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ABSTRACT

During the last two decades, direct-sequence code-division multiple-access (DS-

CDMA) technique has received a considerable interest in mobile and personal

communication systems, and will play an important role in future wireless communication

systems. In DS-CDMA systems a number of users share a common channel bandwidth, in

which the users are distinguished from one another by superimposing a distinct pseudo

random code sequence. The code sequence, which is known at the receiver, spreads the

bandwidth of the data signal and also provides the multiple access capability. All users can

transmit at the same time and are allocated the entire frequency spectrum for transmission, in

contrast to frequency-division multiple-access (FDMA) and time-division multiple-access

(TDMA) techniques. Hence, the detector receives signal composed of the sum of the signals

of all users, which overlap in time and frequency. In practice, the interfering signals are not

truly orthogonal to the desired signal, due to the random time offsets of the received signals.

Hence the orthogonality property of the codes will not be achieved at the receiver, which

results in the production of the multiple access interference (MAI). The MAI is a factor

which limits the capacity and performance of DS-CDMA systems. Additionally, due to the

propagation mechanism, the received signal from a user close to the base station will be

stronger than that received from another user located far from the base station. Hence, a close

user will dominate the distant users and reliable reception in this situation is not possible.

This is called the near far problem and a possible solution to this is to use power control:

such that all users will achieve the same power at the base station. The conventional

matched-filter receiver output contains contributions from the MAI. Thus, even if the

receiver thermal noise level goes to zero, the error probability of the conventional receiver



exhibits a non-zero floor because of the MAI. Moreover, under the near-far situation, the

weak signal will be overwhelmed by the MAI.

The MAI and the near-far problem can be overcome by the use of multiuser detection

(MUD) techniques. In MUD, the receiver jointly detects all signals in order to mitigate the

non-orthogonal properties of the received signals. MUD has been a topic of extensive

research interest since 1986 when Verdu formulated an optimum MUD based on the

maximum likelihood sequence detection (MLSD). However, the complexity of the optimal

detector is exponential in the number of active users, which has motivated the design of a

number of suboptimal multiuser detectors with lower computational complexity.

Amongst the linear suboptimal detectors, which apply a linear transform to the output of

the matched filters to remove the MAI, is the linear minimum mean square error (MMSE)

detector. It minimizes the mean square error between the actual and the estimated data bit,

and possesses a linear computational complexity in the number of users. Adaptive

interference suppression techniques are analogous to adaptive equalization of dispersive

channels by virtue of the analogy between MAI and intersymbol interference (ISI). The

adaptive MMSE receiver eliminates the use of the matched filter bank and can be

implemented using a tapped delay line filter. It directly processes samples of the received

signal at the chip interval without the explicit knowledge of the MAI. However, it requires

the knowledge of the timing of the desired user as well as the knowledge of the training

sequence of symbols transmitted by the desired user.

In this work, adaptive multiuser detection techniques based on the MMSE error criterion

have been considered for the adaptation and demodulation of DS-CDMA signals to solve the

problems inherited in both conventional and non-adaptive detection techniques. The main

issues considered in this work are to develop adaptive algorithms with low computational
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complexity which are near-far resistant. They may be adapted blindly and without the

knowledge of the timing of the desired user (i.e. with lower requirement for side

information).

A comparative study of the adaptation techniques using the least mean square (LMS),

normalized LMS (NLMS) and recursive least squares (RLS) algorithms based on the MMSE

criterion has been considered for the interference suppression in DS-CDMA systems.

Different performance measures (such as the probability of error, convergence rate, near-far

resistance, capacity, computational complexity and signal to interference ratio) have been

used for the assessment of the performance of the various algorithms. A number of examples

have been simulated to illustrate the performance comparison of these algorithms. It is well

known, that the RLS algorithm possesses much faster convergence rate as compared to LMS

algorithm, however the RLS algorithm requires larger number of computations, (0[N ]), as

compared to LMS, (0[N]). To reduce the computational complexity, we have proposed and

implemented a novel block algorithm for the adaptation and demodulation of DS-CDMA

signals. The block algorithm possesses fast convergence rate which is comparable to the RLS

algorithm, while requiring computational complexity comparable to that of the LMS

algorithm. Simulation has been performed to compare the performance of the proposed block

algorithm with the LMS and RLS algorithms for interference suppression and demodulation

of DS-CDMA signals.

We have next proposed the use of the Kalman filter (KF) for the adaptation and

interference suppression of DS-CDMA signals. A motivation for using the KF is that it is the

best linear unbiased estimator and is optimal in the MMSE sense. Moreover, the KF is

usually formulated using the state-space approach, which contains the necessary information

about the system. A number of examples have been simulated which show its improved
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performance compared to the algorithms mentioned above. A drawback of the KF algorithm

is that it requires the knowledge of the noise variance and like RLS, is prone to numerical

instability due to the use of finite word-length arithmetic for calculating the Riccati

difference equation. To solve this problem, the state-error correlation matrix is factorized into

two square-root matrices and unitary transformations are used to update the matrix at each

iteration. We have considered the use of the square-root KF (SQRT-KF) algorithm for the

interference suppression and demodulation of DS-CDMA signals and implemented the

system using both Givens rotations and Householder transformations. Simulations have been

performed, to compare its performance with the conventional KF algorithm, which show

better numerical stability but at the expense of increased computational complexity.

To deal with the problems of instability in the RLS algorithm periodic re-initialization

has been proposed in the literature. However, this requires the use of a training sequence

periodically, which will result in decrease in the rate of transmission of the system. To

remedy this problem, algorithms based on matrix factorization of the input auto-correlation

matrix using orthogonal transformations have been derived and investigated. The resulting

algorithms are less sensitive to round off errors, and, moreover can be efficiently mapped

into systolic array structure for parallel implementation. Also, the computation of the least-

squares weight vector of the adaptive filtering algorithm may be accomplished by working

directly with the incoming data matrix via the matrix factorization and decomposition rather

than working with the (time-averaged) correlation matrix of the input data as in the RLS

algorithm. Therefore, we have proposed the use of the QR-decomposition technique based on

the recursive modified Gram-Schmidt (RMGS) algorithm for the adaptation and interference

suppression of DS-CDMA signals. It requires lower computational complexity as compared

to RLS, KF, SQRT-KF and other QR-RLS algorithms based on Givens rotations or

IV
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Householder transformations. An attractive feature of the RMGS algorithm is that it can be

set for parallel implementation, realized in a highly modular structure using systolic arrays

such that using N-parallel processors will reduce the computational complexity to 0[N] per

processor. It is worth mentioning that the RMGS-based algorithm does not involve the

computationally expensive square roots as in the QR-RLS algorithms. An improved error

feedback version of the RMGS algorithm (RMGSEF) is more efficient and has even better

numerical properties as compared to the RMGS algorithm. Results show that the RMGSEF

algorithm is near-far resistant, possesses the same convergence as the RLS algorithm and has

improved numerical stability. The performance of the DS-CDMA receiver based on the

RMGS algorithm has also been studied in a multipath fading dispersive environment.

Simulations show that the proposed RMGS algorithm performs much better compared to

LMS algorithm in a multipath fading dispersive environment and possesses lower error floor.

The implementation of the adaptive MMSE receiver, considered so far, requires the

knowledge of training sequence of the desired user during initial adaptation, and then

switching to the decision directed mode during actual data transmission. Moreover, a fresh

training sequence may also be required when the receiver loses synchronization due to deep

fades or due to the interference from a strong interferer entering the network. However, in

some applications, the use of training sequences may be impractical. Therefore, there is a

need for adaptive receivers which do not require training sequence during the adaptation

mode (i.e. blind). Blind algorithms using subspace estimation approach through either eigen

value or singular-value decomposition of the data matrix are either computationally

expensive, for adaptive applications, or suffer from relatively slow convergence rate. Blind

equalization based on the Bussgang technique uses a soft decision (non-linear function) at the

output of the detector in contrast to the MMSE detector. The constant modulus algorithm



(CMA) is considered as the most successful and the simplest higher-order statistics (HOS)

based algorithm among the Bussgang family of blind equalization algorithms. It chooses a

linear receiver that minimizes the deviation of the receiver output from a constant modulus.

However, its cost function includes a number of local minima. The constrained blind

minimum output energy (MOE) detector for the interference suppression in DS-CDMA

systems minimizes the mean output energy of the detector. It requires the knowledge of the

spreading sequence of the desired user and its cost function does not include any local

minima, which ensures global convergence. Based on the attractive features of the RMGS

algorithm, we have derived and implemented a novel blind adaptive RMGS-based MOE

algorithm for the adaptation and interference suppression in DS-CDMA systems. A number

of numerical examples have been simulated which show that the convergence rate of the

blind RMGS algorithm is much faster than that of the CMA and blind MOE-based LMS

algorithm. Parallel implementation of the blind RMGS algorithm via systolic arrays, using N-

parallel processors, will reduce the computational complexity to 0[N] per processor.

The implementation of the MMSE receiver in DS-CDMA systems, considered so far,

requires the knowledge of the timing of the desired user. This knowledge is used to

successfully suppress MAI as well as to demodulate the desired user data bits. Therefore, in

the literature there has been considerable effort devoted towards the development of time

delay estimators for DS-CDMA systems. The commonly used sliding correlator technique for

time delay estimation (TDE) fails in a near far environment. Delay acquisition using the

MUSIC estimator based on subspace decomposition, in DS-CDMA systems, is shown to be

near far resistant, however, its complexity is 0[N ]. Moreover, a poor performance is

achieved when the number of users is unknown and large. Joint data detection and parameter

estimation using the extended KF (EKF) has also been proposed earlier. Although, the
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algorithm is near far resistant and could be used in the tracking mode, it requires the initial

parameter estimates of all users to be known and is computationally expensive. In this work,

we have considered two techniques for TDE in DS-CDMA systems, which can be used during

both the initialization and tracking modes. The first method is based on cross-correlating the

MMSE weights vector, obtained by the RMGS algorithm, with the desired user spreading

sequence. The estimated delay is specified by the location of the maximum value of the cross-

correlation peak. This method is shown to be near far resistant but it requires an all one

training sequence, or alternatively, the adaptive filter has to be of length 2N taps. In the

second technique, estimate of the time delay is obtained by running N-parallel adaptive

MMSE algorithms at N-hypothetical values of the delay (equal to multiples of the chip

period). This technique is near far resistant and it can also be used for both the initialization

and tracking modes. A number of examples have been simulated to evaluate the performance

of these techniques in both initialization and tracking modes. Lastly a novel blind adaptive

DS-CDMA receiver for interference suppression, which does not require any side information

except the desired user's spreading sequence, has been implemented.
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CHAPTER 1

INTRODUCTION

Direct-sequence code-division multiple-access (DS-CDMA) technique has received

considerable interest in mobile and personal communication systems, and it will play an

important role in future wireless communication systems. In CDMA, users are assigned

distinct spreading sequences and can transmit at the same time using the entire frequency

spectrum for transmission, in contrast to both frequency division multiple access (FDMA)

and time division multiple access (TDMA) techniques. CDMA techniques have been

investigated widely during the 1980's, which finally led to the commercialization of cellular

spread spectrum communications in the form of the narrowband CDMA (IS-95 standard).

CDMA has also been the selected approach for the third generation (3G) wireless

communication systems.

A significant amount of interference is inherent in CDMA systems due to the multiple

access operation. Because of the non-orthogonality of spreading sequences, the conventional

correlator integrator receiver suffers from the near-far problem, in which the interference

from strong users can be much larger than the power of the desired user, and hence detection

is rendered unreliable. Multiuser detection (MUD) techniques are used to overcome the

multiple-access interference (MAI) and the near-far problem. In MUD techniques, the

receiver jointly detects all signals in order to mitigate the non-orthogonal properties of the

spreading codes. There has been an extensive research interest in MUD since 1986 when

Verdu [116] formulated an optimum MUD based on the maximum likelihood sequence

detection (MLSD). However, the complexity of the optimal detector is exponential in the

number of users, and moreover, it requires the knowledge of the interferer's parameters. This



has motivated the design of suboptimal detectors with computational complexity which is

linear in the number of users. These detectors can be classified in one of two categories;

linear multiuser detectors and subtractive interference cancellation detectors. One of the

linear multiuser detectors is the MMSE receiver which implements a linear mapping to

minimize the MSE between the actual and the estimated data bits. Adaptive signal processing

algorithms have been proposed to suppress, partially or completely, the MAI without the

knowledge of the interferer's parameters. In this thesis we have considered the adaptive

multiuser DS-CDMA receivers based on the MMSE criterion for the interference

suppression.

In the following sections, we present a brief summary of the earlier work carried out in

the related areas, followed by the statement of the problem and the organization of the

material embodied in this thesis.

1.1 Review of the earlier work

The conventional receiver for DS-CDMA uses a matched filter corresponding to each

user and demodulates each user independently. Due to the non-orthogonality of the spreading

codes, the output of the conventional matched filter for the desired user contains

contributions from other users, which is known as multiple access interference (MAI). If the

power of interferers is much stronger than that of the desired user, then the weak signal of the

desired user is overwhelmed by the MAI and reliable reception is impossible. This is known

as the near-far problem. The classical way to deal with this problem is to use power control,

in which it is ensured that the transmitted powers of all users are controlled such that the

received signals have equal power levels. In IS-95 system, the mobiles adjust their power

such that the transmitted power is inversely proportional to the power level it receives from



the base station. Alternatively the base station sends power control to the mobiles based on

the power level of the signal it receives [23].

The main reason why multiuser detection did not develop until relatively recently was

the belief by many workers in spread spectrum that multiuser interference is accurately

modeled as a white Gaussian random process, and thus the conventional detector is

essentially optimum [118]. However, the number of transmitters, signature waveforms, and

power levels encountered in many practical situations render the Gaussian approximation

completely useless.

Verdu in [116] proposed and analyzed the optimum multiuser detector for asynchronous

CDMA signals. Similar work also appeared in [49], The detector consists of a bank of

matched filters followed by a Viterbi algorithm. It outperforms the conventional single user

detector at the expense of marked increase in the computational complexity: exponential in

the number of users. Another disadvantage of this detector is that it requires the knowledge

of the received amplitudes and phases of all the users. The aim of reducing the complexity

has motivated the design of a number of suboptimal multiuser detectors with lower

complexity.

Lupas and Verdu [65, 66] describe a linear suboptimal detector, the decorrelating

detector, which possesses the ideal near-far resistance but results in noise enhancement

similar to the zero-forcing equalizer [95]. Moreover, it requires the knowledge of the

interference parameters and the inverse of the crosscorrelation matrix. The successive

interference cancellation has been proposed in [119] and [50], where one interferer is

cancelled at each stage from the received signal. These detectors require aminimal amount

of additional hardware, however, the disadvantage of this detector is that, one additional bit

delay is required for each stage of cancellation. Moreover, there is a need to reorder the



signals whenever the power profile changes. Varanasi and Aazhang [113, 114, 115] have

studied different suboptimal multiuser detectors called the multistage detectors, which

achieve considerable improvements over linear detectors, but they require accurate

knowledge of the channel parameters, which may incur excessive complexity.

Duel-Hallen [19, 20] has introduced the multiuser zero-forcing decision- feedback (ZF-

DF) receivers. It performs linear preprocessing (partially decorrelates the users) followed by

a SIC detection. Interference from stronger users is removed by the use of decision feedback

leading to significant performance improvement compared to the decorrelating detector. The

ZF-DF detector can be implemented by computing the Cholesky decomposition and the

matrix inversion. It also requires the estimate of the received signal amplitudes.

Xie et. al. [124] had developed, for the first time, the centralized MMSE receiver for

DS-CDMA systems, which minimizes the MSE between the actual data and the soft output

of the matched filter. It has been shown to perform better than the decorrelating detector in

terms ofprobability oferror performance. However, the receiver is non-adaptive and requires

the knowledge of the users parameters and the knowledge of the inverse of the correlation

matrix. Klien et al. [47] had presented four suboptimal detectors based on MMSE and zero-

forcing criterion with and without decision feedback to combat both ISI and MAI.

Moshavi [83] had proposed the polynomial expansion (PE) detector, which applies a

polynomial expansion in R (autocorrelation matrix) to the matched filter bank output. The

weights of the polynomial are chosen to optimize the performance ofthe detector. It can be

used to approximate the decorrelating and MMSE detectors in which, neither the correlation

matrix nor its inverse need to be calculated.

It is also worth mentioning that there have been attempts to use the neural networks in

the adaptation ofmultiuser DS-CDMA detectors. Aazhang et al. [1] had first proposed the



use of a multiuser perceptron. It outperforms the linear interference suppression technique

only if training sequences of all users are available. Mitra et al. [79] has considered a

nonlinear perceptron-based multiuser receiver that exploit a linear MMSE and a simple

neural network in the adaptation process. It has been shown that the LMS filter and neural

network have similar performance. In [78] the radial basis functions (RBF's) networks have

been considered to adaptively determine unknown system parameters. The output ofthe RBF

is a linear combination of non-linear functions, each of which is applied to the vector input

data. This detector is a single user detector in multiuser communications scenario and

performs as a one shot or Bayesian receiver. Least squares algorithms for adapting MMSE

receivers perform better than a neural network implementation when training sequences for

interfering users are not available.

The Kalman filter, which is the best linear unbiased estimator (BLUE), has been

proposed in the literature for equalization and interference excision. In [54] a discrete

Kalman filter has been considered for the equalization of digital binary transmission in the

presence of noise and intersymbol interference. The Kalman filter has also been used in the

channel estimation and demodulation of binary signals. Kozminchuk and Sheikh [51] present

a Kalman filtering approach for the suppression of narrowband interference in DS-CDMA

communication systems. This approach is based on the digital phase-locked loop Kalman

filter. The application of the KF concept to CDMA detection is also described in [60] in

which an extended KF (EKF) based detector is used for the joint symbol and time delay

estimation of all users in the tracking mode. In [61] a multiuser receiver for asynchronous

DS-CDMA signals based on the KF is introduced in which improved performance of this

detector over the MMSE detector is demonstrated. In [62] it has been shown that the use of

the KF produces symbol estimates with the lowest possible MSE among all linear filters in



long- or short-code systems for a given detection delay, and with a complexity that is fixed

for a given detection delay unlike the case of the MMSE detector.

A major limitation of non-adaptive detectors is that they require the knowledge of the

spreading codes, timings and amplitudes of all the users, which may not be available to

single-user receiver. Moreover, the use of non-adaptive receivers will result in a wasted

resource of unnecessary computations if only a subset of possible users is active. An

important subject in MUD, is the design of adaptive detectors that self-tune the detector

parameters from the observation ofthe received waveform. Adaptive multiuser DS-CDMA

receivers based on the MMSE criterion have been proposed by many researchers [2, 70, 74,

75, and 97]. These detectors have been implemented without requiring any knowledge about

the user parameters except the timing information of the desired user and the use of training

sequence. The typical operation of these adaptive multiuser detectors requires each

transmitter to send a training sequence at start up, which the receiver uses for initial

adaptation. After the training phase ends, the adaptation during actual data transmission

occur in the decision directed mode. In [2] a single user fractionally-spaced decision-

feedback equalizer for MAI rejection has been proposed in an indoor wireless Rayleigh

fading environment. In [70] an N-tap MMSE receiver is proposed, where Nis the processing

gain. Two MAI suppression schemes, to reduce the complexity, have also been considered,

namely; the cyclically shifted filter bank (CSFB) and the oversampling schemes. In [74] an

adaptive MMSE structure is introduced, and the performance ofthe receiver is analyzed. In

[97] the authors consider a centralized MMSE detector, where in addition to a fractionally

spaced feed-forward filter that processes the chip-matched filter output, a feedback filter

processes previous decision from all users to cancel both ISI and MAI. The receiver is able to

remove the effect of slow multipath propagation and the narrowband interference.



Chen and Roy [16] proposed a real-time adaptive form of the decorrelating detector to

combat MAI in CDMA systems. The adaptive receiver combines the matched filtering

followed by the decorrelation operation in one unified step and thus providing an efficient

structure. The incorporation of decision feedback in this structure yields an improved

multiuser receiver. Mitra et al. [80] had developed the adaptive decorrelating detector by

placing constraint on the set of spreading codes to be used by the active users. It has two

modules: it first decorrelates the existing user, and then it determines the spreading code of a

new user entering the network with or without the use of a training sequence. The maximum

likelihood detector has been proposed to determine the new user's spreading code, which

outperforms the LMS algorithm. However, it is assumed that the receiver knows the

existence of a new user.

Halford, K.W. et al. [32] have proposed three detectors/estimators (DE), which are able

to detect a new user and estimate its parameters, which can be incorporated in multiuser

detector. These are the maximum likelihood DE (MLDE), the generalized MLDE and the

cyclic DE (CDE). The first two detectors produce the ML estimates of the new user's

signature sequence, delay and amplitude, while the CDE detects a new user by testing for

cyclostationarity and then uses suboptimal schemes to estimates the new user's signature

sequence, delay and amplitude. A disadvantage of these detectors is that they are

computationally expensive. Moreover, they cannot detect and estimate the parameters of

more than one new user at a time, and the DE's do not perform well at small values of SNR.

Rapajic and Borah [96] have proposed an adaptive MMSE-ML receiver structure for CDMA

in multipath fading channels. The proposed receiver has the ability to perform joint

synchronization, channel parameter estimation, and signal detection. Moreover, an improved

information capacity and BER performance is achieved as compared to the MF-ML receiver.



However, the receiver requires the knowledge of the spreading sequences ofall the users and

also, its computational complexity increases as the number of users grows. A number of

techniques for spatial filtering in CDMA receivers using antenna array have been proposed in

[108]. Results are presented to compare the performance of both the MF and interference

suppression algorithms in a CDMA cellular system. A method for trading convergence

performance with complexity for algorithms using the maximum SINR approach is also

discussed.

Efforts have been directed, in the literature, towards the performance evaluation of the

DS-CDMA receiver in a fading multipath dispersive environment [12, 102]. Zvonar and

Brady [128] have derived an expression for the probability of error of linear multipath-

decorrelating receivers with coherent and differentially coherent reception. Both receivers

have superior performance compared to the RAKE receiver and eliminate error probability

floor caused by MAI on a CDMA reverse link. Sung et al. [107] have generalized the

multiuser communication systems to fading environments. ALMMSE unbiased estimator is

proposed to efficiently estimate the received signal strength of each user in fading

environments which has lower complexity than the optimum receiver. Letaief et al. [58] have

evaluated the error rate performance of an asynchronous DS-CDMA receiver in a wireless

radio communications environment that is characterized by Rayleigh multipath fading

channels.

Hui and Letaief [41] have proposed and analyzed a cochannel interference cancellation

detector for demodulating asynchronous DS-CDMA signals over wireless channel that are

characterized by multipath fading links. Results show that the proposed multistage detector

can significantly improve the system performance over fading channels that are modeled as

slowly varying Rayleigh-fading discrete multipath channels. Kansal et al. [46] have



combined the RAKE principles with the linear maximum SINR processing criteria and

investigated DS-CDMA transmission over frequency-selective fading channels. Sayeed et al.

[103] have introduced a new approach, for achieving diversity in spread spectrum

communications over fast-fading multipath channels using a framework that exploits joint

multipath-Doppler diversity in an optimal fashion.

Miller et al. [76] have evaluated the performance of the MMSE receiver for DS-CDMA

in frequency selective fading channels. It is demonstrated through analytical means the

inability of adaptive implementations of MMSE receivers to perform up to the potential

promised by the ideal MMSE receiver in fast frequency selective fading channels. A method

to achieve the performance of the ideal MMSE is to explicitly track the channel parameter of

all users and then forming the correlation matrix and steering vectors directly, however, this

leads to a computationally costly multiuser receiver.

The optimal solution for the adaptive filtering problems using the least squares criterion

is given by the Wiener-Hopf equations, in which the weight vector is calculated using direct

matrix inversion of the autocorrelation matrix and thus requiring 0[N3] computational

complexity. However, adaptive algorithms such as LMS or RLS are used to approximate this

solution. The LMS algorithm requires 0[N] computations but it converges slowly, while, the

RLS algorithm, on the other hand, converges much faster but requires large number of

computations 0[N2].

It is well known that the RLS algorithm suffers from numerical instability, which has

motivated the development of numerically stable QR-RLS algorithms [83, 36] and the

inverse QR-RLS algorithm [4], which are used in DS-CDMA receivers [93].

To improve the convergence speed of the adaptive digital filters, various algorithms

have been proposed in the literature; the self-orthogonalization algorithm [26],



implementation of the LMS algorithm in the frequency domain [56, 71] and self-

orthogonalization of the LMS algorithm in the frequency domain proposed in [85].

Generally, frequency-domain adaptive digital filters have advantages over time-domain

implementations [104] by providing faster convergence rate, comparable to RLS but with

lower computational complexity. However, frequency domain adaptive filtering is not

directly applicable to DS-CDMA receivers, since the input signal is sampled at the chip rate

while its output is sampled at the bit rate, i.e. the shifting property of the input data does not

exists. For exactly the same reason, fast versions of the RLS algorithm (such as fast

transversal filter (FTF) and fast Kalman algorithms) are also not applicable in this case.

Complexity reduction can be achieved using block adaptive filtering algorithms such as

block LMS (BLMS) [17], in which the filter coefficients are adjusted once per output block,

while maintaining equivalent convergence properties. In [81] a set of algorithms linking

normalized LMS (NLMS) and block RLS (BRLS) have been proposed. These algorithms

converge much faster than the NLMS algorithm (comparable to that of RLS algorithm) while

requiring lower number of operations than the LMS algorithm.

Adaptive MMSE receivers assume the availability of aknown sequence in the training

mode, which requires extra coordination between the receiver and transmitter. In the

decision-directed mode, adaptation may fail due to fading or interference transients which

necessitates the transmission of fresh training sequence in order to recover from failure. This

has motivated the development of blind adaptive interference suppression algorithms, which

do not require the knowledge ofatraining sequence ofthe desired user.

Honig, Madhow and Verdu [38] have proposed a blind adaptive multiuser detector

based on the stochastic gradient minimum output energy (MOE) criterion, which requires the

knowledge of the desired user sequence and its timing only. The proposed algorithm
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possesses low computational complexity but it suffers from switching back and forth

between blind and decision directed modes during the access of new user to the network. The

MOE criterion idea has been extended for the joint acquisition and demodulation of DS-

CDMA signals in a near-far resistant situation [67, 69]. Fathallah et al. [22] have used the

blind MOE based receiver of [38] to suppress narrow-band interference (NBI). A constrained

MOE (CMOE) approach has been used in [111] to derive a blind adaptive CDMA receiver

for obtaining the receiver parameters directly without estimating the system/channel in a

multipath environment. Huang and Wei [42] have presented a blind adaptive algorithm for

the near-far resistant DS-CDMA demodulation to mitigate the effects of mismatch caused by

the timing error on the MOE algorithm. The timing error is also estimated adaptively, and the

estimation can be used for further improving the accuracy in synchronization.

Liu and Xu [64] have proposed a subspace based approach for blind signature

estimation in synchronous CDMA systems. The estimation is accomplished by exploiting the

fact that the user's signature waveform is confined to a subspace defined by its associated

code. The principal advantage of this approach is that it is highly data efficient and is most

suitable for a rapidly changing environment. However, the computation cost is relatively high

due to the complicated matrix manipulation. De Gaudenzi et al. [18] have introduced a

generalized structure of the blind adaptive interference-mitigating detector [38], in which few

modifications to the original algorithm has been performed to make it more suitable for

practical implementations. It is shown that the proposed detector is particularly robust in the

presence of strong asynchronous MAI, and attains the MMSE performance over a large range

of SNR without the need to resort to any additional decision-directed scheme.

In [52] an accelerated-convergence stochastic gradient algorithms have been derived

and analyzed for blind MUD and joint suppression of MAI and NBI. The method of

11



accelerating the convergence is a second round of averaging in the stochastic gradient

algorithm. Simulation results show that this algorithm and the blind RLS have the same

asymptotic convergence rate and tracking properties. However, for short data lengths and

high NBI, blind RLS appears to have better transient tracking properties than the blind

adaptive gradient detector.

Poor and Wang [93] have considered an RLS blind adaptive version of the MMSE

multiuser detection algorithm for the simultaneous suppression of NBI and MAI of a DS-

CDMA communication systems. Two QR-RLS based blind algorithms have been derived,

which can be considered for efficient parallel implementation via systolic arrays.

Wang and Poor [121] have also proposed a multiuser detection scheme based on signal

subspace approach, which can blindly adapt both the decorrelating and the linear MMSE

detector. In [120] the authors have extended the work of[121] by developing subspace-based

techniques to combat both MAI and ISI blindly in the high-rate dispersive CDMA system.

Furthermore, initial delay estimation within the framework of subspace approach has also

been considered. In [99] a new efficient blind adaptive MOE-based detector is proposed, by

exploiting the property that the optimal weight of the MOE filter lies in the signal subspace.

The receiver requires fewer filter coefficients and has improved detector characteristics

(superior convergence rates and steady-state SINR) as indicated by analysis and by

simulation results in comparison to the blind adaptive detector of [38], Ulukus and Yates

[112] have presented a blind adaptive multiuser decorrelating detector for CDMA systems

which uses observables that are readily available at the receiver. The detector is constructed

via adistributed iterative algorithm, which updates the receiver filter coefficients ofadesired

user by using the previous output of the filter under construction. Since the filter output is

random, thealgorithm evolves stochastically.

12



litis [431 has described a code-tracking algorithm for a DS-CDMA receiver based on the

extended Kalman filter (EKF), which provides both code synchronization and joint estimates

of interferer and channel parameters. litis et al. [44] have developed a multiuser DS-CDMA

detector without the knowledge of the delays and amplitudes of the signals. The algorithm is

made adaptive and the likelihood function in the symbol-by-symbol metric is updated using a

set of extended Kalman filters (EKF) innovations. Lim et al. [60] has introduced adaptive

multiuser detector structures using the EKF and RLS formulation to jointly estimate the

transmitted bits of each user and individual amplitudes and time delays. The proposed

detector works in the tracking mode, assuming that initial delay estimate is already available.

However, the detector possesses high computational complexity and, moreover, requires the

knowledge of the noise variance.

Algorithms based on the maximum likelihood (ML) rule, for the time delay estimation

(TDE) of CDMA systems have been developed in [10]. The estimator includes a whitening

filter to suppress MAI, thus yielding a near-far resistant estimator. However, it requires the

knowledge of the transmitted symbols, which can be accomplished by feedback decisions

from the detector. Strom et al. [106] have proposed algorithms based on the ML, MUSIC and

the sliding correlator to deal with the propagation delay, phase and amplitude estimation of

all users in DS-CDMA systems. Parkvall, S. et al. [89] proposed a CDMA receiver using the

modified MUSIC estimator in conjunction with the MMSE interference suppression to obtain

a near-far resistant receiver.

Smith et al. [105] have presented a single user code timing estimation algorithm that is

based on processing the weight vector of an adaptive DS-CDMA receiver. The only side

information required is the spreading sequence of the desired user. The performance of this

13



detector is found to be near-far resistant when the RLS adaptive filter is used. An all one

training sequence or double the filter length is required to provide correct estimates.

Madhow [68] has suggested anear-far resistant TDE method. The delay is estimated by

running N-parallel adaptive algorithms, and then finding the delay, which provides the lowest

MSE. The only requirements are a training sequence for the desired user and a finite

uncertainty regarding the symbol timing.

1.2 Statement of the problem

The present work encompasses a study of adaptive multiuser detection (MUD)

techniques based on the MMSE criterion for the interference suppression and demodulation

of DS-CDMA signals. The aim of the work is to develop techniques and algorithms, which

possess fast convergence rate, require low computational complexity, and moreover, they

may require minimum side information about the users (i.e. without the knowledge of the

training sequence or the knowledge of the timing of the desired user).

The problem, as treated in this study, may be divided into five main parts as follows:

i) Acomparative study of the adaptive algorithms based on LMS, NLMS, RLS and the

modified variable step-size LMS (MVSS-LMS) for interference suppression in DS-

CDMA systems. The development of ablock algorithm for the interference suppression

in DS-CDMA systems, which possesses fast convergence rate with low computational

complexity,

ii) Astudy of the implementation of the KF algorithm, which is optimum in the MMSE

sense, for the interference suppression in DS-CDMA systems. To deal with the instability

problem of the KF, the implementation of the SQRT-KF algorithm, which exhibits better

numerical stability, for the interference suppression in DS-CDMA systems is considered.

14



iii ) The implementation of the RMGS algorithm and its error feedback form lor the

interference suppression and demodulation of DS-CDMA signals, in the presence of both

AWGN and ISI. Parallel implementation via systolic arrays is also studied to reduce the

complexity,

iv ) A study of blind adaptation techniques based on constant modulus algorithm (CMA),

LMS, RLS and QR-RLS for adaptation and interference suppression in DS-CDMA

systems,

v) A study of time-delay estimation (TDE) techniques for DS-CDMA signals in both

initialization and tracking modes.

1.3 Organization of the thesis

The work embodied in this thesis has been arranged in seven chapters as detailed below:

Chapter 2: Adaptive algorithms for interference suppression in DS-CDMA systems.

In this chapter, we first introduce the asynchronous DS-CDMA system model, and then

we present its MMSE solution, which can be implemented using a TDL filter receiver. Next

we present adaptive algorithms for interference suppression of DS-CDMA systems based on

the LMS, NLMS, RLS, MVSS-LMS and RLS algorithms. The performance measures, which

are used to assess the performance of the receiver, are considered next. A novel block

algorithm for interference suppression in DS-CDMA systems is introduced, which possesses

comparable convergence rate as RLS while requiring less computations. Several numerical

examples have been simulated to evaluate the performance of the various algorithms for

different sets of parameters.

Chapter 3: Adaptive DS-CDMA receiver using Kalman filtering.

In this chapter, we consider the application of KF algorithm for the adaptation and

demodulation of DS-CDMA signals. We briefly review the use of the KF in the adaptive
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filtering problem. Then we formulate the state-space representation of the DS-CDMA
signals. To deal with the numerical instability of the KF, we have used the SQRT-KF
algorithm for the interference suppression in DS-CDMA signals, which shows better
numerical stability. Several numerical examples have been simulated to evaluate the

performance ofthese algorithms.

Chapter 4: RMGS-based adaptive interference suppression in DS-CDMA signal.
In this chapter, we first review the QR-RLS algorithms, which are used to deal with the

least squares problem in an effort to enhance its stability. We then present the QR-RLS and
inverse QR-RLS algorithms for the adaptation and demodulation of DS-CDMA signals. Next
we have proposed the implementation of the RMGS algorithm for the interference

suppression in DS-CDMA signals. The parallel implementation of the RMGS algorithm via
systolic arrays is presented in detail. We then present the results of the simulations using the
RMGS algorithm and compare its performance with other adaptive algorithms. Also we
present the performance of the adaptive DS-CDMA receiver based on NLMS and RMGS
algorithms in amultipath fading dispersive environment.

Chapter 5: Blind adaptive interference suppression algorithms.

In this chapter, we remove the requirement for the knowledge of atraining sequence and
present several blind adaptive algorithms. First we present the CMA algorithm for the
adaptation and interference suppression of DS-CDMA signals. Then we focus on the blind
MOE algorithms for the adaptation and interference suppression in DS-CDMA systems,

namely blind LMS, blind RLS and blind QR-RLS algorithms. Anovel blind RMGS-based
algorithm is derived and implemented for the demodulation of DS-CDMA systems. The
performance of the various blind adaptive algorithms is presented by simulating anumber of
numerical examples.
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Chapter 6: Adaptive time-delay estimation Using UMGS algorithm.

In this chapter, we consider the TDE problem in DS-CDMA systems. We first review

the adaptive TDE techniques, and then we present two TDE methods; the first method is

based on cross-correlating the MMSE weight vector, obtained by implementing the RMGS

algorithm, with the desired user spreading sequence. The second method is based on running

N-parallel MMSE adaptive algorithms, based on the RMGS algorithm. The two methods are

implemented for both the initialization and tracking modes. A blind version of the parallel

TDE algorithm is also presented. Several numerical examples have been simulated to

evaluate the performance of these TDE methods in a near-far environment.

Chapter 7: Conclusions

We conclude the thesis with a summary of the important results and the suggestions for

future work.

Also included are two appendices. Appendix (A) presents the derivation of the

multipath fading dispersive channel model, which is used to study the performance of the

adaptive DS-CDMA receiver in multipath fading environments. Appendix (B) presents the

solution of the constrained optimization problem (equations 5.26 &5.27) which is used in the

derivation of the blind MOE-based RLS algorithm.

17



CHAPTER 2

ADAPTIVE ALGORITHMS FOR INTERFERENCE

SUPPRESSION IN DS-CDMA SYSTEMS

Over the last two decades DS-CDMA has become a feasible alternative to both

frequency-division multiple-access (FDMA) and time-division multiple-access (TDMA) in

cellular, personal and wireless communications. The primary advantage of spread spectrum

technology, the basis of CDMA, is its ability to reject interference whether it be an

unintentional interference by another user simultaneously attempting to transmit over the

channel, or an intentional interference by a hostile transmitter attempting to jam the

transmission. The inherent processing gain of the spread spectrum provides the system with

the interference rejection capability. A single-user receiver treats the received signals due to

other active users as stationary interference, but suffers from near-far effect in the absence of

power control. In multiuser detection, the receiver jointly detects those signals in order to

mitigate the effect of non-orthogonal properties of received signals. Adaptive multiuser

detection has been proposed to solve the problems inherited in the conventional detection

techniques and has become an active area of research in recent years.

In this chapter, we first briefly review the interference rejection techniques in DS-

CDMA systems in section 2.1. This is followed by the introduction of the DS-CDMA signal

model in section 2.2. In section 2.3, we next consider the use of the LMS, normalized LMS,

modified variable step-size LMS and RLS algorithms based on the MMSE criterion, for the

adaptation and demodulation of DS-CDMA signals. Then a novel block adaptive filtering

algorithm is introduced which possesses a fast convergence rate as compared to LMS
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algorithm, while simultaneously requiring much lower computations as compared to RLS
algorithm. The performance measures, which are used to assess the various adaptation
algorithms, are presented in section 2.4. Finally, simulation results are presented in section
2.5 to compare and assess the performance of different adaptive algorithms.

2.1 Introduction

In DS-CDMA systems anumber of users share acommon channel bandwidth in which

the users are distinguished from one another by superimposing a distinct pseudo-random

code, which is known at the receiver to recover the transmitted information. All users can

transmit at the same time and are allocated the entire frequency spectrum for transmission.

Hence, the detector receives asignal composed of the sum of the signals of all the users,

which overlap in time and frequency. Earlier demodulation schemes were restricted to single-
user detection strategy which makes use of the cross-correlation properties of the signal

constellation. The conventional receiver consists of a bank of K matched filters, one

corresponding to each user. By correlating the received signal with the signature sequence of
the desired user, the data bits are demodulated. This receiver exploits the orthogonality

property of the spreading waveform and ignores MAI in the receiver design. Since, in
practice the interfering signals are not truly orthogonal to the desired signal, the output of the
conventional matched filter for the desired user contains contributions from the MAI. Thus,

even if the receiver's thermal noise level goes to zero, the error probability of the

conventional receiver exhibits anon-zero floor because of the MAI. The MAI caused by any

one of the users is generally small, but as the number of interferers or their power increases,

MAI becomes substantial. Moreover, if the power of the interferers is much stronger than

that of the desired signal, then the weak signal of the desired user is overwhelmed by the

MAI and reliable reception is impossible. This is known as the near-far problem (which may
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also occur^ due to fading). The performance of the conventional single-user detector is

acceptable, provided the energies of the received signals are not too dissimilar and that the

signature waveforms are designed so that their crosscorrelations are low enough [118]. The

MAI and the near-far problem encountered by conventional reception technique can be

eliminated by the use of multiuser detection (MUD) [116,117] in which the information

about multiple users is used to detect each individual user. The optimum multiuser detector

[116] uses a bank of matched filters followed by the use of a Viterbi maximum likelihood

algorithm. However, it requires the knowledge of the interfering user's power, timing and

spreading sequence. Furthermore, the complexity of the receiver grows exponentially with

the number of active users.

To reduce the complexity, a number of suboptimal detectors have been proposed in the

literature, such as the linear decorrelating detector [65, 66], the successive interference

cancellation detector [119, 50, 113, 114, 115], and the zero-forcing decision-feedback (ZF-

DF) detectors [19, 20]. These detectors are near-far resistant thus eliminating the need for

strict power control. The drawback of these detectors is that their computational complexity

increases linearly with the number of users, and the users parameters are required to be

known at the receiver.

Xie et al [124] had developed the centralized MMSE detector, which minimizes the

error between the actual data and the soft output of the receiver. This detector can be

implemented using a tapped delay line filter having a linear complexity in the number of

users. The MMSE detector possesses better probability of error than the decorrelating

detector. As the background noise goes to zero the MMSE detector converges in performance

to the decorrelating detector. However, the disadvantage of this detector is that it requires the

knowledge of the received amplitudes of all users and, moreover, the knowledge of the
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inverse ofthe correlation matrix is also required. It may be noted that it possesses lower near-

far resistance compared to the decorrelating detector.

Adaptive interference suppression techniques have been used in the multiuser detection

schemes, which do not require explicit knowledge of the MAI. It is analogous to adaptive

equalization of dispersive channels by virtue of the analogy between MAI and intersymbol-

interference (ISI). These receivers require the knowledge of sequence of symbols transmitted

by the desired user during training period, and the knowledge of the timing of the desired

user.

Madhow and Honig [70] have considered a single-user MMSE receiver for interference

suppression in DS-CDMA systems, and have proposed three schemes for interference

suppression in DS-CDMA detectors with finite-complexity. The output of the chip matched

filter is sampled at the chip rate and then an N-tap FIR filter is used to minimize the mean-

squared error between the transmitted and detected symbols, where Nis the processing gain.

It is demonstrated that the MMSE-based receiver can offer a dramatic performance

improvement relative to the matched filter detector.

Rapajic and Vucetic [97] have considered the adaptive MMSE linear and centralized DF

receivers. The timing, signatures and carrier phase information from other users are not

needed. Moreover, its complexity is independent of the number of users and is slightly higher

than the complexity of the matched filter receiver. It is also shown that the adaptive linear

receiver is able to completely remove the effect of narrowband interference and multipath

propagation, provided that the variation in multipath parameters is slow. The centralized DF-

receiver is shown to have the same timing recovery, near-far resistance, and multipath

suppression properties as the linear receiver, whereas MAI cancellation is significantly
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improved as compared with the linear receiver. However, the complexity of the adaptive

centralized DF receiver increases linearly with the number of users.

Abdulrahman et al [2] have presented an adaptive fractionally spaced DFE for a CDMA

system in an indoor wireless Rayleigh fading environment. The system only uses information

about the desired user's spreading code and the training sequence. The optimum

performance, convergence time, and BER results show the capabilities of this receiver in

minimizing the effects of interference, multipath, fading, and AWGN in a slow acting power

control environment. Two receiver configurations were considered: one that has knowledge

of desired user spreading code (spreading sequence MF {SSMF} receiver) and the other has

no information about all spreading codes (LPF receiver). A study of the performance showed

that the LPF receiver gives better MSE performance than that obtained by the SSMF

receivers.

Miller [74] has considered an adaptive DS-CDMA receiver for interference rejection. It

uses a chip-matched filter followed by an adaptive equalizer structure to perform the

despreading operation. This receiver has been analyzed to determine the equalizers tap gains

and the steady state residual MSE, from which the capacity of the system can be calculated.

It is shown that the receiver is near-far resistant and provides a two-fold increase in capacity

compared to a conventional receiver with perfect power control. Klien et al [47] have

presented four suboptimal detectors-based on MMSE and zero-forcing detectors with and

without decision feedback to combat both ISI and MAI. The performance of these detectors

is shown to be better than that of the conventional detector. The MMSE detector performs

better than the corresponding ZF detector and the performance of the equalizers with DF is

better than the corresponding equalizers without feedback.
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Based on the MMSE criterion, in this chapter, we first consider the use of the LMS and

RLS algorithms [36] for the adaptation of the TDL-filter weights for the DS-CDMA receiver.

It is well-known that the RLS algorithm possesses faster convergence but requires a large

number of computations, 0[N2]. On the other hand, the LMS algorithm requires much lower

computations 0[N], but it converges slowly.

One approach to improve the performance of the LMS algorithm is to employ a time-

varying step-size in the weights update recursion. Alarge step-size is used when the receiver

is far from convergence, thus speeding up the convergence speed. On the other hand, asmall

step size is used when the algorithm is nearing convergence, thus a low value of

misadjustment is achieved, thus improving the overall performance [53, 72, 34]. However,

the performance is sensitive to the noise disturbance, and performs well only in ahigh SNR

environment. A robust MVSS-LMS algorithm is proposed in [3], where the step size is

adjusted according to the square of the time-averaged estimate of the autocorrelation of the

instantaneous error e(n) with pervious error e(n-l). Simulation results indicate it superior

performance compared to other VSS-LMS algorithms in astationary environments, whereas

for anonstationary environments it performs as well as other VSS algorithms.

Various structures combined with adaptation algorithms have been proposed, in the

signal processing literature, to improve the convergence speed of the adaptive filters. The

self-orthogonalization algorithm [26] is used to increase the convergence speed of the LMS

adaptive algorithm using avariable step-size. This step size is obtained by multiplying the

inverse of the correlation matrix by a constant. The resultant matrix, which controls the

convergence speed, is the identity matrix and hence all its eigenvalues are equal. Therefore,

the convergence rate will become faster but with a large increase in the computational

complexity. Another method of increasing the convergence speed of the adaptive filters is to
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realize the LMS algorithm in the frequency domain, using the discrete Fourier transform [56,

71]. By transforming the input signal to the frequency domain, a set of uncorrelated

(orthogonal) signals are generated, and then by using a variable step-size in the weights

update equation (i.e. by dividing the same constant by the power estimates of each frequency

bin), an improved convergence characteristics is achieved. This is called the self-

orthogonalization of the adaptive digital filters in the frequency domain proposed first in

[85], which is reported to have significantly improved stability performance over the LMS

adaptive digital filter [56]. However, frequency domain adaptive filtering is not directly

applicable to DS-CDMA receivers, since the input signal is sampled at the chip rate while its

output is sampled at the bit rate, i.e. the shifting property of the input data does not exists. For

exactly the same reason, fast versions of the RLS algorithm (such as fast transversal filter

FTF and fast Kalman algorithms) are also not applicable in this case.

Complexity reduction can be achieved using block adaptive filtering algorithms such as

block LMS (BLMS) [17], in which the filter coefficients are adjusted once per output block,

while maintaining equivalent convergence properties. A set of algorithms linking normalized

LMS (NLMS) and block RLS (BRLS), which allow a trade off between arithmetic

complexity and convergence rate, have been proposed in [81]. These algorithms require a

lower number of operations than the classical LMS algorithm, while converging much faster

(comparable to that of RLS algorithm). Based on these algorithms, in this chapter, a novel

block adaptive algorithm (with low computational complexity) has been adopted to DS-

CDMA systems to increase the convergence speed in comparison to the LMS algorithm.

2.2 MMSE receiver for DS-CDMA systems

In CDMA systems, the channel is shared by K users, where each user is assigned a

spreading waveform ck(t), which is zero outside the interval [0,T], defined by:
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N-

Ck(t)=IckJKt-jTc) (2J)
.i=o

where T is the signaling bit interval, N=T/TC is the processing gain, v|/(t) is the chip waveform

of rectangular shape and duration Tc, and ckJe {-1,1} is the jth element of the spreading code

of the kth user. The spreading codes (signature sequences) are typically chosen to have

crosscorrelation properties that reduce multiple access interference between users. This type

of signaling will spread the bandwidth of the data signal by a factor of N. The non-

orthogonality of these spreading codes increases the MAI to the desired user data bits, and

thus affects the detectability. However, the effect of this interference can be suppressed

through proper signal processing algorithms and multiuser detection techniques [39, 40] as

mentioned earlier.

The kth user transmits a signal, in the interval 0<t<T corresponding to first bit, of the

form

sk(t)=dk(t)ck(t)cos(coct +ek) 0<t<T (2.2)

where dk(t) is the kth user data bit, coc is the carrier frequency and 9k is its phase. The input

data is antipodal randomly generated zero mean signal. The received signal (Fig.2.1) is of the

form: vp$

y(t) =XVPk"sk(t-xk) +n(t) (2-3)
k=l

where Pk is the received power of the kth user and Tk is its delay which is assumed to be

uniformly distributed over [0,T], and n(t) is additive white Gaussian noise. It is assumed that

the receiver is synchronized with the desired user (user 1). The contribution of the kth user

within the interval (n-l)T to nT, associated with user's one data bit di(n), is due to two data

bits di(n-l) and di(n), as shown in Fig.2.2.
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Fig.2.1 Blockdiagram of K CDMA transmitters.

di(n-l)

4(n-l)

Fig.2.2 Illustration of thecontribution to the channel output from the desired user and kth

interferer.
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Fig.2.3 Block diagram of the adaptive DS-CDMA receiver.
Training
Sequence

The block diagram of a DS-CDMA receiver is shown in Fig.2.3. The receiver converts

the received signal y(t) to a baseband signal. After the baseband conversion, the received

signal is passed through achip-matched filter and sampled at the end of each interval. The

output of the chip-matched filter at the mth sample of the nth bit is then

(m+l)Tc+T,
rm(n)= Jy(t)v|/(t-mTc)cos(©ct +e,)dt

mTc+T,

Substituting Eq.(2.3) into Eq.(2.4) yields:

(m+l)Tc+Tl

,(n)= j XjF\sk(t-Tk) +n(t)
k=l

viy(t-mTc)cos((oct +e,)dt

(m+t)Tc+t,

,(n)= j SVpTsk(t-xk) v|/(t-mTc)cos(coct +e,)dt
mT.ti, k = l

(2.4)

(m +l)Tc +T,

Jn(t)i|/(t-mTc)cos(©ct +e,)dt (2.5)
mT,+x,

Substituting Eqs. (2.1) and (2.2) in the first term (F) of Eq.(2.5) yields:

27



(m + l)T,.+T,

v|/(t -mTc)cos(fl)c( i 0|)dt
ml' +t,

XVpk dk(t-Tk)ck(t-Tk)cos{(.»c(t-xk) + Ok
k = l

(m +l)Tc +T|

F- J SVPk"dk(t-Tk)XkJv|/(t-jTe-xk)}cos{cDc(t-ik)+0k}
J o

v|/(t-mTe)

*cos(coct+ e,)dt (2.6)

During the estimation of the desired signal di(n), the interference of the kth user are from two

adjacent data bits: dk(n-l) contributes in the interval (n-1 )T<t<(n-1 )T+xk and dk(n)

contributes in the interval (n-l)T+ Tk < t < nT. Therefore, Eq.(2.6) can be written as:

F =

(m+l)Tc+T,

J
mT.+T,

N-l

Xv/^d^n-,)ZK,j^(t +NTc-JTc-^k)tos{fflc(t-Tk) +ek}
k=l j=0

K

I
k=l

N-l

Xv^k"dk(n)XfCkJv*;(t_JTc_Tk)jco^coc(t-tk) +0k}

*0
J(n-l)T<t<(n-l)T+xk

-\ \

(m+l)Tc+T,

* I
mT+T, j-o J(n-1)T+ Tk<t<nT

v(/(t - mTc) cos(coct+ 0 j)dt (2.7)

,<Y ^u^r-^ .'&W
Assuming that Pi=l and Ti=0 for the desired user, and that 6j=0, although it can be easily

modified to take non-zero values into account. The high-frequency term of cos coct will be

filtered out since we are integrating in the interval (0 to Tc), then the last integral will be

simplified to:

N-l (m+ 0TC
F=dj(n) I cjj jv|/(t-mTcMt-jTc)dt

j =0 mTr

0 V

K

I V^k"
k = 2

N-l (m+ 0Tc
dk(n-0 I ck ; Jv)/(t-mTc)v)/(t +NTc-jTc-Tk)dt

j=0 ' mTc

N-l (m+ 1)TC
dk(n) I ck j Jv|/(t-mTc)v|/(t-jTc-Tk)dt

j=0 ' mTc
(n-l)T + Tk <t<nT

,pVr

(M iV*-
„J\
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Let the delay of the kth user be expressed as: xk=pkTc+ 5k , where pk is an integer

between 0and N-l, and 5k lies in the interval [0,TC), then the last integral will be:

N-l T<
F=d,(n)]£c1j Ji(/(t)\|/(t-jTc+mTc)dt

V N-l 'c ^-s |dk(n-l)£ckj ]v(t)\|/(t+NTc -jTc +mTc -pkTc -5kTc) dt|(n.,)T<t<(n-l)T+Tk
i=0 0

X^
k=2

T.N-+dk(n)£ckj |vKt)H'(t-jTc+mTc-pkTc-5kTc)dt|(n.1)T+Tk<i<nT
j=0 0

T.

(2.9)

Since Xci jjv(tMt- JTc +mTc)dt is always zero exCept When j=m'then thC fifSt term
j=o 0

of Eq.(2.9) is equal to d,(n) C,m. In asimilar manner, the last terms of Eq.(2.9) will reduce to

K

I
k=2

£ j2Pk~{dk(n-\)cKU+m+p^Sk +dk(n)ck>m+A(l-£k)

Let ck=[cok c,,k cN-i,k]T be the spreading sequence for the kth user and let

r(n)=[ro(n) ri(n) rN.l(n)]T be the contents of the TDL at the nth data sample time. The

normalized contents ofthe TDL filter can be written as in [74]:

r(n) =d i(n) ci+ £^ dk(n) Ji<(n) cos(9k) +^n)
k=2

Ik(n) = Z2k-i(n)a2k-i(pk,5k) +z2k(n)a2k(pk,6k)

z2k.i(n)=[dk(n)+dk(n-l)]/2

22k(n)=[dk(n)-dk(n-l)]/2

where:

(Pi+Da2k_,(PkA) = 8.c * +(l-6k)ck
(Pk)

(P, +1) -(Pw)
iVk +o-Vekk
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Ck _[ck,N-m Ck,N-m +l"-Ck,N-l Ck,0 Ck,r"Ck,N-m-l] (2J5)

Ck "[_Ck,N-m"Ck,N-m +r--"Ck,N-l Ck,0 Ck,r"Ck,N-m-l] (2'16)

r|(n) is a vector of random Gaussian noise variables with zero mean and variance of a .

. The process of adjusting the TDL weights vector, w(n), is called weight adaptation,

where w(n)=[w0(n), wi(n), . ., wN-i(n)]T is the TDL filter weights during interval

(n-l)T<t<nT. The output of the TDL filter is given by [122]:

N-l

d,(n) =Xwk(nK(n) (2.17)
k=0

or, using vector notation

d, (n) = rT(n)w(n) =wT(n)r(n) (2.18)

9 The error signal is obtained by subtracting the error signal from the desired response, i.e.:

e(n)=d,(n)- d,(n) =d,(n)- wT(n) r(n) (2.19)

^ The instantaneous squared error is'by:

e2(n)= d,2(n) + wT(n) r(n) rT(n) w(n) - 2 d,(n) rT(n) w(n) (2.20)

Assuming, that e(n), di(n) and r(n) are statistically stationary and taking the expected value

of e (n) over n;

E[e2(n)] = E[d,2(n)] + wT(n) E[r(n) rT(n)]w(n) - 2 E[di(n) rT(n)] w(n) (2.21)

Let R(n) = E[r(n) rT(n)], be designated as the input autocorrelation matrix. Similarly, define

P(n)=E[di(n) r(n)] as the crosscorrelation vector between the desired response and the input

components. Thus the MSE designated by £,, is given as:

4= E[e2(n)] = E[d,2(n)] + wT(n) R(n)w(n) - 2 PT(n) w(n) (2.22)

The gradient of the MSE may be written as:

aw ctvq MV| <JW]vj_i
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= 2 R(n) w(n) - 2 P(n)

To obtain the minimum MSE, the weight vector w(n) is set at its optimal value w0,

where the gradient is zero:

V(£) =0=2Rwo-2P (2-24)

Assuming Ris non-singular, the optimal weight vector w0 called the Wiener weight vector, is

given by:

D 1P (2.25)
w0= R r v

which is an expression of the Wiener-Hopf equation in matrix form. Also, the minimum

MSE is given by:

^mm =E[d,2(n)]+ w0T R)w0 - 2PT w0

=E[d,2(n)]-PTw0 (2-26)

2.3 Adaptive MMSE receiver

After chip-matched filtering and chip-rate sampling of the received signal, the output

samples are fed into atapped delay line (TDL) filter of length N. The output of the TDL filter

is sampled at the bit interval, and hard-limited to form an estimate of the desired data bit

<5, (n). The receiver requires the knowledge of the training sequence at the beginning of the

learning phase and then it switches to the decision directed mode during actual data

transmission.

The optimal weights vector for the MMSE receiver, given by w0= R-'P, minimizes the

MSE (4), where R(n) is the autocorrelation matrix of the vector r(n) defined as:

K

I
k=2

1/

R(n) =c, c} +£Pk cos2£k E[Ik(n) l[(n)] +o"2 INXN (-227^
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where INxn is the identity matrix, a2 is the noise variance and P(n) is the crosscorrelation

vector defined as P(n)=E[d|(n) r(n)], which using Eq.(2.10) reduces to:

P(n) = c, (2.28)

It is clear from Eq.(2.22) that in order to calculate the weights vector, the inverse of

R(n) is required, which requires 0[N3] operations. To reduce the complexity, adaptive signal

processing algorithms, such as LMS and RLS, have been proposed in the literature to

calculate the weight vector w(n).

2.3.1 The Least-Mean-Square (LMS) algorithm

The LMS algorithm is based on the method of steepest descent [122]. It is developed to

update the weights vector w(n) by estimating the gradient vector of the MSE ^=E[e (n)],

where e(n) is the estimation error calculated using the current estimate of the weight vector

w(n) as defined by Eq.(2.19). However, in the LMS algorithm, e (n) itself is taken as an

estimate of %. The gradient of the estimate is then given by:

V(n)=-2e(n)r(n) (2.29)

According to this method the value of the weight vector at instant (n+1) is computed using

the simple recursive relation [122]:

w(n + 1) = w(n) - p (n) V(n)

= w(n) + 2p(n) e(n)r(n) (2.30)

where p(n) is a scalar gain factor that controls the rate of convergence and stability of the

algorithm. According to the value of the step-size, in the following two algorithms have been

considered; namely the fixed step-size and variable step-size LMS algorithms.
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2.3.1.1 Fixed step-size LMS algorithm

In this algorithm the step-size is fixed to acertain value p. For convergence to occur and

to ensure stability of the algorithm, p should be chosen such that 0<p<2/^max where Xmax is

the largest eigenvalue of the input correlation matrix. The recursive procedure is started with

the initial guess w(0), where aconvenient guess is anull vector.

From Eq.(2.30) it is clear that the LMS algorithm can be implemented without squaring,

averaging or differentiation and is elegant in its simplicity and efficiency. It requires 2N+1

multiplications per iteration. However, its disadvantage is that it needs large data samples to

guarantee convergence (i.e. slow convergence-rate) and it is sensitive to the input signal

statistics. The LMS algorithm is summarized in Table 2.1.

Table 2.1 The LMS algorithm

Initialization w(0)=0. , 0 < p < 2/Xmax

Algorithm Complexity

e(n)=d(n> wT(n)r(n)

Forn=l,2 , do

w(n+l)= w (n) + 2 p (n) e(n)

N Mult.

(N+l) Mult.

Total (2N+l)Mult.

Note that in complexity evaluation, only multiplications have been taken into account.

The excess MSE due to estimation noise £«) of the LMS adaptive algorithm is given

by [122]:

^ex = Htr(R) 4min
(2.31)
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where tr(.) stands for trace of the matrix in the brackets and ^min is the minimum value of the

MSE. The misadjustment ofthe adaptive algorithm is defined as the ratio ofthe excess MSE

to the minimum MSE, and is thus a measure of how closely the adaptive process tracks the

true Wiener solution. Therefore, the misadjustment of the LMS algorithm is given by:

M=ifi- =fi tr(R) (2-32)
bmin

The efficiency ofthe LMS algorithm has been shown to approach the theoretical limit

for adaptive algorithms, when the eigenvalues ofthe correlation matrix R are equal or nearly

equal. With disparate eigenvalues, however, the misadjustment is primarily determined by

the fastest mode ofadaptation, while the settling time is limited by the slowest mode [122].

2.3.1.2 The normalized LMS algorithm

In the LMS algorithm to adapt the weights vector w(n) in Eq.(2.30), a correction factor

proportional to the input vector r(n) is directly applied. Therefore, when r(n) is large, the

LMS algorithm experiences a gradient noise amplification [36]. To solve this problem and to

ensure the stability of the algorithm, the normalized LMS algorithm is used, in which, the

correction factor is normalized with respect to the instantaneous input power.

Therefore, the weights update equation is written as:

w(n +1) =w(n) + :r-L e(n) r(n) (2.33)
II r(n)|l

where Ji is the adaptation constant, which should satisfy the following relation to ensure

convergence and stability: 0 < Ji < 2, and ||r(n)| is the norm of vector r(n) defined as

rT(n)r(n). The NLMS algorithm is summarized in Table 2.2.
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Table 2.2 The NLMS algorithm.

Initialization w(0)=0., 0 < 7J <2 (adaptation constant)

Algorithm

E(n)=d(n)- wT(n) r(n)

Forn=l,2, do

w(n+l)=w(n)+ 7T-—; e(n)r(n)
II r(n)||

TOTAL

Complexity

N Mult.

2N+1 Mult.

(3N+l)Mult.

2.3.1.3 Modified variable step-size LMS algorithm
(V)

To overcome the inherent limitations of the fixed step-size LMS algorithm, a time-

varying step-size LMS algorithm may be employed. The algorithm is based on using large

step-size values when the algorithm is far from the optimal solution, thus speeding up the

convergence rate. On the other hand, when the algorithm is near optimum, small step-size is

used to achieve a low level of residual MSE, thus improving the overall performance. The

step-size adjustment follows some criterion that can provide an approximate measure of the

adaptation state.

In this section, we introduce the Modified Variable Step-Size (MVSS) LMS algorithm

proposed in [3] for the adaptation of DS-CDMA systems. In MVSS algorithm the step-size

is adjusted according to the time-averaged estimate of the autocorrelation of e(n) and e(n-l).

The weight update recursion follows Eq.(2.30). The step-size recursion update uses an

estimate of the autocorrelation between e(n) and e(n-l) which isdescribed as:

p(n) =p(n-l) +(l-P)e(n)e(n-l) (2-34)
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where p(n) is introduced in the update since the autocorrelation is a good measure of the

proximity to the optimum and also because it rejects the effect of the uncorrelated noise

sequence on the step-size [3]. In the early stage of adaptation the error autocorrelation

estimate p2(n) is large, resulting in a large step-size p(n). As we approach the optimum, the

error autocorrelation approaches zero, resulting in a smaller step-size. Therefore, this

provides the fast convergence due to large initial value of p(n) while maintaining low

residual MSE due to the small final value of p(n). The proposed step-size update given by [3]

is:

2p(n+l)=ap(n) + yp2(n) (2.35)

where 0<a <1, y>0 and p(n+l) is set to pmjn or pmax when it falls below or above these lower

and upper bounds, respectively. The constant pmax is normally selected near the point of

instability of the conventional LMS to provide the maximum possible convergence speed.

The value of pmjn is chosen as a compromise between the desired level of steady-state MSE

and the required tracking capabilities of the algorithm. The parameter y controls the

convergence time as well as the level of residual MSE of the algorithm. The positive constant

P is an exponential weighting factor. The choice of a, p and y is important, and practically,

their values are selected to provide the same MSE attained by the FSS-LMS algorithm while

improving the convergence speed. The MVSS algorithm is summarized in Table 2.3, and it is

clear that it involves two additional update equations as compared to the conventional LMS,

thus, the added complexity is six multiplications per iteration.

To ensure the convergence of the weight vector mean, the value of the step-size should

satisfy the:

0 < E[p(n)] < 2/XmdX (2.36)
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Table 2.3 The MVSS-LMS algorithm.
. —

Initialization w(0)=0.

Algorithm Complexity

Forn=l,2, , do

e(n)=d(n)- wT(n)r(n)
N Mult.

w (n+1) = w (n) + 2 p(n) r(n) e(n)
(N+1) Mult.

3 Mult.
p(n) = p(n-l) + (l-P)e(n)e(n-l)

3 Mult.

p(n+l) =ap(n)+yp2(n)

TOTAL (2N+7) Mult.

However, a sufficient condition that ensures convergence ofthe MSE is

o<3*'<°°>'< (2.37)

E[M («>)] 3tr(-R>>

where E[p(oo)] and E[p2(oo)] are the steady-state values of the E[p(n)] and E[p2(n)]

respectively. The misadjustment of the MVSS-LMS algorithm can be approximated by [3]:

=^Lo-/?),tr(R)
(l-a2)(l +/?)

2.3.2 The Recursive Least Squares (RLS) algorithm

The method of least squares can be adopted recursively to update the filter weights by

minimizing the exponentially weighted sum ofsquared errors defined as:

e(n) =ZXn-ie2(n)
i-i

where Xis the forgetting factor less than but close to unity. The inverse of (l-X) is ameasure

of the memory of the algorithm.

(2.38)
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The optimum value of the weight vector for which the cost function e(n) is minimized is

given by the set of equations:

R(n) w0(n) =P(n) (2-40)

where R(n) is an N-by-N correlation matrix defined by:

R(n) =£r'r(n)rT(n) (2-41)

and P(n) is the crosscorrelation vectordefined by

P(n) =ZXnir(i)d,(i) (2-42)
i-i

The solution ofEq.(2.40) requires 0[N3] computations at each iteration. This can be reduced

to 0[N2] by using a recursive approach to compute R"'(n) rather than computing the inverse

of R(n) at each iteration.

The correlation matrix R(n) and the crosscorrelation vector P(n) can be recursively

updated as:

R(n) = XR(n-1) + r(n) rT(n) (2.43)

and

P(n) = XP(n-l) + r(n)di(n) (2.44)

Applying the matrix inversion lemma [36] to Eq.(2.43) enables the computation of R" (n) as

follows:

R-'(n) = X'1 R-'(n-l) - XA k(n) rT(n) R'l(n-1) (2.45)

which is the Riccati equation for RLS, where:

fcQQ. V'R-'Cn-DrCO (2.46)
l +A.~,rT(n)R"1(n-lMn)

is known as the Kalman gain vector. By rearranging Eq.(2.46) the Kalman gain vector can be

written as:
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k(n) =[r1 R-'(n-l) - X1 k(n) rT(n) R"l(n-1)] r(n)

=R-'(n) r(n) (2.47)

The recursive equation for updating the weight vector in accordance with the least-square

error criterion can be shown to be [36]:

w(n)=w(n-l)+k(n)e(n) (2-48)

where e(n) is the aperiori estimation error defined by:

e(n)=d,(n)- wT(n-l)r(n) (2.49)

The excess MSE due to estimation noise is given by [21]:

I =!Z^N£ . (2.50)
Sex . i>( S>min

1 + A

The misadjustment will be

M=^N (2-5D
1 + A

The RLS algorithm is summarized in Table 2.4.

An important feature ofthe RLS algorithm is that the tap-weight vector changes with

time by an amount proportional to the Kalman gain vector k(n), and each tap-weight in effect

is controlled by one of the elements of k(n). Correspondingly, the rapid convergence is

achieved. The convergence speed of the RLS algorithm is much superior to that of LMS

algorithm, but at the expense of a large increase in the computational complexity, 0[N ] per

iteration, in contrast to LMS algorithm in which 0[N]computations per iteration are required.

It has been shown that the RLS algorithm attains the optimum solution injust N iterations

if the uncorrelated thermal noise is small. Moreover, the solution is less sensitive to the

eigenvalue disparity in the input autocorrelation matrix than the LMS solution.
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Table 2.4 The RLS algorithm

Initialization P(0)= 1/5 (5 is small positiveconstant) , w(0)=0.

Algorithm

For n=l, 2, do

A"' R-'(«-l)r(n)
k(n)

\ +VrJ(n)R-\n-\)r(n)

e(n)=d,(n)- wT(n-l)r(n)

w (n)= w (n-l)+ k(n) e(n)

R-'(n) = X'1 R-'(n-l) - X'1 k(n) rT(n) R"'(n-1)

TOTAL

Complexity

2N2 + NMult.
NDiv.

N Mult.

N Mult.

N2 Mult.

(3N2 + 3N) Mult.
+ N Div.

2.3.3 The block adaptation algorithm

As has been stated earlier, the LMS algorithm allows simple implementation and

requires 0[N] operations per iteration, but suffers from slow convergence. The RLS

algorithm, on the other hand, has much faster convergence rate as compared to LMS, but

requires more computations per iteration. In this section, we present the implementation of a

modified version of the block algorithm introduced in [81], which links NLMS and block

RLS [BRLS] algorithms, for the demodulation of DS-CDMA signals. This algorithm allows

a trade-off between arithmetic complexity and convergence rate.

The implemented algorithm processes blocks of data each of size L bits. Let the

contents of the TDL filter at the interval (n-l)T < t < nT be defined as r(n) = [ro(n), ri(n),. . .,

rN-i(n)] . Also, define X(n)=[r(n-L+1), . . . ., r(n-l) , r(n)] with N-by-L dimension as the

input data matrix constructed from the last L input vectors to the TDL, w(n)=[wo(n), wi(n),. .

W(N-i)(n)] as the TDL filter weights at interval n which is assumed to be fixed during
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a block interval and D(n)=[ dn-L+i, . . . ., d„.|, d„]T as the vector of last L data bits of the

desired signal. The adaptation algorithm for a block size ofLdata bits, and filter oflength N

is given by [81]:

w(n+l)=w(n-L+l) +X(n)E» (2.52)

Ef(n)=D(n)-XT(n)w(n-L+l) (2-53)

E»= [ XT(n) X(n) ]"' Ef(n) (2.54)

where: Ef(n) is the error vector resulting from filtering the input sequence by the previous set

ofcoefficients w(n-L+l) (or is the aperiori error vector), and E^(n) is the vector ofthe N last

weighted errors. This algorithm is easily seen to reduce to an NLMS algorithm (if L=l), and

to a BRLS algorithm (ifL=N). To ensure the stability ofthe algorithm the adaptation gain

factor pb (step size) in the weights update equation (0<pb<l) is used, thus:

w(n+l)= w(n-L+l) + pb X(n) E» (2-55)

It is clear from the above algorithm that the filter weights are updated only once per

each block. However, it requires the inversion of the system matrix G(n)=X (n)X(n). This

matrix is symmetrical but not Toeplitz, since in this case the TDL filter contents come as

block ofsamples (and not sample by sample), i.e., the shifting property ofthe input samples

does not occur (in contrast with [81]). Therefore, the Levinson algorithm, with complexity

of0(N2), is not applicable in this case.

The QR decomposition has been used, to find the inverse ofthe system matrix G(n), due

to its numerical stability and lower sensitivity to round off errors compared to direct matrix

inversion algorithms [30]. The system matrix G(n) is factorized as G(n)=QJ? where R is an

invertible upper triangular matrix, while Qis orthogonal matrix, that is QTQ=I (where I is

the identity matrix). The decomposition is constructed by applying successive Householder

41



transformations to annihilate successive columns of G(n) below the diagonal. Using

G(n)=Q/J, it is easy to find the inverse of G(n) by solving the equations:

G(n)Sk=Bk k=l,2,....,L (2.56)

or Sk=G"'(n)Bk = i?"1QTBk

where Sk is the kth column vector of G"'(n), while Bk is the kth column vector of the

identity matrix I. Hence, the computation of Sk requires only the computation of the matrix-

vector product, QTBk, followed by back substitution in the triangular system /?Sk=QTBk.

Therefore, by using QRD and back substitution it is straightforward to find the inverse

of the matrix G(n) column by column.

The total MSE for a block of size L is defined by, using the estimation error vector

Ef(n),[81]:

S1biock=E[|Ef(«)|2] (2.57)

which can be approximated as follows:

ftiock * Lct2 + p2 a2 tr[XT(n) X(n-L) {XT(n-L) X(n-L)}"1. {XT(n-L) X(n-L)}-1 XT(n-L) X(n)]

= La2 + ^nex (2.58)

i.e. the total MSE error approaches a final value equal to L a2 plus excess MSE (^nex). To

decrease the excess MSE, the adaptation gain constant (pb) may be decreased, however this

results in slower convergence. This is the same tradeoff as in NLMS algorithm.

The block algorithm and its computational complexity, measured in terms of the number

of multiplications required per output point, is summarized in Table 2.5.

The MVSS algorithm discussed in section 2.3.1.3 can be implemented for the block

algorithm using the following modifications for the update equations:

p(n) =p(n-l) +(1-p) [Ef(n)]T Ef(n-1) (2.59)
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and the step-size pb(n) can be updated using Eq,(2.35). The MVSS-block algorithm is

summarized in Table 2.6.

Table 2.5 The block algorithm.

Initialization w(0) =0., 0 < pb < 1

Algorithm

Forn=l,2, do

Ef(n)=D(n)-XT(n)w(n-L+l)

G(n)=XT(n)X(n)

E»= G(n)"1 Ef(n)

w(n+l)= w(n-L+l) + pb X(n) E»

Complexity (per bit)

N Mult.

N (L+1Y2 Mult.

(4/3) L2 +NMult.

(N+1) Mult.

TOTAL (2N+1) +N(L+l)/2 +4/3 L2 +NMult.

Table 2.6 The MVSS-block algorithm.

Initialization w(0) =0., 0 < pb < 1

Algorithm

Forn=l,2, do

Ef(n)=D(n) - XT(n) w(n-L+l)

G(n)=XT(n)X(n)

E^(n)= G(n)"1 Ef(n)
w(n+l)= w(n-L+l) + pb(n) X(n) E^(n)

p(n)=P(n-l) +(l-P)[Ef(n)]TEf(n-l)
pb(n+l) =apb(n) +yp2(n)

TOTAL

L

Complexity (per bit)

N Mult.

N (L+1Y2 Mult.

(4/3) L2 +NMult.

(N+1) Mult.

(L+1VL Mult.

3/L Mult.

(2N+l) + N(L+l)/2 + 4/3Li

+ N+(L+4)/L Mult.

Table 2.7 lists the number ofmultiplications required per output point using the LMS,

RLS [35] and the implemented block algorithm for different filter lengths and block sizes. It

is clear that the implemented block algorithm requires much lower number of multiplications

than that of the RLS algorithm.
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Table 2.7 Comparison of thecomputational complexity peroutput
point for the LMS, RLS and the block algorithms.

Filter

Length
(N)

LMS
RLS Block

Length
(L)

Block MVSS

Block
FSS NLMS MVSS

Mult. Mult Mult. Mult. Div. Mult. Mult.

31 63 94 69 2976 31
4 193 141

8 319 321

63 127 190 133 12096 63 8 559 561

127 255 382 261 48768 127 16 1802 1083

255 511 766 517 195840 255 32 6339 6340

2.4 Performance measures

The main performance measure of the multiuser detection receiver for DS-CDMA

systems is the bit error rate. Using Gaussian approximation for the interference and noise in

the received signal, the analytical (theoretical) probability of bit error for the receiver is given

by [74]:

Pe =Q(—U)
V^n

where:

Q(X) =

and

1 w -t"
I exp(—)dt

2nx 2

CO

(2.60)

(2.61)
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U.-l-ciTR"'(n)c« (162)
where c, is the spreading sequence of the desired user.

Bounds for the probability oferror performance are generally used, namely, single-user

(lower) bound and matched filter (upper) bound. The single-user probability of error bound is

evaluated using only the thermal noise in the calculations, i.e.,

Pesu=Q( 1 ) (2.63)

On the other hand, to calculate the matched filter probability of error (upper) bound, the

interference from other users is considered as Gaussian noise and will be added directly to

the thermal noise, thus the probability of error is evaluated as follows:

PeMF= ( 1 ) (2-64)
^a2+MAIMF

The MAImf has been calculated in this work by correlating the spreading sequence of

the desired user c, with the received signal r(n) and then taking the average over hundred

independent trials.

In cases where interference cannot be modeled as Gaussian noise, then the probability of

error performance is generally obtained by simulation. However, for large values of the input

SNR, it would be difficult to obtain respective bit error rates using simulation. In such cases,

the performance of adaptive receivers is typically measured by the output signal MSE as a

function of the input SNR. Since the output SNR directly depends on the MSE and is closely

related to the bit error rate, the results can also be presented in the form ofthe output SNR as

a function ofthe input SNR. The input signal to noise ratio (SNRin) is defined as:

SNRin=101og104 (2"65)
O"
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where a2 is the AWGN variance and a] is the power of the desired user symbol (equal to

1). The output signal to noise ratio (SNRoUt) isdefined by:

SNRou,=101og10^_ (2-66)
Smin

where £mjn is the minimum MSE.

The number of users, i.e. the capacity, which an adaptive DS-CDMA system can

support, is limited by the residual MSE [97]. As the number ofusers increases the residual

MSE increases, resulting in degradation ofthe bit-error rate (BER) performance. The limit of

the MSE is defined in terms of the acceptable probability of error for a fixed number of users.

The capacity of the DS-CDMA receiver is thus determined by plotting the output SNR as a

function of the number of users with the input SNR as a parameter, and can be determined in

terms of the number of users which will provide the acceptable output SNR at a certain value

of the input SNR

The rate of convergence of the adaptive DS-CDMA receiver is measured in terms of the

number of bits required to achieve the steady-state residual MSE error. It may be noted that

when the convergence occurs, the TDL filter weights will approach the optimal weights [w0=

R"'(n) P(n)]. The computational complexity of the various detectors can be quantified by

their time complexity per bit (TCB). The TCB is defined as the number of operations

required for demodulating one data bit.

Two additional performance measures related to the asymptotic behavior of the MMSE

receiver are the asymptotic efficiency and the near-far resistance [116, 118]. The efficiency is

defined as the ratio between the effective and actual energies Ekf(a)/Ekc (where Ekc is the

energy of the kth bit). It quantifies the performance loss due to existence of other users in the
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channel. The asymptotic efficiency is defined as the ratio between the SNR required to

achieve the same unloaded bit rate in the absence of interfering users and the actual SNR:

i! =sup 0<r<1; Lim [Pe(cr) /Qi^JrEl Ia)] <°o I (2.67)
k [ a-»0 J

The near-far resistance is the minimum asymptotic efficiency over relative energies of

all the users:

rfk=infrik (j *0) (2-68)

In this case, to show the near-far resistance ofthe adaptive receivers, the probability oferror

for the desired user has been plotted forvarious levels of MAI.

2.5 Simulation results and discussion

In order to provide a basis for comparing the various adaptive algorithms discussed in

this chapter, extensive simulation results are presented. In all simulation results, an

asynchronous system is assumed, in which the delays, xk, of interferers are chosen from a

uniform distribution. However, without loss of generality, it is assumed that the receiver is

synchronized with the desired user (user number one). The receiver does not require the

knowledge of the spreading sequence for the desired user; however, it requires the

knowledge of training sequence in the training mode, before switching to the decision-

directed mode. The performance of the previously mentioned adaptive algorithms is studied

under various situations. Different types of spreading sequences have been used and the

number ofusers and their power levels has also been varied. AWGN channel is assumed with

different values of SNR. The TDL filter length is assumed fixed at N=31, unless stated

otherwise. Ensemble averaging over 100 independent trials is performed when the

convergence characteristics are evaluated.
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Example 2.1

In this example the performance of the block adaptation algorithm in DS-CDMA

receiver is examined using different values of block length and step-size. The simulated

receiver consists of four interferers each having a lOdB power advantage over the desired

user with input SNR=20 dB, and the filter length is set to N=31 taps.

Fig.2.4a shows the convergence characteristics of the block algorithm with block length

L=4 for different values of step-size (pb) (in the range 0<pb<l). It is noticed that fast

convergence but with high residual MSE is obtained when pb=0.99, while slow convergence

with low residual MSE is achieved when pb=O.05. Therefore, it is concluded that by

changing the step-size either faster convergence (when pb is large) or a lower residual MSE

error (when pb is small) is obtained. Fig.2.4b&c show the effect of changing the block length

(L) on the convergence characteristics of the adaptive DS-CDMA receiver using the block

algorithm. Different values of the block length are used while the step-size is fixed at pb=0.4.

It is clear that faster convergence occur when L=4 and L=8. However, it is preferred to use

L=4 since it requires lower computational complexity (table 2.7), and it possesses lower

residual MSE with small delay. Therefore, it is concluded that this algorithm performs better

using moderate block lengths, such that a faster convergence rate will be achieved with low

computational complexity and small delay.

Example 2.2

In this example, an asynchronous MMSE DS-CDMA receiver (based on LMS, block

and RLS adaptive algorithms) has been simulated having a desired user with variable number

of interferers. Each interferer has 10 dB power advantage over the desired user with input

SNR=20dB.
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Fig.2.4a Convergence characteristics ofthe adaptive DS-CDMA receiver using the
block algorithm wit 4 interferers (each interferer has lOdB power advantage over the
desired user), for different values ofstep size (^b).
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Fig.2.4.b Convergence characterisitcs of the adaptive DS-CDMA receiver using the
block algorithm, with 4interferers (each interferer has lOdB power advantage
the desired user) for different values ofblock length (L). over
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Fig.2.5a shows the convergence characteristics, i.e. the residual MSE as a function of

the number of adaptation bits, using the LMS algorithm with step-size p=0.0002. From

inspection of this figure, we infer that as the number of interferers increase the convergence

rate becomes slower and the residual MSE increases. For example, for a single-user (no

MAI) case, the receiver converges within 250 bits to a residual MSE of-20dB, while for the

four interferers case, the receiver converges within 500 bits to about -16dB residual MSE.

Fig.2.5b shows the convergence characteristics for the adaptive DS-CDMA receiver based on

the block adaptive algorithm with L=4 and p=0.4. It is clear that when the number of

interferers increases the residual MSE will increase and the convergence will be slower. For

example, for a single-user case, the receiver converges within about 40 bits to about a -19dB

residual MSE, while for the four interferers case, the receiver converges in about 80 bits to

about -17 dB residual MSE. Fig.2.5c shows the convergence characteristics for the adaptive

DS-CDMA receiver based on the RLS adaptive algorithm. It is clear that when the number of

interferers increases the convergence rate and the residual MSE will increase slightly. For

example, for a single-user case, the receiver converges within 40 bits to about a -20dB

residual MSE, while for the four interferers case, the receiver converges within 80 bits to

nearly -19dB residual MSE.

A comparison between the previous three figures shows that as the number of interferers

increases, the convergence will be slower and the residual MSE will be larger. However,

increasing the number of interferers will have less influence on the convergence rate and

residual MSE using the RLS algorithm as compared with the LMS algorithm. It may be

noticed that the block algorithm performs better than the LMS algorithm in terms of the

convergence speed and residual MSE.
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Fig 2.5 Convergence characteristics of the adaptive DS-CDMA receiver with different
number ofinterferers (each having lOdB power advantage over the desired user) for
a) LMS b)block c) RLS algorithms.
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Fig.2.5b

b) Block algorithm.
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Fig.2.5c

c) RLS algorithm.
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Example 2.3

In this example, RLS, NLMS and the block adaptive algorithms are used to adapt the

weights vector of the DS-CDMA receiver and for comparison the MVSS method for both

LMS and block algorithms have been used. Four and eight interferers have been considered,

where each interferer has a 1OdB power advantage over the desired user, and the input SNR

has been assumed to be equal to 20dB. The block length is chosen .to be L=4. The step-size of

both the NLMS and the block algorithm has been tuned such that, in all the cases, the

residual MSE will approximately be the same, and, hence a fair comparison will be achieved.

It is clear from Fig.2.6 that the block algorithm provides a much faster convergence as

compared to NLMS algorithm but is slightly slower than that of the RLS algorithm. Also, it

may be noted that the variable step-size (VSS) algorithms perform much better than that of

the fixed step-size (FSS) algorithms for both LMS and block algorithms. For example, for the

4-interferers case, the NLMS algorithm converges in about 500 bits compared to about 50

bits for the RLS algorithm and about 80 bits for the block algorithm. For 8-interferers case,

the NLMS algorithm converges in about 600 bits compared to about 75 bits for the RLS

algorithm and about 180 bits for the block algorithm. It is also noticed that the use of the

MVSS algorithm will fasten the convergence rate for both the LMS and block algorithms,

while maintaining the residual MSE at the same value. It is concluded that the block

algorithm provides a much faster convergence rate as compared to NLMS algorithm, but its

convergence is slightly slower than that of the RLS algorithm. Moreover, the computational

complexity of the modified block algorithm is much lower than that of the RLS algorithm

(Table 2.7).
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Fie 26Comparison of the convergence characteristics for the adaptive DS-CDMA
receiver Sg NLMS, RLS, block, MVSS-LMS and MVSS-block algorithms with
a) SrfeS b) 8interferers (each interferer has lOdB power advantage over the
desired user).
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Example 2.4

In this example, an asynchronous DS-CDMA receiver has been simulated with four

interferers each having a 10 dB power advantage over the desired user at 20dB input SNR.

The effect of changing the type of the spreading sequence has been studied. Fig.2.7 shows

the convergence characteristics of the adaptive DS-CDMA receiver using three different

types of spreading sequences of length 31, viz., Gold [31], PN and random sequences using

NLMS, RLS and block algorithms. It is quite clear that the type of the spreading sequence

only mildly affect the convergence characteristics, when using RLS and block algorithms.

However, Fig.2.7 shows that for the NLMS algorithm some performance degradation occurs

when using random and PN sequences as compared to Gold sequence. Also it is noticed that

the PN sequence provides improved performance as compared to that of the random

sequence.

The maximum number of users in a CDMA system is equal to the spreading gain.

However, due to the limited number of combinations in the Gold and PN sequences, random

sequences are used whenever the number of users is comparatively high.

Example 2.5

In this example, simulation of a sudden access (birth) of interferers in the DS-CDMA

receiver is performed. The system initially starts with 4-interferers each having 10-dB power

advantage over the desired user, then after the end of the training phase, a new interferer

enters the system after every 1000 bits up to amaximum often users. Fig.2.8 shows that the

residual MSE increases with the access of every new interferer. Moreover, it is shown that

the sudden access of interferers with full power creates ajump (click) in the MSE of nearly

-7dB which might be beyond the acceptable MSE of the receiver. Therefore, a possible

solution to this problem [2] is to suggest the use of low power access scheme, where anew

interferer increases his power linearly within a short period oftime.

59



-25
100 200

a) NLMS algorithm.

Random sequences

300 400

No. of bits

500

Filter length (N)=31
SNR = 20dB

600 700 800

Fig.2.7 Comparison of the convergence characterisitics for the adaptive DS-CDMA
receiver with PN, Gold and random sequences with 4-interferers (each interferershas
lOdB power advantage) using a) NLMS b) Block c) RLS algorithms.
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c) RLS algorithm.
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Fio 98Fffect of entry of interferers on the performance of the adaptive DS-CDMA receiverusing NLMSfalgorimL (eS interferer has lOdB power advantage over the desired user).
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Example 2.6

In this example, the bit-error rate performance of the adaptive DS-CDMA receiver is

examined using RLS, NLMS and the block algorithms. Two cases are simulated, one with 8-

interferers, while the other with 10-interferers, each having a 10 dB power advantage over

the desired user. The step-size of both the NLMS and the block algorithm were adjustedsuch

that the three adaptive algorithms will possess approximately the same residual MSE in the

single-user case. Due to the instability of the RLS algorithm, periodic re-initialization is

performed every 1000 bits, in the decision-directed mode. It is quite clear from Fig.2.9 that

the bit-error rate performance of the three algorithms is almost comparable and matches the

theoretical values. Also provided in Fig.2.9 are the lower (single-user) and upper (matched

filter) bounds. The performance degradation in terms of input SNR is about 2dB as compared

to the single user case for the 8-interferers case, while the degradation is about 3dB for the

10-interferers case.

Example 2.7

In this example, the asynchronous operation of the adaptive DS-CDMA receiver based

on the RLS algorithm is compared with the synchronous case in terms of the convergence

characteristics and the probability of error performance. Random spreading codes of length

31 are used, and the interferers delay is assumed to be uniformly distributed in the interval

[0,T) for the asynchronous case, while for the synchronous case it is assumed that all the user

are synchronized with the receiver. The system includes 4 or 8 interferers each having 1OdB

power advantage over the desired user.

Fig.2.10 shows the convergence characteristics for the adaptive DS-CDMA receiver for

both synchronous and asynchronous cases operated at input SNR=20dB. It is observed that

there is performance degradation when using theasynchronous system as compared to the
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synchronous system. Fig.2.11 shows the probability of error performance for the adaptive
DS-CDMA receiver for both the synchronous and asynchronous cases. It clear that there is

performance degradation for the asynchronous system as compared to the synchronous
system. At error rate of 10"3, with 4 interferers, the performance degradation for the
asynchronous receiver in terms of the input SNR is 0.65dB as compared to the synchronous

system, while for the 8interferers case the degradation is nearly 1.45dB.

A reason for this degradation in performance is that the crosscorrelation between

different spreading codes is higher in the asynchronous system as compared to the

synchronous system, and hence larger values of the MAI will be produced. This of course

will result in an increase in the residual MSE value and hence the probability of error will be

larger for the asynchronous system as compared to the synchronous system. Therefore, the

asynchronous system represents the worst case of operation as compared to the synchronous

case.

Example 2.8

In this example, the capacity, i.e. number of users that can be supported by the adaptive

DS-CDMA receiver is investigated. The capacity is determined by evaluating the output

SNR as a function of number of users. The near-far situation is assumed by setting all the

interferers' power to have a10 dB power advantage above the desired user. For both NLMS

and the modified block algorithms, the step-size is tuned such that the single-user residual

MSE is the same for the three algorithms. Fig.2.12 shows the output SNR versus number of

users at input SNR=10, 30 and 50 dB. It is clear that the RLS algorithm performs much better

than the NLMS algorithm, while the block algorithm performance is between NLMS and

RLS algorithms. It is worth-noting that, while varying the number of users, the implemented

step-size for both NLMS and block algorithms is fixed at the value in which the single-user
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Fig.2.11 Probability of error performance for the adaptive DS-CDMA receiver using
the RLS algorithm for synchronous and asynchronous systems with a)4 interferers
b)8 interferers (each interferer has lOdB power advantage overthe desired user).
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Fig.2.12 Comparison of the outputSNRof adaptive DS-CDMA receiver using NLMS,
RLS and block algorithms as a function of the numberof interferers (each interferer has
lOdB power advantage over the desired user) a)input SNR=10dB, b)input SNR=30dB
c) input SNR=50dB.
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residual MSE is the same for all algorithms. Of course, this is the cause of the performance

degradation in both NLMS and block algorithms as compared to RLS algorithm. For

example, at input SNR=30dB, suppose that the acceptable output SNR is equal to 20dB, then

the RLS algorithm can support about 20 users, while about 14 users can be supported using

the modified block algorithm and only 5users can be supported using the NLMS algorithm.

For an input SNR=50dB, if the acceptable output SNR=20dB, then the RLS algorithm can

support 21 users and using the block algorithm only 14 users can be supported, while for the

NLMS algorithm 6 users are supported only.

Example 2.9

In this example, an adaptive MMSE DS-CDMA receiver is simulated using RLS,

NLMS and the block algorithms. The interferers' power is varied from -2dB to 12dB relative

to the desired user at lOdB and 12dB values of input SNR. The step-size of the NLMS and

the block algorithms is adjusted such that the single-user residual MSE for the three

algorithms is the same. It is clear from Fig.2.13 that the probability of error remains constant

even if the power of the interferers increases to 12dB relative to the desired user. At input

SNR=10dB the probability of error remains constant at about 2xl0"3, while for input

SNR=12 dB it remains constant at about 8xl0"5. Therefore, it is concluded that the adaptive

MMSE DS-CDMA receiver based on the NLMS, RLS, and block algorithms is near-far

resistant since its probability of error performance is not affected (remains constant) when

the interferers power varies.

Example 2.10

In this example, the probability of error for the adaptive DS-CDMA receiver using

NLMS, RLS and the block algorithm is calculated as a function of number of users. All

interferers have a lOdB power advantage above the desired user. The simulation is performed
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at input SNR of lOdB and 12dB respectively. It is clear form Fig.2.14 that the probability of

error increases with the increase in the number of interferers, and there is a slight difference

in the performance of the three adaptive algorithms.

In this chapter, we have implemented different adaptive algorithms for interference

suppression in DS-CDMA systems. It has been shown that the RLS algorithm converges

faster than the NLMS algorithm but at the expense of an increase in the computational

complexity. To improve the convergence rate of the NLMS algorithm, an MVSS-LMS

algorithm has been implemented, and simulation results demonstrate its improved

convergence characteristics as compared to LMS algorithm. On the other hand, to deal with

both the slow convergence rate of the NLMS and the high computational complexity of the

RLS algorithm, we have proposed and implemented anovel block adaptive algorithm for the

interference suppression in DS-CDMA systems. Results show that the proposed block

algorithm possesses convergence characteristics, which is comparable to RLS algorithm

while requiring much lower computational complexity.
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Fig.2.14 Probabilty of error performance for the adaptive DS-CDMA receiver as a function
of the number of interferers at input SNR of lOdB andl2 dB using the NLMS, RLS and
block algorithms.
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CHAPTER 3

ADAPTIVE DS-CDMA RECEIVER USING KALMAN

FILTERING

In this chapter, we consider the application of the Kalman filter (KF) for the adaptation

and demodulation of DS-CDMA signals. A motivation for using the KF is that it is optimal

in the MMSE sense, and is considered as the best linear unbiased estimator. Moreover, the

KF is usually formulated using the state-space approach, which contains all the necessary

information about the system, and its solution may be computed recursively. Also it provides

a general framework for the derivation of a family of RLS algorithms [101].

In section 3.1, we review the KF and its use in adaptive filtering problems. The KF-

development and the state-space representation of multiuser CDMA signals are presented in

section 3.2. The SQ-KF algorithm, which is numerically stable is introduced in section 3.3.

Finally, section 3.4, presents simulation results and discussion.

3.1 Introduction

Lawrence and Kaufman [54] have considered the use of the KF for the equalization of

digital channels in the presence of noise and ISI. The MMSE estimate of the transmitted

symbols is obtained and the only constraints are stability and linearity. Bendetto and Biglieri

[8] have investigated the steady state behavior ofsuch receiver structures. Under steady-state

situation, this linear receiver turns out to be a time-invariant, stable recursive filter. In the KF

equalizer, the estimates of the symbols are fed back before a decision is made on them, and

thus the receiver is linear and the effect ofdecision error propagation is thereby eliminated.

The performance attainable with the KF equalizer is superior to that of the conventional

linear equalizer (LE), for a given complexity of the receiver structure. However, for
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implementation, the KF needs an exact knowledge of the channel tap-gains and amismatch

in tap setting may lead to performance degradation.

Godard [28] applied the Kalman filter algorithm to the estimation of the equalizer

coefficient vector under some assumptions on the equalizer output error and input statistics.

It is an ideal self-orthogonalizing algorithm in that the received equalizer input signals are

used to build up the inverse of the input covariance matrix, which is applied to the coefficient

adjustment process.

The Kalman filtering is prone to numerical instability due to the use of finite word-

length arithmetic for calculating the Riccati difference equation. To solve this problem, a

unitary transformation may be used at each iteration of the Kalman filtering algorithm [82].

In [60] an EKF-based detector for the joint estimation of symbols and delays of all users

in asynchronous DS-CDMA is presented. The detector operates in the tracking mode and

relies on the availability of accurate initial delay estimates. Due to the non-linear relationship

between the estimator output and the delay estimates, linearization has been performed,

which if introduces negligible errors, then the EKF reduces to the standard Kalman filter

which produces MAP (maximum aposteroiri) state estimate at each time, provided the first-

order Gauss-Markov model of parameter time variation is exact and the noise covariance

matrices are known exactly. In [61] a similar KF-based detector for the joint delay

estimation/symbol detection algorithm in asynchronous multiuser CDMA systems is

proposed. However, for simplicity it is assumed that the delay is known to the receiver. An

improved performance of this algorithm over the conventional MMSE detector is

demonstrated. An attractive property of this detector is that it provides very good

performance without suffering long delays (long codes). The detector is near far resistant,

both in bit error rate and channel estimation performance. In [62] it is shown that afirst order
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linear state-space model applies to the asynchronous CDMA channel, and thus the KF

produces symbol estimates with the lowest possible MSE among all linear filters, in long- or

short-code systems for a given detection delay. Moreover, the KF complexity is fixed for a

given detection delay, unlike in the case of the windowed LMMSE detector, which for the

same performance will require a window whose length increases with time.

In this chapter, we propose the use of the KF as an adaptive estimator of TDL filter

weights for DS-CDMA signals.

3.2 The Kalman filter

The state-space equation of a linear system with random inputs can be described by:

x(n+l) = (J>nx(n) + v,(n) (3.1)

y(n) = Hn x(n) + v2(n) (3.2)

where x(n) is an N-dimensional state-vector containing system variables which may not be

directly measurable and y(n) is an M-dimensional measurement (observation) vector. fyn is

an N-by-N state transition matrix relating the state of the vector at times n+1 and n. Hn is a

known M-by-N measurement (observation) matrix. The vector vi(n) is modeled as a zero-

mean white-noise process whose correlation matrix is defined by:

E[v1(„)vT(k)] =(Q'(n)n;k (3.3)
[0 n* k

The vector v2(n) is called the measurement noise modeled as a zero-mean, white-noise

process whose correlation matrix is defined by:

E[v2(n)vI(k)] ={Q;(n)n;k (3.4)
[ 0 n*k

Also it is assumed that the noise vectors vi(n) and v2(n) are statistically independent, so that

E[vi(n)v2T(k)] =0 for all nand k. (3.5)
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The recursive form of the KF involves the following steps in each symbol interval n

[25,61]:

P„"=+»P„+-,*n+Q. (36)
Tn=Pn-H:(HnPn-H:+Q2r' (3-7)
x(n) =(|)nx(n-l) +Tn[y(n)-Hn(|>nx(n-l)] (3.8)
p;=(I-TnHn)Pn" (3-9)

The kalman filter delivers the MMSE estimate of x(n), defined as

xMS(n | n) =argminE{||x(n)-x(n)|2 | n} (3.10)
i(n)

The Kalman filter operates on the sampled baseband signals r(n) to estimate the channel

state x(n). It is a well established fact that the Kalman filter provides the mean-square

optimum linear estimate of x(n). It minimizes not only the trace of the error covariance

matrix, butalso any linear combinations of main diagonal elements.

We assume asynchronous DS-CDMA system with K users simultaneously transmitting

over the same channel with AWGN. Recalling the signal model of chapter 2, the received

signal y(t) is converted to the baseband signal r(t). After baseband conversion, the received

signal is chip matched filtered and sampled at the chip rate, then it is fed to the TDL filter as

r(n)=[r0(n), r,(n),. . . ., rN-i(n)]T.

Ina stationary environment, the tap-weights vector w(n) ofthe TDL filter has a constant

value such that,

w(n)=w(n-l) (3-n)

where w(n)=[ w0(n), Wi(n), , wN-i(n)]

The TDL filter output is equal to the inner product rT(n)w(n-l), and the desired response

is:
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d,(n) = rT(n)w(n-l) +a(n) (3.12)

where a(n) is the estimation error measured with respect to the desired response di(n).

Equations (3.11 and 3.12) may be viewed as the state-space equations of a linear system

defined in Eqs. (3.1) and (3.2). Comparing these equations, the following substitutions may

be achieved.

• x(n), the state vector equals the tap-weights vector w(n), measured at time n.

• y(n) is the measurement (observation) signal identified as the desired signal di(n),

measured at time n.

• (j>n, the state transition matrix, equals the identity matrix I.

• vi(n), the process noise, equals to zero and hence Qi(n)=0, in this case.

• Hn the measurement vector equal to the transposed tap-input vector r(n).

• v2(n), the measurement noise, is identified as the estimation error ct(n). Therefore

Q2(n)=E[a (n)] which is denoted as ^min, the minimum MSE.

Since in this case <j)n=I and Qi=0, then Eq. (3.6) reduces to

Pn~=Pn+-l (3.13)

The Kalman filter uses the error between the desired and estimated data bits, a(n), to

adapt the TDL filter weights in the sense ofminimizing the MSE. The adopted Kalman filter

for updating the estimated TDL filter weights w(n) for a stationary environment is as follows.

Denoting Tn by g(n), Pn+_, by k(n-l) and Pn+ by k(n) in Eqs. (3.6-3.9), and based on the

previous substitutions then Eq. (3.7) reduces to

g(n) =k(n-l) r(n) [rT(n) k(n-l) r(n) +UJ*1 (3.14)
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Eq. (3.8) reduces to

w(n) =w(n-l) + g(n) [d,(n) - rT(n)w(n-l)] (3.15)

and Eq.(3.9) reduces to

k(n) = k(n-1) - g(n) rT(n) k(n-1) (3-16)

with initial conditions, w(0)=0 and k(0)=cl where c>0. 4min=E[a2(n)], the minimum MSE, is

assumed to be known to the receiver clearly, however it could be measured during silent

periods. Of course this is not the practical situation, therefore assuming acertain value for the

channel noise power will result in a little difference in the performance between the assumed

SNR and the correct one. The Kalman filter algorithm is summarized in Table 3.1.

Table 3.1 Summary of the Kalman filter algorithm.

Input di(n), r(n), and Jmjn.

•

Initializations w(0)=0., k(0)=cl (OO.)

Algorithm Complexity

Forn=l,2,... do

g(n) - k(n-l) r(n) [rT(n) k(n-l) r(n) +^min]"' 2N2+N Mult.

+ N Div.

a(n) =di(n)-rT(n)w(n-l) N Mult.

w(n) = w(n-l)+ g(n)a(n) N Mult.

k(n) = k(n-l) - g(n) rT(n) k(n-l) N2 Mult.

TOTAL 3N2 + 3N Mult.

-r N Div.
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3.3 Square-Root Kalman Filter (SQRT-KF)

The previously mentioned implementation of the KF is the optimal solution to the linear

filtering problem. However, the algorithm suffers from the numerical instability due to the

way in which the Riccati difference equation is calculated. In particular k(n) in Eq. (3.16) is

defined as the difference between two non-negative matrices, therefore, unless sufficient

numerical accuracy is provided, the resulting matrix k(n) may be negative definite. This

situation will make the KF unstable, which occurs due to the use of finite word-length

arithmetic.

This problem may be overcome by using a numerically stable unitary transformations

on the state error correlation matrix, k(n), at each iteration of the KF algorithm. The unitary

transformation may be adopted using the Givens rotations or Householder transformations, as

will be discussed later on in this section.

3.3.1 SQRT-KF Algorithm

The Cholesky factorization of the matrix k(n) is given by:

k(n) =k1/2(n) kT/2(n) (3.17)
1 D

where k (n) is a lower triangular matrix usually referred to as the square-root of k(n). The

non-negative definite nature ofk(n) is preserved by virtue ofthe fact that the product ofany

square matrix and its transpose is always non-negative definite matrix. The recursion in the

square-root Kalman filter propagates the lower triangular matrix k1/2(n). The Riccati

difference equation for the Kalman filter, Eq. (3.16), may berewritten as follows:

k(n)= k(n-1) -k(n-1) r(n) [rT(n) k(n-1) r(n)+1]'1 rT(n) k(n-1) (3.18)
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In light of the Riccati equation (3.18), the following two-by-two block matrix may be

introduced [36]:

M(n) =
rT(n)k(n-l)r(n) +l rT(n)k(n-l)

k(n-l)r(n) k(n-l)
(3.19)

Expressing the correlation matrix k(n-l) in its factored form (Eq. 3.17), and since the matrix

M(n) is non-negative definite matrix we may use the Cholesky factorization

M(n) =

where 0 is the null vector.

1 rT(n)k1/2(n-l)'
0 k,/2(n-l)

1 01

kT/2(n-l)r(n) k'"(n-l)
(3.20)

The matrix product on the right hand side of Eq. (3.20) may be interpreted as the

product of a correlation matrix and its transpose. Invoking the matrix factorization lemma,

according to which we may write [36],

1 rT(n)k1/2(n-l)
0 k,/2(n-l)

1 rT(n)k,/2(n-l)
0 k1/2(n-l)

8(n) =
bn(n) (3.21)
b2i(n) B22(n)_

where 9(n) is aunitary rotation and the scalar bu(n), the vector b2i(n) and the matrix B22(n)

denote the non-zero block elements of matrix B.

To evaluate the unknown block elements, bi,(n), b2!(n), and B22(n) of the postarray, we

proceed by squaring both sides of Eq. (3.21). Then, recognizing that 9(n) is aunitary matrix,

and therefore 0(n) 9T(n) equals the identity matrix I for all n, we may write

1 01

kT/2(n-l)r(n) kT/2(n-l)

b„(n) 0T
b21(n) B22(n)
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0 B*(n)_
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Thus, comparing the respective terms on both sides of the equality (3.22), we get the

following identities [36]:

Ib, ,(n) 12 = rT(n) k(n-l) r(n) + 1=y(n)

b2,(n) b,,(n)= k(n-l) r(n)

b21(n) bI,(n)+B22(n) B*2(n) =k(n-l)

Eqs. (3.23) and (3.24) may be satisfied by choosing:

bn(n)=Y1/2(n)

b2.(n) - k(n-l) r(n) y-'/2(n) = g(n) y1/2(n)

B22(n) = k1/2(n)

where g(n) in Eq. (3.27) denotes the Kalman gain.

Then Eq. (3.21) can be rewritten as:

1 rT(n)k,/2(n-l)
0 k,/2(n-l)

0(n) = r1/2(n) 0

g(n)r,/2(n) k,/2(n)

(3.23)

(3-24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Equation (3.29) shows that the element k(n) of the postarray is used to update the elements in

the prearray, and therefore, initiate the next iteration of the algorithm. Moreover, the

inclusion of the block elements [1, 0] in the prearray induces the generation of block

elements in the postarray which are used in the calculation ofthe Kalman gain g(n) and the

variance ofthe estimation error y(n). Building on the latter result, we may readily update the

state estimate, or the weight vector, as follows:

w(n) =w(n-l) +g(n)a(n) (3_30)

where a(n) is the innovation defined by:

cc(n) = d(n)-rT(n)w(n-l)
(3-31)
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3.3.2 Givens rotations

The unitary transformation process may be carried out using the Givens rotations

procedure. Through successive application of Givens rotations, we may develop a very

efficient algorithm for solving the linear least squares problem, whereby the partial

orthogonal triangularization ofthe data matrix is recursively updated as each new set ofdata

enters the computation. To illustrate the procedure, assume that the partially triangularized

datamatrix of dimension (N+l)-by-(N+l) can, for simplicity, be written as:

Ll,2

L2,2

Ll,3

L3,3

0 A N+1,2 AN+1,3

0

0

0

0

A N+l.N+1

To annihilate a block of zero entry in the top row of a partially triangularized matrix, a

unitary matrix 0(n) may be adopted which is defined as follows:

N
8(n)= n 0,(n)

k = l
where 8k(n) is a rotation matrix written as an identity matrix except for four elements on

(1,1), (l,k+l), (k+1,1) and (k+l,k+l) positions defined by:

8k(n) =

where:

ck = cos <(>k(n)

sk = sin (|)k(n)ejp

LN-k
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(3.33)

(3.34)

(3.35)



The proper selection of the rotation angles {<J>k(n)} will annihilate the non-zero element

in the block row of the partially triangularized matrix. Then applying the first rotation 8i(n)

defined as

c, s,

9,(11)- -s, c,

In-.

The resulting matrix will be:

c,-AIt2s,

~A2,2 Si

"A3,2 S,

sI+A12c1
A2,2 C]

Al,3
0

A3,3

0

0

A1,N+1
0

0

__AN+1,2 sl AN+1,2 cl AN+1,3 AN+1,N+1

The second element of the first row is set to zero, such that

Sj + A),2 ci =0.

and recognizing that

sj2+ |c,|2=l.

we get,

c, =

I1+A
1.2

and

s. =
-A 1,2

1+A 1.2

(3.36)

(3.37)

(3.38)

The Givens rotation as described above operates on the first and second columns of the

constructed matrix to annihilate the second element of the first row. In this process, all the

elements of the first and second columns of the constructed matrix are modified. We then
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choose 82(n) to annihilate the third element of the first row, and so on, until all the elements

ofthe block array in the first row are annihilated. It is worth noting that the transformations

8k(n) affect only the first and (k+l)th column of the matrix, and the partially triangularized

matrix form is preserved in each rotation.

The Givens rotation algorithm for annihilating the elements of the block entry in the

first row is summarized in Table 3.2.

Table 3.2 Summary of the Givens rotation algorithm.

Algorithm

For n-l, 2,3,... do

Fork-l.N

ak,k =-\flAu(n-1)|2+|Ai.k+i(n-1)|2
If |ak,k|>0., then

ck= Ai,i(n-l)/ak,k

sk= Aiik+i(n-l)/ak,k

Else

Ck=l. and Sk=0.

Endif

Au(n) = Au(n-1) ck - Ai>k+i(n-l) sk

Fori=k+l,N+l

AM(n) = Ai,i(n-1) ck-Aiik+i (n-l) sk

Ai,k+i(n) =Au(n-1) s*k +Ai>k+i(n-l) ck

End i

Endk

TOTAL
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Complexity

2N Mult.

+ N Square-root

2N Divisions

2N Mult

N(N+1) Mult.

N(N+1) Mult.

2N2+6N Mult

+ 2N Divisions

+ N Square-roots



3.3.3 Householder transformation

The householder transformation may be used to annihilate the elements of the first row

ofthe prearray, except for the first element. It is denoted by an (N+l)-by-(N+l) matrix [36]

2u(n)uT(n)8(n)= I(n) v v (3.39)
|u(n)|

where I(n) is an (N+l)-by-(N+l) identity matrix, an u(n) is an (M+l)-by-l vector. To

annihilate the elements of the vector p(n) except for the first, we may use one of the

Householder transformations properties. It states that given a vector p(n), which may be

defined as:

p(n)=[lrT(n)k1/2(n)]T (3.40)

then there exists a Househlder transformation 8(n) defined by the vector

z(n) =p(n) - ||p(n)| 1 (3-41)

where 1=[ 10 0]T and ||x|| is the norm of the vector x. The unitary transformation that

annihilates the elements ofthe top row except the first element in the perarray is

a, . ... 2z(n)zT(n)
(n)= I(n)" II MP (3-42)F(n)|

According to an error analysis under finite-precision computations [36], the

Householder transformation is superior to the Givens rotation. However, the systolic array

implementations are usually based on Givens rotation. On the other hand, the systolic array

implementation based on Householder transformations is of block-oriented kind, with the

block size providing anew variable. In particular increased stability is attained by increasing

the block size, but at the expense ofincreased latency.

The SQRT-KF algorithm based on Givens rotations is summarized in Table 3.3. The

computational complexity of the SQRT-KF algorithm is too high since it requires the
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calculation of Narithmetic square-roots which is computationally expensive. Systolic array

structures are used for parallel implementation of the algorithm which will reduce the

complexity of the algorithm to 0[N], To avoid the use of the square roots, Omidi et al. [86]
have proposed the use of aunit-lower-triangular-diagonal correction (LDC) method for the

update of the Kalman filter. They used their algorithm for the joint estimation of channel and
data detection over fading channels, in a mobile communication receiver. Systolic array

structures are also proposed for its implementation. However, their algorithm is

computationally expensive requiring 0[N3] operations.

Table 3.3 Summary ofthe SQRT-KF algorithm.

Input r(n)

Initialization w(0)=0, k1/2(0)= 51/2I where 5is asmall number.

Algorithm

1 rH(n)k1/2(n-l)'
0 k1/2(n-l)

8(n)=

g(n)=[g(n)Y,/2(n)] [y^nff1

a(n) =d(n) - rH(n) w(n-l)

w(n) = w(n-l) + g(n)a(n)

Y,/2(n) 0
g(n)Y1/2(n) k1/2(n)

TOTAL
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T

1/2,

Complexity

3N2+6NMult.
2N Divisions

N Square-roots

N Divisions

N Mult.

NMult

3N2+8N Mult.
+ 3N Divisions

+ N Square-roots



3.4 Simulation results and discussion

In this section, a number of examples have been simulated to demonstrate the

performance of the KF and SQRT-KF algorithms compared to other adaptive algorithms.

Unless stated otherwise an asynchronous system is assumed, in which the delays are

randomly generated from a uniform distribution. However, without loss of generality it is

assumed that the receiver is synchronized with the desired user signal. The spreading codes

are PN-sequences of length N=31. The receiver does not require the knowledge of the

desired user spreading sequence. The SNR of the desired user is chosen to be equal to 20dB.

Ensemble averaging over 100 independent trials is performed when the convergence

characteristics curves are evaluated

Example 3.1

In this example, an asynchronous DS-CDMA receiver based on the KF algorithm has

been simulated having a desired user with variable number of interferers. Each interferer has

lOdB power advantage over the desired user at 20dB input SNR. Figure 3.1 shows the

convergence characteristics using the KF algorithm. An assessment of this figure clearly

shows that as the number of interferers increases the convergence rate becomes slower and

the residual MSE increases. For example, for a single-user (no MAI) case, the receiver

converges within 40 bits to a residual MSE of nearly -20dB, while for the four interferers

case, the receiver converges within 60 bits to nearly -18dB residual MSE.

Example 3.2

In this example, KF, NLMS and the RLS adaptive algorithms are used to adapt the

weights vector of the DS-CDMA receiver. For comparison purposes results for block

algorithms are provided. Four and eight interferers have been considered, each interferer has

10 dB power advantage over the desired user. The block length, for the block algorithm, is
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Fig 3.1 Convergence characteristics for the adaptive DS-CDMA rewiverusing the
KF algorithm with different number of interferers (each interferer has lOdB power
advantage over the desired user)
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chosen to be L=4. The step-size of both the NLMS and the block algorithm has been tuned

such that, in all the cases, the residual MSE is approximately the same, and, hence a fair

comparison can be achieved.

It is clear from Fig.3.2 that the KF and RLS algorithms possess comparable

convergence characteristics, which is better than the block algorithm and much faster than

that of the NLMS algorithm. For example, for the 4-interferers case, the NLMS algorithm

converges in about 500 bits compared to about 50 bits for the KF and RLS algorithms and

about 80 bits for the block algorithm. For 8-interferers case, the NLMS algorithm converges

in about 600 bits compared to about 80 bits for both KF and RLS algorithms and about 180

bits for the block algorithm. It is concluded that the KF algorithm provides a comparable

performance to the RLS algorithm, but much better than the NLMS algorithm. However, the

computational complexity of the KF algorithm is 0[N2], which is comparable to that of the

RLS algorithm, but it is an order of magnitude higher than that of the NLMS and block

algorithms.

Example 3.3

In this example, the probability of error performance for the adaptive DS-CDMA

receiver is examined using SQRT-KF and NLMS algorithms. Two cases are simulated, one

with 8-interferers, while the other with 10-interferers, each having 10 dB power advantage

above the desired user. The step-size of the NLMS algorithm is adjusted such that the two

adaptive algorithms will possess approximately the same residual MSE in the single-user

case. It is quite clear from Fig.3.3 that the probability of error performance for the two

algorithms is almost comparable and is close to the theoretical values. Also provided with the

figure are the lower (single-user) and upper (matched filter) bounds, for comparison

purposes. It is quite clear that the proposed detector based on the SQRT-KF algorithm
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Fie 32 Comparison of the convergence characteristics for the adaptive DS-CDMA
receiver using the NLMS, RLS, KF and block algorithm with a) 4interferers
b) 8interfered (each interferer has lOdB power advantage over the desired user)
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Fie 33Probability of error performance for the adaptive DS-CDMA Reiver using theNLMS Ld SQRT-KF algorithms with a) 8interferers b) 10 interferers (each interferer
has lOdB power advantage over the desired user).
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outperforms the conventional detector. On the other hand for the 8-interferers case, the

performance degradation in terms of the input SNR, using the SQRT-KF, is about 2dB as

compared to the single user, while it is about 3dB for the 10-interferers case.

Example 3.4

In this example, an adaptive DS-CDMA receiver is simulated using the SQRT-KF and

NLMS algorithms. The interferers' power is varied from -2dB to lOdB relative to the desired

user at lOdB and 12dB input SNR respectively. The value of the step-size of the NLMS is

adjusted such that the single-user residual MSE for the two algorithms is the same. It is

shown in Fig.3.4a that the probability of error remains constant even if the power of the

interferers increases by lOdB relative to the desired user. This clearly demonstrates the near-

far resistance of the receiver based on the two algorithms. Also it is noticed that the SQRT-

KF algorithm performs slightly better than the NLMS algorithm. In Fig.3.4b the effect of

changing the number of interferers on the performance of the DS-CDMA based on the

SQRT-KF algorithm is presented for 2- and 5-users cases. It is clear again that the SQRT-KF

algorithm is near-far resistant for larger number of users. Also slight performance

degradation is noticed when increasing the number of users.

Example 3.5

In this example, the probability of error for the adaptive DS-CDMA receiver using

SQRT-KF and NLMS algorithms is evaluated as a function of number of users. All

interferers have lOdB power advantage above the desired user. The simulation is performed

at input SNR lOdB and 12dB. It is clear form Fig.3.5 that the probability of error increases

with the increase in the number of interferers (since the overall interference power will

increase), and also it is noticed that the SQRT-KF performs slightly better than the NLMS

algorithm for both values ofinput SNR.
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Fig.3.4a Probability of error performance for the desired user's as a function of
the second user's power relative to the desired user power at input SNR lOdB and
12dB using the NLMS and SQRT- KF algorithms.
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Fig.3.4b Probability of error performance for the desired user as aAction of the
interferer's power relative to the desired user power at input SNR of 1OdB and 12dB
using the SQRT-KF algorithm.
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Fig.3.5 Probability of error performance for the adaptive DS-CDMA receiver as
a function of the numberof interferers using the NLMS and SQRT-KF algorithms
at input SNR of 1OdB and 12dB.
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Due to its optimality in the MMSE sense, the KF algorithm has been used for the

weights adaptation in DS-CDMA receivers. Improved performance of the KF algorithm as

compared to the NLMS algorithm has been shown. To deal with the instability problem of
the KF, the numerically stable SQRT-KF based on either Givens rotations or Householder

transformations have been used. The near-far resistance of the DS-CDMA receiver based on

the SQRT-KF algorithm has also been demonstrated.
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CHAPTER 4

RMGS-BASED ADAPTIVE INTERFERENCE SUPPRESSION

IN DS-CDMA SYSTEMS

Computational complexity, rate of convergence, parallelism and numerical robustness

are important issues for characterizing the performance of adaptive algorithms. Direct matrix

inversion approach for finding the LS weights vector is computationally too expensive and

can be avoided using the LMS algorithm. However, as mentioned in chapter two, the LMS

algorithm suffers from slow convergence rate due to the dependence of the convergence time

constant on the eigenvalue spread of the input autocorrelation matrix. This has motivated the

development of adaptive LS algorithms, which are numerically robust, possess fast

convergence rate and are insensitive to the input signal statistics. The most popular time-

recursive LS estimation scheme is the classical RLS algorithm, but it is sensitive to the round

off errors when finite precession arithmetic is used for its implementation. The Kalman filter,

which is optimal in the MMSE sense, also suffers from the numerical instability problem and

moreover, it requires the knowledge of the noise variance. On the other hand, the SQRT-KF

is more stable, but requires high computational complexity. To remedy these problems,

algorithms based on matrix factorizations and orthogonal transformations, of the input

correlation matrix, have been used [55], which are less sensitive to roundoff errors, and,

moreover can be efficiently mapped into systolic array structure for parallel implementation.

In this chapter, we propose the implementation of the recursive modified Gram-Schmidt

(RMGS) algorithm for the adaptation and demodulation of DS-CDMA signals. The RMGS

algorithm is more stable as compared to both RLS and KF algorithms, and moreover, it
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require lower computations as compared to other QR-RLS algorithms. The organization of
this chapter is as follows. In section 4.1, we review the matrix factorization and

orthogonalization algorithms. The QR-RLS and the inverse QR-RLS algorithms, which are

used to solve the LS problem in the data domain, via Givens rotations, are discussed in

sections 4.2 and 4.3, respectively. Then the RMGS algorithm and its error feedback version

for the adaptation and demodulation of DS-CDMA signals are presented in section 4.4.

Parallel implementation of the RMGS algorithm on systolic array is also introduced along

with its computational complexity. Finally, computer simulation results along with a

comparison of the performance of the proposed algorithm with other algorithms are given in

section 4.5.

4.1 Introduction

One of the problems encountered in applying the RLS algorithm, introduced in chapter

two, is that of numerical instability due to the way in which the Riccati difference equation

has been formulated. The same problem also occurs in the classical Kalman filter, introduced

in chapter three, for exactly the same reason. It has been shown that the instability problem

can be avoided by using square-root variant of the filter. Moreover, the computation of the

least-squares weight vector of the adaptive filtering algorithm may be accomplished by

working directly with the incoming data matrix, via matrix factorization and decomposition,

rather than working with the (time-averaged) correlation matrix of the input data as in the

conventional RLS algorithm [36]. Accordingly, factorization and orthogonalization of the

data matrix will be numerically more stable than the conventional RLS algorithm. This has

led to the development of a class of adaptive algorithms based on numerically robust QR

factorization of the input data matrix via Givens rotation [30]. AGivens rotation-based QR

decomposition has been developed in [24, 73] which updates the Cholesky factor of the input
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data matrix and can be efficiently implemented on systolic arrays for parallel

implementation. McWhriter [73] showed that the error could be extracted directly without

computing the estimate of the transversal parameters of the unknown FIR system. Two

rotation-based QR-RLS algorithms are proposed in [93] for blind adaptation of DS-CDMA

systems. These algorithms exhibit high degrees of parallelism, and can be mapped to VLSI

systolic arrays to exploit massively parallel signal processing computation. Using a single

triangular array, demodulation of multiple synchronous streams of information bits can be

carried out simultaneously. However, it is shown in the following that they are

computationally expensive, and moreover they also involve computation of square roots.

Ling et al. have presented a time-recursive Gram-Schmidt algorithm (RMGS) for

solving a general LS minimization problem, which is computationally more efficient than the

QR-RLS algorithms mentioned above. This algorithm is reported to be robust to roundoff

errors and can be implemented using systolic structure. Also, the authors have presented an

improved error feedback version of the RMGS algorithm (RMGSEF), which is more robust

as compared to RMGS algorithm. E.K.B. Lee has presented an adaptive orthogonalization

technique, in which the coefficients are derived from the Cholesky factorization of the

correlation matrix [123]. The result is the set of backward prediction errors that are well

known to form an orthogonal set. It was demonstrated that with such prefiltering,

convergence of an LMS MMSE filter for CDMA was rendered insensitive to eigenvalue

spread. An alternative scheme based on the update ofthe inverse Cholesky factor ofthe data

correlation matrix has also been developed in [4]. In this algorithm the error signal is

obtained without using the computationally expensive back-substitution method.

In order to implement the adaptive algorithms based on matrix factorization and

orthogonal transformations, for the adaptation and demodulation of the CDMA signals, the
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problem is formulated as follows. After the baseband conversion, the complex baseband

signal is chip-matched filtered and sampled at the chip rate. The sampled signal, r(n), is

then fed into a tapped delay line (TDL) filter of length N(Fig. 2.3). The output of the TDL

filter is sampled at the bit interval, and hard-limited to form an estimate of the desired user

data bit d, (n). The output ofthe TDL filter may be written as,

y(n)= wH(n)7(n) t4-1)

where Hstands for the Hermitian (complex transpose), r(n) =[% (n), r[ (n), , rN., (n)] is

the TDL contents, andw(n)=[w0(n), Wi(n),..., wN.!(n)]T and are the TDL filter weights

during interval (n-l)T<t<nT, which minimizes e(n), the exponentially weighted sum of

squared errors defined as:

E(n)=fjA"-'e\i)=fjXny](i)-yyH(n)r(n)\2 (4-2)
/-I i=l

where X, the forgetting factor, is less than but close to unity. This is the well-known least-

squares problem. The minimization of Eq.(4.2) is equivalent to the LS problem for solving

the linear system of equations:

A(n) w(n) - D(n) (4-3)

where

D(n)= [VFdi(l), V^Td,(2), ,d,(n)]T

and

A(n)=[r(l),?(2), ,r(n)]

4.2 The QR-RLS algorithm

Square-root adaptive filtering algorithms for RLS estimation are known as QR-RLS

algorithm, extended QRLS and inverse QR-RLS algorithm [36]. The derivation of the QR-

108



RLS algorithm has traditionally relied on the use of orthogonal triangularization process

known as QR-decomposition [36]. The motivation for using the QR-decomposition

technique is to exploit its good numerical properties. The QR-RLS algorithm works directly

with the data matrix rather than with the correlation matrix, and since the condition number

(Xmax/Xmm) of the data matrix is much smaller than the condition number of the correlation

matrix, the QR-RLS algorithm is numerically more stable than the RLS algorithm.

Assuming that the input-data matrix can be constructed as A(n)= [r(l), r(2),...., r(N)]

of dimension N-by-N, where N is the TDL filter length, then the correlation matrix of the

input data is defined by:

R(n)= JXT1 ?(n) ?H (n) - A(n) A(n) AH(n) (4.4)
;=1

The matrix A(n) is called the exponential weighting matrix defined by:

A(n) =diag[A.n-Un-2,...,l] (4.5)

The tap-weight vector w(n) is defined by:

R(n) w(n) = P(n) (4.6)

where P(n)=E[di(n)r(n)] is cross-correlation vector between the desired response dj(n) and

the input vector r (n). Let R(n) be expressed in its factored form:

R(n) =R1/2(n)RH/2(n) (4.7)

Then, premultiplying Eq.(4.6) By the square root R"1/2(n), we may introduce a new

vector variable u(n) defined by:

u(n)= RH/2(n) w(n) =R"1/2(n) P(n) (4.8)

To formulate the QR-RLS algorithm for linear predictive filtering, the following

matrices are constructed in [36, 101]:
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Xl/2R,/2(n-l) r(n) " Rl/2(n) 0

A.l/2u"(n-l) d(n) 8(n) = u"(n) KY,/2(n)

0T 1 rH(n)R'W2(n) YW2(n)

(4.9)

where 0(n) is a unitary rotation that operates on the elements ofthe input vector ?(n) in the

prearray, annihilating them one by one so as to produce a block zero entry in the block row

ofthe postarray. The unitary rotations may be performed via Givens rotations or Householder

transformations discussed in chapter three. Naturally, the lower triangular structure of the

square root of the correlation matrix, namely R1/2(n), is preserved in its exact form after the

transformation.

The computed updated block values R1/2(n) and uH(n) are used to solve the LS weight

vector:

wH(n) R1/2(n) = uH(n) (4.10)

where the back-substitution method is used in the last computation exploiting the lower

triangular structure of R1/2(n). For the initialization ofthe QR-RLS algorithm, we may set

R1/2(0)=0 and u(0)=0. Asummary ofthe QR-RLS algorithm is presented in Table 4.1.

The unitary matrix can be expressedas:

6(n) =nek
k=1

(4.11)

where 6k consists of a unitary matrix except for four strategic elements located at the points

where the pair of rows, k and N+1 intersects the pair of columns, k and N+1. These four

elements denoted by 9k,k, 0N+i,ic, 0k,N+i and On+i;n+i, are defined as follows:

9k,k~ 9n+1,N+1~ ck

eN+i,k=sk* (k=l,2, ...,N)

Ok,N+l= "Sk
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The cosine parameters ck are real, whereas the sine parameters sk are complex.

Table 4.1 Summary of the QR-RLS algorithm.

Input r(n), di(n), X

1/2/Initial condition R"z(0)=0 , u(0)=0.

For n=l, 2, compute

r"2R'"(n-l) r(n)

XmuH(n-\) d,(n)

wH(n) R1/2(n)= uH(n)

Algorithm

9(n) =

R,/2(n)

uH(n)

0

KY1/2(n)

rH(n)R-Ha(n) y'/2(n)

TOTAL

Complexity

3N2+7.5N Mult.

+ 2N Div.

+ N Square-roots.

N(N-l)/2 Mult.
+ N Div.

3.5N2+7Mult.
+ 3NDiv.

+ N Square-roots

4.3 Inverse QR-RLS algorithm

In this algorithm, instead of operating on the correlation matrix R(n), as in the

conventional QR-RLS algorithm, the operation is performed on the inverse of R(n) [4].

Referring to Eq. (3.29), the inverse QR-RLS algorithm may be written as follows (after

canceling common terms) [36, 101]:

1 r,/2?H(n)R-"2(n-l)

0 r1/2R',/2(n-l)
9(n) =

V/2(n) 0T
g(n)y,/2 ,-1/2

R"'»
(4.13)

where 6(n) is a unitary rotation, based on Givens rotations, that operates on the block entry

iC1/2rH(n)R"'/2(n-l)in the prearray by annihilating its elements, one by one, so as to

produce a block zero entry in the first row of the postarray. The gain factor g(n) is computed

by:

g(n) =[g(n) y'/2] [y1/2r' (4.14)
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The LS weight vector may be updated by:

w(n) = w(n-l) +g(n)a*(n)

where a(n) is the a periori estimation error defined as:

a(n) =d(n)-wH(n-l) r(n) (4-16)

Asummary of the inverse QR-RLS algorithm is presented in Table 4.2 [36, 101].

Table 4.2 Summary of the inverse QR-RLS algorithm.

(4.15)

Input r(n), di(n), X

Initialization R1/2(0)= 8"1/2I, 8 is a small positive number, w(0) =0.

Algorithm

Forn=l,2, , compute

8(n) =
1 r1/2rH(n)R'"2(n-l)
0 r1/2R',,2(n-l)

g(n)=[g(n)y-1/2][y-1/2]-1

w(n)= w(n-l)+g(n)a (n)

a(n) = d(n)- wH(n-l) r(n)

TOTAL

Y"1/2(n)
g(n)y'1/2(n)

0T

R"2(n)

Complexity

4N2 +7N Mult.
+ 2N Div.

+ N Square roots

NDiv.

N Mult.

N Mult.

4N2+9N Mult.
+ 3N Div.

+ N Square-roots

where 0(n) is a unitary rotation that produces a zero in the first row ofthe postarray. Since

the square root R1/2(n) is lower triangular, then its inverse matrix R"1/2(n) is upper triangular.

The inverse QR-RLS [36] algorithm differs from the conventional QR-RLS algorithm in

a fundamental way. Specifically, the input data vector r(n) does not appear by itself as a

block entry in the prearray of the algorithm; rather it is multiplied by X'm R"1 2(n). Hence, the
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input data vector has to be preprocessed prior to performing the rotations. This adds

computational complexity to the parallel implementation of the inverse QR-RLS algorithm.

The computation of the weights vector in the inverse QR-RLS algorithm does not involve the

back substitution method as in the conventional QR-RLS algorithms, where it requires

additional computations.

4.4 The RMGS algorithm

The Gram-Schmidt procedure for solving the LS estimation problem has very poor

numerical characteristics. A rearrangement of the steps of the Gram-Schmidt procedure,

known as Modified GS (MGS) procedure yields a method, which is computationally sound

with good numerical properties [55]. However, the MGS is a block-processing algorithm and

is not efficient when it is implemented in time recursive form. Ling et al. [63] have derived a

time recursive form of the MGS procedure, viz., the recursive MGS and its error feedback

form for the least squares estimation. Jagdeesha et al. [45] have derived the complex form of

the RMGS algorithm.

The LS problem can be solved using the modified Gram-Schmidt method as follows

[55]. First, we combine A(n) and D(n), defined in section 4.1, as:

A,(n)= [A(n), D(n)] (4.17)

and define a set of N+1, (n+l)-dimensional orthogonal vectors qi(n), (i=l, . . ., N) and e(n),

that satisfy

A,(n) = [ q,(n), q2(n), . . . . , qN(n), e(n)] Kt(n) (4.18)

where Kt(n) is an (N+l)-by-(N+l) upper-triangular matrix with unit diagonal elements, given

as:
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Kt(») =

1 kl2(n) ki2(n) ..•• klN(n) k((n)
1 ^(/i) .... k2N(n) k({n)

1 lcN-\,N 4-l(")
0 1 4(«)

i

K(n) Ka(n)
0 1

(4.19)

The elements q-,(n), e(n) and the elements of the upper triangular matrix ky(n) and kd(n)are
determined using the modified Gram-Schmidt (MGS) algorithm given in Table 4.3[63].

Table 4.3 Modified Gram-Schmidt (MGS) algorithm.

It can

Input ij(n)(i-l, N), di(n), X
Initialization qi(1)(n)= i| (n) (i=l, N)

ei(1)(n)=D(n)

For i=l to N do

qi(n)-qi(1)(n)
a,i(n)= qiH(n) qi(n)
For j = i + 1 to N do

aij(n)= [qj(i)(n)]H q,(n)
kij(n)» aij(n)/aii(n)

qj(i+1)(n) =^(i)(n)-kij(n)qi(n)
aid(n) - [e(i)(n)]H q,(n)
kid(n) =aid(n)/aii(n)

e(i+1)(n) =e(i)(n)-kid(n)qi(n)

e(n) =eN+1(n)

been shown that w(n)satisfies the equation K(n)w(n)= Kd(n) which can be

solved by backsubstitution.

Since the MGS algorithm is ablock processing scheme, the vectors i;(n)and D(n), n-l

through N, are involved in the computation of error e(n) or the weight vector w(n).
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Therefore, the computational complexity will increase as 'n' increases. Hence, the use of

MGS algorithm in real time application is inefficient.

It can be easily seen from Table 4.3 that the nth component of the vectors qj(l)(n), qi(n)

and e(l)(n) namely, qi(l)(n), qi(n) and e(l)(n), satisfy the same order recursive equations as their

corresponding vectors. Therefore,

qi(n) = qi(1)(n) (4.20)

^i+,) = qj(iV)-kij(n)qi(n) (4.21)

e(i+1)(n) =e(i)(n)-kid(n)qi(n) (4.22)

e(n) = e(N+1)(n) (4.23)

In order to obtain a time-recursive algorithm, we only have to derive time-update formulas

for the coefficients aij(n) and aid(n). These are given by [63]:

aij(n)= Xay(n-1) +qj(i)(n) a/(n)/ ai(n) (4.24)

aid(n) =Xaid(n-1) +e(i)(n) qT(n)/ai(n) (4.25)

where i=l to N and j=i+l to N, ctj(n) is a scalar quantity, which has a magnitude close to but

less than unity. The order recursive equation for ctj(n) is given by:

cci+1(n) =cci(n) - |qi(n)|2/ a«(n) (4.26)

Replacing the vector operations in Table 4.3 by their corresponding time recursive form, we

obtain the RMGS algorithm, which is summarized in Table 4.4.

The RMGS algorithm has good numerical properties, however, in [63] a modified form

has also been obtained which is more efficient and has even been better numerical properties

by using an apriori error form and incorporating the error feedback formula. The complete

error feedback RMGS (RMGSEF) algorithm is given in Table 4.5. A distinct feature of this

algorithm is that the error e(l+1)(n) and cti(n) are fedback to time update the elements ky(n) of

the upper triangular matrix and the elements of the vector Kd(n). Therefore, the algorithm
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exhibits better numerical accuracy and is more robust to round off errors as compared to

RMGS algorithm without error feedback [63, 45].

Table 4.4 Recursive Modified Gram-Schmidt (RMGS) algorithm

Input r,(n) (i=l, N), di(n), X

In itialization a \(n)=1 (T4.4.1)

qi(i)(n)= ^(n) (i-1, N), e(1)(n)= d,(n) (T4.4.2)

Algorithm Complexity

For i=l toNdo

qi(n) =qi(i)(n) (T4.4.3)

aii(n)=Xaii(n-l) + |qi(n)|2/ai(n) (T4.4.4) 2NMult.+ NDiv.

ai+i(n) =ai(n) - |qi(n)|2/ au(n) (T4.4.5) N Mult. + N Div.

Forj = i+ 1 toNdo

ay(n)= Xa0(n-l) +qj(i)(n) q/(n)/ tti(n) (T4.4.6) N(N-1) Mult.

ky(n) = aij(n)/aii(n) (T4.4.7)

qj(i+1)(n) =qj(i)(n)-kij(n)qi(n)

aid(n) =Xaid(n-l) + e(i)(n) qi*(n)/ai(n)

k|d(n) = aid(n) / au(n)

(T4.4.8)

(T4.4.9)

(T4.4.10)

N(N-l)/2 Mult.

2N Mult

e(i+1)(n) =e(i)(n)-kid(n)qi(n)

e(n) = eN+1(n)

(T4.4.11)

(T4.4.12)

NDiv.

N Mult.

TOTAL 1.5N2+4.5NMult.
+ 3N Div.

4.4.1 Parallel implementation on systolic arrays

The RMGS algorithm can be implemented using a highly modular structure (systolic

array) shown in Fig.4.1. The systolic array operates directly on the input data represented by

r H(n). The output ofthe systolic array is the estimated weight vector wH(n). The structure

consists of two sections: the triangular systolic array and the linear systolic array. A single

clock controls the entire systolic array. Each section of the triangular systolic array consists
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Table 4.5 RMGS algorithm using the error feedback formula.

Input rT(n) (i=l, N), d,(n), X
In itialization a \(n)= 1

aii(-l)=5(i=l,...,N)
qi(])(n)=rn(i)(i=l,...N),
e(l)(n)=d,(n)

(T4.5.1)
(T4.5.2)
(T4.5.3)
(T4.5.4)

Algorithm Complexity

For i=l toN do

qi(n) = qi(i)(n) (T4.5.5)

aii(n)= Xaii(n-l) +ai(n) |qi(n)|2 (T4.5.6) 3N Mult.

ai+i(n) =ai(n) - a2i(n) |qi(n)|2/ aii(n) (T4.5.7) N Mult. + N Div.

For j = i + 1 to N do

qj(i+1)(n) =qi(i)(n)-kij(n-l)qr(n) (T4.5.8) N(N-l)/2 Mult.

ky(n) - kij(n-l)+ ai(n) qj(i+1)(n) q,*(n)/ iin(n) (T4.5.9) N(N-l)/2 Mult.

e(i+,)(n) = e(i)(n)-kid(n-l)qi(n) (T4.5.10) N Mult.

kid(n) = kid(n-l)+ai(n) e(i+,)(n) qi*(n)/au(n) (T4.5.11) N Mult.

e(n) = eN+1(n) (T4.5.12)

TOTAL N2+5N Mult.
+ N Div.

of two types of processing cells: internal cells (represented by squares) and boundary cells

(represented by circles). The internal cells compute Eqs. (T4.4.4) and (T4.4.5), while, the

boundary cells, on the other hand, compute Eqs. (T4.4.6), (T4.4.7) and (T4.4.8) or (T4.4.9),

(T4.4.10) and (T4.4.11). When the entire orthogonal triangularization is completed, each

particular row of the upper triangular matrix KH(n) or the associated 1-by-N vector [Kn ] is

clocked out for subsequent processing by the linear systolic array section. This section

computes the estimated weight vector wH(n) by the method of backward substitutions using

the following equations:
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Fig. 4.1 Systolic array implementation of the RMGS algorithm.
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z[N) = 0.

z^-zjW+kfcCn) w;(n)

k?(n)-zf» (4-27)
wk(n) =

k„(n)
_kkwhere i,k= N-l, .... , 1, and Z{ are intermediate variables, kjk(n) are elements of upper

triangular matrix KH(n), kjd(n) are elements ofthe vector Kd(n), and w^(n)are elements of

the weights vector wH (n). The linear systolic array section consists ofone boundary cell and

(N-l) internal cells that perform the arithmetic functions defined in Fig.4.1 according to Eq.

(4.27). The elements of the weight vector appear at the output of the boundary cell at

different clock cycles, with w'N(n) leaving this cell first, followed by wj,_,(n) and so on

right up to w'(n)

4.4.2 Computational complexity

Direct computation of the RMGS algorithm needs 1.5N2+4.5N operations per output

point. Here each operation is defined as one multiplication plus one addition. In addition it

requires 2N divisions. Using the error feedback form of the RMGS algorithm (RMGSEF),

the number of operations required is N2+5N operation in addition to Ndivisions per output

bit. If it is required to calculate the weights, then using backward substitution method, then

an additional N(N-l)/2 operations and N divisions are required.

The QR-RLS method of solving the LS problem requires 3N2+7.5N operations, as well

as 2N divisions and N square roots. Additional N(N-l)/2 operations and N divisions are

required to calculate the filter weights. The inverse QR-D method proposed in [4, 36], which

solves directly the time-recursive LS filter vector without using the backward substitution

method, requires 4N2+9N multiplications, 3N divisions and N square-roots. The

computational complexity of the above methods, as well as the complexity of the
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conventional RLS algorithm, is given in Table 4.6. It is clear that the highest complexity is

required when using the square root algorithms (i.e. QR-RLS, inverse QR-RLS and the

SQRT-KF algorithms) since they involve the calculation of further Nsquare roots, which is

computationally expensive. On the other hand, it may be noted from Table 4.6 that the

RMGSEF algorithm requires the lowest computational complexity.

Table 4.6 Computational complexity ofvarious adaptive algorithms.

Algorithm Multiplications Divisions Square-roots

RLS 3N2+3N N
-

QR-RLS 3.5N2+7N 3N N

Inverse QR-RLS 4N2+9N 3N N

SQRT-KF 3N2+8N 3N N

RMGS 2N2+4N 3N
-

RMGSEF 1.5N2+4.5N 2N
-

4.5 Simulation Results and Discussion

In order to assess the performance ofthe proposed RMGS algorithm for the adaptation

and demodulation of DS-CDMA signals in comparison to NLMS and RLS algorithms,

several examples have been simulated. An asynchronous DS-CDMA system is assumed, in

which the interferer's delays are chosen from a uniform distribution. However, it is assumed

that the receiver is synchronized with the desired user data bits. Moreover, the receiver
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requires a training sequence in the training mode, but it does not require the knowledge ofthe

spreading sequence of the desired user. AWGN channel is assumed, in which different levels

of noise power are used. The TDL filter length N is assumed to be 31, and the number of

users is varied. Ensemble averaging over 100 independent trials is performed for evaluating

the convergence characteristics.

Example 4.1

In this example, an asynchronous DS-CDMA system has been simulated with different

number of interferers, each having 1OdB power advantage over the desired user. The input

SNR is fixed at 20dB.

Fig.4.2a shows the convergence characteristics for the DS-CDMA receiver based on the

RMGS algorithm using 4, 8 and 10 interferers, as well as the single user case. It may be seen

that by increasing the number of users the convergence becomes slower and the residual

MSE is slightly increased. Figure4.2b shows the convergence characteristics for the adaptive

DS-CDMA receiver based on NLMS, RLS and RMGS algorithms for 4 and 8 interferers

cases. The step-size of the NLMS algorithm has been tuned, such that while using the

different algorithms, the residual MSE is the same, and hence a fair comparison is achieved.

It is observed that the RMGS algorithm has a much faster convergence rate as compared to

the NLMS algorithm, while it has indistinguishable convergence characteristics in

comparison with the RLS algorithm. For 4-interferers case, the RLS and RMGS algorithms

converge in about 70 bits while the NLMS converges in about 500 bits, while for the 8-

interferers case, both the RLS and RMGS algorithm converges in nearly 100 bits while the

NLMS converges in about 650 bits.
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Fig 42a Convergence characterisitcs of the adaptive DS-CDMA receiver using
the RMGS algorithm with different number of interferers (each interferer has lOdB
power advantage over the desired user).
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Fig.4.2b Comparison of the convergence characteristics for the adaptive DS-CDMA
receiver using NLMS, RLS and RMGS algorithms with 4 and 8 interferers (each
interferer has 1OdB power advantage).
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Example 4.2

In this example an asynchronous DS-CDMA system with 4 interferers, each having

lOdB power advantage, has been simulated using both RLS and RMGS algorithms in the

training and decision directed modes. The input SNR is fixed at 20dB. 800 bits are used for

the training mode before switching to the decision-directed mode, and the forgetting factor is

set equal to A.=0.992. From Fig.4.3, it is clear that the convergence characteristics for both the

RLS and RMGS algorithms are indistinguishable in the training mode. However, in the

decision directed mode, this example shows that, the RLS algorithm becomes unstable after

1750 bit intervals, while the RMGS algorithm remains stable. As has been stated earlier, this

is because the condition number of the RMGS algorithm is lower than the condition number

of the RLS algorithm, and also due to the use of the finite word-length arithmetic in the

calculation of the Riccati difference equation. Solution to the instability problem of the RLS

algorithm is either to use periodic re-initialization, or to use rescue initialization procedure

whenever the RLS algorithm tends to diverge. Of course, this is another reason that has

motivated us to propose the use of the RMGS algorithm as an alternative to the RLS

algorithm.

Example 4.3

In this example, an asynchronous MMSE DS-CDMA receiver based on the RMGS

algorithm has been simulated. The system includes four interferers each having 1OdB power

advantage over the desired user and the input SNR is set at 20dB. The initial weights vector

is set to w(0)=0. The aim of this example is to show that the weight vector, which is obtained

by simulation, will converge to the optimal weight vector at the end ofthe training phase.

Fig.4.4a shows a plot of the theoretical weights (calculated using Eqs. 2.11-2.16, 2.25,

2.26 and 2.27) and the weights obtained by simulation using the RMGS algorithm. It is
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Fig.4.3 Convergence characteristics for the adaptive DS-CDMA receiver using RLS and
RMGS algorithms in both training mode (up to 800 bits) and decision directed modes.

The system includes 4 interferers ( each interferer has lOdB power advantage).
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Fig 44a Theoretical and simulated weight vector at the end ofthe training mode for
the adaptive DS-CDMA receiver using the RMGS algorithm with 4-interferers (each
interferer has lOdB power advantage over the desired user)
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observed that the weights that are obtained by simulation are very close to the theoretical

weight value. Fig.4.4b shows the trajectory of a single weight (wn in this case), which shows

that the weight wp converges in about 150 bits to its optimum value, and after that it

fluctuates around that value. It may therefore be concluded that the RMGS algorithm

converges to the optimal solution at the end of the training phase.

Example 4.4

In this example, the error rate performance of the MMSE DS-CDMA receiver is

examined. Eight and ten interferers' cases have been simulated in which each interferer has

1OdB power advantage over the desired user. In the evaluation of the probability of error,

sufficiently large number of samples has been considered and a training period of 800 bits is

allowed for the RMGS algorithm to converge to the steady state MSE value. For comparison

we have also provided, the single user lower bound (in which only one user is using the

channel) and the matched filter upper bound (in which the interference from other users is

treated as thermal Gaussian noise) calculated using Eqs. (2.63 and 2.64), respectively. Also

provided is a plot of the theoretical value of the probability of error for the adaptive MMSE

receiver based on the RMGS algorithm which is calculated using Eq.(2.60).

Fig.4.5 shows that the probability of error for the adaptive DS-CDMA receiver based on

the RMGS algorithm, which is obtained by simulation, is very close to the theoretical value.

A comparison of the probability of error for the adaptive DS-CDMA receiver with the single

user lower bound shows performance degradation due to the existence of MAI. At

probability of error of 10"3 the performance degradation in terms of input SNR is nearly

1.75dB for the 8-interferers case and about 2.5dB for the 10-interferers case.
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Fig.4.4b The trajectory ofasingle weight (wl7) ofthe TDL filter for the adaptive
DS-CDMA receiver with using the RMGS algorithm with 4 interferers (each
interferer has lOdB power advantage overthe desired user).
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Fig.4.5 Probability of error performance for the adaptive DS-CDMA receiver using the
RMGS algorithm with a) 8 interferers b) 10 interferers (each interferer has lOdB power
advantage over the desired user).
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Example 4.5

In this example, the capacity, i.e., number of users, of the adaptive MMSE DS-CDMA

receiver is evaluated by calculating the output SNR as a function of number of users at

certain value of the input SNR. The output SNR is calculated using Eq.(2.66). The near far

situation is assumed in which each interferer has lOdB power advantage over the desired

user. The step size of the NLMS algorithm is tuned such that the steady state residual MSE

for both the NLMS and RMGS algorithms has the same value.

Fig.4.6 shows the output SNR plot of the adaptive DS-CDMA receiver using both

NLMS and RMGS algorithms as a function of number of users at different values of the

input SNRs. It is clear that the RMGS algorithm outperforms the NLMS algorithm in terms

of the number of users that can be supported at both 3OdB and 50dB input SNRs. For

example, at input SNR=30dB, if the acceptable output SNR=20dB, then the RMGS

algorithm can support about 21 users while the NLMS can support only 6 users. At input

SNR=50dB, if the acceptable output SNR=20dB, then the RMGS algorithm can support

about 22 users while the NLMS can support only 7 users.

Example 4.6

In this example, the near far resistance of the adaptive MMSE DS-CDMA receiver

based on the RMGS algorithm is demonstrated, by plotting the probability of error as a

function of the SNR of the second user (interferer) relative to the SNR of the desired user.

The step size of the NLMS algorithm is tuned such that the single user steady state residual

MSE for the adaptive DS-CDMA receiver has the same value using both NLMS and RMGS

algorithms. The input SNR is set to lOdB and 12dB, respectively.

Fig.4.7 shows that the probability of error remains constant even when the interferer's

MAI changes from -2dB to 12dB relative to the desired user. This indicates that the residual
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Fig 46Comparison of the output SNR for the adaptive DS-CDMA receiver using NLMS and
RMGS algorithms with different number of users (each interferer has lOdB power advantage
over the desired user).
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RMGS algorithms.
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MSE remains constant in the presence of changing MAI, and the receiver's performance is

not affected with the increase of the interferer's power. It is, therefore, concluded that the

MMSE receiver based on the RMGS algorithm is near far resistant.

Example 4.7

In this example, the probability of error performance as a function of the number of

active users for the adaptive MMSE DS-CDMA receiver based on both NLMS and RMGS

algorithms is studied at input SNR of lOdB and 12dB, respectively. Each interferer has lOdB

power advantage over the desired user. The step size for the NLMS algorithm is tuned such

that the single user steady state MSE for both NLMS and RMGS algorithms has the same

value.

Fig.4.8 shows that the probability of error increases as the number of interferers

increases due the increase in MAI. It may be observed that the RMGS algorithm performs

better that the NLMS algorithm.

Example 4.8

In this example, the performance of the adaptive DS-CDMA receiver under fading

dispersive environment is studied. We consider the transmission ofDS-CDMA signals over a

multipath fading dispersive channel having a fading rate lower than the bit rate so that the

channel parameters are fixed during several bit intervals. The fading dispersive channel is

represented by an equivalent discrete-time (EDT) channel, which can be realized by an FIR

filter with time-variant tap gains gm(n) [37] as shown in Fig.4.9. The fading dispersive

channel model is introduced in appendix A, and the procedure for generating the complex

tap-gains that model the channel is also provided.

It can be easily shown that the output ofthe fading dispersive channel for the kth chip of

the nth symbol, for DS-CDMA signal, can be computed as (Appendix A):
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No. of interferers

Fig.4.8 Probability of error performance for the desired user as a function of the number
of interferers (each interferer has 1OdB power advantage)using the NLMS and RMGS
algorithms at input SNR lOdB and 12 dB.

135



T

rtfn)
> T

go(n) gi(n) g2(n) /^N gM-i(n)

XJ

V(°)

Fig.4.9 The equivalent discrete-time channel model for fading dispersive channel.

rf
M-l

?(n)-S
m=0

W(n)gm(n) if(i + m)<N-l

lwN+,(n-l)gm(n) if(i+m)>N-l

and the faded received vector will be rf (n)=[^f (n)"^ (n)... rNf.,(n) ]T where Mis the total

number of paths. Agood approximation for Mis M=[//TCJ +1 where x' is the maximum

delay spread and |_xj is the largest integer that is less than or equal to x [58].

In our simulation, we have assumed that the maximum delay spread is 15psec and the

data rate is 9600 bit/sec, which yields a total number of paths M=5. The maximum Doppler

frequency is kept at any of the three values (1Hz, 10 Hz and 100 Hz). Assuming that the

carrier frequency is 900MHz, then a receiver moving at the walking speed of 3km/hr will

produce a maximum Doppler shift of 2.5 Hz, while for a receiver moving at the highway

speed of 120km/hr then a maximum Doppler frequency of 100Hz will be produced. The

number of interferers has been changed between eight or ten interferers each having lOdB

power advantage above the desired user.

Fig.4.10 shows the error rate performance of the adaptive MMSE DS-CDMA receiver

based on both NLMS and RMGS algorithms at different valuesof the Doppler frequency. It

fori=0, 1,...,N-1 (4.28)
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is observed that the error rate performance of the RMGS algorithm is always better than the

NLMS algorithm. Also the RMGS algorithm provides a lower error floor at all values of

Doppler frequencies, input SNRs and number of users. It is also shown that there is

considerable improvement in the error rate performance with the increase in the SNR, but at

higher Doppler frequencies, there is degradation in the performance of both algorithms. It is

also noticed that there will be irreducible value of the probability of error (error floor), which

becomes independent of the SNR. At error rate of 10'2 and using 8-interferers, there is a

degradation in terms of input SNR of nearly 1.3dB for Doppler frequency fd=10Hz, and 7.5

dB for fd= 100 Hz, as compared to the case of fd=lHz. For the 10-interferers case, and at error

rate of 10'2, the degradation is nearly 1.3dB for fd=10Hz as compared to fd=lHz, while for

the case of fd=100Hz the error floor is higher than 10"2 for all input SNR values. Aterror rate

of 10"3 and using the RMGS algorithm, it is observed that the degradation in terms of the

input SNR is about 0.9 dB for the fd^lOHz case as compared to the fd=lHz when using 8

near-far interferers, while the degradation is nearly 1.2 dB when using 10 near-far interferers.

It is also observed that the error floor of the NLMS algorithm is higher than 10" for fd=10Hz

and fd=100Hz. For the RMGS algorithm with fd=100Hz, the error floor is at higher also

higher than 10" .

We have also studied the effect of changing the maximum delay spread on the

performance of the adaptive MMSE DS-CDMA receiver based on the RMGS algorithm.

Assuming that the carrier frequency is fixed at 900MHz, the data rate is 9600 bit/sec and the

maximum delay spread is chosen to be either 15psec or 30psec, which corresponds to a total

of 5 or 9 paths, respectively. Fig.4.11 shows the error rate performance of the adaptive DS-

CDMA receiver in fading multipath dispersive environment for 10Hz and 100Hz Doppler

frequencies and for 8 and 10 interferers. For these cases, it is observed that the performance
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of the receiver degrades slightly as the maximum delay spread increases, which is due to the

increase of the ISI.

In this chapter, we have considered the RMGS algorithm for updating the TDL weight

vector for the MMSE DS-CDMA receiver in the presence of both MAI and ISI. Simulation

results show that the convergence rate of the RMGS algorithm is same as compared to the

RLS algorithm. However is has been shown that the RMGS algorithm is more stable than the

RLS algorithm. Moreover, it may be noted that the RMGS algorithm requires the lowest

computational complexity as compared to other adaptive LS algorithms (Table 4.6). The

parallel implementation of the RMGS algorithm via systolic array will further reduce the

computational complexity to 0[N] per processor.
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CHAPTER 5

BLIND ADAPTIVE INTERFERENCE SUPPRESSION

ALGORITHMS FOR DS-CDMA SYSTEMS

The operation of the adaptive algorithms discussed so far require the use of training

sequence for the desired user during initial adaptation, and then switching to the decision

directed mode during actual data transmission. A fresh training may be required when the

receiver loses synchronization due to deep fading or due to the interference from a strong

interferer entering the network. However, in some applications the use of training sequence

may be impractical. Therefore, there is a need for adaptive receivers which do not require a

training sequence (blind) or the knowledge about the parameters of the interfering users.

In this chapter, blind adaptive algorithms for interference suppression in DS-CDMA

systems are presented. Section 5.1 reviews blind algorithms in DS-CDMA systems. Blind

equalization algorithms based on Bussgang techniques are introduced in section 5.2. Then, in

section 5.3, we present blind minimum output energy (MOE) algorithms based on LMS, RLS

and QR-RLS techniques. Moreover, since as stated earlier the RMGS algorithm can be

implemented using systolic arrays which reduces the computational complexity.proportional

to 0[N] per processor, we have proposed a new RMGS-based blind adaptive algorithm.

Finally, simulation results are presented in section 5.4.

5.1 Introduction

In a non-stationary environment, it is impractical to use training sequence-based

algorithms. Therefore, in such a case the adaptive filter has to suppress the interference in a

self-organized (blind) manner. Interference suppression in DS-CDMA systems is analogous

to adaptive equalization of dispersive channels, by the virtue of the analogy between MAI
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and ISI, and a considerable amount of work has been done in the area of blind equalization.

Blind adaptive interference suppression algorithms in DS-CDMA systems have been

developed based on the above analogy.

The Bussgang technique was first proposed by Godfrey and Rocca [29] for the

equalization ofseismic traces. Special cases ofthe Bussgang methods are the Sato algorithm

and the Godard algorithm, as reviewed below. Sato in [100] proposed a blind equalization

scheme for multilevel digital transmission systems, which was successful in situations in

which zero-forcing and MMSE algorithms failed. The Sato algorithm differs form the

MMSE equalization only in the use oferror signal it makes use of, as it minimizes a different

cost function. Benveniste [11] extended the Sato work to QAM systems, in which a heuristic

combination of the Sato and MMSE techniques was used providing some forms of automatic

switching between them. Godard [28] suggested another approach to blind equalization in

QAM systems guaranteeing the equalizer convergence independently of the carrier phase

recovery. The Godard algorithm is based on higher order statistics and is considered as one

of the simplest blind algorithm. This algorithm was also developed independently as constant

modulus algorithm (CMA) for pulse amplitude (PAM) and FM signals in [109, 110].

The stochastic gradient-descent blind minimum output energy (MOE) technique, for the

interference suppression in DS-CDMA systems, was proposed by Honig et al. [38]. The

receiver requires the knowledge of the spreading sequence and the timing of the user of

interest. The MOE based on the stochastic method suffers from slow convergence rate and

has difficulty in adapting the step-size to ensure the stability of the algorithm in a dynamic

environment. Also the MOE method suffers from the switching back and forth during new

user entering the network. The idea ofMOE has been proposed for the joint acquisition and

demodulation of DS-CDMA signals in [67], and for NBI suppression in [22]. The
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generalized structure of the blind adaptive interference mitigation detector based on the MOE

technique has been introduced by De Gaundenzi et al. [18], and a few modifications to the

algorithm of [38] have been performed which makes it suitable for practical

implementations. In [111] linear blind CDMA receivers are derived using inverse filtering

criteria. The receiver parameters are directly obtained without explicit estimation of the

system/channel. The method is based on minimizing the receiver's output energy subject to

appropriate constraints. Batch and adaptive blind algorithms are derived that are near-far

resistant and do not require knowledge of the interferers' codes. An accelerated convergence

stochastic-gradient algorithm, which uses second round averaging of the stochastic-gradient

has been derived and analyzed in [52]. The algorithm yields convergence rate identical to

RLS algorithm but has a computational cost similar to LMS algorithm. However, the

algorithm performs worse than RLS with the existence of strong NBI, also the step size has

to be obtained accurately and the algorithm suffers from ill-convergence condition when the

filter length becomes large. Poor and Wang [93] proposed an RLS-based blind adaptive

algorithm for MAI and NBI suppression in DS-CDMA systems. The algorithm possesses a

high convergence rate but it suffers from numerical instability and requires the recursive

update of the inverse autocorrelation matrix, which severely limits the parallelism and

pipelining in implementation. The major limitation of the MOE approach to blind MUD is

that there is a saturation effect in the steady-state, which causes a significant performance

gap between the MOE detection and the true MMSE detector.

Blind algorithms using classical approach of subspace estimation through either eigen

value decomposition or singular-value decomposition of the data matrix is computationally

too expensive for adaptive applications. The projection approximation subspace tracking

algorithm (PASTd), proposed in [121], ensures almost sure global convergence and lower
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residual MSE as compared to MOE criterion, but suffers from relatively slow convergence

rate. Wang and Poor [120] extended the blind subspace technique to combat both MAI and

ISI in a high-rate dispersive CDMA system. Improved detector characteristics, using the

subspace method compared to MOE criterion, are also presented in [99]. However some

decreased sensitivity to perturbation is anticipated. On the other hand, although the

subspace-based detectors outperform the MOE detectors in the steady state, they either

require more computational complexity orpossess slower convergence rate.

As it will be discussed in the next sections, the CMA algorithm suffers from poor

convergence rate and it does not ensure global convergence. The gradient stochastic based

MOE algorithm suffers form slow convergence rate and has difficulty in adapting the step-

size to ensure stability in a dynamic environment. The blind RLS-based algorithm converges

much faster but suffers from the well-known numerical instability. The blind QR-RLS

algorithm is more stable than the blind RLS algorithm while possessing a comparable

convergence rate. However, the QR-RLS algorithm is computationally expensive, since it

also requires the calculation of N-square roots. Moreover, as discussed in chapter four, since

the RMGS algorithm can be implemented in a highly modular structure via parallel systolic

array implementations, its computational complexity can be reduced to 0[N] per processor.

For the above reasons, we propose in the next section the blind RMGS-based adaptive

algorithm, which possesses all the attractive features of the previous algorithms while

avoiding their drawbacks.

In CDMA systems, the channel is shared by K users, where each user is assigned a

spreading waveform ck(t), which is zero outside the interval [0,T], defined by:

Ck(t)=I>k,jKt-JTc) ^
j=0
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where T is the signal bit interval, N-T/Tc is the processing gain, \|/(t) is the chip waveform of

rectangular shape and duration Tc, and CkjG {-1,1} is the jth element of the spreading code of

the kth user. The kth user transmit a signal, in the interval 0<t<T corresponding to first bit, of

the form

sk(t)=dk(t)ck(t)cos(coct + Ok) 0<t<T (5.2)

where dk(f) is the kth user data bit, coc is the carrier frequency and 9k is the phase. The

received signal is of the form:

y(0 =Zv/^sk(t-^)+n(t) (5-3)
where Pk is the received power of the kth user and Tk is its delay which is assumed to be

uniformly distributed over [0,T], and n(t) is additive white Gaussian noise. The receiver

converts the received signal y(t) to the baseband signal r(t). After the baseband conversion,

the received signal r(t) is chip-matched filtered and sampled at the chip rate and fed to the

TDL filter as r(n)=[r0(n), n(n), , rN.i(n)]T.

5.2 Blind equalization based on Bussgang technique

Blind equalization, consists of retrieving the input signal, and possibly the channel

impulse response, given the channel output and some statistical information on the channel

input but not the channel itself [6]. A nice feature of this algorithm is that it differs from the

MMSE equalizer only in the non-linear function g[.] it makes use of.

The system under consideration is considered in Fig.5.1 [36]. The output signal of the

transversal filter d(n) is computed by

d(n)=wT(n)r(n) (5.4)

where the output of the transversal filter is defined as

d(n)=d(n)+v(n) (5.5)
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where the term v(n) is the convolutional noise, and d(n) is the transmitted data bits. The filter

output d(n) is then processed by the zero-memory nonlinear estimator, producing the

estimate d(n) for thedatasymbol d(n), i.e.

d(n) =g[d(n)] (5'6)

where g[.] is the nonlinear function. The estimation error, e(n) may be calculated by:

e(n)=d(n)-d(n) (5-7)

The tap-weights vector w(n) of the adaptive filter may be adjusted using the formula

w(n+1) =w(n) +p r(n) e(n) (5 •8)

where p is the step size, and r(n) is the input vector.

r(n)

A
Transversal

Filter

7

LMS adaptive
algorithm

d(n)

m4^+> +

Zero-memory
non-linear estimator

g[-]

Fig.5.1. Block Diagram ofblind equalizer using non-linear estimator.

>d(n)

To update the TDL filter weights, minimization of the following cost function is

performed,
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J(n) =E[e2(n)] =E[{d(n)-d(n)}2]

=E[{g[d(n)]-d(n)}2] (5.9)

In the LMS algorithm, the cost function is a quadratic function of the tap weights, and

therefore, has a well-known minimum point. In contrast, the cost function defined by (5.9)

may possess local minima in addition to the global minima. This might happen due to the

effect of zero-memory nonlinearity applied to the filter output d(n). Local minima may

result in an ill convergence of the algorithm. It is worth mentioning here, that to date, no

zero-memory nonlinear function g[.] is known which would result in global convergence of

the blind equalizer, to the unknown inverse of the unknown channel [36].

When the Bussgang algorithm converges, the equalizer should be switched smoothly to

the decision directed mode of operation based on the MMSE weights update criterion. The

only difference between the two modes of operation lies in the type of the non-linearity

employed in the blind equalization mode. More specifically, in the decision directed mode,

the nonlinear estimator of the blind equalizer is replaced by a threshold device (hard-limiter).

A special case of the Bussgang algorithm is the Godard algorithm [28] in which the

author had proposed a family of constant modulus blind equalization algorithms for use in

two-dimensional digital communication systems. The Godard algorithm minimizes a non-

convex cost function of the form

J(n) =E[(|d(n)|p-Rp)2] (5.10)

where p is a positive integer, and Rp is a positive real constant defined by

RP=*^1 (5.11)
E[|d(n)|p]
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The Godard algorithm is designed to penalize the deviations of the blind equalizer

output d(n) from a constant modulus. The constant Rp is chosen in such a way that the

gradient of the cost function J(n) is zero when perfect equalization is attained.

The tap-weights vector is adapted in accordance with the stochastic gradient algorithm

[28]: -

w(n+1 )=w(n) + p r(n) e(n) (5.12)

e(n) - d(n) |d(n) |p"2 [Rp-| d(n) |p] (5.13)

As a special case, assuming that p=2, the cost function reduces to:

J(n) = E[{|d(n)|2-R2}2] (5-14)

where R2=*4l (5.15)
E[|d(n)|2]

This case of the Godard algorithm (p=2) is referred to as the constant modulus algorithm

(CMA). Its cost function for binary valued signals (±1) will have aconstant squared modulus

equal to 1. The stochastic descent based CMA algorithm will update the weights vector as

follows:

w(n+1) = w(n) +p r(n) d(n) [1-1 d(n) |2] (5.16)

The CMA is considered as the most successful and the simplest higher-order statistics

(HOS) based algorithm among the Bussgang family of blind equalization algorithms. It

chooses a linear receiver that minimizes the deviation of the receiver output from a constant

modulus. The CMA cost function does not distinguish between desired and interfering

symbols because each symbol ofall users are local minima ofthe cost function. The CMA

based adaptive DS-CDMA receiver is summarized inTable 5.1.
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A

Table 5.1 CMA-based algorithm for DS-CDMA systems.

Input r(n), p

Initialization w(0)=ci/SQRT(N).

Algorithm Complexity

d(n) = wT(n) r(n)

E[|d(n)|4]
R2= —! — = 1 (for binary signals =±1)

E[|d(n)|2]

e(n)=d(n)[R2-|d(n)|2]

w(n+l) = w(n) + p r(n) e(n)

N Mult.

2 Mult.

N+1 Mult.

TOTAL 2N+3 Mult.

5.3 Blind MOE multiuser detector

In this section, we present the constrained blind MOE detector for the interference

suppression in DS-CDMA systems. It is easy to show that the MSE and MOE differ by a

constant factor [38], which is equal to the desired user power. In contrast to the MMSE

detector, the MOE detector does not require the knowledge of the data in order to implement

a gradient descent algorithm for the minimization of the MSE. This will remove the

requirement for a training sequence, and leads to the blind adaptation rule. On the other hand,

it could also be shown that the MOE has no local minima, since the MOE cost function is

strictly a convex function over a set of signals orthogonal to the desired user spreading

sequence.

5.3.1 LMS-based blind MOE detector

A linear multiuser detector for DS-CDMA signals, which uses the blind MOE criterion,

performs the following hard decision at the output of the TDL filter to estimate the desired

user data bit:
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d,(n) = sgn(<r(n),z, >) (5.17)

where, the inner product is given by

N-l

<x,y>= £x(n)y(n) (5-18)
n=0

and Z| is the desired user linear detector defined by[38]:

zi-ci + u (5.19)

where c\ is the normalized spreading sequence of user 1 (which is considered as the fixed

part), and xi is the adaptive part of the linear detector. The fixed and adaptive parts, ci and Xj,

are assumed to be orthogonal to each other, such that < ci , X\> =0. It is also assumed that

<c,,z1>=||c,||2=l. (5.20)

This normalization, of course, will not affect the decision in (5.17).

The linear MMSE detector minimizes the MSE, sum of the noise plus interference,

E[(Vp7d,(n)-<r(n),z,>)2] (5.21)

while the MOE detector minimizes the output energy defined by

E[( <r(n), c, + x,> )2] (5.22)

It is important to restrict the detector to be in canonical form, otherwise the output energy is

trivially minimized with zi=0 [38].

Assuming that the nth output of the conventional single user matched filter given by:

yMF(n) = < r(n), c, > (5.23)

The output of the linear detector is

y(n) = <r(n), c, + x(n-l)> (5.24)

and d,(n) = sgn(y(n)) (5.25)

Minimization of the MOE cost function will provide the following adaptation rule:

xi(n) = xi(n-1) - p y(n) [r(n) - yMF(n) ci] (5.26)
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This algorithm converges regardless of the initial condition to the MMSE detector, if the

step-size decreases as p(n) = l./n [38]. However, in practice, a lower bounded step size p(n)

is often needed to track channel variations. The blind LMS-based MOE algorithm is

summarized in Table 5.2.

Table 5.2 Blind LMS-based MOE algorithm.

Input r(n), C|, p

In itialization x \(n)=0.

Algorithm Complexity

yMF(n)= rT(n)c,

y(n)= rT(n)[c, + x(n-l)]

xi(n) = xi(n-l) - p y(n) [r(n) - yMF(n) Ci]

N Mult.

N Mult.

2N+1 Mult.

TOTAL 4N+1 Mult.

5.3.2 RLS-based blind MOE detector

The exponentially windowed RLS algorithm selects the weight vector zi(n), to minimize

the sum of exponentially weighted energy [93]:

minimize ^""[zf (n)r(i)]2
i=l

(5.27)

subject to zi (n)ci=l (5.28)

where 0<X,<1 is the forgetting factor (1-X,«1). The solution to this constrained optimization

problem is given by (see appendix B):

z,(n)=
1

.r\u
c R-'(n)c.

•R-'(n)c,

A n

where R(n) =^An"'r(i)rT(i)
i=l

(5.29)

(5.30)
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A recursive procedure for updating zi(n) can be obtained as follows [93]:

,-1

k(n) = fR"'(n-l)r(n)

A+ r'(n)R"'(n-l)r(n)

1
h(n)= R"'(n-1) c, = - [h(n-l) - k(n) r'(n) h(n-l)]

A

1

c, h(n)

(5.31)

(5.32)

(5.33)

R-'(n) = - [R-'(n-l) - k(n) rT(n) R"'(n-1)]
A

(5.34)

The blind RLS-based algorithm is summarized in Table 5.3, together with its

computational complexity.

Table 5.3 The blind RLS algorithm.

Input r(n), Cj, X

Algorithm Complexity

R-'(n-l)r(n)
N2+N Mult. + N Div.

N2 Mult.

N Mult. + N Div.

N2+N Mult + N Div.

^ +rT(n)R_1(n-l)r(n)

h(n)= R-'(n-l) c, - - [h(n-l) - k(n) rT(n) h(n-l)]
A

c, h(n)

R-'(n) =\ [R-'Cn-l) - k(n) rT(n) R-'(n-l)]
A

TOTAL 3N2+3N Mult.
+ N2+2NDiv.
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5.3.3 QR-RLS based blind adaptive multiuser detector [93]

Assuming that the autocorrelation matrix R(n) is positive definite and can be factorized

by the Cholesky decomposition as

R(n) = 9?T(n)<H(n) (5.35)

where 91 (n) an upper triangular matrix. Thendefine the following quantities:

u(n)= 9r'(n)c, (5.36)

v(n) = 9T'(n) r(n) (5.37)

a(n) =—-J =-j—l- (5.38)
tfR-'OOc, uT(n)u(n)

Since R(n-l) and u(n-l) are available from the previous recursion, and at time n, a new

data vector r(n) becomes available. Then the following matrix will be constructed, which

will be processed by a series of orthogonal transformations as follows:

G(n)
Vl<H(n-l) u(n-l)/VI 0

rT(n) 0 1

5R(n) u(n) v(n)

0 7(n) y(P).
(5.39)

where: B(n) is a unitary transformation (of N successive Givens rotations or Householder

transformation discussed in chapter three) that zeros the first N elements on the last row of

the constructed matrix at the left hand side of (5.39).

The demodulation of the data bits can be obtained by:

d,(n)-»gn[i7(nMn)] (5-40)

And the algorithm is initialized by setting 91 (n) = 48\ and u(Q)=C\/tJS , where 8 is a small

positive number, i.e. the adaptation starts with the matched filter case. At each iteration

orthogonal transformation is performed on the prearray to form a block of zero at the bottom

row of the postaray and updating 9?(n) and u(n). The QR-RLS algorithm is summarized in

Table 5.4.
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Table 5.4 The blind QR-RLS algorithm.

Input r(n), X

Initialization 91 (n) = yfSl where 5 is a small positive number.
I is the identity matrix.

u(0)=c,/V^

Algorithm Complexity

0(n)
Vl3t(n-1) u(n-l)/VX 0

rT(n) 0 1

d,(n) = sgn[^(n)^(n)]

TOTAL

91(n) u(n) v(n)'

0 ?7(n) y(v).

3N'+7.5N Mult.
2N Div.

NSQRT

1 Mult.

3N2+7.5N+1 Mult.
2N Div.

NSQRT

5.3.4 RMGS-based blind adaptive algorithm

In this section, we propose the blind MOE based on the RMGS algorithm for the

adaptation and interference suppression in DS-CDMA systems, due to its attractive features

in terms of stability, fast convergence rate and its ability to be implemented in a highly

modular systolic structure.

The exponentially weighted LS criterion selects the weight vector Zi(n) to minimize the

sum of exponentially weighted output energy according to Eqs. (5.31-5.34). Assuming that

h(n) =R-,(n) c, (5-41)

then zi(n)= h(n)
c, h(n)

The weight vector can be updated by updating R''(n) recursively. Based on the RMGS

algorithm, R"'(n) can be updated using k(n), the upper triangular matrix, as follows:

R(n) =kT(n) A(n) k(n) (5-43)

where A(n) is a diagonal matrix with elements ay=0. for all i *j, or
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l/_\ i,-T/R"l(n) = k-'(n)A-1(n)k"'(n)

Substituting in Eq. (5.41) we get

h(n) = R-'ci = k-'(n) A"'(n) k_T(n) c.

Let p(n) = k" (n) ci which can be calculated by back substitution method. Then

h(n) = k-'(n) A"'(n) p(n) = k"'(n) b(n)

(5.44)

(5.45)

(5.47)

where: b(n)=A"'(n)p(n). Again, using the back substitution method, we calculate h(n)=k"'(n)

b(n). The vector h(n) is then used in (5.42) to update the weights vector zi(n).

Therefore in order to update the weights vector zi(n), the RMGS algorithm updates the

upper triangular matrix k(n), while R*'(n) is updated using (5.44) and h(n) is updated in

(5.45) by applying the back substitution method twice. The complete RMGS-based blind

adaptive algorithm along with its computational complexity is summarized in Table 5.5.

Table 5.5 Summary of the Blind RMGS algorithm.

Input rj(n) (i=l, N), X
In itialization a \(n)= 1

aii(-l)=5, qi(i)(n)=rn(i) (i=l, N),

Algorithm Complexity

1) For i=l to N do

qi(n) = qs(i)(n)

aii(n)= Xaii(n-l) +oti(n) qj2(n)

ai+i(n) = ai(n) - a2i(n) qi2(n)/ aii(n)

Forj =i + 1 toN do

qj(i+,)(n) =qj(i)(n) - ky(n-l) qi(n)
kij(n) =kij(n-l)+ +ai(n) qj(i+1)(n) qi(n)/ aH(n)

2) h(n) = R-'ci - k"'(n) D''(n) k"T(n) c,

3N Mult.

N Mult. + N Div.

N(N-l)/2 Mult

N(N-l)/2 Mult.

N2 Mult

N Mult. + N Div.
c, h(n)

TOTAL 2N2+4N Mult.
+ 2N Div.
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The computational complexity of the previously mentioned blind algorithms is

summarized in Table 5.6.

Table 5.6 Computational complexity for the blind adaptive algorithms

Algorithm Multiplications Divisions Square-roots

CMA 2N + 3

LMS 4N+1

RLS 3N2 + 2N

QR-RLS 3N2+ 7.5N+1 2N N

RMGS 2N2+4N 2N

5.4 Simulation Results and Discussion

In this section, we consider the blind adaptation and demodulation of DS-CDMA

signals. Unless stated otherwise, an asynchronous system is assumed in which the delays of

different users are uniformly distributed random numbers over the interval [0,T] and are kept

fixed during the simulation. PN spreading sequences of length N=31 are used. Without loss

of generality it is assumed that the receiver is synchronized with the desired user (user

number 1). The desired user SNR is set equal to 20dB. The near-far situation is assumed in

which all the interferers have a lOdB power advantage over the desired user. The

performance characteristic is averaged over 100 independent runs in both the blind and

decision-directed modes. The optimum signal-to-interference ratio is defined as:

SIR. =[E{z»r(n)}]2
var{zjr(n)r(n)}

158

(5.47)



The steady state SIR can be shown to be [93]:

SIR'
SIR-= — (5.48)

(l + a) + a SIR

1 —X
where a = (N -1).

IX

Example 5.1

In this example the performance of the blind adaptive DS-CDMA receiver is

investigated using the CMA, blind-LMS, Blind-RLS and blind-RMGS algorithms. The near-

far situation is assumed, in which nine synchronous interferers are included in the system

each having a lOdB power advantage over the desired user. The spreading sequences of

length N=10 are randomly generated. Fig.5.2 shows the convergence characteristics of the

adaptive DS-CDMA receiver in the blind mode. It is clear that the CMA algorithm converges

poorly as compared to other blind adaptive schemes, though it is noted from simulation that

the convergence characteristics of CMA depends essentially on the initial values setting of

the tap-weights. It is also observed that the blind LMS algorithm converges slowly as

compared to both RLS and RMGS algorithms, which possess identical convergence

characteristics. The CMA algorithm converges in nearly 300 bits and the blind-LMS

converges in about 130 bits while the blind-RLS and blind-RMGS algorithms converge in

about 40 bits.

Example 5.2

This example shows the tracking capability of the blind adaptive DS-CDMA receiver

based on the RMGS algorithm in a dynamic environment. The performance of the receiver is

plotted in terms of SIR as a function of the number of bits when the number of interferers is

varied with time. The receiver starts with a desired user and four interferers each having

lOdB power advantage above the desired user. At time n=400, one strong interferer of lOdB
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Fie 52 Convergence characteristics for the adaptive DS-CDMA receiver using the
CMA, LMS RLS and RMGS blind algorithms with nine synchronous interferers
(each interferer has lOdB power advanteg over the desired user).
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power advantage is added to the system. At time n=800, another two interferers of lOdB

power advantage enter the system and at time n=1200, four interferers leave the system. It is

clear from Fig. 5.3 that when the interferers access the system the SIR will spike to about

OdB and then in a blind mode adapt to the steady-state SIR value. It is concluded that the

RMGS algorithm can adapt quickly in a dynamic environment, which makes it attractive for

a mobile communication environment.

Example 5.3

In this example, the effect of changing the forgetting factor (X) on the steady-state SIR

of the adaptive DS-CDMA receiver, in the blind mode adaptation, is presented. The system

consists of a desired user and four interferers each having lOdB power advantage over the

desired user. The forgetting factor is assumed to be one of these values (X= 0.98, 0.99, 0.995

and 0.999). Fig.5.4 shows the SIR plot versus number of bits in the blind mode for different

values of the forgetting factor. It is observed that the SIR converges to its steady state value

in the same way as the MSE converges to its optimum value. Also it is obvious that the

steady state SIR increases as X increases which is governed by Eq.(5.48).

Example 5.4

In this example, we show the difference between the SIR in the blind and decision-

directed modes. The system includes a desired user and four interferers each having lOdB

power advantage over the desired user, which incorporates the near-far situation. The

decision directed mode operates in the following manner: at time n, the input vector r(n) is

available and the previously calculated weights vector w(n-l) is used to find the estimate of

the desired user data bit d] (n) = sgn[rT (n)w(n -1)]. Assuming that the demodulated data bit

161



-2
500

no. of bits

Filter length (N) = 31
SNR = 20dB

1000 1500

Fig.5.3 The behavior of the adaptive DS-CDMA receiver based on the blind RMGS
algorithm in adynamic environment as given be example 5.2.
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Fig.5.4 Effect ofchanging the forgetting factor ( ty onthe time-averaged SIR versus
number of bits in the blind adaptation mode for the adaptive DS-CDMA receiver using
the RMGS algorithm with 4 interferers (each interferer has lOdB power advantage over
the desired user).
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is the true data bit i.e., d,(n) = d,(n), then we use it to update the weight vector in the

conventional (non-blind) adaptive algorithm.

The system starts in the blind adaptation mode and then at n=500 bit it changes to the

decision directed mode. Fig.5.5 shows the SIR plot versus number of bits for the adaptive

DS-CDMA receiver based on the RLS and RMGS algorithms. It is observed that the system

converges to SIR value of lOdB in about 120 bits in the blind mode, and after it switches to

the decision directed mode it converges to the steady state SIR value of about 18dB in nearly

100 bits. It is clear that there is an 8dB gap in the SIR between the blind and decision-

directed modes, which is considered an important drawback of the MOE criterion. It is also

clear that the SIR in the decision directed mode is very close to the optimum value.

Example 5.5

In this example, we aim to demonstrate the near-far resistance ofthe blind adaptive DS-

CDMA receiver based on the blind-RMGS algorithm. The probability of error performance

of the RMGS-based blind adaptive algorithm is measured by varying the power of each

interferer form -2dB to lOdB relative to the desired user. Two cases have been simulated; in

the first case one asynchronous interferer and in the second case with four asynchronous

interferers have been assumed. The input SNR is chosen to be lOdB, 12dB or 15dB. Fig.5.6

shows that the probability of error remains nearly constant even though the interference

power varies, or the number of interferers changes. This clearly demonstrates the near-far

resistanceof the blind RMGS-algorithm in the blind adaptationmode.

Example 5.6

In this example, the probability of error performance of the adaptive DS-CDMA

receiver based on either training sequence based adaptation or blind adaptation modes are

examined. Two cases are simulated. In the first case, the system is adapted using training
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sequence before switching to the decision directed mode, while in the second case the system

is adapted blindly. For comparison, we have also provided in the plot, the single user lower

bound and the matched filter upper bound, which are calculated using Eqs.(2.63 and 2.64),

respectively. Also provided is a plot of the theoretical values of the probability of error for

the adaptive MMSE receiver which is calculated using Eq.(2.60). Eight and ten interferers

cases have been simulated each having 1OdB power advantage over thedesired user.

It is clear from Fig.5.7 that the probability of error performance based on the blind

adaptation matches with that of the training sequence based adaptation. This is due to the

reason that, while switching from the blind mode to the decision directed mode, the receiver

adapts quickly to the same steady-state MSE as that of the training sequence based

adaptation, and hence the same probability of error is achieved. Also performance

degradation is observed in terms ofinput SNR as compared to the single user case.

In this chapter, we have considered blind adaptive algorithms based on the Bussgang

technique and the MOE criterion for the adaptation and demodulation of DS-CDMA signals.

These algorithms include the CMA, blind LMS, blind RLS, and blind QR-RLS algorithms as

well as anew blind RMGS algorithm. The proposed RMGS algorithm is shown to be near far

resistant and possesses fast convergence rate same as that of the blind-RLS algorithm, and is

more stable as compared to the RLS algorithm. Also the proposed blind RMGS algorithm

requires lower computational complexity as compared to the blind QR-RLS algorithm.

Parallel implementation of the proposed blind RMGS algorithm will reduce the

computational complexity to 0[N] per processor.
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the desired user)
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CHAPTER 6

ADAPTIVE TIME-DELAY ESTIMATION USING RMGS

ALGORITHM

The adaptive implementation of the MMSE receiver for interference suppression in DS-

CDMA systems requires the knowledge of the training sequence for the desired user before

switching to the decision directed mode. This of course assumes the knowledge of the code

timing for the desired user, which we have assumed to be known in theprevious chapters. In

this chapter, we remove this restriction by presenting adaptive algorithms for time-delay

estimation, of the desired user, in both the initialization and the tracking modes. Section 6.1

introduces some theoretical background and reviews the time-delay estimation algorithms. In

section 6.2, a time-delay estimator based on processing the MMSE weights vector using the

RMGS algorithm is presented. Another TDE for both the initialization and tracking modes is

presented in section 6.3, which is based on running N-parallel MMSE algorithms at different

hypothetical values of the desired user delay. Section 6.4 presents a blind version of the TDE

method. The computational complexity of the blind adaptive algorithms is provided in

section 6.5. Finally, simulation results and discussion are given in section 6.6.

6.1 Introduction

Because of the nonlinear dependence of the received signal on the user's time delay in

DS-CDMA systems, time delay appears to be the hardest to estimate and there has been a

considerable effort devoted towards solving this problem.

Assuming asynchronous DS-CDMA system with K users simultaneously transmitting

over the same channel with AWGN, the baseband transmitted signal due to the kth user is

given by:
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sk(t)=£dk(n)ck(t-nT) (6-1)

where dk(n) is the data bits ofthe kth user, and T is the signaling bit interval. The spreading

sequence of the kthuser may be defined as:

ck(t)=XkjV(t-JTc) (6-2)
j=o

where N=T/TC is the processing gain, \j/(f) is the chip waveform of rectangular shape and

duration Tc, and ckj e{-1,1} is the jth element ofthe spreading code ofthe kth user. The total

received signal is given by:

y(t) =Z V^s" C*'x*)cos^^ +e"} +n(t) (6'3)
k=l

where Pk is the kth user power and xk is its delay which is assumed to be uniformly

distributed over [0,T], 6k is its phase, coc is the carrier frequency and n(t) is AWGN. Further it

is assumed that9i, the phase of the desired user=0.

The receiver is asynchronous with all users including the desired user, the user 1. It is,

therefore, required to estimate its delay xu which is assumed to be within asingle bit interval

(i.e. 0<n<T).

The time-delay estimate, in the cross-correlation technique of [48, 91], is given by the

peak location of the crosscorrelation between the true signal and its filtered delayed version.

This is a single user method and works reasonably well in a multiuser environment if the

received powers are similar, but it fails in a near-far environment.

The time-delay can also be modeled as an FIR filter, whose coefficients represents the

estimate of the time-delay and may be updated using the LMS algorithm [15]. Aclass of

gradient-based algorithms has been introduced in [59] for joint estimation of time delay and
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IIR filtering. However, the algorithm exhibits local minima and in order to ensure global

convergence of the algorithm, extra conditions are needed. Boudrea and Kabal [13] proposed

a least square (LS) estimation criterion to perform the joint estimation of the delay and filter

coefficients. The filter is updated using the FTF-RLS algorithm, while the delay is updated

using a form of derivative. It is shown that both stationary and time-varying delays are

effectively tracked. Drawbacks of this method is that the algorithm restrict adaptive delay

values to integer numbers of samples and also the time averaging for the LS error is required

for each new lag, which will introduce additional delay for the convergence to occur and

large data have to be gathered.

Algorithms based on the maximum likelihood (ML) rule, for estimating the users

delays, amplitudes and phases have been developed in [10]. It has been shown that this ML

estimator is capable of eliminating the near-far effect as well as processing the signals

propagated through multiple paths. However, it requires the knowledge of the transmitted

symbols, which can be accomplished by using feedback decisions from the detector. Zheng

et al. [127] have presented a large sample ML (LSML) algorithm for estimating the code

timing of a known training sequence in an asynchronous DS-CDMA system. This algorithm

is a single-user TDE and is shown to be near far resistant. One limitation of the LSML

estimator is that it is applicable to stationary systems where the channel remains reasonably

static over the duration of time in which the code acquisition is performed. G. Ye et al. [125]

have extended the ML algorithm of [127]. It is shown by simulation that the proposed

estimator is near-far resistant with reduced computational complexity.

Bensely et al. [9] have considered the estimation of the channel parameters for DS-

CDMA communication systems operating over channels with either single or multiple

propagation paths and the time-delay of each propagation path is to be estimated. The
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channel estimate is formed by projecting a given user's spreading waveform into the

estimated noise subspace and then by either maximizing the likelihood or minimizing the

Euclidean norm of this projection. The algorithm is near-far resistant but requires 0[N ]

computational complexity. Strom et al. [106] have proposed algorithms to deal with the

propagation delay, phase and amplitude estimation of all users in DS-CDMA systems. These

are the ML, MUSIC and the sliding correlator algorithms. The computational complexity of

the sliding correlator is simple, however, it is only optimal in asingle-user system (i.e. in the

presence of WGN only), but is highly suboptimal in the presence of MAI, especially in a

near-far situation. On the other hand, both the ML and MUSIC algorithms are shown to be

near-far resistant, but with increased computational complexity, 0[N3]. Parkvall et al. [89]

proposed a CDMA receiver using the modified MUSIC estimator in conjunction with the

MMSE interference suppression to obtain a near-far resistant receiver without apriori

synchronization. Parameters that are required by the MMSE suppression receiver are readily

obtained from the MUSIC estimator and are not assumed to be known inadvance.

Smith et al. [105] have presented a single user code timing estimation algorithm that is

based on processing the weight vector of an adaptive DS-CDMA receiver. The performance

of this detector is better than the traditional correlator-based approach, and it is found to be

near-far resistant when the RLS adaptive filter is used. However, the technique requires an

all-ones training sequence or it requires the filter's length to be doubled (i.e. 2N) such that

the bit transitions will be within the observation interval. Madhow [68] has suggested a near-

far resistant method, which automatically accounts for the delays and amplitudes of the

desired signal without explicitly estimating these parameters. The technique runs N-parallel

adaptive MMSE receivers at N-hypothetical values of the delay; then finding the delay,

which produces the lowest MSE. The only requirements are a training sequence for the
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desired user and a finite uncertainty regarding the symbol timing. A drawback of this method

is that it is not designed to recover chip timing, which causes some performance loss. In [67]

a similar idea has been proposed, but it is based on the blind MOE algorithms as a building

block. The delay is found by the location that possesses the best MOE. Some performance

degradation is noticed as compared to training-based algorithms.

Work on joint data detection and parameter estimation was presented in [44]. The

algorithm is made adaptive and the likelihood metric is updated using a set of EKF filters.

Lim et al. [60] had introduced adaptive multiuser detector structures using the EKF and RLS

formulation to jointly estimate the transmitted bits and individual amplitudes and time delay

of each user. The proposed detector works in the tracking mode and it outperforms a bank of

single user detectors in terms of near-far resistance. Caffery and Stiiber [14] have presented a

joint channel and time-delay tracking technique for CDMA systems using an iterative non

linear filtering algorithm The complexity is reduced form that of the standard of EKF when

the number of users is large. However, the above algorithms are computationally complex

(exponential in the number of users).

Based on the MMSE criterion, in this chapter, we have considered two near-far resistant

TDE estimation methods using the RMGS algorithm, namely: the MMSE weights processing

method and the parallel MMSE algorithm.

6.2 TDE by processing the MMSE weights vector

In this section, we present a time-delay estimation algorithm that is based on processing

the weight vector obtained using the MMSE criterion. It has been shown in [105] that the

weights vector adapts in the mean to a scaled time-shifted version of the spreading code of

the desired user.
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The receiver converts the received signal y(t) to the baseband signal r(t). After the

baseband conversion, the signal r(t) is chip matched-filtered and sampled at the chip rate

producing the vector r(n)=[r0(n) r,(n) rN.,(n)]T which represents the contents of the

TDL at the nth data sample time. Assuming that ck=[c0>k c,,k cN.i,k]T is the spreading

sequence for the kth user, then the TDL filter contents can be written as [see chapter 2]:

r(n)=d,(n) ci+ 11-JK dk(n) W cos(9k) +YV(n) (6-4)

(6.5)

(6.6)

(6.7)

k=2

Ik(n) = Z2k-i(n)a2k-i(pk,5k) +z2k(n)a2k(pk,5k)

z2k-i(n)=[dk(n)+dk(n-l)]/2

Z2k(n)=[dk(n)-dk(n-l)]/2
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where:

f (p. +1) (p ) I
a2k-,(PkA)= Skck K +(1"5k)ck (6-8)

a2k(Pk»Sk)= 8kck k +(l-5k)ckk (6.9)
(m) _ r j

Ck ~Lck,N-m Ck,N-m +r"Ck,N-l ck,0 ck,r"ck,N-m-l] (6'10)
«(m) _ r_ -.T
Ck ~L Ck,N-m"Ck,N-m +r-'"Ck,N-l Ck,0 ck,r"ck,N-m-l] (6,11)

i\(n) is a vector of random Gaussian noise variables with zero mean and variance of a2 and

tk = Pk Tc + 8k Tc with pke{0, 1,. . ., N-l} and 0 < 5k <1 is the delay of the kth user.

The optimal weight vector for the MMSE receiver is given by the Wiener-Hopf solution

w0(n):=R"l(n)P(n), where R(n)=E[r(n)rT(n)] is the autocorrelation matrix, and

P(n)=E[di(n)r(n)] is the crosscorrelation vector. In a stationary environment, the forms of

R(n) and P(n) are independent of n and are given by [105]:

K p
R=a,(pk,8k)a,T(pk,5k) +a2I + £-Jl a2k.,(pk,5k) aT2k.i(pk,5k)

k=2 Pi

K p

+Z^ a2k(pk,5k) aT2k(pk,5k) (6.12)
k=2 "l

P = ai(pk,8k) (6.13)

Since it is assumed that the receiver is not synchronized with the desired user, then the

observation interval of length (T) will obviously include portions of two adjacent bits. This

of course, might turn out to have bit transitions within the observation interval. To avoid bit

transitions, it is suggested that the desired user might use an all one training sequence.

However, this poses a problem when new users are planning to access the network. Possible

solutions to this problem are to use a side channel to control the addition of a new user or to
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increase the received vector length to 2N. However, this means doubling the filter length,

leading to increased computational complexity.

In order to justify the use of the crosscorrelation between the MMSE weights vector and

the spreading sequence in the TDE algorithm, we will observe the weight vector for the

following case. We assume that there is only one chip-synchronous user with phase shift

0i=O., which implies that

r(n)=cjm)+nn (6-14)

Using the Wiener-Hopf equation, it can beshown that:

,(m)w(n) =;-§-_ (6.15)
lie, II +a

It is clear that the optimal weight vector is a scaled delayed version of the desired user

spreading sequence, therefore, the delay of the desired user could be found by the location of

the peak of the crosscorrelation magnitude between ci and w(n). It has been shown in [105]

that adding near-far interferers to the system will introduce small perturbation ofthe filter

weight vector around the solution given by (6.15). However, we are still able to find delay-

estimates with reasonable accuracy.

The weights of the adaptive MMSE filter could be obtained using the LMS or RLS

algorithms. However, we propose the use of the RMGS algorithm due its attractive features

as discussed earlier in chapter four. The code timing estimation is performed using the

following procedure. The MMSE weight vector, obtained by adopting the RMGS algorithm,

is crosscorrelated with the desired user spreading sequence. This is followed by a search for

the chip that provides the largest crosscorrelation peak, which will give the delay estimate.

The MMSE timing estimate is thus given by:
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x, = arg max
(P.S)

|aT(p,8)w(n)|
i| 2

ai(P>$)
8=1 (6.16)

This of course, will produce an estimate equal to integer multiples of the chip interval, which

leads to an estimation error up to Tc. Therefore, to estimate the timing within a fraction of a

chip, a quadratic interpolation between this chip and its two neighboring chips is performed.

Denoting the chip with the .maximum cross-correlation by xa and its two neighboring chips

by tb, and xc, and their corresponding crosscorrelation values to be designated by f(xa), f(xb)

and f(xc), respectively, then the estimated code-timing delay may be calculated by [94]:

T=T Kxb--ca)2[f(xb)-f(xa)]-(xb-xc)2[f(xb)-f(xc)]
'" b 2 (xb-xa)[f(xb)-f(xc)]-(xb-xc)[f(xb)-f(xa)]

The justification for using quadratic interpolation is that there exists a maximum value of the

crosscorrelation residing somewhere nearby or within this chip. However, though the use of

quadratic interpolation is not completely precise in this case, simulation results show that it

provides reasonable accuracy in the time-delay estimate. In conclusion, the above method

may be summarized as:

• Find the MMSE weight vector w(n) using the RMGS algorithm.

• Crosscorrelate the weight vector w(n) with desired user spreading sequence Ci,

delayed at integer chip intervals.

• Find the chip xa, which corresponds to the largest (peak) crosscorrelation value.

• Estimate the time delay xi by interpolating xa and its neighbors xb andxc.

6.3 Parallel adaptive MMSE TDE scheme

The previous TDE method suffers form performance degradation as the number of

interferers grows up due to the perturbation error introduced in the relation between the
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weight vector and the desired user spreading sequence [105]. Therefore, in this section, we

present a near-far resistant MMSE time-delay estimation algorithm for DS-CDMA systems

which will avoid the weights processing TDE drawback. We assume a near-far situation in

which strong interferers exist in the system, and that the delay of the desired user is within

one bit interval T, (i.e. 0<xi<T). Also we assume that the desired user phase is 0i=O., such

that real signal representation is used. The received signal is defined as in (6.4). The

observation interval is chosen to be equal to 2T (i.e. 2N chips) such that itwill guarantee the

inclusion ofthe desired bit within it. This means that three consecutive bits might be included

within this observation interval as indicated in Fig.(6.2). Therefore the observation vector

will include 2N samples defined as rE(n)=[ r(nN), r(nN+l), ,r{nN+(2N-l)}]T.

di(n-l) | d,(n) , di(n+l) •

2T

Observation interval

Fig.6.2 The observation interval includes three consecutive bits.

We run N-parallel adaptive MMSE algorithms at the following hypothetical delay

values of the desired user; x= 0, Tc, . ., iTc,. . ., (N-1)TC. Therefore, the processed part of the

observation vector rE(n) will be, r(n)ei?N , r(n)=[ r(nN+ i), r(nN+l+i), , r{nN+N-

l+i}]T. Again the optimal weight vector for the MMSE receiver is given by the Wiener-Hopf

solution w0(n)=R-'(n)P(n), where R(n)=E[r(n)rT(n)] is the autocorrelation matrix and

P(n)=E[di(n)r(n)] is the crosscorrelation vector.

The MMSE receiver forms an estimate ofthe desired data bit given by:

dl(n) =sgn[wT(n)r(n)] <6-18)
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where w(n)eRN is the weight vector which minimizes the MSE between the estimated and

the actual data bits of the desired user, di(n), defined by:

MSE=E[{d,(n)-wT(n) r(n)}2] (6.19)

The receiver requires a training sequence before switching to the decision directed mode. In

the training phase, we find the delay at which the receiver will provide the largest

crosscorrelation value between the weight vector and the desired user spreading sequence.

This will be the estimated delay measured in multiples of the chip delay. To find the TDE

within a fraction of a chip, we may sample the received signal at Tc/m intervals, which will

provide improved TDE accuracy within {-Tc/(2m)< xi <+Tc/(2m)}, however, this will cause

an m-fold increase in the received vector length and hence leading to higher computational

complexity. A better solution is to sample the received signal at the chip rate and using

quadratic interpolation between the chip with the largest crosscorrelation peak and its two

neighboring chips find the value of the delay at which the crosscorrelation peak occurs,

(which resides inside this chip or the two neighboring chips). The estimated delay of the

desired user will be selected at the interpolated maximum. Denoting the chip with the largest

crosscorrelation peak by xa, and its two neighboring chips by Xb and xc, and their

corresponding crosscorrelation values by f(xa), f(xb) and f(xc), respectively, the interpolated

value of delay can be computed using Eq.(6.20). The Parallel MMSE TDE method may be

summarized as follows:

• Find the weight vectorw(n) for eachhypothesis using the RMGS algorithm.

• For each hypothetical delay, find the crosscorrelation of w(n) with the desired user

spreading sequence Ci.

• Find the hypothesis, which provides the largest crosscorrelation peak.
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• The delay x\ is estimated, within a fraction of achip, by using quadratic interpolation

between the chip ofbest hypothesis and its two neighboring chips.

6.4 Blind TDE

In this section, we implement the TDE method presented in section 6.3 in the blind

adaptation mode (by removing the requirement of a training sequence). We use the blind

MOE detector based on the RMGS (introduced in section 5.4) as a building block for the

joint demodulation and TDE of the desired user signal. The philosophy of implementing this

method is the same as that of the TDE of section 6.3 except for the removal of the training

sequence restriction. The only side information required is the knowledge of the spreading

sequence of the desired user. The length of the observation interval is chosen to be 2T, such

that one complete bit of the desired user, d,(n), falls in this interval. This observation interval

corresponds to 2N samples such that rE(n)=[r(nN), r(nN+l), ,r{nN+(2N-l)}]T. We run

N-parallel RMGS-based blind adaptive algorithms at hypothetical values of the delay equal

to integer multiples of the chip interval, i.e., x=0, Tc, . ., iTc, . . . , (N-1)TC, such that the

processed part of the observation vector rE(n) will be, r(n)ei?N, r(n)=[r(nN+i), r(nN+i+l), . .

...,r(nN+i+N-l)]T.

Based on the MOE criterion, the exponentially weighted LS criterion selects the weights

vector w(n) to minimize the sum ofexponentially weighted output energy:

minimize 2>n-![wT(n)Kn)]2 (6'2°)
i=i

subject to cj w(n)=l (6'21)

where 0<X<\ is the forgetting factor. The solution ofthis constrained optimization problem

is given by (see appendix B):
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w(n)= —— R"'(n)c, (6.22)
cTR-'(n)c,

where R(n) =£ ^ r(i)rT (i) (6-23)
i=l

The mean output energy is:

=E[(wT(n)r(n)] =wT(n) R(n) w(n) - ——^ (6.24)
CiR (n)c,

All signal vectors are normalized to unit energy to enable a fair comparison of the MOE's for

different hypothesis. The normalized MOE is then defined as [67]:

=E[( wT(n)r(n) )2] _ wT(n)R(n)w(n) (6 25)
|w(n)| |w(n)||

At each hypothesis, the normalized MOE solution is found by simulation. Then we

choose the best hypothesis as the estimated delay of the desired user. Again, this delay is

equal to integer multiple of the chip interval, and a quadratic interpolation between this bit

and its two neighboring chips is performed to estimate the delay within a fraction of a chip

using (6.17).

An attractive feature of this receiver is that no side information about the user is

required except the knowledge of the desired user spreading sequence. Moreover, the method

is shown to be near far resistant. It requires 0[N3] computational complexity in the

acquisition mode when the RMGS algorithm is used, then after switching to the decision

directed mode for tracking, the method requires 0[3N ] computations.

6.5 Computational complexity

The computational complexity of the above TDE methods, based on the using the LMS

and the RMGS algorithms, is summarized in Table 6.1.

182



Table 6.1 Computational complexity of the implemented TDE methods

in the acquisition mode (The observation interval equal 2N).

Method Multiplications Divisions

TDE based on

MMSE weights
processing

LMS 8N+8 2

RMGSEF 6N2+13N+7 4N+2

TDE based on

parallel adaptive
MMSE weights

processing

LMS 2N2+N+7 1

RMGSEF 1.5N3+4.5N2+7 2N2+1

Blind

RMGSEF
2N3+4N2+7 2N2+1

It is clear that the computational complexity of the RMGSEF-based TDE algorithms, in

the acquisition mode, is an order of magnitude higher than that of the LMS-based TDE

algorithms. However, the RMGSEF-based TDE algorithms converge much faster and

possess better performance as compared to the LMS-based TDE algorithm. In the tracking

mode, the computational complexity of weights processing TDE method will be the same as

that of the acquisition mode, while for the parallel TDE method the computational

complexity will be an order ofmagnitude lower than that of the acquisition mode (since in

the tracking mode we run only 3-parallel adaptive algorithms compared to N-parallel

adaptive algorithms in the acquisition mode). For example, for the LMS-based Parallel TDE

method requires 6N+10 multiplications and one-division in the tracking mode compared to

2N2+N+7 multiplications and one-division in the acquisition mode. On the other hand, the

RMGS-based parallel TDE algorithm requires 1.5N3+4.5N2+7 multiplications and one-

division in the tracking mode compared to 2N2+1 multiplications and one-division in the

acquisition mode. It is worth mentioning that the computational complexity of the TDE
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methods implemented in this chapter, in the tracking mode, is lower than other TDE methods

based on subspace or MUSIC algorithms which require 0[N3] computational complexity.

6.6 Simulation results and discussion

In this section, we provide simulation results for several examples, in order to assess the

performance of the TDE methods presented in this chapter. For both TDE methods, we

compare their performance using the LMS and RMGS algorithms. In all simulation results

presented in this section, an asynchronous system is assumed, in which the delays of all users

(xk) are chosen from a uniform random distribution having values in the range [0,T). The

near-far situation is assumed in which the system includes strong interferers having lOdB

power advantage over the desired user, unless stated otherwise, and the input signal to noise

ratio SNR=20dB.

One performance measure, to assess the performance of the timing estimator is the

average acquisition time of the estimator. It is defined as the number of training bits required

by the estimator such that the probability that the timing estimate is within one half-chip of

the propagation delay is greater than 90% [105], i.e.

Prlft-T,!^] >90% (6.26)

In the simulation, the calculation of the probability of correct acquisition is evaluated as

follows. 500 independent trials are performed for estimating the delay, and then a correct

acquisition of the TDE is achieved if the probability of having an estimation error within

±Tc/2 is greater than 90%.

Another important performance measure is the root mean-square estimation error

(RMSE) given the correct acquisition, i.e.

RMSE =^E[(x,-x,)2 | (|t,-t1|)^Tc/2] (6.31)
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which is ameasure of how well the receiver could be synchronized if the timing estimate was

used to update the receiver timing relative to the desired user. The RMSE is evaluated by

averaging the TDE error (conditioned on correct acquisition) over 500 independent trials.

Example 6.1

In this example, we study the performance of the two time-delay estimation methods in

the acquisition (initialization) mode. An asynchronous CDMA system is assumed in which,

the delays of all users are assumed to be unknown but fixed during the acquisition mode. The

system includes 4-interferers, each having lOdB power advantage over the desired user, and

the spreading code is PN-sequence oflength 31.

Fig.6.3a shows the performance of the two TDE methods based on the RMGS

algorithm. It is clear that both methods achieve correct acquisition (i.e. |x, -x,| <Tc/2)

within less than 8bits in anear far situation. Fig.6.3b shows the performance of the two TDE

methods for the same situation, using the LMS algorithm. It is therefore concluded that the

two TDE methods based on both LMS and RMGS algorithms can achieve correct time delay

acquisition within few bits in anear-far environment.

Example 6.2

In this example, the performance of the two TDE methods based on the LMS and

RMGS algorithms is examined by measuring the average acquisition time (i.e. no. of training

bits required to achieve correct acquisition) with different number of active users and with
varying multiple access interference (MAI). The spreading codes are random sequences of
length N=24. All the simulation results are averaged over 500 independent trials, in which

different values ofusers' delays are chosen at each trial.

Fig.6.4a shows the acquisition performance (i.e. number of training bits as afunction of
number of interferers, each having lOdB power advantage over the desired user) for the two
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Fig.6.3 Performance of the two TDE methods based on a) RMGS b) LMS algorithms
for the adaptive DS-CDMA receiver with 4 interferers (each interferer has 1OdB
power advantage over the desired user).
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-a- RMGS Parallel TDE
LMS Parallel TDE

RMGS Weights processing TDE
LMS Weights processing TDE

Filter length (N) =24
SNR = 20dB

Fig.6.4a Average number of training bits required for correct acquisition as a function
of number of users using the two TDE methods based on LMS and RMGS algorithms
(each interferer has lOdB power advantage over the desired user)..
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TDE methods based on the LMS and RMGS algorithms. It is clear that the average number

of training bits required to achieve the correct acquisition increases as the number of users

increase. Also it is clear that the two TDE methods possess similar performance using either

the LMS or the RMGS algorithm. The results also indicate that the RMGS algorithm

performs better than the LMS algorithm. For example, for four users system the number of

training bits required for correct acquisition using the RMGS algorithm is 7bits compared to

20 bits for the LMS algorithm. For 10-users system, the number of bits is 14 bits for the

RMGS algorithm compared to 38 bits for the LMS algorithm. Therefore, for 4-users system

the RMGS algorithm achieves acquisition three times faster than the LMS based timing

estimator.

To examine the near-far resistance of the two TDE methods, we have plotted in

Figs.6.4b,c&d their acquisition performance as a function of interferer's power, i.e. MAI

from each interferer. In other words, it is required to show how the number of training bits

required to achieve correct acquisition is affected by the MAI level. The simulated system

includes 3-users and 11-users cases. From Fig.6.4b&c it is quite clear that the RMGS

algorithm performs better than the LMS algorithm for the two cases. From Fig.6.4d, it is

noticed that the parallel TDE method performs better than the weights processing method for

the 3- and 11-users cases. It is also clear that theLMS-based TDE methods are not truly near-

far resistance while based on the RMGS-algorithm, for the three users case, the TDE could

be considered as near-far resistant. For example for the 3-users RMGS-based TDE the

average number of acquisition bits required for correct acquisition is 4 for MAI level of 4dB

and 7 bits for 12dB MAI, while for the 11-users case it is 11 bits for 4dB MAI and 22 for

12dB MAI.
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Fig.6.4b Average number of training bits required for correct acquisition as a function
of MAI from each user based on the parallel TDE method for 3 and 11 users, using
LMS & RMGS algoithms
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Fig.6.4c Average number of training bits required for correct acquisition as a
function ofMAI from each user based on the weights processing method for 3
and 11 users using LMS and RMGS algorithms.
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d) RMGS algorithm.
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Fig.6.4d Average number of training bits required forcorrect acquisition as a
function of the MAI for 3 and 11 users using the two TDE methods based on
the RMGS algorithm.
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Example 6.3

In this example, we study the probability of correct acquisition for the two estimators

presented in this chapter. The near-far situation is assumed in which all interferers possess

lOdB power advantage over the desired user. The spreading codes are randomly generated

sequences of length N=24. The simulation results presented are averaged over 500

independent trials in which the delays and spreading sequences are changed in each trial.

Fig.6.5a shows the probability of correct acquisition as a function of the number of

training bits using the two TDE methods with 4 interferers based on the LMS and RMGS

methods. It is clear that the RMGS method achieves correct acquisition faster than the LMS-

based TDE methods. Also it is noticed that the parallel TDE method performs better thanthat

of the weights processing methods.

Fig.6.5b shows the probability ofacquisition performance ofthe two TDE methods as a

function of number of users. It is clear that for small number of users the weights processing

TDE methods performs better than the parallel TDE method and possesses higher value of

probability of acquisition. However, for large number of users the probability of correct

acquisition for the weights processing TDE method degrades faster than the parallel TDE

method and approaches a value of0.7 for 22 users. The degradation in the performance ofthe

weights processing method is due to the perturbation error induced in the relation between

the desired user's weight vector and its spreading sequence, which will make the

crosscorrelation criterion deviates from achieving the correct delay estimate as the number of

users increases,

Fig.6.5c shows the probability of correct acquisition as a function of the power of each

interferer for the two TDE methods in 11-users system. It is clear that initially both methods

are near-far resistant and beyond certain value ofMAI, the probability ofcorrect acquisition
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degrades as the MAI level increases. Also it is noticed that for low MAI level the probability

of correct acquisition for the weights processing TDE method is higher than that of the

parallel TDE method. But as the level ofMAI increases, the probability ofcorrect acquisition

for the weights processing TDE method degrades faster as compared to that of the parallel

TDE method.

Example 6.4

In this example, we study the performance of the two TDE methods in terms of the

RMSE after the correct acquisition has been achieved. The spreading codes are randomly

generated sequences of length N=24. The near-far situation is assumed, and the simulation

results are averaged over 500-independent trials in which all the users delays and spreading

codes are changed in each trial.

Fig.6.6a shows the RMSE plot for the two TDE methods as a function of the average

number of training bits using both LMS and RMGS algorithms. The system includes 4-

interferers each having lOdB power advantage over the desired user. It is shown that the

RMGS based TDE converges, to the steady state RMSE, faster than the LMS based TDE. It

is also clear that the parallel TDE method based on the RMGS algorithm possesses lower

RMSE as compared to the weights processing TDE method.

Fig. 6.6b shows the near-far resistance for the two TDE methods by plotting the RMSE

as a function of the power ofeach interferer. Three and eleven users cases are simulated. It is

clear that for the 3-users case, the two methods are near far resistant, in which the RMSE

remains constant at a value of 0.14TC when the MAI values varies form -2dB to 12 dB. On

the other hand, for 11-users case, the two methods are not considered as truly near-far

resistant, since the RMSE for -2dB MAI is 0.15TC while it is 0.2TC for 12dB MAI.
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Fig. 6.6c shows the RMSE plot as a function of number of users, in which each

interferer has a lOdB power advantage over the desired user. Again the RMSE is calculated

assuming that the correct acquisition is achieved. It is clear that the RMSE increases as the

number of users increase.

Example 6.5

In this example, we study the performance of the two time-delay estimation methods in

the tracking mode. An asynchronous system is assumed with 4-interferers, each having lOdB

power advantage over the desired user. The spreading codes are PN-sequence of length 31.

The delays of all interferers are assumed to be unknown but fixed, while, the desired user's

time-delay is assumed to be correctly acquired in the initialization mode and its delay grows

linearly with time in the tracking mode, as follows:

n(n+l) = Ti(n) + 0.0005 T (6.32)

This variation in the time-delay (5*1 O^T) corresponds to a vehicular velocity of 1.74* 105

km/Hr for bit-rate of 9600 bit/sec, which much higher than the realistic speed.

Fig.6.7a shows the performance of the two TDE methods based on the RMGS

algorithm. It is clear that the two methods perform similarly. Fig.6.7b shows the performance

of the two TDE methods for the same situation, using the LMS algorithm. Some performance

degradation is noticed as compared to the RMGS algorithm. It is also observed that, based on

the LMS algorithm, the parallel TDE method performs better than the weights processing

TDE method in the tracking mode.

Example 6.6

In this example, the performance of the TDE method based on the blind adaptation is

examined and compared to the TDE method based on training sequence adaptation. Both

TDE methods are using the RMGS algorithm. The simulated system uses random spreading
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sequences of length N=24, which is the only side information required to be known by the

receiver. All the simulated results are averaged over 500 independent trials, in which the

delays of all the interferers and their spreading sequences are varied in each trial.

Fig.6.8a shows the probability of correct acquisition plot as a function of the number of

interferers (each interferer has lOdB power advantage over the desired user). It is shown that

the performance of the TDE method based on blind adaptation degrades very fast as

compared to the TDE method based on the training sequence adaptation. This degradation in

performance is due to the large increase in the total MAI.

Fig.6.8b shows the probability of correct acquisition as a function of MAI of each

interferer using 3-users system. It is shown that, for 3-users system, the performance of the

TDE based on blind adaptation is worse than that of the TDE method based on training

sequence adaptation, however, both methods may be considered as near-far resistant, since

their performance remains constant as MAI levels varies form -2dB to 12dB. Fig.6.9a shows

the RMSE as a function of the number of users for the two TDE methods. It is shown that the

RMSE using the TDE method based on blind adaptation is higher than that of TDE method

based on training sequence adaptation. Also it is noticed that the RMSE increases with the

increase of the number of users. Fig.6.9b shows the RMSE as a function of MAI of each

interferer for 3-users system. It may be seen that the RMSE for the TDE method based on

blind adaptation is higher than that of the TDE method based on training sequence

adaptation. However, for 3-users system it is noticed that the RMSE remains constant for

MAI values of-2dB to 12 dB, and therefore the algorithm can be considered as near far

resistant.
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Example 6.7

In this example, acomparison of the probability of error performance for the adaptive

DS-CDMA receiver for synchronous system with known value of delay and for

asynchronous system based on estimated time-delay is presented. The time-delay has been
estimated based on parallel TDE method using both training sequence based adaptation and

blind based adaptation modes presented in (sections 6.3 and 6.4). After achieving correct

acquisition of the desired user's time-delay, the receiver switches to the decision directed
mode. The estimated time-delay is then kept fixed during the whole simulation run. The

system includes 4-interferers each having lOdB power advantage over the desired user. The
results are averaged over 500 independent trials in which all the users' delays and spreading

codes are changes in each trial.

It is clear that there is performance degradation in the probability of error performance

for the adaptive DS-CDMA receiver using the TDE methods based on either blind based

adaptation or training sequence based adaptation as compared to the synchronous system

(Fig.6.10). The SNR degradation is within a maximum value of 3dB corresponding to

estimation error of Tc/2

In this chapter, we have considered two adaptive methods for TDE in DS-CDMA

systems, which can be used during both the acquisition and tracking modes. The first method
is based on cross-correlating the MMSE weights vector with the desired user spreading

sequence, while in the second method we run N-parallel TDE methods at N-hypothetical
delay values. The two TDE methods are shown to be near far resistant, and require lower

computational complexity as compared to other adaptive TDE methods. Anovel blind
adaptive DS-CDMA receiver for interference suppression, which does not require any side
information except the desired user's spreading sequence, has also been implemented.
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(each interferer has 1OdB power advantage).
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CHAPTER 7

CONCLUSIONS

In this chapter, we conclude the thesis by summarizing some of the important results of

the present work and also suggest some problems for further investigation.

This thesis addresses itself to the consideration of the interference suppression in

multiuser DS-CDMA systems using adaptive signal processing algorithms. MUD techniques

jointly detect all signals, in order to mitigate the non-orthogonal properties of the received

signals. The optimum detector based on the MLSD [116] has a computational complexity

that is exponential with the number of users, which has motivated the design of many

suboptimal detectors with lower computational complexity. However, we have, in this thesis,

restricted ourselves to the use of adaptive algorithms based on the MMSE criterion. We

consider the transmission of DS-CDMA signals over AWGN channel with the existence of

MAI. The main issues considered are the convergence rate, near far resistance, stability and

the computational complexity of the adaptive algorithms.

We have first introduced the asynchronous DS-CDMA signal model. We then

considered the performance comparison of MMSE adaptive algorithms (including the LMS,

MVSS-LMS and RLS) for the interference suppression in DS-CDMA systems. It is well

known that the LMS algorithm requires low computational complexity, 0[N], but it suffers

from slow convergence. In order to speed up the convergence the RLS algorithm is used,

which converges much faster but possesses higher computational complexity, 0[N2]. To

reduce the computational complexity, while maintaining fast convergence rate, we have

implemented a novel block algorithm for the adaptation and interference suppression ofDS-

CDMA signals. It has been shown that the block algorithm possesses fast convergence rate,
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comparable to the RLS algorithm while requiring lower computational complexity. It has

also been shown that the block algorithm performs well using moderate block sizes. To

improve the convergence rate, we have implemented the MVSS algorithms for both

conventional LMS and block LMS algorithms. Simulation results show that variable step-

size algorithms perform better than fixed step-size algorithms in terms of convergence rate

and residual MSE for both conventional LMS and block LMS algorithms. The MMSE

receiver based on LMS, RLS and block algorithms has also been shown to be near far

resistant. Further results show that the RLS algorithm can support larger number ofusers (i.e.

capacity) than the LMS algorithm, while for the block algorithm capacity lies between the

capacity realized by the two algorithms.

Next, we have proposed the implementation of the KF algorithm for the adaptation and

interference suppression in DS-CDMA systems. Amotivation for using the KF is that it is

optimal in the MMSE sense and is considered as the best linear unbiased estimator.

Moreover, the KF is usually formulated using the state-space approach, which contains all

the necessary information about the system. However, the KF algorithm suffers from the

well-known numerical instability problem due to the way in which the Riccati difference

equation is calculated and also due to the use of finite word-length arithmetic. The instability

problem of the KF algorithm has been overcome by using the SQRT-KF algorithm. In the

SQRT-KF algorithm, we have used unitary transformations on the state error correlation

matrix, which is adopted using the Givens rotations or Householder transformation.

It has been shown that the KF, SQRT-KF and RLS algorithms possess comparable

convergence characteristics. However, the SQRT-KF algorithm is shown to be more sable as

compared to the RLS and conventional KF algorithms. The near-far resistance of the DS-

CDMA receiver based on the SQRT-KF algorithm has also been demonstrated.
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As stated above, the SQRT-KF is stable, but requires high computational complexity.

To remedy this problem, the RMGS algorithm [63] has been used for the adaptation and

interference suppression of DS-CDMA signals due its good numerical properties. A modified

form of the RMGS algorithm (RMGSEF) has also been used which is more efficient and has

better numerical properties. Parallel implementation of the RMGS algorithm using systolic

arrays has been presented, thus reducing the computational complexity to 0[N] per

processor. It has been shown that the RMGSEF algorithm requires the lowest computational

complexity as compared to other square root algorithms (namely the SQRT-KF, the QR-RLS

and the inverse QR-RLS algorithms), since these algorithms involve the calculation of the

computationally expensive square roots. It has also been shown that the RMGS algorithm

outperforms the LMS algorithm in terms of convergence rate and capacity, while it possesses

the same convergence rate as that of the RLS algorithm but is more stable. The performance

of the adaptive MMSE DS-CDMA receiver based on the RMGS algorithm has also been

studied in a fading dispersive environment. The fading dispersive channel is represented by

an equivalent discrete-time (EDT) channel, which is realized by an FIR filter with time-

variant tap gains. It is shown that the RMGS algorithm outperforms the NLMS algorithm and

provides lower error floor for different values of the maximum Doppler frequency and for

different number of interferers.

Then we have dealt with the adaptation techniques for interference suppression of DS-

CDMA systems in a blind manner (i.e. without the use of a training sequence). We have first

implemented the CMA algorithm, which minimizes the deviation of the receiver output from

a constant modulus. It has been shown that the CMA algorithm suffers from slow

convergence rate, and moreover, it does not ensure global convergence since its cost function

possesses local minima.
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Next, blind adaptation algorithms based on the MOE criterion, which minimizes the

output energy subject to a certain constraint, have also been used for the adaptation and

interference suppression of DS-CDMA systems. It has been shown that the blind-LMS

algorithm suffers from slow convergence rate and it is difficult to adapt the step-size to

ensure stability in a dynamic environment. However, it ensures convergence in contrast to

CMA algorithm. The blind-RLS algorithm, on the other hand, is shown to converge much

faster than the blind-LMS algorithm but it suffers from the well-known numerical instability.

The blind QR-RLS algorithm possesses comparable convergence as that of the RLS

algorithm but it is more stable, however, the blind QR-RLS algorithm requires the

calculation of the computationally expensive N square roots. To deal with the above

drawbacks, we have proposed and used a novel blind-RMGS algorithm based on the MOE-

criterion. It has been shown that the blind RMGS algorithm possesses the same convergence

rate as that ofthe RLS algorithm, but it is more stable. Moreover, the blind-RMGS algorithm

requires lower computational complexity as compared to the blind QR-RLS algorithm since

it does not involve the calculation ofN-square roots, and it can be implemented in a highly

modular systolic structure. The near-far resistance of the proposed blind-RMGS algorithm

has also been demonstrated.

The implementation of the adaptive MMSE DS-CDMA receiver requires the knowledge

of the time-delay of the desired user, which motivates its estimation. Conventional TDE

method based on the crosscorrelation of the received signal with its scaled time-shifted

version fails in a near far environment. Therefore, in this thesis, we have used two near-far

resistant TDE methods: one is based on crosscorrelating the desired user spreading code with

the MMSE weights, and the other is based on running N-parallel adaptive MMSE algorithms.
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The second TDE method has also been developed to work in the blind mode, such that the

only requirement is the knowledge of the desired user spreading code.

The TDE methods implemented in the present work are shown to be near far resistant. It

has also been shown that the RMGS-based TDE algorithms converge much faster and

possess better performance in terms of probability of correct acquisition and RMSE as

compared to the LMS-based TDE algorithm, but at the expense of increase in the

computational complexity. It is worth mentioning that, in the tracking mode, the

computational complexity of the implemented TDE methods using the RMGS algorithm is

lower than other TDE methods based on subspace or MUSIC algorithms which require

0[N ] computational complexity. It has also been shown that for a small number of users the

weights processing TDE methods performs better, in terms of probability of correct

acquisition and RMSE, than the parallel TDE method, however, for largenumberof users the

parallel TDE performs better than the weights processing TDE which is due to the

perturbation error induced in the relation between the weights vector and the spreading

sequence as the number of users increases. The performance of the blind adaptation based

TDE is shown to degrade faster as compared to the training sequence based TDE. Also some

performance degradation is noticed in the probability oferror of the TDE methods using both

training sequence based adaptation and blind adaptation as compared to the synchronous

system. The SNR degradation is within a maximum value of 3dB, which corresponds to

timing estimation error of < 1J2.

7.1 Suggestions for further work

The third generation (3G) mobile systems are designed to support wideband services at

data rates as high as 2Mb/sec, with the same quality as fixed networks. Wideband CDMA

(WCDMA) [77] is emerging as the main wireless access technology for 3G systems, and it
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offers services such as wideband wireless Internet access and video transmission. The

physical limitations and impairments to radio channels (bandwidth constraints, multipath
fading, noise and interference) present a fundamental technical challenge to the goal of
reliable high data rate communications. Since in WCDMA more ISI is inherited in the

received signal there is aneed to use adaptive signal processing algorithms to remove such

interference. It is therefore of interest to investigate the use of the single user MMSE

receiver, presented in this thesis, for the interference suppression in WCDMA systems

operating over a fading multipath environment.

The use of trellis codes for multiuser CDMA systems using the MMSE receiver offer an

increase in system efficiency and improvement in BER for agiven value of Eb/N0 [87]. It has

been shown in this thesis that the RMGS based algorithm can support larger number of users

as compared to LMS based algorithms. Therefore, it is of interest to use the trellis codes in
WCDMA and to employ the RMGS based MMSE single user receiver, which is expected to

provide improved system capacity.

In the presence of cochannel interference (CCI) with delay spread aspace-time MMSE
receiver is more attractive. This receiver combines the input space and time to generate an

output that minimizes the squared error between itself and the desired signal. The space-time
MMSE combines the strengths of time-only and space only processing, and trades CCI and

ISI reduction against noise enhancement [90]. Array receivers are designed to extract

information directly from all antenna elements [33] and then treat them as an adaptive

optimization problem. By using spatial processing of the adaptive array, multipath signals
and ISI can be suppressed. Moreover, the use of an equalizer can further enhance the

capability of suppressing the ISI. The combination of the adaptive array and the equalizer
may be developed to suppress the MAI and ISI in mobile communication [57]. It will be of
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interest to implement low complexity adaptive signal processing techniques for the combined

spatial smoothing and equalization of WCDMA signals in a fading multipath environment.

Turbo coding is a way to approach the Shannon limit on channel capacity, while space-

time processing is a way to increase the possible capacity by exploiting the rich multipath

nature of fading wireless environments. Combining the two concepts provide even a practical

way to both increase and approach the possible channel capacity [5]. It is of interest to

investigate the use of the combined turbo coding and space-time processing for the capacity

enhancement of CDMA systems.

Space-time coding is a coding/signal-processing framework for wireless communication

systems with multiple transmit and multiple receive antennas [84]. This framework may be

used to enhance the data rate and/or capacity of DS-CDMA systems. A spatio-temporal

vector coding (STVC) communication structure is suggested as a means for achieving MIMO

channel capacity [98]. The complexity of STVC motivates a more practical reduced-

complexity discrete matrix multitone (DMMT) space-frequency coding approach. Both of

these structures are shown to be asymptotically optimum. The implementation of the STVC

communication structure for the capacity enhancement using adaptive signal processing

techniques deserves further investigation.
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APPENDIXA

MULTIPATH FADING DISPERSIVE CHANNEL MODEL

We consider the transmission of a DS-CDMA signal over a multipath fading dispersive

channel having a fading rate lower than the bit rate so that the channel parameters are fixed

during several bit intervals. The fading dispersive channel is represented by an equivalent

discrete-time (EDT) channel, which can be realized by an FIR filter with time-variant tap

gains as given earlier in Fig.4.9 [37]. Based on theoretical and empirical considerations [7]

the time-variant tap-gains gm(n) are taken to be complex valued random variables with zero

mean and variance equal to Vi E[|gm(n)|2].

The tap gains gm(n) can be generated by G(t)=ZF(t), where G(t)=[g0(n) gi(n) . . . gM.

i(n)]T, Mis the total number ofpaths (or taps) and Z is an M-by-M matrix which satisfies the

relation A=ZZT (the Cholesky factorization), while Adenotes an M-by-M covariance matrix

of the tap-gains gm(n) with coefficients am,n, m, ne{0, 1, . . ., M-l). The coefficients am,n of

the covariance matrix A is related to the delay power spectrum Q(t) by the following relation

[37, 126]:

am,n=E[gm(n) gn*(n)]= \lQ{r)W{mTs - r)W{nTs - t)dt (A-l)

r

where W(x)=(T)'' \ y(t) y(t-K) dx (A-2)
o

and y(t) is the symbol waveform defined earlier in chapter two, and Q(x), the multipath

intensity profile, is given by the exponential relation

Q(t)= (2-Crms)"1 exp(-T/xrms) x>0 (A-3)
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where xrms is the rms delay spread of the channel The integration in eq.(A-l) is evaluated

numerically using Simpson's rule. Assuming a channel composed of Np echos, each has a

phase yn, a delay xn and rotates with Doppler frequency fd. Therefore, the elements of the

vector F(t) =[fN(t,0) fN(t,l) fN(t,M-l)]T, can be computed as [126]:

IfN(t) =_J==£eKr.-^0 (A-4)
Np r

where Np is the number of random phasors assumed to be equal to 10 in the simulation, yn's

are independent identically distributed (i.i.d) random variables uniformly distributed over [0,

2k) generated as

yn =2n Un-7t (A"5)

where un's are the uniform random variables distributed between 0 to 1, and fd are i.i.d.

random variables which are generated as

fd=fmax COS(27IUn) (A"6)

where fmax is the maximum Doppler frequency of the channel. The Doppler variation ofthe

channel is assumed to follow the Jakes spectrum model (which models the Doppler power

spectrum as an isotropic scattering) [37, 126]:

'f. vS(f) =[2nf„„ 1- f- ]_' for 0<|fj<fm„ (A-7)
\| V max J

It is worth noting that the generation ofA, Z and the random seeds is done once only. The

above method ofgenerating the tap gains is flexible and defines clearly the fading model of

the channel.

The contribution from each path to the ith received chip of the nth bit is ^+m (n) gm(n)

for m=0, 1, M-l. However, there might also interference due to the (n-l)th bit of
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?+m_N+i (n -1)gm(n) for m=0, 1, . . . , M-1. Therefore, it can be directly shown that the output

of the fading channel of the ith chip at the nth symbol fTf (n) is computed by:

~r, , '̂fia,(n)gm(n) if(i +m)<N-l .
^(n) =Z~ / n /x •«•, x kt i fori=0,l N-l (A-8)rtS[i;+m.N+,(n-l)gm(n) if(i + m)>N-l

and the faded received vector will be rf(n)=[%{(n) 'qf (n)... 7Nf., (n) ]T.
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APPENDIX B

SOLUTION OF THE CONSTRAINED OPTIMIZATION PROBLEM

(Eqs. 5.26 &5.27)

The exponentially windowed RLS algorithm selects the weights vector zi(n) to

minimize the sum of exponentially weighted output energy:

n

minimize ^Xn_i[z[(n)r(i)]2 (B-l)
i=l

Tsubject to ci zi(n) =1 (B-2)

where 0 < X < 1 is the forgetting factor (1-X,«1), c\ is the spreading sequence of the desired

user, and r(i) is the synchronous received vector given by:

K

r(i) =d,(i) Vp7 c, + ]TdkA/p7ck+o-nn (B-3)
k=2

where dk(i) is the kth user data bit and Pk is its power, and r\ is additive white Gaussian noise

vector of covariance matrix I. Assuming a system with one user transmitting over AWGN

channel, the linear MMSE detector has the form:

d,(n) =sgn[z» r(n)] (B-4)

where Zj(n) is chosen to minimize the meansquare error (£) defined by:

\ = E[{z,T(n) r(n)-d,(n)Vp7}2] (B-5)

=E[z,T(n) r(n) rT(n) z,(n) -2 d,(n) ^ z,T(n) r(n) +P,]

Assuming that di(n) and n are independent, the last equationcan be writtenas:

%=z,T(n) (an21 +P, Clc,T) z,(n) - 2P, z,T(n) c, +P, (B-6)
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Taking the gradient of MSE with respect to z,(n), and setting it to zero, we get

V7 ^=0=2 (an21 +Pi c,c,T) z,(n) -2P, c,

then the MMSE solution z'(n) is given by [92]:

'(n^P.^I +P.Wy'c, (B-7>z

The blind adaptive version of the MMSE detector is based on the decomposition of the

linear detector as the sum of two orthogonal components. One component is equal to the

spreading sequence c„ which is known to be fixed, while the other x, is an orthogonal and

adaptive. The canonical representation for the MMSE detector is [92]:

z,(n) =c1+x, (B"8)

where c,Txi=0. Therefore, the MMSE detector minimizes the MSE subject to the constraint

-T(n)C| =|C)| =L The canonical form z,(n) can be found by the method of Lagrange

multipliers. Let

I(z,)=^2y[c1Tzl(n)-l] (B"9)

where yis the Lagrange multiplier. Substituting Eq.(B-6) into Eq.(B-9) we get:

L(z,) =z,T(n) [an21 +P, c,c,T] z,(n) - 2P, z,T(n) c, +P, -2y [c,Tz,(n)-l] • (B-10)

By setting the gradient Vfi 1=0, we get:

2 (o-n21 +Pi c,eiT) zi(n) - 2P,c, - 2y Cj =0.

z,(n) =(P,+7) [on21 +P, c.c,1]'1 C, (B"1 ])

On substituting this in the constraint CiT Zi(n) =1, we get

(P|-Hy)ciT(a„2I +PiCiCiT)"lcistl

1

or(p^,= ^R. +p,c,c;rc,

substituting (B-12) in (B-l 1) we get:
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J'=?Rl^ov(0",+P,c'c'r'C| (B"13)
It may benoted that the autocorrelation matrix R for a single user system is given by:

R=E[r(n)rT(n)] =P, c, c,T +an2 I (B-14)

and the solution will be:

c,R c,

However, for a system of K synchronous users the autocorrelation matrix R will be

R=E[r(n)rT(n)] = £Pk ck ckT +an21 (B-16)
k=l
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