorithm obtained by exploiting the Kalman filtering algorithm
under the multipath time-varying channels, which uses the adaptive multiuser channel
estimator to cancel ISI.

The development of a novel erasure algorithm to control the error propagation in
decision feedback structures, and its incorporation in the adaptive decision feedback
equalizer for the asynchronous DS-CDMA systems. A study of adaptive multiuser
decision feedback detector using a novel parallel interference cancellation approach, in
which the erasure algorithm is used for the partial feedback of decisions to control the
error propagation effect.

A study of two-stage MMSE multiuser decision feedback detector using a novel
adaptive successive/parallel interference cancellation approach, which uses the MMSE
noise-predictive criterion for the successive detection procedure and the determination

of detection order of all the active users.
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1.3 Organisation of the thesis

Chapter 2: Probability of error analysis of linear MMSE multiuser detector

In this chapter, we first introduce MMSE and decorrelating linear sub-optimum detectors
based on the linear transformation applied to the output of matched filter bank. We assume
the near-far scenario. We define MAI as a function of leakage coefficients, and also
investigate their distribution using the divergence theorem, which determines the behaviour
of MAI at the output of sub-optimum detector. We next determine the Chernoff upper bound
on the error probability of linear MUD receiver. We also obtain the upper bound on code
sequence cross-correlation and the SNR of desired user using the probability of error

analysis, for which MUD techniques outperform the decorrelating detector.

Chapter 3: Adaptive algorithms for tracking of smoothly time-varying channels

In this chapter, we present a two-step LMS-type adaptive algorithm for the system
identification problem, where the time-varying unknown plant coefficients are modelled as
the first-order Markov processes. We consider the problem of lag noise in the tracking of
smoothly time-varying channels in case of the conventional LMS algorithfn. We first
introduce the smoothing and control parameters in the proposed algorithm to control the
tracking speed and the oscillatory behaviour respectively, and also derive analytical results to
determine the optimum value of control parameter using the lag and gradient decoupling
theorem and the direct averaging method. We next present the lag-misadjustment analysis for
the proposed algorithm, and also obtain the working range of the control parameter. The
performance of the proposed two-stage LMS-type algorithm is compared with the LMS,
NLMS and other two-step algorithms. The simulations are carried out, to verify the derived
analytical results, and to analyse the effects of smoothing and control parameters on the

performance of the proposed algorithm.
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Chapter 4: Adaptive multiuser decision feedback equalizer receivers for DS-CDMA
systems

In this chapter, we combine the spread spectrum technique and the two-step LMS-type
adaptive algorithm considered in chapter 3 to develop an adaptive multiuser receiver for the
DS-CDMA systems using the reduced Kalman/LMS (RK-LMS) algorithm. We first describe
the DS-CDMA system under the multipath fading environment in the matrix form. We
present the RK-LMS algorithm based multiuser channel estimator, and cancel ISI due to the
past data bits from the received signal vector by using the estimated multipath channel
response. We analyse the effects of smoothing and control parameters .on its performance.
We next propose the adaptive multiuser receiver using the RK-LMS algorithm, and also
analyse its probability of error performance. We evaluate its performance by simulating a
number of numerical examples, and also demonstrate that the proposed adaptive multiuser
receiver outperforms the conventional LMS algorithm based approach under the smoothly

time-varying multipath fading environment.

Chapter 5: Adaptive multiuser decision feedback detectors for DS-CDMA systems using
parallel interference cancellation approach

We next propose a novel erasure algorithm to control the error propagation effect in the
adaptive MMSE DFE for the asynchronous DS-CDMA system. We evaluate and compare its
performance with the conventional adaptive DFE under the frequency-selective fading
channel using simulation technique.

We then present an adaptive multiuser DFD using the parallel interference cancellation
approach. The soft output of linear MMSE MUD is processed using the erasure algorithm,
and subsequently fed into the PIC structure as the tentative decision. We first discuss the
detection procedure for a single undetected user in a particular cell assuming all other active

users have been detected. We next present the adaptive multiuser detection using the partial
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parallel interference cancellation scheme under the multipath fading environment. We
evaluate its performance using simulation technique, with and without channel estimator
based pre-cancellation of ISI, to show its performance gain over the linear MMSE multiuser

detection technique.

Chapter 6: Two-stage MMSE multiuser decision feedback detectors for DS-CDMA
systems

In this chapter, we present a two-stage MMSE multiuser DFD for the DS-CDMA systems
working under the multipath fading environment. We first discuss the noise-predictive
successive DFD (NP-S-DFD) as the first stage of the proposed cascaded structure, in which
the active users are detected successively using the MMSE noise-predictive ordering
criterion. We next propose a novel adaptive DFD using the successive/parallel interference
cancellation approach at the second stage, which uses the output of NP-S-DFD as the
tentative decisions for the interference suppression. Numerical examples are simulated to
demonstrate that the proposed adaptive multiuser DFD supersedes the conventional single-

stage and two-stage DFDs.

Chapter 7: Concluding remarks
We conclude the thesis with a summery of the impoftant results and suggestions for future

work.
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CHAPTER 2

PROBABILITY OF ERROR ANALYSIS OF LINEAR MMSE

MULTIUSER DETECTOR

DS-CDMA offers advantages over other multiple access techniques like TDMA and

FDMA in terms of multipath resistance, inherent frequency diversity, interference rejection,
and the potential use of advanced antenna arrays in the design of multiuser receivers [9]. In
multiuser systems, two commonly used approaches for detection are the conventional
matched-filter (MF) and the optimum maximum-likelihood (ML) detectors [12]. The former
appears vulnerable to the near-far problem and the latter is highly complex. The decorrelating
and MMSE linear sub-optimum multiuser detectors take the structure of MAI into account
and provide the near-far resistance, which is ignored in the conventional matched filter
detector. The decorrelating detector completely eliminates MAI but enhances the background
noise [18]; whereas the MMSE detector tries to minimize the mean square error between the
transmitted and estimated bit, which minimizes the average value of MAI-plus-noise at the
output of linear multiuser detector in the DS-CDMA system [19], [143].

In this chapter, we first briefly review different aspects of the sub-optimum techniques
used for the joint multiuser data detection and interference rejection in section 2.1. In section
2.2, we introduce the synchronous DS-CDMA system model with non-orthogonal codes, and
also present details about the performance evaluation of decorrelating and MMSE multiuser
detectors in terms of the leakage coefficients. Section 2.3 analyses the behaviour of leakage
coefficients for equi-correlated signals, which is used to prove that as the number of users
increases, then very high signal-to-noise ratio becomes the stringent condition for the desired

user. In section 2.4, upper bound on the code sequence normalized-cross-correlation (NCC)
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has been derived for K >2 users to achieve the performance advantage in MMSE multiuser

detection over the decorrelating detector. Finally, conclusions are given in section 2.5.

2.1 Introduction

In a DS-CDMA system, the transmitter multiplies each user’s signal by a distinct code
waveform or signature sequence. The detector receives a signal composed of the sum of
intra-cell and inter-cell users’ signals, which not only overlap in time domain but also in
frequency domain. The multiple access interference is a major factor along with the
background Gaussian noise that limits the performance of a multiuser system, which results
in the near-far problem when the interfering signal is stronger than the intended signal [2].
The problem of MAI becomes severe in the asynchronous systems, where orthogonality
between the spreading code Séquences cannot be maintained. Moreover, it is not possible to
design the code sequences for any pair of users that are orthogonal for all the time offsets.
The use of code sequences such as Gold codes, which have smaller cross-correlation peak
values, leads to MAI even under the synchronous conditions. Pursley et al. have delineated
the relationship between the spread spectrum multiple access system performance and the
spreading code sequence correlation function in [25], [26], [144] and [145).

In a DS-CDMA system, the conventional matched filter receiver correlates the
composite received signal with the signature sequence of the desired user, ignoring the
existence of MAIL One common strategy to deal with the near-far problem in the
conventional receiver is to use power control. But even under a single path fading channel
condition, the transmitter would have to adjust its power at least a few hundred times per
second [39], causing wastage of precious bandwidth. Another strategy to overcome the MAI
and near-far problem is to use the linear multiuser detection technique [13]. The optimal

multiuser detector as proposed by Verdi [12] in 1986, is based on the maximum-likelihood-

28



sequence-estimation (MLSE) criterion. The optimum MLSE receiver requires a priori
knowledge about the number of active users, their signature sequences, signal amplitudes and
transmission delays for all the multipaths. The main drawback of this detector is its high
computational complexity, which increases exponentially with the number of users.

The MALI is not an inherent flaw of the DS-CDMA system, but results from the inability
of conventional MF receiver to exploit the information available from MAI [146]. The
substantial performance degradation is observed with the increasing number of users due to
MAI [7]. Another limitation on the performance of DS-CDMA systems is imposed by the
multipath fading, which also introduces ISI due to the multipath propagation [10]. However,
the multiuser detection has been shown to be a very promising method for improving the
BER performance and increasing the capacity of DS-CDMA system [13].

As an alternative to the conventional MF and ML approaches, the linear sub-optimum
multiuser detectors have been explored, in which the complexity of receiver grows linearly
with the number of interferers. By taking into account the structure of MAL, it is possible to
obtain a dramatic improvement in the BER performance of MF detector. Two key sub-
optimum multiuser detectors are the decorrelating detector and the MMSE detector, in which
the estimated data bits are obtained by applying the linear transformation to the output vector
of a matched filter bank, involving the correlation matrix inversion operation [18], [19].
Although these linear sub-optimum multiuser detectors do not achieve the minimum BER,
yet they satisfy alternative optimization criterion (minimum error probability) based on the
performance indices such as the asymptotic efficiency and the near-far resistance [27].

Pursley [25] has considered the average SNR and the average error probability for the
performance evaluation of DS-CDMA system in the AWGN channel. Anderson and Wintz
[147] bave obtained a bound on SNR at the output of correlation receiver for an

asynchronous spread spectrum multiple access system by taking the cross-correlations of

29



signature sequences into account. It is shown in [144] that the average SNR can be computed
by using only the spreading code sequence auto-correlation values. Detailed analysis of an
asynchronous DS-CDMA system is presented in [25] to reveal that the code parameters have
the greatest impact on the performance due to their aperiodic cross-correlation properties.
Under worst conditions, the author suggests to choose that code sequence, which minimizes
the maximum probability of error according to the minmax criterion. The upper bound on the
worst case error probability has been proposed by considering the maximum magnitude of
the spreading code sequence aperiodic cross-correlation. Further, the effects of mean square
code sequence correlation on the error probability of the DS-CDMA system have been
analysed in [144).

The upper and lower bounds on the probability of error in the multiuser system are
obtained by using the convexity properties of the error probability function in [145], which
are valid for the system in which the maximum value of MALI does not exceed the desired
signal value. Geraniotis and Pursley [26] have analysed different error probability
approximations using the periodic and aperiodic properties of the code sequence Cross-
correlation function. However the presented approximation is based on the integration of the
characteristic-function of the MAI component at the output of correlation receiver, which is
motivated by the earlier work on intersymbol interference problem in [148] using the
characteristic-function method. It provides a very accurate approximation to the average
probability of error. Accuracy can be improved by using this approximation to obtain an
expansion point for a Taylor-series representation of the actual probability of error. Any pre-
specified degree of accuracy may be achieved by employing the combination of the
characteristic-function method followed by a series-expansion method. This method does not
require the evaluation of higher-order moments. This feature is particularly important for the

DS-CDMA systems working under the selective fading, in which higher-order moments are
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difficult to compute.

For DS-CDMA systems transmitting over the time-varying multipath channels, both
MALI and ISI arise. The conventional sub-optimum receiver consisting of a bank of matched
filters is often insufficient because the interference is treated as noise. Klein er al. [72] have
presented four sub-optimum detectors based on the MMSE and ZF criteria. The authors have
defined signal-to-“noise and interference” ratio parameter, which takes into account not only
the noise but also MAI and ISI. Using this parameter, the bit error probability for the desired
user can be estimated under the time-varying environment. If the knowledge about the
existing correlations is taken into account at the receiver, the estimation of error probability
may be improved. The probability of error analysis demonstrates that the MMSE criterion
based multiuser detectors outperform the ZF based approaches.

The MAI in a multiuser system plays an important role in the performance analysis and
characterisation of fundamental system limits. Zhang et al. [35] have studied the behaviour
of the output MAI of the MMSE multiuser receiver, under imperfect power control
conditions, for a large number of users. Almost for every realization of signature sequences,
the conditional distribution of the output ‘MAI converges weakly to the same Gaussian
distribution as in the unconditional case. The performance of MMSE receiver is robust to the
randomness of the signature sequences. The Gaussianity Justifies that from the view point of
detection and channel capacity estimation, the signal-to-interference ratio is the key
parameter that governs the performance of MMSE multiuser receiver.

The asymptotic multiuser efficiency and the asymptotic SIR at the output of multiuser
detector have been derived in [30] and [31] respectively. Verdu [32] has considered the
spectral efficiency as the fundamental figure of merit, which is a function of the number of
users, processing gain and SNR. It has been shown that the optimal multiuser efficiency of

the asynchronous DS-CDMA system is nonzero with unit probability of bit error. The
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asymptotic analysis of the multiuser detectors can be used to prove that the MMSE receiver
has higher spectral efficiency under the severe channel conditions [30]-[33]. The sensitivity
of channel capacity and the worst case error probability have been analysed by taking into
account the non-Gaussianness of MAI component in [22] and [23] respectively. It may be
inferred from the results presented in [36] and [37] that the MMSE multiuser detector
supersedes the RAKE receiver under severe conditions, including large number of users and
large channel length. The output signal-to-noise ratio and the near-far resistance are also
related to the cross-correlation matrix of the spreading code waveforms. Because of greater
ability to combat MAI as well as noise, the MMSE multiuser detector is widely used in blind
and non-blind adaptive applications.

Poor and Verdd [27] have presented the performance analysis of MMSE linear
multiuser detector in an environment of non-orthogonal signalling and background Gaussian
noise, in which the probability of error has been considered as a key parameter. In particular,
the behaviour of MAI-plus-noise mixture at the output of MMSE detector is examined under
various asymptotic conditions. As probability of error is not directly linked to the MMSE
criterion, therefore the leakage coefficients have been introduced as a linking parameter. The
authors have considered the probability of error in the multiuser detection as a function of the
leakage coefficients and the normalized cross-correlation values, which is minimized to
derive the optimum conditions. The leakage coefficients of interferers tend to zero under
different asymptotic conditions like large signal-to-noise ratios; large near-far ratios; and
large number of users; therefore the output MAl-plus-noise is considered to have the
Gaussian distribution.

For a particular two-user case [27], it has been proved on the basis of probability of

error and non-Gaussianness in the MAI-plus-noise mixture that if NCC is less than

(\/2/ V3 ] /2, then MMSE detector is better than the linear decorrelating detector. The
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Kullback-Leibler divergence theorem has been used to measure the non-Gaussianness in
MAI-plus-noise mixture by comparing it with a Gaussian random variable having the same
mean and the variance. Further, Moustakides and Poor [29] have shown that, contrary to the
general belief, the MMSE detector does not uniformly outperform the decorrelating and
matched filter detectors. But ranges of parameters, for which the performance disadvantages
arise, are somewhat at the extreme of practical systems. However the analytical results are
not available for arbitrary number of users (K >2), in terms of the leakage coefficients,
Qnder the near-far situation.

In the present work, we analyse the behaviour of leakage coefficients, and also calculate
upper bound on the spreading code sequence normalized cross-correlation value for X users
under the near-far situation. The higher values of leakage coefficients indicate that their
probability density function is Binomial in nature, whereas the smaller values support
Gaussian nature. Therefore, we have calculated the SNR of interferers at which the leakage
coefficients maximize. While divergence theorem gives a limiting value of SNR of
interferers, below which the Gaussian approximation for MAI-plus-noise mixture can be
used. It is that interference level, at which the non-Gaussianness maximizes. The difference
in two derived values decreases with the increasing number of users, and coincides for a large
number of users. This result verifies that the MAI-plus-noise mixture is asymptotically
Gaussian. The above results are used to derive the upper bounds on error probability in the
MMSE multiuser detection. Further, the exhaustive solution for the minimization of

probability of error yields upper bound on the signature sequence normalized cross-

correlation value.

2.2 Multiuser system model

In the following, we consider a spread spectrum binary communication system, employing

normalized modulation waveforms s, (¢),s, ) ... ,s (), such that
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where cf is the jth chip (i 1/ VN ) in the spreading code sequence of % th user, T is the

chip period, N is the length of spreading code in terms of the chip periods, 1/ JIN s the
energy normalization factor, and w(f) is the real transmitted chip waveform shape, which has
unit energy in the time interval 0<t<T, ie,yw(t)=0 for te[O,Tc]. The transmitted

bandpass signal for the % th user may be written as:

x ()= ReHA,c Z,: b (s, (t —iT, )}e/a’"} = Re|%, (t)e’* | (2.2)

where b, (i) is a real valued transmitted data symbol +1, s,(t) is the spreading signature
sequence of user k, 4, is the amplitude level (Ak =2P, ), T, is the symbol period (with
T, = NT,), and w, is the carrier frequency. Each user’s transmitted signal (with signal power

level P,) is assumed to pass through an independent flat fading channel, which transforms

the bandpass signal for & th user as:

()= ReH@-:Zbk o snle—1T, -z, )}ew}  Relf (1 23

where 7,(t) is the equivalent lowpass signal, and the complex quantity y,(f)= lyk (t}e"‘”‘”
represents the complex attenuation factor for the kth user, We define the total delay as
7, =L, +1,. For kth user, Q, is the delay with respect to the desired user, and t, is the

propagation delay. If K active users are present in the DS-CDMA system as shown in Fig.
2.1, then the equivalent lowpass composite received signal after the demodulation is

represented as:
H(t)=>"%(c)+ onlt) (2.4)

where n(t) is the white Gaussian noise with zero-mean and unit power spectral density, and

o is the noise scaling factor.
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Fig. 2.1: Lowpass equivalent representation of the DS-CDMA transmitter for K active users.
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T

Fig. 2.2: [llustration of the interference caused by the k th user to the desired user signal.
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Assuming 7k(t)=1 for k=12, ... ,K, the composite received signal (2.4) during i th

interval in the AWGN channel can be rewritten as:

)= 4, Db (i), (1 ~iT, -7, )+ onlt) (2.5)

X
k=1 i

For synchronous model, each user is assumed to have the relative delay {r,,} equal to zero.
The normalized signalling waveform s, is supported only on the interval [O,Tb], with kth

user’s i th data bit b, (i). The output of matched filter bank is a K x1 dimensional vector y,

whose £ th component is the output of a filter matched to s, Inthe j th data interval je.,

(t+)r,
ve)= [s,(e~i1,)P(0)at, k=12, .. ,K (2.6)

Ty
For i =0, the sufficient vector Y can be written as:
Y=RAb+on (2.7)
where R denotes the normalized cross-correlation matrix of the signal set 81583, . , 8, With
Ry=py=<s,,8>; A= diag{Al,Az, ,AK}; bis the K x1 dimensional data bit vector,
whose kth component is b,;and n is a i\I(O,R) random vector, independent of . The

linear sub-optimum multiuser detectors incorporate the linear transformation 'if" to the

output vector of matched filter bank, such that
Ek =sgn {(My )k } 2.8)

For the decorrelating detectors, M =R". However for the MMSE detectors, the linear

transformation 'M' minimizes the second-order moment of error between the bit b, and
output Ek.

M=M={R+o’47}" 2.9)

Applying this linear transformation to the output vector of matched filter bank to detect the
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desired user, we get y, = (My)l . Therefore, the MMSE detection process for information bit

of the desired user is dependent on the sign of the quantity

4=%=um%4d&ﬁ (2.10)

§
where, B, = 4,(MR),, and 7, = N(0,(MRM),,)
The quantities m, and (o/B, ), are the MAI and the background Gaussian noise at the
output of MMSE detector respectively. The multiple access interference comprises of

leakage coefficients B,,[5,, ... , By, defined by

&=@£ (2.11)

which results in the discrete multiple access interference component

me =b,B, +b; B, + ... +b By (2.12)
Using (2.9), we can write

MR=1-0>MA" (2.13)

where, I is the identity matrix. It follows that

— M, (2.149)

(m)l,l =1- Zl
o?
and (m)u = _?Mu (2.15)
k

i =L_ MR)Mzii My (2.16)
T A(MR), 4, A4, ol ‘
: -2 M,
A

1
where, the values of M, and M, are determined by using the following linear

transformation with matrix inversion operation.
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2 -1
1+ — ol
M=[R+o?47]" = [ Af] l 2.17)

The above partitioned form of the inverse of [R+02A'2 J allows the mathematical

simplification for further analysis, which results in

M= Hi _/‘uprHl_l 2.18)

_/ullHl_lpl Hl_l +,unH1_lp1plTHx_l

1

2
. - o} -
with /1“1 =[[1+F]_,01TH1 lP[J: Py :[plz Pz - plk}r,

GZ/AZ2 0 |

and  H =R+ (2.19)

0 aZ/A,ij

where, the matrix R, is obtained by deleting the first column and the first row from R ; such
that
2

-1
ag -
M, = u, =[(1+?J‘p1TH1 lle (2.20)

1
and M, =-M,(pTH), 2.21)
where, (p,TH O ),‘ refers to the coefficient corresponding to the & th user. Like the worst case

error probability analysis for the multiuser system in [25], we consider the situation when the
value of MAI overwhelms the desired signal value. We make the following assumption to

obtain the value of leakage coefficients under the near-far situation.

Assumption 2.1: Assume that under the near-far problem, all other active users are at higher

power level than the desired user. Such that
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dy=dy= . =4 = Ay > 4
Pri = Pyr (scalar) and p, , =1

ﬂ2=ﬂ3: =:BK=:BNF

Under the assumed conditions, the matrix H, may be rewritten as:

H =Ay+pyl 1 (2.22)

2 2 2

where, A, =diag(l+%—pw, 1+%_pNF, ,1+%—pNF] with 4, = ... = 4, = 4,,
K

and 1 isa (K —1)x1 dimensional column vector with all the elements equal to unity. It may
be inferred from (2.22) that H, is a rank-1 modification of the positive definite diagonal

matrix A, . Therefore, we can write H;' in the closed form as [27], [149]:

Al UAGr

H71=Al — —NFZ - T NF 2.23
1 NF  Par 1+pNF1rA_hllFl ( )
which further yields
prH =—P A (2.24)
1+ pNFlTA_Al’Fl )
2 1TA
and o[ H;'p, =—Lhe2 el (2.25)
1+ ppel Ayl
Using (2.20), (2.21), (2.24) and (2.25), we obtain
M - _M pNF
1k 1 g (2.26)
1+—2+pNF(K—2)
Ayp
-1
2 2 _
and M, = [1 +%] - 0‘2’ (K 1) 2.27)
1 1+—2_+pNF(K_2)
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Substitution of (2.26) and (2.27) in (2.16) leads to

Byr =By = - Pur (2.28)
[l+:—2]+pNF(K_2)—IDI%IF(K_I)

NF

2.3 Analysis of leakage coefficients

The leakage coeﬂjcients can be analysed to investigate their Gaussian or Binomial character,
which determines the behaviour of MAI at the output of the linear sub-optimum detector.
2.3.1 Asymptotic analysis of leakage coefficients

Proposition 2.1: For a large number of users, the leakage coefficients follow the Gaussian
distribution under worst conditions.

Proof: At boundary conditions, the following relations exist.

A
1. a-—)oo,,BNF—)—’DNF NE
1

c—>0, By >0

2. ﬁ—m,ﬂw—m
o

A
—E S0, By >0
o

. . . . A .
The leakage coefficients maximize at some intermediate value (—"’5] , which can be
O Ju

determined by differentiating Bur (2.28) wrt. (4, /o);

(B _, e
d[ ANFJ
o2
i) P i 2.30
ax( )M 4 2 [\/1+pNF(K_2)-—p§,F(K*1)J | |
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1
M \/1 + pNF(K_z)—pIZVF(K_l)

(2.31)

which occurs at, (ANF J
o

It is clear that as K — o,

[AiJ — 0 and Max(B,;)— 0
g /m

Alternatively, the output MAI-plus-noise can be considered Gaussian up to a certain value

[A”F J , at which the non-Gaussianness maximizes. This can be calculated using (Kullback-
o N

Leibler) divergence theorem, in which the MAI-plus-noise mixture is compared with a

Gaussian random variable [22], [23]. Therefore, we can write

K
MAI — plus — noise = szbk +0o 1, with the variance o}, (2.32)
k=2
K
Such that, oy = B + 0 (MRM),, (2.33)
k=2
We have (MRM),, = M, - o* (M4~ M), (2.34)
ol o’
=M, -5 M| -— M (K1) (2.35)
Al ANF
which results in
2 2,02 1 o’ 2 2
Oupy =0 My, M, A =a’+v (2.36)
2 = 2 = 2 2 4 £ Mll’lc
where, a> => B} =Y AX(MR);, = 27 (2.37)
k=2 k=2 k=2 k

Using (2.26) and (2.27), the above equation can be simplified to give

2
4
(o2
a*=2_(K-1)M2 Lo (2.38)

" 1+ZT+,0NF(K"2)

NF
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From (2.33) and (2.36),

2
v = asz,[L—"—z]—a’ (2.39)
Mll Al .

2
Since the non-Gaussianness is a monotonic function of a_z’ as demonstrated in [271;
v

2
therefore we need to find Fap = ANZF that maximizes this factor. Using (2.38) and (2.39), it can
g

be easily shown that

2
a € Inp
2

= 2.40
v (l+rNF a) (1+er b) —C Py ( :

where a, b and ¢ are defined as:
a=(1+p,; (K -2)
b= (1 +pNF(K_2)—p:IF(K_1))

¢ =p13'F(K—1)

a’ .o 1 A}
The term Z_ maximizes at Fap = =| ZaF (2.41)
N

v (abyé_ ?

a,l

and Max(ﬂNF)N =(:BNF [ﬁ] (2.42)

The distance between the two derived signal-to-noise ratio values of interferers in (2.31) and

(2.41), which maximizes the leakage coefficients and the non-Gaussianness respectively, may

be defined as:
A A _ Aye _ Aye :1_ A _ l+pNF(K“2) 2.43)
o? o ), \o? ), b 1+ oy (K ~2)- p2 (K 1) '

as K — oo, it may be shown that

Al42, /o) 0 (2.44)
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The relative distance between the two points decreases with the increasing number of users,
and ultimately coincides at the asymptotic condition. It is clear from above analysis that for a
large number of users, the leakage coefficients follow the Gaussian distribution. Hence, we

can consider the MAI-plus-noise mixture asymptotically Gaussian.

Example 2.1: For a two-user case, it can be shown by using the result (2.41) that the factor

a’ s A} 1
NF

7 maximizes at r, . = > =
o N \/1 ~ Pnr

This result is same as proposed in [27]. But, the new result derived in terms of relative

distance is
o A | 11 P (2.45)
o’ 1= P

A2
as pyr >0, A[%J—w

2
ag

A2
and p,. > +1/-1, A[ﬂJ—Mo
It is clear that the relative distance increases with the increasing magnitude of NCC.

Moreover, the equation (2.43) can be used to show that the relative distance is maximum for
K =2. On the contrary, the value of A(Af,p / 0'2) approaches to zero for a large number of

users (2.44). Therefore the two-user case is considered to be the worst case for nonzero NCC,
in which the non-Gaussianness is maximum. Therefore, it rﬁay be inferred that the leakage

coefficients follow the Binomial distribution for a small number of users.

2.3.2 Upper bounds on the probability of error
The above analysis can be used to derive the Chernoff upper bound on the probability of error

in the MMSE multiuser detection. Using the MMSE detection equation (2.10), we may
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partition the leakage coefficients into two sets as Bin|JGau = {2,3,4, v, K } The subsets

Bin and Gau consist of Binomial and Gaussian distributed leakage coefficients respectively.

Following the results presented in [28], it may be shown that the Chernoff upper bound is

2

e

Probability of error = Pe < exps — = (2.46)
2 —2 (MRM ), + > B
B keGau
The above bound holds subject to the condition
X
218 <1 (2.47)
k=2

For a small number of users with high SNR, the multiple access interference term may be
subtracted from the desired signal value. The leakage coefficients follow the Binomial

distribution, and if the signature sequence normalized cross-correlation matrix is non-

singular, then it can be proved by using the assumption 2.1 and Gay = {@} in (2.46) that

Pe< exp{— 332(1(0—2((1;1 ;?f): :F)Dz} (2.48)

Under the near-far situation, the condition (2.47) can be modified as:
(K =1)Bu| <1 (2.49)
Whereas for a large number of users with Byr — 0, the leakage coefficients are considered

Gaussian distributed. The Chernoff upper bound can be derived by using the assumption 2.1

and Bin = {&} in (2.46) so that

(2.50)
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Fig. 2.3: Chernoff upper bound on error probability for Binomially distributed leakage coefficients.
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The values of Max(g,, ),, and Max(ﬂNF)N can be used in (2.48) and (2.50) to evaluate the

upper bounds on error probability under worst conditions. For Binomially distributed leakage
coefficients and non-singular matrix R, the upper bound (2.48) on probability of error
increases with the increasing number of users (as shown in Fig. 2.3). Here, we have chosen

10dB SNR for the desired user and NCC = 0.25.

Proposition 2.2: For unbiased performance of the MMSE linear multiuse detector, the

signal-to-noise ratio of the desired user should be more than the minimum bounded value

[ﬁ-] . Such that,
o min

A —M Pur ’
[U Jm'" 2 ‘/1+PNF(K—2)—pf,F(K—1)‘ (2.51)

Proof: Using the leakage coefficient analysis discussed in subsection 2.3.1, we can replace

By with Max(p, ) in (2.49) to obtain a tight bounding condition; which results in

(k - I)Max(ﬁw )M I <1

Using (2.30), it can be simplified to give

4.
—_ < —
CJ)un O

This shows that the signal-to-noise ratio of the desired user should be greater than the above

defined value for the unbiased functioning of MMSE multiuser detectors,

2.4 Upper bound on signature sequence cross-correlation function

It has been shown that the performance of spread spectrum multiple access system is
dependent on the signature sequence normalized-cross-correlation (NCC) values [25], [26],

[144], [145]. It is apparent from the results presented in [27] that for a DS-CDMA system

46



using the non-orthogonal signalling scheme under the AWGN channel, the MMSE linear
sub-optimum multiuser detectors have lesser bit error rate than the decorrelator only when the
NCC is less than or equal to the upper bounded value for a two-user case [27]. This is true
only if the condition (2.49) is fulfilled. For K > 2, this conjecture can also be proved for the

worst-case conditions.

Proposition 2.3: For K >2, if the normalized cross-correlation is less than the -upper
bounded value, then the probability of error in MMSE detection is less than or equal to the
error probability of the decorrelator.

Proof: Using multiuser detection equation (2.10), the probability of error for linear multiuser

detector is defined as:
K o

P, =Pr| > Bb, +—7 >1 (2.52)
k=2 B, .

Under the near-far situation (assumption 2.1), it is straightforward to show that the error

probability (2.52) in the linear multiuser detection is represented as [143], [150]:

K
i 1+ Byr Zbk
p-_L Ol — 2 (2.53)
VA by b elt, 1) ¢ (MM)l,lo-z
B}

where, (), denotes the complementary unit cumulative Gaussian distribution. In above

) K
equation, we may use p = Zb,, .
k=2

The simple arithmetic operations show that
p=l-(& -1} .. ,-2,042, .. +(K -1)| for K = odd
pP= [— (K*l), I 0 ,+(K—1)J for K =even

Now, the probability of error for the MMSE multiuser detector can be rewritten as:
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P = I Z J L’VFIPI +0 I_BNFlp,

2 iz ipeoon) || [0aRM), 0 || [(aRa), 07
(i), 47 (R}, 4 )
i

0_2
and  (MR), :[l—FM“J

1

Using (MRM )1,1 and (MR)“ in (2.54), it can be shown that

1

= K1
| e{0,2,... k1) x=0DD)
{13, K~1{K=EVEN)

P ®5.2)+ £ 7.2)

where fl(f,f,Z)=Qo(i+y|plj,fz(f,f,Z)=Qo(f_ylpll,
z

0'2 0'2
¢1 ='E’ ¢2 :E'*'IDNF(K_Z)’

1+4, _p:/F(K_l)

I= \/Z ,
5’-=p1v1:\/£,

2=J(l- (K ~1))i+2¢,)+ 42 +4,

A= p?w,(K—2XK—1)

(2.54)

(2.55)

(2.56)

2.57)

(2.58)

(2.59)

(2.60)

Assumption 2.2: Let us consider the case, when |p|=(k-1) in (2.55). For this boundary

condition, f,(?c, y, z) has MAI in the favourable condition, which is considered to be the best

case. Whereas, all the leakage coefficients are having opposite sign in fz(f

leads to the worst case.
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Applying above assumption in (2.55), we get

r{o(40) o)

2

The probability of error for the decorrelator for above case is P° = P, x2) ie., the error
b2=pyp(K-2

2
i ey O
probability with —— = 0. For a two-user case,
NF

QG( Vi- pNF] (2.62)
As NCC tends to unity, the performance of decorrelator approaches the conventional MF

detector ie., PP —>y2. It is clear that its error probability is independent of the noise

variance. But, this is not true for the MMSE multiuser detector. Now, we will show that for

the given normalized cross-correlation range in the minimum mean square error detection,

0 ~
L <0 for ¢, 20 (2.63)

2

a¢2ﬁ [ zy:u} [QG[%__I)]”L [Wﬂ (2.64)

[pNF(K 1)z? —2:2( )\/E} %[Q,G(mng—1)j_Q,G(f—y(ZK—1)H

where, u = (1 - pl(K-1)+ ¢2). We now make use of the following

2 % gu = ple(K ~ 1+ pye (K - 2)- o2 (K -1)] (2.65)
and

pur(K =122 = 25(K ~INyu = pu (K -1~ o2 (K =11 - pr (K -2)}- 2] (2.66)
The substitution of (2.65) and (2.66) in (2.64) yields

o = 2 (K 1) ) % (K -
2= sz) 'Hcosh[%—l)](zf—f( ) (2.67)
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where, H=1=py(K-1)+ p}- (K -1k -2) >0

- 1%./(b
£= /AH] oy

(¢2)—-—(1—i;]tanh( (Z ‘I)J (2.69)

Pwr

The condition %F, <0 is fulfilled only if (2¢ - £(g,)) in (2.67) is a non-negative term. It is

2
clear from (2.68) that for & 20 (positive value), the following relation should exist.

% 50 (2.70)

Let us consider the favourable positive range of NCC for the condition (2.70) je.,

0< pyr <1 2.71)

Consider the case & > 0

Case 2.1: If ¢, > VH , then (t-f (8, ) depends on the non-negativity of term &, and which

is true for (2.70) and (2.71).

Case 2.2: For 0<¢, <JH , the optimum conditions can be found out by investigating the

argument of 'tanh’ term in (2.69), under which f(#,) is maximum. Here,

L e O )

For smaller values of argument, the following approximation can be used.
lim  tanh(m) — m 2.72)

Consider the term r(g,) for further analysis, which is given by

1-""—‘---__

cg!uh‘ Aiy;
(¢2 Jl+¢2 pNF (K —I)XK 1 /#ﬁ“ Le‘& (273)
(1+2¢4, J1- p2 ( K-1))+42 +A, 612069

| [ ans. Es.__..__....
3 A

() [ . ] —

\_ 50 %
N £



Such that, #(0)= (1(1—_1022(1((1; _1)1)§ﬁ—AI) 2.74)

The r(¢,) maximizes at

Brmwe =d ~ (1= 3 (K ~1))2 0 (2.75)
where,
d=puVEK-1NB (2.76)
Substitution of (2.75) in (2.73) results in
K-1
== 2.77
r( 2mux) [ 2d ] ( )

The condition (2.75) can be rewritten as:
~2ppe (K =1 + o3 (K =1XK =2)+3p2 (K ~1)-120 (2.78)
If NCC is equal to unity, then r(4,,...) approaches infinite value. To avoid this situation, the

condition b > 0 imposes a bound on the value of NCC ie.,
L < <1 (2.79)
( K—l) Pnr .
The NCC range (2.71) satisfies the condition (2.79). For this case, the solution of

(2¢ - 1(8,)),.. 20 gives

4d° - p2 (K -1PH 20 (2.80)
We can use (2.71), (2.78) and (2.80) to determine the optimum range for the spreading code

sequence normalized cross-correlation value, which is explained with the help of following

example.

Example 2.2: For K =2, we can show that (2.78) and (2.80) reduce to give the following

conditions respectively.

pNFVI—pJZ:IF _(1".0:/1-")20 (2-81)
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1

Pury1- pf/l-"

From (2.81) and (2.82), it can be proved that

1 L[ B
E<pm,- SE 1+7 . (2'83)

The results are same as the equations (113) and (114) in [27].

4> (2.82)

Example 2.3: For K >2, the solution can be found out using the numerical analysis
techniques. For X =3, the resulting NCC range is 0.4314 < Pyr <0.8203. The upper bound

on the value of NCC for the different number of users is shown in Fig. 2.4. The analysis
shows that the conditions (2.78) and (2.80) are sufficient to derive the results for K <7. But
for a large number of users, the argument of tanh in (2.69) being large, we can not apply the
approximation (2.72).

The above examples show that the upper bound on the value of NCC decreases with the
increasing number of users. Under near-far situation, the probability of error in the MMSE

multiuser detection can be calculated for worst NCC (pye 1) ie,

P =%{QG(A, +AN;(K—1)1]+QG(A, —AN;(K—I)IJ} (2.84)

2 ' '
where, = |1+ (k ~2) i (2.85)
ag

For a large number of users and Ayr > 4,
0_2

5 1 (4 1 2.86
R=20 M (k-1)(k -2 +g (2.86)

From the results proposed in [27], it is evident that the error probability of decorrelator

approaches y, as the value of NCC tends to unity. This clearly shows that P, < B® ie., the

MMSE multiuser detector is more robust.
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Fig. 2.4: Upper bound on the value of NCC vs the number of users.
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2.5 Concluding remarks

In this chapter, we have analysed the MMSE linear multiuser detector under worst
conditions. The behaviour of MAI at the output of sub-optimum multiuser detector has been
investigated in terms of the leakage coefficients, and we have also shown that the signal-to-
noise ratio of the desired user should be greater than the minimum bounded value, which
depends on the number of users and the value of signature sequence normalized cross-
correlation. It may be inferred from the derived analytical results that the leakage coefficients
follow the Gaussian distribution, for a large number of users, under the near-far scenario. On
the contrary, the Binomial distribution may be used for a small number of users. The two-
user case is shown to be the worst case with maximum non-Gaussianness in the MAI-plus-
noise mixture at the output of linear MMSE multiuser detector. The Chernoff upper bounds
on the error probability of MMSE multiuser detector have been proposed for the Binomial as
well as the Gaussian distributed leakage coefficients. In [27], upper bound on the normalized
cross-correlation function has been presented for X = 2. Here, we have derived the upper
bound and the optimum NCC ranges for 7> K 22 under the near-far situation. The MMSE
multiuser detector exhibits lower probability of error in comparison to the decorrelator only if
the value of NCC is less than or equal to the upper bounded value. In the end of section 2.4, it
has been shown that the MMSE detector outperforms the decorrelating detector under worst

conditions.
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CHAPTER 3

ADAPTIVE ALGORITHMS FOR TRACKING OF

SMOOTHLY TIME-VARYING CHANNELS
%

Adaptive signal processing techniques are finding increasing applications in DS-
CDMA systems for equalization and interference excision, which may require the use of the
estimated value of the time-varying channel parameters. The adaptive algofithm is the
backbone of the channel estimator/predictor, using the pilot signals, in such adaptive
multiuser interference suppression techniques. The time-varying Kalman filter constitutes the
MSE-optimal linear algorithm for estimating the regression parameters based on the linear
model of their behaviour [156], and it can be used for channel tracking [53]. Unfortunately,
its computational complexity is high, and it also suffers due to the numerical instability
problem. On the other hand, the LMS algorithm has been found suitable for tracking slow
varying channels. It motivates the extension and optimization of the structure of LMS-like
adaptation laws for tracking the smoothly time-varying channel parameters with low
computational complexity. For the system identification problem, we present a modified
version of the two-step LMS-type adaptive algorithm motivated by the work of Gazor [60],
and also describe the nonstationary adaptation characteristics of this modified two-step least-
mean-square (MG-LMS) algorithm.

In this chapter, we first briefly review different adaptive algorithms used for the
tracking of time-varying channels in section 3.1. In section 3.2, we describe the smoothly
time-varying system model, and also present details about the mathematical formulation of
the nonstationary environment arising due to the variations in system parameter values. We

next introduce the proposed MG-LMS adaptive algorithm, and also discuss its nonstationary
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adaptation characteristics. In section 3.3, we assume that the time-varying system is governed
by an independent stafionary ergodic first-order Markov process. The analytical results are
derived to show the different aspects of the presented algorithm in terms of the lag-
misadjustment. Simulation results validating mathematical analysis are presented in section

3.4. Finally, conclusions are given in section 3.5.

3.1 Introduction

In the field of adaptive signal processing, the LMS is an extensively explored algorithm, and
has found wide applications for the stationary environments due to its implementation
simplicity [43]. However, its performance degrades substantially in the time-varying
environment (nonstationary case) [5 8]-[64]. This degradation arises mainly because of the lag
noise in addition to the gradient noise, which is measured in terms of the dimensionless
quantity, called “Misadjustment” [57].

The quality of adaptive algorithm is also defined in terms of the misadjustment, the
ratio of excess mean square error in an adaptive system to the minimum possible MSE [43].
The higher the misadjustment, the lower is the quality. The misadjustment is caused by three
errors in the adaptive weight vector [65]: i) the noise-misadjustment, which is due to the
noisy character of the input signal; ii) the lag-misadjustment, which is independent of the
additive noise and is due to the time-varying nature of the optimal weights; iii) the gradient-
misadjustment, which is due to the presence of gradient noise in the stochastic gradient
adaptive algorithms.

The random-walk model has been used for developing the tracking theory for the LMS
algorithm in [67]. Macchi et al. have evaluated the performance of LMS algorithm in the
nonstationary environment, where the nonstationarity is introduced by using the complex

chirp exponential signal buried in AWGN [65], [66]. In [151], Haykin ef al. have presented
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the modular learning strategy for the detection of a target signal of interest, when the
transmitted signal is considered to be corrupted by the interference with unknown statistics (a
source of nonstationarity). However in the present work, we are considering the system
identification problem for the tracking of wireless channel, in which the channel response is
time-varying.

In a recent paper [44], it is shown that the time-varying fading channel may be

accurately modelled by using the second-order autoregressive ie., AR(Z) process. The

analytical and simulation results presented in [56] depict that the first-order Markov channel
provides a mathematically tractable model for the time-varying Rayleigh fading channels.
However for the LMS algorithm, a general tracking theory of the first-order Markov model is
yet to be developed.

For a first-order Markov channel, the LMS algorithm performs better than the RLS
algorithm under typical conditions [43]. It produces a minimum level of misadjustment that is
smaller than the corresponding value produced by the RLS algorithm. Moreover, the model
independent design of the LMS algorithm provides an additional advantage over the RLS
algorithm. In [46], Sayed et al. have presented the RLS algorithm as a special case of the
Kalman filtering algorithm. In nonstationary environment, the substantial degradation in the
tracking performance of the RLS algorithm is observed due to the design constraints.
Subsequently the extended RLS algorithm has been proposed in [45] for the adaptive systems
under the time-varying environment, which provides better tracking performance than the
LMS algorithm. However, the limitation of this technique is that it requires the knowledge
about the original dynamical system model to solve the system identification problem.

The Kalman filtering algorithm is considered to be optimum for such applications [46],
[47]. In multiuser scenario, Chen et al. have presented the Kalman filtering algorithm for

channel estimation [102]. A simple linear-trend channel model is proposed for the efficient
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channel estimation in the time-varying channel case, However, the computational complexity
and requirement of the knowledge of system model may often preclude the above Kalman
filter based approaches. To avoid the online Riccati updating in the ordinary Kalman
adaptation laws, Lindbom er gl have proposed the Wiener-LMS algorithm for the improved
tracking performance [53]-[55]. It requires prior information about the mode] of the dynamics
of time-varying parameters (hypermodel). The major drawback of this technique is that its
implementation depends on the knowledge of covariance matrix of the regressors. Moreover,
the complexity of this algorithm is directly coupled to the choice of hypermodel. Therefore,
this technique has found limited apblications.

In another approach, Gazor has simplified the Kalman algorithm to obtain a two-step
LMS-type (G-LMS) adaptive algorithm for the System identification problem, in which the
nonstationarity has been introduced by considering the plant coefficients to be time-varying
according to a first-order Markoy process [60]. This algorithm supersedes the conventjonal
LMS algorithm because of its ability to combat the lag noise. Unlike the Wiener-LMS and
other multistep algorithms [59], this adaptive algorithm does not require any prior
information about the time-variations of the true system. However it requires relatively
longer training period for the initial learning, during which, the oscillatory behaviour of
algorithm accounts for the high value of residual MMSE.

The G-LMS algorithm is implemented in two stages [60]. The first stage includes the
conventional LMS algorithm, which approaches unique minimum point on the mean square
error-surface according to the Wiener theory [43]. This introduces the lag-misadjustment as
well as the gradient-misadjustment. It is apparent that the adaptive filter has a quadratic bowl-
shaped error-surface, whose position in the weight-space is in a permanent state of motion.
The second stage is estimation of the weight increment vector using another independent

conventional LMS algorithm with a smoothing parameter, which is used to predict the weight
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vector for the next iteration of first stage. The two stage processing reduces the
misadjustment due to the lag noise by tracking the moving minimum point. The above
procedure uses the information that the weight increment vector is correlated to the weight
vector for the next iteration. However for the first-order Markov channel, the analytical
results for misadjustment due to the lag noise have not been reported so far in literature for
the G-LMS algorithm.

In the following, we propose a modified version of the G-LMS algorithm, where a
control parameter is incorporated for the prediction of weight vector for the next iteration.
This control parameter is used to suppress oscillations during the convergence mode in the
training period. Instead of relying on the intuitive justification as in [60], we formulate a
stability criterion for the proposed algorithm. It ensures stable behaviour during convergence
as well as improved tracking performance in the smoothly time-varying environments. The
mathematical analysis for a nonstationary case, where the plant coefficients are assumed to
follow a first-order Markov process, shows that the MG-LMS algorithm contributes less lag-
misadjustment than the conventional LMS and G-LMS algorithms. Further, the stability
criterion imposes upper bound on the value of control parameter. The analysis focuses on the
impact of smoothing and control parameters on the lag-misadjustment in the tracking process.
These derived analytical results are verified and demonstrated with simulation examples,
which clearly show that the lag-misadjustment reduces with increasing values of the
smoothing and control parameters under permissible limits. Moreover, the MG-LMS
algorithm reduces to the conventional LMS algorithm under typical conditions, which

signifies its flexibility.
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3.2 The MG-LMS algorithm

3.2.1 Mathematical formulation
In this section, we consider a time-variable system as an example of the nonstationary

environment (as shown in F ig. 3.1). If the input si.gnal is X(n) and the corresponding desired
weight vector is H,(n), then the desired signal is defined as:

d(n)=HE ()X (n)+ e(n) (3.1)
where, e(n) is AWGN with N(0,J_. ) and ()" is the complex Hermitian operator. The

input signal is assumed to satisfy the following basic assumptions.

Assumption 3.1: The sequence X (n) is stationary with finite moments.
Assumption 3.2;: X (n) is independent of the noise sequence e(n) ie., E[X (n)e” (n)J: 0,

where E[ ] is the expectation operator.

AWGN
+1 with VARIANCE J__
UNKNOWN
X(n) TIME-VARIABLE | *
SYSTEM
+ d(n)
INPUT SAMPLES A &(n)
l(M-WEIGH’I‘S) x
MG-LMS -
———  ADAPTIVE
X(n) FILTER y(n)
4

Fig. 3.1: Unknown time-variable system.

For tracking the variations in the System response, we consider a discrete-time filter with

M x1 dimensional input vector X (n) at time n. Using the principle of linear combining, the

output of adaptive filter with M x1 dimensional weight vector H (n) is given as:
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() = H" (n)X(n) (3.2)
which gives the measurement noise £(n) corresponding to the desired signal d(n), such that
&(n)=d(n)- y(n) (3.3)
Using the above assumptions, the optimum solution of Wiener-Hopf equation in the matrix
form yields H,(n)= R P(n). The M x M dimensional correlation matrix of the input signal
is defined as R=E[X (n)x" (n)]= QAQH (Toeplitz), where A = diag(/i],/il, ,AM) is a
diagonal matrix of eigenvalues and () is the matrix containing eigenvectors. The M x1

dimensional cross-correlation vector between the input signal and the desired response is

P(n)= E[X (n)d'(n)]. The mean square error in the adaptation process is denoted as J(n),
and is given as J(n)= E[f(n).f'(n)]. If J_, is the minimum MSE, then J(n) can be defined
as:

()= T o + (H (1) = Hy (n))" ROH ()~ H, (1)) = i + s (1) 34

In the above equation, J,, (n) is the excess mean square error at time n. Therefore, the
constant quantity J_, always prevents a perfect match between the unknown system and the
adaptive system. The MSE quadratic bowl varies in position with changing impulse response
of the unknown system, and H(rn) attempts to match the unknown H, (n) on a continual

basis while tracking. Using the method of steepest descent, the changing weight vector is

represented as:
H(n+1)= H(n)+ 2E[X (n)" (n)] (3.5)
where the scalar parameter x is step size, which controls the convergence and stability.

It is clear from (3.4) and (3.5) that the adaptive process tracks the bottom of the MSE

bowl, which is moving. Therefore, we can assume that the total excess noise is due to the lag

in tracking process ie., J, ., (n)= J,ag(n), which can be measured in terms of the

61



misadjustment as:

Lag - Misadjustment = g = iﬁ'@ (3.6)

This dimensionless quantity is an index of mismatch between the impulse responses of
unknown system and the adaptive system. The lag-misadjustment is the only factor, which

can be used to determine the efficiency of MG-LMS algorithm in the ‘nonstationary

environment.

3.2.2 MG-LMS algorithm

In the two-step LMS-type (G-LMS) adaptive algorithm [60], the first-order and second-order
increment weight vectors are H,(n~1)= 4, (n)-H,(n-1) and A (n-D=A, (n)-H,(n- 1)

respectively. For further analysis, we assume

Assumption 3.3: H, (n) and H, (n) are modelled as zero-mean processes [60], [64]. The

corresponding  auto-correlation matrices are £ [H LA (k)]=5 (n—- k)Cov(Ho) and

E [H L(nH o” (k)] =8(n- k)Cov(ﬁ 0) respectively, where &( ) is the Koroneker function.

Assumption 3.4: H (n), H (n), e(n) and X (n)_are statistically independent.

The vectors H,(n -1) and H ,(n) are considered to be correlated. Both increment vectors are
taken into account to simplify the Kalman filter as:

H(n+1)=H(n+1)+ 2uX ()" (n) (3.7)
where, H (n + 1) is a priori estimated weight vector.,

H(n+1)= H(n)+ 20X (n)* () (3.8)

In (3.7) and (3.8), the Kalman gains or blending factors are replaced by 24 and 2au

respectively. Where 0<a <1 is a smoothing parameter, which controls the lag in tracking
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the time-varying system. The a priori estimated weight vector in (3.7) is defined as:
H(n+1)=H(n)+ H(n) | (3.9)
Since the second stage (3.8) includes the conventional LMS algorithm without the a priori
estimated weight vector, therefore under the optimum condition i.e.,

H(n)—» H,(n)=H,(n+1)-H,(n) (3.10)
Equation (3.7) can be rearranged by using (3.9) and (3.10) as:

H(n+1)= H, (n+1)+AH(n)+ 21X (n)e " (n) (3.11)
where, the tracking weight error vector is

AH(n)= H(n)-H,(n) : (3.12)

It may be inferred from the above equation that the sum of weight error vector AH (n) and
gradient vector 2uX (n)f” (n) oscillates about the optimum weight value, which prevents the

matching of the tracking weight vector and the optimum weight vector.

A H(n+lg/\

| BE(n)

| A1)

v

Fig. 3.2: Graphical interpretation of the proposed MG-LMS algorithm.

In the proposed MG-LMS algorithm, the first-order estimated increment weight vector is
scaled with a control parameter to control the oscillatory behaviour. Therefore, (3.9) can be

redefined as:
A(n+1)= H(n)+ pH(n) . (3.13)
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where, 0< 8<1 is a real valued parameter. Using (3.10) and (3.13) for B =1, the tracking

equation (3.7) can be modified as:
Hln+1)z= H,(n+1)+ AH(n)+ 21X () () (3.14)

where, H,(n+1)=H, (n)+ BH,(n) is the a priori estimated weight vector. In the above
situation, the control parameter £ adjusts the location of poles to damp the oscillations
(described in section 3.3). Therefore by adjusting the values of ¢ and [ parameters, we
obtain a modified version of the G-LMS algorithm with same computational complexity. The
parameter « influences the tracking of time-varying system, while the parameter S provides
stability.

The MG-LMS algorithm belongs to the family of stochastic gradient adaptive
algorithms. The estimation of the first-order increment weight vector helps in reducing the
lag noise during tracking, but application of the conventional LMS algorithm in step (3.8)
contributes minor gradient noise in addition to the résidual lag noise because the value of
smoothing parameter is small. However, the major reduction in lag noise points toward the

improved tracking in the time-varying nonstationary environment.

3.2.3 Decoupling of gradient and lag components

Using a priori estimated weight vector (3.13) and the second-order increment weight vector
ie, H(n)=H(n+1)-H(n), the tracking weight vector (3.7) at time n+1 can be rewritten

as:
H(n+l)=H(n)+,BH(n+1)+2,uX(n)§”(n)—ﬁH(n) (3.15a)
Substitution of (3.8) in (3.15a) results in

H{n+1)= Hn)+ 241+ af)X (" (n) + AlE () - H(n)] (3.15b)

The corresponding weight error vector is derived using & (n) = e(n)— AH"Y (n)X (n) and (3.12)
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in (3.15b) as:
AH(n+1)= [1-24(1+aB)X ()X ¥ (n)|AH ()
+2u(1+ aﬂ)X(n)e” (n)— [HU (n)— ,B{H(n)— H(n)}] (3.16)

Using assumption 3.4, the weight error may be decoupled into the gradient ( )g and the lag
( )' components [64]. The two decoupled adaptation algorithms appear as:
AH® (n+1) =1 = 2u(1+aB)X ()X " (m)AH & () + 2p4(1 + aB) X (n)e” (n) (3.17)

AH (n+1)=[1-2u(1+ aB)X ()X (AH' () - [, (n)- BiE()-H(B)]  (3.18)
It is apparent from the above equations that the tracking speed of the MG-LMS algorithm

may be increased by increasing the value of @ or S parameter, which reduces the lag noise
in (3.18) at the cost of small increase in the gradient noise component in (3.17).

The step size u is assigned a small value in order to realize good tracking performance.

Under this condition, we may replace the stochastic difference equation (3.18) with the

following stochastic difference equation by invoking the direct-averaging method [152]. -
A (n-+1) =[1-2u41+ AR’ ()~ [, ()~ B} - H()| (3.19)
Premultiplying both sides of (3;19) by QY and using the property of unitary matrix
Q" =07, we obtain

Ac(n+1)=[1 - 241+ aB)AJAc(n)~ [¢, (n) - Ble(n) - E(n))] (3.20)
where AH'(s)=[Af!(r) . A1 (r) . AHL ()], Acln)= 0" AR (), &, (m)=0" B, (),
é(n)= Q" H(n) and é(n)= Q" H(n). The p” element of the vector Ac(n+1) is |
Ac,(n+1)=[1-2p(+ap)A, Ac,(n) ~|¢, , (n)- B, (n)- &, ()] (3.21)

For convergence of the MG-LMS algorithm, the magnitude of 1— 2,u(1 + a,B)/lp must be less
than unity for all p. Similarly, it may be proved for the gradient-component that the same

condition is required to be fulfilled. Therefore,
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—1<1-24(1+0B)a, <1 forall p (3.22)

Since eigenvalues of the covariance matrix R are all real and positive, it follows that

0<u<lf((1+ep)a,, ) (3.23)

where, A_,  is the largest eigenvalue of matrix R. In the design of MG-LMS algorithm, the

values of & and S parameters are kept less than unity. Therefore, the above inequality can
be redefined as:

0<u<lf(24,, ) as aff -1 (3.24)

When the steady state is achieved for the recursive equation (3.21), it can be shown as in [60]

that £ [Ac(n)]: 0. We further assume that

Assumption 3.5: Ac(n), ¢, (n) é(n) and &(n) are zero-mean processes, and are statistically

independent.

Let us define the weight error covariance matrix as I’ (n+1)= E [Ac(n+ DAc* (n+1)]. Using
(3.21) and assumption 3.5, the p" diagonal element of I (n+1) can be written as:
Elac(n+ DA (n+1)], = (1-24( +ap)A, F Elc, (n)ac ()]

+ e, (o), ()} + 7L, (e ()] + B, (e ()] 3.25)

Under steady state condition, we may write o = E[Ac ) (n)Ac; (n)], 6., =E [c'o. , (n)c; , (n)}
c f, = E[c' » (n)c; (n)] and c'ff, =F [c o (n)c:, (n)] . Therefore, (3.25) can be rearranged as:

, _ Gt Ao} 452 (3.26)
7o 1-(-24(+ap)i f '

The variance azp minimizes at an optimum value of the control parameter ie., i >

which is obtained by differentiating (3.26) w.rs. A and equating it to zero. It leads to
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L 1 fl-a?él, (d;+c'ff,))[\/1+ (-2u4, Pa?s?, [(62 + &)

optimum — a(1—2,u/1,,) (1 —/uﬂ,p(l —a? d’:,p (0"27 +O',2,)))2
3.27)

The value of (df, » / (d'f, + é‘; ))—) 0, when the variance of the first-order weight increments is

very high ie., 0' — 0. Under this condition, the value of 8%, .. approaches zero. This

indicates that the second stage (3.8) of the MG-LMS algorithm is not required. The general

M
optimum value of S may be obtained by considering lavg=LZﬂp and

(62,/167+6})= (620, /62, 462, ) i

1 _'u;L‘Wg(l _.a2 o'-:”"g/(d-j"g + O'z"g)) (1 2Mavg)2a2 O-o avg (O" avg +0-12;)
ﬂopllmum = : 1+ - > -1
a(l - 2Mavg) (1 — A, (1 a’cl,,/ (O'M +67 )))
(3.28)

The value of S,

plimum

depends on the factor (o"f,avg' / (o'jvg +d0, ))

3.3 Lag-misadjustment analysis for the MG-LMS algorithm

For the lag-misadjustment analysis, which has been defined earlier in section 3.2, we can
eliminate the gradient noise from consideration by using the expectation operator E [ ] in the
MG-LMS algorithm [57]. Like the method of steepest descent algorithm (3.5), the ensemble
average nullifies the stochastic effect [43]. Therefore, (3.7) and (3.8) are redefined as:
H(n+1)= H(n+1)+ 24E[X ()" (n)] = B(n+1)+2u[RH, (n)- RH ()] (3.29)
H(n+1)= H(n)+ 20uE[X ()" (n)] = H(n)+ 20u[RH, (n)- RE ()] (3.30)

Under zero gradient noise situation, the ensemble average of the excess MSE due to the lag

noise at time n is

B,y ()] 2 E\(H(n) - 1, ()" R(H () - H, ()] (3.31)
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< 8|[f1)~ 7, ) AFi () 7, ) (3.32)

where, 0¥ H = H and the above equation can be solved for the p" eigenvalue 4, as:

E [J lag (”)]

n

Sl 00, 0] ,00- 71,00 1, 31,0, 6.3

1
where, &, is the weight error energy corresponding to the p” eigenvalue (independent sub-
channel). The quantity AH (n): (I-NI (n)—f]o (n)) is the weight tracking error vector, whose
elements are used to determine the energy in p” sub-channel, Using (3.7), (3.13) and (3.29)-
(3.30), the composite quantity H (n + 1) is represented as:

~

H{n+1)= (1+ B (n)~ B (n-1) + 24| A T (n) + APAH(n =)~ 24{ABH () + apr i - )]

(3.34)
The z-transform of the above equation is
Hz]=(1+ -2 B)A2] - 24n + z”oph)Blz]- A, 2] (3.35)
The weight tracking error in the diserete frequency-domain is
A= [ [0+ - 2)r - 2 ] o] (3.36)

where, ¥[z]= [z A1 + 241+ 2 ap A — (14 B-2)I|

¥z] isa non-singular M x M dimensional matrix and 7 is the identity matrix.

3.3.1 Determination of control parameter for the first-order Markov process

If it is assumed that the time-varying I-Io (n) is a first-order Markoy process, which originates
from the independent stationary ergodic white noise excitation with N(O, 0'2), such that
ﬁo(n)=a1?o(n—l)+W(n) (3.37)
where, the M x1 dimensional process noise vector is W (n) = [wl (n) w,(n) ... Wy, (n)}T

Subsequently, the z-transform of recursive relation (3.37) is
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W[z]

H,[z]= = (3.38)

Substitution of (3.38) in (3.36) gives
afTe]= FAL B - el 0 -2 -] 639)

Since F [z] in (3.39) isa M x M dimensional diagonal matrix, the scalar transfer function of

its p” diagonal element (sub-channel) may be written as:

~ (1+p-2)-2z7'8
Fp[z]ﬁl"ﬁ+2;[z(l+z“aﬁ)i ]1+,B )J (3.40)

From the above analysis, the p” component of the weight tracking error is

~ ~ ~ —z(z—ﬂ)(z—l)wp [z]
A o)<, ] A, ) - 22 =1+ 8-2p, )z + (1 + 202, )B[z - a)

(3.41)

The poles of this component are determined by solving the quadratic term in the denominator

of above equation as:
(z-PXz-P)=0 | (3.42)

where, P, = B’ and

P =%(1+ B-2pA, )+ j%\/4ﬁ(l+2ay/1p)—(l+,B—2,u/1p)2 (3.43)

Therefore, the poles are located at a, P, and P, respectively.

g %(1 +B-2uh )+ j%\/&uﬂp (+a)i+2aut,)-(B-(+2p4,(1+22))f  (3.44)

The upper bound on the value of g is derived by keeping the magnitude of complex poles

with in unit circle ie.,

z| <1, such that

1

<
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For real and equal poles, the imaginary parts of poles should be zero. This condition is

fulfilled for a certain value of B = Bireshora» Which is given as:

Buresnoia = 8122, L+ aX1+ 2002, ) + (14200, (1 + 222)) (3.46)

This threshold value determines the behaviour of poles as:

[ 0SB<Bessos —>real and unequal poles
B = Bireshors ——>real and equal poles (3.47)

Brireshors < B < ﬂuppe, ——>complex conjugate poles

where, £

upper 1S UPPET limit on the value of control parameter. If the value of HA, decreases,

then £, shifts towards unity. However its value can not be equal to one because at B =1

‘and uA, <1, the complex poles are

2= (1-p, )5 j\fou, (v a) - (ur F (3.48)

For the smoothing parameter =0 in the above equation, the magnitude of poles is
7| = m » Which is greater than unity. Using Routh-Humiu stability criterion, the
location of poles out side the unit circle is responsible for instability of the algorithm. Thus
by adjusting the value of B to a value below its threshold value, we can control the

oscillatory behaviour during the convergence mode. The design equation (3.46) can be

rewritten in terms of Ag @S

Bursoa =814 (+ NI + 2012, )+ (142 [y (1+220)) (3.49)

Hence for stable functioning of the MG-LMS adaptive algorithm, the smoothing and control
parameters are tuned in such a way that poles must be real because the complex conjugate
poles will give rise to the damped oscillations, which will result in high MSE during the

convergence and tracking modes.
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3.3.2 Determination of lag-misadjustment for the first-order Markov process

The above analysis of the smoothing and control parameters shows that the poles P, and P,

are complex for the value of control parameter in the range 3,,,..,.., < 5 < 3 such that

[] ~2(z- )z - I)W [2]
(z ~P )z~ P)z- a)

Using Parseval’s relation, the weight error energy of the p” sub-channel can be calculated in

(3.50)

the frequency-domain as:

£, =——d v AR AT [y ] b 3.51)
21

_cr2 (v=1)v - BN - pY1-v)
(- avft-Pv[1- Py v—a)v-P)v—B,) dv (3.52)

where, the contour of integration C is the unit circle. If the poles a, P, and P, are inside the

contour of integration [153], the Cauchy residue theorem gives

e,=0f,(a,B.a,P,P,) (3.53)
where, fp(a,,B,a,P,,Pz)= [f’, +(Pl —Pz)'l(/}2 —J‘A’J)J (3.54)
and = (- "xl ap)p-a (3.55)

(1+afi~aP f1-aP, Ja- P)(a P)

;__ (-B)(-~BYB-P)
f2= (1-aP,a-B,Yi- 7 PN~ ) (36

5= (-RFU-REXE-P)

: 3.57
" (1-ap)a-PYi-RE Ji-|B[) -7
From (3.33) and (3.53), the average excess MSE is
2 o ‘
E[Jlag(n)]go- pr(a5ﬂaaaP1’P2)lp (3.58)
r=1

If all the eigenvalues are considered equal ie., Ang» then the weight error energy of all the
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sub-channels becomes equal ie., fi=..=f,= Jovg - It leads to

2
— aM
:‘Iag = J. favg(a!ﬂ’aappfz)layg (359)
Relative Lag — Misadjustment = Z’"g =4 [ong (@, B,a,P, P,) (3.60)

=N

where, the normalization factor is defined as:

E, =[4‘:UM] (3.61)

Under special case (a=,8=0), the values of poles are P, =(l—2,uﬂmg) and P, =0

respectively (see example 2 in appendix A). Consequently, the value of Jovg (a, B, a,Pl,Pz) is

2

0,0,a,P,P, )= 3.62

Toul o 2) (I+ai+P)1-aP) (362
1
fag(0.0,a,P, R, ~ e (3.63)
Under the above assumed condition, the lag-misadjustment is
2
By = — M as a1 (3.64)
4

This derived result is similar to the result presented in [57] for the conventional LMS
algorithm working under the nonstationary environment. From (3.64) and (A.9), it is apparent
that the conventional LMS algorithm is a special case of the MG-LMS algorithm.

For different values of the parameters ¢ and B, the expected performance of the MG-
LMS algorithm is next analysed using (3.60) in terms of the relative lag-misadjustment
(index of excess MSE). The initial oscillatory behaviour is controlled by keeping the value of

control parameter less than £, . (3.49). The values of HA e =0.001 and B =0.75 have

been used in (3.60), and results are given in Fig. 3.3,
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It may be observed from Fig. 3.3 that the relative lag-misadjustment gradually reduces
with the increasing value of a for real and unequal poles. For x4, =0.001 and a =0.05,
Fig. 3.4 depicts that the value of relative lag-misadjustment also reduces with the increasing
value of 3. However when poles are complex, the lag-misadjustment is expected to increase

again because of the instability of the algorithm in above situation. The effects of smoothing
and control parameters on the performance of the proposed algorithm are verified by

simulations in the next section.

3.4 Simulation results

We shall investigate the behaviour of the proposed MG-LMS algorithm, in convergence and
tracking mode, to analyse the effects of the smoothing and control parameters on its
performance. We shall also compare its performance with the conventional LMS, NLMS and
G-LMS algorithms. The variation in lag-misadjustment is analysed in terms of the variation
in minimum MSE. The value of the step size u is kept lower than its maximum bounded
value (described in section 3.2).

For parameter tuning of the MG-LMS algorithm, the value of B, is obtained by
using (3.49) for a fixed value of « . First the value of smoothing parameter 0 < a <1 is set to

provide coarse tuning, and then adjustment of the control parameter S results in fine tuning
of the proposed algorithm. Since we require the knowledge of (c'r‘f,mg / (o",fvg + é"jvg )) in (3.28)
to obtain the optimum value of £, at which thé MSE minimizes. Therefore, the value of
B opumam 15 determined by simulations at the fixed values of other parameters. However, its

value must be less than £, ., ., because the real poles provide stability in B < B, .ou
domain (described in section 3.3).

To generate the nonstationary environment, H, (n) is considered to be the fast fading
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mobile communication channel (Rayleigh). The auto-correlation function of the AR(2)
process is close to that of a Rayleigh fading process [154]. The Jakes model is widely
accepted as the realistic fading channel model, which is simulated by using the AR(2)
process [equation (1), 103], such that

H,(n)=~K,H,(n~1)- K,H (n- 2)+U(n) (3.65)
where, U (n) is a complex zero-mean white Gaussian process. The scalar coefficients in the
above equation are K, =-2r, cos(x/zafDTs) and K, =r/, which take account of the
maximum Doppler frequency f, of the underlying fading channel, sampling time T s and
pole radius r, corresponding to the steepness of the peaks of power spectrum with the
spectral peak frequency =/ / V2 [equation (9), 155]. For accurate modelling [equation
(70), 44], the value of pole radius is

r,=(11-2/,T,) (3.66)

The auto-correlation of the channel tap-coefficient is shown in Fig 3.5, in which the fading

parameters are f, =10Hz and 1/T; =10kHz . Note that we have kept 20dB signal-to-noise

ratio in each of the following cases. The BPSK iid. data is considered to be input. The

presented results are based on an ensemble average of 150 independent simulation runs.

Case 3.1: The variation of MMSE with respect to the control parameter S is analysed by
fixing @ = 0.05 and 4 = 0.005. In this case, we consider the fading channel with Jo =75Hz
and 1/T, = 10kHz . The convergence and tracking performance of the adaptive filter with ten
weights is shown in Fig. 3.6. The observed average eigenvalue is Amg = 0.0752, which is
used to calculate 3, . =0.9446 for the above fixed values of @ and 4. With increasing

value of A, the performance of the MG-LMS algorithm substantially improves.
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But beyond the optimum value of control parameter 3

opimm = 0-92 (as measured by
simulations), the performance starts degrading. At B =0.98, the increase in MSE and
oscillatory behaviour during the convergence mode indicate instability because the poles are
complex. In section 3.3, the mathematical analysis demonstrates that for f,,.,... <8
domain, the MSE will start increasing because of the damped oscillations.

Therefore, the simulation results justify the analytical results described earlier. The
results presented in Fig. 3.6 and Fig. 3.7 depict that the NLMS algorithm gives approximately
2.5dB performance advantage over the conventional LMS algorithm. However, the proposed
MG-LMS algorithm performs better than the LMS and NLMS algorithms under same
nonstationary environment.

For analysing the effects of control parameter on the stability of the proposed algorithm,
the above experiment is repeated for different values of 3 and the resulting MMSE is plotted
in Fig. 3.7. For comparison, performance of the conventional LMS and NLMS algorithms are
also shown. The G-LMS algorithm gives approximately 11dB improvement over the
conventional LMS algorithm [60]. It may be seen from Fig. 3.7 that the performance of the

MG-LMS algorithm compared with the conventional LMS improves by approximately 14dB

at the optimum value of S. The proposed algorithm provides an additional 3dB advantage in
performance than the G-LMS algorithm at Bopimm+ In addition, the increasing value of

smoothing parameter o leads to reduction in the output MSE. However in Bresora < B

domain, the generation of damped oscillations overwhelms the advantages of the increasing

value of ¢ .

Case 3.2: To show the tracking performance of the proposed algorithm over the time-varying
wireless channels, we consider a filter with eight tap weights. Under fading conditions, the

maximum Doppler frequency f,, and sampling rate are S04z and 1/T; =10kHz respectively.
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With pole radius r, = 0.99, the true time-varying channel is shown in F ig. 3.8. The adaptive

MG-LMS algorithm is tuned with o = 0.01 and B =0.75 . Its performance is compared with
the conventional LMS, NLMS and G-LMS algorithms by using the same step size
#=0.005. It is clear from results in Fig. 3.8 that the conventional LMS and NLMS

algorithms lag behind the true channel. The channel tap-coefficient value estimated by the G-
LMS algorithm oscillates about the true channel coefficient value, which results in high
MSE. However, the MG-LMS algorithm gives improved tracking performance by reducing
lag.

Therefore, it may be inferred from simulation results that the performance of MG-LMS
algorithm improves over the conventional LMS, NLMS and G-LMS adaptive algorithms by
tuning the smoothing and control parameters. However, the incorporation of variable step

size in the proposed algorithm is expected to further improve its performance.

3.5 Concluding remarks

In this chapter, we have presented a two-step MG-LMS adaptive algorithm, which
outperforms the existing G-LMS algorithm [60] under the nonstationary conditions like time-
varying fading channels. The proposed algorithm combats the lag noise while tracking, which
consequently reduces the total misadjustment. Though it increases the gradient-
misadjustment slightly, but it eliminates a large amount of the lag-misadjustment.

We have derived analytical results for the lag-misadjustment, which mainly depend on
the smoothing and control parameters. The increasing value of former improves its tracking
performance, whereas latter provides stability in the convergence mode. Up to optimum value

of the control parameter, MSE at the output decreases, but after that it starts increasing. In

practice B, um < Bivesia DECAUSE beyond the threshold value, the complex poles induce

damped oscillations. At g the MG-LMS gives approximately 3dB performance

opiimum 3
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advantage over the G-LMS algorithm. The simulation results have evidenced the superiority
of proposed algorithm at adequate values of the smoothing and control parameters. It also
validates the derived analytical results.

In the next section, we incorporate the concept of two-step LMS-type MG-LMS
algorithm in the adaptive multiuser interference suppression and detection technique for the

DS-CDMA system.
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CHAPTER 4

ADAPTIVE MULTIUSER DECISION FEEDBACK

EQUALIZER RECEIVERS FOR DS-CDMA SYSTEMS

/_

During the last two decades the commercial use of DS-CDMA has increased, due to the
demand for large capacity in terms of the number of users and for the efficient usage of
bandwidth. It was previously confined to only military communication systems as it provides
protection against interference and jamming. But, major limiting factors for capacity in the
multiuser systems are multiple access interference and intersymbol interference. In this
chapter, we present an adaptive decision feedback equalizer based multiuser receiver for the
DS-CDMA systems over smoothly time-varying multipath fading channels using the reduced
Kalman/LMS (RK-LMS) adaptive algorithm by exploiting the Kalmat; filtering algorithm.
This is motivated by the work on two-step LMS-type algorithms presented in [60] and
chapter 3.

In section 4.1, we first briefly review different adaptive time-varying channel estimation
techniques and adaptive decision feedback equalization structures with or without the
knowledge of estimated channel response to suppress ISI and MAL In section 4.2, we
describe the DS-CDMA system model, and also give details about the mathematical
formulation of frequency-selective channel model for the multipath fading environment. The
fading channel is modelled as a tapped-delay-line filter with smoothly time-varying Rayleigh
distributed tap-coefficients, which are considered to be autoregressive (AR) processes. In
section 4.3, we consider a channel estimator based MMSE DFE multiuser receiver structure,
which uses the channel estimates obtained from the multiuser channel estimator to cancel out

ISI due to the multipath transmission [101]. We next introduce the RK-LMS adaptive
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algorithm based multiuser channel estimator, and also present the analytical results for its
convergence and tracking characteristics in section 4.4. Section 4.5 includes details about the
proposed adaptive DFE multiuser receiver using the RK-LMS algorithm. The computer
simulation results are presented in section 4.6 to show the substantial improvement in
tracking as well as bit error rate performance of the proposed multiuser receiver over the
conventional LMS algorithm based receiver under the smoothly time-varying environment.

Finally, conclusions are given in section 4.7.

4.1 Introduction

Over the multipath fading channel with additive white Gaussian noise, the adaptive non-
linear MMSE techniques (decision feedback) are more effective than the linear techniques
[38], because the latter is having only feedforward filter, whereas the former is having
feedforward as well as feedback filters to combat ISI. An adaptive decision feedback
equalizer proposed by Abdulrahman [14] is commonly used for interference cancellation and
data detection on the forward link from base station to mobile. It is apparent from the
presented results that the forward filter of adaptive DFE also performs the function 6f RAKE
receiver to exploit diversity resulting from the multipath transmission. However its
application is limited to the detection of a single desired user, and if partially suppresses ISI
and MAI by forcing zeros in the impulse response of the interferers.

On the reverse link from mobile to base station, the received composite signal includes
ISI due to the past data symbols of other active users. As information about the past detected
symbols of all users is available at the base station, therefore adaptive DFE multiuser receiver
is used for the multiuser interference cancellation and data detection at the base station. A
centralized detection process can be performed at a base station, which is assigned the task of

'detecting the data from all the users in a cell. Rapajic et al. [73] have considered a
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centralized MMSE decision feedback detector, where in addition to a fractionally spaced
feedforward filter that processes the chip matched filter output, the feedback filter processes
previous decisions from all the users to cancel both ISI and MAI. But, authors have presented
only single-user adaptation of the filter coefficients. Smee et al. [9], [10] have proposed
adaptive feedforward/feedback architectures for multiuser detection in the high data rate
wireless CDMA networks by extending the work of [73], in which the LMS, NLMS and RLS
algorithms can be incorporated to determine the coefficients of multiuser detector. The
cyclostationarity of the MAI and ISI is exploited through a feedforward filter, which
processes the samples at the output of parallel chip matched filters, and a feedback filter,
which processes detected symbols. In blind and non-blind adaptive receiver designs [21],
[82], the channel is assumed to be unknown, but time-invariant in a transmitted time frame.
Therefore, these techniques are not applicable for the time-varying multipath fading channel
situations.

The conventional strategy for handling the time-varying fading channel is to design an
adaptive equalizer using the Kalman filtering algorithm [100]. In [97], McLaughlin has
employed a channel estimator for the design of Kalman algorithm based equalizer. The
performance of this equalizer depends on the accuracy of the channel estimation. Iltis et al.
have proposed a technique for the joint estimation of PN code delay and channel using the
extended Kalman filter [51], [52]. They have also used the QR-decomposition technique in
channel estimation for the quasi-synchronous DS-CDMA system [157]. Recent research has
been devoted to the design of multiuser detection using the MMSE adaptive DFE under the
time-varying environment [101], [102], [158].

In [101], Chen et al. have proposed a multiuser receiver by taking into account the
channel model directly obtained from the Doppler spread of the fading channel. In general,

the dynamic characteristics of fading channel can not be characterized exactly by system
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identification method. Therefore for robust adaptive design, this Kalman filtering algorithm
based approach considers the channel estimation errors and model’s uncertainties to improve
the performance. But, it requires the knowledge of maximum Doppler spread of the multipath
fading channel accurately at receiver. Further in [102], Chen e al. have proposed a linear-
trend tracking algorithm and a multiuser detection algorithm, which uses the self-tuning
scheme to automatically adjust the variance of the driving noise in the state-space model to
cope with the time-varying Doppler frequency. Moreover, a non-linear limiting function is
embedded into the multiuser channel estimator and detector to mitigate the noise effects. A
robust Kalman algorithm based DFE detection algorithm is proposed to prevent severe error
propagation due to impulsive noise and channel estimation errors under the time-varying
fading channel and impulsive noise. The robustness is achieved by using the hard-decision
feedback and non-linear limiting function, but at the cost of increased computational
complexity. It is seen in above techniques that the channel estimator plays an important role
in the overall performance of the multiuser receiver.

Cao et al. [159] have proposed a polynomial approach for the MMSE estimation of the
time-varying channel parameters in the DS-CDMA system. But, its dependency on the
knowledge of system model may often preclude its use. The two-step G-LMS algorithm [60]
does not require prior information about the time-variations of the true system, which
supersedes the conventional LMS algorithm because of its ability to combat the lag noise
[57]. The drawback of G-LMS algorithm is that it requires relatively longer training period,
during which, the oscillatory behaviour of algorithm accounts for the high value of residual
MMSE. However, the MG-LMS algorithm presented in chapter 3 may be used to circumvent
these problems.

In another approach [158], the chip-level equalization can be used to mitigate the MAI

together with a despreader. The despreader restores the orthogonality of signature sequences
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after equalization. Choi et al. [158], have used the feedback filter at the chip rate so that
adaptive algorithm can be used to find the filter coefficients of the DFE. It has been shown
that the use of soft-decisions has an advantage in effective updating of the chip-level DFE to
track the time-variant channels. However, this approach is computationally inefficient due to
despreading operation. Traditionally, adaptive equalizers using the RLS algorithm are used
for treating the smoothly fading channel problem [88], [89]. Under the quasi-static
environment, the multiuser RLS algorithm and direct matrix inversion approach determine
the coefficients more efficiently than the single-user algorithms [10]. However to reduce the
computational complexity, the two-step LMS-type algorithms (see chapter 3) can be used in
the adaptive equalization and multiuser detection techniques (see [101] and [102]) under the
smoothly time-varying multipath fading channels.

In the present work, an adaptive multiuser receiver is developed by using the two-step
RK-LMS algorithm, which combats the nonstationarity introduced by the channel variations.
The receiver uses an adaptive MMSE multiuser channel estimator to predict the coefficients
of tapped-delay-line filter. We consider first the design of adaptive MMSE feedforward and
feedback filters by using the estimated channel response to cancel out ISI. We next present
the convergence characteristics and the tracking performance of the proposed multiuser
channel estimator using the RK-LMS algorithm. Unlike the previously available Kalman
filtering algorithm based approach [101], [102], the incorporation of the RK-LMS algorithm
reduces the computational complexity of the multiuser receiver. It can be inferred from
simulation results that the proposed multiuser receiver with the RK-LMS algorithm
outperforms the conventional LMS algorithm based approach by reducing the lag noise
during tracking [57], and it proves to be an efficient approach for the multiuser interference

cancellation and data detection in the DS-CDMA wireless communication systems.

88



4.2 DS-CDMA system model

In the following spread spectrum binary communication system, each user’s transmitted

signal (with signal power level P,) is assumed to pass through an independent frequency-

selective Rayleigh fading channel, which transforms the bandpass signal for £th user (2.2)

as:

(0)= ReHﬁE; 805 rue-im,—, )}} R
with 5,()= 5 etye- 1)

where 7, (t) is the equivalent lowpass signal, S, (t) is the spreading signature sequence of
user k, ¢, is the jth chip (i 1/ JN ) in the code sequence of % th user, T, is the chip period,

N is the length of code sequence in terms of the chip periods, 1/ JN s the energy
normalization factor, (//(t) is the real transmitted chip waveform shape, which has unit energy
in the time interval 0</<T, je., w(t)=0 for t¢ [O,Tc], b, (1) is a real valued transmitted
data symbol +1, 4, is the amplitude level (A,, :\/E ), T, is the symbol period (with
T, = NT,), @, is the carrier frequency, L, is the number of multipaths for & th user, and the
complex quantity y,,(t)= |7,k (t]e'/‘”‘"* represents the complex attenuation factor of /th path.

We assume that the fading channel response changes at the symbol rate. The channel

order (Lk —1) is kept less than the processing gain N (ie., the maximum delay spread of

channel is smaller relative to the symbol period). The system suffers from severe ISI, as the

value of (L, —~1) approaches N [81]. We define the total delay as 7, =Q, +1,. For kth
user, Q, is the delay with respect to the desired user, and t, is the propagation delay. At the

receiver end, the demodulated equivalent lowpass signal for k th user can be written as:
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7 (0)= 2P, X Y by ()t g, (51 - (N + /)T,) 4.2)

i =0

L,-1 '
where g,(t7)= Z}/,,((t)w(r—r,,,), which is the convolution of the equivalent lowpass
1=0

L,
impulse response Z}/,k (t)6(z -7, ) of the multipath fading channel and the lowpass chip

=0
waveform (//(r). Therefore, this fading channel model is analogous to the tapped-delay-line
filter model (as used in [101]) for the time-varying frequency-selective channel by virtue of

analogy between the multipath transmission [102] and ISI [101] respectively. The L,
coefficients of the tapped-delay-line filter are assumed to be time-varying according to an
autoregressive process. Assume that gk(t;r) has finite support of length LT, for
k=12, .. ,K ie, g, (t;r): Oforre [0, LTC]. As chip level processing is considered in this
work,  therefore  the data symbol at chip level is defined as
b,(i)=b, (iN)= b, (iN +1)=..=b, (iN +j) for 0<j<N-1. For mathematical simplicity,

we replace b, (1) with b, (iN + j) in (4.2). Such that,

7 (6)=\2P, ZNZ-lbk (N + j)ct g, (60 -GN + )T,) (4.3)

1 j=0

If K active users are present in the system, then the equivalent lowpass composite received

signal after demodulation is represented as:
A K A
Ae)=>7(e)+z() (4.4)

where, z(¢) is the zero-mean lowpass AWGN with two-sided power spectral density N, (due

to the presence of thermal noise at receiver), which does not include interference due to other

users.

The demodulated lowpass signal is filtered using the chip waveform matched filter [85]
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and subsequently sampled within the spreading limit (implicitly) at the chip rate to give

IN+n)T,

H+m)= [ Hple -V + T e = 305,V + ) 2 +) (45)

Since the short codes used in the above described DS-CDMA system are cyclic (periodic) in
nature, therefore the received signal sample f(iN + n) is a cyclostationary process. Moreover,
the transmission through the multipath fading channel is also periodically time-varying. For
kth user, the discrete-time received signal in ith data symbol interval’s nth chip is

- represented as:

L-1
PN +n)=\2P, 3 B, (iN +n- 1), (N+n-Det, )\ forn=012, .. ,N-1 (4.6)

1=0

2N +n)= j”“” 2t~ (N +n)T, ) @.7)

IN+n)T:_

where, the expression (x),, denotes “x mod N” and

HeGN + D)= [ g, (t+ (N + n) 0 + T, o)t | 4.8)

We can rearrange the above equation to give

BN +n=1)=h,(N +n-1,1) = J‘,'T')T &' +(N + =1\t = 1T )dr (4.9)

In the above equation, the channel coefficient 4, is assuméd to be constant for the data
symbol duration 7, ie., hy(i)=hy(iN)=h, (N +1)=...= b, (iN + n) for 0sn<N-1.If
z(n) has auto-correlation %E [z(n)z' (m)] = Ny&(n—m), then the resulting average signal-to-

noise ratio (SNR ) of k th user is given by

L1
P, Y Em (i)’
[SNRJ® = —1=0 (4.10)
NO

where, ( )‘ denotes the complex conjugate operator. Without the loss of generality, we

assume that all the active users are transmitting at the same signal power level, such that
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A=Ay =..=4,=1ie, 2P, =1.

The received signal vector 7, (i) consists of N consecutive stacked samples, where / is
the data symbol index. The Nx1 dimensional vector 7(i) can be written as
20 =[6N) AN +1) . AV +)) . A@+N-1)]. The Nx2L  dimensional
signature-sequence-matrix C*(i), 2Lx2L dimensional data-symbol-matrix B*(;), and

2L x1 dimensional multipath channel coefficient vector 4*(;) for the kth user’s ith data

symbol can be defined as:
o 0o e chd
c 0 0 0

CH (1) ct cho | =lcr | ¥

o
=
o
ceeeees O

Lﬁ
1
t
)
1
)
=
1
=~
o
o
o

B (i) = diagb, ()1, b, (i ~1)1, |, and #*())=[r7 G) | A7 G-1)] .

where, I, is the Lx L dimensional identity matrix and A, ( [ho,t ) ke Q) h,. 1),,('\']T

Using (4.6), the received signal vector 7, (1) can be rewritten in the matrix form as:
7.(i)=[c*()B* ()l* ()= D* ()n* (i) (4.11)

where, D* (i) is the N x2L dimensional chip-data-matrix. The composite signal vector 7(i)

can be written as:

i)= [P(iN) PN +1) ... (N + j) ... F(iN + N - 1)]7
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= |COBONAG) + 2G) = DEAE)+ 26) “.12)

where, C(1)=[c() | CG)=[c* c*... ¢* | & &... &¥]
isa N x2KL dimensional matrix,
B(i) = diaglb, ()1, 5,()1,, . b, ()1, | &,G-1)1,, b,(i-1)1,, .. (i =11, ]
is a 2KLx 2KL dimensional matrix,
H0)= B G) REG) . REG) | B G=0) B G-1) - RG]
isa 2KL x1 dimensional matrix,
BE)=[c ()} . ¢ o, 001} | Eb,G-11,} . C* -1, )

isa Nx2KL dimensional matrix, and
20)= o) 2V +1) . 2V + ) . 2+ N -1)]

The Nx1 dimensional matrix z() denotes the noise sample vector. The equation (4.12) is
used for the channel estimation. We next define the data symbol detection equation using the

composite signal vector 7(;) as:
Fi)=COAGBG) + 26) = CO)EG)W () + C(i)H (i - 1b(i - 1)+ 5(7) (4.13)
where, 5(i) [bT (@) ] o7 ( ]1 with 5(;) [b ]T

()= diag[H (), H(i-1)] with H()= diag[F, (), 7.(), ... i (0)]

We use (4.12) to estimate the multipath fading channel response using the signature-
sequence-matrices and data-symbol-matrices of all the active users, and then design the
adaptive DFE multiuser receiver using the RK-LMS algorithm for the multiuser interference

cancellation and data detection (4.13).
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4.3 Channel estimator based DFE multiuser receiver

In this section, we present details about the MMSE DFE multiuser receiver design using the

multiuser channel estimates. Let the input vector to the decision device be
(i) = [y'(i) i) ... yK(i)]I, and the corresponding estimated data symbol vector at the

slicer output is b, (1) = [b,, () 5,,(0) -.. b, (1) , such that

yi)=F, (@) - F, (). (- 1) (4.14a)
L COHEG)+ CEHG -6l —1)+ 50)|- F, (), (-1) (4.14b)

where, the K x N dimensional matrix F, (i) and the K x K dimensional matrix F, (i) are the

feedforward filter (FFF) and the feedback filter (FBF) weight matrices respectively. For
simplification, we assume that no error propagation in the decision feedback loop takes place

ie, b,(i-1)=b(i—1) in (4.14a) and (4.14b). The filtering error of the DFE multiuser
receiver is a K x1 dimensional vector e, (i) = b(i)— y(i). The corresponding error covariance
matrix is & (i) = E[eI (e (i)], where E is the ensemble average operator. The cost function
is defined as the sum of all diagonal elements of the matrix &,(i) ie., J,(i)= E[e,” (1)e,(1)j

The optimum MMSE receiver is derived by minimizing the scalar cost function. Using the

partial derivatives %(1) =0 and %(l) =0 [160], we derive the optimum solution as:

I b
F.()=H" ()" Nc@HOHE" () ()+ R, [ (4.152)
where, the noise covariance matrix is R, = E [2(1')2” (z)]

F,(i)=F,()CG)H(-1) (4.15b)
where, ( )" is the Hermitian operator. Since we are using the channel estimates in the design

of feedback filter, therefore the matrix H(i—1) is replaced by the estimated channel
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coefficient matrix H(i~1ji~1) in (4.15b). Substituting (4.15b) in (4.14a), the input vector
»(i) to the decision device can be redefined as:
)= F, )2, () (4.16)
where, the equivalent input signal vector to the feedforward filter is Fog ()= Fi)-Fyg (i). The
ISI term 75 (f)= C(i)H (i ~1ji - l)be (i-1) is ggnerated and cancelled from the composite
signal vector r"(i) by using the estimated channel response H (i —1|i —1). It is apparent from
(4.16) that we can replace F . (i) with an adaptive feedforward filter of the same dimension.
The proposed adaptive multiuser receiver is shown in Fig. 4.1, in which the feedforward
filter F, (1) is replaced by the RK-LMS algorithm based adaptive FFF W f: (z) (described in
section 4.5), and the estimated multiuser channel response H (i - 1|i - 1) is obtained by using

the RK-LMS algorithm (described in next section). It may be noted that the performance of

adaptive multiuser channel estimator influences the intersymbol interference cancellation.

4.4 Adaptive multiuser channel estimation

In the literature, the unknown channel coefficients are often assumed to be a first-order
Markov process for the tracking performance analysis of the LMS-based adaptive algorithms
[57], [60], [101]. Therefore, the multipath channel coefficient vector of the  th user can be

. modelled by using the AR(I) process as:
Ek,o (’) =p I;k,o (i - 1)"' ‘2’& (’) _ (4.17)
where, the LxIL  dimensional channel correlation  coefficient matrix  is

,5=diag[ao,,,a,k, ,a(L_l)k]. The above model is valid for the fading channel only if the

channel coherence time is large enough to estimate the channel response. The subscript ( )a

denotes the optimum value.
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e(i)

w, () l W - :]: + b.(0)
FFF (RK-LMS) li—_’

Tib,(i-1)
FBF — Delay
] |

H(i-1i 1)
Multiuser channel |

estimator using |
RK-LMS algorithm |
|

Fig. 4.1: Adaptive MMSE DFE multiuser receiver using the RK-LMS algorithm.

(The non-adaptive FFF F,(i) is replaced by an adaptive FFF (RK-LMS) # (i)
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The scaling factor a,, denotes the state transition coefficient of the k th user in /th path.
According to Jakes model presented in [154], this factor may be defined as the correlation
coefficient. In (4.17), W, (/)= [ﬁf (i) i) ... ﬁ,f“(i)}l is a zero-mean white noise process
vector with the covariance matrix oéz I, , which results in the uncorrelated tap-coefficients of
the multipath fading channel (wide-sense stationary uncorrelated scattering channel).

If we consider the first-order weight increment vector f_'zk‘a(i—l)sl_z,‘,o (i)—ﬁ,"o (i—l)

correlated with the vector }_1,,.0 (1), then this redundant information may be used to predict the

vector A, , () because }_z,w ()= d %[) }—;,m (i—1)+ W, (i)}; where the LxL dimensional
scaling matrix is c;':diagkl—aOk)'l,(l—a,k)'l, ,(l—a(L_l)k )’lJ. Similarly, the second-

order weight increment vector }7,”, (i- )= Zk.o (i)—i?k.o (i ~1) may be used to approximate the
state equation for the time-varying fading environment. In the following, we assume that
a, =a ie., the correlation coefficients of all the fading channels are equal. Such that, the
optimum channel coefficient vector used in the channel estimation equation (4.12) is
};o(i)=A };o(i—l)+ W(z) with 4=al, where W(i) is a 2KLx1 dimensional zero-mean
white noise process vector, and 7 is a 2KL x2KL dimensional identity matrix. In the

multiuser scenario, the state equation may be defined in terms of the first-order and second-

order weight increment vectors as:

r 3 r P 0

(1) :[1 IJ hi-1) {;— J @18)
h)] L0 1A G-1)| [AG-1)

4.4.1 RK-LMS algorithm based channel estimator
The application of Kalman algorithm for the multiuser channel estimation is based on the

following equations.
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Aldli) = Al

where the Kalman gain or blending factor is K(i)= P({i - 1)D (; [D )P(i -1)D7 () + R, ]_

)+ KOG -7,6)] | (4.19)

and the estimated signal vector using (4.12) is denoted as:
= [6@BERW-1)= DEA-1) (4.20)
The covariance matrix of the prediction error (in time update) s

P(z1i —1)=AP(i—1|i—1)AT +Q, and the covariance matrix of the estimation error (in
measurement update) is P(i]i)z [I —Ie(i)lA)(i)JP(i|i—1), where R, = E[f(i)é” (1)] and
0, = El y (i)W” (I)J are the measurement noise and the process noise covariance matrices

respectively. It is clear that the above described Kalman adaptive algorithm based approach is
computationally complex.

Therefore, the Kalman algorithm is reduced to give a computationally efficient two-step
LMS-type algorithm, which eliminates the matrix inversion operation in the Riccati update

equation. The new RK-LMS algorithm based multiuser channel estimator is as follows
Aili) = Al —1)+ 2D (YFE) - 7.()] (4.21)

where the scalar parameter 4 is step size, which controls the convergence and stability of the

adaptive algorithm. The Kalman gain K (z) is replaced by /zbr(i), and the a priori estimate
A(ili ~1) of A(i) is defined as:

Al 1) = Al =1 = 1)+ Bali - 1i - 1) (4.22)

In the above equation, the first-order weight increment vector is estimated as:

)= A1 =1)+ 0D (NPG)- () with A(fi~1)= Ai-1i-1) (4.23)
where 0 < a <1 is a smoothing parameter, which controls the lag in tracking the time-varying

system [60]; and the estimated first-order weight increment vector is scaled with a real valued
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control parameter 0< B<1, which controls the oscillatory behaviour of algorithm. The
analytical and simulation results presented in chapter 3 show that the value of 4 should be
tuned below the threshold value (depending on the value of & and ), which ensures

stability in the convergence mode. Further it has been shown by computer simulations that
for a single-user system, the proposed algorithm provides approximately 14dB performance
advantage in channel estimation over the conventional LMS algorithm by reducing the mean

square error in tracking mode.
Let ElhA(l,l)J is the ensemble average of };(Ill) (see [57] and chapter 3). The estimated
multiuser channel coefficient vector can be defined in terms of the optimum channel

coefficient vector ﬁo(i), tracking noise vector };T (i)=hA(i|i)—E|ﬁ(i|i)j and lag noise vector
i)]— 2 (i) as:

i)=h, i)+ Ay i)+ 5, )

h, ()= E[AG

Ay

For the above procedure, the estimation of the first-order weight increment vector (4.23)

A

helps in reducing the lag noise ie., h, (1) in tracking, but application of the conventional
LMS algorithm in steps (4.21) and (4.23) contributes minor gradient noise in addition to the
residual lag noise. The reduction in the lavg noise results due to the improved tracking in the
time-varying nonstationary environment.

Therefore, the equations (4.20 — 4.23) are used to estimate the multipath channel
response for K users. The reduced Kalman/LMS algorithm is computationally comparable to
the conventional LMS adaptive algorithm. Moreover, the RK-LMS algorithm does not
require the knowledge of channel correlation coefficient . In addition, the substitution of

variable step size ,u(i) results in development of a new family of the two-step LMS-type

algorithm based adaptive channel estimators.
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4.4.2 Analysis of multiuser channel estimator
In this section, we study the mean convergence behaviour and tracking characteristics of the
RK-LMS algorithm based adaptive multiuser channel estimator. Using the channel estimation

equation (4.12), we redefine the received composite signal vector in terms of the optimum
weight vector as A(i) = b(l)i;o )+ 3(i). Let the state (channel coefficient) error vector be

i)-,(3)
l) - i;a (1)

The equation (4.24) is solved using the RK-LMS algorithm (see appendix B) to give

Ai

) A’?@H.
*0 ‘L;;@ -

A(i

(4.24)

(i) = T()Dd(i —1)+ N() (4.25)
where, T(i)= I:I ~HRG) 1 k() 1 with R(:)= D" (i)D(i) (4.26)
~auR() 1 -ouR(i)

(4.27)

N2 {ﬂbf(f)s(m - B)akle~1-1)-( —._mé(wuf—l)]
auaD” (120) + 1 ~ BYROle -1 -1)- A, i -1)

The above weight error vector may be considered as the output of a recursive linear system

with the state transition matrix T(7) and the input vector N(7).

Since 2() is a zero-mean statistically independent random process vector
ie. E[2()]=0 and R=E|D"()D()| is the average value of matrix Z(7), therefore the
ensemble average of the weight error vector ®(i) gives the mean error variation. We can
write,

E[o()) = TG)E[@(i -1)]+ R() (4.28)

wher, f@{"*‘f‘ -k l and N@{- - PY - ) o} el e--1)
——a,uft I—a,uf(’ +
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The square matrix f? is spectrally factorized to give Q7'AQ, where O is the modal matrix
consisting of eigenvectors as column vectors and A is the spectral matrix with only

eigenvalues at its main diagonal ie., A = diag{/ll,lz, Y ,XQKL}. The multiplication

of the modal matrix Q on the both sides of (4.28) leads to

OE[o(i)] = T, ()|OE[@( - 1)]|+ ON() (4.30)
- |0 0 Ai:I—,uAI—,uA o
where Q_[O QJ, T, (i) {—aﬂA I_OWJ d

QN(i)E [§(Z)+ M(l)p(l) (4.31)
where §()=| UM 0| [ AUA) 0 QE[ﬁ("_]""‘l)]

(- BYewr} -1 0 0 QE[ho(,-_l)J

(4.32)

The matrix TQ (z) may be considered as the transfer function in the system defined by (4.30).

The transfer function of its g th sub-channel is

[Ag(i)L {I—M" L J (4.33)

—aud, 1 —aud,

The eigenvalues of the above transfer function for the g th sub-channel are

¥y =1-pd, l%ii\/(,ulq 1—“;3] — i, (4.34)

For complex eigenvalues, the RK-LMS algorithm will exhibit damped oscillations, which
results in the high mean square error during the initial learning mode. However the real

eigenvalues provide stability to algorithm, which can be achieved by keeping

[Mq I_ZEJ —aud, 20 (4.35)
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The rearrangement of the above equation results in the lower bound on the value of

smoothing parameter i.e.,

a> HA e ~ M e (4.36)
(1 + ‘V 1- Mmax )z
For real and equal eigenvalues, the mean time constant is defined as:
1 2
¢, 4.37)

1_|7q| ﬂlq(l-f-a)
Since the value of « is kept small, therefore the mean time constant for convergence is
approximated as ¢, = 2/ 42, . The value of ¢ is comparable to the mean time constant for

the conventional LMS algorithm as « approaches unity ie., ¢, —)1/ #4, . Therefore, the
mean time constant can be adjusted by tuning the value of smoothing parameter.

A

The state error vector ®(i) converges to zero for null values of E[h(i—l’i—l)} and

E[ﬁo (i —1)}, which results in the unbiased adaptive multiuser channel estimator. The input

vector QN(i) depends on the value of £, which is fed to the recursive system (4.30) with
transfer function TQ (i) to give the output vector QE[CD(I)] Therefore, the criterion of the
bounded input and the bounded output stability is applied for the stable functioning of
system. For qth sub-channel, the magnitude of the off-diagonal elements of matrix l‘SA'(z)L
should be less than one ie., —1<(1- ﬁ)a,ulq < +1. For stable convergence behaviour, the
stringent  condition on the control parameter S may be defined as
1—(a;_zﬂq)_l <,B<1+(ayﬂ,qfl. For the large values of (an) ie., (an)'l <<1, the
corresponding operating range of the control parameter can be redefined as:

1- (o, ) < B <1 (4.38)
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From the above equation, it is clear that the value of S can be varied in a small range for the
large values of (ay). As the value of (ayﬂq )" >> 1, the above operating range is constrained
to 0<B<I1. This range is considered for the RK-LMS algorithm in previous subsection

because the value of (a,u) is kept small. However the increasing value of /3 increases the
elements of matrix M (z) in (4.32), which enhances the amplitude of damped oscillations by
increasing the input vector QN(i).

It may be inferred from (4.23) that the tracking speed may be increased by increasing
the value of «, which reduces the lag noise during tracking mode. However, this
improvement is achieved at the cost of slight increase in damped oscillations. Under this
condition, the reduction in the value of S suppresses the amplitude of oscillations to
minimize the MMSE in tracking. Unlike the G-LMS algorithm [60], this parameter tuning
provides stability in the convergence mode of the proposed RK-LMS algorithm.

Thus, the RK-LMS algorithm based adaptive channel estimator is used in the time-
varying environment by tuning the smoothing and control parameters at the optimum values.
The estimated multipath channel coefficients of K active users are used in the multiuser data

detection equation (4.13), which is incorporated in the proposed multiuser receiver (described

in next section).

4.5 RK-LMS algorithm based adaptive multiuser receiver

4.5.1 Adaptive data detection procedure

In this section, we propose the RK-LMS algorithm based adaptive MMSE DFE multiuser
receiver, which uses the estimated multipath channel information. The Kalman algorithm
based multiuser receiver (as described in section 4.3) is computationally complex due to the

matrix inversion operation in (4.15a). The computational complexity in the calculation of the
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feedforward filter weight matrix F f(i) je., the equation (4.15a) is reduced by using the
adaptive feedforward filter Wf(i) (the K x N dimensional weight matrix), which results in
b, (i) = sgnly(7)].

where, y(i)= W, (i), (i) (4.39)
Under no error propagation condition, it is assumed that b, (z) = b(i) at the slicer output. The
error vector at the slicer output is e,(i)=b(i)- y(i). The corresponding error covariance
matrix is &,(i)= E [ez(i)ef (1)] The scalar cost function for this case is defined as the trace of

matrix  £,() ie, Jz(i)=E[ef (z)ez(z)] The KxN dimensional gradient matrix

an;W(i) =-2F [e2 (i)r’e;" (z)] is used to derive the weight update equation for the forward filter as:
s
W, (0)=W,(i-1)+ fe, ()0 (i) with step size £ (4.40)

The above weight update equation is governed by the conventional LMS adaptive algorithm.
The adaptive multiuser channel estimator (as shown in Fig. 4.1) provides the estimated
multipath channel coefficients, which suffers from the estimation errors. Therefore, the

presence of residual ISI (which also introduces nonstationarity) can not be ignored in the

equivalent input signal vector feq(i). Under such situation, we incorporate the RK-LMS

adaptive algorithm (see [60] and chapter 3) for updating the feedforward filter weight matrix

as:

()=, (i = 1)+ fie, (R () (4.41)
The a priori estimate W, (ii ~1) is updated as:

w(li-)=w,(i-1i-1)+ o, (i~1i-1) (4.42)
where W, (ii) is the first-order weight increment matrix, which is defined as:

() =7, G- i = 1)+ Gize, ()77 (i) (4.43)

104



where 0 <@ <1 is a smoothing parameter, which combats nonstationarity in the time-varying
multipath fading environment; and the real valued control parameter 0 < ,[§<1 is used to

provide stability in the initial learning period. In the proposed RK-LMS algorithm based DFE
multiuser receiver, the smoothing and control pararheters are tuned to give the optimum
performance. The adaptive feedforward filter also acts like RAKE, and thus provides the
diversity gain. The feedback filter partially cancels ISI using the channel estimates, while the
forward filter suppresses the residual ISI as well as MAI. Hence, the proposed DFE multiuser

receiver is used for the multiuser interference cancellation and data detection.

4.5.2 Probability of error analysis

Using (4.39), the signal vector at slicer input (as shown in Fig. 4.1) can be written as:
=[O y6) - v Of
=W, (NCOE@BE)+ COHG -1l 1) - COHG-1i-1p, (-1)+ 50)]  (@.44)
where, the output corresponding to the first user is y'(;). Let W} (i) be the first row vector in

the matrix W, (i). Such that,

Ch (- Db(-1)

y'(@H)=w; (i k=2 (4.45)

Q
Sl
=
g
DM~

Q
=1
l?

TTMa

In the above equation, we can write the weight vector as:
wii)=w; . @O)+w} ()+w} () (4.46)
where W}.())=w](i)-W; (), W, (i)="}(i)- w},(i) and W} (i) are the tracking error

weight vector, lag error weight vector and optimum weight vector respectively [57]. The

vector W, ( ) is the average value of the weight vector. Using (4.24), the estimated multipath

channel vector is
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B (i=1)=h (i~ 1i-1)- AR, (i -1) (4.47)
where, the vector A%, (i —1) denotes the channel estimation errors for k th user. Substitution

of (4.46) and (4.47) in (4.45) leads to

=y O )+ O 70 )+, DI R OO+ Vi O+ 1 )+ 10 350 0)

(4.48)
where, y,(i)=W; ,(:)C'h (i) (Scaling factor)
I 1 k . . . 2
o {y } ZWf iC*h, (1), (i) (Multiuser interference with N(O,O'MU, ))
k=2

For probability of error analysis of the proposed multiuser receiver, the multiuser-interference

(MUI) can be considered Gaussian process for a large number of users [27], where b, (z) isa

collection of independent equi-probable +1 random variables.

1 K
Vis {y } ) Y Wi AR (i-1)p,,(i-1)  (Channel estimation error with N(O,oés))

k=1

The channel estimation error vector is considered to be a zero-mean random process.

yi(i)= {y; (i)}_l [Wf‘ (i)é(i)] (Noise component with N(O, ol ))

Since tracking and lag error weight vectors are random, therefore the mean and variance of

the component { f,(z)} {( N+w}, )C k(i) } ) are N(O op =0} +0L)

K ~ —_—

yio(i)= {yf, (i)}-l S wHC R, (- 1), (i—=1)-b, (-1)}  (Error propagation component)
k=1

Under worst conditions ie., b, (i —1)=—b,, (i ~1), the error propagation severely effects the

performance of receiver because yE,, {,v }IZW} }_z —l)bk( ~1). The cross-



correlation in the signature sequences implicitly randomises the value of Vip (1) [38], which

is assumed to be a stochastic process with N(O, o-,f,,). Therefore, the probability of bit error

under worst condition is defined as:

ax{Pb! }= QG{ 1 (4.49)

\/oﬁ + Oy + 00 +ol 402,
where, O, denotes the complementary unit cumulative Gaussian distribution function. The

above equation can be used to derive the conditional probability of bit error for a known
channel. However, the equation (4.49) can be averaged for the different channel realizations

to calculate the unconditional probability of bit error.

The zero error propagation condition ie., b, (i—l):bek (i—l) results in o2, =0 and
min{Pb: } We have demonstrated analytically in previous sections and verified by computer
simulations in next section that the application of the two-step RK-LMS adaptive algorithm
reduces the lag noise ie., o2 — o . But the conventional LMS algorithm fails to reduce the

lag noise in nonstationary  environment, Therefore, it may be inferred that

Py}

1
RK-LMS <Pbe|lA4S .

4.6 Simulation results

4.6.1 Performance evaluation of multiuser channel estimator

We shall investigate the behaviour of the proposed RK-LMS algorithm based multiuser
chanhel estimator in the convergence and tracking modes to confirm the analytically derived
results. For simulating DS-CDMA system, the Gold-sequences of length N =31 are
generated. For all the active users, we have considered frequency-selective multipath fading
channel. Each Rayleigh channel tap-coefficient is assumed to be time-varying according to

AR(I) process (4.17), which does not change during the data symbol transmission period ie.,
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T, =T,. As the sample rate is R, =1/T,Hz at the maximum Doppler spread f, =v,f,/c,
the correlation coefficient is chosen as a, = a = J,(27f,T,) [101], [154]; where f, is the

carrier frequency, v is the relative speed of mobile user w.r.t. the position of receiver, ¢ is

m

the velocity of light and J,( ) denotes the Bessel function of the first-kind and zeroth-order.

Three simulation examples are presented to illustrate the superiority of the proposed
adaptive multiuser channel estimator using the RK-LMS algorithm over the conventional
LMS algorithm based approach. We have calculated the ensemble average of 150

independent trials. The values of smoothing parameter & = 0.01, control parameter £ =0.75
and step size z=0.0025 are kept lower than their maximum bounded values (described in

previous sections). These parameters are tuned at their optimum values using the computer
simulations. We have considered 20dB  signal-to-noise ratio, the carrier

frequency f, =2GHz and sample rate 1/7, =100kHz (T, =0.3226usec) in each of the

following examples.

Example 4.1: In this example, we investigate the convergence and tracking performance of
the proposed multiuser channel estimator for a four-user system. First, we consider the fading
channel with the maximum Doppler spread f, =10Hz (ie., v, =5.4Km/Hr). For the
multipath delay spread 7, =0.5usec, the number of multipaths is L = (Tm /TC)+1 =3 for
each user’s transmission channel. Next, we increase the Doppler spread f, =100Hz
(ie., v, =54 Km/Hr) at the same data symbol rate, which increases the channel variation
and consequently results in the high MMSE (as shown in Fig. 4.2). At lower fading rate i..,
JpT, =0.0001, the RK-LMS algorithm gives approximately 3dB performance advantage

over the conventional LMS algorithm because the RK-LMS algorithm combats the lag noise

in tracking mode.

108



I I
! 1
[ 1
1 |

2 . ; ~o~ fd= 10Hz, RK-LMS
] Lo L —+ fd= 10Hz,LMS | |
$ | | — fd = 100Hz, RK-LMS
{ ! ; —— fd = 100Hz, LMS
B T e . .
L : | | |
B RRRREREEEE R B Rt RRRCEEEREE
wo |} ! ! ! :
2 A0 (- g oo - R Y T R
= - g

Number of iterations

Fig. 4.2: MMSE (dB) vs the number of iterations of RK-LMS algorithm for different values of

Doppler frequencies.
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However, the performance advantage reduces to approximately 1.5dB for the fading

rate f,7, =0.001 due to the lag noise. Unlike the G-LMS algorithm [60], the control

parameter [ <1 controls the initial oscillatory behaviour of the RK-LMS algorithm.

Example 4.2: We next consider the performance comparison of the RK-LMS and the
conventional LMS algorithm based multiuser channel estimators for different number of

active users. In this example, the maximum Doppler spread is f, =50Hz
(ie, v, =27 Km/Hr). The two different values of the multipath delay spreads T,, = 0.5usec
and T, =1.5usec are considered, which correspond to L =3 and L =6 respectively. The

computer simulation results shown in Fig. 4.3 demonstrate that the performance advantage of
the RK-LMS algorithm deteriorates with the increasing number of users. This degradation is
due to the presence of residual MAI, which increases with the increasing number of users.
Moreover, it may be inferred from Fig. 4.3 that the RK-LMS algorithm gives better
performance for three multipaths. For L = 6, the signal-to-noise ratio per path reduces, which

adversely affects the performance of the proposed multiuser channel estimator.

Example 4.3: For a five-user case, we analyse channel tracking performance of the two

multiuser channel estimators under the time-varying environment. The Doppler spread is

considered to be f, =100Hz (ie., v, =54Km/Hr) with the multipath delay spread

T =0.25usec (ie., L=2). The adaptive channel tracking performance in Fig. 4.4 shows

that the channel estimated by using the RK-LMS algorithm is comparable to the true channel.
However, the estimated channel coefficient by using the conventional LMS algorithm is
lagging behind the true channel coefficient. Both adaptive algorithms use the same step size,
but the RK-LMS algorithm based channel estimator supersedes because it removes the lag

noise by using the estimated first-order weight increment vector.
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Moreover, it is observed that we can increase the tracking speed by increasing the value
of smoothing parameter, and can also reduce the oscillatory behaviour by reducing the value
of control parameter. The channel tracking results shown in Fig. 44 are at the optimum

values of @, S and u (as described earlier).

4.6.2 Performance evaluation of adaptive multiuser receiver

We next investigate the performance of the proposed adaptive MMSE DFE multiuser
receiver under the time-varying frequency-selective multipath fading channels, which utilizes
the estimated channel information in the design of feedback filter (FBF) (as shown in Fig.

4.1). The multiuser channel estimator uses the RK-LMS algorithm and the FBF generates

Fig (i) using the estimated channel coefficients. This feedback unit is denoted as FBF (RK-

LMS). The feedforward filter of the proposed receiver also uses the RK-LMS algorithm,

which is denoted as FFF (RK-LMS). To generate the time-varying environment, the L x1
dimensional vector E_o(i) is considered to be a smoothly fading mobile communication

multipath channel (Rayleigh). The Jakes model is widely accepted as the realistic fading

channel model, which is simulated by using AR(2) process [equation (1), 103] as:

by oli)= =Kl (i =1)~ Kb i~ 2)+ U () (4.50)
where U(i)= [uo (i) u, @) ... u - (i)]T, such that #,(7) is a complex zero-mean white Gaussian
process. The scalar coefficients in the above equation are K, = -2r, cos(\/ffngT ,,) and
K, =1} (see section 3.4), which take account of the maximum Doppler frequency f,, of the

underlying fading channel, sampling time T, =T, and pole radius r, corresponding to the

steepness of the peaks of power spectrum. The value of pole radius is given as
r, =(1=2f,T,) [equation (70), 44].

Three simulation examples are presented to investigate the performance of the proposed
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adaptive DFE multiuser receiver, in which we have considered the carrier

frequency f, =2GHz, sample rate 1/7, =10kHz (T, =3.226usec), smoothing parameter

a =a =0.01, control parameter S = ﬁ =0.75, step size of the channel estimator x = 0.001
in (4.21) and step size of the adaptive multiuser receiver £ =0.05 in (4.41). Note that the

DFE receiver is switched to the decision directed mode after transmission of 500 training

bits. Moreover, the multiuser channel estimation equation (4.12) uses the estimated chip-data-

A

matrix D, )= C(i)f?e (i) in the decision directed mode, where B, (i) is the estimated data-

symbol-matrix. We have considered all the active users moving at the same speed. We
compare the bit error rate ( BER) performances of the following six adaptive DFE multiuser
receiver configurations using the RK-LMS and the conventional LMS algorithms in the
simulation examples.

i) FFF (LMS) — The recursive feedforward filter W, (i) uses the LMS algorithm. No
channel estimator based feedback unit is used to cancel ISI due to the past symbols.

i) FFF (LMS), FBF (LMS) — The recursive feedforward filter (/) uses the LMS

algorithm. The LMS algorithm based channel estimator is used in the feedback unit to
cancel ISI due to the past symbols.

i) FFF (LMS), FBF (RK-LMS) — The recursive feedforward filter #,(i) uses the
LMS algorithm. The RK-LMS algorithm based channel estimator is used in the
feedback unit to cancel ISI due to the past symbols.

iv) FFF (RK-LMS) — The recursive feedforward filter W f(i) uses the RK-LMS

algorithm. No channel estimator based feedback unit is used to cancel ISI due to the

past symbols.

v) FFF (RK-LMS), FBF (LMS) — The recursive feedforward filter 7, () uses the RK-

LMS algorithm. The LMS algorithm based channel estimator is used in the feedback
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unit to cancel ISI due to the past symbols.

vi) FFF (RK-LMS), FBF (RK-LMS) — The recursive feedforward filter W f (1) uses the

RK-LMS algorithm. The RK-LMS algorithm based channel estimator is used in the

feedback unit to cancel ISI due to the past symbols,

Example 4.4: In this simulation, we analyse the affects of maximum Doppler spread on the
performance of the proposed multiuser receiver. The increase in Doppler spread is due to the

increasing speed of mobile user (ie., v, =0.54 Km/Hr to 5.4 Km/Hr). In the present case,

the multipath channel response is time-varying due to the movement of the desired user. The
time-varying channel tracking suffers due to the lag noise when LMS algorithm is used (see
chapter 3). For a five-user system at SNR = 204B and L =2, the results are presented in F ig.
4.5. It is clear that the use of the RK-LMS algorithm in the channel estimator FBF (RK-LMS)
improves the performance of multiuser receiver because the channel estimation errors are
small. In addition, the incorporation of the RK-LMS algorithm in the FFF leads to better'
results in comparison to FFF (LMS) as the FFF (RK-LMS) suppresses residual ISI
(nonstationarity) in the time-varying environment. As the Doppler spread increases, the BER
performances of all the proposed configurations degrade due to the inability of LMS
algorithm to adapt under the fast time-varying channel. Moreover, the error propagation
effect also degrades the performance of non-linear detectors [75]. However, the adaptive
receiver using FFF (RK-LMS), FBF (RK-LMS) configuration outperforms the other five

configurations (as shown in Fig. 4.5).

Example 4.5: In this example, the effect of increasing number of multipaths ie., L on the
performance of the presented multiuser receiver is analysed. We keep SNR =104B at the

Doppler spread f,, = 1Hz (ie., v, =0.54 Km/Hr) in a five-user system.
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The results presented in Fig. 4.6 show that for a small number of multipaths, the
performance of the proposed receiver improves because the FFF of the proposed receiver also
works as RAKE [14], and thus improves SNR by providing the diversity gain. However, as
the number of paths become large (ie., SNR per path reduces), the BER performance
deteriorates substantially. The observed degradation is due to the increasing magnitude of
residual ISI and MAI as the channel estimation errors are large. It is evident from Fig. 4.6
that for a large number of multipaths, the configurations using LMS algorithm for the channel
estimation in the feedback unit (as shown in Fig 4.1) ie., using FBF (LMS) show inferior
performance. Therefore, the FFF (RK-LMS), FBF (RK-LMS) configuration for the presented

multiuser receiver supersedes the other configurations.

Example 4.6: In this simulation, we investigate the performance of the proposed receiver for
the different number of users and for the different values of SNR. We first consider the

Doppler spread f, =1Hz at SNR =15dB . The multipath delay spread is considered to be
T =5usec (ie.,the number of multipaths is L =3). The bit error rate increases with the

increasing number of users (as shown in Fig. 4.7) because the load factor (ie., K/N)

increases [73], which results in the high magnitude of residual MAI at the output of adaptive
FFF. The increase in the magnitude of residual MAI also deteriorates the tracking
performance of multiuser channel estimator, which severely affects the BER performance of
the presented multiuser receiver due to the presence of channel estimation errors.

We next simulate a four-user system and vary the SNR at the same values of Doppler
spread and multipath delay spfead. It is clear from Fig. 4.8 that the increase in the value of
SNR improves the BER performance of all the multiuser receivers. However at the
BER =0.006, the proposed FFF (RK-LMS), FBF (RK-LMS) multiuser receiver provides

approximately 3dB performance gain over the conventional FFF (LMS) configuration.
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From Fig. 4.7 and Fig. 4.8, it may be inferred that the FFF (RK-LMS), FBF (RK-LMS)
is the best suited configuration for an adaptive multiuser receiver under the smoothly time-

varying fading conditions.

4.7 Concluding remarks

In this chapter, we have presented an adaptive MMSE DFE multiuser receiver using the two-
step LMS-type reduced Kalman/I.MS algorithm under the frequency-selective smoothly
time-varying multipath fading channels. The proposed receiver uses an adaptive multiuser
channel estimator to design the feedback filter of DFE. The estimated weight increment
matrix is used in the weight update equation to track the time-varying channels. The values of
the smoothing parameter, control parameter and step size are kept less than their respective
maximum values. The optimum values of these parameters are determined using the
computer simulations. We can improve the tracking speed of adaptive channel estimator by
increasing the value of «, which inturn enhances the oscillatory behaviour of the RK-LMS
algorithm. Since, it has been analytically proved that the reduction in the value of parameter

B reduces the amplitude of oscillations. Therefore, the value of 4 may be reduced to control

the instability of the proposed algorithm.

Simulation results show that the performance of the presented multiuser receiver is
dependent on the channel estimation errors because the residual ISI adversely affects the
BER performance. The increasing number of users and the velocities of moving users
deteriorate the BER performance, as the error propagation effect and the residual interference
(ISI and MAI) overwhelm the decision process. For a small number of multipaths, the FFF
provides performance advantage by exploiting the multipath diversity. However, the BER
performance degrades for a large number of multipaths because the SNR per path reduces,

which results in the high channel estimation errors. The computer simulation results have
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evidenced that the performance of FFF (RK-LMS), FBF (RK-LMS) configuration for the
proposed adaptive multiuser receiver is superior to the conventional LMS algorithm based
configurations.

It is known that the error propagation may severely affect the performance of decision
feedback multiuser receivers. In the next chapter, we focus on the error propagation problem

arising in the decision feedback structures used to combat ISI and MAL
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CHAPTER 5

ADAPTIVE MULTIUSER DECISION FEEDBACK
DETECTORS FOR DS-CDMA SYSTEMS USING

PARALLEL INTERFERENCE CANCELLATION APPROACH

Multipath propagation through linear dispersive media introduces intersymbol

interference that distorts the wireless transmission and degrades the bit error rate performance
of the multiuser systems. In addition to ISI, the non-orthogonal properties of signature
sequence waveforms and asynchronism result in the generat‘.ion of multiple access
interference along with AWGN at the multiuser receiver. In DS-CDMA system, the problem
~ of MAI is not only due to the known intra-cell users, but also from the unknown inter-cell
users. In such situations, the adaptive non-linear (decision feedback) MMSE techniques [9],
[10], [14], [73] are more effective than the linear techniques (without feedback) [38].
However, the error propagation adversely affects the performance of decision feedback
multiuser detectors under the low SNR conditions (see [75] and chapter 4).

In this chapter, we first briefly review different schemes to control the error propagation
effect in the adaptive decisioh feedback equalizers in section 5.1. We also review different
parallel-interference-cancellation (PIC) techniques used in the adaptive-decision-feedback-
detectors (ADFDs) for the efficient multiuser interference cancellation and data detection
under the controlled error propagation conditions. Using the multiuser system model
described in section 4.2, we introduce an adapfive decision feedback equalizer using the
erasure algorithm (E-DFE) with fully connected feedback filter in section 5.2, which also
includes details about the proposed erasure algorithm. We next present the DS-CDMA

system model in terms of the detected and undetected users, which is used to design the
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partial parallel interference canceller in section 5.3. We present an adaptive decision feedback
detector based on the parallel interference cancellation approach using the erasure algorithm
and channel estimator (EC-ADFD-PIC) in section 5.4. The simulation results are presented in
section 5.5 to demonstrate the improved performance of the proposed adaptive E-DFE over
the conventional DFE (C-DFE) under the slowly time-varying frequency-selective fading
channel. We also provide simulation results on the performance of the proposed adaptive EC-

ADFD-PIC. Finally, conclusions are given in section 5.6.

5.1 Introduction

On the forward link of DS-CDMA multiuser system, adaptive decision feedback equalizer is
used to detect the desired user by considering MAI as noise [14]. The forward filter of
adaptive DFE improves the signal-to-noise ratio, as it performs the function of RAKE. If the
received signals are chip asynchronous, then the problem of different timing offsets across
the active users can be solved by using the fractional chip sampling along with the use of
excess bandwidth [41]. As the information about past detected symbols of all the active users
is available at the base station on reverse link, therefore the backward filter of adaptive DFE
can be used in fully connected mode to cancel out ISI due to other active intra-cell users
(interferers) [10]. However there is a possibility of wrong decisions due to the presence of
residual MAI, which leads to error propagation due to the use of decision feedback loop.
Previously, erasures have been introduced in the decision feedback equalizer for the
detection of binary pulse-amplitude-modulation (PAM) and quadrature-amplitude-
modulation (QAM) signals to reduce the effect of error propagation [79], [80]. In this
scheme, a symbol is considered unreliable if the corresponding absolute value of sample at
the slicer input is below a pre-determined threshold value. Subsequently, these uncertain

symbols are erased in the feedback unit. This erasure process leads to complete loss of the
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low amplitude received symbols along with the spurious signals. Moreover, this technique is
not directly applicable to the adaptive DFE structures used in the DS-CDMA systgm because
under no power control condition, the absolute value of the residual MAI may dominate the
decision process. These drawbacks can be overcome by modifying the non-linear function
used in the soft-slicer. In this chapter, we present a novel erasure algorithm based soft-slicer
(E-slicer) for adaptive decision feedback equalizer in the DS-CDMA system for interference
suppression. However this single-user detection scheme is not beneficial on the reverse link
(at the base station), therefore we next focus on the multiuser interference suppression and
data detection techniques.

Duel-Hallen has presented two multiuser decision feedback detectors in [109]-[111]

ie., S-DFD (successive-) and P-DFD (parallel-). Previously presented work on MMSE DFDs

using the successive interference cancellation scheme in [139] depicts that the total delay
involved in the decision process of S-DFD is more in comparison to the P-DFD, which limits
" the application of the former multiuser detector. In P-DFD, the tentative decisions of K users
obtained from the linear MMSE receiver are simultaneously used for the parallel interference
cancellation. The tentative decisions may be unreliable due to the overwhelming nature of
MAI, which leads to error propagation in the subsequent stages of multistage detector.
Divsalar et al. have proposed the partial PIC approach in [116], in which the constant
partial-cancellation-factors (PCFs) are introduced to cancel a fraction of the estimated
interference. The MMSE/PIC decision feedback detector supersedes the linear MMSE
detector even for the large values of signature sequence cross-correlation [127]. However, the
RLS algorithm based PIC approach used in the non-linear detection results in the high
computational complexity [126].

During the last decade, different PIC schemes have been proposed in the literature for

the multiuser interference suppression and data detection [116]-[132]. However the simplest
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approach is to multiply all the symbol estimates by the constant PCFs less than unity, and
subsequgntly subtract the interference term from the received signal using the PIC scheme.
This approach may be modified by using the variable PCFs based on the value of correlator
or linear MMSE receiver output. The optimal PCF values are determined either by theoretical
analysis under some simplifying assumptions [122], or by using the LMS adaptive algorithm
[120]. However the former method is only valid for a small number of users, and the latter
adaptive method is not applicable in the fast time-varying multipath fading environment.
Using the perfect power control and respreading technique [125], the optimal PCFs can be
calculated efficiently online under the known time-varying channel conditions. In the above
discussed PICs, the BER performance degradatioh is observed due to the presence of MAI in
the asynchronous DS-CDMA receiver. However the erasure algorithm may be used to
generate the variable PCFs depending on the soﬁ;output of multiuser linear filter, which
reduces the effects of residual MAI in the decision process.

In BPSK transmission, we transmit chip waveforms at the chip rate in the DS-CDMA
wireless systems. At the receiver end, the detection takes place at the data rate. Therefore the
intersymbol interference is not only due to the chip waveforms of past data bits, but also due
to the chip waveforms of present data bits of all the intra-cell active users. For the
asynchronous DS-CDMA system, Ratasuk ef al. have proposed the P-DFD structure for the
slowly time-varying channels, which attempts to cancel all the interference (ISI and MAI)
simultaneously [128]. This is an adaptive structure based on embedding the received signal
vector in a higher dimensional space. For the known intra-cell users’ signature sequences and
channel parameters, the filter coefficients are estimated without a training sequence. On the
contrary, when channel parameters are unknown, a training sequence is required to estimate
the filter coefficients. These estimates have been obtained by minimizing the least-squares

cost function. Under the time-varying environment, it is difficult to estimate the covariance
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matrix of the received signal vector. Moreover the ill-conditioned covariance matrix
introduces numerical problems, and the covariance matrix inversion operation also increases
the computational complexity.

It has been shown that the P-DFD consists of a linear MMSE filter followed by an
error-estimation filter, in which the lower-diagonal constraint on the feedback filters is
removed [129]. The simulation results presented in [129] depict that the error propagation
effect severely degrades the performance of P-DFD. In a multiuser system, the detection
procedure of a single undetected user has been discussed using the PIC approach. However,
adaptive multiuser P-DFD based on partial parallel interference cancellation scheme for the
" multipath fading channel has not been reported so far in the literature.

In this chapter, we propose two methods for interference cancellation. In the first
method, the received signal vector is directly fed to the adaptive decision feedback detector
based on the PIC approach (ADFD-PIC), which suppresses noise and interference without the
knowledge of spreading signature sequences and the estimated channel response. In the
second method, we first estimate the multiuser channel response and then cancel the
interference term (due to the past detected data bits) from the received signal vector. The
resultant received signal vector is fed to the ADFD-PIC, which consid‘ers the residual ISI as
noise. The second method may be called the C-ADFD-PIC scheme. Therefore, four different
decision feedback configurations with or without the E-slicer are

i) ADFD-PIC — adaptive P-DFD or adaptive decision feedback detector based on the
paralle! interference cancellation approach.

ii) E-ADFD-PIC — ADFD-PIC using the E-slicer.

iii) C-ADFD-PIC — ADFD-PIC using the channel estimator.

iv) EC-ADFD-PIC — ADFD-PIC using the E-slicer and channel estimator.
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In the following, we first propose an adaptive E-DFE for the asynchronous DS-CDMA using
a novel erasure algorithm to reduce the effects of error propagation in the non-linear detection
techniques. To reduce the possibility of feeding back the wrong decisions, the output of the
feedforward filter of the E-DFE is processed before it is fed back to the feedback filter. In
addition, the fully connected feedback filter of E-DFE has been used to eliminate ISI due to
the intra-cell users. We next propose an ADFD-PIC for the DS-CDMA transmission, which
not only combats ISI and MAI but also suppresses the other-cell-interference (OCI). Under
the smoothly time-varying multipath fading channels, the presented ADFD-PIC structure is
motivated by the work of Ratasuk ef al. in [128] and [129], which offers significant
performance improvement by using the multiuser channe] estimator. We also incorporate the
erasure algorithm based soft-slicer in C-ADFD-PIC to mitigate the adverse effects of error
propagation in the presented non-linear decision feedback technique (EC-ADFD-PIC), which
outperforms the hard-slicer based approach and also proves to be beneficial for the inter- and
intra-cell interference suppression. Comparison of the performance of C-DFE and E-DFE is
presented to show the advantages of the proposed adaptive E-DFE in terms of the reduced
average BER performance, under the near-far situations and the sudden change in the signal
power of the desired user. The simulation results are also presented to demonstrate the
substantial improvement in the BER performance of the proposed MMSE EC-ADFD-PIC

over other multiuser detection techniques.

5.2 Adaptive decision feedback equalizer using the erasure algorithm

5.2.1 Adaptive E-DFE structure

At the DS-CDMA receiver, a lowpass filter with bandwidth equal to the chip signal
bandwidth is normally used for the demodulation [14] (as shown in F ig. 5.1) as the matched

filtering and noise-whitening approach does not give any exclusive benefit [24]. If K active
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users are present in the multiuser system as shown in Fig. 2.1, then the equivalent lowpass

composite received signal is represented as:
A K A
)= 27 (0)+ onle) (5.1)

where, 7, () is the equivalent lowpass signal of k th user and on(t) is the zero-mean lowpass

AWGN due to the presence of receiver thermal noise (as described in section 2.2).

E-slicer ~ o\
% LPF 2 e Y o —
mA iT, (Soft-slicer)
(A:TC/M) fu dk(i__k)
FBF B
Sor d, (i - q)
) 22) S S———

Fig. 5.1: Adaptive E-DFE with fully connected feedback structure for the k th user.

(Only the g th user is considered as the strong interferer)

In the proposed adaptive E-DFE, the received signal F(t) is sampled after passing it through a
lowpass filter, where M is the number of over-samples used to tackle the problem of
asynchronous reception [38], g(mA) is input to the fractionally spaced feedforward filter,
such that A=T, /M . The data bit duration is 7, = NT,, where N and T, are the processing

gain and chip duration respectively. The input to the soft-slicer (E-slicer) may be written as:

yk(i)z NiFk.(mk(in _mA)_quk;(h)dk(i—h_l—)k)_zK:Nifq.k(h)dq(i_h_Bq) (5.2)

m=0 h=1 q=1 h=l

For kth user, N, +1 and N, are the numbers of forward and feedback taps with

coefficients F, and f,, respectively. In addition, N, is the number of feedback taps with

129



coefficients Ja used to cancel the intersymbol interference due to gth user. The forward
filter acts like RAKE in the adaptive E-DFE and combines the energy of desired user
received through different paths [14].

The E-slicer gives two outputs l;,( and d, as shown in Fig. 5.1; where I;k is the final

decision ie. (—4, or + 4,), while its other output d, is fed back to the respective FBF. It is

assumed that D, is the net decision delay in the system. The outputs of soft-slicers of other

strong interferers are also fed back to their respective feedback filters (FBF of the q th user is

shown in Fig. 5.1). In order to optimize the performance of the adaptive E-DFE receiver, the
forward and feedback filter taps are optimized using the minimum mean square error

criterion; where the error is defined as:

A

& =b, -y, where, I;k :sgn(y,,) (5.3)

Under the practical situations, the C-DFE_receiver suffers from the problem of error
propagation due to the feedback of wrong decisions. This problem can be controlled by using
the erasure algorithm in E-DFE (described in next section), which makes its performance

superior in comparison to the conventional DFE.

5.2.2 Erasure algorithm
In the conventional approach, the output of the forward filter of C-DFE is fed to the slicer
circuit to decide in favour of —4, or + A, (with zero threshold level), which is subsequently

fed back to the feedback filter. The slicer circuit can be replaced by a soft-slicer unit, which
can erase the decisions with high uncertainty in the feedback unit [79]. In [80], Chiani has

presented analytical results for a single-bit memory channel and determined the optimum

threshold level (|7, |) using computer simulations for different signal-to-noise ratio values.

The signals falling below |)7k| are erased, which leads to the removal of weak but useful
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information signals along with the unreliable signals. Moreover, the adjustment of |}7k|

becomes a tedious procedure for the long-memory slowly time-varying channels.

But in the proposed erasure algorithm, no such “threshold level determination”
procedure is followed. An alternate novel method has been presented to remove the
drawbacks of previous erasure technique, in which the E-slicer (as shown in Fig. 5.1) gives
appropriate weight to the decision according to the level of uncertainty and erases the highly
uncertain decisions.

The adaptive MMSE decision feedback equalizer reduces the mean square error

between the actual data bit b, and its estimate y,. The first key observation in the
conventional adaptive DFE is that if y, is close to the threshold value (.., zero in this case),
the corresponding output of the slicer is not reliable. Secondly, when the estimated value | y,‘]
is clo;e to |Ak|, the results of estimation theory [161] can be used to infer that the slicer

output is reliable. The increasing distance between the value of | y,(| and |Ak| makes the

output of slicer more unreliable. These two facts have been used to design the erasure
algorithm, which suggests the possibility of reducing the error propagation by giving
appropriate weight to each detected data bit in the feedback loop. The weights are adjusted

according to the level of uncertainty in the estimated value y, . The erasure algorithm can be

stated as follows
|5/z|2
ka|>|2Ak| or [1-——1<0 >w, =0
4 (5.4)
, .
0 < |y <[24,| ——>wk=[1——|—&i]

2
4|
where w, is the weight, which varies according to the changes in the squared error. If

g, — 0, then the value of assigned weight tends to one (maximum); whereas for |gk| - |Ak| ,
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its value approaches zero (minimum). Thus the value of weight is constrained to the limit

[0,1]. Using the above criterion, the weighted feedback is
d, =w, xb, (5.5)

The proposed system is coincident with the conventional DFE if we let w, =1 and becomes

the linear equalizer if we fix w, =0.

+ Vs
+24, ! Full Erase
+4,
0
— Ak
~24,
— yk 3

Fig. 5.2: Graphical interpretation of the erasure algorithm for E-DFE.

The graphical interpretation of the above algorithm is shown in Fig. 5.2. It may be inferred
that if |y, |> |24, or |6, >|4,|, then there is a possibility that the residual MAI dominates the
decision process, since the near-far problem is unavoidable in the absence of power control.
Therefore, the value of w, is constrained to zero in this region Je., the feedback signal is

fully erased. It is a well-known fact that the feedback of a wrong decision almost doubles the
error in C-DFE. However it is apparent from the erasure algorithm that the assigned weight
decreases with the increasing value of error, which proves to be beneficial in reducing the

error propagation effect. The resulting single-user detection scheme may be called, “adaptive
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MMSE decision feedback equalizer with erasure algorithm”, and has been incorporated in the
DS-CDMA receiver for obtaining the performance improvement over C-DFE.
In the next section, we discuss the multiuser system model in terms of the detected and

undetected users, which is used to develop a partial parallel interference canceller.

5.3 Partial paralle] interference canceller

Using the multiuser system model described in section 4.2, the composite received signal

vector (in the discrete-domain) at the base station can be written as:

ia()u (5.6)

k=

—

where N x1 dimensional received signal vector corresponding to the kth user’s ith data

symbol is # (i), and 2(i) is the zero-mean additive white Gaussian noise vector. For the
multiuser system model under the multipath fading environment [102], we can define the

K x1 dimensional data symbol vector b(i) with binary elements (+1), Lx1 dimensional
channel coefficient vector 7, (i), and N x L dimensional signature sequence matrices c*,
C* as:

~ ) 80) 6], B =[e0) ) - By Q) and

k k
¢ ---- 0 U CN-L+]
k \\
(4] N 0 0 0 \\\ :
PN . R
k ! ook ~k HE k
Cc* = ! ¢ ,Chg b ! Chot
.
) Clk 1 ' * |
\ 1 ) ~
[} ' ) ]
. ) ] L]
k k
| EN-T 7T CN-L L 0 0 =770 0 |

where ¢} is the jth chip (i]/«/ﬁ] in the signature sequence of & th user, and the number of
multipaths L is considered equal for all the active users. The fading coefficient &, (i) is

considered to be AR(2) i.e., second-order autoregressive process varying at the data rate. It
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can be shown that the data symbol detection equation is
Fi)= COHGB()+ CHEG -16( -1)+ 5() (5.7)
where b(i) [b z)}z isa K x1 dimensional vector,

dzag[h (1) Ay ()] i1sa KLx K dimensional matrix,

C(z):[C‘ Cc*..Cc* ] and C(i)= [5’ C*..C* J are the N x KL dimensional matrices.

Further, we can divide all the active users (in a particular cell) into two sets of the detected

‘D' and the undetected 'U = K - D' users respectively [129], which results in
N=lc*() | v ) (5.8)
where, C°(i)= [C‘ C?..CP| and cv(y) [CD“ cP.. CK]. Similarly, the multiuser
channel coefficient matrix may be written as:
H(i)= diag[HP (i), HY () (5.9)
where, H°(i)= diaglh, (i), h(i) ... ,,(i)] and H (i) = diaglp,, (), B, () ... 7 ()],
The data bit vector is written as; |
)= () | 6 () (5.10)
where, b°(i)= [b o by )]T and b (j) [bo+1 () b,,(0) ... b, (1)}7 The substitution
of (5.8)-(5.10) in (5.7) leads to
)= CoH® @° () +C¥ (D () () + COHG - bl -1)+ 2() (5.1)
The first two terms on the right hand side of abo.ve equation include not only the desired
signal but also ISI due to the chip waveforms of present data bits of active users. In addition,

the third term is ISI due to the chip waveforms of past data bits. We next present details about

the MMSE multiuser P-DFD receiver design, which uses the estimated multiuser channel

response H ( | ) to suppress ISI.
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Let the input vector to the decision device be p(i)= [fz'(i) P2(i) ... fz’((i)]r and the
corresponding  estimated  data  symbol vector at the slicer output s
b,(i)= [bel(i) b, (i) ... b, (I)Y If the past decisions and channel estimates of all the active

users are available at the receiver end, the intersymbol interference due to the previous data

symbols can be cancelled as:

7, () = 7()~ 7 (1) with 7 (i)= C()H( -1 - 1), (i 1) (5.12)
Under no error propagation condition in the decision feedback loop ie., b,(i—1)=b(i—1),
the above equation may be written as:

7 ()= CPOHP (WP ()+ Y ()HY (Y (i)- C(H)AH (- 1)b( — 1)+ 2() (5.13)
where, the channel estimation error is AH(i—1)= H(i —1|i —1)— H(i ~1). For simplification,

we assume zero channel estimation error, It follows that

R ()= CP)HP (6" )+ CY (DY (B (1)+ 20) (5.14a)

= CH)HGE)D()+ 2() (5.14b)
A A U A U U
X b

o9 UH ] >’

— F n -+ C

— E-slicer
- D “Erasure” zP - Feq
B Soft-slicer Fin [
D 1D
Wmf b,
] Secondstage . 4 4 Firststage »

Fig. 5.3: Partial parallel interference cancellation using the E-slicer.

Let us assume that the present data bit tentative decisions of D users (strong) are

b (i)= [b,,(i) b,(i) ... b, (i)]T, as shown in Fig. 5.3. The soft-output of N x D dimensional
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MMSE multiuser linear detector (F,, ) ie., %2 ()= [,%,m,l (i) 2 () .. Xinp (z)]’ is fed to the

E-slicer to generate Wp[:f b”. The DxD dimensional partial cancellation factor matrix is

defined as W2 (i) = diag[w:xf () w2, @) .. W (i)], where w, . is the PCF assigned to the

tentative decision of kth detected user. Using (5.14a) in this decision feedback detection

structure, the input to slicer for the 7 th data symbol is

Y (@)= FY ()2, ()~ B (w2, ()b ()] (5.15)

where, FV and BY are the NxU dimensional feedforward and the DxU dimensional
feedback matrices respectively. Since all the PCF values are real, therefore Wpff =W, . We
assume that all the tentative decisions of detectéd users are correct ie., b”(i)=5° (). The
above equation may be rewritten as:

P ()= F ()7, ()~ BY (1° (i) with B w2 = U (5.16)

The Ux1 dimensional error vector at the DFD output is eya () =b" (1)~ 3V (i). The
corresponding error covariance matrix of the undetected users is defined as:

[ () = Elel, ()eg (1) (5.17)

The cost function ie., J e (¢) is defined as the trace of matrix T i (i). The optimum MMSE
DFD is derived by minimizing the scalar cost function. Using the partial derivatives

50 ()

—_ d

oFY dBY

=0, we obtain

R, FY())-CY()HY ())-CP ()" @2 ()BY (i)=0

This leads to the optim@ solution as:
FU()=[R, + R, CU()H" (i) with R, = E[5(i)2" (i (5.18)

and CP()HP (W2 BY (i) = R, FV (i) (5.19a)
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The above equation can be simplified to give
BY(i)=W,,(1)BY (i)= H"™ ()™ ()FY (i) (5.19b)

where, the covariance matrix of the input signal vector 7, (i) is defined as

R,=E [f'eq (i)fef,’ (i)]: R, + R, + R,. The covariance matrices corresponding to the detected

users, undetected users and noise vector are R, R, and R, respectively.

We consider the case of a single undetected & th user in a particular cell ie., set of
undetected users U = {k} and set of detected users D = {1,2, v L k=1LE+1, ... ,K}. Using
(5.18) and (5.19b), the optimum feedforward and feedback matrices may be written as:
F*(i)=[R, + R.]"'C*h, (i) (5.20)

B (i)=H™ (i)c™ ()F* (i) (5.21)
The above results for a single undetected user are used in the next section for deriving the

adaptive multiuser P-DFD structure for the multiuser interference suppression and data

detection on the reverse link in mobile communication systems.

Received F Feo | X . y b

g H n H 1 —l €
composite signal + + 1'-"lln I+ Bw ) + + L -

~ 1 ]

_ rrst [ DD -
D
Processor ] > BwH elay
L | s T
Channel estimator

Fig. 5.4: Block diagram of the proposed channe! estimator based DFD using the PIC approach.

5.4 Adaptive multiuser EC-ADFD-PIC

The block diagram shown in Fig. 5.4 represents the proposed channel estimator based DFD

using the PIC approach. Its equivalent structure (P-DFD using the E-slicer) is shown in Fig.
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5.5, where F and B denote the Nx X dimensional feedforward and the X x X dimensional

feedback matrices respectively. The K x1 dimensional vectors X,,» b, and y in Fig. 5.4 are
the soft-output of MMSE linear multiuser receiver ( F, ), tentative decisions and input to the

slicer respectively. The %, is fed to the E-slicer to generate the real PCF matrix (see

appendix C) i.e., Wﬂf(i)=diag[wl',cf(i), w0 . ,wfcf(i)].

Fog FRENONE N be
U= ror b— 3
W per by
Fig. 5.5: P-DFD using the E-slicer.
From Fig. 5.5, it may be seen that the input to the decision device is
@)= F* @), 6)- B" (Y, (), ()] where, 77, ()= () (5.22a)
¥0)=F* 0., ()~ B (), () where, B, (i)= B, (i) (5.22b)

The K'x1 dimensional error vector at the output of DFD is e[, (i) = b, (f)- (i) with the error
covariance matrix I'f, (}) = E[e, (e (})]- The optimum feedforward and feedback filters are
derived by minimizing the trace of L@ wre F (z) and B(i) using the MMSE criterion,
and are given as:

Fli)=F, @Y + B, 6)] with £,(0)=[R,'c)u() (5.23)
5,0)=[" O OCOHGT 57 () (DR, F()- 1, (524
where, R, = E[feq (i)ﬁe'; (z)] is the N xN dimensional covariance matrix of the input signal
vector and /, isthe K x K dimensionai identity‘ matrix. It may be inferred from (5.23) that

the optimum forward filter is a concatenation of the linear MMSE filter F, () and the error-

lin
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estimation filter [I, + B, ()] (as shown in Fig. 5.4). Since each column of F(i) represents the
weight vector corresponding to a particular user, therefore we can use the single-user forward
filter F*(i) (5.20) to obtain the optimum feedforward filter as F(;)= |F'6) F2G) ... F* @)
(see [129]). The implementation of P-DFD requires the estixﬁation of covariance matrix R,,,

which is usually difficult to compute in the time-varying environment. Therefore in EC-

ADFD-PIC, we obtain filter coefficients by using the LMS adaptive algorithm as:

F, (i +1)=F, ()+ ut, (el (i) with step size x (5.25)

where, e,, ()= b(i)-%,,(;) in the training mode. For the single-user detection scenario, the

input to decision device is

@)= (e ) (5.26)
with FO)=[70) ~BGF . £, 0=F70 W2 020 and 5 6)=5,0)-7*) in the
decision directed mode; where the (K ~1)x(K~1) dimensional matrix W2, and the (K-1)xI
dimensional vector 5° are obtained by eliminating the kth element from W, and b,
respectively. The (K-I)x1 dimensional output vector of the E-slicer is pumped into the
(k-1)x1 dimensional single-user feedback filter B* (7). It follows that
FHi+1)=FH0)+ 1 (ein () | (5.27)

The single-user forward filter F*(j), which is the kth column of F(i), is obtained by using

the first N elements of 7*(;). Using the Moore-Penrose pseudo-inverse of matrix F,, [162],

the equation (5.24) may be rearranged as:

8,()=[F OF, OF 7 OF()- 1, (5.28)
The feedback matrix B, (i) is obtained by substituting F, (i) and F(i) in (5.28). The

estimation of R,, is not required in the implementation of the presented EC-ADFD-PIC. It is
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apparent that the linear filter F,, partially cancels interference and noise. However, the

feedback filter B, suppresses the residual interference.

3.6 Simulation results

5.6.1 Performance evaluation of adaptive E-DFE

Three simulation examples are presented to illustrate the superiority of the proposed adaptive
E-DFE over C-DFE. For simulating the asynchronous DS-CDMA system, the Gold-
sequences of length N =31 are generated. The square-root raised-cosine pulses are used for
the transmission of information over a dispersive channel. For the £ th desired user, we have
considered frequency-selective multipath fading channel with L =3 (number of taps), and
the channel tap-coefficients do not change during the data bit transmission period because
these tap-coefficients are assumed to be slowly time-varying. In all the examples, the number

of forward filter taps is fixed at N, =3N and the number of feedback filter taps is two ie.,
Ny =N, =..=2.The NLMS adaptive algorithm has been used to update the coefficients of

forward and feedback filter taps of the decision feedback equalizers i.e., C-DFE and E-DFE.

Since we are implementing the adaptive DFE structures for the data detection and
interference cancellation, therefore no power control scheme has been used. In the following
examples, we have taken the ensemble average of 200 independent trials, and each DFE is

switched to the decision directed mode after the transmission of 500 training bits.

Example 5.1: In this example, we investigate the influence of sudden changes in the signal-
to-noise ratio of the desired user on the BER performance of the proposed adaptive E-DFE.
Because under this situation, there is a strong likelihood that the wrong decisions will be fed
back. In a five-user system, the signal-to-noise ratios of the desired user and other intra-cell

users are kept at 254B and 54B. After the transmission of 5000 data bits, the weight vector
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of adaptive filter is assumed to be set at its optimum value. The SNR of the desired user is
next changed to 5dB. This change results in the high mean square error for C-DFE as
compared to the E-DFE, which is clearly shown in Fig. 5.6. This is due to the error
propagation in the conventional DFE, but this disadvantage has been controlled by the use of

erasure algorithm in E-DFE.

Example 5.2: We next consider the performance comparison of C-DFE and E-DFE, when
the number of active users changes. For analysing the behaviour of E-DFE, we have kept
SNR for all the active users equal to 10dB. The computer simulation results shown in Fig.
5.7 demonstrate that for both equalizers, the bit error rate increases with the increasing value

of K/N ratio ie., load factor [73].

For a single-user situation, the maximum performance advantage of the proposed
adaptive E-DFE over C-DFE is obtained as the erasure algorithm reduces the error
propagation effect. As the number of users increases, this performance gap reduces gradually.
The reason for this observed degradation is that the increasing value of load factor in the
asynchronous DS-CDMA system results in the increase of residﬁal MALI, which deteriorates
the BER performance of both equalizers. But, it is observed that the E-DFE still outperforms

the C-DFE when the number of users is K <20. However for K >20 (ie., load factor

>0.645), the residual MAI limits the BER performance of the multiuser system.
Consequently, the adaptive E-DFE performs marginally better than the C-DFE for a large

number of active users.

Example 5.3: For an eight-user case, the near-far situation is introduced in the DS-CDMA
system by keeping other active interferers at 20% higher power level than the desired user.
The BER performance improvement has been observed for both equalizers with the

a

increasing value of SNR (as shown in Fig. 5.8).
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Fig. 5.6: MMSE (dB) vs the number of iterations for adaptive E-DFE, K =5.
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Fig. 5.7: BER vs the number of users for adaptive E-DFE.
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The simulation results at the different values of SNR of the desired user have
evidenced that the bit error rate increases under the near-far situation, but the proposed
adaptive E-DFE supersedes the conventional equalizer because the error propagation severely
affects the performance of C-DFE. At BER =0.01, E-DFE provides approximately 2.54B

performance gain over the conventional DFE.

5.6.2 Performance evaluation of adaptive EC-ADFD-PIC
We shall investigate the performance of the proposed EC-ADFD-PIC under the frequency-
selective smoothly time-varying fading channels. The Lx1 dimensional channel coefficient
vector }_xk (1) is considered to be a smoothly fading multipath channel (Rayleigh), which is
simulated by using the second-order autoregressive process (see subsection 4.6.2). We have
used the LMS adaptive algorithm to update the filter coefficients.

Two simulation examples are presented, in which we have considered the carrier
frequency f, = 2GHz, sample rate 1/T, =10kHz (T, =3.226usec) and step size x =0.01.In

the training mode, we consider b,(i)=b,(i)=5(i). Note that the DFD is switched to the

decision directed mode after the transmission of 500 training bits. For the multipath delay
spread T, =9usec, the number of multipaths is L= T,/ T.)+1=4 for each user’s
transmission channel. We consider the maximum Doppler spread f,, = 1Hz for all the active
users. No power control scheme has been used.

We propose two methods to cancel ISI due to the past data bits of K active users. In the

first method, we directly feed the received composite signal vector to ADFD-PIC ie.,
r =7, . However in the second method, we estimate the ISI term 7, using the multiuser

channel estimator, and then cancel the intersymbol interference from the received composite
signal vector before feeding it to ADFD-PIC (as shown in Fig. 5.4). We compare the BER

performances of both methods by using the E-slicer in the following examples. The presented
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results are based on an ensemble average of 150 independent simulation runs. We have

K
shown the average bit error rate for each detector, which is defined as BER = Z BER, /K .
k=1

Example 5.4: In this simulation, the effects of signal-to-noise ratio on the performance of the
proposed ADFD-PICs are analysed. For a four-user system, the results shown in Fig. 5.9
depict that the BER reduces with the increasing value of SNR. The effects of other-cell
interference are observed by considering the two inter-cell interferers (with L=4 and
Jo =1Hz). The BER performance of all the multiuser detectors degrades. However, the EC-
ADFD-PIC outperforms other detectors with and without inter-cell interferers. It may be
inferred from the results presented in [128] that the P-DFD offers approximately 2dB gain
relative to the linear receiver. However at BER = 0.04, the proposed EC-ADFD-PIC provides
approximately 3dB performance gain over the linear MMSE receiver in the smoothly time-

varying environment.

Example 5.5: For a four-user system, we analyse the effects of maximum Doppler spread on
the performance of the proposed multiuser receiver. In this case, the maximum Doppler

spread is varied up to f,, = SHz at SNR = 64B. The simulation results presented in Fig. 5.10
show that the bit error rate substantially increases with the increasing value of f, . Therefore,

the proposed technique is valid for the slow moving mobile users. This performance
degradation is due to the incorporation of LMS algorithm in the presented ADFD-PIC, which
does not adapt in the fast fading environment (see chapter 4). However, the EC-ADFD-PIC
outperforms other detectors in the time-varying environment.

We next increase SNR to 15dB and observe the effects of increasing number of users.

The application of the MMSE multiuser linear detector is limited to a specific range of loads

ie, K/N <70% [73].
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Fig. 5.9: BER vs SNR for adaptive EC-ADFD-PIC.
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Fig. 5.11: BER vs the number of users for adaptive EC-ADFD-PIC.
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It is clear from results shown in Fig. 5.11 that the proposed receiver may handle slightly
higher load than the linear MMSE multiuser receiver. The BER performance of the ADFD-
PICs degrade due to the increasing load factor because we have used the linear multiuser

filter (F,,) in its design (as shown in Fig. 5.4), which limits the performance gain due to the

feedback of wrong tentative decisions under the practical conditions. The performance gain
of the EC-ADFD-PIC receiver over the linear multiuser detector reduces with the increasing
number of users.

However in both cases, the EC-ADFD-PIC supersedes other detectors in the multiuser

detection scenario due to the improved interference suppression strategy.

3.7 Concluding remarks

In this chapter, we have introduced a novel erasure algorithm to control the effects of error
propagation in the conventional adaptive MMSE DFE receivers. Over slowly time-varying
frequency-selective multipath fading channel, this technique provides improvement by
reducing the bit error rate in the asynchronous DS-CDMA system. Simulation results show
that the adaptive E-DFE outperforms the C-DFE for both the near-far and high loading
environments. However as loading factor approaches unity, the performance of E-DFE is
comparable to the C-DFE. The proposed adaptive non-linear receiver (equalizer) also proves
to be effective under the conditions like sudden changes in the signal-to-noise ratio of the
desired user, where the error rate is high. The simulation results have evidenced the superior
performance of the proposed erasure algorithm.

Next, we have proposed an adaptive decision feedback detector based on the parallel
interference cancellation scheme for the DS-CDMA system, which uses the channel estimator
and E-slicer. The estimated multiuser channel response is used to cancel ISI due to the past

data bits of all the active users. The ISI due to the chip waveforms of present data bit and
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MALI are suppressed first by the linear MMSE feedforward filter, and then the residual MAI,
ISI and other-cell interference are cancelled using the feedback filter. The effects of error
propagation are controlled by incorporating the erasure algorithm in the feedback unit. The
EC-ADFD-PIC provides approximately 3dB performance advantage relative to the linear
MMSE multiuser receiver under the smoothly time-varying multipath fading channel.
Moreover, the adaptive implementation using LMS algorithm eliminates the requirement of
the estimation of covariance matrix of the received signal vector under the time-varying
environment. The simulation results depict that the proposed receiver may be used efficiently
for the slow moving mobile users.

Since the S-DFDs based on successive interference cancellation approach are known to
provide better performanceithan the P-DFDs, therefore we focus on the development of
multistage (iterative) ADFDs using both parallel and successive interference cancellation

schemes in the next chapter.
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CHAPTER 6

TWO-STAGE MMSE MULTIUSER DECISION FEEDBACK

DETECTORS FOR DS-CDMA SYSTEMS
%

Multistage multiuser decision feedback detectors have emerged as a way to increase

the spectral efficiency of code division multiple access systems and to circumvent the
deleterious effects of error propagation in the conventional single-stage non-linear detection
techniques [129]. In this chapter, we propose a novel two-stage minimum mean square error
multiuser decision-feedback-detector (DFD), which can handle higher load under the low
signal-to-noise ratio conditions.

In section 6.1, we first briefly review the single-stage and multistage DFDs used for the
multiuser detection. In section 6.2, we describe the DS-CDMA system model for the
frequency-selective fading channel (see [101], [102]). It includes details about the successive
interference cancellation technique. The noise-predictive successive multiuser DFD based on
MMSE criterion is presented in section 6.3. We also present an optimum detection ordering

scheme ie., sorting algorithm. In section 6.4, we next propose a two-stage MMSE multiuser

DFD for the DS-CDMA systems working in the multipath Rayleigh fading environment. The
first stage of the proposed cascaded structure is the noise-predictive successive-DFD (NP-S-
DFD), in which the active users are detected successively using the MMSE Bell-Labs-
Layered-Space-Time (BLAST) ordering criterion. The second stage includes an adaptive
successive/parallel-DFD (SP-DFD), which uses the tentative decisions obtained at the first
stage for the successive multiuser interference cancellation and data detection. Therefore, the
proposed two-stage DFD may be called the noise-predictive successive-SP-DFD (NP-S-SP-

DFD). Section 6.5 includes the simulation results to reveal the BER performance of the
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proposed NP-S-SP-DFD. Finally, conclusions are given in section 6.6,

6.1 Introduction

Decision feedback detection is a popular strategy used in a wide range of MIMO applications
[110], [135], [140]. Duel-Hallen [109], [111] has incorporated this scheme for multiuser
detection in the DS-CDMA system, which is similar to the decision feedback equalizer
employed in the single user channels with intersymbol interference. Different decision
feedback strategies have also been proposed in [10], [14], [116] and [121] for MAI and ISI
cancellation. For practical implementations, the non-linear multiuser detectors using the
successive-interference-cancellation (SIC) approach have been subject to most attention. Hui
and Letaief [163] have presented a method for successive co-channel interference
cancellation using the estimated channel parameters, which improves the system performance
by regenerating estimates of the interfering signal and then subtracting those reconstructed
interference signals from the input of the desired receiver. This process is performed in a
cascaded fashion in such a way that the “strong” interfefing signals are cancelled. However in
SIC scheme [164], the magnitude of the matched filter output can be used as the received
amplitude estimate of the detected user for reconstructing the interfering signal. A
generalized SIC algorithm presented in [165] can also be applied for the multiuser delay and
channel estimation in the DS-CDMA system.

A low complexity successive intra-cell interference cancellation scheme using the
orthogonal spreading is proposed in [166]. The mobile receiver estimates the effective
spreading codes of the interfering users regardless of their spreading factors using the fast
Walsh transform correlators, and uses this information to suppress the intra-cell multiuser
interference. The performance of the SIC receiver significantly deteriorates due to the lack of

variance in the received signal powers [167]. Since the SIC detector orders cancellation based
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on the average power criterion, the performance of signal detected early in the cancellation
process suffers due to the inefficient interference suppression.

In [168], the author calculates the received power distribution required to obtain the
equal BER performance for all the links in a DS-CDMA system employing a linear SIC
receiver. It has been shown that the variance of the decision statistic of the linear SIC receiver
can be formulated in a non-recursive manner that allows calculation of the power profile
necessary to obtain equal signal-to-noise-plus-interference ratio for all the received signals,
when the cancellation order is determined based on the average power.

A linear SIC approach using the matrix algebra has been presented in [169], which can
be performed on the received chip-matched filtered signal vector without explicitly
performing the interference cancellation. Based on this approach, it is realized that both
single-stage and multistage linear SIC schemes correspond to a one-shot linear matrix
filtering. In an adaptive approach, Cho and Lee [170] have proposed a MMSE detection
technique in combination with the SIC, which provides superior performance in comparison
to the conventional adaptive linear multiuser detectors in terms of the asymptotic multiuser
efficiency and BER.

However, previous work on the MMSE multiuser decision feedback detectors for
combined interference suppression and data detection depict that the DFDs exhibit higher
spectral efficiency in comparison to the linear multiuser detectors under the high SNR
conditions for the high load values [73], [128]. Two conventional decision feedback detectors
are (i) S-DFD (Successive—), which uses the successive interference cancellation architecture
based on the linear prediction of noise and (ii) P-DFD (Parallel-), which uses the parallel
interference cancellation architecture for simultaneous suppression of MAI using the tentative
decisions obtained from the conventional detectors [111]. In decorrelating S-DFD, a white

noise model is obtained by factoring the positive definite matrix of the cross-correlation
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matrix using the Cholesky-decomposition algorithm. The MAI is eliminated by processing
the vector output of matched filter bank; and subsequently detection is performed using the
maximum-likelihood criterion. The S-DFD achieves the sum capacity of the synchronous
DS-CDMA channel with additive white Gaussian noise [133]. It outperforms the P-DFD at
the cost of additional processing delay. However on the reverse link, both detectors require
information about the multipath channel or received amplitude level of all the active users at
the receiver end. But, the P-DFD suffers due to the error propagation effect under the low
signal-to-noise ratio conditions.

Duel-Hallen [111] has also explored two-stage detectors with decision feedback in the
second stage. Decisions made by the first stage detector are used for cancellation of
interference due to the future inputs. This approach was previously proposed in [19], where
the conventional matched filter first stage was studied. In [111], the author has modified the
structure of two-stage DFD by replacing the conventional matched filter with the decorrelator
at the first stage, in which the weaker users utilize decisions made by the strong users in the
same time frame. In particular, the decorrelating S-DFD has a low bit error rate and is stable
in the presence of interferers with various energy distributions. The weaker user derives the

greatest benefit from this two-stage detector ie., its performance is close to the single-user

bound when interferers are strong. The performance of two-stage detector with decision
feedback in the second stage is determined by the choice of the first stage. When the first
stage is conventional matched filter, substantial degradation in the BER performance is
observed. Although it approaches the single-user bound in a two-user system when the
interferer is strong, its bit error rate remains high in a system with more than two users. The
incorporation of decorrelator at the first stage provides performance gain in comparison to the
convention matched filter detector.

To circumvent the deleterious error propagation effects, Woodward er al. [129] have
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presented multistage (iterative) DFD; which is a cascaded configuration using the successive
and non-adaptive successive/parallel-DFDs (S-SP-DFD) with hard-decision feedback. The
first stage of S-SP-DFD is a S-DFD because it is observed from the numerical comparisons
that the error propagation effects can be mitigated by using the successive interference
cancellation and detection rather than the parallel interference cancellation. The second stage
is a non-adaptive SP-DFD (the order of users is reversed from the first stage), which
subsequently refines the received signal by interference cancellation using the tentative
decisions obtained at the first stage.

The two-stage S-SP-DFD approaches the single-user bound in the absence of error
propagation [129]. The first user at the first stage avails the maximum benefit of interference
cancellation because it is detected last in the second stage. It is apparent from the simulation
results presented in [129] that for the high load factor, the bit error rate performance of first
user with S-SP-DFD improves as compared to the S-DFD. However the performance
degradation is observed for the small number of users ie., for the low load factor, the error
propagation severely affects the BER performance of S-SP-DFD.

In the conventional successive decision feedback detection techniques [109], [111], all
the active users are detected in the descending order according to the received power level
i.e., the strongest user is detected first at the first stage. Since the received composite signal
is corrupted due to the presence of noise, multiple access interference and intersymbol
interference under the multipath fading channel, therefore the above brute force approach for
determining the detection order may enhance bit error rate due to the inaccurate detection
order.

For MIMO applications, the performance of DFD is strongly impacted by the order in
which the inputs are detected. Unfortunately, optimizing the detection order is a difficult

problem that often dominates the overall receiver complexity. The commonly used optimal
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detection order is known as the BLAST ordering [171], which maximizes the worst-case
post-detection SNR and approximately minimizes the joint error probability of the DFD. In
[134], Waters et al. have proposed thé NP-S-DFD, which consists of a linear detector
followed by a linear prediction mechanism that reduces the noise variance before making a
decision. It uses MMSE criterion for the V-BLAST (Vertical-Bell-Labs-Layered-Space-Time
[140]) ordering with lower computational complexity. However, the performance degradation
due to the residual ISI and noise is unavoidable in case of the conventional single-stage
detectors. The symbol error rate performance evaluation of V-BLAST system is presented in
[172] by taking into account the error propagation effect, which deteriorates substantially
with the increasing channel estimation errors. However, there is no significant degradation
due to the sub-optimal sub-stream detection order caused by the channel estimation errors.
The ar;alogy between DFDs used for the V-BLAST and DS-CDMA facilitates the usage of
NP-S-DFD with MMSE detection ordering in the multiuser systems [143].

In the present work, a novel two-stage NP-S-SP-DFD is proposed using the NP-S-DFD
and adaptive SP-DFD at the first and second stages respectively; in which the output of NP-
S-DFD (tentative hard-decisions) at the first stage is fed to the adaptive SP-DFD at the
second stage for the parallel interference cancellation and multiuser data detection. The
incorporation of MMSE detection ordering at the first stage of the presented NP-S-SP-DFD
provides performance gain over the available non-adaptive S-SP-DFD [129]. Simulation
results are presented to demonstrate the substantial improvement in the bit error rate
performance of NP-S-SP-DFD over the conventional single-stage and cascaded DFDs. It may
be inferred that the proposed DFD provides an additional performance gain, when the order
in which the users are detected is optimized according to the BLAST ordering based on

MMSE criterion.
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6.2 Successive interference cancellation scheme
For the & th user, the received signal vector 7, (i) consists of N consecutive stacked samples,

where i is the data symbol index ie., 7, (i):[r‘,, (iN) 7.GN +1) ... f‘,‘(iN+N—1)]T. The

received composite signal vector may be written as:

2()=37.0)+ 20) ©.1)

where, z(i)= [z(iN) 2(iN+1) ... z(N+N —1)]7 denotes the zero-mean noise sample vector

with variance o> . Without loss of generality, we assume that K active users are transmitting

at the same signal power level ie., 4 =4, = .. = 4, =1, and the number of multipaths L

is considered equal for all the intra-cell users. For a multiuser system model under the

multipath fading environment (see section 4.2), we can define the NxL dimensional
signature sequence matrices C*, C*, and Lx1 dimensional channel coefficient vector h, (i)

for the £ th user’s ith data symbol as:

— . _ —
o 0 0 cya Cnon
cf 0 0 0 ,
] ] 1 L] !
¥ ' ' I ~
k | k Sk Voo k
C" = ' o cr=l' Cn|
) Clk 1 ' |
) ] ) ]
) ! | 1
! I 1
| S .-
Cn-1 c,lﬁ,_L o o0 - 0

,and A, (/)= [hOk (i) h,(0) ... oy (1)}7 Using (6.1), we can define the data symbol detection

equation as:
)= CEOH@(E)+ CO)H G - 16 —1)+ 2() (6.2)

where C()=[c' c*... c*], E()=[C" €2... &%), H()=diag[h() B() ... 7 ()], and

b(i)=[b,(i) b, (i) ... bK(i)]’. At the receiver end, we consider the estimated channel
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coefficient matrix H(f) known with small scale ambiguities (AH(i) = H({i)- H(i) is a zero-
mean process). In (6.2), the intersymbol interference term may be cancelled using the
estimated multiuser channel response H (i —lji- 1) and estimated past data symbols b, (; - 1).

Under no error propagation situation i.e., b(i~1)= b,(i-1),
£y ()= 20)-CO)HG - 1i - 1) (i-1) = COHGBE)-CEOAHG -1 -1)+2()  (6.3a)

Assuming small number of multipaths and small scale channel estimation errors, the residual

ISI due to past data bits C(:)AH(i—1)b(i-1) is neglected in the above equation. It follows

that

£, ()= H,((i)- AH, @)+ 2() ' (6.3b)

where, H,(i)= C(i)H (ili) and AH (i)= C(i)AH (:) are the NxK dimensional complex
matrices.
The above described model for the DS-CDMA system is similar to the MIMO model

used in [134], in which the columns of matrix (z) are linearly independent with N > K

(the maximum permissible value of the load factor is kept lower than unity [73]). For MIMO
and V-BLAST architectures, the well-known detection strategy is zero-forcing (ZF) decision
feedback detection using a typical QR-decomposition of the channel matrix. In this chapter,

we consider the QR-decomposition of matrix H, (1) for the detection of K users in a DS-

CDMA system. For i th data bit interval, we may write

H,=0.D.M, (6.4)

where Q. is a NxK dimensional matrix with orthonormal columns (g, is the kth
column), D, isa K x K dimensional real diagonal matrix with positive elements, and M, is

a lower triangular matrix with ones on its main diagonal (m,, and dy are the kth row and
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J th column elements of the matrices M, and D, respectively). Similar to the decorrelating

DFD presented in [109], we feed N x1 dimensional vector r,, into the matrix filter D;'Q”

(sometimes referred to as the whitened-matched filter) as shown in Fig. 6.1. The output

vector of this conventional S-DFD based on ZF criterion is
y.=D]'QIF, (6.52)
The above equation can be simplified using (6.3b) and (6.4) as:

Yy.=Mb-D'QF AH b+ D;'Q 2 (6.5b)

-1 AH
DC QC

f,q Matrix
filter

Fig. 6.1: Decision feedback detector using the successive interference cancellation scheme.

The kth element of y, = [yc1 Vey oo ch]’ is defined as:

ALb g3
Voo = b+ 2 myb, -~ ? (6.6)
kk kk

J<k

where, A, is the kth row of the matrix O/ AH . The iterative procedure for the successive

decision feedback detection is
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by = Sgn{yck —Zmlgbtj} (6.7)

J<k
where, sgn{f} represents the quantization of X to the nearest symbol in the alphabet b ie.,
+1 or ~1. In the above equation, b, is the output data bit corresponding to the % th user (as

shown in Fig 6.1), which may be considered as tentative decision for the next stage. It is
apparent from (6.7) and Fig. 6.1 that
b, =sgn {ycl} Successive interference cancellation scheme

b, = Sgn{yez —myb,

by = Sgnb’ca —myb, - mazbrz}

Thus, the interference due to the present data bits of all the detected users is cancelled
successively using the ZF criterion. Note that the first user is detected using the decorrelation
approach only, and is not having the additional advantage of SIC scheme.

However, the MMSE decision feedback detection scheme supersedes the zero-forcing
criterion based approach in the presence of noise [15]. In the next section, we present NP-S-

DFD using the MMSE criterion for multiuser detection.

6.3 Noise-predictive successive DFD

6.3.1 NP-S-DFD using MMSE criterion
Since the channel estimation errors are assumed to be small in comparison to the noise,

therefore the linear transformation used for the linear MMSE MUD may be written as:
Ospsse = RO HY (6.8)

where, R, = HH_+ o] ¢« and I, isa K xK dimensional identity matrix. The output of

linear MMSE MUD receiver is
Yo = Orpssiteg (6.92)
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The above equation can be simplified using (6.3b) and (6.8) to give
Yo =b~{O R + OppseAH. ) b + 0,552 (6.9b)
where, y, = [yc,1 Ve - yc,K}T is the soft output vector of linear MMSE MUD receiver. The

corresponding K x1 dimensional linear error vector is ¢, = Ya —b with £ denoting the
p cl cl clj g

J th element. The linear transformation O, minimizes the trace of error covariance matrix

I,=E {ec,gc’,’ }, where E{ } is the ensemble average operator. It is apparent that the linear
error vector ¢, contains the residual ISI and noise, which may be “predicted and
successively cancelled” by using a recursive strategy similar to the successive interference

cancellation (SIC) scheme (6.7). Let y_ = [ym Vegy oo ym,(]] be the soft output vector of

NP-S-DFD. For the detection of kth user, the NP-S-DFD based on MMSE criterion is

modelled as:

Yest = Ve = 2, Py€y, (6.10)
J<k

where, p, is the kth row and jth column element of a lower triangular “prediction filter”

matrix P with zeros on its main diagonal. The error vector at the output of NP-S-DFD is

g, = (1 - P)gc,. Its error covariance matrix is defined as:

I, =Efe ! }=(1-P) T, (1 - P*) (6.11)
which implicitly depends on

T,=c’R'+R'HIR,H.R!  where R, = E{AH,AH" } (6.12)
Since the channel is assumed to be known with small scale ambiguities, therefore
R7'HR,H.R' may be neglected in comparison to a’R;' (noise term) in (6.12).

Consequently O,,,.AH b term can be neglected in (6.9b), which leads to

T, ~o’R" (6.13a)
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and &, =~ R'b+ 0, 5,57 (6.13b)
The above equation can be rewritten as:

T, ~oGG" , where G =[0,,,, R (6.14)

For further simplification of (6.13a), the Hermitian and positive definite matrix R is
decomposed using the Cholesky factorization as:
R. =F,F, , where F, = F/ =0 D M (6.15)
Substitution of the above equation in (6.13a) and the application of matrix inversion property

[162] results in

L, ~o*{M!D 1. D.3,]" = o* (i \52(37 )’ (6.16)

4

where, M, is a lower triangular matrix with diagonal elements of one and D is a real

diagonal matrix with positive diagonal elements. Using (6.11) and (6.16), we may define the

error covariance matrix of NP-S-DFD as:
I, =c*(1-P) (2 D7 (2 ' (1 - P¥) (6.17)

Defining the cost function as the trace of matrix T

cs?

the optimum error prediction filter is

determined by differentiating the cost function wrs. P and equating it to zero [160]. The
optimum error prediction filter is thus

P, =I,-M (6.18)

opt 4
It is also shown in [86] that the optimum (1 —P) cancels M in (6.17). Under optimum
conditions, we calculate the optimum value of the coefficient p,, from the matrix P, and

the soft output of NP-S-DFD is obtained using (6.9b) and (6.10) as:

ya=b—(I—P

opt

) (R Ty + Op5sAH,) b+ - P) Oy (6.19)
It is clear that the effective forward filter is (I - R,p,) Opse =M RI'HY =D? (M ; ')HH i

which suppresses noise during the successive data detection process.
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Fig. 6.2: Single-stage noise-predictive successive DFD.
(o, isthe k th row of linear transformation matrix O, )
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The above described scheme for NP-S-DED is applicable on the reverse link of DS-_
CDMA systems for the multiuser detection (as shown in Fig. 6.2). However, it requires the
knowledge of multipath channel coefficients of all the active users along with their respective
signature sequences. Fig 6.2 depicts that at each stage in the noise-predictive successive
interference cancellation scheme, the interference is cancelled using the prediction filter

coefficient p,, and the linear error €y =Yy —b, for j<k.

In the successive detection procedure, the detection ordering of the active users is
another key parameter, which provides improvement at the cost of additional computational

burden. The kth user #, is positioned in the optimum detection queue {u,,z?z, ,EK} by

using the detection ordering algorithm, which is discussed in the next subsection. Therefore,

the output of linear MMSE filter is reordered as {yil sV 5 Vi, } in Fig. 6.2. Note that we
use the reordered K x1 dimensional vector Y in the successive detection procedure
governed by the equation (6.10). The corresponding  output _data bit vector is
b, =sgn(y“) = [b,l b, .. b,K]T, which may be used as the tentative decision vector in the

multistage detection.

6.3.2 Detection ordering using MMSE criterion

In the conventional SIC procedure [111], the strongest user is detected first, and then other
users are detected successively according to their received power level arranged in the
descending order. In the multipath fading environment, the soft output of linear MMSE MUD
receiver is used to determine the detection order, which contains the noise as well as the
residual ISI (6.9b). The erroneous detection order may lead to error propagation in the
successive interference cancellation process. However the following MMSE noise-predictive
sorting algorithm may be used to determine the optimal detection order, which is

implemented using the modified Gramm-Schmidt or Householder orthogonalization
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procedure [134], [173].

Let g,( be the £ th row of matrix G in (6.14). We choose the first user corresponding to
that row, which accounts for the minimﬁm MSE ie., |
u, =arg min[gkg,f'] , ke {1, ,K} (6.20)
Let us assume that the tentative decision b, corresponding to the user # in the detection
queue is correct, o, and r, be the kth rows of matrices O,,,; and R.' respectively. Next,

the MSE for the second user’s data symbol is defined by using ¢, = (I - P)e,, as:

Ele.s, — PrEur, = E|0§zz? —0*rg b—p,0, 2+ 0'217217‘017‘b!2 (6.21a)
=g’ 0z, ~ P20; ’ +o"‘”ra72 — Dala Hz (6.21b)
=g’ 8, — P& ’ (6.21¢)
=olg, - & | (6.21d)

where, &, is the projection of g, on to the subspace spanned by gz under the optimum

condition (6.18). Therefore, the decision criterion for selecting the next user in the detection

order is
i, =arg min|g, - &,|’ k=7 (6.22)

For selection of other users in the optimally ordered queue, the recursive sorting algorithm

may be stated as:

—_ . A 12 _ —

iU, =arg mm”gk —gt“ , ke {ul, ,uK_l} (6.23)
where, g, denotes the projection of g, onto the span of {ggl, ,ggx_l} under the minimum

MSE condition. Thus, the above described optimal BLAST ordering scheme is used to
generate the detection ordering queue {171,172, ,EK} for SIC scheme in the multiuser

detection scenario.
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The NP-S-DFD using the MMSE criterion considered above may be converted to the
NP-S-DFD based on ZF criterion (ZF-NP-S-DFD) by using o=0 in the linear
transformation O,, .. Similarly, the sorting algorithm may be used in the ZF mode by

considering ¢ =0 in (6.14). However the ZF linear transformation includes the matrix
pseudo inversion operation, which is computationally complex. The ZF-NP-S-DFD cancels
the interference completely at the cost of noise amplification, which leads to the performance
degradation under the high noise conditions. On the coﬁtrary, the NP-S-DFD based on
MMSE criterion finds optimal balance between the interference cancellation and the noise
reduction [15]. Therefore, the proposed NP-S-DFD with optimal detection ordering using the

MMSE criterion is expected to perform better than the other existing single-stage DFDs.

6.4 Two-stage NP-S-SP-DFD

In NP-S-DFD, the first user is detected using the linear MMSE detection because the “noise-
prediction and cancellation” process starts from the second user (see (6.10) for k=1).
Subsequently, other users are detected using the SIC approach. Therefore, the performance of
NP-S-DFD depends on the detection of first user in the optimal detection ordering queue. In
case of wrong decision feedback, its performance suffers due to the error propagation effect.
This motivates the development of a novel two-stage NP-S-SP-DFD, in which the parallel
interference cancellation approach is used to detect the first user at the second stage by using
the tentative decisions obtained from the first stage (as shown in Fig. 6.3a).

As the NP-S-DFD supersedes other single-stage DFDs (as shown by simulations in the
next section), its output i.e., hard-decisions may be used as tentative decisions at the second
stage (adaptive successive/parallel DFD) of the proposed NP-S-SP-DFD (as shown in Fig.
6.3a). The adaptive SP-DFD at second stage cancels the noise and interference by using the

tentative data bit vector &, .
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Fig. 6.3a: Two-stage NP-S-SP-DFD with adaptive successive/parallel DFD at the second stage.
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Fig 6.3b: Adaptive parallel interference canceller.
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The adaptive SP-DFD uses the parallel-interference-cancellers (PICs) arranged in the
successive detection order. The structure of adaptive PIC is similar to the adaptive equalizer
described in section 5.2. But in the presented PIC, we feed the tentative decisions about the
present data bits of all the intra-cel] users (interferers) to the feedback filter for interference

cancellation. For the detection of kth user, let the input vectors to the N x1 dimensional

feedforward filter F* and (K —1)x1 dimensional feedback filter B* be 7, and
by = [b‘,l o by by o by | respectively.
Considering the case of a single undetected user, we may define the input to decision

device (slicer) of the kth adaptive PIC as p* = F¥ Fe (as shown in Fig. 6.3b); where

F* =[F"T —B"T}’, Fre =[ﬁe‘rl b, | and the corresponding error is ey, =b, ~3" in the
training mode. During the decision directed mode, b, is replaced by b,, =sgn(j/" ) The

feedforward and feedback filters are updated recursively using the LMS adaptive algorithm.

It follows that

FHi+1)= F*())+u Ppene (6.24)
where 4 is the step size, which controls the convergence and stability of the LMS algorithm
[43].

At the second stage of NP-S-SP-DFD, the first user is detected using the adaptive PIC
based on MMSE criterion. The first user uses b, = [b,2 b, ... b,K]T in the feedback unit for
simultaneous cancellation of interference using the adaétive algorithm (6.24) for k=1,
Similarly the input vector 4, , = [b&,l by ... b,K}' is fed to the feedback filter of the second
(next) user, where b, is the estimated data bit corresponding to the first user. The improved

detection of first user mitigates the error propagation effects at successive stages. The update

of input vector b, at each successive PIC results in the improved parallel interference
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cancellation. The BER performances of the proposed two-stage and single-stage DFDs are

compared by computer simulations in the next section.

6.5 Simulation results

We shall investigate first the performance of a single-stage NP-S-DFD in the multiuser
interference cancellation and data detection scenario. We next evaluate the BER performance
of the proposed NP-S-SP-DFD based on MMSE criterion for the frequency-selective -
multipath fading channel. For simulating the DS-CDMA system, the Gold-sequences of
length N =31 are generated. The LMS algorithm is used in each adaptive PIC as shown in
Fig. 6.3a, in which the step size is adjusted to control the convergence and stability. The
presented results are based on an ensemble average of 100 independent simulation runs with
different “3 path” channel realizations [14], where the “1 path” channel is a flat fading
channel. In all the simulation examples, we have considered the multipath channel coefficient

matrix known. We have shown the average bit error rate for each detector, which is defined

X
as BER = ZBERk /K . The BER performances of the single-stage and the two-stage DFDs
k=1

are compared in the following examples.

Example 6.1: In this simulation, the effects of the ZF and the MMSE criterion based sorting
algorithms on the performance of NP-S-DFD are analysed. For a twenty-user cellular system,
we consider a three-tap frequency-selective multipath fading channel model ie., K =20 and
L =3. The simulation results are presented in Fig. 6.4 for the different values of SNR. It may
be inferred that the single-stage NP-S-DFD with the MMSE criterion based detection
Qrdering outperforms the ZF based approaches. At the target BER = 0.001, the NP-S-DFD
(MMSE-ordering) gives approximately 1.2dB performance gain over the NP-S-DF (ZF-

ordering). It provides 2dB performance advantage over the S-DFD under similar conditions.
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Fig. 6.4: Performance comparison of single-stage DFDs using the different detection ordering criteria.
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However, the performance gap between the NP-S-DFD (MMSE-ordering) and single
user bound is 4.8dB. The NP-S-DFD with ordering based on MMSE criterion provides 4dB
performance gain over the linear MMSE receiver at the BER =0.002. This performance
advantage increases with the increasing value of SNR. Thus, it supersedes the ZF MUD and

MMSE MUD by providing lower BER.

We further compare the BER performances of the single-stage DFDs wifh L=1 and
L=3. The simulation results shown in Fig. 6.5 demonstrate that the use of more number of
multipaths provides diversity gain by enhancing the SNR. At the target BER =0.002, the
NP-S-DFD (MMSE) with L =3 provides approximately 3.5dB performance improvement
over the NP-S-DFD (MMSE) with L =1. This performance advantage is due to the diversity
gain. At BER =0.01, the NP-S-DFD with L =3 provides approximately 3.2dB performance
gain over the linear MMSE receiver with Z =3. The NP-S-DFD with L =1 outperforms the
S-DFD (ZF) by giving approximately 1dB performance advantage at the BER = 0.003. This
demonstrates the advantage of the MMSE criterion over the ZF approach in successive
interference cancellation technique. However, it may be inferred from Fig 6.5 that the NP-S-

DFD performs better than other single-stage DFDs.

Example 6.2: We next consider the performance comparison of the last user’s detection with
the NP-S-DFD (MMSE) and S-DFD at K =31 and L =3. For the target BER =0.03, the
performance gain of NP-S-DFD over the linear MMSE receiver (MUD) increases
significantly with load (as shown in Fig. 6.6) because the latter receiver does not favour the
high load values [73]. The S-DFD outperforms the linear MMSE receiver when the BER is
less than approximately 0.07 because at high BER, the error propagation effect deteriorates
the performance of SIC process. However, the simulation results in Fig. 6.6 clearly show that

the BER performance of last user with NP-S-DFD is superior to S-DFD.
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Further for the load factor fixed at K/N = 0.6452 (a twenty-user system) and L =3,
the BER performance of the proposed two-stage NP-S-SP-DFD is evaluated, and the
performance comparison of the NP-S-SP-DFD with single-stage and other two-stage DFDs is
presented in Fig. 6.7. At BER = 0.05, the NP-S-DFD gives 0.3dB performance gain over the
NP-S-SP-DFD. This BER performance degradation in case of the presented NP-S-SP-DFD is
observed due to the error propagation effect under the low SNR conditions.

However it is apparent that at high SNR, the NP-S-SP-DFD with the MMSE based
detection ordering outperforms other DFDs at the different values of SNR. The performance
of NP-S-SP-DFD is approximately 4.5dB better than the linear MMSE receiver at the
BER=0.002. For the target BER=0.001, It provides 1.7dB and 2.7dB performance
advantage over the S-SP-DFD and S-DFD respectively. Under similar conditions, the
performance gap between the NP-S-SP-DFD and single user bound is 4.1dB. It may further

be observed that at high SNR values, this performance gap reduces significantly.

6.6 Concluding remarks

In this chapter, we have presented a two-stage NP-S-SP-DFD, in which the first stage is a
NP-S-DFD and the second stage is an adaptive successive/parallel DFD. All the active users
are ordered in the optimum detection queue using the noise-predictive sorting algorithm,
which is incorporated in the NP-S-DFD. At the second stage ie., adaptive SP-DFD, the
adaptive PICs are used in the successive order. Under the low SNR conditions, significant
degradation in the BER performance of NP-S-SP-DFD is observed due to the error
propagation effect. On the other hand, its performance substantially improves under the high
SNR conditions. The first user is detected using the linear MMSE transformation in NP-S-
DFD, which may lead to the error propagation at successive stages due to the wrong detection

- of data symbol corresponding to the first user. However at the second stage of NP-S-SP-
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DFD, the first user is detected using the parallel interference cancellation approach, which
results in the improved BER performance. The presented computer simulation results
demonstrate that the proposed NP-S-SP-DFD based on MMSE criterion outperforms the

conventional single-stage and two-stage DFDs.
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CHAPTER 7

CONCLUDING REMARKS

In this work, we have studied adaptive decision feedback techniques based on
minimum mean square error criterion for the suppression of multiple access interference and
intersymbol interference in the code division multiple access systems for multiuser detection.
In the following, we summarize important results of our study and also give suggestions for

further investigations.

7.1 Conclusions

We have first considered the decorrelating and MMSE linear sub-optimum multiuser
detectors in the presence of background Gaussian noise and have analysed their
performances, by using the leakage coefficients and Kullback-Leibler divergence theorem
under the near-far situation. It may be noted that the MAI is inevitable due to the non-
orthogonal properties of signature sequences. The MAI-plus-noise mixture at the output of
linear MMSE MUD is Binomially distributed for a small number of users, and the Chernoff
upper bound on the probability of error in MMSE multiuser detection increases with the
increasing number of users due to the high value of residual MAIL. The two-user case is
shown to have maximum non-Gaussian MAI-plus-noise mixture. However, the MAI-plus-
noise mixture at the output of linear MMSE MUD is asymptotically Gaussian for a large
number of users. For joint MMSE multiuser detection and interference cancellation under the
near-far scenario, the signal-to-noise ratio of the desired user should be more than the
minimum bounded value, which depends on the number of users and the value of signature
sequence normalized cross-correlation value. We have derived the optimum NCC ranges for

K >2 users, in which the error probability of linear MMSE MUD minimizes. It is shown
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that the MMSE multiuser detector outperforms the decorrelating detector by exhibiting the
lower error probability only if the value of signature sequence NCC is less than or equal to
the upper bounded value under worst conditions.

We have next proposed the use of two-step LMS-type adaptive algorithms for the
tracking of smoothly time-varying channels. We have presented a modified version of the
two-step LMS-type algorithm (MG-LMS) motivated by the work of Gazor (G-LMS in [607),
and have also described its nonstationary adaptation characteristics. We have incorporated a
control parameter in addition to a smoothing parameter used in the G-LMS algorithm, which
provides stability to the MG-LMS algorithm by controlling its oscillatory behaviour in the
convergence mode. The proposed modification reduces the initial learning period in
comparison to the G-LMS algorithm. It is shown that the tracking performances of the LMS
and NLMS algorithms suffer due to the lag noise, which consequently increases the total
misadjustment. However the MG-LMS algorithm purges a large amount of the lag noise, and
reduces the lag-misadjustment at the cost of slight increase in the gradient-misadjustment.

For system identification problem, the first-order Markovian model has been used to
derive the analytical results for the lag-misadjustment corresponding to the MG-LMS
adaptive algorithm, which mainly depend on the values of control and smoothing parameters.
It may be inferred that the smoothing parameter controls the tracking speed of the MG-LMS
algorithm, and the lag-misadjustment reduces with its increasing value. On the other hand,
the control parameter provides stability in the convergence mode and also reduces the lag-
misadjustment when its value is kept less than a threshold value. It has been shown that the
complex poles induce oscillations (resulting in high output MMSE) when the value of control
parameter is more than the threshold value. Therefore, its value should be kept less than the
threshold value. The decoupling theorem and direct-averaging method have been used to

derive the optimum value of control parameter at which the lag noise (lag-misadjustment)
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minimizes.

Simulation results depict that the output mean square error decreases with the
increasing value of control parameter and starts increasing again when the value of control
parameter is more than the optimum value. Under the smoothly time-varying channel, the
NLMS algorithm provides approximately 2.5dB performance advantage over the
conventional LMS algorithm at 20dB SNR. Like the previously reported results in [60], the
G-LMS algorithm gives approximately 11dB performance gain over the LMS algorithm.
Under similar conditions, the performance of the presented MG-LMS algorithm improves by
approximately 14dB over the LMS algorithm at the optimum values of control parameter,
step size and smoothing parameter. The MG-LMS algorithm outperforms the LMS, NLMS
and G-LMS algorithm in tracking the smoothly time-varying channels by combating the lag
noise, and thus provides less output MMSE. The simulation results validate the derived
analytical results for tracking, convergence and lag-misadjustment behaviour. Moreover the
conventional LMS algorithm is a special case of the proposed MG-LMS adaptive algorithm,
which signifies its flexibility.

We then present the application of a novel two-step reduced Kalman/LMS algorithm in
the adaptive multiuser decision feedback equalization and data detection for the DS-CDMA
systems working over the smoothly time-varying channels. It has been designed by exploiting
the Kalman filtering algorithm, which leads to the reduction in computational complexity as
compared to the commonly used adaptive multiuser DFE receiver using the Kalman
algorithm. Its design includes the incorporation of LMS algorithm for the prediction of first-
order weight increment vector, which updates the a priori estimate of tracking weight vector.
We have also analysed and discussed the tracking and convergence characteristics of the
multiuser channel estimator using RK-LMS algorithm under the time-varying environment,

and have derived operating ranges for the control parameter, smoothing parameter and step
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size. Similar to MG-LMS algorithm, it may be inferred from analytically derived results that
the tracking speed of the presented channel estimator can be increased by increasing the value
of smoothing parameter, but it enhances the oscillatory behaviour of adaptive algorithm in the
convergence mode. However the amplitude of oscillations can be controlled by adjusting the
value of control parameter, which provides stability to the RK-LMS algorithm. The proposed
two-step adaptive algorithm supersedes the conventional LMS algorithm by suppressing the
lag noise during channel tracking and by combating the nonstationarity introduced due to the
time-variations in multipath channel response.

We have used the channel estimates obtained from the RK-LMS adaptive algorithm
based multiuser channel estimator to cancel the intersymbol interference due to the chip
waveforms corresponding to the past data bits of all the active users in a particular cell. The
probability of error analysis of the presented adaptive multiuser DFE receiver demonstrates
that the application of two-step reduced/Kalman algorithm exhibits less probability of error
than the conventional LMS algorithm based approach. In this analysis, we have considered
the residual MAI component as Gaussian distribufed for a large number of users.

Simulation results depict that "at 20dB SNR, the RK-LMS algorithm gives
approximately 3dB performance gain over the conventional LMS algorithm for the fading
rate f,T, =0.0001 due to better tracking performance under the smoothly time-varying
channels. Under similar conditions, this performance gap reduces to 1.5dB for the fading rate
JpT, =0.001 due to the increasing value of lag noise. The performance advantage of the RK-
LMS algorithm over the conventional LMS algorithm reduces with the increasing number of
users because for a large number of users, the magnitude of residual MAI increases. This
performance advantage also reduces due to the increasing number of multipaths because the
value of SNR per path reduces, which deteriorates the channel tracking performance.

The BER performance of the proposed multiuser DFE receiver degrades with the
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increasing speed of mobile users as we have incorporated the conventional LMS algorithm to
estimate the first-order weight increment vector used in the RK-LMS adaptive algorithm,
which can not follow the fast time-variations in the multipath channel response. On the other
hand, as the load factor increases, its BER performance deteriorates due to the increasing
value of the residual MAI and ISI. However for a small number of multipaths, the BER
performance of presented multiuser receiver improves because of diversity gain through
multipath reception. On the contrary, for a large number of multipaths, its performance
degrades due to the channel estimation errors. It is also observed that the error propagation
effect due to the overwhelming nature of residual MAJ, ISI and channel estimation errors
results in the BER performance degradation under the low SNR conditions. It is apparent
from different simulation examples that the configuration consisting of RK-LMS algorithm
based adaptive channel estimator in the feedback unit for intersymbol interference
suppression and RK-LMS algorithm based forward filter for MAI, ISI and noise cancellation
outperforms the conventional LMS algorithm based approaches.

We have further proposed an adaptive decision feedback equalizer receiver using the
erasure algorithm, which not only combats the inter-cell and intra-cell interference in the .
multiuser systems but also controls the error propagation effect. The received composite
signal is over-sampled to tackle the problem of asynchronous reception. The feedback filter
of the presented MMSE DFE receiver is fully connected, which uses the past decisions of all
the active users to cancel the intra-cell interference. However the fractionally spaced
feedforward filter suppresses the inter-cell interference, MAI and noise, and also acts like
RAKE by providing the diversity gain. The erasure algorithm based soft-slicer erases the
highly unreliable signals and assigns weight to each detected data bit according to the level of
uncertainty in the estimated value of symbol. The assigned value of the weight decreases with

the increasing value of error between the estimated symbol and data symbol, which reduces
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the error propagation in the non-linear detection techniques (using decision feedback). The
conventional DFE receiver is a special case of E-DFE when the value of assigned weight is
constrained to unity.

Under erroneous conditions like sudden changes in the signal-to-noise ratio value of the
desired user, high load factor and near-far situation, the proposed adaptive E-DFE
outperforms the C-DFE due to the error control. For the value of load factor more than 0.645,
the residual MAI limits the BER performance of the multiuser system. But, the E-DFE
performs marginally better than the C-DFE for the high load conditions. It also provides
approximately 2.5dB performance improvement over the C-DFE at the target BER =0.01
when the interferers are kept at 20% higher power level than the desired user’s power level.

We have next proposed the application of erasure algorithm in the multiuser adaptive
decision feedback detector using the partial parallel interference cancellation scheme, in
which the erasure algorithm is used to generate the time-variable partial cancellation factors
depending on the soft-output of linear MMSE multiuser filter. Previously reported results iﬁ
[128] depict that the P-DFD offers approximately 2dB gain relative to the linear MMSE
multiuser receiver. But the filter coefficients are obtained by using the covariance matrix of
the received signal vector, which is difficult to compute in the time-varying environment.
However the presented adaptive EC-ADFD-PIC provides approximately 3dB performance
advantage over the linear MMSE multiuser receiver at the BER = 0.04 , in which the erasure

algorithm is used to control the error propagation effect and the channel estimator is used to
cancel the intersymbol interference due to the past data bits of all the active intra-cell users.
Moreover, the requirement of the covariance matrix of the received signal vector is
eliminated by updating the recursive filter coefficients using the conventional LMS adaptive
algorithm. Simulation results demonstrate that the proposed multiuser receiver can handle

higher load in comparison to other multiuser detectors. As the speed of mobile users
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increases, the BER performance of the EC-ADFD-PIC degrades due to the inability of LMS
algorithm to adapt in the fast time-varying environment. However, it is observed that the EC-
ADFD-PIC supersedes the linear MMSE multiuser receiver and other detectors under the
slow time-varying channels.

We have next proposed a novel two-stage MMSE multiuser decision feedback detector
for the DS-CDMA system. An adaptive successive/parallel DFD has been used at the second
stage, which uses the tentative hard-decisions obtained from the noise-predictive successive
DFD at the first stage for parallel interference cancellation and multiuser data detection. At
the first stage (NP-S-DFD), we have used the MMSE noise-predictive sorting algorithm for
determining the user detection order. Simulation results reveal that the use of MMSE noise-
predictive ordering in NP-S-DFD gives approximately 1.2dB performance advantage over the
conventional zero-forcing BLAST ordering scheme at the BER=0.001 under typical
conditions. However, the NP-S-DFD (MMSE-ordering) provides 4dB performance gain over
the linear MMSE receiver at the target BER =0.002, which increases with the increasing
value of SNR. It is also noted that the use of more number of multipaths enhances the SNR,
and thus provides the diversity gain. The. presented NP-S-DFD with MMSE detection
ordering provides approximately 3.5dB additional gain at the BER = 0.002 when the number
of multipaths are increased from one to three. It is apparent from different simulation
examples that the successive interference cancellation scheme using the MMSE criterion
supersedes the ZF criterion based approaches. But, the error propagation severely affects the
performance of SIC process. Therefore under high BER conditions, the linear MMSE
multiuser receiver outperforms the S-DFD based on ZF criterion.

At second stage, the successively arranged adaptive parallel interference cancellers
using the LMS algorithm use the output of NP-S-DFD as the tentative decisions. It provides

approximately 4.5dB performance improvement relative to the linear MMSE multiuser
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receiver at the target BER = 0.002. The first user at the second stage is detected using the
parallel interference cancellation technique, which was previously detected using the
conventional MMSE approach at the first stage (NP-S-DFD). The improved detection of the
early detected users reduces the error propagation at subsequent stages of SIC scheme. It may
be concluded that under the high SNR conditions, the proposed cascaded structure using the
NP-S-DFD and adaptive successive/parallel DFD outperforms other single-stage and two-

stage DFDs.

7.2 Suggestions for further work

In this study, we have seen that the linear MMSE multiuser detector outperforms the
decorrelating detector in the multiuser system using the non-orthogonal signature sequences.
But, the presented analysis is only confined to the AWGN channels. It is worthwhile to
investigate the probability of error analysis of linear multiuser detectors under the multipath
fading channels and to compare their performances under the asymptotic conditions. Bounds
on the probability of error and the corresponding value of normalized cross-correlation of the
signature sequences can be derived under the near-far situation. This work can be extended to
the performance evaluation of the non-linear sub-optimum multiuser detection techniques and
to analyse the behaviour of MAI-plus-noise mixture at their output.

We have considered the two-step MG-LMS adaptive algorithm for tracking the
smoothly time-varying channels, where the conventional LMS and NLMS algorithms fail to
perform well. The application of MG-LMS algorithm in nonstationary environments suggests
a number of interesting avenues for further research. The MG-LMS algorithm can be used to
develop a set of new adaptive algorithms using the variable step size approach considered in
[174]. Its performance needs to be evaluated for the fourth generation wireless OFDM

systems for the tracking of time-varying channels. Space-time coding for the multiple
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transmit and receive antenna systems (MIMO channels) rely on the knowledge of channel
coefficient matrix. Therefore the MG-LMS adaptive channel tracking algorithm can be used
to estimate the MIMO channel coefficient matrix in the time-varying environment, thus
reducing the computational complexity of the receiver which uses the Kaiman algorithm for
parameter estimation.

It is observed that the adaptive E-DFE outperforms the C-DFE by -controlling the error
propagation effect. Using the previously presented work on the erasure DFE for PAM
signalling scheme in [80], the probability of error evaluation of E-DFE for the DS-CDMA
system is a topic for further research. The application of the erasure algorithm in the adaptive
space-time feedforward/feedback architectures presented in [9] and [10] for the multiuser
detection in the high data rate wireless DS-CDMA networks can also be considered.

Another area for further research includes the development of multistage multiuser
DFDs using the adaptive parallel and successive interference cancellation approaches (see
[129]), which can provide BER performance close to the single-user bound. The use of
convolutional codes provides substantial coding gain over the uncoded systems at the cost of
additional bandwidth. However with the trellis coded modulation, the performance gain is
achieved without increasing the bandwidth. The use of the trellis coded modulation in place
of the convolutional codes for obtaining additional coding gain needs further investigation.

From a communication theorist’s point of view, “iterative (turbo)” processing is a way
to approach the Shannon limit on channel capacity, while “space-time” processing is a way to
increase the possible capacity by exploiting the rich multipath nature of the fading wireless
environments. Combining the two concepts provides a practical way to both increase and
approach the possible wireless channel capacity. It will be interesting to use the adaptive
iterative MMSE multiuser decision feedback structures for the multicarrier CDMA systems

in combination with the space-time coding for multiple transmit and receive antenna systems.
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The presented work on the time-varying channel tracking and the use of non-linear
decision feedback structures in the equalization, interference suppression and multiuser

detection can also be extended to the hybrid OFDM/CDMA wireless systems.
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APPENDIX - A

f

Determination of the time constant

In Bresrors < B < Bpper domain, the poles are complex conjugate ie., P, =P, . From (3.45),

the maximum permissible pole magnitude is

1P| = |Po] = [P = U1+ 20042, )B, A
The maximum value of the time constant is thus defined as:

Max(z, )=l - |Pruel]” (A2)
The inequality in (3.45) may be rewritten as:

(L+ 2082, )8, <1 (A3)
Let us assume that (1-+ 202, {8,y + %)= 1. It follows that

(1+ 2014, )B,pper =1~ (1+ 2002, Jx (A.4)

For x <<1, (A.1) and (A.4) are used to give

IP| =|P.|= 1=+ 2002, Jx =1-(1+2au1, fx/2) (A.5)

Thus, the time constant in operating range is

r, =[1-|A " = @/x)Ni+2p4,)" (A6)

Example 1: For x = ul, <<1, the resultant approximate time constant is

v, %2 A, =2t ) (A7)
It illustrates that under typical conditions, the time constant for the MG-LMS is double of the

conventional LMS algorithm. The derived result matches with the analysis of Gazor in [60].

However for the real poles, its value is
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7, =[-(x+r)2]" =2f1+ 204, )~ (B + )] (A8)

where, X =1+ 8-240 and ¥ = Ji+ =2, 4(1+ 2001, )

Example 2: Under a typical condition le, a=p£=0, the MG-LMS reduces to the
conventional LMS algorithm with poles located at P, = (1—2/1/7.,,) and P, =0. It leads to
[equation (75), 57 ie.,

T, 22l (A.9)
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APPENDIX - B

Equations for estimated weight error

From subsection 4.4.2, the received composite signal vector is

#(:)= DA, (1) + 2() (B.1)
The substitution of (4.20) and (4.21) in (4.24) leads to
Hii) - h, ()= Al 1)+ wD” G)FG) - DY - 1)|- A, () (B.2)

Using (B.1) and (B.2), we can solve the above equation as:
= [1- D™ (YD) WAl —1)+ D7 ()2() (B.3)
where, AA(i—1)=A(li—1)-A,()  with b (i=1)=h, () h,(i-1) (B.4)

The equation (B.4) can be simplified by using (4.22) in terms of the first-order weight

increment vector as:

AA(i ~1)= AR =1)+ AR ~1)~ (1= B~ 1i - 1) (B.5)

The first-order weight increment error vector is defined using (4.20), (4.23) and (4.24) as:

h(ii)- b, ()= Al 1) 1)+ auD” GYF() -7 ()] - %0) (B.6)
Using (B.1) and (B.6), we can solve the above equation as:
A = Al =1l =1)~ [ ODEOWAH -1)- B, () + auD” ()3() B.7)

The equation (B.7) can be simplified in terms of the first-order and second-order weight

increment vectors as:
AR = 8(i ~1)= oD QDEA - 1) B, (- 1)+ 0" ()2() (B.8)

In the above equation, we have considered l; (i-1)= l; (i)- h (i —1). The results (B.3), (B.5)

and (B.8) can be written in the matrix form to define the recursive vector CD(i) ie., (4.25).

190 .



APPENDIX - C

Determination of the partial cancellation factor
Let the ith data symbol of kth user be b, with amplitude 4,. The estimated value of the

data symbol at the output of F, is X, ,. The corresponding error is ey, =b, —%,,,. The

erasure algorithm (see subsection 5.2.2) is stated as:

>[24,] or 1-(

k
el/n

Al ) <0—wh, =0

e
Jlaf)

We replace b, with the tentative decision b, = sgn(i,,n_k) in the decision directed mode. The

lin k

0<

<24 |— wi, =1—[

k
elin

xlin N1

output of E-slicer is w? b, . The proposed partial PIC system is equivalent to the “Brute

Force” interference canceller [116], if we let w;cf(i):l. Note that we have considered

A4, =1 for k=1, 2, ... ,K in the generation of PCFs.

191



REFERENCES

[1]

(2]

[3]

[4]

[6]

[7]

(8]

[%]

[10]

[11]

[12]

R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread spectrum
communications — A tutorial,” IEEE Trans. Commun., vol. 30, no. 5, pp. 855 — 884,
May 1982.

G. L. Stuber, Principles of Mobile Communications, 2nd ed., Kluwer Academic
Publishers, 2001.

L. B. Milstein, “Wideband code division multiple access,” IEEE J. Select. Areas
Commun., vol. 18, no. 8, pp. 1344 — 1354, Aug. 2000.

B. Melis and G. Romano, “UMTS W-CDMA: Evaluation of radio performance by
means of link level simulations,” IEEE Personal Commun., vol. 7, no. 3, pp. 42 — 49,
June 2000.

E. Dahlman, B. Gudmundson, Mats Nilsson, and J. Skold, “UMTS/IMT-2000 based
on wideband CDMA,” IEEE Commun. Mag., pp. 70 — 79, vol. 36, no. 9, Sept. 1998.
F. Adachi, M. Sawah.ashi, and H. Suda, “Wideband DS-CDMA for next-generation
mobile communication systems,” IEEE Commun. Mag., vol. 36, no. 9, pp. 56 — 69,
Sept. 1998.

D. Koulakiotis and A. H. Aghvami, “Data detection techniques for DS/CDMA mobile
systems: A review,” IEEE Personal Commun., vol. 7, no. 3, pp. 24 — 34, June 2000.

S. L. Miller, M. L. Honig, and L. B. Milstein, “Performance analysis of MMSE
receivers for DS-CDMA in frequency-selective fading channels,” IEEE Trans.
Commun., vol. 48, no. 11, pp. 1919 — 1929, Nov. 2000.

J. E. Smee and S. C. Schwartz, “Adaptive space-time feed-forward/feedback detection
for high data rate CDMA in frequency-selective fading,” IEEE Trans. Commun., vol.
49, no. 9, pp. 317 — 328, Feb. 2001.

J. E. Smee and S. C. Schwartz, “Adaptive feedforward/feedbackward architectures for
multiuser detection in high data rate wireless CDMA networks,” IEEE Trans.
Commun., vol. 48, no. 6, pp. 996 — 1011, June 2000.

G. L. Turin, “The effects of multipath and fading on the performance of Direct-
Séquence CDMA systems,” IEEE J. Select. Areas Commun., vol. 43, no. 2/3/4, pp.
1746 — 1755, Feb./Mar./Apr. 1995.

S. Verdd, “Minimum probability of error for asynchronous Gaussian multiple-access

192



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

channels,” IEEE Trans. Inform. Theory, vol. 32, no. 1, pp. 85 — 96, Jan. 1986.

S. Moshavi, “Multiuser detection for DS-CDMA communications,” IEEE Commun.
Mag., vol. 34, no. 10, pr. 124 — 136, Oct. 1996.

M. Abdulrahman, A. U. H. Sheikh, and D. D. Falconer, “Decision feedback
equalization for CDMA in indoor wireless communications,” IEEE J. Select. Areas
Commun. vol. 12, no. 4, pp. 698 — 706, May 1994.

C. A. Belfiore and J. H. Park, “Decision-feedback equélization,” Proc. IEEE, vol. 67,
no. 8, pp. 1143 — 1156, Aug. 1979.

R. Kohno, H. Imai, and M. Haroti, “Cancellatiqn techniques for co-channel
interference in asynchronous spread spectrum multiple access systems,” Electron.
Commun. Jpn., vol. 66, no. 5, pp- 20 - 29, May 1983.

R. Lupas and S. Verdi, “Near-far resistance of multiuser detectors in asynchronous
channels,” IEEE Trans. Commun., vol. 38, no. 4, pp. 496 — 508, Apr. 1990.

R. Lupas and S. Verdi, “Linear multiuser detectors for synchronous code-division-
multiple-access channels,” IEEE Trans. Inform. Theory, vol. 35, no. 1, pp. 123 - 136,
Jan. 1989,

Z. Xie, R. T. Short, and C. K. Rushforth, “A family of sub-optimum detectors for
coherent multiuser communications,” IEEE J. Select. Areas Commun., vol. 8, no. 4,
pp. 683 — 690, May 1990.

M. K. Tsatsanis and G. B. Giannakis, “Optimal decorrelating receivers for DS-CDMA

systems: A signal processing framework,” IEEE Trans, Signal Processing, vol. 44, no.
12, pp. 3044 - 3054, Dec. 1996.

M. Honig, U. Madhow, and S. Verdt, “Blind adaptive multiuser detection,” IEEE
Trans. Inform. Theory, vol. 41, no. 4, pp. 944 - 960, July 1995.

M. S. Pinsker, V. V. Prelov, and S. Verd, “Senstivity of channel capacity,” IEEE
Trans. Inform. Theory, vol. 41, no. 6, pp. 1877 — 1888, Nov. 1995.

A. McKellips and S. Verdu, “Worst case additive noise for binary-input channels and
zero-threshold detection under constraints of power and divergences,” IEEE Trans.
Inform. Theory, vol. 43, no. 4, pp. 1256 — 1264, July 1997.

A. M. Monk, M. Davis, L. B. Milstein, and C. W. Helstrom, “A noise-whitening
approach to multiple access noise rejection — Part I: Theory and background,” IEEE J.
Select. Areas Commun., vol, 12, no. 5, pp. 817 — 827, June 1994.

M. B. Pursley, “Performance evaluation for phase-coded spread spectrum multiple-

access communication — Part I: System analysis,” IEEE Trans. Commun., vol. 25, no.

193



[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[36]

[37]

8, pp. 795 — 799, Aug. 1977.

E. A. Geraniotis and M. B. Pursley, “Error probability for direct-sequence spread-
spectrum multiple-access communications — Part II: Approximations,” IEEE Trans.
Commun., vol. 30, no. 5, pp. 985 — 995, May 1982.

H. V. Poor and S. Verd{, “Probability of error in MMSE multiuser detection”, IEEE
Trans. Inform. Theory, vol. 43, no. 3, pp. 858 — 871, May 1997.

B. R. Saltzberg, “Intersymbol interference error bounds with applications to ideal
bandlimited signals,” IEEE Trans. Inform. Theory, vol. IT-14, no. 4, pp. 563 — 568,
July 1968.

G. V. Moustakides and H. V. Poor, “On the relative error probabilities of linear
multiuser detectors,” IEEE Trans. Inform. Theory, vol. 47, no. 1, pp. 450 — 456, Jan.
2001.

M. L. McCloud and L. L. Scharf, “Asymptotic analysis of the MMSE multiuser
detector for nonorthogonal multipulse modulation,” IEEE Trans. Commun., vol. 49,
no. 1, pp. 24 — 30, Jan. 2001.

A. Lampe and M. Breiling, “Asymptotic analysis of widely linear MMSE multiuser
detection — complex vs. real modulation,” IEEE Inform. Theory Workshop, Sept.
2001, pp. 55 - 57.

S. Verdd and S. Shamai, “Spectral efficiency of CDMA with random spreading,”
IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 622 — 640, Mar. 1999.

S. Buzzi, M. Lops, and A. M. Tulino, “MMSE multiuser detection in multipath fading
channels,” Proc. ICASSP’99, IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 5, Mar. 1999, pp. 2715 —2718.

S. Verda, “Optimum multiuser asymptotic efficiency,” IEEE Trans. Commun., vol.
34, no. 9, pp. 890 — 897, Sept. 1986.

J. Zhang, K. P. Chong, and N. C. David, “Output MAI distributions of linear MMSE
multiuser receivers in DS-CDMA systems,” JEEE Trans. Inform. Theory, vol. 47, no.
3, pp. 1128 — 1144, Mar. 2001.

Y. Wang, J. Wu, Z. Du, and W. Wu, “Performance of MMSE multiuser detection for
downlink CDMA,” Proc. ICC’2000, IEEE Int. Conf. on Commun., June 2000, pp.
919 —923.

Y. Wang, J. Wu, Z. Du, and W. Wu, “Performance analysis of MMSE multiuser
detection,” Proc. WCC-ICCT?2000, Int. Conf. on Commun. Tech., Aug. 2000, pp.
1341-1346.

194



(38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

U. Madhow and M. L. Honig, “MMSE interference suppression for direct sequence
spread spectrum CDMA,” IEEE Trans. Commun., vol. 42, no. 12, pp. 3178 — 3188,
Dec. 1994,

S. L. Miller, “An adaptive direct-sequence code-division multiple-access receiver for
multiuser interference rejection,” IEEE Trans, Commun., vol. 43, no. 2/3/4, pp. 1746
— 1755, Feb./Mar./Apr, 1995,

S. L. Miller, “Training analysis of adaptive interference suppression for direct-
sequence code-division multiple-access systems,” IEEE Trans. Commun., vol. 44, no.
4, pp. 488 — 495, Apr. 1996.

U. Madhow, “MMSE interference  suppression for timing acquisition and
demodulation of DS-CDMA signals,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1065
— 1075, Aug. 1998.

P. B. Rapajic and D. K. Borah, “Adaptive MMSE maximum likelihood CDMA
multiuser detection,” IEEE J. Select. Areas Commun., vol. 17, no. 12, pp. 2110 -
2121, Dec. 1999.

S. Haykin, Adaptive Filter Theory, 4th ed., Person Education Inc., 2002.

B. C. Banister and J. R. Zeidler, “Tracking performance of the RLS algorithm applied
to an antenna array in a realistic fading environment,” IEEE Trans, Signal Processing,
vol. 50, no. 5, pp. 1037 - 1050, May 2002,

S. Haykin, A. H. Sayed, J. R. Zeidler, P. Yee, and P. C. Wei, “Adaptive tracking of
linear time-variant systems by extended RLS algorithms,” IEEE Trans. Signal
Processing, vol. 45, no. 5, pp. 1118 - 1128, May 1997.

A. H. Sayed and T. Kailath, “A state-space approach to adaptive RLS filtering,” IEEE
Signal Processing Mag., vol. 11, no. 3, pp. 18 - 60, July 1994,

L. Davis, 1. Collings, and R. Evans, “Coupled estimators for equalization of fast-
fading mobile channels,” IEEE Trans. Commun., vol. 46, no. 10, pp. 1262 — 1265,
Oct. 1998.

J. Chen and Y. Wang, “Adaptive MLSE equalizers with parametric tracking for
multipath fast-fading channels,” IEEE Trans. Commun., vol. 49, no. 4, pp. 655 - 663,
Apr. 2001,

A. M. Sayeed and B. Aazhang, “Joint multipath-Doppler diversity in mobile wireless
communications,” IEEE Trans, Commun,, vol. 47, no. 1, pp. 123 - 132, Jan. 1999,

A. M. Sayeed, A. Sendonaris, and B. Aazhang, “Multiuser detection in fast fading

multipath environments,” IEEE J. Select. Areas Commun., vol. 16, no. 9, pp. 1691 —

195



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

1701, Dec. 1998.

R. A. Iltis, “An EKF-Based joint estimation for interference, multipath, and code
delay in a DS spread-spectrum receiver,” IEEE Trans. Commun., vol. 42, no. 2/3/4,
pp. 1288 — 1299, Feb./Mar./Apr. 1994.

R. A. Iltis and L. Mailaender, “An adaptive multiuser detector with joint amplitude
and delay estimation,” IEEE J. Select. Areas Commun., vol. 12, no. 5, pp. 774 — 785,
June 1994.

L. Lindbom, M. Sternad, and A. Ahlén, “Tracking of time-varying mobile radio
channels — Part I: The Wiener LMS algorithm,” IEEE Trans. Commun., vol. 49, no.
12, pp. 2207 — 2217, Dec. 2001.

A. Ahlén, L. Lindbom, and M. Sternad, “Analysis of stability and performance of
adaptation algorithms with time-invariant gains,” IEEE Trans. Signal Processing, vol.
52, no. 1, pp. 103 — 116, Jan. 2004.

L. Lindbom, M. Sternad, A. Ahlén, and M. Falkenstrom, “Tracking of time-varying
mobile radio channels — Part II: A case study,” IEEE Trans. Commun., vol. 50, no.
50, pp. 156 — 167, Jan. 2002,

H. S. Wang and P. Chang, “On verifying the first-order Markovian assumption for a
Rayleigh fading channel model,” IEEE Trans. Veh. Tech., vol. 45, no. 2, pp. 353 -
357, May 1996.

B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, “Stationary and
nonstationary learning characteristics of the LMS adaptive filter,” Proc. IEEE, vol. 64,
no. 8, pp. 1151 — 1162, Aug. 1976.

B. Widrow and E. Walach, “On the statistical efficiency of the LMS algorithm with
nonstationary inputs,” IEEE Trans. Inform. Theory, Special Issue on Adaptive
Filtering, vol. IT-30, no. 3, pp. 211 — 221, Mar. 1984.

A. Benveniste, “Design of one-step and multi-step adaptive algorithms for the
tracking of time-varying systems,” Rapport de Recherche, INRIA, IRISA, no. 340,
Sept. 1984.

S. Gazor, “Predictions in LMS-Type adaptive algorithms for smoothly time-varying
environments,” IEEE Trans. Signal Processing, vol. 47, no. 6, pp. 1735 — 1739, June
1999.

B. Farhang-Borojeny, Adaptive Filters: Theory and Applications, London, U.K.:
Wiley, 1998.

B. Farhang-Borojeny and S. Gazor, “Performance of LMS-based adaptive filter in

196



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

tracking a time-varying plant,” IEEE Trans. Signal Processing, vol. 44, no. 11, pp.
2868 — 2871, Nov. 1996,

Y. Xue and X. Zhu, “Second- order LMS based wireless channel trackmg
Implementation under imperfect carrier synchronization,” Signal Processing, vol. 83,
no. 1, pp. 199 — 212, Jan. 2003.

O. Macchi, “Optimization of adaptive identification for time-varying filters,” IEEE
Trans. Automat. Contr., vol. AC- 31, no. 3, pp. 283 — 287, Mar. 198s.

O. M. Macchi and N. J. Bershad, “Adaptive recovery of a chirped sinusoid in noise,
Part I: Performance of the RLS algorithm,” IEEE Trans. Signal Processing, vol. 39,
no. 3, pp. 583 — 594, Mar. 1991.

N. J. Bershad and O. M. Macchi, “Adaptive recovery of a chirped sinusoid in noise,
Part II: Performance of the LMS algorithm,” IEEE Trans. Signal Processing, vol. 39,
no. 3, pp. 595 — 602, Mar. 1991.

O. M. Macchi, Adaptive Processing: The LMS Approach with Applications in
Transmission, New York: Wiley, 1995.

D. A. George, R. R. Bowen, and J. R. Storey, “An adaptive decision feedback
equalizer,” IEEE Trans. Commun. , vol. 19, no. 3, pp. 281 — 293, June 1971.

P. Monsen, “MMSE equalization of interference on fading diversity channels,” IEEE
Trans. Commun., vol. COM-32, no. 1, pp. 512, Jan. 1984.

B. Mulgrew and S. Chen, * ‘Adaptive minimum-BER decision feedback equalizers for
binary signalling,” Signal Processing, vol. 81, pp. 1479 — 1489, July 2001.

S. R. Chaudhary and A. U. H. Sheikh. » “Performance of a dual rate DS-CDMA DFE
in an overlaid cellular system,” IEEE Trans. Veh. Tech., vol. 48, no. 3, pp. 683 — 695,
May 1999.

A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean square
error equalization for multiuser detection in code division multiple access channels,”
IEEE Trans. Veh. Tech., vol. 45, no. 2, pp. 276 — 287, Feb. 1996.

P. B. Rapajic and B. S. Vucetic, “Adaptive receiver structures for asynchronous
CDMA systems,” IEEE J. Select. Areas Commun., vol. 12, no. 4, pp. 685 — 697, May
1994.

G. Woodward and B. S. Vucetic, “Adaptive detection for DS-CDMA,” Proc. 1EEE,
vol. 86, no. 7, pp. 1413 — 1434, July 1998.

M. Honig and M. K. Tsatsanis, “Adaptive techniques for multiuser CDMA receivers:
Enhanced signal processing with short spreading codes,” IEEE Signal Processing

197



[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

(85]

[86]

[87]

[88]

(89]

Mag., vol. 17, no. 3, pp. 49 — 61, May 2000.

Y. Gu and T. Le-Ngoc, “Adaptive combined DFE/MLSE techniques for ISI
channels,” IEEE Trans. Commun., vol. 44, no. 7, pp. 847 — 857, July 1996.

T. F. Wong, Q. Zhang, and J. S. Lehnert, “Decision-feedback MAP receiver for time-
selective fading CDMA channels,” IEEE Trans. Commun., vol. 48, no. 5, pp. 829 -
840, May 2000.

Y. Lee and D. C. Cox, “MAP selection diversity DFE for indoor wireless data
communication,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1376 — 1384,
Oct. 1998.

M. Chiani, “Analysis of error propagation in decision feedback equalizers with
erasures,” Univ. of Bologna, Bologna, Italy, DEIS Tech. Rep., Dec. 1994.

M. Chiani, “Introducing erasures in decision-feedback equalization to reduce error
propagation,” IEEE Trans. Commun., vol. 45, no. 7, pp. 757 — 760, July 1997.

M. Torlak and G. Xu, “Blind multiuser channel estimation in asynchronous CDMA
systems,” IEEE Trans. Signal Processing, vol. 45, no. 1, pp. 137 — 147, Jan. 1997.

L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization based on
second-order statistics: A time domain approach,” IEEE Trans. Inform. Theory, vol.
40, no. 2, pp. 340 — 349, Apr. 1994.

C. B. Papadias and A. Paulraj, “Decision-feedback equalization and identification of
linear channels using blind algorithms of the Bussgang type,” Proc. IEEE Int. Conf.
Asilomar-29, 1996, pp. 335 — 340.

D. Gesbert, J. Sorelius, P. Stoica, and A. Paulraj, “Blind multiuser MMSE detector for
CDMA signals in ISI channels,” IEEE Commun. Letters, vol. 3, no. 8, Aug. 1999.

X. Wang and H. V. Poor, “Blind equalization and multiuser detection in dispersive
CDMA channels,” IEEE Trans. Commun., vol. 46, no. 1, pp. 91 — 103, Jan. 1998.

R. T. Causey and J. R. Barry, “Blind multiuser detection using linear prediction,”
IEEE J. Select. Areas Commun., vol. 16, no. 9, pp. 1702 — 1710, Dec. 1998.

S. N. Diggavi, B. C. Ng, and A. Paulraj, “An interference suppression scheme with
joint channel-data estimation,” IEEE J. Select. Areas Commun., vol. 17, no. 11, pp.
1924 - 1939, Nov. 1999.

D. S. Chen and S. Roy, “An adaptive multiuser receiver for CDMA systems,” IEEE J.
Select. Areas Commun., vol. 12, no. 5, pp. 808 — 816, June 1994.

L. Chen, B. Chen, and W. S. Hou, “Adaptive multiuser DFE with Kalman channel
estimation for DS-CDMA systems in multipath fading channels,” Signal Processing,

198



[90]

(o1

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[%9]

[100]

[101]

[102]

vol. 81, no. 4, pp. 713 — 733, Apr. 2001.

M. S. Grewal and A. P. Andrew, Kalman Filtering: Theory and Practice, Englewood
Cliffs, NJ: Prentice-Hall, 1993.

D. Godard, “Channel equalization using a Kalman filter for fast data transmission,”
IBM J. Res. Develop., vol. 18, pp. 267 — 273, May 1974,

R. E. Lawrence and H. Kaufman, “The Kalman filter for the equalization of a digital
communication channel,” IEEE Trans. Commun. Tech., vol. 19, no. 6, pp. 1137 —
1141, Dec. 1971.

B. W. Kozminchuk and A. Sheikh, “ A Kalman filter-based architecture for
interference excision,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 574 — 580,
Feb./Mar./Apr. 1995.

T. J. Lim and L. K. Rasmussen, “Adaptive symbol and parameter estimation in
asynchronous multiuser CDMA detector,” IEEE Trans. Commun.,, vol. 45, no. 2, pp.
213 - 220, Feb. 1997.

T. J. Lim, “An asynchronous multiuser CDMA detector based on the Kalman filter,”
IEEE J. Select. Areas Commun., vol. 10, no. 9, pp. 1711 - 1722, Dec. 1998.

T. J. Lim and Y. Ma, “The Kalman filter as the optimal linear minimum mean-
squared error multiuser CDMA detector,” IEEE Trans. Inform. Theory, vol. 46, no. 7,
pp. 2561 — 2566, Nov. 2000.

S. McLaughlin, “Adaptive equalization via Kalman filtering techniques,” Proc. IEE,
vol. 138, no. 4, pp. 388 — 396, Aug. 1991,

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans.
ASME, Series D., J. Basic Eng., vol. 82, pp. 34 - 45, 1960.

R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction,” Trans.
ASME, Series D., J. Basic Eng., vol. 83, pp. 95 - 108, 1961.

B. Mulgrew, “Kalman filter techniques in adaptive filtering,” Proc. IEE, vol. 134, pp.
239 - 243, June 1987.

L. Chen and B. Chen, “A robust adaptive DFE receiver for DS-CDMA system under
multipath fading channels,” IEEE Trans. Signal Processing, vol. 49, no. 7, pp. 1523 -
1532, July 2001.

B. Chen, C. Tsai, and C. Hsu, “Robust adaptive MMSE/DFE multiuser detection in
multipath fading channel with impulse noise,” IEEE Trans. Signal Processing, vol. 53,
no. 1, pp. 306 — 317, Jan. 2005.

[103] P. H. Wu and A. Duel-Hallen, “Multiuser detectors with disjoint Kalman channel

199



[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

estimators for synchronous CDMA mobile radio channels,” IEEE Trans. Commun.,
vol. 48, no. 5, pp. 752 — 757, May 2000.

C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, “Multi-input multi-output
fading channel tracking and equalization using Kalman estimation,” IEEE Trans.
Signal Processing, vol. 50, no. 5, pp. 1065 — 1076, May 2002.

P. A. Bello, “Characterisation of randomly time-variant linear channels,” IEEE Trans.
Commun., vol. CS-11, no. 4, 360 — 393, Dec. 1963.

R. R. Miiller, and S. Verdii, “Spectral efficiency -of low-complexity multiuser
detectors,” Proc. IEEE Inter. Symposium on Inform. Theory, June 2000, pp. 25 — 30.
R. R. Miiller, “Power and bandwidth efficiency of multiuser systems with random
spreading,” Ph.D. Dissertation, Univ. of Erlangen-Niirnberg, 1999.

P. B. Rapajic, M. L. Honig, and G. K. Woodward, “Multiuser decision-feedback
detection: Performance bounds and adaptive algorithms”, Proc. IEEE Int. Symp.
Inform. Theory, Boston, MA, p. 34, Aug. 1998.

A. Duel-Hallen, “Decorrelating decision-feedback multiuser detector for synchronous
code-division multiple-access channel,” IEEE Trans. Commun., vol. 41, no. 2, pp.
285 — 290, Feb. 1993.

A. Duel-Hallen, “Equalizers for multiple input/multiple output channels and PAM
systems with cyclostationary input sequence,” IEEE J. Select. Areas Commun., vol.
10, no. 3, pp. 630 — 639, Apr. 1992.

A. Duel-Hallen, “A family of multiuser decision-feedback detectors for asynchronous
code-division multiple-access channels,” IEEE Trans. Commun., vol. 43, no. 2/3/4,
pp. 421 — 434, Feb./Mar./Apr. 1995.

A. J. Viterbi, “Very low rate convolutional codes for maximum theoretical
performance of spread spectrum multiple access channels,” IEEE J. Select. Areas
Commun., vol. 8, no. 4, pp. 641 — 649, May 1990.

R. Kohno, H. Imai, M. Haroti, and S. Pasupathy, “Combination of an adaptive array
antenna and a canceller of interference for direct-sequence spread-spectrum multiple-
access system,” IEEE J. Select. Areas Commun., vol. 8, no. 4, pp. 675 — 682, May
1990.

P. Patel and J. Holtzman, “Performance comparison of a DS/CDMA system using
interference cancellation (IC) scheme and a parallel IC scheme under fading,” Proc.
ICC’94, New Orleans, LA., May 1994, pp. 510 - 514.

P. Patel and J. Holtzman, “Analysis of a simple successive interference cancellation

200



[116]

[117]

(118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

scheme in a DS/CDMA system,” IEEE J. Select. Areas Commun., vol. 12, no. 5, pp.
796 — 806, June 1994,

D. Divsalar, M. K. Simon, and D. Raphaeli, “Improved parallel interference
cancellation for CDMA,” IEEE Trans. Commun., vol. 46, no. 2, pp. 258 —~ 268, Feb.
1998.

R. M. Buehrer and S. P. Nicoloso, “Comments on partial parallel interference
cancellation for CDMA,” IEEE Trans. Commun.,, vol. 47, no. 5, pp. 658 — 661, May
1999.

P. G. Renucci and B. D. Woerner, “Analysis of soft cancellation to minimize BER in
DS-CDMA interference cancellation,” Proc. Int. Conf. Telecommun., 1998.

X. Guo and C. Li, “Performance of partial parallel interference cancellation in DS-
CDMA system with delay estimation errors,” Proc. 11th Int. Symp. Personal, Indoor,
Mobile Radio Commun., London, U. K., Sept. 2000, pp. 724 — 727.

G. Xue, J. Weng, T. Le-Ngoc, and 8. Tahar, “Adaptive multistage parallel
interference cancellation for CDMA,” IEEE J. Select. Areas Commun., vol. 17, no.
10, pp. 1815 — 1827, Oct. 1999,

S. R. Kim, I. Choi, S. Kang, and J. G. Lee, “Adaptive weighted parallel interference
cancellation for COMA systems,” Electronics Letters, vol. 34, no. 22, pp. 2085 —
2086, Oct. 1998.

Y. Li, M. Chen, and S. Cheng, “Determination of cancellation factors for soft-
decision partial PIC detector in DS/CDMA systems,” Electronics Letters, vol. 36, no.
3, pp. 239 — 241, Feb. 2000.

M. Ghotbi and M. R. Soleymani, “Multiuser detection of DS-CDMA signal using
partial parallel interference cancellation in satellite communications,” IEEE J. Select.
Areas Commun., vol. 22, no. 3, pp. 584 — 593, Apr. 2004.

W. Hou, L. Chen, and B. Chen, “Adaptive narrowband interference rejection in DS-
CDMA systems: A scheme of parallel interference cancellers,” IEEE J. Select. Areas
Commun., vol. 19, no. 6, pp. 1103 — 1114, June 2001.

Y. Hsieh and W. Wu, “Optimal two-stage decoupled partial PIC receiver for
multiuser detection,” IEEE Trans. Wireless Commun., vol. 4, no. 1, pp. 112 — 127,
Jan. 2005.

W. Hou and Bor-Sen Chen, “Adaptive detection in asynchronous code-division
multiple-access system in multipath fading channels,” IEEE Trans. Commun., vol. 48,
no. 5, pp. 863 — 873, May 2000.

201



[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

A. Host-Madsen and K. Cho, “MMSE/PIC multiuser detection for DS/CDMA with
inter- and intra-cell interference,” IEEE Trans. Commun., vol. 47, no. 2, pp. 291 -
299, Feb. 1999.

R. Ratasuk, G. Woodward, and M. L. Honig, “Adaptive multiuser decision-feedback
for asynchronous cellular DS-CDMA,” Proc. Annu. Allerton Conf. Commun. Control
and Computing, Monticello, IL., Sept. 1999, pp. 1236 — 1245.

G. Woodward, R. Ratasuk, M. L. Honig, and P. B. Rapajic, “Minimum mean-squared
error multiuser decision-feedback detectors for DS-CDMA”, IEEE Trans. Commun.,
vol. 50, no. 12, pp. 2104 — 2111, Dec. 2002.

M. K. Varanasi and B. Aazhang, “Multistage detection for asynchronous code-
division multiple-access communications,” [EEE Trans. Commun., vol. 38, no. 4, pp.
509 — 519, Apr. 1990.

M. K. Varanasi and B. Aazhang, “Optimally near-far resistant multiuser detection in
differentially coherent synchronous channels,” IEEE Trans. Inform. Theory, vol. 37,
no. 4, pp. 1006 — 1018, July 1991.

M. K. Varanasi and B. Aazhang, “Near-optimum detection in synchronous code-
division multiple-access systems,” JEEE Trans. Commun., vol. 39, no. 5, pp. 725 -
736, May 1991.

M. K. Varanasi and T. Guess, “Optimum decision feedback multiuser equalization
with successive decoding achieves the total capacity of the Gaussian multiple-access
channel,” Proc. 31st Asilomar Conf. Signals, Systems and Computers, Monterey,
CA., Nov. 1997, pp. 1405 — 1409.

D. W. Waters and J. R. Barry, “Noise-predictive decision-feedback detection for
multiple-input multiple-output channels,” IEEE Trans. Signal Processing, vol. 53, no.
5, pp. 1852 — 1859, May 2005.

J. M. Cioffi and G. D. Forney et al., “Generalized decision-feedback equalization for
packet transmission with IST and Gaussian noise,” in Communication, Computation,
Control and Signal Processing, A. Paulraj et al., Eds. Boston, MA: Kluwer, 1997, ch.
4, pp. 79 - 127.

G. Ginis and J. M. Cioffi, “On the relation between V-BLAST and the GDFE,” IEEE
Commun. Letters, vol. 5, no. 9, pp. 364 — 366, Sept. 2001.

N. A. Dhahir and J. M. Cioffi, “MMSE decision feedback equalizers: Finite length
results,” IEEE Trans. Inform. Theory, vol. 41, no. 4, pp. 961 - 975, July 1995.

J. M. Cioffi, G. P. Dudevoir, M. V. Eyubogly, and G. D. Forney, “MMSE decision

202



[139]

[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147]

[148]

[149]
[150]
[151]

feedback equalizers and coding-part I: Equalization results,” IEEE Trans. Commun.,
vol. 43, no. 10, pp. 2582 — 2594, Oct. 1995.

N. Al-Dhahir and A. H. Sayed, “The finite-length multi-input multi-output MMSE-
DFE,” IEEE Trans. Signal Processing, vol. 48, no. 10, pp. 2921 - 2936, Oct. 2000.

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. Wolniansky, “Simplified
processing for wireless communication at high spectral efficiency,” IEEE J. Select.
Areas Commun,, vol. 17, no. 11, pp. 1841 — 1852, Nov. 1999,

G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W, Wolniansky, “Detection
algorithm and initial laboratory results using V-BLAST space-time communication
architecture,” Electronics Letters, vol. 35, no. 1, pp. 14 - 16, Jan. 1999,

W. Wai, C. Tsui, and R. S. Cheng, “A low complexity architecture of the V-BLAST
system,” Proc. IEEE Wireless Commun. Networking Conf., vol. 1, 2000, pp- 310 -
314, |

S. Verdu, Multiuser Detection, Cambridge, U.K.: Cambridge Univ. Press, 1998.

M. B. Pursley and D. V. Sarwate, “Performance evaluation for phase-coded spread
spectrum multiple-access communication — Part 1I: Code sequence analysis,” IEEE
Trans. Commun., vol. 25, no. 8, pp. 800 — 803, Aug. 1977.

M. B. Pursley, D. V. Sarwate, and W. E. Stark, “Error probability for direct-sequence
spread-spectrum multiple-access communications — Part I: Upper and lower bounds,”
IEEE Trans. Commun., vol. 30, no. 5, pp. 975 — 984, May 1982.

D. K. Borah and P. B. Rapajic, “Optimal adaptive multiuser detection in unknown
multipath channels,” IEEE J. Select. Areas Commun., vol. 19, no. 6, pp. 1115 - 1127,
June 2001.

D. R. Anderson and P. A. Wintz, “Analysis of a spread-spectrum multiple-access
system with a hard limiter,” IEEE Trans. Commun., vol. 17, pp. 285 - 290, Apr.
1969.

J. C. Varnelli and N. M. Shehadeh, “Computation of bit-error probability using the
trapezoidal integration rule,” IEEE Trans. Commun,, vol. 22, no. 8, pp. 331 — 334,
Mar. 1974.

T. Kailath, Linear Systems, Englewood Cliffs, NJ.: Prentice-Hall, 1980.

J. G. Proakis, Digital Communications, 3rd ed., McGraw-Hill Inc., 1995.

S. Haykin and T. K. Bhattacharya, “Modular learning strategy for signal detection in
nonstationary environment,” IEEE Trans. Signal Processing, vol. 45, no. 6, pp. 1619 —-
1637, June 1997.

203



[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

H. J. Kushner, Approximation and Weak Convergence Methods for Random Process
with Applications to Stochastic System Theory, Cambridge, MA..: MIT Press, 1984.

A. V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, Englewood
Cliffs, NJ: Prentice-Hall, 2001.

W. C. Jakes, Microwave Mobile Communications, New York; McGraw-Hill, 1994,

H. Wu and A. Duel-Hallen, “On the performance of coherent and noncoherent
multiuser detectors for mobile radio CDMA channels,” Proc. 5th IEEE Int. Conf. on
Universal Personal Commun., Oct. 1996, pp. 76 — 80.

B. D. O. Anderson and J. B. Moore, Optimal Filtering, Englewood Cliffs, NJ:
Prentice-Hall, 1979.

K. J. Kim and R. A. Iltis, “Joint detection and channel estimation algorithm for QS-
CDMA signals over time-varying channels,” IEEE Trans. Commun., vol. 50, no. 5,
pp. 845 — 855, May 2002. .

J. Choi, S. R. Kim, and C. Lim, “Receivers with chip-level decision feedback
equalizer for CDMA downlink channels,” IEEE Trans. Wireless Commun., vol. 3, no.
1, pp. 300 — 314, Jan. 2004.

C. Cao, L. Xie, H. Zhang, and S. Xie, “A robust channel estimator for DS-CDMA
systems under multipath fading channels,” IEEE Trans. Signal Processing, vol. 54,
no. 1, pp. 13 - 22, Jan. 2006.

H. L. Van Trees, Optimum Array Processing, New York: Wiley-Interscience, 2002.
H. L. Van Trees, Detection, Estimation, and Modulation Theory — Part I, New York:
John Wiley & Sons Inc., 2002.

G. Yen and A. N. Michel, “A learning and forgetting algorithm in associative
memories: Results involving pseudo-inverses,” IEEE Trans. Circuit and Systems, vol.
38, no. 10, pp. 1193 — 1205, Oct. 1991.

A. L. C. Hui and K. B. Letaief, “Successive interference cancellation for multiuser
asynchronous DS/CDMA detectors in multipath fading links,” IEEE Trans.
Commun., vol. 46, no. 3, pp. 384 — 391, Mar. 1998.

K. Lai and J. J. Shynk, “Analysis of the linear SIC for DS/CDMA signals with
random spreading,” IEEE Trans. Signal Processing, vol. 52, no. 12, pp. 3417 — 3428,
Dec. 2004.

R. A. Iitis and S. Kim, “Geometric derivation of expectation-maximization and
generalized successive interference cancellation algorithms with applications to

CDMA channel estimation,” IEEE Trans. Signal Processing, vol. 51, no. 5, pp. 1367 —

204



[166]

[167]

[168]

- [169]

[170]

[171]

[172]

[173]

[174]

1377, May 2003.

M. F. Madkour, S. C. Gupta, and Y. E. Wang, “Successive interference cancellation
algorithms for downlink W-CDMA communications,” IEEE Trans. Wireless
Commun., vol. 1, no. 1, pp. 169 — 177, Jan. 2002.

R. M. Buehrer, N. S. Mendoza, and B. D. Woerner, “A simulation comparison of
multiuser receivers for cellular CDMA,” IEEE Trans. Veh. Tech., vol. 49, no. 4, pp.
1065 — 1085, July 2000.

R. M. Buehrer, “Equal BER performance in linear successive interference
cancellation for CDMA systems,” IEEE Trans. Commun., vol. 49, no. 7, pp. 1250 —
1258, July 2001.

L. K. Rasmussen, T. J. Lim, and A. Johansson, “A matrix-algebraic approach to
successive interference cancellation in CDMA,” IEEE Trans. Commun., vol. 48, no.
1, pp. 145 — 151, Jan. 2000.

Y. Choand J. H. Lee, “Analysis of an adaptive SIC for near-far resistant DS-CDMA,”»
IEEE Trans. Commun., vol. 46, no. 11, pp. 1429 - 1432, Nov. 1998.

P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST:
An architecture for realizing very high data rates over rich-scattering wireless
channel,” Proc. Int. Symp. Signals Syst., Electron., Oct. 1998, pp. 295 - 300.

R. Narasimhan, “Error propagation analysis of V-BLAST with channel-estimation
errors,” IEEE Trans. Commun., vol. 53,n0. 1, pp.27-3 1, Jan. 2005.

G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD:-
Johns Hopkins Univ. Press, 1996.

T. Aboulnasr and K. Mayyas, “A robust variable step-size LMS-type algorithm;:
Analysis and simulations,” IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 631 —
639, Mar. 1997.

205



PUBLICATIONS BASED ON THIS WORK

International journals

1.

Amit Kumar Kohli and D. K. Mehra, “Adaptive MMSE decision feedback equalizer
for asynchronous CDMA with erasure algorithm,” Digital Signal Processing,
Elsevier, vol. 15, no. 6, pp. 621 — 630, Nov. 2005.

Amit Kumar Kohli and D. K. Mehra, “New results for probability of error
performance in MMSE multiuser detection for CDMA,” Digital Signal Processing,
Elsevier, In Press. |

Amit Kumar Kohli and D. K. Mehra, “Tracking of time-varying channels using two-
step LMS-type adaptive algorithm,” IEEE Trans. Signal Processing, In Press. (To
appear in Aug. 2006)

Amit Kumar Kohli and D. K. Mehra, “Adaptive DFE multiuser receiver for CDMA
systems using reduced Kalman/LMS algorithm — An equalization approach,” Digital
Signal Processing, Elsevier, Under Review.

Amit Kumar Kohli and D. K. Mehra, “A two-stage MMSE multiuser decision
feedback detector using successive/parallel interference cancellation,” Digital Signal
Processing, Elsevier, Under Review.

Amit Kumar Kohli and D. K. Mehra, “Adaptive multiuser decision feedback detector
— A novel parallel interference canceller,” IEEE Communication Letters, Under

Review.

International conference

7.

Amit Kumar Kohli and D. K. Mehra, “Bounds on MMSE multiuser detection for
CDMA,” Proceeding of Inter. Conf on Signal Processing and Communications,
IEEE, 1.1.Sc., Bangalore, India, Dec. 2004, pp. 101 — 105.

National conference

8.

Amit Kumar Kohli and D. K. Mehra, “Adaptive multiuser decision feedback detection
using erasure algorithm based partial parallel interference cancellation,” Proceeding

of National Conference on Communications, 1.1.T.D., Delhi, India, Jan. 2006.

206



Page

i

10

17

124

170

Line

11

09

14

12

12

04

11

10

22

Existing form

in the BER performance.

more affective than
are considered to solve

MUD technique supersedes

into a Weiner filtering problem.

It supersedes the conventional
when ever the power profile
changes.

by considering MAI as noise

NP-S-DF (ZF -ordering)

Correction
in the BER performance at low
SNR.
more effective than
have been considered to solve
MUD technique supercedes
into a Wiener filtering problem.
It supercedes the conventional
whenever the power profile
changes.
by considering MAI due to
intra-cell users as noise

NP-S-DFD (ZF -ordering)



G 12009

A



	ADAPTIVE DECISION FEEDBACK TECHNIQUES FOR MULTIUSER DETECTION IN CDMA SYSTEMS
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF ACRONYMS
	LIST OF NOTATIONS
	CHAPTER-1 INTRODUCTION
	CHAPTER-2 PROBABILITY OF ERROR ANALYSIS OF LINEAR MMSEMULTIUSER DETECTOR
	CHAPTER-3 ADAPTIVE ALGORITHMS FOR TRACKING OF SMOOTHLY TIME-VARYING CHANNELS
	CHAPTER 4 ADAPTIVE MULTIUSER DECISION FEEDBACK EQUALIZER RECEIVERS FORDS-CDMA SYSTEM
	CHAPTER 5 ADAPTIVE MULTIUSER DECISION FEEDBACK DETECTORS FOR DS-CDMA SYSTEMS USING PARALLEL INTERFERENCE CANCELLATION APPROACH
	CHAPTER-6 TWO-STAGE MMSE MULTIUSER DECISION FEEDBACK DETECTORS FOR DS-CDMA SYSTEMS
	CHAPTER 7 CONCLUDING REMARKS
	REFERENCES

