
f

i

SOME PERFORMANCE ISSUES

IN

DISTRIBUTED REAL TIME DATABASE SYSTEMS

A THESIS

Submitted in fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

Br

UDAI SHANKER

^
(6, IJ VU-f

i****wnom

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

DECEMBER, 2005

© INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE, INDIA, 2005
ALL RIGHTS RESERVED

mm

'

i

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE

CANDIDATE'S DECLARATION

Ihereby certify that the work which is being presented in the thesis entitled
"Some Performance Issues in Distributed Real Time Database Systems" in
fulfilment of the requirement for the award of the Degree of Doctor of Philosophy
and submitted in the Department of Electronics and Computer Engineering of
Indian Institute of Technology Roorkee, Roorkee is an authentic record of my
own work carried out during a period from July 2001 to December 2005 under
the supervision of Dr. A K. Sarje, Professor &Head and Dr. Manoj Misra,
Associate Professor, Department of Electronics and Computer Engineering of
Indian Institute of Technology Roorkee, Roorkee.

The matter presented in this thesis has not been submitted by me for the
award of any other degree of this or any other Institute/University.

(UDAI SHANKER)

This is to certify that the above statement made by the candidate is correct to
the best of our knowledge.

Date **(l3foS

Mar-^MJ5—
(Dr. Manoj Misra) (Dr. A. K. Sarje)

The Ph.D. Viva-Voce examination of Mr. Udai Shanker, Research Scholar,
has been held on •3uv^..9?.(i^.i-»*,£>

Signature of Supervisors Sig^atflBeof H.O.D. Signatured

ACKNOWLEDGEMENTS

It is indeed a great pleasure to express my sincere thanks to my august supervisors

Dr. Anil K. Sarje, Professor and Head, and Dr. Manoj Misra, Associate Professor,

Department of Electronics and Computer Engineering, NT Roorkee for their invaluable

advices and pragmatic views of research. Their keen interest, sincere advice and kind

help throughout during the completion of this work had been a regular source of

encouragement. I appreciate the hospitality of their families too. Really, it was a

pleasant experience for me to be surrounded by these noble and affectionate people.

Iam thankful to Prof. (Mrs.) Kumkum Garg, Prof. Kuldip Singh and Dr. M. J. Nigam

of Electronics and Computer Engineering Department of the Institute for their invaluable

encouragement and support, and above all, the noblest treatment extended bythem.

There are not enough words to express my gratitude to Dr. K. Ramamritham,

Professor, Dept of Computer Science, NT Mumbai, Dr. K. Y. Lam and Dr. Victor C. S.

Lee, Dept. of Computer Science, City University Hong Kong, Dr. J. Taina, Department

of Computer Science, University of Helsinki, Dr. Jan Lindstrom, Senior Software

Engineer, Innodb, Finland and Dr. Rashmi Srinivasa, Project Manager/Architect, Qovia,

INC, USA for their online help, advices and suggestions on the reported work. They

truly embody the best of what the technical education is all about.

Professor Pratap Singh, Principal, M. M. M. Engineering College, Gorakhpur, really

deserve my heartiest honour for providing me all the moral and administrative support. I

can never forget Dr. Arun Kumar, Professor, Department of Electronics and

Communication Engineering, M. M. M. Engineering College, Gorakhpur, for being a

torch bearer for this turning period of my life. I am also very much grateful to my

colleagues Mr. R. D. Patel, Mr. Y. S. Yadav, Mr. S. P. Singh and Mr. A. K. Daniel for

their support and cooperation.

I am extremely thankful to Dr. R. B. Patel and Dr. V. K. Giri and their families for

having spent their invaluable time in constructive motivation and encouraging

environment. I also take this opportunity to extend my sincere thanks to Mr. Ajey Kumar,

Mr. Amit T. Saornerkar and Dr. R. S. Yadav, who have provided me considerable help

in implementing the simulator and were always available for discussion and any kind of

help during my work. I am very much thankful to my friends Mr. Rajwinder Singh, Mr.
Narottam Chand, Ms. Bhawana Jharia, Ms. Navdeep Kaur, Dr. A. K. Pandey &family

and Dr. Govind Pandey & family for their inspiration and encouraging attitude to get

through the difficult periods of my stay at Roorkee. Ialso express my sense of gratitude

to Mr. Raj Khati, Mr. Anoop Kumar and Mr. Dhanpat Singh for their co-operation,

assistance and technical supports in the software lab of the department. It is hard to

single out any one in this list.

Honestly, I have been able to complete my work and present the thesis only due to

the constant encouragement and love of my brother Sri Daya Shanker & his family,

sister-in-law Ms. Vandana Thakur and brothers-in-law, whose unfailing love, affection,

sincere prayers and best wishes had been a constant source of strength and

encouragement. My parents-in-law really deserve special thanks because of always

being in touch with me during my difficult period.

Words can hardly explain the co-operation and patience of my lovely son Ankit

Aakash who has missed me so many days and nights for his studies and homeworks to

be done. His enthusiastic welcome, unconditional love and affection kept me renewing

my spirits. I have no words to express the appreciation for my beloved wife Mrs.

Archana Sharma who stood by me at every moment encouraging me and keeping

myself free from almost all the liabilities of home issues during my work. Her love,

patience and devotion kept my motivation up and waning away, and completing the

task.

I owe a debt of gratitude to my parents who brought me up to be a confident and

well adjusted individual, and always believed in my ability to finish the things I set out to

do. Last but not the least, I am thankful to the Almighty who gave me the strength and

health for completing the work. I dedicate this work to my mother whose soul will feel

very much proud of me. She deserves real credit for getting me thisfar, and no words

can ever repay for her.

Udai Shanker

IV

^

f

1

LIST OF ABBREVIATIONS

1 PC One Phase Commit

2PC Two Phase Commit

2PL Two Phase Locking

2SC Double Space Commit

3PC Three Phase Commit

AAP Adaptive Access Parameter

ACID Atomic, Consistent, Isolated, Durable

ACK Acknowledgement

AD Abort Dependency

ADS Abort Dependency Set

AED Adaptive Earliest Deadline

AEVD Adaptive Earliest Virtual Deadline

AR Transaction Arrival Rate

CCST Communication among the Cohorts of Same Transaction

CD Commit Dependency

CDS Commit Dependency Set

CL Coordinator Log

CPU Central Processing Unit

CR Conditional Restart

D2PL Dynamic Two Phase Locking

DBS Database System

DC Data Contention

DDBMS Distributed Database Management System

DDBS Distributed Database System

DDCR Deadline Driven Conflict Resolution

DDCR-S Deadline Driven Conflict Resolution with Similarity

DRTDBS Distributed Real Time Database System

ED Effective Deadline

EDF Earliest Deadline First

EP Early Prepare

EOF Equal Flexibility

EQS Equal Slack

FCFS First Come First Serve

FHR Flexible High Reward

H2PL High Priority Two Phase Locking

HF Health Factor

HP Higher Priority

I/O Input/Output

IYV Implicit Yes-Vote

LSF Least Slack First

MECP Memory Efficient Commit Protocol

MinHF Minimum Health Factor

MM Mixed Method

MP Miss Percentage

NB-SPAC Non-Blocking Single-Phase Atomic Commit

NL Number of Locks

PA Presumed Abort

PC Presumed Commit

PCP Priority Ceiling Protocol

PrN Presumed Nothing

PROMPT Permits Reading of Modified Prepared- Data for Timeliness

RC Resource Contention

RTDBS Real Time Database System

RTS Real Time Systems

RT-S2PL Real Time Static Two Phase Locking

S2PL Static Two Phase Locking

S2PL-HP Static Two Phase Locking with High Priority

SE Serial Execution

SEQS Static Equal Slack

SF Slack Factor

SWIFT Static Two Phase Locking with Higher Priority Based, Write-

Update Type, Ideal for Fast and Timeliness Commit Protocol

SWIFT-PV-1 SWIFT- preliminary- Version- One

SWIFT-PV-2 SWIFT- preliminary- Version- Two

UD Ultimate Deadline

VI

*

LIST OF FIGURES

Figure No. Caption Page No.

Fig. 3.1 Distributed Real-time Database System Model 33

Fig. 3.2 Miss % with (RC+DC) at Communication Delay=100ms 44

Normal & Heavy Load

Fig. 3.3 Miss % with (RC+DC) at Communication Delay=0ms 45

Normal & Heavy Load

Fig. 3.4 Break-up of Miss % of Transactions at Communication 46

Delay= 100ms & System Load (50% Transactions of Size

3-5 &50% Transactions of Size 20-25) in 2SC with EDF

PriorityAssignment Policy

Fig. 3.5 Break-up of Miss % of Transactions at Communication 46

Delay=100 ms &System Load (50% Transactions of Size

3-5 &50% Transactions of Size 20-25) in 2SC with EDF

and Temporary Intermediate Priority Assignment Policy

Fig. 3.6 Miss% with (RC+DC) at Communication Delay=100ms 47

and System Load (50% Transactions of Size 3-5 & 50%

Transactions of Size 20-25)

Fig. 3.7 Miss % (RC+DC) at Communication Delay=100 and 48

Transaction Arrival Rate=10 Transactions/Second

Fig. 3.8 Miss % (RC+DC) at Communication Delay=0ms &Transaction 48

Arrival Rate=30 Transactions/Second

Fig. 4.1 Miss % with (RC+DC) at Communication Delay=100ms 68

Normal & Heavy Load

Fig. 4.2 Miss % with (RC+DC) at Communication Delay=100ms 68

Normal & Heavy Load

Fig. 4.3 Miss % with (RC+DC) at Communication Delay=100ms 69

Normal & Heavy Load

Fig. 4.4 Miss % with (RC+DC) at Communication Delay=0ms 69

Normal & Heavy Load

Fig. 4.5 Miss % with (RC+DC) at Communication Delay=0ms 70

Normal & Heavy Load

vn

Figure No. Caption Page No.

Fig. 4.6 Miss % with (RC+DC) at Communication Delay=0ms 70

Normal & Heavy Load

Fig. 4.7 Miss % with (RC+DC) at Communication Delay=0ms 71

Normal Load

Fig. 4.8 Miss % with (RC+DC) at Communication Delay=0ms 72

Heavy Load

Fig. 4.9 Miss % with (RC+DC) at Communication Delay=0ms 72

Normal Load

Fig. 4.10 Miss % with (RC+DC) at Communication Delay=0ms 73

Heavy Load

Fig. 4.11 Miss % with (RC+DC) at Communication Delay=0ms 73

Normal Load

Fig. 4.12 Miss % with (RC+DC) at Communication Delay=0ms 74

Heavy Load

Fig. 4.13 Miss % with (RC+DC) at Communication Delay=100ms 74

Normal & Heavy Load

Fig. 4.14 Miss % with (RC+DC) at Communication Delay=100ms 75

Normal & Heavy Load

Fig. 4.15 Miss % with (RC+DC) at Communication Delay=100ms 75

Normal & Heavy Load

Fig. 4.16 Miss % with (RC+DC) at Communication Delay=0ms 77

Normal & Heavy Load

Fig. 4.17 Miss % with (RC+DC) at Communication Delay=100ms 78

Normal & Heavy Load

Fig. 4.18 Miss % with (RC+DC) at Communication Delay=100ms 78

Normal & Heavy Load

Fig. 4.19 Miss % with (RC+DC) at Communication Delay=0ms 79

Normal Load

Fig. 4.20 Miss % with (RC+DC) at Communication Delay=0ms 79

Normal Heavy Load

Vlll

p

Figure No. Caption Page No.

Fig. 4.21 Miss % with (RC+DC) at Communication Delay=0ms 80

Normal & Heavy Load

Fig. 4.22 Miss % with (RC+DC) at Communication Delay=100ms 81

Normal & Heavy Load

Fig. 4.23 Miss % with (RC+DC) at Communication Delay=100ms 81

Normal & Heavy Load

Fig. 4.24 Miss % with (RC+DC) at Communication Delay=0ms 82

Normal Load

Fig. 4.25 Miss % with (RC+DC) at Communication Delay=0ms 82

Heavy Load

Fig. 4.26 Break-up of Miss % with (RC+DC) at Communication 83

Delay= 100ms

Fig. 4.27 Break-up of Miss % with (RC+DC) at Communication 84

Delay=0ms

Fig. 4.28 Break-up of Miss % with (RC+DC) at Communication 85

Delay=100

Fig. 4.29 Break-up of Miss % with (RC+DC) at Communication 85

Delay=0ms

Fig. 5.1 Miss % with (RC+DC) at Communication Delay=0ms 98

Normal Load

Fig. 5.2 Miss % with (RC+DC) at Communication Delay=0ms 98

Heavy Load

Fig. 5.3 Miss % with (RC+DC) at Communication Delay=100ms 99

Normal & Heavy Load

Fig. 5.4 Miss % with (RC+DC) at Communication Delay=0ms & 100

Transaction Arrival Rate=10 Transactions/Second

Fig. 5.5 Miss % with (RC+DC) at Communication Delay=100ms 100

Transaction Arrival Rate=10 Transactions/Second

IX

t

LIST OF TABLES

Table No. Caption Page No.

Table 3.1 Default Values for the Model Parameters 43

Table 5.1 Memory Requirement of 2SC and MECP 96

XI

ABSTRACT

Distributed real time database systems (DRTDBSs) can be defined as database

systems that support real time transactions. They are used for a wide spectrum of

applications such as air traffic control, stock market trading, banking, telemedicine

etc. In DRTDBS, there are two types of transactions: global and local. The global

transactions are distributed real-time transaction executed at more than one site

whereas the local transactions are executed at generating site only. A commonly

model used for distributed real time transaction consists of a process, called

coordinator, which is executed at the site where the transaction is submitted, and a

collection of other processes called cohorts executing at various sites where the

required data items reside.

Transactions in a real time database are classified into three types, viz. hard, soft

and firm. The classification is based on how the application is affected by the

violation of transaction time constraints. This thesis reports efficient solutions fa

some of the issues important to the performance of firm deadline based DRTDBS.

The performance of DRTDBS depends on several factors such as specification

of transaction's deadline, priority assignment policy, scheduling transactions with

deadlines, time cognizant buffer and locks management, commit procedure etc. One

of the primary performance determinants is the policy used to schedule transactions

for the system resources. The resources that are typically scheduled are processors,

main memory, disks and the data items stored in database.

In order to resolve the contention for these resources, DRTDBSs have to

establish a priority ordering among the cohorts. This ordering should minimize the

percentage of missed transactions which is the primary performance metric, defined

as percentage of input transactions that the system is unable to complete before their

deadlines. We proposed a scheme where the priority of each cohort is determined

independently on the basis of the locks required by it at its execution site. This is in

contrast to earlier schemes where cohort inherits its real time priority from its parent.

In our scheme, each cohort is assigned an initial priority based on the number of

locks required by the cohort at its execution site. The cohort uses this priority for

XIII

central processing unit (CPU) scheduling. However, when there is a data contention

between a low priority executing cohort and a high priority newly arrived cohort,

temporary intermediate priorities of both are calculated. These intermediate priorities

are based on the remaining execution time needed by the lock holding low priority

cohort and the slack time available with the newly arrived higher priority cohort. The

data contention is resolved on the basis of these priorities. The deadlines of the

global and the local transactions are computed based on the formula developed.

DRTDBS implements a transaction commit protocol to ensure transaction

atomicity. A commit protocol ensures that all participating sites agree on the final

outcome of the transaction (commit or abort). The commit processing can result in a

significant increase in transaction execution time due to exchange of multiple

messages in multiple phases among the participating sites and maintaining several

log records. This may influence the transaction miss percentage. Therefore, the

design of commit protocol becomes an important performance issue in the design of

DRTDBS. The existing commit protocols try to improve system performance by

permitting a lock holding transaction (lender) to lend its data to other transactions

(borrower). This creates dependencies between lender and borrower. We first

redefine the dependencies created due to read/update type locks, and then propose

a static two phase locking with higher priority based, write-update type, ideal for fast

and timeliness commit protocol (named as SWIFT). We observe that, when

communication delay is large, most of the transactions are aborted during their

commit or locking phase; and not during their execution phase, particularly when ^

database is main memory resident. Based on this observation, a cohort sends a

WORKSTARTED message in SWIFT before the start of its execution in contrast to

earlier protocol where cohort sends WORKDONE message after the completion of its

execution. Our protocol also allows a dependent cohort to send WORKSTARTED

message if the dependency is only commit dependency. The simulation results show

that substantial gain in performance can be achieved using this protocol. The

performance of SWIFT has also been analyzed for partial read-only optimization,

which minimizes intersite message traffic, execute-commit conflicts and log writes

thus resulting in a better response time. The impact of permitting communication

xiv

between cohorts (sibling) of the same transaction has also been examined both for

the main memory and the disk resident database with and without communication

delay.

Transaction processing generally requires large amount of main memory to store

intermediate data. When the memory is running low, a transaction may be blocked or

a new transaction may not be admitted in the system. Therefore, access methods

and query processing algorithms must optimize memory space as well as processing

time. Transaction processing requires concurrency control algorithm and commit

protocol to maintain the consistency of data. So, memory requirements must be

taken into consideration while, designing the concurrency control algorithms and the

commit protocols. These protocols should be designed in a way to create less

temporary data items to save the memory space. We propose a memory efficient real

time commit protocol (MECP) based on a new locking scheme in which a lock not

only shows the lock obtained by the lender but also the lock obtained by the

borrower. Our protocol maintains only a single list compared to other commit

protocols where each lender requires two lists to be maintained. Two types of write

operation are defined: blind write and update. Based on this, dependencies that may

arise by allowing a committing cohort to lend its data to an executing cohort have
been redefined.

To summarized, this thesis proposes new methods for priorities assignment

policies, transaction commitment and memory optimization. The simulation results

show that the methods/protocols proposed in this thesis improve the performance of

DRTDBS substantially.

xv

CONTENTS

Candidate's Declaration

Acknowledgement

List of Abbreviations

List of Figures

List of Tables

Abstract

Contents

CHAPTER 1: INTRODUCTION

1.1 Introduction

1.2 Performance Issues and Research Challenges

1.3 Contributions of the Thesis

1.4 Organization of the Thesis

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

2.2 Distributed Database System

2.3 Distributed Real Time Database System

2.3.1 Distributed Real Time Transaction

2.3.2 Types of Distributed Real Time Transaction

2.3.3 Distributed Transaction Execution Model

2.3.4 Locking Mechanism

2.3.5 Issues in Distributed Real Time Database Systems

2.4 Priority Assignment Policy

2.4.1 Priority Assignment Policies in Centralized Environment

2.4.2 Priority Assignment Policies in Distributed Environment

2.5 Commit Protocols

2.5.1 Two Phase Commit Protocol (2PC)

XVII

Page No.

i

iii

v

vii

xi

xiii

xvii

1

2

4

5

7

7

8

9

10

10

11

13

14

14

16

18

18

2.5.2 Three-Phase Commit Protocol 22

2.6 Real Time Commit Protocols 22

2.7 Memory Optimization 27
2.8 Conclusions 27

CHAPTER 3: PRIORITY ASSIGNMENT POLICY

3.1 Introduction *a

3.1.1 Issue of Fairness 29

3.1.2 Background 30
3.2 Distributed Real Time Database System Model 32

3.2.1 System Model 33
3.2.2 Database Model 34

3.2.3 Network Model 34

3.2.4 Cohort Execution Model 34

3.2.5 Locking Mechanism

3.2.6 Model Assumption 35
3.3 Deadline Assignment 36
3.4 Double Space Commit Protocol (2SC) 37
3.5 Priority Assignment Heuristic &Temporary Intermediate Priority 39

Assignment Policy

3.6 Performance Evaluations H<L

3.6.1 Performance Parameters and Measures 42

3.6.2 Simulation Results 43
4Q

3.7 Conclusions

CHAPTER 4: SWIFT - A DISTRIBUTED REAL TIME COMMIT PROTOCOL

4.1 Introduction 51
4.2 Background and Related Work 51
4.3 Distributed Real Time Database System Model 53

4.3.1 System Model 54
4.3.2 Model Assumptions 54

f

=*

35 V

XVlll

4.4 Data Access Conflicts Resolving Strategies 55

4.4.1 Types of Dependencies 57

4.4.2 Type of Dependencies in Different Cases of Data Conflicts 58

4.4.3 Mechanism of Interaction between Lender and Borrower Cohorts 59

4.5 A New Commit Protocol SWIFT 60

4.5.1 Basic Idea 61

4.5.2 Algorithm 63

4.6 Performance Measures and Evaluation 65

4.6.1 Performance Parameters and Measures 65

4.6.2 Simulation Results 66

4.6.2.1 Main Memory Resident Database 67

4.6.2.2 Disk Resident Database 71

4.7 Performance of SWIFT with Partial Read Optimization 76

4.7.1 Possible Cases of Data Conflicts 76

4.7.2 Type of Dependencies in Cases of Data Conflicts 76

4.7.3 Simulation Results 77

4.8 Communication among the Cohorts of Same Transaction 80

4.9 Impact of Early Sending of WORKSTARTED Message 83

4.9.1 Main Memory Database with Communication Delay of 100ms 83

4.9.2 Main Memory Database with Communication Delay of 0ms 84

4.9.3 Disk Resident Database with Communication Delay of 100ms 84

4.9.4 Disk Resident Database with Communication Delay of 0ms 85

4.10 Conclusions 86

CHAPTER 5: MECP-A MEMORY EFFIECIENT REAL TIME COMMIT ROTOCOL

5.1 Introduction 87

5.2 New Locking Scheme and Data access Conflict Resolving Strategies 89

5.2.1 New Locking Scheme 89

5.2.2 Data access Conflicts Resolving Strategies 90

5.2.3 Mechanics of Interaction between Lender and Borrower Cohorts 91

5.3 Algorithm 92

XIX

5.4 Memory Optimization 94

5.4.1 Case 1: Memory Requirement in 2SC 94

5.4.2 Case 2: Memory Requirement in Proposed Scheme (MECP) 95

5.5 Model Parameters, Simulation Results and Performance Evaluation 97

5.5.1 Impact of Transaction Arrival Rate 97

5.5.2 Impact of Transaction Size 99

5.6 Conclusions 101

CHAPTER 6: CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH

6.1 Conclusions 103

6.2 Scope for Future Research 106

REFERENCES 109

Author's Research Publication 123

XX

>

CHAPTER -1

INTRODUCTION

1.1 INTRODUCTION

Many applications such as military tracking, medical monitoring, stock

arbitrage system, network management, aircraft control and factory automation

etc. that depend heavily on database technology for the proper storage and

retrieval of data located at different remote sites have certain timing constraints

associated with them [5,25,30,68,114]. Such applications introduce the need for

distributed real time database systems (DRTDBSs) [84]. A DRTDBS is a

collection of multiple, logically interrelated databases distributed over a computer

network [23]. They support transactions that have explicit timing constraints. The

timing constraint of a transaction is expressed in the form of a deadline, which

indicates that it must complete before some specific time in future [4,5,68,114].
The transactions can be classified as hard, firm or soft type based on the effect of

missing their deadlines [5,68]. A hard real time transaction must meet its deadline

strictly. A missed deadline may result in a catastrophe [15,114]. A firm real time

transaction does not result in a catastrophe, if the deadline is missed [51].
However, the results have no value after the expiry of deadline. A soft real time

transaction has some value even after expiry of its deadline, but the value typically
diminishes with time [5,68,114].

In contrast to traditional databases, where the primary goal is to minimize the

response time of transactions and maximize throughput [120,151], the main

objective of DRTDBS is to minimize the percentage of the transactions that miss

their deadlines [4,5,53,68,114]. The scheduling of real time transaction is far more

complex than traditional real time scheduling as the database management

algorithms for accessing and manipulating data in DRTDBS should not only
ensure database consistency, but should also satisfy the timing constraints. The

goal of this chapter is to introduce various aspects of DRTDBS, the issues and

challenges involved and the work carried out in this thesis.

This chapter explores the basic issues and research challenges having key
importance to the performance of DRTDBS followed by the contributions and
organization of this thesis.

1.2 PERFORMANCE ISSUES AND RESEARCH CHALLENGES

The implementation of DRTDBS is difficult due to the conflicting requirements 4

of maintaining data consistency and meeting transaction's deadlines [97,148]. The

difficulty comes from the unpredictability of the transactions' response times

[70,71,114]. Each distributed transaction accessing a data item takes a variable

amount of time due to concurrency control, I/O and communication delays. While

maintaining the consistency of underlying database, scheduling and management

of the system resources in DRTDBS should also take into account the timing ^

constraints. Access to CPU, main memory, I/O devices and shared data should be

managed to make the best effort to satisfy the transaction deadlines.

One of the most important issues in design of DRTDBS is transaction

scheduling [18,68,88]. The transaction scheduling in DRTDBS involves both the

CPU scheduling and the data scheduling and is done according to the priorities

assigned to the transactions. As a result, the role of the priori ty assignment

policy becomes an important issue in deciding the performance of the system y

because priorities determine the order of the transactions to access resources

which in turn affects their likeliness to meet the deadlines. In traditional

databases, when conflicts occur, the preferences tend to be based either on

fairness or on resource consumption [151]. However, the transaction scheduling in

DRTDBS is done according to the urgency of the transactions that decides their

priorities. The priority assignment problem has been addressed by very few

researches [86]. Generally, the priority of a transaction is determined on the basis

of its deadline such as in earliest deadline first (EDF) [85,93] priority assignment

policy; both fairness and maximum resource utilization become secondary goal

[130]. This can cause two problems. First, more CPU resource is wasted if closer

to completion transactions are aborted in favor of higher priority transactions [68].

Second, longer transactions may be harder to finish creating a starvation problem

[63]. Execution of a global transaction in a distributed system requires the

execution of cohorts on different sites. Most heuristics [66,67,85] for priority

assignment in DRTDBS consider that subtasks (cohorts) of a transaction are

executed sequentially. Except ultimate deadline (UD), other heuristics are not

suitable when the subtasks (cohorts) of a transaction are executed in parallel. The

UD also becomes ineffective when data contention is non - trivial [85].

The atomic commit protocols play a key role in supporting global atomicity for

the distributed real time transactions [9,13,82,83,101]. These protocols are used

to ensure that all cohorts agree on the final outcome of the transaction. They

typically require exchange of multiple messages [127] in multiple phases among

the participating sites, and also require to maintain logs of data to recover from

failures [59,80,117]. This significantly increases the execution time of the

transactions and can adversely affect the system's ability to meet transaction

deadlines. Due to distributed nature of the transactions and in presence of other

sources of unpredictability such as data access conflicts, uneven distribution of

transactions over the sites, variable local CPU scheduling time, communication

delay, failure of coordinator and cohort's sites etc., it is not easy to meet the

deadline of all transactions in DRTDBS. The unpredictability in the commitment

phase makes it more serious because the blocking time of the waiting cohorts due

to execute-commit conflict may become longer. Hence, due to unique

characteristics of the committing transactions [81] and unpredictability in the
commitment process, design of an efficient commit protocol is another important
issue that affects the performance of DRTDBS [49].

Important database system resources are main memory, CPU, disk and data

items [20,104,105]. Before the start of execution of a transaction, buffer space in
main memory is allocated for the transaction [62]. When the main memory is
running low, a transaction may be blocked from execution. The amount of memory

available in the system thus limits the number of concurrently executable
transactions. In large scale real time database systems, the execution of

transactions will be significantly slowed down if available memory is low. So, the

effective use of available main memory space in data intensive applications is

another challenging issue. During the execution of a transaction, temporary

records are created to maintain the status of the transaction's execution. These

temporary records are kept in the main memory until the transaction commits.

This consumes a substantial amount of main memory. Since, unpredictability in
the commitment phase may make the transaction to stay for a long period in the

system; memory will be held up for a long period and will be not available for other

transactions. So, this necessitates the design of commit protocols that save

memory by creating less temporary objects.

The design and implementation of DRTDBS introduce several other

interesting problems. Among these problems, predictability and consistency are

fundamental to real time transaction processing, but sometimes these require ^

conflicting actions [70,84,124]. To ensure consistency, we may have to block

certain transactions. Blocking of these transactions, however, may cause

unpredictable transaction execution and may lead to the violation of timing

constraints. There are a number of other sources of unpredictability such as

communication delays, site failures [22] and transaction's interaction with the

underlying operating system and I/O subsystems [16]. Other design issues of '>-

DRTDBS are data access mechanism and invariance, new metrics for database

correctness and performance, maintaining global system information, security,

fault tolerance, failure recovery etc. Again, there is also no adequately designed

technique for scheduling the CPU as being the primary resource in the DRTDBS

[6].

Although, a lot of research has been done on these issues, there still exist

many challenging and unresolved issues. Due to the heterogeneity of these >

issues, we have confined our work to only some of these issues. Our work

involves design of new priority assignment policies and commit protocols and the

comparison of their performance with existing policies/protocols. We assumed that

the transactions are firm real time and data items accessed by the transactions

are known before the start of execution of the transactions. Two locking

approaches are used by the transactions to obtain a lock on data items viz., static

two phase locking (S2PL) and dynamic two phase locking (D2PL). The deadlock ^

freedom and lower communication overhead of locking by using S2PL makes it

attractive for DRTDBS [73,75,132]. So, we used S2PL with higher priority

concurrency control algorithm to access data in mutually exclusive way.

1.3 CONTRIBUTIONS OF THE THESIS

The work reported in this thesis provides better solutions for some of the

issues mentioned above. Major contributions of this thesis may be described as

follows:

(i) Development of a simulator for both the main memory resident and the

disk resident DRTDBS.

(ii) A new scheme to determine the priorities of cohorts executing in parallel

along with the method to compute the deadlines of the global and the

local transactions have been proposed. In our scheme, each cohort is

assigned an initial priority which is inversely proportional to the number of

locks required by the cohort at its execution site. A temporary

intermediate priority of the cohort is calculated when a data contention

occurs and initial priority of newly arrived cohort (TA) is higher than the

priority of lock holding cohort (TL). The intermediate priorities are based

on the remaining execution time needed by TL and the slack time

available with TA. This minimizes the abort of near completion low priority

lock holding cohorts. The proposed scheme has been compared with EDF

priority assignment policy

(iii) The dependencies created due to read/update type locks have been

redefined, and then a static two phase locking with high priority (S2PL-

HP) based commit protocol named as SWIFT has been proposed. The

performance of SWIFT has been compared with 2SC and PROMPT for

both main memory resident and disk resident databases with and without

communication delay. The performance of SWIFT protocol has also been

analyzed (i) for partial read-only optimization and (ii) for the case when

cohorts of the same transaction (siblings) are allowed to send messages
to each other.

(iv) A new locking scheme has been developed for the database model that

permits two types of write operations: blind write and update. All types of

dependencies that may arise by allowing a committing cohort to lend its

data to an executing cohort have been redefined. A memory efficient

commit protocol (MECP) has been proposed on the basis of the new

locking scheme, and its performance has been compared with 2SC and

PROMPT.

A list of the author's research publication is given at the end of the thesis.

1.4 ORGANIZATION OF THE THESIS

Chapter 2 of the thesis reviews the past and ongoing work in the areas of

priority assignment policies, commit protocols and effective use of available main

memory space in data intensive applications. The design of new priority

assignment policies for the allocation of CPU and data to cohorts has been

discussed in chapter 3. Chapter 4 deals with the design and performance -+

evaluation of SWIFT, a new commit protocol. Chapter 5 of the thesis describes

the design of a memory efficient commit protocol (MECP) to reduce the storage

space requirement for intermediate (temporary) records and compares its

performance with other commit protocols. Finally, chapter 6 concludes the thesis

and proposes some research directions.

*

-%

CHAPTER - 2

BACKGROUND AND LITERATURE REVIEW

2.1 INTRODUCTION

Databases and database systems have become an essential component of

everyday life in modern society. In the course of a day, most of us encounter

several activities that involve some interaction with databases. Nowadays,

because of the information technology revolution, fast access to information and

its efficient management are key to the success of any activity such as business

and other similar ones [50,60,99]. Today's business applications are not the old-

styled batch applications; rather they do their data processing activities on-line

[123]. Modern electronic services and electronic commerce applications,

characterized by high volume of transactions, cannot survive without on-line

support of computer systems and database technology [7]. Therefore, database

systems (DBSs) play an important role in managing the information of fast

growing current businesses environment.

In this chapter, we review the current status of research in the area of

DRTDBS and identify important performance issues which are unique to their
study.

2.2 DISTRIBUTED DATABASE SYSTEM

DBS can be viewed as a collection of the data items which are shared by
many users [109,140]. They are designed to manage huge amount of the data.

The management of data basically involves the definition of structures for its

storage and provision of mechanisms for manipulation of this stored information.

Thus, a DBS is a collection of objects, which satisfy the need of users besides a

set of integrity constraints. Database Systems can be broadly classified as

centralized or distributed. The centralized database systems are those that run on

a single computer system. Such systems may range from single-user database

systems running on personal computers to high-performance database systems

running on mainframe systems. The distributed database systems (DDBS) consist

of a collection of sites, connected together via some means of communication

networks, in which, each site is a database system site in its own right but the

sites have agreed to work together, so that a user at any site can access data

from anywhere in the network, exactly as if, the data are all stored at the user's

own site [34]. We can define DDBS as a collection of multiple logically interrelated +

databases distributed over a computer network, and a distributed database

management system (DDBMS) which manages distributed databases while

making the distribution transparent to the user [147]. DDBS bring the advantages

of distributed computing to the database management domain and fit more

naturally in the decentralized structure of many business organizations.

>

2.3 DISTRIBUTED REAL TIM E DATABASE SYSTEM

Real Time systems (RTS) are those for which correctness depends not only

on the logical properties of the produced results, but also on the temporal

properties of these results [7,118,149]. Typically, real time systems are associated

with critical applications, in which human lives or expensive machineries may be

at stake [79,87]. Hence, in such systems, an action performed too late (or too

early) or a computation which uses temporally invalid data may be useless and *

sometimes harmful even if such an action or computation is functionally correct.

As RTS continue to evolve, their applications become more and more complex,

and often require timely access and predictable processing of massive amounts of

real time data [144]. The database systems, which are especially designed for the

efficient processing of these types of real time data, are referred to as distributed

real-time database systems (DRTDBS). DRTDBS can be viewed as an

amalgamation ofthe conventional DDBS and RTS, and like a conventional DDBS, ^

it has to process distributed transactions and guarantee their basic correctness

criteria [64,16,128]. Thus, DRTDBS are collection of multiple, logically interrelated

databases distributed over a computer network where transactions have explicit

timing constraints, usually in the form of deadlines [90,91]. In such a system, data

items shared among transactions are spread over remote locations. Accessing the

shared data items must be controlled in order to maintain database's logical

consistency by applying a concurrency control algorithm. At the same time,

transactions have to be scheduled according to their timeliness to finish within

their timing constraints, i.e., transaction processing in DRTDBS must satisfy both

database logical consistency and timing constraints. What makes DRTDBS

different from a conventional real-time system is the requirement of preserving the

8

consistency of data besides considering the real-time requirements of the

transaction [14]. Satisfying the timing constraints of various real time activities in

distributed systems may be difficult due to the distributed nature of the

transactions.

2.3.1 Distributed Real Time Transaction

When the user programs for interaction with database, partially ordered sets

of read and write operations are generated [36]. This sequence of operations on

the database is called a transaction and it transforms the current consistent state

of the database system into a new consistent state. In DRTDBS, there are two

types of transactions: global and local. Global transactions are distributed real

time transaction executed at more than one site whereas the local transactions

are executed at the generating site only. A common model of a distributed

transaction is that there is one process called coordinator which is executed at the

site where the transaction is submitted and a set of other processes called cohorts

that execute on behalf of the transaction at other sites that are accessed by the
transaction.

In fact, the distributed real time transaction processing is a form of transaction

processing that supports transactions whose operations are distributed among
different computers or among different databases from different vendors. So, in a

distributed real time transaction, the operations are executed at the site where the

required data item resides and is associated with time constraints. Transfer of

money from one account to another, reservation of train tickets, filing of tax

returns, entering marks on a student's grade sheet etc. are some of the examples

of distributed real time transactions. The transaction is an atomic unit of work,

which is either completed in it's entirely or not at all. Hence, a distributed commit

protocol is needed to guarantee the uniform commitment of distributed transaction

execution [115]. The commit operation implies that the transaction is successful,

and, hence all of its updates should be incorporated into the database

permanently. An abort operation indicates that the transaction has failed, and

hence, requires the database management system to cancel or abolish all of its

effects in the database system. In short, a transaction is an "all or nothing" unit of
the execution.

2.3.2 Types of Distributed Real Time Transaction

In general, Real time transactions are classified into three types namely hard,

soft and firm. No hard real time transaction should have its deadline missed, and ^

its deadline must be guaranteed by the system. On the other hand, any deadline

violations of the soft real time transactions may only result in the performance

degradation of the system. The major performance metric for the soft real time

transaction is the number or percentage of deadline violations or their average or

worst case response time. The firm real time transactions are a special kind of soft

real time transactions except that firm real time transactions will be killed when >

their deadline expire. The performance metrics is the number or percentage of

deadline violations. The completion of a real time transaction might contribute a

value to the system. The relationship between the value imparted by a real time

transaction and its completion time can be considered as a value function of the

time. After the soft real time transaction misses its deadline, its value might

decrease with time. A firm real time transaction loses its value after its deadline

expires. When a hard real time transaction misses its deadline, its value becomes >

negative. It means that a catastrophe might occur.

2.3.3 Distributed Transaction Execution Model

There are two types of distributed transaction execution model, i.e., sequential

and parallel [4,14]. In the sequential execution model, there can be at most one

cohort of a transaction at each execution site, and only one cohort can be active

at a time. After the successful completion of one operation, next operation in the H

sequence is executed by the appropriate cohort. At the end of execution of the

last operation, the transaction can be committed. In the parallel execution model,

the coordinator of the transaction spawns all cohorts together and sends them for

execution on respective sites [14]. All cohorts then execute in parallel. The

assumption here is that the operations performed by one cohort during its

execution at one site are independent of the results of the operations performed

by some other cohort at some other site. In other words, the sibling cohorts do not

require any information from each other to share [144].

10

2.3.4 Locking Mechanism

One of the fundamental properties of a transaction is isolation. When several

transactions execute concurrently in the database, the isolation property must be

preserved. To ensure this, the system must control the interaction among the

concurrent transactions; this control is achieved through concurrency control

schemes [109,140]. Some of the main concurrency control techniques such as

two phase locking (2PL) are based on the concept of locking of data items. Locks

are used to ensure the noninterference property of concurrently executing

transactions and to guarantee serializability of the schedules. A transaction is said

to follow the two-phase locking protocol, if all locking operations precedes the first

unlock operation in the transaction. Such a transaction can be divided into two

phases: an expanding or growing (first) phase, during which new locks on data

items can be acquired but none can be released; and a shrinking (second) phase,
during which existing locks can be released but no new locks can be acquired

[95]. It ensures serializability, but not deadlock freedom. The two phase locking

can be static ordynamic. The working principle of static two phase locking (S2PL)

is similar to dynamic two phase locking (D2PL) except for the procedure of setting
locks [73]. In D2PL, transactions acquire locks to access data items on demand

and release locks upon termination or commit [133]. In S2PL, the required locks of

a transaction are assumed to be known before its execution [136]. The prior

knowledge of the required data items by a transaction is easy to address in

DRTDBS as it is generally agreed that the behavior and the data items to be

accessed by real-time transactions, especially hard real-time transactions, are

much more well-defined and predictable. So, as a result of the better defined

nature of real time transactions, it is not uncommon to assume that the locking

information of a transaction is known before its processing. For example, in
priority ceiling protocol (PCP), the locks required by the transactions must be

known before their arrivals with predefined priorities [119]. A transaction has to

obtain all its required locks before the start of execution. If any one of its locks is

being used by another transaction, it is blocked and releases all seized locks. The

locks to be accessed by a transaction at each site can be packed into a single

message for transmission. In DRTDBS, the number of messages for setting the

locks is generally smaller for distributed S2PL than for D2PL So, the number of

messages and the time delay for remote locking can be significantly reduced.

11

There is no local deadlock and a distributed deadlock is much easier to resolve

with S2PL than with D2PL. S2PL protocol is deadlock free [121] because blocked

transactions cannot hold locks. In the last two decades, a lot of work has been

done to compare D2PL with S2PL [86]. Most researchers agree that D2PL is a

better choice for conventional non-real-time database systems than S2PL

because of the followings reasons [65].

(i) Smaller probability of lock conflicts due to the shorter average lock holding

time in D2PL; and

(ii) Difficulty in determining the required locks before the processing of

transaction

However, the meaning of "better" performance in DRTDBS is quite different

from that in conventional non-real-time database systems. In the conventional

database systems, the major performance measures are mean system throughput

and mean system response time. On the contrary, minimizing the number of

missed deadlines is the main concern in DRTDBS.

In non-real-time S2PL, a transaction is blocked if any of its required locks are

seized in conflicting mode by any other transactions. While it is being blocked,

some of its required locks which may be free initially, can be seized by other

transactions. Thus, even when the original conflicting locks are released, the

transaction may be blocked by other transactions which arrive after it. So, the

blocking time of higher priority transaction can be arbitrarily long due to prolonged

blocking as a result of waiting for multiple locks [75]. An alternative for

concurrency control in DRTDBS is to use real time S2PL (RT-S2PL). In RT-S2PL,

each lock in the database is defined with a priority equal to the priority of the

highest priority transaction which is waiting for that lock. All the locks of the data

items to be accessed by a transaction have to be set in appropriate modes before

processing of the transaction. If any of the required locks is in a conflicting mode

or has a priority higher than that of the requesting transaction; none of the

required locks will be set and the transaction will be blocked instead. However, for

the locks with lower priorities, their priorities will be updated to that of the

requesting transaction. These features of RT-S2PL make it attractive for DRTDBS

[73,75,132]. In RT-S2PL protocols, the problem of locking-induced thrashing can

12

•

be prevented because lock requesting transactions can be blocked due to a lock

conflict [137,138,139].

Based on S2PL and H2PL, static two phase locking with high priority (S2PL-

HP) is used in the present work. Here, the lock requesting cohort waits for the

data item to be released when the requested data item is held by one or more

higher priority cohorts in a conflicting mode. On the other hand, if the data item is

held by a lower priority cohort in a conflicting way, the lower priority cohort is

aborted and requesting cohort is granted the desired locks.

2.3.5 Issues in Distributed Real Time Database Systems

The time expressed in the form of a deadline is a critical factor to be

considered in distributed real time transaction [102]. The completion of

transactions on or before its deadline is one of the most important performance

objectives of DRTDBS. There are several important factors that contribute to the

difficulty in meeting the deadlines of a distributed transaction [38]. One ofthe most

significant factors is the data conflict among transactions [26]. The data conflict

that occurs among executing transactions is referred to as executing-executing

conflict. The conflict involving executing-committing transactions is termed as

executing-committing conflict. The executing-executing conflicts are resolved by

distributed concurrency control protocols. A number of real time concurrency

control protocols have been proposed in the past. When a data conflict occurs

between an executing and a committing transaction, a commit protocol has to

work with concurrency control protocol to handle it and to ensure the transaction

atomicity. The traditional commit protocols block the lock requesting transactions

until the lock holding transaction releases the lock. The blocked transactions may

seriously affect the performance of DRTDBS, especially when failures occur

during the commitment phase.

Some of the other issues in DRTDBS are scheduling of distributed

transactions, optimizing the use of memory, management of distributed

transactions, deadline assignment strategies, difficulty in maintaining global

system information, possibility of distributed deadlocks etc. [17]. Among these

issues, priority assignment policy for transaction scheduling, commit protocol and

memory optimization are the only issues considered in this thesis. In the following

sections, we will review the literature which addresses these issues.

13

2.4 PRIORITY ASSIGNMENT POLICY

Usually, a real time database system is a part of a large and complex real

time system. The tasks in RTS and transactions in DRTDBS are similar in the >.

sense that both are units of work as well as units of scheduling [61,70,71].

However, tasks and transactions are different computational concepts and their

differences affect how they should be scheduled and processed. Unlike

transactions, tasks in real time systems do not consider consistency of the data

items used. Though many real time task scheduling techniques are still used for

scheduling real time transactions, the transaction scheduling in real time database v

systems needs a different approach than that of which is used in scheduling tasks

in the real time systems. The following sub sections next to it review the literature

on task/transaction scheduling in centralized and distributed environments

respectively.

2.4.1 Priority Assignment Policies in Centralized Environment

The priority assignment techniques proposed for centralized real time systems ^

can be broadly classified into three categories: static, dynamic or hybrid of both. A

scheduling algorithm is said to be static, if priorities are assigned to tasks once

and for all. A scheduling algorithm is said to be dynamic, if the priority of a task

changes from request to request. Liu C. L and Layland J. W. have developed a

rate monotonic static assignment scheme to determine the schedulability of a set

of periodic tasks [93]. One of the most used algorithms belonging to this class is

Earliest Deadline First (EDF), according to which, priorities assigned to tasks are .

inversely proportional to the absolute deadlines of active jobs where deadline of a

job depends on the arrival time of its next occurrence. A scheduling algorithm is

said to be a mixed scheduling algorithm if the priorities of some of the tasks are

fixed and priorities of the remaining tasks vary from request to request.

Most concurrency controllers block or restart transactions when data conflicts

are detected. The victim selection policy is based on the rules of the specific

concurrency controller. The traditional no priority based concurrency control

algorithm penalizes the transaction that requests the lock last [142]. The cohort

remains blocked until the conflicting lock is released. The real time priority of the

cohort is not considered in processing the lock request. Recent studies show that

the system performance can be significantly improved by using priority based

14

scheduling. The transaction with closest deadline is assigned highest priority. It is

called EDF, initially designed for real time tasks scheduling. If the two cohorts

have same deadline, one with earlier arrival time is assigned a higher priority on

the basis of first come first serve (FCFS). Other priority assignment policies are

Random and Least Slack First (LSF) [2,141]. The random priority assignment

policy assigns priority to each transaction on a random basis and the priority

assigned to transaction is independent of transaction deadline. In the LSF policy,

the transaction with less slack time will have higher priority. The slack time can be

defined as the amount of time the cohort can afford to wait in order to complete

before its deadline [145].

The performance of different scheduling policies for the soft deadline based

transactions was first addressed by Abbot R. and Garcia-Monila H. [2]. They

studied the performance of three priority assignment techniques; FCFS, EDF and

LSF, with different concurrency control methods namely serial execution (SE),

high priority (HP), and conditional restart (CR) through simulation. The pioneering

work in RTDBS performance evaluation of various scheduling options for a real

time database system with disk and shared locks is reported again by Abbot R.

and Garcia-Monila H. [1]. The scheduling algorithms used for this study are FCFS,

EDF and LSF along with the concurrency control algorithms such as wait, wait-

promote, high priority & conditional restart.

Pang H. et al. investigated the problem of "bias" against longer transactions

under "earliest-deadline-based" scheduling policies in a centralized RTDBS

[104,105]. Their approach to solve the proble m of bias assigns virtual deadlines

to all transactions. A transaction with an earlier virtual deadline is served before

one with a later virtual deadline. The virtual deadline of a transaction is adjusted

dynamically as the transaction progresses and is computed as a function of the

size of the transaction.

In a real-time database system, an application may assign a value to a

transaction to reflect the return it expects to receive if the transaction commits

before its deadline [51,52]. Haritsa J. R. et al. addressed the problem of

establishing a priority ordering among transactions characterized by both values

and deadlines that results in maximizing the realized value. They proposed the

Adaptive Earliest Deadline (AED) protocol for priority assignment as well as for

load control of the transactions [56]. AED was later improved to Adaptive Earliest

15

Virtual Deadline (AEVD) policy using virtual deadline based on both arrival time

and deadline. Datta et al. addressed some of the weaknesses in AEVD, and

proposed the Adaptive Access Parameter (AAP) method for explicit admission

control [25].

Dogdu Erdogan and Ozsoyoglu Gultekin proposed new priority assignment

and load control policies for repeating real-time transactions [31]. Based on the

execution histories of the transactions, they showed that a widely used priority

assignment technique EDF is biased towards scheduling short transactions

favorably and proposed protocols that attempt to eliminate the discriminatory

behavior of EDF by adjusting the priorities using the execution history information

of transactions. They introduced the notion of "fair scheduling" of transactions in

which, the goal was to have "similar" success ratios for all transaction classes

(short to long in size).

2.4.2 Priority Assignment Policies in Distributed Environment

In DRTDBS, a transaction is generally divided into several sub transactions

(cohorts). These cohorts execute on different sites. The system performance is

heavily dependent on the local scheduling of the cohorts at different sites. It has

been shown by Kao B. and Garcia-Monila H. that the distributed real time system

performance, in terms of meeting task deadlines, can be improved by assigning

appropriate priority to the sub-tasks of a task [66]. They suggested four different

heuristics, i.e., ultimate deadline (UD), effective deadline (ED), equal slack (EQS)

and Equal flexibility (EOF) for assigning the deadline to sub-tasks [66]. These

heuristics consider only real time constraints and may not be suitable for DRTDBS

as they do not consider their impact on data contention which can seriously affect

the system performance. Lee Victor C. S. et al. examined the performance of

these four heuristics and suggested three other alternatives that take into

consideration the impact of data conflicts [85]. These alternative priority

assignment strategies are Number of Locks held (NL), Static EQS (SEQS) and

Mixed Method (MM). The NL strategy assigns the priority to cohorts on the basis

of the number of locks being held by its parent transaction while other two

heuristics are improved version of the heuristics discussed by Kao B. and Garcia-

Monila H. [66]. However, both of the above studies consider sequential executions

16

of task/cohorts. These heuristics, except UD, are not suitable for cohorts

executing in parallel.

Complex distributed tasks often involve parallel execution of the subtasks at

different nodes. To meet the deadline of a global task, all of its parallel subtasks

have to finish in time. In comparison to a local task (which involves execution at

only one node), a global task may find it much harder to meet its deadline

because it is fairly likely that at least one of its subtasks run into an overloaded

node. Another problem with complex distributed tasks occurs when a global task

consists of parallel and serial subtasks. If one parallel subtask is late, then the

whole task is late. The problem of assigning deadlines to the parallel and the

serial subtasks of the complex distributed tasks is addressed by Kao B. and

Garcia-Monila H. [67]. They studied the problem of automatically translating the

deadline of a real time activity to deadlines for all its sequential and parallel sub

tasks constituting the activity. Each sub task deadline is assigned just before the

sub task is submitted for execution. The structure of the complex tasks is

assumed to be known in advance. To meet the deadline of a global task, the

scheduler must estimate the execution times of the subtasks and assign them to

processors in such a way that all will finish before the deadline of the global task.

A number of strategies for assigning a deadline to each parallel subtask have

been proposed. The strategies have also been proposed for assigning deadlines

to sequential subtasks. The problem of assigning deadlines to parallel and serial

subtasks of complex distributed tasks in a real time system has been studied

through simulation. The empirical results are provided for assigning virtual

deadlines to parallel subcomponents of a task in order to meet the global task
deadline.

Lam K. Y. et al. investigated the effects of different priority assignment

heuristics using optimistic concurrency control protocol and high priority two phase

locking [77,86]. The results of their performance experiments show that optimistic
concurrency control protocols are more affected by the priority assignment

policies compared to locking based protocols. It was also shown that considering
both transaction deadline and current data contention in assigning transaction

priorities provides best performance among a variety of priority assignment
techniques.

17

Traditional real time schedulers do not consider the impact of communication

delayfor transferring the remote data and results. To reduce the miss percentage

of transactions and the wastage of time for remote transaction due to

communication delay, a new real time scheduler called Flexible High Reward

(FHR) is proposed by Chen Hong-Ren et al. [22]. FHR tries to reduce the miss

percentage by giving slightly high priority to remote transactions.

Most of the previous work on priority assignment focuses either on centralized

database or on distributed databases where subtasks (cohorts) of transaction are

executed sequentially. Very few researches have considered the scheduling of
distributed cohorts executing in parallel [59].

2.5 COMMIT PROTOCOLS

A distributed transaction is executed at more than one site. In such an

environment, the transaction may decide to commit at some sites while at some

other sites it could decide to abort resulting in a violation of transaction atomicity
[100,109]. To overcome this problem, distributed database systems use a

distributed commit protocol which ensures the uniform commitment of the

distributed transaction, i.e. all the participating sites agree on the final outcome

(commit/abort) of the transaction [8,83]. Commit protocol ensures that either all

the effects of the transaction persist or none of them persist despite of the site or

communication link failures and loss of messages.

2.5.1 Two Phase Commit Protocol (2PC)

The two phase commit protocol (2PC) referred to as the Presumed Nothing

2PC protocol (PrN) is the most commonly used protocol in the study of DDBS

[39,40]. It guarantees uniform commitment of distributed transactions by
maintaining the logs and by exchanging explicit multiple messages among the

sites. In the absence of failures, the protocol is straight forward in that a commit

decision is reached if all cohorts are ready to commit; otherwise, an abort decision

is taken.

Assuming no failures, it works as follows [127].

(i) The coordinator sends a vote request (VOTE REQ) message to all cohorts.

18

(ii) When a cohort receives a VOTE REQ, it responds by sending a yes or no

vote message (YES or NO VOTE, YES VOTE also known as PREPARED

message) to the coordinator. If the cohort's vote is NO, it decides to abort

and stops.

(iii) The coordinator collects the vote messages from all cohorts. If all of them

are YES and the coordinator's vote is also YES, the coordinator decides to

commit and sends commit messages (COMMIT) to all cohorts. Otherwise,

the coordinator decides to abort and sends abort messages (ABORT) to all

cohorts that voted YES.

(iv) Each cohort that voted YES waits for a COMMIT or ABORT message from

the coordinator. When it receives the message, it decides accordingly,
sends an acknowledgement message (ACK) to the coordinator and stops.

(v) Finally, the coordinator, after receiving the ACK messages from all the

cohorts, writes an end log record and then forgets the transaction.

2PC satisfies the aforementioned listed rules for atomic commitment as long
as failures do not occur. However, if due to some reason the communication

between cohorts and the coordinator is distracted, it is possible that the cohort is
in uncertain state. It can neither abort nor commit since it does not know what the

other cohorts and the coordinator have decided. The cohort is in a blocked state

and may wait as long as the failure is corrected. Unfortunately, this blocking may
continue for an indefinitely long period of time. To handle this situation, 2PC
ensures that sufficient information is force-written on the stable storage to reach a
consistent global decision about the transaction [98]. Hence, 2PC imposes a great
deal of overhead on the transaction processing. There has been a lot of research

to mitigate the overhead of 2PC and a number of 2PC variants have been

proposed. These variants can be classified into following four groups [82].

(i) Presumed Abort/Presumed Commit Protocols

A variant of 2PC protocol, called Presumed Abort (PA), attempts to reduce
2PC overheads by requiring all cohorts to follow a "in the no information case,
abort" rule [10,96,127,98,82]. If after coming up from a failure, a site queries the
coordinator about the final outcome of a transaction and finds no information

available with the coordinator, the transaction is assumed to be aborted. The

coordinator of the transactions does not log information nor wait for ACK

message regarding aborted transactions. Hence, PA behaves identical to 2PC for

committing transactions, but has reduced message and logging overheads for

aborted transactions.

In general, the number of committed transactions is much more than the

number of aborted transactions [11,89]. Based on this observation, another

variant of 2PC i.e. the Presumed Commit (PC) is proposed that attempts to

reduce the messages and logging overheads for committing transactions rather

than aborting transactions. The coordinator interprets missing information about

transactions as commit decision. Unlike PA, the coordinator has to force write

starting of the voting phase. This is to ensure that an undecided transaction is not

presumed as committed when the coordinator recovers from a failure.

(ii) One Phase Commit Protocols

The one-phase commit (1PC) protocol has been first suggested by Skeen D.

[40]. There is no explicit "voting phase" to decide on the outcome of the

transaction because cohorts enter in "prepared state" at the time of sending the

work done message (WORKDONE) itself, i.e., the commit processing and data

processing activities are effectively overlapped. By eliminating an entire phase

and thereby reducing commit processing overheads and durations, 1PC protocols

seem to be potentially capable of completing more transactions before their

deadlines.

Several variant of 1PC have been proposed in the literatures. The Early

Prepare (EP)-a representative 1PC protocol forces each cohort to enter in a

PREPARED state after the execution of each operation [127]. It makes cohort's

vote implicit and exploits the feature of 1PC. The Coordinator Log (CL) protocol

avoids the cohort's disk blocking time by centralizing the cohort's log on the

coordinator [127]. However, this violates site autonomy and can be practical only

when the entire distributed system sits in a single machine room rather than

several geographically distant locations connected by communication lines. The

Implicit Yes-Vote (IYV) protocol adapts the CL in the case of gigabit-networked

database systems. The IYV protocol allows failed participants to perform part of

the recovery procedure independently without involving the coordinator, and to

20

resume the execution of transactions that are still active in the systems instead of

aborting them.

Finally, non-blocking single-phase atomic commit (NB-SPAC) protocol is a

non-blocking version of CL and preserves site autonomy by logging logical

operations instead of physical records on the coordinator [3]. But, these protocols

have largely been ignored in the implementation of distributed transactional

systems due to the strong assumptions they make about the cohort's behavior

identified and formalized by Abdallah M. [3]. These protocols cause longer

blocking times since the prepared cohorts cannot be aborted before final

consensus is reached. Hence, 1PC and its variants are best suited for distributed

transactions with small size cohorts.

(iii) Group Commit Protocols

In group commit protocol, transactions are not committed as soon as they are

ready [39,40]. To reduce the number of disk writes, several transactions are

grouped together and committed with one disk write. Even though the group

commit can enhance the system performance by reducing the number of disk

writes, it also increases the lock holding time of committing transactions. Hence,

group commit is usually applied in conjunction with pre-commit. When pre-commit

is applied to the distributed main memory database system, it is possible for the

global transactions to commit in an inconsistent order. To prevent such

inconsistency, it is proposed to propagate the transaction dependency information

[106]. It is also to note that pre-commit can also result in cascading abort if there

is a site failure in the middle of commit process. It can be catastrophic for the
system performance.

(iv) Pre Commit/Optimistic Commit Protocols

The optimistic commit protocol concentrates on reducing the lock waiting time

by lending the locks the committing transactions hold [45]. Since, the lock lending

is done in a controlled manner; there is no possibility of cascading aborts even if

the committing transaction is aborted. These protocols have good performance

due to the reduction of the blocking arising out of locks held on prepared data.

21

2.5.2 Three-Phase Commit Protocol

Fault tolerant computer systems prevent the disruption of services provided to

users. A fundamental problem with all of the above protocols is that cohorts may V

become blocked in case of a site failure and remain blocked until the failed site

recovers. For example, if the coordinator fails after initiating the protocol but

before conveying the decision to its cohorts, these cohorts will become blocked

and remain so until the coordinator recovers and informs them about the final

decision. During the blocked period, the cohorts may continue to hold system

resources such as locks on data items making them unavailable to other -V

transactions, which in turn become blocked waiting for the resources to be

relinquished. It is easy to see that, if the blocked period is long, it may result in a

major disruption of the transaction processing activity. To address the failure-

blocking problem, a three-phase commit (3PC) protocol was proposed by Skeen

D [59]. This protocol achieves a non-blocking capability by inserting an extra

phase, called the "pre-commit phase", in between the two phases of 2PC protocol.

In pre-commit phase, a preliminary decision is reached regarding the fate of the *

transaction. The information made available to the participating sites as a result of

this preliminary decision allows a global decision to be made despite a

subsequent failure of the coordinator. However, note that the price of gaining non-

blocking functionality is an increase in the communication overheads since there

is an extra round of message exchange between the coordinator and the cohorts.

In addition, both the coordinator and the cohorts have to force-write additional log

records in the pre-commit phase. This overhead can be reduced by having only a ^

few sites to execute the three phase protocol and the remaining can execute the

cheaper two phase protocol. The transaction will not block as long as one of the

sites executing the three phase protocol remains operational.

2.6 REAL TIME COMMIT PROTOCOLS

Due to series of synchronous messages and logging cost, commit processing

can result in a significant increase in the transaction execution time. In a real-time

environment, this is clearly undesirable. It may also result in priority inversion,

because, once a cohort reaches the prepared state, it has to retain all its data

locks until it receives the global decision from the coordinator. This retention is

fundamentally necessary to maintain atomicity. Therefore, if a high priority

22

transaction requests access to a data item that is locked by a "prepared cohort" of

lower priority, it is not possible to forcibly obtain access by preempting/aborting

the low priority cohort. In this sense, the commit phase in DRTDBS is inherently

susceptible to priority inversion. More importantly, the priority inversion interval is

not bounded since the time duration, that a cohort is in the prepared state, can be

arbitrarily long (e.g. due to blocking or network delays). This is especially more

problematic in distributed context. Therefore, in order to meet the transaction

deadlines, the choice of a better commit protocol is very important for DRTDBS.

For designing the commit protocols for DRTDBS, we need to address two

questions.

(i) How do we adapt the standard commit protocols into the real-time

domain?

(ii) How can we decrease the number of missed transactions in the system?

Researchers have proposed some real-time commit protocols in the literature

to address this issue. Soparkar et al. have proposed a protocol that allows

individual sites to unilaterally commit [125]. If, later on, it is found that the decision

is not consistent globally then compensation transactions are executed to rectify
errors. The problem with this approach is that many actions are irreversible in

nature. The scheme proposed by Yongik Y. et al. is also based on the theme of

allowing individual sites to unilaterally commit - the idea is that unilateral

commitment results in greater timeliness of actions [150]. If later on, it is found

that the decision is not consistent globally, "compensation" transactions are used

to rectify the errors. While the compensation-based approach certainly appears to

have the potential to improve timeliness, yet there are quite a few practical
difficulties described below.

(i) The standard notion of transaction atomicity is not supported - instead, a

"relaxed" notion of atomicity is provided,

(ii) The design of a compensating transaction is an application specific task
since it is based on the application semantics.

i

(iii) The compensation transactions need to be designed in advance so that

they can be executed as soon as error is detected. This means that the

transaction workload must be fully characterized a priori.

(iv) Some real actions such as firing a weapon or dispensing cash may not

be compensated at all.

From a performance viewpoint also, there are some difficulties.

(i) The execution of compensation transactions is itself an additional

burden on the system,

(ii) It is not clear as to how the database system should schedule the

compensation transactions relative to the normal transactions.

A centralized timed 2PC protocol guarantees that the fate of a transaction

(commit or abort) is known to all the cohorts before the expiry of the deadline

when there are no processor, communication or clock faults [27,28]. In case of

faults, however, it is not possible to provide such guarantees and an exception

state is allowed which indicates the violation of the deadline. Further, the protocol

assumes that it is possible for DRTDBS to guarantee allocation of resources for a

duration of time within a given time interval. Finally, the protocol is predicated

upon the knowledge of worst-case communication delays.

Ramesh Gupta et al. did a detailed study of the relative performance of

different commit protocols [42,43,44,45,46,47]. Using a detailed simulation model

for firm-deadline DRTDBS, the authors have evaluated the deadline miss

performance of a variety of standard commit protocols including 2PC, PA, PC and

3PC. Then they have proposed and evaluated the performance of a new commit

protocol called OPT designed specifically for the real-time environment [45,46]. It

is a 2PC variant that attempts to alleviate priority inversion in 2PC and includes

features such as controlled optimistic access to uncommitted data, active abort

and silent kill. This protocol allows a high priority transaction to borrow (i.e.,

access) data items held by low priority transaction that is waiting for the commit

message under the assumption that the low priority transaction will most probably

commit. This creates dependencies among transactions. If a transaction depends

on other transactions, it is not allowed to start commit processing and is blocked

24

'

until the transactions, on which it depends, have committed. The blocked

committing transaction may include a chain of dependencies as other executing

transactions may have data conflicts with it. They have also suggested two variant

of OPT, i.e., Shadow-Opt and Healthy-Opt protocols [44]. In Healthy-Opt, a health

factor is associated with each transaction and the transaction is allowed to lend its

data, only if, its health factor is greater than a minimum value. However, it does

not consider the type of dependencies between two transactions. The abort of a

lending transaction aborts all transaction that has borrowed the data from it. The

performance of the system is dependent on chosen threshold value of health

factor (HF), which is defined as ratio of TimeLeft to MinTime, where TimeLeft is

the time left until the transaction's deadline and MinTime is the minimum time

required for commit processing. In Shadow-Opt, a cohort creates a replica of the

cohort called a shadow, whenever, it borrows a data page. The original cohort

continues its execution and the shadow is blocked at the point of borrowing. If the

lending cohort commits, the borrowing cohort continues and the shadow is

discarded, otherwise if the lender aborts, the borrowing cohort is aborted.

A new protocol Permits Reading of Modified Prepared-Data for Timeliness

(PROMPT) proposed by Haritsa J. R. et al. is also designed specifically for the

real-time environment and includes features such as controlled optimistic access

to uncommitted data, active abort, silent kill and healthy lending [59]. The

performance results of PROMPT show that it provides significant improvement

over the classical commit protocols, and makes extremely efficient use of the

lending premise. Finally, the authors have also evaluated the priority inheritance

approach to address the priority inversion problem associated with prepared data,

but found it to be inherently unsuitable for the distributed environment. Due to

sharing of data items, it creates commit or abort dependencies between the

conflicting transactions. The dependencies limit the commit order of the

transactions and thus may cause a transaction to miss its deadline while it is

waiting for its dependent transaction to commit. The impact of buffer space and

admission control is also not studied since it is assumed that buffer space is

sufficient large to allow the retention of data updates until commit time.

Lam et al. proposed deadline-driven conflict resolution (DDCR) protocol which

integrates concurrency control and transaction commitment protocol for firm real

time transactions [74,78]. DDCR resolves different transaction conflicts by

25

maintaining three copies of each modified data item (before, after and further)

according to the dependency relationship between the lock-requester and the lock

holder. This not only creates additional workload on the systems but also has

priority inversion problems. The serializability of the schedule is ensured by

checking the before set and the after sets when a transaction wants to enter the

decision phase. The protocol aims to reduce the impact of a committing

transaction on the executing transaction which depends on it. The conflict

resolution in DDCR is divided into two parts (a) resolving conflicts at the conflict

time; and (b) reversing the commit dependency when a transaction, which

depends on a committing transaction, wants to enter the decision phase and its

deadline is approaching.

If data conflict occurs between the executing and committing transactions,

system's performance will be affected. Based on the DDCR, Pang Chung-leung

and Lam K. Y. proposed an enhancement in DDCR called the DDCR with

similarity (DDCR-S) to resolve the executing-committing conflicts in DRTDBS with

mixed requirements of criticality and consistency in transactions [103]. In DDCR-

S, conflicts involving transactions with looser consistency requirement and the

notion of similarity are adopted so that a higher degree of concurrency can be

achieved and at the same time the consistency requirements of the transactions

can still be met. The simulation results show that the use of DDCR-S can

significantly improve the overall system performance as compared with the

original DDCR approach.

Based on PROMPT and DDCR protocols, B. Qin and Y. Liu proposed double

space commit (2SC) protocol [108]. They analyzed and categorized all kind of

dependencies that may occur due to data access conflicts between the

transactions into two types commit dependency and abort dependency. The 2SC

protocol allows a non-healthy transaction to lend its held data to the transactions

in its commit dependency set. When the prepared transaction aborts, only the

transactions in its abort dependency set are aborted and the transactions in its

commit dependency set execute as normal. These two properties of the 2SC can

reduce the data inaccessibility and the priority inversion that is inherent in

distributed real-time commit processing. 2SC protocol uses blind write model.

Extensive simulation experiments have been performed to compare the

performance of 2SC with that of other protocols such as PROMPT and DDCR.

26

The simulation results show that 2SC has the best performance. Furthermore, it is

easy to incorporate it in any current concurrency control protocol.

2.7 MEMORY OPTIMIZATION

The Important data base system resources are the data items that can be

viewed as logical resource, and CPU, disks and the main memory which are

physical resources [35]. Though the cost of the main memory is dropping rapidly

and its size is increasing, the size of database is also increasing very rapidly. In

real time applications, where the databases are of limited size or are growing at a

slower rate than the memory capacities are growing, they can be kept in the main

memory. However, there are many real time applications that handle large amount

of data and require support of an intensive transaction processing [110]. The

amount of data they store is too large (and too expensive) to be stored in the non

volatile main memory. Examples include telephone switching, satellite image data,

radar tracking, media servers, computer aided manufacturing etc. In these cases,

the database can not be accommodated in the main memory easily. Hence, many

of these types of database systems are disk resident. The buffer space in the

main memory is used to store the execution code, copies of files &data pages,

and any temporary objects produced. With the new functionalities and features of

the light weight devices, there is need of new policy/protocols so that memory

utilization can be improved [113]. Ramamritham K. and Sen R. utilized a novel

storage model, ID based storage, which reduces storage costs considerably. They

present an exact algorithm for allocating memory among the database operators.

Because of its high complexity, a heuristic solution based on the benefit of an

operator per unit memory allocation has been also proposed.

2.8 CONCLUSIONS

This chapter described the basic concepts and definitions of the database

system and reviewed the work carried out in the areas of priority assignment

policies for transaction scheduling, commit processing and memory optimization.

The priority assignment policies for the transaction scheduling both for the

centralized and the distributed RTDBS are discussed. Most of the priority

assignment policies are suitable only when the cohorts of the transactions execute

sequentially. The traditional commit processing protocol 2PC and its variants have

27

also been described. Different real time commit protocols proposed in the

literature are explained and compared. Most of these protocols try to improve the

performance by allowing a transaction to use a data item locked by some other *

transaction. There is complete lack of policies/protocols which can be well suited

to efficient use of memory by creating lesser temporary objects.

Some of the highlighting factors about the work done in this thesis are re-

evaluation of the static two phase locking mechanism, proposal for a new priority

assignment policy, development of new deadline assignment heuristic and commit

protocols suitable for handling huge volume of data and large number of ^

transactions.

*

+

28

CHAPTER - 3

PRIORITY ASSIGNMENT POLICY

3.1 INTRODUCTION

The processing of transactions in DRTDBS is much more complex than in

centralized real time database systems. The transactions in DRTDBS have

constraints on their completion time, which are usually expressed as their

deadlines. DRTDBS must process the transactions before their deadlines and

should also guarantee that the database consistency is not violated [21,14]. The

execution of a transaction involves CPU scheduling, data scheduling and

scheduling of other resources. In DRTDBS, scheduling of CPU and data is done

according to the priorities assigned to the transactions [31]. Since, these priorities

determine the execution order of the transactions, which indirectly affects the

extent of data conflicts, the policy used for assigning priority becomes highly

critical in deciding the performance of DRTDBS. It plays an important role in

reducing the percentage of the transactions that miss their deadlines. The

resource scheduler of a real time database allocates the system resources to

highest priority transaction so as to give it the best chance of completion before its

deadline. The success of one transaction may be achieved at the cost of other

transactions resulting in unfair treatment of those transactions.

3.1.1 Issue of Fairness

Fairness is the assurance of granting the resources to each request within a

predetermined bounded time. In DRTDBS, timely execution of the transactions is

considered more important than fairness, freedom from starvation and efficient

resource utilization [130]. However, many real time applications such as network

management, multimedia systems demand a balance between fairness and

priority. The resources allocation policy must not lead to starvation and it should

provide some degree of fairness to each competing transaction within its real time

constraints [151]. Sometimes, it may be preferable to let the higher priority

transactions wait for low priority transaction, if the low priority transaction has

already consumed a lot of resources and time. Aborting a near completion low

29

priority transaction may cost more than blocking a higher priority transaction for a

limited period of time. Also, giving a preferential treatment to short transactions

does not satisfy properties such as the fairness and freedom from starvation. Long X

transactions have higher probability of being starved because of their higher

probability of access conflicts. This results in a lower deadline guarantee ratio for

them than the short transactions. Because of their higher probability of conflict

with other transactions, the long transactions are likely to be repeatedly restarted,

and thus have less chance to meet their deadlines. The survival of a long

transaction is very tough due to the scenarios described below [92]. ^

(i) Wasted Restart/Abort: A wasted restart/abort happens if a higher

priority transaction restarts/aborts a lower priority transaction and then

higher priority transaction is discarded as it misses its deadline,

(ii) Wasted Wait: A wasted wait happens if a lower priority transaction waits

for the commit of the higher priority transaction and later higher priority

transaction is aborted as it misses its deadline. -f

(iii) Wasted Execution: This happens when a lower priority transaction that

is near to the completion of commit processing is restarted/aborted due

to a conflict with higher priority transaction arrival.

(iv) Unnecessary Restart: An unnecessary restart happens when a

transaction is restarted even when the execution was serializable.

3.1.2 Background ^

In order to maintain database consistency and to ensure failure atomicity, a

real time concurrency control with atomic commitment protocol is used in

DRTDBS. Incorporating proper transaction scheduling policy with concurrency

control methods has a marked impact on the effective level of concurrency,

especially, when data contention is high. In DRTDBS, transaction is generally

divided into several subtasks (cohorts). Kao B. and Garcia-Molina H. [66,67]

addressed the issue of the subtask deadline assignment in a distributed _.

environment. A typical global transaction processed in a distributed system

possesses subtasks (i.e., cohort) to be executed on various system sites. A single

30

value of an end-to-end global deadline might not truly reflect the urgency of each

individual subtask. The subtask deadlines should be earlier than the end-to-end

global deadline so as to speed up the progress of the global transaction. Kao and

Garcia-Molina [67] suggested and evaluated heuristic based scheduling policiesfor

the subtask deadline assignment problem. The problem was reduced into two sub

problems: one deals with serial subtasks (where a global transaction consists of a

number of serially executing subtasks), and the other one with parallel subtasks

(where a global transactbn involves parallel execution of subtasks at different

nodes).

The performance of heuristics proposed by Kao B. and Garcia-Molina H. [66]

has been examined by Lee Victor C. S. et al. [85] and they suggested three other

alternatives that take into consideration the impact of data conflicts. These

alternative priority assignment strategies are the Number of Locks held (NL),

Static EQS (SEQS) and Mixed method (MM). The NL assigns the priority to
cohorts on the basis of the number of locks being held by its parent transaction

while other two heuristics are improved version of heuristics discussed by Kao B.

and Garcia-Molina H. [66]. However, both of these studies consider the sequential
executions of the task or cohorts. These heuristics, except ultimate deadline (UD),
are not suitable for cohorts executing in parallel. The heuristics proposed for

DRTDBS where the subtasks of a transaction are executed sequentially may not
suit well when the subtasks of a transaction are executed in parallel. Moreover,

Lee Victor C. S. et al. [85] have not studied the fairness property of these

schemes. In NL, the transaction can complete faster and release the locks earlier

by giving the highest priority to the transaction which holds the largest number of

locks. However, this approach can not be applied to cohorts executing in parallel.

The priority assignment policy proposed in this chapter is based on the

following observations:

(i) If a long transaction is divided into many cohorts executing in parallel

and each one is having only a small number of operations then

assigning cohorts a priority same as their parents is not justified. This

31

may result in giving higher priority to the local transactions even if they

have more number of operations,

(ii) Aborting a near completion low priority transaction may cost more than 1

blocking a higher priority transaction for a limited period of time.

In the proposed priority assignment heuristic, the cohorts are assigned the

priority based on the number of locks required by them instead of inheriting the

priority of its parents. We also schedule cohorts in a way that favors the one that

has finished most of its work (holding locks) over those that have just begun or f
are waiting for locks. This not only increases the effective level of concurrency but

also increases success ratio. To achieve this, temporary intermediate priorities of

cohorts are calculated at the time of data contention and are used to schedule

them more effectively. In this chapter, we study the effects of the proposed

heuristic and the temporary intermediate priority assignment policy on the

performance of DRTDBS by incorporating them with S2PL concurrency control

algorithm [73] and 2SC commit protocol [108]. However, this is not limited to only A

S2PL and 2SC and the same gain can be achieved while using any concurrency

control algorithm and 2PC or any other commit protocol.

This chapter first presents the transaction model, deadline estimation method

for global and local transactions and 2SC distributed real time commit protocol.

We, then discuss our heuristic and temporary intermediate priority assignment

policy with performance evaluation parameters and simulation results.

3.2 DISTRIBUTED REAL-TIME DATABASE SYSTEM MODEL

The structure of our simulation model including the description of its various

components such as system model, database model, network model, cohort

execution model, locking mechanism and the model assumptions is given in Fig

3.1. The common model for DRTDBS is given below [129].

At each site, two types of transactions are generated: global transactions and

local transactions. Each global transaction consists of m cohorts, where m is less *

than or equal to the number of database sites NSjte. We use the same model for

local and global transactions. Each local transaction has a coordinator and a

32

*

>

*

4

single cohort both executing at the same site. Each transaction consists of Noper
number of database operations. Each operation requires locking of data items and
then processing.

Transaction

Manager

Priority
Assignment

Transaction

Generator

ready queue

wait Queue

Sink

Oi
Terminate

Abort

Commit

C.C.Manager

G Database

Operation

Computation

Site 2
/l Nl Network \a k
N v\ Mananfir \l)/

Blocked

Main Memory

Site 1

Site 3

SiteN

Fig. 3.1: Distributed Real-time Database System Model

3.2.1 System Model

Each site consists of a transaction generator, a transaction manager, a
concurrency controller, a CPU, a ready queue, a local database, a communication

interface, a sink and a wait queue. The transaction generator is responsible for

creating the transactions independent to the other sites using Poisson distribution

33

with the given inter-arrival time. The transaction manager generates cohorts on

remote site on behalf of the coordinator. Before a cohort performs any operation

on a data item, it has to go through the concurrency controller to obtain a lock on 4

that data item. If the request is denied, the cohort is placed in the wait queue. The

waiting cohort is awakened when the requested lock is released and all other

locks are available. After getting all locks, the cohort accesses the memory and

performs computation on the data items. Finally, the cohort commits/aborts and

releases all the locks that it is holding. The sink component of the model is

responsible for gathering the statistics for the committed or terminated y

transactions.

3.2.2 Database Model

The database is modeled as a collection of data items that are uniformly

distributed across all the sites. Transactions make requests for the data items and

concurrency control is implemented at the data item level. No replication of data

items at various sites is considered here.

A

3.2.3 Network Model

A communication network interconnects the sites. There is no global shared

memory in the system. All sites communicate via messages exchange over the

communication network. The network manager models the behavior of the

communications network.

3.2.4 Cohort Execution Model *

In our work, we have considered the parallel execution of cohorts. The

coordinator of the transaction spawns all cohorts together by sending messages

to remote sites to activate them, lists all operations to be executed at that site and

then cohorts may start execution at the same time in parallel. The assumption

here is that a cohort does not have to read from its sibling and operations

performed by one cohort during its execution are independent of the results of the

operations performed by other cohorts at some other sites. In other words, the £

sibling cohorts do not require any information from each other to share.

34

3.2.5 Locking Mechanism

The main technique used to control concurrent execution of transactions is

based on the concept of locking data items. A lock is a variable associated with a

data item that describes the status of the item with respect to possible operations

that can be applied to it. Generally there is one lock for each data item in the

database. Locks are means for synchronizing the access of concurrent

transactions to the database items.

A transaction is said to follow the two phase locking protocol if all locking

operations precede the first unlock operation in the transaction. There is a number

of variations of the two phase locking (2PL) such as static two phase locking
(S2PL) and dynamic two phase locking (D2PL). The static 2PL (S2PL) requires a
transaction to lock all needed data items before the transaction begins execution,
by predeclaring it's read-set and write-set. If any of the predeclared data item can

not be locked, the transaction does not lock any items; instead, it waits until all

data items are available for locking.

3.2.6 Model Assumptions

We assume that the transactions are firm real time transactions. The model

assumptions are listed below.

• Processing of a transaction requires the use of CPU and data items

located at local or remote site.

• Arrival of the transactions at a site is independent of the arrivals at other

sites and uses Poisson distribution.

• Each transaction pre-declares its read-set (set of data items that the

transaction will only read) and update-set (set of data items that the

transaction will update).

• The cohorts are executed in parallel.

• A lending transaction cannot lend the same data item in read/update

mode to more than one cohort to avoid cascaded abort.

35

A cohort already in the dependency set of another cohort cannot permit

a third incoming cohort to perform read or update.

The communication delay considered is either Oms or 100ms to study

the impact of the network delay on the system.

A distributed real time transaction is said to commit, if the coordinator

has reached to commit decision before the expiry of the deadline at its

site. This definition applies irrespective of whether cohorts have also

received and recorded the commit decision by the deadlines.

The database is in the main memory at all sites.

3.3 DEADLINE ASSIGNMENT

The deadlines of transactions (both global and local) are calculated based on

their expected execution times [73]. The deadline (Dj) of transaction (Ti) is defined

as: 4

D, = A+ SF * R,

where, A is the arrival time of transaction (Tj) at a site.

SF is the slack factor.

Ri is the minimum transaction response time.

As cohorts are executing in parallel, Ri is calculated as:

Ri =Rp+Rc

where, Rp is the time for execution phase and Rc is the time for commitment

phase which are given as below.

For global transactions

Rp =max{Tlp xNw,max(Tlp xN(j) +2xTcom}

j * local

T = 2xT +Tlp fc ** ' lock T •processing

Rc=NcommxTcom >

For local transactions

36

R =(2xT, . +T)xN . ,p V lock process/ operlocal

Rc=0

Where,

mi is the number of cohorts of Ith transaction;

Nitocai is the number ofoperations in local cohort of Tj;

N, is the number of operations in jth cohort of Ti;

Tiock is the time required to lock/unlock a data item;

Tprocess is the time to process a data item (assuming read operation takes same

amount of time as write operation);

Ncomm is the number of messages exchanged between the coordinator and a

cohort;

Tcom is the communication delay, i.e., the constant time estimated for a message

going from one site to another;

Noperjocai is the number of local operations;

N0per_remote is maximum number of remote operations taken over by all cohorts.

3.4 DOUBLE SPACE COMMIT PROTOCOL (2SC)

In this section, 2SC protocol has been described in brief to ensure

completeness. Additional details of 2SC protocol can be found in "High

Performance Distributed Real - time Commit Protocol" by Biao Qin and Y. Liu

[108]. The 2SC protocol allows two transactions to share the data by allowing a

transaction (borrower) to borrow the data from another transaction (lender) in its

commit phase. The sharing of data items in conflicting modes creates

dependencies among the conflicting transactions and constraint their commit

orders. Basically there are two kinds of dependencies; (i) commit dependency,

and (ii) abort dependency. If a transaction T2 writes a data item after another

transaction T^ a commit dependency is created from T2 to Ti denoted by T2 CD

Ti. T2 is not allowed to commit until Ti has ended. If T2 reads an uncommitted

data item written by Ti, an abort dependency is created from T2 to Ti denoted by

T2 AD Ti. T2 has to commit after Ti and the abort of Ti causes T2 to abort.

37

A transaction table at each site maintains the followings information for each

local active transaction or cohort (T):

Abort dependency set (ADS (T))

Set of transactions that are abort dependent on transaction T.

ADS(T) = {Ti ITADT}

Commit dependency set (CDS (T))

Set of transactions that are commit dependent on transaction T.

CDS(T)={Ti|TiCDT}

When data conflicts occur, there are three possible cases of conflict:

Read - Write Conflict

If T2 requests a write-lock while Ti is holding the read lock on the same item,

a commit dependency is defined from T2 to Tl After the transaction id of T2, id2, is

added to CDS CH), T2 acquires the write-lock.

Write - Write Conflict

If both locks are write locks, a commit dependency is defined from T2 to Ti.

After the transaction id of T2, id2, is added to CDS (T^), T2 acquires the write-lock.

Write - Read Conflict

If T2 requests a read lock while Ti is holding a write-lock, an abort

dependency is defined from T2 to Tl If HFCH) > MinHF, the transaction id of T2,

id2 , is added to ADS (Ti) then T2 acquires the write-lock; Otherwise, if HF(Ti) <

MinHF, T2 is blocked (see section 2.6 for HF and MinHF).

When T2 accesses a data item already locked by committing cohort T^ any

one of the following three scenarios may arise.

(i) Ti Receives Decision Before T2 Has Completed Its Local Data

Processing

If the global decision is to commit,

38

(ii)

a. Tf commits.

b. All transactions in ADS (TO and CDS (TO will execute as usual.
c. Set of ADS (TO and CDS (TO will be deleted.

If the global decision is to abort,

a. Ti aborts.

d. The transactions in the dependency set of T1 will execute as
follows:

- All transactions in ADS (TO will be aborted.

• All transactions in CDS (TO will execute as usual.
• The set of ADS (JO and CDS (TO will be deleted.

T2 Completes Data Processing Before T, Receives Global Decision
T2 is not allowed to send WORKDONE message to its coordinator. So the
coordinator cannot initiate commit processing. Instead, it waits until either T1
receives its global decisions or its own deadline expires, whichever occurs
earlier. In the former case, the system will execute as the first scenario. In
the latter case, T2 will be killed and will be removed from the dependency set
QfTi.

(iii) T2 aborts before T, receives decision

In this situation, T2's updates are undone and T2 will be removed from the
dependency set of Tl

3.5 PRIORITY ASSIGNMENT HEURISTIC &TEMPORARY INTERMEDIATE
PRIORITY ASSIGNMENT POLICY

The proposed priority assignment heuristic is based on the number of locks
required by the cohort. The initial priority of cohort (T.) of transaction (T) is
computed as below.

P = 1/N

39

where, N* 1, is the number of locks required by Ti. Higher the value of Nlesser is

the priority of Tj. As this may favor short cohorts, we also calculate a temporary
intermediate priority, whenever a data contention occurs as explained in the next

paragraph.

The lifetime of a cohort can be divided into two phases: execution phase and

commit phase. During execution phase, the cohort locks the data items, does
some necessary computation, and finally, sends WORKDONE message to its
coordinator. If there are dependencies then the sending of WORKDONE message

is deferred till the removal of the dependencies [78,108]. In our model, arrival of a
higher priority cohort may abort the lock holding low priority cohort, if it has not
sent YES VOTE message. The abort of lock holding cohort is done on the basis of
the temporary intermediate priorities assigned to the arriving cohort and the lock
holding cohort. It is a temporary priority assignment and does not affect the initial
priorities of the two cohorts. It is based on the remaining execution time of the lock
holding low priority cohort (TL) which is in execution phase and the slack time
available of the newly arrived higher priority cohort (TA). It also solves the problem
of starvation of long cohorts that arises due to the high probability of their access
conflicts. Slack time is the amount of time a cohort can afford to wait in order to

complete before its deadline. The remaining execution time (Tremain) of the lock
holding cohort (TL) is given as:

Tremain = Ri " 'elapse

Trapse is elapsed execution time of TL.
If Tremain(TL) is less than the slack time(TA) then the priority of TL is greater

than TA; otherwise, TA deserves the higher priority.

Complete pseudo code for scheduling algorithm
Let TCH be the cohort holding the CPU, TA is the cohort requesting the CPU

and TL is the lock holding cohort in conflict with TA.

Algorithm for CPU scheduling

CPU_scheduling_function ()

{

40

if (New Arrival)

{

Assign priority to TA based on initial priority assignment

policy;

if (CPU is not free)

I

if (initiaLpriority (Tch) > initiaLpriority (TA))

insert Ta in wait queue;

else

{

abort Tch '<

allocate CPU to TA :

call lock_acquire_function ();

}

}

else

{

allocate CPU to TA ;

call lock_acquire_function ();

}

}

}

Algorithm to resolve data contention

lock_acquire_function ()

{

for each data item-'-*

if(!lock_conflict)

allocate data item to TA;

41

else

check the priority of conflicting cohorts 1\:

if (initial priority (TA) < priority(TJ)

insert Ta in wait queue;

else

{

iKslack time(TA)<TremDin(TL)) //slack time(TA) ^0

{

abort Tl! allocate data item to TA;

}

else

insert Ta in wait queue;

}

}

}

3.6 PERFORMANCE EVALUATIONS

This section describes the performance parameters and measures used for

the simulation and analyze the results of the simulation.

3.6.1 Performance Parameters and Measures

There are no practical benchmark programs for DRTDBS in the market or in

the research community to evaluate the performances of protocols [86].

Therefore, a distributed real time database system consisting of N sites was

simulated in the present work on the basis of

[12,29,33,72,73,76,126,131,142,143,144,146]. The default values of different

parameters used in the simulation experiments are given in Table 3.1. They are

chosen to be in accordance with those used in earlier studies [78,73,59]. For each

set of experiment, the final results are calculated as an average of 10 independent

runs. In each run, 20000 transactions are initiated.

42

Table 3.1: Default Values for the Model Parameters
Parameters

N'site

AR

T com

SF

N oper

PageCPU

PageDisk

DBsize

write

Meaning

Number of Site

Transaction Arrival Rate

Communication Delay

Slack Factor

No. of Operations in a

Transaction

CPU Page Processing Time

Disk Page Processing Time

Database Size

Write Operation Probability

Default setting

4 Transactions/ Second

100 ms (Constant)

1-4 (Uniform Distribution)

3-20 (Uniform Distribution)

5 ms

20 ms

200 Data Objects/Site

0.60

Our primary performance measure is the percentage of missed deadlines (or
Miss Percentage, MP) which is defined as the percentage of input transactions
that system is unable to complete on or before their deadlines.

MP = number of transactions aborted
na of transactions submitted to the system for proc^iirTg"X1 °°

3.6.2 Simulation Results

In this section, we report the results and findings of our simulation
experiments. We compared the performance of our scheme with EDF based
priority assignment scheme. In EDF, the cohort with closest deadline is assigned
highest priority [54]. If any two of the cohorts have same deadline, the one with
earliest arrival (FCFS) is assigned a higher priority. To investigate the
performance of the proposed heuristic and temporary intermediate priority
assignment policy, a wide range of transaction size (Noper =3 to 20) has been
used both for global and local transactions.

Fig. 3.2 compares the performance of our heuristics with EDF when
communication delay is 100ms. The performance is slightly better than EDF

•n

rate due to high level of conflicts for the data items which are handled in a more
effective way seeing the local condition of site. The heuristic associated with
temporary intermediate priority assignment policy outperforms the EDF due to
careful aborting of low priority executing cohort at the time of contention with
higher priority cohort. There is almost same improvement gain from transaction
arrival rate 4 to 14.

60

50 -

40

<& 30 H

20

10 -

-a- 2SC with EDF Priority Assignment Policy
-•- 2SC with Proposed Heuristic
-♦— 2SC with Proposed Heuristic and Temporary

Intermediate Priority Assignment Policy

4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 3.2: Miss %with (RC+DC) atCommunication Delay=100ms
Normal & Heavy Load

44

80

-*— 2SC with EDF Priority Assignment Policy
-T— 2SC with Proposed Heuristic
-♦— 2SC with Proposed Heuristic and Temporary

Intermediate PriorityAssignment Policy

20 30 40 50
Transaction Arrival Rate (no. per second)

Fig. 3.3: Miss % with (RC+DC) at Communication Delay=0ms
Normal & Heavy Load

Fig 3.3 compares the result at communications delay of 0ms. We can observe

that the performance gain is almost similar to that shown in Fig. 3.2. The data

conflicts are infrequent at very low transaction arrival rate. The Miss Percentage is
at par with EDF based priority scheme at low transaction arrival rate since the

data contention is low. The performance improves at high arrival rate by
effectively resolving the high level of conflicts for the data items.

Fig 3.4 and 3.5 compare the fairness of 2SC+EDF+proposed temporary
intermediate priority assignment scheme with 2SC+EDF priority assignment
scheme. To investigate the performance of the proposed scheme for above

purpose, a wide range of number of operations (Noper = (50% 3-5 and 50% 20-25))

in global as well as in local transactions have been considered. It can be observed

that propojsed temporary intermediate priority assignment scheme minimizes
overall Mis% Percentage of long transactions, and hence exhibits better fairness

due to careful abortion of near completion transaction in case of conflicts.

45

o^

to

50 -.

40

30

20

• Total Miss %

• Miss % of Transaction Size 3-5
3 Miss % of Transaction Size 20-25

10 -

Fig

1
2 4 6 8 10 12 14

Transaction Arrival Rate (no. per second)

3.4: Break-up of Miss % of Transactions at Communication Delay=100ms &
System Load (50% Transactions of Size 3-5 & 50% Transactions of

Size 20-25) in 2SC with EDF Priority Assignment Policy

50 ->

40

30

20

10

••• Total Miss %

mmm Miss % of Transaction Size 3-5

I I Miss % of Transaction Size 20-25

1 in
'I'*''—"-*•?

2 4 6 8 10 12 14

Transaction Arrival Rate (no. per second)
Fig. 3.5: Break-up of Miss % of Transactions at Communication Delay=100 ms &
System Load (50% Transactions of Size 3-5 & 50% Transactions of Size 20-25)

in 2SC with EDF and Temporary Intermediate Priority Assignment Policy

46

-

4

Fig. 3.6 compares 2SC+heuristic+temporary intermediate priority assignment

policy with 2SC+EDF priority assignment policy at communication delay of 100ms

and a mixed system load (50% transaction of size 3-5 (uniform distribution) and

50% transaction of Size 20-25 (Uniform Distribution)). It can be seen that the

scheme proposed in this chapter outperforms EDF Priority Assignment Policy.

CO
C/3

50 -i

20 -

2SC with EDF PriorityAssignment Policy
2SC with Heuristicand Temporary Intermediate Priority Policy

Transaction Arrival Rate (no. per second)
Fig. 3.6: Miss % with (RC+DC) at Communication Delay=100ms

and System Load (50% Transactions of Size 3-5 & 50%
Transactions of Size 20-25)

Fig. 3.7 and Fig. 3.8 compare 2SC+heuristic+temporary intermediate priority

assignment policy with 2SC+EDF priority assignment policy at communication

delay of 100ms and 0ms respectively with different transaction sizes. Cohorts are

carefully granted a requested lock if it is in a conflicting mode against another

cohort. Miss Percentage is almost same for all schemes at low transaction size

since the data contention is low. However the performance of proposed scheme

improves at high transaction size due to selective abort of long transactions and

allocation of data items in a more effective way.

47

60

g 30-

20 -

3-5

2SC with EDF Priority Assignment Policy
2SC with Heuristic and Temporary
Intermediate priority Policy

3-10 3-15 3-20 3-25

Fig

Transaction Size (no. of operations)

3.7: Miss % (RC+DC) at Communication Delay=100ms &
Transaction Arrival Rate=10 Transactions/Second

60 -i

50 -

40

20

10 -

3-5

2SC with EDF Priority Assignment Policy
2SC with Heuristic and Temporary
Intermediate Priority Assignment Policy

3-10 3-15 3-20 3-25

Transaction Size (no. of operations)
Fig. 3.8: Miss % (RC+DC) at Communication Delay=0ms &

Transaction Arrival Rate=30 Transactions/Second

48

3.7 CONCLUSIONS

This chapter introduces new heuristic and temporary intermediate priority

assignment policy to determine the priorities of transactions. At the time of data

contention between two cohorts, the temporary intermediate priority assignment

policy is used to avoid the wastage of time due to the abort of near completion

cohorts. Thus, the proposed scheme improves the system performance by

favoring cohorts demanding lesser number of locks and those that are near

completion. Although, this requires the calculation of cohort's temporary

intermediate priority every time when a data contention occurs but reduces a large

amount of wasted work. Our performance results indicate that the heuristic used

for initial priority assignment combined with temporary intermediate priority

assignment policy considers both transaction real-time constraints and fairness.

We compared the proposed scheme with EDF priority assignment policy.
Simulation results show that the proposed scheme combined with temporary
intermediate priority assignment policy gives better performance than EDF based

scheme. We have also shown that this exhibits greater flexibility in coping with
starvation problem for longer transactions. The priority assignment policy
proposed in this chapter not only reduces the percentage of transactions that miss

their deadlines but also gives a fair treatment to all the transactions.

4(>

.«*** M*4
;,

'*T> <**

CHAPTER - 4

SWIFT - A DISTRIBUTED REAL TIME COMMIT PROTOCOL

4.1 INTRODUCTION

Earlier research on real time database systems primarily focuses on

centralized database systems. DRTDBSs have received very little attention,

making it difficult for their designer to make informed choices [43,59]. A real time

database system operating on distributed data should not only maintain data

consistency, but it must also satisfy timing constraints associated with the

transactions, typically expressed in terms of their deadlines. The lifetime of a

transaction is divided into two stages, viz., execution stage and commitment stage
[74,78]. In the execution stage, the operations of a transaction are processed at
different sites of the system, while, in the commit stage, a commit protocol is used

to ensure transaction atomicity. Although, there are several factors that contribute

to the difficulty in meeting distributed real time transaction deadlines, data conflicts

among transactions, especially in the commitment phase, are the prime factor

resulting in system performance degradation. Data conflicts can occur between

two transactions in execution stage (execute-execute conflicts) or between one

transaction in execution stage and the other in commit stage (execute-commit

conflicts). In the literature, the issue of handling data conflicts between two

executing transactions has been addressed up to some extent. However, very

little work has been done on the issue of handling data conflicts between the

executing-committing transactions. The commit processing in DRTDBS can

significantly increase the execution time of a transaction. This may adversely
affect the system's ability to meet transaction deadlines. Therefore, designing of a
good commit protocol is important for DRTDBS not only for fault resilience and

speed of recovery but also for normal processing.

4.2 BACKGROUND AND RELATED WORK

The Two Phase Commit (2PC) is still one of the most commonly used
protocols in the study of DRTDBS [40]. Most of the existing protocols proposed in

the literatures [39,43,44,45,46,47,57,58,59,74,78,94,98,117,125] are based on it.

51

The 2PC based optimistic commit protocols proposed by Gupta et al. [44,46] for

real-time databases try to improve system concurrency by allowing executing

transactions to borrow data from the transactions in their commit stage. This

creates dependencies among transactions. If a transaction depends on other

transactions, it is not allowed to start commit processing and is blocked until the

transactions, on which it depends, have committed. The blocked committing

transaction may include a chain of dependencies as other executing transactions

may have data conflicts with it. Enhancement has been made in the PROMPT

commit protocol, which allows executing transactions to borrow data in a

controlled manner only from the healthy transactions in their commit phase

[55,59]. However, it does not consider the type of dependencies between two

transactions. The abort of a lending transaction aborts all the transactions

dependent on it. The technique proposed by Lam et al. maintains three copies of

each modified data item (before, after and further) for resolving execute-commit

conflicts [74,78]. This not only creates additional workload on the system but also

has priority inversion problems. Based on the concepts of above protocols [59,78],

Biao Qin and Y. Liu [108] proposed a protocol 2SC which classifies the

dependencies between lender and borrower into two types; commit and abort.

The abort of a lending transaction only forces transactions in its abort dependency

set to abort. The transactions in the commit dependency set of the aborted

lending transaction continue as normal. However, 2SC creates inconsistency in

case of write-write conflicts.

The protocols [43,44,45,46,47,57,58,59,108], that allow an executing cohort to

borrow data from a committing cohort, do not allow the borrower to send

WORKDONE/PREPARED message and block it until the lender commits. These

protocols either use blind write model or update model. In this chapter, we analyze

all kind of dependencies that may arise due to data access conflicts between the

executing-committing cohorts considering an update model. Then, we propose a

new protocol SWIFT, that is a static locking and higher priority based distributed

real time commit protocol. Here, the execution phase of a cohort is divided into

two parts locking phase and processing phase, and in place of WORKDONE

message, a WORKSTARTED message is sent just before the start of processing

52

phase of the cohort. A cohort may wait due to data contention only during its

locking phase. Once, it acquires all the locks and enters into the processing

phase, the transaction either completes or is aborted by a higher priority

transaction, the chances of abortion being very low. In case of dependency,

borrower is allowed to send WORKSTARTED message instead of being blocked

as opposite to the other protocols [43,44,45,46,47,57,58,59,108], if the

dependency is commit dependency only. This reduces the time needed for

commit processing and is free from cascaded aborts. To ensure non-violation of

the ACID [39,40,41,48,109,140] properties, checking of completion of cohort's

processing and the removal of its dependency are required before sending YES

VOTE message. The performance analysis of SWIFT shows that the proposed
protocol considerably improves the success ratio of transactions. The

performance of SWIFT has also been analyzed for partial read-only optimization

[24], which minimizes intersite message traffic, execute-commit conflicts and log
writes, resulting in a better response time. Analysis has also been done for the

case where cohorts of the same transaction are permitted to communicate with

each other [78].

The remainder of the chapter is organized as follows. We first introduce the

DRTDBS model, and then the strategies for resolving data access conflicts among
transactions followed by the basic concept and pseudo code of SWIFT. The

performance measures, simulation results of SWIFT, impact of partial read

optimization and impact of permitting communication among the cohort & its

siblings on the performance of the SWIFT have also been discussed. We have

also studied the percentage of the aborted transactions during different phases of
the transaction's lifetime through simulation.

4.3 DISTRIBUTED REAL TIME DATABASE SYSTEM MODEL

In this section, we describe DRTDBS model that we used to evaluate the

performance of the proposed commit protocol. The model consists of a database

distributed in a non-replicated manner over several sites connected by a network.

53

4.3.1 System Model

The performance of SWIFT was evaluated by developing two simulation

models for DRTDBS as follows. ^

(i) The first one is for the main memory resident distributed real time

database system which eliminates the impact of different disk scheduling

algorithms on the performance. Whole database is assumed to reside in

the main memory.

(ii) Since, the main memory resident databases are not common in 4

commercial database systems, we also employ another model which is

for the disk resident distributed real time database system where whole

database resides in the disk. This model allows the database to reside

on the disk with a portion residing in the main memory buffer pool.

The structure of our simulation model and the description of its various

components such as system model, database model, network model, locking jk

mechanism, cohort execution model etc. are same as in section 3.2. The

deadlines of the global and local transactions are computed by the method

already described in section 3.3.

4.3.2 Model Assumptions

We assume that the transactions are firm real time. Each transaction in this

model exists in the form of a coordinator process that executes at the originating ^
site of the transaction and a collection of the cohorts executing at remote sites,

where the required data items reside. If there is any local data in the access list of

the transaction, one cohort is executed locally [42]. Before accessing a data item,

the cohort needs to obtain locks on the data item. We also assume that:

• Processing of a transaction requires the use of CPU and data items

located at local site or remote site.

• Arrival of the transactions at a site is independent of the arrivals at other

sites and uses Poisson distribution.

54

• Each cohort makes read and update accesses.

• Each transaction pre-declares its read-set (set of data items that the

transaction will only read) and update-set (set of data items that the
transaction will update).

• S2PL-HP protocol is used for locking the data items.

• The cohorts are executed in parallel.

• A lending transaction cannot lend the same data item in read/update
mode to more than one cohort to avoid cascaded abort.

• Acohort already in the dependency set of another cohort cannot permit
a third incoming cohort to perform read or update.

• A distributed real time transaction is said to commit if the coordinator

has arrived at the commit decision before the expiry of the deadline at
its site. This definition applies irrespective of whether the cohorts have

also received and recorded the commit decision by the deadlines or not
[59].

• The database is either in the main memory or in the disk at all sites

depending on whether the database is main memory resident or the
disk resident. Studies have been made for both the cases.

• The communication delay considered is either Oms or 100ms.

• In the case of disk resident database, the buffer space is sufficiently
large to allow the retention ofdata updates until the commit time.

4.4 DATA ACCESS CONFLICTS RESOLVING STRATEGIES

The operations performed by distributed real time transactions can be
classified as given below [107,114].

• Blind Write Model (Write Only): In this operation model, the
transactions obtain state of the environment and write into the
database.

55

• Update Model (Read before Write): In this operation model, the

transactions derive new data and store in the database.

• Read only: In this operation model, the transactions only read data

from the database.

Updating data items is more complex than querying data items. Update

means editing (or changing) the database data satisfying some conditions. When

a cohort updates a data item, all constraints must be enforced and controlled, so

that the action of one cohort does not interfere with those of others and database

remains consistent.

Biao Qin and Y. Liu [108] define two different types of dependencies in their

paper: commit and abort. They assume that a write-write conflict only creates a

commit dependency that allows a borrowing transaction to continue if the lending

transaction aborts. In this case, if the borrowing transaction has to update some

data item, it will first acquire a read lock (which will create an abort dependency)

and will then upgrade it to write lock. Implementing an update in this way may

sometimes lead to deadlocks. Let us consider the scenario where two

transactions Ti and T2 want to update the same data item. They both get read

lock. None of them can now upgrade it to write lock leading to a deadlock. In

many commercial database systems, transactions request for an update lock for

the avoidance of deadlock in a similar situation. If Ti has an update lock, T2

cannot get an update lock but T2 can get a read lock. The protocol 2SC can be

easily extended to handle read, write and update locks. If a transaction Ti has

obtained a write lock on the data item (x), then Ti can read and write x. In other

words, we can say that write lock allows the user receiving the lock to read and to

modify the data [32].

Failure atomicity is required to ensure that the transactions are atomic in the

presence of failure. Consider the case of write-write conflicts in 2SC [108]. If

cohort T2 wants to lock the uncommitted data item (x) in write mode which has

been already locked by committing cohort Ti in write mode. It will get permission

to lock and will be commit dependent on Ti. IfTi commits, T2 will commit. Again, if

Ti aborts (abort decision of its coordinator due to abort of one or more of its

56

siblings), T2 will still commit. The consistency of the database is only maintained, if
both writes are blind write; otherwise it will leave database in an inconsistent state

because T2 has read the uncommitted dirty value of the data item and modified it

which has not been made permanent due to abort of Tt. If both writes are not

blind, history would not be equivalent to any serial history and therefore, it is not
serializable. If write is update type, then abort of Ti must lead to abort of T2. So, Ti
will be abort dependent on T2.

4.4.1 Types of Dependencies

Sharing of data items in conflicting modes creates dependencies [111,112]
among the conflicting transactions and constraint their commit order. We assume

that a cohort requests an update lock if it wants to update a data item (x). The
modified definitions of dependency used in this chapter are given below:

Commit Dependency (CD)

If a transaction T2 updates a data item read by another transaction Ti, a
commit dependency is created from T2 to Ti. Here, T2 is not allowed to commit
until Ti commits.

Abort Dependency (AD)

If transaction T2 reads or updates an uncommitted data item written by
transaction Ti, an abort dependency is created from T2 to Ti. T2 aborts, if Ti
aborts and T2 is not allowed to commit beforeTi.

These dependencies are required to maintain the ACID properties of the
transaction. Each transaction Ti, that lends its data while in PREPARED state to

an executing transaction, maintains two sets: a commit dependency set (CDS)
and an abort dependency set (ADS).

CDS (T,): the set of transactions Tj, that are commit dependent on transaction T,.
ADS (Ti): the set of transactions Tj, which are abort dependent on transaction Ti

57

Associated with each transaction is a health factor defined as follows:

TimeLeft
HF(health factor = 77^—

v MinTime

Where, TimeLeft is the time left until the transaction's deadline, and MinTime

is the minimum time required for commit processing. The health factor is

computed at the point of time when the coordinator is ready to send YES VOTE

messages. MinHF is the threshold that allows the data held by committing ^

transaction to be accessed. The variable MinHF is the key factor to influence the

performance of the protocol. In our experiments, we have taken MinHF as 1.2, the

value of MinHF used in [59,108].

4.4.2 Type of Dependencies in Different Cases of Data Conflicts

When data conflicts occur, there are three possible cases of conflict.

Case 1: Read-Update Conflict.

If transaction T2 requests an update-lock while transaction Ti is holding a

read-lock, a commit dependency is defined from T2 to Ti. First, the transaction

identity (id) of T2 is added to the CDS (Ti). Then T2 acquires the update-lock.

Case 2: Update-Update Conflict.

If both locks are update-locks and HF(Ti) & MinHF, an abort dependency is

defined from transaction T2 to transaction Ti. The transaction identity (id) of T2 is

added to ADS (Ti), and T2 acquires the update-lock; otherwise, T2 is blocked.

Case 3: Update-Read Conflict

If transaction T2 requests a read-lock while transaction Ti is holding an

update-lock and HF(Ti) ;> MinHF, an abort dependency is defined from T2 to Ti.

The transaction identity (id) of T2 is added to ADS (Ti), and T2 acquires the read-

lock; otherwise, T2 is blocked.

58

H

On the basis of the data conflicts discussed above, the access of data items

in conflicting mode are processed by lock manager as follows.

If (T

{

2 CD Ti)

CDS (TO = CDS (TO u {T2>;

else

T2 is granted update lock;

{

if C(T2 AD TO AND (HF(Ti) * MinHF))

{
I

ADS (Ti) = ADS (Ti) U {T2};

\

T2 is granted the requested lock (read or update);

else

T2 will be blocked;

}

4.4.3 Mechanics of Interaction between Lender and Borrower Cohorts

If transaction T2 has borrowed the data item locked by transaction Ti,
following three scenarios are possible:

Scenario 1: T1 receives decision before T2 isgoing to start processing phase
after getting all its locks.

If the global decision is to commit, Ti commits.

(i) All cohorts in ADS (Ti) and CDS (Ti) will execute as usual and the sets

ADS (Ti) and CDS (Ti) are deleted.

59

(ii) If the global decision is to abort, Ti aborts. The cohorts in the

dependency sets of Ti will execute as follows:

v

• All cohorts in ADS (Ti) will be aborted;

• All cohorts in CDS (Ti) will execute as usual;

- Sets ADS (Ti) and CDS (Ti) are deleted.

Scenario 2: T2 is going to start processing phase after getting all locks

before T1 receives global decision. 4

T2 is allowed to send a WORKSTARTED (discussed later) message to its

coordinator, if it is commit dependent only; otherwise it is blocked from sending

the WORKSTARTED message (So, the coordinator cannot initiate the commit

processing operation). It has to wait, until

Alternative 1: either Ti receives its global decisions, or

Alternative 2: its own deadline expires, ^

whichever occurs earlier.

In case of alternative 1, the system will execute as in scenario 1, whereas in

the case of alternative 2, T2 will be killed and will be removed from the

dependency set of T|.

Scenario 3: T2 aborts before 7r receives decision j

In this situation, T2's updates are undone and T2 will be removed from the

dependency set of Ti.

4.5 A NEW COMMIT PROTOCOL SWIFT

A critical task in the execution of a transaction in DRTDBS is to ensure its

consistent termination. This is the atomic commitment problem. To address this

issue, we have designed a new real time commit protocol based on the concepts

describe below.

60

4.5.1 Basic Idea

Acommit protocol can improve transaction success percentage by

(i) reducing the commit duration for each transaction,

(ii) causing locks to be released sooner resulting in reduction of the wait
time of other transactions, or

(iii) allowing ordered sharing of the locks [24].

The ideas discussed below are based on the factors listed above.

(a) The execution of a transaction may be delayed due to resource (CPU and
disk) or data contentions. The optimization proposed in this chapter is based on
the following observations:

(i) The data contention is the main cause of delay in a transaction's
execution.

(ii) Acohort may wait due to data contention only during its locking activity,
i.e., in locking phase.

We, therefore, propose to divide the execution phase of the transaction into
two parts:

(i) Locking phase, and

(ii) Processing phase

The execution of a cohort is carried out according to the following steps:

(i) During the locking phase, the transaction locks the data items,

(ii) Just before the start of processing phase, the cohort sends a

WORKSTARTED message to its coordinator. Then, it is executed,

(iii) After the receipt of WORKSTARTED messages from all its cohorts, the
coordinator sends VOTE REQ message to all its cohorts at time t
calculated as follows:

61

t = max {ti i procossing_timoJ - TCo«n

where,

tj = Arrival time of WORKSTARTED message from cohort

processing_timei = Processing time needed by the cohort,

TCOm= Communication Delay from one site to another

(b) If cohort Tj utilizes dirty data items already locked by other cohorts, one of the

following three types of dependencies may arise.

(i) Ti may be commit dependent on other cohorts,

(ii) T, may be abort dependent on other cohorts.

(iii) T may be both commit dependent as well as abort dependent on other

cohorts.

Let us consider the case where transaction T2 (borrower) acquires all locks

and enters its processing phase before its lender transaction Ti receives the

global decision. If T2 completes the processing before Ti receives the global

decision, existing commit protocols, including 2SC, block the borrower from

sending WORKDONE message until the lender commits or aborts. We propose to

allow a commit dependent borrower to send WORKSTARTED message as abort

of the lender never aborts the borrower. Hence, one of the following two decisions

is taken based on the type of dependencies when the cohort is about to enter its

processing phase after getting all the required locks.

(i) T2 is allowed to send WORKSTARTED message to its coordinator if it is

only commit dependent on other cohorts. This is free from cascaded

aborts because abort of Ti (lender) does not cause T2 (borrower) to

abort.

(ii) T2 is not allowed to send WORKSTARTED message to its coordinator if

it is abort dependent on other cohorts. So, the coordinator cannot initiate

62

+

commit processing. Instead, it has to wait until either Ti receives its

global decisions or its own deadline expires, whichever occurs earlier.

(c) The cohort sends a YES VOTE message in response to its coordinator's
VOTE REQ message only when its dependencies are removed and it has finished

its processing. If it is still dependent on any cohort or has not finished its

processing, YES VOTE message is deferred. The borrower sends the deferred

YES VOTE message after the completion of processing and removal of the
dependencies. This may be either due to abort or commit of the lender.

(d) The CPU scheduling algorithm for the cohorts is described below. Cohort
processing is done on the basis of CPU availability and cohort's priority.

(i) If two cohorts are ready to run on the same processor, the higher priority
cohort is scheduled first,

(ii) While in locking period, if a higher priority cohort (Th) arrives, the lower
priority cohort (TL) aborts. TL releases all its locked data items,

(iii) If a higher priority cohort (Th) arrives during the processing phase of TL it
aborts the lower priority transaction (TL). The aborted cohort/transaction
releases all its locked data items.

The important point to note here is that all modifications discussed above are

local to each site and do not require inter-site communications. Moreover, the
proposed optimization can be integrated with any other protocol based on 2PC.

4.5.2 Algorithm

On the basis of above discussion, the complete pseudo code of the proposed
protocol is given below.

if (T, receives global decision before T2 is going to start processing phase
after getting all locks)

{

bS

ONE: if OY s global decision is to commit)

{

Ti commits;

All cohorts in ADS (Ti) and CDS (Ti) will execute as usual;

Delete set of ADS (Ti) and CDS (Ti);

}

else // Ti' s global decision is to abort

{

Ti aborts;

All cohorts in CDS (Ti) will execute as usual;

Transaction in ADS (TO will be aborted;

Delete sets of ADS (TO and CDS (TO:

}

}

else if (T2 is going to start processing phase after getting all locks before

Ti receives global decision)

{

check type of dependencies;

if (T2' s dependency is commit only)

T2 sends WORKSTARTED message;

else

{

T2 is blocked for sending WORKSTARTED message;

while (!(Ti receive global decision OR T2 misses

deadline));

if (T2 misses deadline)

{

Undo computation of T2;

64

Abort T2;

Delete T2 from CDS (TO & ADS (TO;

}

else

GoTo ONE;

}

}

else

// T2 is aborted by higher transaction before Ti receives decision

{

Undo computation of T2;

Abort T2;

Delete T2 from CDS (TO & ADS (TO;

}

This protocol has been named SWIFT. The name is derived from a static two

phase locking with higher priority based, write-update type, ideal for fast and
timeliness commit protocol.

4.6 PERFORMANCE MEASURES AND EVALUATION

For performance evaluation of different protocols, a simulator was

constructed. The purpose of simulator is to facilitate the performance evaluation of

the system under a variety of operational conditions that affect the performance.

4.6.1 Performance Parameters and Measures

Adistributed real time database system consisting of Nsites was simulated in

the present work on the basis of simulator developed in section 3.6.1. The default

values of different parameters used in the simulation experiments are same as
given in Table 3.1.

65

The concurrency control scheme used is S2PL-HP. When a cohort requests a

lock on a data item that is held by one or more higher priority cohorts in a

conflicting mode, the requesting cohort waits for the data item to be released. On ^

the other hand, if the data item is held by a lower priority cohort in a conflicting

way, the lower priority cohort is aborted and requesting cohort is granted the

desired locks.

EDF [93] policy is used to assign priorities to cohorts in all the experiments. If

two cohorts have same deadline, the one with earliest arrival is assigned higher

priority. Our primary performance measure is the proportion of missed deadlines -+

(i.e. Miss Percentage, MP) which is defined as the percentage of input

transactions that the system is unable to complete on or before their deadlines.

The Miss Percentage values in the range of 0 to 20 percent are taken to

represent system performance under normal load, while Miss Percentage in the

range of 20 to 100 percent represents system performance under heavy load

[37,51].

In our simulation model, a small database (200 data items) was used to f

create a high data contention environment. This helps us in understanding the

interaction among the different policies [73]. A small database means that degree

of data contention in the system can easily be controlled by the sizes of the

transactions. A small database also allows us to study the effect of hot-spots, in

which a small part of the database is accessed very frequently by most of the

transactions. However, we have not considered the hot spot issue. An event

driven based simulator was written in C language. For each set of experiments, ^

the final results were calculated as an average of 10 independent runs. In each

run, 20000 transactions were initiated.

4.6.2 Simulation Results

Studies have been made for both the main memory resident and the disk

resident databases at communication delay of 0ms and 100ms. It has been shown

by Biao Qin and Y. Liu [108] that 2SC protocol performs better than other

distributed real time commit protocols including PROMPT. Therefore, we compare

SWIFT with following protocols.

66

(i) PROMPT

(ii) 2SC

(iii) SWIFT- preliminary- Version- One (SWIFT-PV-1)

(iv) SWIFT- preliminary- Version- Two (SWIFT-PV-2)

In SWIFT-PV-1, we have considered the basic concept of sending the
WORKDONE message only, if the cohort is commit dependent on other cohorts,
whereas, in SWIFT-PV-2, sending of WORKSTARTED message is considered
before the start of processing phase. SWIFT is a combination of SWIFT-PV-1 and

SWIFT-PV-2, where the concepts of the both protocols are used. SWIFT-PV-1
and SWIFT-PV-2 have also been compared with PROMPT and 2SC.

4.6.2.1 Main Memory Resident Database

Fig. 4.1 to Fig. 4.6 show the Miss Percentage for SWIFT-PV-1, SWIFT-PV-2
and SWIFT compared with PROMPT and 2SC at communication delays of 100ms
and 0ms respectively as a function of the average transaction inter-arrival rate/site
under normal and heavy load conditions. It can be seen that the proposed
protocol SWIFT works better than PROMPT, 2SC, SWIFT-PV-1 and SWIFT-PV-2

under all load conditions. The performance improvements are primarily due to
permitting the commit dependent cohorts to send their WORKSTARTED

messages and by not allowing higher priority transactions to abort a borrower.

Early sending of WORKSTARTED messages by the cohorts with commit
dependency only minimizes the communication delay by overlapping the
transaction processing time and message transmission time, thus reducing the
overall time needed for commit processing. The performance is much better as

compared to PROMPT and 2SC and is also better than SWIFT-PV-1 and SWIFT-
PV-2 individually.

67

100

2

100

-A-- PROMPT

-T— 2SC

-♦— SWIFT-PV-1

4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.1: Miss % with (RC +DC) at Communication Delay=100ms
Normal & Heavy Load

PROMPT

2SC

SWIFT-PV-2

Transaction Arrival Rate (no. per second)

Fig. 4.2: Miss % with (RC+DC) at Communication Delay=100ms
Normal & Heavy Load

68

4

14

100

80

-A- PROMPT

-T- 2SC

-♦— SWIFT-PV-1

-0— SWIFT-PV-2

-a— SWIFT

4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.3: Miss %with (RC+DC) at Communication Delay=100ms
Normal & heavy Load

-A- PROMPT

•T- 2SC

-♦— SWIFT-PV-1

14

r

35

T

40

T

45 5020 25 30

Transaction Arrival Rate (no. per second)
Fig. 4.4: Miss % with (RC+DC) at Communication Delay=0ms

Normal & Heavy Load

69

80

60

(J)

20 -

80

PROMPT

2SC

SWIFT-PV-2

25 30 35 40

Transaction Arrival Rate (no. per second)

Fig. 4.5: Miss % with (RC+DC) at Communication Delay=0ms
Normal & Heavy Load

-A— PROMPT

-T- 2SC

-*— SWIFT-PV-1

-O— SWIFT-PV-2

-n— SWIFT

20 25 30 35 40

Transaction Arrival Rate (no. per second)

Fig. 4.6: Miss % with (RC+DC) at Communication Delay=0ms
Normal & Heavy Load

70

>

4

50

4.6.2.2 Disk Resident Database

Fig. 4.7 to Fig. 4.15 show the Miss Percentage at communication delay of
100ms as well as 0ms for different transaction arrival rates in a disk resident

database. It can be seen that the proposed protocol again works better than 2SC

and PROMPT at communication delay of 100ms under all load conditions. The

performance improvements are primarily due to permitting the commit dependent
cohorts to send their WORKSTARTED messages and minimizing the queuing
delay. Early sending of WORKSTARTED message by the cohorts having commit
dependency only also minimizes the communication delay.

However, it is not better at communication delay of 0ms at higher transaction
arrival rate. Rather, it is almost at par with 2SC and PROMPT due to higher
number of aborts, increased number of dependent cohorts and longer queuing
delay for the use of resources in the system.

to
CO

25 -i

20 -

15

10

PROMPT

2SC

SWIFT-PV-1

4 5

Transaction Arrival Rate (no. per second)

Fig. 4.7: Miss % with (RC +DC) at Communication Delay=0ms
Normal Load

71

to

co
to

100

25

20 -

15 -

10 -

-A— PROMPT

•T- 2SC

-♦— SWIFT-PV-1

Transactional Arrival rate (no. per second)
Fig. 4.8: Miss % with (RC+DC) at Communication Delay=0ms

Heavy Load

PROMPT

2SC

SWIFT-PV-2

Transaction Arrival Rate (no. per second)

Fig. 4.9: Miss % with (RC + DC) at Communication Delay =0ms
Normal Load

72

*

to
to

CO
03

100 -i

25 -,

20

15

10 -

5 -

0 O-

PROMPT

2SC

SWIFT-PV-2

12 15

Transactional Arrival rate (no. per second)
Fig. 4.10: Miss % with (RC +DC) at Communication Delay=0ms

Heavy Load

PROMPT

2SC

SWIFT-PV-1

SWIFT-PV-2

SWIFT

4 5

Transaction Arrival Rate (no. per second)

Fig. 4.11: Miss % with (RC+DC) at Communication Delay=0ms
Normal Load

73

18

100 -i

^

100

5?

PROMPT

2SC

SWIFT-PV-1

SWIFT-PV-2

SWIFT

Transactional Arrival rate (no. per second)
Fig. 4.12: Miss % with (RC +DC) at Communication Delay=0ms

Heavy Load

+- PROMPT

-•- 2SC

-*— SWIFT-PV-1

6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.13: Miss % with (RC +DC) at Communiction Delay=100ms
Normal & Heavy Load

74

V

14

If)
If)

If)
If)

100 -i

100 -i

80

60

40 -

20 -

PROMPT

2SC

SWIFT-PV-2

4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.14: Miss % with (RC+DC) at Communiction Delay=100ms
Normal & Heavy Load

PROMPT

2SC

SWIFT-PV-1

SWIFT-PV-2

SWIFT

4 6 8

Transaction Arrival Rate (no. per second)

Fig. 4.15: Miss % with (RC+DC) at Communication Delay=100ms
Normal & Heavy load

75

T

10

T"

12

14

14

4.7 PERFORMANCE OF SWIFT WITH PARTIAL READ OPTIMIZATION

Partial read optimization means that a cohort having read only locks has no

work to do during commit and so does not need a VOTE REQ, commit or abort

message from its coordinator. A cohort having read only locks will have no locks

after sending WORKSTARTED message. This cohort may send a read-only

WORKSTARTED message to its coordinator indicating that it is no longer needed

by the cohort to participate in 2PC.

4.7.1 Possible Cases of Data Conflicts

Update-Update and Update-Read are the only possible conflicts with arriving

cohorts in this case. So, the only dependency required in this case is given below:

Abort Dependency (ADS)

If transaction T2 reads or updates an uncommitted data item updated by

transaction Ti, an abort dependency is created from T2 to Ti. T2 aborts, if Ti

aborts and T2 is not allowed to commit before Tl

4.7.2 Type of Dependencies in Cases of Data Conflicts

There are two possible cases of data conflict [108]. Let Ti be the transaction

in commit phase and T2 be the transaction in execution phase.

Case 1: Update-Update Conflict

If both locks are update-locks and HFfTO ;> MinHF, an abort dependency is

defined from T2 to Tv The transaction identity (id) of T2 is added to ADS (Ti), and

T2acquires the update-lock; otherwise, T2 is blocked.

Case 2: Update-Read Conflict

If T2 requests a read-lock while Ti is holding an update-lock and HF(Ti) a

MinHF, an abort dependency is defined from T2 to T^. The transaction identity (id)

of T2 is added to ADS (TO, and T2 acquires the read-lock; otherwise, T2 is

blocked.

76

4.7.3 Simulation Results

The effect of partial read only optimization has also been studied both for the

main memory and the disk resident databases at communication delay of Oms
and 100 ms. As expected, the performance gain is better in all the cases. It varies

in between 1% to 5% as shown in Fig. 4.16 to Fig. 4.20 for different cases. At low
arrival rates, the gain is slight but it improves at higher arrival rates.

Main Memory Resident Database

80

15

SWIFT

SWIFT with Partial Read Optimization

20 25 30 35 40

Transaction Arrival Rate (no. per second)
45 50

Fig. 4.16: Miss % with (RC+DC) at Communication Delay=0ms
Normal & Heavy Load

77

CO
CO

80

60

20

-o- SWIFT

-•— SWIFT with Partial Read Optimization

4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.17: Miss % with (RC +DC) at Communication Delay=100ms
Normal & heavy Load

14

Disk Resident Database

80 -i

60 -

#

V) 40

20

-«- SWIFT

-•— SWIFT with Partial Read Optimization

4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.18: Miss % with (RC +DC) at Communication Delay=100ms
Normal & Heavy load

78

14

^r

^

V

V)
if)

20

15 -

100 -i

80

SWIFT

SWIFT with Partial Read Optimization

4 5

Transaction Arrival Rate (no. per second)

Fig. 4.19: Miss % with (RC +DC) at Communication Delay=0ms
Normal Load

SWIFT

SWIFT with Partial Read Optimization

Transactional Arrival rate (no. per second)
Fig. 4.20: Miss % with (RC+DC) at Communication Delay=0ms

Heavy Load

T)

4.8 COMMUNICATION AMONG THE COHORTS OF SAME TRANSACTION

(CCST)

The effect of permitting the cohorts of the same transaction to communicate

with each other has also been studied both for the main memory and the disk

resident databases at communication delays of Oms and 100 ms. An aborting

cohort sends the announcement of its abort directly to its siblings as well as to its

coordinator. Therefore, the coordinator does not need to send the abort message

to rest of its cohorts. However, the performance gain with this optimization is very

low. It is in between 1% to 3%, which has been shown in Fig. 4.21 to Fig. 4.25 for
different cases.

Main Memory Resident Database

80 -i

% 40

20

10

SWIFT

SWIFT with CCST

60

20 25 30 35 40

Transaction Arrival Rate (no. per second)

Fig. 4.21: Miss % with (RC+DC) at Communication Delay=0ms
Normal & Heavy Load

80

T-

45 50

80

SWIFT

SWIFT with CCST

4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.22: Miss % with (RC+DC) at Communication Delay= 100ms
Normal & heavy Load

14

Disk Resident Database

80 -i

SWIFT

SWIFT with CCST

6 8

Transaction Arrival Rate (no. per second)

Fig. 4.23: Miss % with (RC+DC) at Communication Delay=100ms
Normal & Heavy load

81

T-

10

T

12 14

20 -i

15

i8

5 -

0 <>

100

80

6

SWIFT

SWIFT with CCST

Transaction Arrival Rate (no. per second)

Fig. 4.24 Miss % with (RC+DC) at Communication Delay=0ms
Normal Load

SWIFT

SWIFT with CCST

—T-

9 12 15

Transactional Arrival rate (no. per second)
Fig. 4.25: Miss % with (RC+DC) at Communication Delay=0ms

Heavy Load

82

V

18

4.9 IMPACT OF EARLY SENDING OF WORKSTARTED MESSAGE

There are several points and phases during the life time of a transaction,
when it can be aborted. It is aborted because it misses its deadline or there is a

contention with a newly arrived higher priority transaction. In this section, a study
has been done to see the percentage of transactions that miss their deadline

during processing phase in comparison to the total transaction miss percentage.
The different cases considered for the study are given below.

4.9.1 Main Memory Database with Communication Delay of 100ms

The results given in Fig. 4.26 show that no transaction misses its deadline

during processing phase except at transaction arrival rates of 8 and 10. Most of

the transactions miss their deadline while waiting for the locks or YES REQ
message.

CO

50

40

30

20

10

Total Transaction Miss %

Transaction Miss % During Processing Phase
] Transaction Miss %Other Than Processing Phase

I
fl

0 2 4 6 8 10 12

Transaction Arrival Rate (no. per second)

Fig. 4.26: Break-up of Miss %with (RC+DC) at Communication Delay=100

83

14 16

4.9.2 Main Memory Database with Communication Delay of Oms

as

co
If)

70 -i

60

50 -

40

30

20 -

10

10

I Total Transaction Miss %

1 Transaction Miss % During Processing Phase
1 Transaction Miss % Other Than Processing Phase

• . n

15

Itin D. EL

20 25 30 35 40 45

Transaction Arrival Rate (no. per second)
Fig. 4.27: Break-up of Miss % with (RC+DC) at Communication Delay=0ms

The results given in Fig. 4.27 show that, in this case, most of the transactions

miss their deadline during the processing phase when transaction arrival rate is

15, 20, 25, and 30. For higher transaction arrival rates, the transaction miss

percentage during processing phase is approximately 2/3rd of the total transaction

miss percentage. This demonstrates that sending of WORKSTARTED Message is

not useful when communication delay is very small. This is due to the fact that the

overlapping of communication delay and time taken in processing phase is not

becoming effective.

4.9.3 Disk Resident Database with Communication Delay of 100ms

This case represents the impact of communication delay and disk processing

time in a collective way on the early sending ofWORKSTARTED Message. It can

be seen from Fig. 4.28 that the share of transaction miss percentage during the

processing phase is very variable in nature for different transaction arrival rates. It

increases from zero to 2/3rd and then decreases to 1/3rd of the total transaction

miss percentage as arrival rate increases. Here, the more disk accessing time is

becoming the reason for poor performance.

84

50

*

55

80 -i

60

••• Total Transaction Miss %
Hffiffd Transaction Miss % During Processing Phase
I I Transaction Miss % Other Than Processing Phase

8 40

in
i/>

20

100

80

•• Total transaction Miss %
fe^-yvi Transaction Miss % During Processing Phase
I I Transaction Miss % Other Than Processing Phase

60 -

40

20

I
4 6 8 10 12 14 16

Transaction Arrival Rate (no. per second)

Fig. 4.29: Break-up of Miss % with (RC +DC) at Communication Delay=0ms

85

-Y-lj - y ' ' -y' ' "-"r

0 2 4 6 8 10 12 14 16
Transaction Arrival Rate (no. per second)

Fig. 4.28: Break-up of Miss % with (RC +DC) at Communication Delay=100

4.9.4 Disk Resident Database with Communication Delay of 0ms

In this case, the disk processing time plays an active role since the

communication delay is zero. Except at transaction arrival rate 6, at higher arrival
rates most of the transactions miss their deadlines during processing phase due

to the disk accessing time (see Fig. 4.29).

18 20

4.10 CONCLUSIONS

In a large network, communication and queuing delays become a bottleneck.
In this chapter, we propose a commit protocol where the cohort send
WORKSTARTED message just before the start of their processing in place of
sending WORKDONE message. This overlap the message transmission time with
the cohort's processing time and reduces the overall transaction's completion
time. The borrower is also allowed to send WORKSTARTED message if the
dependency between the borrower and its lenders is commit dependency only. It
is free from cascaded aborts since borrower with only commit dependency is not *
aborted in case its lenders abort. This reduces the blocking period of the
borrower. The simulation results show that the gain in performance can be
achieved at low and moderate loads. Asuitable modification in distributed real
time commit protocol at the time of sending YES VOTE message has been made
to ensure atomicity. The important point to note here is that the new protocol's
features proposed in this chapter are local to each site and do not require inter-
site communications. Moreover, the proposed optimization can be integrated with y
any other protocol based on 2PC.

86

CHAPTER - 5

MECP- A MEMORY EFFICIENT REAL TIME COMMIT PROTOCOL

5.1 INTRODUCTION

Important data base system resources are the data items that can be viewed

as logical resource, and CPU, disks and the main memory which are physical

resources [35,135]. Though the cost of main memory is dropping rapidly and its

size is increasing, the size of database is also increasing very rapidly. In real time

applications, where the databases are of limited size or are growing at a slower

rate than memory capacities are growing, they can be kept in the main memory.

However, there are many real time applications, which handle large amount of

data and require support of an intensive transaction processing. The amount of

data they store is too large (and too expensive) to be stored in the main memory.

Examples include telephone switching, satellite image data, radar tracking, media

servers, computer aided manufacturing etc. In these cases, the database can not

be accommodated in the main memory easily. Hence, many of these types of

database systems are disk resident. The buffer space in the main memory is

used to store the execution code, copies of files, data pages and any temporary

objects produced. The buffer manager controls the main memory and the

availability of main memory space affects transaction's response time [35]. Before

starting the execution of a transaction, buffer is allocated for the transaction.

When the memory is running low, a transaction may be blocked from execution.

The amount of memory available in the system thus limits the number of

concurrently executable transactions [35]. In the large-scale real time database

systems, the execution of the transaction will be significantly slowed down, if

available main memory is low. When the total maximum memory requirement of

the admitted transactions exceeds the available memory, DRTDBS must decide

how much memory should be given to each transaction. This decision must also

take into account the transactions' timing requirements to ensure that the

transactions receive their required resources in time to meet their deadlines. In

addition, the effectiveness of memory allocation in reducing individual

transaction's response time should be considered, so as to make the best use of

87

the available memory. Therefore, it is important for the database designer to
develop memory efficient protocols, so that more number of transactions can be
executed concurrently at any time instant. In this chapter, design of a distributed
commit protocol which optimizes memory usage has been presented.

The development of commit protocols for the traditional database systems
has been an area of extensive research in the past decade. However, in case of
distributed real time commit protocols, very little amount of the work has been
reported in the literature. The real time commit protocol PROMPT and DDCR

were proposed by Gupta et al. and Lam et al. respectively [59,78]. Based on the
concepts of PROMPT and DDCR, Biao Qin and Yunsheng Liu proposed a new
commit protocol double space commit (2SC) [108]. All the above protocols
consume considerable amount of main memory for maintaining the intermediate
temporary records created during the execution of transactions. In PROMPT, the
lender maintains extra data structures to record the types of dependencies of its
borrowers and DDCR uses more than one copy of the data items (i.e. before, after
and further). All of this not only requires extra memory but also creates additional
workload on the system. Furthermore, the locking scheme used by PROMPT and
2SC protocols specifies the lock held by the lender only and these protocols either
use read-before-write model or write only (blind write) model. The effect of using
both models collectively has not been investigated in any previous work. So,
another significant difference between our work and the works reviewed above is
that we have considered both blind write (a read is not performed before the data
item is written) as well as update (read - before - write). Ablind-write model is not
unrealistic [19] fine and it occurs in real life information processing for example,
recording and editing new telephone numbers, opening new accounts, changing
addresses etc. There are also many applications such as banking, intelligent
network services database etc. where we need write without ever read model.

The rest of the chapter is organized as follows. First, we describe distributed
real time database system model and model assumptions, and then new locking
scheme, data access conflict resolving strategies and mechanics of interaction
between lender and borrower cohorts. Thereafter, the complete pseudo code,

88

memory optimization achieved and simulation results of the proposed protocol
MECP is also discussed.

5.2 NEW LOCKING SCHEME AND DATA ACCESS CONFLICT RESOLVING

STRATEGIES

A database is considered as being made up of a set of data items associated

with lock variable. The proposed memory efficient commit protocol (MECP) uses a

new locking scheme which reduces the need for large number of temporary

intermediate records and thus relieves the system from additional workload.

5.2.1 New Locking Scheme

A transaction (or a cohort) can lock a data item using a read/write

(blind)/update lock depending on the operation that it needs to perform. In MECP,

the write operation is categorized into two types: blind write and update.

Subsequent occurrences of "write" should be treated as "blind write" in this

chapter.

In addition to lock information, a flag is also attached with each data item. The

flag is set to any one of the following three modes when a cohort locks a data item

at the time of its arrival at a site.

Mode 1

If a cohort wants to use a data item and it is not locked by any other cohort, it

sets the flag of data item in Mode 1.

Mode 2

If a cohort T2 wants to write/update a data item read by another cohort T^ in its

committed phase, it changes the flag of the data item from Mode 1 to Mode 2. T2

is now not allowed to commit until Ti commits. However, if Ti aborts, T2 does not

abort.

89

Mode 3

If a cohort T2 wants to read/write/update an uncommitted data item written by

another cohort Ti, it converts the flag of the data item from Mode 1 to Mode 3.

Here, T2 is not allowed to commit until Ti commits and if Ti aborts, T2 also aborts.

These Modes are required to maintain the ACID properties of the transaction.

If a data item is already locked and its Mode is either 2 or 3. Then, other lock

requesting cohorts are not permitted to lock that data item and they will be

blocked. Each site Si maintains a BorrowerJJst that contains the following

information.

BorrowerJJst (Si) :{(Tj, D) |Tj is a borrower and has locked the dirty data D}

5.2.2 Data access Conflicts Resolving Strategies

Let Ti be a cohort in commit phase holding a lock on data item (x) and T2 be

the cohort requesting a lock on the same data item (x). The data item (x) is in

mode 1 (as Ti has locked it). Hence, there are six possible cases of data conflict.

Case 1: Read - Write OR Update Conflict

If cohort T2 requests a Write OR Update Lock while cohort Ti is holding a

Read Lock, the flag associated with the data item is set in Mode 2 from Mode 1.

Case 2: Write - Write Conflict

If cohort T2 requests a Write lock while cohort Ti is holding the Write Lock, the

flag associated with data item is set in Mode 3 from Mode 1.

Case3: Update - Update Conflict

If both locks are Update - Locks, then the flag associated with data, item is set

in Mode 3 from Mode 1.

90

Case 4: Update - Write Conflict

If cohort T2 requests a Write Lock while cohort Ti is holding an Update Lock,

flag associated with data item is set in Mode 3 from Mode 1.

Case 5: Write- Update Conflict

If cohort T2 requests an Update Lock while cohort Ti is holding Write Lock,

flag associated with data item is set in Mode 3 from Mode 1.

Case 6: Write OR Update - Read Conflict

If cohort T2 requests a Read Lock while cohort Ti is holding a Write OR

Update Lock, then flag associated with data item is set in Mode 3 from Mode 1.

5.2.3 Mechanics of Interaction between Lender and Borrower Cohorts

When transaction T2 accesses a data already locked by transaction T1,

following possible scenarios may arise.

Scenario 1: T1 receives decision before T2 has completed its local data
processing:

(i) If global decision is to commit, Ti commits.

• All cohorts using the data items locked by Ti whose flag is either in

Mode 2 or in Mode 3 will execute as usual.

• The flags of the data items will change from Mode 2 or Mode 3 to

Mode 1.

(ii) If the global decision is to abort, Ti aborts.

• All cohorts using the data items locked by Ti whose flag is in Mode 2

will execute as usual. Flags of the data items will change from Mode

2 to Mode 1.

• All cohorts, using the data items locked by Ti whose flag is in Mode

3 will abort. Flags of the data items will change from Mode 3 to 0.

91

The cohorts dependent on data set of T1 will be deleted from the

Borrower_List.

Scenario 2: T2 completes data processing before, Tr receives global

decision:

(i) T2 does not send WORKDONE message,

(ii) T2 is blocked and It has to wait, until

Casel: either T1 receives its global decisions, or
Case2: its own deadline expires,
whichever occurs earlier.

(iii) In case 1, the system will execute as in the scenario 1, whereas in case
2, T2 will be killed and will be removed from the Borrower_List.

Scenario 3: T2 aborts before Tj receives decision:

In this situation, T2's updates are undone and T2 will be removed from the

Borrower_List.

5.3 ALGORITHM

On the basis of the above discussion, the complete pseudo code of the

protocol is given as below.

if (Ti receives global decision before T2 ends execution) then

{

One: if (Ti's global decision is to commit) then

{

T] commits;

All cohorts using the data items in Mode 2 or 3 locked by Ti will execute

as usual;

Flags, either in Mode 2 or 3, of data items locked by Ti are set to Mode 1.

The cohorts dependent on Ti will be deleted from the Borrower_List;

}

else // Ti's global decision is to abort

92

}

else

{

Ti aborts;

All cohorts using the data items with Mode 2 flag and locked by Ti will

execute as usual. Flag will change from Mode 2 to Mode lof data items

locked by Ti;

All cohorts using the data items with Mode 3 flag and locked by Ti will

abort. Flag in Mode 3 of data items locked by Ti is set to 0.

The cohorts dependent on data set of Ti will be deleted from the

Borrower List;

if (T2ends execution before Ti receives global decision)

{

T2's WORKDONE message is blocked;

T2 waits for next event/message;

Switch (type of next event/message)

{

Case 1: if (T2 misses deadline)

{

Undo the computation of T2;

Abort T2;

Delete T2 from the Borrower_List;

}

Case 2: if (Ti commits/aborts)

GoTo One;

}

}

else // T2 is aborted by higher transaction before Ti receives decision

{

Undo the computation of T2;

93

Abort T2;

Delete T2 from the Borrower_List;

}

}

5.4 MEMORY OPTIMIZATION

It is assumed that the number of data items in the database at each site is N.

The amount of memory required for maintaining the record of data items lent by a

single cohort is computed and compared with 2SC below.

5.4.1 Case 1: Memory Requirement in 2SC

At least a flag is required corresponding to every data item to show its locking

status. The minimum memory required to keep this information for all data items is

N/8 bytes (a flag needs at least single bit storage). Further, each site maintains a

list of lenders, and each lender maintains two lists: commit dependent cohorts and

abort dependent cohorts with dirty data used by them. This can be implemented in

two ways.

(i) Using a linear list, or

(ii) With a linked list

In the first case, there may be a lot of wastage of memory in maintaining the

records of dependency information due to high level of dynamism in the conflicts.

In the second case, a dependency list has to be maintained which contains

the identity (id) of committing cohorts (lenders) that have lent their modified data

to newly arrived cohorts. Each lender in this dependency list also maintains two

lists to record ids of abort and commit dependent cohorts with dirty data items

utilized by them. The memory required for keeping the record of data items lent by

a single cohort is computed below. Let us assume that, on an average, each

lender has p nodes in commit dependency list and q nodes in abort dependency

list. The total memory (M) required by each lender is given as:

94

M=M1+ (p+q)*M2, where

M1 Memory required for a node ofthe dependency list corresponding to the

lending cohort. It is 14 bytes (2 bytes for id of the lender, 4 bytes for the

address of commit dependent cohort list, 4 bytes for the address of

abort dependent cohort list and 4 bytes for address of the next node)

M2 Memory required by one node of the list of commit/abort dependent

cohorts. It is 8 bytes. (8 bytes=2 bytes for borrower cohort id + 2 bytes

for dirty data + 4 bytes for address of the next node)

Nd No. of data items that is lent by a cohort=p+q

5.4.2 Case 2: Memory Requirement in Proposed Scheme (MECP)

Memory required by MECP is given below.

• Minimum two bits are needed to record the Modes of every data item at a

site. So the total memory required for all data items is 2*N/8 bytes.

• The proposed protocol maintains a single BorrowerJJst for keeping the

information of borrowers and the dirty data used by them. This requires 8

bytes of memory (2 bytes for borrower id + 2 bytes for dirty data + 4 bytes

for address of the next node) for one node ofthe BorrowerJJst.

• Total number of nodes in this BorrowerJJst corresponding to one lender

will be Nd.

Total Memory Requirement (per lender in MECP) = 2*N/8 + 8*Nd.

Compared to case 1, there is an additional need of N/8 bytes at each site to

keep the information about the Mode of every data item. On the other hand if

there are NL lenders at any instant of time, the additional memory required is

14*NL bytes in case 1 as compared to case 2 (see in table 1). With the increase in

the transaction arrival rate and transaction size, there are more chances of

conflicts resulting in more number of dependencies and more lenders. Although, it

95

seems that initially more number of bytes are needed for keeping the Mode

information of data items, the proposed protocol competes with 2SC at high

transaction arrival rate.

Table 5.1: Memory Requirement of 2SC and MECP

Commit

Protocol

flags at each site

(Memory in bytes)

Single lender (Memory in

bytes)

2SC N/8 14+8*Nd

MECP 2*N/8 8*Nd

The MECP will be beneficial, if the following condition holds.

(2*N/8 + 8*Nd* NL) < (N/8 + NL*(14+8*Nd)), or

NL> N/112

Hence, the proposed protocol is memory efficient only, if the number of

lenders at an instant is more than the number of data items/112 at a site;

otherwise, it consumes the same amount of memory and will be at par with 2SC

and PROMPT.

The MECP improves the system performance due to the following reasons.

• By reducing the memory requirements needed by the system as compared to

2SC. Thus, this protocol is suited to real time applications where there is a

scarcity of the available memory [69].

• The new locking scheme ensures that a borrower can't be a lender

simultaneously at the same site. This relieves the system from the burden of

checking that a borrower is not trying to lend as compared with PROMPT and

2SC.

• The new locking scheme ensures that the same data can not be used by

another borrower simultaneously as compared to PROMPT and 2SC, where

there is a need for checking this.

96

• By not aborting a cohort (Tj) that has completed the execution and is in

committing mode when a higher priority cohort requests for a data item
locked by Tj.

5.5 MODEL PARAMETERS, SIMULATION RESULTS AND PERFORMANCE

EVALUATION

The performance of the protocol is evaluated by developing detailed

simulation models for a disk resident DRTDBS consisting of Nsites. The structure

of our simulation model followed by the description of various components such

as system model, database model, network model, cohort execution model,

locking mechanism etc. are the same as given in the section 3.2. The model

assumptions are also same as in section the 3.2 except that the database is disk

resident at all sites. The default values of different parameters used in the

simulation experiments are same as given in table 3.1. The concurrency control

scheme used is S2PL-HP. Miss Percentage is the primary performance measure

used in the experiments. EDF [93] policy is used to assign priorities to cohorts in

all the experiments.

In this section, the results and findings of our simulation experiments are

reported. We compare the performance of MECP with PROMPT and 2SC.

5.5.1 Impact of Transaction Arrival Rate

Fig. 5.1 to Fig. 5.3 show the impact of transaction arrival rates on the miss

percentage of transactions at transaction length 3-20 (uniform distribution). As

anticipated, the Miss Percentage for the protocols increases with increase in

transaction arrival rate. At higher arrival rate, the probability of lock conflicts for the

data items and queueing delay for the use of system resources are more. The

performance of the MECP is marginally better in comparison to 2SC and

PROMPT due to the better approach used for resources utilization and minimizing
the queueing delay.

97

25

20

15

8

10

-A- PROMPT

-T— 2SC

-♦- MECP

0 +- T"

4

90

10

Transaction Arrival Rate (no. per second)

Fig. 5.1: Miss % with (RC+DC) at Communication Delay=0ms
Normal Load

PROMPT

2SC

MECP

9 12 15

Transaction Arrival Rate (no. per second)

Fig. 5.2: Miss % with (RC+DC) at Communication Delay=0ms
Heavy Load

98

>

18

as
CD
CO

100

80 -

60

40

20 -

-A- PROMPT

••- 2SC

-*- MECP

4 6 8 10 12

Transaction Arrival Rate (no. per second)
Fig.5.3: Miss % with (RC+DC) at communication Delay=100ms

Normal & heavy load

14

5.5.2 Impact of Transaction Size

Fig. 5.4 and Fig. 5.5 show the Miss Percentage for the protocols for

different transaction size [116] at network communication delay of 100ms & 0ms

respectively and transaction arrival rate of 10 transactions/second in both the

cases. It is observed that increase in the size of transaction also increases the

possibility of more conflicts. The performance of MECP is approximately at par

with PROMPT and 2SC irrespective of transaction size due to better buffer

management.

99

»^

CO
CO

60 -i

50

-A- PROMPT

•r- 2SC

-*- MECP

3-10 3-15

Transaction Size (no. of operations)

Fig. 5.4: Miss % with (RC+DC) at Communication Delay=0ms &
Transaction Arrival Rate=10 (no. per second)

/v -

PROMPT

2SC

MECP ^^60 -

T

50 -

40 -

30 -

20 -

10 -

0 - 1 .

3-20

3-5 3-10 3-15 3-20

Transaction Size (no. of operations)

Fig. 5.5: Miss % with (RC+DC) at Communication Delay=100ms &
Transaction Arrival Rate=10 (no. per second)

100

V

5.6 CONCLUSIONS

In this chapter, a new distributed real time commit protocol (MECP)has been

presented that uses a new locking scheme. The new locking scheme ensures that

a borrower can't be a lender simultaneously at the same site and the same data

can not be used by another borrower simultaneously as compared to PROMPT

and 2SC, where there is a need for checking this. It not only optimizes the

storage cost but also considers blind and update type writes collectively for

DRTDBS. The simulation results show that the protocol performs marginally better

than PROMPT and 2SC commit protocols. It is well suited to data intensive

applications where transaction arrival rate is high and the sizes of transactions are

large.

101

CHAPTER - 6

CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH

Database performance is an important aspect of database usability. The

performance of databases depends not only on database architecture and

algorithms, but also on the requests served within the given time limit, especially

in case of DRTDBS. The database must be designed on all levels of database

architecture to support timely execution of requests. The primary performance

objective in DRTDBS is to minimize the number of missed deadlines. Due to the

demanding nature of this objective, traditional approaches are inadequate for such

systems. However, the research in DRTDBSs has been mostly devoted to

extending traditional transaction processing techniques to solve the issues

important for the design of DRTDBS. In this environment, new policy/protocols

must be designed to efficiently handle the transactions execution.

Hence, in this thesis, we have taken some important issues such as priority

assignment policy for transaction scheduling, commitment procedure for cohorts

executing in the parallel and optimizing the use of memory to study real time

transaction processing in a distributed environment.

The conclusions of the work carried out in this thesis and the scope for the

future research are given as follows.

6.1 CONCLUSIONS

The main contributions reported in thesis are summarized below.

1. The transaction scheduling in DRTDBS involves both CPU scheduling and

data scheduling and is done according to the priorities assigned to

transactions. The performance of DRTDBS is heavily affected by the method

used in assigning the priority to the cohorts. Hence, we proposed a new

scheme to determine the priority of cohorts to schedule CPU and data. The

new scheme consists of determining initial as well as temporary intermediate

priorities of cohorts. The initial priority is used to schedule CPU and

temporary intermediate priority is used to schedule data items, in case of

conflict.

103

2. The proposed priority assignment scheme is capable to cope with the

starvation problem encountered by long transactions. The improvement in

transaction Miss Percentage is up to 10.

3. A method is also developed to compute the deadline of global and local

transactions in parallel execution environment.

4. The proposed priority assignment schemes have been compared with EDF

priority assignment policy using S2PL concurrency control algorithm and 2SC

commit protocol. We have implemented distributed real time simulator for

main memory resident database. The simulation results show that the

proposed scheme not only ensures fairness within the real time constraints,

but also reduces Miss Percentage of transactions ranging from 3% to 10%.

5. DRTDBS uses a commit protocol to ensure transaction atomicity. Most of the

existing commit protocols used in DRTDBS try to improve the system

performance by allowing a committing cohort to lend its data to a lock

requesting cohort, thus reducing data inaccessibility. This creates a

dependency between the lender and the borrower. Further, we have

proposed a static two phase locking with higher priority (S2PL-HP) based

distributed real time commit protocol named as SWIFT.

6. SWIFT is based on redefined dependencies that are created when a lock

holding cohort lends its locked data to some other cohorts for reading or

updating. The WORKSTARTED message is sent just before the start of

processing phase of the cohort in place of sending WORKDONE message at

the end of processing phase. This improves performance of the system by

overlapping the transmission time of WORKSTARTED message with the

processing time of the cohorts.

7. SWIFT also reduces the time needed for commit processing by allowing

commit dependent only borrower to send its WORKSTARTED message

instead of being blocked.

104

8. To ensure non-violation of the ACID properties, checking of completion of

processing and the removal of dependency of cohort are done before

sending the YES VOTE message in SWIFT. The important point of SWIFT is

that the required modifications are local to each site and do not require inter-

site communications so free from message overhead.

9. The performances of SWIFT has been compared with the 2SC and PROMPT

for the scenario where communication delays are negligible and when they

are large by simulating a distributed real time database system consisting of

N sites both for the main memory resident and the disk resident databases.

Results of simulation show a performance improvement of the order of 5% -

10% in transaction Miss Percentage.

10. The performance of SWIFT has also been analyzed for partial read-only

optimization, which minimizes intersite message traffic, execute-commit

conflicts and log writes consequently resulting in a better response time. The

effect of partial read only optimization has been studied both for the main

memory and the disk resident databases at communication delay of 0ms and

100ms. The performance improvement in transaction Miss Percentage varies
from 1%to5%.

11. The impact of permitting the communication between the cohorts of the same

transaction (sibling) in SWIFT has also been analyzed both for the main

memory and the disk resident database at communication delay of 0ms as

well as 100 ms. The cohort sends the abort messages directly to its siblings

as well as its coordinator. A little improvement in transaction miss percentage
was observed, i.e., up to 3%.

12. At last, a memory efficient commit protocol (MECP) has been proposed after

redefining all kind of dependencies that may arise by allowing a committing

cohort to lend itsdata to an executing cohort under both update (read-before-

write) model and blind write (write not ever read) model.

105

13. A new locking scheme has also boon proposod for MECP, in which a lock not

only shows the lock obtained by the lender but also the lock obtained by the

borrower.

14. The new locking scheme also ensures that a borrower can't be a lender

simultaneously at the same site. This relieves the system from the burden of

checking that a borrower is not trying to lend as compared with PROMPT and

2SC.

15. As a result of the new locking scheme, in MECP, each site maintains only a

single set of borrowers in comparison to PROMPT and 2SC, where two

different sets are required.

16. The performance of MECP is compared with PROMPT and 2SC and is

marginally better with these commit protocols in term of Miss Percentage of

the transaction, but it reduces the memory requirement to a great extent. This

makes it suitable for data intensive applications with high transaction arrival

rate where system's main memory size is a bottleneck.

In nutshell, we have developed, implemented and evaluated the

policies/protocols that have been devised to deal with aforementioned issues.

6.2 SCOPE FOR FUTURE RESEARCH

The work presented in this thesis is only a starting point. Many other issues

are still to be resolved and warrant further investigation. Following are some

suggestions to extend this work.

(i) Alternative approaches such as analytical methods and experiments in

actual environment can be used to evaluate the effects of the proposed

priority assignment policies, deadline computation method and commit

protocols on the performance of DRTDBS.

(ii) Our performance studies are based on the assumption that there is no

replication. The replicated database systems are of special interests to real

time applications because they possess several desirable features:

106

enhanced reliability, improved responsiveness, no directory management,

and load balancing. Hence, a study of relative performance of various topics

discussed here deserves a further look under assumption of replicated data.

(iii) The integration and the performance evaluation of proposed commit

protocols with 1PC and 3PC protocols.

(iv) Although tremendous research efforts have been reported in the hard real

time systems in dealing with hard real time constraints, very little work has

been reported in hard real time database systems. So, the performance of

the proposed work can be evaluated for hard real time constrained

transactions.

(v) Our work can be extended for Mobile DTRDBS, where memory space,

power and communication bandwidth is a bottleneck. The MECP will be well

suited to hand held devices and possibility of its use for commit procedure

can be explored.

(vi) The fault tolerance and the reliability are highly desirable in many real time

applications because in these applications, continued operation under

catastrophic failure and quick recovery from failure is very crucial. These

aspects may also be dealt.

(vii) In our work, we assumed that each site has a system with a single

processor. An obvious extension of our work is for multiprocessor

environment,

(viii) More work is needed to explore the impact of communication in between

cohorts of the same transaction (siblings) on the overall system

performance.

(ix) Our research work can also be extended for grid database systems.

107

REFERENCES

1. Abbott Robert and Garcia - Molina H., "Scheduling Real - time Transactions
with Disk Resident Data," Proceedings of the 15,f* International Conference
on Very Large Databases, Amsterdam, The Netherlands, pp. 385 - 395,
1989.

2. Abbott Robert and Garcia - Monila H., "Scheduling Real - Time Transaction:
a Performance Evaluation," Proceedings of the 14th International
Conference on Very Large Databases, pp. 1-12, August 1988.

3. Abdallah Maha, Guerraoui R. and Pucheral P., "One - Phase Commit: Does
It Make Sense," Proceedings of the International Conference on Parallel
and Distributed Systems (ICPADS'98), Tainan, Taiwan, Dec. 14 - 16,
1998.

4. Agrawal Divyakant, Abbadi A. El and Jeffers R., "Using Delayed
Commitment in Locking Protocols for Real - Time Databases," Proceedings
of the ACM International Conference on Management of Data (SIGMOD),
San Diego, California, pp. 104 -113, June 2 - 5, 1992.

5. Agrawal Divyakant, Abbadi A. El, Jeffers R. and Lin L, "Ordered Shared
Locks for Real - time Databases," International Journals of Very Large Data
Bases (VLDB Journal), Vol. 4, Issue 1, pp. 87 -126, January 1995.

6. Aldarmi Saud A. and Burns A., "Dynamic CPU Scheduling with Imprecise
Knowledge of Computation Time," Technical Report YCS - 314, Department
of Computer Science, University of York, U. K., 1999.

7. Aldarmi Saud A., "Real - Time Database Systems: Concepts and Design,"
Department of Computer Science, University of York, April 1998.

8. Al - Houmaily Yousef J. and Chrysanthis P. K., "Atomicity with Incompatible
Presumptions," Proceedings of the 18th ACM Symposium on Principles of
Database Systems (PODS), Philadelphia, June 1999.

9. Al - Houmaily Yousef J. and Chrysanthis P. K., "In Search for An Efficient
Real - Time Atomic Commit Protocol,"
Url = citeseer.nj.nec.com/47189.html.
http://www.cs.bu.edu/techreports/Ddf/1996-027-ieee-rtss9.pdf/13.ps

10. Al - Houmaily Yousef J., Chrysanthis P. K. and Levitan Steven P.,
"Enhancing the Performance of Presumed Commit Protocol," Proceedings
of the ACM Symposium on Applied Computing, San Jose, CA, USA,
February 28 - March 1, 1997.

11. Al - Houmaily Yousef J., Chrysanthis P. K. and Levitan Steven P., "An
Argument in Favor of the Presumed Commit Protocol," Proceedings of the

109

IEEE International Conference on Data Engineering, Birmingham, April
1997.

12. Arahna Rohan F. M., Ganti Venkatesh, Narayanan Srinivasa,
Muthukrishnan C. R., Prasad S. T. S. and Ramamritham K.,
"Implementation of a Real - time Database System," Information Systems,
Vol. 21 , Issue 1, pp. 55 - 74, March 1996.

13. Attaluri Gopi K. and Salem Kenneth, "The Presumed - Either Two - Phase
Commit Protocol," IEEE Transactions on Knowledge and Data Engineering,
Vol. 14, No. 5, pp. 1190 - 1196, Sept. - Oct. 2002.

14. Audsley Neil C, Burns A., Richardson M. F. and Wellings A. J., "Data
Consistency in Hard Real - Time Systems", YCS 203, Department of
Computer Science, University of York, June 1993.

15. Audsley Neil C, Burns A., Richardson M. F. and Wellings A. J., "Absolute
and Relative Temporal Constraints in Hard Real Time Databases,"
Proceedings of the 4th Euromicro Workshop on Real - time Systems, IEEE
Computer Society Press, Athens, pp. 148 - 153, June 1992.

16. Bestavros Azer, "Advances in Real - Time Database Systems Research,"
ACM SIGMOD Record, Vol. 24, No. 1, pp. 3 - 8, 1996.

17. Bestavros Azer, Lin K. J. and Son S. H., "Real - Time Database Systems:
Issues and Applications," Kluwer Academic Publishers, 1997.

18. Bowers David S., "Directions in Databases," Lecture Notes in Computer
Science, 826, Springer - Verlag, pp. 23 - 54.

19. Burger Albert, Kumar Vijay and Hines Mary Lou, "Performance of
Multiversion and Distributed Two - Phase Locking Concurrency Control
Mechanisms in Distributed Databases," International Journal of Information
Sciences, Vol. 1 - 2, pp. 129 -152, 1997.

20. Carey Michael J., Jauhari R. and Livny M., "Priority in DBMS Resource
Scheduling," Proceedings of the of 15th VLDB Conference, August 1989.

21. Chakravarthy Sharma, Hong D. and Johnson T., "Real Time Transaction
Scheduling: A Framework for Synthesizing Static and Dynamic Factors," TR
- 008, CISE Dept., University of Florida, 1994.

22. Chen Hong - Ren, Chin Y. H. and Tseng Shin - Mu, "Scheduling Value -
Based Transactions in Distributed Real-time Database Systems,"
Proceedings of the 15th International Parallel and Distributed Processing
Symposium, pp. 978 - 984, April 23 - 27, 2001.

23. Chen Yu - Wei, and Gruenwald Le, "Effects of Deadline Propagation on
Scheduling Nested Transactions in Distributed Real - Time Database

110

Systems," Journal of Information Systems, Vol. 21, No. 1, pp. 103 - 124,
1996.

24. Chrysanthis Panos K., Samaras G. and Al - Houmaily Y. J., "Recovery and
Performance of Atomic Commit Processing in Distributed Database
Systems," Performance of Database Recovery Mechanism, Editors: V.
Kumar and M. Hsu, Prentice Hall, pp. 370 - 416, 1998.

25. Datta Anindya, Mukhejee S., Konana F., Yiguler I. R. and Bajaj A,
"Multiclass Transaction Scheduling and Overload Management in Firm Real
- Time Database Systems," Information Systems, Vol. 21, No.1, pp. 29 - 54,
1996.

26. Datta Anindya, Son S. H. and Kumar Vijay, "Is a Bird in the Hand Worth
More Than Two in the Bush? Limitations of Priority Cognizance in Conflict
Resolution for Firm Real - Time Database Systems," IEEE Transactions on
Computers, Vol. 49, No. 5, pp. 482 - 502, May 2000.

27. Davidson Susan B., Lee I. and Wolfe V., "A Protocol for Timed Atomic
Commitment," Proceedings of the IEEE 9th International Conference on
Distributed Computing Systems, pp. 199 - 206, June 5 - 9, 1989.

28. Davidson Susan B., Lee I. and Wolfe V., "Timed Atomic Commitment," IEEE
Transactions on Computer, Vol. 40, Issue 5, pp. 573 - 583, May 1991.

29. DeWitt David J., Katz Randy H., Olken Frank, Shapiro Leonard D.,
Stonebraker Michael R. and Wood David, "Implementation Techniques for
Main Memory Database Systems," Proceedings of the ACM International
Conference on Management of Data (SIGMOD), Boston, Massachusetts,
pp. 1 -8, 1984.

30. DiPippo Lisa C. and Wolfe Victor F., "Real - Time Databases," Database
Systems Handbook, Multiscience Press, 1997.

31. Dogdu Eordgon & Ozsoyoglu Gultekin, "Real - Time Transactions with
Execution Histories: Priority Assignment and Load Control," Proceedings of
the 6th International Conference on Information and Knowledge
Management, Las Vegas, Nevada, United States, pp. 301 - 308.

32. Elmasri Ramez and Navathe Shamkant B., "Fundamentals of Database
Systems," Addison - Wesley, 2000.

33. Fortier Paul J. and Turner Patrick, "A Simulation Program for Analysis of
Distributed Database Processing Concepts," Proceedings of the 19th
Annual Symposium on Simulation, Tampa, Florida, United States, pp. 105 -
126, 1986.

34. Garcia - Molina Hector and Lindsay Bruce, "Research Directions for
Distributed Databases," ACM SIGMOD Record, Vol. 19, Issue 4, December
1990.

Ill

35. Garcia - Molina Hector and Salem K., "Main Memory Database Systems: An
Overview," IEEE Transactions on Knowledge and Data Engineering, Vol.
4, Issue 6, pp. 509 - 516, Dec. 1992.

36. Gehani Narain, Ramamritham K., Shanmugasundaram J. and Shmueli O.,
"Accessing Extra Database Information: Concurrency Control and
Correctness," Information Systems, Vol. 23, Issue 7, pp. 439 - 462, Nov.
1996.

37. George Binto, "A Secure Real - Time Transaction Processing," PhD Thesis,
Supercomputer Education and Research Centre, I.I.Sc. Bangalore, India,
Dec. 1998.

38. Ginis Roman and Wolfe Victor Fay, "Issues in Designing Open Distributed
Real - Time Databases," Proceedings of the 4th IEEE International
Workshop on Parallel and Distributed Real - Time Systems, Honolulu, HI,
USA, April 15 - 16, pp. 106 -109, 1996.

39. Gray Jim and Reuter A., "Transaction Processing: Concepts and
Technique," Morgan Kaufman, San Mateo, CA, 1993.

40. Gray Jim, "Notes on Database Operating Systems," Operating Systems: an
Advanced Course, Lecture Notes in Computer Science, Springer Verlag,
Vol. 60, pp. 397 - 405, 1978.

41. Gray Jim, "The Transaction Concept, Virtues and Limitations," Proceedings
of the 7th VLDB Conference, Cannes, France, pp. 144 -154, 1981.

42. Gupta Ramesh and Haritsa J. R., "Commit Processing in Distributed Real -
Time Database Systems," Proceedings of the National Conference on
Software for Real - Time Systems, Cochin, India, pp. 195 - 204, January
1996.

43. Gupta Ramesh, "Commit Processing in Distributed On - Line and Real -
time Transaction Processing Systems," Master of Science (Engineering)
Thesis, Supercomputer Education and Research Centre, I.I.Sc. Bangalore,
India, 2000.

44. Gupta Ramesh, Haritsa J. R. and Ramamritham K., "More Optimism About
Real - Time Distributed Commit Processing," Technical Report TR - 97 -
04, Database System Lab, Supercomputer Education and Research Centre,
I.I.Sc. Bangalore, India, 1997.

45. Gupta Ramesh, Haritsa J. R. and Ramamritham K., "Revisiting Commit
Processing in Distributed Database Systems," Proceedings of the ACM
International Conference on Management of Data (SIGMOD), Tucson, May
1997.

112

^

46. Gupta Ramesh, Haritsa J. R., Ramamritham K. and Seshadri S., "Commit
Processing in Distributed Real - Time Database Systems," Proceedings of
Real - time Systems Symposium, Washington DC, IEEE Computer Society
Press, San Francisco, Dec.1996.

47. Gupta Ramesh, Haritsa J. R., Ramamritham K. and Seshadri S., "Commit
Processing in Distributed Real - Time Database Systems," Technical Report
TR-96-01, Database System Lab, Supercomputer Education and Research
Centre, I.I.Sc. Bangalore, India, 1996.

48. Hansen Gary W. and Hansen James V., "Database Management and
Design," Prentice - hall of India, 2000.

49. Haritsa Jayant R. and Ramamritham K., "Adding PEP to Real - Time
Distributed Commit Processing," Proceedings of the 21st IEEE Real - time
Systems Symposiums, Orlando, USA, pp. 37 - 46, Nov. 27 - 30, 2000.

50. Haritsa Jayant R. and Ramamritham K., "Real - Time Database Systems in
the New Millennium," Journals of Real Time Systems, Vol. 19, No. 3, pp. 1 -
5, September 2000.

51. Haritsa Jayant R., Carey M. J. and Livny M., "Data Access Scheduling in
Firm Real - Time Database Systems," Journal of Real - Time Systems, Vol.
4, No. 3, pp. 203 - 242, 1992.

52. Haritsa Jayant R., Carey M. J. and Livny M., "Value - based Scheduling in
Real - time Database Systems," Technical Report TR - 1204, CS
Department, University of Wisconsin, Madison, 1991.

53. Haritsa Jayant R., Carey Michael J. and Linvy Miron, "Dynamic Real - Time
Optimistic Concurrency Control," Proceedings of the 11th Real - Time
Systems Symposium, Dec. 1990.

54. Haritsa Jayant R., Carey Michael J. and Linvy Miron, "On being Optimistic
about Real - time Constraints", Proceedings ofthe ACM PODS Symposium,
April 1990.

55. Haritsa Jayant R., and George B., "Secure Real-Time Transaction
Processing," (book chapter) Real-time Database Systems: Architecture and
Techniques, Kluwer Academic Publishers, vol. 593, Kluwer International
Series in Engineering and Computer Science, eds. Tei-Wei Kuo and Kam-
Yiu Lam, pp. 141-157,2001.

56. Haritsa Jayant R., Livny M. and Carey M. J., "Earliest Deadline Scheduling
for Real - Time Database Systems," Proceedings of 12th IEEE Real - Time
Systems Symposium (RTSS), San Antonio, Texas, USA, pp. 232 - 242,
December 1991.

113

57. Haritsa Jayant R., Ramamritham K. and Gupta R., "Characterization and
Optimization of Commit Processing Performance in Distributed Database
Systems," Technical Report, University of Massachusetts, March 1998.

58. Haritsa Jayant R., Ramamritham K. and Gupta R., "Real - Time Commit
Processing," Real - time Database Systems: Architecture and Techniques,
Kluwer Academic Publishers, Vol. 593, Kluwer International Series in
Engineering and Computer Science, eds. Tei - Wei Kuo and Kam - Yiu Lam,
pp. 227-243, 2001.

59. Haritsa Jayant R., Ramamritham K. and Gupta R., "The PROMPT Real -
time Commit Protocol," IEEE Transactions on Parallel and Distributed
Systems, Vol. 11, No. 2, pp. 160 -181, 2000.

60. Hong Dong - Kweon, "Real Time Transaction Scheduling: A Cost -
Conscious Approach," M. Sc. Thesis, Graduate School of University of
Florida, 1992.

61. Hong Dong - Kweon, Johnson Theodore and Chakravarthy Sharma, "Real -
Time Transaction Scheduling: A Cost Conscious Approach," Proceedings of
the SIGMOD Conference, pp. 197 - 206, 1993.

62. Huang Jiandong and Stankovic John A., "Real - Time Buffer Management,"
COINS TR 90 - 65, August 1990.

63. Huang Jiandong, "Real Time Transaction Processing: Design,
Implementation and Performance Evaluation," PhD thesis, University of
Massachusetts, May 1991.

64. Huang Jiandong, Stankovic John A., Ramamritham K. and Towsley D., "On
Using Priority Inheritance in Real - time Databases," Proceedings of the
12th Real - Time Systems Symposium, pp. 210 - 221, Dec. 4 - 6, 1991.

65. Hung Sheung - Lun, Lam K. W. and Lam K. Y., "Efficient Technique for
Performance Analysis of Locking Protocols," Proceedings of the 2nd IEEE
International Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, Durham, NC, USA, pp. 276 - 283, Jan.
31 -Feb. 2, 1994.

66. Kao Ben and Garcia - Molina H., "Deadline Assignment in a Distributed Soft
Real - Time System," Proceedings of the 13th International Conference on
Distributed Computing Systems, pp. 428 - 437, 1993.

67. Kao Ben and Garcia - Molina H., "Subtask Deadline Assignment for
Complex Distributed Soft Real - time Tasks," Technical Report 93 - 149,
Stanford University, 1993.

68. Kao Ben and Garcia - Monila H., "An Overview of Real - time Database
Systems," Advances in real - time systems, pp. 463 - 486, 1995.

114

69. Kayan Ersan and Ulusoy 0., "An Evaluation of Real Time Transaction
Management Issues in Mobile Database Systems," Computer Journal, Vol.
42, No. 6, 1999.

70. Kim Young - Kuk and Son S. H., "Predictability and Consistency in Real -
Time Database Systems," Editor S. H Son, Advances in Real Time
Systems, Prentice Hall, New York, pp. 509 - 531, 1995.

71. Kim Young - Kuk, "Predictability and Consistency in Real Time Transaction
Processing," PhD thesis, University of Virginia, May 1995.

72. Lam Kam - Yiu and Kuo Tei - Wei, "Real - Time Database Systems:
Architecture and Techniques," Kluwer Academic Publishers, 2001.

73. Lam Kam - Yiu, "Concurrency Control in Distributed Real - Time Database
Systems," PhD Thesis, City University of Hong Kong, Hong Kong, Oct.
1994.

74. Lam Kam - Yiu, Cao Jiannong, Pang Chung - Leung and Son S. H.,
"Resolving Conflicts with Committing Transactions in Distributed Real - time
Databases," Proceedings of the Third IEEE International Conference on
Engineering of Complex Computer Systems, Como, Italy, pp. 49 - 58, Sep
8-12,1997.

75. Lam Kam - Yiu, Hung S. L and Son S. H., "On Using Real - Time Static
Locking Protocols for Distributed Real - Time Databases," Real - Time
Systems, Vol. 13, pp. 141 -166, 1997.

76. Lam Kam - Yiu, Law Gary C. K. and Lee Victor C. S., "Priority and Deadline
Assignment to Triggered Transactions in Distributed Real - time Active
Databases," Journal of Systems and Software, Vol. 51, No.1, pp. 49 - 60
April 2000.

77. Lam Kam - Yiu, Lee Victor C. S., Kao Ben and Hung S. L, "Priority
Assignment in Distributed Real - time Databases Using Optimistic
Concurrency Control," IEE Proceedings on Computer and Digital
Techniques, Vol. 144, No. 5, pp. 324 - 330, Sept. 1997.

78. Lam Kam - Yiu, Pang C, Son S. H. and Cao J., "Resolving Executing -
Committing Conflicts in Distributed Real - time Database Systems," Journal
of Computer, Vol. 42, No. 8, pp. 674 - 692, 1999.

79. Lam Kwok - wa, Lee Victor C. S. and Hung S. L, "Transaction Scheduling
in Distributed Real - Time Systems," International Journal of Time - Critical
Computing Systems, 19, pp. 169 -193, 2000.

80. Lampson Butler and Lomet D., "A New Presumed Commit Optimization for
Two Phase Commit," Proceedings of the 19th International Conference on
Very Large Data Bases, Doublin, Ireland, 1993.

115

81. Lee Inseon and Yeom Heon Y., "A Fast Commit Protocol for Distributed
Main Memory Database Systems," Proceedings of the 16th International
Conference on Information Networking (ICOIN-16), Cheju, Korea, January
2002.

82. Lee Inseon and Yeom Heon Y., "A Single Phase Distributed Commit
Protocol for Main Memory Database Systems," 16th International Parallel &
Distributed Processing Symposium (IPDPS 2002), Ft. Lauderdale, Florida,
USA, April 15-19,2002.

83. Lee Inseon, Heon Y and Park Taesoon, "A New Approach for Distributed
Main Memory Database Systems: A Causal Commit Protocol," IEICE
Transactions on Information and System, Vol. E87-D, No. 1, pp. 196-204,
January 2004.

84. Lee Juhnyoung, "Concurrency Control Algorithms for Real - time Database
Systems," PhD Thesis, Department of Computer Science, University of
Virginia, 1994.

85. Lee Victor C. S., Lam K. Y., Kao Benjamin C. M., Lam K. W. and Hung S.
L, "Priority Assignment for Sub - Transaction in Distributed Real - time
Databases," 1st International Workshop on Real - Time Database Systems,
1996.

86. Lee Victor C. S., Lam Kam - Yiu and Kao B., "Priority Scheduling of
Transactions in Distributed Real - Time Databases," International Journal of
Time-Critical Computing Systems, Vol. 16, pp. 31 - 62, 1999.

87. Lee Victor C. S., Lam Kwok - wa and Hung S. L, "Concurrency Control for
Mixed Transactions in Real - Time Databases," IEEE Transactions on
Computers, Vol. 51, No. 7, pp. 821 - 834, July 2002.

88. Lin Kwei - Jay and Son S. H., "Real - time Databases: Characteristics and
Issues," Proceedings of the 1st IEEE Workshop on Object - Oriented Real -
Time Dependable Systems, Dana Point, CA, pp. 113 -116, Oct. 1994.

89. Lindsay Bruce G., Haas Laura M., Mohan C, Wilms Paul F. and Yost
Robert A., "Computation and Communication in R*: A Distributed Database
Manager," in ACM Transaction on Computer Systems (TOCS), Vol. 2, No.
1, pp. 24-38, Feb.1984.

90. Lindstrom Jan and Raatikainen Kimmo, "Using Importance of Transactions
and Optimistic Concurrency Control in Firm Real - Time Databases,"
Proceedings of the 7th International Conference on Real - Time Computing
Systems and Applications (RTCSA'2000), Cheju Island, South Korea,
December 12-14,2000.

91. Lindstrom Jan, "Optimistic Concurrency Control Method for Distributed Real
Time Database Systems," PhD Thesis, Report A-2003-I, Helsinki University,
January 2003.

116

>

92. Lindstrom Jan, "Using Priorities in Concurrency Control for RTDBS,"
Seminar on Real - Time and Embedded Systems, Department of Computer
Science, University of Helsinki, autumn 1999.

93. Liu C. L and Layland J. W., "Scheduling Algorithms for Multiprogramming in
a Hard Real - time Environment," Journals of the ACM, Vol. 20, No. 1, pp.
46-61, Jan. 1973.

94. Misikangas Pauli, "2PL and Its Variants," Seminar on Real - Time Systems,
Department of Computer Science, University of Helsinki, 1997.

95. Mittal Abha and Dandamudi Sivarama P., "Dynamic versus Static Locking in
Real - Time Parallel Database Systems," Proceedings of the 18th
International Parallel and Distributed Processing Symposium (IPDPS'04),
Santa Fe, New Mexico, April 26 - 30, 2004.

96. Mohan Chandrasekaran and Dievendorff D., "Recent Work on Distributed
Commit Protocols, and Recoverable Messaging and Queuing," Data
Engineering Bulletin, Vol. 17, No. 1, 1994.

97. Mohan Chandrasekaran, "An Overview of Recent Data Base Research,"
Journals of Database, Volume 10, No. 2, pp. 3 - 24,1978.

98. Mohan Chandrasekaran, Lindsay B. and Obermarck R., "Transaction
Management in the R* Distributed Database Management Systems," ACM
Transactions on Database Systems, Vol. 11, No. 4, pp. 378 - 396,
December 1986.

99. Mohania Mukesh K., Kambayashi Yahiko, Tjoa A. Min, Wagner Roland and
Bellatreche Ladjel, "Trends in Database Research," DEXA, pp. 984 - 988,
2001.

100. NG Pui, "A Commit Protocol for Checkpointing Transactions," Proceedings
of the 7th Symposium on Reliable Distributed Systems, Columbus, OH,
USA, pp. 22 - 31, Oct. 10-12,1998.

101. O'Neil Patrick, Ramamritham K. and Pu C, "Towards Predictable
Transaction Executions in Real - Time Database Systems," Technical
Report 92 - 35, University of Massachusetts, August, 1992.

102. Ozsoyoglu Gultekin and Snodgrass Richard T., "Temporal and Real - Time
Databases: A Survey," IEEE Transactions on Knowledge and Data
Engineering, Vol. 7, No. 4, pp. 513 - 532, August 1995.

103. Pang Chung - Leung and Lam K. Y., "On Using Similarity for Resolving
Conflicts at Commit in Mixed Distributed Real - time Databases,"
Proceedings of the 5th International Conference on Real - Time Computing
Systems and Applications, Oct. 27 - 29, 1998.

117

104. Pang HweeHwa, "Query Processing in Firm Real - Time Database
Systems," PhD Thesis, University of Wisconsin, Madison, 1994.

105. Pang HweeHwa, Carey Michael J., and Livny Miron, "Multiclass Query
Scheduling in Real - Time Database Systems," IEEE Transactions on
Knowledge and Data Engineering, Vol. 7, No. 4, pp. 533 - 551, August
1995.

106. Park Taesoon and Yoem H. Y., "A Distributed Group Commit Protocol for
Distributed Database Systems," Seoul National University, Korea.

107. Purimetla Bhaskar, Rajendran M., Sivasankaran K., Ramamritham K. and
Stankovic John A., "Real Time Databases: Issues and Applications,"
Advances in Real Time Systems, Prentice Hall, 1996.

108. Qin Biao and Liu Y., "High Performance Distributed Real - time Commit
Protocol," Journal of Systems and Software, Elsevier Science Inc., Vol. 68,
Issue 2, November 15, pp. 145 -152, 2003.

109. Ramakrishnan Raghu and Gehrke Johannes, "Database Management
System," McGraw Hill Publication, January 2003.

110. Ramakrishnan Raghu and Ullaman Jaffrey D., "A Survey of Research on
Deductive Database Systems,"
www-db.stanford.edu/~ullman/dscb/ch1.pdf

111. Ramamritham Krithi and Chrysanthis P. K., "A Taxonomy of Correctness
Criteria in Database Applications," Journal of the VLDB, 5, pp. 85 - 97,
1996.

112. Ramamritham Krithi and Chrysanthis P. K., "In Search for the Acceptability
Criteria: Database Consistency Requirements and Transaction Correctness
Properties," Proceedings of the International Workshop on Distributed
Object Management, Canada, pp. 211 - 229, August 1992.

113. Ramamritham Krithi and Sen Rajkumar, "DELite: database support for
embedded lightweight devices," EMSOFT, Pisa, Italy, pp. 3 - 4, Sep. 27 -
29, 2004.

114. Ramamritham Krithi, "Real - time Databases," Distributed and Parallel
Databases, Special Issue: Research Topics in Distributed and Parallel
Databases, Vol. 1, Issue 2, pp. 199 - 226, April 1993.

115. Ramsay S., Nummenmaa J., Thanisch P., Pooley R. J. and Gilmore S. T.,
"Interactive Simulation of Distributed Transaction Processing Commit
Protocols," Department of Computer Science, University of Edinburgh. In P.
Luker (ed.): Proceedings of Third Conference of the United Kingdom
Simulation Society (UKSIM'97), pp. 112 -127, 1997.

118

116. Ryu In Kyung and Thomasian A., "Analysis of Database Performance with
Dynamic Locking," Journals of the ACM, Vol. 37, No. 3, pp. 491 - 523, July
1990.

117. Samaras George, Britton K., Citron A. and Mohan C, "Two - phase Commit
Optimizations and Tradeoffs in the Commercial Environment," Proceedings
of the 9th International Conference on Data Engineering, pp. 520 - 529,
April 19-23, 1993.

118. Seshadri Thomas S. and Haritsa J. R., "Integrating Standard Transactions
in Real - Time Database Systems," Information Systems, Vol. 21, No. 1, pp.
3-28, March 1996.

119. Sha Lui, Rajkumar R., Son S. H. and Chang C. H., "A Real - time Locking
Protocol," IEEE Transactions on Computers, Vol. 40, No. 7, pp. 793 - 800,
1991.

120. Shih Stuart, Kim Young - Kuk and Son S. H., "Performance Evaluation of a
Firm Real Time Database System," Proceedings of the 2nd International
Workshop on Real - Time Computing Systems and Applications, pp. 116 -
124, Oct. 25-27, 1995.

121. Shiow_Chen and Li Victor O. K., "Performance Analysis of Static Locking in
Distributed Database Systems," IEEE Transactions on Computers, Vol. 39,
No. 6, pp. 741 - 751, June 1990.

122. Shu Lih Chyun, Young Michal and Rajkumar R., "An Abort Ceiling Protocol
for Controlling Priority Inversion," Software Engineering Institute, Carnegie
Mellon University, 1994.

123. Silberschatz Abraham, Stonebraker M. and Ullman J., "Database Research:
Achievements and Opportunities into the 21st Century," ACM SIGMOD
Record, Vol. 25, No. 1, 1996.

124. Son Sang H., "Real - time Database Systems: Present and Future,"
Proceedings of the Second International Workshop on Real - Time
Computing Systems and Applications, Tokyo, Japan, pp. 50 - 52, Oct. 25 -
27, 1995.

125. Soparkar Nandit, Levy E., Korth H. F. and Silberschatz A., "Adaptive
Commitment for Real - Time Distributed Transaction," Technical Report TR
- 92 -15, 1992, Dept. of Computer Science, University of Texas, Austin and
also in the Proceedings of the 3rd International Conference on Information
and Knowledge Management, Gaithersburg, Maryland, United States, pp.
187-194, 1994.

126. Srinivasa Rashmi, "Network - Aided Concurrency Control in Distributed
Databases," PhD thesis, University of Virginia, Jan. 2002.

MM

127. Stamos James W. and Cristian Flaviu, "A Low - Cost Atomic Commit
Protocol," Proceedings of the 9th IEEE Symposium on Reliable Distributed
Systems, Huntsville, Al, USA, pp. 66 - 75, Oct. 9-12, 1990.

128. Stankovic John A., "Misconception about Real - Time Computing," IEEE
Computer, pp. 10 -19, Oct. 1988.

129. Stankovic John A., Ramamritham K. and Towsley D., "Scheduling in Real -
Time Transaction Systems," Foundations of Real - Time Computing:
Scheduling and Resource Management, edited by Andre van Tilborg and
Gary Koob, Kluwer Academic Publishers, pp. 157 -184, 1991.

130. Stankovic John A., Son S. H. and Hansson J., "Misconception about Real -
Time Database," IEEE Computer, Vol. 32, No. 6, pp. 29 - 36, June 1999.

131. Taina Juha and Son S. H., "Towards a General Real - Time Database
Simulator Software Library," Proceedings of Active and Real - Time
Database Systems, 1999.

132. Takkar Sonia & Dandamudi Sivarama P., "An Adaptive Scheduling Policy
for Real - Time Parallel Database System,"
www.mpcs.org/MPCS98/Final_Papers/Paper.48.pdf

133. Tay Yong Chiang and Suri R.,"Choice and Performance in Locking for
Databases," Proceedings of the 10th International Conference on Very
Large Databases, August 1984.

134. Tay Yong Chiang, "Some Performance Issues for Transactions with Firm
Deadlines," Proceedings of Real - Time Systems Symposium, Pisa, Italy,
pp. 322-331, Dec. 1995.

135. Tay Yong Chiang, Goodman N. and Suri R., "Locking Performance in
Centralized Database," ACM Transactions on Database Systems, Vol. 10,
No. 4, pp. 415-462, 1985.

136. Tay Yong Chiang, Suri R. and Goodman N., "A Mean Value Performance
Model for Locking in Databases: the No - Waiting Case," Journal of the
ACM (JACM), Vol. 32, Issue 3, pp. 618 - 651, July 1985.

137. Thomasian Alexander and Ryu I. K., "Performance Analysis of Two - phase
Locking," IEEE Transactions on Software Engineering, Vol. 17, No. 5, pp.
386-402, 1991.

138. Thomasian Alexander, "Concurrency Control: Methods, Performance, and
Analysis," ACM Computing Surveys (CSUR), Vol. 30, Issue 1, pp. 70 -119,
March 1998.

139. Thomasian Alexander, "Two - phase Locking Performance and Its
Thrashing Behavior," ACM Transactions on Database Systems, Vol. 18, No.
4, pp. 579 - 625, 1993.

120

140. Ullman Jeffrey D., "Principle of Database Systems," Galgotia Publication
Pvt. Ltd. 1992.

141. Ulusoy Ozgur and Belford G., "Real - Time Transaction Scheduling in
Database Systems," Information Systems, Vol. 18, No. 8, pp. 559 - 580,
Dec. 1993.

142. Ulusoy Ozgur and Belford Geneva G., "A Simulation Model for Distributed
Real - time Database Systems," Proceedings of the 25th Annual
Symposium on Simulation, Orlando, Florida, United States, pp. 232 - 240,
1992.

143. Ulusoy Ozgur and Buchmann A., "A Real - Time Concurrency Control
Protocol for Main - Memory Database Systems," Information Systems, Vol.
23, No. 2, pp. 109-125, 1998.

144. Ulusoy Ozgur, "A Study of Two Transaction Processing Architectures for
Distributed Real - Time Database Systems," Journal of Systems and
Software, Vol. 31, No. 2, pp. 97 -108, Nov. 1995.

145. Ulusoy Ozgur, "Analysis of Concurrency Control Protocols for Real Time
Database Systems," Information Sciences, Vol.111, No.1 - 4,1998.

146. Ulusoy Ozgur, "Concurrency Control in Real - time Database Systems,"
PhD Thesis, Department of Computer Science, University of Illinois,
Urbana-Champaign, 1992.

147. Ulusoy Ozgur, "Processing Real - Time Transactions in a Replicated
Database System," Distributed and Parallel Databases, Vol. 2, No. 4, pp.
405-436, October 1994.

148. Ulusoy Ozgur, "Research Issues in Real - time Database Systems,"
Information Sciences, Volume 87, Issues 1 - 3, pp. 123 - 151, November
1995.

149. Vrbsky Susan V. and Tomic Sasa, "Satisfying Timing Constraints of Real
Time Databases," Journal of Systems and Software, Vol. 41, pp. 63 - 73,
1998.

www.mpcs.org/MPCS98/Final_Papers/Paper.48.pdf

150. Yoon Yongik, Han Mikyung and Cho Juhyun, "Real - time Commit Protocol
for Distributed Real - time Database Systems," Proceedings of the 2nd IEEE
International Conference on Engineering of Complex Computer Systems,
pp. 221 - 225, Oct. 21 - 25, 1996.

151. Yu Philip S., Wu Kun - Lung, Lin Kwei - Jay and Son S. H., "On Real - Time
Databases: Concurrency Control and Scheduling," Proceedings of the
IEEE, Volume 82, No.1, pp. 140 -157, Jan. 1994.

I2I

AUTHOR'S RESEARCH PUBLICATION

(1) "Distributed Real Time Database Systems: Background and
Literature Review" International Journal of Distributed and Parallel
Databases, Springer Verlag (communicated).

(2) "A Fast Distributed Real Time Commit Protocol" Journal of Computer
Science & Informatics, Computer Society of India (Accepted)

(3) "SWIFT- A New Real Time Commit Protocol", International Journal of
Distributed and Parallel Databases, Springer Verlag (online on May
26, 2006).

(4) "The MEWS Distributed Real Time Commit Protocol" WSEAS
International Transactions on COMPUTERS, Issue 7, Volume 4, pp.
777-786, July 2005.

(5) "Priority Assignment Heuristic and Issue of Fairness to Cohorts
Executing in Parallel", WSEAS International Transactions on
COMPUTERS, Issue 7, Volume 4, pp. 758-768, July 2005.

I
(6) "Some Performance Issues in Distributed Real Time Database

Systems" Proceedings of the VLDB PhD Workshop, The Convention
and Exhibition Center (COEX), Seoul, Korea, Sept. 11, 2006
(communicated).

(7) "Fair Scheduling Policy for Real Time Cohorts Executing in Parallel"
Proceedings of the 4th International Conference on Computer
Application (ICCA2006), University of Computer Studies, Yangon,
Myanmar, February 23-24, 2006.

(8) "A Research Perspective for Distributed Real Time Database
System" Proceedings of National Seminar on Electrical Power
Technology, Management and IT Applications (EPTMITA-06),
Department of Electrical Engineering, M. M. M. Engineering College
Gorakhpur, India, Feb. 17-18, 2006.

(9) "OCP- the Optimistic Commit Protocol", Proceedings of the 17th
Australasian Database Conference (ADC 2006), Hobart, Tasmania,
Australia, Jan. 16-19, 2006.

(10) "A Memory Efficient Fast Distributed Real Time Commit Protocol",
Proceedings of the 7th International Workshop on Distributed
Computing (IWDC 2005), Indian Institute of Technology Kharagpur,
India, pp. 500-505, Dec. 27-30, 2005.

(11) "Dependency Sensitive Distributed Commit Protocol", Proceedings
of the 8th International Conference on Information Technology (CIT
05), Bhubaneswar, India, Dec. 20 - 23, 2005.

123

(12) "Priority Assignment Heuristic to Cohorts Executing in Parallel"
Proceedings of the 9th WSEAS International Conference on
COMPUTERS Vouliagmeni, Athens, Greece, July 14-16, 2005.

(13) "Memory Efficient Distributed Real Time Commit Protocol"
Proceedings of the 9th WSEAS International Conference on
COMPUTERS Vouliagmeni, Athens, Greece, July 14-16, 2005.

(14) "Optimizing Distributed Real-Time Transaction Processing During
Execution Phase" Proceedings of the 3rd International Conference on
Computer Application (ICCA2005), University of Computer Studies
Yangon, Myanmar, pp. 1-7, March 9-10, 2005.

(15) "PriorityAssignment to Cohorts Executing in Parallel" Proceedings of
the 3r International Conference on Computer Application
(ICCA2005), University of Computer Studies, Yangon, Myanmar pp
39-45, March 9'10, 2005.

(16) "A New Commit Protocol For Distributed Real-Time Database
Systems" Proceedings of the IASTED International Conference on
Databases and Applications (DBA 2005), Innsbruck, Austria pp 122-
127, Feb. 14-16, 2005.

(17) "A Modified Distributed Real-Time Commit Protocol" Proceedings of
the International Conference on Systemics, Cybernetics and
Informatics, Hyderabad, India, pp. 783-786, Jan 6-9, 2005.

(18) "Hard Real-Time Distributed Database Systems: Future Directions"
Proceedings of All India Seminar on Recent Trends In Computer
Communication Networks, Department of Electronics & Computer
engineering, Indian Institute of Technology Roorkee India pp 172-
177, Nov. 7-8, 2001.

124

_«

	SOME PERFORMANCE ISSUES IN DISTRIBUTED REAL TIME DATABASE SYSTEMS
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	Caption
	LIST OF TABLES
	ABSTRACT
	CONTENTS
	CHAPTER-1 INTRODUCTION
	CHAPTER - 2 BACKGROUND AND LITERATURE REVIEW
	CHAPTER-3 PRIORITY ASSIGNMENT POLICY
	CHAPTER-4 SWIFT - A DISTRIBUTED REAL TIME COMMIT PROTOCOL
	CHAPTER-5 MECP- A MEMORY EFFICIENT REAL TIME COMMIT PROTOCOL
	CHAPTER - 6 CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH
	REFERENCES

