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ABSTRACT

Aperture coupling is an important boundary-value problem in

electromagnetics. Practical applications ofaperture coupling can be found in slotted

antenna arrays, directional couplers, cavity resonators, radiating slots in screens,

microstrip-patch antennas etc. Besides, undesirable coupling of electromagnetic

energy may occur ifthere is an inadvertent crack/slit in the applicator/RF equipment

leading to electromagnetic compatibility (EMC) and electromagnetic interference
(EMI) problems.

In this study, we have developed a moment method solution procedure for

the general problem of apertures of arbitrary shape coupling arbitrary regions.

Appropriate modelling of the aperture surface has been carried out using triangular
patch modelling, proposed by Rao et al. [82] for scattering from bodies of arbitrary
shape. Suitably defined set of basis functions has been integrated into the

formulation which is capable of accurately evaluating fields of apertures of arbitrary
shape. The problem has been formulated by invoking equivalence theorem [46] and
utilizing boundary conditions on the aperture to derive an integro-differential
equation. This equation has been transformed into amatrix equation via the method

of moments and solved numerically by simulation on adigital computer.
Easy-to-use expressions for numerical integration over a triangular domain

have been developed. Further, careful treatment of singular integrals which arise
due to the use of Green's funct.on of free space has been performed. Explicit
expressions for evaluating various matrices and parameters of interest have been
developed.

Extensive computation of various parameters for apertures of various shapes,
based on the preceding expressions, has been done and results presented. Also,



comparative studies for the various parameters of different aperture shapes have

been undertaken.

Specifically, the four main classes of problems treated in this study comprise

apertures of arbitrary shape coupling two half spaces via a conducting screen,

waveguide-backed apertures of arbitrary shape in a ground plane radiating into half-

space, apertures of arbitrary shape in the transverse cross-section of a uniform

rectangular waveguide and broadwall radiating apertures and slots of arbitrary

shape in a rectangular waveguide.
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Chapter -1

INTRODUCTION

Aperture coupling is an important boundary-value problem which has

received considerable attention from many investigators over the years. With

advancement in technology, the scale of utilization of microwave and millimeter-

wave bands for communications, radar, industrial and domestic applications has

increased. In many of these applications, apertures of various shapes are involved.

From a practical perspective, apertures have found applications in slotted

antenna arrays, directional couplers, cavity resonators, radiating slots in screens,

waveguide filters and power dividers and so on. Besides these applications,

apertures can also cause undesirable electromagnetic coupling in some situations.

For example, acrack/slit in the door of amicrowave oven or in any other applicator

or in any RF transmitting equipment may result in electromagnetic leakage leading
to problems of Electromagnetic Compatibility (EMC) and Electromagnetic
Interference (EMI).

Pioneering work in the area of aperture coupling dates back to 1944 when

Bethe [11] developed his small aperture theory. Since then, concerted efforts have

been made towards developing more elaborate techniques for solving aperture

coupling problems. Majority of these techniques, however, deal with apertures of

regular shapes and, in each case, only a particular problem has been solved. It is

only with the development ofnumerical methods, such as the Method ofMoments

and Finite Element Method that it has become possible to treat irregularly shaped
apertures.



Apertures having various shapes, such as rectangular, circular, elliptic,

diamond, cross and H can be used to couple electromagnetic energy between two
>

arbitrary regions.

In the following sections, we present a summary of the earlier work carried

out in the field of aperture coupling followed by the statement of the problem and

then the organization of material in this dissertation.

1.1 SURVEY OF EARLIER WORK

For several decades, a number of investigators have considered the problem

of electromagnetic coupling, through apertures. Aperture coupling problems can

broadly be classified into three categories, i.e., apertures in the waveguide walls, as

in the case of couplers, power dividers or radiating slots in the waveguide

broad/narrow walls etc. or in the transverse cross-section of waveguides, as in the

case of diaphragms and, lastly, apertures in conducting screens, causing coupling

between two regions or radiating into half space. In this section, we have attempted

to highlight the various representative contributions made by different researchers
in each category.

Fig. 1.1 (a)-(d) are typical examples of some aperture coupling problems in
each category referred to above. T



(a) Rectangular waveguide longitudinal
and transverse broadwall slots

(b) Aperture in the transverse cross-section
of dissimilar rectangular waveguides
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(c) Waveguide-backed slot arrays in a
perfect ground plane radiating

into half space

(d) Slot in an infinite conducting
screen coupling two different

regions

Fig. 1.1 : Typical examples of aperture coupling problem;



1.1-1 Slots and Apertures in Waveguide Walls

The earliest treatment of slots in waveguides dates back to 1944, during the

Second World War, when Bethe [11] developed his small aperture theory, which

was later modified by Cohn [22], [23] to include large apertures of finite wall

thickness. The modified Bethe-Cohn theory has been applied to the design of multi-

aperture directional couplers by Levy [60]. The theory that forms the basis of the

analysis and design of narrow slots and slot arrays in thin-walled waveguides, on

the other hand, was developed by Stevenson [104]. The theory is well-explained in

standard texts, such as [24] and [25]. In 1951, Stegen [102] experimentally

investigated the characteristics of round-ended longitudinal shunt slots cut in the

broadwall of X-band waveguides.

A variety of powerful methods for analysing discontinuities including

apertures in the transverse cross-section or in the waveguide walls, which were

developed during the Second World War, have been compiled by Marcuvitz [65] in

the Waveguide Handbook. These techniques include the Variational Method, the

Integral Transform Method and the Equivalent Static Method. Some of these

techniques are well-explained by Collin [25] with the help of anumber of examples.

Lewin [61] has treated in full the Singular Integral Equation Method and its

extensions by way of applying it to a number of examples. The method involves

setting up an integral equation which is then solved by Weiner-Hopf technique to

obtain various waveguide parameters. The method gives rigorous results for only a

limited number of problems.

The Variational Method is a powerful tool for obtaining approximate

solutions for problems formulated in terms of an integral equation. Oliner [75] has

used the method to study the impedance properties of resonant and non-resonant

narrow radiating rectangular slots in the broadwall of a rectangular waveguide.



Several investigators have also used variational method, notably Sangster [91] and

Das et al. [28], [29], [30], Although Variational Method can provide fairly accurate

solutions to a variety ofwaveguide aperture problems, it requires a high level of

mathematical ingenuity and for each problem, fresh calculations have to be done.

Besides, the effects of finite wall thickness, sidewall proximity and higher-order

mode coupling cannot easily be incorporated into the solution.

The Reaction Method was propounded by Das and Sanyal [27] as a means of

analysing long slots (1 > X/2) on the broadwall ofrectangular waveguides.

All in all, in each of the above methods, a specific formula has to be derived

for a given type of discontinuity and often gross approximations have to be made.

Further, a fresh mathematical problem has to be solved for each case and the effect

of higher order modes is not properly accounted for.

The advent of digital computer has revolutionized the methodology for

solving boundary-value problem. Anumber of powerful numerical techniques have

been developed for analysing such problems. These include Modal Analysis, the

Modified Residue Calculus Technique, the Principle of Conservation of Complex

Power, the Field Expansion into Eigenmodes and the Method of Moments for

solving aperture coupling problems.

Arndt et al. [5] have presented method for solving waveguide junctions and

discontinuities by expanding the fields in terms of eigenmodes and setting up a

matrix equation by matching the fields in the plane of the discontinuity. They have

applied the method for the design of rectangular waveguide broadwall metal-insert

slot couplers. The method gives directly the scattering matrix of the junction and

takes into account the effect of evanescent modes.

However, amongst all these methods, the most powerful tool that has

become popular with electromagnetic engineers is the method ofMoments, MOM.



The MOM was proposed by Harrington [42] for solving differential and integral

equations which appear in the computation of electromagnetic field problems.

However, MOM has been applied mostly to integral equations. A succinct review

on MOM for solving integral equations has been given by Wilton [111]. Briefly,

MOM is based upon reducing integral, or integro-differential equations into a

matrix equation which can be solved on a digital computer.

Vu Khac [107] has used the method of moments to solve problem of two

waveguides coupled by an aperture in a common wall using pulse functions and

point-matching technique. Later, Vu Khac and Carson [108] analysed impedance

properties ofbroadwall radiating longitudinal slots in rectangular waveguide by the

MOM, using pulse basis functions. They considered various slot offsets from guide

centre-line. Lyon and Sangster [63] have also used MOM to investigate narrow

rectangular slots in the broadwall of a rectangular waveguide by applying a

sinusoidal Fourier set of basis functions. Both longitudinal and transverse

rectangular slots were treated. Power radiated by the two type of slots were

compared with those of Vu Khac and Carson [108], and Oliner's [75] based on

variational method.

Similar studies on longitudinal and transverse rectangular slots and apertures

in the broadwall/narrow wall can be found in [9], [34], [38], [50], [51], [52], [83],

[90], [98], [101], [102], [103] and [114].

1.1-2 Diaphragms in Waveguides

Collin [25] has used variational method to obtain solutions for both thin and

thick irises in a rectangular waveguide with dominant TE10 mode. Considerable

contributions on the solution of inductive irises have been given by Rozzi et al.

[84]-[87] using variational method.

T



*

The Modal Analysis was proposed by Wexler [109]. In this method, the

electromagnetic field on either side of the discontinuity is first expanded into an

infinite series of waveguide modes. Algebraic equations are obtained by matching

the fields in each aperture which are then solved for the unknown amplitude

coefficients. The method has been used by Luebbers and Munk [62]. However, the

method involves a lot of numerical work.

Principle ofConservation ofComplex Power has been used by Safavi-Naini

and MacPhie [88] to solve the problems of scattering from a rectangular-to-

rectangular waveguide junction and from a thick diaphragm with rectangular

aperture in a rectangular waveguide. More recently, Omar and Schiinemann [76]

have given a general treatise of cascaded discontinuities in inhomogeneous

waveguides as applied to finline circuits. Modified Residue Calculus Technique

[105] has been applied to solve aperture problems in waveguides. The technique is

useful in solving infinite set ofequations which arise in dealing with double infinite

summation over the waveguide fields. Above techniques have been applied to

waveguide discontinuity problem by different workers, e.g., as can be found in [12]
and [66],

Problems ofdiaphragms in a rectangular waveguide have been solved using

Method of Moments. Some of the studies based on MOM can be found in [7], [8],

[32], [99], [100] and [112],

It has been observed that MOM and Mode-matching method exhibit an

inherent phenomenon known as the "relative convergence" when used to solve

waveguide discontinuity problems. Lee et al. [56], Mittra et al. [71] and Aksun and

Mittra [1] have reported a detailed study of the phenomenon and have proposed

some useful guidelines in the use of method of moments solution procedure.



1.1-3 Apertures in a Conducting Screen

Apertures in conducting screens coupling two regions have also received

considerable attention from many investigators. Butler and Umashankar [14] have

studied the problem of a wire excited by an electromagnetic field penetrating an

aperture-perforated infinite conducting screen. Harrington and Mautz [44] have

presented a general formulation for aperture problems in terms of method of

moments which can be applied to any two regions, isolated except for coupling

through an aperture. With the help ofequivalence theorem, the problem is divided

into two separate regions and the aperture characteristics are expressed in terms of

independent matrices, one for each region.

Using the above "generalized network formulation" for aperture

problems [44]. Mautz and Harrington [67] have studied the problem oftransmission

through a rectangular aperture in a perfectly conducting plane. Computed

parameters include magnetic surface current distribution over the aperture and

transmission cross-sections for apertures ofvarious lengths.

A similar approach has been used by Bozzetti et al. [13] to investigate

coupling between an aperture and a biological body and, in a later work, by

Harrington [45] to study the behaviour of an electrically small aperture in a

conducting screen by a conducting body. Sarkar et al. [92] have considered the

problem of electromagnetic transmission through mesh-covered apertures and
arrays of apertures in a conducting screen.

Apertures situated in a perfect ground plane, backed by a rectangular

waveguide, radiating into half-space have also been studied. Mautz and

Harrington [68] utilized the "generalized network formulation" for aperture

problems in moment method solution, with rooftop functions as basis and testing
functions, to study electromagnetic transmission from arectangular waveguide into



half-space through a rectangular aperture. Various parameters were computed
^ including magnetic current distributions, aperture equivalent admittance seen by the

dominant TEi0 mode and antenna power gains.

Radiating aperture arrays, fed by a rectangular waveguide, in the ground
plane have also been studied by various investigators. Such studies have been

reported and can be found in [10], [35], [57], [58], [72], [96] and [97].

Cavity-backed apertures on a ground plane have also received attention in

the literature. Typical reports on this class of apertures can be found in [2], [40],
[47] and [94].

Another type of apertures/slots that has been reported in the literature

consists of apertures in a conducting screen of finite thickness coupling two
different media. This type of study was first conducted by Auckland and

Harrington [6] in 1978 in order to develop a method for computing transmission

characteristics of narrow slits. Typical examples of such studies are to be found in
[43], [53] and [54].

1.2 STATEMENT OF THE PROBLEM

From the foregoing survey, it can be concluded that aperture problems form

a very important class of boundary-value problems and a considerable effort has

been directed towards solving these problems. In most of these studies, however,
apertures of simple and regular shapes have been treated. Although Method of

Moments can, in principle, be applied to apertures of arbitrary shape, its application
also has been limited to apertures of simple shape since the popular rooftop and

^ PWS functions are not suitable for modelling apertures of complex shapes.

In this study, we aim to develop aMethod of Moments procedure, which is

capable of analysing apertures of complex shapes. For modelling arbitrarily-shaped



apertures, triangular patch modelling, initially proposed by Rao et al. [82] for

analysing scattering from object of arbitrary shape, seems appropriate because

triangular patches can conform to surfaces of arbitrary shape. As such, triangular

patches are to be used in discretizing the various aperture surfaces in conjunction

with appropriately defined basis functions for evaluating the aperture fields.

The problem, as treated in this study, may be divided into five main parts :

(i) General formulation for arbitrarily-shaped apertures coupling two
arbitrary regions,

(n) Analysis of apertures of arbitrary shape, in a conducting screen,

coupling two arbitrary regions.

(in) Analysis of waveguide-backed arbitrarily-shaped apertures in a
ground plane.

(iv) Analysis of arbitrarily-shaped apertures in the transverse cross-

section ofa rectangular waveguide.

(v) Analysis of radiating broadwall slots of arbitrary shape in a
rectangular waveguide.

1.3 ORGANIZATION OF THE THESIS

The work embodied in this dissertation has been arranged in Seven Chapters.

In Chapter 2, a Method of Moments procedure using the "generalized

network formulation" for aperture problems has been developed for analysing
apertures of arbitrary shape coupling two arbitrary regions. Various aspects have

been considered, such as choice of basis functions and testing procedure and

efficient evaluation of potential integrals over a triangular domain. Particular,
attention has been given to the treatment of unbounded region integrals with

singular kernels based on free space Green's function and closed region integrals
with bounded kernels based on dyadic Green's function of the electric vector

10
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potential. As aresult, general expressions for various matrices and near- and far-
field parameters have been developed.

In Chapter 3, the problem of an aperture of arbitrary shape in an infinite
conducting screen coupling two half spaces with different electrical properties has
been cons.dered. Equations for evaluating various matrices and parameters have
been derived. Parameters, such as surface magnetic current distribute,
transm.ssion coefficient and transmiss.on cross-section have been computed. These
results have been given in the last subsections of the chapter.

Chapter 4deals with analysis of the problem of awaveguide-fed aperture of
arbitrary shape on the ground plane radiating into half-space. Explicit expressions
for evaluating various matrices and parameters have been developed. These
expressions have been used to compute aperture surface magnet.c current
distribution, transmission coefficient, antenna power gain and equivalent aperture
admittance seen by the dominant TE10 mode. The various computed results have
been presented in the last subsections of the chapter.

In Chapter 5, we have investigated the problem of an arbitrarily-shaped
aperture in the transverse cross-section of a uniform rectangular wavegu.de.
Equates for evaluating various matrices and parameters have been derived.
Computation of equivalent aperture shunt susceptance and surface magnetic current
distribution has been done and results presented in the last section of the chapter.

In Chapter 6, the problem of broadwall slot/aperture of arbitrary shape
radiating into half space has been considered. Expressions for evaluating various
matrices and parameters have been developed. Computed parameters include
aperture surface magnetic current distribution and power radiated by the aperture.
The computed results have been presented in the last subsections of the chapter.

Chapter 7concludes this dissertation by g.ving areview of the study in the
preceding chapters and identifies some problems for future work in this area.

11
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Chapter - 2

ELECTROMAGNETIC COUPLING VIA AN APERTURE
OF ARBITRARY SHAPE

In this chapter, the general problem of electromagnetic coupling between
two arbitrary regions via an aperture has been considered. The aperture is
assumed to be located in a common conducting wall and can take arbitrary
shape. The analysis is based upon the "generalised network formulation" for

aperture problems' [44]. Field equivalence principle is first used to divide the

problem into two parts. Next, boundary conditions are invoked to obtain a

magnetic field integral equation (MFIE) which is then solved using the method

of moments (MOM). Triangular patches, with appropriately defined expansion

functions, have been used to model the arbitrarily-shaped aperture. This leads to

a matrix equation whose solution requires the evaluation of integrals with

bounded and unbounded kernels over a triangular domain. A method for the

evaluation of the integrals has been presented. Finally, various parameters,
which can be used to characterize the aperture, have been derived.

2.1 GENERAL FORMULATION

Fig. 2.1 illustrates the general problem of an aperture coupling two
dissimilar regions, called region 'a' and region 'b', which are bounded by perfect
electrical conductors (PEC). Although region 'a' is shown to be closed and region
V open at infinity, both regions can be either closed or open. Further, the

impressed sources J\m\ have been shown to be present in region 'a' and
region 'b' has been assumed to be source free. However, the more general case of

12



Region 'a' Conductor

Fig. 2.1 : The general problem of two regions
coupled by an aperture
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Conductor

ure s
Aperture 's'

Fig. 2.2 : The planar view ofthe arbitrary-
shaped aperture in Fig. 2.1.
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sources in both regions can be treated as a superposition of two problems; one

with sources in region 'a' only and the other with sources in region 'b' only.

As described in [46], field equivalence principle is first used to divide the

problem into two separate parts. Aperture 's' is closed with aPEC and equivalent

surface magnetic currents M and -M are placed over the aperture region on

either side, as shown in Fig. 2.3. This enforces the continuity of tangential

component of electric field across the aperture. The magnetic current Mis given
by

M = fixE (21)

where E is the electric field in the aperture of the original problem and n is the

outward normal from region 'a'.

It is evident from Fig. 2.3 that the original problem has been divided into

two equivalent problems, each of which can be formulated independent ofeach

other. The field in region 'a' is due to the impressed sources fjtf and the

equivalent surface magnetic current M over s with the aperture closed with a

PEC, while the field in region 'b' is only due to the equivalent surface magnetic

^ current -M over s in the presence ofa complete conductor.

Enforcing the boundary condition that requires that tangential component

of magnetic field should be continuous across the aperture, we obtain the

operator equation

Ht3(M) +Htb(M) =-Htj (22)

where Ht (M) and Ht (M) respectively, denote the tangential (to s) components

of magnetic field due to the current M in region 'a' and V and H* is the

14



tangential component due to the impressed sources j'.M1. It must be noted here

that all the fields should be calculated with the aperture closed with aPEC.

The operator Eqn. (2.2) is an integro-differential equation which can only
be solved approximately. We use the method of moments to obtain an
approximate solution of (2.2).

Define aset of expansion functions {Mn,n =1,2, ,N} over s
_ Nand let M=ZVnM„ (2 3)

where V„ are .he eomplex coefficient vectors to be determined. Substituting
(2.3) into (2.2) and using the linearity of the H, operators gives

|V.H;(M„) +ZV1,Htb(Mn) =-H1i (24)
Next, define a symmetric product

<A,B> = tt A-BdS
ovls (2-5)

and aset of testing functions (Wm, m=1,2, )N}over s. Taking the symmetric
product of (2.4) with each testing function Wffl ,we obtain the set of algebra,
equations

N NI V„ <Wn„H>„)> +Z v„ <Wm,H,b(Mn)> =-<Wm.Hti
>

m= 1,2, ,N

Eqn. (2.6) can be written in matrix form as

[y' +yV^i1
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(a) Equivalent problem
(valid for region 'a')

>n Region 'b'

(b) Equivalent problem
(valid for region 'b')

Fig. 2.3 : Original problem divided into two equivalent problems
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a b

where [Y ] and [Y ] are, respectively, the aperture admittance matrices for

region 'a' and region 'b' defined as

[Y3] =[<Wm,Hta(Mn)>]NxN (2g)

[Yb] =[<Wm,Htb(Mn)>]NxN (29)
-i

and I and V are, respectively, the source vector and measurement vector

defined as

?l iI = [-<Wm)Ht>]Nxl (210)

and v = [vjNxl (211)

2.2 CHOICE OF BASIS FUNCTIONS

The choice of basis functions in the MOM solution is critical because it

determines the convergence and accuracy of results [1] and [111].

The commonly used basis functions can be broadly divided into two

classes : whole domain functions and sub-domain functions. Whole-domain

functions exist over the entire structure and are generally useful for problems
with regular shape and where approximate distribution of the unknown quantity
is known a priori. Sub-domain functions, on the other hand, offer greater
flexibility in modelling complex structures. However, the most commonly used
sub-domain functions such as rooftop and PWS functions, are not suitable for the

present problem since an arbitrary-shaped surface cannot be approximated by
rectangular patches. For an arbitrary-shaped aperture, triangular patch modelling
as proposed by Rao [81] for scattering from bodies of arbitrary shape, is

particularly appropriate as the shape of a triangle can conform easily to the

17
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geometry of an arbitrary surface. Furthermore, a varying patch density can be

incorporated in the discretization ofregions where a higher resolution is desired.

Figure 2.4 depicts the triangulation of an aperture of irregular shape.

Ahigher patch density has been taken around the edges where there is greater
variation of contour gradient than elsewhere in the aperture in order to account
for 'edge effect1.

Assuming that a proper triangulation scheme has been found for the

aperture surface, let us consider a pair of triangle faces, denoted T+ and T~
n n '

having the nth edge (AB) as their common edge as shown in Fig. 2.5.

Figure 2.5 illustrates a triangle pair associated with the nth edge. Also

shown are the local position vectors p* and the global position vector r. Any
point in the triangles may either be located by its position vector r in aglobal

coordinate system with respect to Oor by its local position vectors p* in T.

defined with respect to free vertices Fand F', respectively.

We define avector basis function associated with the nlh edge

M„ =

-f7pn> ?inTn+
2A.

n

Pn . ?inT„

_±

as

- ^ > ll" ln (2.12)
2An

0 otherwise

where lfl is the length of the edge and A* is the area of the triangle T*. The

designation Tn or Tn is determined by choosing a positive current reference

direction for thenth edge which is assumed to be from T+ to T~
n n '

18



Fig. 2.4 :An irregularly-shaped aperture modelled by triangular patch
es
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nm edge
(non-boundary edge)

Global coordinate origin for
U position vector r

Fig. 2.5 :Atriangle pair associated with the n"' edge
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Some of the unique properties of Mn which make it appropriate for the

present problem are

(1) The current has no component normal to the boundary (which

excludes the common edge) of the surface formed by the triangle

+

pair Tn and Tn and, as such, has no magnetic charge along this

boundary. Thus, basis functions need not be defined on the edges

which form the boundary of the aperture.

(2) From Fig. 2.6, since <normalequals to 2A>n and p^ to

2An /ln, from Eqn. (2.12), it is seen that the current at the edge is

continuous and normalized to a value unity.

(3) Using the definition of Mn in (2.12), the associated magnetic

charge density, m , is

mn = - — V»Mn
jffl

=_J_±1 0<p*Mn)
^Pn1 df/

Jfi)An

= • n r in T
- ' f m Tn

JcoAn

0 , otherwise

(2.13)

It is found that the charge density is constant in each triangle and

the total charge associated with T+ and T iis zero.
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Pn, normal

Fig. 2.6 : Normal components of the local position vectors
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2.3 EVALUATION OF MATRIX ELEM ENTS AND EXCITATION VECTOR

For computational simplicity, we follow Galerkin procedure with the

weighting functions W = M
m m'

From eqn. (2.8) or (2.9), a typical matrix element for the rth region is
given by

Ymn =<Mm>Htr(Mn)> (2 14)

=JJ Mm.Htr(Mn)ds +J|Mm.Htr(Mn)ds
Tm T"

- JjMm.Htr(Mn)ds (215)

where the notation JJ ( )ds has been introduced for compactness
T+

m

In terms of the electric vector potential F(r) and the magnetic scalar

potential <|>(r), the magnetic field Hr(MJ can be written as

Hr(Mn) =-jcoFn(r)-V4,n(r) (2 16)
where F(?) =eJjG(?/r').Mn(F')ds' (2 17)

a ™ V,^(i:)K(J) = . nW
jcope (2.18)

In Eqn. (2.16), G(r/P) denotes the dyadic Green's function of the region under
consideration. It may also be noted here that the scalar product in Eqn. (2.15)

automatically selects the component of Hr(Mn) tangential to the aperture
surface.
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Using two-dimensional divergence theorem and the fact that there is no
component of current expansion function normal to the boundary of the triangles

Tn , substitution of Eqn. (2.16) in Eqn. (2.15) leads to

Ymrn =-jo J]Mm.Fn ds +J*j*mm<j,n ds

. V»Mwhere mm = m
-jo

(2.19)

(2.20)

Eqn. (2.19) contains quadruple integrals; a double integral over the field

triangles l£ and adouble integral over the source triangles Tjf involved in the
computation of Fn(r) and <frn(F). In order to reduce the numerical computations,

the integrals over t£ can be approximated by the values of integrals at the
centroids of the triangles. This procedure yields

Yr =-1mn 'm J00 F„(?r)-^+Fn(F,r)^2c'm +K(^)-K(^+)

where F.O =e//G(Fc±|F').Mn(F')ds'

(2.21)

(2.22)

(2.23)
♦»<£*) = T

jcou Jj{v.G(Fc±|F')}.Mn(F')ds

_c±In (2.21) to (2.23), pm are the local position vectors to the centroids of T* and
-c± 1± _2± _3±N
fm - (rm +rm +'m )/3,. - are the position vectors of centroids of T* with
respect to the global coordinate system.

Similarly, using the centred approx.mat.on in Eqn. (2.10), an element of
excitation vector can be written as

!m =-lm\ Ht;(rmc>£m_ +H>(Fmc"). Pal
(2.24)
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2.4 EFFICIENT COMPUTATION OF INTEGRALS

Evaluation of each matrix element Y^ involves the testing function

associated with the mth edge and the basis function associated with the nth edge.

However, the domain of integration is in triangle T* and the location of the

observation points (r^, r^) are associated with the triangle faces attached to
the mlh edge. This implies that if edge-by-edge approach is used, integration over
the same triangle face will be involved in the determination of several elements

of Ymn. Amore efficient computation procedure would be to evaluate the

integrals over all the triangular surfaces sequentially, store the results and use

them in the computation of Y^ after multiplication with appropriate factors.

Consider the evaluation of the vector potential and scalar potential
integrals for agiven source and observation face-pair. Figure 2.7 illustrates such
a face-pair with the observation point in face pand with the source currents
residing in face q. Each of the three basis functions which may possibly exist

s.multaneously in Tq is proportional to one of the vectors p, p2 or p3 defined
in the figure.

Each vector pJf j - 1, 2, 3is shown directed away from its vertex but

would be directed toward the vertex if the current reference direction from the
associated edge was into the triangle.

Consequently,

^=±(F'-^ (2.25)
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•f
Fig. 2.7 : Local and global coordinates and edges of triangle Tq with

observation point in triangle Tp
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where the positive sign is used for the triangle T and the negative sign for

T . r and r' are, respectively, position vectors of the field and source points.

If F- denotes the vector potential at r in T due to M • (j = 1, 2, 3) in

T , it can be written as

If = ej|G(Fp/F').MJ(F')ds' (2.26)

-VFpq
and cbP^ = ]— (2.27)

J JC0U.S

The integrals encountered in this study can be classified into two

categories : those pertaining to closed regions, e.g., waveguides and cavities and

others pertaining to open regions, e.g., free space or half space. While the

integrand of the former type is bounded at every point within the integration

domain making numerical integration possible, the latter type of integrals have a

singular kernel for coincident source and field points and require careful

handling.

2.4-1 Integrals with a Singular Kernel

For the half space region, the dyadic Green's function G(F |p) in

Eqn. (2.26) is

-jk|rp-r'|

G(?p|?) ='ferF (Z28)

where I is a unit dyad.

Substituting (2.28) in eqns. (2.26) and (2.27) gives

27
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-jk|r-r'

FPq =-LffM.^-e -ds
- pU £ mm p

Tq I p 'I

_1 —jk|rp —r'|
*JPq =T~- ff V'.Mjfr') ds' c ,«nJ 47CjopJJ Jv ; | rp -r'| (2-3°)

Substitution of M.(P) from Eqn. (2.12) and V'.Mj (F') from Eqn. (2.13) leads
to

-jk|rp-r'|
-pq _ e lj e

J "^^JPj"lTn- ^^ (23,)
+ 1- a_ikl?p-f'l II±pq _ ____j__ ff e p +1:

J S4«J«HAj Ir^f^' = ^^A-1? (2-32)Lq T-q lrp-r| 47ij©p.A P

where

-Jkl?p-r'l -jk|rp-r'|
L =

Tq^•f'Vn-"i^nr^"i^
Tb + Tsi (2.33)

-jk|?p-r'| -jk|r_-f'|

Tn |rP"rl
T"£ |rp-r1 ii ifP-f,i

!c +Ts2 (2.34)
-jk|r -r'|

-1WJ^rr^'
T1 ' P

<"-«**
* -jk|rp-F|

!c = JJ H -ds'

(2.35)

(2.36)

(2.37)

28



i = it ds'
52 Jq|rp-?1 (2-38)

The integrals I„ and Ic have bounded kernels over the integration domain

and can be evaluated using numerical integration techniques. However, the
kernels of integrals I,, and ^ have asingularity for Fp =r' and the integration
domain is aplane triangle. Several workers have considered the evaluation of
this type of integrals [110], [17] and [39], We follow here the method proposed
by Graglia [39].

Figure 2.8 deprc.s a p.ane triangle T< with some of the parameters
required for the evaluation of s.ngu.ar kernels. tj and Sj are the unit tangent and

unit normal, respect.vely, to the j* edge of T" while Lj are the boa, area
coordinates (j = 1, 2, 3).

Let p. be the position vector of the jth vertex defined by

Pj = (xj>yj) J-l.2,-3

and l} be the length of the side opposite the j* vertex expressed as

l) = IPm+j-l - Pn+j+l |

where mand nare dummy variables such that

'3, j = l
m = <

U J=2,3

and n=l°> J=U
1-3, j=3

The area of Tq denoted by Ais given by
A= l(Pj - Pn+j+l) X(pm+J_, - pn+j+1)| /l2

29
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Fig. 2.8 : Unit tangent tj, unit normal h] to the edges of Tq and area

coordinate Lj (j = 1, 2, 3)
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The unit outward normal, n on the plane of T is given by

- _ {(Pj-Pn+j+l) x(Pm+j-l-Pn+j+l)}
Va — ^-42)

n =

We define unit tangents t. and unit normals n. to the edges of Tq as

tj = (Pm+j-l ~Pn+j+i) / lj (2.43)

"j = V h (2.44)

Cartesian coordinate system is not convenient for use with triangular shape. A

convenient set of coordinates is the area coordinates L,, L2, L3 [116] defined by

the following linear relation between them and the Cartesian system :

x' = LjXj +L2x2 +L3x3

y' = Liyi+L2y2+L3y3 (2.45)
1= Lj + L2 + L3

To every set L-, L2, L3 (which are not independent but are related by the third

equation above) corresponds a unique set of Cartesian coordinates. At vertex j,

Lj = 1, Lj.j = Lj+, = 0. Alinear relationship between these area coordinates and

Cartesian coordinates implies that the contours of Lj are equally placed straight
lines parallel to the side on which Lj =0, etc. (Fig. 2.8).

Solving Eqn. (2.45) for x' and y'

Lj = (a1+b1x' + c1y')/2A
L2 = (a2+b2x' +c2y')/2A (2 46)
L3 = (a3+b3x' +c3y')/2A

where

al = ^3" ^2 +

bi =y2-y3 (2.47)
Cj = x3 - x2
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In a cyclic exchange of 1-> 2 -» 3,

a2 = x3yj - Xly3 (2 48^

b2 = y3 - Vi

c2 = Xj - x3

and a3 = Xly2 - x2y, (2 49)

b3 = Yi - y2

C3 = x2 " xl

For a simplex, such as a planar triangle, the shape functions denoted by N,, N2,
N3 are simply the area coordinates, i.e.

, N, = L,
N2 = L2

N3 = L3

Eqn. (2.45),

N, = 1-N2--N3

(2.50)

(2.51)

which upon substituting in the first two equations in (2.45) gives

x' = x1+N2(x2-x1)+N3(x3-x1)

y' = yi +N2(y2-yi)+N3(y3-yi) (2,52)
Also, in Eqn. (2.25), F' can be expressed as

r' = xx' + yy'

=x{x1 +N2(x2-x1) +N3(x3-x1)}+y{y1+N2(y2-y1) +N3(y3-y1)}

(2.53a)

or r' =F1+N2(F2-F1) +N3(F3-F1) (2 53b)

Hence, p^ in Eqn. (2.25) can be written as

Pj =±{(?l-?j) +N2(F2-ri) +N3(F3-F1)} (2.54)

32



Substituting Eqn. (2.54) in Eqn. (2.36) gives

*mV~Hfa*-»toifr*-»&£« (2.55)
Tq ' P -• Tq i'p-M

Is2, Eqn. (2.38) can be expressed in asimilar manner as in [39, Eqn. 22], for

observation point lying on the plane of TQ,

!s2 = Z Pj ln
j=l

o ± ±

( +
+Sj

l«j" +SJ"J

as

where p. ,tj ,Sj have been derived in Appendix-A and
summarized as

SJ =IPj-Pol

p0 = (xP.yp)

Pj° =I{(Pn+j+l - p0) x(pn+j+1 - r5m+j_!) /J. }|
0I" Pj° =I(Pn+j+l - p0) Xtj |
In asimilar manner as given in [39, Eqns. (23) and (24)],

hi
N.

|rP-F
N„

L 3 _ N,

S Pj°ln
j-1

+ +

J

we can write

2

h y3U

h h y3
o _L

Y3

x

L.y.
»Zaj«
j=i
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(A-2)

(2.57)

(A-3)

(A-4)

(2.58)
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where f-. = [Vi-ViJ
o. 2

+(Pj) In
f + +^

S+Sn
(2.59)

Eqns. (2.58) and (2.59) together with Eqn. (2.56) when substituted in Eqn. (2.55)
give Isl.

2.4-2 Integrals with Bounded Kernels

For the case of closed boundary regions, such as, waveguides and cavities,

the potential integrals of eqns. (2.26) and (2.27) have kernels which are bounded

over the integration domain Tq. Similarly, the integrals Ib and Ic of eqns. (2.35)

and (2.37), respectively, have bounded kernels. These integrals can be integrated

using numerical Gauss quadrature techniques. The integrals are conveniently

evaluated in terms of area coordinates (Lh L2, L3) following the procedure of

-y Zienkiewicz [116].

Surface integrals in eqns. (2.26), (2.27), (2.35) and (2.37) can be transformed

into integration over area coordinates (L2, L3) by the following transformation

formula

1 1~L2

JJ f(r')ds' =2Aj Jf[F1 +(F2-F1)L2+(F3-F,)L3]dL2dL3 (2.60)
•ir Tq oo

where F' is given by eqn. (2.53b) and afactor of 2Aq is derived in Appendix-B.

The right-hand side (RHS) of eqn. (2.60) and similar expressions developed

for eqns. (2.26), (2.27), (2.35) and (2.37) are in a form amenable to numerical

integration. For example, using Gauss-Legendre quadrature formula, the RHS of

£ eqn. (2.60) can be evaluated as
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1 1"L2

^qj Jf fe +(?2 "?i)L2 +(r3 -F!)L3]dL2 dL3
0

kk

I
k=l

KK

= ZW(k)f|?i +(?2-fi)L2K+(?3-?i)L3k] (2.61)

Where kdenotes the k,h sampling point in the domain of Tq, W(k) is the weighting

factor for the kth sampling point, L2k and L3k are the L2 and L3 values at the kth

sampling point. W(k), L2k) L3k are given in Table 2.1.

Table-2.1

Gauss-Legendre Seven-Point Integration Formula

Sample Pt. pt2 pt3 pt4 Pts Pt6 pt?

L2, L3 Vi,V, v2,v2 v2,v3 v3,v2 v4,v4 v4,v5 v5,v7

Weight wa wb wb wh wc wc wc

V, =
Wa= — A

Vo

V, =

v4 =

v< =

6-VTJ
21

9+2VT5"
21

6+ViI
21

9-2V15
21

W,

40

155-VU
1200

1200

A = Areaof triangle
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2.5 COMPUTATION OF APERTURE PARAMETERS

In the subsections that follow, we outline the computation of some important

parameters thatareused to characterize an aperture.

2.5-1 Magnetic Current Distribution over the Aperture

Since the aperture has been discretized into planar triangles, magnetic

current distribution over each triangle, including that on its interior edge, is given by

Eqn. (2.3) with Mj(r') defined in Eqn. (2.12) as

T

>

_ 1.
M.(F') = -L,

>K J 2A. 1
j

Pj, r'in T*
otherwise

in which p. is given byEqn. (2.25) as

Pj=±(P-F.)

which can bewritten in terms of its components as

Pj =± [x(x'-Xj) +y(y'-yj)] (2.62)

Therefore, x- and y-directed magnetic currents can be computed using

eqns. (2.3), (2.12) and (2.62) as

M^Z^VjCx'-x.) (2.63)

My=|A-Vj(y'-yj) (2.64)
where superscripts xand y, respectively, denote x-directed and y-directed magnetic
currents.
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2.5-2 Computation ofTransmission Coefficient, T

The transmission coefficient T of an aperture is defined as the ratio of the

time average power transmitted, denoted Pt, into region 'b' by the aperture to the

time average incident power intercepted, denoted Pjnc, by the aperture from region

'a'. Mathematically, .

Pt=Real JJe'xH1*. ds (2 67)
apcrt

Using Eqns. (2.9) and (2.11), P( can be expressed as *

Pt=Real{v[yb]V} (2 68)

where tilde denotes transpose, asterisk complex conjugate and, e\ H* are the

transmitted electric and magnetic fields, respectively.

Pinc is 8iven °y

Pine =Real JJI'xH-.ds (269)
apert

where l' and J? are the electric and magnetic fields incident on the aperture.
E and H depend on the type ofexcitation.

P >
Hence, T = —l—

P. (2.70)

It is to be noted that Tdepends on both the nature of source and the geometry of the
aperture. Arelated quantity of interest is the transmission area TA, defined as the
transmission coefficient times the area of the aperture. Thus,

TA = T * A
P (2.71)

where Ap is the effective aperture area.
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2.6 FAR-FIELD CALCULATIONS

The radiation field (far-field) may easily be calculated by making use of

reciprocity theorem and the fact that the field of a magnetic current element is a
known quantity [49].

Consider a magnetic dipole K at r=?m, Fig. 2.9, with a current density
given by

I(r) =K8(r-rm);

5(r-r ) = m

mJ
0, elsewhere (2.72)

Suppose the dipole produces a field E~m(F) and Hm(F) in free space. If

J and M are the source currents, whether impressed or induced, whose field is to be

found, then the dipole with its field and J, Mwith their fields, comprise two source

field pairs which must be related by reciprocity.

J]J(Ia . Jb -Ha . Mb)dv =JJj-(Eb . Ja -Hb . Ma)dv (2.73)
v v

where J , M and J ,M are two sets of sources in space at locations 'a' and V,

respectively, and Ea,Ha and Eb, Hb are the fields at these locations. The

integrations in Eqn. (2.73) include all space. Therefore, using Eqn. (2.72) in
Eqn. (2.73) we may write

K*Hm (Fm) =j]J(J.Em - M. Hm)dv (2.74)

where Mm (?m) is the magnetic field due to J, Mat rm and E™, H"m are the fields at

location of J, M due to the magnetic dipole. It is noted here that the various

components of the far-field Hm(Fm) may be obtained by orientating the magnetic

dipole accordingly.
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Hm(?m)
r . I(r) =KS(r-Fm)

'Origin

(a) (b)

Fig. 2.9 : Source-field pairs for the evaluation ofthe radiation field ofcurrent

sources J and M.
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2.6-1 Determination ofFar-field Measurement Vector

For the general problem illustrated in Fig. 2.11, measurement of magnetic

field Hm at an arbitrary point Fm in region 'b' depends linearly on magnetic current

-M on V. As discussed earlier, this measurement may be done by placing a

magnetic dipole K5(r-rj at Fm and applying the reciprocity theorem to its field

and to the field of the original problem, in Fig. 2.3b. Now the set of sources

comprises the dipole at r,n and (he magnetic current M on 's' radiating in the

presence of acontinuous PEC at z=0. The problem involving the magnetic dipole
is called the adjoint problem and is shown in Fig. 2.10.

Aperture 's'

Region 'b'

Fig. 2.10 : Adjoint problem for determining H

Both measurements of the fields are made in the presence of PEC.

Application of the reciprocity theorem to these two fields yields

m

H K = -<M,H > (2.75)

40



where H^ is the magnetic field component in the direction of K at r due to •M

in the presence ofa PEC and H is the magnetic field from Kin the presence >of a

PEC. To evaluate Eqn. (2.75) we substitute for M, according to Eqn. (2.3), giving

HInK =ZVn<-Mn,Hm>
n

=-Z^ J]"Mn.H'"ds p.76)
11 ape'rt

Since the scalar product in the integrand of Eqn. (2.76) would involve only

the tangential component of the fields, we may write

HniK =-2vn<Mn)H;n> (2.77)

or KH =
in

-in

V (2.78)

where P =-[<Mn,Ht >]Nx] (2 79)

In order to obtain acomponent of Hffl on the radiation sphere, we orient the

dipole K perpendicular to ?m and let rffl tend to infinity. At the same time, we

adjust K(so that it produces a unit plane wave in the vicinity of the origin. The
required dipole moment is given by ~>

K 4 kr„, (2-80)

Whereko=T (2.81)
and the plane wave produced by it in the vicinity of the origin is

H =u e~jk'",F
(2.82)
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til,1 ,••.'• M

where 0^ is the unit vector specifying the polarization of the wave, km is the

wavenumber vector pointing in the direction of wave travel, and F is the position

vector to an arbitrary point on s. Substituting Eqn. (2.80) in Eqn. (2.78), gives

H„
J (B S _jF 7

4 7r r,

,m

ill

(2.83)

-ni

Once the measurement vector P is determined, the far-zone magnetic field

can readily be calculated from (2.83). The procedure for determining P™ is outlined

below. ."':

Fig. 2.1 I illustrates the cross-sectional view of the aperture (Fig. 2.2) and the

geometry and parameters of the measurement vector.

To

- measurement
point

Conducting
screen

Fig. 2.11 : Cross-sectional view ofaperture V and measurement vector in

region 'b'
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In the expression for P (Eqn. 2.79), H( is the tangential component ofthe

magnetic field at any point F on s which can be obtained, using the following

F=xx + yy (2.84)

k = - k„ r
, in in

o m kQ(xsin9 cos(p +ysin6 sin cp +zcos(pm) (2.85)

— m

Ht in Eqn. (2.79) can bewritten as

7^m ~TTn10 ~ mo,
H. =2Htx x + 2Hlvy

\ ty (2.86)

1110

where Ht is the tangential component ofthe magnetic field when the dipole K is

radiating into free space.

First we express Eqn. (2.25) in terms ofits xand ycomponents as

Pn = SPnx +yPny

which upon substituting in Eqn. (2.79) gives a component of Pm as

pm=-in_ rr TTmo ± ff mo ±If Htx Pnxds + jj Hty pnyds
iN

(2.87)

(2.88)

By applying Galerkin method and centroid approximation to (2.88), P™ may be

written as

pm lTjmo/-c+x c+ TTmo c+ c+ r,mo c- c- mo c- c-Pn ^nJHtx (rn )Pnx +\ (rn )pny +H(x (?„ )pnx +n™Cr° )P°ny

where Htmo (Fnc±) = (9H" + <pH'" ) e111 ^ Jkm*r,;c±

(2.89)

(2.90)

and from the definition of ?m following Eqn. (2.23), we have

aflx? +x2± +x3±)sinem coscpm +(yj± +y2± +y3±)sin6- CoscpmKm*rm =—r

(2.91)
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The antenna power gain may be specialized to four principal planes given by

uyy ^um ~ y> (P - ° ) for y-polarisation measurement in the

y = 0 plane

111 0r~\ f A " 111 U

°9y ^m = e> (P = 0 ) for 9-polarisation measurement in the

y = 0 plane

m o

G0x (um ~e> (P - 90 ) for 9-polarisation measurement in the
x = 0 plane

and Gxx (um =x, <p =90') for 9-polarisation measurement in the
x = 0 plane

111 o

(2.92a)

(2.92b)

(2.92c)

(2.92d)

The magnetic fields in these four principal planes can be obtained as follows after
substituting (2.91) in (2.90) :

(Ht )yy(?n M<

jkm l± 2± 3± m
—(xfl +xn +xn )sin6

jkm/ 1± 2± 3±.
3 ~(xn +xn +xn )sin0

m

(Ht )e (rn )=9e

.ft i„ It 2± y± • ^'"
_c±s : 3 (>'n +vn +>'n )sin0

(Ht )ex(?n )=9e

(Oxx-Of)-«.
jkm, 1± 2± 3± m
—(yn +yn +yn )sme

ft „m %
->9 >__
2 2

2 - 2J

->9 >__
2 2

71 „m 7t
->9 >_::
2 2

(2.93a)

(2.93b)

(2.93c)

(2.93d)

2.6-2 Transmission Cross-section

Transmission cross-section x is defined as that area in which the incident

wave contains sufficient power to produce the radiation field Hmby omnidirectional
radiation over half space.

Let the intrinsic impedances of region 'a' and region V be ri and n
respectively. Power incident, Pin,., on the aperture is given as
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Pinc = ^a IH'° I2 (2.94)
and powertransmitted, Pt, by the aperture as

Pt = ^b IHm I' (2.95)

x is then determined by the ratio of Pt/Pinc over half space S (where area of

S= 27tr2).

Thus, T=27trm2rlb|Hra|2/Tia|Hi0|2 (2.96)

where H'° is the magnetic field over the aperture de to sources J1, M1 in free space.

H10 components have been derived in Sec. 3.2. The far-zone magnetic field H has

been expressed in the four principal planes by eqns. 2.93(a)-(d), r| and r\ are the

intrinsic impedances of region 'a' and region 'b', respectively..

2.6-3 Determination of Power Gain Pattern

Antenna power gain G(G,4>) is the ratio ofthe radiation intensity in a given

direction to the radiation intensity which would exist if the total power were

radiated uniformly in half space. That is

G(9,(p) - — (297)

IfPt is the total complex power radiated into half space the average radiated
power is

\|/av =Real(Pt)/27i (2 98)

Also, the radiation intensity in agiven direction [49] is

V(6,40 =r |̂Hm|2/T, (2.99) >

where Hm is the magnetic field intensity at the measurement point and r is

the distance of this pointfrom the origin of coordinates.
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Substituting (2.98) and (2.99) in (2.97), we obtain

• ^.ttfivrftf : <2100>
The complex power Pt transmitted through the aperture in Eqn. (2.67) is

Pt = jj ExH*»zds (2.101)
apert

Using Eqn. (2.1), Pt may be written as

Pt = J|E*rf ds (2.102)
apert

Since the transmitted power is dependent only on the tangential component of H at
*

z - 0, using Eqn. (2.3) and the tangential component of H yields

[HtY =E Vn*[Htb(-Mn)]* (2.103)
n=l

which upon substituting in (2.102) together with substitution for M according to
(2.103) gives P, as

M _ _

Pt = -EVmVn* j|Mm.[Htb(Mn)fds (2.104)
m=l apert

Using (2.9) and.(2.11), Ptmay be expressed in a matrix form as

, ?t =[V]T[Yb]*V* (2.105)
Substituting (2.104) and (2.105) in (2.103), the expression for the power gain
becomes

rm,, K^ |[pm]X[Y]_1T|2G(9,(|)) = -2-T--— ILH J L ! (2.106)
871 f _u] T b * r _u *1Re|[Y] 11 [Y ] |[Y] I]

where [Y]~' = [Ya +Yb]_1
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2.7 SUMMARY

In this chapter, a general formulation for the boundary value problem of

aperture of arbitrary shape coupling two arbitrary regions has been developed.

General equations for solv.ng the various matrices, aperture surface magnetic
current distributions, transmission coefficient, transmission area and antenna gain
patterns have been derived.
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Chapter - 3

ELECTROMAGNETIC TRANSMISSION THROUGH AN
APERTURE IN A CONDUCTING SCREEN

In this chapter, the problem of two dissimilar regions, both open at

infinity, coupled via an arbitrarily-shaped aperture in a conducting screen is

considered/The problem is a special case of the general problem discussed in

Chapter 2.

3.1 FORMULATION

The geometry of the problem under investigation is shown in Fig. 3.1.

The z = 0 plane is covered by a perfectly conducting screen except for an

aperture, which can be ofany shape. The regions on either side of the screen are

assumed to be different dielectric media with electrical parameters (u. ,e ) and

(ub,eb), respectively. The excitation is due to aplane wave, which is obliquely

incident on the aperture.

As discussed in Chapter 2and depicted in Fig. 3.2, equivalence principle

is utilized to divide the problem into two separate regions, namely, region 'a'
(z < 0) and region 'b' (z > 0).
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Region 'a'

[/
Impressed

sources

M

region 'a1

(v»0

Infinite

Conducting
screen

Fig. 3.1 : An Arbitrarily-shaped Aperture in an Infinite Conducting Screen

region 'a'

(e„u.)

Impressed
sources

z = 0

region 'b'

• Aperture

_Conducting
screen

(a) Original Problem

Conducting
screen

Application of
Image Theory

X

V
Impressed

sources

Region 'a'

2M

Image
plane

Region 'b'

(<V M„)
Conducting

screen

Application of
Image Theory

X
-M

~7
>

Image
plane

•2M

(b) Equivalent problems
(valid for region 'a')
(2<0)

(c) Equivalent problems
(valid for region 'b')
(z>0)

Fig. 3.2 : Original Problem and its Equivalent Models
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The problem is now described by matrix equation

[Ya +Yb] V = V
(3.1)

where the aperture admittance matrices for region 'a' and region Vare given by

[Y3] =[<Mm,Hta(2Mn)>]N>;N (32)

[Yb] =[<Mm,Htb(2M)>]NxN (33)
and I and Vare, respectively, the source vector and unknown coefficient vector
defined as

i1 = [-<Mm,H;>]Nxl

V = [v ]Nxl

(3.4)

(3.5)

3.2 EVALUATION OF MATRIX ELEMENTS AND EXCITATION

VECTOR

Using the centroid approximation discussed in sec. 2.3 the elements of the

aperture admittance matrices can be written as

Y a — — 911mn *"im <t

Y 21,

JO)

JO)

Fna(C)-^ +Fna(FnD.-^

tf (C) •**- +*„• GT) <
p,r

where Fnr(r,f) =sr JJg' (rc± |r') •Mn (F')ds'

+ <(?mC~)-<(rmc+)

J>/-c
+ «(?mc")-*„b(rmc+)

K(J™±) =l^rtt V'.G>*|F) .Mn(P)ds'
JOlM-r

(3.6)

(3.7)

(3.8)

(3.9)

In eqns. (3.8) and (3.9), superscript r (either a or b) denotes the region and
=r _c±
G (r If) is the dyadic Green's function.



Evaluation of matrices Y and Y given by eqns (3.6) and (3.7),

respectively, involves a number of integrals given by eqns. (2.35) to (2.38), which

are repeated here for the sake of completeness.

, -Mp-f'l

r -r'

• ds'

Tq l*p I

Ic=Jj(i__^i)d,

"- = w

r -r
p

ds'

,r -rTq ' p

(3.10)

(3.11)

(3.12)

(3.13)

Eqns. (3.11) and (3.13) are evaluated as per procedure in sub-section 2.4.1. The

remaining two integrals can be evaluated as described below.

Using eqn. (2.60) in conjunction with eqn. (2.54), eqns. (3.10) and (3.12) can
be written as

I. =2Ab q fe-'Jf i
0 0

fe-slf J
0 0

+ fe-tf I
o o

(e
-L2^-jk|rp-F|

r -r'l
p

1)

1 1-L2 ,_-Jk|rp-?|

dL2 dL3

(e v -1) dL2 dL3
rp-r

-L2 ^-Jklfp-?!
(e v -1)

r -r'
p

dL2 dL3

1 1-L2 -jk|r -r'|

2 "^3
0 0
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where | Fp -F'| = |(rp -Fj) - ((F2 - r,)L2 + (F3 -ri)L3)| (3.16)

Applying Gauss-Legendre quadrature formula given by eqn. (2.61) to eqns.

(3.14) and (3.15), we can write

kk

Tb =\ Z w(s)
s=l

M (e ^ -1)
r -r'

p

-JkPp-f -jk|r„-r1

+ fe^V^^S^
kk

^M W(s)
s=l

(e-jklvpl
r -r'

p

1)

in which | r - r'| in eqn. (3.16) is now given by

l«p-r'| = \(rp-Tl)-((r2-r{)L2s+(f3-rl)L3s)\

(3.17)

(3.18)

(3.19)

3.2-1 Evaluation of Excitation Vector

Excitation vector f is given by eqn. (3.4) as

I' = [-<Mm,Ht'>]Nxl (320)

For the present case, when the aperture is closed with aconductor, we have

Ht = 2F£t'° (3.21)

where H" is the tangential component of the magnetic field over the aperture
region for a plane wave travelling in free space, which can be written as

(3.22)Ht'° (uQi H' +u^ H; 1e"

k'=u.k' = kir' "' 'xsinO coscp + ysinO sin cp + zcosG* (3.23)
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where u . is a unit vector specifying the direction of the incident wave and k' is the

propagation vector.

Substituting eqn. (3.21) in eqn. (2.24) gives an element of excitation vector

as

— nC+ 7TC-
I1 = -21 i H10frc"^«i-IIL_ j. fjio/-r c-^ - Pm% ^m ] rtt Mm ) * ~T- + "t (rm ) • -^

where Ht (rm ) can be broken up into its x- and y- components as :

Further, using eqn. (3.22), HJJ (g,*) and H'° (rf) can be expressed as

rlO /-C±
Htx (rm ) = HQ cose1 coscp' - H,j, sin cp1

H? On?) = [Hg cosB1 sin cp1 +H^ coscp1 Je" '̂,?™±

Using expression for £* in eqn. (2.23), k1 .rmc± can be expressed

k1*^ =Ylxm +xm+xi±)sinei coscp1

1± 2± 3± i
+ ym +ym +ym sin0«n<p

-jk'*5

as

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

3.3 RESULTS AND DISCUSSION

Based on the preceding formulation, a general computer program has been
developed which can be used to analyse apertures of arbitrary shape in an infinite
conducting screen separating two dissimilar regions. The formulation has been

validated by considering arectangular aperture for which results are available in the
literature [67]. Thereafter a number of aperture shapes have been studied which
include rectangular, circular, elliptical, diamond, cross and H.
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For each aperture shape, different discretization schemes were considered

before arriving at the optimum one. Similarly, convergence studies were made in
each case to determine the number of expansion functions that should be used.

In this section, we present some representative results for different aperture
shapes. For simplicity, the regions on either side of the screen are considered to be
free space and ay-polarised plane wave (Hx) of unit amplitude has been assumed to
be incident normally on the aperture.

3.3-1 Rectangular Slot

The first example is a narrow slot of width XI2Q with its length along
x-direction. Fig. 3.3 shows the triangulation scheme for the slot. The slot surface is
discretized into 56 triangular patches resulting in 68 non-boundary edges
(68 expansion functions). The associated nodes, edges and current direction! in
triangle edges are also shown.

The edges are ordered according to the directions of the arrows. This ensures

the continuity of magnetic current across each edge (excluding the boundary edge,
on which current is zero). The +and - signs denote T+ and Ttriangles, respectively,
associated with an edge.
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Fig. 3.3 : Rectangular Slot Discretization Showing Nodes, Edges and Current Directions
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Table 3.1 shows the results for convergence study on transmission

coefficient as afunction of the number of expansion functions generated by varying
triangular patch density over the slot surface.

, Table-3.1

Convergence of Transmission Coefficient

Slot Length
L

No. of Expansion
Functions

N

Transmission

Coefficient

T

% Change in T

X/4

38

48

53

68

0.1719670

0.1795997

0.1825320

0.1839750

4.44

1.63

0.80

X/2

38

48

53

68

8.340040

8.169690

8.028399

7.956730

-2.11

-1.79

-0.89

3 X/4

48

53

68

2.141330

2.126040

2.122330

-0.7

-0.2

X

38

48

53

68

1.547793

1.521988

1.520760

1.519995

-1.67

-0.80

-0.15

From the table, it is noted that 48 expansion functions are quite sufficient to
yield converged results.

Fig. 3.4 and Fig. 3.5 show the magnetic current distributions and the

transmission cross-sections, respectively, for slots of various lengths, which were

obtained using 68 expansion functions resulting from the discretization shown in

Fig. 3.3. For comparison, we have also plotted the results obtained by Mautz and

Harrington [67] using rooftop functions (RTF). It is found that our results are in

good agreement with their results for slots oflength X/2, 3^/4 and X.
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Fig. 3.4 : x-directed Surface Magnetic Current Distributions for
X/20-wide Rectangular Slots in a Conducting Screen.
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Fig. 3.5 : Transmission Cross-sections x0JX2 and xJX2 forOy' Lxx'

A./20-wide Rectangular Slots
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However, for A./4-long slot, a large discrepancy between our results and

those published in ref. [67] was observed. Since we had already tested our
procedure for convergence and were reasonably sure of the accuracy of our results,
we undertook a detailed study of the method in [67] to identify the cause of this
discrepancy. Acomputer program was written based upon the equations derived in
[67] and its results for aX/4 slot are shown in Fig. 3.6. It was found that the data
presented in [67] for the X/4 slot was obtained with only 5sub sections (4 RTF)
along the x-direction. Fig. 3.6(a), on the other hand, shows that about 40
subsections are required to obtain convergence. Fig. 3.6(b) and (c) show our results
with 56 triangular patches and the results of Mautz and Harrington [67] using 4
RTF and 47 RTF; it is found that, in the latter case, the agreement between our
results and those obtained using rooftop functions is good. Thus, the reason for the
apparent discrepancy was that the results in [67] were obtained using insufficient
number of expansion functions. Further, it was found that for the other slot lengths
also, the agreement improved if the number of rooftop functions was increased.
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Fig. 3.6 : Transmission properties ofa XI4 x XI20 rectangular slot (a) convergence
of transmission coefficient as a function of the number of rooftop

functions (RTF), (b) x-directed surface magnetic current distribution
and (c) transmission cross-sections x0y/A.2 and xxxlX2.
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Fig. 3.7 shows the transmission coefficient as a function of slot length for

slots ofdifferent widths. It is seen that as slot width is decreased, the transmission

coefficient progressively increases accompanied by a slight increase in the resonant

length of the slot. This can be attributed to the presence of arelatively high electric
field within the narrow slot compared with the field in the broad slot for the same

time average input power. As a result, computed parameters, such as transmission

coefficient, transmission cross-sections and surface magnetic currents for the
narrower slot are higher.
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Fig. 3.7 : Transmission Coefficient as a Function of Slot Length for
Slots of Different Widths in a Conducting Screen
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3.3-2 Square Aperture

The discretization used for asquare aperture is shown in Fig. 3.8. It consists

of 96 non-boundary edges. Apertures of the size X/4 x X/4 and X/2 x X/2
considered.

were

Fig. 3.8 :ASquare Aperture Surface Discretized by Triangular Patches Showing
Edges, Nodes and Current Directions

The results for convergence test on the transmission coefficients of the
square apertures are given in Table 3.2.
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TabIe-3.2

Convergence ofTransmission Coefficient for aSquare
Conducting Screen

Aperture in a

Aperture Size
LxL

No. of Expansion
Functions

N

Transmission
Coefficient

T
% Change

21 0.19036490

X/4 x X/4

40

65

0.22355000

0.25096036

+17.4

+12.3
96 0.26784400 +6.73
133 0.27105720 +1.1996
21 1.55473200

X/2 x X/2

40

65

1.58751400

1.60130600

+2.11

+0.87
96 1.60794300 +0.41

133 1.61799500 +0.38

From the table, it is noted that at least 96 expansion functions are required
for the smaller aperture to attain convergence while only about 65 expansion
functions are sufficient for the larger aperture.

Figs. 3.9(a)-(b) and 3.10(a)-(b) show the d.stribution of the surface magnetic
current Mx as afunction ofxand y. It is found that for both X/4 x X/4 and X/2 xX/2
apertures, the magnitude of the current has asimilar nature. Mx vs xcurves exhibit a
"shoulder" as one moves away from the centre before falling off sharply near the
aperture edges. However, while the phase of Mx is constant along the xdirection for

the V4 aperture, the phase distribution of the X/2 aperture is sharply tapered near
the edges. The Mx vs ycurves have similar nature and exhibit edge conditions near
the aperture boundary.

Fig. 3.11 and 3.12 compare the computed transmission cross-sections xoy/X2
and xxxA.2 with those obtained by Mautz and Harrington [67]. Agood agreement
between the two results can be seen.
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Fig. 3.9 : Equivalent Surface Magnetic Current Distributions for
X/4-Square Aperture in a Conducting Screen.
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Fig. 3.10 : Equivalent Surface Magnetic Current Distributions for
X/2-Square Apertures in a Conducting Screen.
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Fig. 3.11 : Transmission Cross-sections for X/4-Square Aperture in a
Conducting Screen.
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Fig. 3.12 : Transmission Cross-sections for X/2-Square Aperture in a
Conducting Screen.
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3.3-3 Circular Aperture

Fig. 3.13 shows the triangulation scheme for a circular aperture. The surface

comprises 56 faces, 33 nodes and 76 interior edges.

The figure illustrates clearly the advantages of triangular patches for

modelling the curved boundary regions. The orientation and density of the patches

can be varied appropriately to conform to the physical boundary ofthe aperture.

y

36—• x

Fig. 3.13: Discretization Scheme for aCircular Aperture Showing Edges,

Nodes and Current Directions
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Table 3.3 shows the results of a study on transmission coefficient as a function of
the number of expansion functions for various aperture diameters. It is evident that
about 48 expansion functions are sufficient to obtain converged results.

Table -3.3

Convergence of Transmission Coefficient for aCircular Aperture in a
Conducting Screen.

Normalized

Diameter

d/X

No. of expansion
Functions

N

Transmission

Coefficient

T

% Change in T

20 0.0352500

0.2 48 0.0420340 19.25

76 0.0429959 2.29

20 0.2511654

0.3 48 0.2548490 1.49

76 0.2552010 0.138

20 0.9374096

0.4
48 1.0139820 8.17

76 1.0694360 5.47

128 1.1257500 5.27

20 1.498541 ,

0.5
48 1.634501 9.07

76 1.646438 0.73

128 1.649220 0.17

48 1.544001

0.6 76 1.523680 -1.32

t 128 1.522670 -0.07

48 1.328800

0.7 76 1.339980 0.84

128 1.340477 0.04

48 1.230142

0.8 76 1.235578 0.44

128 1.240382 0.39
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Fig. 3.14 and 3.15 show, respectively, equivalent surface magnetic current

Mx at y/d - -0.0833 and at x/d =0.0 for circular apertures having 128 non-boundary

edges. As expected, the peak value of the current increases with the size of the

aperture. In Fig. 3.14, as one moves away from the current peaks, it is seen that

there is a uniform decrease for the largest aperture current until at x/d = ± 0.25

from the centre when the curve exhibits a "shoulder". For smaller aperture, the

magnitude of the current is nearly constant over a small region around the centre

and the phase distribution is almost uniform over the entire length of the aperture. ^

The current distributions along the y-direction (Fig. 3.15) exhibit minima at the

centre and maxima at x/d = ± 0.167.

Fig. 3.16 shows transmission coefficient T as a function of aperture

diameter, d. It is noted that Treaches its maximum value at dft, slightly greater than

0.5, suggesting that resonance occurs at this point.

Fig. 3.17 shows transmission cross-sections xQy/X and x^/X2 for different

aperture diameters. Transmission cross-sections are noted to be a function of

aperture diameter.
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Fig. 3.15 : Equivalent Surface Magnetic Current Distributions Mx at x/d = 0.0
for Circular Apertures in a Conducting Screen.
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Fig. 3.16 :Transmission Coefficient, T, of Circular Aperture as a
Function of Diameter.

72



./•

A

-90 -72

hb-

f
/

• dIX = 0.4

' d/X • 0.5

d/X = 0.8 //

2.0

//
II

if
'I

/

/.'
/','

.'/

//
/ /

//
/ /

/ /

1.5-

1.0

•'*.

w

w
\'\

' »

\\
\\
\\
\\

' »

w

C6y/A.2 \
\ >

.Txx/A. .
i l

/ !
/ !

* * *

/

/ /

0.5 ft2 • "• ' \

-54 -36
-i 9i8>

-18 0 18

Angle (degrees)

Fig. 3.17 : Transmission Cross-sections x0y/X2 and xJX2 for Circular
Aperture for Various Diameters in aConducting Screen.

73

\
•->

V



dJ/2

±12

3.3-4 Elliptical Aperture

Fig. 3.18 shows the triangulation scheme for an elliptical aperture. The

aperture surface is discretised into 36 triangular patches, resulting in 48 non-

boundary edges. It is emphasized again that the use of triangular patches has made it

easier to model the surface quite accurately by incorporating a higher density of

patches in regions where it is desirable, especially the boundary regions.

23 • x

Fig. 3.18 : Discretization of Elliptical Aperture Showing Nodes, Edges and

Current Directions

Elliptic apertures of different eccentricities were considered, where

eccentricity, e, is given by

e = ^l-(d2/d,)2 (3.29)
in which di = major axis

d2 = minor axis
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Fig. 3.19(a) and (b) show surface magnetic current distributions Mx as a

function of x and y at y/d2 = -0.0833 and at x/di = 0.0, respectively, for elliptical

apertures of eccentricity, e = 0.5 and e = 0.8. Both apertures have a major axis

d, = 0.8A,. The magnitude distributions have almost equal peak values but for

e = 0.8, the current falls more sharply as one moves away from the centre. The

distribution of Mx along the y-direction exhibits widely different behaviour for the

two cases (Fig. 3.19(b)). While the current distribution is almost uniform for smaller

eccentricity (e = 0.5), it exhibits a nature similar to that of a circular aperture for

e = 0.8.

Fig. 3.20 shows the transmission cross-sections t„ IX2 and x IX2 for
oy xx

elliptical apertures for e = 0.3, 0.5 and 0.8. The patterns are seen to become more

directive for smaller eccentricities.

The elliptic aperture was studied in more detail by considering two different

orientations shown in the inset of Fig. 3.21(a). In one case the major axis of the

ellipse is along the x-direction (ellipse 1) and in the other, along y-direction

(ellipse 2). In both cases, the aperture area is same. It is observed that when the

major axis is along the y-direction (ellipse 2), the |MX| vs x curve is very nearly flat

over a large part of the aperture and |MX| falls only near the aperture edges. On the

other hand, for ellipse 1, the current distribution, is tapered along the x-direction.

Further, while |MX| vs y curve for ellipse 1(major axis along x-direction) exhibits a

minima at the centre, the curve for ellipse 2 exhibits a maxima (Fig. 3.21(b)).

Ellipse I curve is similar lo that ofA./2-square aperture in Fig. 3.10(b).

Fig. 3.22 shows the transmission cross-sections tq IX2 and x IX2 for the
oy xx

aperture in the two orientations. It is noted that vertical orientation (ellipse 2) gives

a higher transmission cross-section than that obtained with horizontal orientation

(ellipse 1) for E-polarization in the y-direction.
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Effect of increasing aperture size for a constant d2 was also studied.

Fig. 3.23(a) and (b) show magnetic current distributions. It is observed that the

larger ellipse (ellipse 2) has a higher peak value. However, both apertures exhibit
very little change in phase ofMx along the aperture axes.

Fig. 3.24 shows the corresponding transmission cross-sections. Here also, it
is noted that ellipse 2 has higher peak values.

From the above results, it can be concluded that for a y-polarized incident

plane wave, an elliptical aperture with its major axis oriented along y-direction
exhibits a higher transmission cross-section.
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h/2

h/2

3.3-5 Diamond-shaped Aperture

Fig. 3.25 illustrates the surface of a typical diamond-shaped aperture

discretized by triangular patches. The surface consists of 41 nodes, 64 triangul
faces and 88 non-boundary edges.

U2
U2

Fig. 3.25 : Discretization of aDiamond-shaped Aperture Surface Showing
Nodes, Edges and Current Directions
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Owing to the influence of the four corners in the diamond-shaped aperture

structure, current distribution and transmission cross-sections are very much

different in this case when compared to those of circular and elliptical apertures.
Fig. 3.26(a) shows surface magnetic current distribution Mx as a function of x for

LA, =0.4, 0.6 and 0.8 and h/X =0.3556. It is seen that the peak magnitude of Mx is

considerably higher in this case and the current distribution is highly tapered near

the centre. |MX| versus ycurves shown in Fig. 3.26(b) exhibit amaxima at the centre

of the aperture as opposed to the minima exhibited by circular apertures of Fig. 3.15
and ellipse 1 of Fig. 3.21.

Transmission cross-sections for diamond-shaped apertures are shown in

Fig. 3.27. It is observed that the pattern peak value is afunction of the aperture size;
the larger the aperture the higher the peak value.

It appears that, for a fixed aperture height (in this case, h/X = 0.3556), the

angles formed by the edges have an effect on the current distributions. For instance,

under conditions where the angles formed on the x-axis are acute, such as for

L/X = 0.6 and L/X - 0.8, the current distributions are sharply tapered, attaining
much higher peak values at the centre than for the case where these angles are

obtuse. For L/X = 0.4, it is found that the current peaks are lower and the curves are

flatter. The peak values ofcorresponding transmission cross-sections are also lower.
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Fig. 3.26 : Equivalent surface magnetic current distributions for diamond-
shaped apertures in a conductng screen
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Fig. 3.27 : Transmission cross-sections x0yIX2 and xJX2 for diamond-
shaped aperture for various lengths in a conducting screen.
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3.3-6 Cross-shaped Slot

The discretization ofa cross-shaped slot surface using triangular patches is

illustrated in Fig. 3.28. The slot surface consists of45 nodes, 56 triangular surfaces

and 68 non-boundary edges.

Fig. 3.28 : Discretization of Cross-shaped Slot Showing Nodes, Edges and

Current Directions
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Fig. 3.29(a) and (b) show the current distributions Mx at y/h =-0.0625,
-0.0833, -0.1667 and x/L =0.0, respectively, for slot arm widths Aw =L/4, L/3 and
2L/3. Since cross-shaped slot is in fact acombination of two rectangular slots
bisecting each other perpendicularly, it is expected that the nature of its current
distributions and associated parameters should have some similarities with those of
a rectangular slot or a square slot depending on the size of Aw. This is indeed
apparent when one observes the shape of the current curve corresponding to
Aw - 2L/3 which nearly approaches that for asquare aperture of Fig. 3.9. It can also
be anticipated that a further reduction of Aw beyond L/4 will lower the current
minima in 3.29(a) to almost zero, thus contributing to half sinusoids, one on each
side of the aperture centre, each similar to the rectangular slot current curves in
Fig', 3.4 either (a) or (b).

However, the current distributions in Fig. 3.29(b) are similar to those of
elliptical apertures of Fig. 3.23.

Fig. 3.30 shows transmission cross-sections for the slot. It is observed that
increasing Aw produces alarge increase in the peak value of the transmission cross-
sections.
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Fig. 3.29 : Equivalent surface magnetic current distributions for cross-shaped
slots for different arm widths in a conducting screen
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Fig. 3.30 : Transmission cross-sections x0y/A.2 and xJX2 for
cross-shaped slots for different arm widths

in a conducting screen.
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3.3-7 H-shaped Slot

The discretization used for H-shaped slot is shown in Fig. 3.31. The slot

surface consists of 45 nodes, 68 interior edges and 56 triangular faces.

L = x

Fig. 3.31: Discretization of an H-shaped Slot Surface Showing Nodes, Edges

and Current Directions
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We considered two types of H-shaped slots, namely, small slots for which

L=h=X/4 and large slots for which L=h=X. For each slot, the effect of varying
arm width Aw on its near- and far-field parameters was considered. Fig. 3.32(a)
shows magnetic current distributions at y/h =-0.025 and -0.0333, respectively,
corresponding to slots with Aw - a/20 and Aw =VI5. The current distribution is
relatively uniform around the aperture centre and in this case also, the magnitude of
peak current is much greater than that obtained for circular and elliptic apertures.
Fig. 3.32(b) shows current distributions at x/L =0.4875 and 0.4833, respectively,
for slots with Aw =m0 and Aw =X/IS. It is found that along the y-direction, the
magnitude and phase distributions of Mx are nearly uniform.

Fig. 3.33 shows the corresponding transmission cross-sections of the slots

with Aw =a/20 and Aw =X/\5. It is seen that the transmission cross-section for slot
with Aw = X/20 is higher.

Fig. 3.34 shows magnetic current distributions at y/h =- 0.03125, -0.0625
-0.09375 and -0.1, respectively, for slots of arm widths Aw =0.125X, 0.25a, 0.37551
and 0.4a. It is observed that as Aw is increased the current peak value decreases.
Conversely, as Aw decreases, the current peak increases and the shape of its curve
tapers towards the peak. Fig. 3.35 shows Mx distributions at x/L =0.4375, 0.375,
0.3125 and 0.3 for slots of Aw =0.125a, 0.25a, 0.375a and 0.4a, respectively.

Fig. 3.36 shows the corresponding transmission cross-sections for the slots.
It is noted that transmission cross-section peak value increases with Aw as opposed
to that in Fig. 3.33.
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Fig. 3.32 :Equivalent surface magnetic current distributions for
H-shaped slot in a conducting screen
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Fig. 3.33 : Transmission cross-sections for A/4-long H-shaped slots for
different arm widths in a conducting screen.
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Fig. 3.34 :Equivalent surface magnetic current distributions for H-shaped
slots at y/h =-0.03125, -0.0625, -0.09375 and -0.1,

respectively, in a conducting screen
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Fig. 3.35 : Equivalent surface magnetic current distributions along vertical arm
ofH-shaped slots for various arm widths at x/L =0.4375, 0.375,

0.315 and 0.3, respectively, in a conducting screen
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Fig. 3.36 : Transmission cross-sections for Xlong H-shaped slots for
different arm widths in a conducting screen.
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3.3-8 AComparative Study of Transmission Cross-sections for Various
Aperture Shapes

We consider here a comparison of the transmission cross-sections for the
apertures of various shapes. Two cases have been considered : small apertures
having an area of 0.0325A2 and relatively large apertures with an area of 0.1632a2.

Fig. 3.37 compares transmission cross-sections xQ IX2 and x IX2 for

smaller apertures of same area but different shapes. It is seen that the pattern for a
H-shaped slot of L=h=X/4 of arm width a/20 exhibits the largest peak value. It is
further observed that elliptic aperture gives a larger peak value than that of a
rectangular slot of the same area. The peak values of transmission cross-section for
circular and diamond-shaped apertures seem to be negligibly low for relatively
small apertures. The xxx/a2 patterns for H-shaped slot, rectangular slot and

elliptical apertures are similar with equally wide beamwidths. However, x /A.2

pattern for elliptic aperture has the narrowest beamwidth followed by that of
H-shaped slot.

Fig. 3.38 shows the transmission cross-sections x0 /A,2 and x IX2 for

relatively large apertures of various shapes. It is noted that diamond-shaped aperture

has the highest peak value and the smallest xxx/a2 pattern beamwidth. Cross-

shaped slot has the lowest peak value and the largest xxx A2 pattern beamwidth.

Elliptic aperture and rectangular slot, on the other hand, exhibit similar x IX2
XX

patterns but the former has more directive x(Jy/r pattern of all the four cases
studied here.
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Fig. 3.38 : Transmission cross-sections x0y/A2 and xxx/a2 for various large
apertures in a conducting screen
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3.4 SUMMARY

In this chapter, an extensive numerical study has been carried out on

apertures of various shapes in an infinitesimally thin, perfectly conducting screen.

The computer code has been validated by considering rectangular slots and square
apertures for which results are available in the literature. All the results have been

tested for convergence by utilizing sufficient number of triangular patches to
discretise the aperture surfaces.

Results have been presented for magnetic current distribution, transmission
coefficient and transmission cross-sections for rectangular, square, circular, elliptic,
diamond-shaped, cross-shaped and H-shaped apertures.

Acomparative study has been made on the transmission cross-sections of
various apertures.

101



Chapter - 4

WAVEGUIDE BACKED APERTURES IN A
CONDUCTING PLANE

Waveguide backed apertures radiating into half space, either singly or as

an array, have been studied by many investigators, notably, Cohen et al. [21],

Mautz and Harrington [68], Fenn et al. [35], Sinha et al. [97], Leong et al [57],

[58] and Butler et al. [16]. However, all these studies have been restricted to

rectangular apertures because ofthe difficulty in handling the apertures ofother

shapes.

We utilize the general formulation of Chapter 2 to study the radiation

properties of waveguide backed apertures of different shapes, such as

rectangular, circular, elliptical, diamond and H.

4.1 FORMULATION

Fig. 4.1 depicts the problem under investigation and defines the

coordinates and parameters used. The waveguide-fed aperture is located in z = 0

plane which is occupied by a PEC except for the aperture. The conductor is

considered to be infinitesimally thin and the aperture can take any shape.

As described in Chapter 2, we use equivalence principle to divide the

problem into two separate regions, namely, awaveguide region (z <0) and ahalf

space region (z >0), hereafter, called region 'a' and region V, respectively.

The original problem and equivalent problems are shown in Fig. 4.2.

Region 'a' is now asemi-infinite waveguide short-circuited at z=0, in which the

total field is the superposition ofthe field due to the impressed sources and that

due to equivalent magnetic surface current Mover the aperture region. Region
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Fig. 4.1 : Waveguide-backed Aperture Radiating into Half Space
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Fig. 4.2 : Original Problem and its Equivalent Models

104



'b' is a halfspace in which the field is due to current -M over the aperture region

radiating in the presence of a continuous conducting plane. Using the image

theory, it reduces to the problem of a current -2M over the aperture region

radiating into free space (Fig. 4.2(c)).

From eqns. (2.8) and (2.9), the aperture admittance matrices for region 'a'

and region 'b' can be written as

[V] = [Y-] = [<Mm,H,'(Mn)>]Nx
NxN (4.1)

[Yb] = [Yhs] = [<Mm,H^(Mn)>]NxN (4.2)

The elements of admittance matrices and the excitation vector have been

derived in Chapter 2 (eqns (2.21) and (2.24), respectively) and are repeated here

for the sake of completeness : \

Ywg=-1 imn 'm'

mn z-lm

J®

jCO

rc+

Fn'GD'̂ +F.1^).^

FnVr)-^ +Fn(rm>£

^-yH.'ffj^ffj.S

+K(C)-C(C) (4.3)

+^(?m")-<(?m+) (4.4)

(4.5)

Evaluation of the half-space admittance matrix, eqn. (4.4), has already

been carried out in sections 2.4.1 and 2.4.2. In the next section, we discuss the

evaluation of potential functions § and F which appear in eqn. (4.3).
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4.2 EVALUATION OF FAND <J> FOR THE WAVEGUIDE REGION

Equation (2.16) gives the magnetic field H~a(Mn) due to the nth expansion

function at any point inside region 'a' in terms of Fa(F) and <frftB(r'). Further,
Fa(r') and $*(?) are given by Eqns. (2.22) and (2.23), respectively,

Fna(F) =sJjG(r|F)*Mn(r')ds' (4 6)

K(?) =j^tt{V'G(Y^\Mn(~Ods (4.7)

where G(r|F), in this problem, is dyadic Green's function pertaining to the
electric vector potential in a waveguide short-circuited at one end, which is
given by [106]

G(?|r') = ZZ Ms

r=0s=D ^Yrs

+ yy cos

[« ~ . (mx ^ .
xx sin sin

X <

< a ;
cos

rroc

V a
sin

' —^ . fs7ty'>
sin

STcy

b .

"Ve cosh(yrsz') , z > z'

—y z'
e cosh(y z) , z < z<

frTXX^ fr7rx,N\ /^sttv^ ^e™'"\
+ ZZCOS cos

u;
COS

lai

suy
cos

v o y

e"YrsZsinh(Yz') z > z

X <

e~YniZsinh(yrz) z <z'

r' S7cy ^ f Sivy'
\ b J

v o y

S7iy

(4.8)

where s, and yrs are, respectively, the Neumann's constant and the waveguide
propagation constant which are given by
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B, = <

1, 1= 0

2, 1>0

2

Y =
TK

\ a

2 r \2S7t i
+ —

(4.9)

(4.10)

where r and s are modal indices and

k=c»Vlie (4.11)

Substituting eqns. (4.9), (2.12) and (2.13), accordingly, in eqns. (4.6) and

(4.7), we get

F»V)
±e L e.e

ME^JT *<*•-*.>»
^rrcx ^

ab 2Aq r=0s=0 yrs « K a ;

'r7xx'^ f S7ry ^
sin cos COS

( S7cy'
V b

(4.12)

♦;<?)

V a J V d y

+y(y'-yn)cos
^ rax ^

cos
^rTTX1^

V a ; ^ a ;
sin

^ S7xy ^

V D )

sin
^ S7iy'

•dx'dy'

+in i OO 00

ZIM,|j H(x._Xri)
jfflHab 2Aq ££J Y,s ^J, I a COS

^rrot ^
sin

'rax1^

V a ; V a ;

f „ \

cos
S7iy

V D J

STC

+v(y'-y„)cos
T7XX

COS
'nrx'^

V a )

f S7cy ^
COS

v d ;

sin
^STcy1^
V b ;

•dx'dy'

^STiy'̂
cos

b

(4.13)

As discussed in chapter 2, we utilize Galerkin method and centroid

approximation to evaluate the integrals in eqns. (4.12) and (4.13) for observation

point in triangle p and source currents residing in triangle q.

Thus, according to eqns. (2.26) and (2.27), eqns. (4.12) and (4.13) can be

written as :

Fpq =
el. °° ''mx ^ 'rroc'^ ^S7ty ^

2abA

E £I£^jJ x(x'-Xj)si„
q r=0s=0 Yrs A'

sin cos

f rxcx N

V a ,
+y(y'-yj)cos ^ntx'N

V a ;
cos

V a J

^ STty ^
sin

V D J
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sin

V a

f S7iy'
V d ;

V D J

•dx'dy'

( sttv'^
cos ——

I b

(4.14)

^T

+
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UISX
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Fpq =

For seven point numerical integration, the equations reduce to

!- TV ^A YWfm){x ((x, -Xj) +(x2 -Xl)L2m
J 2abA

q r=0s=0 'rs m=l

+(x3-x1)L3m)sin

STcy

TTTX

, a
sin

rn171 ,

-(x1+(x2-x1)L2m+(x3-x1)L3m)

cos COS

v d y

A

-(y1+(y2-y1)L2m +(y3-y1)L3m)
J

+y((y, -yp +(y2 -y1)L2m+(y3 -y,)L3m)c0J S
v a ;

^a

^ S7xy ^X cos -(x1+(x2-x1)L2m+(x3-x1)L3m) sin

v. u y

x sin
S7t

(yi +(y2-y.)L2m+(y3-y1)L3m)

J-] . 00 00
Apq 2abj^Aq r?0J0 ^*1 ^ W<m)i ?«x.-j) +fc-x,)L

'rs m=]
2m

+(x3-x,)L3m)cos
^ a J

sin
m

V a
(x1+(x2-x1)L2m+(x3-x1)L3m)

f S7iy N 571 . \-(y1+(y2-y1)L2m+(y3-y1)L3m)J

+v((y1-yj) +(y2-y])L2m+(y3-yl)L3m)coJ^

('mX COS
m

U
(x]+(x2-x])L2m+(x3-x1)L3m) cos

S7iy

I b

l-(yi+(y2-y,)L2m+(y3-yi)L3m)x sin

(4.18)

(4.19)

where m denotes the mth sampling point in the domain of Tq, W(m) is the
weighting factor for the mth sampling point, L2m and L3m are the values of L2 and
L3 at the m* sampling point. W(m), L2m and L3m are given in Table 2.1.
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4.3 EVALUATION OF EXCITATION VECTOR

Assuming that only the dominant TEI0 mode of unit amplitude is incident
in region 'a', tangential (to the aperture) components of the electric and magnetic
fields in the incident wave can be written as

E'° = e e"Y°Z
t o

'1°H" : Y e~v

(4.20)

z x e
(4.21)

where Y0 and yo are, respectively, the characteristic admittance and the
propagation constant for the dominant mode and are given by

Y = °
jap. (4.22)

K^-Qjn2, f >fc
2tx r~ 2 (4.23)

where fc is the cut-off frequency of the dominant mode. The normalized modal
vector eo for the dominant mode can be written as

e =
o

~ . 7TX
ysin —

a

h; = 2h;°

(4.24)

• When the aperture is covered by aconductor, the waveguide is terminated
in ashort-circuit and tangential magnetic field at z=0is now twice that in the
wave. That is,

(4.25)

where u[° denotes the magnetic field incident on the short-circuit. Therefore
element of excitation vector, in eqn. (4.5) becomes

, an

I = -21m ^'m HiofiFc'K>Pmx i uiofrc-\lntx ^rm )— + H(x (rm )-
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4.4 EVALUATION OF EQUIVALENT APERTURE ADMITTANCE

To evaluate the aperture admittance seen by the dominant TE10 mode, we

first evaluate the dominant mode reflection coefficient. Since the excitation of

the waveguide is by the dominant TE10 mode of unit amplitude, the electric field

transverse to the z-direction can be expressed in modal form as

Et =e-y°ze0+f;rieY>zei (4.27)
i = o

where the subscript 'o' denotes the dominant TE10 mode and T. are the complex -♦

amplitudes of the -z travelling wave of the ith mode. The e. are normalized

modal vectors, such that;

J/Vejdf ={^i^j (4.28)
where the integration is over the waveguide cross-section. The magnetic current j-

M over the aperture region is given by eqn. (2.1) as

M = zxEt = zjc^+^TjZX c. (4.29)
i

Now multiplying each side of eqn. (4.29) scalarly by zx e., integrating over the

waveguide cross-section and using orthogonality property of eqn. (4.28), we

obtain

If M.zx^.ds =jj,+ r°' ['J (4_30)
aperture I i ' ' ^ u

where ro is the reflection coefficient for the dominant TE10 mode and the

integration is over the aperture region, since M = 0 elsewhere.

Substituting for M from eqn. (2.3) and using the fact that only T is of

interest in this case, leads to
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ZVn JjMn 'zx^ds = l+r0
n T±

or r0 =-l +2VnJjMn.zxi0ds ,43n
n T± \ • J

in which substituting eo and using eqns. (2.12) and (2.62) in eqn. (4.31) we get

r0 = -
1 N

1+TT~HlnVn JJ(x-xn)sin-dxdy
q n=l

(4.32)

nto an integration over areaThe integration in eqn. (4.32) can be transformed i

coordinates to obtain

o Z_< oq
q=l

where Foq =-L £ljVj 2Aq }' j(x ((Xl -Xj) +(x2 -x,)L:
, 1 J«l 0 0

+(x3-x1)L3)sin^(x1+(x2-x1)L2+(x3-x1)L3)l}dL2dL3
Using Gauss quadrature technique, eqn. (4.34) can be written as

1 l-L,

r =Aoq
2A

q j=i

M

I
m=l

ZljVjAq EW(m)J:x1-xj) +(x2-x1)L2m

f(x1+(x2-x1)L2m+(x3-x1)L3m)'+(x3-x.)L, )sin

(4.33)

(4.34)

(4.35)

Aperture equivalent admittance seen by the dominant mode is computed,
according to [68], as

1-T
Y = 2-y

where Y0 is given by eqn. (4.22).

(4.36)
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4.5 RESULTS AND DISCUSSION

Based on the preceding formulation, a computer program has been

developed which can be used to analyse waveguide-backed apertures of arbitrary

shape radiating into half space. The computer code has been validated by

considering a rectangular aperture for which results are available in the literature

[21], [68].

Apertures of various shapes, such as rectangular, circular, elliptical,

diamond, cross and H have been investigated. Results for each aperture has been

tested for convergence by increasing the density of triangulation (i.e., number of

expansion functions) and the value of each modal index for the waveguide field.

It has been established that a value between 5 and 15 for each modal index is

sufficient for all the problems treated in this section.

Table 4.1 lists the change in equivalent surface magnetic current Mx

about the centre of open-ended square waveguides as a function of the number of

expansion functions. It is found that about 40 expansion functions are required to

obtain converged results.

Table-4.1

Convergence test on open-ended squarewaveguides radiating

into half space.

a/A-

No. of

expansion
functions

Magnitude of
Mx(x)

Phase of

M^x)
% change of

|M*(x)|

0.6

8

21

40

96

0.11

1.139

1.171

1.183

-104

7.1

4.2

3.0

935.5

2.81

1.02

0.8

8

21

40

96

0.26

0.931

1.346

1.352

102

6.6

6.0

4.5

258.1

2.74

0.45
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4.5-1 Rectangular Aperture

In order to validate our program, we first considered rectangular apertures
for which results are available in the literature. The first problem considered was

that of a narrow (X xa/10) waveguide-fed rectangular slot radiating into half
space. The quantities computed were the x-directed surface magnetic currents
over the aperture and the power gain pattern shown in Fig. 4.3 and Fig. 4.4,
respectively. The results obtained by Harrington and Mautz [68] using rooftop
functions are also shown for comparison. It can be observed that there is an
excellent agreement between the two results.

Next, we considered the problems of open-ended rectangular and square
waveguides radiating into half space. Fig. 4.5 to 4.8 show some representative

computations for these problems. The problem of open-ended rectangular
waveguide has earlier been solved by Cohen et al. [21] using classical methods,
Harrington and Mautz [68] using rooftop functions and by Mongiardo and Rozzi

[72] using singular integral formulation. It can be observed that our results are in

good agreement with those of previous workers. Figs. 4.9 and 4.10 show the

corresponding results for a square waveguide which are again found to be in
good agreement with those in [68].
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Fig. 4.3 : Equivalent surface magnetic current Mx at y/b =0.1 for a
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radiating into half space. "
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4.5-2 Circular Aperture

Convergence studies on circular aperture established that 76 expansion

functions are sufficient to yield converged results. The triangulation scheme

used is shown in Fig. 3.13.

Fig. 4.11 shows equivalent surface magnetic current distributions. The

|MX| curve at y/d = -0.125 in (a) for d/a = 0.4 exhibits "shoulders", which are

symmetrically located at x/d = ± 0.4 on either side of the centre, while the curve

for d/a = 0.2 is relatively flat and its peak value is much lower. The nature of the

curve is similar to those of rectangular slots shown in Fig. 4.3. The phase

distribution is uniform for both the apertures. In Fig. 4.11(b), the distribution of

Mx as a function of y is shown at the aperture centre. Here, it is noted that the

magnitude curve for d/a = 0.4 exhibits a maxima at the centre but falls rapidly as

one moves away until at y/d = ± 0.25 when it rises again. Similar pattern is

imitated by the curve for d/a = 0.2 which rises at y/d = ± 0.3 and its peak value

is much lower and therefore, the current appears to be uniformly distributed.

Both curves exhibit the "edge effect". These curves show only a slight similarity

to those of open-ended square waveguides of Fig. 4.9.

Fig. 4.12 shows the antenna power gain patterns for waveguide-backed

circular aperture. It is observed that the power gain depends on the size of the

aperture; the larger the diameter, the higher the power gain.

Fig. 4.13 shows equivalent admittance seen by the dominant TEi0 mode.

In these apertures, conductances G are relatively high compared to those of

open-ended rectangular- and square- waveguides and their susceptances B are

inductive instead of capacitive. The susceptance is relatively high for d/a < 0.3

but reduces to a much lower value for d/a > 0.3. G, on the other hand, is constant

for the two cases considered.
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4.5-3 Elliptic Aperture \

Convergence test on elliptic aperture has revealed that 76 expansion

functions are sufficient to produce converged results. The triangulation scheme

used to discretize the aperture surface is shown in Fig. 3.18.

Fig. 4.14(a) shows equivalent surface magnetic current distributions Mx at

y/d2 = -0.125 for two different major-to-minor axes ratio di/d2. While |MX| has a

tapered distribution for di/d2 = 2, the distribution for di/d2 = 4.5 is nearly

uniform over a large part of the aperture. On the other hand, the phase

distribution for d,/d2 = 2 is nearly uniform while that for di/d2 = 4.5 is sharply

tapered near the aperture edges. Fig. 4.14(b) shows the distribution of Mx at

x = 0.0. It is observed that the magnitude curve corresponding to d,/d2 = 4.5 has

a nature similar to that for open-ended rectangular waveguides ofFig. 4.5(b) and

(d). The nature ofthe magnitude curve corresponding to di/d2 • 2.0, on the other

hand, is entirely different. The phase distributions are very similar to those for

open-ended square waveguide of Fig. 4.7(b).

Fig. 4.15 shows antenna power gain patterns in both E- and H-planes. It is

observed that antenna gain increases with aperture size. Further, the larger the

major axis d|, the narrower the pattern beam-width.

Fig. 4.16(a) shows the equivalent admittance seen by the dominant TE10

mode as a function of d,/a. It is noted that the aperture has an inductive

susceptance B which is large for d/a < 0.3 but reduces to a very small value for

d/a > 0.3. Fig. 4.16(b) shows aperture equivalent admittance as a function of

eccentricity e (according to eqn. (3.29)). It is observed that as the aperture size

becomes smaller, for afixed value of d,/a, inductive susceptance becomes larger.

However, in this case, the increase ofB is gradual for 0.2 <e<0.8 and thereafter

it increases rapidly. In both the cases, the conductance Gis quite small.
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Further, we studied the radiation characteristics of an elliptical aperture

backed by WR-90 waveguide as a function of frequency. Figs. 4.17(a) and (b)
show input admittance and VSWR, respectively, as a function of frequency for

three different values of major axes with minor axis d2 = 0.5b. Figure 4.17(a)
shows that G/Y0 is fairly small and almost constant over the entire 8.0 - 12.0

GHz band in all the three cases considered. However, while B/Y0 corresponding
to di/b = 1.5 and 1.75 are inductive over the entire frequency range, B/Y0

corresponding to d,/b = 2.0 exhibits capacitive susceptance over almost the

whole frequency range except for 8.0 - 8.25 GHz where it is inductive. Thus,
only the aperture corresponding to d,/b = 2.0 exhibits a resonance.. Figure
4.17(b) shows the corresponding VSWR curves, which exhibits the expected
behaviour. It is observed that the lowest VSWR is obtained over the entire band
for the aperture with d,/b = 2.0.

Figure 4.18(a) and (b) show the results of a similar study for fixed
dimensions of major axis with minor axis dimensions as a parameter. Of the
three cases considered, resonance occurs only for d2/b - 0.5. At resonance,' the
VSWR curve nearly exhibits a minimum.
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4.5-4 Diamond-shaped Aperture

It was established, through convergence studies, that 88 expansion

functions were sufficient to yield correct results for adiamond-shaped aperture,
the triangulation scheme for which is shown in Fig. 3.25.

Fig. 4.19(a) and (b) show the equivalent surface magnetic current

distributions for various aperture lengths L/X. In Fig. 4.19(a), it is seen that the

interior angles of the diamond formed on the x-axis have agreat influence on the

nature of distribution and peak values of Mx, which are plotted at y/b =-0.125 :

If the angles are acute, as for L/X =0.6 and 0.8, the current curve taper sharply

towards their peaks. However, if the angles formed are obtuse, as for L/X =0.2,

the variation of |MX| is gradual. However, the phase distributions corresponding
to obtuse angles are fairly constant but vary greatly if the angles are acute. The

curve corresponding to L/X =0.2 is similar to that of elliptical aperture shown in

Fig. 4.14(a). However, the curves corresponding to L/X =0.6 and 0.8 are entirely
different from the previous ones.

Fig. 4.19(b) shows the current distributions at x/h =0.0. The magnitude

curves are very nearly of the same nature. However, the phase distributions

corresponding to L/X =0.2 varies considerably, while for L/X =0.6 and 0.8, it is

relatively uniform along the aperture.

Fig. 4.20 shows antenna power gain patterns for diamond-shaped
apertures. It is noted that the patterns in both E- and H-planes become more

directive as the aperture length is increased (i.e., as the interior angle formed on
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the x-axis becomes more acute). Also, gain increases with the increase in

aperture length.

Fig. 4.21 shows equivalent aperture admittance seen by the dominant

TE10 mode as a function of aperture length L/X. The dominant mode

equivalent susceptance B is inductive for L/X < 0.52 but changes to capacitive

for L/X > 0.52. This behaviour distinguishes diamond-shaped aperture from

other apertures studied so far. It is also noted that as Lis reduced from 0.5X, the

magnitude of susceptance increases at a very fast rate.

Conductance G of diamond-shaped aperture however, is comparable to

those ofelliptical apertures in Fig. 4.16(a) and (b).
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4.5-5 Cross-shaped Slot

In order to achieve convergence for cross-shaped slot, 68 expansion

functions were used. The triangulation scheme used for the slot is shown in

Fig. 3.28.

Fig. 4.22 shows equivalent surface magnetic current distributions for

different slot arm-width, Aw. In Fig. 4.22(a) curves for Aw = L/8, L/4 and L/3 are

plotted at y/h = -0.03125, - 0.0625 and -0.0833, respectively. All the curves

exhibit a minima at the centre with symmetrically placed maxima on either side.

The curve with the highest peak corresponds to the slot with smallest Aw (i.e.,

Aw = L/8) and the peak value of current decreases as Aw is increased. The nature

of these curves is entirely different from the corresponding curves for other

apertures studied so far. The current distributions shown in Fig. 4.22(b) exhibit

peaks at the centre of the slot for Aw =L/3 and L/4 but the curve corresponding

to Aw = L/8 exhibits a minima at this point. In all the cases, phase distribution is

uniform.

Fig. 4.23 shows antenna gain patterns for slots ofvarious arm widths Aw.

It is observed that variation in Aw causes very small change in antenna gains and

beam widths.
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Fig. 4.22 : Equivalent surface magnetic current distribution for waveguide
backed cross-shaped slots for various arm widths Aw

radiating into half space.
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Waveguide Dimensions
a/X = 0.8

a/b = 2.25

Slot Dimensions :

L = h = X/3
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Fig. 4.23 : Power gain patterns for waveguide backed cross-shaped slots of
various arm widths Aw radiating into half space.
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4.5-6 H-shaped Slot

For the computation of various quantities for H-shaped slot, 68 expansion
functions were found to yield converged results. The triangulation scheme is
shown in Fig. 3.31.

Fig. 4.24 shows equivalent surface magnetic current Mx for various

aperture lengths L/X with h = X/4 and arm width Aw = Ji/20. In Fig. 4.24(a)

curves corresponding to L - X/5, X/4 and 2X/5 plotted at y/h = - 0.0125 are

shown. The magnitude curves have broad peaks and the phase distributions are

constant for L = X/5 and 2^/5 but for L = X/4, phase is constant only for

-0.3 <x/L <+0.3 and thereafter, it increases sharply to a very high value

towards the edges of the slot. In Fig. 4.24(b), distribution of |MX| for L=X/5, X/4

and 2^/5 along either arm at xA. - ±0.0875, ±0.1125 and ±0.1875,
respectively, are shown. The magnitude curves are similar to those of open-
ended rectangular waveguides in Fig. 4.5(b) and (d). The phase distributions for

L- X/5 and X/4 are uniform but for L=27J5, the phase distribution is highly
tapered.

Fig. 4.25 shows the power gain patterns for the H-shaped slots. It is

observed that there is not much significant change in the gain patterns when the
slot length is increased.

Fig. 4.26 shows equivalent aperture admittance seen by the dominant

TE10 mode as a function of H-slot length L/X. The slot has an inductive

susceptance for L/X < 0.25 which becomes capacitive for L/X > 0.25. In this

respect, H-shaped slot behaviour is similar to that of diamond-shaped aperture of
F.g. 4.21. However, H-shaped slot exhibits a much higher magnitude of
capacitive susceptance but its conductance G is comparable to that of diamond-
shaped aperture.
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Waveguide Dimensions :

a/X = 0.8
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Fig. 4.24 : Equivalent surface magnetic current distributions for waveguide
backed H-shaped slots for various lengths UX

radiating into half space.
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Waveguide Dimensions
a/X = 0.8

a/b = 2.25

Slot Dimensions :
Aw= A./20
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-18 0 if
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Fig. 4.25 : Power gain patterns for waveguide backed H-shaped slots of
different lengths UX radiating into half space.
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rectangular waveguide as a function of UX .
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4.5-7 A Comparative Study of Antenna Power Gain Patterns for Various
Aperture Shapes

We consider here a comparison of the antenna power gain patterns for

apertures of various shapes. Two cases are considered. Small apertures having an

area of 0.0325a2 and relatively large apertures with an area of 0.1632a2 each.

Figs. 4.27 and 4.28 compare the E- and H-plane patterns for the smaller

apertures of the same area but different shapes. It is seen that in Fig. 4.27,

elliptical aperture has the highest power gain and the most directive H-plane

pattern of the three shapes considered, namely, rectangular, elliptic and H. The

E-plane pattern is more or less isotropic in the half space. Further, rectangular

slot has a slightly higher power gain than H-shaped slot but both the apertures

have nearly similar E- and H-plane patterns. In Fig. 4.28, patterns for circular,

diamond and cross-shaped apertures have been shown. It is observed that the

diamond-shaped aperture gives the highest power gain and the patterns for cross-

and circular apertures are very nearly the same.

Figs. 4.29 and 4.30 compare the E- and H-plane patterns for the larger

apertures of the same area but different shapes. It is seen that in Fig. 4.29,

elliptic and diamond-shaped apertures have the same power gain. However,

elliptic aperture has a more directive H-plane pattern while diamond-shaped

aperture has a more directive E-plane pattern. In Fig. 4.30, patterns for

rectangular-, cross-shaped and H-shaped slots have been shown. It is observed

that cross-shaped slot has the highest power gain and H-shaped slot the lowest.

Further, it is noted that all the three slots have similar H-plane patterns.
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Waveguide
Dimensions

a/X = 0.8
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Fig. 4.27 : Power gain patterns for waveguide backed apertures of
different shapes radiating into halfspace.
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Fig. 4.28 : Power gain patterns for waveguide backed apertures of
different shapes radiating into half space.
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Waveguide Dimensions :

a/X = 0.8

a/b = 2.25

Each Aperture Area = 0.1632 X2

-s*-

-72 -54 -36 -18 0 18

Angle (degrees)

36

Diamond-Shaped
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54 72

Fig. 4.29 : Power gain patterns for waveguide backed apertures of
different shapes radiating into half space.
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Waveguide Dimensions :
a/X = 0.8

a/b = 2.25

Aperture Area = 0.1632 X2

2.0

Angle (degrees)

-Rect. Slot

-Cross-Shaped

H-Shaped

E-Plane

54.0 72.0 90.0

Fig. 4.30 : Power gain patterns for waveguide backed apertures of
different shapes radiating into half space.
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4.6 SUMMARY

In this chapter an extensive numerical study has been undertaken on

waveguide-backed apertures of various shapes radiating into half space. The

computer code has been validated by considering rectangular slots and square

apertures for which data are available in literature. All the results have been

tested for convergence by utilizing sufficient number ofexpansion functions.

Results have been presented for magnetic current distributions, power

gain patterns and equivalent aperture admittance of various apertures. Finally,

the radiation properties of various apertures have been compared.
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Chapter - 5

APERTURES IN THE TRANSVERSE CROSS-SECTION OF
A RECTANGULAR WAVEGUIDE

The analysis of diaphragms in waveguides is important because they can

be used as directional couplers or as building blocks for microwave filters.

In this chapter, the problem of two uniform rectangular waveguides

coupled via an arbitrary-shaped diaphragm in their transverse cross-section is

considered. The problem is a special case of the general problem discussed in

Chapter 2.

5.1 FORMULATION

Fig. 5.1 shows the problem under investigation and defines the

coordinates and parameters used. The two waveguides are considered lossless

and support only the dominant TE10 propagating mode. An electromagnetic

source is assumed to be located in the region z < 0.

As discussed in Chapter 2, the equivalence theorem is first used to divide

the problem into two separate regions, as illustrated in Fig. 5.2.

Since the two regions are identical, the operator equation in (2.2) reduces
to

H,(M) + Ht'° = 0 over the aperture (5,1)

where Ht'° is given by eqn. (4.21), Ht(M) is the tangential component of the

magnetic field due to M for region 'a' in eqn. (2.16) specialized to the

waveguide region, as further explained in Sec. 4.2. From eqn. (4.1), the

admittance matrix for either region can be written as

[Y] = ^Wi.H.CMj)^ (5.2)
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(E'.H1)

oj^ •

region 'a'

(b)

region 'b'

Waveguide
Cross-section

Fig. 5.1 : Original problem (a) cross-sectional view, showing diaphragm of

irregular shape (b) lateral view showing coupling between two

uniform waveguides
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(E^H1)

M

(a)
-> z

M

(b)

Fig. 5.2 : Equivalent problems (a) model valid in region z<0, (b) model
valid in region z > 0

and the excitation vector, according to eqn. (2.10) as

V=C-<Wi,Hti>]Nxl (53)
Upon applying Galerkin method and centroid approximation to

eqns. (5.2) and (5.3), an element of admittance matrix can be written as

Y„ JOB «C* . prc+ rC-

F.C^)*£J-+F.(tf-)C-x Km
+ *nfc-)-*nfe+)

where Fn and *n are the electric vector and magnetic scalar potentials,
respectively, given by eqns. (4.18) and (4.19), and an element of excitation
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vector according to eqn. (4.26), after substituting eqn. (4.25) in eqn. (5.3),

becomes

4=-21mJHti0^+)-^ +Htiofe"). PSIJ (5.5)

5.2 EQUIVALENT CIRCUIT AND SCATTERING PARAMETERS

The class of discontinuities considered here can be represented by

normalized shunt susceptance, jB, across a transmission line of unit

characteristic admittance [26]. If T0 denotes the reflection coefficient of

dominant TE10 mode, then from eqn. (4.36)

s = -'^ -rSu 2TjB_r°

or jI =TTr" (5-6>
o

T0 is given by eqn. (4.33).

Thus, the waveguide junction can be characterized by scattering matrix S

given by

" r0 i+r0-
(5.7)s =

i + r0 r0

5.3 RESULTS AND DISCUSSION

In this study, the waveguide has been assumed to support only the

dominant propagating mode and, so, the effect ofdiscontinuity on only the TE10

mode has been considered.

Fig. 5.3 illustrates the geometry of typical inductive and capacitive

diaphragms in a rectangular waveguide.
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y

A

K H

Fig. 5.3 : Diaphragm (a) inductive (b) capacitive

The evaluation of waveguide field involves doubly infinite summations r

and, s as in eqn. (4.8), which represent the variation of the field along x- and
y-directions, respectively. This corresponds to inclusion of infinite number of TE

and TM modes in the computation of electromagnetic field in a waveguide.
However, in practice, the summations are truncated to only finite values of the

indices rand s, i.e., r=0, 1, 2, ...., NR and s=0, 1, 2, ,Ns, where NR and Ns
are so chosen that only further increase in their values does not result in any
significant change in the value ofmatrix elements.

According to data available in the literature, notably by Lee et al [56],
Mittra et al. [71] and De Smedt et al. [32], it was established that in the mode-

matching and MOM solutions of apertures in waveguides, erroneous results are

obtained unless one chooses acorrect ratio of the number of expansion functions
to the number of modes used to approximate the waveguide field. This ratio

depends upon the dimension of the aperture in the direction normal to the

direction of the electric field and the phenomenon is known as 'relative
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convergence'. In particular, it has been shown for an inductive diaphragm [56],

that

N. d
< —

Pi a

where Ni = total number of expansion functions

P! = minimum value of NR that satisfies eqn. (5.8)

a = waveguide broad-wall dimension

d = discontinuity size.

Eqn. (5.8) is valid for analyzing inductive diaphragms since the

discontinuity is uniform along y-axis and varies only along the direction normal

to the direction of the electric field and the electromagnetic wave incident in the

dominant TE10 mode causes only TEm0 modes to be excited at z = 0. As such,

eqn. (5.8) need only be satisfied along the x-axis to eliminate the problem of

'relative convergence'.

However, in order to analyse an arbitrary-shaped aperture, which may

require two-dimensional discretization, both TE and TM modes should be

included in the evaluation of the waveguide field. This observation was made by

Sinha [100] regarding capacitive diaphragms in his analysis of multiple-strip

discontinuity in a rectangular waveguide.

In fact, this study has established that in order to account for waveguide

field in capacitive diaphragms, the two conditions that need to be met are :

N, d
— * - (5.9)
Pi a

(5.8)

_P_2
Nf- * ! (5-10)

2

where Nj = total number of expansion functions

b = waveguide narrow-wall dimension

d = discontinuity size
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Pi - minimum value of Ns that satisfies eqn. (5.9)

N2 =number of expansion function corresponding to the number of

boundary edges in a single row in the x-direction.

p2 =minimum value of NR that establishes convergence of results.

We have further noted that it is only for the cases of inductive and capacitive
diaphragms that N, in eqn. (5.8) and eqn. (5.9), respectively, must be the total
number of expansion functions. For other aperture shapes, such as circular,
elliptic and diamond, which may be located only in alimited central position of
the waveguide cross-section, satisfying the following two conditions is sufficient
to yield the correct results

Nl d
Pl " a (5-11)

non-

^-<1
Pi (5.12)

where N, - number of expansion functions corresponding to the number of non-
boundary edges along a single row in the x-direction.

Pi = value ofNR that satisfies eqn. (5.11).

p2 - minimum value ofNs that yields converged results.

5.3-1 Symmetrical Inductive Diaphragms

For symmetrical inductive diaphragms (inset of Fig. 5.5), four
triangulation schemes have been considered, namely, single-row, double-row,
triple-row and quadruple-row. Typical double- and quadruple-row triangulation
schemes are shown in Fig. 3.3 and Fig. 3.4, respectively. Fig. 5.4 depicts typical
single-row triangulation schemes comprising 39 non-boundary edges. In
Fig. 5.4(a) the density of triangular patches is uniform. This type of triangulation
scheme was found to give satisfactory results for smaller apertures upto
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d/a < 0.6. However, for larger apertures, the results obtained from this type of

uniform triangulation were inaccurate. Therefore, for larger apertures the

triangulation scheme shown in Fig. 5.4(b) was considered. In this scheme the

patch density is less at the aperture centre and increases towards the ends. Thus,

this scheme takes into account the edge effects more accurately. The scheme was

found to give accurate results for larger apertures.

Table 5.1 lists the results for convergence test on shunt susceptance B/Y0

of symmetrical inductive diaphragms as a function of the number of expansion

functions with different number of rows in the triangulation scheme. The results

were obtained using uniform and non-uniform triangulation schemes, and, for

each discontinuity, where results based on both schemes were approximately the

same only data based on uniform triangulation scheme is listed, otherwise data

based on non-uniform discretization is given. For 0.65 <, d/a <0.95, results

based on non-uniform discretization were found to be in good agreement with j.

the data in the literature [65].

As a whole, results obtained corresponding to different rows and number

of expansion functions for a given discontinuity size were found to be in good

agreement with one another and also with the data in the literature [65], [100].

These results confirm the validity of our computer code for analyzing both

single- and multi-row triangulated diaphragms. ^

Fig. 5.5 shows normalized shunt susceptance versus d/a for

0.2 < d/a < 0.95 , where good agreement with published data is observed.

Fig. 5.6 shows equivalent surface magnetic current distribution Mx along

the centre ofthe diaphragm for d/a - 0.25 and 0.6. It is seen that |MX| curves are

symmetrical about the centre and the phase curves are constant. As expected, the

larger the aperture, the larger the peak current.
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Fig. 5.4 : Symmetrical inductive diaphragm discretization using (a) uniform triangulation (b) non-uniform triangulation
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Table-5.1

Convergence Test on Shunt Susceptance of a Symmetrical Inductive
Diaphragm in a Uniform Rectangular Waveguide

d/a
No. of

Rows

No. of Expn.
Functions

Modal

in eq
Indices

n.(4.8)
Shunt Susceptance

B/Y0

r s
This

Method

Classical

Method in r65]

0.4

1

7

11

15

23

27

39

18

28

38

58

68

98

0

0

0

0

0

0

-2.8393

-2.8363

-2.8350

-2.7895

-2.7779

-2.7330

-2.742

18

23

28

18

23

28

1

1

1

-2.8281

-2.8277

-2.8272

3

21

29

45

13

18

28

2

2

2

-3.0471

-2.8335

-2.8320

4

29

40

62

13

18

28

3

3

3

-3.0510

-2.8354

-2.8335

0.65

1

1

39

49

60

75

0

0

-0.55509

-0.55347
-0.53252

3

78

93

48

35

3

5

-0.53720

-0.53680

0.70

1

1

39

49

56

70

0

0

-0.39221

-0.38823
-0.379652

3

78

93

44

33

3

5

-0.38035

-0.37890

0.75

1

1

39

49

52

62

0

0

-0.267298

-0.263220
-0.257722

3

78

93

41

31

3

5

-0.267110

-0.259392

0.80

1

1

39

49

49

61

0

0

-0.17447

-0.17339
-0.1621852

3

78

93

39

29

3

5

-0.16480

-0.16132

0.85

1

1

39

49

46

58

0

0

-0.09378

-0.09557
-0.090102

3

78

93

36

27

3

5

-0.08995

-0.09211

0.90

1

1

39

49

43

54

0

0

-0.045143

-0.039111
-0.039512

3

78

93

34

26

3

5

-0.03077

-0.03071

0.95
1

1

39

49

41

52

0

0

-0.013735

-0.011326
-0.00989
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Equivalent Circuit

Normalized susceptance B/Y0 as afunction of aperture
size for symmetrical inductive diaphragms

in uniform rectangular waveguides.
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Fig. 5.6 : Equivalent surface magnetic current distributions Mx for symmetrical
inductive diaphragms in uniform rectangular waveguides.
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5.3-2 Symmetrical Capacitive Diaphragms

The geometrical parameters of a symmetrical capacitive diaphragm are
shown in the inset of Fig. 5.9. Fig. 5.7 shows two triangulation schemes for
capacitive diaphragm in which each discretized surface comprises 18 non-
boundary edges. In Fig. 5.7(a) the diaphragm is partitioned into two rows in a
direction perpendicular to diaphragm edges and in Fig. 5.7(b) it is partitioned
into four rows.

Acomparative study on convergence of results based on the two schemes
was carried out and the results are listed in Table 5.2. It is seen that the rate of
convergence of susceptance B/Y0 as a function of modal index r is much faster

for the triangulation scheme of Fig. 5.7(b) than that for Fig. 5.7(a). In
Fig. 5.7(b), r - 1 is sufficient to yield the required susceptance while in
Fig- 5.7(a), r=3is required in order to obtain approximately the same value of
susceptance. Increase of the rate of convergence for the triangulation scheme of

Fig. 5.7(b) means fewer number of modes are required and consequently less
computational burden since the number of expansion functions is the same in
both schemes. It is also noted that as the size of the discontinuity increases, the
discretization scheme in Fig. 5.7(b) yields results which are more closer to the
data available in the literature [65], [100].

Having adopted the scheme shown in Fig. 5.7(b), we further considered
the effect of uniform and non-uniform discretization on convergence of
susceptance B/Y0. For this purpose, the discretization schemes shown in Fig. 5.8
were considered. Table 5.3 summarizes the results of our investigation. It is
noted that the results corresponding to uniform triangulation scheme agree with
the published data only for d/b <0.7. For d/b >0.7, non uniform triangulation
scheme yields results which are in good agreement with the data available
in [65].
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(a)

• X

(b)

Fig. 5.7 : Two triangulation schemes for symmetrical capacitive diaphragm.

Fig. 5.9 shows normalized susceptance B/Y0, based on results of

Table 5.3, as a function of discontinuity size d/b. Excellent agreement between

the results and data available in [65] is observed.
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(b)

Fig. 5.8 : Symmetrical capacitive diaphragm discretization using
(a) uniform triangulation (b) non-uniform triangulation
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Table - 5.2

Comparative Study of the Discretization Schemes ofFigs. 5.7(a) and (b) on
Capacitive Diaphragms

d/b

Modal Indices

in eqn (4.8)
Susceptance

B/Y0 for

Fig. 5.7(a)

Suscepatance
B/Y„ for

Fig. 5.7(b)

Susceptance
B/Y0 Based on
Method in [65]r s

1 1.126340 1.160609

0.15 2 120 1.165860 1.162150 1.1781

3 1.173778 1.162340

1 0.900500 0.9462218

0.20 2 90 0.933800 0.9623070 0.9525

3 0.944049 0.9634770 \

1 0.513980 0.78162

0.25 2 72 0.689200 0.78360 0.7799

3 0.767304 0.78410

1 0.75116 0.648977

0.30 2 60 0.66240 0.653120 0.6420

3 0.62445 0.653360

1 0.566700 0.53871

0.35 2 51 0.510900 0.54270 0.5270

3 0.504813 0.54320

1 0.44490 0.44570

0.40 2 45 0.42390 0.44720 0.4320

3 0.40275 0.44810

1 0.38690 0.36546

0.45 2 40 0.33720 0.36610 0.3543

3 0.31626 0.36650

1 0.2978 0.296171

0.50 2 36 0.2788 0.29620! 0.2716

3 0.2398 0.296222
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Fig. 5.9 : Normalized susceptance B/Y0 as afunction of apert
for symmetrical capacitive diaphragms in

uniform rectangular waveguides.

ure size
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Fig. 5.10 shows equivalent surface magnetic current M" for d/b =0.2 and
0.45. |M-| curves in Fig. 5.10(a) are seen to be symmetrical about the centre a.
which both have their peaks. Further, in both cases, the phase is constant. In Fig.
5.10(b), |M»| curves for d/b - 0.2 and 0.45 are similar in nature bu, then phase
distributions are different.
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5.3-3 Centered Rectangular Diaphragm

In computing the susceptance of the rectangular diaphragm depicted in
*e inset of Fig. 5.11, we recogmzed that the aperture is situated only in alim.ted
centra, reg.on of the wavegu.de cross-section. Hence, based on the criteria
developed ,„ Sec. 5.2, i, is only necessary to cons.der the number of non-
boundary edges ,„ the aperture d.scret.zat.on in asingle row along the aperture
ax,s in order to determine the modal ,nd,=es rand sin Eqn. (4.8). For the present
problem we used 45 expans.on functions generated from a3x6row-column
discretization of the aperture wh.ch resulted ,„ 1, „„„.boundary edges m,
single row along the aperture x-axis. Thus, according to Eqns. (5.1!) and (5.12),
r=33 and s=5should yield converged results.

Fig. 5.11 compares our results for r- 33 and s=5with those obtained by
Yang and Omar [,»]. An excellent agreement is observed between the results,
thus confirming the validity of criterion developed in section 5.2 for the
selection of modal indices.
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5.3-4 Centered Circular Diaphragms

Table 5.4 lists the values of B/Y0 as afunction of normalized diameter d/a

in a uniform rectangular waveguide (X/a =1.6, a/b =2.25). It is seen that our
results converge closely to the data available in the literature [65].

Using the discretization scheme of Fig. 3.13 with 76 expansion functions,
circular apertures in uniform rectangular waveguides of various dimensions were
analyzed. Fig. 5.12 shows normalized susceptance B/Y0 as a function of
normalized diameter d/a for two different waveguides. The results for each

waveguide are compared with the corresponding data in the literature and agood
agreement is observed.

Fig. 5.13 shows equivalent surface magnetic current distributions
corresponding to the circular aperture in waveguide with X/a =1.25 and

a/b =2.25. It is observed that for small aperture size (d/a =0.2), the current
d.stribution is fairly uniform along x with very small variations along
y-direction. However, for bigger apertures (d/a =0.4), the current exhibits large
variation over the aperture.
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Table- 5.4

Convergence Test Results for Thin, Centrally Located Circular Diaphragms in
Uniform Rectangular Waveguide (a/X. - 0.625, a/b = 2.25)

Aperture Computed No. of Modal Indices Computed Classical
d/a Area

(x 10"6 m2)
Area

(x lO"6 m2)
Expn.

Functions

in eqi . (4.8) Susceptance
B/Y0

Method [65]
B/Y0r s

4.1011 20 50 26 -616.64

0.10 4.1043
4.0639 48 90 38 -614.88
4.0687 76 110 36 -587.92

~

4.0689 128 150 54 -582.43
9.2240 20 33 16 -183.71

0.15 9.2350
9.3018 48 60 24 -176.11
9.2340 76 73 24 -171.51

•

9.2370 128 100 36 -169.92
16.5040 48 45 18 -73.85

0.20 16.4170 16.4220 76 55 18 -70.80 -68.0
16.418 128 75 26 -70.34

25.5970 48 36 14 -36.54
0.25 25.6210 25.6370 76 44 14 -35.59 -34.0

25.6280 128 60 24 -34.78
36.9390 48 30 12 -20.58

0.30 36.9389 36.9390 76 37 10 -18.61 -18.75
36.9370 128 50 14 -18.01
50.2420 48 26 10 -12.69

0.35 50.2781 50.2860 76 31 28 -12.48 -11.35
50.2730 128 43 18 -12.30
65.5920 48 23 6 -8.47

0.40 65.6693 65.5960 76 28 8 -8.44 -7.5
65.5720 128 38 14 -8.36
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5.3-5 Centered Elliptical Diaphragms

The geometrical parameters of elliptic apertures are shown in inset of
Fig. 5.14.

Table 5.5 shows the results of convergence test on susceptance B/Y„ for
various eccentricities e(according to eqn. (3.29)). The results converge closely
to the data available in the literature [65], further underscoring the flexibility of
our computer code and the validity of the modified criterion. The results that
fo.low were based on the ^angulation scheme similar to the one shown ,„
Fig. 3.18 counting of 76 interior edges. Fig. 5.14 shows normalized
susceptance B/Y0 as afunction of eccentricity e. Agood agreement is obtained
between these results and the data in [65],

Fig. 5.15 shows equtvalent surface magnetic current distributions at
y/d, - -0.125 and x/d, . 0.0 in (a) and (b), respectively, corresponding to e- 0.6
and e- 0.9. In Fig. 5.15(a), i, is observed that in the larger diaphragm (e =0.6),
•he current is maximum a, the centre and falls gradually to zero a. the aperture
edges. However, the current distnbu.ion corresponding to e- 0.9 exhibits three
peaks : one a, the centre of the aperture and the higher peaks which are
symmetncally located on Cher side of the centre. The phase dts.ribu.ion is,
however, uniform for both cases.

Similarly, Fig. 5.15(b) shows that the dtstribution of M< along the
y-direction a, the aperture centre exhibits entirely different behaviours for the
two different values of e.
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Table - 5.5

Convergence Study on Susceptance B/Y0 for Various Eccentricities of
Elliptic Apertures.

dx/a
Eccentricity

e

Actual

Area

x 10"5
-»

in"

Computed
Area x 10"5

m2

No. of

Expn.
Functions

Modal

Indices

in eqn. (4.8)

This

Method

B/Y0

Method

in [65]
B/Y0

r s

1.6080 20 25 6 -41.60

0.2 1.60855 1.6045 48 45 12 -41.40 -37.20

1.6051 76 55 24 -40.59

1.5658 20 25 12 -43.40

0.3 1.56610 1.5650 48 45 18 -41.20 -42.60

1.5633 76 55 27 -41.16

1.5042 20 25 12 -44.70

0.4 1.50467 1.5046 48 45 20 -43.64 -44.66

1.5047 76 55 24 -42.37

1.4233 20 25 14 -46.83

0.5 1.42179
1.4217

1.4261

48

76

45

55

14

24

-46.73

-46.41
-46.66

0.2 1.4217 156 75 26 -46.20

1.3131 48 45 14 -48.93

0.6 1.31339 1.3127 76 55 30 -47.14 -50.20

1.3142 156 75 38 -47.09

1.1724 48 45 18 -53.51

0.7 1.17243 1.1768 76 55 26 -51.02 -56.00

1.1717 156 75 44 -51.03

0.98503 48 45 30 -55.999

0.8 0.98504 0.98519 76 55 42 -56.74 -63.70

0.98501 156 75 52 -57.39

0.71562 48 45 42 -66.01

0.9 0.71562 0.71568 76 55 32 -70.47 -78.50

0.71595 156 75 72 -70.55
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Fig. 5.14 : Normalized susceptance B/Y0 as a function of eccentricity for centered
\ elliptical diaphragms in uniform rectangular waveguides.

180



-0.5

Phase
=££=

2.0-

1.5

1.0-

Waveguide Dimensions : 05
a/X = 0.8

a/b = 2.25

—i 1 1 &r9-

-0.4 -0.3 -0.1

(a)y/d2 = -0.125

Waveguide Dimensions
a/X = 0.8

a/b = 2.25

Phase
=££=

6.0

5.0

4.0

3.0-

2.0
•'Magnitude

.1.0-

-Gr9-

d,/a = 0.2

d,la = 0.2

-e = 0.6

e = 0.9

-°-5 -0-4 "0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5
y/d

(b) x/d! = 0.0

Fig. 5.15 : Equivalent surface magnetic current distributions for centered
elliptical diaphragms in uniform rectangular waveguides.

181

90

60

--30

90

--60

--30

O
0 v

10
TO
jC
Q.

---30

-60

-90



•V

5.3-6 Centered Diamond-shaped Diaphragms

The inset in Fig. 5.16 shows the geometrical parameters of the aperture.

Results that follow were obtained using 88 expansion function based on

the triangulation scheme in Fig. 3.25.

Fig. 5.16 shows susceptance B/Y0 as a function of discontinuity length

L/X. It is observed that for 0.2 <L/X <0.49, the diaphragm exhibits inductive

susceptance but becomes capacitive for L/X >0.49. Thus, the susceptance for

diamond-shaped diaphragm exhibits a transition from inductive nature to
capacitive.

Fig. 5.17 shows equivalent surface magnetic current distributions at

y/h = -0.125 and x/L = 0.0, respectively, in Fig. 5.17(a) and (b) for L/X =0.2

and 0.6. It is seen that |MX| corresponding to L/X =0.2, in which the angle

formed on the x-axis is obtuse, varies gradually from its peak value at the centre

of the aperture and the phase distribution is uniform over the aperture. On the

other hand, for L/X =0.6, in which the angle is acute, the current is largely

confined to the region at the vicinity of the aperture centre. For x/L > 0.2, the

current magnitude is nearly zero. In Fig. 5.17(b) which shows the distribution of

Mx as afunction of y, it is found that the curve for L/X =0.2 has abroader peak
with acorresponding constant phase distribution. The distribution corresponding
to L/X =0.6, on the other hand, exhibits a narrow peak and its corresponding
phase is non-uniform.
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5.3-7 Centered Cross-shaped Diaphragms

The geometrical parameters of the slot are shown in the inset of Fig. 5.18.

The discretization scheme for the diaphragm is shown in Fig. 3.28 having 68

interior edges. In Fig. 5.18 shunt susceptance B/Y0 is shown as a function of slot

length L/X for fixed values of h and Aw. It is noted that B/Y0 increases sharply

for 0.2<L/k<0.3 then decreases for 0.3 <L/X< 0.44 and thereafter increases

again, changing from inductive nature to capacitive one for L/Jl>0.44. The

reason for decrease in B/Y0 between L/X =0.3 and L/X =0.44 is postulated to

be due to the slot experiencing resonance conditions at L/X = 0.3 and at

L/X = 0.44.

The equivalent shunt susceptance curve shown in Fig. 5.18 has one

similarity with that of diamond-shaped diaphragm shown in Fig. 5.16; both

exhibit a transition from inductive susceptance to capacitive one.

Fig. 5.19 shows equivalent surface magnetic current distributions over the

aperture. In Fig. 5.19(a) |MX| curves corresponding to L/X = 0.2 and L/X = 0.4

show minima at the slot centre, as expected. However, the curve corresponding

to L/X = 0.3 shows a maxima; a behaviour which our earlier results on these

slots do not support. It is for this reason that we postulate that resonance must be

occurring at this slot length. The phase curves corresponding to L/X =0.2 and

L/?, =0.4 are constant while that corresponding to L/X =0.3 is non-uniform,

varying rapidly towards the slot ends. In Fig. 5.19(b), the current is maximum at

the centre of the slots, as expected, based on the previous results of Fig. 4.22.
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Fig. 5.19 : Equivalent surface magnetic current distributions for centered
cross-shaped diaphragms in uniform rectangular waveguides.
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5.4 SUMMARY

In this chapter, a numerical study on apertures of various shapes in the

transverse cross-section of rectangular waveguides has been undertaken. A

criterion for computing discontinuity solutions has been proposed and

implemented using our computer program. The computer code has been

validated by considering inductive, capacitive, circular and elliptical
diaphragms. All results have been tested for convergence by using sufficient
number of expansion functions.

Results have been presented for normalized shunt susceptance and

magnetic current distribution ofvarious diaphragms.
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Chapter - 6

BROADWALL RADIATING SLOTS OF ARBITRARY SHAPE
IN A RECTANGULAR WAVEGUIDE

Although there is substantial data available in the literature pertaining to

waveguide broadwall slots, notably in [33], [50], [51], [63], [89], [102] and

[108], the data are mostly given for rectangular slots. Data for slots and apertures

ofother shapes are lacking because PWS functions and rooftop functions, which

are often used in the Moment Method analysis, are not flexible enough to deal

with slots of arbitrary shape.

In this chapter, radiation characteristics of broadwall slots/apertures of

arbitrary shape in a rectangular waveguide are investigated. The general

formulation developed in Chapter 2 has been specialized to this problem.

In the subsequent sections, the waveguide matrices, electric vector and

magnetic scalar potentials have been evaluated. Further, expressions for

computing scattering parameters and radiated power have been derived and

incorporated into our computer code. Although the formulation is completely

general and can be used for analysing waveguide-to-waveguide coupling,

waveguide-to-cavity coupling, etc., here only limited results for radiating slots

have been presented and more detailed investigations are left for future workers.

6.1 FORMULATION

Fig. 6.1 illustrates the general problem ofcoupling between a rectangular

waveguide and an arbitrary region via an arbitrary shaped aperture located in the

broadwall. The waveguide walls have been assumed to be infinitesimally thin.

As described in the general formulation of Chapter 2, equivalence

principle is used to divide the problem into two separate parts, as shown in

Fig. 6.2.
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-•x
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Waveguide

Fig. 6.1 : General problem of a rectangular waveguide coupling to an

arbitrary region via an arbitrarily-shaped aperture in the broadwall.
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Fig. 6.2 : Equivalent models.

191

-> z



In Fig. 6.2(a), region 'a' is a uniform waveguide in which the total field is

the superposition of the field due to the impressed sources (E1, H') and that due

to equivalent surface magnetic current M over the aperture region. In region 'b'

(Fig. 6.2(b)), which is arbitrary, the field is due to current -M over the aperture

region, radiating in the presence of a continuous conductor. For the special case

under consideration, where region 'b' is a half-space, image theory can be

invoked and the equivalent problem for region 'b' reduces to the problem of a

current -2M over the aperture region radiating in free space.

From eqns. (2.8) and (2.9), the aperture admittance matrices for region 'a'

and region 'b' can be written as

[Ya] = [Yw«] = [<Mm,Hta(Mn)>]NxN (6A)

[Yb] = [Yhs] = [<Mm,Htb(Mn)>]NxN (6.2)

and excitation vector L, as

I.n = [<M.n.-Ht1>]Nxl (6.3)

The elements of admittance matrices and excitation vector have been

derived in Chapter 2 (eqns. (2.21) and (2.24), respectively) and are repeated here

for the sake of completeness

ywg
'ran J<D KCO'^ +̂ CO'^ +«osr)-*.'cc)

Ymn =-21nJ jCO Fnb(f,r)-^ +Fnb(r-).-B£ +*nb(?°-)"<l>„b(r°+)

Im =
" /^c+^_ Pm , ui/=c-^ Pmiin{i-it'(7Ir)-^-+Hti(?mc-)
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Evaluation of the half-space admittance matrix eqn. (6.5), has already
been carried out in subsections 2.4.1 and 2.4.2. In the next section, we discuss
the evaluation of electric vector potential and magnetic scalar potential which
are required in eqn. (6.4).

6.2 EVALUATION OF ELECTRIC VECTOR POTENTIAL AND

MAGNETIC SCALAR POTENTIAL

Eqn. (2.16) gives the magnetic field Ha(Mn) due to the nth expansion

function at any point inside region 'a' in terms of Fa(F) and ^(F). Further,

F/(7') and ^(F) are given by Eqns. (2.22) and (2.23), respectively, as

FnV) =e//Gtt(r|P)»Mn(r')ds' (6.7)

*nV)a j^//{V-G(r|F)).Mn(F)dS (6.8)

However, the dyadic Green's function G(f |F) is different from that used

in Chapter 4. The relevant G(r |F) has been derived by Rahmat-Samii [80] and
can be written as

o(f|?)-2 2:^-«p[-T.i«^]
r=0 s=0 zaDyrs

^r7TX^
x < xx sin

^ a )
sin

f mx > f

'mx^
I a J

f's7ty>
cos cos

I b J

-yycos

\ » J

'ncx^

cos
TTTX

a

^rroc'^
+ zzcos cos

V a ; k a ;

' S7iy ^
sin

^STiy^

,~b~J
cos
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^STry'̂
COS
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where

Yrs =

e, =

' \2m |

< a J

1 , p = 0

2, p>0

is the Neumann's number,

yrs is the propagation constant for the rslh mode and is given by

+ { b, -k'

(6.10)

(6.11)

where k has been given by eqn. (4.11).

Since at the plane of the aperture y = b, eqns. (6.7) and (6.8) become

±6

zao za„ r=0 s=0 yrs ±

^rTtx^x -j (x' - xu) sin

±s 1

^ a ;

'nrx'^
sin dx' dz'

^ a ;

Wl^tn ^JJ «P[-T„|z |̂]
2ab 2An ,.o „0 Tr. 'J

X (z'-Zn)C0S
^mx^

cos

v. a J

xi l °° °°

2An 2j©u.ab ~ ~ Yrs

'ncx'^
dx' dz'

\ a ;

Z Z—Ij V.exp[-Yrs|z-z'|]

x< x (x' - xn) sin
^TTOC^

k a ;
sin

r7ix

^rroc^
+ z(z' - zn) cos

'mx'

< a
cos

^ a J

+ln 1 ^ ^ 8re„

dx'dz'

K(?) 2An 2jcouab r^ £J yIZ^JJ .-y„|z-z,| rn

f mx^ f mx'^
x cos sin

V a ; V a ;

(x'-xn)

+ (z' - zn) cos
^r7ix^

cos
'ncx'> -Yrse Yrs(Z Z), Z>Z'

k a J V a V Yre(z-Z')Yrse z < z
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*

As discussed in Chapter 2, we utilize Galerkin method and centroid

approximation to evaluate the integrals in eqns. (6.12) and (6.13) for observation
point in triangle pand source currents residing in triangle q.

Thus, according to eqns. (2.26) and (2.27), eqns. (6.12) and (6.13) can be
written as :

+ 1. p OO OO

^ =iA~ 2~ah S0 £ Iff1eXpt-^l Zp - z'l ]
q r=0 s=0 A 'rs

x (x1- x.) sin
'noc^

sin
^rroc'^

V a J
dx' dz'

^ a ;

4-o I • oo oo

rs I Zp Z |
2ab 2A, ,.o ,.„ y„

A,

(z' - Zj) cos 'rroO

v a y
cos

'mx'A
dx' dz'

V a ;

pq T1J 1 -VrslZp-z]
00 00 (

Z 2 ^ // .-"2Aq 2jco^ab r^0 ^ y

nt ^rjixr ^ ^rTrx'^x— (x'-Xj)cos
a J

+ (z'-Zj) cos ^T7CX N

v 'i j

sin

v a y ^ a )

COS
frnx'^

\ a ;

-Yrse
-rn,(z„-z')

Jra(Zp-z')

> ^1

-p >z'
'

zp < z'

(6.14a)

(6.14b)

dx'dz' (6.15)

Integrals in eqns. (6.14) and (6.15) can be evaluated conveniently, after

transformation into area coordinates. Thus, according to eqn. (2.60), F* and

(J)]*1 can be expressed as :
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ZAq zao r=0 s=0 yrs Q Q

jz

*S

x((x, -Xj) +(x2 -X!)L2+(x3 -x,)L3)

rTT,Xr
x sin sin

Arrc

—(x!+(x2-X])L2 + (x3-X])L3) dL2dL3
va J

(6.16a)

±1;
1 i-l2

-2Aq2Z^j H[-YrSl(zp-z1) +(z1-z2)L2+(z1-Z3)L3|]
2Aq 2ab r=0 s=0 Yrs { {

((zi - Zj) +(z2 - Zj)L2 +(z3 - z,)L3)

'rracp^
X cos

v a J
cos

r7r ^
—(x,+(x2-x,)L2 +(x3-x1)L3) dL2dL3

Va J
(6.16b)

+1 • 9 A °°
pq _ + IJ /Ag -

2Aq 2jfflpab r=() ~ yrs

TO 00 1 I-L2

Z Zt^J j{exp[-Yrsl(Zp-z1) +(z1-Z2)L2+(z1-Z3)L3|]
0 0

—((xi -xj) +(x2 - x,)L2 +(x3 - Xl)L3)
v a j

fmxf\ ric. . . ^
—(xj +(x2 -Xi)L2+(x3 -x,)L3)

Va ;
x cos sin

v a j

+Uzi - zj) +(z2 - z,)L2 +(z3 - z,)L3)

—(x1+(x2-x1)L2+(x3-x1)L3)
v a

X COS

a

cos

x <

_v p-YrsaZp-zO +Cz^Zj^j+CZ!^^)
'rs e , Zp > z

Yrs((Zp -Z]) + (Zi -Z2)L2 +(Z, -Z3 )L3 )
Yrse zp<z'

dL2dL3 (6.17)

For seven point numerical integration, the equations reduce to
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T

±1; p •

** =2A1 2^ 2 ~ Aq Z W(m) [tV***"**)***-*******-****
1 r=0 s=() Yrs m=l

((xl-xj) +(x2-x1)L2tn+(x3-x1)L3m)
^rroc, ^

x sin

±L 8

2Aq 2ab r^ ~ Yr.
q r=u s=0 'rs

V a J
sin

rjx

Va
(x,+(x2-x])L2m+(x3-x1)L3m)) (6.18a)

ppq _ - j £
jz Z Z ^~Aq Z W(m){e-Yrsl(zp-Zl) +(z'-z2)L2m+(z.-z3)L3r

((z, - Zj) +(z2 -Zl)L2m +(z3 - z,)L3m)

♦r-

^rrocr ^

,a
(x, +(x2 -x,)L2m +(x3 -x,)L3m))l (6.18b)x cos

v a j

j 1

m

ka,

cos

2Aq 2jffl,ab I Z^A, ZWO.) {.I-Wto-,** •*-»*.

((xi-xj)+(x2-x1)L2m+(x3-x])L3m)

^r7ixpA
—(x,+(x2-x1)L2m+(x3-x1)L3m)x cos sin

v a ,

+((z,-Zj) +(z2-z1)L2m+(z3-z1)L3m)

x cos

a

m

cos -(x1-f(x2-x1)L2m+(x3-x1)L3m)

Yrse
•Yrs ((zp -z,) +(z, -z2 )L2m +(z, -z3 )L3m)

X <

Ys errs((ZP~Z,) +(Zl_Z2)L2m +(Zl-Z3)L3m)
, zn > Z'

(6.19)
Zp <Z'

where mdenotes the m,h sampling point in the domain of T«, W(m) is the
weighting factor for the m'h sampling point, L2m and L3m are the values of L2 and
L3 at the m,h sampling point. W(m), L2m and L3m are given in Table 2.1.
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6.3 EVALUATION OF EXCITATION VECTOR

The excitation of the waveguide is assumed to be due to the dominant

TE10 mode of unit amplitude produced by an electromagnetic source at z = - oo.

Therefore, the incident field components in region 'a' are

Ey = sin
I a J

:6a. Sinf™
V a J

^
COU,

-JPioz

Hz = cos
jcopa

'tcx^

V. a ;

-JPlfjZ

where p10 = kVl-(f/fc)2

and k = co yj u. 8

Thus, eqn. (6.6) may now be written as

i/.-ijt HKr)f+H;(r)f+H.(r)f+^(f/#

where pjx = ±
x.n+j+l + xn+J+2 XjJ +xf+J+1 +xj+j+2

Pjz +

m+j+1 n+j+2 j m+j+1 n+j+2 '
ZJ + Z.l Zj +Zj +zj

J = 1,2, 3

where m and n are dummy variables such that

'0, j = l,2
m =

and n

-3, j=3

0, j = l

-3, j=2,3

Hx Vj0*)' Hz Vj / are the values of Hx and Hz> evaluated at the centroids of

the triangles T: associated with the jth edge.
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(6.24)

(6.25)

(6.26a)

(6.26b)

(6.27)
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6.4 COMPUTATION OF SCATTERING PARAMETERS

Assuming that the aperture centre coincides with the z = 0 plane, we

consider two reference planes T, and T2 located, respectively, at z, - -z and

z2 =+z, where z, and z2 are an integral multiple of the guide wavelength. Once

the scattering parameters are computed, the terminal planes can be shifted to the

aperture centre without causing any change in the scattering parameter values.

Thus, the scattering parameter S„ pertaining to dominant TEI0 mode is
given by

s. Etil(M)-
5ii

Et It,
(6.28)

In terms of magnetic field components, Sn can bewritten as

N

Hxa(M)|, ZVnH«(Mn)lT
H,! Hi |Tl

(6.29)

where Hx has been given by eqn. (6.21) and

Hxa(Mn) = -jcoFnx (f)-V<(r) (6 30)

From eqns. (6.12a) and (6.13), using the dominant term of Green's function leads
to

a r=s ±£ I.

F»(f) =̂ JM-^2-z'i]

xUx'-xn)sin
''roc^

sin
'rac^

V a ;
dx* dz'

"v a ;
(6.31)

«(F) =̂^^/{f-[-,oU-ZUV-xn) cos

K a J
sin

V a J
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+(z'-zn)cos
'kx^ 'tcx'^

cos

V a ; V a ;

Ym(z-z')10Y10e 1U , z>z"

Y10(z-z')
Yioe z < z

dx'dz' (6.32)

Following the procedure leading to eqn. (6.19), we can write

Fjx(?)
±8

2 kk ,
— Aq XW(m) (exp (-y]0 | (z, +(z2 -z,)L2m +(z3 -z,)L3m

z<z' 2ab 2Aq Yio m=i

x((xi - Xj) +(x2 - x,)L2m +(x3 - x, )L3m )

x sin
'roc^

sin

v a; "\ a
(x,+(x2-x1)L2m+(x3-x1)L3m) (6.33)

'J z<z'

kkafrj'cr)
dx

*lj 2
2j©uab 2A yio Aq Z W(m){exP(-Yio|zi+(z2-z1)L2m+(z3-z1)L

m=l
3m

z<z

( ^-71

V a J
((x, -Xj) +(x2 -Xl)L2m +(x3 -x,)L3m )

'to^ f
x sin

•v a;
sin - (xi +(x2 - Xl)L2m + (x3 -x,)L3m )

v a J

Yio 7(ft - zj) +(z2 - zi)L2m +(z3 - z,)L3m )

x sin

V a J
cos

71

"\ a
(x, +(x2-x1)L2m+(x3-x1)L3m)

xexp (- Yl0 (z, +(z2 -z,)L2m +(z3 -z,)L3m))}

In a similar manner, transmission coefficient S2i, is given by
N

Z V„Hxa(Mn)|T7

z <z

>21 1 +

H.

(6,34)

(6.35)

a*;where Hx(Mn) is given by eqn. (6.30) in which Fjx(F) and -^L (?) can ht
dx

written as
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r

FjxOD
±e lj 2 S /

z>z' : 2ab2^:^:A^W(m^exp(-y.olft+(z2-z1)L2m+(z3-z1)L3m|)
q nu m=l

x((x,-Xj)+(X2-X|)L2m+(x3-X1)L3m)
'jCX^ f

x sin - sin

a J
K^-(x1+(x2-x1)L2m+(x3-x])L3rn) (6.36)

z>z'

aj,;(r) 1 +lj 2 kk
2jo^ab 2^ y" A" ^ W(m) *exP^>oI z> +(z2 -z,)L2m +(z3 -Zl)L3m |)ax

z>z'

( J2\
— K

V a J
((x]-xj) +(x2-x1)L2m+(x3-x])L3m)

x sin
'kx^

sin

V a ;
7(x,+(x2-x1)L2m+(x3-x1)L3m)

V a

+Y,o 7((z, -Zj) +(z2 -z,)L2m +(z3 -z,)L3m )

x sin
7TX

cos^(x1+(x2-x1)L2m+(x3-x1)L3m)A
^ a

*exp (y1() (z, +(z2 -z,)L2m +(z3 -Z])L3m))};

Thus, power radiated, prild, is given by

Prad ={l-|S,,|2-|S2]|2}

z> z (6.37)

(6.38)

6.5 RESULTS AND DISCUSSION

A computer program has been written based on the preceding
formulation, which is capable of analysing broadwall slots/apertures of arbitrary
shape in a rectangular waveguide radiating into half space. The code has been
validated by using rectangular longitudinal slots and centrally-located transverse
rectangular slots for which data are available in the literature [63]. The
waveguide wall has been assumed to be infinitesimally thin. Convergence tests
have been carried out to establish the correct results.
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6.5-1 Offset Broadwall Longitudinal Rectangular Slot

Rectangular slot surface was triangulated as per the scheme shown in

Fig. 3.3. The slot lies in the xz plane with its axis along the +z direction and is

offset 2 mm from the centre of the broadwall. The slot width is 1.5 mm and its

length is variable. Fig. 6.3 shows the power-radiated/power-incident ratio versus

slot length. The results obtained are compared with those of Lyon and Sangster's

data [63] and are seen to be in good agreement.

6.5-2 Centrally-located Broadwall Transverse Slot

Next, centrally-located transverse rectangular slot, based on the

triangulation scheme depicted in Fig. 3.3, in the broadwall of a rectangular

waveguide was considered. Fig. 6.4 shows power-radiated/power-incident ratio

as a function of slot-length. Our results are in good agreement with those of

Lyon and Sangster [63].

6.5-3 Centrally-located Circular Aperture

A circular aperture surface on the broadwall of a rectangular waveguide

was triangulated as depicted in Fig. 3.13. About 76 expansion function were

found to yield converged results. Fig. 6.5 shows power-radiated/power-incident

ratio versus normalized diameter, d/a. It is noted that radiated power increases

with the size of the aperture. However, at d/a =0.35 aperture seems to be at

resonance and any further increase in d/a beyond 0.35 results in a decrease in

radiated power. As in the case of a rectangular slot, the size of the circular

aperture that can be accommodated in the broadwall is limited by the waveguide

broadwall dimension a.
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Fig. 6.3 : Power radiated/power incident against slot length for
infinitesimally thin longitudinal slot in WG 16.
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6.5-4 Centrally-located Elliptical Aperture

Using a discretization scheme similar to that in Fig. 3.18, it was found

that about 76 expansion functions yielded converged results for an elliptic

aperture on the broadwall of a rectangular waveguide.

Fig. 6.6 shows power-radiated/power-incident ratio versus eccentricity e

given in eqn. (3.29) for two orientations ofthe aperture. In Fig. 6.6(a), it is noted

that reducing d2 for a fixed value of di, results in a reduced radiated power.

However, at e = 0.5, the radiated power exhibits a peak, suggesting that "*

resonance occurs at this value of e. Fig. 6.6(b), on the other hand, shows that

power-radiated increases with decrease in d2 for a fixed value of di.

.1
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6.6 SUMMARY

In this chapter, a numerical study has been undertaken on a limited
number of broadwall apertures of various shapes radiating into half space. The
computer code has been validated by considering transverse and longitudinal
rectangular slots for which data are available in the literature. All the results
have been tested for convergence by utilizing sufficient number of expansion
functions.

Results have been presented for power-radiated by rectangular, circular,
and elliptic apertures.
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Chapter - 7

DISCUSSION AND CONCLUSIONS

In the preceding chapters, a comprehensive study has been carried out on

apertures of arbitrary shapes in waveguides and conducting screens. The analysis

has been based on a rigorous formulation exploiting an appropriate choice of

t computational technique and a flexible modelling scheme incorporating versatile

basis functions. This strategy has culminated in writing ageneral efficient computer
program. The program has been validated and tested on apertures of various shapes,
amongst which rectangular, circular, elliptic, diamond, cross and H have been

presented as representative examples of the diverse range of arbitrarily-shaped
apertures.

In this chapter, a critical review of the analysis, results and their practical

implications are presented. Finally, some of the areas which require further research
have also been suggested.

7.1 THE ANALYSIS

The analysis is based on the "generalized network formulation" for aperture
problems originally proposed by Harrington and Mautz [44]. The formulation is

completely general in that two arbitrary open or closed regions coupled via an
arbitrary-shaped aperture can be treated. However, for actual evaluation of the

matrices, expansion and testing functions must be selected with particular care. In

this dissertation, triangular patch modelling, with appropriately defined basis

functions, has been utilized which is appropriate for modelling surfaces of arbitrary
shape, since the shape of a triangle can easily conform to any geometry and the
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density of the triangles can be increased in those regions of the aperture in which a

higher resolution is desirable. The greatest advantage of the formulation and the

scheme lies in the fact that the evaluation of the admittance matrix of a region

involves only that region. This means that once the admittance matrix ofa region is

known, it can be combined with the-admittance matrices of the other regions for

various problems. This is to say that routines for computing admittance matrices of

different regions may be written separately and can then be combined in a number

ofways to obtain solutions for a wide category ofproblems.

The method of moments has a number of advantages over other methods.

First it inherently takes into account the effect ofhigher order evanescent modes in

waveguides. Further, unlike the other methods, which mostly deal only with the

dominant mode incidence, this method can treat arbitrary incidence with equal ease.

Also, the effect of finite wall thickness can easily be incorporated in the method,

although in the present study only infinitesimally thin walls have been used.

First, a general formulation has been developed for solving the problem of

an aperture of arbitrary shape coupling two arbitrary regions. Important aspects,

such as choice of basis functions evaluation of matrices and excitation vector and

efficient computation of integrals over observation and source triangles have been

considered. Further, particular attention has been given in developing expressions

which treat integrals with singular kernels, associated with Green's function offree

space, and integrals with bounded kernels, for closed regions. Finally, equations for

computing aperture near- and far- field parameters have been derived.

In Chapter 3, the study has addressed itself to the analysis of apertures of

various shapes in an infinitesimally thin, perfectly conducting screen. The general

formulation of Chapter 2 has been specialized to this problem. In this chapter,

evaluation ofadmittance matrices has been based on dyadic Green's function offree
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space. Expressions for evaluating various parameters, such as transmission
coefficient and magnetic current distributions have been derived.

In Chapter 4, the problem of waveguide-fed apertures of arbitrary shape on a
perfectly conducting ground plane radiating into half-space has been investigated.
Dyadic Green's function of the electric vector potential pertaining to awaveguide
short-circuited at one end, has been used in evaluating waveguide admittance
matrix. Evaluation of equivalent aperture admittance has been based on the
dominant TE,r, mode incidence.

In Chapter 5, apertures of arbitrary shape in the waveguide cross-section
have been analysed. The admittance matrices of uniform rectangular waveguides
have been adopted from Chapter 4. The power of the formulation is amply
demonstrated by the fact that no new admittance matrices are to be derived for
solving this entirely new problem.

In Chapter 6, we have presented an analysis of radiating apertures of
arbitrary shape in the broadwall of arectangular waveguide. The guide wall has
been assumed to be infinitesimally thin. For the waveguide region, dyadic Green's
function of the vector potential pertaining to an infinite rectangular waveguide [80]
has been utilized. Equations for determining scattering parameters have been
derived using the dominant TE10 mode term of the dyadic Green's function. An
expression for computing power radiated by the aperture based upon the reflection
and transmission coefficients has been developed.

7.2 THE COMPUTER PROGRAM

An efficient computer program has been written in FORTRAN-77 based
upon the expressions derived for the various problems. Amodular approach has
been used in writing the program to make it flexible and versatile. It has been
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divided into a number of subprograms. In the process, separate subroutines for

computing various admittance matrices and parameters have been written. These

subroutines may be used in any number of permutations and combinations to solve

various problems after slight modifications in the storage strategy of the matrices.

The complete program itself is quite general and can analyse all the four problems

in chapters three to six and, also the problem of waveguide to -cavity coupling

which was validated but not explored further in this study.

The program listing is available with the author and Prof. S.N. Sinha, the

Research Supervisor

7.3 THE NUMERICAL RESULTS

The computer program has first been validated for each class of problems

considered, prior to generating data for any new problem. Extensive computations

have been carried out for various aperture parameters. Convergence of results has

been established for each problem by utilizing sufficient number of expansion

functions, that is to say, including sufficient number of non-boundary edges to

ensure accurate modelling of the physical surface of a particular aperture. Results

have been presented in chapters three to six for typical aperture shapes, i.e.,

rectangular, circular, elliptic, diamond, cross and H, which may be considered

diverse enough to simulate any possible physical aperture shape.

In Chapter 3, results have been given for apertures in an infinite conducting

screen coupling two half spaces. Convergence results for transmission coefficient

versus number of expansion functions have been presented for X/20-wide

rectangular slots, square apertures (of size X14 x X14 and X12 x X12) and circular

apertures of various sizes. Further, surface magnetic current distributions and

transmission cross-sections have been presented for all the six aperture shapes
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alluded to above. Each aperture studied has exhibited unique near- and far-field
characteristics. Finally, the results for comparative study on transmission cross-
sections for apertures of different shapes with equal area have been given. Elliptic
and diamond-shaped apertures and H-shaped slot have exhibited attractive
transmission cross-sections.

Chapter 4has presented results of astudy on waveguide-backed apertures in
aconducting plane. First, convergence study results for peak magnitude of surface

T magnetic current as afunction of number of expansion functions for open-ended
square waveguide has been given. Validation results have included surface

magnetic current distributions and power gain patterns for XxX/10 rectangular slot
and open-ended rectangular and square waveguides radiating into half space. In
addition, results for equivalent admittance seen by the dominant TEI0 mode for
open-ended rectangular and square-waveguides have also been given. Having
validated the formulation and the computer program, new data have been presented
for surface magnetic current distributions, equivalent aperture admittance seen by
dominant TE10 mode and power gain patterns for circular, elliptical, diamond-
shaped, cross-shaped and H-shaped apertures/slots radiating into half space. Finally,
a comparative study on antenna power gains for relatively small apertures of
different shapes with equal area and relatively large apertures of various shapes
with equal area has been conducted. The results have shown that elliptic and
diamond-shaped apertures have the highest power gains, among all the apertures
studied. Further, elliptic aperture has a more directive H-plane pattern while
d.amond shaped aperture has amore directive E-plane pattern.

In Chapter 5, we have considered conducting diaphragms with apertures of
various shapes in the cross-section of auniform rectangular waveguide. First, the
study has established a pair of criteria for eliminating the phenomenon of

_u
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"relative convergence" inherent in such aperture coupling problems. The pair of

criteria has been applied to study convergence of normalized shunt susceptance for

symmetrical inductive and capacitive diaphragms and centered - circular and

elliptical apertures. Good to excellent agreement with published data have been

obtained. Then, normalized Shunt susceptance results for diamond-shaped aperture

and cross-shaped slot have also been presented. Further, a comparison ofequivalent

surface magnetic current distributions for symmetrical inductive and capacitive

diaphragms and centered circular, elliptical, diamond shaped apertures and cross- T

shaped slot has been made. The major contribution in this chapter is the proposed

pair of criteria which can be applied for the computation of parameters for

waveguide apertures (discontinuities) ofany size and shape.

In chapter 6, results for broadwall radiating slots/apertures of different

shapes in a rectangular waveguide have been presented. Power radiated by offset

longitudinal slots and centrally- located transverse slots have been presented for the

validation of the formulation. Thereafter, power radiated by centrally-located

circular and elliptical apertures for different orientations of the elliptic aperture has

been given. The main contribution in this chapter is the updating of the gerieral

computer program such that itcan analyse any radiating broadwall apertures/slots in

a rectangular waveguide. ^

7.4 SCOPE FOR FUTURE WORK

The various apertures studied in this work have been assumed to be residing

in an infinitesimally thin conducting screen or thin-walled rectangular waveguide.

The case ofapertures ofarbitrary shape in a thick conducting screen and in a thick-

walled rectangular waveguide were not considered due to lack of Green's function

for the interior arbitrary region formed by apertures of arbitrary shape in such thick
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walls. However, of practical interest are apertures in a thick conducting wall, both

as asingle radiating element or an array of radiating elements and those occurring
in EMC/EMI problems. The scope for further research, therefore, lies in extending
our present formulation to incorporate Finite Element Method, i.e., a hybrid

MOM/FEM technique, whereby the FEM can be utilized to evaluate the fields in

the interior cavity region, which is formed when the aperture surfaces in athick wall

are closed with perfect conductors, while the MOM formulation the fields on the

surfaces of arbitrarily-shaped aperture. The technique can be used to analyse the

apertures of various shapes studied in chapter 3 in a thick conducting screen and in

chapters 4 to 6 in a thick-walled rectangular waveguide.

In addition, problems of electromagnetic radiation from apertures of various

shapes in a metallic box (i.e., a shielded enclosure), inhomogeneously filled with a

dielectric material, can be stud.ed to establish various resonance and other

parameters of interest. Such a problem is of practical importance as an example of

EMC and EMI problem. Another area that can be explored is that of apertures

occurring in printed circuits either due to cracks or deficiency in fabrication

technique. Further, problem of apertures of various shapes coupling amicrostripline

to a microstrip-patch antenna and a waveguide to microstrip-patch antenna etc. can

be investigated.
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APPENDIX-A

Let the coordinates of observation point be denoted by (x,,, y0). We denote

by superscripts -, +respectively, the parameters related to the first and second nodes

of agiven side of T^ .The arclength variables tu increasing in the t4 direction from

the value t,_ at the |" node to the final value tf =tf +1, at the 2nd node, Fig A-l,

has the projections at the endpoints of each side of Tq given by

^ ={x(l3 -x())-yy0 }.{(x3-l3)x+ yy3 }/ 1,

=[('3 -X0)(X3-l3)-yoy3]/l1 (A ^

tf =(x(x3 -x0)+y(y3 - y0)Hx(x3 -l3)+y(y3 -0)}/l,
=[(x3-x0)(x3-l3)-fy3(y3-yo)]/|1 (A2)

t2={x(x3-xo) +y(y3-yo)}.{x(x3-0) +y(y3-0)}/l:

=[x3(x3-xo)+y3(y3-y0)]/l2 (a.3)
t2={x(-x0)+y(-y0)}.{-xx3-yy3}/l2

=[xo*3 +yc>y3]/l2 (A.4)
t3_ ={x(-X0)+y(-yo)}.xH3)/l3

^ v v j -a/j\j3 ;o/rrv^3 wj ^ y\y3~v) j/ l2

r

xo (A.5)

t3={x(l3-x())+y(-y0)}.[l3x]/l3

-(b-x0) (A6)

(A.l) to (A.6) can be written in compact form as

li = (Pi-Po)*(pm+i-i-Pn+j+i)/Ij (A7)
'=1,2,3

where m and n are dummy variables such that
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J 3, i =I
m = 1

1 0, i =2,3

, I 0, i = I, 2
and n =

.-3, i =3

Distances from observation point to segment end points at the vertices, Fig. A-2,

are given as

V(I3-x0)2 +y02

si =V(x3-xo)2 +(y3-y0)2

S2 ~SI

T

+ 2 2

s2 =Vxo +y0

+

S3 ~ S2 .1

S3+ =sl_

Or in amore compact form s{ can be written as

Si = 'Pi - Pol (A.8)

Perpendiculars Pj° to the arc length lj or their extension are given by *

Pi° ={yo(x3-|3)+('3-x0)y3}/Ii (A9)
p2° =|{x(x3 - x0)+y(y3 - yj }x{xx3 +yy3 j/l2

= |{y3(x3-x0)-x3(y3-y0))|/l2

= (yox3-x0y3)/i2 (A10)

p3° =|[x(x1-Xo) +y(y1-yo)]x[03-X1)*+y(y2-yi)]|/l3

217



1-

*r

= W's

Or in a compact form, pj can be written as

Pi° = | (pn+i+| - p0) x(pm+i_, - pn+i+1) | / |.

Po=(xo'yo)

(0,0)

Fig. A-1

p0 =(xo>yo)
(x3,y3)

(0,0)

Fig. A-2
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APPENDIX - B

Transformation from x-y plane to L2 - L3 (area coordinate) plane,

0 < L2 < 1, 0 < L3 <

where

X

_y_

=

"'s x3_
.0 y3_ .h.

x= 13L2 + X3L3

y= y3L3

Taking partial derivatives leads to

5x

8L„

dL,
= 0,

>2 ^3

and the Jacobian of the transformation J is

dx Ox

Ox

0L2

SL,

J =
dL0 dL

dy dy

dL„ dL,

•3 y3

For a triangle Fig. B-l,

The area A
1

2
'3y.3

i.e., J == 2A

= x.

y.i

'3

0

\3

y.i
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