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ABSTRACT

Electrocardiogram (ECG) is a graphical representation of the electromechanical

activity of the cardiac system. It provides a fast and reliable information to the expert

cardiologist with respect to the functional aspects of the heart. The ECG is recorded in many

situations, viz., to know the state of a patient under medical diagnosis and treatment, to keep

a watch on the state of patients in the intensive cardiac care units, to know the response of the

patient under medical treatment, to know the condition of cardiac system under stressed

conditions, and to monitor the state of the ambulatory patients. The number of cardiac

patients are increasing at an alarming rate and it is not possible for the existing number of

cardiologists to take care of all the cardiac patients under all the conditions. This problem was

realized about four decades back and a large number of individuals and groups started work

on the computer aided analysis and interpretation of ECG signal throughout the world. One

of the first attempts to automate the ECG analysis was made in 1957 by Pipberger and his

group in USA.

The ECG data acquisition and preprocessing; detection of waves, peaks, and

interwave segments; feature extraction of all waves, peaks and segments; and usage of these

in disease classification and diagnostics are the important stages in computer aided ECG

analysis and interpretation. After carrying out the detailed survey about four years back by

the author, it was found that there is a gap between what is ideally required and what has

been achieved so far in the area of computer aided ECG analysis and interpretation. The gaps

were identified and the work has been carried out in this thesis to bridge the gaps in the

automated analysis and interpretation of the ECG signal by making effective use of the

wavelet transform. The work covers the ECG feature detection & extraction, and cardiac

disease diagnostics using multilead ECGs, disease diagnostics using rhythm analysis and data

compression using non-redundant template and wavelet transform.

After dealing with the general introduction and the brief outline of the work, the first

stage of the work deals with the QRS detection using wavelet transform. In this study, the

detection of QRS complexes by different wavelets, using standard CSE and MIT/BIH data

bases has been carried out. Looking at the potentials of various approaches, it is very difficult

to claim that a particular method (syntactic, non-syntactic, hybrid or transformative type) is

always suitable for QRS detection. Due to the physiological variability of the QRS wave and

the presence of noise and artifacts in the ECG signal, none of the technique has claimed an
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accuracy of 100% in QRS detection. In recent times, the use of wavelet transform in QRS

detection has shown upper edge in terms of no-need of preprocessing, accuracy of detection,

and simplicity in calculations. And it has been found that even with the wide variations in

ECG morphologies, QRS detection is more accurate by wavelet. In the present work, five

existing wavelets (WT1, WT2, WT3, WT4, WT5) and a new wavelet (WT6) developed by

the author have been used for the QRS detection. Their performance is checked using the

first 25 records of the CSE database. The WT1, having high and low magnitude filter

coefficients, gives QRS detection rate of99.11%. The performance of WT2 is similar to WT1

and gives QRS detection rate of 99.16% . These long filter length wavelets usually fail to

detect QRS complex, if it present at the start or end of data. The compact wavelet VVT3 is

computationally simple, faces less difficulty in detecting the end point QRS complexes, and

gives high detection rate of 99.91%. The WT4 faces difficulty in detecting QRS complex

when the signal amplitude is low, and gives QRS detection rate of 88.18%. The WT5 is

computationally suitable for detection of end point QRS complexes, and gives detection rate

of 99.70%. After the performance evaluation of WT1-WT5 and also by keeping in view the

selection guidelines for wavelets, a new wavelet (WT6) has been constructed. The WT6 gives

QRS detection rate of 99.89%. The quadratic spline wavelet (QSWT i.e.,WT3) and WT6 are

found to be the most suitable for QRS detection as they detect QRS complexes even with the

wide variety of ECG morphologies, noise and/ or artifacts. The developed software gives the

QRS detection rate of 99.866% . The QSWT, when tested on all 48 records of the MIT/BIH,

gives the QRS detection rate of99.806%. 'fhis performance of the developed software proves

the utility of the wavelets for the detection of QRS complexes.

In the second stage of the work, all the fundamental ECG parameters have been

detected and measured by using the QRS location as a time reference. From these parameters,

diagnostically important features namely, heart rate, P amplitude, P duration, PR interval,

QRS interval, QRS peak-to-peak amplitude, QT interval, VAT and T amplitude are obtained.

The comparison of five wave fiducial points shows that most of the values are well within

the tolerance limits suggested by the CSE working party and the overall accuracy in the

measurement is about 91.00 %. Out of a total of 125 fiducial location estimates in 25

records, 11 estimates deviate from the tolerance. The software has also been tested using the

ECGs recorded in the laboratory, and 5 beats have been selected for feature extraction and the

resulting diagnostic parameters have been extracted. After confirmation of the reliability of
software using CSE DS-3 and the ECG records ofthis lab, diagnostic dataset DS-5 has been
used for the analysis and disease diagnosis. As there are no measurement results published by
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the CSE for dataset DS-5, statistical analysis has been used to see the distribution of program

estimates around a mean value. From a record, five regular beats per lead are selected and 29

parameters per beat per lead are extracted. Therefore, the software extracts the parameters

from five such beats in 12 standard leads and stores the feature extraction data. Statistical

parameters are used to see measurement performance of the developed software. With respect

to interval and amplitude measurements of various components of the QRS complex as well

as of the P wave and ST-T complex, a median value of the results from 12 standard leads

(SL) has been used as a reference. The median value derived from 12 SL measurements

proved to correlate in the best way with the results of the visual analysis. The statistical

parameters namely, variance and standard deviation (SD) derived from 12 SL measurements

show the best performance in the ECG analysis.

As the ultimate aim of the ECG analysis is disease diagnosis, therefore, in the third

stage of the work, the diseases namely, Left Ventricular Hypertrophy (LVH), Right

Ventricular Hypertrophy (RVH), Myocardial Infarction (MI) (anterior, lateral, and inferior),

Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Tachycardia and

Bradycardia are considered for disease classification. The disease classification is based on

the main features of the ECG.

The testing of disease diagnostic has been carried out on all 125 cases of CSE DS-3

database. For this data two diagnostic criteria have been used to enable the validation of the

disease classification. It is observed that the final diagnostic results obtained according to the

score and the thresholds by both the criteria arc the same. Alter the testing of software on

CSE DS-3, the disease diagnosis of CSE DS-5 records and the ECGs recorded from different

subjects in the laboratory have been carried out. The combined results of existing scoring

schemes for LVH, RVH and MI diseases are used to give an overall diagnostic statement,

which is a resultant statement based on the results obtained by the existing three LVH, three

RVH and two MI scoring criteria.

A typical record D-00008.DCD from the CSE DS-5 has been used and the five data

files of ECG parameters and the corresponding disease interpretation by existing as well as

modified scoring schemes have been carried out. The ultimate result is obtained from the net

results of five interpretations given by modified scoring schemes. Using the strategy of

disease diagnostics from the features of five ECG beats, the validation of the software has

been carried out using the CSE database. The results of this evaluation are compared with the

results obtained by the existing scoring schemes and also with the diagnostic truth given by

the CSE Committee. The CSE Working Party has considered the case as normal even if the
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record shows minor abnormalities such as non-specific ST-T changes, incomplete right or led

BBB, left anterior fascicular block, minor intraventricular conduction defects (QRS < 120ms)

or even myocardial ischemia, as a single statement without making reference to any of the

seven primary categories, namely, Normal, LVH, RVH, BVH AMI, IMI, and MIX Ml. To

compare the results of existing and modified scoring schemes with the CSE results, the

diseases Bradycardia, Tachycardia, RBBB, and LBBB are not considered. From the

comparison with the CSE diagnostic results of first 10 records of DS-5, the diagnostic

interpretation performed by existing scoring criteria matches up to 60% with the truth and

by the modified criteria up to 80% , thereby resulting a gain of 20% . The gain is due to

three factors: i) use of combined wavelets for feature extraction, ii) use of five beats in place -4

of one beat for analysis, and iii) the use of modified scoring scheme.

In addition to the disease diagnosis using multilead ECGs, rhythm analysis using

single lead recording has been carried out to study heart rate variability (HRV) in the next

stage of work. This includes the use of the WT for QRS detection and removal of ectopic

beats and artifacts, determination of spectral and non-spectral indices and displaying of HRV

related plots, namely R-R interval and PSD curves. The system performance has been

evaluated by using the standard MIT/BIH database, because this database has long records

and the database created by on-line recording from different subjects in the laboratory itself.

The WT has been used to detect the R-R normal intervals from the ectopic beats and artifacts.

This is due to splitting the ECG signal in different band of frequencies and the use of

frequency band containing the QRS complexes. On the basis of these results, it can be

stated that the HRV spectral and non-spectral indices are less prone to fluctuations in heart

rate due to autonomic imbalance than the fluctuations due to improper and incorrect detection

of a single heart beat. This false detection gives substantial rise to the values of heart rate

(HR), standard deviation of normal to normal R-R intervals (SDNN), low frequency power

(LFP) and high frequency power (HFP) parameters. Thus, HRV analysis needs accurate

detection of normal R-R intervals. The second set of database obtained from the subjects in

the laboratory characterises the dynamic response of the heart to the vagus nerve i.e. during

slow, comfortable and fast paced respiration. Three different rates, 12, 19, and 24

breaths/min, were chosen to represent slow, comfortable, and fast pacing rates, respectively.

Quantization of the data in terms of their relative spectral and non-spectral indices for

different respiration phases illustrates the influence on the vagal activity, HRV and

corresponding PSD curves. For slow respiration, the HR gradually changes and this change is

in the range of 80 to 100 BPM. So far as normal breathing is concern, the HR change is fast
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and varies from 80 to 120 BPM. For fast respiration, the HR variations are less, the change is
in the range from 90 to 110 BPM. There is a negative relationship between the respiratory
rate and the spectrum measures of parasympathetic activity (vagal power). For slow

respiration, high power peak emerges around the frequency of 0.3 Hz. A low power peak
emerges in case of fast respiration. This indicates the influence of vagal control on the heart

activity. The test results are consistent and reliable and show high promise for the effective

use ofWT based R-R detection technique for the HRV study and analysis.

To handle the large volume of ECG data without losing the diagnostic information, it

is necessary to use faithful data compression techniques. Thus, there is a need to develop
such techniques which have better performance in comparison to existing techniques. In the

present work a simple technique has been introduced named as non-redundant-template direct

data compression (NRT-DDC) technique. It performs the compression by downsampling the
ECG signal in steps. The removed data samples in the process ofdownsampling are stored in

a data array as non-redundant template. The signal is compressed by a factor of 8 for the

ECG signal sampled at 500 Hz or 16 for the signals sampled at 1000 Hz. The performance
evaluation ofthe non-redundant template NRT-DDC has been carried out using the CSE data
sets-3 and -5. The reconstruction accuracy even in the low frequency and low amplitude
(baseline) region is within the tolerance limits, which helps in accurate detection of onsets

and offsets of the ECG waves. Aspect of holding the information of the ECG locations is

being carried out by storing the compressed signal. Hence, this helps to retain 100%

accurate diagnostic information. To compare the performance of this method with the

existing techniques, we have selected the reported data as well as the techniques reported

with the performance evaluation based on compression ratio (CR) and percent root mean

square difference (PRD) for data sampled with 500Hz. The CR by the existing techniques

ranges from 7 to 10 in most of the cases (except in two, having high CR of about 16) and

PRD from 3 to 28. It means that only CR or PRD does not give proper scale for comparison.

Therefore, the only way is to see whether the clinical information is being retained or can be

retrieved or not from the reconstructed signal. This aspect has been considered to evaluate the

performance ofthe developed methods in this work and the comparison of the diagnostically
important parameters measured in original and reconstructed signal is carried out with the

CSE results. In addition to this data compression technique, an algorithm for WT based data

compression has also been developed. Cardiologists suggest that the clinically useful
information present in original ECG signals is preserved by 8:1 compression, and in most
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cases 16:1 compressed ECGs are clinically useful. Considering this, the data compression has

been carried out using the WT technique to provide the CR of 8:1 and 16:1.

Finally it can be stated that the work contributes significantly to the area of computer

aided analysis and interpretation of ECG signal. It also raises number of questions for

carrying out further work. The overall work done in this thesis may be considered a positive

and significant contribution in this field.
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CHAPTER - I

INTRODUCTION

1.1 GENERAL

Electrocardiograph (ECG) enables a rapid observation of the behavior of the heart

activity in terms of heart rhythm, conduction intervals, morphological aspects of the waves

(P,Q,R,S,T) associated to depolarization and repolarization of the auricles and ventricles. The

late potentials (LP) are a particular case of delayed inhomogeneous depolarization, which

may occur elsewhere, for example, under the QRS or after and under the P wave The

presence of late potentials and more particularly ventricular late potentials (VLP) increase the

probability of sudden death [119]. It is also important to observe the His signal, which occurs

between the P and Q waves and reflects the conduction from the auricles to the ventricles.

Also there is increased importance of study and analysis of heart rate variability (HRV) in

clinical practice because time and frequency domain analysis of HRV allows to predict

mortality risk after cardiac infarction and congestive heart failure [83,121]. A proper

technique allowing the detection and analysis of ECG features is of precious help to the

physicians. A typical way to analyze cardiac signals, which are of non-stationary nature, is

through a time-frequency analysis and more particularly using wavelet transforms (WT).

Considering the increased number of cardiac patients and need of sophistication due to want

of information on pressing a tip of finger, there is no better alternative than the automated

ECG analysis and disease diagnosis system to assist an expert cardiologist.

1.2 ELECTROCARDIOGRAM

The electrical activity of the human heart can be detected on the body surface.

Though it is quite low in amplitude (about 1 mV), it is recorded as an ECG signal. The ECG

has considerable diagnostic significance and applications of ECG monitoring are quite

diverse and are widely used [49,134]. For example, a diagnostic ECG recording is usually

made in a doctor's chamber in a routine checkup and a full 12-lead ECG is recorded from a

resting patient on a chart paper to diagnose the cardiovascular diseases. In cardiac intensive

care units (CICUs), a patient's one-lead ECG is continuously displayed on a cathode ray tube

and monitored for signs of cardiac distresses. ECG monitoring capability is incorporated into

various devices, the cardio-tachometer, which measures the heart rate [143]. Some other

devices like the automated defibrillator, acquire ECG signals to determine the absence of

normal sinus rhythm and the correct instant in the cardiac cycle at which a high-voltage
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defibrillation shock is to be delivered. Modern pacemakers and implantable defibrillators also

require ECG acquisition capability [145].

The primary function of the acquisition system is to amplify the ECG signal and reject

environmental and biological noise and artifacts. Diagnostic ECGs are obtained in routine

checkups as well as for specific interpretation of cardiac diseases such as left ventricular

hypertrophy (LVH), right ventricular hypertrophy (RVH), myocardial infarction (Ml) or

electrical conduction defects. Modern diagnostic ECG machines also have built-in

microcomputers that analyze the signal and give preliminary interpretation.

Figure 1.1 is a block diagram of a 12-lead diagnostic ECG system. The electrodes are

attached to the patient's body on the four limbs and the chest. The typical 12-lead system

uses 3 limb leads, 3 augmented leads, and 6 precordial leads [145]. Adriven-right-leg circuit

may be used to reduce electrical interference. The signals from limb electrodes RA, LA, and

LL are connected to a resistor network called Wilson's central terminal which is driven from

the limb leads 1, II, and III, and augmented leads aVL, aVR, and aVF. Generally, three leads

are acquired at a time (I-II-lll, aVL-aVR-aVF, V1-V2-V3, and V4-V5-V6).

1.2.1 The Heart

The heart contains four chambers; two thin-walled atria separated from each other by

an inter-atrial septum and two thicker-walled ventricles possessing common wall in the inter

ventricular septum. Atria and ventricles are connected by a fibrous A-V ring. This ring is

penetrated on the right side by the tricuspid valve and on the left side by the mitral valve as

shown in Fig. 1.2. The two valves consist of flaps or cusps, which are attached at the

periphery of the valve ring. On the right side, the pulmonary orifice is guarded by the
pulmonary or semilunar valve, which consists of three flaps. A similarly constructed valve

(aortic) is situated at the aortic orifice. These valves open at the onset ofventricular ejection

and close when the relevant arterial pressure exceeds that of the corresponding ventricle and

it begins to relax. The closure of atrioventricular valve produces the first heart sound and

closure of the semilunar valve causes the second heart sound [58,74]. The mechanical activity

of the heart is under the control of electrical conduction.

The heart wall, which is composed of a cardiac muscle tissue, is referred as the

myocardium. The components involved in the conduction system of the heart are shown in
the Fig. 1.3. The muscle cells of myocardium are classified into five functionally and
anatomically separate parts namely, sinoatrial (SA) node, atrioventricular (AV) node, Ihs-

purkinje system, atrial muscle and ventricular muscle each having different characteristic
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action potentials as shown in Fig. 1.4 [78]. They are mainly involved in the maintenance of

two primary and well synchronized physiological events, namely, the heart's mechanical

activity (pumping of the blood) and the heart's electrical activity (the transmission of

electrochemical impulses for the coordination of the heart's effort). These two activities give

rise to an orderly heartbeat.

1.2.2 Cardiac Electrophysiology

Cardiac electrophysiology recognizes the presence of several cell types in the heart.

These include the ventricular cells, the atrial cells and cells that constitute the conduction

system (Purkinje fibers), and the pacemaker cells. The pacemaker cell is self-excitatory and

undergoes repetitive cyclic activation. This cyclic activation initiates a contraction and the

result of the cyclic electrical activity is the periodic heartbeat. Fig. 1.5 shows the ventricular

and pacemaker action potentials, phase 0 -activation, phase 1 -initial recovery, phase 2 -a

period of fairly steady depolarization, phase 3 -recovery and phase 4 -the resting potential.

The conduction system of the heart is shown in Fig.1.3. The pacemaker cells are

located in the region of the sinoatrial (SA) node and is of the size of a pencil tip located at the

site of entry of the descending vena cava. The repetitive activity is initiated at this point and v

propagates to adjoing atrial tissue by means of the local-circuit (action) currents. The flow of

this current from active to inactive neighboring cells is facilitated by the presence of low-

resistance intercellular structure. The activation proceeds from cell to cell until the entire

right and then left atria are activated. Because the atria and ventricles are separated by fibrous

tissue, direct propagation from the atria to ventricles cannot occur. Instead, the activation

follows a path that starts in the atria at the atrioventricular (AV) node and proceed through

the common and then right and left bundles of His to the terminal Purkinje fibers which

arborize and invaginate the endocardial ventricular tissue. The initial part of this path

involves slow conduction in the AV junction. Since electrical activation of cardiac muscle

initiates the successive mechanical contraction, this results in a delay in ventricular activation

and contraction. It is beneficial as it allows the completion of atrial contraction. Once the

electrical impulse reaches the bundles of His, the conduction becomes very rapid, resulting in

the initiation of ventricular activation over a wide region. The subsequent cell-to-cell

propagation is consequently sequenced and coordinated, resulting in a mechanical contraction

that is similarly synchronized and efficient.
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1.2.3 Genesis of ECG

In the beginning, about 100 years ago, Waller measured voltages between two

electrodes on the body surface and found change in it with rhythm of the heart beat [78]. It is

now known that the ECGs arise because active tissues within the heart generate electrical

currents, which flow most intensively within the heart muscle itself, and with lesser intensity

throughout the body. The flow of current creates voltages between the sites on the body

surface where the electrodes are placed. These voltages, measured as a function of time, are

called ECG.

Macfarlane et al. [78] reported that the capillary electrometer used by Waller gave

tracings of poor quality. Electrocardiography greatly advanced when Einthoven invented the

string galvanometer around the year 1900. The string galvanometer produced ECG

waveforms that had a quality comparable with the modern recordings. An ECG waveform as

a whole was seen to consist of a series of deflections. For the purpose of identification,

Einthoven marked the peaks of the successive major deflections by the labels P, Q, R, S, and

T. There were substantial differences of opinions about the origin of the deflections, or even

whether they had clinical significance. Einthoven demonstrated their clinical significance by

showing the differences between waveforms recorded from normal subjects and patients

suffering from dysrhythmias. Lewis recognized that the temporal sequence of the deflections

of the ECG occurred because there was a temporal sequence in which different cardiac

structures became electrically active. To prove this, Lewis measured the sequence of

electrical excitation from the atria and ventricles of dogs, and simultaneously measured the

ECGs from the body surface [78].

In 1949, Ling and Gerald introduced the glass microelectrode [78], a tool suitable for

measuring potential differences across the membranes of individual cells, thereby greatly

advancing the study of transmembrane potentials. The active tissues within the heart generate

electrical currents, which flow most intensely within the heart muscle itself, but with lesser

intensity throughout the entire body. As a consequence of the voltages created by the flow of

electrical currents through out the body volume, the electrodes placed at the sites on the body

surface pick-up these voltages as ECG signal.

1.2.4 ECG Nomenclature

A normal ECG lead II signal is shown in Fig. 1.6, and its salient features are labeled as

per the standard procedure. The first deflection, labeled P, corresponds to atrial

depolarization. The following series of deflections, labeled QRS, arise from ventricular
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activation. According to the convention, the Q wave is the first downward deflection before

any upward deflection, the R wave is the first upward deflection, and the S wave is the first
downward deflection after an upward deflection. Some additional features like R, S may

occur. The qRSR' designates a QRS contour where the Q wave is less than 0.5 mV and R

with greater than 0.5 mV is followed by S. The wave generated by ventricular repolarization

is designated as T wave. The Uwave is a low-amplitude which sometimes follow the T wave.

The time intervals are very important in ECG diagnosis and are indicated in Fig 1.6.

The intervals and durations generally reflect electrophysiological processes and carry clinical

implication when they lie outside the normal range of variation. The QRS interval, for

example, is a measure of the total duration of ventricular tissue depolarization. The normal

QRS interval is 0.06-0.10 sec in the adult. The PR interval is measured from the beginning of

the P wave to thebeginning of the QRS complex and reflects in part the AV conduction time.

The normal adult range of which is 0.12-0.20 sec. The QT interval is measured from the

onset of the QRS to the termination of the T wave and reflects the total period of ventricular

depolarization and repolarization. The normal values of QT are dependent on the sex and

heart rate (HR). The HR is usually determined from the RR interval.

1. 2.5 ECG Wave Intervals and Segments

RR interval: The RR interval is the distance between two successive R peaks. If the

ventricular rhythm is regular, the interval (in seconds or fractions of a second) between the

peaks of two successive R waves divided into 60 seconds gives the heart rate per minute. If

the ventricular rhythm is irregular, the number of R waves in a given period of time (e.g. 10

seconds) are counted and the results are converted into the number per minute. l*«*l

PP interval: In regular sinus rhythm, the PP interval is the same as the RR interval.

However, when the ventricular rhythm is irregular or when atrial and ventricular rates are

different but regular, the PP interval is measured from the same point on two successive P

waves and the atrial rate per minute computed in the same manner as the ventricular rate.

PR interval: It is a measure of the AV conduction time and includes the time required for

atrial depolarization, the normal conduction delay in the AV node (approximately 0.07

second), and the passage of the impulse through the bundle of His and bundle branches to the

onset of ventricular P wave to the beginning of the QRS complex. The normal value ranges

from 0.12-0.20 sec (possibly up to 0.22 sec). A PR interval of 0.2 sec may be of no clinical

significance with a heart rate of 60 beats per minute, but may well be significant with a heart

rate of 100 beats per minute. Viti-
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QRS interval: This is the measurement of total ventricular depolarization time. It is

measured from the onset of the Q wave (or R if no Q is visible) to the termination of the S

wave. The upper limit of normal interval is 0.1 sec in frontal plane leads. Occasionally in

precordial leads V2 or V3, this interval may be upto 0.11 sec. -y

Ventricular Activation Time (VAT): The time it takes an impulse to traverse the

myocardium from the endocardial to the epicardial surface is assumed to be reflected in a

measurement from the beginning of the Q wave to the peak of the R wave. The VAT should

not exceed 0.03 sec in VI and V2 and 0.05 sec in V5 and V6.

QT interval: This is measured from the onset of Q wave to the end of T wave. It measures

the duration of electrical systole. The QT interval varies with the heart rate and must be

corrected (QTc). For a heart rate of 60 beats per minute, QTc should not exceed 0.42 sec in

men and 0.43 sec in women.

QU interval: This is the interval measured from the beginning of the Q wave to the end of

the U wave. It measures total ventricular repolarization, including Purkinje fibers.

ST interval: This measures the interval from the QRS offset to beginning of RST segment.

PR segment: It is a portion of the ECG tracing from the end of the P wave to the onset of the

QRS complex. It is normally iso-electric.

RST junction (J): It is the point at which QRS complex ends and the RST segment begins.

RST segment: It is usually called the ST segment. It is the portion from the J to the onset of

the T wave. This segment is usually iso-electric but may vary from -0.5 mm to +2 mm in

precordial leads. It is elevated or depressed in comparison with that portion of the base line

that is between the termination of the T wave and the beginning of the P wave (TP segment)

or when related to the level of the PR segment. -4

1.3 CARDIAC VECTORS

The term cardiac vector designates all of the electromotive forces of the heart cycle. It

has known magnitude, direction, and polarity. At any given instant during depolarization and

repolarization, electrical potentials are being propagated in many directions in space. Over

80% of these potentials are cancelled out by opposing forces, and only the net is recorded

[42], The instantaneous vector represents the net electrical force at a given instant. A mean y

vector of any given portion of the heart cycle (e.g. QRS) represents the mean magnitude,

direction, and polarity for that period. A vector can be drawn for atrial depolarization (P),

ventricular depolarization (QRS), and ventricular repolarization (T). Fig. 1.7 shows different

vectors in frontal plane and their normal ranges.
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Fig. J.7 Cardiac vectors in frontal plane and their normal ranges
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1.4 LEAD SYSTEMS

For diagnostic ECG recordings, several electrodes are attached to the body of patient.

Specific lead configurations result from the combination of electrodes supplying signals to

the amplifier. Thedetails of lead definitions are given in the Table 1.1:

Table 1.1: Definition of ECG Leads [145]

Lead type Electrodes used Definitions

Bipolar or limb leads LA,RA,LL,RL I=LA-RA

(Einthoven) II=LL-RA

III=LL-LA

Augmented (Goldberger) LA,RA,LL,RL aVR=RA-0.5(LA+LL)

aVL=LA-0.5(LL+RA)

aVF=LL-0.5(LA+RA)

Unipolar chest leads V1,V2,V3,V4,V5,V6 Vl=vl-(LA+RA+LL)/3

(Wilson) V2=v2-(LA+RA+LL)/3

V3=v3-(LA+RA+LL)/3

V4=v4-(LA+RA+LL)/3

V5=v5-(LA+RA+LL)/3

V6=v6-(LA+RA+LL)/3

Orthogonal vector leads I,E,C,A,M,H,F X=0.610A+0.171C-0.781I

(Frank) Y=0.655F+0.345M-1.000H

Z=0.133A+0.736M-0.264I-

0.374E-0.231C

The electrodes are connected to the amplifier directly or through resistive networks.

The bipolar limb leads were first proposed by Einthoven. These are the three limb leads: I, 11,

and III. These derive signals from the left arm (LA), the right arm (RA), and the left leg (LI.)

The right leg (RL) electrode serves as common point ofthe amplifier. The augmented leads
(aVR, aVL, aVF) were proposed by Goldberger, and these again derive signals from the limb
leads [145]. Wilson proposed the unipolar chest leads which derive signals from six different

chest locations. The reference input to the amplifier in these cases is known as the Wilson

central terminal. The Wilson central terminal is formed by a resistive network that contributes

equally weighted signals from each'of the three limb electrodes (LA, RA, LL).

14



For diagnostic applications, recordings are obtained from all 12 leads (bipolar limb,

augmented, and unipolar chest leads). For monitoring, usually one lead is selected and the

ECG signal from that leads is displayed. Lead II is most commonly used for this purpose.

Sometimes nonstandard chest leads are also being employed [145]. This is quite common in

ambulatory ECG recording where the electrode locations on the chest are found to be quite

convenient, as it generate less artifact. Monitoring during surgery may also require recording

from a nonstandard lead, in case the usual lead configurations are not accessible.

1.5 SOURCES OF INTERFERENCE IN ECG RECORDING

For diagnostic quality ECG recordings, signal acquisition must be noise free. Since

ECG signals are only of the order of 1 mV in amplitude, the ECG acquisition is susceptible to

interference from other biological and environmental sources. The various sources of

interference are motion artifacts, skin potentials, muscle noise, power-line interference, and

radio frequency interference [71,144,145].

(i) Skin Potentials and Motion Artifacts:

The human skin is a source of electrical potentials and changes its characteristics with

physiological causes or with external influences such as movement [145]. In general, about

25 mV of dc skin potential exists at the interface of the recording electrode and skin. The dc

skin potentials do not prove to be a problem, as they are easily eliminated by high-pass filters.

On the other hand, the motion artifacts generated by deformation of the skin or disturbance of

the skin-electrode interface are difficult to eliminate from the ECG recording. Sometimes, the

motion artifacts can resemble the QRS complexes in ECG recordings, making ECG

interpretation difficult [Fig. 1.8(a)]. Other times, slow movement of electrodes or the body

can result in baseline wander [Fig. 1.8(b)]. The slow base-line wander may not be filtered by

the amplifier lower-corner frequency of 0.05 Hz and may result in saturation of the amplifier

output. Many researchers found that the skin potentials and the motion artifacts can be

reduced by abrasion or puncture of epidermal skin layers [145]. Good electrode design limit

the relative movement between the electrodes and skin also helps in reduction of the motion

artifact. The electrodes are designed so that the gel is recessed in a cup like structure [Fig. 1.9

(c), disposable foam electrode] and the adhesive maintains firm contact with the body.

(ii) Muscle Noise:

First, the human body itself generates muscle noise recorded as an electromyogram

(EMG). The EMG noise is of the same order of amplitude as the ECG signals but occurs at

higher frequencies [Fig. 1.8(c)], The amplitude of the EMG noise is proportional to the
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activity undertaken by the various muscle groups. Consequently, the EMG noise- can be

reduced by lowering down the muscle activity during the ECG recording and by judicious

placement of ECG electrodes (away from large muscle groups), and by selective band-pass

filtering (e.g. amplifying only the signals in a limited bandwidth range of 0.5-40Hz).

(iii) Environmental Sources of Interference:

The electrical interference induced by power lines [Fig. 1.8(d)] is probably the most

pervasive problem in biopotential recording [145]. Surrounding power lines, electrical

instruments, transformers, and so forth, radiate electrical interference, which becomes

electrically or magnetically coupled to the body. There can be electrostatic coupling between

the power-line sources and the body and electrode leads. The elimination of electrically

induced interference is a difficult and tricky task. The human body, the electrode leads, and

the ECG monitor form a loop and the magnetically induced currents are proportional to the

area bounded by the loop. Therefore, this form of interference can be limited by twisting the

leads together.

The other sources of environmental electrical interference are radio-frequency (RF)

transformers. Several electrical and medical devices, such as electric motors and

electrosurgical units, generate the interference signals indirectly. The electrosurgical units

used in surgery emit signals of several hundred volts at about 1 MHz. Such interference is

picked up by electrical conduction or induction. The RF interference frequencies arc much

higher than the ECG frequencies and therefore, can be filtered to some extent by shunt

capacitors or blocked by series RF chokes.

As discussed above, electrical interference enters the recording system in many ways.

Biological sources of noise and artifacts can be limited by proper design and placement of

electrodes and proper skin preparation. The interference from most environmental sources

can be reduced or eliminated by proper grounding, shielding, and wiring practice, leaving the

most pervasive source of interference that form electrically induced differential and common-

mode sources. The common-mode interference is rejected by the inherent property oi^ the

differential amplifier, which has very high common mode rejection ratio[145].

1.6 CLINICAL ASPECTS OF ECG

The ultimate application ofECG is in clinical diagnosis. Consequently, it is important

for the engineers to be aware of the types of abnormalities and their electrophysiological

character that arise, which are of clinical interest. Cardiac abnormalities can be divided in to

two major groups, namely, those affecting the QRS morphology (contour) and those affecting

18



the rhythm. The changes, which arise from the abnormalities due to cardiac generators and

the volume conductor, can be distinguished.

Through the statistical analysis of the normal ECGs, one can set up criteria by which

the ECG is designated as the normal or abnormal type. It seems safe to assume that the

electrical abnormalities reflected in the ECG imply the presence of clinical abnormalities.

However, while objective criteria for abnormal ECGs exist, the clinical interpretations are

less certain. The clinical experience, judgement, and collateral medical data play an important

role in cardiac diagnosis. The emphasis here is primarily on the electrical abnormalities.

1.7 STANDARD ECG DATABASES

The algorithms developed in this work for the ECG analysis and interpretation have

evaluated by the single and multi-lead ECGs. The ECG records have been acquired from the

CSE and the MIT/BIH data libraries and also from the indigenous data library created by the

ECG recording in the laboratory.

1.7.1 Common Standards for Quantitative Electrocardiography (CSE) Database

There are three CSE reference data sets [147]. The first data set (CSE DS-I) consists

of 3 lead ECGs, and has been recorded simultaneously in the standard sequence. In the

second data set (CSE DS-2), all the leads i.e. standard 12 leads plus the 3 Frank leads are

recorded simultaneously. A third CSE database (DS-3) has been developed for the

assessment of diagnostic ECG and Vectorcardiogram (VCG) computer programs, fhis

database comprises multi-lead recordings of the standard ECG and the VCG. All the data

have been sampled at 500 Hz.

The DS-3 CSE measurement database consists of 250 original and 310 so called

artificial ECG recordings. They have been divided into two equal sets i.e. data set one and

data set two. The multi-lead measurement database is also composed of original and artificial

ECG recordings. This database has been split into two equal sets i.e. data set three and data

set four. The so-called artificial ECG data are out of strings of identical selected beats.

The onsets and offsets of P, QRS and T of these beats have been analyzed by a group

of cardiologists during an extensive iterative Delphi review process in the CSE project. The

results of this analysis have been released only for data set three. The data sets two and four

are being used in CSE coordinating Center for testing purposes. For the diagnostic data set

(CSE DS-5), only the digitized ECG data (1220 cases) have been released by the CSE
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coordinating Center, not the clinical validated diagnoses. This database has been developed
primarily for testing the performance ofdiagnostic ECG and VCG computer programs.

CSE three lead measurement library

SET I II

Original 125 125 (Number ofpatients)

Artificial 155 155 (Number of patients)

All the files corresponding to 3-lead CSE library start with the ASCII character E. Each

record consists of minimum 5 seconds of data for each of the 4 standard ECG lead groups,

followed by minimum 10 seconds data of X, Y, Z leads. The second character in the file
name will be '0' for original and 'A' for artificial. The third byte indicates whether the data

belong to data set one (I) or data set two (II). The three bytes provide a sequential number,
which goes from 001 to 125 for the original and from 001 to 155 for the files ofthe artificial

ECG recordings.

The file names are as follows for the 3-lead CSE measurement database:

EO1-001.DCD to E01-125.DCD

EAl-001.DCDtoEOl-155.DCD

EO2-001 DCD to E02-125.DCD

EA2-001.DCDtoEA2-155.DCD

CSE multi-lead measurement library

SET III IV

Original 125 125 (Number ofpatients)

Artificial 125 125 (Number of patients)

File name starts with the character M. The record length for these cases is in principle 10

seconds for each lead. In some cases only 8 seconds will be significant. In these cases, the

last significant sample has been repeated in order to fill up the last 2seconds.

CSE Diagnostic Database

The multi-lead measurement database has all recordings of 10 seconds sampled at

500 Hz. The first character of all files is D, followed by a sequential number from 00001 to

01220. The full filenames for the diagnostic database are D-00001 .DCD to D-01220.DCD
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1.7.2 Massachusetts Institute of Technology/ Beth Israel Hospital (MIT/BIH) Database
This database contains several hundred ECG recordings, extended over 200 hours in

all [94]. Individual recordings contain one to three signals and range from 20 seconds to
nearly 24 hours in length. Most of them have two signals and are of about 30 minutes long
and are annotated beat-by-beat. About one-sixth of the CD containing the database is
occupied by the MIT-BIH Arrhythmia Database, which is fully annotated. The disk also
contains eight additional ECG databases. The recordings are found in ten directories,
mitdb MIT-BIH Arrhythmia Database

cudb Creighton University Ventricular Tachyarrhythmia Database
nstdb MIT-BIH Noise Stress Test Database

stdb MIT-BIH ST Change Database

vfdb MIT-BIH Malignant Ventricular Arrhythmia Database
afdb MIT-BIH Atrial Fibrillation/Flutter Database
cdb MIT-BIH ECG Compression Test Database
svdb MIT-BIH Supraventricular Arrhythmia Database
ltdb MIT-BIH Long-Term ECG Database

odb Other databases (excerpts from compatible CD-ROMs of physiologic signals)
Database Files

Most of the ECG recordings on this disk are represented by aheader file, asignal tile
and an annotation file. Together these three files comprise a'record'. The records on this disk
are organized into nine databases, each in its own directory e.g. directory 'odb' contains short
records excerpted from several other databases. Each database record contains acontinuous
recording from asingle subject. In this thesis work MIT/BIH Arrhythmia database has been
used to evaluate the performance of software in feature extraction and HRV analysis The
details ofdatabase are given below.

MIT-BIH Arrhythmia Database

Record names:

100 105 111 116 122 200 207 213 220 230
101 106 112 117 123 201 208 214 221 231
102 107 113 118 124 202 209 215 222 232
103 108 114 119 203 210 217 223 233

104 109 115 121 205 212 219 228 234
\---~ the '100 series' ---/ \ the "200 series' --/
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This database consists of 48 annotated records, obtained from 47 subjects studied by

the Arrhythmia Laboratory of BIH in Boston during 1975 and 1979. About 60% of the

records were obtained from inpatients. The database contains 23 records (the ' 100 series')

chosen at random from a set of over 4000 24-hour Holter tapes and 25 records (the '200

series') selected from the same set to include a variety of rare but clinically important

phenomena that would not be well-represented by a small random sample. Several records in

the 200 series were chosen specifically because features of the rhythm, QRS morphology, or

signal quality may be expected to present significant difficulty to arrhythmia detectors.

Each record is slightly over 30 minutes in length. Each signal file contains two

signals sampled at 360 Hz. The header files include the information about the leads used, the

patient's age, sex, and medications.

1.8 LITERATURE REVIEW

1.8.1 Methods of ECG Analysis and Interpretation

Although the first attempt to automate ECG analysis by digital computer was made as

early as in 1957 by Pipberger and his group, but the first industrial ECG processing system

came in the market during seventies [80,151]. Since then many investigative and commercial

minicomputer-based and microcomputer-based systems have become common in use. It took

considerable time to develop operational computer programs than originally anticipated.

However, over last 15 years, the computer programs were mainly developed by University

research groups. In the last decade, the development has shifted to industry. Computers can

assist a cardiologist in the task of ECG monitoring and interpretation. For example, in a

cardiac intensive care unit (CICU), ECGs of several patients must be monitored continuously

to detect any life-threatning abnormality that may occur. Since cardiologists are unlikely to

be available to monitor the ECGs of all the patients during all 24 hours in a day, automated

monitors programmed to detect abnormal heart rhythms are needed. Over the past several

years, the computerized ECG monitors that provide complete 12-lead diagnostic quality ECG

recordings and interpretations have become common. Computerized ECG monitoring and

analysis are now carried out with bed side monitors, mobile carts equipped with ECG

amplifiers and microcomputers, and portable ECG recorders hooked up via telephone

networks. State-of- the art systems are based on multiple microcomputers, which run,

sophisticated arrhythmia analysis software, and are connected to central computer facilities

where they share patient records and database.
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In the past four decades, numerous computer programs have been developed for the

automatic interpretation of ECG [147], However, methods and independent databases to test

the reliability of such programs are still scarce. Each ECG programs has different principle

with respect to analysis, for example, some measure single beats, whereas others analyze

average beats. Until recent past, there were no standards in this field. There were no common

definitions of waves, no standards for measurement or diagnostic classification, and no

uniform terminology for reporting, transmission and processing of data. This has created a

situation whereby large difference result in measurements by different computer programs

and hampers the exchange of diagnostic criteria and interpretation results [150]. In addition,

more and more microcomputer-based interpretative ECG machines are being put on the

market without any prior independent validation.

In order to overcome some of these problems, a concept action was started by

European Community (EC) in June 1980, striving towards 'Common Standards for

Quantitative Electrocardiography' (CSE) [149].

Some of the internationally available ECG analysis and interpretation programs are

AVA program developed by Pipberger et al. [110], Nagoya program developed by Okajima

et al.[102], MEANS program by Betnmel et al.[15], Glasgow program developed by

Macfarlane et al.[79], Dalhousie program developed by Rautaharju et al.[116], Hannover

program developed by Zywietz et al.[l56], Padova program developed by Degani and

Bortolan [31], Lyon program developed by Arnaud et al.[9], Louvain program developed by

Brohet et al.[22] and Porto program developed by Abreu-Lima and Marques de Sa' [1],

Pipberger et al. [110] developed an automatic vectorcardiographic analysis program

during 1956. Signal recognition in this software is based on the spatial velocity function.

Multivariate statistical analysis on orthogonal ECG leads assesses probabilities of nine

alternative disease categories, based on QRS-T parameters. Okajima et al. developed an ECG

analysis and interpretation program during 1960, named as Nagoya program. In Japan, it is

being utilized, with some modifications, for interpreting or monitoring the VCG, exercise

ECGs, arrhythmia detection in the CCU, ambulatory ECGs, and body-surface mapping of the

ECG. Disease diagnosis is based on the use of scoring schemes. Bemmel et al. had introduced

their MEANS (modular ECG analysis system) in 1972 and first published in 1974. This

system was intended to be applied both for the clinic use and population screening and the

MEANS was able to classify according to conventional clinical criteria as well as the

Minnesota code. They have used the technique of cross correlation with the template and a

matched filter for detection ofECG waves and decision tree classifiers for disease diagnosis.
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Macfarlane et al. [79] reported current Glasgow 12-lead ECG program. Its origin goes

back to year 1977. It is designed to analyze from 3 to 15 simultaneously recorded leads with
facilities for analysis of rhythm. Spatial velocity function is used for QRS detection and the
wave typing is carried out using an iterative process and a set ofrule-based criteria is used for
interpretation of the (P)QRST morphology. The Dalhousie ECG analysis program

(DALECG) is a collection of relatively loosely coupled program modules that can be
combined in various ways for processing the rest and exercise ECGs. The program was

designed particularly for research applications. Family of templates has been used for ECG
analysis and the Minnesota code supplemented by several newer ECG classification schemes
suitable for computer coding have been used by Rautaharju et al. [116]. The Hannover ECG

program HES has been designed for measurement and interpretation ofresting and exercise
ECGs. In the signal analysis, the program follows an averaging strategy. For diagnostic

classification, a hybrid model with decision trees and scoring algorithms has been used by the

Zywietz et al. [156]. Methodology of ECG interpretation in the Padova program developed
by Degani and Bortolan [31] is based on the use of spatial velocity functions for signal

analysis and offuzzy classifiers for disease interpretation.

Arnaud et al. [9] developed the Lyon program to interpret VCGs using heuristic

procedures to extract not a simple and unique interpretation, but several diagnostic
hypotheses in accordance with the spatio-temporal structure of the QRS-T electrical field.
The Louvain program performs the analysis and interpretation of the VCG to increase the

clinical utility of ECG analysis. Wave recognition techniques in which a mixture of
threshold-crossings and template-matching methods are applied to filtered spatial velocity

curves. A deterministic method is one in which the cardiologist's expertise is applied through

Boolean algebra and decision tree logic in order to reach a diagnostic decision [221 A
computer program for ECG analysis and interpretation developed at the University of Porto
in Portugal is reported by Abreu-Lima and Marques [1]. The program employs the three-lead
Frank VCG and detection ofQRS complexes is based on the double threshold method for the

spatial velocity amplitude and its time derivative. The fiducial points ofall the ECG wave
components'are then detected using an exhaustive sequential search algorithm. The decision

tree logic is being used for diagnosis.

Programs reported above use ECG and/ or VCG and carry out interpretation based on
decision logic or statistical analysis. Pipberger et al. [110] reported that the automated ECG
diagnosis could be no better than the accuracy of the waveform detection that provides its
measurement values. Similarly, Okajima et al. reported that there are still, many occasions of
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mistakes in fiducial point recognition or contour classification agreed upon unanimously. The

revisions and modifications of the program are continuously in progress. The modular ECG

analysis system (MEANS) consists of modules for signal analysis and diagnostic

classification. All modules underwent many changes as a function of experience, insight, and

continuously changing information technology. Macfarlane has also reported that there will

be continuous enhancement in the system if the more widely ECGs are interpreted on a

particular system. Although diagnostic accuracy of computer programs is tending to reach a

plateau, there is no doubt that many years hence, it will still be possible to report on recent

developments in the programs. In all programs, there is every possibility that the work will

always be enhanced, modifications for improvements be made and the use of new techniques

like wavelet transforms be introduced for better results.

1.8.2 Feature Extraction of ECG Signal

The ECG signal is the graphical representation of the bioelectricai and biomechanical

activities of the cardiac system. It provides valuable information regarding the functional

aspects of the cardiac and cardiovascular systems. The QRS complex is the most

characteristic wave set of all the waves in an ECG signal and represents depolarization of the

ventricles. There are a number of methods, some of which deal with detection of ECG wave

segments, namely P, QRS and T, while others deal with detection of the QRS complexes

The QRS complex is the most prominent feature and its accurate detection forms the

basis for extraction of other features and parameters from the ECG signal. The QRS wave is

used as the basis for faithful heart disease diagnostics, for carrying out studies on HRV and

for analysis of arrhythmia. A good amount of research work has been carried out

during the last four decades for the accurate and reliable detection of QRS segment in the

ECG signal. The QRS detection algorithms developed so far can be broadly placed into

four categories; (i) syntactic approach, (ii) non-syntactic approach, (iii) transformative

approach, and (iv) hybrid approach.

It is an established fact that QRS detection is taken as the basis for identification and

extraction of various parameters of ECG signal [8,69,98,104,127,133,136,141,152]. A large

number of software, hardware and hybrid techniques reported so far follow the procedure of

filtering, squaring, and differentiation using decision rules like zero crossings, amplitude

thresholds, sharp consecutive Q-R-S peaks, duration of QRS complex and R-R interval

duration [8,104,127], Most of the methods face difficulty due to wide variations in the

physiological behaviour of the cardiac system. These changes are reflected in the
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amplitudes, durations and slopes of the various segments of the ECG signal. These

variations differ from beat-to-beat, lead-to-lead and patient-to-patient and are difficult to

detect QRS complexes and to get satisfactory results for perfect diagnostics.

(i) Syntactic Approach

In syntactic approach of pattern recognition based QRS detection, the ECG signal is

first reduced into a set of elementary patterns like peaks, durations, slopes, and intei wave

segments, and thereafter using rule based grammar. The signal is represented as a composite

entity of peaks, duration, slopes and interwave segments. These patterns are then used to

detect the QRS complexes in the ECG signal. The methods of this category are time

consuming and require inference grammar in each step of execution for QRS detection.

Even then the motivation for using a syntactic approach resides in the fact that human

inspection of ECG waveforms is firstly an extraction of structural and qualitative

information. Once this information has been obtained and some typical forms (like a QRS

complex) have been recognized, the numerical values of the durations and amplitudes useful

for diagnosis are measured [44,93,135].

Gustavo et al. [44] used the syntactic method to extract the time evolution of the

rhythm using the energy of ECG derivatives and their coding by a look-up table method.

Trahanias and Skordalakis [135] have reported a bottom-up approach to the recognition of

ECG waveforms. This approach is based on the assumption that ECG waveforms are

composite entities that can be decomposed into other simpler entities, further into other

simpler ones, and so on, until peak patterns and segment patterns are obtained. After

recognition of these primitive patterns, recognition of the ECG patterns using bottom-up

procedure has been carried out. In their other paper [135], solutions to the sub-problems of

primitive pattern selection, primitive pattern extraction, linguistic representation, and pattern

grammar formulation are reported. They have observed that the primitive pattern extractor

does not always accurately delineate the boundaries of the peak patterns. This type oferror is

propagated in the next stages and is responsible for many inaccurate results. Looking to the

complex structure with infinite morphological variability, this approach faces difficulty in

QRS detection.

(ii) Non-syntactic Approach

Most widely used class of ECG feature extraction techniques is of non-syntactic type.

In this class, we find the use of amplitude, slope and threshold limit as well as the use of

different filters, mathematical functions and models.
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Okada [101] reported a five step digital filter, which removes components other than

those of QRS complex from the recorded ECG. The final step of the filter produces a square

wave and its on-intervals correspond to the segments with QRS complexes in the original

signal. Thakor et al. [133] carried out power spectral analysis of ECG waveform, as well as

of isolated QRS complexes and episodes of noise and artifacts. A band pass filter has been

used to maximize the signal (QRS complex) to noise (T-waves, 60 Hz, EMG etc.) ratio to

detect the QRS complex. Due to the inherent variability of ECG from different persons, as

well as variability due to noise and artifacts, the filter design is suboptimal in specific

situations. Pan and Tompkins [104] have developed a real-time algorithm for detection of the

QRS complexes of ECG signals. It reliably recognizes QRS complexes based upon digital

analysis of slope, amplitude, and width. Hamilton and Tompkins [45] have investigated the

quantitative effects of number of common elements of QRS detection rules using the

MIT/BIH arrhythmia database. Then they have developed a progressively more complex

decision process for QRS detection by adding new detection rules and optimized decision

rule process. Laguna et al. [69] developed a method to automatically determine the

characteristic points (onsets and offsets) of the P, QRS, and T waves in the multilead ECG

signals from the CSE DS-3 database. The method makes use of a differentiated and low pass

filtered ECG signal. Escalona et al. [36] developed a QRS alignment technique which is

based on the accurate detection of a single fiducial point in the bandpass filtered (3-30 Hz)

QRS segment.

Urrusti and Tomkins [138] have described the use of moving window integral (MW1)

filter for QRS detection. They have analysed MIT/BIH ECG database files for 13 MW1

widths from 60 to 180 ms and found that the optimal MW1 is application dependent.

Dandapat and Ray [29] used the method of midprediction (MIDP) filtering for the detection

of the spikes in the biomedical signals. They have observed that, in the MIDP error filtering

method, the basewidth of the spike is retained in the error signal. The amplitude of the spike

in the error signal and the basewidth of the spike together can be considered as the decision

parameters to improve the reliability of the spike detection. A detection algorithm developed

by Anti et al. [8] is based on optimized prefiltering in conjunction with a matched filter and

dual edge threshold detection. Afonso et al. [3] have designed a multirate digital signal

processing algorithm to detect heartbeats in the ECG. The algorithm incorporates a filter bank

(FB) which decomposes the ECG into subbands with uniform frequency bandwidths and

enables to perform independent time and frequency analysis on a signal. Gary et al.[4l]

evaluated nine different QRS detection algorithms for noise sensitivity. The noises were
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electromyographic interference, 60 Hz power interference, baseline drift due to respiration,
abrupt baseline shift, and a composite noise constructed from all other type ofnoises. None
ofthe algorithms were able to detect all QRS complexes without any false positives with all
types of noises at the highest level. Algorithm based on amplitude and slope had highest
performance for the ECG corrupted with EMG. An algorithm using a digital filter had the
best performance for the ECG corrupted with composite noise.

There are some algorithms, which work on the use ofmathematical approaches like

mixed mathematical basis functions, mathematical models, mathematical morphology, spatial

velocity function, and averaging techniques [2,6,8,12,103]. Mathematical models are
developed by considering the QRS segment as pulse shaped waveform and its variables as the
number ofpeaks, arrival time, amplitudes and widths ofvarious complexes [51], The mixed
mathematical functions like Gaussian, exponential, and straight line have been used to

represent the composite ECG signal. Sornmo et al. [128] have considered the mathematical
model for the occurance ofpulse shaped waveforms corrupted with coloured Gaussian noise.

The number ofwaveforms, the arrival times, amplitudes and widths are regarded as unknown

variables. Adaptivity of the detector is gained by utilizing past as well as future properties of
the signal in determining thresholds for QRS acceptance. Tartakovsky et al. [132] reported
the QRS detection technique used in TELV1N (Three-channel Evaluation of long-term ECG
for Atrial and Ventricular Arrhythmia Identification and Validation) system. The algorithm

for unsupervised template learning and fully automated rhythm monitoring implemented in
the TELVIN system provides a reliable tool for long-term ECG analyses. Naima and Saxena

[97,98] have presented two new approaches for feature extraction of the ECG signal tor
computer aided analysis. The first method is based on mixed mathematical functions and
the second one on spline functions. The methods also identify and separate P, Q, R, S
and T segments. These methods are good for memory-based manipulations and mapping
type microcomputer based biomedical instruments. Park et al. [107] presented an
algorithm detecting the presence of a fetal QRS complex. It computes the averaged
magnitude of the difference between the fetal ECG signal and the reference signal to detect
the fetal QRS event. Two approaches of normalizing the fetal ECG signal and the template
are reported. Trahanias [136] suggested an approach based on mathematical morphology for
QRS detection. This morphological operator works as a peak-valley extractor. Shaw and
Savard [127] reported that the detection of subtle beat-to-beat variations in the morphology of
the ECG is complicated by the effects of alignment errors and respiration. A method of
directly estimating the alignment error (trigger jitter) from ECG is derived by relating the
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variance to the squared slope of the averaged QRS complex. It was reported that the effects

of respiration could be reduced by normalizing the amplitude of the QRS complexes.

Maheshwari et al. [82] developed an analysis technique using the spatial velocity, which

detects the QRS complexes, and thereafter, P and T waves.

Recently, some new techniques based on artificial neural network, fuzzy logic and

genetic algorithms have also been developed for accurate QRS detection [23,40,65,141,152].

In these approaches, the basic methodology is to learn and later on to generalise the

knowledge gained through the learning process to identify the known QRS complexes out

of an exhaustic set of the ECG segments. The accuracy and reliability of QRS detection by

these methods is dependent on the type of used training set. The artificial neural network

(ANN) based method developed by Vijaya et al. [141], works on high prediction error to

indicate the occurrence of QRS complexes.

As an improvement over the methods discussed above, the concept of adaptiveness

has been introduced in the techniques used for QRS detection [44,51,66,69,152]. Adaptive

thresholds for signal amplitude, slope, and durations, adaptive matched filtering, adaptive

estimation of QRS segment features by the Hermite model, neural network based adaptive

matched filtering and adaptive template building are some of the techniques in this category

[66,132,140,152]. In these techniques, an algorithm configures itself to a unique QRS

segment of a patient during an initial stage of learning. This adaptability approach enhances

the QRS detection rate by a considerable extent and reduces the percentage of false

detections, but at the same time, increases the computation as it involves learning phase

(determination of adaptive model parameters) and repetitive calculations to optimise the

threshold limits for amplitudes, slopes and durations.

Xue et al. [152] have developed an adaptive filtering algorithm based upon an ANN

for QRS detection. The residual signal which contains mostly higher frequency QRS complex

energy is then passed through a linear matched filter to detect the location of the QRS

complex. This technique suffer from two problems: i) the pass band of the QRS complex is

different for different subjects and even for different beats of the same subjects and ii) the

noise and QRS complex pass-bands overlap. Adaptive Hermite Model Estimation System

(AHMES) is presented by Laguna et al. [66] for on-line beat-to-beat estimation of the

features of the ECG signal. The AHMES is based on the multiple-input adaptive linear

combiner, using succession of the QRS complexes and the Hermite functions as inputs. The

procedure has been incorporated to adaptively estimate a width related parameter. The system

allows an efficient real-time parameter extraction for classification and data compression.
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Different methods discussed above claim satisfactory results but methods like ANN

based QRS detection and AHMES require exhaustive training, settings and estimation of

model parameters, and hence, are computationally complex and time consuming. Jan et al.

[51] have reported various algorithms for the detection ofQRS complexes, atrial activity and

artefacts. It was clearly demonstrated that the quality of the input signals influences the

performance of the various detectors and the improvement in the performance of program

MEANS is possible withbetter artefacts detectors.

(iii) Hybrid Approach

In the hybrid approach, the syntactic and non-syntactic approaches are

combined to detect the QRS segment. These are not in common use, as in syntactic approach

the trace is being made on actual morphology of the ECG signal and in non syntactic

approach there is no consideration to maintain the morphology ofthe ECG signal.

(iv) Transformative Approach

The transformative techniques, namely Fourier transform, cosine transform, pole-zero

transform, differentiator transform, Hilbert transform and wavelet transform are being used

for the QRS detection [29,38,56,72,115,123]. The use of these transforms on ECG signal

helps to characterise the signal into energy, slope, or spike spectra, and thereafter, the
temporal locations are detected with the help ofdecision rules like thresholds ofamplitude,

slope, or duration. Murthy and Prasad [96] proposed a solution to the fundamental problem

ofECG analysis, viz., delineation ofthe signal into its component waves. The DCT ofa bell
shaped biphasic function is approximated mathematically by a system function with two

poles and two zeros. A one-to-one relation between the pole pattern in the z-plane and

component wave pattern in the time signal is established.

Looking at the potential of using various approaches, it is very difficult to claim

that a particular method or aparticular category is always suitable for QRS detection. Due
to the physiological variability ofthe QRS wave, and also due to the presence of noise
and artifacts in the ECG signal, so far no QRS detection technique has been reported to

provide 100% accuracy. In recent times, the use of wavelet transforms (WTs) in QRS
detection has shown upper edge in terms ofaccuracy of detection, simplicity in calculations

and no need of preprocessing [72].

Recently Rao [115] developed an algorithm based on discrete wavelet transform
(DWT) to detect the R-peaks to compute R-R interval and to compress the ECG signal. This
method has a very important advantage as it does not assume stationarity or quasi-
stationarity of the ECG signal. Sahambi et al. [123,124] used the modulus maxima of the
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WT using multiresolution analysis. Similarly Li et al. [72] reported an algorithm based on

multiscale feature of WT. Kadambe et al. [56] described a QRS complex detector based on

the dyadic wavelet transform which is robust to time-varying QRS complex morphology and

noise. They observed that although no one algorithm exhibited superior performance in all

situations, the DyWT-based detector compared well with the standard techniques and

exhibited excellent performance. Li et al. [72] have reported a QRS detection technique using

a quadratic spline WT. Better results are possible using this method because of the specific

feature of the WT to characterize the local regularity of ECG signal. This feature is used to

distinguish ECG waves from noise, artifacts and baseline drift. In principle, the WT

cuts-up data into different components that are well localized in time and frequency Each

component with a resolution matched to its scale is used for analysis and diagnostics

Thus in the present time, a good amount of effort is being directed to perfect the WT

based QRS detection techniques. The WTs have promising feature to characterize the local

regularity of signals by decomposing the signal into elementary building blocks that are

well localised both in time and frequency, and thereby, their robustness to noise

make them ultime choice for QRS detection. The feature of characterizing the local

regularity of the signal is used to distinguish QRS segment from spurious noise, artifacts,

baseline drift and high P and T waves.

In ECG analysis, the data transformation stage consists of the steps filtering and

detection, typing and dominant beat selection and waveform recognition. For reasons of

efficiency in communication and data storage, attention is also paid to data reduction

[12,21,26,50,57,63,117].

1.8.3 Disease Diagnosis

Disease classification is being carried out by single lead or multi-lead analysis. The

analysis of single lead ECGs mainly performed to check the rhythm (HR), variation in

rhythm (HRV) and the rhythm related diseases like tachycardia, bradycardia, and arhythmias.

The single lead disease diagnosis is based on the analysis of rhythm and the rhythm is

determined by detection of QRS (R-R) events. Multi-lead analysis based disease

classification is based on complete analysis and extraction of ECG parameters from standard

12 leads and 3 Frank leads. In section 1.8.1, the discussion has been carried out about the

analysis and interpretation of ECG programs which are based on 12 standard leads and 3

Frank leads. Discussion regarding HRV analysis using single lead ECG analysis is given

here.
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The HRV can be defined as the quantified fluctuations in the heart rate. The analysis

of HRV is a well accepted method in two fields: firstly, in clinical situation, particularly in

the ICU and in the coronary care unit and secondly, in the study of the neural cardiovascular

system. The HRV often mirrors the effects of the underlying control activities and the

information of these activities is obtained noninvasively, hence the HRV analysis is

considered as an attractive source of information [28,39,53,84,121].

It is worth noting that R-R series is not constant but is characterized by oscillations of

up to the 10% of its mean value. These oscillations are not casual but are the effect of the

action of the autonomic nervous system in controlling the heart rate [146,153]. In this case,

the parameter of interest is the variability of the SA node rhythm, which in fact, should be

derived from the onset of the P waves. It has been shown, however, that the possible

fluctuations in the intervals between the onset of P waves detection and QRS detection,

which might cause errors, are within the considerable limits following from the inaccuracies

of both the detection procedures [121,122]. The heart rate variability has become a topic of

considerable interest for investigations of normal physiology and disease. The investigation

of HRV has been the subject of many different studies. The effects of respiration on HR are

mediated through the parasympathetic (vagal) system. The HRV related to respiration has

been quantified by conventional time series techniques such as power spectrum analysis

which separates the power on the basis of the frequency components in the interbeat interval

(1B1) signal. Using this method, we can separate the average power associated with

respiration (which we call vagal power) from the rest of the signal. The vagal influences on

the heart can then be measured by finding vagal power under different conditions. These

techniques have been used to understand the role of vagal control of the heart in normal

(healthy) and diseased cases [48,84],

The review of the literature on HRV opens number of directions. Rompelman

et al.[121, 122] have described the importance of HRV measurements in both clinical

applications and the neural cardiovascular research. They have also shown that the

fluctuations in HRV are related to both physiological and psychological factors. They have

studied two groups of subjects characterized by a large difference in psychic state and
psychiatric patients and normal ones. An investigation was conducted to know that up to
what extent factors of neural cardiovascular control (for example, respiratory arrhythmia and

blood pressure) are reflected in the HRV. Boer et al. [18,19] have presented a method to
attribute the short-term variability of blood pressure and HR of resting subjects to their

various causes, using spectral techniques. They have tried to extract information on properties
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of the cardiovascular system from the relationship between spontaneous short-term variations

in blood pressure and R-R intervals. Malik et al.[84] have pointed out that the reduced HRV

has been reported as a predictor of mortality in recent MI patients, however, its automated

assessment in long-term ECG recordings is complicated by recording noise and beat-

recognition errors which necessitate filtering of the computer-established sequence of beat-

to-beat intervals, and visual checking and manual editing of the long-term recording, making

the whole method operator-dependent and cumbersome. They have used five filtering

algorithms combined with three methods of expressing HRV numerically and used to

compare two groups of patients undergoing 24 hour tape recording of the ECG within the

first two weeks after Ml. Mario et al. [90] have stated that the R-R interval measurement

from digitized ECG contains an error due to the finite sampling frequency which may

jeopardize the beat-to-beat analysis of the heart rate. They have developed a model to

describe and quantitate this error. Craelius et al.[28] have estimated the autonomic nervous

activity in three groups: Group A consists of patients who had experienced MI within 2-6

weeks before the tests; Group B consists of patients who had MI more than one year

previously; Group C consists of patients who are free of cardiac disease. They have observed

that relative to controls, Group A patients have reduced prasympathetic activity index (5+3

against 13+8) and an increased ratio of sympathetic to parasympathetic activity (17+17

against 4+2). Group B is not significantly different from Group A or C. The period of 2-6

weeks post-MI thus appears to be characterized by depressed parasympathetic activity which

can be measured using HRV analysis. Malik et al. [85] have pointed out that the spectral-

domain methods are known to be sensitive to artifacts in automatic recognition of long-term

ECGs. Some of the time-domain methods are believed to be less sensitive, and others have

only been used together with visual checking and manual editing of the automatic

recognition. The visual verification and manual correction of the automatic recognition of a

long-term ECG can be extremely time-consuming for 24 hour recordings. A perceived need

for such a manual intervention discourages the assessment of HRV in routine clinical practice

and confine the investigation of HRV to an academic setting. There is, therefore, a practical

demand for fully automatic methods of HRV measurements which are robust and which

provide clinically useful results for recordings of typical quality. This study evaluated the

effects of the misrecognition artefact of automatic ECG analysis on five methods for time-

domain HRV measurement, which have previously been shown to provide clinically relevant

prognostic data in survivors of acute MI. Mandawat et al. [88] have measured HRV on 24

hour Holter recording from different patients by non-spectral methods and they have
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observed that HRV is significantly reduced in patients with LVH secondary to hypertension

or aortic valve disease. A continuous inverse relation exists between HRV and LV mass

index. The impaired cardiac autonomic function in LVH may contribute to the mechanism of

sudden death.

Fuenmayor et al. [39] have conducted research to determine whether R and R-R

interval variability are modified by atrial pacing and whether these changes (ifthey do occur)

are related to the inducibility of tachyarrhythmias during electrophysiological studies. They

have observed in the patients who had normal ejection fraction and no structural cardiac

damage that a significant decrease in R-R interval (p=0.0002) and in its SD (p<0.005) was

observed following atrial pacing and no significant HR or R-R interval SD change was

observed after pacing in the patients with structural heart disease. Jens et al.[53] have carried

out the assessment of HRV by using different commercially available systems and concluded

that the results of HRV analysis of the same Holter tape by using different commercially

available systems are statistically noncomparable. These findings may be due to different

levels of accuracy in removing ectopic beats and artifacts or to different algorithms for HRV

analysis. Researchers urged to setup standards for proper assessment of HRV to avoid

conflicting data due to different methodological approaches. Zhang et al. [154] have

described an investigation into the phase dependence of HRV in response to respiration as a

vagal input. This investigation offers considerable promise as a noninvasive scheme for

phase-resetting experiments in humans. The estimated respiration response curve has

succeeded in demonstrating the dynamic phase-entrainment and frequency dependence on

respiration. Mainardi et al. [83] reported that due to limited data currently available on

cardiovascular variability beat-to-beat series in ICU patients, they have analyzed both short-

term and long-term variability parameters in ICU patients. Short-term parameters, obtained

from HRV, showed decreased R-R interval values and an increased LF power in the five

minutes following the AWS maneuver. Neither HF power nor RMSSD values increased,

suggesting an increased sympathetic activity induced by AWS. These results indirectly
confirm the R-R series as a most sensitive index of altered physiological status. Craelius et al.

[28] stated that, in fact, time-varying HRV analysis applied to ICU monitoring has been
found useful to detect the occurrence of physiological deterioration as well as the response to

therapy, thus improving knowledge and control of patient status. To comply with these
requirements, an adaptive scheme for the weighted-least-square (WLS) is proposed in which
the forgetting factor is automatically driven by signal characteristics.
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Yang and Liao [153] have used a wavelet transform to build a simulated model of an

HRV signal and to create an algorithm for HRV signal decomposition. They have reviewed

the characteristics of HRV signals and discussed an improved integral pulse frequency

modulation model for the simulation of these signals. Hoyer et al.[48] have introduced a

concept of nonlinear analysis of HR and respiratory dynamics that may improve the

understanding of the underlying physiological processes of the autonomic nervous system

(ANS), in comparison with the conventional linear analysis. Since HRV and RESP can be

measured noninvasively, this concept may also be advantageous in diagnostic investigations

of patients. Harel et al.[46] observed that the lower the sampling frequency is, the greater are

the inaccuracies in R-R interval measurements and there is serious reduction in the quality of

the power spectrum estimates of the HRV signal. They have reported a method to reduce the

imprecision in R-R interval measurement caused by the low finite sampling frequency of

ECG signals and to investigate the effect of noise on the accuracy of those measurements.

They have implemented a robust algorithm to measure the R-R intervals with a high

resolution accuracy despite the finite resolution of the sampled ECG signal. The main part of

the algorithm is based on modeling the statistical properties of the R-R interval array. It does

not operate via detection of the QRS complexes, i.e. it estimates the point process (HRV

signal) directly from the raw ECG. Bates et al.[14] have compared the method using DFT

with the nonequispaced Fourier transform(NeFT) method. The ability of both the methods to

deal with noisy signals is investigated using a test signal with Gaussian white noise added.

The test signal is developed using the integral pulse frequency modulation (IPFM) model. In

addition, both the methods are used as the first step in an analysis using the discrete harmonic

wavelet transform to provide better time resolution than spectral analysis using the DFT.

Lund et al. [76] considered a growing interest in the analysis of beat-to-beat variations of the

morphology (BBM) of cardiac waves in ECG and have introduced a method for extraction of

beat-to-beat patterns and for noise reduction in the analysis of beat-to-beat variations of the

morphology. They have observed that beat-to-beat variations in the QRS morphology are in

general cyclic, with a main period of about four cardiac cycles. Narayan and Smith [99] have

reported that sudden cardiac death affects over 3,00,000 individuals per annum in the United

States alone and is predominantly thought to follow ventricular tachycardia (VT) or

fibrillation (VF). The repolarization alternans (RPA) reflects alternate beat fluctuations in the

morphology and timing of STU segment in the ECG and is used to identify risk to patients.
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1.8.4 ECG Data Compression

The amount of Electrocardiogram data to be handled in Holter monitoring,

ambulatory patients, central ECG monitoring. Intensive Coronary Care Units (ICCUs), and

from subjects for scientific studies is so large that it causes problems of efficient storage and

management. The efficient transmission of this data for computer aided diagnosis and

interpretation has become a standard requirement. Therefore, efficient ECG signal data

compression without losing important morphological information of the signal has become an

important requirement in almost all the computer based ECG diagnostics and interpretations.

To record the standard 12-lead ECG signal in useful clinical bandwidth from 0.05 to 100 Hz,

the sampling rate of 500 Hz is used. For monitoring applications in intensive care units and

ambulatory patients, the useful bandwidth is limited between 0.5 to 50 Hz, as in these

environments, the rhythm disturbances i.e. the arrhythmia are of principal interest [27,134].

The Common Standards for Quantitative Electrocardiography (CSE) working party has

recommended that the sampling rate of 500 Hz should be used [61- 64]. But the recording of

ECG signal with 500 Hz sampling rate acquires the redundant data in the low frequency zone

containing the baseline, P, T and U waves, compared to the data in the high frequency zone

i.e. the QRS complex [131]. Though the most clinical information is in the range of 0.05 to

100 Hz, the QRS waves are centered in a frequency band of 20 to 30 Hz and the P, T and U

waves well below this frequency band. As per the sampling theorem, minimum required

sampling frequency should be at least two times the frequency of the signal of interest [ I34J.

To avoid the requirement of large memory storage and to facilitate the easy handling of data

for transmission to higher medical centers for experts opinion for disease interpretation and

advice, there is necessity of compressing the ECG data with no loss of information of

diagnostic significance. For this purpose, a good number of data compression methods have

been developed in the past [50,125], which can be mainly grouped into three categories,

namely (i) direct data compression, ii) transformative and iii) parameter extraction techniques.

Amplitude Zone Time Epoch Coding (AZTEC), modified AZTEC, FAN, Scan Along

Polygonal Approximation (SAPA), Coordinate Reduction Time Encoding System

(CORTES), Turning Point (TP) are commonly used direct data compression techniques

[27,50,129]. These methods attempt to reduce the redundancy in a data sequence by

examining a successive number of neighboring samples. These techniques generally

eliminate samples that can be implied by examining preceding and succeeding sample [50].

AZTEC decomposes raw ECG signal points into plateaus and slopes and its reconstructed

signal is discontinuous (step like quantization) and is not acceptable to the cardiologist
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[50,134]. In FAN algorithm, lines are drawn between the pairs of starting and ending points
so that all intermediate samples are within some specified error tolerance [12,50,134]. The

SAPA algorithm closely resembles the FAN algorithm. CORTES is hybrid of the AZTEC

and TP algorithms [33,92,120]. It provides a way to reduce the effective sampling by half, by

selectively storing important signal points (i.e. peaks, valleys or turning points).

In transformative compression techniques, the signal pre-processing is carried out by

means of a linear orthogonal transformation and properly encoding the transferred output

(expansion coefficients) and reducing the amount of data needed to adequately represent the

original signal [55]. The reconstruction is performed by inverse transformation with a certain

degree of error. Some of the commonly used techniques of this group are Karhunen-Loeve

transform (KLT), Fourier Transform (FT), Cosine Transform (CT), Walsh transform (WT),

Haar-transform (HT), the optimally warped transform, sub-band coding and the wavelet

transform [26,47,70,77].

Linear transformations like FT, CT, and WT are applied to the signal and then

compression via redundant sample reduction is applied in the transform domain rather than

'in the time domain. Typically, the transformation process produces a sequence of

coefficients which reduce the amount of data needed to adequately represent the original

signal. Out ofdifferent transforms, the KLT is the optimal transform[21], in the sense that the

least number of orthonormal functions are needed to represent the input signal for a given

RMS error. Moreover, the KLT results in decorrelated transform coefficients and minimizes

the total entropy compared to any other transform. The computational time needed to

calculate the KLT basis vectors is very intensive, which has given room for the use of sub-

optimal transforms with fast algorithms (i.e. FT, WT, CT and HT).

In parameter extraction methods, namely peak-picking, cycle-pool-based, linear

prediction, and neural network methods; the extraction ofa set ofuseful parameters from the

original signal is carried out and the same are used in the reconstruction process [12,50]. The

idea is to quantize a small set of extracted signal features, finely enough to render an almost

imperceptible distortion. For example, the peak-picking technique is based on the sampling of

a continuous signal at peaks (maxima and minima) and other significant points of the signal.

The basic operation of such technique involves the extraction of signal parameters that

convey most of the signal information. These parameters include the amplitude and location

of the maxima and minima points, slope changes, zero-crossing intervals, and points of

intersection in the signal. These parameters are substituted in place of the original signal In

ANN based compression [125], the network is first trained with the large variety of data, and
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the trained weights between different layers are stored during compression. This stored

information requires less storage space and is used for retrieval of the original signal. Vector

quantization (VQ) has also been used extensively in data compression [55]. It is employed in

conjunction with any of the previously mentioned methods mainly as a way of quantizing the

resulting data after compression. In most of all these data compression methods, a

complicated procedure is involved to select the line segments, slope segments, segment

lengths, amplitude of segment extreme points, setting of error thresholds, and coding

schemes. Again a procedure is involved to decode the information stored in some coded form

to reconstruct the signal.

In most of these methods, the compressed data is in the form of numerals, or codes

and not in the form of signals. Even with the complex procedure and computations required

for compression and decompression, performance-wise, no method can be placed in a

category which satisfy all the requirements of compression and decompression. Thus there is

still necessity to develop such techniques which can be a step still ahead in this direction. In

the present work, a simple non-redundant-template direct data compression (NRT-DDC)

method has been developed, which retains 100% information of compressed signal and

provides a high compression ratio. In addition to this, wavelet transform based data

compression has been extensively used in the present work to handle the large data for

disease diagnosis and HRV analysis.

1.9 SCOPE OF PRESENT WORK

Computer aided feature extraction and analysis of the ECG signal for computer based

cardiac disease diagnostics has become the necessity in the present time. The number of

cardiac patients has increased too large and the number of cardiac specialists are so limited

that it has become difficult to provide ECG based interpretation and diagnosis without the

help of computer based expert systems. Looking to the need of time and by exposure

through the exhaustive literature survey, it is clear that there is a need to enhance, modify the

programs to cope up with the modern techniques and the information technology. To improve

the performance of ECG analysis and interpretation, important aspects have been discussed in

this thesis. Some of the highlighting factors of the work are as follows:

i) There is a need of construction of new wavelets for QRS detection and make their use in

identification and extraction of ECG parameters for better results.

ii) There is a need of the use of existing scoring criteria for disease classification and

development of modified scoring criteria.
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iii) There is a need to study existing data compression techniques and develop a new direct

data compression technique for effective storage and transmission.

iv) There is a need to study and analyse heart rate variability (HRV) and correlation with

physical and psychophysical conditions.

1.10 ORGANIZATION OF THE THESIS

The first chapter deals with the introduction of the thesis problem, the ECG signal, its

generation and the heart; lead system used to record 12-lead ECG; noise and artifacts in ECG

recordings; CSE and MIT/BIH databases used for testing; literature review of the methods of

ECG analysis and interpretation, feature extraction, data compression; heart rate variability

and scope of present work.

Wavelet Transform is emerging as a very effective signal analysis technique in the

field of biomedical engineering. It is effective for the analysis of non-stationary signals like

ECG. Its extensive use is made in signal processing stages right from the noise reduction,

feature extraction to disease interpretation. The useful theory and implementation steps of

wavelet transform are discussed in the second chapter.

Third chapter deals with the detection of QRS complexes from the ECG signal. The

QRS complex is the most prominent feature and its accurate detection forms the basis of

identification and extraction of other features and parameters from the ECG signal. Results of

the exhaustive evaluation of the wavelet transform based QRS detection software using CSE

and MIT/BIH databases are given in this chapter.

Chapter four consists of the details of the feature extraction and determination of

almost all diagnostically important parameters. The procedures adapted to measure different

ECG wave and wave segments are also reported in this chapter.

The use of the ECG analysis for disease diagnostic and the strategy to use five beats

from all the standard 12 leads are discussed in the fifth chapter. The use of existing scoring

criteria for disease diagnosis is demonstrated and the methodology to develop modified

scoring criteria is discussed in this chapter.

The discussion regarding the rhythm analysis and its use in heart rate variability

analysis are given in the sixth chapter.

The ECG data compression using non-redundant templates and wavelet transform are

reported in the seventh chapter.

The conclusions of the overall work, the findings and the guidelines for the future

work are given in the last chapter.

39



CHAPTER - II

WAVELET TRANSFORM

2.1 INTRODUCTION

Wavelet transform (WT) has a wide range of applications ranging from signal

analysis to image or data compression. Compared to the classical Fourier-based transforms, it

can play either the role ofthe short time Fourier transform (STFT) or the Gabor transform or

that of discrete Fourier transform (DFT), or even that of a discrete cosine transform (DCT).

Therefore, it is not astonishing that the tool referred to as 'wavelet transform' can take very

different forms, depending upon the application [5,24,111,139],

Wavelets are mathematical functions that decomposes data into different frequency

component, and then help in the study of each component with a resolution matched to its
scale. They have advantages over traditional Fourier method in analyzing physical situations

where the signal contains discontinuities and sharp spikes. Wavelet algorithms process data at

different scales and resolutions. If we look at a signal with a large 'window', we would notice

gross features. Similarly, ifwe look at a signal with a small window, we would notice detail

features. In a generalized statement it can be stated that the result in wavelet analysis is to see

both the forest and the trees [7].

The wavelet transform involves the use of a prototype wavelet function, called an

analyzing wavelet or mother wavelet. The temporal analysis is performed with a contracted,

high frequency version ofthe prototype wavelet, while frequency analysis is performed with

a dilated, low frequency version of the same wavelet. Because the original signal or function

can be represented in terms of a wavelet expansion, data operation can be performed using

just the corresponding wavelet coefficients. Ifwe further choose the best wavelets adapted to

ourdata, or truncate the coefficients below a threshold, then data is sparsely represented. This

sharp coding makes wavelets an excellent tool in the field of data compression.

In particular, the wavelet transform is of interest for the analysis of non-stationary

signals, because it provides an alternative to the classical short-time Fourier transform or

Gabor transform. The basic difference in STFT and WT is that, STFT uses a fixed analysis

window, whereas, WT uses short windows for high frequencies and long windows for low

frequencies. For some applications, it is desirable to see the WT as signal decomposition into

a set of basis functions. In fact, basis functions are obtained from a single prototype wavelet

by dilations and contractions (scaling) as well as shifts. Therefore, in a WT, the notation of
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scale is introduced as an alternative to frequency, leading to a so called time-series

representation [86].

2.2 WAVELET TRANSFORM Vs. FOURIER TRANSFORM

The FT and WT are both linear operations and the mathematical properties of the

matrices involved in the transforms are also similar. For the FT, the basis functions used are

sines and cosines and for the WT, more complicated basis functions called wavelets are used.

Both the transforms have similarity, the basis functions are localized in frequency, making

mathematical tools such as power spectra useful at picking-out the frequencies and

calculating the power distributions. The most interesting dissimilarity between these two

transforms is that the individual wavelet functions are localized in space while the Fourier

sines and cosines functions are not. This localization feature, along with wavelet localization

of frequency, makes many functions and operators using wavelets sparse when transformed

into the wavelet domain. This sparseness, in turn, results in a number of useful applications

such as data compression, ECG characterization, detecting features in images, and removing

noise from time series.

An advantage of wavelet transform is its variable window. In order to isolate signal

discontinuties, one would like to have some very short basis functions and at the same time,

in order to obtain detailed frequency analysis, one would like to have some very long basis

functions. A way to achieve this is to have short high-frequency basis functions and long low-

frequency ones. This medium is exactly what we get with wavelet transforms. Wavelet

transforms do not have a single set of basis functions like the FT, which utilizes just sine and

cosine functions. Instead, wavelet transforms have an infinite set of possible basis functions.

Thus wavelet analysis provides immediate access to information that can be obscured by

other time-frequency methods such as Fourier analysis. Following are important features of

wavelet transform:

1. In particular, WT is of interest for the analysis of non-stationary signals, because it

provides an alternative to the classical short-time Fourier transform.

2. Wavelets have advantage over traditional Fourier methods in analyzing physical

situations where the signal contains sharp spikes.

3. Wavelet algorithms process data at different scales or resolutions.

4. Basis functions are obtained from a single prototype wavelet by dilations and contractions

(scaling) as well as by shifts.
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5. There are several types of wavelet transforms, and depending upon the application, one

may be preferred over the others.

2.3 TYPES OF WAVELETS

There are numerous types of wavelets in general use. Following are some types of

orthogonal wavelets [24]:

Type Wavelet name

Haar Haar

Daublets d4, d6, d8, d 10, d 12, d 14, d 16, d 18, and d20

Symmlets s4, s6, s8, s 10, s 12, s 14, s 16, s 18, and s20

Coiflets c6, cl2, c24, and c30

Haar: The Haar wavelet is a square wave. It was discovered by the mathematician Haar in

year 1910 [7,24], and provided the first known orthogonal wavelet series representation. The

Haar wavelet has compact support and it is zero outside a finite interval. It is the only

compact orthogonal wavelet, which is symmetric. However, unlike the other wavelets, the

Haar wavelet is not continuous.

Daublets: The daublets were the first type of continuous orthogonal wavelet with compact

support. This type of wavelet is named in honor of its discoverer Ingrid Daubechies, who is

one of the pioneers in wavelet research.

Syminlets: The symmlets also have compact support, and were also constructed by

Daubechies. While the daublets are quite asymmetric, the symmlets were constructed to be as

nearly symmetric as possible.

Coiflets: The coiflet were constructed by Daubechies to be nearly symmetric and also have

additional properties thought to be desirable (vanishing moments for both <j) and i//).

Daubechies used the name coiflets in honor of Ronald Coifman, another important

contributor to the theory and application of wavelet analysis.

Biorthogonal wavelets are an important generalization of the orthogonal wavelet

approximation. Biorthogonal wavelets are symmetric and do not introduce phase shifts in the

coefficients, which can be important for certain, applications. However, a biorthogonal

wavelet transform is not orthogonal. Following are the some biorthogonal wavelets.
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Type Wavelet name

B-spline bsl.l, bsl.3, bsl.5

bs2.2, bs2.4, bs2.6, bs2.8

bs3.T, bs3.3, bs3.5, bs3.5, bs3.7, bs3.9

V-spline vsl, vs2, vs3

B-spline: These are based on the simple polynomial spline function. The wavelet can have

degree 0 (the Haar wavelet), degree 1 (a triangle function), or degree 2 (a quadratic

function)[24,86,139]. The name of the b-spline wavelet has two numbers. The first number

indicates the degree of the polynomial for the wavelets and the second number indicates the

length of the support of the dual wavelet.

V-spline: These are variations on the b-spline designed to achieve near-orthogonality and

support width, which is nearly the same for father and mother wavelets. There are three

different v-splines. The numbers of the v-splines have no particular meaning.

2.4 WAVELET TRANSFORM

Wavelets are a mathematical function that decomposes data into different frequency

components, and then help in the study of each component with a resolution matched to its

scale. The interpretation of the scale as shown in Fig.2.1, is that when 'a' increases, the filter

function VF(- ) becomes spread out in time and takes only long time behavior (low
a

frequency) into account. That is, the scale factor 'a' can be interpreted as the scale in maps,

very large scales mean global views, while very small scales mean detailed views. Arelated

but different notation is that of resolution. The resolution of a signal is linked to its frequency

content. However, in discrete-time signals, increasing the scale in the analysis involves sub-

sampling, which automatically reduces the resolution. Decreasing the scale (which involves

up-sampling) can be undone, and does not change the resolution. The interplay of scale and

resolution changes in discrete-time signals. This kind of analysis of course works best if the

signal is composed of high frequency components of short duration plus low frequency

components of long duration, which is often the case with signals encountered in practice. A

generalization ofthe concept ofchanging resolution at different frequencies is obtained with
so called 'Wavelet packets', where arbitrary time-frequency resolution (within the

uncertainty bound) are chosen depending on the signal.

The multi-resolution decomposition process shown in Fig.2.2 splits the signal into one

detail and one low resolution signal. WT representation consists of computing coefficients
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that are inner products of the signal and a family of wavelets. Wavelet corresponding to

scale 'a' and time location 'b' is [115].

VaJbW-T^—) (2I)
where, 4^(0 is the wavelet function and 'a' and 'b' are scale and shift related

parameters, respectively.

The continuous wavelet transform (CWT) is given by the equation

1 °? *ft-bCWT(x(t);a,b) = -j= Jx(t)T - dt (2.2)

where x(t) is a signal and ' * ' stands for complex conjugate.

The discrete wavelet transform (DWT) has been recognized as a natural WT for discrete time

signals by several investigators [5,114,139,]. Both time and time-scale parameters are

discrete. The parameters 'a'and'b'are discretised as a = 2J and b= k 2', where k and j

are integers. Due to the use of scale 2', the WT is known as the dyadic wavelet transform (Dy

WT). Since the CWT is sampled on a dyadic scale, the wavelets used are of the form

^j.k(t) =2~J/2vF(2"Jt-k) (2.3)
The DyWT of a signal x(t) is given by the equation

*

DyWT(b,2') =— \x(tW
2' -

dt (2.4)
00 V 2-' J

The DWT of discrete signal x(n) achieves a multiresolution decomposition on a finite

number of scales denoted by j = 1, 2, ,J and the signal x(n) is represented in terms of

wavelet and scaling functions as

./

x(n)= ZZdj,kifj.k(n) +'Z^M^j.k(n) (2-5)
J = l k k

The H^j k(ii) are the synthesis wavelets, i.e. the discrete equivalent to 2~-' HJ(2~-,t - k).

The DWT computes coefficients dj.k forj = 1, 2, ...., J and scaling coefficients a,.k given by

dj.k = T,g(m-2k)aJ+ltm and

a.i.k = nZ,h(m-2k)aJ+ltm (2.6)
///

The a's in a DWT are called the smooth coefficients and d's are the detail

coefficients. The h and g are the discrete filters representing the scaling and wavelet

functions, respectively. In wavelet transform implementation using digital filters, the general
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strategy used is to pass a sampled signal x(n) simultaneously through two specially designed

filters, i.e., through a low pass filter and a high pass filter, and to then down sample the

outputs. The process of low pass filtering involves the convolution of the signal x(n) with a

scaling function (|)(t), whose Fourier transform appears as a low pass filter. The high pass

filtering process involves the convolution of the signal x(n) with a wavelet function i|/(t),

whose Fourier transform appears as a high pass filter. This process splits the signal into one

detail signal d'n (n=0,....,N 12 -1) and one low resolution signal a1 n (n=0,....,N/2 -1), here

N represents the number of samples in the original signal. Signal a n (n=0,....,N/2 -I) is

also called an approximation function for x(n). The low resolution signal can be further

decomposed into a second detail signal and a lower resolution signal by passing a n

(n=0,....,N/2 -1) through the same two filters and down sampling. This procedure can be

continued to get number of detail signals and a low resolution signal. This process of splitting

a discrete signal x(n), (n = 0, , N-l) by DWT, decomposes x(n) into a set of detail

signals:

d'n (n=0, ,N/2 -1), d2n (n=0, ,N/4 -I), , d'n (n=0, ,N/2j -1)

and one low resolution signal a1 n (n=0,....,N 12 ' -1), where j is the decomposition scale.

2.5 PROPERTIES OF WAVELET FUNCTIONS

Selecting a wavelet requires a tradeoff between different properties such as

smoothness, spatial localization, frequency localization, and the ability to represent local

polynomial functions, orthogonality, and symmetry. These properties are discussed below:

Smoothness: The smoothness of the wavelet approximation is one of the properties that

distinguish modern wavelet analysis. For many applications, the wavelet function must be

sufficiently smooth to efficiently represent the characteristics of the underlying signal The

lack of smoothness is one of the main disadvantages of the Haar wavelet.

One measure of smoothness for a wavelet is given by the number of derivatives which

exist for that wavelet. The Haar wavelet is discontinuous and hence is not differentiable The

d4 wavelet is continuous but also is not differentiable. The d 12 wavelet, however, is twice

differentiable [24,86].

Temporal and Spatial Localization: A central feature of wavelet analysis is the ability to

localize features in time and space. The support width of a wavelet is closely related to its

ability to localize features in time and space. Very compact wavelets, such as the Haar
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wavelet, are very well localized in time and space. Support width is generally inversely

related to the smoothness. The smoothest wavelet has the widest support width.

Vanishing Moments: A wavelet with a higher number of vanishing moments can better

represent higher degree polynomial signals. The number of vanishing moments is also closely

related to the smoothness of a wavelet. A mother wavelet y/ with M vanishing moments

satisfies

\tmy(t)dt =0 m=0, 1, , M-l (2.7)

The coiflet has the unusual property of also having vanishing moments for the scaling

function <f>:

J/"V(/)c// =0 m=l, ,M-l (2.8)

The zero moment for the father coiflet is always one.

Frequency Localization: Wavelet localizes features not only in time and space, but also in

frequency. The Haar wavelet has very poor frequency resolution. In general, smoother

wavelets have better frequency localization properties.

Symmetry: With the exception of the Haar wavelet, the orthogonal wavelets, which have

compact support, are not symmetric; the daublets are highly asymmetric and the symmlets

and coiflets are nearly symmetric. All of the biorthogonal wavelets are either symmetric or

anti-symmetric. Symmetric wavelets have the advantage of avoiding any phase shifts, the

wavelet coefficients do not drift relative to the original signal.

Orthogonality: The orthogonality of the wavelet transform is a central feature for some

applications. The biorthogonal wavelets lack the orthogonality property, although the v-spline

biorthogonal wavelets are nearly orthogonal.

2.6 WAVELETS AND THEIR APPLICATIONS

As shown in Table 2.1, there exist an abundant variety of wavelets, and therefore,

there is a fundamental problem of determining which one produces the best results for a

particular application. Before selecting a particular wavelet, several standard wavelets are to

be tried, and the one, which produces the best performance, should be used. The selection of

a suitable wavelet is dependent on application, as is the case in pattern classification [35,87,].

A wavelet function is selected on the basis of the maximum number of correct classifications.

In other applications, such as multi-scale modelling of stochastic process and signal coding, a

good wavelet is the one which results in a small number of nonnegligible WT coefficients or

a best approximation of a given signal upto a given scale. Thus, the scaling function
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associated with a good wavelet usually has a shape similar to the shape of the given signal

[87,114].- The other important aspects to be considered are less noise sensitivity and less

quantization errors. The previous applications involving the optimization of wavelets for

pattern classification include the work by Mallet et al. [87], who have optimized the shift and

dilation parameters of discretization of wavelet. On the basis of exhaustive study and

experience, it is possible to select a particular wavelet for a particular application.

In this work, a modified combined Wavelet Transforms technique has been used

which is developed to analyze single and multi-lead electrocardiogram (ECG) signals for

cardiac disease diagnostics. Two wavelets have been used i.e. a quadratic spline (QS)

wavelet for QRS detection and the Daubechies six coefficient (D6) wavelet for P and T

detection. Better results are possible using this method because of the specific feature of the

wavelet transform to characterize the local regularity of ECG signal. This feature is used to

distinguish ECG waves from noise, artifacts and baseline drift. WT decomposes data into

different components that are well localized in time and frequency. Each component with a

resolution matched to its scale is used for further analysis and diagnostics.

Wavelet transforms have become powerful alternative to Fourier transform methods

in many medical applications, where the signals are non-stationary in nature. In addition to

helping in the recognition and detection of key diagnostic features, they provide a powerful

means for compressing medical images. Heart disease diagnosis, studies of fetal breathing,

extraction of speech from background noise in digital hearing aids, detection of breast cancer,

and medical image compression are the important application area of the wavelets [5,137]

Detecting coronary artery disease: Early detection of coronary artery disease has long been

regarded as among the most vital areas of medical research. Diagnostic methods being used

are traditional physical examinations and history-taking, electrocardiography, and

echocardiography (ultrasonic imaging). Other invasive methods are thallium test and cardiac

catheterization to inject a radio-opaque dye for X-ray examination.

Wavelets applied to the analysis of heart sounds may provide useful information. It

has been widely reported that turbulence to stenosis (narrowing) of the arteries creates

audible sounds, which may be analysed to yield information about the nature and severity of

the blockage.
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Table 2.1 Wavelets and their application areas

Wavelet Filter Coefficients Comments

1.0, 1.0 or 0.707107,0.707107 Haar wavelets [47], used for data

compression.

0.25,0.375,0.375,0.25 Quadratic spline wavelet, [25,72,124],

used for ECG characterization

1/4(1+1/3), 1/4(3+1/3), 1/4(3-1/3), Daubechies-4 wavelet[5,86], used for

1/4(1-1/3)
ECG analysis.

0.332671, 0.806891, 0.459877, -0.135011, Daubechies-6 wavelet, [5,47], used for

-0.085441,0.035226
data compression

-0.176777,0.353553,1.060660, 0.353553, [47], used for data compression

-0.176777

0.788486, 0.418092, -0.040689, [47], used for FBI fingerprint image

-0.064539
coder

0.767245, 0.383269, -0.068878, [47], used for data compression

-0.033475,0.047282,0.003759,-0.008473

0.852699, 0.377402, -0.110624, [5,54,137] used for image compression

-0.023849, 0.037828

0.788486, 0.047699, -0.129078 [5,54,137] used for image compression

0.994369, 0.419845, -0.176777, [5,54,137] used for image compression

-0.066291,0.033145

0.544089, 0.296844, 0.041409, 0.056710, [5,54,137] used for image compression

0.040100

Detecting irregular heart beats: Although many people, especially the elderly, experience

occasional abnormal or ectopic ventricular beats that cause no other symptoms An excess of

premature ventricular contraction (PVCs) may indicate cardiac ischemia and lead to

ventricular fibrillation, which may cause an acute heart attack. The detection and analysis of

<5lOG2/5 •
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PVCs is therefore of great interest. Recently, wavelets have been used to detect ectopic heart

beats. In addition to this, wavelets have also been used to study beat-to-beat variations of the

ECG signals and to monitor the status of patients after coronary angioplasty.

Alcohol and babies: It has been widely reported that chronic alcohol abuse during pregnancy

may cause several kinds of problems in the newborn, including mental retardation and

disorders of some facial nerves. Although the effects of alcohol have been examined

extensively, the analyses have been limited to statistical descriptions of the time intervals

between breathing events or to descriptions of short-term and long-term fluctuations in

breathing activities using the fast Fourier transform. Wavelets can be used for quantifying

and understanding the non-stationary fetal breathing process and how alcohol affect the time

and frequency domain characteristic of fetal breathing [5,137],

Wavelets in hearing aids: Listeners with normal hearing could understand 50 percent of

word lists (and 95% of sentences) with signal-to-noise ratio as low as -5 dB. By comparison,

hearing-impaired listeners required S/N ratio of 9 dB to do as well. Several researchers have

used a wavelet based method for extracting speech from the background noise. Both speech -

to-noise ratio and the retention of consonants based on a wavelet packet algorithm looks

promising as a preprocessor for hearing-loss compensation in digital hearing aids.

Early detection of breast cancer: In routine clinical examinations, physicians check for

breast cancer by looking for abnormal skin thickening, malignant tissues, and

microcalcifications. Small tumors and microcalciflcations are difficult to detect because of

the similarity of normal glandular tissues to those afflicted by malignant disease.

Tremendous efforts have been made to enhance the diagnostic value of mammographic

images by eliminating the noise in them. Wavelet transform methods have recently been

developed to detect and classify tumors in digitized mammograms.

Medical image compression: The other great need in medical imaging is for data

compression, There are lossless and lossy types of data compression methods. With lossless

compression, a typical compression ratio of 3:1 can be achieved and the process is

completely reversible [5,137]. Lossy compression, on the other hand, involves the loss of

information and may not be reversible. It is, however, capable of much higher compression

ratios. High compression ratio methods that do not lose medically important information

could help the medical community. Wavelet can provide such a method. Because wavelet

transform coefficients are localized in both space and frequency, they are better suited to

image compression than other common transform methods.
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In addition to these applications of wavelets, the other areas are the analysis of 1-D

physiological signals obtained by phonocardiography, electrocardiography, and

electroencephalography, including evoked response potentials. In signal processing, wavelets

are being used for noise reduction, image enhancement, detection of microcalcillcation in

mammograms, image reconstruction, tomography, magnetic resonance imaging (MR1) and

multiresolution methods for the registration and statistical analysis of functional images of

the brain (positron emission tomography (PET) and functional MRI).

Analysis of ECG: The crucial step in the analysis of ECG is the detection of the QRS

complex. Wavelet based approach provides excellent performance in comparison to many

other algorithms available [137]. The WT has used for discriminating normal and abnormal

cardiac pattern [126] and also in detection of ventricular late potentials [119]. Wavelets are

also applied to characterize beat-to-beat fluctuations of the heart rate under varying

physiological conditions [142,146].

2.7 CONCLUSION

There are no definite rules for selecting a wavelet for a particular application. The use

of different wavelets for a particular application gives different performance, hence the user

has to see and select a particular wavelet, best suitable for the application of his interest. The

overall choice for many applications can be met by the wavelet, which is orthogonal, smooth,

nearly symmetric, and non-zero on relatively short interval. It is suggested by different

researchers that the wavelets be constructed according to the application at hand [87,114]
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CHAPTER - III

DETECTION OF QRS COMPLEX

3.1 INTRODUCTION

Computer aided feature extraction and analysis of the ECG signal for computer based

cardiac disease diagnostics has become the necessity in the present time. The number of

cardiac patients has increased too large and the number of cardiac specialists are so limited

that it has become difficult to provide effective cardiac care without the help of computer

based expert systems. The first step in computer aided diagnostics is the identification and

extraction of the features of ECG signal. The QRS complex is the most prominent feature in

the ECG signal and its accurate detection forms the basis of extraction of other features and

parameters from the ECG signal. A good amount of research work has been carried out

during the last four decades for the accurate and reliable detection of QRS complex in the

ECG signal. But still there is need to further carryout the work on a more efficient and

reliable method which can increase the percentage of accurate and reliable QRS detection

without leaving any doubt in respect of the automated system. The work carried out here is a

concrete step in that direction.

3.2 METHODS OF QRS DETECTION

The QRS detection algorithms developed so far can be broadly classified into four

categories; (i) syntactic approaches, (ii) non-syntaclic approaches, (iii) hybrid approaches,

and (iv) transformative approaches.

(i) Syntactic approaches

In syntactic approach, the ECG signal is first reduced into a set of elementary patterns

like peaks, duration, slopes, and interwave segments, and thereafter, using rule based

grammar, the signal is represented as a composite entity of peaks, duration, slopes and

interwave segments. These patterns are then used to detect the QRS complexes in the ECG

signal [44,105]. Mehta et al. [93] have used a syntactic approach to delineate peaks and

boundaries. The accuracy of 99.83% in QRS identification and 96% in P and T wave

identification has been reported in this work. Looking to the methodology used to delineate

the wave components, it is clear that this method is suitable if the signal is smooth and

regular in nature. Although the methods of this category are quite suitable to represent the

ECG wave pattern and its parameters, but still lot of work is required to make these

techniques perfect for the accurate and fully reliable detection of QRS complexes. Also the
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syntactic methods are time consuming and require rule based grammar in each step of its

execution for pattern classification [93,105].

(i) Non-syntactic approaches

The non-syntactic approaches are being widely used for the detection of QRS

complexes. The algorithms are based on the band pass filters, mathematical models, artilicial

neural networks, adaptive techniques, and also on the use of amplitude, slope, power spectra,

and spatial velocity functions [2,4,29,30,67,82,101,103]. Out of a number of available

techniques in this category, the band pass filters are most widely used. The band pass filters

remove the components other than those of the QRS complexes from the ECG signal. Thakor

et al. [133] have used band pass filter to maximize the signal (QRS complex) to noise (T-

waves, 60 Hz, EMG etc.) ratio to detect the QRS complexes. Due to the inherent variability

of ECG from different persons, as well as variability due to noise and artifacts, the filter

design is suboptimal in specific situations. An algorithm for the detection of QRS complexes,

based upon digital analysis of slope, amplitude, and width has been developed by Pan and

Tompkins [104]. For the standard 24 hour MIT/BIH arrhythmia database, the QRS detection

rate has been reported as 99.3% by this method. This method faces difficulty when the P or T

is higher in magnitude than the QRS complex and also with the non-QRS waves with highly

unusual morphology. Hamilton and Tompkins [45] have used the MIT/BIH arrhythmia

database to develop QRS detection. The resulting QRS detection algorithm has a sensitivity

of 99.69% and positive predictivity of 99.77% when evaluated with the MIT/BIH arrhythmia

database. Afonso et al. [3] have designed a filter bank (FB) to perform independent time and

frequency analysis on the signal. The reported beat detection sensitivity is 99.59% and a

positive predictivity of 99.56% against the MIT/BIH database. Gary et al.[41] have analysed

different QRS detection algorithms for noise sensitivity. None of the algorithms are able to

detect all QRS complexes without any false positive.

Some other methods make use of the differentiated low pass filtered ECG signal and

thereafter its wave shapes for the QRS detection [67,69]. Escalona et al. [36] developed a

technique which is based on the accurate detection of a single QRS fiducial point in the band

pass filtered (3-30 Hz) QRS segment. Anti et al. [8] have reported a technique based an

optimized prefiltering in conjunction with a matched filter and claimed a QRS detection error

of 2.2% on record number 105 of the MIT/BIH Arrhythmia database. In most of these works

it is claimed that the use of the digital filters improves the reliability of QRS detection in

comparison to other methods [41,51], The digital filter based QRS detection is accurate and

reliable and can effectively handle the ECG signal even contaminated with noise and
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interference. The digital filters can also handle those typical cases, which are otherwise

difficult to handle by the algorithms based on the criteria of amplitude, slope, and zero

crossings. There are difficulties with digital filter based algorithms where the pass band of the

QRS complex varies with the heart beats, leads, and patients and also where the pass bands of

the other segments and noise overlap with pass band of the QRS complex [152].

There are QRS detection techniques, which use the spatial velocity function, mixed

mathematical basis functions, mathematical models, mathematical morphology and averaging

[10,20,36,44,66,82,97,108,128]. Maheshwari et al [82] developed an analysis technique

using the spatial velocity to detect ECG wave components. The software reliably detects the

QRS complexes and other component waves (P and T) with an accuracy of 90% The

technique developed by Trahanias [136] is based on mathematical morphology works as a

peak-valley extractor. He has achieved a detection sensitivity of 99.38% and a positive

predictivity of 99.48%. The method is based on the phenomenon of peak picking and is prone

to noisy peaks. Although these techniques are suitable for most of the cases, but require

exhaustive learning and training to form the mathematical model, and hence, are complex and

time consuming, and find difficulty in on-line computer based ECG interpretation.

In recent times, artificial neural network based algorithms have been used in the

detection of QRS complexes [141,152], The basic methodology to use these techniques is to

learn and later on to generalise the knowledge gained through the learning to identify the

QRS complexes. The accuracy of detection of QRS complexes by these methods is dependent

on the type of used training dataset. The method developed by Vijaya et al. [141] is based on

an artificial neural network (ANN). It works on high prediction error to indicate the

occurrence of QRS complexes. A sensitivity of 98.96% has been achieved by them using the

CSE database DS-3. This algorithm is based on the amplitude error detection, hence gives

false positive cases for high P and T components. Considering wide variability in ECG

morphology, it is very difficult to cover all types of the patterns of QRS complex for training

and to expect 100% accuracy of detection.

To optimize the performance of developed techniques, the concept of adaptiveness

was introduced in the QRS detection [8,128,152]. The decision rules based on signal

amplitude, slope, and duration are changed according to the signal at hand. Similarly, the

terms adaptive matched filtering, adaptive estimation of QRS segment features by the

Hermite model, neural network based adaptive matched filtering and adaptive template

building are some of the techniques in this category [132]. Xue et al. [152] have developed an

adaptive filtering algorithm based upon an ANN for the detection of the QRS complexes The
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use ofANN adaptive whitening filter has been made to model the lower frequencies of the
ECG signal, which are inherently nonlinear and nonstationary. The residual signal that
contains mostly higher frequency QRS complex energy is then passed through a linear
matched filter to detect the location of the QRS complexes. The reported detection rate is

99.5% for the MIT/BIH arrhythmia database. In these techniques, an algorithm configures

itself to a unique QRS segment of a patient during an initial stage of learning. This
adaptability approach enhances QRS detection rate by a considerable extent and reduces the
percentage of false detentions, but at the same time, increases the computation as it involves
learning phase (determination of adaptive model parameters) and repetitive calculations to
optimize the threshold limits for amplitudes, slopes and duration.

(iii) Hybrid Approaches

The syntactic and non-syntactic approaches are combined to detect the QRS complex.
Syntactic techniques are based on the grammar rules used to model ECG signal as agroup ol
straight lines and triangles. This requires having smooth ECG signal, but in practice this is
not the case with wide variety of ECG morphologies. On the other hand in non-syntactic

approach, there is no consideration to maintain the morphology of the signal. Gustavo et al.
[44] used the syntactic method to extract the time evolution of the rhythm using the energy of
ECG derivatives and their coding by a look-up table.

(iv) Transformative Approaches

The use of different transforms on ECG signal helps to extract the information in the

form of energy, slope, or spike spectra, and thereafter, the ECG features are detected with the
help of decision rules like thresholds of amplitude, slope or duration. Out of the available
transforms, namely Fourier transform, cosine transform, pole-zero transform, differentiator
transform, Hilbert transform, the use of wavelet transforms in the detection of QRS
complexes, has shown optimum performance. Thus, the more effort is being put to develop
the WT based techniques for QRS detection. Sahambi et al. [123] used the modulus maxima
of the WT using multiresolution analysis for the detection of QRS complexes and the overall
accuracy of the system to detect QRS complex is 98.8%. Similarly Li et al. [72] reported an
algorithm based on multiscale feature of wavelet transform. They have reported 99.8%
accuracy in QRS detection for the MIT/BIH arrhythmia database. Kadambe et al. [56]
described a QRS complex detector based on the dyadic wavelet transform which is robust to
time-varying QRS complex morphology and also to noise. They have observed that although
no one algorithm exhibited superior performance in all situations, the DyWT based delector
compares well with the standard techniques and exhibited excellent performance.
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In the present work, the use has been made of multiresolution signal decomposition to

evaluate the performance of the detection of QRS complexes with five different types of

wavelets. Based on the evaluation study, a new wavelet has also been constructed.

3.3 WAVELET TRANSFORM

The WT is expressed as the time-integrated product of a signal with a set of analyzing

basis functions [86,118,139]. The basis functions for the WT are dilated and shifted versions

of a mother wavelet. The mother wavelet can have many different forms subject to certain

constraints, such as the time average of the wavelet function be zero, i.e. Jy/(l)dt - 0,

where y(0's a mother wavelet.

If the method is being used for data compression, certain restrictions are required on y/(0, so

that the original signal can be recovered by the inverse WT.

The continuous wavelet transform is given by

CWT(x(t);a,b)=W(a, b) = j x{t) —=. .y/
\a\ a

dt (3.1)

where x(t) is a signal,' * ' denotes complex conjugation and y/(t) is a wavelet function.

The CWT is closely related to time-frequency representations. The parameter 'b' is the time

translation and the parameter 'a' is the dilation, or scale factor, and its reciprocal is similar to

frequency. The equation 3.1 can be written in a more compact form by defining y/ilh(i)\'o\

the WT as:

¥ (t) =̂ (—) (3.2)

where \j/a ^(/) is a basis function, such as a Daubechies wavelet [47] or a quadratic spline

wavelet [25,72], known as the mother wavelet. The basis functions consist of translations

and dilations (or contractions) of the wavelet function. Increasing 'a' in equation (3.2)

expands \j/(t-b)along the t- axis, and hence is termed 'dilation'. Decreasing'a'contracts

the function. The parameter 'b' causes the function to translate along the time axis. As

shown in Fig.2.1 (chapter II), amplitude increases with time contraction and decreases with

time dilation to normalize energy. The duration of the wavelet defines its effective window

width. Since this duration varies as 'a' varies, the WT uses windows of varying size. For

large values of 'a', basis functions are broader, and the energy in their spectra is concentrated
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at lower frequencies. The information in the low frequency end of the signal spectrum is

captured by these basis functions. For smaller values of 'a', the basis functions are narrower,

and their energy spectrum densities peak at higher frequencies with broader lobes so the

information is captured in the high frequency end of the signal spectrum. The WT thus

captures frequency information at various scales of frequency, and the representation

provided by the WT is more accurately referred to as a 'time-scale' representation.

3.3.1 Implementation of Wavelet Transform

The Wavelet Transform is implemented using digital filters. As shown in Fig.2.2

(chapter II), the general strategy is to pass a sampled signal x(n) simultaneously through two

specially designed filters, i.e., through a low pass filter and a high pass filter, and then to

down sample the outputs. The process of low pass filtering involves the convolution of the

signal x(n) with a scaling function 0(1), whose Fourier transform appears as a low pass

filter. The high pass filtering process involves the convolution of the signal x(n) with a

wavelet function y/(t), whose Fourier transform appears as a high pass filter. This process

splits the signal into one detail signal d'n (n=0, ...,N/2 -1) and one low resolution signal

a'n (n=0, ..., N/2 -1), here N represents the number of samples in the original signal The

output ofhigh pass filter is a detail signal and low pass, is a approximate signal or called as

coarse signal. The signal a'n (n=0, ..., N/2 -1) is also called an approximation function for

x(n). The low resolution signal can be further decomposed into a second detail signal and a

lower resolution signal by passing a'n (n=0, ...., N/2 -1) through the same two filters and

down sampling. This procedure can be continued to get number of detail signals and a low

resolution signal. This process ofsplitting a discrete signal x(n), (n = 0, ... , N-l) by DWT,

decomposes x(n) into a set ofdetail signals and a low resolution signal as:

Detail signals: d'n (n=0,...,N/2 -1), d2n (n=0, ...,N/4 -1) d'n (n=0 N/2j -I)
Low resolution signal: a'n (n=0, — N/2' -1)

where j is the decomposition scale.

3.3.2 Identification of ECG waves

Fig.3.1 shows the implementation of the WT for ECG analysis. Firstly the original

signal x(n), sampled at 500 Hz, is convolved with coefficients of the scaling function
^(/)and the wavelet function y/(l) to get low pass and high pass filtered outputs,

respectively. The output from the low pass filter is down sampled by 2 to get the low
resolution signal a'n (n=0, ...., N12 -1) and the output from the high pass filter is used
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H(i) are the scaling function coefficients G(i) are the wavelet function coellicienls
d's are detail signals a's are low resolution signals '*' indicates the convolution

Fie 3 1 Extinction of detail signals at dillci cut scales
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without down sampling to get the detail signal d'n (n=0, ...., N-l). It is observed that the

accurate detection rate of QRS complex is increased by avoiding the down sampling of the

output of high pass filter as it reduces the loss of information. This first decomposition

process splits the original signal's bandwidth in half; i.e., the low resolution signal contains

the low frequency components of the input signal and the detail signal contains the high

frequency components of the input signal. In the second decomposition, the new low

resolution signal a'n (n=0, ...,N 12 -1) is convolved with the coefficients^/) and down

sampled to get the next low resolution signal a2n (n=0, ...,N /4 -1). Convolving

a'n (n=0, ...,N 12 -1) with y/(t) without down sampling produces the detail signal

d2n (n=0, ....,N 12 -1). The same decomposition procedure is repeated to extract the

d3n (n=0, ...., N /4 -1) and d4n (n=0, ..., N /8 -1) detail signals. The nature of these detail

signals is shown in Fig. 3.2, which indicates a gradual increase in the energy of the QRS

complexes from the lowest scale (2°) to the highest scale (2). The clear extraction of QRS

complexes can be seen in detail signal d4 (23) at which the detection ofQRS complexes has

been carried out. The fifth stage ofsignal decomposition (d5(24)) is also shown in the Fig.3.2,

where some of the QRS complexes are missing as this stage emerge lower frequency ECG

components signal.

3.4 SELECTION OF WAVELETS FOR QRS DETECTION

There exists an abundant variety of wavelets, and therefore, there is a fundamental

problem to determine as which wavelet is to produce the best results for a particular

application. There are no fixed rules to select a wavelet. In practice, before selecting a

particular wavelet, several standard wavelets are usually tried, and the one, which produces

the best performance, is used. The selection of a suitable wavelet is application dependent as

is the case in pattern classification [87,126], A wavelet function is selected on the basis of

the maximum number of correct classifications. In other applications, such as multi-scale

modeling of stochastic process and signal coding, a good wavelet is the one which results in a

small number of non-negligible WT coefficients or a best approximation of a given signal up

to a given scale. Thus, the scaling function associated with a good wavelet usually has a

shape similar to the shape of the given signal [87,126]. The other important aspects to be

considered are less noise sensitivity and less quantization errors. The previous applications

involving the optimization of WTs for pattern classification include the work by Mallet

etal.[87]. Mallet et al. optimized the shift and dilation parameters of the discretization

of a chosen wavelet. On the basis of exhaustive study and experience with wavelets, it is
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recommended that the faithful QRS detection can be performed by selecting the following

characteristic features:

(i) Signal splitting by multiresolution decomposition

The WT feature is used to split the ECG signal into different frequency bands. It

needs optimization in the scale ofsignal decomposition because the QRS energy emerging at

different scales by the different wavelets is different.

(ii) Compact and symmetric wavelet

The use of compact and symmetric wavelet produces less phase shift in the QRS

fiducials ofdetail signal d4 compared to the original signal.

(iii) Magnitude of wavelet-filter coefficients

The energy emerging at different decomposition levels is dependent on the magnitude

of the wavelet filter coefficients, therefore, the optimization of the magnitude of the wavelet

filter coefficients is needed to emerge the optimum energy in the detail signal corresponding

to the frequency band of the QRS complexes.

(iv) Detection of QRS at the extreme of data segment

The use of wavelet with finite support avoids the difficulty in the detection of QRS

complexes falling in the extreme of ECG data array.

The performance evaluation for the different wavelets, given in Table 3.1, has been

carried out using the CSE DS-3 database. The results are given in Table 3.2. Among the five

existing and a new wavelets, given Table 3.1, QSWT and WT6 have been found to be the

best suitable wavelets for QRS detection, as they give a higher rate of QRS detection. For

further analysis, we used the quadratic spline wavelet. The QSWT has two high pass filter

coefficients, namely -2.0 and +2.0, which are high in magnitude and are on either side ofthe

reference line (zero crossing). These two high magnitude coefficients help to emerge

modulus maxima lines corresponding to ECG samples, particularly from the QRS complexes,

which also have samples on either side of the reference line. It is also observed that the use

ofthe QSWT to detect P and T waves by extracting detail signals at higher scales 2 or > 2 ,

gives more cases of failure, as the detail signals get affected by base line wander and low
frequency noise. Also there are a larger number of modulus maxima lines and these create
difficulty in the distinction ofPand Twaves. The Daubechies six coefficient (DU6) wavelet
has been found to be more successful in detection of P and T wave segments. Its moderate

filter length and moderate coefficient values, compared to the other listed wavelets, provide

more smoothing and less shift in the ECG fiducials.
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Table 3.1 Details of wavelet Filters analysed for QRS detection

Wavelet

No.

Lowpass h(n)/
Highpass g(n)
Filters

Wavelet filter coefficients Reference

WT1 H(n)

G(n)

=0.160102,0.603829,0.724309,0.138428,
-0.242295,-0.032245,0.077571,-0.006241,
-0.012581,0.003336
=-(-l)nh(L-l-n)

F.Yang ct.al[ 153]
Daubechies WT

WT2 H(n)

G(n)

=0.035226,-0.085441 ,-0.135011,0.459878,
0.806892,0.332671

=-(-l)"h(L-l-n)

M.L.I Iilton[47]
Daubechies WT

WT3 H(n)
G(n)

=0.125,0.375,0.375,0.125
=-2.0,2.0

B.C. B.Chan

et.al.[25J
Qaudratic Spline
WT

WT4 H(n)

G(n)

= -0.176777,0.353553,1.060660,0.353553,
-0.176777

= 0.707107,0.353553

M.L.IIilton[47]

WT5 H(n)
G(n)

=0.707107,0.707107
=-(-l)nh(L-l-n)

M.L.Hilton[47J

WT6 H(n)
G(n)

=0.25,0.5,0.25
=-(-!)" h(L-l-n)

New Wavelet

L - filter length
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Table 3.2 QRS detection performance of six wavelets
( using fust 25 records of CSE DS-3 database)

Record No. of WT1 WT2 WT3 WT4 WT5 W 16 New *

No. QRS

present

01 132 132 132 132 164* 132 132

02 228 228 228 228 228 226* 228

03 204 204 204 204 261* 204 204

04 144 144 144 144 144 144 144

05 192 192 192 192 192 192 192

06 180 180 180 180 180 180 180 4

07 201 201 200* 201 201 200* 201

08 120 120 118* 120 120 120 120*

09 144 143* 144 144 182* 144 144

10 072 072 072 072 072 072 072

11 168 168 168 168 182* 168 168

12 156 156 156 158* 183* 156 156

13 144 144 144 144 144 144 144

14 096 096 096 096 126* 096 096

15 084 072* 072* 083* 083* 082* 083*

16 192 192 186* 192 208* 192 190* >
17 120 120 120 120 120 120 120

18 156 156 156 156 156 156 156

19 156 156 156 156 156 156 156

20 264 252* 260* 264 264 264 264

21 096 094* 094* 096 164* 090* 095*

22 144 144 144 144 174* 144 144

23 096 090* 092* 096 100* 096 096

24 120 120 120 120 243* 120 120

25 108 108 108 108 108 108 108
V

>

Total 3717 3684 3686 3718 4155 3706 3707

99.89Rale of 99.11 99.16 99.91 88.18 99.70

QRS

Detection

(%)

* indicates the error in QRS detection Rate of QRS detection = (actual-failed)/ (actual)
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3.5 QRS DETECTION USING EXISTING WAVELETS

Algorithm

After the selection of a suitable wavelet for the detection of QRS complexes, the

procedure described above (section-3.3.1) is used to implement the WT representation In the

present work, the QRS complex has been detected by six wavelets, five existing ones WT I-

WT5 and one newly developed WT6 given in Table-3.1. Firstly, the WT1 has been selected

to observe the performance. The steps are explained in the Fig.3.1. The signal decomposition

scheme, shown in Fig.3.1, splits the ECG signal x(n) sampled at 500 Hz into different

detail signals d', d2, d\ and d4 at scales 2J; j = 0, 1, 2, and 3, respectively. The WT of

signal x(n) at scale 2j is a filtered signal ofx(n) that passes through a digital band pass

filter (or high pass filter for scale 2' ). This process of splitting a discrete signal

x(n),(n=0, , N-l) by DWT decomposes x(n) into a set of detail signals.

d' (n=0 N-l), d2(n=0 (N/2)-l), d3 (n=0 (N/22)-l),

d4(n=0, (N/23)-l),

and on<e low resolution signal

aJ = (n=0, ,(N/2J)-1).

Where, N is the number of samples and j is the decomposition scale.

The nature of these detail signals for WTI is shown in Fig. 3.2, which indicates the

gradual increase in energies of QRS complexes from low scale 2° to higher scale 2 The

detection of QRS complexes has been carried out by using detail signal d . The detail

signal d4, as shown in Fig. 3.2(e), is used to perform the detection of QRS complex fiducial

points by amplitude threshold of 0.5s, where e is the adaptive threshold parameter. The value

of s is determined by scanning the first ECG cycle and by updating the threshold value s as

per the signal amplitude using the equation

s =max( cf1 [k]), 60 (n-1) <k< 60 n, j=4 ^

where, n = 1, 2, ...., N/ 60, and represents the number of ECG cycles and 60 represents

the number of samples per cycle in the d4 signal. N is the number of samples in detail

signal d4 and d'[k] are the detail signal samples at scale 2J;

The absolute value of d4 has been used to detect the QRS peak by using the threshold

of 0.5s (i.e. 50% of max. amplitude of d4. This is equivalent to using +ve as well as -ve

thresholds. The detection of R or S peak of QRS complex was carried out by the equation

S[j] = k, if |d'[k]|> 0.5e

where, S[j] represents the QRS complex fiducial locations.

To avoid the detection of more than one QRS complex fiducial from the same QRS segment,
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after detecting first fiducial QRS from a QRS complex, a window equivalent to 100 ms is
skipped in d4 signal.

After detecting QRS locations in d4 and by considering the phase shift as detailed in
Table-3.3, the original ECG signal x(n) is scanned at all the detected QRS fiducials by
scanning awindow of 50 ms on either side of detected QRS location to detect the real
peak location and its amplitude as shown in Table-3.4. The detected locations are
indicated by an asterisk (*) in Fig. 3.2. After detecting QRS locations, effort is made to
detect QRS -onsets and -offsets using all the wavelets.

3.5.1 Test results with existing wavelets

In this study, the detection of QRS complexes by different wavelets has been carried
using standard 12 lead ECGs of first 25 records of CSE DS-3. In all, 3717 number of beats
of 300 ECGs (25 records x 12 leads) with wide morphologies have been analyzed. It has
been found that even with the wide variability of ECG morphologies, the detection of QRS

complex has been carried out accurately. The details of success and failure in QRS detection
by different wavelets are given in Table-3.2 and the QRS detection by all wavelets in arecord
are demonstrated in the Fig. 3.3.

The first wavelet WT1 having high and low pass filter coefficients, gives QRS

detection rate of 99.11%. The performance of WT2 is similar to WTI and gives QRS

detection rate of99.16. These long filter length wavelets usually fail to detect QRS complex,

if it present at the start or end of data as shown in Fig.3.4. The compact wavelet WT3 is
computationally simple, faces less difficulty in detecting the end point QRS complexes, and
gives high detection rate of 99.91%. The fourth wavelet WT4 faces difficulty in detecting
QRS complex when the signal amplitude is low, and gives QRS detection rate of 88.18%.
The WT5 is computationally suitable for detection of end point QRS complexes, and gives

detection rate of 99.70%.

3.6 CONSTRUCTION OF NEW WAVELET

After studying the effect of wavelets on ECG signal and its QRS detection as
discussed in section-3.5, the ability of some other wavelets to know their effectiveness on

ECG signal and to detect QRS complex has been carried out. Results of QRS detection with
different wavelets are listed in Table-3.2. The experience and knowledge obtained from this
evaluation was then used to construct a new wavelet given in the following section.
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Table 3.3 Detection of QRS peak amplitude and location in d4 signal by six
wavelets (Usmg CSE DS-3 Record No. MA-001.DCD.)

Lead

No

Original
Amp/
Loc

WIT WT2 WT3 WT4 WT5 WT6

New

1L1 0.370

158

0.386

160(2)
0.357

160(2)
0.428

160(2)
0.2498

168(10)
0.505

168(10)
1.053

160(2)

1L2 0.512

151

0.666

152(1)
0.658

152(1)
0.823

152(1)
0.441

160(9)

0.884

160(9)
1.907

152(1)

1L3 0.355

151

0.811

152(1)
0.742

152(1)
0.905

152(1)
0.662

144(7)
0.907

160(9)
2.113

152(1)

laVR 0.195

176

0.150

176(0)
0.272

176(0)
0.281

184(8)
0.204

178(2)
0.292

184(8)
0.822

176(0)

laVL 0.448

164

0.442

160(4)
0.470

160(4)
0.582

168(4)
0.337

168(4)
0.630

176(12)
1.234

168(4)

laVF 0.434

151

0.737

152(1)
0.697

152(1)
0.865

152(1)
0.533

152(1)
0.896

160(9)

2.007

152(1)

1V1 1.013

177

1.115

176(1)
0.940

176(1)
0.654

176(1)
0.244

176(1)
0.920

184(7)
2.435

176(1)

1V2 1.537

157

1.417

160(3)
1.348

160(3)
1.225

160(3)
0.810

152(5)
1.644

160(3)
3.689

160(3)

1V3 1.107

157

1.592

160(3)
1.464

160(3)
1.508

160(3)
1.025

152(5)
1.573

160(3)
4.131

160(3)

1V4 1.102

156

1.162

160(4)
1.006

160(4)
1.304

160(4)
0.728

152(4)
1.427

160(4)
3.006

160(4)

1V5 0.570

154

0.608

160(6)
0.521

152(2)
0.899

160(6)
0.640

160(6)
0.983

160(6)
1.568

152(2)

1V6 0.146

152

0.342

152(0)
0.382

152(0)
0.615

160(8)
0.642

160(8)
0.659

168(16)

1.12!

152(0)

Figures in brackets show shift in QRS location (detected hi d ) fiom the real.
Loc: Location in samples Amp: Amplitude in mV
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Table 3.4 Detection of QRS peak amplitude and location by mapping the detected
locations in d4 with original ECG signal (MA-001.DCD)

L ead Original WT1 WT2 WT3 WT4 WT5 WT6

No.

1L1 0.370

158

0.370

158

0.370

158

0.370

158

0.370

158

0.370

158

0.370

158

1L2 0.512

151

0.512

151

0.512

151

0.512

151

0.512

151

0.512

151

0.512

151

1L3 0.355

151

0.355

151

0.355

151

0.355

151

0.355

151

0.355

151

0.355

151

laVR 0.195

176

0.207

177

0.207

177

0.207

177

0.207

177

0.207

177

0.207

177

laVL 0.448

164

0.448

164

0.448

164

0.448

164

0.448

164

0.448

164

0.448

164

laVF 0.434

151

0.434

151

0.434

151

0.434

151

0.434

151

0.434

151

0.434

151

1V1 1.013

177

1.013

177

1.013

177

1.013

177

1.013

177

1.013

177

1.013

177

1V2 1.537

157

1.537

157

1.537

157

1.537

157

1.537

157

1.537

157

1.537

157

1V3 1.107

157

1.107

157

1.107

157

1.107

157

1.107

157

1.107

157

1.107

157

1V4 1.102

156

1.102

156

1.102

156

1.102

156

1.102

156

1.102

156

1.102

156

1V5 0.570

154

0.570

154

0.570

154

0.570

154

0.570

154

0.570

154

0.570

154

1V6 0.146

152

0.146

152

0.146

152

0.146

152

0.146

152

0.146

152

0.146

152
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3.6.1 Construction

After an exhaustive performance evaluation of existing five wavelets (WTI-WT5)

and also by keeping in view the selection guidelines for wavelets, a new wavelet has been

constructed for the detection of QRS complexes. This new constructed wavelet is named as

WT6. The WT6, as given in Table-3.1, satisfies the requirements of having symmetric

compact support with the scaling function of QRS complex shape. This has three low and

three high pass filter coefficients and these coefficients are optimized by carrying out tests on

large number of the ECG data for the detection of QRS complexes. The final values of

coefficients are 0.25, 0.5, 0.25 for low pass filter and -0.25, 0.5, -0.25 for high pass filter. It

is observed that if the two extreme coefficients out of three are half in magnitude to middle

one then the performance to detect the QRS complex is optimum. This is due to similar

characteristic of QRS complex i.e. approximately Q and S being 20-50% of R-wave and three

coefficients which are in the form of three consecutive peaks like the three consecutive

peaks of Q-R-S complex. The QRS complex rate achieved by using WTO is the second best

(next to QSWT). The detection rate is 99.89% because of the concept that a good wavelet is

the one, which has the shape of scaling function similar to QRS complex in the ECG signal.

This is also supported by its symmetry and less number of computations.

3.6.2 Test Results

In this work, the CSE DS-3 multi-lead and the MIT/BIH database have been used to

evaluate the performance of the software. The CSE database contains ECG recordings of 15

leads recorded simultaneously from 125 patients at 500 Hz for 8-10 seconds. The CSE

working party has constructed a multi-lead artificial (MA) series database from multilead

original (MO) series database by selecting a section of beats from all the 15 leads of the MO

series [147],

To study and analyse the effects of WTs on amplitude and phase shifts, first ECG

cycle of CSE DS-3 record No. MA-001.DCD has been used and details of the measurements

are given in the Tables 3.3 and 3.4. Table-3.3 shows the comparison of locations measured by

wavelets with the real locations of first QRS segment. These measurements of Table-3.3 are

carried out using d4 signal of all the six wavelets, hence, according to the wavelet filter
lengths and the magnitude of filter coefficients, the measurements show shifts in QRS

locations. The QRS location shifts measured by different wavelets are shown in brackets in

Table-3.3. The cases of failure shown in Table 3.3 for WT4 are due to its two positive high

pass filter coefficients, which are less effective in reducing the baseline wander. To measure
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exact QRS locations, the fiducial locations measured using d4 signal (Table 3.3) are mapped

with original ECG signal. The results of this mapping are given in Table-3.4. In all

measurements, the QRS locations and amplitudes measured by wavelets are leadwise same,

for example in lead I, QRS location and amplitude measured after mapping by all the

wavelets is 0.37 mV at 158th sample number.

The QRS detection performance of all the wavelets is shown in the Figs. (3.3-3.7). In

Fig.3.3, a normal ECG is shown with the detection of QRS complex by all the six wavelets.

It is observed that there is no failure by any of the six wavelets (WT1-WT6), but the QRS

energies extracted out of the original ECG signal by different wavelets are different. It

can be observed that more is the energy with low amplitude signal, and thereby, better is the

performance of detection. The energy extracted by new wavelets is moderate (as per the

amplitude of ECG signal) compared to other wavelets.

Some special cases are considered in Figs.3.5-3.7. Fig.3.4 shows the failure of the

wavelets (WT1-WT2) due to long filter length. It can be seen that the last beat of the ECG is

not being detected due to more number ofcoefficients. Fig.3.5 shows a signal, in which, it is

very difficult to detect QRS segments as it is noisy with high P and T and low QRS segment.

The major failure of WT4 is found due to non-concentrated extraction of modulus maxima

lines corresponding to real QRS segments and is because of two positive high pass filter

coefficients (Table -3.1).

Fig.3.6 is another typical example, wherein, basic concept of splitting ECG signal to

detect QRS usually fails because it contains some other non-QRS complexes of same

frequency which also emerge with the QRS complexes in d4 signal. The possible failure is
reduced by skipping the portion ofECG for 100 ms after the detection ofa fiducial from the

QRS segment. Even with this precaution, the failure has occurred with WT4.

A record with high frequency noise (noisy spikes) is shown in Fig.3.7. The better

performance ofnew wavelet is observed in this case. It gives very clear extraction of QRS
segment with the optimized modulus maxima lines. This is also observed in all the cases
shown in Figures 3.3-3.7, where use ofWT6 gives very clear moderate energy extraction

of QRS complex.

3.7 DISCUSSIONS

From the analysis of results given in Table-3.3, it can be stated that the use of WT1,

WT2, WT3, WT5 and WT6 gave approximately the same QRS location when measured in

detail signal d4. The performance of the new wavelet WT6 is comparable to that of WT3
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which gives the highest rate of QRS detection. This is due to its compact support and the

required shape of scaling function for QRS detection. Hence, these two wavelets are found

suitable for the detection of QRS complex.

After this analysis and the confirmation that the QSWT and WT6 are the suitable

wavelets for QRS detection, it is observed that even with the wide variety of ECG

morphologies and with noise and artifacts, the software detects QRS complexes in all (125

records) except 3 records accurately, when scanned by quadratic spline wavelet.

Fig.3.8 shows ECG record number MA-032.DCD lead aVF of CSE DS-3 and the

detail signal extracted at the fourth decomposition with the scale 2'. Even with high

amplitude P and T waves, the detail signal emerges with modulus maxima lines accurately

corresponding to QRS locations in the original ECG signal. The QRS fiducials are detected

by adaptive amplitude threshold. To observe the correctness, detected QRS locations are

indicated by asterisks'*' on the original, as well as the detail signal. In a record length of

5000 samples, the software detects all 13 QRS complexes. The detected QRS locations and

their amplitudes are shown in the Table 3.5. Fig.3.9 shows CSE DS-3 record number MA-

108.DCD lead V3, which exhibits an unusual morphology with depressed large amplitude

T waves, low amplitude QRS complexes and shift in the baseline. Other algorithms fail to

detect QRS fiducials in such types of signals. As can be seen in Fig.3.9, this algorithm detects

all 16 QRS complexes correctly, indicated by asterisks in the figure. The locations and

amplitudes are shown in Table 3.6.

ECG records from the MIT/BIH Arrhythmia database have also been used to

evaluate the performance of algorithm. Figs.3.10 and 3.11 show the original ECG signals

with their corresponding detail signals extracted by taking the WT of the ECG signals with

scale 2"\ Fig.3.10 shows an ECG with high QRS amplitude and drift in the baseline. Fig.3.11

shows ECG having irregular beats with positive and negative QRS peaks. It can be seen in

the figures that even with variable heart rate, with +ve or -ve QRS peaks, the software

detects all QRS complexes correctly. Table 3.7 shows locations and amplitudes of the 17

detected QRS fiducials of record 100. Table 3.8 shows 21 QRS fiducials with positive and

negative QRS peaks from record 200. Fig.3.12 shows the exceptional cases of ECG signals

with the accurate detection of the QRS complexes in the presence of noise and artifacts using

the MIT/BIH database. Fig.3.13 shows the false positive detection of the QRS complexes

due to noise present in the frequency band of QRS complexes. The noise components

emerged in d4 signal as modulus maxima lines caused failure.
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Fig.3.8 QRS detection in high amplitude Pand Twaves ECG using QSWT

iable 3.5 WI Based QRS Detection
(Record MA-032.DCD,Lead aF)

Sr. Sample QRS peak

No. No. (mv)

1 169 -0.268

2 561 -0.268

3 953 -0.268

4 1345 -0.268

5 1737 -0.268

6 2129 -0.268

7 2521 -0.268

8 2913 -0.268

9 3305 -0.268

10 3097 -0.268

11 4089 -0 268

12 4481 -0.268

13 4873 -0.268
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Fig.3.9 QRS detection in inverted T wave ECG using QSWf

Table 3,6 WT Based QRS Detection
(Record MA-108 DCDLead V3)

Sr. Sample QRS peak

No. No. (mV)

1 132 0.290

2 448 0.290

3 764 0.290

4 1080 0.290

5 1396 0.290

6 1712 0.290

7 2028 0.290

8 2344 0.290

9 2660 0.290

10 2976 0.290

11 3292 0.290

12 3608 0.290

13 3924 0.290

14 4240 0.290

15 4556 0.290

16 4872 0.290
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Fig.3.10 Sample record of MJT/BIH database

fable 3.7 \VT Based QRS Detection
(Record MIT/BIH 100)

Sr. Sample QRS peak
No. No. (mv)

1 77 0.840

2 370 0.940

3 663 0.960

4 947 0.800

5 1231 0.820

6 1515 0.885

7 1809 0.945

8 2045 0875

9 2403 0.885

10 2700 0 890

11 2998 0.925

12 3283 0.805

13 3560 0.835

14 3863 0.935

15 4171 0.890

16 4466 0.795

1 17 4765 0.850
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Fig.3.11 Sample record ofMIT/BIH database

fable 3.8 WT Based QRS Detection
(Record MIT/BIH 200)

Sr. Sample QRS peak

No. No. (mV)

1 224 -1.505

2 488 1.110

3 089 -2.010

4 905 1.025

5 1147 -2080

(> 1434 1115

7 1008 -2.135

8 1883 0.945

9 2072 -1.915

10 2332 1.155

11 2504 -2.175

12 2780 0.855

13 2988 -1.905

14 3302 1.030

15 3748 0.050

17 3970 0.790

18 4201 0.665

19 4417 0.870

20 4647 1.125

21 4880 0.900
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The developed software has the facility to detect QRS complexes on all standard 12

leads in a single execution. Table 3.9 shows the results of QRS detection of record

MA-OIO.DCD of CSE DS-3. This record has 72 QRS complexes (6*12 leads) and software

detects all these complexes. Table 3.9 shows their fiducial position and amplitude for each

detected QRS complex. For this particular case, the rate of QRS detection is 100% as all 72

QRS complexes of record MA-OIO.DCD get detected. The accuracy in the amplitude

measurements in 69 QRS complexes is 100%, but in 3 complexes, as there has been a wrong

mapping of reference QRS complexes (d4 signal) with the real QRS complexes (original

signal), there is an error of 0.58 mV (25.43%). This case is of a very wide QRS complex

(about 85 samples), which emerged more number of modulus maxima lines, hence in 3 beats

the reference QRS complexes have not mapped correctly with the QRS peaks in the original

signal.

Tables 3.10 and 3.11 show the summary of results of QRS detection using the CSE

and the MIT/BIH databases, respectively. As shown in the tables, the detection rates of QRS

complexes are 99.866% using the CSE database and 99.806% using the MIT/BIH database

by the quadratic spline wavelet. The sensitivity of QRS detection using the CSE DS-3

database is 100% and using the MIT/BIH database is 99.904%.

There are some typical ECG signals, where most of the QRS detection methods fail to

detect QRS complexes. The ECG waveform shown in Fig.3.9 of CSE DS-3 has high P and T

wave segments compared to the QRS complex, and the one shown in Fig.3.9 has large

amplitude inverted T wave segments. With such ECGs, QRS detection methods based on

amplitude threshold, squaring or slope criteria, or AN network fail, as these work on

the criteria of amplitude-error-detection [45,104,127,135].

The other two typical ECG records of MIT/BIH database are shown in Figs.3.10 and

3.11. Fig.3.10 shows high amplitude QRS complexes with baseline wander and Fig. 3.11

shows irregular beats with positive and negative QRS peaks. In such cases, methods, which

scan a fixed window width to detect the QRS complexes, and the methods which use decision

rules like zero crossing fail due to consecutive Q-R-S peaks. Also in pattern recognition

based detection of QRS complexes, the ECG signal is first reduced into a set of elementary

patterns like peaks, durations, slopes, and interwave segments, and thereafter, using rule

based grammar, the signal is represented as a composite entity of peaks, durations, slopes and

interwave segments. These patterns are then used to detect the QRS complexes in. the ECG

signal. This category methods are time consuming and require inference grammar in each

step of execution for detection of QRS complexes [93]. The comparative results of QRS
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Table 3.9 WT based QRS detection of record No. MA-OIO.DCD

Lead

No.

No. of

QRS

QRS - 1
PosVAmp

QRS-2
PosVAmp

QRS-3
PosVAmp

QRS - 4
PosVAmp

QRS - 5
PosVAmp

QRS - 6
PosVAmp

10L1 6 181

0.99

989

0.99

1797

0.99

2605

0.99

3413

0.99

4221

0.99

10.L2 6 186

-2.90

994

-2.90

1802

-2.90

2610

-2.90

3418

-2.90

422

-2.90

10L3 6 184

-3.81

992

-3.81

1800

-3.81

2608

-3.81

3416

-3.81

4224

-3.81

lOaVR 6 188

1.02

996

1.02

1804

1.02

2612

1.02

3420

1.02

4228

1.02

lOaVL 6 182

2.40

990

2.40

1798

2.40

2606

2.40

3414

2.40

4222

2.40

10aVF 6 185

-3.34

993

-3.34

1801

-3.34

2609

-3.34

3417

-3.34

4225

-3.34

10V1 6 210

2.28

1018

2.28

1826

2.28

2616

1.70

3424

1.70

4232

1.70

10V2 6 185

3.30

993

3.30

1801

3.30

2609

3.30

3417

3.30

4225

3.30

10V3 6 185

3.80

993

3.80

1801

3.80

2609

3.80

3417

3.80

4225

3.80

10V4 6 185

3.99

993

3.99

1801

3.99

2609

3.99

3417

3.99

4225

3.99

10V5 6 181

2.59

989

2.59

1797

2.59

2605

2.59

3413

2.59

4221

2.59

10V6 6 179

1.67

987

1.67

1795

1.67

2603

1.67

3411

1.67

4219

1.67

Pos: Position in sample number Amp: Amplitude in mV
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Table 3.10 Results of QRS detection by using quadratic spline wavelet
(records of the CSE DS-3, use of 12 leads)

Lead

No.

Total no. of

QRS
eomplcxcs

QRS
complexes
detected

True

positive
(IP)

False

positive
(FP)

False

Negative

(FN)

I 1502 1507 1502 05 00

11 1502 1502 1502 00 00

111 1502 1502 1502 00 00

aVR 1502 1502 1502 00 00

aVL 1502 1502 1502 00 00

aVF 1502 1512 1502 10 00

VI 1502 1502 1502 00 00

V2 1502 1502 1502 00 00

V3 1502 1502 1502 00 00

V4 1502 1502 1502 00 00

V5 1502 1511 1502 09 00

V6 1502 1502 1502 00 00

Total 18024 18048 18024 24 00

Detection rate of QRS complexes - 99.866 %
(actual-failed)/( actual)

Percentage of false detection 00.133 %

Sensitivity of QRS detection = 100.00%
Sensitivity = TP / (TP+FN)
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Table 3.11 Results of QRS detection for the MIT/BIH da tabase

Record No. Total beats Detected QRS TP FP FN

100 2141 2142 2141 01 00

101 1735 1735 1735 00 00

102 2069 2069 2069 00 00

103 1952 1951 1951 00 01

104 2113 2111 2111 00 02

105 2428 2415 2408 07 20

106 1890 1890 1890 00 00

107 2044 2044 2044 00 00

108 1669 1673 1669 04 00

109 2402 2402 2402 00 00

111 2019 2019 2019 00 00

112 2399 2399 2399 00 00

113 1706 1706 1706 00 00

114 1772 1750 1750 00 22

115 1815 1815 1815 00 00

116 2221 2221 2221 00 00

117 1459 1459 1459 00 00

118 2143 2143 2143 00 00

119 1863 1863 1863 00 00

121 1732 1732 1732 00 00

122 2344 2344 2344 00 00

123 1390 1390 1390 00 00

124 I486 1486 I486 00 00

200 2431 2424 2424 00 07

201 1949 1970 1949 21 00

202 2024 2032 2024 08 00

203 2871 2868 2868 00 03

205 2526 2526 2526 00 00

207 1950 I960 1943 17 07

208 2837 2834 2834 00 03

209 2869 2869 2869 00 00

210 2514 2516 2511 05 03

212 2620 2620 2620 00 00

213 3112 3112 3112 00 00

214 2136 2138 2136 02 00

215 3231 3231 3231 00 00

217 2105 2103 2103 00 02

219 2034 2043 2032 II 02

220 1887 1887 1887 00 00

221 2295 2295 2295 00 00

222 2337 2329 2326 03 11

223 2468 2467 2467 00 01

228 1920 1926 1909 17 11

230 2121 2121 2121 00 00

231 1503 1503 1503 00 00

232 1662 1668 1662 06 00

233 2945 2941 2941 00 04

234 2624 2624 2624 00 00

Totals 103763 103766 103664 102 99

Rate of QRS detection =99
Percentage of false detection
Sensitivity of QRS detection

806%

= 00.193%

= 99.904%
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Table 3.12 Comparison of ECG analysis results

Sr.

No.

01

02

03

04

05

06

07

08

09

10

11

Method

Template construction lor
QRS classification.

A real-time QRS detection
based upon digital analysis
of slope, amplitude &
width.

QRS detection using the
optimised decision rule
process

NN based adaptive
matched filtering for QRS
detection

An approach to QRS
detection using
mathematical morphology.

Detection of ECG

characteristic points using
wavelet transform.

An integrated pattern
recognition method.

QRS detection based on
optimized prefillering in
conjuction with matched
filter & dual edge
threshold

Use of wavelet transform

for ECG characterization.

Predictive neural network

based technique to delect
QRS complexes.

Present method: WT based

QRS detection.

Reference

Tartakosky
et.al.[132]

Panet.al.[104]

Hamilton

et.al.[45]

Xuc ct.al.[152]

Trahanias [I36|

Li et.al.[72|

Mehta et.al.[93]

Antti et.al.[8]

Sahambi

et.al.[123J

Vijayact.al.[141]

87

Sensitivity /
Rate of QRS
dctec.(%)
98.600 /

99.761/99.300

99.690/99.461

— / 99.500

99.380/ —

99.904/ 99.847

—/ 99.830

..../ 97.8OO

-/ 98.780

98.960/

100/99.866

99.904/ 99.806

Type of data used

Their own

database.

(900000 beats)

24 h MIT/BIH

arrhythmia
database.

MIT/BIH

database. (109267
beats)

MIT/BIH

database.(record
105)

CSE DS-1

(1492 beats)

MIT/BIH

database. (116137
beats)

CSE database.

MIT/BIH

database. (2572
beats)

MIT/BIH

(14481 beats)

CSE DS-3

(3657 beats.)

CSE DS-3

(18024 beats)
MIT/BIH database

(103763 beats)



detection are given in Table 3.12. The percentages of sensitivity/ rate of accurate QRS

detection in this table are not directly comparable, because, different databases or different

number of beats have been used by different workers.

3.8 CONCLUSIONS

The present algorithm works satisfactorily in all typical morphologies of ECG signal.

Among the wavelets evaluated for the detection of QRS complexes, QSWT and WT6 are

found the best suitable. Looking to the performance of the developed algorithm, which gives

the detection rate of 99.806% using all 48 records of the MIT/BIH Arrhythmia database and

99.866% using the CSE DS-3, prove the utility of the wavelets for the detection of QRS

complexes. In addition to this, the results reported by Li et al. [72] and Kadambe et al. [56 ]

also suggest that the use of wavelet has found distinct place for itself in field of computer

aided ECG analysis and interpretation.

Important conclusions on the basis of the work presented in this chapter are:

(i) The compact wavelets are most suitable for QRS detection and give better performance

than long length wavelet filters. Also the computationally compact wavelets are

comfortable.The phase-shift is more in asymmetric than symmetric wavelets,

(ii) Even with noisy signals, QRS detection by wavelets need no additional signal processing

to remove baseline wander, noise, and artifacts. It is observed that the failure occurs when

ECG signal contains noise in the frequency range of QRS complex, because these noise

components also emerge with the QRS complex in detail signal d .

(iii) Even with higher P and T wave segments, the detection of QRS by WT is accurate due

to the signal splitting.

(iv) The main cases of failure are due to the emergence of small amplitude modulus maxima

lines when the signal amplitude is very low or with the high amplitude signal, where more

number of modulus maxima lines get extracted throughout the ECG signal,

(v) The wavelet transform implementation requires values from the future and the past. This

causes trouble at the beginning and the end of a finite-length signal. This problem can

resolved by extending the signal either periodically or symmetrically. In case of ECG, this

problem can be overcome easily by starting the transformation leaving few samples at the

beginning and end of ECG data array, and making use of these samples later on to establish

symmetry around QRS complex.

(vi) It has been observed that the QSWT and the new wavelet produce best results in QRS

detection.
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CHAPTER - IV

FEATURE EXTRACTION OF ECG SIGNAL

4.1 INTRODUCTION

The ECG signal is the graphical representation of the bioelectrical and biomechanical

activities of the cardiac system. It provides valuable information regarding the functional

aspects of the cardiac and cardiovascular systems. The QRS complex is the most characteristic

wave set in the ECG signal, and represents depolarization of the ventricles. During this phase,

the heart pumps out blood at maximum pressure to the circulatory and pulmonary systems.

During the past four decades, a number of computer programs have been developed

for the automatic interpretation of cardiac disorders using ECG signals [150]. However, still

the state of perfection is yet to reach in this vital area of cardiac disease diagnostics The

methods and independent databases are needed in large number and wide variety to lest the

reliability of such programs. All ECG computer analysis programs are basically composed of

two parts. The first one dealing with the accurate identification and measurement of

characteristic features of ECG signal and the second one dealing with the diagnostic

interpretation. The main task in the measurement is to find exact location of the major

reference points, i.e., the onsets and offsets of P, QRS and T waves. The following section

covers various techniques developed so far for such purpose.

4.2 FEATURE EXTRACTION TECHNIQUES

As discussed in earlier chapters I and III, the key of the ECG feature extraction is the

detection of QRS complex and is taken as the basis for identification and extraction. The main

groups of techniques, as discussed earlier, are based on the different approaches, namely

syntactic, non-syntactic, hybrid and transformative types. Using these approaches, number of

software, hardware and hybrid techniques have been developed. These techniques follow the

procedure of filtering, squaring, and differentiation using decision rules like zero crossings,

amplitude thresholds, sharp consecutive Q-R-S peaks, duration of QRS complex and R-R

interval duration [8,104]. Most of these methods face difficulty due to wide variations in the

physiological behaviour of the cardiac system. To overcome the limitations of existing

methods, new methods are being developed to obtain better results. One such powerful

technique is based on the WTs which has been reported by different researchers, namely Li

et al. [72], Rao [115], Shahambi et al. [123] and Kadambe et al. [56]. The QRS complex has
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components of higher frequency and P and T waves have low frequency contents, therefore,

the signal splitting nature of WT is of immense help in ECG feature extraction.

This chapter deals with a modified wavelet transform technique, which has been

developed to analyze multi-lead electrocardiogram signals for cardiac disease diagnostics.

Two wavelets have been used, i.e. a quadratic spline (QS) wavelet for QRS detection and

Daubechies six coefficient (DU6) wavelet for P and T detection. The modified combined

wavelet approach first extracts the QRS complex as discussed in chapter III, and thereafter, its

onset and offset and the P and T waves and their onsets and offsets. After defectum the

fundamental ECG components, the ECG parameters namely, P-on, P-position, P-off, QRS-on,

QRS-peak, QRS-off, Q-on, Q-peak, Q-off, R-on, R-peak, R-off, S-on, S-peak, S-off,

R -peak, T- peak and T-end are extracted. From these fundamental measurements, the

parameters of diagnostic significance, namely, the heart rate, P-amplitude, PR-interval, QRS-

interval, QT-interval, QRS peak-to-peak amplitude, ventricular activation time (VAT), and

frontal plane axis (FPA) are identified and extracted. Software was validated by extensive

testing using CSE dataset-3 (DS-3) and dataset-5 (DS-5) obtained from Belgium [147].

4.2.1 Feature Extraction

Feature extraction becomes the important stage in automated disease diagnosis as it

has responsibility to tender the particular disease. The determination of wave amplitude and

location is the basis to measure ECG features. The accurate measurement of wave amplitude

and location is dependent on the proper selection of reference level. The steps of feature

extraction are as follows:

i) Reference level (baseline) determination

ii) Minimum wave requirements and wave labeling

iii)Parameter extraction: It consists of basic measurements like amplitude and duration of

waves segments and intervals and determination of parameters like areas, ratios, axes, vectors

and spatial parameters.

ECG features (wave duration and amplitude) are used by most cardiologists in their

programs. For the classification of 12-lead ECG, processing systems might use up to 40

parameters per lead, i.e., a total of 300 to 500 parameters. Even with all these considerations,

different programs perform differently on different diagnostic categories [78,150], Therefore,

a conclusion from this observation is that so far neither an uniform optimal set of classification

features (diagnostic criteria) nor a generally optimal classification procedure can be defined.
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With respect to above listed areas, The CSE Working Party and American Heart

Association (AHA) have framed guidelines and recommendations to facilitate the researchers

and to have common platform for the comparison of different methods and the results and to

make possible the exchange of ECG measurements for development of diagnostic programs.

Keeping this in view, in the present work, the recommendations and suggestions from these to

organizations have been considered to carryout the work from the stage of signal acquisition

to interpretation.

It was recommended by the AHA [149] that the ST segment, the T wave and the P

wave, should all be measured with respect to the iso-electric part of the tracing before the P

wave. However the CSE Working Party recommends that, from an electrophysiological point

of view, it is not appropriate to use separate baselines for measuring QRS and ST-T

complexes. It recommends strongly the uniform use of a horizontal baseline, determined in an

interval before QRS onset for all QRS and ST-T measurements in such a way as to avoid the

problem arising in the AHA recommendations in which there is a discontinuity in the implied

baseline immediately after the J point. In the AHA recommendations it is stated that: 'The

reference level for the measurement of the S-T junction (point J) should be the P-R segment at

the beginning of the QRS. The level of reference for measurements of the S-T segment, the T

wave, and the U wave should be the level at the termination of the T-P or U-P interval when

this can be determined'. The AHA recommendations further states that: ' The latter may not

be possible at very high heart rates, particularly in maximal or sub-maximal exercised tests

since the T wave and the succeeding P wave tend to fuse, and a T-P or U-P interval cannot be

detected any more. In such cases, the level of reference should be the P-R segment at the

beginning of QRS complex, both for the resting ECG and the recording at higher heart rates.

4.2.2 Interpretation

The diagnostic classification is the ultimate aim of the ECG signal analysis. The

interpretation of diseases is being carried out mainly by heuristic knowledge and partly by

statistical analysis.

4.3 SELECTION OF BEATS

Automated ECG signal analysis can use the redundancy of complexes available in the

sampled ECG to optimize the accuracy of measurements. Considering the redundancy of the

ECG wave complexes, one form of averaging or another is carried out in general approach of
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measurement. Normally, a set of beats of similar configuration is grouped together and an

average beat is formed [78]. Measurements are then made on this average beat. There are

alternative approaches available where a set of measurements is obtained and an average value

is determined. In some other approaches, simply a beat is used for the analysis.

Three techniques are currently in use to select beats for measurements. The first one

locates the "best complex" for analysis. All of the complexes of a given lead set are required to

locate this best complex. Then the complex with the least noise and baseline wander is chosen

for the analysis. In the second technique, some time-coherent averaging is done of all the

complexes that are considered to be morphologically of the same type. This procedure reduces

the random noise on the signal. Detailed wave recognition and measurement extraction is then

made on the average complex. The third technique makes detailed wave recognition on every

complex in the lead set and subsequently averages the measurements of similar dominant

complexes [78].

Until now there is no fixed approach for the types of beats to be used. Jan et al. [51 ] in

his findings showed favor for the second technique, but the findings are unable to show any

significant difference in QRS duration if wave recognition is performed on single complex or

averaged complexes and computed using beat alignment. Based on the results of extensive

noise tests performed in a CSE project, a measurement strategy that uses selective averaging

has recently been recommended for diagnostic ECG computer programs [149].

The use of averaging, however, theoretically leads to improved signal-to-noise ratio

and hence, more accurate amplitude measurements. The accuracy of computer-derived

durations is still under discussion, but it should be noted that, if a reference point is incorrectly

determined (the QRS onset, for example), then any amplitude measured with respect to such a

point is prone to an error. To minimize such errors, most programs find a reference level by

averaging in the vicinity of the QRS onset or else fit a smooth curve from which the reference

can be taken. From these guidelines, the strategy of using selected beats has been considered

in this work to measure the ECG parameters in five different beats (five beats per lead). The

regular beats are detected from the average R-R intervals, and individual beat is used to

determine its individual baseline.

4.4 AMPLITUDE MEASUREMENT PROCEDURE

As per the recommendations of The CSE Working Party, baseline is determined from

the PR segment and the onset of QRS, the QRS onset is used as a reference for all QRS and
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ST-T amplitude measurements [149]. To detect the PR segment and the QRS onset, a

window (30% of R-R interval) preceding to R peak is scanned to detect positive and negative

peaks and isoelectric segments.

4.5 INTERVAL MEASUREMENT PROCEDURE

Fig. 1.6 demonstrates different ECG wave components and their pictorial

representation.

The P duration is measured from the beginning to the end of the P wave. The P

duration may vary between lead groups, as a result of a perpendicular orientation of initial or

terminal excitation vectors on the corresponding leads and on account of wave recognition

problems, especially in noisy recordings. Measurements in orthogonal or multiple leads are

therefore more accurate. In case of 12 lead ECG recordings with conventional 3-channel

equipment, the longest of the duration in the extremity lead groups is recommended as the best

estimate, for reasons of measurement stability [149]. Indeed, inter- and intra-obsever

variability, as well as reproducibility figures and a comparison of program with visual results in

the CSE project have demonstrated that P onset and P offset determined are most reliably

performed in the peripheral leads. This is in conformity with the direction of the major P wave

vectors, which follow a superior- inferior course in the frontal plane in most of the cases

The P-R (or P-Q) interval is measured from the beginning of the P wave to the

beginning of QRS. This interval may also vary between lead groups, in view of the possible

perpendicular orientation of initial activation vectors on the corresponding leads. Ideally the

PR interval should be measured from the earliest P deviation to the earliest onset of QRS

complex in any of the leads, as can be derived from multi-channel recordings in which all ECG

channels, i.e. all 12 conventional leads or at least 8 independent standard leads are recorded

simultaneously.

The P-R (or P-Q) segment is that part of the ECG between the end of the P-wavc and

the beginning of the QRS complex. The duration of the segment is calculated by subtracting

the P duration from the P-R interval.

The QRS duration is measured from the earliest onset to the latest end of QRS

complex when leads are recorded simultaneously. For the same reasons listed above,

multichannel recorders and quasi orthogonal leads are preferred.

The Q-T interval is measured from the beginning of QRS complex to the end of T

wave. When obtained from the conventional lead groups, the longest interval found is
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regarded as nearly correct. However, the Q-T interval is usually measured accurately in

precordial leads VI to V3 [42,149].

4.6 P, Q-R-S AND T WAVES DETECTION

4.6.1 Method

An algorithm for P, Q-R-S and T waves identification using wavelet transform

decomposition is given in the form of flowchart in Fig.4.1. The low resolution signals

extracted using DU6 wavelet are shown in Fig.4.2. It indicates the splitting of the original

ECG signal into three signals a1 to a'. The use of DU6 wavelet makes the signal smoother

[47,86]. Out of the three signals shown in Fig.4.2, a3 signal is extracted without down

sampling the output of preceding low pass filter. Extraction of a'' without down sampling

leads to smooth and avoid loss of information from the a'1 signal. It is observed that the

accuracy of measuring onsets and offsets of ECG wave segments is greater when the a'

signal is extracted without down sampling. The a3 signal is used to measure all the ECG

wave fiducials by referring to the already detected QRS locations. Firstly, the QRS peak in

the a" signal is mapped with the reference QRS by scanning through a 50 ms window on

either side of the reference. This detects the QRS peak in a3 signal. If the detected QRS

peak in the a" signal is a positive maxima, then the peak is an R wave and the preceding first

negative peak is the Q wave. To the left of the Q peak, the first point close to the reference

line is the QRS- onset. If the detected QRS peak is a negative maxima, the peak is an S wave

and the preceding first positive peak is an R wave. To the left side of the R wave, the first

negative peak is the Q wave. Following the R wave, the first negative peak is the S wave and

to the right side of the S wave, the first positive peak, ifpresent, is the R! wave. First point

close to the reference line is the QRS - offset. After detecting all waves of the QRS complex,

the P wave is detected by scanning through a window of length equal to 30% of the R-R

interval on the left-side of QRS- peak. The P- peak is obtained by detecting the absolute

maximum peak in the defined window and P-on and P -off by identifying first points close to

the reference line on either side of P peak. Identification of biphasic P wave has been carried

out by a procedure, that if algebraic sum of P wave (i.e. net P deflection which is sum of

sample amplitudes from P-onset to P-offset) samples, firstly increases and then decreases or

vice-versa, the wave is biphasic. If the algebraic sum of sample amplitudes increases or

decreases from P-onset to P-offset, the wave is uniphasic. Similarly, the T wave is detected by
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Start

Input 12 lead ECG signals and their QRS
locations

Select a suitable wavelet filter

Carry out convolusion of the signal with low and high
pass wavelet filter coeffs. and down sample the outputs

of filters by 2 to get N/2 number of wavelet coeffs

Carry out second decomposition to get N/4 number of
wavelet coefficients.

Carry out third decomposition to get N/8 number ol
wavelet coefficients.

Use the smooth (low resolusion a3) signal for feature
extraction

Carry out upsampling in a3 by interpolating the average
value of two successive samples to get the N samples

Use the QRS locations detected earlier and map with the
QRS complexes of a signal

I
Determine all R-R intervals present in the a3 signal, also

determine an average R-R interval

Scan all the beats in the a3 signal using the QRS location array
Sfj] and the average R-R interval to select the regular 5 beats.
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Measure baseline levels in a selected beat and reduce
the baseline shift if present.

Identify +ve and -ve peaks in a selected beat and store
the same in PLij and N[i] arrays.

Consider selected beat and corresponding R peak
location and scan the window of length 30% of R-R
interval on preceding side ofR-peak to locate the P-

peak

Map the P[iJ peak with the P-peak detected and also
detect N[i| peak (valley) preceding to P-pcak to detect

the zero crossing ofsegment N|i] to P[i] as P-onscl,
similarly scan the succeeding section ofP-peak to detect

N[i+1] valley to detect the P-offset.

Scan PR segment to determine reference line (qbl) for QRS
and T wave amplitude measurement and P-onset reference

line (pbl) for P wave measurement.

Use baseline qbl to detect QRS-onset by detecting zero
crossing position of the segment of first negative peak N[iJ

to first positive peak P[i] preceding to Rpeak.

Detect the first valley N[i] before R-peak as Q-peak and Q-off
by detecting zero crossing of segment R-peak to Q-peak or the

nearest position point of this segment With the baseline.

I
Detect a first valley N[i] and first +ve peak P|i] after R-

peak to detect S-peak and Ry peak, respectively.

T
Scan the succeeding section ofRpeak to detect QRS offset by
detecting the zero crossing or the nearest point with the baseline.
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Scan a windowof length 40% of R-R interval after the
ORS-oflsct to detect the T-peak.

Identify J and T-end by scanning the T wave region to
detect first valley N[i] on either side off-peak.

Use QRS-onset to QRS-offset region to determine the
algebraic sum of sample amplitudes in leads 1, II and III

to measure FPA.

Determine diagnostically important parameters , namely
HR, P-amp, P-dur, PR-int, QRS-int, QRS p-p, VAT, and

T-amp.

Determine FPA and QTc

Identify the morphologies of P and T waves

Display and store fundamental
and diagnostically important
parameters in data file Beat 1

'rocced for Disease diagnosis

Fig. 4.1 Flow chart for Wf based ECG feature extraction
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a) Original ECG signal.
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b) Low resolution signal a1 after first decomposition.

c) Low resolution signal a- after second decomposition.
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d) Low resolution signal a3 after third stage offiltering

ZL.

e) Low resolution signal a used without downsampling to detect waves

Fig. 4.2 Detection of ECG waves
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scanning through a window of length equal to 40% of the R-R interval on right-side of

QRS peak to detect the T-peak and the T-end.

The detection of the P, QRS and T waves is shown in Fig.4.3 by vertical lines at the

P-onset, P-peak, P-off, QRS-on, QRS-off, T-peak and T-end positions. The software has a

facility to scan complete length of recording in 12 standard leads and select 5 beats from each

lead. As shown in Fig.4.3(a), five ECG beats from lead I from record MA-001.DCD have

been selected to carryout complete analysis. The CSE dataset 3 is such, in which the complete

record length of 8 to 10 seconds is constructed by copying the same beat repeatedly, hence all

beats are same in a particular lead. This can be seen from the Fig. 4.3(a-c), where first three

leads of record MA-001.DCD have been selected. At the bottom of these figures, the

parameter estimates are given, which are same for all five beats in lead I. Same is the case with

lead II and III.

4.7 DIAGNOSTIC PARAMETERS

After detecting the ECG wave fiducials, as shown in Table 4.1, the ECG signal

parameters of diagnostic value, namely, heart rate, P- amplitude, P- duration, PR- interval,

QRS- interval, QRS peak-to-peak amplitude, QT and QTc - interval, Ventricular Activation

Time (VAT), T- amplitude and Frontal Plane Axis (FPA) are obtained. Table 4.2 shows the

leadwise parameters measured from first beat of record MA-001.DCD of CSE DS-3. The

detail description of measurement procedures used in this thesis work for the extraction of

diagnostically important parameters from the fundamental measurements (Table 4.1) is given

as below:

4.7.1 Heart Rate (HR) is determined from the measurements of R-R intervals as

Heart Rate (BPM) = 60/ (R-R interval in sec)

4.7.2 Ventricular Activation Time (VAT) is measured from the measurements i.e. QRS

onset and the R peak position as

VAT (in ms) = (R peak position - QRS onset position) x 2 (ms), where 2ms is

sampling time [42].

Here, as shown in the Table 4.1, wave location measurements are given in the sample numbers

and the wave amplitude in mV. Therefore, the VAT duration is measured from the difference

of sample number of R peak location and the QRS onset location.
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Fig. 4.3 (a) Analysis of5beats in aECG signal (CSE DS-3 record MA-001.DCD, Lead I)

100



*************

'\ 1 -/V.

n /
Beat-1

'A /I

n /

Beat-2

******

I J~~^ Original Sit

1 "^"^
\_

'1
Beat-3

Beat-4 Bea t-5

ECG Parameters of Diagnostic Significance

HR P-A Pdur PRint QRSint QRSp-p QT-int UAT T-A NetD

BPM mu sec sec sec mu sec sec mu mo

63.83 0.07 0.18 0.24 0.12 0.62 0.46 0.02 0.24 -8.81 Beat=l
63.83 0.07 0.18 0.23 0.13 0.63 0.47 0.03 0.24 -8.79 Beat=2
63.83 0.07 0.18 0.24 0.12 0.62 0.46 0.02 0.24 -8.81 Beat=3
63.83 0.07 0.18 0.23 0.13 0.63 0.47 0.03 0.24 -8.79 Beat=4
63.83 0.07 0.18 0.24 0.12 0.62 0.46 0.02 0.24 -8.81 Beat=5
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Table 4.1 Measurement of ECG parameters by using wavelet transform of record No. MA-OOl.DCD

^ P°n P P°ff QRSon Q Q°ff R Roff S R- QRSoff T Tend Net QRSNo- pos pos mv pos pos pos mv pos pos mv pos pos mv pos mv pos pos mv pos defl,mv
LI 36 68 0.07 84 148 148 0.00 156 168 0.25 180 188 -0.26 00 0.00 208 320 015 376 -0 45
L2 50 0.14 110 138 138 0.00 142 150 0.17 158 170 -0.61 206 0.06 210 314 0.30 370 -1187
id II ,?« 7° 134 134 °-°0 138 15° °-14 158 166 -°-72 190 009 198 314 015 370 -12 19aR 62 110 0.09 134 150 154 -0.04 158 178 0.44 266 206 0.05 210 0.05 238 314 -0 13 70 10 94
aL 42 90 0.04 118 146 150-0.01 154 166 0.49 182 186 -0.13 00 0.00 198 302 004 338 587
VI o £ nil 1°. Ill 134 °-01 134 15° °-1? 158 17° -°-62 19° °-01 194 314 ^24 370 - 00VI 0 34 0.06 58 150 166-0.27 174 178 0.46 190 194 -0.25 206 0.03 214 334 013 410 -0 57
v? 1? L6 nit 9° M2 H6 -0-°4 15° 158 °"52 166 174 -°-83 206 °-00 210 318 0.20 398 -18 20V 42 66 0.05 90 142 142 -0.01 146 158 0.71 166 174 -0.86 206 0.00 210 314 026 394 -511
V4 30 66 0.06 90 138 138 0.01 138 158 0.60 166 174 -0.78 00 0.00 202 314 0.30 374 -13 29
v t If UB 138 138 °-°0 M2 154 °-37 166 178 -°-63 00 °-°0 202 310 0.27 370 -13 431V6 30 62 0.09 122 138 138 0.00 142 154 0.23 166 178-0.48 00 0.00 202 306 025 366 -H69

PGM 30 64 - 90 140 140 - 144 158 - 166 176 - 190 - 205 314 - 370
REF 22 87 139

202 370

PGM (median of 12 lead measurements)- Program results. FPA(Frontal Plane Axis) - 88.08 degrees.
Khr - l.Sr KPTrpp rpcnltc °REF- CSE Refree results.
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Table 4.2 ECG parameters of CSE DS-3 record No. MA-OOl.DCD

Lead HR P-A P-dur PR-int QRS-int QRS p-p QT-int VAT T-A

No. BPM mv sec sec sec mv sec sec mv

1L1 64.66 0.067 0.096 0.264 0.120 0.518 0.456 0.040 0.152

1L2 63.83 0.140 0.184 0.264 0.144 0.781 0.464 0.024 0.300

1L3 63.83 0.110 0.104 0.264 0.128 0.863 0.472 0.032 0.152

laR 63.83 0.092 0.144 0.232 0.176 0.489 0.432 0.056 -0.134

laL 63.83 0.042 0.152 0.248 0.104 0.624 0.376 0.040 0.042

laF 63.83 0.138 0.144 0.264 0.120 0.793 0.472 0.032 0.242

1V1 63.83 0.056 0.096 0.336 0.128 0.708 0.488 0.056 0.132

1V2 63.83 0.042 0.160 0.296 0.136 1.350 0.504 0.032 0.202

1V3 63.83 0.054 0.096 0.232 0.136 1.568 0.504 0.032 0.258

1V4 63.83 0.063 0.120 0.256 0.128 1.377 0.472 0.040 0.303

1V5 63.83 0.074 0.176 0.248 0.128 1.000 0.464 0.032 0.272

1V6 63.83 0.086 0.184 0.248 0.128

values of he

0.711 0.456 0.032 0.248

QTc = 0.478 sec (Using the median art rate and QT interval)



4.7.3 Uniphasic/ Biphasic P and T Waves

Identification of P wave as uniphasic or biphasic has been carried out by measuring the

area under the wave. A procedure as explained in the flowchart Fig.4.4 has been evolved to

determine the algebraic sum of P wave samples by scanning the window from P-onset to P-

offset. Decision regarding the morphology of the wave has been taken from the nature of

profile of the area under the P wave, i.e., if the algebraic sum of samples firstly increases and

then decreases or vice-versa, the wave is biphasic. If the algebraic sum of sample amplitudes

only increases or only decreases from P-onset to P-offset, the wave is uniphasic. Same

procedure has been followed for T wave identification. Figure 4.5 depicts the identification of

uniphasic and biphasic P and T wave segments.

4.7.4 Frontal Plane Axis

There have been many suggested methods to measure the QRS axis [78J. However,

the adhoc Task Force of the World Health Organization (WHO) and the International Society

and Federation for Cardiology has recently recommended that the QRS axis should be

determined by measuring the areas under the QRS complex in leads I, II and III. Any two

pairs of leads can be selected from the three leads in three different ways. The

recommendation is that QRS axis be calculated from the average value of three measurements

in three different pairs out of I, II, and III leads.

An alternative approach is to utilize the sum of the signed Q wave (negative), R wave

(positive) and S wave (negative) amplitudes in these leads to calculate a QRS axis. In either

case, a function 1H), for example, can be used to represent the measurement (area or

component sum) derived in this case from lead I. The flowchart given in Fig.4.6 and the

following calculation shows as how the use of the three standard limb leads 1, II, 111 from

which three measurements f(I), f(ll), fHH) are obtained allows an estimate of a frontal plane

axis and avoids the need for repeated calculation and averaging as suggested by the WHO

Task Force.

Consider that leads I, II and III with lead direction as conceived in the Eithoven

triangle as shown in the Fig.4.7, are superimposed on a Cartesian coordinate system. Then

OL= f(I), OM= f(ll) and ON= f(III) represent the amplitude of the projection of desired axis

(or vector OA) onto the lead axes I, 11, III as shown in the same Fig.4.7. Thus, the Cartesian

coordinates of these projections; that is, the coordinates of L, M, N are as follows:
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Read P onset, ofTset, QRS offset and T end
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Fig. 4.4 Flowchart to identify uniphasic or biphasic Pand Twaves

106



J C- '.{ Aa AaI ,v

1
Record : MA-007.DCD Lead LI

P: uaue net +ue deflection=4.23 mV
and net -ue def lection=0.00 mU—> P is Uniphasic

T:uaue net +ue deflecticm=9.04 mU
and net -ue def lection=0.00 mV—> T is Uniphasic

P

<v \ *
v.

V
Record : MA-OOl.DCD Lead VI

P-uaue net +ue def lection=l.03 mV
and net -ue def lection=-0.20 mU— > P is biphasic

T'uaue net +ue def lection=4.09 mU
and net -ue def lection=-3 .59 mV— > T is biphasic

Fig. 4.5 Identification of biphasic P and T waves
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Fig.4.6 Flowchart for determination FPA and QTc
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Fig. 4.7 Determination of FPA from the QRS complex in leads I, II, and III
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axis projection on lead I: L - ( f(I), 0 )

axis projection on lead II: M=( f(II) cos 60", f(ll) sin 60°)

axis projection on lead III: N=(- f(III) cos 60°, f(III) sin 60°)

It should be noted that the functions f(I), f(ll) and f(III) are signed values.

The coordinates of the desired mean axis, that is, OA on a circle of suitably small radius R

intercepting all vectors, are given by the average component values.

R/3.0A {[ f(I) +f (II) cos 60° - f(lll) cos 60° ], [ f(II) sin 60° +f(III) sin 60° ] }

=R/3.0A {f(I) + 1/2 [ f(II) - f(IIl) ] ,a/3/2 [ f(II) +rTIII) ] }
The required angle is obtained from the arctangent of the ratio of the two components [78J:

FPA = tan1 {V3/2 ( f(II) + f(lll) ] / III) + 1/2 [ f(II) - f(IH)) }

= tan"1 { V3 [ fCH) + f(lll) ] / [2 f(l) + f(II) - f(Hl)] }

=tan"1 {2 [ f(II)/ V3 f(l) ] - 0.57}

where f(I) and f(II) indicate net QRS complex deflection in leads I and II, respectively.

4.7.5 QT Interval

Accurate determination of the QT interval, whether by computer methods or by

manual methods, is difficult. For example, the variation between cardiologists estimating P,

QRS and Treference points in the CSE study was greatest when they manually estimated the
end of the T wave. Likewise, computer programs in the same study also showed greatest

variation when finding the T wave termination. Furthermore, many researchers wish to
monitor QT interval changes over a period of time by making use of ambulatory monitoring

equipment.

It is well known that the QT interval varies significantly with the heart rate and a

number offormula have been derived for correcting the QT interval. The most commonly used

formula is [78].

QTc =QT x (rate/60)1/2

4.8 TEST RESULTS USING CSE DS-3 AND DISCUSSIONS

After developing an algorithm for reliable detection of the QRS complex, the ECG
analysis software measures the fundamental ECG parameters by using the QRS location as a
sharp time reference. To validate this algorithm, CSE data set-3 was used. Table 4.1 shows
the basic ECG parameters measured by the program developed. Table 4.1 shows the ECG
parameters extracted from the 12 standard leads of CSE DS-3 record MA-OOl.DCD, which
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includes P-on, P-peak, P-off, QRS-on, Q-peak, Q-off, R-peak, R-off, S-peak, Ry -peak, QRS-

off, T-peak and T-end. At the bottom of table, five wave fiducials estimated by the software

namely P-on, P-off, QRS-on, QRS- off and T-end, are compared with those given in the CSE

reference. The results estimated by the programme and symbolized by 'PGM' is a median

value determined from the wave measurements of the 12 standard leads and the estimates

symbolized by 'MREF' is a median value of results given by CSE referee.

The comparison of software measurement results with referee results has been given in

Table 4.3. The CSE committee has published measurement results of 25 records out of 125,

hence the Table 4.3 shows only those 25 records. The comparison given in fable 4.3, of live

wave fiducial points namely, P-on, P-off, QRS-on, QRS-off and T-end, shows that the

most of the values are well within the tolerance limits suggested by the CSE working party.

These tolerance limits are derived from the median values of results submitted by five human

referees [147]. As indicated by small circles in Table 4.3, 11 out of 123 comparisons

(i.e. 5 wave fiducials x 25 cases, excluding two estimates of record 111, whose referee results

are not given by the CSE) are found outside the tolerance limits. Thus the overall accuracy of

the software in the measurement of five wave fiducials is about 91.00%. Therefore, the

parameters estimated by present software are found well within the recommended tolerances

given by the CSE Working Party.

Table 4.2 shows a comparison of the program estimate (symbolized as PGM) of the

five ECG fiducials. P-onset, P-oftset, QRS-onset, QRS-offset, T-end with the corresponding

median of the same ECG fiducials with the corresponding median MREF, of estimates given

by five CSE referees. At the end of the table, the recommended tolerances (T-limit), i.e., the

CSE recommended average standard deviations of these five ECG fiducials in milli-seconds

(ms) is cited by the CSE Working Party [147]. The results are shown in Fig 4.8(a-g).

The sampling frequency used in the CSE data base is 500Hz, a recommended tolerance

of 12 ms for P onset, would mean that a difference of 6 samples positions between the

statistical median of the five referees estimate and the program estimates is admissible. It may

be noted from the Table 4.3 that, in record nos. 6, 16, 21, 26, 31, 51, 56, 66, 71, 81, 91, 96,

106, 116 and 121, all five fiducials estimated using the developed software, are well within the

recommended tolerance limits from their respective median referee values. Thus, in a total of

125 measurement estimates reported in Table 4.3, over 91% of the program's estimates are

well within the recommended tolerance limit. This can be easily verified from Fig.4.8(a-g).

Figures 4.8(a-g) show the normalized deviation w.r.t. median (MRRF) of the parameters,
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Table 4.3 Summarv of ECG analysis results of 25 cases of CSE DS-3 database

Rec F on P Po ff QRSon Q R S R' QRS<iff T Terid

No. PGM REF pos PGM REF PGM REF pos pos pos pos PGM REF pos PGM REF

01 64 90 87 140 139 140 158 176 190 205 202 314 370 370cjo 2D
06 23 22 51 79 74 85 87 87 107 119 123 127 129 211 267 270

11 25 n 53 73 77 dOT 97l> 101 121 135 137 145 145 237 28! 281

16 31 35 59 80 86 101 102 107 119 131 141 147 144 233 279 283

21 99 105 131 167 164 177 181 177 203 219 219 233 233 355 419 420

26 41 40 69 105 99 145 141 153 185 209 — 222 225 303 365 365

31 41 38 73 105 100 123 124 133 149 161 167 173 173 265 309 311

36 <£jT~53^> 81 101 106 123 124 123 147 161 -- 179 185 263 331 320

41 57 56 81 109 106 131 127 135 149 161 170 C3J9 j9T> 287 337 340

46 27 26 63 CSC J30> 101 104 103 127 155 -- 167 172 275 343 340

51 13 13 43 73 68 91 90 91 105 119 131 137 135 199 253 246

56 79 78 107 135 132 167 170 169 191 203 211 219 218 329 385 391

61

66

51

67

53

63

91

93

127

119

123

120

<T75_~T65^>175

147

191

167

201

179

203 211

187

210

190

311

291

369

347

366

353140 137

71 43 44 77 102 97 123 119 129 143 157 157 165 161 243 299 301

76 39 35 65 97 99 127 124 131 149 165 173 Cj83 j]BD 269 321 320

81 37 40 57 105 100 125 122 125 149 163 -- 175 180 237 325 326

86 41 38 69 100 94 121 120 121 141 165 175 189 186 295 C347 JT7(E>
91 37 36 69 99 96 113 116 119 141 157 166 177 175 277 317 331

96 19 21 45 73 79 138 142 138 163 177 199 201 285 329 340

101

106

111

25

65

55

24

65

57

97

83

eg: *£> 93

127

doT

93 93

130 139

_95>103

113

155

119

129

169

133

173

137

177

139

134

177

145

217

297

207

269

345

268

346121

103

120

C255_^3Cf£>
116 51 50 79 103 109 116 120 127' 141 153 161 167 163 265 315 314

121 25 25 61 89 85 123 124 125 153 167 169 179 182 283 329 325

TLimit — 5— —6— —4- —t — 15—

PGM (median) - Results of our program (in sample numbers). REF -CSE Refree results

TLimit -To lerance limit recommended byCSE (in sample numbers)



140

120 -

100 -

3 80
Ui

C
u

*? 60
Q
W

^40

20

0

-2

Tolerance limit *•

-1 0 1

Normalised difference ( RFM-PGM)/T-limit

Fig. 4.S(a) Comparison of P-onsct program measurements with referee rrsnils

113



140

120 -

100 -

o
u
u

80 -

60 -

Q

3 40

20

0

Tolerance limit-

•1 0 1

Normalised difference ( RFM-PGM)/T-limil

Fig.4.8(b) Comparison of P-offset program mcasurcnicnls with referee results

114



-3-2-1012

Normalised difference ( RFM-PGM)/T-limit

Fig.4.8(c) Comparison of QRS-onset program measureiiieiits with referee results

115



140

120

100

.g 80
u

O
u
"J

7 60
00

Q

00

u40

20 -

0

Tolerance lim

•2-10123

Normalised difference ( RFM-PGM)/T-limit

Fig.4.8(d) Comparison of QRS-offsct program measurements with releree results

116



140

120 -

100 -

t/3

T3

oi
m

i

oo

Q
UJ
00

U

80 -

60

40

20

0

-3

Tolerance limit

-2-101234

Normalised difference ( RFM-PGM)/T-limit

Fig.4.8(e) Comparison of T-end program measurements with referee results

117



140

120 -

100 -

o
o

V

a;

80 -

60 -
00

Q
W

3 40

20 -

0

-Tolerance lim

-3-2-10123

Normalised difference ( RFM-PGM)/T-limit

• P-onset

b P-offset

a QRS-onset

T QRS-offset
♦ T-end

Fig.4.8(i) Comparison of live fiducial program measurements with releree results

118



£

c

E

1)

E

u
3

T3

5

O

3
U
'J

<

00 -

P-on

92%

PjoIT

92%

QRS-on

88%

QRS-ofl

92%

T-end

92%

HP up H §§§mp
80 - §§§§ ill 111 111 ill

- §§§ §§§ 111 111 •
60 - §1 • •
40 -

20 -

• • • • •
0 1 i f i f

0 3 4

Wave fiducials

Fig.4.8(g) Comparison of ECG wave fiducial measurements of CSE IXS-3 record

119



namely P onset, P offset, QRS onset, QRS offset and T end for the CSE multi-lead ECG

records of DS-3, for which the visual estimates are known. The parameters on the ordinate of

the graph is the record numbers' and on the abscissa are normalized deviation of a parameter

(say P onset), that is, a parameter deviation (|MREF-PGM|) from the median value of the

visual estimates provided by the human referees of the CSE database, is normalized with

respect to the tolerances of the measurement standards, given by The CSE Working Party

[149]. It can be observed from the Figs. 4.8(b-f) that the program's estimate of the parameters

P-onset, P-offset, QRS-onset and T-end are well within the recommended tolerances except in

case of 5 records for onset measurements and 6 records for offset measurements of ECG

waves.

From Table 4.3 and the Fig. 4.8(b), it can be observed that in two records, namely: 46

and 101, P-offset deviates by 5 samples (10 ms) and 3 samples (6 ms), respectively more than

the specified tolerance. The tolerance limits specified by the CSE for the ECG wave fiducials

P-onset, P-offset, QRS-onset, QRS-offset, T-end are 6, 6, 4, 6 and 15 samples, respectively. A

similar observation reveals that the estimation of the QRS onset in record number 6 deviates

by 4 samples (8 ms), in record 61 by 6 (12 ms) samples and record in record 111 by 3 (6 ms)

samples. In the QRS-offset in record numbers 41 and 76, the deviation is of 8 samples. Out of

a total 123 fiducial location estimates (i.e. five wave fiducial locations in each of the 25 ECG

records, except two estimates), 11 estimates deviate from the tolerance as shown in Fig.

4.8(1). Hence it does not significantly affect the estimation of the diagnostically significant

parameters of the ECG analysis. Thus, the algorithm estimation is within the tolerance band in

91.0% of the estimates.

The software has also been tested using the ECGs recorded in the laboratory. Some

sample records are given in the Figures 4.9(a-e). Fig. 4.9(a) shows Lead 1 recording from a

subject and the * markings on complete recording indicates the detection of QRS complexes.

Out of 9 beats present in the record, 5 beats have been scanned for feature extraction and the

resulting diagnostic parameters are given at the bottom of the same Fig. 4.9(a). Looking to the

fundamental measurements indicated by vertical lines and the diagnostic parameters extracted

from 5 beats, it is clear that the software is reliable to work with indigenous database.

Estimated parameters from the five beats, namely heart rate is in the range of 84 to 89 BPM,

QRS duration is in the range of 0.08 to 0.09 sec and VAT is in the range from 0.03 to 0.04

sec. In addition, all other parameters are in the normal range. The verification of the actual

heart rate measured by pulse rate matches 100% with the median value of heart rate estimate

120



***** ** **

JjyAq-4-"^-O^V»4^^-*^4y'V~•'4'̂ '̂ ^ Original
*n **r *R *n +»n

Sig.

I I I

/I \
I

-

Beat-4 Beat-5

ECG Parameters of Diagnostic Significance

HR

BFM

89.27

88.25

85.15

84.84

85.63

P-A

mu

0.05

0.02

0.05

0.04

0.04

Pdur

sec

0.11

0.07

0.11

0.11

0.09

PRint

sec

0.14

0.17

0.15

0.16

0.15

QRSint QRSp-p QT-int UAT
sec

0.09

0.08

0.08

0.08

0.08

mu

0.47

0.44

0.45

0.47

0.46

sec

0.36

0.36

0.36

0.33

0.31

sec

0.04

0.04

0.03

0.03

0.03

T-A

mu

0.05

0.14

0.17

0.14

0.14

Fig. 4.9(a) Analysis of a ECG signal recorded in the laboratory
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Fig. 4.9(c) Analysis of a ECG signal recorded in the laboratory

(Subject Information : Age 38, Sex Male)
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Fig. 4.9(e) Analysis of a ECG signal recorded in the laboratory
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125



from 5 beats. Other four ECGs recorded from four different subjects are show in

Figs. 4.9(b-e). The ECG parameter estimates from these records are given and the accuracy in

identification of ECG wave segments can be visually observed from the vertical lines at the

main wave fiducial locations (P-on, P-peak, P-off, QRS-on and -off, T-peak and -end).

4.9 TEST RESULTS USING CSE DS-5 AND DISCUSSIONS

As explained in the first chapter, the CSE DS-3 is called a measurement data set

because CSE has published the measurement results of this data set. Therefore, to evaluate the

performance of the developed software, the results can be compared with the results published

by the CSE group. This database is such, in which, a section of beats in all 12 standard leads

having least noise and baseline wander has been selected and copied repeatedly to construct

the complete record of length 8-10 seconds. This is in consideration that the original

recordings usually contain lot of beta-to-beat variability and give beatwise variations in the

parameter values. Hence the comparison of various programs becomes difficult as they give

different results on the same data set. Though, it is not artificial but constructed from the real

recording, the DS-3 is called an artificial data set.

After confirmation of the reliability of software using CSE DS-3, diagnostic dataset

(CSE DS-5) has been used for analysis and disease diagnosis. As shown in Fig. 4.10(a-c),

three ECGs of record D-0001.DCD from CSE DS-5 are given. Here five beats from each

ECG lead have been scanned to extract the parameters. As in the case of CSE DS-3 records,

measurements from 5 beats show the same parameters with no variable values as all beats in

an ECG remained to be the same (hence it may be called as artificial dataset). The CSE DS-5

contents original recordings and show variations in the parameter estimates, these are shown

at the bottom of Fig. 4.10(a). For example, in lead I (Fig. 4.10(a)), heart rate readings are

56.82 BPM for beat-1, 58.25BPM for Beat-2 and 57.69, 59.76 and 60.24 BPM for remaining

three beats, respectively. In the same manner, other parameters namely, P-amplitude, P-

duration, PR-interval, QRS-interval, QRS-p-p, QT-interval, VAT, T-amplitude and the net

QRS deflection show variations as per the beat measurements. Five main wave fiducials

measured from five beats of D-00001.DCD record are given below to compare measurements

of same fiducials in different beats. The median values of wave onsets and offsets mentioned in

sample numbers for P, QRS and T end estimates from five beats are almost in the same range,

indicating the exact measurements.
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Fig. 4.10(a) Analysis of 5 beats in a ECG signal (CSE DS-5 record D-00001, Lead I)
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Fig. 4.10(b) Analysis of5 beats in aECG signal (CSE DS-5 record D-00001, Lead II)
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Fig. 4.10(c) Analysis of 5 beats in a ECG signal (CSE DS-5 record D-00001, Lead III)
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Beat P

-on

P

-off

P

(off-on)
QRS

-on

QRS

-off

QRS

(off-on)
T

-end

T -end to

QRS-on

1 112 156 44 196 238 42 396 200

2 106 157 51 193 236 43 392 199

3 102 158 56 195 235 40 392 197

4 110 160 50 196 236 40 392 196

5 110 159 49 195 236 41 394 197

4.10 STATISTICAL ANALYSIS OF ECG PARAMETERS

Statistical analysis in Tables 4.4 (a-e) is given for the program estimates carried using

the CSE DS-5. The median values are calculated from the measurements of standard 12 leads

ECGs in all 5 beats, separately, as well as for all combined five beats [95]. This includes main

five wave fiducials i.e. P -onsets and -offsets, QRS -onsets and -offsets, and T end. From a

record, five regular beats per lead are selected and about 29 parameters per beat per lead are

extracted. Hence total parameters of a beat from a record containing 12 leads result in

12x25 = 348 measurements. The software extracts the parameters from five such beats in 12

standard leads.

Results are produced in the form wave onsets and offsets, various listings and tables

containing comparisons of individual 5 beats results with median program results. Mean,

Standard Error (SE), Median, Mode, Standard Deviation (SD) and Standard Variance (SV)

are calculated for both the data sets DS-3 and DS-5. For DS-3, as the different beats in a lead

are same, there is no point in giving details of mean, SE, median and SD. For DS-5, parameter

statistics is performed to evaluate mean differences and variances between individual and

median values of program results. With respect to interval and amplitude measurements of

various components ofthe QRS complex (Q, R, S, R', S7 waves) as well as ofthe P wave and

ST-T complex, a median value of program results from 12 SL is used as a reference to

compare individual results. The average measurements of P, PR, QT, and QRS duration

obtained from the 12 lead were compared with the median values. These details are given at

the bottom of Tables 4.4(a-e).

The median results derived from combined 12 lead measurements proved to correlate

in the best way with the results of the visual analysis. The statistical parameters, namely, SE
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Table 4.4 (a) Fundamental and diagnostically important ECG parameters of record CSE DS-5 D-00001.DCD, beat-1

:Pon Ppos
isampi No sampi No mv

—
129

Potf

sampl No ImV

157

1561

IStandard Error

[QRSon Qpos Qamp Ramp Samp Son QRSolt Tpos Tamo
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197 197
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Table 4.4 (b) Fundamental and diagnostically important ECG parameters of record CSE DS-5 D-00001.DCD. beat-2

Pamp IQRS-Tbln QRSon
isampl.No saiTi3i.N0 mv isampl.No |mV sampl No mV

Ramp
samp Nc samp No

Spos Samp ISoff IR-
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0.004275' 0.009257 0 000497 0 00257 0 000336 0 49140910.004024:0.000127 0 056645

samol No -mV

•10.02

1095



Table 4.4 (c) Fundamental and diagnostically important ECG parameters of record CSE DS-5 D-00001.DCD, beat-3

Lead ;Pon Ppcs P-bline Pamp Potl 'ORS-Tm ORSon Qoos Qam: Qofl Rcos Ramp Rod Spos ;Samp So" R QRSol Tpos Tarn 3 Tend QRSne'.D

sampl No sa-p SO mV r iv isampl.No nv isampl.No samol No mv samol No samp: No mv samol No sampl No imV isampi No sampl.No sampl No sampi No mv samp No I TlV

i 101 •37 0.029 0.08 157i -0 047 197 197 -COS 199 217 1.1 239 257, -0.09 262 0 265 365 0 07 397 17.73

II 104 •28 0.052 011! 156| -0 108 196, 196 -0 06 197 216. 0 81 232 232 -0.03 232 0 232 364 0 12 392: 14.27

ill ill •31 0.019 0.08; 1631 -0009: 195 195 -0.C2 195 203: 0.03 207 215: -0.29 220. 0 235 299 0.1 3311 -3.86

aVR 160 176 0.026 0.08 2161 -O 071 180: 180 0 C7 180 196 0 12 202 2161 -0.89, 221 0 228 280 0 14 332 -9.47

aVL 128 152 -0.003 0.04 184 -0.029, 196 196 -OC1 197 216 0.7 236' 256 -0.06 261 0 264 280 -0 1 304 i 11.05

aVF 118 138 0.034 0.1 1701 -0 031: 202, 202 -0.03 207 226: 0.27 238 2381 -0.03, 240 0 240: 374 0.08 402 4.91

VI 144 172 -0,003 0.05 216 -0.162! 180 180 004 180 196 0.18 204 216i -1.26 221 0 234 340 0.21 380 -1544

V2 96 132 0.046 0,1 156 01951 176' 176 -005 176 200 0.39 206 2161 -2.09 221 0 237; 344 067 388 -29 16

V3 92 128 0 032 o.i; 152 -0.0891 172' 172 -O 05 184 196 0.38 202 216 -1.95 221 0 236 340 0.72 396 -26 03

V4 89 129 0.016 0,08 149 0.033 169 169 -C 06 186 201 0 46 209. 217 -0.87 222 0 233 34' 0.43 393 -3.9

V5 100 •44 0.036 0.07I 160 0 017 196 196' -C05 200 216 131 229 232 -0.34, 237 0 244 364 0.19 3921 19

V6 96 140 0.047 0.07 156 0.069: 196 196 -0 09 198 216, 1.52 232 232 -0.03 232 G 232 372 0.12 479 2561

! 1 ! 1
Median 102.5 158.5 195 5 235.5 392

!
i i 1 '

Lead HR 'P-A 'Pdur 'PRint QRSint QRSp-p :QT-mt VAT T-A
BPM imv isec isec sec mv isec isec imv

II 57.69! 0.111 0.1V 02 0.14 1.19, 0.4 0.04! 0.07

III 57.8J 0 161 0.1, 0 19 0.07 084, 0.39' 0.04! 0.12
III 57.58! 0.1: 0.1' 0 17 0.08 0.32' 0.27. 0.02! 0.1 ,

aVR 57.69! 0.1: 011 0 04 0.1' 101; 0.3; 0.03! 0.14

laVL 57 81 0.05' 0.11' 0 14 0.14 0 76' 0.22 0.04: -0.1

aVF 57.8' 0.12' 0.1 CIS 0.08 0.3 0.4 0.05' O.OSj
IV1 57.69 0.08 014 0.07 011 145 04 0.03 0.21

IV2 57.92 0.15 0.12 016 0.12 248 0 42 0.05' 0.67I

IV3 5758' 0.13. 0.12 0.18 0.13 2.34 0.45' 0.05: 0.72!

IV4 5597 0.09' 012' 0 19 0.13 1.35 0.45 0.061 0.43!

IV5 5769! 0.11 0.12 0.2 0.1 165' 0.39 0.04' 0.19

|V6 57.8! 0.12 0.12 02 0.07 1.55 0.57 0.041 0.12

iMean 57.58417! 0.11 0.114167 0 16 0105833 1.27 0.388333 0.040833: 0.229167

Standard E ror i 0 149481 | 0.008616 0.003362 0.015176 0007633 0.199108 0.026424 0.003126 0.071674
Median 57.69: 0.11; 0.115 0 18 0 105 1.27 0 4 0.04! 0.13]
Mode 57.69' 0.11 0.12 0 2 0.14 »N/A 0 4 0 04! 0.121

[Standard Deviation ! 0 517818' 0.029848 0 011645 0.05257 0 C26443 0 6e973 0.091536 0.010836! 0.248978

ISampie Variance 0.268136 0 000891 0 000136 0.002754 0 000699 0.475727 0.008379 0.000117( 0.06199 j



Table 4.4 (d) Fundamental and diagnostically important ECG parameters of record CSE DS-5 D-00001.DCD, beat-4

Median

iPon Ppos iP-blme
sampl No samp! No mV

Pamp

105

96

119

164

148

122

152

92

84

108

112

110

131!

176

1641

142|
172

132

132

12s!
144!

148

0 026

0 044

0 032

0033

0034

0.048

0002

0043

0.027

0.015

0 037

0.116

Potl QRS-Tbin

sampl No imV

IQRSon Qpos Qamo Oc"

isampi No sampl No ,mv samp

-0.04 20

Poos IRamp ISpos Samp
: sampl No ImV sampl.No isampi.No :mV

Sotl :R'

sampl.No 'sampl No samp; No sampl No mv
157

184'

147i 0.0281

216i

176

190 0.005

216!
156!

-0 1371

0.173!

156!

149

160

160!

160i

196

199

180

200

197

196

199

180|
200-

176

176

^)06

-0.02

0.06

-001

-0.04

0.03

•0.04

-0.04

-0.04

-0.06

-0.13

59 74 0.109167 0.111667

200

180

201

209

197

200

217]
216

207!

1961

216

226

196

196

200

216!

2421

236

2081
204

239

242

202

2041

2051

209

228

236

QRSp-p IQT-int

I

•0 07

-0.03

-0 19

-0.92

-0.04

-0.02

-1.17

-2 06

-1 84

-0.86

-0.31

Standard Error
525 0 1025: 1.2975 0.389167' 0.038333 0.211667

0.038612 0.009 0.009911 0 016243 0 00617 0.205641 0 014586' 0.002973; 0.0682
0.105

59.76
0.391

IStandard Deviation I 0.133757 0.031176 0 034333 0C562J-; C021373 0.71236 0.050535! 0.010299, 0.236252~
ISampleVanance I 0.017891 0000972 0.001179 0O03-6; 003-0457, 0.507457 0.002554! 0.000106' 0055815

266 .

236

244.

221

QRSoH Tpos Tamp

238

229

365

364

315

292

312

386

336

340!

344

3411

360,

372

Tend ORSnetD

sampl No mV

393

392

355,

332!

3641

4181

3761

396

396

389

392

392



Table4.4 (e) Fundamental and diagnostically important ECG parameters of record CSE DS-5 D-00001.DCD. beat-5

sampl.No sampl No
Pamp

isampi No imV
QRSon Qoos

sampl No sampl No samol No sampl No mV

Spos Samp QRSoH Toos
sampl No isampi No mV sampl No sampl No sampl.No sa-pi No mV isampi No mV

228

QRSp-p QT-int

I 59.88

Standard Error
Oil C 111667 0.1675 0 0975 1276333 0 408333 0.039167 0.226667

0.029542 0.007687 0 007769 0.009364 C0O6292 0.200363 0.014346 0.00358 0 067244
59 86 0.105 1 115 0 175 0.095

59 88

1 27 0.4 004 0.13

ISlandard Deviation ; 0.102336 0 026629 3 326912 0 032509 C321794 0.694077
Sample Variance ! 0 010473 0 000709

0049696 0012401 0 232939

300475 0 481742 0 00247 0.000154 0 054261



and SD derived from 12 SL measurement show the best performance of the ECG analysis. For

example, in beat-1 of CSE DS-5 Record D-0001.DCD (Table 4.4(a)), for heart rate estimates

the mean value is 56.8058 BPM, variance is 0.3503, SE is 0.170 and SD 0.5918, for P-

amplitude, the mean value is 0.1075 mV, variance is 0.0008, SE is 0.008, and SD is 0.0292;

for P-duration, the mean value is 0.0975 sec, variance is 0.0008, SE is 0.008 and SD is

0.0295; for PR-interval, the mean value is 0.1533 sec, variance is 0.0011, SE is 0.009 and SD

is 0.0336; for QRS-interval, the mean value is 0.1108 sec, variance is 0.0009, SE is 0.009 and

SD is 0.0314; for QRS p-p, the mean value is 1.2950 mV, variance is 0.4928, SE is 0.202 and

SD is 0.7020; for QT-interval, the mean value is 0.3941 sec, variance is 0.0038, SE is 0.017

and SD is 0.0620; for VAT, the mean value is 0.0433 sec, variance is 0.0004, SE is 0.006 and

SD is 0.0210, and for T amplitude, the mean value is 0.21 mV, variance is 0.0575, SE is 0.069

and SD is 0.2398. As expected, the duration related parameters in a beat (beat 1 of all 12 SL)

showed small variations in value of parameters as compared to amplitude related parameters.

This is because a wave in different leads has different amplitude values and nearly same

duration values [42,74].

The SD for different parameters (Table 4.4(a), beat 1) varies from 0.021 to 0.702 The

highest SD (0.702) belongs to QRS p-p and the lowest belongs to S position, therefore, the

parameter estimates from individual 12 SL are coinciding best with overall program median.

4.11 CONCLUSIONS

The ultimate aim of the ECG analysis is the disease diagnosis. In general, the

automated disease diagnostic is being carried out by observing the limits of the ECG *

parameters and by applying different scoring criteria for the disease classification. Therefore,

the reliability of the disease diagnosis is totally dependent on accuracy of the ECG parameter

estimates. As discussed earlier, the check has been made by comparing the program results

with the referee results in case of CSE DS-3 dataset and statistical analysis has been used to

see that the measurements are reliable and accurate.

On the basis of the outcomes of the present work, it can be stated that the use of the

combined wavelets in the ECG analysis has the following advantages:

(i) The WT detects the QRS complexes with high sensitivity and eliminates baseline

wander, artifacts and noise. This avoids the use of additional filters for noise reduction.
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(ii) The approach of combined wavelets proved very powerful as it gives high sensitivity

for QRS, P and T detection compared to other existing methods ofdetection even with signals

corrupted with baseline wander, noise and artifacts.

(iii) The aspect ofavoiding down-sampling the output of high-pass filter reduces the loss of

information.

(iv) The smoothing feature ofthe DU6 wavelet makes it more suitable than the QS wavelet

to detect P and T wave fiducials.

(v) Usually, the fixed window width concept fails due to variability in the heart rate,

therefore, the use ofa variable window width determined from the R-R interval gave accurate
results.

(vi) Due to high accuracy ofR-R interval measurement, this method may find wider use in

the detection of arrhythmia and heart rate variability and the use of WT will definitely find

distinct place for itself in the field ofcomputer aided ECG analysis and interpretation.
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CHAPTER - V

DISEASE DIAGNOSIS USING MULTILEAD ECG

5.1 INTRODUCTION

The number of cardiac patients are increasing at an alarming rate and it is not

practically possible to take care of all of them by the limited number of existing expert

cardiologists. This situation is not only true for India, but exists in every country in the world.

Computer aided interpretation and diagnostics is the only solution to this problem. This

problem was anticipated by the researchers as long as about 43 years ago and the first attempt

to automate ECG analysis by digital computer was made in 1957 by Pipberger et al.[l 10].

During last 40 years, computer based ECG processing and analysis has gained tremendous

momentum and the developments related to computer aided analysis of ECG signals have

gone hand-in-hand with the advances in computing technology [80]. Computerized ECG

analysis and interpretation requires signal conditioning, data acquisition, processing, feature

extraction, inferencing and disease diagnosis. Drazen reported that in the year 1987 over 50

million ECG signals were analyzed using computer based technique in North America only.

Macfarlane et al. [80] reported that this level at least doubled by the year 1990. This itself

indicates the utmost necessity of the computer based systems for the cardiac disease

diagnostics.

The ultimate aim of ECG analysis is disease diagnosis. The diseases namely, Left

Ventricular Hypertrophy (LVH), Right Ventricular Hypertrophy (RVH), Myocardial

Infarction (MI), Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB),

Tachycardia and Bradycardia are the common heart diseases seen in the heart patients.

Therefore, the same diseases are considered in the present work. In general, disease diagnosis

is carried out by observing the limits of ECG parameters, i.e. application of different scoring

criteria for disease classification. The reliability of disease classification is based on accuracy

of the measured parameters and the use of more than one criterion simultaneously [78,102].

A good number of techniques have been developed for the feature extraction which

are broadly classified (as discussed in earlier chapters) into four categories, namely i)

syntactic, ii) non-syntactic, iii) hybrid and iv) transformative techniques. Currently WT based

feature extraction techniques have gained lot of attention of researchers and are being

exploited for effective and dependable tools for computer aided diagnostics. One of the

reasons in favour of WTs is that, they characterize the local regularity of signals by

decomposing the signal into elementary building blocks that are well localized both in time
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and frequency, and thereby, make them robust to eliminate noise. It is being felt by the
researchers that in future, WT may be the ultimate choice for ECG feature extraction.

To see that the measured parameters provide correct diagnosis, we have used firstly

the CSE DS-3 data records and the alternate scoring criteria for the same disease [93,102]. If

both the criteria give the same diagnostic statement for the same input parameters, then this

reflects the accuracy of the estimated measurements. This is due to the fact that different

scoring criteria use different ECG parameters to diagnose the same disease. The scoring
criteria to detect LVH and RVH used by Marriot [91], S.S. Mehta et al. [93], and

Maheshwari et al. [82], have been used and are given in Tables 5.1 - 5.3. The use of two
criteria has been made to cross check and confirm the disease diagnostics. The detection of

tachycardia or bradycardia is made on the basis of heart rate, if it is above 100 beats/min, it is
the case oftachycardia and ifit is below 60 beats/min, it is the case ofbradycardia [42].

This chapter deals with a computer based cardiac disease diagnosis system which has
been developed using the wavelet transforms for QRS detection and for logical interweaved
inferences for Left Ventricle Hypertrophy (LVH), Right Ventricle Hypertrophy (RVH),

Myocardial Infarction (MI), Right Bundle Branch Block (RBBB) and Left Bundle Branch
Block (LBBB). The system has been tested for its diagnostic performance for the above
diseases using modified scoring criteria developed in this work. The results are compared
with the diagnostic results reported by the CSE Working Party and existing scoring criteria
reported by other workers. The developed system with the combined use of wavelets and the
modified scoring criteria is expected to establish itself as an ideal solution for computer aided

diagnostics of cardiac diseases.

5.2 CARDIAC DISEASES

More common cardiac diseases namely, LVH, RVH, MI, RBBB and LBBB have

been considered in this work. This section explains the commonly used interpretation criteria

for a particular disease.

5.2.1 Electrical Axis of QRS

As previously stated, the total electrical activity produced by ventricular
depolarization may be expressed as avector, i.e., the mean QRS vector. In the plane of the
limb leads (frontal plane), it can be represented as an arrow originating from the center of the
Einthoven's triangle. This arrow is called the mean manifest QRS electrical axis or the mean

QRS axis in the frontal plane.
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Table 5.1 Scoring criteria for RBBB and LBBB

Criteria

RBBB Criteria

QRS duration in VI >= 0.12 sec

VAT in Vl>= 0.08 sec

R'>R in VI

Tin VI <-0.1 mV(inverted T)
QinVl !<-0.01mV&
Q duration = 0 sec (No Q in VI)

LBBB Criteria

QRS duration in V5 or V6 >= 0.12 sec
VAT in V5-6>= 0.08 sec
IORin V5-6

T in V5-6 < -0.1 mV

Qin V5-6 K-0.01 mV &
Q duration == 0 sec

140

Point score

01

01

01

01

01

If Total score >=3, RBBB

01

01

01

01

01

If Total score >=3, LBBB



Table 5.2 Existing and modified LVII scoring criteria

[A~ Mehta et al.[93] score Diagnostics

01 Minimal criteria : RaVL > 11 mm or
RV5 V6 > 27 mm or SV1 + RV5, V6 >35 mm 03 If total score is

02 VAT in V5 ,V6 > 0.05 s 01 = 3, LVH possible

03 QRS duration > 0.1 s 01 = 4, LVH probable

04 ST- segment depression &T inversion in V5, V6 01 > 5 with minimal criteria

05 Rl + Sill > 26 mm in horizontal heart (-30° < satisfied, LVH definite.

QFPA < 0°) 01

06 RaVF > 20 mm in vertical heart (75° < QFPA <
01

02
110°)

0/ Frontal plane QRS axis superior to -30°
B Okajima et al.[102]

01 RV6 > 2.6 mV 03 If total score is

0? RV5 > 2.6 mV 03 > 4, with abnormal ST-T on

03 RaVL > 1.2 mV 02 leads V5, V6 or RV5, V6

04 Rl.ll.lll.aVF > 2.5 mV 01 > 4.0 mV, definite LVH

05 |QV5| < |QV6| &QV6 < -0.5 mV 02 >6, definite LVH

06 RV6 + |SV1|>3.5mV 03

07 RV5 + |SV1|>3.5mV 02

08 Rl> 1.5 mV 02

09 -30° > axis > -90° 01

10 -5° > axis > -30° ( < 11 years ) 01

C Marriot [91]
01 R or S in limb lead >20 mm or SV1.V2 ;>30 mm If total score is

or RV5, V6 > 30 mm 03 = 4, probable LVH

02 Any ST shift (without digitalis ) 03 = 5, definite LVH

Typical 'strain' ST-T ( with digitalis ) 01

03 LAD (-30° or more) 02

01

01

03

04 QRS interval > 0.09 s
05 I.D. in V5,V6> 0.05 s
06 P - terminal force in V1 > 0.04
D Modified Scoring Criteria

01 Rl + Sill > 2.5mV with horizontal heart 02

02 RV5 + RV6 + SVl£3.5mV 02 If total score is

03 RV5, V6 > 2.6mV 02 > 4, LVH possible
04 RaVL > 1.1 mV with horizontal heart 2: 6, LVH probable

or RaVF >2.0mV with vertical heart 02 ^ 8, LVH definite
05 ST- segment depression &T inversion in V5, V6 01

06 VAT in V5 ,V6 > 0.05 s 01

07 QRS duration > 0.11 s 01

08 LAD (-30° to-90°) 01

09 Q wave present in V1, V2 01 1
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Table 5.3 Existing and modified RVH scoring criteria

A Mehta efal.[93] Score Diagnostics

01

02

03

04

05

06

07

08

Minimal criteria RAD or Rs (R/S > 1) or
qR (R/Q > 1) with VAT > 0.03 s in V1
Persistent S-peak in V5, V6
ST- segment depression & T inversion in V1
ST- segment depression & T inversion in V2
ST- segment depression & T inversion in V3
ST- segment depression & T inversion in II & III
RaVR> 5 mm

RaVF > 5 mm with ST-T inversion in aVF

03

01

01

01

01

01

01

01

If total score is

= 3, RVH possible
= 4, RVH probable
> 5 with minimal criteria

satisfied, RVH definite

B Okajima efal.fi02]
01

02

03

04

05

06

07

RV1 > 0.5 mV

RV1 >1.0mV &RV1>SV1 &

negative TV1<-0.2 mV
Q<-0.1 mV & RV1 >SV1

Both R<S/2 and Rv4D0mV

RV5 < SV6 or RV5, V6 < -1.5 mV
SV5. V6<-1.5mV
RAD

03

03

01

01

01

01

01

If total score is

= 3, possible RVH
> 4, probable RVH
^ 6, definite RVH

C Maheshwari et al.[82]
01

02

03

04

05

06

07

08

Axis > 90° (begin scoring)
Axis> 110°

RV5, V6 > 2.6 mV
Rl, II, III, aVF > 2.5 mV
RV1 orR'VI >0.5mV

ST depression > 0.2 & TV1, V2, V3 < -0.1 each
RV4 < S/2 and RV4> 0 mV

R/S< or R<1.5mV in V5.V6 orS<-0.5mV inV5, V6

03

03

01

02

01

01

02

If total score is

> 4, cannot rule out RVH
> 6, possible RVH
£ 8, definite RVH

D Modified RVH Scoring Criteria
01

02

03

04

05

06

07

08

09

RV1 + SV5 >=1.05 mV or RV1+SV6 >=1.05 mV

RV1 > 0.7 mV

RaVR > 0.5 mV

SV1 < -0.2 mV

ST- segment depression & T inversion in V1
VAT in V1 > 0.035 s

QRS duration > 0.11 s

RAD (90° to-150°)
Q wave present in V1

01

01

01

01

01

01

01

01

01

If total score is

> 4, RVH possible
> 6, RVH probable
> 8, RVH definite
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An accurate determination of the QRS axis can be made utilizing the QRS deflection

in any two of the three standard limb leads. The net area enclosed under the QRS in each
given lead is first calculated. The net area is the algebraic sum ofthe negative and positive
areas. This is expressed in microvolts-seconds. The calculated net area of each given lead is

then appropriately represented on the Einthoven's triangle [74,78].

5.2.2 Significance of the QRS Axis

Axis is expressed in degrees as a deviation from the 3O'clock axis (lead I at 0"). Left
axis deviation (LAD) is to exist when the axis lies between -90° and -30° (clockwise) and

right axis deviation (RAD) is present when the axis lies between +90" and -150" through
180°. The normal range offrontal plane QRS axis (FPA) is between -30° and 90" through 0°.
However, the electrical axis in some normal individuals has been found to range from -30 to

90°. Conversely, the people with definite evidence of heart disease, such as ventricular

hypertrophy (VH), may display a normal axis. Because of this fact, many authors felt that the
electrical axis had little value in diagnosis [74,145]. However, FPA lying outside the range

between -30" and 90", indicates the probability of ventricular hypertrophy, conduction defect,

or myocardial infarction.

It is obvious that the QRS axis varies with the age, body built and different diseases

[42,74]. In RVH with congenital heart disease, the QRS axis may be found between -90" and
-150°. In LVH, the QRS axis is often present between 0" and -45", although it may deviate

rightwards as far as between +60" and +90" (particularly in adolescent rheumatic aortic
disease, where coexisting right ventricular prominence may account for the lack ofLAD). In
RVH, the QRS axis usually deviates rightwards, to lie between +90" and +150", although no
axis deviation may be present. In LBBB, the QRS axis is usually between 0" and -75". In
general, the greater the block, the greater is the left axis deviation. In RBBB, the QRS axis
may be found between +90" and -90°, depending on the type of RBBB; also, occasionally
LAD in the extremity leads (QRS axis around -75") may be mistaken for LBBB, but the chest
leads establish the diagnosis of RBBB. In MI, the QRS axis also undergoes adeviation, since
the QRS vector forces tend to move away from the "dead zone". The explanation for this
statement is that, under normal conditions the vector forces in a given ventricular wall are at

least, partially neutralized by those forces produced in the opposite wall. In MI, the necrotic
zone of muscle becomes electrically inactive, so that the electrical forces in the opposite
healthy wall are transmitted unopposed, with no forces to counterbalance them, and the
vector force tends to move away from the zone of infarcted muscles. An anterolateral Ml will
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have a QRS axis pointing upward, around -60", away from the infarcted area. Thus the QRS

axis can be a useful adjunct, if used intelligently, in the analysis of the clinical

electrocardiogram [74],

5.2.3 Left Ventricular Hypertrophy

The elecrocardiographic interpretation of ventricular abnormalities particularly

hypertrophy, bundle branch block (BBB) and MI, has been greatly simplified by the

application of the unipolar scalar technique. The chest leads are less influenced by position.

They offer more favorable advantage points and record a more valid picture (morphology) of

altered myocardial potentials as they are close to heart. For example, in LVH and LBBB, the

left precordial leads demonstrate characteristic abnormal morphologic patterns. Similarly, the

right precordial leads reflect diagnostic alterations in RVH and in RBBB. It is important to

remember that, the entire ECGs (the standard extremity leads and the chest leads) must be

analyzed and correlated with the panoramic morphologic picture in order to reach a valid

interpretation. In the abnormal, as well as the normal heart, one should always try to explain

the morphology in each unipolar lead in terms of sequence ofactivation, from both the scalar

and the vectorial approach. Specific morphologic patterns exit for hypertrophy and for bundle

branch block [42,74,145],

Diagnostic Electrocardiographic signs of LVH:

(i) Increased voltage of QRS deflection: In the production of the normal left ventricular

surface pattern in leads V5 and V6, the R deflection results from the stimulus traveling

through the left ventricular wall toward the electrode. Similarly, in the recording of the

normal right ventricular surface pattern in lead VI, the S wave is also produced by the

activation wave in the left ventricular wall traveling away from the electrode. In the presence

of ventricular hypertrophy with increased electrical forces from the hypertrophied left

chamber, leads over the left precordium, V5 and V6 show high-amplitude R waves, and the

right precordial lead VI shows a deep S wave. The limb leads usually show left axis

deviation. Attention was drawn to the diagnostic significance of high-voltage QRS complexes

in the standard limb leads [74]. If the total voltage of the R wave in lead I and the S wave in

lead III equals 2.5 mV or more, LVH is suggested. This is true only when the hypertrophied

heart is in the horizontal position. However, the precordial leads, are more diagnostic of

cardiac hypertrophy than the limb leads. The presence of LVH in adults is suggested in the

unipolar leads when i) the sum of the left ventricular potentials (R wave in leads V5 and V6

and S wave in lead VI) totals 3.5 mV or more; ii) the voltage of the R wave in precordial
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lead V5 or V6 exceeds 2.6 mV; iii) the voltage of the R wave in lead aVL in the horizontal

heart exceeds 1.1 mV, or the R wave in lead aVF in the vertical heart exceeds 2 mV. It must

be pointed out, however, that diagnosis ofVH is open to an error when based solely on the

voltage of the QRS complex [74],

(ii) S-T Segment and T wave changes over the Left Ventricle: The S-T segment is

depressed and the T wave is inverted in leads V5 and V6, or other leads over the left
ventricle. In the right precordial leads (VI, V2), where the QRS is predominantly negative,
the T wave is upright and the S-T segment may be slightly elevated. The changes in S-T
segment and T wave of this type are secondary and presumably result from the altered
ventricular depolarization process in the presence ofLVH [42,74].

(iii) Delayed onset of intrinsicoid deflection over the Left Ventricle: The onset of the
intrinsicoid deflection is measured from the onset of the QRS to the peak of the R wave and

represents the time interval for passage of the impulse through the ventricles to the
epicardium underlying the exploring electrode. An increased mass of myocardium, as in
LVH, prolongs the time interval for the passage of the stimulus to the epicardial surface.
The onset of the intrinsicoid deflection in LVH thus occurs later than it would normally be in

the left precordial leads V5 and V6. The onset of the intrinsicoid deflection over the right

precordium is early [74].

(iv) Increased duration ofQRS complex: As aconsequence ofthe increased muscle mass,
the activation wave must travel longer than normal course, and hence, the QRS complex is

widened. The normal duration of the QRS interval in the standard limb leads may be

prolonged to 0.11 sec or even to 0.12 sec; however, it may also be 0.10 sec or less and still
compatible with the diagnosis of LVH. For example, anormal QRS interval in the range of
0.06 or 0.07 sec is possible, and in such a case, aduration of 0.08 or 0.09 sec could represent
its prolongation. Other factors which may be responsible for the increased duration of the
QRS complex are: i) lengthening of the conduction time required for spread of activation
over the endocardium in the dilated and hypertrophied ventricle and ii) incomplete LBBB. It

is also stated that 90 per cent of cases with first- degree LBBB (incomplete LBBB) have left
ventricular hypertrophy. Fig 5.1 illustrates the distinctive features of the precordial leads in
left ventricular hypertrophy.

(v) Left Axis Deviation: In LVH, the mean QRS axis usually, but not always, shows left axis
deviation, between -30° and -90". The reasons for this are: i) great increase in the left
ventricular muscle mass; ii) frequent occurrence of counterclockwise rotation around the
anteroposterior axis (horizontal position); iii) presence of counterclockwise rotation around
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Leads V2, V3, V4 :

The R wave increases in amplitude and
the S waves decreases in amplitude in leads
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Fig. 5.1 Precordial leads in LVII

[Lipman B.S, and Massie E.(74)]
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the longitudinal axis, due to which the free wall of the left ventricle is directed upward,
backward and to the left; and iv) in many cases, existence of some degree of LBBB, which

means that the septal forces are transmitted from right-to-left rather than in the normal
left-to-right manner. This alteration helps to deviate the QRS axis to the left. [74]

5.2.4 Right Ventricular Hypertrophy

Three main patterns usually considered suggestive of right ventricular hypertrophy
are: i) right axis deviation; ii) certain P wave abnormalities produced by atrial enlargement
which, by inference, were believed associated with RVH; and iii) apattern consisting chiefly
of deep S waves [74].

Diagnostic Electrocardiographic signs of RVH:

(i) Amplitude of QRS complex and R/S ratio: In RVH, there is increased amplitude of
those deflections produced by the right ventricular forces and decreased amplitude of those
deflections produced by left ventricular forces. Thus, the Rwave in the right chest lead VI
and the S wave in the left precordial leads V5 and V6 are ofgreater amplitude than normal
one. In the normal adult heart, the R/S ratio in lead VI is less than 1and the R/S ratio in lead

V5 or V6 is greater than 1. In RVH, the reverse is true; the R/S ratio in lead VI is greater
than 1 and in lead V5 or V6 is less than 1. Fig 5.2 illustrates the distinctive features of the

precordial leads in right ventricular hypertrophy.
The RVH in adults is suggested in the Vleads when i) the sum ofthe right ventricular

potentials (R wave in lead VI and Swave in lead V5 or V6) totals 1.05 mV or more; ii) the
voltage of the Rwave in precordial lead VI exceeds 0.7 mV; iii) the amplitude of the Rwave
in lead aVR is 0.5 mV or more; iv) the Swave in lead VI is less than -0.2 mV. It should be
pointed out again that diagnosis of ventricular hypertrophy is doubtful when dependent solely
on the voltage of the QRS complex [74].

(ii) S-T segment and T wave changes over the right ventricle: In chest lead VI, the S-T
segment may be depressed and the Twave inverted over the hypertrophied right ventricle, for
reasons identical with those given under S-T and Tchanges in left ventricular hypertrophy,
(iii) Delayed onset of intrinsicoid deflection over the right ventricle: In precordial lead
VI, the onset of the intrinsicoid deflection occurs later in RVH than it does normally (0.035

sec or more).

(iv) Duration of QRS complex: In contrast to the pattern in LVH, the QRS duration seldom
is prolonged, because even with hypertrophy, the thickness of the right ventricle dose not
exceed that ofthe left one. The QRS duration may measure 0.10 sec or more.
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(v) Right axis deviation: The mean QRS axis usually deviates rightward in RVH so that the

axis lies between +90° and -150". On the other hand, in some cases of RVH, there is no axis

deviation.

5.2.5 Intraventricular Conduction Delay

Bundle branch block is primarily an elecrocardiographic diagnosis. It occurs when the

spread of the excitation wave is delayed or obstructed in the bundle of Flis tissue below the

bifurcation into right and left main branches. The entire duration of the ventricular

depolarization process is called the intraventricular conduction time and is represented on the

ECG by the QRS interval. When the intraventricular conduction time is prolonged (widened

QRS complex), bundle branch block (BBB) may be considered to exist [37,74], If the QRS

interval is 0.12 sec or more, complete BBB may be diagnosed. If the intraventricular

conduction time is prolonged but is less than 0.12 sec, incomplete BBB is said to exist.

Right Bundle Branch Block: Bundle branch block has been logically divided into right and

left block, each is recognized electrocardiographically by characteristic precordial lead

morphologies. Referring to Fig.5.3, following are the criteria being used to diagnose the right

bundle branch block.

1. QRS widened to 0.12 sec or more.

2. Late onset of intrinsicoid deflection (VAT) in leads over the right ventricle: VAT in the

right precordial leads may be as late as 0.10 sec or more (normal activation time 0.015-0.035

sec). The delayed VAT is a fundamental criterion of RBBB and must be present to make the

diagnosis.

3. Increased amplitude of intrinsicoid deflection (R') in right precordial leads.

4. S-T segment and T wave changes in leads over the right ventricle.

5. Initial positivity in leads over the right ventricle: Q wave (initial cavity negative) in leads

over the right ventricle is usually ruled out right bundle branch block.

Left Bundle Branch Block: To diagnose the LBBB, same five criteria as explained for

RBBB but with different leads are used. Scoring schemes developed from these criteria are

given in Table 5.1.

5.2.6 Myocardial Infarction

Localized myocardial damage is one condition, in which the ECG if used correctly,

can be considered for clinical diagnostic assistance. The degree of myocardial damage may

be classified as first degree (mild), second degree (moderate), and third degree (severe).
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Table 5.4 Existing and modified MI scoring criteria

A Okajima etal.fi02]
Position criteria Anterior Lateral Inferior

V2 V3 V4 1 V5 V6 II III aVF

01 Q/R>1/3 & Q>36 msec 333 333 323

02 Q/R>1/3&Q>28msec 222 222 212

03 Q/R>1/4 & Q>24 msec 111111 10 1
04 with all three leads T< -0.1 3 3 3
05 with all two leads T< -0.1 2 2 2
06 with all one leads T< -0.1 1 1 1

>4, cannot rule out infarctiori £6, possibility of infarction >8, definite infarction

B 54 criteria/ 32 points , Macfarlane et al. [78]

Lead Criteria Ponts Score Lead Criteria Points Score

I Q>30 ms 1 2 R>50 msor R>1.5 mv 1

R/Q<1 or R<0.3mV 1 S<0.4 mV 1

II Q>40 ms or 2 2 V3 any Q or R<20ms 1 1

aVL
Q>30 ms

Q>30 ms

1

1 2 V4
R<0.2mV or RV3<RV1

Q>20 ms 1 3

2

1

1 3

aVF
R/Q<1

Qs50 ms

1

3

2

1

2

5
R/Qs0.5 or R/Ss0.5

R/Q^1 or R/S^1 or

or Q>40 ms R<0.7mVor notched R

or Q>30 ms
V5

Qs30 ms
2

R/Q<1 1 R/Q<1 or R/S<1

orR/Q<2 R/Q< 2 or R/S<2 or 1

V1 Anterior any Q 1 2 R<0.7 mV, notched R

S>1.8mV 1 V6 Q>30 ms 1 3

Posterior R/S>1 1 4 R/Q<1 or R/S<1 2

R>50ms&R>1mVor 2 R/Q<3 or R/S<3 or

R>40 ms &R>0.6mV 1

1

R<0.6 mV, notched R 1

S<0.3 mV

V2 Anterior any Q or 1 1

R<10msorR<0.1mV

Posterior R/S>1.5

R>60 ms & R>2 mV

1

2

4

Interpretation :
%MI =Total score * 3

32

C Modified Ml scoring criteria
V2 V

Anterior Lateral

3 V4 V5 V6 I aVL V6 I

Inferior

I III aVF

01 Q/R>= 1/4 &Q>= 0.04 sec 4 4 4 4 4 4 4 4 1̂ 4 4

02 Inverted T wave 1 1 111 111 111

>5, possible anterior Ml >4, pos sible lateral Ml >4, possible inferior Ml

>9, probable. anteriorMI >7, pro Dable lateral Ml >7, probable inferior Ml

>17, definite anterior N11 >11,de finite lal eral Ml >11, definite inferior Ml
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Electrocardiographically, first degree damage is ischemia (T wave change); second degree

damage is injury (S-T change); and third degree damage is infarction (QRS change).

The important diagnostic elecrocardiographic finding in Ml is an abnormal Q wave

(or QS complex) [42]. Small q waves are normal in many leads. They are commonly

recorded in leads I, aVF, and V4-6, and are not over 0.02 sec in duration, and the Q:R ratio is

less than 25%. The elecrocardiographic recording at any given moment in time represent the

mean of electrical forces going in many spatial directions. Because of this, approximately

90% of such forces are cancelled, leaving only 10% to be recorded. When MI of significant

extent occurs, the forces of depolarization from that area will be lost The result will be a

change in direction of the mean forces which will now be directed away from the site of

infarction. This is most significant during the initial 0.04-0.05 sec of ventricular

depolarization and results in the abnormal Q wave (or QS complex) in leads overlying the

infarct zone. An abnormal Q wave is defined by the criteria Q duration of 0.04 sec or greater

and Q:R ratio 25% or greater [74].

The first electrocardiographic finding in MI is ST segment elevation in a lead

overlying the area of infarction. Within the first few hours of infarction, 'giant' upright T

waves may be seen in leads overlying the infarct. After a period of hours or days, the ST

segment returns to the isoelectric line and T wave change occurs. The T waves begin to invert

in those leads that showed ST segment elevation [54,81,106],

By applying the criteria for recognition of infarction to specific leads, one can

determine the site of infarction as mentioned below:

Site of infarct Leads that reflect the infarct

Anterior V2-6

Inferior aVF (and II and 111)

Lateral I, aVL, and V6

5.3 EXISTING AND MODIFIED DISEASE DIAGNOSTIC CRITERIA

Out of the two classification methods, namely decision and fuzzy classifiers, decision

classifiers are in common use for ECG interpretation [16,43,59,155], In this work, three

important cardiac diseases LVH, RVH and MI (Anterior, Lateral and Inferior) are considered.

An exhaustive performance evaluation study of existing scoring schemes for disease

diagnostic interpretation has been carried out. In addition to the basis given in the literature,

data and recommendations published/ reported domestically or internationally; an exhaustive
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study of existing scoring schemes reported by Marriot et al.[91], Okajima et al.[l02],

Macfarlane et al.[79], Maheshwari et al.[82] and Mehta et al.[93], was carried out to

construct the modified scoring schemes and the decision tree classifier using modified

scoring schemes for LVH, RVH and myocardial infarction.

The performance study of the existing criteria has been carried out using the records

of the CSE DS-3 and CSE DS-5 dataset. The existing and modified scoring criteria are given

in Tables 5.2 - 5.4. In LVH criteria 'A' [93], the use has been made of 7 criteria with total

score of 10 points. Out of 7 criteria, 5 are amplitude and 2 duration based criteria. Seven

leads, namely I, III, aVL, aVF, VI, V5 and V6 have been used. The use of FPA is made and

no consideration to Q wave. The scoring scheme 'B' [102] in Table 5.2 consists of 10 criteria

with maximum score of 20 points. All 10 used criteria are amplitude dependent, and there is

no consideration to durations. In all, 8 leads, namely I, II, III, aVL, aVF, VI, V5 and V6 have

been used. The use of Q and FPA is also made and diagnostic interpretation is carried out

from the total score as detailed in Table 5.2.

Marriot's LVH scoring scheme 'C in Table 5.2 consists of 7 criteria with total score

of 14 points. In all, 5 amplitude and 2 duration criteria are used. There is a use of P-terminal

force and FPA, but no use of Q wave. Ten leads, namely I, II, III, aVR, aVl, aVF,Vl, V2, V5

and V6 have been used.

On the basis of the study of existing scoring criteria and details available in the

literature, a modified LVH scheme 'D', as given in Table 5.2 has been constructed.

On the similar lines, three existing RVH and two MI scoring criteria, given in Tables

5.3 and 5.4 are studied to develop the modified RVH and MI scoring schemes. All these

scoring schemes are based on amplitudes and durations of ECG waves. To extract these

parameters, the software discussed earlier, analyses 12 standard leads and generates five

output data files. Each data file contains four measurements, namely wave peak location,

peak amplitude, onset and offset of 6 ECG waves (P, Q, R, R, S, and T), hence first data file

corresponding to first beats in all 12 leads gives 288 measurements (i.e. 4 wave

measurements x 6 ECG waves x 12 leads). Using these measurements, the performance

evaluation of existing LVH, RVH and MI scoring schemes have been carried out to develop

modified scoring schemes to construct a decision tree classifier (shown in Fig. 5.4).

While developing the modified scoring schemes, following points have been kept

under consideration:

i) Common scoring criteria being used in existing schemes have been identified.
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ii) Additional criteria from the text books, data and recommendations from the published

reports, which are must and are not present in the existing schemes, have been

identified and included,

iii) For fixing the scoring thresholds values for interpretation, an exhaustive analysis has

been carried out using the CSE DS-3 and DS-5 data sets.

The modified scoring criteria contain all the required points given by other workers

and clearly bring out the diagnosis without any ambiguity. Software has been developed to

extract the ECG parameters of five beats from each lead using the standard 12 leads and

extended to implement the existing as well as modified scoring schemes for LVH, RVH and

MI diseases.

5.4 SOFTWARE DEVELOPMENT

Feature extraction software is extended to implement the existing as well as modified

scoring schemes for LVH, RVH and MI diseases. After validation of the modified scoring

criteria, the complete procedure of diagnostic as cited in a decision tree classifier has been

implemented. This classifier tree classifies the diseases by using the modified scoring criteria

and the criteria for LBBB, RBBB, Tachycardia, Bradycardia and also checks the rhythm and

heart rate variability (HRV). Details of HRV are discussed in the next chapter.

Algorithm:

i) As discussed in the earlier chapter, the diagnostic parameters, namely R-R interval, P

amplitude, P terminal force, QT, QTc, QRS p-p, QRS net deflection, FPA, HR and

VAT are determined,

ii) The diseases like Tachycardia, Bradycardia, LBBB and RBBB have been interpreted.

The HRV analysis is carried out by spectral and non-spectral indices. The curves like

interval tachogram, distribution density curve and PSD are obtained,

iii) To avoid the complicated computations in evaluating the point scoring for LVH,

RVH, MI, LBBB and RBBB, firstly minimal criteria (shown in Fig.5.4) are applied,

and if satisfied, then the remaining paths to add scoring points are considered,

iv) The thresholds defined for interpretation ofdiseases are to classify the disease,

v) Considering the parameters from the first data file, the diagnostic interpretation

procedure as give above is applied to classify diseases into LVH, RVH, MI (Anterior,

Lateral and Inferior), LBBB, and RBBB diseases or Normal. The procedure is

repeated for remaining four data files.
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vi) From a 12 leads ECG record of a patient, five individual beats are measured and

interpreted to result in five independent decisions. This may include LVH (possible/

probable/ definite) and/ or RVH (possible/ probable/ definite) and/ or Ml (anterior,

Lateral, Inferior) (possible/ probable/ definite) and/ or normal, and /or left bundle

branch block, right bundle branch block.

From these five individual results, the best of five interpretation results drawn from five data

files of five different beats are considered as the final diagnosis. These steps are more clear

from the example given in the following section:

5.5 TEST RESULTS AND DISCUSSIONS

5.5.1 Disease Diagnosis using CSE Dataset -3

Disease diagnostic testing has been carried out on all 125 cases of CSE DS-3

database. As an illustrative examples, detailed diagnostic results of 25 cases are shown in

Table 5.5. This shows the results of the criteria for LVH and RVH. The first set of criteria,

i.e. LVH criteria-I and RVH criteria-I, are the ones used by Mehta [93], and the second set

of criteria, i.e. LVH criteria-Il and RVH criteria-II, are the ones used by Marriot [91] and

Maheshwari et al.[82] and are given in Tables 5.2 - 5.4. As the diagnostic interpretation of

the ECGs from the CSE DS-3 database is not yet disclosed by the CSE, two alternate

diagnostic criteria have been used to enable the validation of the disease classification. It is

observed that the final diagnostic results obtained according to the score and the thresholds

used by both the criteria are the same. Overall disease diagnostic results obtained out of all

125 cases of CSE DS-3 are given below:

No. of cases of LVH (definite) 16

No. of cases of LVH (probable) 25

No. of cases of LVH (possible) 28

No. of cases ofRVH (definite) 18

No. of cases of RVH (probable) 11

No. of cases ofRVH (possible) 09

No. of cases of Tachycardia 07

No. of cases of Bradycardia 26

Some of the above listed cases are multidisease cases with overlap of more than one disease.
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Table 5.5 Heart disease diagnostic resuItsusingCSEDS-3databa.se

Record Heart Rale Net Deflection FPA IVII Score RVI 1 Score

No. ( BPM) ill Leads (mv)
1 II

(degrees) Cr-1 Cr-II Cr-I Cr-II

01 63.83 -0.45 -11.10 88.08 01 01 00 00

06 89.29 0.96 0.53 1.84 00 00 00 00

11 81.08 11.34 1.36 -23.34 01 01 00 00

16 93.75 -0.27 0.24 57.93 01 02 03 09 RVH

21 47.47 B -1.87 -4.52 65.79 01 01 00 00

26 47.47 B -1.87 -4.52 65.79 07 04 LVH 03 00 PoRVI 1

31 64.94 1.58 -1.19 -72.53 04 04 PrLVII 00 00

36 68.18 4.11 -5.59 -64.95 02 02 00 00

41 66.67 -0.14 -0.4 -6.13 03 03 PoLVH 01 00

46 69.44 6.46 3.67 4.95 02 02 01 00

51 114.5 1 -8.07 -3.63 -2.89 01 01 01 00

56 62.50 1.28 0.83 10.18 00 01 00 00

61 76.53 2.31 3.61 50.99 00 00 00 00

66 63.03 10.08 7.94 18.75 01 01 01 00

71 78.53 0.93 8.05 9.41 01 01 00 00

76 81.08 2.98 -13.22 -80.03 03 03 PoLVI I 00 00

81 71.09 0.73 2.56 73.96 02 02 00 00

86 61.22 6.01 -23.01 -78.67 07 06 LVH 01 00

91 73.17 9.76 4.82 0.01 02 04 PrLVII 02 00

96 62.76 -1.49 7.85 81.45 02 02 03 12 RVI I

101 103.4 T 7.66 11.19 48.16 01 01 00 00

106 66.08 1.2 2.38 59.82 01 02 01 00

111 107.1 T -0.91 6.52 -83.54 00 00 03 09 RVH

116 75.00 2.26 0.77 -10.01 02 02 00 00

121 76.14 4.03 2.42 7.03 00 00 02 00

Cr - Criteria B- Bradycardia T-I'acl lycartlia

LVH- Left Ventricular Hypertropl iy PoLVH - Possible LVH PrLVII - ProlxibleLVH

RVH-Right Ventricular 1lypertophy PoRVII-Possible RVH PrVII- ProlxiblcRVII
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Table 5.6 Disease Diagnosis using Existing ScoringSchemes (First 10 records of CSE DS-5)
ECG

beat

LVH RVH Ml Final

diagnosis

RVH-PS.MI

PS. NL-PS

SSM

PS DI DI5

OKJ

PS DI DI5

EST

PS DI D15

SSM

PS DI DI5

OKJ

PS DIDI5

R.MA

PS DI DL5 ANT LAT

OKJ

INF DI DI5

McF

PS 9cMI

IB1 01 NL NL 00 NL NL 01 NL NL 00 NL RS 01 NL NL 00 NL NL 00 00 00 NL NL 23 69

IB2 00 NX 00 NL 00 NL 00 NL 00 NL 00 NL 00 00 00 NL 19 57

IB3 00 NL 00 NL 00 NL 03 RS 01 NL 00 NL 00 00 01 NL 18 54

1B4 00 NL 00 NL 00 NL 03 RS 00 NL 00 NL 00 00 01 NL 17 51

1B5 00 NL 00 NL 00 NL 00 NL 00 NL 00 NL 00 00 01 NL 20 60

2B1 01 NL NL 00 NL NL 01 NL LS 00 NL NL 00 NL NL 00 NL NL 00 00 00 NL NL 23 69 LVH-PS..MI-

PS
2B2 01 NL 00 NL 01 NL 01 NL 00 NL 00 NL 00 00 00 NL 18 54

2B3 02 NL 00 NL 04 LR 00 NL 00 NL 00 NL 00 01 00 NL 24 72

2B4 00 NL 00 NL 00 NL 00 NL 00 NL 00 NL 00 00 01 NL 23 69

2B5 00 NL 00 NL 00 NL 00 NL 00 NL 00 NL 00 00 00 NL 15 45

3B1 05 LH LS 01 NL NL 07 LH LH 03 RS RS 01 NL NL 01 NL NL 04 04 04 vllX MIX

PS

20 60 LVH-DF.

RVH-PS.

MIX MI- PS
3B2 02 NL 00 NL 05 LH 03 RS 00 NL 00 NL 04 02 01 AMS 17 51

3B3 02 NL 00 NL 04 LR 03 RS 00 NL 00 NL 04 02 00 AMS 16 48

3B4 01 NL 00 NL 04 LR 03 RS 00 NL 00 NL 04 02 00 AMS 14 42

3B5 02 NL 00 NL 05 LH 02 NL 00 NL 00 NL 04 02 00 AMS 12 36

4B1 02 NL NL 02 NL NL 04 LR LS 03 RS RS 01 NL NL 08 RH RH 00 04 01 LMS LMS/

IMS

20 60 RVH-DF.

LVH-PS.

LMI-PS.

IMl-PS
4B2 01 NL 02 NL 03 NL 03 RS 01 NL 08 RH 00 02 04 IMS 20 60

Table 5.6 continued



CT

4B3 01 NL 00 NL 03 NL 03 RS 01 NL 09 RH 00 02 00 NL 20 60

4B4 01 NL 00 NL 03 NL 00 NL 00 NL 00 NL 00 00 00 NL 20 60

4B5 00 NL 00 NL 00 NL 00 NL 00 NL 00 NL 00 00 04 IMS 20 60

5B1 05 LH LH 02 NL NL 04 LR LH 01 NL NL 00 NL NL 00 NL NL 00 00 02 NL IMS 17 51 LVH-DF,

IMI-PS

5B2 05 LH 04 NL 04 LR 00 NL 00 NL 00 NL 00 00 02 NL 14 42

5B3 05 LH 04 NL 00 NL 00 NL 00 NL 00 NL 00 00 02 NL 16 48

5B4 03 LS 02 NL 00 NL 00 NL 00 NL 00 NL 01 00 02 NL 17 51

5B5 07 LH 03 NL 06 LH 01 NL 00 NL 00 NL 00 00 04 LMS 21 63

6B1 03 LS LS 01 NL NL 03 NL NL 00 NLRS 00 NL NL 00 NL NL 00 00 04 LMS IMS 18 54 LVH-PS

RVH-PS

IMI-PS

6B2 02 NL 01 NL 03 NL 03 RS 00 NL 00 NL 00 00 04 LMS 14 42

6B3 01 NL 00 NL 01 NL 00 NL 00 NL 00 NL 00 00 02 NL 22 66

6B4 00 NL 00 NL 01 NL 03 RS 00 NL 00 NL 00 00 01 NL 22 66

6B5 00 NL 00 NL 00 NL 00 NL 00 NL 00 NL 00 00 01 NL 22 66

7B1 00 NL NL 00 NL NL 00 NL NL 04 RR RR 00 NL NL 00 NL NL 00 00 00 NL NL 13 39 RVH-PR

7B2 01 NL 00 NL 01 NL 04 RR 00 NL 00 NL 00 00 00 NL 13 39

7B3 00 NL 00 NL 00 NL 04 RR 00 NL 00 NL 00 00 00 NL 11 33

7B4 00 NL 00 NL 00 NL 03 RS 00 NL 00 NL 00 00 00 NL 12 36

7B5 00 NL 00 NL 00 NL 03 RS 00 NL 00 NL 00 00 00 NL 14 42

8B1 06 LH LH 13 LH LH OS LH LH 00 NL NL 01 NL NL 00 NL NL 00 04 01 LMS LMS 16 48 LVH-DF

LMI-PS

8B2 05 LH 13 LH 07 LH 00 NL 01 NL 00 NL 00 04 01 LMS 17 51

SB3 05 LH 13 LH 0" LH 00 NL 01 NL 00 NL U) 02 01 NL 15 45

Table 5.6....continued
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5.5.2 Disease Diagnosis using CSE Dataset -5

After the reliable testing of the software using the CSE DS-3, the use of CSE DS-5

diagnostic data set has been made. Feature extraction results ofevery fifth record ofthe CSE
DS-3 are given by the CSE Working Party, hence, the confirmation offeature extraction by
the software is firstly made to proceed for the disease diagnosis using the alternate scoring
criteria. With this type of analysis of software, in which actual measurements are known for

comparison and ifthe use ofalternate scoring schemes give same diagnostic interpretation, it
may be stated that the software is reliable to use further. After testing ofthe software on CSE

DS-3, disease diagnosis using CSE DS-5 records and the ECGs recorded from different

subjects in the laboratory, have been carried out.

As an illustrative example, first 10 records of the CSE DS-5 are considered whose

diagnostic truth is reported by the CSE and the opinions obtained from the medical experts
have been used as the reference. Table 5.6 gives the disease diagnosis results interpreted by
using existing scoring schemes on the CSE DS-5 records. As given in Table 5.6, final

diagnostic statement is a resultant statement based on the results ofexisting three LVH, three

RVH and two MI schemes. The strategy used by CSE [148] to give final diagnosis statements

has been followed here. The procedure used to draw a final decision out ofexisting schemes
will be clear from the example given below:

The first criteria ofLVH [93] gives following point score for record no.l of CSE DS-5.

Beat No. Point score

1B1 01/NL where IB1 represents beat 1of record no.l

and the point score 01, which interpret the case as normal (NL)

1B2 00/NL

1B3 00/NL

1B4 00/NL

1B5 00/NL

If we consider the resultant of these five scores, say best of five, then it gives 00/ NL, means

the final diagnostic result given by first scoring scheme [93] is a normal case checked against

the left ventricular hypertrophy. Similarly, as given in the Table 5.6, other two scoring

schemes given by Okajima and Marriot give the disease interpretation as normal case as

against LVH investigation.

After these three results by three diagnostic schemes, the final result is determined by

weights. The weights are decided by counting number of normal, number of possible LVH,

probable LVH and definite left ventricular hypertrophy. Out of three results from three
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schemes, the highest one is considered as the net result of all three LVH schemes. This final

result is an effective result of 5 beats x 3 schemes i.e. 15 individual results. If the final count

is >=1 and <5 for a particular disease, then the diagnostic weightage is given as a possibility

for that particular disease. If the count is >5 then the diagnosis is carried out according to

number of definite or probable results.

Right ventricular hypertrophy scoring results are also given in Table 5.6, out of

which, the results for the first record of CSE DS-5 are considered here, as follows:

Beat no. SSM criteria score OKJ criteria score RMH criteria score

01 00/NE 01/NL 00/NL

02 00/NE 00/NL 00/NE

03 03/ RVH possible 01/NL 00/NL

04 03/ RVH possible 00/NL 00/NL

05 00/NL 00/NL 00/NE

In this case, all three existing scoring schemes in all five beats analysis conclude that

the investigation as against the RVH is normal except in Mehata's [93] criteria. For third and

forth beats, this criteria gives the score of 03 and as per the threshold limits used to check the

disease in the SSM criteria, the resulting interpretation is RVH possible. But for remaining

three beats, the same scoring scheme gives the results as normal, hence, ultimate diagnosis is

the normal-possible and RVH-possible case. To be on safer side, if the scoring show a

disease in one or two beats, then that particular disease is graded as possible and not definite

or probable. The overall count of normal in three schemes shown above is the highest, hence,

the net interpretation as against the RVH interpretation is a normal case, and RVH possible is

indicated by two beats in one scoring scheme (Mehta et al.[93]), therefore, this normal

interpretation is referred to as normal-possible and RVH-possible.

To know about the MI (Anterior, Lateral, Inferior), two existing scoring diagnostic

criteria [78,102] are used. The point scoring by these two scoring schemes is as follows:

Beat no. OKJ criteriai Macf criteria

Anterior Lateral Inferior score %MI

01 00/NL 00/NL 00/NL 23 69

02 00/NL 00/NL 00/NL 19 57

03 00/NE 00/NL 01/NL 18 54

04 00/ NL 00/NL 01/NL 17 51

05 00/NE 00/NL 01/NL 20 60
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From all these scores of Okajima's diagnostic criteria, the net diagnosis interpretation as

against the MI is the normal case. This is because Okajim's criteria gives the scores resulting
the normal case, while Macfarlane's Ml scoring scheme gives a score of above 50%,

indicating the possibility of MI.

The overall final diagnosis for this first case is now decided from the three net results

ofthree LVH, three RVH and two MI scoring schemes, hence, for the first case as detailed in

Table 5.6, the final diagnosis is RVH-possible/ MI possible/ Normal-possible. For other

records, the procedure explained above to diagnose the disease using the parameter estimates
in five beats is used and the results are given in Table 5.6, and the results are displayed

according to the priority. Suppose the net results of three diagnostic criteria are say, LVII
probable/ RVH definite/ MI possible, then this is rearranged as RVH definite/ LVH probable/
MI possible. Using the same strategy of disease diagnosis, the results of diagnosis
interpretation for the first 10 records of the CSE DS-5 have been carried out by using existing
as well as modified scoring schemes. The complete details ofdisease diagnosis scoring and

interpretation of 10 records using existing scoring schemes are given in Table 5.6 and the
complete procedure to diagnose the diseases using the developed software are outlined in the
Table 5.7. In addition to this comparison, the comparison is also carried out with the results

obtained from the panel of experts.

Atypical record D-0008.DCD from the CSE DS-5 has been used and the five data
files of ECG parameters and the corresponding disease interpretation by existing as well as
modified scoring schemes are given in Table 5.7. From the first beat ECG parameter results,
the determined heart rate is 53 BPM, which indicates that the case is of Bradycardia. From

the RBBB and LBBB diagnostic scoring criteria as detailed in Table 5.1 and used in decision

tree classifier (Fig. 5.4), the parameters of beat-1, give the interpretation that the case is not of
RBBB or LBBB. The FPA, determined from the net QRS deflections measured in leads I, II,

and III, is -0.4168 degree and is used in LVH and RVH interpretation. For LVH
interpretations, three existing and one modified scoring schemes have been used (as shown in
Table 5.7) and all these criteria interpret that the case is of LVH (definite). Similarly for
RVH, no decision against RVH is given, indicating that the case is not of RVH. Two existing
and one modified Ml scoring schemes also give no indication ofMI. Like this, the software
undergoes the procedure to diagnose the disease repeatedly using five different parameter
files from five different beats. For remaining four beats, the diagnostic results are also

detailed in the same table.

From the beat-2 measurements, displayed results are as follows:
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HR is 53 BPM, FPA is 0.0716 degree and the case is of Bradycardia, LVH (definite), no

RVH and no MI.

From the beat-3 parameter measurements, interpretation results are as follows:

HR is 56 BPM, FPA isl7.74 degree and the case is of Bradycardia, LVH (definite), no RVH

and no MI.

From beat-4 parameters, the diagnostic results are HR is 56 BPM, FPA is 23.45

degree and the case is of Bradycardia, LBBB, LVH (definite), no RVH and no MI.

For 5th beat diagnostic results are HR=56 BPM, FPA=15.24 degree and the case is of

Bradycardia, LBBB, LVH (definite), no RVH and Anterior Mi-possible.

The ultimate result is then displayed from the net result of five interpretations given

by modified scoring schemes. This final result are given at the end of Table 5.7, as the case is

abnormal with LVH definite, Bradycardia, LBBB-possible and Anterior Mi-possible.

Diagnostic results determined by the modified diagnostic scoring criteria using

decision tree classifier are given in Table 5.8. The results of this evaluation are compared

with the results determined by existing scoring schemes and also with the diagnostic truth

given by CSE group. Comparison of the disease diagnosis results is given in Tables 5.9-5.10

Using the strategy of disease diagnostics from the features of five ECG beats, the

validation of the software is carried out by using the number of records from the CSE

database. The results of this evaluation are compared with the results obtained by the existing

scoring schemes and also with the diagnostic truth. The CSE Working Party has considered

the case as normal even if the record shows minor abnormalities such as non-specific ST-T

changes, incomplete right or left BBB, left anterior fascicular block, minor intraventricular

conduction defects (QRS <120ms) or even myocardial ischemia, as a single statement

without making reference to any of the seven primary categories Normal, LVII, RVI I, BVII

AMI, IMI, and MIX MI [148]. To compare the results of existing and modified scoring

schemes with the CSE results, the diseases Bradycardia, Tachycardia, RBBB, and LBBB

diseases are not considered. From the comparison given in Table 5.9 and the diagnostic

opinion obtained from the medical experts as given in Table 5.10, the diagnostic

interpretation performed by existing criteria matches with the truth in 60% of the cases and

by the modified criteria in about 80% of the cases, thereby resulting a gain of 20% reliability

in the disease diagnosis. The gain is due to the three factors; use of combined WTs for feature

extraction, use of five beats in place of one beat for analysis, and the use of modified scoring

schemes having required number of criteria. After the confirmation of reliable diagnosis from

the use of multiple scoring schemes reported by different researchers and the opinion of a
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Table 5.7 Complete Procedure to Interpret the FCC by Decision free Classifier using
'Five Beats' of a Record CSE D-00008.DCD

BEAT -1 Parameter

(Wave position is given in sample Nos. and Wave amplitude in mV)

P Wave QRS Complex Wave

IjWI 1 I'm I'pos I'amp Vol'l ORSm Opos OanipOoir Upos Ramp Roll' Spo.s Sain . Suir ir ORSol 1 Ipos 1ani| lend Niil)

1.1 79 131 0.07 117 199 199 -0.06 2(H) 231 1.39 246 251 -0.23 256 - 267 359 -0.37 451 27 64

1,2 91 123 0.14 167 167 167 -0.02 168 231 1.38 243 251 -1.27 256 - 279 367 -0.09 423 1147

L.1 80 108 0.11 132 152 152 0.07 157 212 0.79 221 232 -2.14 237 - 248 360 0.3.1 440 -11.5.1

ilR 119 159 0.10 199 199 199 0.23 199 203 0.23 211 231 -0.95 236 - 244 367 0.45 431 10 21

al. III 127 0.03 143 207 207 -0.05 209 231 1.80 247 251 -0.08 256 - 259 355 -0.22 447 13.86

aF 76 104 0.1.3 128 148 148 0.02 152 212 1.02 221 232 -1.63 2.37 - 245 360 0.12 436 0.15

VI 87 103 -0.03 119 195 195 0.32 195 203 0.40 210 231 -2.03 236 - 253 367 0.72 435 -24.4(1

V7 90 106 0.07 126 198 198 0.02 198 210 0.37 215 230 -4.02 235 - 259 366 0.64 4 38 -77.50

VI DO 106 0.04 I2fi 178 178 0.13 178 210 0.66 216 230 -4.33 215 - 261 166 0.75 4(8 /8 11

V.I 85 109 0.05 157 173 173 -0.10 174 209 1.01 219 233 3.17 238 - 260 389 0,12 117 59.0-1

V5 82 118 0.06 162 202 202 -0.11 202 230 3.94 241 250 2.37 255 - 274 374 -0.84 438 25.60

V6 75 123 0.08 163 207 207 -0.32 207 231 3.39 245 251 1.76 256 - 279 379 -1.12 439 1.20

========DlAGNOSTlC RESULTS;

HR(BPM)=53.000 Bradycardia
FPA=0.416829 Degrees

LVH

LVH Criteria-I(SSM) Scorc=6
LVII Critcria-Il(OKJ) Scorc=13
LVH Crilcria-IIhMAR Scorc=8

LVH DETECTED

LVII

LVII

LVII Critcria-IV(MOD) Scorc=l 1 LVH DETECTED

RVH

RVH Crilcria-I(SSM) Score=0 NO RVH
RVH Ci'iteria-III(OKJ) Score=! NO RVH
RVHCriteria-lI(RMH) Scorc=0 NO RVH
RVH Criteria-IV(MOD) Score=3 NO RVH

MI Criteria-l(OKJ)-

Anlerior Ml Scorc=0

Anterior MI Score=0

Anterior MI Score=0

Total Anterior MI Score=0

Lateral MI Score=l

Lateral MI Score=l

Lateral MI Score=l

Total Lateral MI Score=3

Inferior Ml Score=0

Inferior MI Score=l

Inferior MI Score=0

Total Inferior Ml Score=l

NO AMI

NOLMI

NO IM1
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M| Ci ilcria-2(MOD)-

Anlerior MI Score=0

Anterior MI Score=0

Anterior Ml Score=0

Anterior MI Scorc=l

Anterior MI Score=l

Total Anterior MI Score=2

Lateral Ml Score=l

Lateral MI Score=l

Lateral MI Score=l

Total Lateral MI Score=3

Inferior MI Score=0

Inferior MI Score=l

Inferior MI Score=0

Total Inferior MI Score=l

Critcria-3(MACF)

Total score=16 and MI =48 %

BEAT - 2 Parameters

NO AMI

NOLMI

NOIMI

1cad Pon PpO!; Pnm| i Poff QRSon QposQampi QolT Rpos Ramfi Roff Spo.s Samp Soff R' QRSciff Tpos Tamp Tend Nell)

II 79 Ill 0.06 1-17 |W 100 -0 08 200 231 1.30 247 251 -0.23 256 - 267 159 0.38 123 25 55

1 n OS l?7 0 IS 175 201 203 0.01 201 231 1.37 24-1 251 -1.26 256 - 267 427 0.04 •ISO 12 0 1

1 i 76 108 0 15 PS 180 180 0.10 180 208 0.76 219 2.32 -2.04 237 - 244 356 0.34 440 1 1 60

i»R 119 171 0 09 195 195 195 0.26 195 199 0.26 21.3 2.31 -0.93 236 - 244 167 046 42/ -6 61

al II 1 127 0 05 175 207 207 -0.05 21 1 231 165 247 251 -Oil 256 - 259 355 -0.25 415 30.00

aF 7o 108 0 17 I5(i 156 156 0.02 158 212 1.06 222 232 -1.65 237 - 246 356 Oil 400 1 61

VI 70 101 -0 0? 127 |0| 10 1 0.26 |0| 207 0.35 212 231 -2.05 216 - 255 167 0 (id 427 25 .'5

V 8(i l()(. 0.05 1 ?d 100 190 0.0-1 100 206 0.35 212 230 -3.77 235 - 257 162 0 00 -1 10 /.' (.8

VI 86 no 0 06 126 170 170 0.13 172 210 0.70 214 230 -4.18 235 - 258 362 0.72 438 -75.27

V4 81 109 0 07 isi 165 165 -0.04 167 209 1.21 217 23.1 -3.21 2.38 - 257 389 0.20 •111 -52.88

V5 94 I7i 0 06 loo 206 206 -0.04 206 230 4.13 24 1 250 -2.35 255 - 274 174 0 80 •142 Ufil

V6 86 107 0.19 122 207 207 0.26 208 231 4.09 242 247 -1.13 252 - 275 175 -070 439 51.00

=: =RESULTS=:=== =====:==

HR (Bf•M) =53.000 li radycard ia

FPA=0.071606 Degrees

:LVF

LVH Criteria-I(SSM) Score=5
LVH Crilcria-II(OKJ) Scorc=13
LVH Crileria-lIl(MARScore=7

LVII DETECTED

LVH

LVH

LVH Crileria-IV(MOD) Score=10 LVH DETECTED
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=======RV11========

RVH Crileria-l(SSM) Score=0 NO RVH
RVH Criteria-III(OKJ) Score=l NO RVH
RVH Criteria-II(RMH) Score=0 NO RVH
RVH Criteria-IV(MOD) Score=3 NO RVH

=======MI Criteria-1 (OKJ)========
Anterior MI Score=0

Anterior Ml Score=0

Anterior MI Score=0

Total Anterior MI Score=0 NO AM I

Lateral MI Score=l

Lateral MI Scorc=l

Lateral Ml Scorc=l

Total Lateral Ml Score=3 NO LMI

Inferior MI Score=0

Inferior MI Score=l

Inferior Ml Score=0

Total Inferior MI Score=l NO IMI

=========M1 Criteria-2(M0D)=====
Anterior MI Score=0

Anterior MI Scorc=0

Anterior Ml Scorc=0

Anterior MI Score=l

Anterior MI Scorc=l

Total Anterior MI Score=2 NO AMI

Lateral MI Scorc=l

Lateral MI Score=l

Lateral MI Score=l

Total Lateral MI Score=3 NO LMI

Inferior Ml Scorc=0

Inferior MI Score=l

Inferior MI Score=0

Total Inferior MI Score= 1 NO IMI

======Crileria-3(MACF)===
Total scores:17 and MI =51 %
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BEAT - 3 Parameters

Lea cl Pon I'pos Painp Poll QRS on Qpos Qamp Qoff Rpos Ramp Roll SpXM: Samp Soli R'QRSoITi po>; Tanif i lend Nell)

LI 79 111 0.06 159 199 199 -009 2(X) 231 118 247 251 -0.25 256 - 2d7 361 0.30 427 21 7S

L2 87 123 0.18 163 183 183 0.02 183 231 1.45 2 11 247 -1.18 252 - 26.1 159 008 421 16 76

l.i ,80 108 0.15 144 172 172 0 12 172 212 0.90 220 232 -1.91 2.37 - 244 156 0 35 420 •4.59
aR 1 19 167 0.10 231 175 175 0.26 175 183 0.26 21.1 231 -0.92 2.36 - 244 363 0.46 423 -O 26

aL 1 1 1 127 0.01 155 211 211 -0.10 213 2.31 1.54 249 251 -0.10 255 - 255 443 008 490 28 H

aF 76 108 0.17 144 168 168 0.07 168 212 1.17 223 232 -1 54 237 • - 246 156 0 15 420 <i 71

VI 83 10.1 -0.0.1 127 105 195 0 14 195 207 0.22 212 2.11 -2.12 236 • - 256 367 (MX 411 • 11 14

V2 90 106 0.05 126 190 190 0.08 190 206 0.37 212 230 -.1.62 235 -- 257 362 062 430 -68 45

V3 86 106 0.04 130 190 190 0.11 190 210 0.65 214 2.30 -4.16 235 - - 259 362 0.69 434 -80 08

V4 81 109 0.07 125 165 165 0 01 165 209 1.25 217 233 -3.17 2.38 - - 257 389 0.24 433 -40 61

V5 90 122 0.07 118 206 206 -0.05 206 230 4.14 243 250 -2.29 255 - • 278 174 -085 414 14 X0

V6 91 119 0 04 163 207 207 0.93 207 231 4.96 243 251 -0.33 256 - - 279 375 0.11 451 6 00

RESULTS-

HR(BPM)=56.000 Bradycardia

FPA =17.742389 Degrees

========LVH========

LVH Crileria-I(SSM) Scorc=5 LVII DETECTED
LVHCiitcria-II(OKJ) Scorc=l3 LVII

LVH Criteria-Ill MAR Score=7 LVH
LVHCritcria-IV(MOD) Scorc=10 LVII DETECTED

=======RVH========

RVH Criteria-I(SSM) Score=0 NO RVH
RVH Criteria-III(OKJ) Score= I NO RVH
RVHCrileria-II(RMH) Score=0 NO RVH
RVIICiiteria-IV(MOD) Scorc=3 NO RVI I

=======M1 Criteria-1 (OKJ )========

Anterior MI Score=0

Anterior Ml Scorc=0

Anterior MI Score=0

Total Anterior MI Score=0 NO AMI

Lateral MI Score=l

Lateral MI Score=l

Lateral MI Score=0

Total Lateral MI Scoie=2 NO LMI

Inferior MI Score=0

Inferior MI Score=l

Inferior Ml Scorc=0

Total Inferior Ml Score=l NO IMI
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=========M1 Crileria-2(M0D)=
Anterior MI Score=0

Anterior MI Score=0

Anterior Ml Scorc=0

Anterior MI Scorc=l

Anterior MI Score=0

Total Anterior Ml Scorc=l

Lateral MI Score=l

Lateral MI Score=0

Lateral Ml Score=0

Total Lateral MI Score=

Inferior Ml Score=0

Inferior MI Score=l

Inferior Ml Score=0

Total Inferior Ml Score:

=======Criteria-3(MACF)==
Total score* 15 and Ml =45 %

BEAT - 4 Parameters

NO AMI

NOLMI

NO IMI

Lead Pon Ppo Pamp Poll' QRSoi Qpos Qanip Qon Rpos Ramp Rof Spos Samp Soil R' QRSoll 'I'pos Tamp lend Ned)

I.I 70 111 0.05 151 203 20.3 -0.08 203 231 1.16 250 255 -0.24 260 - 267 163 -0 19 435 21 12

1 ? OS 121 0 18 16.1 20.1 203 0.09 203 2H 1.55 24.1 251 -1.15 256 -- 267 •121 0.12 451 20 27

1.1 80 108 0.14 128 188 IS8 0.18 188 21 2 0.97 222 232 -1.87 237 - 2-17 156 0 42 416 1 26

aR 1 19 155 Oil 171 187 IS7 0.22 187 195 0.22 212 2.11 -0.06 236 - 2-H 171 on 1 15 dOS

al 111 177 -0.00 151 211 21 1 -0.10 212 211 1.59 247 247 -0.09 252 - 252 415 0.07 SOI 30 SS

aF 76 104 0 16 III 184 184 0.13 184 212 1.23 221 232 -1.44 217 - 244 352 0 21 4 12 7 01

VI 81 00 0.02 12.1 195 195 0 11 195 201 0.17 210 2U -2 1 1 236 -- 255 Id 7 0 18 1 IS IS II

V? 86 102 0.05 126 |0S 198 0.11 198 210 041 215 230 1 60 215 260 10.' 0 08 1 IX dd XX

VI SO 1II 0.04 158 198 198 0.10 198 210 0.60 216 230 4 II 235 - 261 162 Odd •1 18 xi ;x

VI ss 109 0.06 15,1 193 101 0.12 101 209 1.23 219 233 .1.01 238 - 261 180 0 11 441 4-1 84

V5 00 118 0.07 138 170 170 -0.12 170 230 424 2-12 250 2.31 255 - 274 170 0 91 4 18 10 dd

V6 91 127 0.06

.DEC

16.1

1 II

211

TC

21 1 0.95 211 231 4.87 2-16 251 0.30 256 - 279 .175 0.24 44/ s do

HR(BPM)=56.000 Bradycardia LBBB

FPA =23.457230 Degrees

========LV 11========

LVH Crilcria-l(SSM) Score=6
LVH Critei'ia-II(OKJ) Score=13
LVH Criteria-Ill MARScore=8
LVH Criteria-1V(MOD) Score=l I

LVII DE'fECTED

LVII

LVH

LVH DETECTED
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=======RVH========

RVH Crileria-I(SSM) Score=0 NO RVH
RVH Ci ilei ia-III(OKJ) Score= I NO RVH

RVH Crileria-II(RMH) Score=0 NO RVH
RVH Criteria-IV(MOD) Score=3 NO RVH

=======MI Crilcria-l(OKJ)=
Anterior MI Score=0

Anterior MI Score=0

Anterior MI Score=0

Total Anterior MI Score=0

Lateral MI Scorc=l

Lateral Ml Score=l

Lateral MI Score=0

Total Lateral Ml Scorc=2

Inferior Ml Score=0

Inferior MI Score=l

Inferior MI Score=0

Total Inferior MI Score=

=========M I Crileria-2(MOD)=

Anterior MI Score=()

An4erior Ml Scorc=0

Anterior MI Score=0

Anterior Ml Score=5

Anterior MI Score=0

Total Anterior MI Score=5

Lateral Ml Score=l

Lateral MI Score=0

Lateral MI Score=0

Total Lateral MI Scorc=

Inferior MI Score=0

Inferior MI Score=l

Inferior MI Score=0

Total Inferior Ml Scorc=

=======Crileria-3(MACF)==:

Total scorc= 15 and MI =45%

NO AMI

NOLMI

NO IMI

NO AMI

NOLMI

NO IMI
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BEAT - 5 Parameters

Lead Pon Ppos Pamp Poll QRSon QposQamp Qoff Rpos Ramp Rolf Spos Samp Soil R' QRSoff Tpos Tamp Tend Nell)
199

187

172

181

7 1 I

172
11»5

198

194

177

186

207

100

187

172

181

211

172

195

198

194

177

186

207

-0.04 200 2.11

231

212

187

211

712

207

210

210

200

230

2.31

1.29

1.46

0.90

020

1.68

1.18

021

0.45

0.72

1.30

406

5.05

248

211

219

213

251

221

212

216

214

216

240

244

251 -0.21

247 -1.18

232 -2.08

256

252 -

237 -

236 -

254

237

23d -

235 -

235 -

238 -

251 -

256 -

267

286

245

24S

251

2-17

2 SO

2d I

258

250

274

2d-l

363

367

156

171

ISO

ISO

Id/

.162

362

389

370

453

-0.37 410

-0.04 421

0.37 444

26:

19 I «

-7.70

7 10

11 II

I IX

II /x

-Sd 70

-7X II

-4 I II

12 7S

6 00

I.I

1.2

1.3

aR

al.

al;

VI

V2

V.I

V-1

vs

Vd

71

79

72

HO

111

(.0

7S

8d

82

81

86

159

131

110

108

175

127

I OS

00

106

102

97

I 14

101

0.06

0.16

0.13

0.09

-0.01

0 15

-001

0.04

0.05

0.06

005

0.07

147

159

124

231
ii

121

12.1

I 2d

122

117

138

207

0.05

0.12

0.20

-0.08

0,00

0.12

0.17

0.21

0.16

-0.09

1.05

187

172

181

213

172

105

198

194

180

I86

207

========RESULTS==========

I1R(BPM)=56.000 Bradycardia LBBB

FPA =15.248838 Degrees

231

251

7 17

7H

230

230

233

246

251

-0.96

-0,07

161

2 21

3.05

-4.22

-2.92

-2.19

-0.12

========LVH========

LVH Criteria-I(SSM) Score=6
LVII Criteria-II(OKJ) Score=13
LVII Crileria-III'MAR Scorc=8
LVHCriteria-lV(MOD) Scorc=l I

LVH DETECTED

LVII

LVII

LVII DE'fECTED

=======RVH========
RVH Criteria-I(SSM) Score=0 NO RVH
RVH Criteiia-llI(OKJ) Score=l NO RVH
RVHCriteria-lI(RMH) Score=0 NO RVH
RVH Criteria-IV(MOD) Score=3 NO RVH

=======MI Criteria-1 (OKJ)==

Anterior Ml Scorc=0

Anterior MI Score=0

Anterior MI Score=0
Total Anterior Ml Score=0

Lateral MIScore=l

Lateral MI Score=l
Lateral MIScore=0

Total Lateral MI Score=2

Inferior Ml Scorc=0
Inferior MI Score=l

Inferior MI Score=0
Total Inferior Ml Score:

NO AMI

NOLMI

NO IMI
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1)41

0 71

O I /

0.51

0.77

087

033

-087

1 62

127

l 1/

l I l

I II

-118

414

429

442

479
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=========lvlI Ci iteria-2(MOD)======
Anterior MI Score=0

Anterior MI Score=0

Anterior MI Scorc=0

Anterior MI Score=9

Anterior MI Score=0

Total Anterior MI Score=9 AMI -probable

Lateral MI Score=l

Lateral MI Score=l

Lateral MI Score=0

Total Lateral MI Score=2 NO LMI

Inferior Ml Score=0

luferior Ml Score=l

Inferior MI Score=0

Total Inferior MI Score=I NO IMI

Table 5.7....continued

=======Criteria-3(MACF)==========
Total score=15 and MI =45 %

RESULTANT DIAGNOSIS FROM THE 5 BEATS ITERPRETATIONS BY A

STRATEGY OF BEST OF FIVE RESULTS.

LVH definite score = 5

LVH probable score = 0
LVH possible score = 0

RVH definite score = 0

RVH probable score = 0
R^U possible score = 0

MI Anterior definite score = 0

MI Anterior probable score = I
MI Anterior possible score = 0

MI Lateral definite score = 0

MI Lateral probable score = 0
MI Lateral possible score = 0

MI Inferior definite score = 0

Ml Inferior probable score = 0
MI Inferior possible score = 0

LVH definite Bradycardia LBBB-possible Anterior Ml possible-

Case is Abnormal
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Tabic 5.8 Disease diagnosis using modified scoring criteria (on CSE DS-5)

ECG

beat PS

LVH
Ul D15

RVH
PS DI DI5 ANT LAT

MI
INF DI DI5

Final Diagnosis

1B1 04 NL NL 04 NL NL 00 01 04 NL IMS Bradycardia. InleiiorMl
possible, NLpossible

1112 02 NL 02 NL 00 01 04 NL

1133 02 NL 01 NL 00 00 01 NL

1114 02 NL 01 NL 00 00 05 IMS

1135 02 NL 02 NL 00 01 01 NL

2BI 02 NL NL 01 NL NL 00 00 12 IMD IMD inferior Ml definite

2112 01 NL 00 NL 00 00 12 IMD

2B3 02 NL 02 NL 01 00 08 IMR

2114 00 NL 01 NL 00 00 05 IMS

2B5 00 NL 00 NL 00 00 00 NL

3111 04 NL NL 03 NL NL 13

AMR

0.3 0.1 AMR Bradycardia. LBBB.
Anterior Ml probable

3112 02 NL 01 NL 13 02 01 AMR

3113 02 NL 02 NL 09 02 04 AMS

3114 01 NL 01 NL 13 02 04 AMR

3 B.S 04 NL 01 NL 13 02 04 AMR

4B1 02 NL NL 03 NL NL 02 03 08 IMR IMR Inleiior Ml -probable

I.VII probable. Inferior Ml
delinile

4B2 01 NL 03 NL 01 03 08 IMR

4113 02 NL 03 NL 01 03 08 IMR

4B4 01 NL 02 NL 00 01 08 IMR

4115 01 NL 03 NL 00 00 08 IMR

5111 06 LR LR 01 NL NL 00 00 14 IMD IMD

5B2 06 LR 01 NL 04 00 14 NL

5B3 04 NL 01 NL 04 00 14 IMD

5114 04 NL 01 NL 00 00 06 IMS

5B5 05 LS 01 NL 01 00 07 IMR

6111 01 NL NL 01 NL NL 04 00 07 IMR IMD Bradycardia, Interim Ml
delinile

6B2 01 NL 01 NL 04 00 03 NL

6113 01 NL 03 NL 0-1 00 18 IMD

6B4 00 NL 02 NL 00 00 09 IMR

(.115 00 NL 02 NL 00 00 00 IMR

Table 5.8 continued.
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Table 5.8 continued. .

7BI 01 NL NL 03 NL NL 20

AMD

LMS

08 04 AMD/LMR Anterior Ml delinile. Uilcri

Ml possible
1

7112 02 NL 03 NL 20 04 01 AMD

7B3 00 NL 01 NL 16 04 04 AMR

7B4 00 NL 01 NL 16 04 04 AMR

7B5 00 NL 02 NL 16 04 04 AMR

8B1 II Lll LH 03 NL NL 02

AMS

03 01 NL Biadycaulia. LBBB I.VII
delinile. Alilenoi Ml

possible

8B2 10 LH 03 NL 02 03 01 NL

8B3 10 Lll 03 NL 01 01 01 NL

8B4 II Lll 0.1 NL 05 01 01 NL

8B5 II LH 03 NL 09 02 01 AMR

9111 02 NL NL 01 NL NL 13

AMR

IMD

01 12 AMR/IMD Biadyeardia. Inlerior Ml
delinile. Anterior Ml

probable

9112 02 NL 02 NL 13 01 12 AMR/IMD

9113 01 NL 01 NL 14 01 12 AMR/IMD

9114 02 NL 03 NL 14 01 13 AMR/IMD

9115 03 NL 04 NL 15 00 11 AMR/IMD

IOBI 00 NL NL 02 NL NL 00 00 04 NL NL Normal

10B2 00 NL 02 NL 00 00 04 NL

IOB.1 02 NL 02 NL 00 00 00 NL

10B4 02 NL 02 NL 00 00 04 NL

IOB5 00 NL 02 NL 00 04 04 NL
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Table 5.9 Comparison of results

Rec no. Diagnostic truth Existing criteria results Modified criteria results

01 NL-PR R-PS.MI-PS.NL-PS IMI-PS, NL PS

02 NL -PR/ IMI-PS LPS, MI-PS IMI DF

03 AMI-DF L-DF,R-PS,MIX MI-PS AMI-PR

04 IMI-PR/NL-PS R-PF, L-PS.LMI-PS.IMI-PS IMI-PR

05 AMI-DF L-DF.IMI-PS L-PR, IMI-DF
IMI-DF06 NL-PS/IMI-PS L-PS.R-PS, IMI-PS

07 MIX -DF/ AMI R-PR AMI-DF.LMI-PS

08 L-DF,BVH,non specific L-DF.LMI-PS L-DF, AMI-PS

09 AMI-DF L-DF,R-PS,MI -PS IMI-DF, AMI-PR

10 NL-PR R-PS,MI-PS NL

SC - score,
L- LVH,
DF- definite,

DI - diagnostic interpretation, DI5 - DI from five beats,
R - RVH, PS - possible.
AMI-anterioiMI, LMI - lateral Ml,
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Table 5.10 Comparison of program results with experts opinion

Record

no.

Diagnostic
truth (CSE)

Experts opinion
Exprt-I Exprt-ll

Modified scoring
criteria results

01 NL-PR NL NL IMI-PS, NL PS

02 NL -PR/ IMI-PS IMI-PR 1st DEG.
AV BLOCK

IMI-DF

03 AMI-DF AMI-DF LVH strain AMI-PR

04 IMI-PR/NL-PS NL Non-specific IMI-PR

05 AMI-DF IMI-PS, RBBB IMI (Ischemia) L-PR, IMI-DF

06 NL -PS/ IMI-PS NL-PR NL (Appeared) IMI-DF

07 MIX-DF/AMI AMI-PR, LBBB Infero lateral

infarct,
incomplete
RBBB

ami-df,lmi-ps

T-df7ami-ps^08 L-DF,
BVH, Non-specific

LVH-DF, LBBB LVH Strain

09 AMI-DF AMI-DF Antero septal
infarct

IMI-DF, AMI-PR

10 NL-PR RBBB NL (Appeared ) NL

SC - score, DI - diagnostic interpretation, DI5 - DI from five beats,
L- LVH, R - RVH, PS - possible,
DF- definite, AMI-anteriorMI, LMI - lateral Ml,
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fable 5.11 Disease Diagnostic results from the Best of 5 Interpretations using Decision
Tree Classifier (25 records ol'CSL DS-5)

LVH - Left Ventricular Hypertrophy, RVH - Right Ventricular Ilyperlrophy,
MI - Myocardial Infarction, D- Delinile, PR - Probable, PO - Possible

Record No. 1

LVH RVH MI
Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO
000 0 00 000 000 00 1
Bradycardia, Inferior MI -possible
Case is abnormal -possible

Record No.2

LVH RVH MI
Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO
000 000 000 000 001
Inferior MI -possible
Case is normal -possible

Record No.3

LVH RVH MI
Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
Bradycardia, MI anterior -probable, LBBB
Case is abnormal

Record No. 4

LVH RVH MI
Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO
000 000 000 000 0 13
Inferior MI -probable
Case is abnormal

Record No. 5

LVH RVH Ml
Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO
021 000 000 000 012
LVH -probable, Inferior MI -probable
Case is abnormal

Table 5.11 ....continued
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Record No. 6

LVH RVH

D PR PO D PR PO

0 0 0 0 0 0

Bradycardia

Case is normal -possible

Record No. 7

Anterior

D PR PO

0 0 0

MI

Lateral

D PR

0 0

PO

0

Inferior

D PR PO

0 0 0

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Inferior MI -probable
Case is Abnormal

Record No. 8

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bradycardia, LVII -definite, Anterior MI -possible, LBBB
Case is abnormal

Record No. 9

LVH RVH

Anterior

MI

Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bradycardia
Case is abnormal -possible

Record No. 10

LVH RVH

Anterior

MI

Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Case is normal

Record No. 11

LVH RVH

Anterior

Ml

Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inferior Ml -possible
Case is normal

Table 5.1 1....continued
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Record No. 12

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

Bradycardia
Case is abnormal -possible

Record No. 13

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Anterior MI -possible, Inferior MI -possible
Case is normal -possible

Record No. 14

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

Bradycardia, Inferior MI -possible
Case is abnormal -possible

Record No. 15

LVII RVH Ml

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO 1) PR PO

0 0 0 0 0 0 0 0 2 0 0 0 0 0 1

Bradycardia, Anterior MI -possible
Case is abnormal

Record No. 16

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Inferior MI -possible
Case is normal

Record No. 17

LVH RVH

D PR PO D PR PO

0 0 0 0 0 0

Inferior MI -possible
Case is normal -possible

MI

Anterior Lateral Inlerior

D PR PO D PR PO D PR

0 0 0 0 0 0 0 0
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Record No. 18

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Case is normal

Record No. 19

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 3 0 Oil 000

Tachycardia, Anterior MI -probable, Lateral MI -probable
Case is abnormal

Record No. 20

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Case is normal

Record No. 21

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bradycardia

Case is abnormal -possible

Record No. 22

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

00 3 000 000 001 00 0

LVH posssible
Case is abnormal

Table 5.11....continued
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Record No. 23
LVII RVH

Table 5.11....continued

MI
Lateral InferiorAnterior

?«r ?^R opo ?r o° o? s° ?it r
0
Bradycardia, Anterior MI -definite
Case is abnormal

Record No. 24
LVH RVH MI

Anterior Lateral Inferior

LVu'-probable, Anlerior Ml -probable, Inlerior Ml -probable
Case is abnormal

Record No. 25
LVH RVH

D PR PO D PR PO
0 5 0 0 0 0
Bradycardia, LVH -probable
Case is abnormal

MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO

0 0 0 0 0 0 ooo
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Table 5.12 : Disease diagnosis using the ECGs recorded in the laboratory

Record No. lvk

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

000 000 000 000 000

Case is Normal

Record No. 2raj
LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

000 000 000 000 000

Case is normal

Record No. 3saad

LVH RVH MI
Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO
000 00 0 000 001 00 0

Lateral MI possible
Case is normal possible

^ Record No. 4mish
LVII RV11 Ml

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO
000 000 000 000 00 0

Case is normal

Record No. 5mustf

LVH RVH MI

Anterior Lateral Inferior

* D PR PO D PR PO D PR PO D PR PO D PR PO
0 0 0 0 0 0 0 0 0 0 0 0 o o 0

Case is normal

Record No. 6sth

LVH RVH MI

Anterior Lateral Inferior

D PR PO D PR PO D PR PO D PR PO D PR PO

000 000 000 000 000

Case is normal
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team of expert cardiologist regarding the performance of developed software, testing has

been carried out on number of records from the DS-5 and the detailed diagnosis results are

given for 25 cases in Table 5.11. The disease diagnosis was also carried out on the ECGs

recorded in the laboratory and the results are given in the Table 5.12.

5.6 CONCLUSIONS

The strategy of disease interpretation using decision tree classifier gives 80%

accuracy in disease diagnosis. Therefore, to use the system in actual clinical practice it needs

to undergo an exhaustive training under the supervision of medical experts. As the diagnosis

results of CSE DS-5 records are not disclosed by the CSE, the accuracy obtained is based on

a few numbers ofcases whose diagnostic truth is known. The 80% accuracy is because of the

reliable feature extraction by WT and also because ofthe new approach ofanalyzing the five

consecutive beats per lead ofa record. The use ofmodified scoring schemes, which includes

required number ofcriteria, strengthens the reliability ofcardiac disease diagnostics.

The results of diagnosis given in Tables 5.11 and 5.12 make it clear that, as there is

advantage in using ofmultiple beats (5 beats). It helps to confirm the disease if indicated by a

beat or more than that. Also it is equivalent to seeking the second, third or more opinions

about a cardiac disease by different cardiac experts. There is low possibility of incorrect

opinion as the final disease diagnosis is dependent on the analysis and confirmation of
disease by exiting as well as modified disease scoring criteria on the five beat analyses.
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CHAPTER - VI

DISEASE DIAGNOSTICS USING RHYTHM ANALYSIS

6.1 INTRODUCTION

The human heart rate (HR) or rhythm has for a long time been observed to be variable

under all kinds of circumstances, including complete rest. Physiologically it is known that the

HR is determined by the firing rate of the natural cardiac pacemaker, that is, by the sinoatrial

nodal (SA) cells, or more precisely, by the rate of depolarization of these cells. This rate is

influenced by both sympathetic and parasympathetic (vagal) control. There arc a large

number of factors underlying this neural control which is part of the so-called integrative

neural cardiovascular control system [17,122], External influences are muscular exercise,

digestion, posture, altitude, climate, noise and psychosensory activity. The internal influences

stem from autonomous physiological activity. For example, the HR fluctuates synchronously

with respiration. This phenomenon is known as respiratory arrhythmia. In this part of work,

an attempt has been made to study the relation between the HR and rather well known

physiological influences viz. respiration rate, which affects the HR variations. Spectral and

non-spectral heart rate variability (HRV) parameters have been used to analyze the heart rate

variability. Fluctuations in HR are of more interest than the average heart rate. Therefore, the

concept of heart rate variability (HRV) has been introduced by different researchers

[68,75,89,95,112,113,143].

The HR information is normally derived from the ECG signal. The HRV can be

defined as the quantitative fluctuations in heart rate. The analysis of HRV is a well accepted

method, and the evaluation of HR data can yield useful information about the condition of the

patients heart as well as the neural cardiovascular system. The HRV often mirrors the effects

of the underlying control activities. The fluctuations in the HR are due to imbalance between

the sympathetic and parasympathetic autonomic nervous systems and these counteractions

give a continuous variation in the heart rate [32,68,142]. The HR series is formed by a

sequence of values at different time instances, and at time, it is a function of the previous R-R

intervals. This time-series is not evenly sampled since the time occurrence of the heart beat

dose not follows a perfect regular pattern. It is worth noting that R-R series is not constant but

is characterized by oscillations of up to 10% around its mean value. These oscillations are not

casual but are the effect of the action of the autonomic nervous system in controlling the heart

rate [32,68]. For investigations of normal physiology and disease, the HRV has become a
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topic of considerable interest [154]. The effects of respiration on HR are mediated through

the parasympathetic (vagal) system [154]. The HRV related to respiration has been quantified

by conventional time series techniques such as power spectrum analysis, which separates the

power on the basis of the frequency components in the interbeat interval (IBI) signal. Using

this method, we can separate the average power associated with respiration (which we call

vagal power) from the rest of the signal. The vagal influences on the heart can then be

measured by finding vagal power under different conditions. These techniques have been

used to understand the role of vagal control of the heart in normal (healthy) and diseased

cases [154].

As discussed in the review of the literature in chapter I, the HRV opens number of

directions and highlights the importance of HRV analysis. The reduced HRV has been

reported as a predictor of mortality in recent MI patients. However, its automated assessment

in long-term ECG recordings is complicated by recording noise and beat-recognition errors

which necessitate filtering of the computer-established sequence of beat-to-beat intervals,

and visual checking and manual editing of the long-term recording, making the whole

method operator-dependent and cumbersome [84]. The spectral-domain methods are known

to be sensitive to artifacts in automatic recognition of long-term ECG signals. Some of the

time-domain methods are believed to be less sensitive and others have only been used

together with visual checking and manual editing of the automatic recognition. A perceived

need for such a manual intervention discourages the assessment of HRV in routine clinical

practice and confines the investigation of HRV to an academic setting. Therefore, there is a

practical demand for fully automatic methods of HRV measurements which are robust and

which provide clinically useful results for recordings of typical quality [85]. The assessment

of HRV by using different commercially available systems has been carried out by Jens Jung

et al. [53] and it has been concluded that the results of HRV analysis of the same Holter tape

by using different commercially available systems are statistically noncomparable. These

findings may be due to different levels of accuracy in removing ectopic beats and artifacts or

different algorithms for HRV analysis. This should be kept in mind when projecting and

evaluating the clinical trials. They urged to setup standards for proper assessment of HRV to

avoid conflicting data due to different methodological approaches. Mainardi et al. [83]

studied short-term parameters obtained from HRV analysis and observed decreased R-R

interval values and an increased LF power in the five minutes following the AWS maneuver.

As neither the HF power nor the RMSSD values increase, it suggests an increased

sympathetic activity induced by AWS. These results indirectly confirm the R-R series as a

185



most sensitive index of altered physiological status. Time-varying HRV analysis applied to

ICU monitoring has been found useful to detect the occurrence of physiological deterioration

as well as the response to therapy, thus improving knowledge and control of patient status

[89,153] have used a wavelet transform to build a simulated model of an HRV signal and to

create an algorithm for HRV signal decomposition. D. Hoyer et al. [48] have introduced a

concept of nonlinear HR analysis and respiratory dynamics that may improve the

understanding of the underlying physiological processes of the autonomic nervous system

(ANS), in comparison with the conventional linear analysis. Since HRV and RESP can be

measured non-invasively, this concept may also be advantageous in diagnostic investigations

of the patients. T. Harel et al. [46] observed that lower the sampling frequency is, greater are

the inaccuracies in R-R interval measurements. This seriously reduces the quality of the

power spectrum estimates of the HRV signal. They have reported a method to reduce the

imprecision in R-R interval measurement caused by the low finite sampling frequency of

ECG signals and to investigate the effect of noise on the accuracy of those measurements.

They have implemented a robust algorithm to measure the R-R intervals with a high-

resolution accuracy despite the finite resolution of the sampled ECG signal. Lund et al. [76]

have introduced a method for extraction of beat-to-beat patterns and for noise reduction in

the analysis of beat-to-beat variations of the morphology. They have observed that beat-to-

beat variations in the QRS morphology are in general cyclic, with a main period of about

four cardiac cycles. Narayan and Smith have reported that sudden cardiac death affects over

3,00,000 individuals per annum in the United States alone and is predominantly thought to

follow ventricular tachycardia or fibrillation [99].

6.2IMPORTANCE OF HRV ANALYSIS

From the review, it is clear that the growing interest of researchers in the field of

HRV analysis is due to its importance in knowing about the normal and or diseased heart

without invasive technique. There are no any golden standards set to follow in the study and

analysis of the HRV, but still the following important findings drawn from the previous work

can be used as the reference,

i) Recently, attention has been focussed on spontaneous HRV on Holter monitoring as a

non-invasive measure of cardiac autonomic function, Decreased HRV, indicating either

increased sympathetic activity or reduced vagal activity, is associated with increased risk

of death in coronary artery disease.
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ii) Previous studies have demonstrated a reduction in HRV with increasing age in patients
with coronary artery disease,

iii) HRV is being used in clinical settings such as in survivors of acute myocardial infarction
or in patients with congestive heart failure,

iv) This technique is able to noninvasively quantify the role played by the autonomic nervous
system in much pathology, such as diabetes, myocardial infarction and hypertension,

v) The patients who are prone to suffer from sustained ventricular arrhythmias could have a
lesser HR increase and HRV decrease after atrial pacing than patients with a normal heart

who are at no special risk of sudden cardiac arrest,

vi) The impaired cardiac autonomic function, assessed noninvasively by spontaneous HRV
on Holter monitoring, is associated with an increased risk ofsudden death after MI.

vii) Patients with LVH had ahigher LV mass index and reduced HRV.
viii) The HRV is significantly reduced in patients with LVH secondary to hypertension or

aortic valve disease,

ix) Acontinuous inverse relation exists between HRV and LV mass index,
x) Increased sympathetic activity is associated with areduced threshold for ventricular

fibrillation, and thereby partially increasing mortality. The increase in parasympathetic
activity has the opposition effect and increases the threshold for ventricular fibrillation,

xi) Standard deviation of R-R normal intervals (SDNN) correlates positively with the low
frequency component on power spectral density (PSD) analysis and convey important
prognostic information,

xii) The disturbances in cardiac autonomic function may contribute to the mechanism of
sudden death in patients with LVH and assessment of HRV may prove important in the
risk stratification of such patients,

xiii) In ICU patients, the decrease in the total power and the lack of sympathetic modulation
is associated with increased mortality,

xiv) The LF component centered around 0.1 Hz, increases in the presence of sympathetic
stimuli, while the HF component, synchronous with respiration, is mainly modulated by
parasympathetic (vagal) control. Furthermore, their values accurately reflect the state of
the sympatho-vagal balance.

It is clear that the HRV analysis is useful in clinical as well as in psycho
physiological studies, but the whole scenario is dependent on the accurate measurements of
R-R normal-to-normal (N-N) event series and the spectral and non-spectral HRV indices. In
the present work, an accurate measurement of R-R series using wavelet transform is
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discussed. This is possible because of multi-resolution signal splitting in different bands of

frequency. After accurate detection of N-N R-R series, effect of sympatho-vagal balance on

the HRV was studied and relations between spectral and non-spectral indices are discussed.

6.3 AUTONOMIC NERVOUS SYSTEM

Autonomic nervous system (ANS) is involved with emotional responses and controls

smooth muscles in various parts of the body and heart muscle. It is composed of two main

subsystems namely sympathetic and parasympathetic nervous systems.

Sympathetic nervous system tends to mobilize the body for emergencies. When one

or more of the sensory inputs to the brain indicate danger, there is increase in the HR,

respiration, red blood cell production and blood pressure. Normal function of the body such

as salivation, digestion and sexual function are all inhibited to conserve energy to meet the

situation [19].

Parasympathetic nervous system tends to conserve and store bodily resources. It

causes dilation of the arteries, inhibition or slowing of the heart rate. The HR is controlled by

the frequency, at which, the SA node generates impulses. However, nerves of the sympathetic

nervous system and the vagus nerve of the parasympathetic nervous system cause the heart to

quicken or slow down, respectively [121,122].

6.4 SA NODE AND RESPIRATION ENTRAINMENT

Physiologically it is known that the HR is determined by the firing rate of SA node

under the control of sympathetic and parasympathetic systems. One may distinguish between

two types of influencing factors in this neural system, viz. external and internal influences,

though a strict separation between these factors is not easily established. The external

influences are muscular exercise, digestion, posture, altitude, climate, noise and

psychosensory activity. The internal influences stem from the autonomous physiological

activity. The HR for instance fluctuates synchronously with respiration. This phenomenon is

known as the respiratory arrhythmia. Moreover, the HR often exhibits periodicities of about

10 seconds related to blood pressure oscillations [121,122].

The analysis of HRV is in fact the analysis of alterations in autonomous pacemaker

activity. Both sympathetic and vagal pathways are responsible for these alterations causing

fluctuations in heart rate. The best approximation to derive SA node activity would be the

determination of the onsets of the P waves. This is, however, a difficult task, firstly because

of the low rate of change of electrocardiographic potentials in this region and secondly
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because of the unfavorable signal-to-noise ratio. Therefore, HR information is usually

derived from the QRS complexes from which much more accurate and reliable triggers can

be derived. In most circumstances of physiological rest or minor physical load, this procedure

is permissible since the fluctuations in the PR interval (mainly due to AV node conduction

time) are small in comparison to the accuracy of the QRS complex detection. These

fluctuations are less than 5ms.

The HR is typically not constant. It usually increases during inspiration and decreases

during expiration. The effects of respiration on HR are mediated through the vagal system.

The HRV related to respiration has been quantified by conventional time series techniques

such as power spectrum analysis, which separates the power on the basis of the frequency

components in the interbeat interval (IBI) signal. Using this method, we can separate the

average power associated with respiration (which we call vagal power) from the rest <j\' the

signal. The vagal influences on the heart can then be measured by finding vagal power under

different conditions. These techniques have been used in an effort to understand the role of

vagal control of the heart in normal healthy subjects and in diseased subjects.

The SA node of the heart acts as a self-sustaining oscillator. In the absence of stimuli,

the SA node progresses through its cycle, exhibiting its own intrinsic rate. When a volley of

vagal stimuli arrive at the SA node, their effect is to reset the cardiac cycle, usually delaying

the next beat and slowing heart rate. The vagus is inhibited during inspiration and uninhibited

during expiration. Since vagal stimulation follows respiration, we analyze HR changes at

different phases of the respiration cycle.

Ageneral observation is that, there is a noticeable decrease of the magnitude of the

respiration response curve (RRC) with an increase ofthe pacing rate Zhang [154]. Therefore,
fast vagal modulation by the paced breathing produces less cardiac resetting. This suggests

that phase changes of the heartbeat in response to respiratory stimulation is frequency-
dependent. It is observed that the entrainment phenomenon occurs strongly during the slow

pacing condition and occurs weakly during the fast pacing condition.

6.5 METHODOLOGY

It has been suggested by different researchers that the analysis should take into

account only N-N intervals differing less than ±20 per cent from the previous intervals. But

the continuous ECG recording is not perfect and contains noise of both biological and

environmental origin. The amplitude and ECG pattern ofnormal QRS complexes can vary to

the extent that even a sophisticated analysis algorithm designed to update the matched
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sample may not recognize all normal complexes. The ECG morphology of ectopic cardiac

beats of atrial or atrioventricular nodal origin is not distinguishable from normal sinus

rhythm beats, and therefore, such complexes are included into the automatically generated

normal-normal (N-N) interval sequence and the same is not desirable for accurate HRV

analysis.

When the R waves are detected with an accuracy of 2ms (which is not high) for event

process analysis, a sample frequency of 500 Hz is needed. However, the bandwidth of a

signal describing HRV is restricted to say 0.5 Hz. This is corresponding to the mean HR of

60 BPM and the bandwidth (BW) of chosen HRV signal is always less than 0.5 Hz. The

sample frequency necessary for the HRV signal is therefore 1 Hz.

Even after a good amount of work, there is necessity to develop a reliable technique

to handle large amount of the ECG data effectively with an efficient data compression

technique, and thereafter, use the same for HRV analysis. In the present work, the wavelet

transforms (WTs) have been used to compress large amount of ECG data to determine QRS

complexes and R-peak locations effectively. The WTs in conjunction with a spectral analysis

technique can be conveniently implemented on a dedicated microcomputer based portable

system and the signals from the subjects can be collected over an extended period of time

without hampering daily schedule of activity. The data acquired from the standard database/

subject is firstly scanned by the WT based QRS detection algorithm to detect the R-R time

series. The use of WT serves three purposes; firstly it removes the noise and baseline wander,

secondly it provides data compression up to 8:1 ratio without losing the R-peak information,

and finally the most useful purpose of accurate detection of R-R time series. After detecting

R-R time series, the HRV analysis is being carried out by estimating the spectral and non

spectral parameters and the study of HRV related curves. The quantitative estimation of HRV

is performed using spectral and non-spectral indices. The power spectral density (PSD)

distribution of the HR series has established itself as one of the best indices to read the

information about cardiovascular autonomic system.

Some of the HRV indices are normal-to-normal standard deviation (SDNN), beat-to-

beat standard deviation (SDBTB), percentage of normal-to-normal prolongation >50 ms

(pNN50), heart rate variability index (HRV index), triangular interpolation of the normal-to-

normal histogram (T1NN), and left ventricular mass index. In addition to spectral and

non-spectral indices, the HRV analysis is also being carried out by graphical representations

such as power spectral density (PSD) curve, interval tachogram (IT) and distribution density

curve (DDC).
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The previous studies reveal three different frequency components; the first one a high
frequency component (HF) i.e. spectral component around the respiratory frequency
(approximately 0.3 Hz) and mainly related to vagal activity, the second one a low frequency
component (LF) and generally centered around 0.1 Hz and having power variations related to
sympathetic activity, and the third one a very low frequency component (VLF) associated
with the slow regulation mechanism such as thermoregulations [53,88,89,121].

The HRV signal (obtained from the Revent series) is a slowly varying signal with a
bandwidth of0-0.5 Hz and can be considered to be a fair representation ofthe integral neural

influence on autonomous pacemaker activity. This HRV signal may then be subjected to

spectral analysis. There are three regions of interest in the spectrum, indicated by R, B, and T

as shown in Fig. 6.1.

R - Respiratory fluctuations: This is in most cases a predominant contribution to HRV
(therefore, the terms sinus arrhythmia and respiratory arrhythmia are often used as
synonyms). Obviously, the location of this spectral peak is dependent on the rate of
respiration.

B- Blood pressure fluctuations: The neural blood pressure control system via the arch and
carotid sinus baroreceptors exhibits spontaneous oscillations with a periodicity of about 10

seconds. These oscillations are reflected in heart rate variability.

T- Thermoregulation fluctuations: The thermoregulation control system is subjected to
spontaneous oscillations as is the blood pressure control system. These oscillations are also
reflected in heart rate variability. The influence is much less than the other two mentioned

influences.

The system performance has been evaluated by using the standard MIT/BIH database
and the database created by on-line recording from different subjects in the laboratory itself.
The second set of database obtained from the subjects in the laboratory characterizes the
dynamic response of the heart to the vagus nerve i.e. during slow, comfortable and fast paced
respiration (12, 19 and 24 breaths/min).

6.6 DETECTION OF R-R EVENT SERIES

The reported studies also propose patho-physiological background for the prognostic
value of HRV, suggesting that decreased HRV may correlate with decreased vagal nervous
activity or increased sympathetic activity which may enhance the risk of ventricular
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Fig. 6.1 HRV power spectrum. (T -thermoregulation lluctuations, B-blood pressure
fluctuations, R -respiratory lluctuations)

[Rompelman O, et al., 1977, (121)]
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fibrillation. The correlation between the sympathetic tone and HRV power spectral
components is also reported. Therefore, measurement of HRV in post infarction patients is a
promising technique, which may prove to be of clinical importance, but standardization of
HRV measurement poses severe problem at the data processing level.

Unfortunately, the need for visual checking and manual editing is impractical in the
clinical setting and discredits the potential clinical value of the whole method because such a
time-consuming and specialized operation is beyond the capabilities of a typical clinical
cardiology department. Hence, a fully automatic method of HRV measurement in
postmyocardial infarction patients would be of value, yet no attempt have been reported until
now to determine the optimal method for filtering the N-N sequence and the optimal formula
for the numerical expression of heart rate variability.

The dependability of interpretation and diagnostics by the computer is based on the
accuracy of the extraction of the characteristic features of the ECG signal. Currently WT
based feature extraction techniques have gained lot of attention of researchers and are being
explored as an effective and dependable tools for computer aided diagnostics[38,l I5.I53J.
One of the reasons in favour of WTs is that they characterize the local regularity of signals
by decomposing the signal into elementary building blocks. These blocks are well localized
both in time and frequency and make wavelets robust to eliminate noise [109,115,153], It is
being felt that in future, WTs may be one of the ultimate choice for ECG feature extraction as
the standardization of HRV measurement poses severe problems at the data-processing level
for other QRS detection techniques. The continuous ECG recording is not perfect and
contains noise of both the biological and environmental origin. In addition to this, the
amplitude and ECG pattern of normal QRS complexes can vary to the extent that even a
sophisticated analysis algorithm designed to update the matched sample may not recognize
all normal complexes. Similarly, the ECG morphology of ectopic cardiac beats of atrial or
atrioventricular nodal origin is not distinguishable from normal sinus rhythm beats, and
therefore, such complexes are included into the automatically generated normal-normal
(N-N) interval sequence and the same is not desirable for accurate HRV analysis. It has been
suggested that analysis should take into account only N-N intervals differing less than ±20%
from the previous intervals [84]. However, in many situations, such filtering is not effective
in removing all artefacts from the original N-N sequence. Therefore, reported study also
employ avisual check of the recorded ECG and manual editing of the N-N sequence prior to
establishing the numerical value of heart rate variability. However, the use of multi-
resolution decomposition process to split the signal into one detail and one low resolution
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signal to carryout the QRS detection, as given in chapter III, gives solutions to all noise

related difficulties in detecting N-N R-R events.

6.7 TEST RESULTS AND DISCUSSIONS

Figures 6.2(a-c) show the flowcharts indicating the ECG signal acquisition, use of the

WT for QRS detection and removal of ectopic beats and artifacts, determination of spectral

and non-spectral indices and displaying of HRV related plots, namely interval tachogram,

PSD and DDC curves. The system performance has been evaluated using the standard

MIT/BIH database and the database created by on-line recording from different subjects in

the laboratory itself. The MIT/BIH ST-change database has been taken from record numbers

300 to 323 obtained during exercise stress tests. The WT has been used to detect the R-R

normal intervals from the ectopic beats and artifacts. This is because of spiking the ECG

signal in different bands of frequencies and the use of frequency band containing the QRS

complexes. Fig.6.3 shows a long record (3 minutes) which depicts the detection of R peaks.

Tables 6.1 and 6.2 show sample results. On the basis of these results, it can be stated that the

HRV spectral and non-spectral indices are less prone to fluctuations in heart rate due to

autonomic imbalance than the fluctuations due to improper and incorrect detection of a single

heartbeat. This is confirmed by the result shown in Table 6.2, which shows the detection of

false (abnormal) beats in the records from the MIT/BIH database. This false detection gives

substantial rise to the values of HR, SDNN, LFP (low frequency power) and HFP (high

frequency power) parameters.

The second set of database obtained from the subjects in the laboratory characterizes

the dynamic response of the heart to the vagus nerve i.e. during slow, comfortable and fast

paced respiration. At first, the subjects were asked to sit and breathe naturally for 2 min in

order to be stable. Then subjects were asked to pace their breathing by inhaling and exhaling

in synchrony with a time pointer moving up and down at the desired pacing rate. The

inspiration and expiration each should take approximately half of the respiration cycle. Three

different breathing rates, 12, 19, and 24 breaths/min were chosen to represent slow,

comfortable, and fast pacing rates, respectively. These three pacing rates were chosen to

facilitate examination of the dependence on the respiration frequency. Table 6.3 shows

quantization of the data in terms of their relative spectral and non-spectral indices for

different respiration phases. To illustrate the influence of different respiration phases on the

vagal activity, the HRV and corresponding PSD curves have been plotted and are shown in

Fig.6.4. For slow respiration (Fig.6.4 a), the HR gradually changes and this change is in the
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Table 6.1 Extraction of spectral and non-spectral indices

MIT Average HR SDNN LFP HFP Ratio

Record

no.

R-R ms BPM ms ms2 ms LFP/HFP

100 814.12 75.82 8.43 0.58 13.75 0.04

200 730.64 84.48 6.56 0.11 1.79 0.06

300 663.51 93.03 3.40 0.01 3.76 0.00

301 1056.68 58.42 10.34 1.36 25.01 0.05

302 977.98 63.12 11.51 0.98 30.08 0.03

303 722.78 85.40 10.04 0.11 33.26 0.00

Table 6.2 Effect of abnormal beat on URV indices

MIT/BIH

Record no.

Average
R-R ms

HR

BPM

SDNN

ms

LFP
2

ms

HFP

ms2
Ratio

LFP/HFP

100 (normal beats)
(with one abnormal

814.12

815.63

75.82

75.68

8.43

24.63

0.58

0.46

13.75

32.24

0.04

0.01

beat)

200 (normal beats)
(with one abnormal

730.64

651.36

84.48

94.77

6.56

43.33

0.11

1.62

1.79

40.58

0.06

0.04

beat)

300 (normal beats)
(with one abnormal

663.51

656.73

93.03

93.99

3.40

13.80

0.01

3.51

3.76

23.09

0.00

0.15

beat)
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1and fast respiration rates on HRV indices studied over
Table 6.3 Effect of slow, norma

consecutive four days

Respiration rate
Breaths/ min

First day
12(slow breathing)
19 (normal breath)
24 (fast breathing)
Second day
12

19

24

Third day

12

19

24

Fourth day

12

19

24

Average

R-R ms

722

682

679

629

598

581

659

645

609

622

581

569

HR

BPM

83.09

87.89

88.28

95.32

100.3

103.1

91.00

92.88

98.37

96.39

103.1

105.3

SDNN

ms

15.12

11.72

11.21

15.00

12.62

9.87

15.85

15.25

8.37

15.29

14.83

12.24

200

LFP

ms2

4.27

3.68

13.73

2.84

3.12

2.72

4.70

5.21

3.98

2.5

1.05

3.04

HFP

ms2

9.92

10.21

2.26

10.15

4.54

4.30

7.13

9.0

5.59

10.26

5.51

4.09

Ratio

LFP/HFP

0.43

0.36

6.08

0.28

0.69

0.63

0.66

0.58

0.71

0.24

0.19

0.74
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rangeof 80 to 100BPM. So far as normal breathing is concerned (Fig. 6.4 b), the HR change

is fast and varies from 80 to 120 BPM. For fast respiration (Fig. 6.4 c), the HR variations are

less except few high HR spikes and the change is in the range from 90 to 110 BPM. There is

a negative relationship between the respiratory rate and the spectrum measures of

parasympathetic activity (vagal power). For slow respiration, high power peak emerges

around the frequency of 0.3 Hz. A low power peak emerges in case of fast respiration rate.

This indicates the influence of vagal control on heart activity. The test results are consistent

and reliable and show high promise for the effective use of this technique for the HRV study

and analysis.

6.8 CONCLUSIONS

The following conclusions can be drawn on the basis of studycarried out:

i) The use of wavelets for feature extraction using adaptive window scanning improves the

detection sensitivity of the QRS complexes which results into an accurate measurement of

R-R time series which is must for proper HRV analysis.

ii) It can be stated that the HRV spectral and non-spectral indices are less prone to

fluctuations in heart rate due to autonomic imbalance than the fluctuations due to improper

and incorrect detection of even a single heart beat.

iii) It has been observed that the incorrect beats in the records from the MIT/BIH database

have given substantial rise to the values of HR, SDNN, LFP and HFP parameters.

iv) In general, there is a negative relationship between respiratory rate and spectrum

measures of parasympathetic activity (vagal power). For slow respiration, high power

peak emerges at 0.3 Hz. A low power peak emerges in case of fast respiration rate. This

indicates the influence of vagal control on the heart activity and the entrainment of

respiration on SA node activity is more during the slow breathing phase.

v) For increased rate of respiration (slow, normal and fast), there is corresponding increase

in HR and decrease in SDNN values,

vi) The strategy of HRV analysis in different respiration phases helps in understanding the

role of vagal control of the heart. This simple approach can be used in actual clinical

practice to study the status of the heart without using invasive techniques.
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CHAPTER - VII

ECG DATA COMPRESSION USING NON-REDUNDANT TEMPLATE

AND WAVELET TRANSFORM

7.1 INTRODUCTION

Considering the tremendous volume of electrocardiogram (ECG) data being recorded

each year, the ability to efficiently manage the storage and retrieval of this data for the

purposes of comparison and evaluation mandates the need for compression techniques. The

storage and transmission limitations have made ECG data compression an important feature

for most of the computerized systems. For example, modern Holter systems call for long term

(24 hours) storage of single or multichannel ECG data, transmission of ECG data over

telephone lines and mobile radio links, the performance and functionality of ambulatory

monitors and recorders, and the implementation of real-time rhythm analysis and automatic

diagnostic algorithmsfl 1,13,21,73,55]. In addition, the capability of efficient transmission of

the stored data to diagnostic centers is becoming a standard requirement. Such systems

invariably require a means of data compression which lead to the conflicting requirements ofa

high compression ratio (CR) versus good signal fidelity. Another scenario for the use of

compression methods is the storage of signal databases from numerous patients with different

etiologies. Likewise, signal databases have proved to be very useful for the evaluation of new

automated analysis systems and algorithms. Although a good number of compression

techniques have been reported in literature, the search for new method continues, with the aim

of achieving greater compression ratio (CR) while preserving the clinical information content

in the reconstructed signal is continuing. The CR depends on the intended data application and

the common way to measure it, is through performance indices like, percent root mean square

difference (PRD), signal powers (original signal, reconstructed signal and error signal),

diagnostic ECG parameters and visual inspection.

The ECG data compression methods reported in the literature fall mainly into four

categories, namely (i) direct data compression (DDC), ii) transformative, iii) hybrid and iv)

parameter extraction techniques. These techniques are reviewed in chapter I. As these data-

compression algorithms have been tested with different databases for different signal sampling

ratio and precision of original data, thus their direct comparison is very difficult and even not
logical at times [100,131].

203



The commonly used direct data compression techniques are Amplitude Zone Time
Epoch Coding (AZTEC), modified AZTEC, FAN, Scan Along Polygonal Approximation
(SAPA), Coordinate Reduction Time Encoding System (CORTES), Turning Point (TP) and
Delta Pulse Code Modulation (DPCM) [50,130]. Some of the commonly used transform

techniques are Karhunen-Loeve transform (KLT), Fourier Transform (FT), Cosine Transform
(CT), Walsh transform (WT), Haar-transform (HT), optimally warped transform, sub-band
coding and the wavelet transform (WT) [26,34,47,52,60,70]. In parameter extraction
methods, the techniques covered are peak-picking, cycle-pool-based, linear prediction, and
neural network methods. Vector quantization (VQ) has also been used for data
compression^, 100]. It is employed in conjunction with any of the previously mentioned
methods mainly as away of quantizing the resulting data after compression. In most of these
data compression methods, a complicated procedure is involved to select the lin% segments,
slope segments, segment lengths, amplitude of segment extreme points, setting of error
thresholds, and coding schemes. The compressed data is in the form of numerals, or codes and
not in the form of signals. Again aprocedure is involved to decode the information stored in
some coded form to reconstruct the signal. Even with the complex procedure and

computations required for compression and decompression, performance-wise no method can
be placed in acategory which satisfies all the requirements of compression and decompression.
Thus there is still a necessity to develop such techniques which can be still ahead in
performance compared to existing techniques. In the present work, a simple non-redundant-
template direct data compression (NRT-DDC) method is developed which retains 100%
information of compressed signal and provides a high compression ratio (8:1). Some work
has also been carried out on WT based data compression. NRT-DDC perform the
compression by down-sampling the ECG signal in steps by using anon-redundant template.
The removed data samples in the process ofdown-sampling are stored in a data array as non-

redundant template. The signal is compressed by afactor of about 8for the signal sampled at
500 Hz or 16 for the signal sampled at 1000 Hz. It has been noted that 100 percent

information w.r.t. the morphology of the original signal is retained in the reconstructed signal.
The method is consistent and reliable and can be used for both the online and oftline ECG data

compression.
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7.2 A NEW NON-REDUNDANT TEMPLATE - DIRECT DATA COMPRESSION

TECHNIQUE

The steps used for compression and decompression in this technique are given below:

7.2.1 Compression

(i) Data compression is performed by downsampling the original ECG signal in steps.

Downsampling means, picking an alternate samples from the original signal, which reduces
original signal into its half data length containing N/2 number of samples as that of original
signal. The care is taken to retain the peak and valley points.

Consider X(n) as the original signal with Nnumber ofsamples as shown in Fig.7.1(a). In first
downsampling, alternate samples are removed from the array X(n) and stored into another

array T(i), called as redundant template.

X(n), (n =0 to N) = [X(2k) + X(2k+1)], (k=0 to - -1)

From these even numbered samples, X(2k) are to be used as compressed data and the odd

numbered samples (X(2k+1)) are to be used as redundant data samples.

Thus, T,(i), (i=0 to --1) = X(2k+1), k = 0 to --1

(ii) In the second step of compression, again downsampling of the signal is carried out by
removing the alternate samples from the series X'(k) as shown in Fig.7.1(b).

X'(k) = X(2k), k=0 to —-1

The removed odd numbered samples from the series X'(k) are stored into redundant array

T2(i) as given below:

X'(k), (k=0 to -) =[X1(21)+X'(21+l)], (1-0 to IL -1)

Thus, T2(i) =X'(21+l),l=0to^-l

After this step, we get — number ofsamples stored in X(21).
4

(iii) In the third step, further downsampling of the signal is carried out to remove the odd
numbered signal samples.

X" (1) = X1 (21), 1=0 to —-1
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The removed samples from the signal Xn(l) (as shown in Fig.7.1(c)), are stored in redundant

template T3(i) as given below:

X"(l), (1=0 to —) =[Xn(2m) + X"(2m+I)], m=0 to —-1
4 8

Thus, T,(i) = X1 '(2m+1), m=0 to —-1
8

The retained samples Xn(2m), m=0 to 1 are the samples of compressed signal as shown
8

in Fig. 7.1(d).

(iv) With this compression procedure, we store first and every 8th sample from the original

ECG signal X(n) having N number of samples, therefore, compressed signal Xc(n) contains

Xc(n) = X(8m), m=0 to N-1

i.e. Xc(n)= Xu(2m), m=0 to —-1
8

and except such Xc(n) samples, other samples are stored in the template T(i).

where,

T(i) = T,(i)+ T2(i)+ T3(i)

X(2k+1), k=0to—-1
2

+ X'(21+l), 1=0 to —-1
4

+ Xn(2m+1), m=0to —-1
8

Finally, T(i) samples are arranged in an ascending order with the removal of redundant

samples, retaining unique sample amplitudes in a non-redundant template TK(i).

The result of these four steps is a compressed signal Xc(n) and a non-redundant

template TR(i), which gives a compression ratio of 8. The sampling of a signal at 500 Hz

having N number of samples reduces it to N/2 number of samples by first downsampling

resulting an effective sampling of 250 Hz. After the first step, a signal as shown in Fig. 7.1(b)

having N/2 number of samples is reduced to N/4 number of samples and the effective sampling

is 125 Hz. In the third step, the signal as shown in Fig. 7.1(c) with N/4 number of samples is

reduced to N/8 samples and the effective sampling at this stage becomes 62.5 Hz. The

removed samples are stored into an array called a redundant arrays which are finally grouped

to form a non-redundant array, removing the redundant samples. In particular it is observed
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that for a original signal with the data length of 10,000 samples with 30 to 40 cycles, when
compressed by this algorithm retains about 1250 samples in the compressed signal and about
150 samples in atemplate. Hence the 1250+150 = 1400 samples hold 100% sample amplitude
information contained in the original signal of 10,000 samples. The information regarding the

position of the removed samples is retained by the compressed signal (Fig.7.1(d)). Hence we
need to store or transmit a compressed and a non-redundant template TR(i), which gives a

compression ratio of about 8, for asampling of 500 Hz and about 16, for asampling of 1000
Hz. The CR of8or 16 is depending on the number ofstored samples in the compressed signal

as well as in the redundant template array TR(i), therefore, it has mentioned as about 8 or 16.

With this procedure, we get CR of about 8 or 16. As it is difficult to retain all peaks and
valleys of the original signal, therefore, it is desirable to retain some major peaks and valleys
which are higher in magnitude than the retained first and the 8th samples, i.e., if the sample
peak or valley between first and eighth such samples is greater in magnitude than these two
samples (first and eighth), then it is retained. Retaining of such peaks and valleys help to
maintain the signal morphology and the information of clinical significance. If a peak or a

valley falls on the samples X(0) or X(8), then these points by itself hold the information of a
peak or avalley. If the peak and valley are the samples among X(l) to X(7), then the first two
X(l) and X(2) samples peaks or valleys are replaced to X(0) and X(6), and X(7) peak or
valley is replaced to X(8). The peak or valley among the X(3), X(5) samples is replaced in
place of X(4), and this X(4) sample is stored by adding athreshold value 'Th' to its amplitude,
which helps to recognize this additional peak or valleys being stored between the points X(0)

and X(8).

The strategy of retaining the peak or valley of the neighbor sample i.e. X(l),

X(2) in place of X(0), and X(3), X(4), X(5), in place of X(4) with a threshold 'Th' and for
X(6), X(7), the place of X(8) is used. This procedure adds shifting of sample positions by an
amount of one sample displacement in case of X(l), X(3) and X(7) samples and two sample
position shifting for X(2) and X(6) samples, and no shifting to X(0), X(4) and X(8) samples.
The effect of this maximum displacement equivalent to two sample durations (4ms) in

comparison to R-R duration of about 1000 ms, is negligible if sampling frequency is 500 Hz.

7.2.2 Decompression

After looking at different data compression methods, it can be stated that retaining the
morphology of original signal in the reconstructed signal puts lot of constraints and scrutiny
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check on the compression technique. In the present method, the steps of reconstruction at

different stages of procedure are explained below.

(i) In the first step of reconstruction, a compressed signal is traversed by the template to

overlap and map the samples of compressed signal with the samples of non-redundant

template from the starting of compressed signal to the end for interpolation. To do this, firstly

X(0) sample of the original signal (Fig.7.2) is mapped with the same amplitude sample of TR(i)

as X(t) and X(8) is also mapped with the same amplitude sample of TR(i) as X(t+m). These 'm'

number of samples of TR(i) from X(t) to X(t+m) are considered to select the median numbered

sample among the number of samples of TR(i) to select middle point X(4) of X(0) and X(8). It

is observed that the density of samples in the vicinity of baseline (zero crossing region) is more

compared to maxima or minima amplitude levels i.e. the region of R and S peaks of the signal

Hence the sample X(4) selected as X(t+m/2) is more near to X(0) than X(8) as shown in

Fig.7.2. This procedure of interpolation of such X(4) samples from the TR(i), throughout the

compressed signal, completes the first upsampling. If a peak or a valley sample point is present

as can be recognized by the threshold point Th', then the X(0) and X(4) samples are

considered in place of X(0) and X(8) to fill up the middle point X(2) from the template, by

the same upsampling procedure. This step of reconstruction converters a signal with N/8

number of samples to high resolution signal having N/4 number of samples and an effective

sampling of about 125 Hz.

(ii) In the second step, signal is further up-sampled by the same procedure as explained above,

to convert the signal having N/4 samples into a high resolution signal with N/2 number of

samples to represent an effective sampling of 250 Hz. This step completes the second up-

sampling.

(iii) In the final step, the signal is up-sampled to get resolution equal to the original signal by

interpolating the required samples from the template TR(i).

This three step reconstruction procedure is shown in Fig.7.1. It consists of the

output of compression procedure shown by the signals in Fig 7.1(a), (b), (c) and (d). The

signals shown in Fig.7.1(e), (f), and g) are the output signals at different stages of

reconstruction. The details of reconstruction procedure are shown in Fig.7.2. Considering

two consecutive points of a compressed signal 'd' (fig.7.1) as say X(n) and X(8n), n=0 to N/8-

1, wherein, among the first slot of samples from X(0) to X(8), X(l) to X(7) samples are to be

interpolated from the template TR(i),( i =0 to m) to bring out the complete reconstruction.

When there is no peak or valley point stored between X(0) to X(8) as can be recognized by
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knowing the threshold amplitude Th'. Ifthere is a peak or valley added in place of X(4), then

the points X(l) to X(3) are to be extracted from the TR(i), to feed between X(0) to X(4) and
the points X(5) to X(7) are to be added between X(4) to X(8). The procedure, as shown in
Fig.7.2, is used to interpolate the samples between X(0) to X(8). Firstly X(0) and X(8)
samples of compressed signal are mapped with the TR(i) samples and the number of samples
ofTR(i) falling in the amplitude level of X(0), X(8) are considered and the median of these
samples is considered to feed the sample X(4). The mapping of X(0) and X(4) with TR(i)
samples are carried out to feed X(2), mapping of X(0) and X(2) with the same amplitude
samples of TR(i) is used to feed the X(l) and the same procedure is repeated to feed all
required samples by traversing the template TR(i) over the complete compressed signal, from
starting to end of the signal. The signal, shown in Fig.7.1(g), is a completely reconstructed

signal having Nnumber ofsamples with an effective sampling frequency of500 Hz.

7.3 WAVELET TRANSFORM BASED ECG DATA COMPRESSION

In most cases, DDC methods are superior to transform methods with respect to system

complexity and the error control mechanism. However, transform methods usually achieve

higher compression ratios and are insensitive to the noise contained in original ECG signals

[26]. With regard to other transform-based compression techniques which have been reported

in the recent literature [21], only qualitative compressions can be performed due to the use of

different ECG databases. The algorithm based on multiresolution wavelet analysis achieves

high data compression rates and good quality ofretrieved signal. The technique presented here

produces compression ratio ofthe order of 16:1 for reasonable signal quality.

7.3.1 Method

The wavelet transform is a special case of perfect-reconstruction filter banks

[139]. The main idea ofthe transform is to subdivide an arbitrary signal into constant-Q

frequency bands using recursive filter banks generated from a small number of prototype

filters. The filtering process is equivalent to decomposing the signal using a set ofbasis

functions which are localized in both space and frequency and are scaled and shifted versions

ofa prototype mother wavelet [7,47]. Figure 7.3 shows three-level analysis and synthesis of

one-dimensional data. H(n) and G(n) are low-pass and high-pass filters for analysis. H(-n) and

G(-n) are low-pass and high-pass filters for synthesis. The four filters are related in the z-

domain as follows:
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H (z) = G(-z)

G (z) = -H(-z)

H(z)G(-z) - G(z)H(-z) = 2

Where H and G are WT analysis filter coefficients and H~ and G are WT synthesis filter

coefficients.

The first two conditions eliminate aliasing and the last one condition eliminates phase and

amplitude distortion in the reconstructed signal.

A wide variety of functions can be chosen as the mother wavelet v|/(t), provided

v|/(t)eL2 and Jv|/(t) dt=0. This flexibility in the choice of mother wavelet allows i|/(t) to be

tailored to the specific application at hand. For signal compression, compact support of i|/(t)

can discriminate signal features in both time and scale. If the basis functions generated from

v|/(t) are orthogonal or biorthogonal to each other, they minimise the interscale correlation of

the decomposed signal.

The choice of wavelet in a compression system is of critical importance, because the

wavelet affects reconstruction signal quality and the design of the system as a whole. At this

time, there are no theoretical results that can predict which wavelet is suitable for signal

compression a priori. A specific wavelet is usually chosen by comparing the actual

compression performance of different wavelets [47]. Daubechies's six coefficient is found to

be the most suitable wavelet for ECG data compression and retrieval of diagnostic

information, hence the same wavelet has been used here.

The wavelet technique developed by Mallat [86] and others is called multiresolution

wavelet. It has desirable feature, as the wavelet functions are orthogonal and divided over a

dyadic scale. The signal ofinterest X(n) can be decomposed into its coarse component a ' and

detail component cr" at various scales (or resolutions) 2j. This is also called a pyramidal

algorithm. Thus, at scale j=l, the signal is decomposed into a coarse component and a

remainder detail component. Then, at the next scale j=2 and beyond, the procedure is
repeated.

The coarse component is obtained by convolving the signal with a scaling function

(|>(t), whose Fourier transform appears as a lowpass filter. The coarse component is obtained
by modifying the scaling function for each successive scale, and convolution ofthe signal with

the scaled and translated version of the scaling function. The detail component is the

remainder after the coarse component is obtained. The detail component is obtained by

convolving the signal with a wavelet function \|/(t) whose Fourier transform appears as a
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bandpass filter. At each successive scale j, the coarse signal is produced by lowpass filtering

and decimation. The discarded detail signal is the same as the signal removed by a bandpass

filter. At each compression level, a new bandpass filter is employed to remove the higher

frequency components. These functions are orthogonal, and resulting bandpass filters are non-

overlapping.

Data reduction is achieved by accepting the signal only upto a certain scale. The detail

beyond that scale is discarded. As shown in Fig.7.3, the ECG signal can be divided into coarse

and fine components at successive levels. In obtaining the component at the lower scale,

alternate samples are discarded, resulting in a 2:1 compression of the data. The scaling level

selected depends on the data compression rate desired and the distorsion error acceptable.

Data compression proceeds in steps of 2:1, 4:1, and so on.

The original signal can be easily resynthesized using inverse wavelet transform

(synthesis) as shown in Fig.7.3. Decompression is being carried out by reconstructing the

coarse (aJ) and the detail (dJ) components at the higher scales from the coarse and the detail

components at the lower scales. The performance of this algorithm is evaluated on CSE data

set three and five and the sample results are given in the section on results and discussions.

7.4 PERFORMANCE EVALUATION OF DATA COMPRESSION TECHNIQUES

Some important performances indices used in data compression analysis are:

a) Compression Ratio

The degree of compression is represented in terms of compression ratio (CR) and

is defined as:

Number of samples in the original signal (Xorg)
CR —

Number of sampls in the reconstructed signal (Xrec)

It is generally desired to have high CR by caution against using this parameter as

the sole basis of compression among data reduction - algorithm. Factors such as bandwidth,

sampling frequency, and precision of the original data generally have considerable influence on

the compression ratio. The high CR is meaningful only when the algorithm represents the data

with acceptable fidelity.

b) Percent-Root-Meaii Square Difference

In biomedical signal compression, we usually determine the clinical acceptability

of the reconstructed signal through visual inspection. Many researchers have used the

quantitative comparison of the distortion in the reconstructed signal, i.e., the residual which is

214



the difference between the reconstructed signal and the original signal. Such numerical

measure is the percent-root-mean square difference (PRD) and is given as

PRD =

Z[Xorg(tl)-Xrec(n)]2
— z *100

I ;r=0

where Xorg(n) and Xrec(n) are the samples of the original and reconstructed data. A lossless

data reduction algorithm produces zero residual and the reconstructed signal exactly replicates

the original signal. However, clinical acceptable quality is neither guaranteed by a low nonzero

residual nor ruled out by a high numerical residual [50].

c) Fidelity

An effective evaluation, however, requires that the signal be reconstructed and

compared with the original signal. The comparison can be made either visually or by

calculating a suitable index, such as the ratio of error power to signal power or the
cross-correlation coefficient (CCC) as given below [26]:

1 N

-Y,{Xorg(n) - Xorg(n)\xrec(n) - Xrec(n))
CCC

N„=]

'NtXiXorgin)-XorgQtjf U-^XrecQi)-Xrec(n)J

Some other related terms are,

N

Original signal power Porg = £x; (n)
n=0

N

Reconstructed signal power Prec = T]xrec(n)
n=0

N

Z [xorg(n)-xrec(n)J
Error power Perr = n=o

where Xorg((n) and Xrec(n) are the samples of the original signal and its reproduced version

and xorg (n)andxrec (n) are their average values, respectively.

Fidelity can also be checked graphically by observing the difference of original and
reconstructed signals, if the difference signal is approximately a straight line i.e. the signals
samples falling in the vicinity of base line, ideally astraight line from starting to end of signal,
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then it can be said that the reconstructed signal is perfectly retrieved. In addition to these

performance indices, the comparison of diagnostically important parameters like onsets and

offsets of ECG waves and their amplitude and duration determined from the Xrec and Xorg

signals are being used to decide the extent to which the algorithm is capable of preserving the

diagnostic information.

7.5 RESULTS AND DISCUSSIONS

a) NRT-DDC Technique

The performance evaluation of the non-redundant template DDC (NRT-DDC) has

been carried out using the CSE data sets 3 and dataset 5. The CSE has given the measurement

results of every fifth record of CSE DS-3 and the same have been used to evaluate the

accuracy of parameters estimated from the reconstructed signal. To evaluate the performance

of the NRT-DDC method, in general, signals with different morphology have been used as

shown in Figures 7.1,7.4-7.6. As shown in Fig.7.1, the Xorg signal 'a' has very small spikes

overriding the ECG signal. These spikes are reduced in the process of compression as can be

seen in the signals 'b\ V and 'd'. The signal 'd' is a compressed signal, which seems to be a

low resolution signal with the waves slightly wider compared to original signal 'a'. The

process ofdecompression, as shown in the signals Fig.7.1(e), (0 and (g) is performed in three

steps by redundant template interpolation. The final signal 'g' has equal resolution as that of

the Xorg signal with additional advantage of reduced noise. Different performance indices

values used to see the performance of NRT-DDC are given in Table 7.1. For record MA -

001.DCD Lead I, the indices values are as CR=7, PRD=9.05. The high value of PRD is due to

displaced reconstructed samples in the region ofthe QRS complex as shown in Fig. 7.4, which

is a difference in original and reconstructed signals. In this case, QRS region shows some high

amplitude difference because of sample masking or shifting with the neighbor samples to retain
the peak or valley falling out ofsamples X(l) to X(7), as explained in section 7.2. Except the

QRS region, the difference signal represents a straight line (Fig.7.4), which indicates the

perfect reconstruction in the iso-electric and low amplitude low frequency region (P, Tand U
waves). The fidelity of the reconstructed signal is checked by observing the difference signal
(as shown in Fig.7.4) and the performance indices viz. original signal power Porg =9.43 mv ,
reconstructed signal power Prec = 9.035 mv2, error power Perr = 0.39 mv2 and cross
correlation coefficient CCC= 94.2 %. Looking to the small value of error power (0.39 mv2
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Table 7.1 Performance indices for NRT-FJ DC tcchniq uc

Record

No.

P-org
mV2

P-rec

mV2
P-err

MV2
CR PRD

%

CCC

%

DS-3

1L1 9.431 9.035 0.39 7.0 9.05 94.2

1L2 65.76 65.10 0.66 6.0 9.33 97.7

1AF 47.04 46.32 0.72 6.16 13.35 96.1

1V1 114.45 114.17 0.28 7.0 8.17 91.1

1V4 97.26 93.91 3.35 6.32 12.99 95.2

1V6 9.814 9.692 0.12 6.30 11.03 99.2

DS-5

1L2 334.23 332.76 1.47 4.41 3.27 99.2

1V2 138.82 133.59 5.23 4.0 11.58 99.1

P-org: original signal power;

P-crr : error power

PRD: percent RMS dUTerence

P-rec: reconslrucled signal power

CR: compression ratio

CCC: cross correlation coefficient
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and large values of CCC (94.2 %), it is confirmed that the retrieval of the signal is good to
give high fidelity.

The ECGs used in Figs.7.5 and 7.6 have been used to see the performance. As shown

in Fig.7.5, the use of sinusoidal and triangular waveforms demonstrate the faithful

compression and decompression. As shown in Fig.7.6, a record from DS-5, D-0001.DCD

Lead II, has high baseline drift in some region ofthe signal, even with this quality of the signal.

The perfectness of reconstruction can be observed from the values of performance indices

given in the Table 7.1, where Perr=1.47 mv2, PRD=3.27. The PRD ofabout 3 and high CCC,

99.2% indicate accurate reconstruction of the signal even with baseline wander.

Atypical high frequency noise signal (record MA-120.DCD, Lead I), shown in Fig 7.7,

is used to show the procedure ofpeak and valley retaining capability of this method and the
reconstruction is also good.

The information retained about the peaks and duration in the reconstructed signal is

clinically important in classifying certain cardiac diseases, particularly when we use scoring

criteria based on ECG parameters. Utility of the present method in this regard is utmost

guaranteed as the method is capable of holding 100% sample amplitude levels from the

original signal. Also the reconstruction accuracy in the low frequency low amplitude (baseline)

region is at the highest level, which helps in accurate detection of onsets and offsets of ECG

waves. Hence the reconstructed signal has 100% accuracy in the measurement of ECG wave

amplitudes as can be observed from the Table 7.2, almost in all ECG waves, and the original
and reconstructed signal amplitude are the same. The onset and offset measurements in

original and reconstructed signal given in Table 7.3 are compared and found well within the

tolerance limits suggested by the CSE working party. Table 7.4 shows some diagnostically
important parameters which are measured from the original and reconstructed signals and are

comparable with the measurement results given by the CSE Working Party in the reference
manual [147].

To compare the performance of this method with the existing techniques, we have
selected the reported data as well as the techniques reported with the performance evaluation
based on CR and PRD for data sampled at 500Hz. The details are listed in Table 7.5 In this

Table, the CR ranges from 7 to 10 in most of the cases (except in two, having high CR of
about 16) and PRD from 3to 28. It means that only CR or PRD do not give proper scale for
comparison. Therefore, the only way is to see whether the clinical information is being
retained or can be retrieved or not. This aspect has been considered and the comparison with
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Tabic 7.2 Amplitudes measured in original and reconstructed signals for NRT-DDC

(forCR=8)

Record No. P(mV) Q(mV) R(mV) S(mV) T (mV)

MA-OOl.DCD

1L1 Original 0.08 -0.01 0.31 -0.33 0.16

Reconstr. 0.08 -0.01 0.28 -0.31 0.14

1L2 Original 0.11 0.00 0.13 -0.49 0.24

Reconstr. 0.11 -0.01 0.13 -0.50 0.24

MA-120.DCD

ILI Original 0.06 -0.08 0.56 -0.20 0.35

Reconstr. 0.06 -0.07 0.55 -0.25 0.33

Table 7.3 ECG wave onsets and offset measured in original and reconstructed signals

for NRT-DDC technique (CR 8 )

Record No. P

onset

P

Offset

QRS
Onset

QRS
Offset

T

End

MA-001 LI Orginal sig. 103 151 215 273 443

Reconstructed signal 100 152 212 267 430

MA-001 L2 Orginal sig. 103 195 223 284 455

Reconstructed signal 99 190 220 279 451

MA-120 LI Orginal sig. 93 155 249 297 457

Reconstructed signal 101 160 252 296

6

464

15Accepted liniit(samples) 6 6 4
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Table 7.4 Diagnostically important paramctt rs measured in original and

reconstructed signals for NRT-DDC technique

Record HR P -dur. QRS -dur. PR -inter QT - inter VAT

No. BPM sec sec sec sec Sec

MA-001

LI Org. 63.83 0.10 0.12 0.23 0.46 0.04

Rec. 64.52 0.14 0.11 0.26 0.42 0.05

L2 Org. 63.83 0.18 0.12 0.24 0.46 0.02

Rec. 63.56 0.16 0.12 0.25 0.47 0.03

MA-120

LI Org. 61.22 0.10 0.10 0.32 0.42 0.03

Rec. 61.48 0.10 0.09 0.29 0.42 0.02
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Table 7.5 Comparison of data compression techniques

Method Sampl
Freq.

CR PRD aik:

(bits)
Comments

AZTEC [50] 500 10 28 12 Poor P & T fidelity & retrieval
ofduration related parameters

Peak-Picking (spline) with
entropy coding[50]

500 10 14 8 Loss of information contained

in low amplitude low freq.
Region

DPCM-linear prediction
interpretation and entropy
coding [55]

500 7.8 3.5 8 Sensitive to SF and

quantization

Adaptive Fourier coefficient

estimation [55]

500 16 3 Truncation of coefficients to

reduce the data affect the

reconstruction quality.
Sub-band coding with
extensive Markov syslem|55]

500 25 - 12 -

ANN [125] 500 16 7 12 Sensitive to SF and data length

CORTES [64 ] 500 10 - 12 Poor P & T fidelity

MAZEEC [64] 500 7.6 - 12 Poor P & 1 fidelity

SAPA [64 ] 500 10

"

12 Loss of information contained

in low amplitude low freq.
region.

Wavelet Transform 500 16 - 12 Loss of information due to

truncation.

NRT-DDC (present method)

....

500 8 3-13 12 Retain about 99% information

regarding the amplitude and
duration.
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CSE results of the diagnostically important parameters measured in original and reconstructed

signal (Tables 7.2-7.4). This comparison shows that there is faithful information retrieval.

b) Wavelet Transform Technique

Cardiologists suggest that the clinically useful information present in original ECG

signals is preserved in general by 8:1 compression and in some case by 16:1 compressed

ECG's [47]. Considering this, the data compression has been carried out using WT technique

to provide the CR of 8:1 and 16:1. The sample results are given in Table 7.6 and 7.7 and to

see the changes in the morphologies ofECG waves, the graphical representation are shown in

Figs. 7.8to7.13.

The PRD indicates reconstruction fidelity by pointwise comparison with the original

signal; but as pointed out by many researchers that it is not by itself, an accurate indicator of

the utility of a reconstructed signal [47]. To asses the clinical utility of the wavelet

compression algorithm, a comparison of diagnostically important parameters measured from

the original and compressed signals is used. The use of CSE results for the CSE DS3 data are

used to see that the results measured in compressed signal are in the tolerable limits or not.

From the parameters (Table 7.6), it is not so clear that the reconstructed signal is ofdiagnostic

acceptance or not, because of different PRD values for different signals even with same

resolution. Looking at the value ofP-err and the corresponding nature of the ECG signal, it is

observed that there exist no significant relationship hence, as pointed out by many researcher,

the performance indices like PRD, P-err give no judgement. Therefore, the use of diagnostic
parameters measured from the original and the reconstructed signals are compared to see the
performance of WT based data compression for different compression ratios. The comparison
given in Table 7.7 makes it clear that the 8:1 compressed signals have the exact reconstruction
giving 100% accurate retrieval of diagnostic parameters. For 16:1 compression rate,
reconstruction is also satisfactory and is signal dependent, but in some parameters like QRS-

interval, QT-interval and VAT, inaccurate retrieval ofdiagnostic information is observed For

example, QRS-interval in all three signals shown in Table 7.7 is differed by about 0.01 second
(i.e. in place of 0.12 second it shows 0.13 second), QT-interval is differed by 0.02 second (i.e.
in place of 0.46 it shows 0.48 second) and VAT differed by 0.03 second (shows 0.07 for 0.04

second).
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Table 7.6 Performance indices for WT based data compression technique

Record No. CR P-org P-rec P-err PRD %

mV2 mV2 mV2

MA-OOl.DCD

Lead 1 8.0 19.98 18.46 1.52 16.30

16.0 19.98 23.98 -4.00 44.78

MA-120.DCD

Lead 3
8.0 18.52 23.40 -4.88 69.24

16.0 18.52 28.12 -6.46 59.09

D-001.DCD

Lead 3
8.0 983.0 960.90 22.10 3.98

16.0 983.0 1581.0 -57.20 24.10

P-org: original signal power

P-err: error power;

PRD: percent RMS difference
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Table 7.7 Diagnostically important parameters measured in original and
reconstructed signals for WT based compression technique

Rccd.

No.

CR IIR

BPM

Pamp
mV

PRint

sec

QRS int
sec

QRSp-p
mV

QT int
sec

VAT

sec

lamp

mV

MA-001

Lead 1

Org

signal

08

63.8

63.5

0.06

0.06

0.23

0.24

0.12

0.11

0.64

0.58

0.46

0.46

0.04

0.04

0.18

0.17

16 63.0 0.06 0.22 0.13 0.53 0.48 0.07 0.20

MA-120

Lead 3

Org

signal

08

61.2

61.4

0.03

0.05

0.18

0.18

0.10

0.12

0.85

0.87

0.40

0.43

0.02

0.02

-0.21

-0.21

16 61.0 0.02 0.15 0.15 0.84 0.46 0.03 -1.25
—_

D-0001

Lead 2

Org

signal

08

57.0

57.6

0.08

0.05

0.20

0.18

0.07

0.08

1.00

0.85

0.39

0.41

0.04

0.04

0.23

-0.57

16 58.0 0.04 0.21 0.08 1.32 0.42 0.06 -1.0
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7.6 CONCLUSIONS

The NRT-DDC and WT methods produce compressions by downsamling technique.

Data compression (up to 8:1) and retrieval of information by both the methods is of

diagnostically acceptable level. Therefore, the use ofNRT-DDC is restricted up to 8:1 but the
WT can be used for higher CR ifthe selective information is ofimportance, like the use ofR-R

intervals in the study of HRV analysis.

Some ofthe important findings about the NRT-DDC method are as follows:

i) The present method is best suited for online data compression and reconstruction. The CR
in this method is dependent on the signal sampling frequency. At 500 Hz sampling rate, it

gives CR ofabout 8 and retains clinical information by preserving 100% amplitude level and

the morphological information.

ii) As the peaks and valleys are being retained by the compressed signal and the interpolation is

being carried out by the actual samples (removed samples stored in template while

compression) from the template, and the density ofsamples in the iso-electric region ofECG

signal is more and these redundant samples are interpolated accurately by the template. In this

case, the accurate measurement of onsets and offsets of the ECG waves is possible,

iii) In comparison to the other DDC methods, the present method is simple and superior in

performance when evaluated using the performance indices like CR, PRD, fidelity, CCC,

signal power (original, reconstructed and error signals) and diagnostic parameters,

iv) By considering these aspects, it can be stated that this method is suitable for on-line data

management for Holter recording, ambulatory monitoring and multi-lead diagnostic data

systems.

The results of WT based compression are also very much satisfactory as the method is

based on retaining of selective components of the signal. In case of ECG sampled at 500 Hz,

most of the ECG wave components lie below 30 Hz frequency, hence the compression up to

8:1 retains ECG wave components with frequency less than 30 Hz. It is clear that for high

resolution signals, the WT based compression can be the most useful. These are suitable in

storing the data of special cases like in heart rate monitor and HRV analysis, where there is a

need to store the information regarding the R-R occurence. As disscussed in an earlier chapter

on QRS detection, the WT based QRS detection serves two purposes, i.e. accurate detection

of R peaks as well as data compression.
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The methods of coding and decoding of slopes, plateaus, segment lengths and

positions based on approximate thresholding seek error in reconstruction. There is
approximations in the sense that the group of samples having close amplitude or slope are
considered to be of same value. This assumption is very critical to induce the error in

measurement of onsets and offsets of ECG waves. This is due to the low frequency and low

amplitude regions (P, T and U segment), wherein, slope and amplitude are small, and
therefore, small tolerance limit results into large shirts in onsets and offsets of the ECG waves.
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CHAPTER -VIII

CONCLUSIONS AND SCOPE FOR FUTURE WORK

8.1 CONCLUSIONS

Considering the increased number of cardiac patients and need of sophistication for

want of information on pressing a tip of finger, there is no better assisting alternative than the

automated ECG analysis and disease diagnosis system to help an expert cardiologist. ECG, a

non-stationary signal, can be faithfully analysed through a time-frequency analysis using

tools likewavelet transform. The use of wavelet transform is very effective for the analysis of

ECG signals. Its extensive use has been made in signal processing, right from the stage of

noise reduction to feature extraction and disease interpretation.

After introducing the area in chapter I and wavelet transform in chapter II, the work

has been reported regarding the QRS detection using wavelet transform in chapter III of the

thesis. The major conclusions drawn in respect of this work are summarised as follows: The

developed algorithm works satisfactorily in all typical morphologies of the ECG. Among the

wavelets evaluated for the QRS detection, quadratic spline wavelet and the new developed

wavelet (WT6) are found to be the best suitable for the QRS detection. The developed

algorithm gives the detection rate of 99.806% with the sensitivity of 99.904% when tested on

all 48 records of the MIT/BIH Arrhythmia database and rate of QRS detection of 99.866%

with the sensitivity of 100% on complete CSE DS-3 dataset. The performance indicates that

the wavelet can be considered as one of the most effective techniques for computer aided

QRS detection in ECG analysis and interpretation. Even with baseline wander, muscle

artifacts, high frequency noise and higher amplitude P and T waves, the detection of the QRS

by wavelet transform is very accurate. The wavelet transform emerges different wave

components at different frequencies taking care of variations in the ECG.

In the fourth chapter of the work, all the fundamental and diagnostically important

features of ECG are measured by using the QRS location as a time reference. The comparison

of five wave fiducial points (P-onset and -offset, QRS -onset and -offset and T-end) with

the CSE measurement results, shows that the overall accuracy in the measurement is about

91.00 %. Out of total 125 fiducial location estimates in 25 records, 11 estimates deviate from

the tolerance. The software has also been tested using the ECGs recorded in the laboratory.
After confirmation of the reliability of software using CSE DS-3 and the ECG records of this

lab, diagnostic dataset DS-5 has been carried out for the analysis and disease diagnosis. As

there are no measurement results published by the CSE for dataset DS-5, statistical analysis
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has been used to see the distribution of programme estimates around a mean value. From a

record, five regular beats per lead are selected and 29 parameters per beat per lead are

extracted. Therefore, the software extracts the parameters from five such beats in 12 standard

leads and stores the features. The statistical parameters are used to see measurement

performance of the developed software. The statistical parameters, namely, variance and

standard deviation (SD), derived from 12 SL measurements show the best performance of

wave detection and parameter measurements.

The use of the ECG analysis for the disease diagnostic and the strategy to use five

beats from all the standard 12 has been discussed in chapter V. The strategy used to develop

modified scoring criteria for three main diseases reduces the complexity of using individual

scoring schemes reported by different researchers. The strategy of disease interpretation by

decision tree, which gives 80% accuracy in disease diagnostics, can be used in actual clinical

practice after an exhaustive training of the system in consultation with the cardiac experts.

This accuracy could be obtained because of the reliable feature extraction by WT and also

because ofthe new approach ofanalyzing the five consecutive beats per lead ofa record. The

use ofmodified scoring schemes, which includes required number ofcriteria, strengthens the

reliability ofcardiac disease diagnostics. The use ofmultiple beats (5 beats per lead), helps to
assure the disease diagnosis by repeating the procedure of interpretation. Also it is equivalent

to seeking the second, third or more, opinions about a cardiac disease from different cardiac
experts. There is less chance of incorrect opinion as the final disease diagnosis is dependent
on the analysis and confirmation ofdisease by exiting as well as modified scoring schemes

on five beat analysis.

The rhythm analysis and its use in heart rate variability can be used in routine disease

diagnosis for monitoring the response of the diseased heart under different conditions and
medical treatments. The reliability ofHRV analysis is solely on the accurate detection ofR-R

intervals. The use of different QRS detection methods result into different interpretation,

because of inaccurate detection of R-R time series. This difficulty is being reduced by the use

of wavelet transform for QRS detection to get dependable information from the HRV

analysis as supported by the results given in chapter VI. It is observed that the HRV spectral
and non-spectral indices are less prone to the fluctuations in heart rate due to autonomic
imbalance than the fluctuations due to improper and incorrect detection ofeven a single heart

beat. The incorrect beat detection gives substantial rise to the values ofHR, SDNN, and low

frequency power (LFP) and/ or high frequency power (HFP) parameters. In general, there is
a inverse the relationship between respiratory rate and the spectrum measures of
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parasympathetic activity (vagal power). For slow respiration , high power peak emerges at

0.3 Hz. A low power peak emerges in case of fast respiration rate. This indicates the

influence of vagal control on the heart activity and the entrainment of respiration on SA node

activity is more during the slow breathing phase. For increased rate of respiration (slow,

normal and fast), there is corresponding increase in HR and decrease in SDNN values. The

strategy of HRV analysis by different respiration phases helps in understanding the role of

vagal control of the heart. This simple approach can be used in actual clinical practice to

study the status of the heart without invasive techniques.

To handle a large volume of ECG data without losing the diagnostic information, a

simple NRT-DDC technique is given in chapter VII. This technique is capable of holding

100% information about amplitude and duration of the original signal and is found useful in

storing the data of 12 standard leads. The wavelet transform based data compression is found

very much suitable in holding the information from the specific frequency band of the

original signal. The HRV analysis work deals with the use of only R-R intervals from the

long single lead records, therefore, the use of wavelet transform based data compression is

effective in storing the selective information from the frequency band of QRS complexes.

Both the methods, NRT-DDC and wavelet transform based data compression produce

compression by the down sampling. Data compression up to 8:1 and retrieval of information

by both the methods is of diagnostic acceptance. Therefore, the use of NRT-DDC is restricted

up to 8:1 and wavelet transform based data compression is used for both 8:1 and 16:1

compressions. Byconsidering the aspects of retaining of selective components, the method is

found very much suitable for on-line data management for Holter recording, ambulatory

monitoring, heart rate monitor and HRV analysis systems.

On the basis of the outcome of the present work, it can be stated that the use of

combined wavelets in ECG analysis has the advantages in following respects: (i) The WT

eliminates baseline wander, muscle artifacts and noise and detects QRS complexes with high

sensitivity, (ii) The approach of combined wavelets (i.e. the use of QSWT for QRS detection

and DU-6 wavelet for P & T detection) proved very powerful as it gives high sensitivity for

QRS, P and T detection compared to other existing methods of detection even with signals

corrupted with baseline wander, noise and artifacts, (iii) The use of a quadratic spline

wavelet provides fixed correlation between ECG characteristic points and modulus maxima

lines, thereby resulting in reliable QRS detection, (iv) The smoothing feature of the DU-6

wavelet makes it more suitable than the QS wavelet to detect P and T wave fiducials and (v)
Due to the high accuracy of the R-R interval measurement, this method may find wider use in
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arrhythmia and heart rate variability detection and the use of WT will definitely find distinct

place in the field of computer aided ECG analysis and interpretation.

8.2 SCOPE FOR FUTURE WORK

Considering the need of automated disease diagnosis system with the increased

number of cardiac patients compared to the available number of cardiac specialists, it has

become difficult to provide effective cardiac care without the help of computer based
expert systems. With the fast developments in the field of information technology, an

individual always seeks the use of recent trends, like automated disease diagnosis and
telemedicine. Looking to the need oftime and the exhaustive literature survey, though there

are existing automated ECG analysis and interpretation systems being used in clinical
practices, it is recommended by the researchers, that there is still a great need to enhance,
modify the programs to cope up with the modern techniques and the information technology,
and hence, there is always scope for further development. It is therefore, required to

strengthen the reliability of the algorithm by continuous upgrading from the experience and
the knowledge gained using such system in the real medical care systems.

There is increased importance ofstudy and analysis ofheart rate variability in clinical

practice because the time and frequency domain analysis of HRV allows to predict mortality
risk after cardiac infarction and congestive heart failure. As there are no any standards to use

the HRV, the study and analysis of HRV software can be trailed to monitor the heart to
correlate the physical and psychophysical conditions. In addition to HRV analysis, disease
diagnosis system can be supported by the study and analysis of late potentials and His
signals. The late potentials are a particular case of delayed inhomogeneous depolarization
which may occur elsewhere, for example under the QRS or after and under the Pwave. The
presence of late potentials and more particularly ventricular late potentials increases the
probability of sudden death [119]. It is also important to observe the His signal, which occurs
between the Pand Qwaves and reflects the conduction from the auricles to the ventricles. So
the proper technique allowing the detection and analysis of ECG features is of precious help
for the physicians. Also the evaluation of HRV, ventricular late potentials or His signals is
impossible without the use ofcomputerised cardiac analysis.
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PANEL OF MEDICAL EXPERTS

The panel of medical experts consulted by the author during research is as follows:

1. Dr. Rajat Mohan, Chief, Department of Non Invasive Cardiology, Sir Ganga Ram
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2. Dn Ravi Jain, Consulting Physician and Cardiologist, Roorkee.

3. Dr. B. R. Madnurkar, M.D. (Medicine), Ashwini Hospital and Intensive Care Unit,

Doctors Lane, Nanded.

4. Dr. D. V. Mandakhalikar, Consulting Physician and Cardiologist, Sri Nagar, Nanded

5. Dr. R. N. Kagne, Assistant Professor, Department of Forensic Medicine, Government

Medical College, Nanded.

6. Dr. Purushotam Dad, Consulting Physician and Cardiologist, Gurudwara Hospital,
Nanded.
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