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ABSTRACT

Aperture  coupling is an important boundary-value problem in
electromagnetics. Practical applications of aperture coupling can be found in slotted
antenna arrays, directional couplers, cavity resona.tors, radiating slots in screens,
microstrip-patch antennas etc. Besides, undesirable coupling of electromagnetic
energy may occur if there is an inadvertent crack/slit in the applicator/RF equipment
leading to electromagnetic compatibility (EMC) and electromagnetic interference
(EMI) problems.

In this study, we have developed a moment method solution procedure for
the general problem of apertures of arbitrary shape coupling arbitrary regions.
Appropriate modelling of the aperture surface has been carried out using triangular
patch modelling, proposed by Rao et al. [82] for scattering from bodies of arbitrary
shape. Suitably defined set of basis functions has been integrated into the
formulation which is capable of accurately evéluating fields of apertures of arbitrary
shape. The problem has been formulated by invoking equivalence theorem [46]) and
utilizing boundary conditions on the aperture to derive an integro-differential
equation. This equation has been transformed into a matrix equation via the method
of moments and solved numerically by simulation on a digital computer.

Easy-to-use expressions for numerical integration over a triangular domain
have been developed. Further, careful treatment of singular integrals which arise
due to the use of Green's function of free space has been performed. Explicit

expressions for evaluating various matrices and parameters of interest have been

developed.

Extensive computation of various parameters for apertures of various shapes,

based on the preceding expressions, has been done and results presented. Also,



comparative studies for the various parameters of different aperture shapes have
been undertaken.

Specifically, the four main classes of problems treated in this study comprise
apertures of arbitrary shape coupling two half spaces via a conducting screen,
waveguide-backed apertures of arbitrary shape in a ground plane radiating into half-
space, apertures of arbitrary shape in the transverse cross-section of a uniform

rectangular waveguide and broadwall radiating apertures and slots of arbitrary

shape in a rectangular waveguide.
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Chapter - 1
INTRODUCTION

Aperture coupling is an important boundary-value problem which has
received considerable attention from many investigators over the years. With
advancement in technology, the scale of utilization of microwave and millimeter-
wave bands‘ for communications, radar, industrial and domestic applications has
increased. In many of these applications, apertures of various shapes are involved.

From a practical perspective, apertures have found applications in slotted
antenna arrays, directional couplers, cavity resonators, radiating slots in screens,
waveguide filters and power dividers and so on. Besides these applications,
apertures can also cause undesirable electromagnetic coupling in some situations.
For example, a crack/slit in the door of a microwave oven or in any other applicator
or in any RF transmitting equipment may result in electromagnetic leakage leading
to problems of Electromagnetic Compatibility (EMC) and Electromagnetic
Interference (EMI).

Pioneering work in the area of aperture coupling dates back to 1944 when
Bethe [11] developed his small aperture theory. Since then, concerted efforts have
been made towards developing more elaborate techniques for solving aperture
coupling problems. Majority of these techniques, however, deal with apertures of
regular shapes and, in each case, only a particular problem has been solved. It is

only with the development of numerical methods, such as the Method of Moments

and Finite Element Method that it has become possible to treat irregularly shaped

apertures.



Apertures having various shapes, such as rectangular, circular, elliptic,
diamond, cross and H can be used to couple electromagnetic energy between two
arbitrary regions. ,
In the following sections, we present a summary of the earlier work carried

out in the field of aperture coupling followed by the statement of the problem and

then the organization of material in this dissertation.

1.1 ~ SURVEY OF EARLIER WORK

For several decades, a number of investigators have considered the problem
of electromagnetic coupling through apertures. Aperture coupling problems can
broadly be classified into three categories, 1.e., apertures in the waveguide walls, as
in the case of couplers, power dividers or radiating slots in the waveguide
broad/narrow walls etc. or in the transverse cross-section of waveguides, as in the
case of diaphragms and, lastly, apertures in conducting screens, causing coupling
between two regions or radiating into half space. In this section, we have attempted
to highlight the various representative contributions made by different researchers

in each category.

Fig. 1.1(a)~(d) are typical examples of some aperture coupling problems in

each category referred to above.



(a) Rectangular waveguide longitudinal (b) Aperture in the transverse cross-section

and transverse broadwall slots of dissimilar rectangular waveguides
X
y A
Reglon 'a' Region 'b’
a8

{1 &)

Screen

#z

Slot

T 2
[
JLC
|
||
N

(6) Waveguide-backed slot arrays in a (d) Slotin an infinite conducting
perfect ground plane radiating screen coupling two different
into half space regions

Fig. 1.1 : Typical examples of aperture coupling problems



1.1-1 Slots and Apertures in Waveguide Walls

The earliest treatment of slots in waveguides dates back to 1944, during the
Second World War, when Bethe [11] developed his small apefture theory, which
was later modified by Cohn [22], [23] to include large apertures of finite wall
thickness. The modified Bethe-Cohn theory has been applied to the design of multi-
aperture directional couplers by Levy [60]. The theory that forms the basis of the
analysis and design of narrow slots and slot arrays in thin-walled waveguides, on
the other hand, was developed by Stevenson [104]. The theory is well-explained in
standard texts, such as [24] and [25]. In 1951, Stegen [102] experimentally
investigated the characteristics of round-ended longitudinal shunt slots cut in the
broadwall of X-band waveguides.

A variety of powerful methods for analysing discontinuities including
apertures in the transverse cross-section or in the waveguide walls, which were
developed during the Second World War, have been compiléd by Marcuvitz [65] in
the Waveguide Handbook. These techniques include the Variational Method, the
Integral Transform Method and the Equivalent Static Method. Some of these
techniques are well-explained by Collin [25] with the help of a number of examples.
Lewin [61] has treated in full the Singular Integral Equation Method and its
extensions by way of applying it to a number of examples. The method involves
setting up an integral equation which is then solved by Weiner-Hopf/technique to
obtain various waveguide parameters. The method gives rigorous results for only a
limited number of problems.

The Variational Method is a powerful tool for obtaining approximate
solutions for problems formulated in terms of an integral equation. Oliner [75] has
used the method to study the impedance properties of resonant and non-resonant

narrow radiating rectangular slots in the broadwall of a rectangular waveguide.



Several investigators have also used variational method, notably Sangster [91] and
Das et al. [28], [29], [30]. Although Variational Method can provide fairly accurate
solutions to a variety of waveguide aperture problems, it requires a high level of
mathematical ingenuity and for each problem, fresh calculations have to be done.
Besides, the effects of finite wall thickness, sidewall préximity and higher-order
mode coupling cannot easily be incorporated into the solution.

The Reaction Method was propounded by Das and Sanyal [27] as a means of
analysing long slots (1 > A/2) on the broadwall of rectangular waveguides.

All in all, in each of the above methods, a specific formula has to be derived
for a given type’of discontinuity and often gross approximations have to be made.
Further, a fresh mathematical problem has to be solved for each case and the effect
of higher order modes is not properly accounted for.

The advent of digital computer has revolutionized the methodology for
solving boundary-value problem. A number of powerful numerical techniques have
been developed for analysing such problems. These include Modal Analysis, the
Modified Residue Calculus Technique, the Principle of Conservation of Complex
Power, the Field Expansion into Eigenmodes and t_he Method of Moments for
solving aperture coupling problems.

Armndt et al. [5] have presented method for solving waveguide junctions and
discontinuities by expanding the fields in terms of eigenmodes and setting up a
matrix equation by matching the fields in the plane of the discontinuity. They have
applied the method for the design of rectangular waveguide broadwall metal-insert

slot couplers. The method gives directly the scattering matrix of the junction and

takes into account the effect of evanescent modes.
However, amongst all these methods, the most powerful tool that has

become popular with electromagnetic engineers is the method of Moments, MOM.,



The MOM was proposed by Harrington [42] for solving differential and integral
equations which appear in the computation of electromagnetic field problems.
However, MOM has been applied mostly to integral equations.‘ A succinct review
on MOM for solving integral equations has been given by Wilton [11 1]. Briefly,
MOM is based upon reducing integral, or integro-differential equations into a
matrix equation which can be éolved on a digital computer.

Vu Khac [107] has used the method of moments to solve problem of two
waveguides coupled by an aperture in a common wall using pulse functions and
point-matching technique. Later, Vu Khac and Carson [108] analysed impedance
properties of bréadwall radiéting longitudinal slots in rectangular waveguide by the
MOM,, using pulse basis functions. They considered various slot offsets from guide
centre-line. Lyon and Sangster [63] have also used MOM to investigate narrow
rectangular slots in the broadwall of a rectangular waveguide by applying a
sinusoidal Fourier set of basis functions. Both longifudinal and transverse
rectangular slots were treated. Power radiated by the two type of slots‘ were
compared with those of Vu Khac and Carson [108], and Oliner's [75] based on
variational method.

Similar studies on longitudinal and transverse rectangular slots and apertures
in the broadwall/narrow wall can be found in [9], [34], [38], [50], [51], [52],.[83],

A

[90], [98], [101], [102], [103] and [114].

1.1-2 Diaphragms in Waveguides

Collin [25] has used variational method to obtain solutions for both thin and
thick irises in a rectangular waveguide with dominant TE,, mode. Considerable
contributions on the solution of inductive irises have been given by Rozzi et al,

[84]-[87] using variational method.



The Modal Analysis was proposed by Wexler [109]. In this method, the
electromagnetic field on either side of the discontinuity is first expanded into an
infinite series of waveguide modes. Algebraic equations are obtained by matching
the fields in each aperture which are then solved for the unknown amplitude
coefficients. The method has been used by Luebbers and Munk [62]. However, the
method involves a lot of numerical work.

Principle of Conservation of Complex Power has been used by Safavi-Naini
and MacPhie [88] to solve the problems of scattering from a rectangular-to-
rectangular waveguide junction and from a thick diaphragm with rectangular
aperture in a rectangular waveguide. More recently, Omar and Schiinemann [76]
have given a general treatise of cascaded discontinuities in inhomogeneous
waveguides as applied to finline circuits, Modified Residue Calculus Technique
[105] has been applied to solve aperture problems in waveguides. The technique is
useful in solving inﬂnife set of equations which arise in dealing with double infinite
summation over the waveguide fields. Above techniques have been applied to
waveguide discontinuity problem by different workers, e.g., as can be found in [12]
and [66].

Problems of diaphragms in a rectangular waveguide have bbeen solved using
Method of Moments. Some of the studies based on MOM can be found in (71, [8],
[32], [99], [100] and [112].

It has been observed that MOM and Mode-matching method exhibit an
inherent phenomenon known as the "relative convergence" when used to solve
waveguide discontinuity problems. Lee et al. [56], Mittra et al. [71] and Aksun and
Mittra [1] have reported a detailed study of the phenomenon and have proposed

some useful guidelines in the use of method of moments solution procedure.



1.1-3 Apertures in a Conducting Screen

Apertures in conducting screens coupling two regions have also received
considerable attention from many investigators. Butler and Umashankar [14] have
studied the problem of a wire excited by an electromagnetic field penetrating an
aperture-perforated infinite conducting screen. Harrington and Mautz [44] have
presented a general formulation for aperture problems in terms of method of
moments which can be applied to any two regions, isolated except for coupling
through an aperture. With the help of equivalence theorem, the problem is divided
Into two separate regions and the aperture characteristics are expressed in terms of
independent matrices, one for each region.

Using the above ‘"generalized network formulation" for aperture
problems [44]. Mautz and Harrington [67] have studied the problem of transmission
through a rectangular aperture in a perfectly conducting plane. Computed
parameters include magnetic surface current distribution over the aperture and
transmission cross-sections for apertures of various lengths.

A similar approach has been used by Bozzetti et al. [13] to investigate
coupling between an aperture and a biological body and, in a later work, by
Harrington [45] to study the behaviour of an electrically small aperture in a

\
conducting screen by a conducting body. Sarkar et al. [92] have considered the
problem of electromagnetic transmission through mesh-covered apertures and
arrays of apertures in a conducting screen.

Apertures situated in a perfect ground plane, backed by a rectangular
waveguide, radiating into half-space have also been studied. Mautz and
Harrington [68] utilized the "generalized network formulation" for aperture
problems in moment method solution, with rooftop functions as basis and testing

functions, to study electromagnetic transmission from a rectangular waveguide into



half-space through a rectangular aperture. Various parameters were computed
including magnetic current distributions, aperture equivalent admittance seen by the
dominant TE,y mode and antenna power gains.

Radiating aperture arrays, fed by a rectangular waveguide, in the ground
plane have also been studied by various investigators. Such studies have been
reported and can be found in [10], (351, [57], [58], [72], [96] and [97].

Cavity-backed apertures on a ground plane have also received attention in
the literature. Typical reports on this class of apertures can be found in [2], [40],
[47] and [94].

Another type of apertures/slots that has been reported in the literature
consists of apertures in a conducting screen of finite thickness coupling two
different media. This type of study was first conducted by Auckland and
Harrington [6] in 1978 in order to develop a method for computing transmission
characteristics of narrc;w slits. Typical examples of such studies are to be found in

[43], [53] and [54].

1.2 STATEMENT OF THE PROBLEM

From the foregoing survey, it can be concluded that aperture problems form
a very important class of boundary-value problems and a considerable effort has
been directed towards solving these problems. In most of these studies, however,
apertures of simple and regular shapes have been treated. Although Method of
Moments can, in principle, be applied to apertures of arbitrary shape, its application
also has been limited to apertures of simple shape since the popular rooftop and

PWS functions are not suitable for modelling apertures of complex shapes.
In this study, we aim to develop a Method of Moments procedure, which is

capable of analysing apertures of complex shapes. For modelling arbitrarily-shaped



apertures, triangular patch modelling, initially proposed by Rao et al. [87] for
analysing scattering from object of arbitrary shape, seems appropriate because
triangular patches can conform to surfaces of arbitrary shape. As 'such, triangular
patches are to be used in discretizing the various aperture surfaces in conjunction
with appropriately defined basis functions for evaluating the aperture fields.
The problem, as treated in this study, may be divided into five main parts :
(1) General formulation for arbitrarily-shaped apertures coupling two
arbitrary regions.
(i) Analysis of apertures of arbitrary shape, in a conducting screen,
coupling two érbitrary regions.
(i)  Analysis of waveguide-backed arbitrarily-shaped apertures in a
ground plane.
(tv)  Analysis of arbitrarily-shaped apertures in the transverse cross-
section of a rectangular waveguide.
(v)  Analysis of radiating broadwall slots of arbitrary shape in a

rectangular waveguide.

1.3 ORGANIZATION OF THE THESIS

The work embodied in this dissertation has been arranged in Seven Chapters.

In Chapter 2, a Method of Moments procedure using the "generalized
network formulation" for aperture problems has been developed for analysing
apertures of arbitrary shape coupling two arbitrary regions. Various aspects have
been considered, such as choice of basis functions and testing procedure and
efficient evaluation of botential integrals over a triangular domain. Particular,
attention has been given to the treatment of unbounded region integrals with
singular kernels based on free spacé Green's function and closed region integrals

with bounded kernels based on dyadic Green's function of the electric vector
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potential. As a result, general expressions for various matrices and near- and far-
field parameters have been developed.

In Chapter 3, the problem of an aperture of arbitrary shape in an infinite
conducting screen coupling two half spaces with different electrical properties has
been considered. Equations for evaluating various matrices and parameters have
been derived. Parameters, such as surface magnetic current distribution,
transmission coefficient and transmission cross-section have been computed. These
results have been given in the last subsections of the chapter.

Chapter 4 deals with analysis of the problem of a waveguide-fed aperture of
arbitrary shape on the ground plane radiating into half-space. Explicit expressions
for evaluating various matrices and parameters have been developed. These
expressions have been used to compute aperture surface magnetic current
dis£ribution, transmission coefficient, antenna power gain and equivalent aperture
admittance seen by the dominant TE; mode. The various computed results have
been presented in the last subsections of the chapter.

In Chapter 5, we have investigated the problem of an arbitrarily-shaped
aperture in the transverse cross-section of a uniform rectangular waveguide.
Equations for evaluating various matrices and parameters have been derived.
Computation of equivalent aperture shunt susceptance and surface magnetic current
distribution has been done and results presented in the last section of the chapter.

In Chapter 6, the problem of broadwall slot/aperture of arbitrary shape
radiating into half space has been considered. Expressions for evaluating various
matrices and parameters have been developed. Computed parameters include
aperture surface magnetic current distribution and power radiated by the aperture.
The computed results have been presented in the last subsections of the chapter.

Chapter 7 concludes this dissertation by giving a review of the study in the

preceding chapters and identifies some problems for future work in this area.
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Chapter - 2

ELECTROMAGNETIC COUPLING VIA AN APERTURE
OF ARBITRARY SHAPE

In this chapter, the general problem of electromagnetic coupling between
two arbitrary regions via an aperture has been considered. The aperture 1s
assuméd to be located in a common conducting wall and can take arbitrary
shape. The analysis is based upon the "generalised network formulation" for
aperture problems’ [44]~-:'Field equivalence principle is first used to divide the
problem into two péft;. Next, boundary conditions are invoked to obtain a
magnetic field integral equation (MFIE) which is then solved using the method

of moments (MOM). Triangular patches, with appropriately defined expansion

functions, have been used to model the arbitrarily-shaped aperture. This leads to
\

Y

a matrix equation whose solution requires the evaluation of integrals with
bounded and unbounded kernels over a triangular domain. A method for the
evaluation of the integrals has been presented. Finally, various parameters,

which can be used to characterize the aperture, have been derived.

2.1  GENERAL FORMULATION

Fig. 2.1 illustrates the general problem of an aperture coupling two
dissimilar regions, called region 'a' and region 'b', which are bounded by perfect
electrical conductors (PEC). Although region 'a' is shown to be closed and region

'b" open at infinity, both regions can be either closed or open. Further, the

. o=l —i . .
impressed sources J,M , have been shown to be present in region 'a' and

region 'b' has been assumed to be source free, However, the more general case of
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Conductor
Region 'a’ Conductor

Aperture 's'
Aperture 's' perture s

Region 'b'

Fig. 2.1: The general problem of two regions

Fig. 2.2 : The planar view of the arbitrary-
coupled by an aperture

shaped aperture in Fig, 2.1,
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sources in both regions can be treated as a superposition of two problems; one
with sources in region 'a' only and the other with sources in region 'b' only.

As described in [46], field equivalence principle is first used to divide the
problem into two separate parts. Aperture 's' is closed with a PEC and equivalent
surface magnetic currents M and -M are placed over the aperture region on
either side, as shown in Fig. 2.3. This enforces the continuity of tangential

component of electric field across the aperture. The magnetic current M is given

by

M = AixE _ (2.1)
where E is the electric field in the aperture of the original problem and # is the
outward normal from region 'a'.

It is evident from Fig. 2.3 that the original problem has been divided into

two equivalent problems, each of which can be formulated independent of each

other. The field in region 'a' is due to the impressed sources TI,MI and the

equivalent surface magnetic current M over s with the aperture closed with a
PEC, while the field in region 'b' is only due to the equivalent surface magnetic
current -M over s in the presence of a complete conductor,

Enforcing the boundary condition that requires that tangential component
of magnetic field should be continuous across the aperture, we obtain the

operator equation

H M) + M) = -8, 2.2)

b

where ﬁta (M) and ﬁt (M) respectively, denote the tangential (to s) components

. — . . =i,
of ‘magnetlc field due to the current M in region 'a' and 'b' and H, 1sthe
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: =1 —i
tangential component due to the impressed sources J',M . It must be noted here

that all the fields should be calculated with the aperture closed with a PEC.
The operator Eqn. (2.2) is an integro-differential equation which can only
be solved approximately. We use the method of moments to obtain an

approximate solution of (2.2).

Define a set of expansion functions {mn,n =12,........ ,N} over s
JE— N —_—
and let M= 3V M, (2.3)

where V., are the complex coefficient vectors to be determined. Substituting

(2.3) into (2.2) and using the linearity of the ﬁl operators gives

{

N N _
2V HI M)+ DV (M) = -H (2.4)
n n

Next, define a symmetric product

<AB> = [[AeBds (2.5)
overS
and a set of testing functions {Wm, m=12 .. ,N}over s. Taking the symmetric

product of (2.4) with each testing function Wm, we obtain the set of algebraic

equations

N 2 — N b — i

2V, < Wi He (M)> +2.V, < Wi Hi (M )> = - <W,_.H, >

n n

m=1,2,.. N (2.6)
Eqn. (2.6) can be written in matrix form as
a b_-~ ~i
(Y +Y 1V = 1 (2.7)

15



(a) Equivalent problem (b) Equivalent problem
(valid for region 'a') (valid for region 'b')

Fig. 2.3 : Original problem divided into two equivalent problems
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b . . .
where [Ya] and [Y ] are, respectively, the aperture admittance matrices for

region 'a' and region 'b' defined as

=
|

= [<W,, H' (M)>] 0 (2.8)

[<Wm,th M)>] N (2.9)

<
Il

i - ,
and I and V are, respectively, the source vector and measurement vector

defined as
i
I = [_<Wm’Ht>]le (2.10)

and V= [V Iy, (2.11)

2.2 CHOICE OF BASIS FUNCTIONS '

The choice of basis functions in the MOM solution is critical because it
determines the convergence and accuracy of results [1] ana [111].

The commonly used basis functions can be broadly divided into two
classes : whole domain functions and sub-domain functions. Whole-domain
functions exist over the entire structure and are generally useful for problems
with regular shape and where approximate distribution of the unknown quantity
ts known a priori. Sub-domain functions, on the other hand, offer greater
flexibility in modelling complex structures. However, the most corﬁmonly used
sub-domain functions such as rooftop and PWS functions, are not suitable for the
present problem since an arbitrary-shaped surface cannot be épproximated by
rectangular patches. For an arbitrary-shaped éperture, triangular patch modelling
as proposed by Rao [82] for scattering from bodies of arbitrary shape, is

particularly appropriate as the shape of a triangle can conform easily to the
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geometry of an arbitrary surface. Furthermore, a varying patch density can be

incorporated in the discretization of regions where a higher resolution is desired.
Figure 2.4 depicts the triangulation of an aperture of irregular shape.

A higher patch density has been taken around the edges where there is greater

variation of contour gradient than elsewhere in the aperture in order to account

for 'edge effect'.

\

Assuming that a proper triangulation scheme has been found for the

: : : + -
aperture surface, let us consider a pair of triangle faces, denoted T, and T, .

having the n™ edge AB) as their common edge as shown in Fig. 2.5
g g g

Figure 2.5 illustrates a triangle pair associated with the n™ edge. Also

.. _* .. -
shown are the local position vectors p, and the global position vector T Any

point in the triangles may either be located by its position vector T in a global

. . . - - t
coordinate system with respect to O or by its local position vectors pp In T,

defined with respect to free vertices F and F', respectively.

We define a vector basis function associated with the n™ edge as

,

l"+ By, FinT'
2An
S L
M = — Py, TinT (2.12)
2A
0 otherwise

. * . t
where | is the length of the edge and A, 1s the area of the triangle T, . The
: . + - . : : .
designation T, or T, is determined by choosing a positive current reference

L C L + -
direction for the n"™ edge which is assumed to be from T, to T,
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n edge
(non-boundary edge)

Fl

Global coordinate origin for
O position vector T

Fig. 2.5 : A triangle pair associated with the n™ edge
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Some of the unique properties of ﬁn which make it appropriate for the

present problem are

(1) The current has no component normal to the‘boundary (which
excludes the common edge) of the surface formed by the triangle
pair Tn+ and Tn— and, as such, has no magnetic charge along this

boundary. Thus, basis functions need not be defined on the edges

which form the boundary of the aperture.

) ) _+ + —
(2)  From Fig. 2.6, since pn)normalequals to 2A, /1, and Pnnormat 10

2An_/ln, from Eqn. (2.12), it is seen that the current at the edge is
continuous and normalized to a value unity.
(3)  Using the definition of Mn in (2.12), the associated magnetic

charge density, m_,is

—, TinT, (2.13)

0. , otherwise

It is found that the charge density is constant in each triangle and

: : + -.
the total charge associated with T, and T, 1s zero.
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Pn,normal

Fig. 2.6 : Normal components of the local position vectors
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2.3 EVALUATION OF MATRIX ELEMENTS AND EXCITATION VECTOR

For computational simplicity, we follow Galerkin procedure with the
weighting functions Wm =M

m-

From eqn. (2.8) or (2.9), a typical matrix element for the region is

given by
I r —
Ymn = <MIH’H[ (Mn)> (214)
= [[ M, oH (M, )ds + [[ M, eH/ (M, )ds
T Tn '
= [[ M« H/ (M, )ds (2.15)
Tj:
where the notation .|‘J‘ ( )ds  has been introduced for compactness.
+
T

m

In terms of the electric vector potential F(F) and the magnetic scalar

potential ¢(r), the magnetic field H (Mn) can be written as

H (M,) = -joF, - Vo, () (2.16)
where E, () = ¢ [[G (F/F)e M, (7)ds 2.17)
T
¢, (1) = V_f@ (2.18)
- joue ,

In Eqn. (2.16), E(F/F') denotes the dyadic Green's function of the region under

consideration. It may also be noted here that the scalar product in Eqn. (2.15)

: =T — :
automatically selects the component of H (M) tangential to the aperture

surface.
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Using two-dimensional divergence theorem and the fact that there is no

component of current expansion function normal to the boundary of the triangles

+ " :
T, , substitution of Eqn. (2.16) in Eqn. (2.15) leads to

Yma = =jo [[M,,oF, ds + [[mp, 6, ds (2.19)
T T
where m_ = V.Mm (2.20)

Eqn. (2.19) contains quadruple integrals; a double integral over the field
. t . . t . .

triangles T, and a double integral over the source triangles T, 1involved in the

computation of ?n (r) and b, (). In order to reduce the numerical computations,

. t . .
the integrals over T, can be approximated by the values of Integrals at the

centroids of the triangles. This procedure yields

—Cc -

Yot ==l {jw [Fn @) P F ) o B J +0n() = 4, G } @21)
where E (%) = ¢ [[GEH7) oM, (7)ds (2.22)
T* '
bu ity = — [f {v-EG“IF')}-Mn (F)ds' | (2.23)
jou 73

+ . : +
In (2.21) to (2.23), b’; are the local position vectors to the centroids of T, and

_ct 2+ 3%+ .. . * .
= (1, t0n, +1I, )/3 are the position vectors of centroids of T, with

respect to the global coordinate system.
Similarly, using the centroid approximation in Eqn. (2.10), an element of

excitation vector can be written as

. ‘_. BC+ - BC-
L = —lm{H:@:*)- 5 L G)e 2 } (2.24)
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2.4 EFFICIENT COMPUTATION OF INTEGRALS

. r . . .
Evaluation of each matrix element Y, 1nvolves the testing function

associated with the m"™ edge and the basis function associated with the n™ edge.

However, the domain of Integration is in triangle T, and the location of the

c+ [t
r

observation points (T, , I, ) are associated with the triangle faces attachet to

the m" edge. This implies that if edge-by-edge approach is used, integration over

the same triangle face will be involved in the determination of several elements

r . .
of Y- A more efficient computation procedure would be to evaluate the

integrals over all the triangular surfaces sequentially, store the results and use

them in the computation of Y. after multiplication with appropriate factors,

Consider the evaluation of the vector potential and scalar potential
integrals for a given source and observation face-pair. Figure 2.7 illustrates such
a face-pair with the observation point in face p and with the source currents

residing in face q. Each of the three basis functions which may possibly exist
simultaneously in T is proportional to one of the vectors Py, P, or py defined
in the figure.

Each vector Ej,j =1, 2, 3 1s shown directed away from its vertex but

would be directed toward the vertex if the current reference direction from the
associated edge was into the triangle,

Consequently,

P = £(F-F) (2.25)
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Fig. 2.7 : Local and global coordinates and edges of triangle T? with

observation point in triangle T?
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where the positive sign 1s used for the triangle TV and the negative sign for

T4 fp and T' are, respectively, position vectors of the field and source points.
If ?qu denotes the vector potential at Fp in T due to MJ. (j=1,2,3) 1n

T , 1t can be written as

B = e ][ GG, /7)o M(7) ds' (2.26)
T4
—_VeFEPd
and ¢ = — 1 (2.27)
) joue

The integrals encountered in this study can be classified into two
categories : those pertaining to closed regions, e.g., waveguides and cavities and
others pertaining to open regions, e.g., free space or half space. While the
integrand of the former type is bounded at every point within the integration
domain making numerical integration possible, the latter type of integrals hé\\/e a
singular kernel for coincident source and field points and require careful

handling.

2.4-1 Integrals with a Singular Kernel

For the half space region, the dyadic Green's function E—(Fpﬁ') n

Eqn. (2.26) 1s
—Jk|, =T

€

GG [P = I (2.28)

47‘C|p r'|

where 1 is a unit dyad.

Substituting (2.28) in eqns. (2.26) and (2.27) gives
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—Jk|rp—r|

ij ) — = (2.29)
oIkl
Pq _ ‘e .
P = MJM jj V\ M) = A ds (2.30)

Substitution of MJ. (') from Eqn. (2.12) and V'sM; (¥') from Eqn. (2.13) leads to

] ~JKIE, -7 I
= Pq € _] — € ] J
F —_— ds' = I 231
] 4m 2A, I bor -7 4m 2A, f (23D
Tq
_?l —Jklfp_r| ;l
o = — H — Smdst = —— b (2.32)
41tjcoqu T T, — | 4nJcoqu
where
~jk|t, -7 —Jk|ry -7
— e — 1 — ds
[. = s' = . s'
f .I..I.pj Ir -7 H Pj ,fp 7 .[ pjlfp_ﬂ
71 71
=1 + L, (2.33)
=Jk|ry -1 =~ Jk|, -1'|
e , e I ds'
b= | e = [ S )
It -1 p |rp r 1 lrp r'|
T T
= IC+I52 (2.34)
—jk|r, 1|
— € -1,
L = [[ pi———ds (2.35)
Do -1
q p
— ds
I, = H pj|F T (2.36)
Tq P
—JKk|T, -1
e -1
[ = — s’ 2.37
N 237)
q p
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ds
I, =H E jf’l (2.38)
Tq p

The integrals I, and I, have bounded kernels over the integration domain

and can be evaluated using numerical integration techniques. However, the

kernels of integrals I, and I5, have a singularity for Fp =T' and the integration

domain is a plane triangle. Several workers have considered the evaluation of

this type of integrals [110], [17] and [39]. We follow here the method proposed
by Graglia [39].

Figure 2.8 depicts a plane triangle T4 with some of the parameters

required for the evaluation of singular kernels. fj and ﬁj are the unit tangent and

unit normal, respectively, to the j' edge of T4 while Lj are the local area
coordinates (j = 1, 2, 3).
Let ﬁj be the position vector of the " vertex defined by

pj = (xj,yj) 1=1,2,3 (2.39)
and IJ. be the length of the side opposite the | vertex expressed as

i = Pintjer = Pasjurl (2.40)

where m and n are dummy variables such that

.

3, j=1
0, j=23

The area of T3 denoted by A is given by

A = I(EJ —5n+j+1) X (5m+j—1 - §n+j+1),/12 (2.41)
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Fig. 2.8 : Unit tangent fj, unit normal ﬁj to the edges of T, and area

coordinate Ly(j=1,2,3)
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The unit outward normal, f on the plane of T is given by

P {(-ISJ = Pusjer) X (§m+j—1 — 5“+J+1)}

- A (2.42)

We define unit tangents fj and unit normals ﬁj to the edges of T as
t = (Pmsjor — Pasjen) /] (2.43)
fj =ty (2.44)

Cartesian coordinate system is not convenient for use with triangular shape. A
convenient set of coordinates is the area coordinates Ly, Ly, L3 [116] defined by
the following linear relation between them and the Cartesian system :

x' = lel + L2x2 +L3x3

y' = Ly, +L,y, +L,y; (2.45)
I=L, +L, + Ly
To every set Ly, L,, Ly (which are not independent but are related by the third
equation above) corresponds a unique set of Cartesian coordinates. At vertex j,
Lj =1, Lj.1 = Lj+1 = 0. A linear relationship between these area coordinates and
Cartesian coordinates implies that the contours of L; are equally placed straight
lines parallel to the side on which L; =0, etc. (Fig. 2.8).
Solving Eqn. (2.45) for x' and y'
L = (al+b]x'+cly')/2A
p = (ay+b,x'+ c,y')/2A (2.46)
3 = (a3+byx"+¢5y')/24

o

where

a1 = Xp¥3 T X3Y,
b=y, -y, (2.47)
Cl = X3 - X2
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In a cyclic exchange of 1 52 — 3,

2 T X3¥p T X3 (2.48)
by = y3-y,

Cy = X} =X,

and  a; = xyy, - X,¥] (2.49)

For a simplex, such as a planar triangle, the shape functions denoted by Ny, N,,

Nj; are simply the area coordinates, i.e.

Ll
N, = L, (2.50)
N, = L,
In Eqn. (2.45),

Np = 1-N, - N; (2.51)

which upon substituting in the first two equations in (2.45) gives

X

1l

x; + N, (x, —xl)+N3(x3 -X)
Y, + N2 (Y2 —y1)+N3(Y3 —y])

, (2.52)

Also, in Eqn. (2.25), T' can be expressed as

r'=xx'+yy'

= ’A({x1+N2(x2 —-Xl) + N3 (X3 _Xl)}+§’{y1+N2(Y2 - yl) + N3 (Y3 - yl)}

(2.53a)
or  T=F 4N, -7)+ Ny(F, - F) (2.53b)
Hence, Bj in Eqn. (2.25) can be written as

B = i{(Fl—Fj)+N2(F2—F])+N3(F3—F])} (2.54)
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Substituting Eqn. (2.54) in Eqn. (2.36) gives

=t (rl—r)H +(r rl)ijz__ +(r3 rl)ﬂN3|_ i (2.55)

I,, Eqn. (2.38) can be expressed in a similar manner as in (39, Eqn. 22], for

observation point lying on the plane of Tq, as

0 J J
Iy = ij In| —— (2.56)

o+ % : : . :
where Pt 8§ have been derived in Appendix-A and summarized as

+ -
Sj = lpJ - po' (A-Z)
- e, (2.57)
T _ <+ »
tj = Sj ° tj (A-3)
0 {— Y D D
Pj :‘(mwﬁq—pr(mwﬂl‘Pmﬂ4)”i}’ (A9
or pjo = , (§n+j+l _50) X {j ‘ |

In a similar manner as given in [39, Eqns. (23) and (24)], we can write

N

1 1 3 t++ +
ds' 0 i SJ'
J.J. N2 ,I_' _fl, = NZ le_] In t_ _
q p j= . +s
T N, N, j
_1 )
-1 L(ﬁ_lj
I y3l L4 ,
1|1 - X3 [ﬁJ . o
+ —| = n ] 1n; f : (258)
2] 1 3y; y E{ 173
1
0 J—
i 3o
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+ o+ -

0_ _ - o 2 ] J
where f3j —[sj tj = 3 J+(pj) In| — (2.59)

Eqns. (2.58) and (2.59) together with Eqn. (2.56) when substituted in Eqn. (2.55)

give .

2.4-2 Integrals with Bounded Kernels
For the case of closed boundary regions, such as, waveguides and cavities,

the potential integrals of eqns. (2.26) and (2.27) have kernels which are bounded

over the integration domain T%. Similarly, the integrals I, and I of eqns. (2.35)
and (2.37), respectively, have bounded kernels. These integrals can be integrated
using numerical Gauss quadrature techniques. The integrals are conveniently
evaluated in terms of area coordinates (L, Ly, L3) following the procedure of
Zienkiewicz [116].

Surface integrals in eqns. (2.26), (2.27), (2.35) and (2.37) can be transformed
into integration over area coordinates (Ly, L3) by the following transformation

formula

1
[ £@)ds' = 24

T4

_L2
o) [ +G-0)L, +G-F)L,]dL,dL, (2.60)
0

[

where T' is given by eqn. (2.53b) and a factor of 2Aq1s derived in Appendix-B.

The right-hand side (RHS) of eqn. (2.60) and similar expressions developed
for eqns. (2.26), (2.27), (2.35) and (2.37) are.in a form amenable to numerical
integration. For example, using Gauss-Legendre quadrature formula, the RHS of

eqn. (2.60) can be evaluated as
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1 1—L2

4 [tR+G -, +G )L, L, diL,
0 0

Mg

k=1

W) £ [+ @ - 7))Ly + G -7)Ly, |

(2.61)

Where k denotes the k™ sampling point in the domain of T4, W(k) is the weighting

factor for the k™ sampling point, Lok and L3y are the L, and Ly values at the k™

sampling point. W(k), Ly, L3y are given in Table 2.1,

Table - 2.1

Gauss-Legendre Seven-Point Integration Formula

Sample | pt, Pty Pts Pty pts Pt pty 7
L), Ls Vi, v, Vo, Voo [V, V3 [V, v, V.V, Vi, Vs VsV,
Weight | W, W, W, W, W, W, W,
1 9
V==~ =
173 Wa 40
6—+/15 55—
v, - N w, = 153 J15 A
21 1200
9+2415 155+ /15
V= V2 Wo=—"Y2 4
21 1200
Vy = 6+/15 A = Area of triangle
21
Vo o 92415
21
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2.5 COMPUTATION OF APERTURE PARAMETERS
In the subsections that follow, we outline the computation of some important

parameters that are used to characterize an aperture.

2.5-1 Magnetic Current Distribution over the Aperture
Since the aperture has been discretized into planar triangles, magnetic
current distribution over each triangle, including that on its interior edge, is given by

Eqn. (2.3) with Mj(f') defined in Eqn. (2.12) as
. 1. [= St
M(-I:') _ o p_] s rqln TJ
: 2Aj 0, otherwise
in which Ej is given by Eqn. (2.25) as
pj== (r'- rj)
which can be written in terms of its components as
5=+ [k + 9 (y-y)] (2.62)

Therefore, x- and y-directed magnetic currents can be computed using

eqns. (2.3), (2.12) and (2.62) as

o3
X J "
M ‘Z—zA.Vj (x'-x,) (2.63)
=170
) MY—ZL—V('— ) (2.64)
CH2A; g '

where superscripts x and vy, respectively, denote x-directed and y-directed magnetic

currents.
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2.5-2 Computation of Transmission Coefficient, T

The transmission coefficient T of an aperture is defined as the ratio of the
time average power transmitted, denoted P/, into region 'b' by the aperture to the
time average incident power intercepted, denoted P ¢ » by the aperture from region

'a’. Mathematically,

P =Real [[E'xH"e g5 (2.67)
apert .

A

Using Eqns. (2.9) and (2.11), P, can be expressed as
~ box _x
P =Real {V[y ]V } (2.68)

. . . t t
where tilde denotes transpose, asterisk complex conjugate and, E,H are the

transmitted electric and magnetic fields, respectively.

P. c 1s given by
Pic = Real [[E'xH" o5 (2.69)
apert

—i —i _ . .
where E and H are the electric and magnetic fields incident on the aperture,

E and 0 depend on the type of excitation,

P
Hence, T = . (2.70)

inc

It is to be noted that T depends on both the nature of source and the geometry of the
aperture. A related quantity of interest is the transmission area TA, defined as the
transmission coefficient times the area of the aperture. Thus,

TA=TxA, | (2.71)

where Ap is the effective aperture area.
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2.6  FAR-FIELD CALCULATIONS
The radiation field (far-field) may easily be calculated by making use of
reciprocity theorem and the fact that the field of a magnetic current element is a

known quantity [49].
Consider a magnetic dipole K at T =1, Fig. 2.9, with a current density
given by

0=KsG-7,),

1

§(T-T ) b= (2.72)
r-r )= :
m 0, elsewhere

Suppose the dipole produces a field Em(F) and ﬁm(F) in free space. If
Jand M are the source currents, whether impressed or induced, whose field is to be

found, then the dipole with its field and J, M with their fields, comprise two source

field pairs which must be related by reciprocity.
JJJE® T° - H* e M%) = [[JE® e T ~He M?)dv (2.73)
\Y \
-a —a -b —b . .
where J',M andJ M are two sets of sources in space at locations 'a' and 'b/,

respectively, and E* H* and E° H® are the fields at these locations. The
integrations in Eqn. (2.73) include all space. Therefore, using Eqn. (2.72) in
Eqn. (2.73) we may write

KeHp @) = [[JOeE™ - MeH)dv (2.74)
\Y%

where ﬁm (r,,) 1s the magnetic field due to J, M at r and Em, H' are the fields at
location of J,M due to the magnetic dipole. It is noted here that the various

components of the far-field ﬁm (r,) may be obtained by orientating the magnetic

dipole accordingly.

38



(a) (b)

Fig. 2.9 : Source-field pairs for the evaluation of the radiation field of current

sources J and M.
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2.6-1 Determination of Far-field Measurement Vector

For the general problem illustrated in Fig. 2.11, measurement of magnetic

field ﬁm at an arbitrary point T, inregion 'b' depends linearly on magnetic current

-M on 's". As discussed earlier, this measurement may be done by placing a
magnetic dipole K & (r-t,) at .. and applying the recipfocity theorem to its field
and to the field of the original problem, in Fig. 2.3b. Now the set of sources

comprises (he dipole at r, and the magnetic current M on 's radiating in the

presence of a continuous PEC at z = 0, The problem involving the magnetic dipole

1s called the adjoint problem and is shown in Fig, 2.10.

Aperture 's'
Region 'b'

Fig. 2.10 : Adjoint problem for determining _ﬁm

Both measurements of the fields are made in the presence of PEC.

Application of the reciprocity theorem to these two fields yields

H K=-<MH" > (2.75)
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“where H,\ is the magnetic field component in the direction of K at r,, dueto -M

in the presence of a PEC and H' s the magnetic field from K in the presence of a

PEC. To evaluate Eqn. (2.75) we substitute for M | according to Eqn. (2.3), giving

_ . m
Hm'K:_Zvn <_Mn’H >
n

;__Zvn [[M, «F™ ds (2.76)
Con

apert

Sincé the scalar product in the integrand of Eqn. (2.76) would involve only

the tangential component of the fields, we may write

. m
H K- 3V <M | H > (2.77)
n
o KH, :[f)'_"J v | (2.78)
-m o oom ‘ :
where P = -[< M, H, >]Nxl ‘ (2.79)

In order to obtain a component of ﬁm on the radiation sphere, we orient the
m

dipole K perpendicular to . and let r tend to inﬂriity. At the same time, we

adjust K .80 that it produces a unit plane wave in the vicinity of the origin. The

required dipole moment is given by

=] -iKg oF
o :_Jﬂie 1Ko oy (280)
K 4nr,
. 5o
where k, :15 N (2.81)
and the p]ane_wzivelproduce_d by it in the vicinity of the origin is
o Y -jk net
Hy, = Uy € Hm et . _ , (2.82)
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where ﬁn‘l' 15 the unit vector specifying the polarization of the wave, k. is the
wavenumber vector pointing in the direction of wave travel, and T is the position
vector to an arbitrary point on s. Substituting Eqn. (2.80) in Eqn. (2.78), gives

Hy, =108 iRk o]

m = (2.83)
47 -

| o . ; ]n . . : .
Once the measurement vector P is determined, the far-zone magnetic field

can readily be c‘a‘]culﬁted from (2.83). The procedure for determining P is outlined

below. -

' Fig‘;'. 2.11"illustrates the cross-sectional view of the aperture (Fig. 2.2) and the

geometry and parameters of the measurement vector.

To

measurement
point

»
z
Aperture

Conducting
screen

[Fig. 2.11 : Cross-sectional view of aperture 's' and measurement vector in

region 'b’
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In the expression for p (Eqn. 2.79), ﬁ:n is the tangential component of the

magnetic f“leld-,at‘ any point T on s which can be obtained, using the following

r=Xx+yy (2.84)

|

=—k T =- k, (xsin 0" coso" + ysin®” sing" + 2cosp ) (2.85)

m 0 'm

ﬁtm in Eqn. (2.79) can be written as

ﬁllm _ .2H:no 2Hmo (2.86)

mo . . . . - .
where H ~ is the tangential component of the magnetic field when the dipole K is
. - \

radiating into free space.
First we express Eqn. (2.25) in terms of its x and y components as
t+ . %

Pn = XPpe + Y0y, (2.87)
which upon s'u_'bstitUtbing in Eqn. (2.79) gives a component of P"
I o % t |
p" :X— ” Hy ppyds+ H Hy, poyds (2.88)
| . \

By applying Galerkin method and centroid approximation to (2.88), an may be

 writtenas

m : ‘ n]6 . c+ c+ mo mo mo |
B {6 et + ) 6 o G o 41 6 e

(2.89)
where H™ (7%%) = (eHg},, GHIL) el e (2.90)
and from the defmition of FCi following Eqn. (2.23), we have
vKl‘n _niil— k ( Xn +xn +xg )smem cos " +(y}]i%ygi+ygi)sin6m cos™
(2.91)
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The antenna power gain may be specialized to four principal planes given by

. ~ m o0 _— .
ny (U, =y,¢ =0) for y-polarisation measurement in the

y = 0 plane (2.92a)

R A om 0 . .
Gey (U,=6,¢ =0) for o -polarisation measurement in the

y = 0 plane (2.92b)

~ ~ m 0 . . .
v Gy (U,=6,0 =90) for 0 -polarisation measurement in the

x =0 plane (2.92¢)

. ~ ) . .
and G, =% ¢ =90) for 0 -polarisation measurement in the

X = 0 plane (2.92d)
The magnetic fields in these four principal planes can be obtained as follows after

substituting (2.91) in (2.90) :

JAk'“(VH:+xZi+xH)sin6m
—mo _ct . 3 n7tn T T .m T
Ky 1+ 2+ 3+ m
—=(x, +x_ " +x_ " )sinb
— mo _CE A3 nn n ] m e
(Hy gy (4, )=06e (529 Z_EJ (2.93b)
.il(”l B 2 3+
—— ¥, *tY, +y, )sin0O
— mo Ct, A 3 “nh “n n T m T
K, 1 2+ 3+ m
—(y, +y, +y. )sin®
— + n"Jn n
H™), )= re [g > o™ -gj (2.93d)

2.6-2 Transmission Cross-section

Transmission cross-section t is defined as that area 1n which the incident
wave contains sufficient power to produce the radiation field ﬁm by omnidirectional
radiation over half space.

Let the infrinsic impedances of region 'a’ and region 'b' be m, and n,

respectively. Power incident, Pine, on the aperture is given as

44



io 2
Poe = M, [H| (2.94)
and power transmitted, P, by the aperture as
2
P, =, |H_| (2.95)

T 1s then determined by the ratio of P/P,,. over half space S (where area of
2

S=2nr_).

2

|

2 2 i
Thus, © = 2nc'm, |H_ [ /n |H" (2.96)

where H" is the magnetic field over the a erture de to sources Tl, M in free space,
g P Y

H components have been derived in Sec. 3.2. The far-zone magnetic field ﬁm has

been expressed in the four principal planes by eqns. 2.93(a)-(d), n, and n are the

intrinsic impedances of region 'a' and region 'b'. res ectively..
, Yy

2.6-3 Determination of Power Gain Pattern

¥

Antenna power gain G(9,4) is the ratio of the radiation intensity in a given

direction to the radiation intensity which would exist if the total power were

radiated uniformly in half space. That is

v (6,9)

Wav

G(6,9) =

(2.97)

If Py is the total complex power radiated into half space the average radiated

power is
W,y = Real(P)/2n (2.98)
Also, the radiation intensity in a given direction [49] is
v(©,0) = r_|H,_[/n (2.99)
where ﬁm is the magnetic field intensity at the measurement point and r,1s

the distance of this point from the origin of coordinates.
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Substituting (2.98) and (2.99) in (2.97); we obtain
' 2

kon .m_ T~ 2

G(6,4) - 87tR—e(Pt)|[p 1 V] (2.100)

The complex power P transmitted through the aperture in Eqn. (2.67) is

P = [[ ExH e2ds | (2.101)

apert

Using Eqn. (2.1), P, may be written as

P = ”Mﬁ ds (2.102)

apert
Since the transmitted power is dependent only on the tangential component of H at

%
z =0, using Eqn. (2.3) and the tangential component of H yields

: pr Ny
[H1 = 3V [H (-M)] (2.103)
" n=]

which upon substituting in (2.102) together with substitution for M according to

(2.103) gives P.l as

M
P = - Z Vin Vr: I_[ Mm * [ﬁtb (Mn)]‘ ds ' (2-104)

m=1 apert

Using (2.9) and (2.11), P, may be expressed in a matrix form as

P =[VI[Y]V ‘ | ‘ (2.105)

Substituting (2;104) and (2.105) in (2.103), the expression for the power gain

becomes
2 mT 12
k —
G(6.4) = . e ]T[Y] 1 (2.106)
| 8 AT b1
Re{[Y] I} [Y ] {[Y] 1]}
where (Y] = ¥ +y"]"
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2.7 SUMMARY

In this chapter, a general formulation fcér the boundary value problem of an
aperture of arbitrary shape coupling two arbitrary regions has been developed.
General equations for solving the various matrices, aperture surface magnetic

current distributions, transmission coefficient, transmission area and antenna gain

patterns have been derived.
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Chapter - 3

ELECTROMAGNETIC TRANSMISSION THROUGH AN
APERTURE IN A CONDUCTING SCREEN

In this chapter, the problem of two dissimilar regions, both open at
infinity, coupled via an arbitrarily-shaped aperture in a conducting screen is
considered.” The problem is a special case of the general problem discussed in

Chapter 2.

3.1 FORMULATION

The geometry of the problem under investigation is shown in Fig. 3.1.
The z = 0 plane is covered by a perfectly conducting screen except for an
aperture, which can be of any shape. The regions on either side of the screen are

assumed to be different dielectric media with electrical parameters (u,,e ) and
(k,,€,), respectively. The excitation is due to a plane wave, which is obliquely

incident on the aperture.

As discussed in Chapter 2 and depicted in Fig. 3.2, equivalence principle

is utilized to divide the problem into two separate regions, namely, region 'a'

(z <0) and region 'b' (z> 0).
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Region 'a’

(CRET)

./

Impressed
sources

region ‘a’

(g4 11,)

=

AY

region 'b’
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¢
ei
z
Aperture
‘K Infinite
Conducting

screen

Fig. 3.1: An Arbitrarily-shaped Aperture in an Infinite Conducting Screen
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Application of :
Image Theory
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(b) Equivalent problems
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Fig. 3.2 : Original Problem
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|
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The problem is now described by matrix equation

=1

Y+ YV = 1

(3.1)
where the aperture admittance matrices for region 'a' and region 'b' are given by
Y] = [<Mm,Htﬂ(2Mn)>]NxN (3.2)
b b, A
[Y'] = [<M, H (M, )>], (3.3)

and 1 and V are, respectively, the source vector and unknown coefficient vector

defined as

<l i ’
I = [— <Mm’Ht >]N.\'l (3'4)

VAEEAAN (3.5)
32 EVALUATION OF MATRIX ELEMENTS AND EXCITATION
VECTOR

Using the centroid approximation discussed in sec. 2.3 the elements of the

aperture admittance matrices can be written as

[ —c+ —c-
Yn?n = —Zlm {J(D Fna (r:1+).p_nz1_ + an (an—).% + (bx? (Fn?_)_ d);? (Fn$+):l} (36)

—Cc-
c+

M Ser
Yo, = -2l {jw F (& )-%m"(nﬁ‘)-‘% + a0 EH [V (3.7

where ET(f%) =g ”E (F*[F)e M, (7))ds’

+
Ty

(3.8)

INGOE jo:: J] {V'°Er(FCi 'F')} PO "

[ o
Ta

In eqns. (3.8) and (3.9), superscript r (either a or b) denotes the region and
=r

G (FCi/F') is the dyadic Green's function.




Evaluation of matrices Yl:n and Yr:n given by eqns (3.6) and (3.7),

respectively, involves a number of integrals given by eqns. (2.35) to (2.38), which

are repeated here for the sake of completeness.

_.Jk|rp—r| 1) '
jjp - ds' (3.10)
J..I.pj |r _ (3.11)
(e—jklf -7 _1)
I = ﬂ st (3.12)
ﬂ B —r| (3.13)

Eqns. (3.11) and (3.13) are evaluated as per procedure in sub-section 2.4.1. The
remaining two integrals can be evaluated as described below.

Using eqn. (2.60) in conjunction with eqn. (2.54), eqns. (3.10) and (3.12) can

be written as

1 1-L, Jk|r r -1
I, =2A (r—f.)j [ dL, dL,
R Ely
p
( )1 1-L, - JKIT —r|
- [
+1ir, - T, — dL, dL
2 lb[ 4; 2 |rp—r'|
1 1-L, — ik =T )
ch-) [, Dy dL, (3.14)
o 0 IrP—r
1 1-L, ‘Jkr -1 1
L=2A ] | (e—_—dL dL, (3.15)
¢ 4 5 0 |t -1
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where |, =T'| = |(f, —§) = (% ~H)L, + (§ - {)L3))| (3.16)

Applying Gauss-Legendre quadrature formula given by eqn. (2.61) to eqns.
(3.14) and (3.15), we can write

kk ~ik[e =1
_ (e -1
Ib:AqZW(s) (ri—rj( — )
- | LT
—JKIr -1 ) - k[t -7 .
-~ 2\ (e -1 - -\ (e -
+ - 1) PR + - 1) L (3.17)
P
kk A
-1
L=A Y We & D (3.18)
C q _
o |t -1
in which | Fp —1'| ineqn. (3.16) is now given by
[T =71 = (G =1) = (7 = 7)Lag + (15 = T))Ls,)| (3.19)
3.2-1 Evaluation of Excitation Vector
Excitation vector 1 is given by eqn. (3.4) as
=i i
I' = [-<M_H >],, (3.20)
For the present case, when the aperture is closed with a conductor, we have
i —io
H = 2H, (3.21)

where Hlm is the tangential component of the magnetic field over the aperture

regton for a plane wave travelling in free space, which can be written as
—io R . " . _.Ei.— ) .
He = [uei Hy + 3, H j oK'+ (3.22)

i

k=1, K = ki(f(sin 6 cos<pi+ y sin 8'sin (pi + 2c0s0 j (3.23)
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where U ; is a unit vector specifying the direction of the incident wave and k. is the
r

propagation vector.

Substituting eqn. (3.21) in eqn. (2.24) gives an element of excitation vector

as

. . 5C+ . EC—
1 = —2lm{ PGy e o B ) B (.24

where ﬁ:o (F:]i) can be broken up into its x- and y- components as :
Hio cty =~ Hio —ct ~ Hio ct 3\ 25

Further, using eqn. (3.22), H’t‘;{ (Ts*)and H‘t; (f°*) can be expressed as

4 i ; : : : 0 =ct
HY (FS) = [Hé c0s6' cos o' — Hy sin ¢’ ] e K o (3.26)
H't‘; Ity = [Hé cos0' sing' + H(i, cos ' ] eI T (3.27)

Using expression for F:li in eqn. (2.23), k' ot can be expressed as

S K S
Kletot = 3 x},f+xfni+xl3n;t sin @' cos @'

+ ( y:: + yfni + yfni ) sin0'sin (pi} (3.28)

3.3 RESULTS AND DISCUSSION

Based on the preceding formulation, a general computer program has been
developed which can be used to analyse apertures of arbitrary shape in an infinite
conducting screen separating two dissimilar regions. The formulation has been
validated by considering a rectangular aperture for which results are available in the
literature [67]. Thereafter a number of aperture shapes have been studied which

include rectangular, circular, elliptical, diamond, cross and H.
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For each aperture shape, different discretization schemes were considered
before arriving at the optimum one. Similarly, convergence studies were made in
each case to determine the number of expansion functions that should be used.

In this section, we present some representative results for different aperture
shapes. For simplicity, the regions on either side of the screen are considered to be
free space and a y-polarised plane wave (H,) of unit amplitude has been assumed to

be incident normally on the aperture.

v

3.3-1 Rectangular Slot

The first example is a narrow slot of width A/20 with its length along
x-direction. Fig. 3.3 shows the triangulation scheme for the slot. The slot surface s
discretized into 56 triangular patches resulting in 68 non-bouqdary eijg\_es
(68 expansion functions). The associated nodes, edges and current directioﬁ; in
triangle edges are also shown.

The edges are ordered according to the directions of the arrows. This ensures
the continuity of magnetic current across each edge (excluding the boundary edge,
on which current is zero). The + and — signs denote T" and T triangles, respectively,

associated with an edge.
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Table 3.1 shows the results for convergence study on transmission
coefficient as a function of the number of expansion functions generated by varying

triangular patch density over the slot surface.

\ Table - 3.1
Convergence of Transmission Coefficient
No. of Expansion Transmission
Slot Length Funct?ons Coefficient % Change in T
L
N T
38 0.1719670
48 0.1795997 4.44
M4 53 0.1825320 1.63
68 0.1839750 0.80
38 8.340040
48 8.169690 -2.11
M2 53 8.028399 -1.79
68 7.956730 -0.89
48 2.141330
30/4 53 2.126040 -0.7
68 2.122330 -0.2
38 1.547793
48 1.521988 -1.67
A 53 1.520760 -0.80
68 1.519995 -0.15

From the table, it is noted that 48 expansion functions are quite sufficient to
yield converged results.

Fig. 3.4 and Fig. 3.5 show the magnetic current distributions and the
transmission cross-sections, respectively, for slots of various lengths, which were
obtained using 68 expansion functions resulting from the discretization shown in
Fig. 3.3. For comparison, we have also plotted the results obtained by Mautz and
Harrington [67] using rooftop functions (RTF). 1t is found that our results are in

good agreement with their results for slots of length A/2, 3A/4 and A.
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However, for A/4-long slot, a large discrepancy between our results and
those published in ref. [67] was observed. Since we had already tested our
procedurev for convergence and were reasonably sure of the accuracy of our results,
we undertook a detailed study of the method in [67] to identify the cause of this
discrepancy. A computer program was written based upon the equations derived in
[67] and its results for a A/4 slot are shown in Fig. 3.6. It was found that the data
presented n [67] for the A/4 slot was obtained with only 5 sub sections (4 RTF)
along the x-direction. Fig. 3.6(a), on the other hand, shows that about 40
subsections are required to obtain convergence. Fig. 3.6(b) and (c) show our results
with 56 triangular patches and the results of Mautz and Harrington [67] using 4
RTF and 47 RTF; it is found that, in the latter case, the agreement between our
results and those obtained using rooftop functions is good. Thus, the reason for the
apparent discrepancy was that the results in [67] were obtained using insufficient
number of expansion functions. Further, it was found that for the other slot lengths

also, the agreement improved if the number of rooftop functions was increased.
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Fig. 3.7 shows the transmission coefficient as a function of slot length for
slots of different widths. It is seen that as slot width is decreased, the transmission
coefficient progressively increases accompanied by a slight increase in the resonant
length of the slot. This can be attributed to the presence of a relatively high electric
field within the narrow slot compared with the field in the broad slot for the same
time average input power. As a result, computed parameters, such as transmission
coefficient, transmission cross-sections and surface magnetic currents for the

narrower slot are higher,
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3.3-2

Square Aperture

The discretization used for a square aperture is shown in Fig. 3.8. It consists

of 96 non-boundary edges. Apertures of the size \/4 X M4 and A/2 x A2 were

considered.
y
A
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Fig. 3.8 : A Square Aperture Surface Discretized by Triangular Patches Showing

square

Edges, Nodes and Current Directions
The results for convergence test on the transmission coefficients of the

apertures are given in Table 3.2.

63



Table - 3.2

Convergence of Transmission Coefficient for a Squ

Conducting Screen

are Aperture in a

Aperture Size No. of Ex!)ansion Transmi.ssion
LxL Functions Coefficient % Change

N T
21 0.19036490
40 0.22355000 +17.4

A4 x A4 65 0.25096036 +12.3
96 0.26784400 +6.73
133 0.27105720 +1.1996
21 1.55473200
40 1.58751400 +2.11

M2 x A2 65 1.60130600 +0.87
96 1.60794300 +0.41
133 1.61799500 +0.38

From the table, it is noted that at least 96 expansion functions are required
for \the smaller aperture to attain convergence while only about 65 expansion
functions are sufficient for the larger aperture.

Figs. 3.9(a)-(b) and 3. 10(a)-(b) show the distribution of the surface magnetic
current M* as a function of x and y. It is found that for both A/4 x A/4 and A/2 x A2
apertures, the magnitude of the current has a similar nature. M* vs x curves exhibit a
"shoulder" as one moves away from the centre before falling off sharply near the
aperture edges. However, while the phase of M* is constant along the x direction for
the A/4 aperture, the phase distribution of the 3/2 aperture is sharply tapered near
the edges. The M" vs y curves have similar nature and exhibit edge conditions near
the aperture boundary.

Fig. 3.11 and 3.12 compare the computed transmission cross-sections Toy/A?

and 1,/A? with those obtained by Mautz and Harrington [67]. A good agreement

between the two results can be seen.
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3.3-3 Circular Aperture

Fig. 3.13 shows the triangulation scheme for a circular aperture. The surface
comprises 56 faces, 33 nodes and 76 interior edges. .
The figure illustrates clearly the advantages of triangular patches for

modelling the curved boundary regions. The orientation and density of the patches

can be varied appropriately to conform to the physical boundary of the aperture.
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Fig. 3.13: Discretization Scheme for a Circular Aperture Showing Edges,

Nodes and Current Directions
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Table 3.3 shows the results of a study on transmission coefficient as a function of

the number of expansion functions for various aperture diameters. It is evident that

about 48 expansion functions are sufficient to obtain converged results.

Table - 3.3

Convergence of Transmission Coefficient for a Circular Aperture in a

Conducting Screen.

Normalized

No. of expansion

Transmission

Diameter Functions Coefficient % Change in T

d/A N T
20 0.0352500

0.2 48 0.0420340 19.25
76 0.0429959 2.29
20 0.2511654

0.3 48 0.2548490 1.49
76 0.2552010 0.138
20 0.9374096
48 1.0139820 8.17

04 76 1.0694360 5.47
128 1.1257500 527
20 1.498541 .
48 1.634501 9.07

o 76 1.646438 0.73
128 1.649220 0.17
48 1.544001

0.6 76 1.523680 -1.32

\ 128 1.522670 -0.07
| 48 1.328800

0.7 76 1.339980 0.84
128 1.340477 0.04
48 1.230142

0.8 76 1.235578 0.44
128 1.240382 0.39
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Fig. 3.14 and 3.15 show, respectively, equivalent surface magnetic current
M*at y/d =-0.0833 and at x/d = 0.0 for circular apertures having 128 non-boundary
edges. As expected, the peak value of the current increases with the size of the
aperture. In Fig. 3.14, as one moves away from the current peaks, it is seen that
there is a uniform decrease for the largest aperture current until at x/d = + 025
from the centre when the curve exhibits a "shoulder". For smaller aperture, the
magnitude of the current is nearly constant over a small region around the centre
and the phase distribution is almost uniform over the entire length of the aperture.
The current distributions along the y-direction (Fig. 3.15) exhibit minima at the
centre and maxima at x/d = + 0.167.

Fig. 3.16 shows transmission coefficient T as a function of aperture
diameter, d. It is noted that T reaches its maximum value at d/A slightly greater than

0.5, suggesting that resonance occurs at this point,

Fig. 3.17 shows transmission cross-sections ‘cey/lz and rxx/k2 for different

aperture diameters. Transmission cross-sections are noted to be a function of

aperture diameter.
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3.3-4 Elliptical Aperture

Fig. 3.18 shows the triangulation scheme for an elliptical aperture. The
aperture surface 1s discretised into 36 triangular patches, resulting in 48 non-
boundary edges. It 1s emphasized again that the use of triangular patches has made it
easier to model the surface quite accurately by incorporating a higher density of

patches in regions where it s desirable, especially the boundary regions.
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Elliptic apertures of different eccentricities were considered, where
eccentricity, e, is given by
e = | 1-(dy/d))? (3.29)
in which d) = major axis

d, = minor axis
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Fig. 3.19(a) and (b) show surface magnetic current distributions M* as a
function of x and y at y/d, = -0.0833 and at x/d, = 0.0, respectively, for elliptical
apertures of eccentricity, e = 0.5 and e = 0.8. Both apertures have a major axis
d, = 0.8A. The magnitude distributions have almost equal peak values but for
e = 0.8, the current falls more sharply as one moves away from the centre. The
distribution of M* along the y-direction exhibits widely different behaviour fo_\r the

two cases (Fig. 3.19(b)). While the current distribution is almost uniform for smaller

eccentricity (e = 0.5), it exhibits a nature similar to that of a circular aperture for

e=0.38.
Fig. 3.20 shows the transmission cross-sections ‘cey/lz and ‘cxx/k2 for

elliptical apertures for e = 0.3, 0.5 and 0.8. The patterns are seen to become more
directive for smaller eccentricities.

The elliptic aperture was studied in more detail by considering two different
orientations shown in the inset of Fig. 3.21(a). In one case the major axis of the
ellipse is along the x-direction (ellipse 1) and in the other, along y-direction
(ellipse 2). In both cases, the aperture area is same. It is observed that when the
major axis is along the y-direction (ellipse 2), the |M¥ vs x curve is very nearly flat
over a large part of the aperture and [M*| falls 6nly near the aperture edges. On the
other hand, for ellipse 1, the current distribution. is tapered along the x-direction.
Further, while [M vs y curve for ellipse 1 (major axis along x-direction) exhibits a
minima at the centre, the curve for ellipse 2 exhibits a maxima (Fig. 3.21(b)).

Ellipse I curve is similar to that of A/2-square aperture in Fig. 3.10(b).
Fig. 3.22 shows the transmission cross-sections ‘ceylk2 and t /3* for the

aperture in the two orientations. It is noted that vertical orientation (ellipse 2) gives
a higher transmission cross-section than that obtained with horizontal orientation

(ellipse 1) for E-polarization in the y-direction.
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Effect of increasing aperture size for a constant d, was also studied.
Fig. 3.23(a) and (b) show magnetic current distributions. It is observed that the
larger ellipse (ellipse 2) has a higher peak value. However, both apertures exhibit
very little change in phase of M* along the aperture axes.

Fig. 3.24 shows the corresponding transmission cross-sections. Here also, it
is noted that ellipse 2 has higher peak values.

From the above results, it can be concluded that for a y-polarized incident
plane wave, an elliptical aperture with its major axis oriented along y-direction

exhibits a higher transmission cross-section.
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(b) x/d;= 0.0

Fig. 3.23 : Effect of Varying d, on Equivalent Surface Magnetic Current
Distributions for Elliptic Apertures in a Conducting Screen.
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3.3-5 Diamond-shaped Aperture

Fig. 3.25 illustrates the surface of a typical diamond-shaped aperture

discretized by triangular patches. The surface consists of 41 nodes, 64 triangular

faces and 88 non-boundary edges.
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Fig. 3.25 : Discretization of a Diamond-shaped Aperture Surface Showing

Nodes, Edges and Current Directions
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Owing to the influence of the four corners in the diamond-shaped aperture
structure, current distribution and transmission cross-sections are very much
different in this case when compared to those of circular and elliptical apertures.
Fig. 3.26(a) shows surface magnetic current distrib‘ution M* as a function of x for
L/A=0.4,0.6 and 0.8 and h/A = 0.3556. It is seen that the peak magnitude of M* is
considerably higher in this case and the current distribution is highly tapered near
the centre. [M"| versus y curves shown in Fig. 3.26(b) exhibit a maxima at the centre
of the aperture as opposed to the minima exhibited by circular apertures of Fig. 3.15
and ellipse 1 of Fig. 3.21.

Transmission cross-sections for diamond-shaped apertures are shown in
Fig. 3.27. 1t is observed that the pattern peak value is a function ;)fthe aperture size;
the larger the aperture the higher the peak value.

It appears that, for a fixed aperture height (in this case, h/A = 0.3556), the
angles formed by the edges have an effect on the current distributions. For instance,
under conditions where the angles formed on the x-axis are acute, such as for
L/A = 0.6 and L/A = 0.8, the current distributions are sharply tapered, attaining
much higher peak values at the centre than for the case where these angles are
obtuse. For L/A = 0.4, it is found that the current peaks are lower and the curves are

flatter. The peak values of corresponding transmission cross-sections are also lower.
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3.3-6 Cross-shaped Slot

The discretization of a cross-shaped slot surface using triangular patches is

illustrated in Fig. 3.28. The slot surface consists of 45 nodes, 56 triangular surfaces

and 68 non-boundary edges.
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Fig. 3.29(a) and (b) show the current distributions M* at y/h = -0.0625,
-0.0833, -0.1667 and x/L = 0.0, respectively, for slot arm widths A, = L/4, /3 and
2L/3. Since cross-shaped slot is in fact a combination of two rectangular slots
bisecting each other perpendicularly, it is expected that the nature of its current
distributions and associaled parameters should have some similarities with those of
a rectangular slot or a square slot depending on the size of A,. This is indeed
apparent when one observes the shape of the current curve corresponding to
Aw = 2L/3 which nearly approaches that for a square aperture of Fig. 3.9. It can also
be anticipated that a further reduction of Aw beyond L/4 will lower the current
minima in 3.29(a) to almost zero, thus contributing to half sinusoids, one on each
side of the aperture centre, each similar to the rectangular slot current curves in
Fig. 3.4 either (a) or (b).

However, the current distributions in Fig. 3.29(1)) are similar to those of
elliptical apertures of’ [F1g. 3.23.

Fig. 3.30 shows transmission cross-sections for the slot. It is observed that
increasing A,, produces a large increase in the peak value of the transmission cross-

sections.
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3.3-7 H-shaped Slot
The discretization used for H-shaped slot is shown in Fig. 3.31. The slot

surface consists of 45 nodes, 68 interior edges and 56 triangular faces.
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We considered two types of H-shaped slots, namely, small slots for which
L =h = /4 and large slots for which L = h = A. For each slot, the effect of varying
arm width A, on its near- and far-field parameters was considered. Fig. 3.32(a)
shows magnetic current distributions at y/h = -0.025 and -0.0333, respectively,
corresponding to slots with A, = A/20 and Aw = M15. The current distribution is
relatively uniform around the aperture centre and in this case also, the magnitude of
peak current is much greater than that obtained for circular and elliptic apertures.
Fig. 3.32(b) shows current distributions at x/[, = 0.4875 and 0.4833, respectively,
for slots with A, = A/20 and Ay = A/15. 1t is found that along the y-direction, the
magnitude and phase distributions of M are nearly uniform.

Fig. 3.33 shows the corresponding transmission cross-sections of the slots
with A, = X/20 and A,, = M/15. 1t is seen that the transmission cross-section for slot
with Ay, = A/20 is higher.

Fig. 3.34 shows magnetic current distributions at y/h = - 0.03125, -0.0625,
-0.09375 and -0.1, respectively, for slots of arm widths A,, = 0.125, 0.25), 0.375)
and 0.4A. It is observed that as A, 1s increased the current peak value decreases.
Conversely, as A,, decreases, the current peak increases and the shape of its curve
tapers towards the peak. Fig. 3.35 shows M* distributions at x/L = 0.4375, 0.375,
0.3125 and 0.3 for slots of A,, = 0.125), 0.25X, 0.375X and 0.4A, respectively.

Fig. 3.36 shows the corresponding transmission cross-sections for the slots.

It is noted that transmission cross-section peak value increases with A,, as opposed

to that in Fig. 3.33.
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3.3-8 A Comparative Study of Transmission Cross-sections for Various

Aperture Shapes
We consider here a comparison of the transmission cross-sections for the
apertures of various shapes. Two cases have been considered : small apertures

having an area of 0.0325A2 and relatively large apertures with an area of 0.1632A2%,
Fig. 3.37 compares transmission cross-sections Toy /%’ and T IX for

smaller apertures of same area but different shapes. It is seen that the pattern for a
H-shaped slot of L = h = A/4 of arm width A/20 exhibits the largest peak value. It is
further observed that elliptic aperture gives a larger peak value than that of a
rectangular slot of the same area. The peak values of transmission cross-section for

circular and diamond-shaped apertures seem to be negligibly low for relatively
small apertures. The txx/k2 patterns for H-shaped slot, rectangular slot and
elliptical apertures are similar with equally wide beamwidths. However, rey/?\z

pattern for clliptic aperture has the narrowest beamwidth followed by that of

H-shaped slot.
Fig. 3.38 shows the transmission cross-sections ‘cey/kz and rxx/k2 for
relatively large apertures of various shapes. It is noted that diamond-shaped aperture

has the highest peak value and the smallest txx/k2 pattern beamwidth. Cross-
shaped slot has the lowest peak value and the largest IXX/K2 pattern beamwidth.
Elliptic aperture and rectangular slot, on the other hand, exhibit similar txx/k2

Lo 2
patlerns but the Tormer has more directive IOy/K pattern of all the four cases

studied here.

98



Each Aperture Area = 0.0325).2

I'______'___——-I—-——'-

— X — Rect. Slot
——e——Circular
— -¥%— - Elliptic
———Diamond
—&——H-shaped

- 2 - -Cross-Shaped

- - — - - -

.72 -54 -36

Fig. 3.37 : Transmission cross-sections 1,

TR e e — ke
7’ :

M

T\

Angle (degrees)

A

2 .
y/A" and =, /A% for various small

apertures in a conducting screen

99



------ Rect. Slot
Each Aperture Area = 0.1632)2
— — — Cross-shaped
Diamond
— - — - Elliptic
0.70
0.60 o
//’/-'/’ ‘\‘.\.\
- J N .
.7 / \ N,
R / \ N,
7 /050 \ N,
;/ ‘ \ \\
Ve / \ N\
i '/ . '\ tXX/XZ
—— Jooo T L T T e I~
- ——TT N~ \-. Nk
s T N T T
A Sy BRI T~
e / - ' ' B
._.'/// . Vs \‘\ \ \\\ el
- .-'-// / "/ \ . ' \\\.' ______
_':_____/’ .l' S/ \ ‘\‘ \_ \\,__.;-_
; .'// \ \ Tyl A2
. ,,'/ Voo
Iy 0.30 4 Vo
) A\ ;
,I '.// \ v \
/ ’ \\\ \
) A \ \
Doy // AR
. \ N
I Vi
[T 0.20 4 \N
Lo oA
1o N
Cy \ \‘
'/ R \\.\ \
!l ;7 Lt
. ,'/ \ . \
L AN
/ Sy 0.10 AT
./ N
'/ ': \ “ [y
I N
S A SN \Tey /A
S RN
2 SR
2 AN
*/ .00 \{>
-30 -72 -54 -36 -18 0 18 36 54 72 90

Angle (degrees)

Fig. 3.38 : Transmission cross-sections toylkz and 1,,/A* for various large
apertures in a conducting screen

100



34 SUMMARY

In this chapter, an extensive numerical study has been carried out on
apertures of various shapes in an infinitesimally thin, perfectly conducting screen.
The computer code has been validated by conéidering rectangular slots and square
apertures for which results are available in the literature. All the results have been

tested for convergence by utilizing sufficient number of triangular patches to

discretise the aperture surfaces.

Results have been presented for magnetic current distribution, transmission
coefficient and transmission cross-sections for rectangular, square, circular, elliptic,

diamond-shaped, cross-shaped and H-shaped apertures.

A comparative study has been made on the transmission cross-sections of

various apertures.
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Chapter - 4

WAVEGUIDE BACKED APERTURES IN A
CONDUCTING PLANE

Waveguide backed apertures radiating into half space, either singly or as
an array, have been studied by many investigators, notably, Cohen et al. [21],
Mautz and Harrington [68], Fenn et al. [35], Sinha et al. [97], Leong et al [57],
[58] and Butler et al. [16]. However, all these studies have been restricted to
rectangular apertures because of the difficulty in handling the apertures of other
shapes.

We utilize the general formulation of Chapter 2 to study the radiation
properties of waveguide backed apertures of different shapes, such as

rectangular, circular, elliptical, diamond and H.

4.1 FORMULATION

Fig. 4.1 depicts the problem under investigation and defines the
coordinates and parameters used. The waveguide-fed aperture is located in z = 0
plane which is occupied by a PEC except for the aperture. The conductor is
considered to be infinitesimally thin and the aperture can take any shape.

As described in Chapter 2, we use equivalence principle to divide the
problem into two separate regions, namely, a waveguide region (z < 0) and a half
space region (z > 0), hereafter, called region 'a' and region 'b', respectively.

The original problem and equivalent problems are shown in Fig. 4.2,
Region 'a' is now a semi-infinite waveguide short-circuited at z = 0, in which the
total field is the superposition of the field due to the impressed sources and that

due to equivalent magnetic surface current M over the aperture region. Region
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'b" is a half space in which the field is due to current -M over the aperture region
radiating in the presence of a continuous conducting plane. Using the image
theory, it reduces to the problem of a current -2M over the aperture region
radiating into free space (Fig. 4.2(c)).

From eqns. (2.8) and (2.9), the aperture admittance matrices for region 'a'
and region 'b' can be written as

wg

[Y'] = [Y™) = [<Mm,Hf(Mn)>]NxN 4.1

Y] = [Y™] = [< M, Hy (M) >]) o (4.2)

The elements of admittance matrices and the excitation vector have been
derived in Chapter 2 (eqns (2.21) and (2.24), respectively) and are repeated here

for the sake of completeness : \

—C—

—c+
Yook = —lm{jo{ BHE) e P+ R @) e B }+¢:<¥;‘)—¢z r&*)} (43)

~—C -

o] T (7)o Py Foggomy o P roy _gbie
Y = - 21:11{J0{F.?(fm+)°—;‘— G )-%}dﬂi(r& >—¢ﬁ(r::“)} (4.4)

X . 5C+ . BC—
1=l G2 e P 4 ) (ﬁ%‘)-%} @5)

Evaluation of the half-space admittance matrix, eqn. (4.4), has already
been carried out in sections 2.4.1 and 2.4.2. In the next section, we discuss the

evaluation of potential functions ¢ and F which appear in eqn. (4.3).
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42  EVALUATION OF F AND ¢ FOR THE WAVEGUIDE REGION
| Equation (2.16) gives the magnetic field I (Mn) due to the n"™ expansion
function at any point inside region 'a' in terms of Fna('r") and d):(f'). Further,
Fna (r') and d>: (r') are given by Eqns. (2.22) and (2.23), respectively,
E'(®) = ¢ [[GEIF) o M, (7)ds (4.6)
T*

D) = J—;iu Tj j {V-Emm}-m ()ds (4.7)

where E(FIF'), in this problem, is dyadic Green's function pertaining to the

electric vector potential in a waveguide short-circuited at one end, which is

given by [106]
PP o B | fan . (). (X STy sTy'
G(r|t) = ——[:{xxsm[—}sm(—]eos(—)co{—}
E)E) aby, a a b b
STY Vi [ '

+99cos[?}°°{rTMJSi“[ b Jsm( b J}

vz
e ® cosh(y z') |, z>z2

X
e ™ cosh (vs2) , z<z

+ ﬁcos[ﬂjcos[—rﬁjco{sﬂ cos(sﬂ

a a b b
e '™ sinh (v,z) , z>2
X ' (4.8)
“YrsZ' . '

e ™ sinh (v,2 , z<z'

where g and y_ are, respectively, the Neumann's constant and the waveguide

propagation constant which are given by
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I, 1=0
g = { (4.9)

2, 1>0
2 rm)? st )’ 2 |
FORCE
where r and s are modal indices and
k =a4/ue (4.11)

Substituting eqns. (4.9), (2.12) and (2.13), accordingly, in eqns. (4.6) and
(4.7), we get

— + 1 hiiad ' '
EYT) = == s J._[ {x (x' - x )sm[ J in(mx jcos( STy Jcos[s—ny—j
ab 2A ¢ 120520 YrsTr a a b b

+y(y' -y )COS{—XJCOS[r—szin(ﬂJsin(S—WJ}dx'dy' (4.12)
8 a a b b

Oy (1) = Jcouab oA ZZ €€ H {— (x' Xn)cos[ ZX Jsin[%x—jcos[%jcos[—sbﬂj

q r=0s=0 Yrs 2

+=(y-y )cos[ﬁjcos[ﬂ'jcos[s—“y—jsm(ﬂj}dx'dy' (4.13)
b ! a a b b

\

As discussed in chapter 2, we utilize Galerkin method and centroid

approximation to evaluate the integrals in eqns. (4.12) and (4.13) for observation

point in triangle p and source currents residing in triangle q.

Thus, according to eqns. (2.26) and (2.27), eqns. (4.12) and (4.13) can be

written as :

gqu :ZabA ZZ rs”{x(x x)sm[ j [%X'Jcos[s%y}cos[s?w}
r=0s=0 rs A '

+9(y'—yj)00{ ?jm[%{' Jsin [ %Jsin ( %J} dx'dy' (4.14)
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o = ZJCD}iabA ZZ oo H {— (x' xJ)cos[erJsin(?}cos(%]cos{%—j

=0s=0 Trs Ay

+%(y’—yj)cos(?Jcos(?]cos[?—]sin[s—?—'} dx' dy’ (4.15)

Integrals in eqns. (4.14) and (4.15) can be evaluated conveniently, after

transformation into area coordinates. Thus, according to eqn. (2.60), ?qu and

d)?q can be expressed as :

© 1 1-L
8 € £
qu = ZZ SZA {)2 ((X] —X')+(X2_X1)L2
2abAq 25 Ve { i :

+(x; = xQLQsin(?Jsin[?(x] +(x, =x))L, + (x5~ xl)L3)J
X cos{%jcos{%(yl +(y, - yL, +(y3 - yl)L3)J
F3O =) + (37, ~y)Ly + (35 - yQLQcos[?J

x COS[E(xl + (%, =xL, +(x, “X1)L3)j Sin[%j
a

. [ sm
X Sm_[F(YI +(y, —y)L, +(y; ~ Y1)L3)j} dL,dL, (4.16)
- FIl °° -
Pq = J J r 82A i Xi—x.) + Xs — X L
(bj 2abj(oqu - Os o Vs J. J- { a (( 1 J) ( 2 1) 2

+(x, —xI)L3)cos(rTnxjsin[;—n(Xl +(xy =x))L, +(x, —xl)L3)J
x cos(s%yjcos[%(yl +(¥, =YLy +(y, - yl)L3)j
=) + (5, =y Ly +(y, - yJLQcos(?}
x cos(%t(xl + (%, =x )L, +(x; xl)L3)j Co{s%yj

x sin(%(yl (¥, =y L, +(y; - yl)L3)]} dL,dL, (4.17)

108



For seven point numerical integration, the equations reduce to
Fqu 2abA Z})Z(;) Bl leW(m) {x (%) = %) + (¢, =x )L,

+(x4 - x])L3m)sin[? Jsin(ra—n(x] +(x, = X)L, + (x5~ xl)L3m)J

COS(%)COS[%@] +(y, - yl)Lzm_ +(yy - yl)L3m)j

+ 3 -y + (5, = yyL,, + 0y - yﬂ%,ﬁCO{?}

X cos(%c(x1 +(x, —xL,  + (x5 - xl)ij)j sin[s—bnzj

X Sin[%(Yl+(Y2_Yl)L2m+(Y3‘Y1)L3m)J} (4.18)

Pq _ S~ Eifs m _ _
¢; 2abjcoqu rZOSZ(:) - Aq Z W(m){ ((xp=x;) + (x5 =x)Lypy
+(x5 - xl)L3m)cos[rﬂ jsin[E (x; +(x, - xpL, + (x5 =X, )L3m)J
a a
COS[ S_:y—jcos[ %(y] + (Y2 - yl)LZm +(Y3 - yl)LBm)J
+ %((yl - yj) + (y2 - yI)LZm +(Y3 - yl)L3m)co{rTnx]

X cos[z(x] +(x, -x)L, + (x4 - xLs )J cos[%]
a

X Sin(%(yl +(y, - y)Lon +(y; ~ YI)L3m)j} (4.19)

where m denotes the m™ sampling point in the domain of T, W(m) is the
welghting factor for the m™ sampling point, L,,, and L, are the values of L, and

L; at the m™ sampling point. W(m), Ly, and Ls,, are given in Table 2.1,
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4.3 EVALUATION OF EXCITATION VECTOR

Assuming that only the dominant TE,, mode of unit amplitude is incident
in region 'a', tangential (to the aperture) components of the electric and magnetic
fields in the incident wave can be written as

—io — Y52

E - =¢e (4.20)

—io “YoZ

H' = Ye Zxe, (4.21)

where Y, and Y, are, respectively, the characteristic admittance and the

propagation constant for the dominant mode and are given by

Yo
jop

1= /0° £ > £
;- (4.23)
B Y RPYPIC I

x [ [

€

(4.22)

where f; is the cut-off frequency of the dominant mode. The normalized modal

vector Eo for the dominant mode can be written as

€ = —gsin = (4.24)
a

4

‘When the aperture is covered by a conductor, the waveguide is terminated
in a short-circuit and tangential magnetic field at z = 0 is now twice that in the

wave. That s,

H = 20’ (4.25)

where ﬁio denotes the magnetic field incident on the short-circuit. Therefore, an

element of excitation vector, in eqn. (4.5) becomes

c+ c—
i io _c+ P io ,_c~ P
len =~ 21m Htx (rm ) ;X + Htlx (rm ) -

(4.26)
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44 EVALUATION OF EQUIVALENT APERTURE ADMITTANCE

To evaluate the aperture admittance seen by the dominant TE,, mode, we
first evaluate the dominant mode reflection coefficient. Since the excitation of
the waveguide is by the dominant TE;q mode of unit amplitude, the electric field

transverse to the z-direction can be expressed in modal form as

E =e"g + > T e'E (4.27)
1=0 \

where the subscript ‘o' denotes the dominant TE,, mode and IL are the complex
amplitudes of the —z travelling wave of the i mode. The e, are normalized

modal vectors, such that;

_ 0, 1#]
J.'[eioejds = {1 -] (4.28)
s >

where the integration is over the waveguide cross-section. The magnetic current
M over the aperture region is given by eqn. (2.1) as

M = 2zxE = 2x& +>zxg (4.29)
i

Now multiplying each side of eqn. (4.29) scalarly by % x Ej, integrating over the

waveguide cross-section and using orthogonality property of eqn. (4.28), we

obtain

[[] Mezx% .ds =

aperture

(4.30)

where I" is the reflection coefficient for the dominant TE;y mode and the
integration is over the aperture region, since M = 0 elsewhere.

Substituting for M from eqn. (2.3) and using the fact that only I' is of

interest in this case, leads to
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2 Vo [[Mye2x3,ds = 14T,

n Tr:lt

or I, =-1+3V, [[M, ez xg, ds (431)
n t .
in which substituting ¢, and using eqns. (2.12) and (2.62) in eqn. (4.31) we get

I, = —1+—Zl A ”(x X )sm—dxdy (4.32)
in

The integration in eqn. (4.32) can be transformed into an integration over area

coordinates to obtain

Q
L, =-1+ 3T, (4.33)
q=1
1 3 11-L
where [oq = _A_g Vi 2A { ;[{x ((xl—xj)+(x2—x1)L2
. e
+(x5 - xl)L3)sm(;(x1 +(x, - X)L, + (x4 = x])L3)) }dL2 dL, (4.34)

Using Gauss quadrature technique, eqn. (4.34) can be written as

3
oq = % Zl V A ZW(m) {<X1 ) + (X2 _XI)L2m

(X5 - xl)L3m)sm[ (x, + (x, - 1)L2m + (x5 - xI)L3m)J (4.35)

Aperture equivalent admittance seen by the dominant mode is computed,

according to [68], as

Y oy (4.36)
ap_1+I‘o ° '

where Y, is given by eqn. (4.22).
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4.5 RESULTS AND DISCUSSION

Based on the preceding formulation, a computer program has been
developed which can be used to analyse waveguide-backed apertures of arbitrary
shape radiating into half space. The computer code has been validated by
considering a rectangular aperture for which results are available in the literature
[21], [68].

Apertures of various shapes, suvch as rectangular, circular, elliptical,
diamond, cross and H have been investigated. Results for each aperture has been
tested for convergence by increasing the density of triangulation (i.e., number of
expansion functions) and the value of each modal index for the waveguide field.
It has been established that a value between 5 and 15 for each modal index is

sufficient for all the problems treated in this section.

Table 4.1 lists the change in equivalent surface magnetic current M"
about the centre of open-ended square waveguides as a function of the number of
expansion functions. It is found that about 40 expansion functions are required to

obtain converged results.

Table - 4.1
Convergence test on open-ended square waveguides radiating

into half space.

a/\ exlz;;l:if;)ll Magnixtude of Phaxse of Yo ch:;nge of
' functions M(x) M) M ()|
8 0.11 -104
06 21 1.139 7.1 935.5
' 40 1.171 4.2 2.81
96 1.183 3.0 1.02
8 0.26 102
0.8 21 0.931 6.6 258.1
' 40 1.346 6.0 2.74
96 1.352 4.5 0.45
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4.5-1 Rectangular Aperture

In order to validate our program, we first considered rectangular apertures
for which results are available in the literature. The first problem considered was
that of a narrow (A x M10) waveguide-fed rectangular slot radiating into half
space. The quantities computed were the x-directed surface magnetic currents
over the aperture and the power gain pattern shown in Fig. 4.3 and Fig. 44,
respectively. The results obtained by Harrington and Mautz [68] using rooftop
functions are also shown for comparison. It can be observed that there is an
excellent agreement between the two results,

Next, we considered the problems of open-ended rectangular and square
waveguides radiating into half space. Fig. 4.5 to 4.8 show some representative
computations for these problems. The problem of open-ended rectangular
waveguide has earlier been solved by Cohen et al. [21] using classical methods,
Harrington and Mautz [68] using rooftop functions and by Mongiardo and Rozzi
[72] using singular integral formulation. It can be observed that our results are in
good agreement with those of previous workers. Figs. 4.9 and 4.10 show the
corresponding results for a square waveguide which are again found to be in

good agreement with those in [68].
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4.5-2 Circular Aperture

Convergence studies on circular aperture established that 76 expansion
functions are sufficient to yield converged results. The triangulation scheme
used 1s shown in Fig. 3.13.

Fig. 4.11 shows equivalent surface rﬁagnetic current distributions. The
IM¥| curve at y/d = -0.125 in (a) for d/a = 0.4 exhibits "shoulders", which are
symmetrically located at x/d = + 0.4 on either side of the centre, while the curve
for d/a = 0.2 is relatively flat and its peak value is much lower. The nature of the
curve is similar to those of rectangular slots shown in Fig. 4.3. The phase
distribution is uniform for both the apertures. In Fig. 4.11(b), the distribﬁtion of
M as a function of y is shown at the aperture centre. Here, it is noted that the
magnitude curve for d/a = 0.4 exhibits a maxima at the centre but falls rapidly as
one moves away until at y/d = £ 0.25 when it rises again. Similar pattern is
imitated by the curve for d/a = 0.2 which rises at y/d = + 0.3 and its peak value
is much lower and therefore, the current appears to be uniformly distributed.
Both curves exhibit the "edge effect". These curves show only a slight similarity
to those of open-ended square waveguides of Fig. 4.9.

Fig. 4.12 shows the antenna power gain patterns for waveguide-backed
circular aperture. It is observed that the power gain depends on the size of the
aperture; the larger the diameter, the higher the power gain.

Fig. 4.13 shows equivalent admittance seen by the dominant TE,, m\ode.
In these apertures, conductances G are relatively high compared to those of
open-ended rectangular- and square- waveguides and their susceptances B are
inductive instead of capacitive. The susceptance is relatively high for d/a < 0.3
but reduces to a much lower value for d/a> 0.3. G, on the other hand, is constant

for the two cases considered.
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4.5-3 Elliptic Aperture A

Convergence test on elliptic aperture has revealed that 76 expansion
functions are sufficient to produce converged results. The triangulation scheme
used to discretize the aperture surface is shown in Fig. 3.18.

Fig. 4.14(a) shows equivalent surface magnetic current distributions M* at
y/d; = -0.125 for two different major-to-minor axes ratio d,/d,. While IM¥| has a
tapered distribution for d,/d, = 2, the distribution for d,/d, = 4.5 is nearly
uniform over a large paft of the aperture. On the other hand, the phase
distribution for d;/d, = 2 is nearly uniform while that for d/d, = 4.5 is sharply
tapered near the aperture edges. Fig. 4.14(b) shows the distribution of M* at
x = 0.0. It is observed that the magnitude curve corresponding to d,/d, = 4.5 has
a nature similar to that for open-ended rectangular waveguides of Fig. 4.5(b) and
(d). The nature of the magnitude curve corresbonding to d,/d, = 2.0, on the other
hand, is entirely different. The phase distributions are very similar to those for
open-ended square waveguide of Fig. 4.7(b).

Fig. 4.15 shows antenna power gain patterns in both E- and H-planes. It 1s
observed that antenna gain increases with aperture size. Further, the larger the
major axis d;, the narrower the pattern beam-width.

Fig. 4.16(a) shows the equivalent admittance seen by the dominant TE,,
mode as a function of dj/a. It is noted that the aperture has an inductive
susceptance B which is large for d/a < 0.3 but reduces to a very small value for
d/a > 0.3. Fig. 4.16(b) shows aperture equivalent admittance as a function of
eccentricity e (according to eqn. (3.29)). It is observed that as the aperture size
becomes smaller, for a fixed value of d,/a, inductive susceptance becomes larger.

However, in this case, the increase of B is gradual for 02 <e < 0.8 and thereafter

it increases rapidly. In both the cases, the conductance G is quite small.
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Further, we studied the radiation characteristics of an elliptical aperture
backed by WR-90 waveguide as a function of frequency. Figs. 4.17(a) and (b)
show input admittance and VSWR, respectively, as a function of frequency for
three different values of major axes with minor axis d; = 0.5b. Figure 4.17(a)
shows that G/Y, is fairly small and almost constant over the entire 8.0 — 12.0
GHz band in all the three cases considered. However, while B/Y,, corresponding
to di/b = 1.5 and 1.75 are inductive over the entire frequency range, B/Y,
corresponding to di/b = 2.0 exhibits capacitive susceptance over almost the
whole frequency range except for 8.0 — 8.25 GHz where it is inductive. Thus,
only the aperture corresponding to d,/b = 2.0 exhibits a resonance. . Figure
4.17(b) shows the corresponding VSWR curves, which exhibits the expected
behaviour. It is observed that the lowest VSWR is obtained over the entire band
for the aperture with d,/b = 2.0.

Figure 4.18(a) and (b) show the results of a similar study for fixed
dimensions of major axis with minor axis dimensions as a parameter. Of the
three cases considered, resonance occurs only for d,/b = 0.5. At resonance: the

VSWR curve nearly exhibits a minimum.
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4.5-4 Diamond-shaped Aperture

It was established, through convergence studies, that 88 expansion
functions were sufficient to yield correct results for a diamond-shaped aperture,
the triangulation scheme for which is shown in Fig. 3.25.

Fig. 4.19(a) and (b) show the equivalent surface magnetic current
distfibutions for various aperture lengths L/A. In Fig. 4.19(a), it is seen that the
interior angles of the diamond formed on the x-axis have a great influence on the
nature of distribution and peak values of MY, which are plotted at y/b =-0.125 :
If the angles are acute, as for L/A = 0.6 and 0.8, the current curve taper sharply
towards their peaks. However, if the angles formed are obtuse, as for L/A = 0.2,
the variation of M is gradual. However, the phase distributions corresponding
to obtuse angles are fairly constant but vary greatly if the angles are acute. The
curve corresponding to L/A = 0.2 is similar to that of elliptical aperture shown in
Fig. 4.14(a). However, the curves corresponding to L/A = 0.6 and 0.8 are entirely
different from the previous ones.

Fig. 4.19(b) shows the current distributions at x/h = 0.0. The magnitude
curves are very nearly of the same nature. However, the phase distributions
corresponding to L/A = 0.2 varies considerably, while for L/A = 0.6 and 0.8, it1s

relatively uniform along the aperture.

Fig. 420 shows antenna power gain patterns for diamond-shaped
apertures. It is noted that the patterns in both E- and H-planes become more

directive as the aperture length is increased (i.e., as the interior angle formed on
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the x-axis becomes more acute). Also, gain increases with the increase in

aperture length.

Fig. 4.21 shows equivalent aperture admittance seen by the dominant
TE\y mode as a function of aperture length L/A. The dominant mode
equivalent susceptance B is inductive for L/A < 0.52 but changes to capacitive
for L/A > 0.52. This behaviour distinguishes diamond-shaped aperture from
other apertures studied so far. It is also noted that as L is reduced from 0.5, the
magnitude of susceptance increases at a very fast rate.

Conductance G of diamond-shaped aperture however, is comparable to

those of elliptical apertures in Fig. 4.16(a) and (b).
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4.5-5 Cross-shaped Slot

In order to achieve convergence for cross-shaped slot, 68 expansion
functions were used. The triangulation scheme used for the slot is shown in
Fig. 3.28.

Fig. 4.22 shows equivalent surface magnetic current distributions for
different slot arm-width, A,,. In Fig. 4.22(a) curves for A,, = L/8, L/4 and L/3 are
plotted at y/h = -0.03125, - 0.0625 and —0.0833, respectively. All the curves
exhibit a minima at the centre with symmetrically placed maxima on either side.
The curve with the highest peak corresponds~ to the slot with smallest Aw (e,
Aw = L/8) and the peak value of current decreases as A, is increased. The nature
of these curves is entirely different from the corresponding curves for other
apertures studied so far. The current distributions shown in Fig. 4.22(b) exhibit
peaks at the centre of the slot for A, = L/3 and L/4 but the curve corresponding
to A,, = L/8 exhibits a minima at this point. In all the cases, phase distribution is
uniform.

Fig. 4.23 shows antenna gain patterns for slots of various arm widths A..
It is observed that variation in A, causes very small change in antenna gains and

beam widths.
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4.5-6 H-shaped Slot

For the computation of various quantities for H-shaped slot, 68 e_xpémsion
functions were found to yield converged results. The triangulation scheme is
shown in Fig. 3.31.

Fig. 424 shows equivalent surface magnetic current M* for various
aperture lengths L/A with h = A/4 and arm width Aw = M20. In Fig. 4.24(a)
curves corresponding to L = A/5, A/4 and 2A/5 plotted at y/h = - 0.0125 are
shown. The magnitude curves have broad peaks and the phase distributions are
constant for L = A/5 and 2A/5 but for L = A/4, phase is constant only for

—0.3 <x/L<+0.3 and thereafter, it increases sharply to a very high value

towards the edges of the slot. In Fig. 4.24(b), distribution Qf IM¥| for L = A/S, A/4
and 2A/5 along either arm at x/A = +0.0875," +0.1125 and +0.1875,
respectively, are shown. The magnitude curves are similar to those of open-
ended rectangular waveguides in Fig. 4.5(b) and (d). The phase distributions for
L = A/5 and A/4 are uniform but for L = 2)/5, the phase distribution is highly
tapered.

Fig. 4.25 shows the power gain patterns for the H-shaped slots. It is

observed that there is not much significant change in the gain patterns when the

slot length is increased.

Fig. 4.26 shows equivalent aperture admittance seen by the dominant
TE,; mode as a function of H-slot length L/A. The slot has an inductive
susceptance for L/A < 0.25 which becomes capacitive for L/A > 0.25. In this

respect, H-shaped slot behaviour is similar to that of diamond-shaped aperture of
Fig. 4.21. However, H-shaped slot exhibits a much higher magnitude of

capacitive susceptance but its conductance G is comparable to that of diamond-

shaped aperture.

142



555 180
Waveguide Dimensions : R Slot Dimensions :
alh = 0.8 0N h =2/4
= 730.0 1 N -
a/b‘— 2.25 L « ) A, = Al20 1120
) / -~ _——
/ \ )
\ / ' , \
. 25.0 \ /
T 7 T T + 60
\ / \ !
! 2004 \ .
. / 2 \ ; T0
! 15.0 - \
" ] \ Phase
L=a5 '\, ‘7_~ .......... W ................. L\' + -60
‘ p T f0.0°3---""" T - .
_____ L:}\j4 . L \‘
K N \
504 N - +-120
.. -\, Magnitude
‘.. \_____—--\:
——60 . . T e i -180
-05 -0.4 -0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.2 0.3 0.4 0.5
xiL
(a) y/h =-0.0125
Waveguide Dimensions : Y 180
alkh = 0.8 Slot Dimensions :
alb =2.25 4. : h=2x/4
. 60 " ~Phase
. . = A/20 1
\ e ~. %w 120
\‘ ya N '/
A\ Vi 50 Phase \ /
g + 60
=
+0 O
4]
<
£
[« %
+60
+-120
' -180
05 0.4 05

(b) x/% = 0.0875, 0.1125 and 0.1875 respectively corresponding to
L = A/5, Al4 and 2)/5.

Fig. 4.24 : Equivalent surface magnetic current distributions for waveguide

backed H-shaped slots for various lengths L/A
radiating into half space.

143

Phase of M*



Angle (degrees)

—————————— 184
————————————— 7 “ T e — e L _
_______ = «x:.. .  E-Plane
----------- \\ .-""'—-----..
, \
Waveguide Dimensions : J 144
a/A =0.8 L=a/5
a/lb =225
----- L=x/4
Slot Dimensions : 1.2 1 —_— . L=25
A, = 1/20
h=2x/4
/
/7 1.0 4 \
) \
/' A\
/ 08 - \
/ W
/ !
. ) \
/ 064 2 \
; = ‘
[ = \
/’ O R
. \
"/ \\ H-Plane
7 0.4 -
/ \.
/ \
/ \
' 0.2 \
Vs \\
: \
\ ’/ \‘
< AN,
el \.
-90 72 54 -36 -18 0 18 36 54 72 90

Fig. 4.25 : Power gain patterns for waveguide backed H-shaped slots of
different lengths L/ radiating into half space.

144



Mﬁos

0.008

G - Conductance Waveguide Dimensions :
B - Susceptance a;|b= 8
a = L.
Slot Dimensions :
0.006 1 A, =2/20
h=2x4
0.004 4
0.002 -
0.000 r :
0|0 0.1 0.6 0.7
-0.002 1
-0.004 -
Ay
1 /11477, 7
1 / it
v Afﬁ /
y //// / /
I PN
-0.008 - r a >
-0.010

Fig. 4.26 : Equivqalent aperture admittance for H- -shaped slots fed by
rectangular waveguide as a function of L/}, .

145




4.5-7 A Comparative Study of Antenna Power Gain Patterns for Various
Aperture Shapes

We consider here a comparison of the antenna power gain patterns for
apertures of various shapes. Two cases are considered. Small apertures having an
area of 0.0325A% and relatively large apertures with an area of 0.1632)\% each.
Figs. 427 and 4.28 compare the E- and H-plane patterns for the smaller
apertures of the same area but different shapes. It is seen that in Fig. 4.27,
elliptical aperture has the highest power gain and the most directive H-plane
pattern of the three shapes considered, namely, rectangular, elliptic and H. The
E-plane pattern is more or less isotropic in the half space. Further, rectangular
slot has a slightly higher power gain than H-shaped slot but both the apertures
have nearly similar E- and H-plane patterns. In Fig. 4.28, patterns for circular,
diamond and cross-shaped apertures have been shown. It is observed that the
diamond-shaped aperture gives the highest power gain and the patterns for cross-
and circular apertures are very nearly the same.

Figs. 4.29 and 4.30 compare the E- and H-plane patterns for the larger
apertur~es of the same area but different shapes. It is seen that in Fig. 4.29,
elliptic and diamond-shaped apertures have the same power gain. However,
elliptic aperture has a more directive H-plane pattern while diamond-shaped
aperture has a more directive E-plane pattern. In Fig. 4.30, patterns for
rectangular-, cross-shaped and H-shaped slots have been shown. It is observed

that cross-shaped slot has the highest power gain and H-shaped slot the lowest.

Further, it is noted that all the three slots have similar H-plane patterns.
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4.6 SUMMARY
In this chapter an extensive numerical study has been undertaken on
waveguide-backed apertures of various shapes radiating into half space. The
computer code has been validated by considering rectangular slots and square
)
apertures for which data are available in literature. All the results have been
tested for convergence by utilizing sufficient number of expansion functions.
Results have been presented for magnetic current distributions, power

gain patterns and equivalent aperture admittance of various apertures. Finally,

the radiation properties of various apertures have been compared.
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Chapter - 5

APERTURES IN THE TRANSVERSE CROSS-SECTION OF
A RECTANGULAR WAVEGUIDE

The analysis of diaphragms in waveguides is important because they can
be used as directional couplers or as building blocks for microwave filters.

In this chapter, the problem of two uniform rectangular waveguides
coupled via an arlbitrary-shaped diaphragm in their transverse cross-section is

considered. The problem is a special case of the general problem discussed in

Chapter 2.

5.1 FORMULATION

Fig. 5.1 shows the problem under investigation and defines the
coordinates and parameters used. The two waveguides are considered lossless
and support only the dominant TE,, propagating mode. An electromagnetic
source 1s assumed to be located in the region z < 0.

As discussed in Chapter 2, the equivalence theorém is first used to divide_
the problem into two separate regions, as illustrated in Fig. 5.2.

Since the two regions are identical, the operator equation in (2.2) reduces

to
H,M) + H = 0 over the aperture (5.1
where H° is given by eqn. (4.21), H,(M) is the tangential component of the

magnetic field due to M for region 'a' in eqn. (2.16) specialized to the
waveguide region, as further explained in Sec. 4.2. From eqn. (4.1), the

admittance matrix for either region can be written as

[Y] = [« W, Hi(M) >] g (5.2)
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Fig. 5.1 : Original problem (a) cross-sectional view, showing diaphragm of
irregular shape (b) lateral view showing coupling between two

uniform waveguides
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@ —

(b)

Fig. 5.2 : Equivalent problems (a) model valid in region z < 0, (b) model

valid in region z > 0

and the excitation vector, according to eqn. (2.10) as
I =[-< W, Hy >] NxI (5.3)

Upon applying Galerkin method and centroid approximation to

eqns. (5.2) and (5.3), an element of admittance matrix can be written as

Yo = —lm{Jm[EGﬁ)-%&+?ﬂ(fnﬁ:')°B’E’_ }m(a?)—%(fn‘i*)} (54)

where F, and b, are the electric vector and magnetic scalar potentials,

respectively, given by eqns. (4.18) and (4.19), and an element of excitation

\
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vector according to eqn. (4.26), after substituting eqn. (4.25) in eqn. (5.3),

becomes

. —C+
Io=-2l, {ﬁtm (flﬁ*“)- p;“

+ ﬁtio (Flg—). 5'—21_} (5.5)

5.2 EQUIVALENT CIRCUIT AND SCATTERING PARAMETERS

The class of discontinuities considered here can be represented by
normalized shunt susceptance,jB, across a transmission line of unit
characteristic admittance [26]. If T, denotes the reflection coefficient of

\

dominant TE;; mode, then from eqn. (4.36)

_'B
Sy = J.— = l—‘o
2+)B
— -2r
or = 2 5.6
! 1+T, (5.6)

I, 1s given by eqn. (4.33).

Thus, the waveguide junction can be characterized by scattering matrix S

given by

S = (5.7)

5.3 RESULTS AND DISCUSSION
In this study, the waveguide has been assumed to support only the
dominant propagating mode and, so, the effect of discontinuity on only the TE,,

mode has been considered.

Fig. 5.3 illustrates the geometry of typical inductive and capacitive

diaphragms in a rectangular waveguide.
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Fig. 5.3 : Diaphragm (a) inductive (b) capacitive

The evaluation of waveguide field involves doubly infinite summations r
and s as in eqn. (4.8), which represent the variation of the field along x- and
y-directions, respectively. This corresponds to inclusion of infinite number of TE
and TM modes in the computation of electromagnetic field in a waveguide.
However, in practice, the summations are truncated to only finite values of the
indices r and s, i.e., r = 0, 1,2, ..., Ngand s = 0, 1,2, ..., Ng, where Ny and Ng
are so chosen that only further increase in their values does not result in any
significant change in the value of matrix elements.

‘According to data available in the literature, notably by Lee et al [56],
Mittra et al. [71] and De Smedt et al [32], it was established that in the mode-
matching and MOM solutions of apertures in waveguides, erroneous results are
obtained unless one chooses a correct ratio of the number of expansion functions
to the number of modes used to approximate the waveguide field. This ratio
depends upon the dimension of the aperture in the direction normal to the

direction of the electric field and the phenomenon is known as 'relative
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convergence'. In particular, it has been shown for an inductive diaphragm [56],
that

LIl

Py

» | o

(5.8)

where N, = total number of expansion functions

p1 = minimum value of Ny that satisfies eqn. (5.8)

a = waveguide broad-wall dimension

d = discontinuity size.

Eqn. (5.8) is valid for analyzing inductive diaphragms since the
discontinuity is uniform along y-axis and varies only along the direction normal
to the direction of the electric field and the electromagnetic wave incident in the
dominant TE;; mode causes only TE,, modes to be excited at z = 0. As such,
eqn. (5.8) need only be satisfied along the x-axis to eliminate the problem of
'relative convergence'.

However, in order to analyse an arbitrary-shaped aperture, which may
require two-dimensional discretization, both TE and TM modes should be
included in the evaluation of the waveguide field. This observation was made by
Sinha [100] regarding capacitive diaphragms in his analysis of multiple-strip
discontinuity in a rectangular waveguide.

In fact, this study has established that in order to account for waveguide

field in capacitive diaphragms, the two conditions that need to be met are

N _d (5.9)
Pi a
P 5.10

where N; = total number of expansion functions
b = waveguide narrow-wall dimension

d = discontinuity size
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p1 = minimum value of Ny that satisfies eqn. (5.9)
N2 = number of expansion function corresponding to the number of non-
boundary edges in a single row in the x-direction.

p2 = minimum value of Ny that establishes convergence of results.

We have further noted that it is only for the cases of inductive and capacitive
diaphragms that N in eqn. (5.8) and eqn. (5.9), respectively, must be the total
number of expansion functions. For other aperture shapes, such as circular,
elliptic and diamond, which may be located only in a limited central position of
the waveguide cross-section, satisfying the following two conditions is sufficient

to yield the correct results

N < d (5.11)
P a

P2y (5.12)
P

where N, = number of expansion functions corresponding to the number of non-

boundary edges along a single row in the x-direction.
p1 = value of N that satisfies eqn. (5.1 1).

p2 = minimum value of N that yields converged results.

5.3-1 Symmetrical Inductive Diaphragms

For symmetrical inductive diaphragms (inset of Fig. 5.5), four
triangulation schemes have been considered, namely, single-row, double-row,
triple-row and quadruple-row. Typical double- and quadruple-row triangulation
schemes are shown in Fig. 3.3 and Fig. 3.4, respectively. Fig. 5.4 depicts typical
single-row triangulation schemes comprising 39 non-boundary edges. In
Fig. 5.4(a) the density of triangular patches is uniform. This type of triangulation

scheme was found to give satisfactory results for smaller apertures upto
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d/a <0.6. However, for larger apertures, the results obtained from this type of

uniform triangulation were inaccurate. Therefore, for larger apertures the
triangulation scheme shown in Fig. 5.4(b) was considered. In this scheme the
patch density 1s less at the aperture centre and increases towards the ends. Thus,
this scheme takes into account the edge effects more accurately. The scheme was
found to give accurate results for larger apertures.

Table 5.1 lists the results for convergence test on shunt susceptance B/Y,
of symmetrical inductive diaphragms as a function of the number of expansion
functions with different number of rows in the triangulation scheme. The results
were obtained using uniform and non-uniform triangulation schemes, and, for
each discontinuity, where results based on both schemes were approximately the
same only data based on uniform triangulation scheme is listed, otherwise data
based on non-uniform discretization is given. For 0.65<d/a <0.95 , results
based on non-uniform discretization were found to be in good agreement with
the data in the literature [65].

As a whole, results obtained corresponding to different rows and number
of expansion functions for a given discontinuity size were found to be in good
agreement with one another and also with the data in the literature [65], [100].
These results confirm the validity of our computer code for analyzing both
single- and multi-row triangulated diaphragms.

Fig. 5.5 shows normalized shunt susceptance versus d/a for
0.2<d/a <095, where good agreement with published data is observed.

Fig. 5.6 shows equivalent surface magnetic current distribution M* along
the centre of the diaphragm for d/a = 0.25 and 0.6. It is seen that IM¥| curves are
symmetrical about the centre and the phase curves are constant. As expected, the

larger the aperture, the larger the peak current.
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Fig. 5.4 : Symmetrical inductive diaphragm discretization using (a) uniform triangulation (b) non-uniform triangulation
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Table - 5.1

Convergence Test on Shunt Susceptance of a Symmetrical Inductive
Diaphragm in a Uniform Rectangular Waveguide

Modal Indices

Shunt Susceptance

d/a No. of No. of Expn. in_eqn.(4.8) B/Y,
Rows Functions - s This Classical
Method Method in [65]
7 18 0 -2.8393
11 28 0 -2.8363
15 38 0 -2.8350
! 23 58 0 22,7895
27 68 0 -2.7779
39 98 0 -2.7330
18 18 1 -2.8281
0.4 2 23 23 ] -2.8277 2.74
28 28 1 -2.8272 :
21 13 2 -3.0471
3 29 18 2 -2.8335
45 28 2 -2.8320
29 13 3 -3.0510
4 40 18 3 -2.8354
62 28 3 -2.8335
1 39 60 0 -0.55509
1 49 75 0 -0.55347
0.6 2 78 48 3 -0.53720 -0.5325
3 93 35 5 -0.53680
1 39 56 0 -0.39221
] 49 70 0 -0.38823
0.70 2 78 44 3 -0.38035 037965
3 93 33 5 -0.37890
] 39 52 0 -0.267298
1 49 62 0 -0.263220
0.75 2 78 a1 3 20267110 -025772
3 93 31 5 -0.259392
1 39 49 0 -0.17447
1 49 61 0 -0.17339
0.80 > =3 3 3 016480 -0.162185
3 93 29 5 -0.16132
1 39 46 0 -0.09378
] 49 58 0 -0.09557
0.85 2 78 36 3 20.08995 -0.09010
3 93 27 5 -0.09211
1 39 43 0 -0.045143
] 49 54 0 -0.039111
0.90 2 78 34 3 -0.03077 -0.03951
3 93 26 5 -0.03071
1 39 41 0 -0.013735
0.95 1 49 52 0 -0.011326 -0.00989
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Fig. 5.5: Normalized susceptance B/Y, as a function of aperture

size for symmetrical inductive diaphragms
in uniform rectangular waveguides.
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Fig. 5.6 :

inductive diaphragms in uniform rectangular waveguides.
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5.3-2 Symmetrical Capacitive Diaphragms

The geometrical parameters of a symmetrical capacitive diaphragm are
shown in the inset of Fig. 5.9, Fig. 5.7 shows two triangulation schemes for
capacitive diaphragm in which each discretized surface comprises 18 non-
boundary edges. In Fig. 5.7(a) the diaphragm is partitioned into two rows In a
direction perpendicular to diaphragm edges and in Fig. 5.7(b) it is partitioned
into four rows.

A comparative study on convergence of results based on the two schemes
was carried out and the results are listed in Table 5.2. 1t is seen that the rate of
convergence of susceptance B/Y, as a function of modal index r is much faster
for the triangulation scheme of Fig. 5.7(b) than that for Fig. 5.7(a). In
Fig. 57(b), r = 1 is sufficient to yield the required susceptance while in
Fig. 5.7(a), r = 3 is required in order to obtain approximately the same value of
susceptance. Increase of the rate of convergence for the triangulation scheme of
Fig. 5.7(b) means fewer number of modes are required and consequently less
computational burden since the number of expansion functions is the same in
both schemes. It is also noted that as the size of the discontinuity increases, the
discretization scheme in Fig. 5.7(b) yields results which are more closer to the
data available in the literature [65], [100].

Having adopted the scheme shown in Fig. 5.7(b), we further considered
the effect of uniform and non-uniform discretization on convergence of
susceptance B/Y,, . For this purpose, the discretization schemes shown in Fig. 5.8
were considered. Table 5.3 summarizes the results of our investigation. It is
noted that the results corresponding to uniform triangulation scheme agree with
the published data only for d/b < 0.7. For d/b > 0.7, non uniform triangulation
scheme yields results which are in good agreement with the data available

in [65].

\
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(b)
Fig. 5.7: Two triangulation schemes for symmetrical capacitive diaphragm.

Fig. 5.9 shows normalized susceptance B/Y,, based on results of
Table 5.3,.as a function of discontinuity size d/b. Excellent agreement between

the results and data available in [65] is observed.
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Table - 5.2
Comparative Study of the Discretization Schemes of Figs. 5.7(a) and (b) on
Capacitive Diaphragms

Modal Indices | Susceptance Suscepatance Susceptance
d/b in eqn (4.8) B/Y, for B/Y, for B/Y, Based on
r s Fig. 5.7(a) Fig. 5.7(b) Method in [65]
1 1.126340 1.160609
0.15 2 120 1.165860 1.162150 1.1781
3 1.173778 1.162340
1 0.900500 0.9462218
0.20 2 90 0.933800 0.9623070 0.9525
3 0.944049 0.9634770 )
1 0.513980 0.78162
0.25 2 72 0.689200 0.78360 0.7799
3 0.767304 0.78410
1 0.75116 0.648977
0.30 2 60 0.66240 0.653120 0.6420
3 0.62445 0.653360
1 0.566700 0.53871
0.35 2 51 0.510900 0.54270 0.5270
3 0.504813 0.54320
1 0.44490 0.44570
0.40 2 45 0.42390 0.44720 0.4320
3 0.40275 0.44810
1 0.38690 036546
0.45 2 40 0.33720 0.36610 0.3543
3 031626 0.36650
1 0.2978 0.296171
0.50 2 36 0.2788 0.296201 0.2716
3 02398 0.296222
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Table - 5.3

Summary of Convergence Test on Susceptance for Symmetrical

Capacitive Diaphragms

Modal Indices

/b I;:O);p(l))f No. of in eqn. (4.8) Capacitive Susceptance Remm:ks on
Functions Columns - g This Classical Discretization
Method Method [65]
37 3 5 67 02251300
0.55 45 3 5 82 0.2245280 0.2225 Uniform
61 3 5 111 0.2229000
37 3 5 62 0.1742071
0.60 45 3 5 75 0.1720183 0.1720 Uniform
61 3 5 102 0.1707970
37 3 5 57 0.1346632
0.65 45 3 5 69 0.1303875 0.1293 Uniform
61 3 5 94 0.1302260
37 3 5 53 0.089085
0.70 45 3 5 64 0.088640 0.093299 Uniform
61 3 5 87 0.088250
37 3 5 49 0.0537050
45 3 5 60 0.0551863 .
61 3 5 81 0.0560120 } Uniform
77 3 5 102 0.0565670
0.75 109 3 5 145 0.0708710 0.06384
125 3 5 167 0.0690900 Non
141 3 5 188 0.0677560 Uniform
157 3 5 209 0.0667300
37 3 5 46 0.0263300
45 3 5 56 0.0273900 Uniform
61 3 5 76 0.0294700
77 3 5 9 0.0310700
0.80 93 3 5 116 0.0555900 0.04036
109 3 5 136 0.0466300
125 3 5 156 0.0451200 :
14] 3 5 176 0.0433400 Non Uniform
157 3 5 196 0.0433500
45 3 5 53 0.0058340
61 3 5 7 0.0084440 Uniform
77 3 5 9] 0.0111899
93 3 5 109 0.0303169
0.85 109 3 5 128 0.0280340 0.022486
\ 125 3 5 147 0.0267272 Non
: 14] 3 5 166 0.0255870 Uniform
157 3 5 185 0.0232268
173 3 5 204 0.0232290
61 3 5 68 0.0004098 Uniform
77 3 5 86 0.0050040
93 3 5 103 0.0165640
109 3 5 121 0.0147910
0.90 125 3 5 139 | 00133656 009925 Non
14] 3 5 157 0.0123760 Uniform
157 3 5 174 0.0104836
173 3 5 192 0.0099210
93 3 5 o8 0.0080400
109 3 5 15 0.0062530
125 3 5 132 0.0050800 Non
0.95 141 3 5 148 | 0.0040940 | 0-002471 Uniform
157 3 5 165 0.0020820
173 3 5 182 0.0012920
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Fig. 5.9: Normalized susceptance B/Y, as a function of aperture size
for symmetrical capacitive diaphragms in
uniform rectangular waveguides.
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Fig. 5.10 shows equivalent surface magnetic current M* for d/b = 0.2 and
0.45. IM* curves in Fig. 5.10(a) are seen to be symmetrical about the centre at
which both have their peaks. Further, in both cases, the phase is constant. In Fig.
5.10(b), IM*| curves for d/b = 02 and 0.45 are similar in nature but their phase

distributions are different.
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in uniform rectangular waveguides.

171

Phase of M*

Phase of M*



5.3-3 Centered Rectangular Diaphragm

In computing the Susceptance of the rectangular diaphragm depicted in
the inset of Fig. 5.11, we recognized that the aperture is situated only in a limited
central region of the waveguide cross-section, Hence, based on the criteria
developed in Sec. 5.2, it is only necessary to consider the number of non-
boundary edges in the aperture discretization in g single row along the aperture
axis in order to determine the modal indices r and s in Eqn. (4.8). For the present
problem we used 45 expansion functions generated from a 3 x 6 row-column
discretization of the aperture which resulted in 11 non-boundary edges on a
single row along the aperture x-axis. Thus, according to Eqns. (5.1 1) and (5.12),
r=33and s =5 should yield converged results,

Fig. 5.11 compares our results for r = 33 and s =5 with those obtained by
Yang and Omar [] 13]. An excellent agreement is observed between the results,
thus confirming the validity of criterion developed in section 5.2 for the

selection of modal indices.
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5.3-4 Centered Circular Diaphragms

Table 5.4 lists the values of B/Y, as a function of normalized diameter d/a
in a uniform rectangular waveguide (A/a = 1.6, a/b = 2.25). It is seen that our
results converge closely to the data available in the literature [65].

Using the discretization scheme of Fig. 3.13 with 76 expansion functions,
circular apertures in uniform fectangular waveguides of various dimensions were
analyzed. Fig. 5.12 shows normalized susceptance B/Y, as a function of
normalized diameter d/a for two different waveguides. The results for each
waveguide are compared with the corresponding data in the literature and a good
agreement is observed.

Fig. 5.13 shows equivalent surface magnetic current distributions

corresponding to the circular aperture in waveguide with A/a =125 and
a/b=225.1t is observed that for small aperture size (d/a = 0.2), the current

distribution is fairly uniform along x with very small variations along
y-direction. However, for bigger apertures (d/a = 0.4), the current exhibits large

variation over the aperture,
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Table -

S.4

Convergence Test Results for Thin, Centrally Located Circular Diaphragms in
Uniform Rectangular Waveguide (a/A = 0.625, a/b = 2.25)

Aperture | Computed No. of Modal Indices Computed Classical
d/a Area Area Expn. in eqn. (4.8) Susceptance | Method [65]
(x10°m?) | (x10°m?) | Functions r s B/Y, B/Y,

4.1011 20 50 26 -616.64
4.0639 48 90 38 -614.88

010141043 1 067 76 110 | 36 | -587.92 )
4.0689 128 150 54 -582.43
9.2240 20 33 16 -183.71
9.3018 48 60 24 -176.11

0.15 1 92350 9.2340 76 73 24 -171.51 )
9.2370 128 100 36 -169.92
16.5040 48 45 18 -73.85 4

0.20 16.4170 16.4220 76 55 18 -70.80 -68.0
16.418 128 75 26 -70.34
25.5970 48 36 14 -36.54

0.25 25.6210 25.6370 76 44 14 -35.59 -34.0
25.6280 128 60 24 -34.78
36.9390 48 30 12 -20.58

0.30 36.9389 36.9390 76 37 10 -18.61 -18.75
36.9370 128 50 14 -18.01
50.2420 48 26 10 -12.69

0.35 50.2781 50.2860 76 31 28 -12.48 -11.35
50.2730 128 43 18 -12.30
65.5920 48 23 6 -8.47

0.40 65.6693 65.5960 76 28 8 -8.44 -7.5
65.5720 128 38 14 -8.36 \
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Fig. 5.13 : Equivalent surface magnetic current distributions for centered circular

(b) x/a =0.0

diaphragms in uniform rectangular waveguides.
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5.3-5 Centered Elliptical Diaphragms

The geometrical parameters of elliptic apertures are shown in inset of
Fig. 5.14.

Table 5.5 shows the results of convergence test on susceptance B/Y, for
various eccentricities e (according to eqn. (3.29)). The results converge closely
to the data available in the literature [65], further underscoring the flexibility of
our computer code and the validity of the modified criterion. The results that
follow were based on the triangulation scheme similar to the one shown in
Fig. 3.18 consisting of 76 interior edges. Fig. 514 shows normalized
susceptance B/Y, as a function of eccentricity e. A good agreement 1s obtained
between these results and the data in [65].

Fig. 5.15 shows equivalent surface magnetic current distributions at
y/dy = -0.125 and x/d, = 0.0 in (a) and (b), respectively, corresponding to e = 0.6
and e = 0.9. In Fig, 5. 5(a), it 1s observed that in the larger diaphragm (e =0.6),
the current is maximum at the centre and falls gradually to zero at the aperture
edges. However, the current distribution corresponding to e = 0.9 exhibits three
peaks : one at the centre of the aperture and the higher peaks which are
symmetrically located on either side of the centre. The phase distribution 1s,
however, uniform for both cases.

Similarly, Fig. 5.15(b) shows that the distribution of M* along the

y-direction at the aperture centre exhibits entirely different behaviours for the

two different values of e.
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Table - 5.5
Convergence Study on Susceptance B/Y, for Various Eccentricities of

Elliptic Apertures.
Eccentricity AAcxt‘::I Compute(_is No. of Il\llllc(i)i‘izls This Method
d,/a 5 Areax 10 Expn. . Method | in [65]
¢ x19 m' | Functions L8008 | Ty T Tpyy,
1.6080 20 25 6 -41.60
0.2 1.60855 1.6045 48. 45 12 -41.40 -37.20
1.6051 76 55 24 -40.59
1.5658 20 25 12 -43.40
0.3 1.56610 1.5650 48 45 18 -41.20 -42.60
1.5633 76 55 27 -41.16
1.5042 20 25 12 -44.70
0.4 1.50467 1.5046 48 45 20 -43.64 -44.66
1.5047 76 55 24 -42.37
1.4233 20 25 14 -46.83
05 | 42179 1.4217 48 45 14 -46.73 4666
1.4261 76 55 24 -46.41
0.2 1.4217 156 75 26 -46.20
1.3131 48 45 14 -48.93
0.6 1.31339 1.3127 76 55 30 -47.14 -50.20
1.3142 156 75 38 -47.09
1.1724 48 45 18 -53.51
0.7 1.17243 1.1768 76 55 26 -51.02 -56.00
1.1717 156 75 44 -51.03
0.98503 48 45 30 | -55.999
0.8 0.98504 | 0.98519 76 55 42 -56.74 -63.70
0.98501 156 75 52 -57.39
0.71562 48 45 42 -66.01
0.9 0.71562 | 0.71568 76 55 32 -70.47 -78.50
0.71595 156 75 72 -70.55 \

179




90.0

Waveguide Dimensions : di/a=0.2
a/A =0.8
80.0 - a/b =2.25
X
70.0 This Method
-+ % - -Ref. [65]
60.0 -
50.0 -
o
&
m
40.0 -
"
AY
30.0 1
Y /N
7
A
d
< i ——»p
20.0 A Cross-sectional View
*— @
Yo=10 -iB Yo=1.0
10.0 - ° |
Equivalent Circuit
OO T T T T T T T T L}
0.0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0

Eccentricity, e

Fig. 5.14 : Normalized susceptance B/Y, as a function of eccentricity for centered
s elliptical diaphragms in uniform rectangular waveguides.

180



ac 90
Phase
d,/a=0.2
) + 60
2.0 4 e
' % 30
. 1.5 .
A Y .
. ' \ \
. 1o
- 1.0 : .
A
— . +-30
o =
Waveguide Dimensions : 051 e=0.6 Magnithde'. | g
. a/A =0.8 '
P ab=22 | e e=039
1 T T 0.0 T T T . '90
05 0.4 0.3 0.1 0.0 0.1 0.3 0.4 05
x/a
(a) y/d, = -0.125
ZA 90
Phase
.- N L O .
| 6.0 Lo
d/a = 0.
5.0 - . 1 2
+ 30
Waveguide Dimensions : 40 - e=06 =
\ . =
a/A =0.8 —_ el e=009 1o 8
a/lb =2.25 = . »
. 304 = . ®
. ) o
s S 4+ -30
\_/“2;.- "'MagnitUde
“a0d L + -60
. : . —0:8 ' ' T r -90
05 0.4 0.3 0.2 -0.1 0.1 0.2 0.3 0.4 05
y/d
(b) x/dy = 0.0

Fig. 5.15 : Equivalent surface magnetic current distributions for centered
elliptical diaphragms in uniform rectangular waveguides.

181

Phase of M*



5.3-6 Centered Diamond-shaped Diaphragms
The inset in Fig. 5.16 shows the geometrical parameters of the aperture.
Results that follow were obtained using 88 expansion function based on
the triangulation scheme in Fig. 3.25.
Fig. 5.16 shows susceptance B/Y, as a function of discontinuity length

L/X. It is observed that for 0.2 <L/A < 0.49, the diaphragm exhibits inductive

susceptance but becomes capacitive for L/A > 049 Thus, the susceptance for
diamond-shaped diaphragm exhibits a transition from inductivé nature to
capacitive.

Fig. 5.17 shows equivalent surface magnetic current distributions at
y/h =-0.125 and x/L = 0.0, respectively, in Fig. 5.17(a) and (b) for L/A =02
and 0.6. It is seen that |M| corresponding to L/A=0.2 in which the angle
formed on the x-axis is obtuse, varies gradually from its peak value at the centre
of the aperture and the phase distribution is uniform over the aperture. On the
other hand, for L/A=0.6, in which the angle is acute, the current is largely
confined to the region at the vicinity of the aperture centre. For x/L > 0.2, the
current magnitude is nearly zero. In Fig. 5.17(b) which shows the distribution of
M* as a function of y, it is found that the curve for L/A = 0.2 has a broader peak
with a corresponding constant phase distribution. The distribution corresponding

to L/A = 0.6, on the other hand, exhibits a narrow peak and its corresponding

phase is non-uniform.
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5.3-7 Centered Cross-shaped Diaphragms

The geometrical parameters of the slot are shown in the inset of Fig. 5.18.
The discretization scheme for the diaphragm is shown in Fig. 3.28 having 68
interior edges. In Fig. 5.18 shunt susceptance B/Y, is shown as a function of slot
length L/A for fixed values of h and A,,. It is noted that B/Y, increases sharply
for 0.2 <L/A<0.3 then decreases for 0.3 <L/A <044 and thereafter increases
again, changing from inductive nature to capacitive one for L/A > 0.44 The
reason for decrease in B/Y, between L/A =03 and L/A =044 is postulated to
be due to the slot experiencing resonance conditions at L/A = 0.3 and at
L/A=044.

The equivalent shunt susceptance curve shown in Fig. 5.18 has one
similarity with that of diamond-shaped diaphragm shown in Fig. 5.16; both
exhibit a transition from inductive susceptance to capacitive one.

Fig. 5.19 shows equivalent surface magnetic current distributions over the
aperture. In Fig. 5.19(a) [M"| curves corresponding to L/A =02 and L/A =04
show minima at the slot centre, as expected. However, the curve corresponding
to L/A =03 shows a maxima; a behaviour which our earlier results on these
slots do not support. It is for this reason that we postulate that resonance must be
occurring at this slot length. The phase curves corresponding to L/A=0.2 and
L/X=0.4 are constant while that corresponding to L/A =0.3 is non-uniform,

varying rapidly towards the slot ends. In Fig, 5.19(b), the current is maximum at

the centre of the slots, as expected, based on the previous results of Fig. 4.22.
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5.4 SUMMARY

In this chapter, a numerical study on apertures of various shapes in the
transverse cross-section of rectangular waveguides has been undertaken. A
criterion for computing discontinuity solutions Has been proposed and
implemented using our computer program. The computer code has been
validated by considering inductive, capacitive, circular and elliptical
diaphragms. All results have been tested for convergence by using sufficient
number of expansion functions,

Results have been presented for normalized shunt susceptance and

magnetic current distribution of various diaphragms.
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Chapter - 6

BROADWALL RADIATING SLOTS OF ARBITRARY SHAPE
IN A RECTANGULAR WAVEGUIDE

Although there is substantial data available in the literature pertaining to
waveguide broadwall slots, notably in [33], [50], [51], [63], [89], [102] and
[10\8], the data are mostly given for rectangular slots, Data for slots and apertures
of other shapes are lacking because PWS functions and rooftop functions, which
are often used in the Moment Method analysis, are not flexible enough to deal
with slots of arbitrary shape.

In this chapter, radiation characteristics of broadwall slots/apertures of
arbitrary shape in a rectangular waveguide are investigated. The general
formulation developed in Chapter 2 has been specialized to this problem.

In the subsequent sections, the waveguide matrices, electric vector and
magnetic scalar potentials have been evaluated. Further, expressions for
computing scattering parameters and radiated power have been derived and
incorporated into our computer code. Although the formulation is completely
general and can be used for analysing waveguide-to-waveguide coupling,
waveguide—to-cavity coupling, etc., here only limited results for radiating slots

have been presented and more detailed investigations are left for future workers.

6.1 FORMULATION

Fig. 6.1 illustrates the general problem of coupling between a rectangular
waveguide and an arbitrary region via an arbitrary shaped aperture located in the
broadwall. The waveguide walls have been assumed to be infinitesimally thin.

As described in the general formu]ation of Chapter 2, equivalence
principle is used to divide the problem into two separate parts, as shown in

Fig. 6.2.
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In Fig. 6.2(a), region 'a' is a uniform waveguide in which the total field is
the superposition of the field due to the impressed sources (E', H') and that due

to equivalent surface magnetic current M over the aperture region. In region 'b'
(Fig. 6.2(b)), which is arbitrary, the field is due to current ~M over the aperture
region, radiating in the presence of a continuous conductor. For the special case
under consideration, where region 'b' is a half-space, image theory can be
invoked and the equivalent problem for regibn 'b' reduces to the problem of a
current ~2M over the aperture region radiating in free space.

From eqns. (2.8) and (2.9), the aperture admittance matrices for region 'a'

and region 'b' can be written as

[Y*] = [Y™] = [< My, H (M,)>] g,y | (6.1)

[Y°] = [Y™] = [<Mp, HO (Mp)>T ey (6.2)
and excitation vector I as

Ly = [<My, —H{>]ny (6.3)

The elements of admittance matrices and excitation vector have been

derived in Chapter 2 (eqns. (2.21) and (2.24), respectively) and are repeated here

for the sake of completeness

—c+ —c—
Yok = —lm{jm {F (e 2+ B G e ‘%} EHGORY (f::‘)} (6.4)
YhS __2] . F-b —c+ ‘51::].‘— Fb —=C— Br(i]_ b /=c— b ~c+
mn — m(J® n (l’m )‘ 2 + n (rm ).T + ¢n (rm )— (bn (rm (65)
. . 504— . BC— \
1 i + T~ c-
Im = _Im Hl (an )° ; + Hll(rn’(l: )._l;_} (6-6)
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Evaluation of the half-space admittance matrix eqn. (6.5), has already
been carried out in subsections 2.4.1 and 2.4.2. In the next section, we discuss

the evaluation of electric vector potential and magnetic scalar potential which

are required in eqn. (6.4).

6.2 EVALUATION OF ELECTRIC VECTOR POTENTIAL AND
MAGNETIC SCALAR POTENTIAL

Eqn. (2.16) gives the magnetic field Ea(ﬁn) due to the n™ expansion
function at any point inside region 'a' in terms of Fna(?) and d):(?). Further,

Fnﬂ ) and (b:(?) are given by Eqns. (2.22) and (2.23), respectively, as

=

E*() = ¢ [G @) oM, (7)ds (6.7)
T:t
a = —1 Gl WF = '
() = — [ {V°GGlr')}°MnG)ds (6.8)
jou

=3
However, the dyadic Green's function G (r|1")is different from that used

=3
in Chapter 4. The relevant G (r|T) has been derived by Rahmat-Samii [80] and

can be written as

[ :
+ iicos(m—xj cos{ix'] cos[ﬂj cos(s—ny'j} (6.9)
a a b b
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I =0
where g = { 2’ g o (6.10)
» P

1s the Neumann's number,

v, is the propagation constant for the rs" mode and is given by

2 2
vrs{ﬂj +[ﬂ] - k? (6.11)
a b

where k has been given by eqn. (4.11).

Since at the plane of the aperture y = b, eqns. (6.7) and (6.8) become

. te 1. & & e.¢
Fd r| — n r-s — _
() = —— A E)g - Tfi exp [- 7, 12 -2]
X {(x' - X,) sin (m—xjsin (m_x]} dx' dz' (6.12a)
a a
e | €
F (F )—— D | exp [~ vy |2 2]
’ 2ab 2Aﬂ r=0 s=0 rs :g:‘ )
X {(z' - z,) cos[mxjcos[m—x} dx' dz (6.12b)
a a

1 o« [ee]
ba )— 2An 2jopab 2 Z

r=0 s=0 rs T:t

02 (F) = i i Er&y ”‘{e—vmlz—z'lﬂ(x'_xn)

r=0 s=0 Yrs T

(rnxj . [rnx'J
X cos| —— |sin| ——
a a
, rmx x| —Yse s s g '
+(z' = z,) cos > cos 0 e ‘ dx'dz' (6.13)
z

ZAn 2Jmuab

Ys € zZ<
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As discussed in Chapter 2, we utilize Galerkin method and centroid
approximation to evaluate the integrals in eqns. (6.12) and (6.13) for observation
point in triangle p and source currents residing in triangle q.

Thus, according to eqns. (2.26) and (2.27), eqns. (6.12) and (6.13) can be

written as :
Tt g 202 € €
(S —ZZ I L Sexp[—ymlz —z'l]
p
X 2Aq 2a r=0 s=0 Aq Yres
Imx !
X {(x' - Xj) sin[ pjsin(mx ]} dx' dz' (6.14a)
a a
FP(] _ is 1J > - Sras J. [_ Sl ]
jz _ZTZZ‘Y J exp Yrslzp Zl
q r=0 s=0 /s Aq
X '
\ x{(z'—zj) cos[ pjcos[rnxj}dx' dz' (6.14b)
a a
+1 1 2 & £.E “Yrslzp—2
(b'Pq — J : Z z r&s {e rslp
] 24, 2jouab 0 Vs /J\‘-I.

o T (Zp2)

' | =y YA
+(z' - z;) cos [rn_xj cos(ﬂj " P dx'dz' (6.15)
a a Yre(Zp—2)

Yrs € , Zp <2
Integrals in eqns. (6.14) and (6.15) can be evaluated conveniently, after

transformation into area coordinates. Thus, according to eqn. (2.60), fqu and

0P can be expressed as :
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1 I-L,

il € 0 ©
EY = —2A — ex sz, =2)) +(z)—29)Ly+ (2, -2
i 2A 2ab qgg Yrsj J. p[Yr|( D+ (7 —2)ly+(z - 3)3|]

X ((Xl =Xj)+ (X =X)Ly +(x3 —Xl)L3) ,

. rTCXp . Im
X sin sin| —(x;+(x3 = x})Ly + (x3 = x;)L3) |dL,dL, (6.16a)
a

+1; L 1=Ly

w [ee] 8
= 2A, 2 S22 2 feplrl ez s @ -l r@-nL, |
r=0 s=0 s 0 0

X ((Zl =zj) + (22 -zl + (23 - 21)L3)

I"[IZXp It . ’
X COS - cos :(xl +(xy =x)Ly + (x5 —xl)L3)jdL2dL3 (6.16b)

1-Lg

Tl 28, & e L
0 [ep 1l @y -2+ (1= )Ly + (1~ 2)L4 |
0

q
2A, ijuab e

Pa —
j

=0 fS

X [%J((Xl =X;)+(x3 = %)Ly + (x3 _XI)LB)

X, | . (o
X COS sin :(x1 +(Xp = x1)Ly + (x5 —xl)L3)j

a

+ ((ZI =2j) + (23 —2))L, + (23 ‘Zl)L3)C°S[rMPJ
; a

IT .
XCOS(—a—(Xl'F‘(Xz —XI)L2+(X3—X])L3)] !

Vs (2, =71) + (21~29)L4 +(21-27)L
—yp e T 1722)Lg +(21-23) 3)’ z,>7
X
Trs((Zp=71) +(21-22)Ly +(2y-23)L3)
’YrS e b

dL,dL, (6.17)

)
Zp<Z

For seven point numerical integration, the equations reduce to
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=1 e

* z - ~29)Lom +(z1~23 )Ly |
FPA J ErE \A W(m { ~Yrs(Zp=21) +(21-29)Lop, +(21-23)L3py
X 2A4 2ab ; ; Z (m)

m=]

x ((X] = Xj) + (X2 = x))Loy, +(x5 _XI)L3m)

X sin [rnxp] sin (E(m (X = %)Ly + (x5 - Xl)L3m))J (6.18a)
a

e 2A 2ab o

r=0 s=0 Yrs

X ((21 =2j) + (25— 2))Lyp, +(z3 ~21)L3m)

a

) cos[ ”‘"PJ co{ﬂm #(%0 X)) Lom + (5 —xl)L3m))] (6.18b)
a

pq _ +1J 1

7 2A, 2jeuab

i i 8_8_ é (m){ “rs (2p=21) +(2-22)L gy +(2~23) L3y |

r=0 s=0 'YI'S m=]

X [;—KJ (0 - %)+ (2 = %))Lom + (X3 = %) )Ly

a

rmx
X cos{ pJsin [—FE (X1 +(x2 ~x))Lop, + (x5 - xl)L3m)J
a

+ ((21 —z)) +(z3- 7))Ly + (23 - ZI)L3m)

rTCXp I
X cos( J cos [—(x] + (X2 = x)Lom + (x5 —xl)L3m)]
a a
- e—Yrs((lp —71) +(21-29)Lam +(21~23)L3p ) Lz, /!
* )+ (21-22)Lam +(21-23)La) (6.19)
-2 A » AR
Yio eYrs((Zp 1 1=22)lonm 1-23)L3m ’ z, <7

where m denotes the m™ sampling point in the domain of T, W(m) is the
weighting factor for the m™ sampling point, Ly, and Ls,, are the values of L; and

L; at the m™ sampling point. W(m), L, and Lsm are given in Table 2.1.
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6.3 EVALUATION OF EXCITATION VECTOR
The excitation of the waveguide 1s assumed to be due to the dominant

TE o mode of unit amplitude produced by an electromagnetic source at z = —

Therefore, the incident field components in region 'a' are

P (XY
Ey = sm[?j e iPioz (6.20)
i =B [T By
H, = on sin o e (6.21)
. .
H, = ona cos[?} e P (6.22)
(6.23)

where By = k+/ 1= (f/f,)?
and k = o ue (6.24)

Thus, eqn. (6.6) may now be written as
c+ c— c+ c-
. e p. AR Y ) X ok ) p:
1 1 c+ IX 1 4 X - Jz - C—
BUESENI n+j+2 J m+j+l n+j+2
. X + X X:+ X5 5+ X,
where pjf = i{ ! 5 ! -3 ) 3 J (6.26a)
Zl-n+'i+l + Zr_1+j+2 Z-j + Zl-n+j+l n Zl-l+j+2
+
piy = ¢ 5 ) 3 . (6.26b)
j=1,2,3

where m and n are dummy variables such that

(o, j=12
m = R
-3, J=3

0, j=1
-2 3 (6.27)

et (ex . .
H_ (rjc ), H, (rj°+) are the values of Hy and H,, evaluated at the centroids of

the triangles Tji associated with the " edge.

198



6.4  COMPUTATION OF SCATTERING PARAMETERS

Assuming that the aperture centre coincides with the z = 0 plane, we
con\51der two reference planes T, and T, located, respcctlvely, at z; = -z and
z; =tz, where z, and z, are an integral multiple of the guide wavelength. Once
the scattering parameters are computed, the terminal planes can be shifted to the

aperture centre without causing any change in the scattering parameter values.

Thus, the scattering parameter S, pertaining to dominant TE,, mode is

given by
El (M)
S, = % (6.28)
Ef Iy

In terms of magnetic field components, S;, can be written as

N
_ V, HY (M,) ]|
iDL, & e T Mk
Sip=-——+ = - i (6.29)
Hx |’I'I Hy ,T,

where H; has been given by eqn. (6.21) and

Hy (M) = —joF~% (F) - Vo (F) (6.30)

From eqns. (6.12a) and (6.13), using the dominant term of Green's function leads

to
@ = jjexp[ Yiol z - 2]
{(x x")sx( ] [ j}dx dz' (6.31)
0 2 oo ol

n
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N e T s g
+(z'—zn)cos(n—xj cos[n—xJ 10 o dx'dz’ (6.32)
a d ylo (Z_Z)
Yi0€ s z2<Z

Following the procedure leading to eqn. (6.19), we can write

C4e 1o &
e q 2 W(m) {exp (=Y, 121 +(z2 =2))Loy + (23 = 2)L3y )

F(r
X ® z<z' 2ab 2A  vi0 o)

X ((X1 = X;) Hxg = x)Loy + (X5 = x))Lsy, )

X sin(m]sin[z(xl +(Xp = %)Ly HX;3 —x])L3m)}} (6.33)
a a z<z'
a‘bja(F) 1 o2 Kk -
= — —A W(m) 1exp(-yy9l z; +(z; - 2))L,,, + (23 ~7,)Ls,, |)
Y 2jonab 244 1o q mz=l ( ){ P(-Yiol 21 +(z5 ~ 7))Ly, 37 21)3m
z<z'

2

x {—; ] ((xl =Xj) + (xg = x)Loy + (x3-x1)Lay )

X sin[z] sin(E (x] +(xq =X)Ly, + (x3 —x])L;3, )J
a

a

n
“Yo ((21 =) + (23— 2Ly, + (23— 7))Ly, )

X sin[-n—x—] COS[E(X] + (X2 = xp)Lyy +(x3- X])L3m)}
a a
X eXp (‘ V1o (21 + (23 — )Ly, + (z3 - ZI)L3m))} z<z (6.34)

In a similar manner, transmission coefficient Sa1, 1s given by

N
Z Vn H)?(Mn) |T2

Sy = 14 2=l e | (6.35)
X

a

where Hi(ﬁn) is given by eqn. (6.30) in which Fji(F) and %(f) can be

written as
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. te | 2 kK
F(r = — 1 2 A S W(m) {exp (- 21+ (23 = 2))Log +(23 - 2))Lsy, |)
FOr = 2 2ar g M2 W e (1 121 2 = 2 + 22 2L
X ((Xl =X;) Hxp = x))Lyy, + (x5 _XI)LBm)
X sin [—R—X]sin(ﬁ(x[ + (X =X)Ly, HX;3 —x])L3m)J} (6.36)
. a a z>z'
%} (1) 1 Fl o2 K
N = -—— A W(m) {exp(~ 21 +(zg —2))Ly 4+ (27 —z,)L
Y 2jonab 2A, 1o qmz=1 ( ){ P(~T10l 21 +(z; — 2)) 2m +(23 =)L, |)

z>2'

\

2
_X[ a12t ]((xl =X3) + (X3 = x)Lgyy + (%3 ~x,)Lay )

a

X sin(zj sin(E (x, + (X2 =x)Lom + (X3 - %)Ly, )J
a
s
+ Y10 " ((21 =2j) + (23 - 2Ly, + (24 _ZI)LBm)

X sin [EJ cos[ﬁ(x, +(xg =X)Ly, + (X3~ XI)L3m)J
a

a
X €xp (Ym (2 +(z3 - 2))Lyp, + (z3 - ZI)L3m))}z> z' (6.37)

Thus, power radiated, Prad> 1S glven by
Pag = (=180 12 - 15012} (638)

6.5 RESULTS AND DISCUSSION

A computer program has been written ‘based on the preceding
formulation, which is capable of analysing broadwall slots/apertures of arbitrary
shape in a rectangular waveguide radiating into half space. The code has been
validated by using rectangular longitudinal slots and centrally-located transverse
rectangular slots for which data are available in the literature [63]. The
waveguide wall has been assumed to be infinitesimally thin. Convergence tests

have been carried out to establish the correct results.
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6.5-1 Offset Broadwall Longitudinal Rectangular Slot .
Rectangular slot surface was triangulated as per the scheme shown in
Fig. 3.3. The slot lies in the xz plane with its axis along the +z direction and is
offset 2 mm from the centre of the broadwall. The slot width is 1.5 mm and its
length is variable. Fig. 6.3 shows the power-radiated/power-incident ratio versus

slot length. The results obtained are compared with those of Lyon and Sangster's

data [63] and are secn to be in good agreement.

6.5-2 Centrally-located Broadwall Transverse Slot

Next, centrally-located transverse rectangular slot, based on the
triangulation scheme depicted in Fig. 3.3, in the broadwall of a rectangular
waveguide was considered. Fig. 6.4 shows power-radiated/power-incident ratio

as a function of slot-length. Our results are in good agreement with those of

Lyon and Sangster [63].

6.5-3 Centrally-located Circular Aperture

A circular aperture surface on the broadwall of a rectangular waveguide
was triangulated as depicted in Fig. 3.13. About 76 expansion function were
found to yield converged results. Fig. 6.5 shows power-fadiated/power-incident
ratio versus normalized diameter, d/a. It is noted that radiated power increases
with the size of the cperture. However, at d/a = 0.35 aperture seems to be at
resonance and any further increase in d/a beyond 0.35 results in a decrease in
radiated power. As in the case of a rectangular slot, the size of the circular

aperture that can be accommodated in the broadwall is limited by the waveguide

broadwall dimension a.
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Fig. 6.3 : Power radiated/power incident against slot length for

infinitesimally thin longitudinal slot in WG 16.
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Fig. 6.4 : Power radiated/power incident against slot sength for infinitesimally
thin centrally located transverse slot in WG16.
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Fig. 6.5 : Centrally-located broad wall circular aperture power radiated/

power incident ratio against aperture diameter d/a.
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6.5-4 Centrally-located Elliptical Aperture
Using a discretization scheme similar to that in Fig. 3.18, it was found

that about 76 expansion functions yielded converged results for an elliptic

aperture on the broadwall of a rectangular waveguide.

Fig. 6.6 shows power-radiated/power-incident ratio versus eccentricity e
given in eqn. (3.29) for two orientations of the aperture. In Fig. 6.6(a), it is noted
that reducing d, for a fixed value of di, results in a reduced radiated power.
However, at e = 0.5, the radiated power exhibits a peak, suggesting that
resonance occurs at this value of e. Fig. 6.6(b), on the other hand, shows that

power-radiated increases with decrease in d, for a fixed value of d,.
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Fig. 6.6 : Centrally-located broad wall elliptical aperture power
radiated/power incident ratio against eccentricity e.
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6.6 SUMMARY

In this chapter, a numerical study has been undertaken on a limited
number of broadwall apertures of various shapes radiating into half space. The
computer code has been validated by considering transverse and longitudinal
rectangular slots for which data are available in the literature. All the results
have been tested for convergence by utilizing sufficient number of expansion

functions.

Results have been presented for power-radiated by rectangular, circular,

and elliptic apertures.
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Chapter -7
DISCUSSION AND CONCLUSIONS

In the preceding chapters, a comprehensive study has been carried out on
apertures of arbitrary shapes in waveguides and conducting screens. The analysis
has been based on a rigorous formulation exploiting an appropriate choice of
computational technique and a flexible modelling scheme incorporating versatile
basis functions. This strategy has culminated in writing a general efficient computer
program. The program has been validated and tested on apertures of various shapes,
amongst which rectangular, circular, elliptic, diamond, cross and H have been
presented as representative examples of the diverse range of arbitrarily-shaped
apertures.

In this chapter, a critical review of the analysis, results and their practical
implications are presented. Finally, some of the areas which require further research

have also been suggested.

7.1  THE ANALYSIS

The analysis is based on the "generalized network formulation" for aperture
problems originally proposed by Harrington and Mautz [44]. The formulation is
completely general in that two arbitrary open or closed regions coupled via an
arbitrary-shaped aperture can be treated. However, for actual evaluation of the
matrices, expansion and testing functions must be selected with particular care. In
this dissertation, triangular patch modelling, with appropriately defined basis
functions, has been utilized which is appropriate for modelling surfaces of arbitrary

shape, since the shape of a triangle can easily conform to any geometry and the
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density of the triangles can be increased in those regions of the aperture in which a
higher resolution is desirable. The greatest advantage of the formulation and the
scheme lies in the fact that the evaluation of the admittance matrix of a region
involves only that region. This means that once the admittance matrix of a region 1s
known, it can be combined with the-admittance matrices of the other region§ for
various problems. This is to say that routines for computing admittance matrices of
different regions may be written separately and can then be combined in a number
of ways to obtain solutions for a wide category of problems.

The method of moments has a number of advantages over other methods.
First it inherently takes into account the effect of higher order evanescent modes in
waveguides. Further, unlike the other methods, which mostly deal only with the
dominant mode incidence, this method can treat arbitrary incidence with equal ease.
Also, the effect of finite wall thickness can easily be incorporated in the method,
although in the present study only infinitesimally thin walls have been used.

First, a general formulation has been developed for solving the problem of
an aperture of arbitrary shape coupling two arbitrary regions. Important aspects,
such as choice of basis functions evaluation of matrices and excitation vector and
efficient computation of integrals over observation and source triangles have been
considered. Further, particular attention has been given in developing expressions
which treat integrals with singular kernels, associated with Green's function of free
space, and integrals with bounded kernels, for closed regions. Finally, equations for
computing aperture ncar- and far- field parameters have been derived.

In Chapter 3, the study has addressed itself to the analysis of apertures of
various shapes in an infinitesimally thin, perfectly conducting screen. The general
formulation of Chapter 2 has been specialized to this problem. In this chapter,

evaluation of admittance matrices has been based on dyadic Green's function of free
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space. Expressions for evaluating various parameters, such as transmission
coefficient and magnetic current distributions have been derived.

In Chapter 4, the problem of waveguide-fed apertures of arbitrary shape on a
perfectly conducting ground plane radiating into half-space has been investigated.
Dyadic Green's function of the electric vector potential pertaining to a waveguide
short-circuited at one end, has been used in evaluating waveguide admittance
matrix. Evaluation of equivalent aperture admittance has been based on the
dominant TE,, mode incidence.

In Chapter 5, apertures of arbitrary shape in the Waveguide Cross-section
have been analysed. The admittance matrices of uniform rectangular waveguides
have been adopted from Chapter 4. The power of the formulation is amply
demonstrated by the fact that no new admittance matrices are to be derived for
solving this entirely new problem.

In Chapter 6, we have presented an analysis of radiating apertures of
arbitrary shape in the broadwall of a rectangular waveguide. The guide wall has
been assumed to be infinitesimally thin. For the waveguide region, dyadic Green's
function of the vector potential pertaining to an infinite rectangular waveguide [80]
has been utilized. Equations for determining scattering parameters have been
derived using the dominant TE s mode term of the dyadic Green's function. An

exp\ression for computing power radiated by the aperture based upon the reflection

and transmission coefficients has been developed.

7.2 THE COMPUTER PROGRAM
An efficient computer program has been written in FORTRAN-77 based
upon the expressions derived for the various problems. A modular approach has

been used in writing the program to make it flexible and versatile. It has been
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divided into a number of subprograms. In the process, separate subroutines for
computing various admittance matrices and parameters have been written. These
subroutines may be usced in any number of permutations and combinations to solve
various problems after slight modifications in the storage strategy of the matrices.
The complete program itself is quite general and can analyse all the four problems
in chapters three to six and, also the problem of waveguide to -cavity coupling
which was validated but not explored further in this study.

The program listing is available with the author and Prof. S.N. Sinha, the

Research Supervisor

7.3 THE NUMERICAL RESULTS

The computer program has first been validated for each class of problems
considered, prior to generating data for any new problem. Extensive computations
have been carried out for various aperture barameters. Convergence of results has
been established for each problem by utilizing sufficient number of expansion
functions, that is to say, including sufficient number of non-boundary edges to
ensure accurate modelling of the physical surface of a particular aperture. Results
have been presented in chapters three to six for typical aperture shapes, i.c.,
rectangular, circular, elliptic, diamond, cross and H, which may be considered
diverse enough to simulale any possible physical aperture shape.

In Chapter 3, results have been given for apertures in an infinite conducting
screen coupling two half spaces. Convergence results for transmission coefficient
versus number of expansion functions have been presented for A/20-wide
rectangular slots, square apertures (of size A /4 x A /4 and A /2 x A /2) and circular

apertures of various sizes. Further, surface magnetic current distributions and

transmission cross-sections have been presented for all the six aperture shapes
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alluded to above. Each aperture studied has exhibited unfque near- and far-field
characteristics. Finally, the results for comparative study on transmission cross-
sections for apertures of different shapes with equal area have been given. Elliptic
and diamond-shaped apertures and H-shaped slot have exhibited attractive
transmission cross-sections.

Chapter 4 has presented results of a study on waveguide-backed apertures In
a conducting plane. First, convergence study results for peak magnitude of surface
magnetic current as a function of number of expansion functions for open-ended
square waveguide has been given. Validation results have included surface
magnetic current distributions and power gain patterns for Ax\/10 rectangular slot
and open-ended rectangular and square waveguides radiating into half space. In
addition, results for equivalent admittance seen by the dominant TE s mode for
open-ended rectangular and square-waveguides have also been given. Having
validated the formulation and the computer program, new data have been presented
for surface magnetic current distributions, equivalent aperture admittance seen by
dominant TE,, mode and power gain patterns for circular, elliptical, diamond-
shaped, cross-shaped and H-shaped apertures/slots radiating into half space. Finally,
a comparative study on antenna power gains for relatively small apertures of
different shapes with equal area and relatively large apertures of various shapes
with equal area has been conducted. The results have shown that elliptic and
diamond-shaped apertures have the highest power ga‘ins, among all the apertures
studied. Further, elliptic aperture has a more directive H-plane pattern while
diamond shaped aperture has a more directive E-plane pattern,

In Chapter 5, we have considered conducting diaphragms with apertures of
various shapes in the cross-section of a uniform rectangular waveguide. First, the

study has established a pair of criteria for eliminating the phenomenon of
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"relative‘. convergence” inherent in such aperture coupling problems. The pair of
criteria has been applicd to study convergehce of normalized shunt susceptance for
symmetrical inductive and capacitive diaphragms and centered - circular and
elliptical apertures. Good to excellent agreement with published data have been
obtained. Then, normalized Shunt susceptance results for diamond-shaped aperture
and cross-shaped slot have also been presented. Further, a comparison of equivalent
surface magnetic current distributions for symmetrical inductive and capacitive
diaphragms and centered circular, elliptical, diamond shaped apertures and cross-
shaped slot has been made. The major contribution in this chapter is the proposed
pair of criteria which can be applied for the computation of paramefers for
waveguide apertures (discontinuities) of any size and shape.

In chapter 6, results for broadwall radiating slots/apertures of different
shapes in a rectangular waveguide have been presented. Power radiated by offset
longitudinal slots and centrally- located transverse slots have been presented for the
validation of the formulation. Thereafter, power radiated by centrally-located
circular and elliptical apertures for different orientations of the elliptic aperture has
been given. The main contribution in this chapter is the updating of the geﬁera]
computer program such that it can analyse any radiating broadwall apertures/slots in

a rectangular waveguide.

7.4 SCOPE FOR FUTURE WORK

The various apertures studied in this work have been assumed to be residing
in an infinitesimally thin conducting screen or thin-walled rectangular waveguide.
The case of apertures of arbitrary shape in a thick conducting screen and in a thick-
walled rectangular waveguide were not considered due to lack of Green's function

for the interior arbitrary region formed by apertures of arbitrary shape in such thick
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walls. However, of practical interest are apertures in a thick conducting wall, both
as a single radiating element or an array of radiating elements and those occurring
in EMC/EMI problems. The scope for further research, therefore, lies in extending
our present formulation to incorporate Finite Element Method, i.e, a hybrid
MOM/FEM technique, whereby the FEM can be utilized to evaluate the fields in
the interior cavity region, which is formed when the aperture surfaces in a thick wall
are closed with perfect conductors, while the MOM formulation the fields on the
surfaces of arbitrarily-shaped aperture. The technique can be used to analyse the
apertures of various shapes studied in chapter 3 in a thick conducting screen and in
chapters 4 to 6 in a thick-walled rectangular waveguide.

In addition, problems of electromagnetic radiation from apertures of various
shapes in a metallic box (i.e., a shielded enclosure), inhomogeneously filled with a
dielectric material, can be studied to establish various resonance and other
parameters of interest. Such a problem is of practical importance as an example of
EMC and EMI problem. Another area that can be explored is that of apertures
occurring in printed circuits either due to cracks or deficiency in fabrication
technique. Further, problem of apertures of various shapes coupling a microstripline
to a microstrip-patch antenna and a waveguide to microstrip-patch antenna etc. can

be investigated.
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APPENDIX - A

Let the coordinates of observation point be denoted by (x,, y,). We denote

by superscripts -, + respectively, the parameters related to the first and second nodes

of a given side of T9. The arclength variables t;, increasing in the t; direction from
the value t,” at the I node to the final value tf =t +1i at the 2" node, Fig A-1,

has the projections at the endpoints of each side of T9 given by
= {805 =x0) =9y, Jo{(xs—1p)5+ yy3 3/,
=[5 = xo)(x3-13) = yo y3 /1 (A1)
= R0 = x0)+ 9(y3 - yo) Jo (R (x5 ~13)+39(y; -0}/
[(x3 = x0)(x3=13)+ y3(y3 - yo) |11, (A2)
= {R (x5 =xo)+ 9(y3 = o) Jo (R (x3-0) + Y(y3=0)}/1;
%5065 = %)+ ¥5 - o) |11, (A3)
t = {X(=x0) +y(~ Yo) o 4= %x3-9y3} /1,
= [xox3 + yoy3 171, (A.4)
5= R (%) §(-y0) Jo R (-13) /1
=y (A.5)

3= {R (05 =% )+ 9(= yo) Jo [1,% )/1;4

]

= (13 =x%,) (A.6)
(A.1) to (A.6) can be written in compact form as
G = B~ Bo)* Binsict = Posion) /| (A7)

i=1,2,3

where m and n are dummy variables such that

4
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Distances from observation point to segment end points at the vertices, Fig. A-2,

are given as

- 2 2
S| = (13 - xo) Y,

A R )’

- +
S 7§
+ / 2 _2
S2 - Xo+yo
- +
53 =35,
+ -
$3. =8

. * )
Or in a more compact form s; can be written as

+ _ _
S = ‘Pi - POI (A.8)

Perpendiculars pi0 to the arc length |; or their extension are given by
o
P = Y (g =)+ = x ) ys 3/ ], (A.9)
py = [{k(x3 = x,)+(ys - Yo) § X {&x3+7ys 1715
= |{Y3(X3 = Xo)=X3(¥3 - Y,) }(/12'
= (VoX3 = X¥3) /1, (A.10)

Py = |[X(x;=x,) + 5(y; - ¥o) Ix [(13 - x))%+ vz =y ||/ 15
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- ’yo '3/'3,

I

Yo (A.11)

. 0 .
Or in a compact form, p; can be written as

pio = | (En+i+l ~ Do) X (Emﬂ'—l - §n+i+l) [ /1] (A~12)
K ( )
X2,y

E T
(0,0) 3 (3) )
Fig. A-1
(X3,¥3)
P, = (X, ¥,) 3
y
> »X
(0,0) (15,0)
Fig. A-2
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APPENDIX -B

Transformation from x-y plane to L,-L

0<L,<l, 0<L,<|

where

(X3) y3)
X = |3 L2 + X3 L3 T
Y = ¥, L3 I
Taking partial derivatives leads to
o | o X @ > @ >
TR P l
ar, Voo, (0,0) . (15,0)
Fig. B-1
ay — 0’ iy_ — Y3 i1g ‘
oL, /0%

5 (area coordinate) plane,

and the Jacobian of the transformation J is

O &

L, dg | [
oy ﬂ 0 Y3
dL, dL,

=133

For a triangle Fig. B-1,
|
The area A = 5 Ly y4

le., J=2A
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