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ABSTRACT

To satisfy the ever-increasing demand for higher data rates, as well as to allow more

number of users to simultaneously access a common channel using the entire frequency

spectrum allocated for transmission, interest has peaked in the direct sequence code division

multiple access (DS-CDMA) techniques. In DS-CDMA transmission, the multipara

propagation through linear dispersive media introduces intersymbol interference (ISI), which

results in the bit error rate (BER) performance degradation. In addition to ISI, the non-

orthogonal properties of signature sequences and asynchronism (i.e., the random time offsets

for the received signals of different users) lead to multiple access interference (MAI) along

with additive white Gaussian noise (AWGN). The problem of MAI is not only due to the

known intra-cell users, but also from the unknown inter-cell users. The unpredictable nature

of MAI limits the capacity and performance of the multiuser system. Thus, even if the

receiver thermal noise goes to zero, the error probability of the conventional receiver exhibits

a non-zero floor because of MAI. Due to the propagation mechanism, the received signal

from a user close to the base station can be stronger than the signal received from desired

user located far from the base station. The near-far problem arises as the weaker signal can be

overwhelmed by MAI.

The multiuser detection (MUD) has become a topic of extensive research interest since

1986, when Verdu formulated an optimum MUD receiver based on the maximum likelihood

sequence detection criterion. However the solution involves a joint Viterbi processor with

exponential complexity in the number of users, which has motivated the design of sub-

optimum detectors with linear complexity. The decorrelating and minimum mean square

error (MMSE) detectors are the most useful sub-optimum detectors. Though the decorrelating

detector is near-far resistant, but it also enhances the background noise.

The MMSE detector, which minimizes the mean square error between the actual and

estimated data bits, provides greater ability to combat noise at the cost of reduction in the

near-far resistance. However the difficulty in the estimation of covariance matrix of the time-

varying received signals has given rise to the use of adaptive MMSE techniques, which

directly processes the samples of received signal at the chip interval without the explicit

knowledge of MAI, and can be implemented using the tapped delay line filter. The adaptive

MMSE techniques are analogous to the adaptive equalization of dispersive channels by virtue

of the analogy between MAI and ISI. For very large loads i.e., KIN» 70% (K = numberof



strong users, and N = processing gain or signature sequence length), the substantial

degradation in the performance of adaptive linear multiuser detector is observed. The

adaptive non-linear MMSE techniques (decision feedback) are more affective than the linear

techniques because latter is having only feedforward filter, whereas former is having
feedforward as well as feedback filters to combat ISI.

In the case of a multiuser system, ISI not only originates from the past symbols of

desired user, but also from the past symbols ofinterfering users, which can be suppressed by

using the non-linear adaptive decision feedback detectors (ADFDs). At high signal to noise

ratios (SNR) and loads, the non-linear techniques outperform the linear multiuser detection

techniques. However the ADFDs suffer due to the error propagation problem, which leads to

degradation in the BER performance. "The requirements imposed on the CDMA systems in

terms of capacity and flexibility necessitate the advanced signal processing solutions for the

multiuser interference suppression and data detection in the presence of ISI, MAI and

AWGN. In the presented work, adaptive decision feedback structures based on the MMSE

criterion are considered to solve the problems inherited in both non-adaptive and linear

multiuser detection techniques."

Starting with the linear MMSE sub-optimum MUD, we focus on its probability of error

performance analysis, and investigate the behavior of MAI in terms of the leakage

coefficients. The MMSE linear multiuser detector considers MAI asymptotically Gaussian

for a large number of users in the asynchronous DS-CDMA system. For this asymptotic

condition, the MMSE detector outperforms the decorrelating detector only if the value of

normalized cross-correlation (NCC) for any pair of signature sequence is less than or equal to

the numerically derived upper bounded value. The available results in the literature have been

derived for the two-user case. We have presented a general formula to calculate the upper

bound on NCC for the arbitrary number of users under the near-far situation. The upper

bound and optimum NCC ranges for 7>K>2 have been derived. We also propose the

Chernoff bound on the error probability of MMSE multiuser detector for Binomial as well as

Gaussian distributed leakage coefficients. Its proof based on the Kullback-Leibler divergence

theorem and study of the leakage coefficients for more than two users impose the stringent

condition on SNR of the desired user for unbiased output of the linear MMSE MUD receiver.

We have shown that the SNR of the desired user should be greater than the minimum

bounded value, which depends on the number of users and NCC. The derived results depict

that the MAI follows binomial distribution for a small number of users.

For adaptive implementation of the linear MMSE detector and for the channel



estimation, the least mean square (LMS) algorithm is normally used under the slowly time-
varying multipath fading environment. However the Kalman filtering algorithm is used for
the fast time-varying channel estimation, which increases the computational complexity of
the receiver. Our motivation is to develop anovel two-step least mean square type adaptive
algorithm, with low computational complexity 0[n], for the Markovian channel

identification problem. In this work, we present amodified version of the two-step LMS-type
adaptive algorithm motivated by the work of Gazor in [60]. We describe the nonstationary
adaptation characteristics of this modified two-step least mean square (MG-LMS) algorithm
for the system identification problem. It ensures stable behavior during convergence as well
as improved tracking performance in the smoothly time-varying environments. The estimated
weight increment vector is used for the prediction ofweight vector for the next iteration. The

proposed modification includes the use of acontrol parameter to scale the estimated weight
increment vector in addition to asmoothing parameter used in the two-step least mean square
(G-LMS) algorithm, which controls the initial oscillatory behavior of the algorithm. The
analysis focuses on the effects of these parameters on the lag-misadjustment in the tracking
process. The mathematical analysis for a nonstationary case, where the plant coefficients are
assumed to follow a first-order Markov process, shows that the MG-LMS algorithm
contributes less lag-misadjustment than the conventional LMS and G-LMS algorithms.
Further, the stability criterion imposes upper bound on the value of the control parameter.
These derived analytical results are verified and demonstrated with simulation examples,
which clearly show that the lag-misadjustment reduces with the increasing values of
smoothing and control parameters under permissible limits. It also supersedes the NLMS
algorithm in tracking by combating the lag noise, which consequently reduces the lag-
misadjustment at the cost of slight increase in the gradient-misadjustment. At the optimum
value of control parameter, the MG-LMS algorithm provides approximately 3dB
performance advantage over the G-LMS algorithm.

The G-LMS and MG-LMS are developed by exploiting the Kalman filtering algorithm.
By combining the strategy used for MG-LMS and spread spectrum technique, we next
present an adaptive decision feedback equalizer (ADFE) based multiuser receiver for the DS-
CDMA systems over the smoothly time-varying multipath fading channels using the reduced
Kalman least mean square (RK-LMS) adaptive algorithm. The frequency-selective fading
channel is modelled as a tapped delay line filter with smoothly time-varying Rayleigh
distributed tap-coefficients, which are considered to be auto-regressive processes varying at

in



the data rate. The receiver uses an adaptive MMSE multiuser channel estimator to predict the
coefficients of the tapped delay line filter. We consider first the design ofadaptive MMSE
feedforward and feedback filters by using the estimated channel response. We next present
the convergence characteristics and the tracking performance of the proposed multiuser
channel estimator using the RK-LMS algorithm. Unlike the previously available Kalman
filtering algorithm based approach, the incorporation ofthe RK-LMS algorithm reduces the
computational complexity of the multiuser receiver. The computer simulation results are
presented to show the substantial improvement in its tracking as well as BER performance
over the conventional LMS algorithm based receiver. The simulation results depict that the
performance ofthe proposed multiuser receiver is dependent on the channel estimation errors
because the residual ISI adversely affects the BER performance. The increasing load and
velocities of the mobile users deteriorates the performance of DS-CDMA system. The BER
performance also degrades for a large number of multiparas because the SNR per path
reduces, which results in high channel estimation errors. However for a small number of
multipaths, the feedforward filter provides performance advantage by exploiting the
multipath diversity. It may be inferred from the presented results that the proposed multiuser
receiver proves to be robust against the nonstationarity introduced due to the channel
variations, and is beneficial for the multiuser interference cancellation and data detection.

Subsequently, we consider the mitigation oferror propagation effect in the decision
feedback detection techniques. We present an ADFE with erasure algorithm (E-DFE) for the
asynchronous DS-CDMA transmission using the LMS algorithm, which not only combats ISI
and MAI but also reduces the effects of error propagation in the presence of Gaussian
background noise. To reduce the possibility of feeding back the wrong decisions, the output
of feedforward filter ofthe E-DFE is processed before it is fed back to the feedback filter.
Specifically, the focus is on the performance ofE-DFE using the soft-slicer based on a novel
erasure algorithm. In addition, the fully connected feedback filter ofE-DFE has been used to
eliminate ISI due to other active users. We use the over-sampling technique to deal with the
asynchronous reception of users. Comparison of the performance of conventional decision
feedback equalizer and E-DFE over the slowly varying frequency-selective fading channel is
presented to show the advantages ofE-DFE in terms ofthe reduced BER. Simulation results

are also presented to demonstrate the substantial improvement in its performance under the
near-far and high load situations. The receiver also proves to be effective against sudden
changes in the SNR of the desired user.

We next present a novel ADFD based on the parallel interference cancellation approach

IV



(ADFD-PIC) using the LMS algorithm for the DS-CDMA system, which is motivated by the

previous work on P-DFD (parallel-) in [128]. It not only combats ISI and MAI, but also

suppresses other-cell interference. The multiuser P-DFD uses the estimated covariance matrix

of the received signal vector, but the ill-conditioned nature of the covariance matrix

introduces numerical problems. In P-DFD, the tentative decisions of K users obtained from

the linear MMSE receiver are used for the parallel interference cancellation. The tentative

decisions may be unreliable due to the residual MAI, which leads to error propagation in the

multistage detector. The erasure algorithm may be used to generate the time-variable partial

cancellation factors depending on the soft-output of multiuser linear filter. The presented

ADFD-PIC structure using the channel estimator and erasure algorithm based soft-slicer (EC-

ADFD-PIC) offers performance improvement by mitigating the adverse effects of error

propagation. The simulation results are presented to demonstrate the substantial improvement

in the BER performance of MMSE EC-ADFD-PIC over other multiuser detection techniques.

Previously reported results depict that the P-DFD offers approximately 2dB gain relative to

the MMSE MUD receiver. However, the presented EC-ADFD-PIC provides approximately

3dB performance advantage over the linear MMSE multiuser receiver under the smoothly

time-varying multipath fading channel. The results also demonstrate that EC-ADFD-PIC may

be used for the slow mobile users.

The two-stage DFD using the S-DFD (successive-) and P-DFD in concatenation (S-P-

DFD) suffers due to the error propagation effect for a small number of users. In this work, we

present a novel two-stage MMSE multiuser DFD for the DS-CDMA system working under

the frequency-selective multipath fading environment. The first stage of the proposed

cascaded structure is the noise-predictive successive DFD (NP-S-DFD), in which the active

users are demodulated and detected successively using the conventional Bell Labs Layered

Space-Time (BLAST) ordering criterion. The second stage includes an adaptive

successive/parallel DFD (SP-DFD), which uses the tentative decisions obtained at the first

stage for the multiuser interference cancellation and data detection. Therefore, the presented

two-stage detector may be called the noise-predictive successive SP-DFD (NP-S-SP-DFD).

The first user is detected using the linear MMSE transformation in NP-S-DFD, which may

lead to the error propagation at successive stages due to the wrong detection of data symbol

corresponding to the first user. However at the second stage of NP-S-SP-DFD, the first user

is detected using the parallel interference cancellation approach, which leads to reduction in

the bit error rate. Simulation results are presented to show the substantial improvement in the

BER performance of NP-S-SP-DFD over the conventional single-stage S-, P-, NP-S-, and



cascaded S-P-DFDs. The presented DFD provides performance improvement, when the order
in which the users are detected is optimized according to the BLAST ordering based on
MMSE criterion. However under the low SNR conditions, significant degradation in the BER
performance ofNP-S-SP-DFD is observed due to the error propagation effect. On the other
hand, its performance substantially improves under the high SNR conditions, and the
presented results demonstrate that the NP-S-SP-DFD based on MMSE criterion outperforms
the conventional single-stage and two-stage DFDs.

vi



ACKNOWLEDGEMENTS

I wish to express my deep sense of gratitude to Dr. D. K. Mehra for his invaluable

supervision, encouragement, constructive criticism, and suggestions during the course of

work. He has been generous in undertaking comprehensive discussions and meticulously

reviewing of the thesis, without which the work could not have come to its present shape. I

always found him ready for resolving any of my difficulties and guiding me to the solution.

The working facilities provided by the Head, Department of Electronics and Computer

Engineering, IIT, Roorkee, are highly acknowledged. I wish to express my thanks to the non-

teaching staff members of Communication Lab. I sincerely acknowledge MHRD,

Government of India, for sponsoring my research program.

I would like to thank Dr. Arun Kumar and Mr. S. Chakravorty for their generous,

helping and friendly attitude towards me, who have shared their experiences with me during

the teaching assistantship.

Special thanks to my colleague Mr. Vinay Kumar Shrivastava, presently engineer in

research group of Reliance Infocomm, for fruitful technical discussions.

I wish to express my respectful tribute to my mother Late Mrs. Kamlesh Kr. Kohli,

who passed away during my research program. With due regards, I wish to thank my father

Dr. Jagdish Chander Kohli for motivating me during the course of study. I am grateful to

my sister Mrs. Seema Kapoor for her constant support and encouragement throughout the

research program, which deserves a special mention.

Thanks are due to all the fellow research scholars; especiallyAjey Kumar among others

for his cooperation and support.

Amit Kumar Kohli

vn



CONTENTS

Page No.

COPYRIGHT

CANDDDATE'S DECLERATION

ABSTRACT (i)

ACKNOWLEDGEMENTS (vii)

TABLE OF CONTENTS (viii)

LIST OF FIGURES (xii)

LIST OF ACRONYMS (xv)

LIST OF NOTATIONS (xviii)

CHAPTER1 INTRODUCTION (1)

1.1 Review of the earlierwork (3)

1.2 Statement of problem (22)

1.3 Organization of the thesis (24)

CHAPTER 2 PROBABILITY OF ERROR ANALYSIS OF LINEAR MMSE

MULTIUSER DETECTOR (27)

2.1 Introduction (28)

2.2 Multiuser system model (33)

2.3 Analysis of leakage coefficients (40)

2.3.1 Asymptotic analysis of leakage coefficients (40)

2.3.2 Upper bounds on the probability oferror (43)

2.4 Upper bound on signature sequence cross-correlation function (46)

2.5 Concluding remarks (54)

Vlll



CHAPTER 3 ADAPTIVE ALGORITHMS FOR TRACKING OF SMOOTHLY TIME-

VARYING CHANNELS (55)

3.1 Introduction (56)

3.2 The MG-LMS algorithm (60)

3.2.1 Mathematical formulation (60)

3.2.2 MG-LMS algorithm (62)

3.2.3 Decoupling ofgradient and lag components (64)

3.3 Lag-misadjustment analysis for the MG-LMS algorithm (67)

3.3.1 Determination ofcontrol parameter for the first-order Markov process (68)

3.3.2 Determination oflag-misadjustment for the first-order Markov process (71)

3.4 Simulation results (75)

3.5 Concluding remarks (82)

CHAPTER 4 ADAPTIVE MULTIUSER DECISION FEEDBACK EQUALIZER

RECEIVERS FOR DS-CDMA SYSTEMS (84)

4.1 Introduction (85)

4.2 DS-CDMA system model (89)

4.3 Channel estimator based DFE multiuser receiver (94)

4.4 Adaptive multiuser channel estimation (95)

4.4.1 RK-LMS algorithm based channel estimator (97)

4.4.2 Analysis ofmultiuser channel estimator (100)

4.5 RK-LMS algorithm based adaptive multiuser receiver (103)

4.5.1 Adaptive data detection procedure (103)

4.5.2 Probability oferror analysis (105)

4.6 Simulation results (107)

4.6.1 Performance evaluation ofmultiuser channel estimator (107)

IX



4.6.2 Performance evaluation ofadaptive multiuser receiver (113)

4.7 Concluding remarks (221)

CHAPTER 5 ADAPTIVE MULTIUSER DECISION FEEDBACK DETECTORS FOR

DS-CDMA SYSTEMS USING PARALLEL INTERFERENCE

CANCELLATION APPROACH (123)

5.1 Introduction /^n

5.2 Adaptive decision feedback equalizer using the erasure algorithm (128)

5.2.1 Adaptive E-DFE structure H28)

5.2.2 Erasure algorithm / j3q\

5.3 Partial parallel interference canceller (I33)

5.4 Adaptive multiuser EC-ADFD-PIC (137)

5.6 Simulation results /^Q)

5.6.1 Performance evaluation ofadaptive E-DFE (140)

5.6.2 Performance evaluation of adaptive EC-ADFD-PIC (145)

5.7 Concluding remarks q^a-v

CHAPTER 6 TWO-STAGE MMSE MULTIUSER DECISION FEEDBACK

DETECTORS FOR DS-CDMA SYSTEMS (i52)

6.1 Introduction ,,„%

6.2 Successive interference cancellation scheme n58)

6.3 Noise-predictive successive DFD /j6j\

6.3.1 NP-S-DFD using MMSE criterion (161)

6.3.2 Detection ordering using MMSE criterion (I65)

6.4 Two-stage NP-S-SP-DFD n6?s

6.5 Simulation results n?m

6.6 Concludingremarks ,. _,,
(1/6)

x



CHAPTER7 CONCLUDING REMARKS (178)

7.1 Conclusions (178)

7.2 Suggestions for further work (185)

APPENDIXA DETERMINATION OF THE TIME CONSTANT (188)

APPENDIXB EQUATIONS FOR ESTIMATED WEIGHT ERROR (190)

APPENDIX C DETERMINATIONOF THE PARTIAL CANCELLATION FACTOR

091)

REFERENCES (192)

PUBLICATIONS BASED ON THIS WORK (206)

xi

*•



LIST OF FIGURES

Fig. No. Caption page No.

2.1 Lowpass equivalent representation of the DS-CDMA transmitter for K active users.

(35)

2.2 Illustration ofthe interference caused by the kth user to the desired user signal.

(35)

2.3 Chernoff upper bound on error probability for Binomially distributed leakage

coefficients (45)

2.4 Upper bound on the value ofNCCvs the number ofusers (53)

3.1 Unknown time-variable system (60)

3.2 Graphical interpretation ofthe proposed MG-LMS algorithm (63)

3.3 Relative lag-misadjustment vs a ofMG-LMS algorithm for variable a

{liXmg =0.00land £ =0.75) (73)

3.4 Relative lag-misadjustment vs aofMG-LMS algorithm for variable p

(M™*=0.001and «=0.05) (74)

3.5 Auto-correlation of channel tap-coefficient using the AR(2) approximation with

fdTs= 0.001 (77)

3.6 Convergence and tracking performance comparison of MG-LMS algorithm for

various values of p in terms ofMMSE (dB) (78)

3.7 Variation of MMSE (dB) of MG-LMS algorithm for different values of control

parameter /? ^qx

3.8 Comparison of MG-LMS, G-LMS, NLMS and LMS algorithms for channel tracking.

(81)

4.1 Adaptive MMSE DFE multiuser receiver using the RK-LMS algorithm (96)

xii



4.2 MMSE (dB) vs the number of iterations of RK-LMS algorithm for different values of

Doppler frequencies (109)

4.3 The performance advantage of RK-LMS over the conventional LMS for different

number ofusers (HI)

4.4 Channel tracking performance ofthe RK-LMS algorithm (112)

4.5 BER ofRK-LMS algorithm for different values ofDoppler frequencies (116)

4.6 BER vs the number ofmultipaths for RK-LMS algorithm (117)

4.7 BER vs the number ofusers for RK-LMS algorithm (119)

4.8 BER vs SNR for RK-LMS algorithm (120)

5.1 Adaptive E-DFE with fully connected feedback structure for the kth user (129)

5.2 Graphical interpretation ofthe erasure algorithm for E-DFE (132)

5.3 Partial parallel interference cancellation using the E-slicer (135)

5.4 Block diagram ofthe proposed channel estimator based DFD using the PIC approach.

• (137)

5.5 P-DFD using the E-slicer (138)

5.6 MMSE (dB) vs the number ofiterations for adaptive E-DFE, K=5 (142)

5.7 BER vs the number ofusers for adaptive E-DFE (143)

5.8 BER vs the signal-to-noise ratio (dB) ofthe desired user for adaptive E-DFE. (144)

5.9 BER vs SNR for adaptive EC-ADFD-PIC (147)

5.10 BER vs Doppler frequency for adaptive EC-ADFD-PIC (148)

5.11 BER vs the number ofusers for adaptive EC-ADFD-PIC (149)

6.1 Decision feedback detector usingthe successive interference cancellation scheme.

(160)

6.2 Single-stage noise-predictive successive DFD (164)

XI n



6.3a Two-stage NP-S-SP-DFD with adaptive successive/parallel DFD at the second stage.

(168)

6.3b Adaptive parallel interference canceller (168)

6.4 Performance comparison of single-stage DFDs using the different detection ordering

criteria (171)

6.5 Multipath channel effects on the performance ofNP-S-DFD, (SNR in dB). ... (172)

6.6 Gain of the last detected NP-S-DFD and S-DFD user relative to the linear MMSE

user (174)

6.7 Performance comparison ofthe two-stage NP-S-SP-DFD with other detectors, (SNR

indB) (175)

xiv



ADFD

ADFE

AR

ARMA

AWGN

BER

BLAST

BLUE

BPSK

C-DFE

DFD

DFE

DS-CDMA

E-DFE

EC-ADFD-PIC

EKF

FDMA

G-DFE

G-LMS

HPIC

LIST OF ACRONYMS

Adaptive Decision Feedback Detector

Adaptive DecisionFeedbackEqualizer

Autoregressive

Autoregressive Moving Average

Additive White Gaussian Noise

Bit Error Rate

Bell Labs Layered Space-Time

Best Linear Unbiased Estimator

Binary Phase Shift Keying

Conventional Decision Feedback Equalizer

Decision Feedback Detector

Decision Feedback Equalizer

Direct Sequence Code Division Multiple Access

Decision Feedback Equalizer using Erasure Algorithm based Soft-

slicer

Adaptive Decision Feedback Detector based on Parallel Interference

Cancellation Approach using Erasure Algorithm (soft-slicer) and

Channel Estimator

Extended Kalman Filter

Frequency DivisionMultipleAccess

Generalized Decision Feedback Detector

Gazor'sTwo-step LMS-type (see [60])

Hard-decision Parallel Interference Cancellation

xv



IC

ISI

JD

KF

LMS

MAI

MAP

MBER

MF

MF-ML

MIMO

ML

MLSE

MMSE

MMSE-ML

MSE

MUD

MUI

NBI

NCC

N-CDMA

NLMS

NP-S-DFD

OCI

OFDM

Interference Cancellation

Intersymbol Interference

Joint Detection

Kalman Filter

Least Mean Square

Multiple Access Interference

Maximum aposteriori

Minimum Bit Error Rate

Matched Filter

Matched Filter Maximum Likelihood

Multi-input Multi-output

Maximum Likelihood

Maximum Likelihood Sequence Estimation

Minimum Mean Square Error

Minimum Mean Square Error Maximum Likelihood

Mean Square Error

Multiuser Detection

Multiuser Interference

Narrowband Interference

Normalized Cross-correlation

Narrowband Code Division Multiple Access

Normalized Least Mean Square

Noise Predictive Successive DecisionFeedbackDetector

Other Cell Interference

Orthogonal Frequency Division Multiplexing

XVI

y



PCF

PAM

PIC

P-DFD

RK-LMS

RLS

S-DFD

SIC

SIR

SNR

SPIC

TDMA

V-BLAST

W-CDMA

ZF

ZF-DFD

Partial Cancellation Factor

Pulse Amplitude Modulation

Parallel Interference Cancellation

Parallel Decision Feedback Detector

Reduced Kalman/Least Mean Square

Recursive Least Square

Successive Decision Feedback Detector

Successive Interference Cancellation

Signal to Interference Ratio

Signal to Noise Ratio

Soft-decision Parallel Interference Cancellation

Time Division Multiple Access

Vertical Bell Labs Layered Space-Time

Wideband Code Division Multiple Access

Zero Forcing

Zero Forcing Decision Feedback Detector

xvn



LIST OF NOTATIONS

Ak kth user's amplitude

bk Data bit of k th user

c{ j thchip of kthuser's code sequence

E Expectation operator

fD = fd Maximum Doppler frequency

fP Spectral peak frequency

Yk Complex attenuation factor of k th user

r,k Complex attenuation factor of kth user's / th path

hlk k th user's /th channel coefficient

Jnu Minimum mean square error

Jacess Excess mean squareerror

Jlag Lag mean square error

J0 ( ) Bessel function ofthe first-kind and zeroth-order

K Number of active users in a cell

K/N Load factor

Lk Number of multipaths for kth user

K p th eigenvalue

avg Average eigenvalue

^-max Maximum eigenvalue

^min Minimum eigenvalue

M Step size

XVlll



N Processing gain or Spreading code sequence length

N(mean,var) Statistics ofrandom process

Pk k th user's power level

QG ( ) Complementary unit cumulative Gaussian distribution function

fd Pole radius corresponding tothe steepness of the peaks ofpower spectrum

rk Equivalent lowpass received signal of kth user

f Equivalent lowpass composite received signal

rlsl ISIcomponent in the composite received signal

sk (t) Spreading sequence waveform ofkth user

Tb Data bit duration

Tc Chip interval

Tm Multipathdelay spread

Ts Sample time

rk Total delay for k th user

T,k Total delay for k th user's /th path

Vn, Mobile velocity

®c Carrier frequency

Lag-misadjustment

rt) Chip waveform

(L Parameters under near-far situation

()" Hermitian operator

0* Conjugate operator

[]-LJ

XIX

->



CHAPTER 1

INTRODUCTION

Direct-sequence code-division-multiple-access (DS-CDMA) systems are finding

applications in wireless communications, due to the merits of spread spectrum systems over

the conventional time-division-multiple-access (TDMA) and frequency-division-multiple-

access (FDMA) techniques, where a number of users are assigned different code sequences

(also known as signature sequences), and simultaneously transmit the information over a

common channel using the entire frequency spectrum allocated for transmission [1], [2]. It

has been investigated widely during 1980's, which finally led to the commercialization of N-

CDMA (Narrowband-) in IS-95 standard for the cellular communications. To satisfy the ever

increasing demand for the high data rates to transmit the multimedia traffic for a large

number of users in the network, interest has peeked in W-CDMA (Wideband-) for the third

generation (3G) wireless communication (IMT-2000 standard) due to its enhanced

performance by utilizing the frequency-selective nature of channel [3]-[6].

The DS-CDMA detector receives a composite signal consisting of contributions from

different users, which overlap in time as well as in frequency domain. In conventional DS-

CDMA detector (matched filter receiver), the desired user's signal is detected by correlating

the composite received signal with that of the desired user's code sequence waveform.

However, the non-orthogonal properties of the code sequences and asynchronism (i.e., the

random time offsets for the received signals of different users) lead to the multiple-access-

interference (MAI) along with the additive-white-Gaussian-noise (AWGN). As the numberof

interferers increases, the MAI becomes substantial, causing degradation in the system

performance [7].



The problem of MAI is not only due to the known intra-cell users, but also from the

unknown inter-cell or other-cell users. Due to propagation mechanism, the received signal

from a user close to the base station can be stronger than the signal received from the desired

user located far from the base station. The near-far problem arises as the weaker signal can be

overwhelmed by MAI, and hence the detection is rendered unreliable. However, the

unpredictable nature ofMAI limits the capacity and performance ofthe DS-CDMA system.

Thus, even ifthe receiver thermal noise goes to zero, the error probability exhibits a nonzero

floor because of MAI.

One common strategy to deal with the near-far problem is to use power control. In a

mobile cellular environment, the base station periodically sends information to each of the

mobiles, directing them to adjust their transmitted power in such amanner that all the signals

will be received at the base station at approximately same power level [8], causing wastage of

precious bandwidth.

In addition to MAI, the multipath propagation through the linear dispersive media

introduces intersymbol-interference (ISI) at the high data rates, which severely limits the

performance ofthe conventional receiver [9], [10]. Turin [11] has shown that in a typical

urban environment, the fading may cause severe performance degradation in the DS-CDMA

network, because the conventional matched-filter (MF) receiver is unable to exploit the

multipara diversity.

Multiuser-detection (MUD) techniques are used to overcome the effects of MAI and

near-far problem. In MUD techniques, the receiver jointly detects all the active users in order

to mitigate the non-orthogonal properties ofspreading code sequences. The MUD techniques

have become a topic of extensive research interest since 1986 when Verdu formulated an

optimum multiuser detector based on the maximum-likelihood-sequence-estimation (MLSE)

criterion [12]. However the solution involves a joint Viterbi processor with exponential



complexity in the number of users, which motivates the design of sub-optimum detectors

with complexity linear in the number of users by applying the linear transformations to the

output of matched filter bank to remove MAI [13].

However, the requirements imposed on the DS-CDMA systems in terms of the capacity

and flexibility necessitate the advanced signal processing solutions for the multiuser

interference suppression and detection. The adaptive minimum-mean-square-error (MMSE)

techniques are analogous to the adaptive equalization of the dispersive channels by virtue of

the analogy between MAI and ISI [14]. The MMSE non-lineardecision feedback techniques

are more affective than the linear techniques because the latter is having only feedforward

filter, whereas the former is having feedforward as well as feedback filters to combat ISI

[15]. Thus, the multiuser interference cancellation and detection using the decision feedback

structures in the presence of MAI, ISI and AWGN may be considered as an interesting area

for further research. In this thesis, adaptive decision feedback structures based on the MMSE

criterion are considered to solve the problems inherited in both non-adaptive and linear

multiuser detection techniques.

In the following, we present a brief summary of the earlier work carried out in the

related area, followed by the statement of problem andthe organization of material embodied

in this thesis.

1.1 Review of the earlier work

The conventional MF receiver is vulnerable under the near-far situation. Verdu [12] proposed

and analysed the optimum MUD for asynchronous CDMA system (similar work also

appeared in [16]). The MUD techniques can be divided into two categories: joint-detection

(JD) techniques and interference-cancellation (IC) techniques [7]. In JD techniques, the front

end ofthe receiver is traditionally (but not necessarily) a bank ofMFs followed by filters that



perform linear or non-linear transformations, which are usually computationally expensive.

Lupas and Verdu [17], [18] proposed a computationally efficient linear sub-optimum

decorrelating detector (also known as decorrelator), which possesses ideal near-far resistance

at the cost of noise enhancement analogous to the zero-forcing (ZF) equalizer [15].

Moreover, it requires the knowledge of interference parameters and the inverse of cross-

correlation matrix. Xie et al. [19] first proposed the MMSE DS-CDMA receiver in 1990

using the linear transformation under the AWGN channel. The MMSE detector attempts to

minimize the mean-square-error (MSE) between the transmitted and estimated bits. This

receiver is non-adaptive, and requires the knowledge ofthe noise variance in addition to the

user parameters and the inverse of correlation matrix.

The decorrelating (ZF) detector chooses the linear filter to eliminate the output MAI

[18], and the MMSE detector chooses the linear filter to minimize the average mean-squared

value of the output MAI-plus-noise mixture [19]. Tsatsanis and Giannakis [20] have

thoroughly studied the decorrelating receiver for MAI and ISI suppression. The authors have

identified the conditions under which FIR solutions are possible, and have also presented the

optimal MSE solutions subject to the decorrelating constraint. However, the MMSE receiver

performs better than the decorrelating receiver in the noisy environment. Ithas been shown in

[21] that the MMSE MUD technique offers significant practical advantages, and can be

adapted blindly i.e., without the use of training sequence and the knowledge of interfering

signature waveforms. However, since the MMSE criterion is not directly related to the error

probability or to the distribution ofbackground noise, it is ofconsiderable interest to study

the error probability of MMSE detector in an environment of back ground Gaussian noise.

The design of the linear MUD techniques also depends on the distribution of MAI, which

may be Gaussian or Binomial. In [22] and [23], the authors have presented a useful way to

quantify the non-Gaussianness by analysing the (Kullback-Leibler) divergence of the



distribution of the random variable and the Gaussian random variable with same variance.

Monk et al. [24] have considered MAI as the colored noise, and have used the noise-

whitening approach as well as the MAI noise rejection approach to maximize the signal-to-

noise-ratio (SNR). However, the SNR maximization does not guarantee low probability of

error for the non-Gaussian noise. Pursley and Geraniotis [25], [26] have analysed the spread

spectrum techniques, and have also derived the probability oferror by considering MAI along

with AWGN.

Using the divergence theorem and the probability of error analysis, Poor and Verdu [27]

have demonstrated that the MAI-plus-noise mixture at the output of MMSE linear multiuser

receiver is approximately Gaussian for a large number of users, large SNR values and severe

near-far scenario. This property is very useful in the performance analysis of MMSE

multiuser detectors. The MMSE MUD technique supersedes the decorrelator, if the

normalized cross-correlation between the signature sequences is less than (y2/v3 ]/2 for

the two-user case. Similar to the intersymbol interference error bounds for the bandlimited

signals presented in [28], the authors have proposed Chernoff upper bound on the error

probability of linear multiuser detectors.

Moustakides and Poor [29] have shown that MMSE MUD technique does not

uniformly outperform the decorrelator and the conventional MF receiver. However, the

former detector provides higher spectral efficiencies under severe conditions [30]-[34].

Zhang et al. [35] have further extended these results to fading channels, and have

demonstrated that the MAI at the output of MMSE receiver is asymptotically Gaussian for

almost every realization of the signature and the received power for both synchronous and

asynchronous DS-CDMA systems. However, Wang et al. [36], [37] have shown that the

output SNR and the near-far resistance of MMSE MUD techniques depend on the cross-

correlation matrix of the spreading code waveforms. Their work suggests a number of



interesting problems for further research, including the extension ofthe results presented in

[27] for more than two-user case under the near-far situation.

Amajor limitation ofthe non-adaptive detectors is that they require the knowledge of

spreading code sequences, timings and amplitudes (power) of all the active users. But

unpredictable activities of some users, such as asynchronous mode of data transmission,

make itmore difficult to estimate their received power over a given time interval. Moreover,

the use of non-adaptive receivers will result in a wasted resource of unnecessary

computations ifonly a subset ofpossible users is active. An important subject in MUD is the

design of adaptive detectors that self-tune the detector parameters from the observation of

received signal waveform. Moreover, the difficulty in the calculation of cross-correlation

matrix of the time-varying received signals has given rise to the adaptive MMSE techniques

for the multiuser detection.

Adaptive multiuser DS-CDMA receivers based on the MMSE criterion have been

proposed by many researchers [38]-[40]. These detectors have been implemented without the

knowledge of user parameters, except the timing information of desired user and the training

sequence. The typical operation of these adaptive multiuser detectors requires each

transmitter to send a training sequence at start up, which the receiver uses for the initial

adaptation. After the training phase, the adaptation during actual data transmission occurs in

the decision directed mode. In [38], an AMap MMSE receiver is presented, where N is the

processing gain (signature sequence length). Two computationally efficient MAI suppression

schemes have been considered, namely: the cyclic shifted filter bank scheme and the over-

sampling technique. If the received signals from different intra-cell users are chip

asynchronous, then the different timing offsets across users is an important issue. However in

principle, it can be solved using the fractional chip sampling with the use of the excess

bandwidth. Madhow [41] has suggested a near-far resistant time delay estimation method.



The delay is estimated by running N-parallel adaptive algorithms, and then finding the

delay, which provides lowest MSE. The only requirements are a training sequence for the

desired user and a finite uncertainty regarding the symbol timing.

Miller [39] has proposed an adaptive receiver for combating the near-far problem. The

receiver is a chip matched filter followed by an adaptive equalizer structure to perform the

despreading operation. The receiver is shown to be immune to the near-far problem in the

sense that its performance without any power control is nearly identical to its performance

with perfect power control. This receiver increases the capacity by two fold relative to the

conventional receiver with power control. The training analysis of the adaptive MMSE

receiver is given in [40].

Rapajic and Borah [42] have presented an adaptive MMSE maximum-likelihood

(MMSE-ML) receiver structure, where the conventional front end of the MF maximum-

likelihood (MF-ML) detector is replaced by an adaptive MMSE filter, for the generation of

sufficient statistics. It is shown thatthe replacement of MF bank with theMMSE filter results

in advantages, like ability to perform the joint synchronization, channel parameter estimation,

and significant improvement in the bit-error-rate (BER) performance. However the receiver

requires the knowledge ofspreading sequences ofall the active users, and its computational

complexity increases substantially with the increasing number ofusers.

As real world communication channels are stressed with higher data rates in the

multiuser systems, the ISI becomes a dominant limiting factor along with MAI and AWGN.

The DS-CDMA systems using the non-linear interference cancellation schemes have shown

even better performance if the receiver has the knowledge ofspreading sequences ofall the

active users, the received power level of some interferers and some of the channel

parameters.

To combat ISI, the decision-feedback-equalizers (DFEs) are designed to compensate



channel distortions, which consider the MAI as noise. Instead of using the direct adapting

DFE, one may first estimate the channel impulse response, and then design an equalizer

based on the estimated channel. The estimation of channel parameters is difficult, especially

in the fast time-varying channel of mobile communications and when the SNR changes take

place rapidly. Traditionally, the receivers andequalizers relyon a transmitter assisted training

session to extract the desired reference signal for the channel estimation or equalization.

However, the channel estimation depends on the adaptive algorithm being used in the time-

varying environment.

The optimum solution for the adaptive filtering problem is provided by the Wiener-

Hopf equations. For obtaining the optimum filter tap weights, the correlation matrix needs to

be inverted, which involves high computational complexity 0{N^.), where NT is the number

of filter taps. The least-mean-square (LMS) and recursive-least-square (RLS) algorithms are

normally used to approach this solution. The LMS algorithm is simple to implement, model-

independent, and offers robust performance [43], but its main drawback is its slow rate of

convergence. The LMS filter suffers from the gradient noise amplification problem, when the

dimension of thetap input vector is large. The normalized-LMS (NLMS) algorithm is used to

overcome these problems, in which the step size is adjusted by normalizing it with respect to

the squared Euclidean norm of the tap input vector. The LMS algorithm involves

computations of the order of 0(NT). On the other hand, the RLS algorithm offers faster

convergence but its computational complexity is 0\Nl).

The RLS, extended RLS and Kalman algorithms are commonly used for the time-

varying channel tracking [44]-[47]. Chen and Wang [48] have analysedRLS algorithm based

fast fading channel tracking schemes for the multichannel MLSE equalizer. Sayed and

Kailath have delineated the relationship between the RLS and the Kalman filter in [46].

Under nonstationary environment, the Kalman and RLS algorithms require the system model
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parameters to solve the system identification problem [45]. They are extremely sensitive to

the parametric ambiguities, and hence become unstable under the parameter mismatching

situation. Sayeed and Aazhang [49], [50] have proposed an optimal technique to exploit the

joint multipath-Doppler diversity for the DS-CDMA systems, which can be used to develop

algorithms for the tracking ofchannel statistics, and thus authors provide an alternative to the

Kalman filter based approaches proposed in [51] and [52]. However, the computational

complexity is the main limitation for its implementation in the multiuser detection scenario.

Lindbom and Ahlen et al. [53]-[55] have proposed adaptation algorithms with constant

gains for the smooth tracking of time-varying parameters ofthe linear regression models with

prior information. The parameters are modelled as correlated auto-regressive-moving-average

(ARMA) processes with the known dynamics. The design of presented algorithm is

transformed into a Weiner filtering problem. It gives improved tracking performance with

computational complexity less than the Kalman and RLS algorithms. Over rapidly fading

channels, the proper choice of hypermodel (model for parameters) gives significant

improvement in the tracking process. This technique has found limited applications, because

itscomplexity depends on the hypermodel.

The time-varying Rayleigh fading channels may be modelled by using the first-order

autoregressive process AR(\) i.e., first-order Markov model [56]. Haykin [43] has shown

that the LMS algorithm outperforms the RLS algorithm under typical conditions for AR(l)

channel. Moreover, the LMS is amodel independent adaptive algorithm. But, itsuffers due to

the lag noise in the tracking process [57]. Under nonstationary environment, the LMS

algorithm has been analysed by various authors in [43] and [58]-[64]. The degradation in its

performance is observed due to the lag-misadjustment in addition to the gradient-

misadjustment. Macchi and Bershad [65], [66] have evaluated its performance by using the

complex chirp exponential signals buried in the AWGN, and have also developed the



tracking theory based on the random-walk model [67].

Gazor [60] has presented a two-step LMS-type adaptive algorithm for the system

identification problem, which is developed by exploiting the Kalman filtering algorithm. The

channel is considered to be the first-order Markov process. It supersedes the conventional

LMS algorithm under the nonstationary environment (time-varying plant coefficients) by

combating the lag noise. Benveniste [59] has proposed the multistep algorithms for the time-

varying channel tracking. But, their designs depend on the prior information about the time-

variations of the true system. However, Gazor's two-step LMS-type (G-LMS) adaptive

algorithm does not require such information [60]. It is implemented using the conventional

LMS algorithm in two steps, which track the moving minimum point on the MSE surface

according to the Wiener theory [43]. But it suffers due to oscillatory behaviour in the

convergence as well as tracking mode, which results in the longer learning period and the

high value ofMMSE. This work motivates the development ofa modified version ofthe G-

LMS algorithm, which may track the time-varying channels efficiently by damping the

oscillatory behaviour. However for the G-LMS and the conventional LMS algorithms, a

general tracking theory for the first-order Markov model is yet to be developed. This

algorithm may also be applied tothe direct adapting DFE structures to cancel MAI and ISI in

the nonstationary environment.

George et al. [68] have proposed an adaptive-decision-feedback-equalizer (ADFE) to

detect information transmitted by the pulse-amplitude-modulation (PAM) through a noisy

dispersive linear channel, which outperforms the linear equalizers working under the slow

varying environment. Further, Monsen [69] has shown that the MMSE ADFE sacrifices

diversity for the interference suppression. However, the multipath reception helps to reduce

the diversity sacrifice for ISI suppression provided enough equalizer taps are available.

Mulgrew and Chen [70] have introduced an ADFE using the minimum-bit-error-rate

10



(MBER) as cost function, which may outperform the MMSE approach under the typical

conditions. In general, the relative performance of equalizers designed using the MMSE and

MBER criteria is dependent upon specific channel conditions. At low SNR values in

particular, there may be no significantbenefit in using the MBERcriterion.

For DS-CDMA systems under the Rayleigh fading environment, an effort is made by

Abdulrahman et al. [14] to solve the problem of interference suppression and equalization

by using a fractionally spaced ADFE based on the MMSE criterion, as all the users are

transmitting at the same chip rate. The ADFE minimizes the effects of MAI as well as ISI by

trying to force zeros in the impulse response of interferers at the decision instants. The use of

MMSE ADFE instead of the ZF equalizer may reduce the enhancement of background noise

and sensitivity to the weight inaccuracy due to the finite number of taps and the crude power

control. Like linear fractionally spaced equalizers, the feedforward filter of ADFE can act as

a RAKE combiner, and also exploits the inherent multipath diversity of the spread spectrum

signalling and the over-sampling techniques. Moreover, the finite length MMSE ADFE with

chip matched lowpass filtering is shown to outperform the code sequence matched filtering

approach under the asynchronous conditions due to the non-orthogonal properties of

signature waveforms.

Chaudhary et al. [71] have investigated the performance of DS-CDMA system in an

overlaid cellular environment, in which the processing gain is varied with data rate of the

selected service. It is shown that a MMSE ADFE receiver can be used to integrate dual-rate

services without adversely affecting the system capacity. Klein et al. [72] have proposed

four sub-optimal detectors based on the MMSE and ZF equalization criterions, with and

without decision feedback, to combat both MAI and ISI. The MMSE DFE receiver has been

shown toperform better than the ZF DFE detector and the linear MUD techniques in terms of

the probability of error performance.
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In [73] and [74], the authors consider a centralized adaptive-decision-feedback-detector

(ADFD) using the MMSE criterion, where in addition to a fractionally spaced feedforward

filter that processes the chip matched filter output, a feedback filter processes previous

decisions from all the active users to cancel both MAI and ISI. Honig and Tsatsanis [75] have

reviewed adaptive techniques in the multiuser detection. At very high loads and with

sufficient SNR, the MMSE ADFD offers a significant performance improvement relative to

the linear MMSE receiver. The main drawback of ADFD is the error propagation, which can

significantly compromise performance under the low SNR conditions.

An ADFE/MLSE structure has been suggested in [76], in which the fractionally spaced

forward filter acts as (pre) error whitening matched filter, and the feedback filter acts as

channel impulse response estimator using the MLSE criterion. It has lower complexity than

the conventional MLSE technique, and is more efficient than the conventional DFE. But, the

rapid frequency-selective fading severely affects its performance. Although extending the

maximum a posteriori (MAP) technique to the DS-CDMA systems seems natural, yet it will

not give good performance unless some kind ofMAI cancellation is performed.

Wong et al. [77] have developed an efficient way to apply the MAP technique to the

DS-CDMA systems for the time-selective flat fading channels, in whichthe receiver contains

a code sequence matched filter, whose impulse response is matched to the signature

waveform of desired user. Theoutput samples from the matched filter are fed into a delayed-

decision forward recursive MAP demodulator, which exploits the channel memory by

delaying the decision and using a sequence of observations. Since the processing gain is

designed to be large in most of the practical DS-CDMA systems, it is reasonable to assume

that the matched filteroutputsamples are the Gaussian random variable, which simplifies the

development of MAP receiver. However its design depends on the distribution of MAI, and it

can not be used for the frequency-selective fading channels. Lee and Cox [78] have proposed
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the MAP selection diversity scheme for ADFE, in which the output of the branch with the

lowest estimated a posteriori probability of bit error is used as the final decision, which is

used to adapt the DFE for all diversity branches. But, its application is limited to the

frequency-selective slow fading channels. The proposed scheme is suitable for indoor

wireless environment.

In a different approach, Smee and Schwartz [9], [10] considered the design and the

performance analysis of non-linear (feedback) MMSE detectors for the asynchronous W-

CDMA/DS-CDMA in the quasi-static multipath fading channel for suppressing both MAI

and ISI. The feedforward filter processes samples of the chip matched filter output, and the

feedback filter processes the detected symbols. It may be noted that by increasing the

connectivity of the feedforward filter, so that each user has access to more received samples,

additional diversity advantage can be obtained. Four different structures have been proposed

based on the connectivity of feedforward and feedback filters. The error propagation severely

affects the performance of decision feedback structures presented in [10].

Chiani [79], [80] has proposed E-DFE (erasure-), which reduces the effects of error

propagation by using two thresholds instead of one, in contrast to the conventional-decision-

feedback-equalizer (C-DFE) with single threshold sheer. A symbol is considered unreliable

for feedback, if its absolute value is less than the threshold value. It performs well over

channels with long memory, and gives substantial reduction in the probability of error. In

case of DS-CDMA systems, the threshold value may be obtained by taking the behaviour of

MAI into account, and may develop an erasure algorithm to control the error propagation

effect in the decision feedback receivers.

The blind deconvolution and the blind channel estimation have been developed to treat

the problem ofdetection under the situation of unknown channel [21], [81]. In [21], Honig et

al. have introduced a blind adaptive receiver design by minimizing the mean output energy.
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Torlk and Xu [81] have employed the blind identification method to estimate the channel

response by using the signal subspace technique [82]. However in the blind designs [83]-[86],

the channel is assumed to be unknown but time-invariant in a transmitted frame. Therefore,

their method is not suitable for the time-varying fading channel case. Diggavi et al. [87]

have proposed an adaptive delayed-decision feedback and joint data estimation scheme to

combat the time-varying multipara fading channels in the presence of undesired co-channel

interference. The adaptive receiver uses the quasi-Newton algorithm for the improved

channel estimation, which enhances its performance. The conventional strategy for treating

the slowly fading channel problem is to design an adaptive equalizer using the LMS or the

RLS algorithm [88], [89]. But, both algorithms fail to perform well in a fast fading

environment.

The Kalman-filter (KF), which is known to be the best-linear-unbiased-estimator

(BLUE), has been proposed in the literature for equalization and interference excision under

the frequency-selective time-varying channels [90], [91]. In [92], a discrete Kalman filter has

been considered for the equalization ofdigital binary transmission in the presence of noise

and ISI. The Kalman filter has also been used in the channel estimation and demodulation of

binary signals. Kozminchuk and Sheikh [93] have presented aKalman filtering approach for

the suppression ofnarrowband interference in the DS-CDMA communication systems. This

approach is based on the digital phase-locked-loop Kalman filter. The application of this

concept to the DS-CDMA detection is also described in [94], in which an extended-KF

(EKF) based detector is used for the joint symbol and time delay estimation ofall the active

users in the tracking mode. In [95], a multiuser receiver for the asynchronous DS-CDMA

signals based on the KF is introduced, in which the improved performance of this detector

over the MMSE detector is demonstrated.

In [96], it hasbeen shown thatthe use of KF produces symbol estimates with the lowest
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possible MSE among all the linear filters in long- or short-codesystems for a given detection

delay, and with a complexity that is fixed for a given detection delay unlike the case of

MMSE detector. litis [51] has described a code-tracking algorithm for a DS-CDMA receiver

based on the EKF, which provides both code synchronization and joint estimation of the

interferers and channel parameter. litis et al. [52] have developed a multiuser DS-CDMA

detector without the knowledge of delays and amplitudes of the signals. The algorithm is

made adaptive, and the likelihood function in the symbol-by-symbol metric is updated using

a set of EKF innovations. However the detector possesses high computational complexity,

and moreover it requires the knowledge of noise variance.

McLaughlin [97] has presented an adaptive DFE structure working under the time-

varying environment using the Kalman filtering approach [98]-[100]. Chen and Chen [101]

have proposed an adaptive DFE receiver design to combat the multipath fading. The time-

varying channels are modelled as Rayleigh fading processes to simulate the frequency-

selective fading channels. The Kalman filtering algorithm is employed to estimate the tap-

coefficients of the frequency-selective fading channels. Then, an adaptive DFE receiver is

developed using the Kalman algorithm. In general, the dynamic characteristics of fading

channels cannot be characterised exactly by the system identification method. The presented

receiver takes the channel estimation errors into consideration to improve the performance,

litis [51] has modelled the interference as an Nth-order autoregressive process. A composite

channel that is equivalent to the convolution of pre-whitening filter and multipath channel

coefficients is estimated by an EKF. However in [101], the receiver is designed for multiuser

detection, and the channel model can be directly derived from the Doppler spread of the

fading channel.

Further, Chen et al. [102] have extended the above work by considering effects of

both multipath time-varying fading and the impulsive noise for the design of a channel
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estimation and symbol detection algorithm for the DS-CDMA systems. In contrast to the

conventional autoregressive channel model [103], the proposed linear-trend channel model

with a scheme for tuning the variance of the driving noise is less sensitive to the channel

variations due to the changing Doppler frequency. There is no need to identify the

coefficients oftransition matrix ofthe linear-trend model. The time-varying fading channels

are estimated by the Kalman algorithm based channel estimator with a self-tuning scheme to

track the time-varying fading. Moreover, a decision feedback based multiuser algorithm

using the Kalman algorithm is presented by taking the channel estimation errors into account.

Komninakis et al. [104] have used the Kalman algorithm to estimate the multi-input-

multi-output (MIMO) channel response using the time-varying frequency-selective model

proposed by Bello in [105], which subsequently performs the equalization task in the

multiuser systems. A low order autoregressive model is used to approximate the MIMO

channel variations to facilitate tracking via Kalman filtering algorithm.

The Kalman algorithm is a model dependent algorithm, and also possesses high

computational complexity, particularly in the multiuser detection scenario. However, a new

set of adaptive decision feedback equalizers and multiuser detectors may be developed by

exploiting the Kalman filtering technique to incorporate the two-step LMS-type algorithms.

The multiuser decision feedback techniques exhibit higher spectral efficiency than the

linear MUD receivers, and may handle higher load than the linear MMSE multiuser detectors 4

[106]-[108]. In the absence of error propagation, Muller et al. [106], [107] have

demonstrated that the capacity of DS-CDMA system with the MMSE DFD is close to the

capacity ofan orthogonal-frequency-division-multiple-access (OFDM) technique for the high

load values, which enables power saving relative to the linear techniques. The multiuser

decision feedback strategy for the DS-CDMA was first proposed in [109], and was motivated

by the earlier work on MIMO DFEs [110]. Duel-Hallen [111] has presented two multiuser
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DFDs: P-DFD (Parallel-) using the parallel-interference-cancellation (PIC) scheme and S-

DFD (Successive-) using the successive-interference-cancellation (SIC) scheme.

Koulakiotis and Aghvami have discussed the IC techniques in [7], which are

characterized by the regeneration and subtraction of definite or tentative data decisions. But,

these techniques require the knowledge of channel parameters (phase, amplitude, and delay).

Viterbi [112] first suggested the processing of received signal by a SIC scheme, where one

interferer is cancelled at each stage from the received signal [113]. It offers less complexity,

and provides reliable detection of the weak users. But its disadvantages include the long

delay associated with the detection of last (weakest) user, and the error propagation if the

channel parameter estimates are not reliable. Moreover, there is a need to reorderthe signals

whenever the powerprofilechanges. Patel and Holtzman [114], [115] have analysed the SIC

scheme.

On the contrary, the interference cancellation for all the active users takes place

simultaneously in the PIC approach. In this scheme, all the K active users create replicas of

their interference contributions to the other K-\ users' signals. Then, their replicas are

subtracted simultaneously from the K -1 users' signals. This scheme cancompletely remove

interference if the original interference estimates are correct. This scheme offers low delay

for the detection of all users. The different PIC schemes proposed in the literature use the

tentative decisions obtained form the linear MMSE MUD techniques or the conventional MF

detectors for the multiuser interference suppression and data detection.

Two types of PIC schemes are classified according to the tentative decision device:

hard-decision PIC (HPIC) scheme, in which the output of sheer is used for IC, and soft-

decision PIC (SPIC) scheme, in which the soft-output of correlator or linear receiver is used

for IC [116]. The results presented by Buehrer and Nicoloso in [117] depict that the HPIC

scheme performs better than the SPIC scheme because the decision statistic is biased when
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the linear estimate of the symbol or channel is used for IC. However, the BER performance

degradation is observed because ofthe error propagation effect due to the unreliable tentative

decisions.

The cancellation of spurious signals with incorrect decision feedback leads to the

interference enhancement. An intuitive approach is to cancel a fraction of the estimated

interference, if a symbol estimate is thought to be unreliable. Divsalar et al. [116] have

proposed the partial PIC approach, in which the partial-cancellation-factors (PCFs) are

introduced to control the interference cancellation level.

The partial HPIC scheme based on the hyperbolic tangent device (optimal from the

MMSE considerations based on a Gaussian interference assumption) provides superior

performance than the linear and null-zone non-linear device based HPIC schemes. On the

other hand, we may improve the performance of SPIC schemes by reducing the decision

statistic bias using cancellation with PCFs. The simplest approach is to multiply all the

symbol estimates by the constant PCFs with value less than unity. However, this approach

may be modified by using the variable PCFs based on the value ofcorrelator output.

Renucci and Woerner [118] have presented adetailed discussion for the optimization of

PCF value. Guo and Li [119] have determined the optimal PCF value under some simplifying

assumptions. But, its application is limited to a small number ofusers. In [120] and [121],

PCFs are obtained adaptively by using the LMS algorithm. However, this scheme is valid

under slowly varying environment. Li et al. [122] have derived the optimal PCFs for the

partial SPIC schemes. This method is only applicable under the perfect power control

condition. Ghotbi and Soleymani [123] have presented a combination of soft and hard PIC

detectors, whose performance is superior to the SIC receivers and other sub-optimum

techniques. In the first few stages ofthis scheme, the received composite signal is refined

using the partial SPIC schemes to improve the signal-to-interference-ratio (SIR), and at the
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final stage, the partial HPIC scheme is used to suppress the interference. However in this

technique, the multistage processing delay is more relative to the available adaptive PIC

techniques.

In another adaptive scheme, Hou et al. [124] have proposed a recursive least square

algorithm based PIC structure to improve the SIR, and to handle the MAI effect. This

adaptive PIC structure includes the narrow-band-interference (NBI) cancellation filters

followed by the MAI cancellation filters. In order to avoid performance degradation due to

the unreliable initial detection, a robust coefficient f has been introduced in the proposed

design. The drawback of this method is that it is impossible to determine the theoretical

optimal value of coefficient y. Therefore, its value is determined using the extensive

simulations at the different values of SIR for the AWGN channel.

In a more sophisticated approach, Hsieh and Wu [125] have proposed a two-stage

decoupled partial SPIC receiver, which outperforms not only the two-stage full SPIC

receiver, but also the three-stage full SPIC. Using MBER criterion, acomplete set of optimal

PCFs is obtained for the periodic and aperiodic spreading codes under the AWGN and

multipath channels. The respreading strategy is used in the receiver design, which requires

the knowledge of spreading sequences. The optimal PCFs can be calculated online efficiently

in the time-varying environment, when the exact channel response and the noise variance are

assumed to be known at the receiver end. The two-ray multipath channel model has been

used to verify the theoretically derived results. It has been observed that the optimal partial

SPIC schemes have good immunity in the presence of channel estimation errors. However,

the power control scheme imposes extra burden on the cellular system. Moreover, the

respreading technique increases the complexity ofthe receiver.

Hou and Chen [126] have addressed the multiuser interference suppression and data

detection by using the parallel interference cancellation scheme, which provides multipara
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diversity and processing gain protection. The forward filter is proposed, in combination with

the feedback filter, to remove the effects ofMAI and ISI by parallel cancellation using the

RLS algorithm. Host-Madsen and Cho [127] have analysed the linear and non-linear MMSE

PIC schemes for the multiuser detection in the DS-CDMA systems. The combined

MMSE/PIC detector provides considerable gain over the MMSE detector. The MMSE/PIC

detector is shown to possess robustness to the large code cross-correlations. However, it

requires the knowledge ofcode sequences at the receiver end. For asynchronous DS-CDMA

system, Ratasuk et al. [128] have presented an adaptive P-DFD using the least-squares

algorithm. But, it needs to have the knowledge of covariance matrix of the received signal

vector, and it converges slowly in the time-varying environment. Further, Woodward et al.

[129] have analysed the detection procedure ofasingle undetected user using the MMSE PIC

scheme in the decision feedback scenario.

In all the above discussed PIC schemes, the MAI is considered as the main factor in the

system performance degradation. We may use the time-variable PCF values to control the

error propagation effect in the MMSE PIC scheme by replacing the tentative hard-decisions

with soft-decisions. However, the PIC scheme requires a large number of

regenerations/cancellations, and moreover it requires fast power control for all the active

users in a particular cell %£., single stage PIC scheme is not near-far resistant. Varanasi and

Aazhang first suggested a multistage PIC technique in [130], and have also studied different

multistage detectors in [131] and [132], which achieve considerable improvement over the

linear multiuser detectors. But they require accurate estimation of the channel parameters,

which increases the complexityof multiuser receiver.

Duel-Hallen [109]-[111] has introduced the multiuser zero-forcing decision-feedback-

detector (ZF-DFD). It performs linear pre-processing (partially decorrelates the users)

followed by SIC detection. The interference from the strongest user is removed by the use of
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decision feedback leading to the significant performance improvement as compared to the

decorrelating detector. The ZF-DFD can be implemented by computing the Cholesky

decomposition and the matrix inversion operation. It also requires the estimate of received

signal amplitudes, as all the active users are arranged in the descending order according to

their received power level.

Varanasi and Guess [133] have analysed the decision feedback multiuser equalizer with

successive decoding, which achieves the total capacity of the Gaussian multiple access

channel. The S-DFD is more beneficial than the P-DFD if processing delay is not the

constraint. However, the detection ordering ofall the active users for S-DFD in the presence

ofMAI, ISI and noise is an independent issue for further research. Waters and Barry [134]

have proposed a noise-predictive S-DFD (NP-S-DFD) for the MIMO channels, which uses

the Vertical-Bell-Labs-Layered-Space-Time (V-BLAST) ordering criterion. The MMSE

based approach is shown to outperform the ZFapproach in the SIC scheme.

The receiver setting of V-BLAST architecture for very high spectral efficiencies over

the wireless channels with rich scattering may be viewed as the MMSE generalized-decision-

feedback-equalizer (G-DFE, [135]) as applied to a MIMO channel [136], because the G-DFE

employs reordering of the received sub-streams, which is an inherent feature of V-BLAST.

Therefore, the G-DFE may beused to remove MAI and ISI inthe DS-CDMA transmission.

Although the performance ofthe noncausal infinite length DFE is always better than

that of the realizable (causal and stable) DFE with finite decision delay [137], yet both

designs have different advantages from the viewpoint of realizability and application of

adaptive algorithms for the optimum performance over the frequency-selective fading

channels. Cioffi et al. [138] have shown that the MMSE DFE (biased or unbiased

configuration) performs significantly better than the ZF DFE, particularly at moderate-to-low

SNR values and on severe ISI channels. Al-Dhahir and Sayed [139] have extended the work
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presented in [137] to analyse a finite length MMSE DFE in a MIMO environment. Fast and

parallelizable algorithms for computing the finite length MMSE MIMO DFE are presented

for the multiuser detection with the modified SIC and PIC schemes for the DS-CDMA

systems. However, it requires the knowledge of multiuser multipath channel coefficient

matrix.

Foschini et al. have introduced the V-BLAST architecture for highly spectrally

efficient wireless communications in [140] and [141], in which the user's bit stream is

mapped to a vector of independently modulated equal bit rate signal components that are

simultaneously transmitted in the same band. A signal detection algorithm similar to the

multiuser detection has been employed to detect the desired signal component in the presence

ofAWGN. Wai et al. [142] have proposed the replacement ofthe optimal detection order in

V-BLAST by a sub-optimal one and the utilization of Gram-Schmidt orthogonalization to

substitute the computations ofpseudo-inverse in finding the weight vector. The V-BLAST

ordering provides motivation to use this concept to order the active users in SIC schemes.

Moreover, the NP-S-DFD based on MMSE criterion may be implemented for multiuser

detection inthe DS-CDMA systems.

1.2 Statement of problem

The presented work encompasses astudy of adaptive decision feedback detection techniques

based on the MMSE criterion for the multiuser interference suppression and detection ofDS-

CDMA signals. The aim of the work is to study and develop adaptive decision feedback

architectures for the high data rate wireless transmission under the multipath fading

environment, which can combat intra-cell as well as inter-cell interference (MAI and ISI) in

the presence of AWGN; and to develop an adaptive algorithm, which requires low

computational complexity, possesses faster convergence rate, provides efficient tracking of

the smoothly time-varying channels with minimum misadjustment, and may be incorporated
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in the adaptive non-linear multiuser detection techniques.

The problem, as treated in this work, may be broken up into five main parts as follows:

i) A study of the probability of error performance in the MMSE multiuser detection for

the DS-CDMA systems. The analysis of asymptotic conditions, under which the

behaviour of MAI can be assumed to be Gaussian. The evaluation of bounds on the

error probability of MMSE MUD technique using the SNR of desired user and the

cross-correlations of code sequence waveforms under the near-far situation.

ii) A comparative study of LMS, NLMS and two-step LMS-type adaptive algorithms in

the nonstationary environment. The development of a novel two-step LMS-type

adaptive algorithm to track the time-varying channels, and the study ofits nonstationary

characteristics.

iii) A study ofadaptive decision feedback equalizer for the multiuser detection using the

two-step LMS-type algorithm obtained by exploiting the Kalman filtering algorithm

under the multipath time-varying channels, which uses the adaptive multiuser channel

estimator to cancel ISI.

iv) The development of a novel erasure algorithm to control the error propagation in

decision feedback structures, and its incorporation in the adaptive decision feedback

equalizer for the asynchronous DS-CDMA systems. A study of adaptive multiuser

decision feedback detector using a novel parallel interference cancellation approach, in

which the erasure algorithm is used for the partial feedback of decisions to control the

error propagation effect,

v) A study of two-stage MMSE multiuser decision feedback detector using a novel

adaptive successive/parallel interference cancellation approach, which uses the MMSE

noise-predictive criterion for the successive detection procedure and the determination

ofdetection order of all the active users.
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1.3 Organisation of the thesis

Chapter 2: Probability oferror analysis oflinear MMSE multiuser detector

In this chapter, we first introduce MMSE and decorrelating linear sub-optimum detectors

based on the linear transformation applied to the output of matched filter bank. We assume

the near-far scenario. We define MAI as a function of leakage coefficients, and also

investigate their distribution using the divergence theorem, which determines the behaviour

ofMAI at the output of sub-optimum detector. We next determine the Chernoff upper bound

on the error probability of linear MUD receiver. We also obtain the upper bound on code

sequence cross-correlation and the SNR of desired user using the probability of error

analysis, for which MUD techniques outperform the decorrelating detector.

Chapter 3: Adaptive algorithms for tracking of smoothly time-varying channels

In this chapter, we present a two-step LMS-type adaptive algorithm for the system

identification problem, where the time-varying unknown plant coefficients are modelled as

the first-order Markov processes. We consider the problem of lag noise in the tracking of

smoothly time-varying channels in case of the conventional LMS algorithm. We first

introduce the smoothing and control parameters in the proposed algorithm to control the

tracking speed and the oscillatory behaviour respectively, and also derive analytical results to

determine the optimum value of control parameter using the lag and gradient decoupling

theorem and the direct averaging method. We next present the lag-misadjustment analysis for

the proposed algorithm, and also obtain the working range of the control parameter. The

performance of the proposed two-stage LMS-type algorithm is compared with the LMS,

NLMS and other two-step algorithms. The simulations are carried out, to verify the derived

analytical results, and to analyse the effects of smoothing and control parameters on the

performance of the proposed algorithm.
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Chapter 4: Adaptive multiuser decision feedback equalizer receivers for DS-CDMA

systems

In this chapter, we combine the spread spectrum technique and the two-step LMS-type

adaptive algorithm considered in chapter 3 to develop an adaptive multiuser receiver for the

DS-CDMA systems using the reduced Kalman/LMS (RK-LMS) algorithm. We first describe

the DS-CDMA system under the multipath fading environment in the matrix form. We

present the RK-LMS algorithm based multiuser channel estimator, and cancel ISI due to the

past data bits from the received signal vector by using the estimated multipath channel

response. We analyse the effects of smoothing and control parameters on its performance.

We next propose the adaptive multiuser receiver using the RK-LMS algorithm, and also

analyse its probability of error performance. We evaluate its performance by simulating a

number of numerical examples, and also demonstrate that the proposed adaptive multiuser

receiver outperforms the conventional LMS algorithm based approach under the smoothly

time-varying multipath fading environment.

Chapter 5: Adaptive multiuser decision feedback detectors for DS-CDMA systems using

parallel interference cancellation approach

We next propose a novel erasure algorithm to control the error propagation effect in the

adaptive MMSE DFE for the asynchronous DS-CDMA system. We evaluate and compare its

performance with the conventional adaptive DFE under the frequency-selective fading

channel using simulation technique.

We then present an adaptive multiuser DFD using the parallel interference cancellation

approach. The soft output of linear MMSE MUD is processed using the erasure algorithm,

and subsequently fed into the PIC structure as the tentative decision. We first discuss the

detection procedure for a single undetected user in a particular cell assuming all other active

users have been detected. We next present the adaptive multiuser detection using the partial
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parallel interference cancellation scheme under the multipath fading environment. We

evaluate its performance using simulation technique, with and without channel estimator

based pre-cancellation ofISI, to show its performance gain over the linear MMSE multiuser

detection technique.

Chapter 6: Two-stage MMSE multiuser decision feedback detectors for DS-CDMA

systems

In this chapter, we present a two-stage MMSE multiuser DFD for the DS-CDMA systems

working under the multipath fading environment. We first discuss the noise-predictive

successive DFD (NP-S-DFD) as the first stage of the proposed cascaded structure, in which

the active users are detected successively using the MMSE noise-predictive ordering

criterion. We next propose a novel adaptive DFD using the successive/parallel interference

cancellation approach at the second stage, which uses the output of NP-S-DFD as the

tentative decisions for the interference suppression. Numerical examples are simulated to

demonstrate that the proposed adaptive multiuser DFD supersedes the conventional single-
stage and two-stage DFDs.

Chapter 7: Concluding remarks

We conclude the thesis with a summery of the important results and suggestions for future

work.
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CHAPTER 2

PROBABILITY OF ERROR ANALYSIS OF LINEAR MMSE

MULTIUSER DETECTOR

DS-CDMA offers advantages over other multiple access techniques like TDMA and

FDMA in terms of multipath resistance, inherent frequency diversity, interference rejection,

and the potential use of advanced antenna arrays in the design of multiuser receivers [9]. In

multiuser systems, two commonly used approaches for detection are the conventional

matched-filter (MF) and the optimum maximum-likelihood (ML) detectors [12]. The former

appears vulnerable to the near-far problem and the latter is highly complex. The decorrelating

and MMSE linear sub-optimum multiuser detectors take the structure of MAI into account

and provide the near-far resistance, which is ignored in the conventional matched filter

detector. The decorrelating detector completely eliminates MAI but enhances the background

noise [18]; whereas the MMSE detector tries to minimize the mean square error between the

transmitted and estimated bit, which minimizes the average value of MAI-plus-noise at the

output of linear multiuser detector inthe DS-CDMA system [19], [143].

In this chapter, we first briefly review different aspects ofthe sub-optimum techniques

used for the joint multiuser data detection and interference rejection in section 2.1. In section

2.2, we introduce the synchronous DS-CDMA system model with non-orthogonal codes, and

also present details about the performance evaluation ofdecorrelating and MMSE multiuser

detectors in terms ofthe leakage coefficients. Section 2.3 analyses the behaviour ofleakage

coefficients for equi-correlated signals, which is used to prove that as the number of users

increases, then very high signal-to-noise ratio becomes the stringent condition for the desired

user. In section 2.4, upper bound on the code sequence normalized-cross-correlation (NCC)
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has been derived for K>2 users to achieve the performance advantage in MMSE multiuser
detection over the decorrelating detector. Finally, conclusions are given in section 2.5.

2.1 Introduction

In a DS-CDMA system, the transmitter multiplies each user's signal by a distinct code
waveform or signature sequence. The detector receives a signal composed of the sum of

intra-cell and inter-cell users' signals, which not only overlap in time domain but also in

frequency domain. The multiple access interference is a major factor along with the
background Gaussian noise that limits the performance of amultiuser system, which results
in the near-far problem when the interfering signal is stronger than the intended signal [2].
The problem of MAI becomes severe in the asynchronous systems, where orthogonality
between the spreading code sequences cannot be maintained. Moreover, it is not possible to
design the code sequences for any pair of users that are orthogonal for all the time offsets.
The use of code sequences such as Gold codes, which have smaller cross-correlation peak
values, leads to MAI even under the synchronous conditions. Pursley et al. have delineated
the relationship between the spread spectrum multiple access system performance and the
spreading code sequence correlation function in [25], [26], [144] and [145].

In a DS-CDMA system, the conventional matched filter receiver correlates the

composite received signal with the signature sequence of the desired user, ignoring the
existence of MAI. One common strategy to deal with the near-far problem in the
conventional receiver is to use power control. But even under asingle path fading channel

condition, the transmitter would have to adjust its power at least afew hundred times per
second [39], causing wastage of precious bandwidth. Another strategy to overcome the MAI

and near-far problem is to use the linear multiuser detection technique [13]. The optimal
multiuser detector as proposed by Verdii [12] in 1986, is based on the maximum-likelihood-
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sequence-estimation (MLSE) criterion. The optimum MLSE receiver requires a priori

knowledge about the numberof activeusers, their signature sequences, signal amplitudes and

transmission delays for all the multipaths. The main drawback of this detector is its high

computational complexity, which increases exponentially with the number ofusers.

The MAI is not an inherent flaw of the DS-CDMA system, but results from the inability

of conventional MF receiver to exploit the information available from MAI [146]. The

substantial performance degradation is observed with the increasing number of users due to

MAI [7]. Another limitation on the performance of DS-CDMA systems is imposed by the

multipath fading, which also introduces ISI due to the multipath propagation [10]. However,

the multiuser detection has been shown to be a very promising method for improving the

BER performance and increasingthe capacityofDS-CDMA system [13].

As an alternative to the conventional MF and ML approaches, the linear sub-optimum

multiuser detectors have been explored, in which the complexity of receiver grows linearly

with the number of interferers. By taking into account the structure of MAI, it is possible to

obtain a dramatic improvement in the BER performance of MF detector. Two key sub-

optimum multiuserdetectors are the decorrelating detector and the MMSE detector, in which

theestimated databitsare obtained by applying the linear transformation to the output vector

of a matched filter bank, involving the correlation matrix inversion operation [18], [19].

Although these linear sub-optimum multiuser detectors do not achieve the minimum BER,

yet they satisfy alternative optimization criterion (minimum error probability) based on the

performance indices such as the asymptotic efficiency and the near-far resistance [27].

Pursley [25] has considered the average SNR and the average error probability for the

performance evaluation of DS-CDMA system in the AWGN channel. Anderson and Wintz

[147] have obtained a bound on SNR at the output of correlation receiver for an

asynchronous spread spectrum multiple access system by taking the cross-correlations of
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signature sequences into account. It is shown in [144] that the average SNR can be computed

by using only the spreading code sequence auto-correlation values. Detailed analysis of an

asynchronous DS-CDMA system is presented in [25] to reveal that the code parameters have *

the greatest impact on the performance due to their aperiodic cross-correlation properties.

Under worst conditions, the author suggests to choose that code sequence, which minimizes

the maximum probability oferror according to the minmax criterion. The upper bound on the

worst case error probability has been proposed by considering the maximum magnitude of

the spreading code sequence aperiodic cross-correlation. Further, the effects of mean square S
code sequence correlation on the error probability of the DS-CDMA system have been
analysed in [144].

The upper and lower bounds on the probability of error in the multiuser system are

obtained by using the convexity properties of the error probability function in [145], which
are valid for the system in which the maximum value of MAI does not exceed the desired

signal value. Geraniotis and Pursley [26] have analysed different error probability
approximations using the periodic and aperiodic properties of the code sequence cross-

correlation function. However the presented approximation is based on the integration of the

characteristic-function of the MAI component at the output of correlation receiver, which is

motivated by the earlier work on intersymbol interference problem in [148] using the
characteristic-function method. It provides a very accurate approximation to the average *
probability of error. Accuracy can be improved by using this approximation to obtain an

expansion point for aTaylor-series representation of the actual probability of error. Any pre-

specified degree of accuracy may be achieved by employing the combination of the

characteristic-function method followed by aseries-expansion method. This method does not

require the evaluation of higher-order moments. This feature is particularly important for the

DS-CDMA systems working under the selective fading, in which higher-order moments are
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difficult to compute.

For DS-CDMA systems transmitting over the time-varying multipath channels, both

MAI and ISI arise. The conventional sub-optimum receiver consisting of a bank of matched

filters is often insufficient because the interference is treated as noise. Klein et al. [72] have

presented four sub-optimum detectors based on the MMSE and ZF criteria. The authors have

defined signal-to-"noise and interference" ratio parameter, which takes into account not only

the noise but also MAI and ISI. Using this parameter, the bit error probability for the desired

user can be estimated under the time-varying environment. If the knowledge about the

existing correlations is taken into account at the receiver, the estimation oferror probability

may be improved. The probability of error analysis demonstrates that the MMSE criterion

based multiuser detectors outperform the ZF based approaches.

The MAI in a multiuser system plays an important role in the performance analysis and

characterisation of fundamental system limits. Zhang et al. [35] have studied the behaviour

of the output MAI of the MMSE multiuser receiver, under imperfect power control

conditions, for a large number ofusers. Almost for every realization ofsignature sequences,

the conditional distribution of the output MAI converges weakly to the same Gaussian

distribution as in the unconditional case. The performance ofMMSE receiver is robust to the

randomness of the signature sequences. The Gaussianity justifies that from the view point of

detection and channel capacity estimation, the signal-to-interference ratio is the key

parameter that governs the performance of MMSE multiuser receiver.

The asymptotic multiuser efficiency and the asymptotic SIR at the output ofmultiuser

detector have been derived in [30] and [31] respectively. Verdu [32] has considered the

spectral efficiency as the fundamental figure ofmerit, which is a function ofthe number of

users, processing gain and SNR. It has been shown that the optimal multiuser efficiency of

the asynchronous DS-CDMA system is nonzero with unit probability of bit error. The
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asymptotic analysis of the multiuser detectors can be used to prove that the MMSE receiver

has higher spectral efficiency under the severe channel conditions [30]-[33]. The sensitivity
of channel capacity and the worst case error probability have been analysed by taking into
account the non-Gaussianness of MAI component in [22] and [23] respectively. It may be
inferred from the results presented in [36] and [37] that the MMSE multiuser detector

supersedes the RAKE receiver under severe conditions, including large number ofusers and

large channel length. The output signal-to-noise ratio and the near-far resistance are also
related to the cross-correlation matrix of the spreading code waveforms. Because of greater
ability to combat MAI as well as noise, the MMSE multiuser detector is widely used in blind
and non-blind adaptive applications.

Poor and Verdu [27] have presented the performance analysis of MMSE linear
multiuser detector in an environment of non-orthogonal signalling and background Gaussian
noise, in which the probability of error has been considered as akey parameter. In particular,
the behaviour of MAI-plus-noise mixture at the output of MMSE detector is examined under
various asymptotic conditions. As probability of error is not directly linked to the MMSE
criterion, therefore the leakage coefficients have been introduced as alinking parameter. The
authors have considered the probability oferror in the multiuser detection as afunction of the
leakage coefficients and the normalized cross-correlation values, which is minimized to
derive the optimum conditions. The leakage coefficients of interferers tend to zero under

different asymptotic conditions like large signal-to-noise ratios; large near-far ratios; and
large number of users; therefore the output MAI-plus-noise is considered to have the
Gaussian distribution.

For aparticular two-user case [27], it has been proved on the basis of probability of
error and non-Gaussianness in the MAI-plus-noise mixture that if NCC is less than

2/V3J/2, then MMSE detector is better than the linear decorrelating detector. The
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Kullback-Leibler divergence theorem has been used to measure the non-Gaussianness in

MAI-plus-noise mixture by comparing it with a Gaussian random variable having the same

mean and the variance. Further, Moustakides and Poor [29] have shown that, contrary to the

general belief, the MMSE detector does not uniformly outperform the decorrelating and

matched filter detectors. But ranges ofparameters, for which the performance disadvantages

arise, are somewhat at the extreme ofpractical systems. However the analytical results are

not available for arbitrary number of users (K>2), in terms of the leakage coefficients,

under the near-far situation.

Inthe present work, we analyse the behaviour of leakage coefficients, and also calculate

upper bound on the spreading code sequence normalized cross-correlation value for K users

under the near-far situation. The higher values of leakage coefficients indicate that their

probability density function is Binomial in nature, whereas the smaller values support

Gaussian nature. Therefore, we have calculated the SNR of interferers at which the leakage

coefficients maximize. While divergence theorem gives a limiting value of SNR of

interferers, below which the Gaussian approximation for MAI-plus-noise mixture can be

used. It is that interference level, at which the non-Gaussianness maximizes. The difference

in two derived values decreases with the increasing number ofusers, and coincides for alarge

number of users. This result verifies that the MAI-plus-noise mixture is asymptotically

Gaussian. The above results are used to derive the upper bounds on error probability in the

MMSE multiuser detection. Further, the exhaustive solution for the minimization of

probability of error yields upper bound on the signature sequence normalized cross-

correlation value.

2.2 Multiuser system model

In the following, we consider aspread spectrum binary communication system, employing
normalized modulation waveforms j,(t),s2(t), ... ,sK(t), such that
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(2.1)

where c) is the yth chip (±\/Jn) in the spreading code sequence of *th user, Tc is the
chip period, N is the length of spreading code in terms of the chip periods, l/ViV is the
energy normalization factor, and ys(t) is the real transmitted chip waveform shape, which has
unit energy in the time interval 0</<rc i.e.,ys(t) =0 for ^[0,rJ. The transmitted
bandpass signal for the kth user may be written as:

ct(r) =Re U^Kii\{t-iTb)\e^ =Rek(/y*] (2.2)

where bk(i) is areal valued transmitted data symbol ±1, sk(t) is the spreading signature
sequence of user k,Akis the amplitude level (Ak =JIFk), Tb is the symbol period (with
Tb =NTC), and coc is the carrier frequency. Each user's transmitted signal (with signal power
level Pk) is assumed to pass through an independent flat fading channel, which transforms
thebandpass signal for kth useras:

rk(t) =Re I^Z^MM-iTb-rk)\e^ =Rek(/>*.'] (2.3)

where rk(t) is the equivalent lowpass signal, and the complex quantity r*(0=|n (+"*"*'*
represents the complex attenuation factor for the Ath user. We define the total delay as

Tt =Qk +tk. For kth user, Qt is the delay with respect to the desired user, and tk is the

propagation delay. If Kactive users are present in the DS-CDMA system as shown in Fig.
2.1, then the equivalent lowpass composite received signal after the demodulation is
represented as:

'*)-Z*W+o»M
*=i

(2.4)

where n(t) is the white Gaussian noise with zero-mean and unit power spectral density, and
a is the noisescaling factor.
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Flat fading channel

emit)
(AWGN)

Fig. 2.1: Lowpassequivalent representation of the DS-CDMA transmitterfor K active users.

6,(1-1) *•(<) *.0" +l)

**M) Kij)

Fig. 2.2: Illustration ofthe interference caused by the kth user to the desired user signal.
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Assuming yk(t)=l for k=1,2, ... ,*, the composite received signal (2.4) during /th
interval in the AWGN channel can be rewritten as:

^ =|^IUk(>-/TA -rk)+an(t) (2 5)

For synchronous model, each user is assumed to have the relative delay {rk} equal to zero.

The normalized signalling waveform sk is supported only on the interval [0,7;], with *th

user's /th data bit bk (/). The output of matched filter bank is aKx1dimensional vector v,

whose kth component is the output ofafilter matched to sk in the ith data interval i.e.,

y>(!)= \h{t-iTb)P{t)dt, k=l,2,...,K (2>6)

For i=0, the sufficient vector y can be written as:

y = RAb+ an
(2.7)

where Rdenotes the normalized cross-correlation matrix of the signal set ,„,„ ... ,Sfc with

R»=Pm =<sk,Sl>; A=diag{Al>A2, ... ,AK\; bis the Kxl dimensional data bit vector,

whose *th component is bk; and n is a N(0,i?) random vector, independent of b. The

linear sub-optimum multiuser detectors incorporate the linear transformation <Af to the
output vector ofmatched filter bank, such that

bk=sgn{{My)k}

For the decorrelating detectors, M=R~\ However for the MMSE detectors, the linear

transformation M minimizes the second-order moment of error between the bit bk and
output bk.

m=mz{r+*>a->Y (2.9)
Applying this linear transformation to the output vector of matched filter bank to detect

the

36



desired user, we get yl ={My\ . Therefore, the MMSE detection process for information bit

of thedesired user is dependent on the sign of the quantity

zi=^r =bl+mK+{a/Bl)n1 (2.10)

where, Bk=Ak(MR\k and «, =n(o,(MKM)u)

The quantities mK and (cr/5,)??, are the MAI and the background Gaussian noise at the

output of MMSE detector respectively. The multiple access interference comprises of

leakage coefficients BX,B2, ... , BK, defined by

A =
B„

which results in the discrete multiple access interference component

mK=b2B2+b3B3 + ... +bKBK

Using (2.9), we can write

MR = I-(t2MA'2

where, I is the identity matrix. It follows that

{MR)u=l-^-Mn

and {MR\k=-^Mlk
*

Substitution of (2.14) and (2.15) in (2.11) results in

A-
Ak(MR\\,k o a

A(MR)U A, Ak
•M

\k

A\ J

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

where, the values of M„ and Mlk are determined by using the following linear

transformation with matrix inversion operation.
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M=[r +ct2A-2Y.
( «-2 A

^---—1-./

A

A'

#1

(2.17)

The above partitioned form of the inverse of [* +cr^j allows the mathematical
simplification for further analysis, which results in

M = MuPIH?

- ^.^rV, #;' +n,xH-xpxP\H- (2.18)

with //,"/ =

u

-p(H1-1p1 >Pi=]Pu Pn - Pik],

and HX=RX +
(2.19)

a*/A
J

where, the matrix tf, is obtained by deleting the first column and the first
that

row from R; such

M„ =u=Pn = PiffiPx

and Mlk=-Mu(p[H1-ll

where, \fiH?\ refers to the coefficient corresponding to the *th user. Like the worst case
error probability analysis for the multiuser system in [25], we consider the situation when the
value of MAI overwhelms the desired signal value. We make the following assumption to
obtain the value of leakage coefficients under the near-far situation.

Assumption 2.1: Assume that under the near-far problem, all other active users are at higher
power level than the desired user. Such that
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A2 —A3 — ... —AK —ANF > Ax

Pkj - Pnf (scalar) and pkk = 1

A=A= .« =A=Aw

Under the assumed conditions, the matrix //, maybe rewritten as:

Hy =ANF+pf/Fl f

1+^T-PwF, I+-35—Pmf, ... ,1 +-z—Pnf

(2.22)

where, ANF = diag
4J

and 1is a (^-^xl dimensional column vector with all the elements equal to unity. It may

be inferred from (2.22) that Hx is a rank-1 modification of the positive definite diagonal

matrix ANF. Therefore, wecan write H~l inthe closed form as [27], [149]:

with v42 = ... = il, = ^

Z/-1 - A"1 n tw- - ^NF
l +p^fA^l

which further yields

A'*T~
Pnf T \-\17A

1+p^rA-^i

and tffffV, = 2*^4*4

Using(2.20), (2.21), (2.24) and (2.25), we obtain

( \

PnfMu=-Mv

1+-^- +Pnf(K-2)
*NF

and Mu = '1 ^ a4(*-P

v1

1+7^ +^f(^-2)
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(2.24)

(2.25)

(2.26)
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Substitution of(2.26) and (2.27) in (2.16) leads to

f

PNF=Pk = (
1 +

A2^•NF J

Pnf

+PNF(K-2)-p2NF(K-l)
(2.28)

2.3 Analysis of leakage coefficients

The leakage coefficients can be analysed to investigate their Gaussian or Binomial character,
which determines the behaviour ofMAI at the output of the linear sub-optimum detector.
2.3.1 Asymptotic analysis of leakage coefficients

Proposition 2.1: For a large number ofusers, the leakage coefficients follow the Gaussian
distribution underworst conditions.

Proof: At boundary conditions, the following relations exist.

1. <7->00,£ PnfA
NF

NF-^NF

o-->0, BNF-^0

2. *NF
->0,/5^->0

*NF -»°o, BNF->0

The leakage coefficients maximize at some intermediate value

determined by differentiating BNF (2.28) w.rJ. (ANF/a);

d{BNF)
= 0

*NF

Ma*(pNp)U =_ O- Pup
f

A\ 2 Jl +PNF(K-2)-p2NF(K-l)
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^NF
, which can be

V or JM

(2.29)

(2.30)



which occurs at,
f A >\

^•NF

\ ° Jm

It is clear that as K -> <x>,

(A \ANF

V o- )M

Alternatively, the output MAI-plus-noise can be considered Gaussian up to a certain value

(A \—— , at which thenon-Gaussianness maximizes. This canbe calculated using (Kullback-
V O- JN

Leibler) divergence theorem, in which the MAI-plus-noise mixture is compared with a

J\+pNF{K-2)-p2NF{K-l)

->0 and Max(BNF)^>0

Gaussian random variable [22], [23]. Therefore, we can write

K

MAI - plus - noise ='£dBkbk+<j «,, with the variance a
k-2

Such that, <r2MPN =^Bl +g2{MRM\x
*=2

We have (MRM)U =MU- o-2 (mA~2m\ ,

=Mu-^TM2i-^-M2k(K-\)
a; ••NF

which results in

2 1/2
°~MPN = O- M{

1 a 2 A

Mn A
= a2+v2

i J

where, a2 =±B2k =±A2k(MR)lk =*<±?$
k=2 k=2 a*

2

MPN

Using (2.26) and (2.27), the above equation can be simplified to give

Pnf

*NF 1+~2- +Pnf(K-2)
*NF
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(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



From (2.33) and (2.36),

vJ=<rJA/,2—-- -a (2.39)

Since the non-Gaussianness is a monotonic function of fl, as demonstrated in [27];

therefore we need to find rNF =&. that maximizes this factor. Using (2.38) and (2.39), it
be easily shown that

cr
NF

y2 k+rNFa)^rNFb)-crNF

where a, b and c are definedas:

a=(l +PNF(K-2))

Mi+/U*-2)-/4(*-0)

c=plF{K-\)

2 s \

The term iL maximizes at r - * _I ahf
NF~(abfW

andM^NF)N=(B,

can

(2.40)

(2.41)

(2-42)

The distance between the two derived signal-to-noise ratio values of interferers in (2.31) and
(2.41), which maximizes the leakage coefficients and the non-Gaussianness respectively, may
be defined as:

(a1ANF ( i2 ^*NF

V JM

( i2 ^*NF

ya Jn

\-Jb/

as K -> oo, it may be shown that

i l+pNF{K-2)
l+PNF(K-2)-P2NF(K-l)
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The relative distance between the two points decreases with the increasing number of users,

and ultimately coincides at the asymptotic condition. It is clear from above analysis that for a

large number of users, the leakage coefficients follow the Gaussian distribution. Hence, we

canconsider the MAI-plus-noise mixture asymptotically Gaussian.

Example 2.1: For a two-user case, it can be shown by using the result (2.41) that the factor

a2 • • (A2 ^—- maximizes at r„ - itML
N -f- „2

Pnf

This result is same as proposed in [27]. But, the new result derived in terms of relative

distance is

*NF

\°~ J

fAL\ l-Vi"1 2

Pnf

1~PnF

aspNF-+0, A
1A2 ^ANF

VCT J

1A2 AANFand pNF -»+l/-l, A

(2.45)

->00

It is clear that the relative distance increases with the increasing magnitude of NCC.

Moreover, the equation (2.43) can be used to showthat the relative distance is maximum for

K=2. On the contrary, the value of a(a2,f/ct2) approaches to zero for a large number of

users (2.44). Therefore the two-user case is considered to be the worst case for nonzero NCC,

in which the non-Gaussianness is maximum. Therefore, it may be inferred that the leakage

coefficients follow the Binomial distribution for a small number ofusers.

2.3.2 Upper bounds on the probability of error

The above analysis can be used to derive the Chernoffupper bound on the probability oferror

in the MMSE multiuser detection. Using the MMSE detection equation (2.10), we may
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partition the leakage coefficients into two sets as BinUGau =J2,3,4, ... ,k\. The subsets

Bin and Gaa consist ofBinomial and Gaussian distributed leakage coefficients respectively.
Following the results presented in [28], it may be shown that the Chernoffupper bound is

Probability oferror =Pe <exp-

( V

1-IIAI
V UBin J

{MRM\l+YPl
keGau J

* J

The above bound holds subject to the condition

£|A|<1
k=2

(2.46)

(2.47)

For asmall number ofusers with high SNR, the multiple access interference term may be
subtracted from the desired signal value. The leakage coefficients follow the Binomial
distribution, and if the signature sequence normalized cross-correlation matrix is non-

singular, then it can be proved by using the assumption 2.1 and Gau ={0} in (2.46) that

2{a2{MRM)J (2-48)

Under the near-far situation, the condition (2.47) can be modified as:

(K-\}PNF\<\
(2.49)

Whereas for alarge number ofusers with BNF ->0, the leakage coefficients are considered

Gaussian distributed. The Chernoff upper bound can be derived by using the assumption 2.1
and Bin ={0} in (2.46) so that

Pe < exp 1

2

NF
—(MRMl.+iK-l)^

(2.50)

44



0.022

8 fl) 12 14
SNR(dB)for Interferers

16 18 20

Fig. 2.3: Chernoff upper bound on error probability for Binomially distributed leakage coefficients.

45



The values of Max(3NF)M and Max(8NF)N can be used in (2.48) and (2.50) to evaluate the

upper bounds on error probability under worst conditions. For Binomially distributed leakage
coefficients and non-singular matrix R, the upper bound (2.48) on probability of error
increases with the increasing number ofusers (as shown in Fig. 2.3). Here, we have chosen
lOdB SNR for the desired user and NCC = 0.25.

Proposition 2.2: For unbiased performance of the MMSE linear multiuse detector, the
signal-to-noise ratio of the desired user should be more than the minimum bounded value
U

a

Such that,

Al _(*-i)
* min

Pnf

l+PNF(K-2)-p2NF(K-\) (2.51)

Proof: Using the leakage coefficient analysis discussed in subsection 2.3.1, we can replace
BNF with Max(8NF)M in (2.49) to obtain atight bounding condition; which results in

(K-qMax(BNFU<l

Using (2.30), itcan be simplified to give

<A

This shows that the signal-to-noise ratio of the desired user should be greater than the above
defined value for the unbiased functioning ofMMSE multiuser detectors.

2.4 Upper bound on signature sequence cross-correlation function

It has been shown that the performance of spread spectrum multiple access system is
dependent on the signature sequence normalized-cross-correlation (NCC) values [25], [26],
[144], [145]. It is apparent from the results presented in [27] that for aDS-CDMA system
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using the non-orthogonal signalling scheme under the AWGN channel, the MMSE linear

sub-optimum multiuser detectors have lesserbit errorrate than the decorrelator onlywhenthe

NCC is less than or equal to the upper bounded value for a two-user case [27]. This is true

only if the condition (2.49) is fulfilled. For K > 2, this conjecture can also be proved for the

worst-case conditions.

Proposition 2.3: For K>2, if the normalized cross-correlation is less than the upper

bounded value, then the probability of error in MMSE detection is less than or equal to the

error probability of the decorrelator.

Proof: Using multiuser detection equation (2.10), the probability of error for linear multiuser

detector is defined as:

( K a

A
P,=Pr

*=2

(2.52)

Under the near-far situation (assumption 2.1), it is straightforward to show that the error

probability (2.52) in the linear multiuser detection is represented as [143], [150]:

•m ~ 0a:-i 2-i Qc
«i_A«K+tf

l+ArZ*k
*=2

MmrmVo1
(2.53)

B?

where, QG denotes the complementary unit cumulative Gaussian distribution. In above

K

equation, we may use p =Vftt .
*=2

The simple arithmetic operations show that

p=[-{K-\\ ... ,-2,0,+2, ... ,+(K-l)\ for K=odd

p=[-{K-1), ... ,-l,+l, ... ,+(K-l)J for K=even

Now, the probabilityoferror for the MMSE multiuser detector can be rewritten as:
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N{0.2 K-l](K^_
•e(l,3 K-\fK=EVEN)

Qo
1+0M

fggjS
(M„4

Here, (Mi?M)u =Mn-cr2|;^l

r ^and (M^^fl-^-M,,

Using (MRM\X and (M?)„ in (2.54), it can be shown that

ifl(x,y,z)+f2(x,y,z)}P = —

Z W6{0,2....i^lV/:ODD)
•.:£{\X-X-lKK=EVEN)

(

+ato |(mrm),,
y v

fV-TUWwhere ^(x.J.^^JllZN],^^^,)^JlzzH

^.=7r^2=4-+^F(i:-2),
A\ ANF

^.^A-pI(k-i)

y=pNF-R,

2=̂ -Pnf{K-1)1\ +2^2)+^+A..

a =pIf{k~2Xk-i)

(2-54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

Assumption 2.2: Let us consider the case, when \p\=(K-\) in (2.55). For this boundary

condition, fx{x,y,z) has MAI in the favourable condition, which is considered to be the best

case. Whereas, all the leakage coefficients are having opposite sign in f2{x,y,z), which
leads to the worst case.
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Applying above assumption in (2.55), we get

JS.i(ar«±zfcm+aftfc!l
2 11 z ) \ z

(2.61)

The probability of error for the decorrelator for above case is p.D = p.\ i.e., the error

probability with —j- =0. Fora two-user case,
AyjC

p"=Qg(^aa^pJ;s (2.62)

As NCC tends to unity, the performance of decorrelator approaches the conventional MF

detector i.e., Pf -+ %• It is clear that its error probability is independent of the noise

variance. But, this is not true for the MMSE multiuser detector. Now, we will show that for

the given normalized cross-correlation range in the minimum meansquareerrordetection,

Px < 0 for </>2 > 0
d<f>.

d*. •Pi"
:2 -x^ffxu i

X —

2
Q'a

'x + yJK-ijf

+
pNF{K-\)z2-2y{K-\\[$2u

2z3Ji2

'x-yJK-l)
+ Q'g

1
X —

2
Q'o

rx+y{K-\)\ (

-Q'o
j

(2.63)

(2.64)

x-y(K-iy

where, u=(l - p2NF (K -1)+<f>2). We now make use ofthe following

z2 -x4txu =p2NF(K-lll +pNF(K-2)-p2NF{K-\)] (2.65)

and

^(^-l)z2-2^-l)V^M =^(ii:-l)[l-^(^-l){l-pJVF(^_2)}-^] (2.66)

The substitution of (2.65) and (2.66) in (2.64) yields

90;
u---^m^i¥+nK-^Hum^2zi^j2n<j). te-fM (2.67)
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where, # =l-/4(*M)+^(*-lX*-2);>0

t- \K
AH

/&) =
1

Pnf

( aJ-\
tanh

'*-y{K-\)

(2.68)

(2-69)

The condition —j* ^0is fulfilled only if &-/&)) in (2.67) is anon-negative term. It is

clear from (2.68) that for <f >0(positive value), the following relation should exist.

1,0
H (2.70)

Let us consider the favourable positive range ofNCC for the condition (2.70) u.,
0<pNF<l

(2.71)

Consider the case £ > 0

Case 2.1: If ^>VJy, then &-/&)) depends on the non-negativity of term <f, and which
is true for (2.70) and (2.71).

Case 2.2: For 0<<*2 <Vtf, the optimum conditions can be found out by investigating the
argument of 'tanh' term in (2.69), under which /fo) is maximum. Here

fih) =-
Pnf

f rr

P^Jfrfa)tanh

For smaller values ofargument, the following approximation can be used,

lim tanh(m)-»w
m-»0 v '

Consider the term rfa) for further analysis, which is given by

{{l +2t2ll-p2NF{K-l))+ti+Af £ I3D^\

(2.72)

(2.73)



Such that Ho^'r^f-'^-''(l-^(K-l))+A (2J4)
The r(^2) maximizes at

t2mm=d-(l-p2NF(K-l))>0 (2.75)

where,

d=(pNF*]K-\\[b (2.76)

Substitution of (2.75) in (2.73) results in

(K-\\K<0 = -TJ- (2.77)
V. 2rf ;

The condition (2.75) can be rewritten as:

-2pt/F{K-i)2+p3NF{K-l){K-2)+3p2NF(K-l)-l>0 (2.78)

IfNCC is equal to unity, then r{<f>2msil) approaches infinite value. To avoid this situation, the

condition b > 0 imposes a bound on the value ofNCC is.,

~J^T)<pNF<1 (2-79)
The NCC range (2.71) satisfies the condition (2.79). For this case, the solution of

4d3-p2NF{K-l)2HZ0 (2.80)

We can use (2.71), (2.78) and (2.80) to determine the optimum range for the spreading code

sequence normalized cross-correlation value, which is explained with the help of following

example.

Example 2.2: For K=2, we can show that (2.78) and (2.80) reduce to give the following

conditions respectively.

Pnf^-P2nf-^-Pnf)x) (2.81)
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A>~Pnf^pTf (2-82>
From (2.81) and (2.82), itcan be proved that

S<pNF^h"i (2-83)
The results are same as the equations (113) and (114) in [27].

Example 2.3: For K>2, the solution can be found out using the numerical analysis
techniques. For K=3, the resulting NCC range is 0.4314 <pNF <0.8203. The upper bound

on the value of NCC for the different number ofusers is shown in Fig. 2.4. The analysis
shows that the conditions (2.78) and (2.80) are sufficient to derive the results for K<7. But

for alarge number ofusers, the argument of tanh in (2.69) being large, we can not apply the
approximation (2.72).

The above examples show that the upper bound on the value ofNCC decreases with the

increasing number ofusers. Under near-far situation, the probability of error in the MMSE
multiuser detection can be calculated for worst NCC (pNF -> l) /A

,>i{a(A±i^j+^^fci| (284)

a~ (2.85)
where, t=j\+{K-l)^E-

For a large number ofusers and ANF >Ax,

*4&%(K-iHW
Ĵ

(2.86)4

From the results proposed in [27], it is evident that the error probability of decorrelator

approaches ^, as the value of NCC tends to unity. This clearly shows that /» <pf i.e., the

MMSE multiuser detector is more robust.
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Fig. 2.4: Upper bound on the value of NCC vs the number ofusers.
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2.5 Concluding remarks

In this chapter, we have analysed the MMSE linear multiuser detector under worst

conditions. The behaviour of MAI at the output of sub-optimum multiuser detector has been

investigated in terms of the leakage coefficients, and we have also shown that the signal-to-
noise ratio of the desired user should be greater than the minimum bounded value, which

depends on the number of users and the value of signature sequence normalized cross-

correlation. It may be inferred from the derived analytical results that the leakage coefficients

follow the Gaussian distribution, for alarge number ofusers, under the near-far scenario. On

the contrary, the Binomial distribution may be used for asmall number of users. The two-

user case is shown to be the worst case with maximum non-Gaussianness in the MAI-plus-
noise mixture at the output of linear MMSE multiuser detector. The Chernoff upper bounds
on the error probability of MMSE multiuser detector have been proposed for the Binomial as

well as the Gaussian distributed leakage coefficients. In [27], upper bound on the normalized

cross-correlation function has been presented for K=2. Here, we have derived the upper

bound and the optimum NCC ranges for 7>K>2 under the near-far situation. The MMSE

multiuser detector exhibits lower probability oferror in comparison to the decorrelator only if
the value ofNCC is less than or equal to the upper bounded value. In the end of section 2.4, it
has been shown that the MMSE detector outperforms the decorrelating detector under worst
conditions.
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CHAPTER 3

ADAPTIVE ALGORITHMS FOR TRACKING OF

SMOOTHLY TIME-VARYING CHANNELS

Adaptive signal processing techniques are finding increasing applications in DS-

CDMA systems for equalization and interference excision, which may require the use ofthe

estimated value of the time-varying channel parameters. The adaptive algorithm is the

backbone of the channel estimator/predictor, using the pilot signals, in such adaptive

multiuser interference suppression techniques. The time-varying Kalman filter constitutes the

MSE-optimal linear algorithm for estimating the regression parameters based on the linear

model of their behaviour [156], and it can be used for channel tracking [53]. Unfortunately,

its computational complexity is high, and it also suffers due to the numerical instability

problem. On the other hand, the LMS algorithm has been found suitable for tracking slow

varying channels. It motivates the extension and optimization of the structure of LMS-like

adaptation laws for tracking the smoothly time-varying channel parameters with low

computational complexity. For the system identification problem, we present a modified

version of the two-step LMS-type adaptive algorithm motivated by the work of Gazor [60],

and also describe the nonstationary adaptation characteristics of this modified two-step least-
mean-square (MG-LMS) algorithm.

In this chapter, we first briefly review different adaptive algorithms used for the

tracking of time-varying channels in section 3.1. In section 3.2, we describe the smoothly

time-varying system model, and also present details about the mathematical formulation of

the nonstationary environment arising due to the variations in system parameter values. We

next introduce the proposed MG-LMS adaptive algorithm, and also discuss its nonstationary
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adaptation characteristics. In section 3.3, we assume that the time-varying system is governed
by an independent stationary ergodic first-order Markov process. The analytical results are
derived to show the different aspects of the presented algorithm in terms of the lag-
misadjustment. Simulation results validating mathematical analysis are presented in section
3.4. Finally, conclusions are given in section 3.5.

3.1 Introduction

In the field of adaptive signal processing, the LMS is an extensively explored algorithm, and
has found wide applications for the stationary environments due to its implementation
simplicity [43]. However, its performance degrades substantially in the time-varying
environment (nonstationary case) [58]-[64]. This degradation arises mainly because of the lag
noise in addition to the gradient noise, which is measured in terms of the dimensionless
quantity, called "Misadjustment" [57].

The quality of adaptive algorithm is also defined in terms of the misadjustment, the
ratio of excess mean square error in an adaptive system to the minimum possible MSE [43].
The higher the misadjustment, the lower is the quality. The misadjustment is caused by three
errors in the adaptive weight vector [65]: i) the noise-misadjustment, which is due to the
noisy character of the input signal; ii) the lag-misadjustment, which is independent of the
additive noise and is due to the time-varying nature of the optimal weights; iii) the gradient-
misadjustment, which is due to the presence of gradient noise in the stochastic gradient
adaptivealgorithms.

The random-walk model has been used for developing the tracking theory for the LMS
algorithm in [67]. Macchi et al. have evaluated the performance of LMS algorithm in the
nonstationary environment, where the nonstationarity is introduced by using the complex
chirp exponential signal buried in AWGN [65], [66]. In [151], Haykin et al. have presented
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the modular learning strategy for the detection of a target signal of interest, when the

transmitted signal is considered to be corrupted by the interference with unknown statistics (a

source of nonstationarity). However in the present work, we are considering the system

identification problem for the tracking of wireless channel, in which the channel response is

time-varying.

In a recent paper [44], it is shown that the time-varying fading channel may be

accurately modelled by using the second-order autoregressive i.e., AR(2) process. The

analytical and simulation results presented in [56] depict that the first-order Markov channel

provides a mathematically tractable model for the time-varying Rayleigh fading channels.

However for the LMS algorithm, a general tracking theory of the first-order Markov model is

yet to be developed.

For a first-order Markov channel, the LMS algorithm performs better than the RLS

algorithm under typical conditions [43]. It produces a minimum level of misadjustment that is

smaller than the corresponding value produced by the RLS algorithm. Moreover, the model

independent design of the LMS algorithm provides an additional advantage over the RLS

algorithm. In [46], Sayed et al. have presented the RLS algorithm as a special case of the

Kalman filtering algorithm. In nonstationary environment, the substantial degradation in the

tracking performance of the RLS algorithm is observed due to the design constraints.

Subsequently the extended RLS algorithm has been proposed in [45] for the adaptive systems

under the time-varying environment, which provides better tracking performance than the

LMS algorithm. However, the limitation of this technique is that it requires the knowledge

about the original dynamical system model to solve the system identification problem.

The Kalman filtering algorithm is considered to be optimum for such applications [46],

[47]. In multiuser scenario, Chen et al. have presented the Kalman filtering algorithm for

channel estimation [102]. A simple linear-trend channel model is proposed for the efficient
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channel estimation „fc toe.valyillg cha„ne| Mse ^^^ ^^^^^
and requiremen, of fte knowledge of sys,em mode, may often preCmde the above Kalman
filter based approaches. To avoid the online Riccati updating in the ordinary Ka,mM
adaptation laws, Lindbom e, a,, have proposed the Wiener-LMS algorithm f„, ft. improved
tracking performance [53]-[55]. ft requires prior information a„ou, ^ mode| rf^^.^
of time-varying parame,ers (hypermodel). The major drawback of this technique is that its
implementation depends on the knowledge ofcovariance matrix ofthe regrassors. Moreover,
me complexity of mis algorithm is directly coupled to the choice of hypermodel. Therefore,
this technique has found limited applications.

In another approach, Gazor has simplified the Kalman algorithm ,„ obtain atwo-step
LMS-type (G-LMS) adaptive algorithm for the system identification problem, in which the
nonstationarity has been introduced by considering the plant coefficients to be time-va^ing
according to afirst-order Markov process [60]. This algorithm supersedes the conventional
LMS algorithm because of its ability to combat the lag noise. Unlike the Wiener-LMS and
other multistep algorithms [59], this adaptive algorithm does no, require any prior
inforraation abou, the time-variations of the ftue sysfcn, However i, requires relauvely
longer naming period for the ini.ia. leamingi during ^ ^ ^.^ ^.^ ^
algorithm accounts for the high value ofresidual MMSE.

The G-LMS algorithm is implemented in two stages [60]. The first sage includes the
conventional LMS algorithm, which approaches unique minimum point on the mean square
error-surface according to me Wiener meory [43]. Ms i„troduces me ,ag.misadjustment „
well as me gradient-misadjustment. ft is apparent ma, the adaptive filter has aquadratic bowl-
shaped error-surface, whose position in me weight-space is in apermanen, * of motion.
The second stage is estimation of me weigh, increment vector using another independent
conventional LMS algorithm wM, asmooming parameter, which is used to pradic, the weigh,

58



vector for the next iteration of first stage. The two stage processing reduces the

misadjustment due to the lag noise by tracking the moving minimum point. The above

procedure uses the information that the weight increment vector is correlated to the weight

vector for the next iteration. However for the first-order Markov channel, the analytical

results for misadjustment due to the lag noise have not been reported so far in literature for

the G-LMS algorithm.

In the following, we propose a modified version of the G-LMS algorithm, where a

control parameter is incorporated for the prediction of weight vector for the next iteration.

This control parameter is used to suppress oscillations during the convergence mode in the

training period. Instead of relying on the intuitive justification as in [60], we formulate a

stability criterion for the proposed algorithm. It ensures stable behaviour during convergence

as well as improved tracking performance in the smoothly time-varying environments. The

mathematical analysis for a nonstationary case, where the plant coefficients are assumed to

follow a first-order Markov process, shows that the MG-LMS algorithm contributes less lag-

misadjustment than the conventional LMS and G-LMS algorithms. Further, the stability

criterion imposes upper bound on the value of control parameter. The analysis focuses on the

impact of smoothing and control parameters on the lag-misadjustment in the tracking process.

These derived analytical results are verified and demonstrated with simulation examples,

which clearly show that the lag-misadjustment reduces with increasing values of the

smoothing and control parameters under permissible limits. Moreover, the MG-LMS

algorithm reduces to the conventional LMS algorithm under typical conditions, which

signifies its flexibility.
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3.2 The MG-LMS algorithm

3.2.1 Mathematical formulation

In this section, we consider atime-variable system as an example of the nonstationary
environment (as shown in Fig. 3.1). If the input signal is *(*) and the corresponding desired
weight vector is H0(n), then the desired signal is defined as:

d(n) =H»{n)X{n)+e{n)

where, e(n) is AWGN with N(0,y„J and ()* is the complex Hermitian operator. The
input signal is assumed to satisfy the following basic assumptions.

Assumption 3.1: The sequence X{n) is stationary with finite moments.

Assumption 3.2: X(n) is independent of the noise sequence e(n) /.,., E[x{n)e" {n)\=Q,
where E[ ] is the expectation operator.

X(n)

INPUT SAMPLES

X(ri)

UNKNOWN

TIME-VARIABLE
SYSTEM

MG-LMS
ADAPTIVE

FILTER

~7

AWGN

with VARIANCE J
nun

V^+ d{n)
y(M-WEIGHTS) [ s

m

Fig. 3.1: Unknown time-variable system.

For tracking the variations in the system response, we consider adiscrete-time filter with
Mxl dimensional input vector X(n) at time n. Using the principle of linear combining, the
output ofadaptive filter with Mxl dimensional weight vector H(n) is given as:
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y(ri) =HH{n)x{n) (3.2)

which gives the measurement noise £(«) corresponding to the desired signal d(n), such that

S{n)=d{n)-y{n) (3.3)

Using the above assumptions, the optimum solution of Wiener-Hopf equation in the matrix

form yields H0(n)= R~lP(n). The MxM dimensional correlation matrix ofthe input signal

is defined as R=E[x(n)X"(«)] =QAQ" (Toeplitz), where A=diag(lx,A2, ... ,XM) is a

diagonal matrix of eigenvalues and Q is the matrix containing eigenvectors. The M x1

dimensional cross-correlation vector between the input signal and the desired response is

P(n) =E[X(n)d* (n)\. The mean square error in the adaptation process is denoted as j(n),

and is given as J(n) =E[^(n)^'(n)\. IfJ^ is the minimum MSE, then j(n) can be defined

as:

A") =J^ +{H{n)-H0{n)TR{H{n)-H0{n)) =^ +Jma(n) (3-4)

In the above equation, Jexcess{n) 1S the excess mean square error at time n. Therefore, the

constant quantity Jt^n always prevents a perfect match between the unknown system and the

adaptive system. The MSE quadratic bowl varies in position with changing impulse response

of the unknown system, and H(n) attempts to match the unknown H0 (n) on a continual

basis while tracking. Using the method of steepest descent, the changing weight vector is

represented as:

H{n +1) =H{n)+ 2juE[x(n)*" («)] (3.5)

where the scalar parameter p. is stepsize, which controls the convergence and stability.

It is clear from (3.4) and (3.5) that the adaptive process tracks the bottom of the MSE

bowl, which is moving. Therefore, we canassume thatthe total excess noise is due to the lag

in tracking process i.e., Jexcess{n) =Jiag{n)> which can be measured in terms of the
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misadjustment as:

Lag -Misadjustment =Elag = i /og^
nun

This dimensionless quantity is an index of mismatch between the impulse responses of
unknown system and the adaptive system. The lag-misadjustment is the only factor, which
can be used to determine the efficiency of MG-LMS algorithm in the nonstationary
environment.

3.2.2 MG-LMS algorithm

In the two-step LMS-type (G-LMS) adaptive algorithm [60], the first-order and second-order

increment weight vectors are H0{n-\)zH0{n)-H0{n-\) and H0{n-l)^H0{n)-H0(n-\)
respectively. For further analysis, we assume

Assumption 3.3: H0{n) and H0(n) are modelled as zero-mean processes [60], [64]. The

corresponding auto-correlation matrices are e[H0{n)^ {k)}= 5{n -k)Cov(H0) and

El#o(»)H?(k)]= S(n-k)Cov(H0) respectively, where S( )is the Koroneker function.
Assumption 3.4: H0{n), H0{n), e(n) and X{n) are statistically independent.

The vectors H0{n-\) and H0{n) are considered to be correlated. Both increment vectors are
taken into account to simplify the Kalman filter as:

H(n+l)=H{n+l)+2pX(n^(n) Q?)
where, H(n +1) is apriori estimated weight vector.

H(n+l)=H(n)+2apX(n)Z"{n) (3 8)
In (3.7) and (3.8), the Kalman gains or blending factors are replaced by 2p and 2ap.

respectively. Where 0<a<l is asmoothing parameter, which controls the lag in tracking
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the time-varying system. The a priori estimated weight vector in (3.7) is defined as:

H{n+l) =H(n)+ H{n) (3.9)

Since the second stage (3.8) includes the conventional LMS algorithm without the a priori

estimated weight vector, therefore under the optimum condition i.e.,

H{n)-*H0{n) =He{n +\)-H0{n) (3.10)

Equation (3.7) can be rearranged by using (3.9) and (3.10) as:

#(« +l)s H0(n +l)+AH(n)+2pX(n)t"(«) (3.11)

where, the tracking weight error vector is

AH{n)=H{n)-H0{n) (3.12)

It may be inferred from the above equation that the sum ofweight error vector AH(n) and

gradient vector 2pX(n)^" (n) oscillates about the optimum weight value, which prevents the

matching of the tracking weight vector and the optimum weight vector.

t H(n +l

n n + \

Fig. 3.2: Graphical interpretation of the proposed MG-LMS algorithm.

In the proposed MG-LMS algorithm, the first-order estimated increment weight vector is

scaled with a control parameter to control the oscillatory behaviour. Therefore, (3.9) can be

redefined as:

H(n +l) =H(n)+BH{n) (3.13)
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where, 0</?<l is areal valued parameter. Using (3.10) and (3.13) for /?*!, the tracking
equation (3.7) can be modified as:

H(»+l)=H0(n+l)+AH(n)+2MX(n)*»(n) (3 H) ?
where, H.(n +l) =H.(n)+BH0(n) is the apriori estimated weight vector. In the above
situation, the control parameter ft adjusts the location of poles to damp the oscillations
(described in section 3.3). Therefore by adjusting the values of „ and ft parameters, we
obtain amodified version ofthe G-LMS algorithm with same computational complexity. The »
parameter a influences the tracking of time-varying system, while the parameter ft provides
stability.

The MG-LMS algorithm belongs to the family of stochastic gradient adaptive
algorithms. The estimation of the first-order increment weight vector helps in reducing the
lag noise during tracking, but application of the conventional LMS algorithm in step (3.8)
contributes minor gradient noise in addition to the residual lag noise because the value of '
smoothing parameter is small. However, the major reduction in lag noise points toward the
improved tracking in the time-varying nonstationary environment.

3.2.3 Decoupling of gradient and lag components

Using apriori estimated weight vector (3.13) and the second-order increment weight vector V
i.e, H(n)=H(n+l)-H(n), the tracking weight vector (3.7) at time „+\ can be rewritten
as:

H(n+l)=H(n)+BH(n+l)+2pX(n)Z»(n)-BH(n) (3 15a)
Substitution of(3.8) in (3.15a) results in

^(»+l)=^(«)+2/<l+a^(n^(„)+4^(n)_^W] (3.15b) +
The corresponding weight error vector is derived using #(„) =e{n)-AH"(n)X{n) and (3.12)
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in (3.15b) as:

AH{n +\) =[l-2p{\ +aft)X{n)X"(«)]Atf(n)

+2p{\ +aB)x{ny{n)-[HM-P{H{n)-H{n)}] (3.16)

Using assumption 3.4, the weight error may be decoupled into the gradient ( )8 and the lag

( )' components [64]. The two decoupled adaptation algorithms appear as:

AHg(« +1) =[/ - 2p{\ +aft)x(n)X"(m)]a/7g(n) +2p(\ +aft)x{n)e"(») (3.17)

AH' {n +1) =[/ - 2p(\ +aft)x{n)XH (n)\w' («) - [h„(«)- /?{#(»)-#(«)}] (3.18)

It is apparent from the above equations that the tracking speed of the MG-LMS algorithm

may be increased by increasing the value of a or ft parameter, which reduces the lag noise

in (3.18) at the cost of small increase in the gradient noise component in (3.17).

The step size p is assigned a small value in order to realize good tracking performance.

Under this condition, we may replace the stochastic difference equation (3.18) with the

following stochastic difference equation by invoking the direct-averaging method [152].

A '̂(«+l)=[/-2^1+a/^]A^/(n)-[^0(«)-^«)-.rY(»)}] (3.19)

Premuhiplying both sides of (3.19) by Q" and using the property of unitary matrix

qh =Q-1, weobtain

Ac{n +l)=[l-2p(l +aft)A]Ac(n) - [c0 (n) - ft{c(n) - c(n)}] (3.20)

where AH'{n)=[AH'x{n) ... AH'p{n) ... AH'M(n)J, Ac{n)=QHAH1'(«), c0{n)=QH'#»>

c(n) =Q"H(n) and c(n)=Q"H{n). The p'h element ofthe vector Ac(« +l) is

Acp(n+l)=[l-2//(l+a^>S(n)-[cop(»)-^(W)-cp(4J (3-21)

For convergence ofthe MG-LMS algorithm, the magnitude of1- 2//(l +aft)Xp must be less

than unity for all p. Similarly, it may be proved for the gradient-component that the same

condition is required to be fulfilled. Therefore,
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-\<\-2p{\ +aft)Xp<\ forallp (322)

Since eigenvalues ofthe covariance matrix Rare all real and positive, it follows that
0<M<l/((l+aft)AmJ (323)

where, ^ is the largest eigenvalue of matrix R. In the design of MG-LMS algorithm, the

values of a and ft parameters are kept less than unity. Therefore, the above inequality can
be redefined as:

0</«V(2O &saft->l (3 24)
When the steady state is achieved for the recursive equation (3.21), it can be shown as in [60]
that E[Ac(n)] =0. We further assume that

Assumption 3.5: Ac(n), 60{n) c(n) and c(n) are zero-mean processes, and are statistically
independent.

Let us define the weight error covariance matrix as r(n+l) =E[Ac(n+l)Ac» (n +l)]. Using
(3.21) and assumption 3.5, the p'h diagonal element of T{n +1) can be written as:

E[Ac(n+l)Ac"(n+l)l =M/<(l +̂ KM^>KM]

+̂ («K,(»)]+/?1^(»KW]+%(»K(»)1 (3-25)

Under steady state condition, we may write < =e[acp{n)Acp{n% dj, =E^Jn^Jn)}
&l =Eh(»>; (»)] and a2p =E[cp («>•;(„)] .Therefore, (3.25) can be rearranged as:
„2 _ <P+P2(*l+crl)
* l-{l-2p(l +aft)Ap)2 (3-26)

The variance <rj, minimizes at an optimum value of the control parameter i.e., ft

which is obtained by differentiating (3.26) w.rj. ft and equating it to zero. It leads to

p

optimum '
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PL"optnoptimum a(l-2pAp)
(l-2pXpfa2al/^l^lY i

(l-pAp{l-a2d2j(a2p+a^

(3.27)

The value of[&^p/[<jp +cr2))^- 0,when the variance ofthe first-order weight increments is

very high i.e., <j* -»co. Under this condition, the value of ftfpllmm approaches zero. This

indicates that the second stage (3.8) of the MG-LMS algorithm is not required. The general

1 M

optimum value of ft may be obtained by considering Xmg= —T/L and
M p=\

optimum a[l-2pAmg)
1+ (l-pA^l-a'&U^+a

(3.28)

The value of ftopllmum depends on the factor (&20ttng/(&lg +cf^J).

3.3 Lag-misadjustment analysis for the MG-LMS algorithm

For the lag-misadjustment analysis, which has been defined earlier in section 3.2, we can

eliminate the gradient noise from consideration by using the expectation operator E[ ] in the

MG-LMS algorithm [57]. Like the method of steepest descent algorithm (3.5), the ensemble

average nullifies the stochastic effect [43]. Therefore, (3.7) and (3.8) are redefined as:

H(n +\) =H{n +\)+2pE[x{n)ZH(n)]=H(n +i)+2p[RH0{ri)-RH(nj\ (3.29)

H(n +l)=H(n)+2apE[x(n)*H{n)] =H{n)+2ap[RH0{n)- RH{n)] (3.30)

Under zero gradient noise situation, the ensemble average ofthe excess MSE due to the lag

noise at time n is

4j,aM= 4H(»)~ "<>("))" R(H(n)-HM\ (3.31)

67



=E[(H(n)-HMfA{H(n)-H0(n))\ (3.32)
where, Q»H =Hand the above equation can be solved for the p'h eigenvalue k as:

^^t\Am-KA4{Hn)-KX4K--hrK (3.33)
pml

where, ,, is the weight error energy corresponding to the j,* eigenvalue (independent sub

channel). The quantity A^a)^)-#.(»)) is the weight tracking ^ ^ ^

elements are used to determine the energy in p* sub-channel. Using (3.7), (3.13) and (3.29)-
(3.30), the composite quantity H(n +1) is represented as:

"(«+i)=(i+/?);/(„)^^^

(3.34)

The z-transform ofthe above equation is

zff[z]=(l+/?-*-/?)/?[*] -2^(A+z->aftAp[z]- H0[z]) (3.35)
The weight tracking error in the discrete frequency-domain is

W{z]=Mzr[(l +ft-z)l-z-ftl]H0lz] (336)
where, «p[z]=[z"1/?/ +2//(l +z"V)a-(l +ft -z)l]

*M is anon-singular A/x Mdimensional matrix and / is the identity matrix.

3.3.1 Determination of control parameter for the first-order Markov process

If it is assumed that the time-varying Hg{n) is afirst-order Markov process, which originates
from the independent stationary ergodic white noise excitation with n(o, a2), such that
H0{n) =aH0{n-\)+W{n)

where, the Mxl dimensional process noise vector is W(n) =[wx(n) w2{n) ... wu{n)].
Subsequently, the z-transform ofrecursive relation (3.37) is
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4W-r^L (3.38)
[l-az )

Substitution of (3.38) in (3.36) gives

AH[z]=F[zR[z] =MzVb+fi- A*~'^^H (3-39)
Since F[z] in (3.39) is a MxM dimensional diagonal matrix, the scalar transfer function of

its p'h diagonal element (sub-channel) may bewritten as:

FM, [(1+ /?-«)-*-'/?]
pM [z-1/? +2yu(l +z-VK-(1 +^-z)l

From theabove analysis, the p'h component of theweight tracking error is

(3.40)

The poles of this component are determined by solving the quadratic term in the denominator

of above equation as:

{z-Px\z-P2)=0 (3.42)

where, P2 = Px and

Px =^(\+ft-2pkp)+J^P(l +2aMkp)-(l+ft-2pkpf (3.43)

Therefore, the poles are located at a, Px and P2 respectively.

z = px=p;

=̂ {\+ft-2pkp)+jySpAp{l +ai\+2aMkp)-[ft-(l+2pkp{\ +2a))f (3.44)

The upper bound on the value of ft is derived by keeping the magnitude of complex poles

with in unit circle i.e., \z\<l, such that
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For real and equal poles, the imaginary parts of poles should be zero. This condition is
fulfilled for acertain value of ft =ftihmMd, which is given as:

PthmkM =-ftpXp(l +a){l +2apkp)+(l +2pkp (l +2a))

This threshold value determines the behaviour ofpoles as:

V- P<Pthmhoid >real and unequal poles

P Pthreshold >real and equal poles

h'threshold <P'<Pupper >complex conjugate poles

(3-46)

(3.47)

where, Pupper is upper limit on the value of control parameter. If the value of pkp decreases,
then Plhnshold shifts towards unity. However its value can not be equal to one because at ft=1
and pkp <1,the complex poles are.

^MjiyMll+̂ k)1' (3.48) *
For the smoothing parameter a*0 in the above equation, the magnitude of poles is

H,., =^+2apkp> which is greater than unity. Using Routh-Hurwitz stability criterion, the
location of poles out side the unit circle is responsible for instability of the algorithm. Thus
by adjusting the value of ft to a value below its threshold value, we can control the

oscillatory behaviour during the convergence mode. The design equation (3.46) can be V
rewritten in terms of k as-avg *•"•'•

Pthreshoid =-^Pl>mg (1 +a]{l +2apkmg )+(l +2pkmg (1 +2a)) (3 -49)

Hence for stable functioning of the MG-LMS adaptive algorithm, the smoothing and control
parameters are tuned in such away that poles must be real because the complex conjugate
poles will give rise to the damped oscillations, which will result in high MSE during the f
convergence and tracking modes.
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3.3.2 Determination of lag-misadjustment for the first-order Markov process

The above analysis ofthe smoothing and control parameters shows that the poles Px and P2

are complex for the value ofcontrol parameter in the range ft^^, <ft <ftupper, such that

~ r , -z(z- ft\z-\\vn[z\

Using Parseval's relation, theweight error energy of the p'h sub-channel canbe calculated in

the frequency-domain as:

*' =^{v~lA^piv^pll/v'] * (3.51)

_a2 S (v-lXv-^Xl-Ml-v) „_„
2^{l-avll-Px\ll-pivlv-alv-Pxtv-P2) (3"52)

where, the contour ofintegration C is the unit circle. Ifthe poles a, Px and P2 are inside the

contour of integration [153], the Cauchy residue theorem gives

ep=o2fp{a,ft,a,Px,P2) (3.53)

where, />, ft,a,Px,P2)= [fx +(/» -P2)-% - f3)\ (3.54)

•f - (i-p,T(i-pM/)-p,)

From (3.33) and (3.53), the average excess MSE is

fylmW*o*Ytffafi,a%PuPlY§ (3.58)
p-i

Ifall the eigenvalues are considered equal i.e„ kmg, then the weight error energy of all the
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sub-channels becomes equal i.e., /,=... =fu =fm. it leads to
avg

a2M

min

Javg \a>P,o,Px,P2 )kmg (3.59)

te\*t\ve Lag-Misadjustment^ =4pkmgfmg{a,ft,a,Px,P2) (3.60)

where, thenormalization factor is defined as:

<<t2M"
(3.61)

Under special case (a =ft =o), the values of poles are Px=(l-2pkmg) and P2=0

respectively (see example 2in appendix A). Consequently, the value of favg(a,ft,a,Px,P2) is

favg(0,0,a,Px,P2) =7—
{1 +aft +Pjl-aPy) (162)

fmg(0,0,a,Px,P2) 1
mi

Afa«s (3.63)

Under the above assumed condition, the lag-misadjustment is

a2M

This derived result is similar to the result presented in [57] for the conventional LMS

algorithm working under the nonstationary environment. From (3.64) and (A.9), it is apparent
that the conventional LMS algorithm is aspecial case of the MG-LMS algorithm.

For different values of the parameters a and ft, the expected performance of the MG-

LMS algorithm is next analysed using (3.60) in terms of the relative lag-misadjustment

(index ofexcess MSE). The initial oscillatory behaviour is controlled by keeping the value of

control parameter less than ftlhreshM (3.49). The values of pkmg =0.001 and ft =0.75 have

been used in (3.60), and results are given in Fig. 3.3.
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It may be observed from Fig. 3.3 that the relative lag-misadjustment gradually reduces

with the increasing value of a for real and unequal poles. For pkmg = 0.001 and a = 0.05,

Fig. 3.4 depicts that the value of relative lag-misadjustment also reduces with the increasing

value of ft. However when poles are complex, the lag-misadjustment is expected to increase

again because ofthe instability ofthe algorithm in above situation. The effects ofsmoothing

and control parameters on the performance of the proposed algorithm are verified by

simulations in the next section.

3.4 Simulation results

We shall investigate the behaviour of the proposed MG-LMS algorithm, in convergence and

tracking mode, to analyse the effects of the smoothing and control parameters on its

performance. We shall also compare its performance with the conventional LMS, NLMS and

G-LMS algorithms. The variation in lag-misadjustment is analysed in terms of the variation

in minimum MSE. The value of the step size p is kept lower than its maximum bounded

value (described in section 3.2).

For parameter tuning of the MG-LMS algorithm, the value of ftlhreMd is obtained by

using (3.49) for a fixed value of a. First thevalue of smoothing parameter 0 <a <1 is setto

provide coarse tuning, and then adjustment of the control parameter ft results mfine tuning

of the proposed algorithm. Since we require the knowledge of [o,ltmg/{<T2yg +<^j) in (3.28)

to obtain the optimum value of ft, at which the MSE minimizes. Therefore, the value of

Poptimum is determined by simulations at the fixed values of other parameters. However, its

value must be less than ftthreshold because the real poles provide stability in ft < pthrtshold

domain (described in section 3.3).

To generate the nonstationary environment, H0 (n) is considered to be the fast fading
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mobile communication channel (Rayleigh). The auto-correlation function of the AR(2)
process is close to that of aRayleigh fading process [154]. The Jakes model is widely
accepted as the realistic fading channel model, which is simulated by using the AR{l)
process [equation (1), 103], such that

H0{n) =-KxH0{n-l)-K2H0{n-2)+U{n) (3 65)

where, U(n) is acomplex zero-mean white Gaussian process. The scalar coefficients in the

above equation are Kx =-2rd Cos{j2nfDTs) and K2=r2, which take account of the

maximum Doppler frequency fD of the underlying fading channel, sampling time Ts and
pole radius rd corresponding to the steepness of the peaks of power spectrum with the
spectral peak frequency fp=fD/^ [equation (9)) 155]. For accurate modelHng ^^
(70), 44], the value ofpole radius is

rd={l-2fDTs)
Ds) (3.66)

The auto-correlation of the channel tap-coefficient is shown in Fig 3.5, in which the fading
parameters are fd=lOHz and l/Ts=l0kHz. Note that we have kept 20dB signal-to-noise

ratio in each of the following cases. The BPSK i.i.d. data is considered to be input. The
presented results are based on an ensemble average of 150 independent simulation runs.

Case 3.1: The variation of MMSE with respect to the control parameter ft is analysed by
fixing a=0.05 and p=0.005. In this case, we consider the fading channel with fD =15Hz
and \/Ts =10kHz. The convergence and tracking performance of the adaptive filter with ten

weights is shown in Fig. 3.6. The observed average eigenvalue is ^ =0.0752, which is

used to calculate ftlhreshM =0.9446 for the above fixed values of a and p. With increasing
value of ft, the performance ofthe MG-LMS algorithm substantially improves.
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Fig. 3.5: Auto-correlation of channel tap-coefficient using the AR[2) approximation with

fdTs= 0.001.

77



100 150
Iteration index

MG-LMS,p = 0.50
— MG-LMS, pa 0.70

MG-LMS, p= 0.90
--- MG-LMS,pa0.98

Fig. 3.6: Convergence and tracking performance comparison of MG-LMS algorithm for various
values offt in terms ofMMSE (dB).
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But beyond the optimum value of control parameter ft mu = 0.92 (as measured by

simulations), the performance starts degrading. At /? = 0.98, the increase in MSE and

oscillatory behaviour during the convergence mode indicate instability because the poles are

complex. In section 3.3, the mathematical analysis demonstrates that for ftlhrahoU <ft

domain, the MSE will start increasing because of the damped oscillations.

Therefore, the simulation results justify the analytical results described earlier. The

results presented inFig. 3.6 and Fig. 3.7 depict that the NLMS algorithm gives approximately

2.5dB performance advantage over the conventional LMS algorithm. However, the proposed

MG-LMS algorithm performs better than the LMS and NLMS algorithms under same

nonstationary environment.

For analysing theeffects ofcontrol parameter on the stability of the proposed algorithm,

the above experiment is repeated for different values of ft and the resulting MMSE isplotted

in Fig. 3.7. For comparison, performance of the conventional LMS and NLMS algorithms are

also shown. The G-LMS algorithm gives approximately lldB improvement over the

conventional LMS algorithm [60]. It may be seen from Fig. 3.7 that the performance of the

MG-LMS algorithm compared with the conventional LMS improves by approximately 14dB

at the optimum value of ft. The proposed algorithm provides an additional 3dB advantage in

performance than the G-LMS algorithm at ftopUmum. In addition, the increasing value of

smoothing parameter a leads to reduction in the output MSE. However in ftlhrahold <ft

domain, the generation ofdamped oscillations overwhelms the advantages ofthe increasing

value of a.

Case 3.2: To show the tracking performance ofthe proposed algorithm over the time-varying

wireless channels, we consider a filter with eight tap weights. Under fading conditions, the

maximum Doppler frequency fD and sampling rate are 50/fe and \/Ts=l0kHz respectively.
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Fig. 3.7: Variation of MMSE (dB) of MG-LMS algorithm for different values of control
P-
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With pole radius rd =0.99, the true time-varying channel is shown in Fig. 3.8. The adaptive

MG-LMS algorithm is tuned with a=0.01 and ft =0.75 .Its performance is compared with

the conventional LMS, NLMS and G-LMS algorithms by using the same step size
p=0.005. It is clear from results in Fig. 3.8 that the conventional LMS and NLMS

algorithms lag behind the true channel. The channel tap-coefficient value estimated by the G-
LMS algorithm oscillates about the true channel coefficient value, which results in high
MSE. However, the MG-LMS algorithm gives improved tracking performance by reducing
lag.

Therefore, it may be inferred from simulation results that the performance of MG-LMS
algorithm improves over the conventional LMS, NLMS and G-LMS adaptive algorithms by
tuning the smoothing and control parameters. However, the incorporation of variable step
size in the proposed algorithm is expected to further improve its performance.

3.5 Concluding remarks

In this chapter, we have presented a two-step MG-LMS adaptive algorithm, which
outperforms the existing G-LMS algorithm [60] under the nonstationary conditions like time-

varying fading channels. The proposed algorithm combats the lag noise while tracking, which
consequently reduces the total misadjustment. Though it increases the gradient-
misadjustment slightly, but it eliminates alarge amount of the lag-misadjustment.

We have derived analytical results for the lag-misadjustment, which mainly depend on
the smoothing and control parameters. The increasing value of former improves its tracking
performance, whereas latter provides stability in the convergence mode. Up to optimum value
of the control parameter, MSE at the output decreases, but after that it starts increasing. In
practice ftoptimum <ftlhreshold because beyond the threshold value, the complex poles induce

damped oscillations. At ftoptimum, the MG-LMS gives approximately 3dB performance
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advantage over the G-LMS algorithm. The simulation results have evidenced the superiority

of proposed algorithm at adequate values of the smoothing and control parameters. It also

validates the derived analytical results.

In the next section, we incorporate the concept of two-step LMS-type MG-LMS

algorithm in the adaptive multiuser interference suppression and detection technique for the

DS-CDMA system.
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CHAPTER 4

ADAPTIVE MULTIUSER DECISION FEEDBACK

EQUALIZER RECEIVERS FOR DS-CDMA SYSTEMS

During the last two decades the commercial use ofDS-CDMA has increased, due to the

demand for large capacity in terms of the number of users and for the efficient usage of

bandwidth. It was previously confined to only military communication systems as itprovides

protection against interference and jamming. But, major limiting factors for capacity in the

multiuser systems are multiple access interference and intersymbol interference. In this

chapter, we present an adaptive decision feedback equalizer based multiuser receiver for the

DS-CDMA systems over smoothly time-varying multipath fading channels using the reduced

Kalman/LMS (RK-LMS) adaptive algorithm by exploiting the Kalman filtering algorithm.

This is motivated by the work on two-step LMS-type algorithms presented in [60] and

chapter 3.

In section 4.1, we first briefly review different adaptive time-varying channel estimation

techniques and adaptive decision feedback equalization structures with or without the

knowledge of estimated channel response to suppress ISI and MAI. In section 4.2, we

describe the DS-CDMA system model, and also give details about the mathematical

formulation of frequency-selective channel model for the multipath fading environment. The

fading channel is modelled as a tapped-delay-line filter with smoothly time-varying Rayleigh

distributed tap-coefficients, which are considered to be autoregressive (AR) processes. In

section 4.3, we consider a channel estimator based MMSE DFE multiuser receiver structure,

which uses the channel estimates obtained from the multiuser channel estimator to cancel out

ISI due to the multipath transmission [101]. We next introduce the RK-LMS adaptive
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algorithm based multiuser channel estimator, and also present the analytical results for its

convergence and tracking characteristics in section 4.4. Section 4.5 includes details about the

proposed adaptive DFE multiuser receiver using the RK-LMS algorithm. The computer

simulation results are presented in section 4.6 to show the substantial improvement in

tracking as well as bit error rate performance ofthe proposed multiuser receiver over the

conventional LMS algorithm based receiver under the smoothly time-varying environment.

Finally, conclusions aregiven in section 4.7.

4.1 Introduction

Over the multipath fading channel with additive white Gaussian noise, the adaptive non

linear MMSE techniques (decision feedback) are more effective than the linear techniques

[38], because the latter is having only feedforward filter, whereas the former is having

feedforward as well as feedback filters to combat ISI. An adaptive decision feedback

equalizer proposed by Abdulrahman [14] is commonly used for interference cancellation and

data detection on the forward link from base station to mobile. It is apparent from the

presented results that the forward filter ofadaptive DFE also performs the function ofRAKE

receiver to exploit diversity resulting from the multipath transmission. However its

application is limited to the detection of asingle desired user, and it partially suppresses ISI

and MAI by forcing zeros in the impulse response ofthe interferers.

On the reverse link from mobile to base station, the received composite signal includes

ISI due to the past data symbols of other active users. As information about the past detected

symbols ofall users is available at the base station, therefore adaptive DFE multiuser receiver

is used for the multiuser interference cancellation and data detection at the base station. A

centralized detection process can be performed at abase station, which is assigned the task of

detecting the data from all the users in a cell. Rapajic et al. [73] have considered a
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centralized MMSE decision feedback detector, where in addition to a fractionally spaced

feedforward filter that processes the chip matched filter output, the feedback filter processes

previous decisions from all the users to cancel both ISIand MAI. But, authors have presented

only single-user adaptation of the filter coefficients. Smee et al. [9], [10] have proposed

adaptive feedforward/feedback architectures for multiuser detection in the high data rate

wirelessCDMA networks by extending the work of [73], in which the LMS, NLMS and RLS

algorithms can be incorporated to determine the coefficients of multiuser detector. The

cyclostationarity of the MAI and ISI is exploited through a feedforward filter, which

processes the samples at the output of parallel chip matched filters, and a feedback filter,

which processes detected symbols. In blind and non-blind adaptive receiver designs [21],

[82], the channel is assumed to be unknown, but time-invariant in a transmitted time frame.

Therefore, these techniques are not applicable for the time-varying multipath fading channel

situations.

The conventional strategy for handling the time-varying fading channel is to design an

adaptive equalizer using the Kalman filtering algorithm [100]. In [97], McLaughlin has

employed a channel estimator for the design of Kalman algorithm based equalizer. The

performance of this equalizer depends on the accuracy of the channel estimation. litis et al.

have proposed a technique for the joint estimation of PN code delay and channel using the

extended Kalman filter [51], [52]. They have also used the QR-decomposition technique in

channel estimation for the quasi-synchronous DS-CDMA system [157]. Recent research has

been devoted to the design of multiuser detection using the MMSE adaptive DFE under the

time-varying environment [101], [102], [158].

In [101], Chen et al. have proposed a multiuser receiver by taking into account the

channel model directly obtained from the Doppler spread of the fading channel. In general,

the dynamic characteristics of fading channel can not be characterized exactly by system
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identification method. Therefore for robust adaptive design, this Kalman filtering algorithm

based approach considers the channel estimation errors and model's uncertainties to improve

the performance. But, it requires the knowledge ofmaximum Doppler spread ofthe multipath

fading channel accurately at receiver. Further in [102], Chen et al. have proposed a linear-

trend tracking algorithm and a multiuser detection algorithm, which uses the self-tuning

scheme to automatically adjust the variance of the driving noise in the state-space model to

cope with the time-varying Doppler frequency. Moreover, a non-linear limiting function is

embedded into the multiuser channel estimator and detector to mitigate the noise effects. A

robust Kalman algorithm based DFE detection algorithm is proposed to prevent severe error

propagation due to impulsive noise and channel estimation errors under the time-varying

fading channel and impulsive noise. The robustness is achieved by using the hard-decision

feedback and non-linear limiting function, but at the cost of increased computational

complexity. It is seen in above techniques that the channel estimator plays an important role

in theoverall performance of the multiuser receiver.

Cao et al. [159] have proposed apolynomial approach for the MMSE estimation ofthe

time-varying channel parameters in the DS-CDMA system. But, its dependency on the

knowledge of system model may often preclude its use. The two-step G-LMS algorithm [60]

does not require prior information about the time-variations of the true system, which

supersedes the conventional LMS algorithm because of its ability to combat the lag noise

[57]. The drawback of G-LMS algorithm is that it requires relatively longer training period,

during which, the oscillatory behaviour of algorithm accounts for the high value of residual

MMSE. However, the MG-LMS algorithm presented in chapter 3may be used to circumvent

these problems.

In another approach [158], the chip-level equalization can be used to mitigate the MAI

together with adespreader. The despreader restores the orthogonality of signature sequences
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after equalization. Choi et al. [158], have used the feedback filter at the chip rate so that

adaptive algorithm can be used to find the filter coefficients of the DFE. It has been shown

that the use of soft-decisions has an advantage in effective updating of the chip-level DFE to

track the time-variant channels. However, this approach is computationally inefficient due to

despreading operation. Traditionally, adaptive equalizers using the RLS algorithm are used '

for treating the smoothly fading channel problem [88], [89]. Under the quasi-static

environment, the multiuser RLS algorithm and direct matrix inversion approach determine

the coefficients more efficiently than the single-user algorithms [10]. However to reduce the

computational complexity, the two-step LMS-type algorithms (see chapter 3) can be used in

the adaptive equalization and multiuser detection techniques (see [101] and [102]) under the

smoothly time-varying multipath fading channels.

In the present work, an adaptive multiuser receiver is developed by using the two-step

RK-LMS algorithm, which combats the nonstationarity introduced by the channel variations.

The receiver uses an adaptive MMSE multiuser channel estimator to predict the coefficients

of tapped-delay-line filter. We consider first the design of adaptive MMSE feedforward and

feedback filters by using the estimated channel response to cancel out ISI. We next present

the convergence characteristics and the tracking performance of the proposed multiuser

channel estimator using the RK-LMS algorithm. Unlike the previously available Kalman

filtering algorithm based approach [101], [102], the incorporation of the RK-LMS algorithm

reduces the computational complexity of the multiuser receiver. It can be inferred from

simulation results that the proposed multiuser receiver with the RK-LMS algorithm

outperforms the conventional LMS algorithm based approach by reducing the lag noise

during tracking [57], and it proves to be an efficient approach for the multiuser interference

cancellationand data detection in the DS-CDMA wireless communication systems.
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4.2 DS-CDMA system model

In the following spread spectrum binary communication system, each user's transmitted

signal (with signal power level Pk) is assumed to pass through an independent frequency-

selective Rayleigh fading channel, which transforms the bandpass signal for kth user (2.2)

as:

l(/) =Re Mlh(i)Lr*(tM-iTb-TAe^
i 1=0

N-l

withj4(/) =jcyV(/-yTc)
7=0

=Re[/=('>M'] (4.1)

where rk(t) is the equivalent lowpass signal, sk(t) is the spreading signature sequence of

user k, c) is the j th chip (± \/4n) in the code sequence of kth user, Tc is the chip period,

N is the length of code sequence in terms of the chip periods, l/VJV is the energy

normalization factor, <y(t) is the real transmitted chip waveform shape, which has unit energy

in the time interval 0<t<Tc i.e., ^(0 =0 for te[0,Tc], bk(i) is a real valued transmitted

data symbol ±1, Ak is the amplitude level (a, =^2Pk), Tb is the symbol period (with

Tb =NTC), coc is the carrier frequency, Lk is the number of multipaths for kth user, and the

complex quantity ylk if) =\Ylk(/Je"'"•'• represents the complex attenuation factor of /th path.

We assume that the fading channel response changes at the symbol rate. The channel

order (lt-l) is kept less than the processing gain N (i£.,the maximum delay spread of

channel is smaller relative to the symbol period). The system suffers from severe ISI, as the

value of (4-1) approaches N [81]. We define the total delay as rlk =Qk +tlk. For kth

user, Clk is the delay with respect to the desired user, and tlk is the propagation delay. At the

receiver end, the demodulated equivalent lowpass signal for kth user can be written as:
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N-\

*W-V^I^Wfcfc'-^+/W (4-2)
/ y-o

U-\

where gt(/;r)= ^/rt(/)v/(r-rtt), which is the convolution of the equivalent lowpass
/=0

U-l

impulse response ^y,k{t)S{T-tlk) of the multipath fading channel and the lowpass chip
i-o

waveform y/(r). Therefore, this fading channel model is analogous to the tapped-delay-line

filter model (as used in [101]) for the time-varying frequency-selective channel by virtue of

analogy between the multipath transmission [102] and ISI [101] respectively. The Lk

coefficients of the tapped-delay-line filter are assumed to be time-varying according to an

autoregressive process. Assume that gkit;r) has finite support of length LTC for

k=1,2, ... ,K i.e., gk(t;r) =0 for r £[0,Z,rJ. As chip level processing is considered in this

work, therefore the data symbol at chip level is defined as

bk(i) =bk(iN) =bk(iN +l)=... =bk(iN +j) for 0<j<N-l. For mathematical simplicity,

we replace bk(i) with bk(iN +j) in (4.2). Such that,

N-l

rt(')=^I»*(^+;M&fc'-(w+A) (4-3)
/ ;=o

If K active users are present in the system, then the equivalent lowpass composite received

signal after demodulation is represented as:

K') =2/*('M') (4-4)
Jt=l

where, z(t) is the zero-mean lowpass AWGN with two-sided power spectral density JV0 (due

to the presence of thermal noise at receiver), which does not include interference due to other

users.

The demodulated lowpass signal is filtered using the chip waveform matched filter [85]
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and subsequently sampled within the spreading limit (implicitly) at the chip rate to give

^N+n) ={Zn^°tMt-(iN+n)rc)dt =±rk(iN+n)+z(iN+n) (4.5)
i=l

Since the short codes used in the above described DS-CDMA system are cyclic (periodic) in

nature, therefore the received signal sample r(iN +n) is acyclostationary process. Moreover,

the transmission through the multipath fading channel is also periodically time-varying. For

*th user, the discrete-time received signal in /th data symbol interval's «th chip is
represented as:

^ +n)=̂ ^hlk(iN+n-l)bk(iN+n-l)cl_l)N) for «=0,1,2, ... ,N-l (4.6)

z{iN+n)=££*zit^t -(iN +n)Tc )dt (4J)

where, the expression (x)N denotes "x mod N" and

h'k{iN +n,l)= Jor' gk(t +(iN +n)Tc;t +lTe)r(t)dt (4t8)
We can rearrange the above equation to give

^(w+»-/)-4I(w+»-/f/)-J^ (49)

In the above equation, the channel coefficient hlk is assumed to be constant for the data

symbol duration T„ U, hlk(i)=hlk(iN) =h!k{iN +l) =... =hlk(iN +n) for 0<n<N-l. If

z{n) has auto-correlation ^ £[z(«>* («)]=JV(„ -«), then the resulting average signal-to-

noise ratio (SNR) of kth user is given by

A|2

[SNR$* = ^
tf0 (4-10)

where, ( )* denotes the complex conjugate operator. Without the loss of generality,

assume that all the active users are transmitting at the same signal power level, such that
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ax=a2= ...=4=1 /.<?., V^7=i •

The received signal vector rk (/) consists of N consecutive stacked samples, where / is

the data symbol index. The Nxl dimensional vector rk(i) can be written as

rk(/) =[rk(iN) rk(iN +1) ... rk(iN +j) ... rk(iN +N-l)f. The JVx21 dimensional

signature-sequence-matrix Ck(i), 2Lx2L dimensional data-symbol-matrix Bk(i), and

21x1 dimensional multipath channel coefficient vector hk(i) for the kth user's /th data

symbol can be defined as:

C*(/)=

i=w-i

0

0

0 c
N-\

0 0

I 1

1 I

I I

i i

i i

cN-L 0 0

'N-L+l

'N-l f II c>\

Bk(i) =diag[bk(i)lL, ^(/-1)/J,and hk(i)=[hkT(i) | /./(/-if.

where, 7L is the Ixl dimensional identity matrix and hk (/) =[hok (/) /zlJt(/) ... A(L_,)t (/)} •

Using (4.6), the received signal vector rk(i) can be rewritten in the matrix form as:

rk(i) =[ck(i)Bk(i)},k(i)=Dk(i)hk(i) (4.11)

where, Dk(i) is the Nx2L dimensional chip-data-matrix. The composite signal vector r(i)

can be written as:

r(i)=[r{iN) r(iN +\) ... r{iN +j) ... r(iN +N-\)J
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=i?k(jhm=ick(i)Bk(iy(i)+z(i)

=[c(j)B(i)^(i)+z(i) =D(i)h(i)+z(i) (4.12)

where, C(i)=[c(i) | C(/)]=[c' C2... C* || C1 C2... C*]

is a Nx2KL dimensional matrix,

B(i) =diag[bx{j)lL, b2(i)lL, ... ,bK(i)lL Ibx(i-l)lL, b2(i-l)lL, ... ,bK{i-\)lL]
is a 2AX x2KL dimensional matrix,

*)=fer(0 M) ... hl{i) I^(/-l) £(/_!) ... JJ^^Jr
is a 2AX x1 dimensional matrix,

£(<)=[£'{*,OK}... c-fc(/K} II c%{i-i)iL)... c«{bK(i-i)iL}]
isa Nx 2KL dimensional matrix, and

z(i)=[z{iN) z{iN +l) ... z{iN +j) ... 2{iN +N-l)J

The Nxl dimensional matrix z{i) denotes the noise sample vector. The equation (4.12) is

used for the channel estimation. We next define the data symbol detection equation using the

composite signal vector r(i) as:

tit)=C(f)H(i)b(i)+z{i) =C(i)H(/>(/)+C(i)H{i -1>(/ -1)+£(/) (4.13)

where, b(i)=[b'(i) | bT(i-l)J with b(i)=[bx(i) b2(i) ... bK(i)J

H(i) =diag[H(i), H(i-l)] with H(i) =diag[hx(i\ \{i\ ... ,hK[i)}

We use (4.12) to estimate the multipath fading channel response using the signature-

sequence-matrices and data-symbol-matrices of all the active users, and then design the

adaptive DFE multiuser receiver using the RK-LMS algorithm for the multiuser interference

cancellation and data detection (4.13).
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4.3 Channel estimator based DFE multiuser receiver

In this section, we present details about the MMSE DFE multiuser receiver design using the

multiuser channel estimates. Let the input vector to the decision device be

.y(/) =[y1 (/) y2(i) ... v*(/)j , and the corresponding estimated data symbol vector at the

sheer output is bt{i)= prt(/) be2(i) ... btK(i)\ , such that

H/)=F/(/)r(i)-F6(/)&€(/-l) (4.14a)

=Ff{iic{i)Hm)+C{i)H(i-\Xi-\)+z{i)}-Fb{i)bXi-^ (4.14b)

where, the KxN dimensional matrix Ff (/) and the KxK dimensional matrix Fb(/) are the

feedforward filter (FFF) and the feedback filter (FBF) weight matrices respectively. For

simplification, we assume that no error propagation in the decision feedback loop takes place

i.e., be(i-\)=b(i-l) in (4.14a) and (4.14b). The filtering error of the DFE multiuser

receiver is a Kxl dimensional vector ex(i) =b(i)-y(i). The corresponding error covariance

matrix is ex(i) =E[ex(i)exH(i)\, where E is the ensemble average operator. The cost function

is defined as the sum ofall diagonal elements of the matrix ex(i) i.e., Jx(i)= E[exH(i)ex(i)\.

The optimum MMSE receiver is derived by minimizing the scalar cost function. Using the

partial derivatives —— = 0 and —— = 0 [160], we derive the optimum solution as:
dFf dFb

Ff{i)=H"{iY:"{iic{i)H{i)H"{iY:Hii)+R^ (4.15a)

where, the noise covariance matrix is Rt =E[z(i)z"(i)\.

Fb(i) =Ff(i)c(i)H{i-l) (4.15b)

where, ( )" is the Hermitian operator. Since we are using the channel estimates in the design

of feedback filter, therefore the matrix H(i-l) is replaced by the estimated channel
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coefficient matrix #(/-l|/-l) in (4.15b). Substituting (4.15b) in (4.14a), the input vector

y(i) to the decision device can be redefined as:

y(i)=FMa(}) (4.16)

where, the equivalent input signal vector to the feedforward filter is r (/)«;(/)_; (/). The

ISI term rISJ (/) =£(/)#(/ -1|/ - l)be (/ -1) is generated and cancelled from the composite

signal vector f(i) by using the estimated channel response #(/-l|/-l). It is apparent from

(4.16) that we can replace Ff(i) with an adaptive feedforward filter of the same dimension.

The proposed adaptive multiuser receiver is shown in Fig. 4.1, in which the feedforward

filter Ff(i) is replaced by the RK-LMS algorithm based adaptive FFF Wf(i) (described in

section 4.5), and the estimated multiuser channel response #(/-l|/-l) is obtained by using

the RK-LMS algorithm (described in next section). It may be noted that the performance of

adaptive multiuser channel estimator influences the intersymbol interference cancellation.

4.4 Adaptive multiuser channel estimation

In the literature, the unknown channel coefficients are often assumed to be a first-order

Markov process for the tracking performance analysis of the LMS-based adaptive algorithms

[57], [60], [101]. Therefore, the multipath channel coefficient vector of the *th user can be

modelled by using the AR(l) process as:

\o(0=P\o(/-l)+WA(/) (417)

where, the LxL dimensional channel correlation coefficient matrix is

P=diag[a0k,aXk, ... ,a{L_x)k\. The above model is valid for the fading channel only if the

channel coherence time is large enough to estimate the channel response. The subscript ( )o

denotes the optimum value.
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Fig. 4.1: Adaptive MMSE DFE multiuser receiver using the RK-LMS algorithm.

(The non-adaptive FFF Ff(i) is replaced by an adaptive FFF (RK-LMS) Wf(j))
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The scaling factor alk denotes the state transition coefficient of the *th user in /th path.

According to Jakes model presented in [154], this factor may be defined as the correlation

coefficient. In (4.17), *.(/)-fo(fl *•(/) ... *f(/)f is azero-mean white noise process
vector with the covariance matrix a\lL, which results in the uncorrected tap-coefficients of

the multipath fading channel (wide-sense stationary uncorrected scattering channel).

If we consider the first-order weight increment vector \o(/-l)sAto(/)-£i0(/-l)

correlated with the vector hKo(i), then this redundant information may be used to predict the

vector hKo(i) because \o(i)^d \-p £M(/-l)+ ^(/)}; where the LxL dimensioml

scaling matrix is d=diag[(l -a0k)-\(l -a,)-, ... .(l-a^J. Similarly, the second-

order weight increment vector ^(/-l)a j^(f)-i^(/-l) may be used to approximate the

state equation for the time-varying fading environment. In the following, we assume that

alk =a U., the correlation coefficients of all the fading channels are equal. Such that, the

optimum channel coefficient vector used in the channel estimation equation (4.12) is

h0(j) =Ah0(i-l)+w(i) with A-aIt where W(i) is a 2*Zxl dimensional zero-mean

white noise process vector, and I is a 2KLx2KL dimensional identity matrix. In the
multiuser scenario, the state equation may be defined in terms of the first-order and second-
orderweight increment vectors as:

\if) 11

0 /

'4(/-i) o

kit-i) (4.18)

4.4.1 RK-LMSalgorithm based channel estimator

The application of Kalman algorithm for the multiuser channel estimation is based on the
following equations.
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h(i\i)=hb}i-\)+K(ilr(j)-t(i)] (4.19)

where the Kalman gain or blending factor is ^(i) =p(/|/-l)D7'(/)[D(/)p(iji-l)Dr(i)+/?,]"',

and the estimated signal vector using (4.12) is denoted as:

re (/) =[c(/)£(/)]%- -1)=D(i)h(i\i -1) (4.20)

The covariance matrix of the prediction error (in time update) is

P[ty-l)= AP\i-\\i-l)AT +Q. and the covariance matrix of the estimation error (in

measurement update) is p(/|/)=[/-^(/)d(/)J?(/|/-i), where Rs =e[z(j)z" (i)] and

CTj, =E\w(i)W" (i)\ are the measurement noise and the process noise covariance matrices

respectively. It is clear that the above described Kalman adaptive algorithm based approach is

computationally complex.

Therefore, the Kalman algorithm is reduced to give a computationally efficient two-step

LMS-type algorithm, which eliminates the matrix inversion operation in the Riccati update

equation. The new RK-LMS algorithm based multiuser channel estimator is as follows

%)=%-l)+^(/Xr(/)-fe(/)] (4.21)

where the scalarparameter p is step size, whichcontrols the convergence and stability of the

adaptive algorithm. The Kalman gain k(i) is replaced by pDT(i), and the apriori estimate

h(j[i -1) of h(i) is defined as:

% -l)=Mf - \\i -1)+ fth(i -1|/ -1) (4.22)

In the above equation, the first-order weight increment vector is estimated as:

%)=h(i -1|/ -1)+apDT (»Xr(/) - re (/)] with h(i\i -1) =iff -1|/ -1) (4.23)

where 0<a <1 is a smoothing parameter, which controls the lag in tracking the time-varying

system [60]; and the estimated first-orderweight increment vector is scaled with a real valued
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control parameter 0<ft<\, which controls the oscillatory behaviour of algorithm. The

analytical and simulation results presented in chapter 3 show that the value of ft should be

tuned below the threshold value (depending on the value of a and p), which ensures

stability in the convergence mode. Further it has been shown by computer simulations that

for a single-user system, the proposed algorithm provides approximately 14dB performance

advantage in channel estimation over the conventional LMS algorithm by reducing the mean

square error in tracking mode.

Let E[h{i\i)\ is the ensemble average of h{i\i) (see [57] and chapter 3). The estimated

multiuser channel coefficient vector can be defined in terms of the optimum channel

coefficient vector h0(i), tracking noise vector £.(/)=%)-£[%)] and lag noise vector

m =K{i)+nT{i)+nL{i)

For the above procedure, the estimation of the first-order weight increment vector (4.23)

helps in reducing the lag noise i.e., hL(i) in tracking, but application of the conventional

LMS algorithm in steps (4.21) and (4.23) contributes minor gradient noise in addition to the

residual lag noise. The reduction in the lag noise results due to the improved tracking in the

time-varying nonstationary environment.

Therefore, the equations (4.20 - 4.23) are used to estimate the multipath channel

response for Kusers. The reduced Kalman/LMS algorithm is computationally comparable to

the conventional LMS adaptive algorithm. Moreover, the RK-LMS algorithm does not

require the knowledge ofchannel correlation coefficient a. In addition, the substitution of

variable step size p(i) results in development of a new family of the two-step LMS-type

algorithm basedadaptive channel estimators.
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4.4.2 Analysis of multiuser channel estimator

In this section, we study the mean convergence behaviour and tracking characteristics of the

RK-LMS algorithm based adaptive multiuser channel estimator. Using thechannel estimation

equation (4.12), we redefine the received composite signal vector in terms of the optimum

weight vector as r(i) =b(i)h0 (/)+z{i). Let the state (channel coefficient) error vector be

m*
Ah(ij
Ah(i\

%)-4(0
(4.24)

The equation (4.24) is solved using theRK-LMS algorithm (see appendix B) to give

0(/)sT(/)0(/-l)+N(/) (4.25)

where, T(/) =
I-pR(i) I-pR(i)

-apkij) I-apMi)
with R(i) =DT(i)b(i)

Nff) =
pbT(i)z{i)+ll-ft)p^{i)^{i-l\i-l)-(l-ft)h{i-\\i-^
apDT (i)z(i)+{*(! - B)pR(i)% - \\i -l)-i (/ -1)

(4.26)

(4.27)

The above weight error vector may be considered as the output of a recursive linear system

with the state transition matrix T(/) and the input vector N(/).

Since z(i) is a zero-mean statistically independent random process vector

i.e.,E[z(i)] =0 and R=e[dt (i)i)(i)\ is the average value of matrix R(i), therefore the

ensemble average of the weight error vector 0(/) gives the mean error variation. We can

write,

4<E>(/)]Sf(/)4o(/-l)]+N(/)

where, f(/)= I-pR I-pR

-apR I-apR
and N(/)s -{l-ft)\l-pR} 0

+{l-ft){zpR} -I
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The square matrix R is spectrally factorized to give Q'lAQ, where Q is the modal matrix

consisting of eigenvectors as column vectors and A is the spectral matrix with only

eigenvalues at its main diagonal i.e., A=diag{kx,k2, ... ,kq, ... ,k2KL). The multiplication

ofthe modal matrix Q on the both sides of(4.28) leads to

QE[®(i)]=%(iiQE[0{i -1)]|+ 2N(/) (4.30)

where Q =
Q o

0 Q\ %if) =

eN(/)s[i(/)+M(/)Jo(/)

I-pA I-pA

-apA I-apA
and

where S(i) = -{I-pA} 0

(\-p){apA] -I
, M(i) = P{l-pA} 0

0 0

fc4 -
\-piq \-pxq

-ccpkq \-apk

and 6(/) =

The eigenvalues ofthe above transfer function for the #th sub-channel are

1 + a

'.-'-*.—H* 2
\ + a V

•apka

QE

QE

(4.31)

h(i-\\i-\)

iif-i)

(4.32)

The matrix TQ(i) may be considered as the transfer function in the system defined by (4.30).

The transfer function of its ^th sub-channel is

(4.33)

(4.34)

For complex eigenvalues, the RK-LMS algorithm will exhibit damped oscillations, which

results in the high mean square error during the initial learning mode. However the real

eigenvalues provide stability to algorithm, which can be achieved by keeping

pk.
Vl + a

-apk >0 (4.35)
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The rearrangement of the above equation results in the lower bound on the value of

smoothing parameter ije.,

a>t /Umax 5*^==- (4.36)
(l +Vl-M^J 4

For real and equal eigenvalues, the mean time constant is defined as:

1 2
Ca = —r-r = r s (4-37)*• l-\yq\ pkq{\ +a)

Since the value of a is kept small, therefore the mean time constant for convergence is

approximated as Qq =2/pkq. The value of £" is comparable to the mean time constant for

the conventional LMS algorithm as a approaches unity i.e., £ -> l//-^9 • Therefore, the

mean time constant can be adjusted by tuning the value of smoothing parameter.

The state error vector <D(/) converges to zero for null values of E hff-\\i-\) and

*.('"!) , which results in the unbiased adaptive multiuser channel estimator. The input

vector <2N(0 depends on the value of ft, which is fed to the recursive system (4.30) with

transfer function TQ (/) to give the output vector g£[<X>(/)]. Therefore, the criterion of the

bounded input and the bounded output stability is applied for the stable functioning of

system. For qth sub-channel, the magnitude of the off-diagonal elements of matrix p(/)L

should be less than one i.e., -1 <(l - ft)apkq <+1. For stable convergence behaviour, the

stringent condition on the control parameter ft may be defined as

1- [apkq y1 <ft<\ +[apkq )_1. For the large values of [apkq) i.e., \apkq )_I «1, the

corresponding operating range of the control parameter can be redefined as:

\-{apkqY <ft <1 (4.38)
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From the above equation, it is clear that the value of ft can be varied in a small range for the

large values of (ap). As the value of (apkq)~l »1, the above operating range is constrained

to 0</?<l. This range is considered for the RK-LMS algorithm in previous subsection

because the value of (ap) is kept small. However the increasing value of ft increases the

elements of matrix M(i) in (4.32), which enhances the amplitude of damped oscillations by

increasing the input vector QN(i).

It may be inferred from (4.23) that the tracking speed may be increased by increasing

the value of a, which reduces the lag noise during tracking mode. However, this

improvement is achieved at the cost of slight increase in damped oscillations. Under this

condition, the reduction in the value of ft suppresses the amplitude of oscillations to

minimize the MMSE in tracking. Unlike the G-LMS algorithm [60], this parameter tuning

provides stability in the convergence mode ofthe proposed RK-LMS algorithm.

Thus, the RK-LMS algorithm based adaptive channel estimator is used in the time-

varying environment by tuning the smoothing and control parameters at the optimum values.

The estimated multipath channel coefficients of K active users are used in the multiuser data

detection equation (4.13), which is incorporated in the proposed multiuser receiver (described

in next section).

4.5 RK-LMS algorithm based adaptive multiuser receiver

4.5.1 Adaptive data detection procedure

In this section, we propose the RK-LMS algorithm based adaptive MMSE DFE multiuser

receiver, which uses the estimated multipath channel information. The Kalman algorithm

based multiuser receiver (as described in section 4.3) is computationally complex due to the

matrix inversion operation in (4.15a). The computational complexity in the calculation ofthe
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feedforward filter weight matrix Ff(i) i.e., the equation (4.15a) is reduced by using the

adaptive feedforward filter Wf{i) (the KxN dimensional weight matrix), which results in

/>,(/) =sgn[y(/)].

where, y(i) =Wf (i)req (/) (4.39)

Under no error propagation condition, it is assumed that be(i) =b(i) at the sheer output. The

error vector at the slicer output is e2(i) =b(i)-y(i). The corresponding error covariance

matrix is e2(i)= E[e2(i)e2(i)]. The scalar cost function for this case is defined as the trace of

matrix e2(i) /.e., J1{i) =Exe2{i)e2{i)\. The KxN dimensional gradient matrix

z^1' =-2eL(i)rH (i)l is used to derive the weight update equation for the forward filter as:
ewf l ' J

Wf (/) =Wf (/-l)+pe2(i)reHq (/) with step size p (4.40)

The above weight update equation is governed by theconventional LMS adaptive algorithm.

The adaptive multiuser channel estimator (as shown in Fig. 4.1) provides the estimated

multipath channel coefficients, which suffers from the estimation errors. Therefore, the

presence of residual ISI (which also introduces nonstationarity) can not be ignored in the

equivalent input signal vector r (/). Under such situation, we incorporate the RK-LMS

adaptive algorithm (see [60] and chapter 3) for updating the feedforward filter weight matrix

as:

Wf(ifi=Wf(i\i-\)+pe2(i)r»(i) (4.41)

The apriori estimate Wf\j\i -1) is updated as:

Wf ii\i -1)=Wf (i -1|/ -1)+ ftWf (i -1|/ -1) (4.42)

where Wf(i\i) is the first-order weight increment matrix, which is defined as:

Wf (i\i) =Wf (/ -1|/ -1)+ ape2(i)re"q (/) (4.43)
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where 0<d <1 is a smoothing parameter, which combats nonstationarity in the time-varying

multipath fading environment; and the real valued control parameter 0< ft<1 is used to

provide stability in the initial learning period. Intheproposed RK-LMS algorithm based DFE

multiuser receiver, the smoothing and control parameters are tuned to give the optimum

performance. The adaptive feedforward filter also acts like RAKE, and thus provides the

diversity gain. The feedback filter partially cancels ISI using the channel estimates, while the

forward filter suppresses the residual ISI as well as MAI. Hence, the proposed DFE multiuser

receiver is used for the multiuser interferencecancellationand data detection.

4.5.2 Probability of error analysis

Using (4.39), the signal vector at slicer input (as shown inFig. 4.1) can be written as:

Ai)=\yl(i)y2(>)...y«(i)]

=Wf (itc(i)H(i)b(i)+C(i)H(i - !)&(/ -1)-c(i)H{i- \\i - l)be (/ -1)+£(/)] (4.44)

where, the output corresponding to the first user is y'(/). Let W}(i) be the first row vector in

the matrix Wf(i). Such that,

c%ifMhXc%ifMhj:s%if-iM-i)
ylif)=wf% K

-HCkhk{i-\\i-\)bek(i-\)+z{i)
M

(4.45)

Inthe above equation, we canwrite theweight vector as:

W}(i) =Kr(?)+KAhKo(i) (4.46)

where W}J{i) =W}{i)-W;{i), WxLL{i) =Wlf{i)-W}0{i) and W},($ are the tracking error

weight vector, lag error weight vector and optimum weight vector respectively [57]. The

vector Wf{i) is the average value ofthe weight vector. Using (4.24), the estimated multipath

channel vector is
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hk{i-l) =hk{i-l\i-\)-Ahk{i-l) (4.47)

where, the vector Ahk (/-1) denotes the channel estimation errors for kth user. Substitution

of (4.46) and (4.47) in (4.45) leads to

c,Ai(/)6I(0+sc^(/)&4(o+5;a4At(/-iX6t(i--i)-^(/-i)}
/if)=W}{i\ k

•ZCkAhk{i-\)bek(i-l) +z(i)
k=\

(4.48)

where, y\ (/) =W\0 (i)C'h\ (/) (Scaling factor)

y'mn if) =k (OF Z *?(»)C*A* (/>* (/) (Multiuser interference with n(o, a2^,))
k=2

For probability oferror analysis of the proposed multiuser receiver, the multiuser-interference

(MUI) can be considered Gaussian process for a large number ofusers [27], where bk(i) is a

collection of independent equi-probable ±1 random variables.

ylEs if) =~fc (')}'Z W) ifPkMk (/ - \)bek (i -1) (Channel estimation error with n(o, g2es ))
k=\

The channel estimation errorvector is considered to be a zero-mean random process.

y\ if) =fc (')}"' k/ ifWft (Noise component with n(o, a] ))

Since tracking and lag error weight vectors are random, therefore the mean and variance of

the component {viC '̂fr/jW+^W^W^W *™ n(o,<t2l =ct2 +a2L).

yEpif)=\ylif)Y^W}(i)Ckhk(i-l){bk{i-\)-bek{i-\)} (Error propagation component)
*=i

Under worst conditions i.e., bk(i-\) =-bek(i-l), the error propagation severely effects the

performance of receiver because yXEpif)=2\yl(f)fl^W}(i)Ckhk(i-lpt(i-l). The

106

cross-

k=\



correlation in the signature sequences implicitly randomises the value of yEP(i) [38], which

is assumed to be astochastic process with N^o-2,). Therefore, the probability of bit error

under worst condition is defined as:

' i l
(4.49)

Max{pb\}=Qc
\4°2TL +°lnjl +°ls +Of +CT2Ep J

where, QG denotes the complementary unit cumulative Gaussian distribution function. The

above equation can be used to derive the conditional probability of bit error for a known

channel. However, the equation (4.49) can be averaged for the different channel realizations
to calculate the unconditional probability ofbit error.

The zero error propagation condition U., bk{i-\) =bek{i-\) results in a2EP =0 and

min{pbl}. We have demonstrated analytically in previous sections and verified by computer
simulations in next section that the application of the two-step RK-LMS adaptive algorithm

reduces the lag noise /*, a2L -» a2. But the conventional LMS algorithm fails to reduce the

lag noise in nonstationary environment. Therefore, it may be inferred that

pbl\RK-iMs<Pb]\\LMS

4.6 Simulation results

4.6.1 Performance evaluation ofmultiuser channel estimator

We shall investigate the behaviour of the proposed RK-LMS algorithm based multiuser

channel estimator in the convergence and tracking modes to confirm the analytically derived

results. For simulating DS-CDMA system, the Gold-sequences of length JV =31 are

generated. For all the active users, we have considered frequency-selective multipath fading

channel. Each Rayleigh channel tap-coefficient is assumed to be time-varying according to

AR{l) process (4.17), which does not change during the data symbol transmission period U.,
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Ts =Tb. As the sample rate is Rs = \/TbHz at the maximum Doppler spread fD =vmfjc,

the correlation coefficient is chosen as alk =a =J0(27rfDTb) [101], [154]; where fc is the

carrier frequency, vm is the relative speed of mobile user w.rJ. the position of receiver, c is

the velocity of light and JQ( ) denotes the Bessel function ofthe first-kind and zeroth-order.

Three simulation examples are presented to illustrate the superiority of the proposed

adaptive multiuser channel estimator using the RK-LMS algorithm over the conventional

LMS algorithm based approach. We have calculated the ensemble average of 150

independent trials. The values of smoothing parameter a = 0.01, control parameter ft = 0.75

and step size p = 0.0025 are kept lower than their maximum bounded values (described in

previous sections). These parameters are tuned at their optimum values using the computer

simulations. We have considered 20dB signal-to-noise ratio, the carrier

frequency fc =2GHz and sample rate \/Tb=\00kHz (Tc =0.3226//sec) in each of the

following examples.

Example 4.1: In this example, we investigate the convergence and tracking performance of

the proposed multiuser channel estimator for a four-user system. First, we consider the fading

channel with the maximum Doppler spread fD =10Hz (i.e.,vm =5.4 Km/Hr). For the

multipath delay spread Tm =0.5//sec, the number of multiparas is L=(Tm/Tc)+l =3 for

each user's transmission channel. Next, we increase the Doppler spread fD=\00Hz

(i.e., vm = 54Km/Hr) at the same data symbol rate, which increases the channel variation

and consequently results in the high MMSE (as shown in Fig. 4.2). At lower fading rate i.e.,

fDTb =0.0001, the RK-LMS algorithm gives approximately 3dB performance advantage

over the conventional LMS algorithm because the RK-LMS algorithm combats the lag noise

in tracking mode.
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Fig. 4.2: MMSE (dB) vs the number of iterations of RK-LMS algorithm for different values of

Doppler frequencies.
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However, the performance advantage reduces to approximately 1.5dB for the fading

rate fDTb =0.001 due to the lag noise. Unlike the G-LMS algorithm [60], the control

parameter ft < 1 controls the initial oscillatory behaviour of the RK-LMS algorithm.

Example 4.2: We next consider the performance comparison of the RK-LMS and the

conventional LMS algorithm based multiuser channel estimators for different number of

active users. In this example, the maximum Doppler spread is fD = 50Hz

(i£., vm = 27Km/Hr). The two different values of the multipath delay spreads Tm = 0.5//sec

and Tm =1.5psec are considered, which correspond to L= 3 and L= 6 respectively. The

computersimulation results shown in Fig. 4.3 demonstrate that the performance advantage of

the RK-LMS algorithm deteriorates with the increasing number of users. This degradation is

due to the presence of residual MAI, which increases with the increasing number of users.

Moreover, it may be inferred from Fig. 4.3 that the RK-LMS algorithm gives better

performance for three multipaths. For L = 6, the signal-to-noise ratio per path reduces, which

adversely affects the performance of the proposed multiuser channel estimator.

Example 4.3: For a five-user case, we analyse channel tracking performance of the two

multiuser channel estimators under the time-varying environment. The Doppler spread is

considered to be fD=\00Hz (i.e., vm =54Km/Hr) with the multipath delay spread

Tm =0.25//sec (/.e., L = 2). The adaptive channel tracking performance in Fig. 4.4 shows

that the channel estimated by using the RK-LMS algorithm is comparable to the true channel.

However, the estimated channel coefficient by using the conventional LMS algorithm is

lagging behind the true channel coefficient. Both adaptive algorithms use the same step size,

but the RK-LMS algorithm based channel estimator supersedes because it removes the lag

noise by using the estimated first-order weight increment vector.
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Fig. 4.3: The performance advantage ofRK-LMS over the conventional LMS for different number of

users.
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Fig. 4.4: Channel tracking performance of the RK-LMS algorithm.
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Moreover, it is observed that we can increase the tracking speed by increasing the value

ofsmoothing parameter, and can also reduce the oscillatory behaviour by reducing the value

of control parameter. The channel tracking results shown in Fig. 4.4 are at the optimum

values of a, ft and p (as described earlier).

4.6.2 Performance evaluation of adaptive multiuser receiver

We next investigate the performance of the proposed adaptive MMSE DFE multiuser

receiver under the time-varying frequency-selective multipath fading channels, which utilizes

the estimated channel information in the design of feedback filter (FBF) (as shown in Fig.

4.1). The multiuser channel estimator uses the RK-LMS algorithm and the FBF generates

rIsl (/) using the estimated channel coefficients. This feedback unit is denoted as FBF (RK-

LMS). The feedforward filter of the proposed receiver also uses the RK-LMS algorithm,

which is denoted as FFF (RK-LMS). To generate the time-varying environment, the Ixl

dimensional vector hko(i) is considered to be a smoothly fading mobile communication

multipara channel (Rayleigh). The Jakes model is widely accepted as the realistic fading

channel model, which is simulated by using AR(2) process [equation (1), 103] as:

KM =-KAM - 0- K2hki0{i - 2)+ U(i) (4.50)

where U(i)= [u0(i) «,(/) ... uL_x(i)\ , such that «,(/) is acomplex zero-mean white Gaussian

process. The scalar coefficients in the above equation are Kx =-2rdcos{j2nfDTb) and

K2 =rd (see section 3.4), which take account of the maximum Doppler frequency fD ofthe

underlying fading channel, sampling time Ts =Tb and pole radius rd corresponding to the

steepness of the peaks of power spectrum. The value of pole radius is given as

rd =(1 - 2/D7; ) [equation (70), 44].

Three simulation examples are presented to investigate the performance ofthe proposed
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adaptive DFE multiuser receiver, in which we have considered the carrier

frequency fc =2GHz, sample rate \/Tb=lOkHz {Tc =3.226psec), smoothing parameter

a = &= 0.01, control parameter ft = ft = 0.75, step size of the channel estimator p = 0.001

in (4.21) and step size of the adaptive multiuser receiver p = 0.05 in (4.41). Note that the

DFE receiver is switched to the decision directed mode after transmission of 500 training

bits. Moreover, the multiuser channel estimation equation (4.12) uses the estimated chip-data-

matrix De (/) =C(i)Be (/) in the decision directed mode, where Be (/) is the estimated data-

symbol-matrix. We have considered all the active users moving at the same speed. We

compare the bit error rate (BER) performances of the following six adaptive DFE multiuser

receiver configurations using the RK-LMS and the conventional LMS algorithms in the

simulation examples.

i) FFF (LMS) -» The recursive feedforward filter Wf(i) uses the LMS algorithm. No

channel estimator based feedback unit is used to cancel ISI due to the past symbols,

ii) FFF (LMS), FBF (LMS) -» The recursive feedforward filter Wf{i) uses the LMS

algorithm. The LMS algorithm based channel estimator is used in the feedback unit to

cancel ISI due to the past symbols,

iii) FFF (LMS), FBF (RK-LMS) -> The recursive feedforward filter Wf{i) uses the

LMS algorithm. The RK-LMS algorithm based channel estimator is used in the

feedbackunit to cancel ISI due to the past symbols,

iv) FFF (RK-LMS) -» The recursive feedforward filter Wf{i) uses the RK-LMS

algorithm. No channel estimator based feedback unit is used to cancel ISI due to the

past symbols.

v) FFF (RK-LMS), FBF (LMS) -> The recursive feedforward filter Wf(j) uses the RK-

LMS algorithm. The LMS algorithm based channel estimator is used in the feedback
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unit tocancel ISI due to the past symbols,

vi) FFF (RK-LMS), FBF (RK-LMS) -> The recursive feedforward filter Wf(i) uses the

RK-LMS algorithm. The RK-LMS algorithm based channel estimator is used in the

feedback unit to cancel ISI due to the past symbols.

Example 4.4: In this simulation, we analyse the affects of maximum Doppler spread on the

performance of the proposed multiuser receiver. The increase in Doppler spread is due to the

increasing speed of mobile user (i.e., vm =0.54Km/Hr to 5.4Km/Hr). In the present case,

the multipath channel response is time-varying due to the movement of the desired user. The

time-varying channel tracking suffers due to the lag noise when LMS algorithm is used (see
chapter 3). For afive-user system at SNR =2MB and L=2, the results are presented in Fig.
4.5. It is clear that the use ofthe RK-LMS algorithm in the channel estimator FBF (RK-LMS)
improves the performance of multiuser receiver because the channel estimation errors are

small. In addition, the incorporation of the RK-LMS algorithm in the FFF leads to better

results in comparison to FFF (LMS) as the FFF (RK-LMS) suppresses residual ISI

(nonstationarity) in the time-varying environment. As the Doppler spread increases, the BER

performances of all the proposed configurations degrade due to the inability of LMS

algorithm to adapt under the fast time-varying channel. Moreover, the error propagation
effect also degrades the performance of non-linear detectors [75]. However, the adaptive
receiver using FFF (RK-LMS), FBF (RK-LMS) configuration outperforms the other five
configurations (as shown in Fig. 4.5).

Example 4.5: In this example, the effect of increasing number of multipaths i.e., Lon the

performance of the presented multiuser receiver is analysed. We keep SNR =lOdB at the

Doppler spread fD =\Hz (i.e., vm =0.54Km/Hr) in afive-user system.
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The results presented in Fig. 4.6 show that for a small number of multipaths, the

performance of the proposed receiver improves because the FFF of the proposed receiver also

works as RAKE [14], and thus improves SNR by providing the diversity gain. However, as

the number of paths become large (U., SNR per path reduces), the BER performance

deteriorates substantially. The observed degradation is due to the increasing magnitude of

residual ISI and MAI as the channel estimation errors are large. It is evident from Fig. 4.6

that for a large number of multipaths, the configurations using LMS algorithm for the channel

estimation in the feedback unit (as shown in Fig 4.1) i.e., using FBF (LMS) show inferior

performance. Therefore, the FFF (RK-LMS), FBF (RK-LMS) configuration for the presented

multiuser receiver supersedes the other configurations.

Example 4.6: In this simulation, we investigate the performance of the proposed receiver for

the different number of users and for the different values of SNR. We first consider the

Doppler spread fD = \Hz at SNR = \5dB. The multipath delay spread is considered to be

Tm =5/isec (/.e.,the number of multipaths is 1 = 3). The bit error rate increases with the

increasing number of users (as shown in Fig. 4.7) because the load factor (/.e., K/N)

increases [73], which results in the high magnitude of residual MAI at the output ofadaptive

FFF. The increase in the magnitude of residual MAI also deteriorates the tracking

performance of multiuser channel estimator, which severely affects the BER performance of

the presented multiuser receiver due to the presence ofchannel estimation errors.

We next simulate a four-user system and vary the SNR at the same values of Doppler

spread and multipath delay spread. It is clear from Fig. 4.8 that the increase in the value of

SNR improves the BER performance of all the multiuser receivers. However at the

BER = 0.006, the proposed FFF (RK-LMS), FBF (RK-LMS) multiuser receiver provides

approximately 3dB performance gain over the conventional FFF (LMS) configuration.
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From Fig. 4.7 and Fig. 4.8, it may be inferred that the FFF (RK-LMS), FBF (RK-LMS)

is the best suited configuration for an adaptive multiuser receiver under the smoothly time-
varying fading conditions.

4.7 Concluding remarks

In this chapter, we have presented an adaptive MMSE DFE multiuser receiver using the two-

step LMS-type reduced Kalman/LMS algorithm under the frequency-selective smoothly

time-varying multipath fading channels. The proposed receiver uses an adaptive multiuser

channel estimator to design the feedback filter of DFE. The estimated weight increment

matrix is used in the weight update equation to track the time-varying channels. The values of

the smoothing parameter, control parameter and step size are kept less than their respective
maximum values. The optimum values of these parameters are determined using the

computer simulations. We can improve the tracking speed ofadaptive channel estimator by

increasing the value of a, which inturn enhances the oscillatory behaviour of the RK-LMS

algorithm. Since, it has been analytically proved that the reduction in the value of parameter

ft reduces the amplitude ofoscillations. Therefore, the value of ft may be reduced to control

the instability ofthe proposed algorithm.

Simulation results show that the performance of the presented multiuser receiver is

dependent on the channel estimation errors because the residual ISI adversely affects the

BER performance. The increasing number of users and the velocities of moving users

deteriorate the BER performance, as the error propagation effect and the residual interference

(ISI and MAI) overwhelm the decision process. For asmall number of multipaths, the FFF

provides performance advantage by exploiting the multipath diversity. However, the BER

performance degrades for a large number of multipaths because the SNR per path reduces,

which results in the high channel estimation errors. The computer simulation results have
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evidenced that the performance of FFF (RK-LMS), FBF (RK-LMS) configuration for the

proposed adaptive multiuser receiver is superior to the conventional LMS algorithm based

configurations.

It is known that the error propagation may severely affect the performance of decision

feedback multiuser receivers. In the next chapter, we focus on the error propagation problem

arising in the decision feedback structures used to combat ISI and MAI.
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CHAPTER 5

ADAPTIVE MULTIUSER DECISION FEEDBACK

DETECTORS FOR DS-CDMA SYSTEMS USING

PARALLEL INTERFERENCE CANCELLATION APPROACH

Multipath propagation through linear dispersive media introduces intersymbol

interference that distorts the wireless transmission and degrades the bit error rate performance

of the multiuser systems. In addition to ISI, the non-orthogonal properties of signature

sequence waveforms and asynchronism result in the generation of multiple access

interference along with AWGN at the multiuser receiver. In DS-CDMA system, the problem

of MAI is not only due to the known intra-cell users, but also from the unknown inter-cell

users. In such situations, the adaptive non-linear (decision feedback) MMSE techniques [9],

[10], [14], [73] are more effective than the linear techniques (without feedback) [38].

However, the error propagation adversely affects the performance of decision feedback

multiuser detectors under the low SNR conditions (see [75] and chapter 4).

In this chapter, we first briefly review different schemes to control the error propagation

effect in the adaptive decision feedback equalizers in section 5.1. We also review different

parallel-interference-cancellation (PIC) techniques used in the adaptive-decision-feedback-

detectors (ADFDs) for the efficient multiuser interference cancellation and data detection

under the controlled error propagation conditions. Using the multiuser system model

described in section 4.2, we introduce an adaptive decision feedback equalizer using the

erasure algorithm (E-DFE) with fully connected feedback filter in section 5.2, which also

includes details about the proposed erasure algorithm. We next present the DS-CDMA

system model in terms of the detected and undetected users, which is used to design the
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partial parauel interference canceller in secicn 5.3. We present an adaptive decision feedback
detector based on the parallel interference cancellation approach nsing tbe emsure algorithm
and channel estimator (EC-ADFD-P,C) in section 5.4. Tbe simulation results are presented in
section 5.5 to demonstrate the improved performance of the proposed adaptive E-DFE over
<he conventions DFE (C-DFE) under the slowly time-varying frequency-selective fading
channel. We also provide simulation results on the performance ofthe proposed adaptive EC-
ADFD-PrC. Finally, conclusions are given in section 5.6.

5.1 Introduction

On the fonvard link of DS-CDMA multiuser system, adaptive decision feedback equalizer is
used to detect the desired user by considering MAI as noise [14,. The forward filter of
adaptive DFE improves the signal-to-noise ratio, as it performs the function of RAKE. If the
received signals are chip asynchronous, (hen the problem of different tinting offsets across
.he active use. can be solved by nsing the fractional chip sampling along with the use of
excess bandwidth [4.]. As the information abou, pas, detected symbols ofall the active users
is available a, Ac base station on reverse link, therefore the backward filter ofadaptive DFE
can be used in tally connected mode to cancel out ISI due to other active intra-cell users
(interferers) [10]. However there is apossibility of wrong decisions due to the presence of
residual MAI, which leads to error propagation due to the nse ofdecision feedback loop.

Previonsly, erasures have been introduced in the decision feedback equalizer for the
detection of binary pulse-amplitude-modulation (PAM) and quadrature-amplitude-
modulation (QAM) signals to reduce the effect of error propagation [79], [80]. In this
scheme, asymbol is considered unreliable if the corresponding absolute value of sample a,
me sheer input is below apredetermined .hreshold value. Subsequently, these uncertain
symbols are erased in the feedback unit. This etasure process leads to complete loss of the
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low amplitude received symbols along with the spurious signals. Moreover, this technique is

not directly applicable to the adaptive DFE structures used in the DS-CDMA system because

under no power control condition, the absolute value of the residual MAI may dominate the

decision process. These drawbacks can be overcome by modifying the non-linear function

used in the soft-slicer. In this chapter, we present a novel erasure algorithm based soft-slicer

(E-slicer) for adaptive decision feedback equalizer in the DS-CDMA system for interference

suppression. However this single-user detection scheme is not beneficial on the reverse link

(at the base station), therefore we next focus on the multiuser interference suppression and

data detection techniques.

Duel-Hallen has presented two multiuser decision feedback detectors in [109]-[111]

i£., S-DFD (successive-) and P-DFD (parallel-). Previously presented work on MMSE DFDs

using the successive interference cancellation scheme in [139] depicts that the total delay

involved in the decision process of S-DFD is more in comparison to the P-DFD, which limits

the application of the former multiuser detector. In P-DFD, the tentative decisions of K users

obtained from the linear MMSE receiver are simultaneously used for the parallel interference

cancellation. The tentative decisions may be unreliable due to the overwhelming nature of

MAI, which leads to error propagation in the subsequent stages of multistage detector.

Divsalar et al. have proposed the partial PIC approach in [116], in which the constant

partial-cancellation-factors (PCFs) are introduced to cancel a fraction of the estimated

interference. The MMSE/PIC decision feedback detector supersedes the linear MMSE

detector even for the large values of signature sequence cross-correlation [127]. However, the

RLS algorithm based PIC approach used in the non-linear detection results in the high

computational complexity [126].

During the last decade, different PIC schemes have been proposed in the literature for

the multiuser interference suppression and data detection [116]-[132]. However the simplest
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approach is to multiply all the symbol estimates by the constant PCFs less than unity, and

subsequently subtract the interference term from the received signal using the PIC scheme.

This approach may be modified by using the variable PCFs based on the value ofcorrelator

or linear MMSE receiver output. The optimal PCF values are determined either by theoretical

analysis under some simplifying assumptions [122], or by using the LMS adaptive algorithm

[120]. However the former method is only valid for a small number ofusers, and the latter

adaptive method is not applicable in the fast time-varying multipath fading environment.

Using the perfect power control and respreading technique [125], the optimal PCFs can be

calculated efficiently online under the known time-varying channel conditions. In the above

discussed PICs, the BER performance degradation is observed due to the presence of MAI in

the asynchronous DS-CDMA receiver. However the erasure algorithm may be used to

generate the variable PCFs depending on the soft-output of multiuser linear filter, which

reduces the effects ofresidual MAI in the decision process.

In BPSK transmission, we transmit chip waveforms at the chip rate in the DS-CDMA

wireless systems. At the receiver end, the detection takes place at the data rate. Therefore the

intersymbol interference is not only due to the chip waveforms of past data bits, but also due

to the chip waveforms of present data bits of all the intra-cell active users. For the

asynchronous DS-CDMA system, Ratasuk et al. have proposed the P-DFD structure for the

slowly time-varying channels, which attempts to cancel all the interference (ISI and MAI)

simultaneously [128]. This is an adaptive structure based on embedding the received signal

vector in ahigher dimensional space. For the known intra-cell users' signature sequences and

channel parameters, the filter coefficients are estimated without a training sequence. On the

contrary, when channel parameters are unknown, a training sequence is required to estimate

the filter coefficients. These estimates have been obtained by minimizing the least-squares

cost function. Under the time-varying environment, it is difficult to estimate the covariance
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matrix of the received signal vector. Moreover the ill-conditioned covariance matrix

introduces numerical problems, and the covariance matrix inversion operation also increases

the computational complexity.

It has been shown that the P-DFD consists of a linear MMSE filter followed by an

error-estimation filter, in which the lower-diagonal constraint on the feedback filters is

removed [129]. The simulation results presented in [129] depict that the error propagation

effect severely degrades the performance of P-DFD. In a multiuser system, the detection

procedure of a single undetected user has been discussed using the PIC approach. However,

adaptive multiuser P-DFD based on partial parallel interference cancellation scheme for the

multipath fading channel has not beenreported so far in the literature.

In this chapter, we propose two methods for interference cancellation. In the first

method, the received signal vector is directly fed to the adaptive decision feedback detector

based onthe PIC approach (ADFD-PIC), which suppresses noise and interference without the

knowledge of spreading signature sequences and the estimated channel response. In the

second method, we first estimate the multiuser channel response and then cancel the

interference term (due to the past detected data bits) from the received signal vector. The

resultant received signal vector is fed to the ADFD-PIC, which considers the residual ISI as

noise. The second method may be called the C-ADFD-PIC scheme. Therefore, four different

decision feedback configurations with or without the E-slicer are

i) ADFD-PIC -> adaptive P-DFD or adaptive decision feedback detector based on the

parallel interference cancellation approach.

ii) E-ADFD-PIC -» ADFD-PIC using the E-slicer.

iii) C-ADFD-PIC -> ADFD-PIC using the channel estimator.

iv) EC-ADFD-PIC -> ADFD-PIC using the E-slicer and channel estimator.
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In the following, we first propose an adaptive E-DFE for the asynchronous DS-CDMA using
anovel erasure algorithm to reduce the effects oferror propagation in the non-linear detection
techniques. To reduce the possibility of feeding back the wrong decisions, the output of the
feedforward filter of the E-DFE is processed before it is fed back to the feedback filter. In
addition, the fully connected feedback filter of E-DFE has been used to eliminate ISI due to
the intra-cell users. We next propose an ADFD-PIC for the DS-CDMA transmission, which
not only combats ISI and MAI but also suppresses the other-cell-interference (OCI). Under
the smoothly time-varying multipath fading channels, the presented ADFD-PIC structure is
motivated by the work of Ratasuk et al. in [128] and [129], which offers significant
performance improvement by using the multiuser channel estimator. We also incorporate the
erasure algorithm based soft-slicer in C-ADFD-PIC to mitigate the adverse effect, of error
propagation in the presented non-linear decision feedback technique (EC-ADFD-PIC), which
outperforms the hard-slicer based approach and also proves to be beneficial for the inter- and
intra-cell interference suppression. Comparison of the performance of C-DFE and E-DFE is
presented to show the advantages of the proposed adaptive E-DFE in terms of the reduced
average BER performance, under the near-far situations and the sudden change in the signal
power of the desired user. The simulation results are also presented to demonstrate the
substantial improvement in the BER performance of the proposed MMSE EC-ADFD-PIC
over other multiuser detection techniques.

5.2 Adaptive decision feedback equalizer using the erasure algorithm
5.2.1 Adaptive E-DFE structure

At the DS-CDMA receiver, a lowpass filter with bandwidth equal to the chip signal
bandwidth is normally used for the demodulation [14] (as shown in Fig. 5.1) as the matched
filtering and noise-whitening approach does not give any exclusive benefit [24]. If Kactive
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users are present in the multiuser system as shown in Fig. 2.1, then the equivalent lowpass

composite receivedsignal is represented as:

r(t) =±rk(t)+on(t) (5.1)
*=i

where, rk(t) is the equivalent lowpass signal of kth user and on(t) is the zero-mean lowpass

AWGN dueto the presence of receiver thermal noise (as described in section 2.2).

r(t)

LPF

Mg

mA

(a=tc/m)

FFF

y>if)
E-slicer

Erasure

algorithm
(Soft-slicer)

FBF

FBF ♦

bk(i-Dk)

dk(i-Dk)

da(i-Dq)

Fig. 5.1: Adaptive E-DFE with fully connected feedback structure for the kth user.

(Onlythe qth user is considered as the strong interferer)

In the proposed adaptive E-DFE, the received signal r(t) is sampled after passing itthrough a

lowpass filter, where M is the number of over-samples used to tackle the problem of

asynchronous reception [38], g(mA) is input to the fractionally spaced feedforward filter,

such that A= Tc IM . The data bit duration is Tb=NTc, where N and Tc are the processing

gainandchip duration respectively. The inputto the soft-slicer (E-slicer) may be written as:

h=\ q=\ h=l
q*k

m=0

For kth user, Nn +1 and N^ are the numbers of forward and feedback taps with

coefficients Fk and /tt respectively. In addition, Nf is the number of feedback taps with
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coefficients fqk used to cancel the intersymbol interference due to qth user. The forward

filter acts like RAKE in the adaptive E-DFE and combines the energy of desired user

received through different paths [14].

The E-slicer gives two outputs bk and dk as shown in Fig. 5.1; where b\ is the final

decision U. (-4 or +Ak), while its other output dk is fed back to the respective FBF. It is

assumed that Dk is the net decision delay in the system. The outputs of soft-slicers of other

strong interferers are also fed back to their respective feedback filters (FBF of the qth user is

shown in Fig. 5.1). In order to optimize the performance of the adaptive E-DFE receiver, the

forward and feedback filter taps are optimized using the minimum mean square error
criterion; where the error is defined as:

£k =bk - yk where, bk =sgn(yk) (5 3)

Under the practical situations, the C-DFE receiver suffers from the problem of error

propagation due to the feedback ofwrong decisions. This problem can be controlled by using

the erasure algorithm in E-DFE (described in next section), which makes its performance

superior in comparison to the conventional DFE.

5.2.2 Erasure algorithm

In the conventional approach, the output of the forward filter of C-DFE is fed to the sheer

circuit to decide in favour of -4 or +Ak (with zero threshold level), which is subsequently

fed back to the feedback filter. The sheer circuit can be replaced by asoft-slicer unit, which

can erase the decisions with high uncertainty in the feedback unit [79]. In [80], Chiani has

presented analytical results for a single-bit memory channel and determined the optimum

threshold level (|ft|) using computer simulations for different signal-to-noise ratio values.

The signals falling below \yt\ are erased, which leads to the removal ofweak but useful
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information signals along with the unreliable signals. Moreover, the adjustment of \fk\

becomes a tedious procedure forthe long-memory slowly time-varying channels.

But in the proposed erasure algorithm, no such "threshold level determination"

procedure is followed. An alternate novel method has been presented to remove the

drawbacks of previous erasure technique, in which the E-slicer (as shown in Fig. 5.1) gives

appropriate weight to the decision according tothe level ofuncertainty and erases the highly

uncertain decisions.

The adaptive MMSE decision feedback equalizer reduces the mean square error

between the actual data bit bk and its estimate yk. The first key observation in the

conventional adaptive DFE isthat if yk isclose to the threshold value (/_»., zero inthis case),

the corresponding output ofthe sheer is not reliable. Secondly, when the estimated value \yk\

is close to \Ak\, the results of estimation theory [161] can be used to infer that the sheer

output is reliable. The increasing distance between the value of \yk\ and \Ak\ makes the

output of sheer more unreliable. These two facts have been used to design the erasure

algorithm, which suggests the possibility of reducing the error propagation by giving

appropriate weight to each detected data bit in the feedback loop. The weights are adjusted

according to the level of uncertainty in the estimated value yk. The erasure algorithm canbe

stated as follows

\yk\>\2Ak\ or

0<\yk\*\2Ak

\2\

1-

K
<0 >wk =0

\i\
(5.4)

->wk = 1 —

I w

where wk is the weight, which varies according to the changes in the squared error. If

sk -> 0, then the value ofassigned weight tends to one (maximum); whereas for \sk\ -> \Ak\,
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its value approaches zero (minimum). Thus the value of weight is constrained to the limit

[0,l]. Using the above criterion, the weighted feedback is

dk=^kxbk (55)

The proposed system is coincident with the conventional DFE if we let wk =1and becomes

the linear equalizer ifwe fix wk =0.

+yk

XXXXYYW+2X Full Erase

+ A>

wt

-A„

xxXXXXXX-^
Vki

Fig. 5.2: Graphical interpretation ofthe erasure algorithm for E-DFE.

The graphical interpretation of the above algorithm is shown in Fig. 5.2. It may be inferred

that if \yk\> \2Ak\ or \sk\ >\Ak\, then there is apossibility that the residual MAI dominates the

decision process, since the near-far problem is unavoidable in the absence of power control.

Therefore, the value of wk is constrained to zero in this region i.e., the feedback signal is

fully erased. It is awell-known fact that the feedback ofawrong decision almost doubles the

error in C-DFE. However it is apparent from the erasure algorithm that the assigned weight

decreases with the increasing value of error, which proves to be beneficial in reducing the

error propagation effect. The resulting single-user detection scheme may be called, "adaptive
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MMSE decision feedback equalizer with erasure algorithm", and hasbeen incorporated inthe

DS-CDMA receiver for obtainingthe performance improvement over C-DFE.

In the next section, we discuss the multiuser system model in terms of the detected and

undetected users, which is used to develop a partial parallel interference canceller.

5.3 Partial parallel interference canceller

Using the multiuser system model described in section 4.2, the composite received signal

vector (in the discrete-domain) at the basestation can be written as:

rif)=lrkifhm (5.6)
JM

where Nx\ dimensional received signal vector corresponding to the kth user's /th data

symbol is rk(i), and z(i) is the zero-mean additive white Gaussian noise vector. For the

multiuser system model under the multipath fading environment [102], we can define the

Kxl dimensional data symbol vector b(i) with binary elements (±1), Lx\ dimensional

channel coefficient vector hk(i), and NxL dimensional signature sequence matrices C*,

C*as:

b^Jpii) bM -AC \{i)=Kif) **if) •••wwl".and

ck =

0

! \
i *

i

i

i

0

1

4

1

,c* =

-*
cN-i

1

CN-L

0 rk rk« cN-\ cN-L+l

0 0 v. .
I I

1 I

I I

I I

-N-l

I I

I I

I I

o o — 0

where c* is the j th chip \£]/4n) in the signature sequence of kth user, and the number of

multipaths L is considered equal for all the active users. The fading coefficient hlk(i) is

considered to be AR(l) i.e., second-order autoregressive process varying at the data rate. It
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can be shown that the data symbol detection equation is

r(i) =C(i)H(i)b(i)+C(i)H(i-lXi-l)+z(i) (5.7)

where b(i) =[bx(i) b2{i) ... bK(i)J isa Kxl dimensional vector,

H(i)=diag\hx(i), h2(i\ ... ,h~K(i)\ isa KLxK dimensional matrix,

C(i)=[cl C2... CK\ and C(i)=[fr C2... CK\ are the Nx KL dimensional matrices.

Further, we can divide all the active users (in a particular cell) into two sets of the detected

'D' and the undetected 'U =K-D' users respectively [129], which results in

c(/)=H/)«c"(/)] (58)

where, C»(/)=[c« C2... C°] and C«(i)=[C™ C™... C<]. Similarly, the multiuser
channel coefficient matrix may be written as:

H(i)=diag[H°(i\ H"(i)} (59)

where, H°(i)=diag[hx(i\ h2(i\ ... ,hD(i)] and H"(i) =diag[hD+x(i\ hD+2(i\ ... ,hK(i)}.
The data bit vector is written as:

bb)=[bDrif)\\b"(i)r (5A0)

where, b°(i)=[bx(i) b2(i) ... bD(if and b»(i)=[bD+x(i) bD+2(i) ... bK(i)]. The substitution
of(5.8)-(5.10)in(5.7)leadsto

m=CDmDifyifhC^{i)H^y(i)+c(i)H(i-lXi-lhm (5.11)

The first two terms on the right hand side of above equation include not only the desired

signal but also ISI due to the chip waveforms of present data bits of active users. In addition,

the third term is ISI due to the chip waveforms ofpast data bits. We next present details about

the MMSE multiuser P-DFD receiver design, which uses the estimated multiuser channel

response __"(iji) to suppress ISI.
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Let the input vector to the decision device be y(i)=[y1(i) y2(j) —yK{i)\ and the

corresponding estimated data symbol vector at the sheer output is

_».(/) =[_»el(/) be2(i) ... beK(i)\ . If the past decisions and channel estimates of all the active

users are available at the receiver end, the intersymbol interference due to the previous data

symbols can be cancelled as:

*«(fhtif)-*mif) with r!S!(i) =C(i)H{i-l\i-\)be{i-\) (5.12)

Under no error propagation condition in the decision feedback loop i.e., be(i-\)=b(i-l),

the above equation may be written as:

^0-C*(O»fl(fl6*©^ (5.13)

where, the channel estimation error is AH(i-l)= H[i-\\i-l)-H(i-\). For simplification,

we assume zero channel estimation error. It follows that

rJ) =CD(i)HD(iy(i) +C«(i)H"(iy(i)+z(i)

=C(i)H(/>(/)+_(/)

(5.14a)

(5.14b)
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Fig. 5.3: Partial parallel interference cancellation using the E-slicer.

Let us assume that the present data bit tentative decisions of D users (strong) are

bfifi-pnif) bnif) - blD{i)\ , as shown in Fig. 5.3. The soft-output of NxD dimensional
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MMSE multiuser linear detector (Flln) /.,., £(0-^(0 x^2(i) ... *,,D(,f is fed to the

E-slicer to generate W^bf. The DxD dimensional partial cancellation factor matrix is

defined as W^(i)=diag[w^(i), »J,ft ... ,*£(,)], where <, is the PCF assigned to the

tentative decision of *th detected user. Using (5.14a) in this decision feedback detection

structure, the input tosheer for the /th data symbol is

rif)=EuHmM-BUHiflKf(fm} (5.i5)

where, Fu and Bu are the NxU dimensional feedforward and the DxU dimensional

feedback matrices respectively. Since all the PCF values are real, therefore WD =WDH We
pcf pcf • " *

assume that all the tentative decisions of detected users are correct i.e., b?(i) =bD(i). The

above equation may be rewritten as:

yU(fhF"»(i)req(i)-B™(iy(i) With g»Wg =B™ (5 16)

The Ux\ dimensional error vector at the DFD output is eudfd{i) =bu{i)-yu(i). The

corresponding error covariance matrix ofthe undetected users is defined as:

r>-)=4W>$«] (5.17)

The cost function i£., Judfd(i) is defined as the trace of matrix T^ii). The optimum MMSE

DFD is derived by minimizing the scalar cost function. Using the partial derivatives

<('') ft AKM n-QpiT =° ^d -~<r =0, we obtain

^^(/)-C^(/)^(/)-Cc(/)7/°(/)^;(/)^(/)=0

This leads to the optimum solution as:

J^CO-fc, +J^rCw(/)l5rer(0 with *, =£[_(/)_»(/)] (5.18)

**C><f)R>(frrZ#'<t).RDF°(t) (5.19a)

136



The above equationcan be simplifiedto give

K if)=M'K if)=hdh if*™ if)pu if) (5-19b>

where, the covariance matrix of the input signal vector req(i) is defined as

R =E[re if)re"if)] =rd +Ru +Rt- The covariance matrices corresponding to the detected

users, undetected users andnoise vector are RD, Rv and R2 respectively.

We consider the case of a single undetected kth user in a particular cell i.e., set of

undetected users U={k) and set of detected users D=jl,2, ... ,*-l,*+l, ... ,K\. Using

(5.18) and (5.19b), the optimum feedforward and feedback matrices may be written as:

Fkif) =[Rk+RsrC%if) (5-20)

Bl(i) =HDH(i)CD"(i)Fk(i) (5.21)

The above results for a single undetected user are used in the next section for deriving the

adaptive multiuser P-DFD structure for the multiuser interference suppression and data

detection on the reverse link in mobile communication systems.

Received

composite signal

eg

+H

'ISI

Processor

Channel estimator

Min

Klin
I + B/
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be

u + b,
Bw

Delay

Fig. 5.4: Blockdiagram of the proposed channel estimator based DFD using the PICapproach.

5.4 Adaptive multiuser EC-ADFD-PIC

The block diagram shown in Fig. 5.4 represents the proposed channel estimator based DFD

using the PIC approach. Its equivalent structure (P-DFD using the E-slicer) is shown in Fig.
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5.5, where F and B denote the NxK dimensional feedforward and the KxK dimensional

feedback matrices respectively. The ^xl dimensional vectors xlln, b, and y in Fig. 5.4 are

the soft-output of MMSE linear multiuser receiver {Fltn), tentative decisions and input to the

sheer respectively. The *,,„ is fed to the E-slicer to generate the real PCF matrix (see

appendix C) U., W^ii) =dia^i), w2^ ... ,w%f{i)\.

eg FH y , -1
' L_

BH t-sneer

Wpcf b,
Klm

Fig. 5.5: P-DFD using the E-slicer.

From Fig. 5.5, itmay be seen that the input tothe decision device is

yifh RH(iM)-B»(ilWrtif)bM where, wJ)=W"J) (5.22a)

yi})=FHif)r^)-B?i!)bt(}) where, 2^=2#^(/) (5.22b)

The Kx1dimensional error vector at the output of DFD is eFdJd (/) =be (/) - y(i) with the error

covariance matrix r(J,(0 =_?[e^(i>™(j)]. The optimum feedforward and feedback filters are

derived by minimizing the trace of r£(/) w.r.t. F(i) and _?(/) using the MMSE criterion,

and are given as:

Eif) =Flin(jllK +Bw(i)] with F^^YdiJHii) (5.23)

Bw (i)=[H» (i)C» (i)c(i)H(i)Y H" {i)C" (i)ReqF(i) - IK (5.24)

where, Req =^[^,(i)r<J(/)J is the NxN dimensional covariance matrix of the input signal

vector and IK is the KxK dimensional identity matrix. It may be inferred from (5.23) that

the optimum forward filter is aconcatenation ofthe linear MMSE filter FUn(i) and the error-
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estimation filter [lK +Bw(i)] (as shown in Fig. 5.4). Since each column ofF(/) represents the

weight vector corresponding to a particular user, therefore we can use the single-user forward

filter Fk(i) (5.20) to obtain the optimum feedforward filter as F(/)=|f'(/) F2(i) ... FK(i)\

(see [129]). The implementation ofP-DFD requires the estimation ofcovariance matrix R^,

which is usually difficult to compute in the time-varying environment. Therefore in EC-

ADFD-PIC, we obtainfilter coefficients by usingthe LMS adaptive algorithm as:

F„n(i+l)= Flinif)+^eqifKnif) with step size,/ (5.25)

where, elm(i) =b(i)-xlin(i) in the training mode. For the single-user detection scenario, the

inputto decisiondevice is

ykif) =F^if)rdfeif) (5-26)

with F'(/)=H-) -¥*$, ^0)-k©KtW©rr and •#('M*(')-**W inthe
decision directed mode; where the (K-\)x(K-\) dimensional matrix W°f and the (iC-l)xl

dimensional vector b? are obtained by eliminating the kth element from W^ and b,

respectively. The (A:-l)xl dimensional output vector of the E-slicer is pumped into the

(£-l)xl dimensional single-user feedback filter Bk{i). It follows that

Fk(i +l) =Fk(i)+prdfe (/>£(/) (5.27)

The single-user forward filter Fk(i), which is the fcth column of F(i), is obtained by using

the first N elements of Fk(i). Using the Moore-Penrose pseudo-inverse of matrix Flln [162],

the equation (5.24) may be rearranged as:

B.if) =fc ifK (/)]"' F* (i)F(i)-IK (5.28)

The feedback matrix Bw(i) is obtained by substituting Flln(i) and F(j) in (5.28). The

estimation of R is not required in the implementation of the presented EC-ADFD-PIC. It is
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apparent that the linear filter FllH partially cancels interference and noise. However, the

feedback filter Bw suppresses the residual interference.

5.6 Simulation results

5.6.1 Performance evaluation ofadaptive E-DFE

Three simulation examples are presented to illustrate the superiority of the proposed adaptive

E-DFE over C-DFE. For simulating the asynchronous DS-CDMA system, the Gold-

sequences of length N=31 are generated. The square-root raised-cosine pulses are used for

the transmission of information over adispersive channel. For the jfcth desired user, we have

considered frequency-selective multipath fading channel with L=3 (number of taps), and

the channel tap-coefficients do not change during the data bit transmission period because

these tap-coefficients are assumed to be slowly time-varying. In all the examples, the number

of forward filter taps is fixed at N,k =3N and the number of feedback filter taps is two i.e.,

Nfi =Nfi, =- =2•The NLMS adaptive algorithm has been used to update the coefficients of

forward and feedback filter taps ofthe decision feedback equalizers i.e., C-DFE and E-DFE.

Since we are implementing the adaptive DFE structures for the data detection and

interference cancellation, therefore no power control scheme has been used. In the following
examples, we have taken the ensemble average of 200 independent trials, and each DFE is

switched to the decision directed mode after the transmission of 500 training bits.

Example 5.1: In this example, we investigate the influence of sudden changes in the signal-

to-noise ratio of the desired user on the BER performance of the proposed adaptive E-DFE.

Because under this situation, there is astrong likelihood that the wrong decisions will be fed

back. In a five-user system, the signal-to-noise ratios ofthe desired user and other intra-cell

users are kept at 25dB and 5dB. After the transmission of 5000 data bits, the weight vector
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of adaptive filter is assumed to be set at its optimum value. The SNR of the desired user is

next changed to 5dB. This change results in the high mean square error for C-DFE as

compared to the E-DFE, which is clearly shown in Fig. 5.6. This is due to the error

propagation in the conventional DFE, but this disadvantage has been controlled by the use of

erasure algorithm in E-DFE.

Example 5.2: We next consider the performance comparison of C-DFE and E-DFE, when

the number of active users changes. For analysing the behaviour of E-DFE, we have kept

SNR for all the active users equal to \0dB. The computer simulation results shown in Fig.

5.7 demonstrate that for both equalizers, the bit error rate increases with the increasing value

of KIN ratio /.e., load factor [73].

For a single-user situation, the maximum performance advantage of the proposed

adaptive E-DFE over C-DFE is obtained as the erasure algorithm reduces the error

propagation effect. As the number of users increases, this performance gap reduces gradually.

The reason for this observed degradation is that the increasing value of load factor in the

asynchronous DS-CDMA system results in the increase of residual MAI, which deteriorates

the BER performance of both equalizers. But, it is observed that the E-DFE still outperforms

the C-DFE when the number ofusers is K<2Q. However for K>20 (i.e., load factor

> 0.645), the residual MAI limits the BER performance of the multiuser system.

Consequently, the adaptive E-DFE performs marginally better than the C-DFE for a large

number of active users.

Example 5.3: For an eight-user case, the near-far situation is introduced in the DS-CDMA

system by keeping other active interferers at 20% higher power level than the desired user.

The BER performance improvement has been observed for both equalizers with the

increasing value of SNR (as shown in Fig. 5.8).
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Fig. 5.6: MMSE (dB) vs the number of iterations for adaptive E-DFE, K=5.
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Fig. 5.8: BER vs the signal-to-noise ratio (dB) of the desireduser for adaptiveE-DFE.
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The simulation results at the different values of SNR of the desired user have

evidenced that the bit error rate increases under the near-far situation, but the proposed

adaptive E-DFE supersedes the conventional equalizer because the error propagation severely

affects the performance of C-DFE. At BER = 0.01, E-DFE provides approximately 2.5dB

performance gain over the conventional DFE.

5.6.2 Performance evaluation of adaptive EC-ADFD-PIC

We shall investigate the performance of the proposed EC-ADFD-PIC under the frequency-

selective smoothly time-varying fading channels. The Lx1 dimensional channel coefficient

vector hk(i) is considered to be a smoothly fading multipath channel (Rayleigh), which is

simulated by using the second-order autoregressive process (see subsection 4.6.2). We have

used the LMS adaptive algorithm to update the filtercoefficients.

Two simulation examples are presented, in which we have considered the carrier

frequency/, = 2GHz, sample rate \/Tb = \0kHz (Tc = 3.226//sec) and step size p = 0.01. In

the training mode, we consider bt(i) =be(i) =b(i). Note that the DFD is switched to the

decision directed mode after the transmission of 500 training bits. For the multipath delay

spread Tm=9psec, the number of multipaths is L=(Tm/Tc)+\z4 for each user's

transmission channel. We consider the maximum Doppler spread fD = \Hz for all the active

users. No power control scheme has been used.

We propose two methods to cancel ISI due to the past data bits of K active users. In the

first method, we directly feed the received composite signal vector to ADFD-PIC /_?.,

r = r. However in the second method, we estimate the ISI term rISI using the multiuser
eg

channel estimator, and then cancel the intersymbol interference from the received composite

signal vector before feeding it to ADFD-PIC (as shown in Fig. 5.4). We compare the BER

performances of both methods by using the E-slicer in the following examples. The presented
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results are based on an ensemble average of 150 independent simulation runs. We have

shown the average bit error rate for each detector, which is defined as BER =YBERk /K.
k=\

Example 5.4: In this simulation, the effects of signal-to-noise ratio on the performance of the

proposed ADFD-PICs are analysed. For afour-user system, the results shown in Fig. 5.9

depict that the BER reduces with the increasing value of SNR. The effects of other-cell

interference are observed by considering the two inter-cell interferers (with L=4 and

fD =\Hz). The BER performance ofall the multiuser detectors degrades. However, the EC-

ADFD-PIC outperforms other detectors with and without inter-cell interferers. It may be
inferred from the results presented in [128] that the P-DFD offers approximately 2dB gain
relative to the linear receiver. However at BER =0.04, the proposed EC-ADFD-PIC provides
approximately 3dB performance gain over the linear MMSE receiver in the smoothly time-
varying environment.

Example 5.5: For afour-user system, we analyse the effects of maximum Doppler spread on
the performance of the proposed multiuser receiver. In this case, the maximum Doppler
spread is varied up to fD =5Hz at SNR =6dB. The simulation results presented in Fig. 5.10

show that the bit error rate substantially increases with the increasing value of fD. Therefore,

the proposed technique is valid for the slow moving mobile users. This performance
degradation is due to the incorporation of LMS algorithm in the presented ADFD-PIC, which

does not adapt in the fast fading environment (see chapter 4). However, the EC-ADFD-PIC

outperforms other detectors in the time-varying environment.

We next increase SNR to \5dB and observe the effects of increasing number ofusers.

The application of the MMSE multiuser linear detector is limited to aspecific range of loads
i.e., K/N < 70% [73].
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Fig. 5.9: BER vs SNR for adaptive EC-ADFD-PIC.
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It is clear from results shown in Fig. 5.11 that the proposed receiver may handle slightly

higher load than the linear MMSE multiuser receiver. The BER performance of the ADFD-

PICs degrade due to the increasing load factor because we have used the linear multiuser

filter faj in its design (as shown in Fig. 5.4), which limits the performance gain due to the

feedback of wrong tentative decisions under the practical conditions. The performance gain

of the EC-ADFD-PIC receiver over the linear multiuser detector reduces with the increasing
number ofusers.

However in both cases, the EC-ADFD-PIC supersedes other detectors in the multiuser

detection scenario due to the improved interference suppression strategy.

5.7 Concluding remarks

In this chapter, we have introduced anovel erasure algorithm to control the effects of error

propagation in the conventional adaptive MMSE DFE receivers. Over slowly time-varying

frequency-selective multipath fading channel, this technique provides improvement by
reducing the bit error rate in the asynchronous DS-CDMA system. Simulation results show

that the adaptive E-DFE outperforms the C-DFE for both the near-far and high loading
environments. However as loading factor approaches unity, the performance of E-DFE is

comparable to the C-DFE. The proposed adaptive non-linear receiver (equalizer) also proves

to be effective under the conditions like sudden changes in the signal-to-noise ratio of the

desired user, where the error rate is high. The simulation results have evidenced the superior
performance ofthe proposed erasure algorithm.

Next, we have proposed an adaptive decision feedback detector based on the parallel

interference cancellation scheme for the DS-CDMA system, which uses the channel estimator

and E-slicer. The estimated multiuser channel response is used to cancel ISI due to the past

data bits of all the active users. The ISI due to the chip waveforms of present data bit and
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MAI are suppressed first by the linear MMSE feedforward filter, and then the residual MAI,

ISI and other-cell interference are cancelled using the feedback filter. The effects of error

propagation are controlled by incorporating the erasure algorithm in the feedback unit. The

EC-ADFD-PIC provides approximately 3dB performance advantage relative to the linear

MMSE multiuser receiver under the smoothly time-varying multipath fading channel.

Moreover, the adaptive implementation using LMS algorithm eliminates the requirement of

the estimation of covariance matrix of the received signal vector under the time-varying

environment. The simulation results depict that the proposed receiver may be used efficiently

for the slow moving mobile users.

Since the S-DFDs based on successive interference cancellation approach are known to

provide better performance than the P-DFDs, therefore we focus on the development of

multistage (iterative) ADFDs using both parallel and successive interference cancellation

schemes in the next chapter.
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CHAPTER 6

TWO-STAGE MMSE MULTIUSER DECISION FEEDBACK

DETECTORS FOR DS-CDMA SYSTEMS

Multistage multiuser decision feedback detectors have emerged as a way to increase

the spectral efficiency of code division multiple access systems and to circumvent the

deleterious effects oferror propagation in the conventional single-stage non-linear detection

techniques [129]. In this chapter, we propose a novel two-stage minimum mean square error

multiuser decision-feedback-detector (DFD), which can handle higher load under the low

signal-to-noise ratio conditions.

In section 6.1, we first briefly review the single-stage and multistage DFDs used for the

multiuser detection. In section 6.2, we describe the DS-CDMA system model for the

frequency-selective fading channel (see [101], [102]). It includes details about the successive

interference cancellation technique. The noise-predictive successive multiuser DFD based on

MMSE criterion is presented in section 6.3. We also present an optimum detection ordering

scheme i.e., sorting algorithm. In section 6.4, we next propose a two-stage MMSE multiuser

DFD for the DS-CDMA systems working in the multipath Rayleigh fading environment. The

first stage of the proposed cascaded structure is the noise-predictive successive-DFD (NP-S-

DFD), in which the active users are detected successively using the MMSE Bell-Labs-

Layered-Space-Time (BLAST) ordering criterion. The second stage includes an adaptive

successive/parallel-DFD (SP-DFD), which uses the tentative decisions obtained at the first

stage for the successive multiuser interference cancellation and data detection. Therefore, the

proposed two-stage DFD may be called the noise-predictive successive-SP-DFD (NP-S-SP-

DFD). Section 6.5 includes the simulation results to reveal the BER performance of the
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proposed NP-S-SP-DFD. Finally, conclusions are given in section 6.6.

6.1 Introduction

Decision feedback detection is apopular strategy used in awide range ofMIMO applications

[110], [135], [140]. Duel-Hallen [109], [111] has incorporated this scheme for multiuser

detection in the DS-CDMA system, which is similar to the decision feedback equalizer

employed in the single user channels with intersymbol interference. Different decision

feedback strategies have also been proposed in [10], [14], [116] and [121] for MAI and ISI

cancellation. For practical implementations, the non-linear multiuser detectors using the

successive-interference-cancellation (SIC) approach have been subject to most attention. Hui

and Letaief [163] have presented a method for successive co-channel interference

cancellation using the estimated channel parameters, which improves the system performance

by regenerating estimates of the interfering signal and then subtracting those reconstructed

interference signals from the input of the desired receiver. This process is performed in a

cascaded fashion in such away that the "strong" interfering signals are cancelled. However in

SIC scheme [164], the magnitude of the matched filter output can be used as the received

amplitude estimate of the detected user for reconstructing the interfering signal. A

generalized SIC algorithm presented in [165] can also be applied for the multiuser delay and
channel estimation in the DS-CDMA system.

Alow complexity successive intra-cell interference cancellation scheme using the

orthogonal spreading is proposed in [166]. The mobile receiver estimates the effective

spreading codes of the interfering users regardless of their spreading factors using the fast

Walsh transform correlators, and uses this information to suppress the intra-cell multiuser

interference. The performance of the SIC receiver significantly deteriorates due to the lack of

variance in the received signal powers [167]. Since the SIC detector orders cancellation based
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on the average power criterion, the performance of signal detected early in the cancellation

process suffers due to the inefficient interference suppression.

In [168], the author calculates the received power distribution required to obtain the

equal BER performance for all the links in a DS-CDMA system employing a linear SIC

receiver. It has been shown that the varianceof the decision statisticof the linear SIC receiver

can be formulated in a non-recursive manner that allows calculation of the power profile

necessary to obtain equal signal-to-noise-plus-interference ratio for all the received signals,

when the cancellation order is determined based ontheaverage power.

A linear SIC approach using the matrix algebra has been presented in [169], which can

be performed on the received chip-matched filtered signal vector without explicitly

performing the interference cancellation. Based on this approach, it is realized that both

single-stage and multistage linear SIC schemes correspond to a one-shot linear matrix

filtering. In an adaptive approach, Cho and Lee [170] have proposed a MMSE detection

technique in combination with the SIC, which provides superior performance in comparison

to the conventional adaptive linear multiuser detectors in terms of the asymptotic multiuser

efficiency and BER.

However, previous work on the MMSE multiuser decision feedback detectors for

combined interference suppression and data detection depict that the DFDs exhibit higher

spectral efficiency in comparison to the linear multiuser detectors under the high SNR

conditions for the high load values [73], [128]. Two conventional decision feedback detectors

are (i) S-DFD (Successive-), which uses the successive interference cancellation architecture

based on the linear prediction ofnoise and (ii) P-DFD (Parallel-), which uses the parallel

interference cancellation architecture for simultaneous suppression ofMAI using the tentative

decisions obtained from the conventional detectors [111]. In decorrelating S-DFD, a white

noise model is obtained by factoring the positive definite matrix of the cross-correlation
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matrix using the Cholesky-decomposition algorithm. The MAI is eliminated by processing

the vector output of matched filter bank; and subsequently detection is performed using the

maximum-likelihood criterion. The S-DFD achieves the sum capacity ofthe synchronous

DS-CDMA channel with additive white Gaussian noise [133]. It outperforms the P-DFD at

the cost of additional processing delay. However on the reverse link, both detectors require

information about the multipath channel or received amplitude level ofall the active users at

the receiver end. But, the P-DFD suffers due to the error propagation effect under the low

signal-to-noise ratio conditions.

Duel-Hallen [111] has also explored two-stage detectors with decision feedback in the

second stage. Decisions made by the first stage detector are used for cancellation of

interference due to the future inputs. This approach was previously proposed in [19], where

the conventional matched filter first stage was studied. In [111], the author has modified the

structure oftwo-stage DFD by replacing the conventional matched filter with the decorrelator

at the first stage, in which the weaker users utilize decisions made by the strong users in the

same time frame. In particular, the decorrelating S-DFD has a low bit error rate and is stable

in the presence ofinterferers with various energy distributions. The weaker user derives the

greatest benefit from this two-stage detector i.e., its performance is close to the single-user

bound when interferers are strong. The performance of two-stage detector with decision

feedback in the second stage is determined by the choice of the first stage. When the first

stage is conventional matched filter, substantial degradation in the BER performance is

observed. Although it approaches the single-user bound in a two-user system when the

interferer is strong, its bit error rate remains high in a system with more than two users. The

incorporation ofdecorrelator at the first stage provides performance gain in comparison to the

convention matched filter detector.

To circumvent the deleterious error propagation effects, Woodward et al. [129] have
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presented multistage (iterative) DFD; which is a cascaded configuration using the successive

and non-adaptive successive/parallel-DFDs (S-SP-DFD) with hard-decision feedback. The

first stage of S-SP-DFD is a S-DFD because it is observed from the numerical comparisons

that the error propagation effects can be mitigated by using the successive interference

cancellation and detection rather than the parallel interference cancellation. The second stage

is a non-adaptive SP-DFD (the order of users is reversed from the first stage), which

subsequently refines the received signal by interference cancellation using the tentative

decisions obtained at the first stage.

The two-stage S-SP-DFD approaches the single-user bound in the absence of error

propagation [129]. The first user at the first stage avails the maximum benefit of interference

cancellation because it is detected last in the second stage. It is apparent from the simulation

results presented in [129] that for the high load factor, the bit error rate performance of first

user with S-SP-DFD improves as compared to the S-DFD. However the performance

degradation is observed for the small number of users i.e., for the low load factor, the error

propagation severely affects the BER performance of S-SP-DFD.

In the conventional successive decision feedback detection techniques [109], [111], all

the active users are detected in the descending order according to the received power level

i.e., the strongest user is detected first at the first stage. Since the received composite signal

is corrupted due to the presence of noise, multiple access interference and intersymbol

interference under the multipath fading channel, therefore the above brute force approach for

determining the detection order may enhance bit error rate due to the inaccurate detection

order.

For MIMO applications, the performance of DFD is strongly impacted by the order in

which the inputs are detected. Unfortunately, optimizing the detection order is a difficult

problem that often dominates the overall receiver complexity. The commonly used optimal
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detection order is known as the BLAST ordering [171], which maximizes the worst-case

post-detection SNR and approximately minimizes the joint error probability of the DFD. In

[134], Waters et al. have proposed the NP-S-DFD, which consists of a linear detector

followed by alinear prediction mechanism that reduces the noise variance before making a
decision. It uses MMSE criterion for the V-BLAST (Vertical-Bell-Labs-Layered-Space-Time
[140]) ordering with lower computational complexity. However, the performance degradation

due to the residual ISI and noise is unavoidable in case of the conventional single-stage
detectors. The symbol error rate performance evaluation of V-BLAST system is presented in

[172] by taking into account the error propagation effect, which deteriorates substantially
with the increasing channel estimation errors. However, there is no significant degradation
due to the sub-optimal sub-stream detection order caused by the channel estimation errors.

The analogy between DFDs used for the V-BLAST and DS-CDMA facilitates the usage of
NP-S-DFD with MMSE detection ordering in the multiuser systems [143].

In the present work, anovel two-stage NP-S-SP-DFD is proposed using the NP-S-DFD

and adaptive SP-DFD at the first and second stages respectively; in which the output of NP-

S-DFD (tentative hard-decisions) at the first stage is fed to the adaptive SP-DFD at the

second stage for the parallel interference cancellation and multiuser data detection. The

incorporation of MMSE detection ordering at the first stage of the presented NP-S-SP-DFD

provides performance gain over the available non-adaptive S-SP-DFD [129]. Simulation

results are presented to demonstrate the substantial improvement in the bit error rate

performance ofNP-S-SP-DFD over the conventional single-stage and cascaded DFDs. It may
be inferred that the proposed DFD provides an additional performance gain, when the order

in which the users are detected is optimized according to the BLAST ordering based on
MMSE criterion.
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6.2 Successive interference cancellation scheme

For the Acth user, the received signal vector rk(i) consists of N consecutive stacked samples,

where / is the data symbol index i.e., rk(f)=[rk{iN) rk(iN +l) ... rk(iN +N-\)J. The

received composite signal vector may be written as:

rif)=±rkif)+z{i)
*=i

(6.1)

where, z(i)=[z(iN) z(iN +\) ... z(iN +N-l)\ denotes the zero-mean noise sample vector

with variance a2. Without loss ofgenerality, we assume that K active users are transmitting

at the same signal power level i.e., AX=A2= ... = Ak = 1, and the number of multipaths L

is considered equal for all the intra-cell users. For a multiuser system model under the

multipath fading environment (see section 4.2), we can define the NxL dimensional

signature sequence matrices Ck, C*, and Lx\ dimensional channel coefficient vector hk(i)

for the kth user's /th data symbol as:

ck0— - 0 0 c N-\ tJV-I+l

0 0 ^

c* = c* = •N-\

4-
*

•N-L o o — 0

, and hk(i)= [h0k(i) /j,A(/) ... h{L_X)k(/)[. Using (6.1), we can define the data symbol detection

equation as:

tif) =C(i)H(i)b(i)+C(i)H{i -1>(/ -1)+ £(/) (6.2)

where C(/) =[C C2... CK], C(i) =[cl C2... CK], H(i) =diag[hx(i\ h2(i\ ... ,hK(i)], and

bif)=Piif) b2(i) ... bK(i)\ . At the receiver end, we consider the estimated channel
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coefficient matrix #(/|/) known with small scale ambiguities (__//(/) =H(i\i)~H(i) is azero-

mean process). In (6.2), the intersymbol interference term may be cancelled using the

estimated multiuser channel response //(/ - lj/ -1) and estimated past data symbols be (/ -1).

Under no error propagation situation /.<?., b(i-\) =be(i-1),

req {i) =f(i)-C(i)H{i -1|/ -_>(/ -1) =C(i)H(/>(/)- C(i)AH(i -1>(/ -1)+ _(,) (6.3a)

Assuming small number of multipaths and small scale channel estimation errors, the residual

ISI due to past data bits C(i)AH(i -1>(/ -1) is neglected in the above equation. It follows
that

W)-B.m)-&.mhtif) (6.3b)

where, Hc(/) =C(/)tf(/|/) and AHc(i)=C(i)AH(i) are the A^x^ dimensional complex
matrices.

The above described model for the DS-CDMA system is similar to the MIMO model

used in [134], in which the columns of matrix Hc(i) are linearly independent with N>K

(the maximum permissible value of the load factor is kept lower than unity [73]). For MIMO

and V-BLAST architectures, the well-known detection strategy is zero-forcing (ZF) decision
feedback detection using atypical QR-decomposition of the channel matrix. In this chapter,

we consider the QR-decomposition of matrix Hc(i) for the detection of Kusers in aDS-

CDMA system. For /th data bit interval, we may write

n.=QJ>M. (6.4)

where Qc is a NxK dimensional matrix with orthonormal columns (qck is the £th

column), Dc isa KxK dimensional real diagonal matrix with positive elements, and Mc is

alower triangular matrix with ones on its main diagonal (m^ and dk are the kth row and
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y'th column elements ofthe matrices Mc and Dc respectively). Similar to the decorrelating

DFD presented in [109], we feed JVxl dimensional vector r„ into the matrix filter D~lOH

(sometimes referred to as the whitened-matched filter) as shown in Fig. 6.1. The output

vector of this conventional S-DFD based on ZF criterion is

yc=D:lQ"req (6.5a)

The above equation can besimplified using (6.3b) and (6.4) as:

yc =Mcb - D;lQ?AHcb +D^QHcz (6.5b)

eg

D;lQfc

Matrix

filter

y*

yC2

y*

m »—<xj

™32 <x) ^Mg)

£^e

Fig. 6.1: Decision feedback detector usingthe successive interference cancellation scheme.

The *th element of yc =[ycX yc2 ... ycKJ is defined as:

y*=bk^m,bi-^+«fi
J<k "kk "kk

(6.6)

where, Ack is the Ath row ofthe matrix Q"AHC. The iterative procedure for the successive

decision feedback detection is
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*-=sgn|^-|XU (67)

where, sgn{*} represents the quantization of x to the nearest symbol in the alphabet bi.e.,
+1 or -1. In the above equation, blk is the output data bit corresponding to the kth user (as

shown in Fig 6.1), which may be considered as tentative decision for the next stage. It is
apparent from (6.7) and Fig. 6.1 that

•*—

^i=sgn{yel}

b,2=sgn{yc2-m2Xbll}

^3=sgn{yc3-/«31^1-/«32Z,(2}

Thus, the interference due to the present data bits of all the detected users is cancelled
successively using the ZF criterion. Note that the first user is detected using the decorrelation
approach only, and is not having the additional advantage of SIC scheme.

However, the MMSE decision feedback detection scheme supersedes the zero-forcing
criterion based approach in the presence of noise [15]. In the next section, we present NP-S-
DFD using the MMSE criterion for multiuser detection.

6.3 Noise-predictive successive DFD

6.3.1 NP-S-DFD using MMSE criterion

Since the channel estimation errors are assumed to be small in comparison to the noise,
therefore the linear transformation used for the linear MMSE MUD may be written as:
n _ p-ly«

where, RC=H?HC +a2IK and IK isa KxK dimensional identity matrix. The output of
linearMMSE MUD receiver is

yd ^MMSEreg

Successive interference cancellation scheme

(6.9a)
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The above equation can be simplified using (6.3b) and (6.8) to give

ycl =b-{a2R;xIK +0UMSEdJIe) b+O^z (6#9b)

where, yc, =[yclx ycl2 ... ydK J is the soft output vector of linear MMSE MUD receiver. The

corresponding Kx\ dimensional linear error vector is ecl =ycl-b with e denoting the

y'th element. The linear transformation 0MMSE minimizes the trace oferror covariance matrix

Td =E{scis"\, where E{ }is the ensemble average operator. It is apparent that the linear

error vector ecl contains the residual ISI and noise, which may be "predicted and

successively cancelled" by using a recursive strategy similar to the successive interference

cancellation (SIC) scheme (6.7). Let ya =[ycsX ycs2 ... yaKJ be the soft output vector of

NP-S-DFD. For the detection of £th user, the NP-S-DFD based on MMSE criterion is

modelled as:

ycsk=ycik-*Ep*isc,j (6.io)
i<k

where, pM is the £th row and yth column element ofa lower triangular "prediction filter"

matrix P with zeros on its main diagonal. The error vector at the output ofNP-S-DFD is

ea ~ i1 - P^ci •Its error covariance matrix is defined as:

ra=E\ecse"a}={l-P)Tcl(l-P») (6.n)

which implicitlydepends on

r„ =a2*;' +R;XH?R,HCR;X ,where RA =e{aHcAH? } (6.12)

Since the channel is assumed to be known with small scale ambiguities, therefore

Rc H"R^HCR-X may be neglected in comparison to <j2R~cl (noise term) in (6.12).

Consequently O^^AHfi term can be neglected in (6.9b), which leads to

TiM<TiRcX (6.13a)
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mdeci«-<r2R;lb +0MUSEz (6.13b)

The above equation can be rewritten as:

Tc/ *a2GGH ,where G={o^ aR? ] (6.14)

For further simplification of (6.13a), the Hermitian and positive definite matrix Re is

decomposed using the Cholesky factorization as:

Rc =FLFV ,where Fv =FL" =QCDCMC (6.15)

Substitution of the above equation in (6.13a) and the application of matrix inversion property
[162] results in

r„ *viM?Dc»iKDcMc]x =*2{m;%-2(m;>Y {6A6)
where, A/;1 is alower triangular matrix with diagonal elements of one and D;2 is areal

diagonal matrix with positive diagonal elements. Using (6.11) and (6.16), we may define the
error covariance matrix ofNP-S-DFD as:

r. =a2(i-P) (m;%-2{m;>Y(i-p») (6 17)

Defining the cost function as the trace of matrix Tcs, the optimum error prediction filter is

determined by differentiating the cost function wrj. P and equating it to zero [160]. The
optimum errorprediction filter is thus

Pop'=ik-Mc (618)

It is also shown in [86] that the optimum (/-/>) cancels M;1 in (6.17). Under optimum

conditions, we calculate the optimum value of the coefficient PkJ from the matrix P and

the soft output ofNP-S-DFD is obtained using (6.9b) and (6.10) as:

ya=b-(l-Pop) {*2R;% +0MMSEAHc)b+(l-PBpl) 0mmsez (6.19)

It is clear that the effective forward filter is (/ - _>J 0uuSE =McR;lH? =D;2(m;^H»,

which suppresses noise during the successive data detection process.
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Fig. 6.2: Single-stage noise-predictive successive DFD.

(ok is the k th row of linear transformation matrix O^^)
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The above described scheme for NP-S-DFD is applicable on the reverse link of DS-

CDMA systems for the multiuser detection (as shown in Fig. 6.2). However, it requires the

knowledge ofmultipath channel coefficients ofall the active users along with their respective • y
signature sequences. Fig 6.2 depicts that at each stage in the noise-predictive successive

interference cancellation scheme, the interference is cancelled using the prediction filter
coefficient p^ and the linear error ecl j=yclj - b for j <k.

In the successive detection procedure, the detection ordering of the active users is

another key parameter, which provides improvement at the cost of additional computational +

burden. The *th user uk is positioned in the optimum detection queue {ux,u2, ... ,uK\ by
using the detection ordering algorithm, which is discussed in the next subsection. Therefore,
the output of linear MMSE filter is reordered as {y. ,*., ... ^ }in Fig. 6.2. Note that we

use the reordered Kxl dimensional vector ycl in the successive detection procedure

governed by the equation (6.10). The corresponding output data bit vector is +

b, =sgn(yJ =[Z,,, bl2 ... bIK], which may be used as the tentative decision vector in the
multistage detection.

6.3.2 Detection ordering using MMSE criterion

In the conventional SIC procedure [111], the strongest user is detected first, and then other

users are detected successively according to their received power level arranged in the

descending order. In the multipath fading environment, the soft output of linear MMSE MUD

receiver is used to determine the detection order, which contains the noise as well as the

residual ISI (6.9b). The erroneous detection order may lead to error propagation in the

successive interference cancellation process. However the following MMSE noise-predictive

sorting algorithm may be used to determine the optimal detection order, which is >

implemented using the modified Gramm-Schmidt or Householder orthogonalization
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procedure [134], [173].

Let gk be the kth row of matrix G in (6.14). We choose the first user corresponding to

that row, which accounts for the minimum MSE i.e.,

ux =arg min[gtgf] ,ke{l, .... ,k\ (6.20)

Let us assume that the tentative decision blX corresponding to the user w, in the detection

queue is correct, ok and rck be the kth rows of matrices 0MMSE and R'* respectively. Next,

the MSE for the second user's data symbol is defined by using ea =(i - P)scl as:

Il2 | .2

«-_i"-.P_Aai| =E\o-iz-<72rcUb-p2Xo^z +G2p2Xr^b\ (6.21a)

=°"2||°i72 -^21^,11 +o-4|'d;2-/?2i''ci71| (6.21b)

=°%2-p2lg-Ul( (6.21c)

=°2\\gSl-g4 (6.21d)

where, gs is the projection of gu on to the subspace spanned by gu under the optimum

condition (6.18). Therefore, the decision criterion for selecting the next user in the detection

order is

u2 =arg min|gt -gk( ,k*u\ (6.22)

For selection of other users in the optimally ordered queue, the recursive sorting algorithm

may be stated as:

uK =arg minfg, - gk( , k€{ux, .... ,uK_x\ (6.23)

where, gk denotes the projection of gk onto the span of {gSi, .... ,gSgi j under the minimum

MSE condition. Thus, the above described optimal BLAST ordering scheme is used to

generate the detection ordering queue {m,,m2, ... ,uK\ for SIC scheme in the multiuser

detection scenario.

166



The NP-S-DFD using the MMSE criterion considered above may be converted to the

NP-S-DFD based on ZF criterion (ZF-NP-S-DFD) by using a2 =0 in the linear

transformation O^. Similarly, the sorting algorithm may be used in the ZF mode by

considering a =0 in (6.14). However the ZF linear transformation includes the matrix

pseudo inversion operation, which is computationally complex. The ZF-NP-S-DFD cancels

the interference completely at the cost of noise amplification, which leads to the performance

degradation under the high noise conditions. On the contrary, the NP-S-DFD based on

MMSE criterion finds optimal balance between the interference cancellation and the noise

reduction [15]. Therefore, the proposed NP-S-DFD with optimal detection ordering using the
MMSE criterion is expected to perform better than the other existing single-stage DFDs.

6.4 Two-stage NP-S-SP-DFD

In NP-S-DFD, the first user is detected using the linear MMSE detection because the "noise-

prediction and cancellation" process starts from the second user (see (6.10) for k=\).
Subsequently, other users are detected using the SIC approach. Therefore, the performance of

NP-S-DFD depends on the detection of first user in the optimal detection ordering queue. In
case of wrong decision feedback, its performance suffers due to the error propagation effect.

This motivates the development of anovel two-stage NP-S-SP-DFD, in which the parallel
interference cancellation approach is used to detect the first user at the second stage by using
the tentative decisions obtained from the first stage (as shown in Fig. 6.3a).

As the NP-S-DFD supersedes other single-stage DFDs (as shown by simulations in the

next section), its output i.e., hard-decisions may be used as tentative decisions at the second

stage (adaptive successive/parallel DFD) of the proposed NP-S-SP-DFD (as shown in Fig.

6.3a). The adaptive SP-DFD at second stage cancels the noise and interference by using the
tentative data bitvector bt.
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The adaptive SP-DFD uses the parallel-interference-cancellers (PICs) arranged in the

successive detection order. The structure ofadaptive PIC is similar to the adaptive equalizer

described in section 5.2. But in the presented PIC, we feed the tentative decisions about the

present data bits of all the intra-cell users (interferers) to the feedback filter for interference

cancellation. For the detection of *th user, let the input vectors to the Nxl dimensional

feedforward filter Fk and (*-l)xl dimensional feedback filter Bk be r and
eq

btnk =[be\ - bek_x blk+x ... bIKf respectively.

Considering the case of asingle undetected user, we may define the input to decision

device (sheer) of the *th adaptive PIC as yk=Fk»rdfe (as shown in Fig. 6.3b); where

=[F -B j , rdfe =[reTq ££j and the corresponding error is edfe =bk-yk in the

training mode. During the decision directed mode, bk is replaced by bek =sgn(i>*). The

feedforward and feedback filters are updated recursively using the LMS adaptive algorithm.
It follows that

Fk(i+l)=Fk(i)+prdfeek; (6 24)

where p is the step size, which controls the convergence and stability of the LMS algorithm
[43].

At the second stage of NP-S-SP-DFD, the first user is detected using the adaptive PIC

based on MMSE criterion. The first user uses binX=[bl2 bl3 ... btK] in the feedback unit for

simultaneous cancellation of interference using the adaptive algorithm (6.24) for k=1.

Similarly the input vector bm2=[beX bl3 ... bJ is fed to the feedback filter of the second

(next) user, where beX is the estimated data bit corresponding to the first user. The improved

detection of first user mitigates the error propagation effects at successive stages. The update

of input vector bin at each successive PIC results in the improved parallel interference
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cancellation. The BER performances of the proposed two-stage and single-stage DFDs are

compared by computer simulations in the next section.

6.5 Simulation results

We shall investigate first the performance of a single-stage NP-S-DFD in the multiuser

interference cancellation and datadetection scenario. We next evaluate the BER performance

of the proposed NP-S-SP-DFD based on MMSE criterion for the frequency-selective

multipath fading channel. For simulating the DS-CDMA system, the Gold-sequences of

length N = 31 are generated. The LMS algorithm is used in each adaptive PIC as shown in

Fig. 6.3a, in which the step size is adjusted to control the convergence and stability. The

presented results are based on an ensemble average of 100 independentsimulation runs with

different "3 path" channel realizations [14], where the "1 path" channel is a flat fading

channel. In all the simulation examples, we haveconsidered the multipath channel coefficient

matrix known. We have shown the average bit error rate for each detector, which is defined

as BER =£ BERk /K. The BER performances ofthe single-stage and the two-stage DFDs
*=i

are compared in the following examples.

Example 6.1: In this simulation, the effects ofthe ZF and the MMSE criterion based sorting

algorithms on the performance ofNP-S-DFD are analysed. For a twenty-user cellular system,

we consider a three-tap frequency-selective multipath fading channel model i.e., K = 20 and

L=3. The simulation results are presented in Fig. 6.4 for the different values ofSNR. It may

be inferred that the single-stage NP-S-DFD with the MMSE criterion based detection

ordering outperforms the ZF based approaches. At the target BER = 0.001, the NP-S-DFD

(MMSE-ordering) gives approximately 1.2dB performance gain over the NP-S-DF (ZF-

ordering). It provides 2dB performance advantage over the S-DFD under similar conditions.

170



- ZF Receiver

- MMSE Receiver

- S-DFD (ZF-Ordering)
- NP-S-DFD (ZF-Ordering)
- NP-S-DFD (MMSE-Ordering)
- Single User Bound

10
SNR

Fig. 6.4: Performance comparison of single-stage DFDs using the different detection ordering criteria.
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However, the performance gap between the NP-S-DFD (MMSE-ordering) and single

user bound is 4.8dB. The NP-S-DFD with ordering based on MMSE criterion provides 4dB

performance gain over the linear MMSE receiver at the BER =0.002. This performance

advantage increases with the increasing value ofSNR. Thus, it supersedes the ZF MUD and

MMSE MUD by providing lowerBER.

We further compare the BER performances of the single-stage DFDs with L=1 and

L=3. The simulation results shown in Fig. 6.5 demonstrate that the use ofmore number of

multipaths provides diversity gain by enhancing the SNR. At the target BER =0.002, the

NP-S-DFD (MMSE) with L=3 provides approximately 3.5dB performance improvement

over the NP-S-DFD (MMSE) with 1=1. This performance advantage is due to the diversity

gain. At BER =0.01, the NP-S-DFD with L=3provides approximately 3.2dB performance

gain over the linear MMSE receiver with L=3. The NP-S-DFD with L=1outperforms the

S-DFD (ZF) by giving approximately ldB performance advantage at the BER =0.003. This

demonstrates the advantage of the MMSE criterion over the ZF approach in successive

interference cancellation technique. However, it may be inferred from Fig 6.5 that the NP-S-

DFD performs better than other single-stage DFDs.

Example 6.2: We next consider the performance comparison ofthe last user's detection with

the NP-S-DFD (MMSE) and S-DFD at K=31 and L=3. For the target BER =0.03, the

performance gain of NP-S-DFD over the linear MMSE receiver (MUD) increases

significantly with load (as shown in Fig. 6.6) because the latter receiver does not favour the

high load values [73]. The S-DFD outperforms the linear MMSE receiver when the BER is

less than approximately 0.07 because at high BER, the error propagation effect deteriorates

the performance ofSIC process. However, the simulation results in Fig. 6.6 clearly show that

the BER performance oflast user with NP-S-DFD is superior to S-DFD.
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Further for the load factor fixed at K/N= 0.6452 (a twenty-user system) and L=3,

the BER performance of the proposed two-stage NP-S-SP-DFD is evaluated, and the

performance comparison ofthe NP-S-SP-DFD with single-stage and other two-stage DFDs is

presented in Fig. 6.7. At BER =0.05, the NP-S-DFD gives 0.3dB performance gain over the

NP-S-SP-DFD. This BER performance degradation in case of the presented NP-S-SP-DFD is

observed due to the error propagation effect under the low SNR conditions.

However it is apparent that at high SNR, the NP-S-SP-DFD with the MMSE based

detection ordering outperforms other DFDs at the different values of SNR. The performance

of NP-S-SP-DFD is approximately 4.5dB better than the linear MMSE receiver at the

BER =0.002. For the target BER = 0.001, It provides 1.7dB and 2.7dB performance

advantage over the S-SP-DFD and S-DFD respectively. Under similar conditions, the

performance gap between the NP-S-SP-DFD and single user bound is 4.1dB. It may further

be observed that athigh SNR values, this performance gap reduces significantly.

6.6 Concluding remarks

In this chapter, we have presented a two-stage NP-S-SP-DFD, in which the first stage is a

NP-S-DFD and the second stage is an adaptive successive/parallel DFD. All the active users

are ordered in the optimum detection queue using the noise-predictive sorting algorithm,

which is incorporated in the NP-S-DFD. At the second stage i.e., adaptive SP-DFD, the

adaptive PICs are used in the successive order. Under the low SNR conditions, significant

degradation in the BER performance of NP-S-SP-DFD is observed due to the error

propagation effect. On the other hand, its performance substantially improves under the high

SNR conditions. The first user is detected using the linear MMSE transformation in NP-S-

DFD, which may lead to the error propagation at successive stages due to the wrong detection

of data symbol corresponding to the first user. However at the second stage ofNP-S-SP-
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DFD, the first user is detected using the parallel interference cancellation approach, which

results in the improved BER performance. The presented computer simulation results

demonstrate that the proposed NP-S-SP-DFD based on MMSE criterion outperforms the
conventional single-stage and two-stage DFDs.
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CHAPTER 7

CONCLUDING REMARKS

In this work, we have studied adaptive decision feedback techniques based on

minimum mean square error criterion for the suppression of multiple access interference and

intersymbol interference in the code division multiple access systems for multiuserdetection.

In the following, we summarize important results of our study and also give suggestions for

further investigations.

7.1 Conclusions

We have first considered the decorrelating and MMSE linear sub-optimum multiuser

detectors in the presence of background Gaussian noise and have analysed their

performances, by using the leakage coefficients and Kullback-Leibler divergence theorem

under the near-far situation. It may be noted that the MAI is inevitable due to the non-

orthogonal properties of signature sequences. The MAI-plus-noise mixture at the output of

linear MMSE MUD is Binomially distributed for a small number ofusers, and the Chernoff

upper bound on the probability of error in MMSE multiuser detection increases with the

increasing number of users due to the high value of residual MAI. The two-user case is

shown to have maximum non-Gaussian MAI-plus-noise mixture. However, the MAI-plus-

noise mixture at the output of linear MMSE MUD is asymptotically Gaussian for a large

number ofusers. For joint MMSE multiuser detection and interference cancellation under the

near-far scenario, the signal-to-noise ratio of the desired user should be more than the

minimum bounded value, which depends on the number of users and the value of signature

sequence normalized cross-correlation value. We have derived the optimum NCC ranges for

K > 2 users, in which the error probability of linear MMSE MUD minimizes. It is shown
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that the MMSE multiuser detector outperforms the decorrelating detector by exhibiting the

lower error probability only if the value of signature sequence NCC is less than or equal to

the upper bounded value under worst conditions.

We have next proposed the use of two-step LMS-type adaptive algorithms for the

tracking ofsmoothly time-varying channels. We have presented a modified version ofthe

two-step LMS-type algorithm (MG-LMS) motivated by the work of Gazor (G-LMS in [60]),

and have also described its nonstationary adaptation characteristics. We have incorporated a

control parameter in addition to asmoothing parameter used in the G-LMS algorithm, which

provides stability to the MG-LMS algorithm by controlling its oscillatory behaviour in the

convergence mode. The proposed modification reduces the initial learning period in

comparison to the G-LMS algorithm. It is shown that the tracking performances of the LMS

and NLMS algorithms suffer due to the lag noise, which consequently increases the total

misadjustment. However the MG-LMS algorithm purges alarge amount of the lag noise, and

reduces the lag-misadjustment at the cost of slight increase in the gradient-misadjustment.

For system identification problem, the first-order Markovian model has been used to

derive the analytical results for the lag-misadjustment corresponding to the MG-LMS

adaptive algorithm, which mainly depend on the values ofcontrol and smoothing parameters.

It may be inferred that the smoothing parameter controls the tracking speed of the MG-LMS

algorithm, and the lag-misadjustment reduces with its increasing value. On the other hand,

the control parameter provides stability in the convergence mode and also reduces the lag-

misadjustment when its value is kept less than a threshold value. It has been shown that the

complex poles induce oscillations (resulting in high output MMSE) when the value ofcontrol

parameter is more than the threshold value. Therefore, its value should be kept less than the

threshold value. The decoupling theorem and direct-averaging method have been used to

derive the optimum value of control parameter at which the lag noise (lag-misadjustment)
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minimizes.

Simulation results depict that the output mean square error decreases with the

increasing value of control parameter and starts increasing again when the value of control

parameter is more than the optimum value. Under the smoothly time-varying channel, the

NLMS algorithm provides approximately 2.5dB performance advantage over the

conventional LMS algorithm at 20dB SNR. Like the previously reported results in [60], the

G-LMS algorithm gives approximately lldB performance gain over the LMS algorithm.

Under similar conditions, the performance of the presented MG-LMS algorithm improves by

approximately 14dB over the LMS algorithm at the optimum values of control parameter,

step size and smoothing parameter. The MG-LMS algorithm outperforms the LMS, NLMS

and G-LMS algorithm in tracking the smoothly time-varying channels by combating the lag

noise, and thus provides less output MMSE. The simulation results validate the derived

analytical results for tracking, convergence and lag-misadjustment behaviour. Moreover the

conventional LMS algorithm is a special case of the proposed MG-LMS adaptive algorithm,

which signifies its flexibility.

We then present the application of a novel two-step reduced Kalman/LMS algorithm in

the adaptive multiuser decision feedback equalization and data detection for the DS-CDMA

systems working over the smoothly time-varying channels. It has been designed by exploiting

the Kalman filtering algorithm, which leads to the reduction in computational complexity as

compared to the commonly used adaptive multiuser DFE receiver using the Kalman

algorithm. Its design includes the incorporation of LMS algorithm for the prediction of first-

order weight increment vector, which updates the apriori estimate oftracking weight vector.

We have also analysed and discussed the tracking and convergence characteristics of the

multiuser channel estimator using RK-LMS algorithm under the time-varying environment,

and have derived operating ranges for the control parameter, smoothing parameter and step
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size. Similar to MG-LMS algorithm, it may be inferred from analytically derived results that

the tracking speed ofthe presented channel estimator can be increased by increasing the value

ofsmoothing parameter, but it enhances the oscillatory behaviour ofadaptive algorithm in the

convergence mode. However the amplitude of oscillations can be controlled by adjusting the

value of control parameter, which provides stability to the RK-LMS algorithm. The proposed

two-step adaptive algorithm supersedes the conventional LMS algorithm by suppressing the

lag noise during channel tracking and by combating the nonstationarity introduced due to the

time-variations in multipath channel response.

We have used the channel estimates obtained from the RK-LMS adaptive algorithm

based multiuser channel estimator to cancel the intersymbol interference due to the chip
waveforms corresponding to the past data bits of all the active users in aparticular cell. The

probability of error analysis of the presented adaptive multiuser DFE receiver demonstrates

that the application of two-step reduced/Kalman algorithm exhibits less probability of error
than the conventional LMS algorithm based approach. In this analysis, we have considered

the residual MAI component as Gaussian distributed for alarge number ofusers.

Simulation results depict that ~at 20dB SNR, the RK-LMS algorithm gives

approximately 3dB performance gain over the conventional LMS algorithm for the fading

rate fDTb =0.0001 due to better tracking performance under the smoothly time-varying

channels. Under similar conditions, this performance gap reduces to 1.5dB for the fading rate

fjb =0.001 due to the increasing value of lag noise. The performance advantage ofthe RK-

LMS algorithm over the conventional LMS algorithm reduces with the increasing number of

users because for a large number of users, the magnitude of residual MAI increases. This

performance advantage also reduces due to the increasing number of multipaths because the

value ofSNR per path reduces, which deteriorates the channel tracking performance.

The BER performance of the proposed multiuser DFE receiver degrades with the
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increasing speed ofmobile users as we have incorporated the conventional LMS algorithm to

estimate the first-order weight increment vector used in the RK-LMS adaptive algorithm,

which can not follow the fast time-variations in the multipath channel response. On the other

hand, as the load factor increases, its BER performance deteriorates due to the increasing

value of the residual MAI and ISI. However for a small number of multipaths, the BER

performance of presented multiuser receiver improves because of diversity gain through

multipath reception. On the contrary, for a large number of multipaths, its performance

degrades due to the channel estimation errors. It is also observed that the error propagation

effect due to the overwhelming nature of residual MAI, ISI and channel estimation errors

results in the BER performance degradation under the low SNR conditions. It is apparent

from different simulation examples that the configuration consisting of RK-LMS algorithm

based adaptive channel estimator in the feedback unit for intersymbol interference

suppression and RK-LMS algorithm based forward filter for MAI, ISI and noise cancellation

outperforms theconventional LMS algorithm based approaches.

We have further proposed an adaptive decision feedback equalizer receiver using the

erasure algorithm, which not only combats the inter-cell and intra-cell interference in the

multiuser systems but also controls the error propagation effect. The received composite

signal is over-sampled to tackle the problem of asynchronous reception. The feedback filter

ofthe presented MMSE DFE receiver is fully connected, which uses the past decisions ofall

the active users to cancel the intra-cell interference. However the fractionally spaced

feedforward filter suppresses the inter-cell interference, MAI and noise, and also acts like

RAKE by providing the diversity gain. The erasure algorithm based soft-slicer erases the

highly unreliable signals and assigns weight to each detected data bit according to the level of

uncertainty in the estimated value ofsymbol. The assigned value ofthe weight decreases with

the increasing value of error between the estimated symbol and data symbol, which reduces
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the error propagation in the non-linear detection techniques (using decision feedback). The

conventional DFE receiver is a special case ofE-DFE when the value ofassigned weight is

constrained to unity.

Under erroneous conditions like sudden changes inthe signal-to-noise ratio value of the

desired user, high load factor and near-far situation, the proposed adaptive E-DFE

outperforms the C-DFE due to the error control. For the value ofload factor more than 0.645,

the residual MAI limits the BER performance of the multiuser system. But, the E-DFE

performs marginally better than the C-DFE for the high load conditions. It also provides

approximately 2.5dB performance improvement over the C-DFE at the target BER =0.01

when the interferers are kept at 20% higher power level than the desired user's power level.

We have next proposed the application of erasure algorithm in the multiuser adaptive

decision feedback detector using the partial parallel interference cancellation scheme, in

which the erasure algorithm is used to generate the time-variable partial cancellation factors

depending on the soft-output of linear MMSE multiuser filter. Previously reported results in

[128] depict that the P-DFD offers approximately 2dB gain relative to the linear MMSE

multiuser receiver. But the filter coefficients are obtained by using the covariance matrix of

the received signal vector, which is difficult to compute in the time-varying environment.

However the presented adaptive EC-ADFD-PIC provides approximately 3dB performance

advantage over the linear MMSE multiuser receiver atthe BER =0.04, in which the erasure

algorithm is used to control the error propagation effect and the channel estimator is used to

cancel the intersymbol interference due to the past data bits of all the active intra-cell users.

Moreover, the requirement of the covariance matrix of the received signal vector is

eliminated by updating the recursive filter coefficients using the conventional LMS adaptive

algorithm. Simulation results demonstrate that the proposed multiuser receiver can handle

higher load in comparison to other multiuser detectors. As the speed of mobile users
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increases, the BER performance of the EC-ADFD-PIC degrades due to the inability of LMS

algorithm to adapt in the fast time-varying environment. However, it is observed that the EC-

ADFD-PIC supersedes the linear MMSE multiuser receiver and other detectors under the

slow time-varying channels.

We have next proposed a novel two-stage MMSE multiuser decision feedback detector

for the DS-CDMA system. An adaptive successive/parallel DFD has been used at the second

stage, which uses the tentative hard-decisions obtained from the noise-predictive successive

DFD at the first stage for parallel interference cancellation and multiuser data detection. At

the first stage (NP-S-DFD), we have used the MMSE noise-predictive sorting algorithm for

determining the user detection order. Simulation results reveal that the use of MMSE noise-

predictive ordering in NP-S-DFD gives approximately 1.2dB performance advantage over the

conventional zero-forcing BLAST ordering scheme at the BER = 0.001 under typical

conditions. However, the NP-S-DFD (MMSE-ordering) provides 4dB performance gain over

the linear MMSE receiver at the target BER = 0.002, which increases with the increasing

value of SNR. It is also noted that the use of more number of multipaths enhances the SNR,

and thus provides the diversity gain. The presented NP-S-DFD with MMSE detection

ordering provides approximately 3.5dB additional gain at the BER = 0.002 when the number

of multipaths are increased from one to three. It is apparent from different simulation

examples that the successive interference cancellation scheme using the MMSE criterion

supersedes the ZF criterion based approaches. But, the error propagation severely affects the

performance of SIC process. Therefore under high BER conditions, the linear MMSE

multiuser receiver outperforms the S-DFD based on ZF criterion.

At second stage, the successively arranged adaptive parallel interference cancellers

using the LMS algorithm use the output of NP-S-DFD as the tentative decisions. It provides

approximately 4.5dB performance improvement relative to the linear MMSE multiuser
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receiver at the target BER =0.002. The first user at the second stage is detected using the

parallel interference cancellation technique, which was previously detected using the

conventional MMSE approach at the first stage (NP-S-DFD). The improved detection ofthe

early detected users reduces the error propagation at subsequent stages ofSIC scheme. It may

be concluded that under the high SNR conditions, the proposed cascaded structure using the

NP-S-DFD and adaptive successive/parallel DFD outperforms other single-stage and two-

stage DFDs.

7.2 Suggestions for further work

In this study, we have seen that the linear MMSE multiuser detector outperforms the

decorrelating detector in the multiuser system using the non-orthogonal signature sequences.

But, the presented analysis is only confined to the AWGN channels. It is worthwhile to

investigate the probability of error analysis of linear multiuser detectors under the multipath

fading channels and to compare their performances under the asymptotic conditions. Bounds

on the probability oferror and the corresponding value ofnormalized cross-correlation ofthe

signature sequences can be derived under the near-far situation. This work can be extended to

the performance evaluation ofthe non-linear sub-optimum multiuser detection techniques and

to analyse the behaviour ofMAI-plus-noise mixture attheir output.

We have considered the two-step MG-LMS adaptive algorithm for tracking the

smoothly time-varying channels, where the conventional LMS and NLMS algorithms fail to

perform well. The application ofMG-LMS algorithm in nonstationary environments suggests

a number of interesting avenues for further research. The MG-LMS algorithm can be used to

develop a set ofnew adaptive algorithms using the variable step size approach considered in

[174]. Its performance needs to be evaluated for the fourth generation wireless OFDM

systems for the tracking of time-varying channels. Space-time coding for the multiple
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transmit and receive antenna systems (MIMO channels) rely on the knowledge of channel

coefficient matrix. Therefore the MG-LMS adaptive channel tracking algorithm can be used

to estimate the MIMO channel coefficient matrix in the time-varying environment, thus

reducing the computational complexity of the receiver which uses the Kalman algorithm for

parameter estimation.

It is observed that the adaptive E-DFE outperforms the C-DFE by-controlling the error

propagation effect. Using the previously presented work on the erasure DFE for PAM

signalling scheme in [80], the probability of error evaluation of E-DFE for the DS-CDMA

system is a topic for further research. The application of the erasure algorithm in the adaptive

space-time feedforward/feedback architectures presented in [9] and [10] for the multiuser

detection in the high data rate wireless DS-CDMA networks can also be considered.

Another area for further research includes the development of multistage multiuser

DFDs using the adaptive parallel and successive interference cancellation approaches (see

[129]), which can provide BER performance close to the single-user bound. The use of

convolutional codes provides substantial coding gain over the uncoded systems at the cost of

additional bandwidth. However with the trellis coded modulation, the performance gain is

achieved without increasing the bandwidth. The use of the trellis coded modulation in place

of the convolutional codes for obtainingadditional coding gain needs further investigation.

From a communication theorist's point of view, "iterative (turbo)" processing is a way

to approach the Shannon limit on channelcapacity, while "space-time" processing is a way to

increase the possible capacity by exploiting the rich multipath nature of the fading wireless

environments. Combining the two concepts provides a practical way to both increase and

approach the possible wireless channel capacity. It will be interesting to use the adaptive

iterative MMSE multiuser decision feedback structures for the multicarrier CDMA systems

incombination with the space-time coding for multiple transmit and receive antenna systems.
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The presented work on the time-varying channel tracking and the use of non-linear

decision feedback structures in the equalization, interference suppression and multiuser

detection can also be extended to the hybrid OFDM/CDMA wireless systems.
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APPENDIX - A

Determination of the time constant

In ftlhnMd </3<Pupper domain, the poles are complex conjugate i.e., Px =P2 . From (3.45),

the maximum permissible polemagnitude is

n=\p2\=\p^\=^^pxp)ftupper (A.i)

The maximum value of the time constant is thus defined as:

Max(rp)=[\-\PmS (A.2)

The inequality in (3.45) may be rewritten as:

(\ +2aplp)ftupper<\ (A-3)

Let us assume that (l +2apXp lftupper +x) s 1. It follows that

^2apXp)ftupper =\-{\+2apJlp)x (A.4)

For x «1, (A.I) and (A.4) are used to give

|i,,|=|/.|=V1-l1+2Q^>sl-(1+2a^pX*/2) <A-5)

Thus, the time constant in operating range is

rp^-\Px\r^(2/xil +2pApr (A.6)

Example 1:For x=pXp «1, the resultant approximate time constant is

r.«2/^.=2(r^) (A.7)

It illustrates that undertypical conditions, the time constant for the MG-LMS is double of the

conventional LMS algorithm. The derived result matches with the analysis of Gazor in [60].

However for the real poles, its value is
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*, =lHx+r)/2r=2[(i+2pjip)-(p+Yf
(A. 8)

where, X.Ufi.J^ mi -.^T^^JT^^^j

EMn,ple 2: U^ a^ca, eondMc, u, ..,_,. the MG-LMS reduces _ the
co„ve„ti„„a, LMS aIg„rithm with poles located „ _.^} ^ ^ (< ^ ^
[equation (75), 57] i.e.,

rp"l/2pAp
(A.9)
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APPENDIX -B

Equations for estimated weight error

From subsection 4.4.2, the received composite signal vector is

r(i) =D(i)h0(i)+m (B-1)

The substitution of (4.20) and (4.21) in (4.24) leads to

%)-h0 (/) =% -1)+ pDT (/)[;(/)- £(/)% -1)]- h0 (/) (B.2)

Using (B.l) and (B.2), we can solve the above equationas:

Ah(i) =[l-pDT (/)d(/)]a%"0+ VDT i&if) (B-3)

where, A%-l)=%-l)-£0(/) with h0{i-l)= h0(i)-n0(i-l) (B.4)

The equation (B.4) can be simplified by using (4.22) in terms of the first-order weight

increment vector as:

A% -1)=Ah{i -1)+Ah{i -1)- (1 - ft)h(i -1|/ -1) (B.5)

The first-order weight increment error vectoris defined using(4.20), (4.23)and (4.24) as:

%)4o(/)^(/-l|/-l)+a^(/M0-^(0]-40) (B.6)

Using(B.l) and (B.6), we can solve the aboveequationas:

Ah(i) =h{i -1|/ -1)- [apDT i})D{i)Yhii\i -\)-fi0 (i)+apDT (/).(/) (B.7)

The equation (B.7) can be simplified in terms of the first-order and second-order weight

increment vectors as:

Ah(i) =Ah(i -1)- [apDT (/)D(/)^(/|/ -1)- h0 (/ -1)+apDT (i)z(i) (B.8)

In the above equation, we have considered h0 (/ -1)=h0(/)- h0 (/ -1). The results (B.3), (B.5)

and (B.8) can be written in the matrix form to define the recursive vector 0(/) i.e., (4.25).
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APPENDIX - C

Determination of the partial cancellation factor

Let the / th data symbol of k th user be bk with amplitude Ak. The estimated value of the

data symbol at the output of Flin is xllnk. The corresponding error is ek„ =bk- xhnk. The

erasure algorithm (see subsection 5.2.2) is stated as:

|£_,J>|24| or l-(|e/y2/|A|2)<0-
0<|x„,,| <\2Ak\ >wkpc/ =1-(|e,y7k|2)

We replace bk with the tentative decision blk =sgn(jcto>t) in the decision directed mode. The

output of E-slicer is w^b^. The proposed partial PIC system is equivalent to the "Brute

Force" interference canceller [116], if we let wkpcf(i)=\. Note that we have considered

Ak=\ for k = \, 2, ... ,K in the generation of PCFs.

•>*i*-o
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