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ABSTRACT

This thesis deals with the work done in the areas of

analysis of electrocardiogram and cardiovascular and pulmonary

systems. Electrocardiogram is extensively used by cardiologists

in clinical interpretations for knowing the functioning of the

heart. Electrocardiogram has good correlation with the mechanical

activity of the heart which is responsible for the flow of blood

throughout the circulatory system. The pulmonary system is

responsible for maintaining the proper level of Oxygen content

inside the blood. Proper functioning of the cardiovascular system

is dependent on the state of the cardiovascular and pulmonary

systems.

The work done for this thesis can be divided into two

major sections°

(i) Analysis of electrocardiogram

(ii) Analysis of cardiovascular and pulmonary systems.

New methods have been developed for the analysis of electrocardio

gram. Existing models with modifications have been used for the

analysis of cardiovascular and pulmonary systems.

ANALYSIS OF ELECTRO CARDIOGRAM

The first section deals with the accurate representation

of ECG signal, derivation of diagnostically significant parameters,

and development of the methodology for classification of cases

according to nature of abnormality in ECG patterns. Twelve lead
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ECG system has been used for this work. Measurement error and

lead proximity corrections are applied to lead potentials using

Burger triangle representation. Peak potentials at leads I,II and

III have been used to find the Frontal plane Peak Resultant

vectors (FPR) for various segments of ECG pattern. The precisions

achieved for amplitude and phase are 0.0000002 mV and 0.00O00H-

degree, respectively. From the set of normal cases, the different

ranges of variation for various parameters are established. The

relative valaes of parameters showed very good clustering in the

normal pattern space.

Sine, cosine, unit impulse, exponential and Gaussian

functions have some limitations as the basis functions for the

model representation of ECG waves. Therefore, a set of new mathe

matically defined basis functions is proposed for various segments

of ECG wave. These basis functions have specified shapes. The

coefficients of the polynomial expressions defining the various

basis functions are computed and stored once for all. The main

variations in the ECG patterns are horizontal and vertical elong

ation and/or contraction of various segments. There are also

relative phase shifts among the segments and also lead to lead

variations. All these have been properly taken into account in

this model. In addition to the permanently stored model parameters

the number of parameters required to generate the corrected pattern

at the six frontal plane leads are less than or equal to eighteen.

The set of ECG patterns has been defined by a mathematical expres

sion. The ECG pattern at any frontal plane lead with measurement

and lead proximity corrections can be generated by this model
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expression. There is a considerable data compression resulting in

less memory storage requirement in computers.

Simple and composite binary codes have been developed for

representing the diagnostic parameters as symptoms. The parameters

within and beyond the normal range are represented by a 0 and 1,

respectively. For composite binary code, the parameters are

represented as 11, for values within normal range, 01, for values

below normal range and 10, for values above normal range. Symptom

patterns are specified for four categories namely, normal case,

myocardial infarction, . right ventricular hypertrophy and left

ventricular hypertrophy. Depending upon the matching or mismatch

ing of a symptom of a case with the specified symptom, the multi

plier may be taken as 1, 0 or -1 for the respective symptom.

Linear programming has been used to find the weight factors of

symptoms with respect to different categories. The cases are

classified into their respective categories by computing and

comparing weighted sums of symptoms for a case with respect to

different categories. The weighted sum is expressed as,

N
Y(I) = ( S W(J) * MM(I,J)

3=1

where, j corresponds to the symptom number, MM the symptom multi

plier, I the category, and W the weight factor.

The development of the methodology and computation of

coefficients to be stored once for all has been carried out on

DEC-20 computer. The computation for the final interpretation

became quite simple and showed a possibility of microprocessor
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implementation. The software implementation of the method on a

8085 based microprocessor system is also given in this work.

The method developed here using only three of the twelve

leads is simple and efficient for ECG interpretation. The sample

cases of myocardial infarction, left ventricular hypertrophy,

right ventricular hypertrophy, and normal categories have been

properly discriminated by this method. The microprocessor imple

mentation shows that the method is well suited for bedside online

analysis in hospitals.

ANALYSIS OF CARDIOVASCULAR AND PULMONARY SYSTEMS

The invasive measurements in the cardiovascular system

are to be limited in number due to discomfort to the patient.

This restricts the number of measurable physiological parameters.

Therefore, with limited number of measured quantities a large

number of diagnostically significant additional parameters for

the system are found out using parameter estimation techniques.

Clark et al.(1980) presented a modified Wind Kessel model of left

heart systemic circulation system and proposed a method for its

parameter estimation. This model has been used with modification

in the present work for studying the effect of variation of aortic

valve resistance, resistances and compliances of proximal and

distal parts of left heart systemic circuit, peripheral resistance,

inertance of long fluid columns and aortic valve switching func

tions for systolic and diastolic periods. Maxima, minima and

average values of responses are computed and considered for

comparison purposes. The work has been done to establish
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correlation among abnormalities of cardiovascular system, affected
parameters and system responses. Simulation of certain abnormal
states and associated mechanism is also possible. During the

analysis a new source of mechanical arrhythmia has been observed.
The means to arrest this arrhythmia are also discussed in this

work.

Large number of lumped parameter models of respiratory

system has been developed so far. The respiratory system has
been modelled using R-C or RLC parameters. In the present work

RC and RLC models have been used for the analysis. The parameters

have been estimated by the solution of the system equations for

these models.This model analysis reduces the invasive measurements

considerably. The loss of diagnostic information is compensated

by the estimation of additional parameters. The results of the

analysis are useful for knowing the state of overall pulmonary

system and comparison of cases of different categories.
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CHAPTER I

INTRODUCTION

1.1 GENERAL

Biosystems and signals are complex in nature. It is not

possible to collect all the information about them directly by

measurement. The measurements in general and invasive measure

ments in particular are to be limited as they may be tedious,

time consuming, expensive, uncomfortable and at times harmful to

the patient. Therefore, model analysis is carried out for getting

the consistent and instructive picture of these complex systems.

The analysis also reveals useful information and establishes

useful relationships which are useful in medical decision making.

Mathematical description of biosystems and their mathe

matical models establish useful correlations. It is now possi

ble to model complex systems taking more complexities with minimum

assumptions due to advances in the area of computational methods

and digital computers. The impact of recent development in

information processing is considerable. Computer modelling and

simulation has been recognised as a very useful tool in biomedical

research and education. From a qualitative discipline, the life

science has now emerged as a more quantitative discipline with a

strong theoretical basis. Computer modelling and simulation

promote the interaction between experimental and theoretical

works and allows more information to be extracted from experimen"

tal results. The increasing cost for laboratory experiments and
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decreasing cost for computer analysis have made this approach

more attractive.

Clinical diagnosis is made more accurate, free from bias

of similar cases, morp reliable, and reproducible with the help

of computers. Proper balancing of expenses, time, and inconven

ience against the returns optimizes the economy of tests and

therapies. Pattern recognition techniques define the mathematical

relationship between measurable features and classification.

Computerised interpretation uses principles of pattern recognition.

In parametric methods parameters of probability density functions

are found. In nonparametric or distribution free methods the

assumptions are not made about the nature of distributions.

In this thesis, the bio signals and systems namely electro

cardiogram and cardiovascular and pulmonary systems have been

selected for the analysis. These are interrelated signal and

systems.

1.2 BIO-SIGNALS AND SYSTEMS

Blood is the most vital fluid for the human body. Its

circulation Involves heart as the pumping device and systemic

circulation bed as the load. The electrocardiogram reflects the

activity and state of the heart. The pulmonary system is respon

sible for maintaining proper level of oxygen in the blood. Proper

functioning of the circulatory system is dependent on the well

being of the cardiovascular and pulmonary systems.
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1.2.1 Cardiac System and Electrocardiogram

As shown in figure 1.1, human heart consists of four

chambers °> right atrium (RA), right ventricle (RV), left atrium

(LA), and left ventricle (LV)[116]. RA and RV are connected

through tricuspid valve (T). LA and LV are connected through

mitral valve (M). At the beginning of the cardiac cycle relaxed

atria and ventricles are filled with blood from venous return.

A-V valves are open and pressures in all the four chambers are

almost same. Impulse generation at the SA node initiates the

contraction of atrial muscle, raising the atrial pressure, which

is followed by the ventricular pressure. The atrial contraction

lasts for about 0.1 second in a total cycle length of 0.8 second.

As it passes off, atrial and ventricular pressures fall. Mean

while exciting pulse spreads from SA node, across the atrial

muscle to the A-V node and via bundle of His and Purkinje tissue

as shown in figure 1.2[81]. The ventricular contraction makes

ventricular pressure greater than the atrial pressure closing

A-V valves. As the ventricular pressure exceeds the arterial

pressure, the semilunar valve opens. During ejection phase arte

rial and ventricular pressures follow closely to each other. At

the end of ventricular systole of about 0.3 second ventricular

pressure drops sharply. Arterial pressure is sustained by

elastic recoil of vessel wall and as it exceeds the ventricular

pressure semilunar valve closes. Initial isometric part of

ventricular diastole (0.08 sec) ends in opening of A-V valve,

because the arterial pressure exceeds the ventricular pressure.

Then there is a rapid filling of ventricle (0.1-0.12 sec) followed
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by slow filling (O.19 sec) due to continued venous return, filling

both atrium and ventricle, and readjusting the end diastolic

volume of ventricle. The ventricular diastole lasts about 0.5

second [81,116].

Auricular systole starts with the discharge of SA node.

P wave of electrocardiogram corresponds to auricular systole and

atrial depolarisation. QRS wave corresponds to ventricular

depolarisation. QRS interval represents intra ventricular conduc

tion time (0.06-0.1 sec). Atrial repolarisation is very slow and

buried in the ventricular depolarisation complex. T wave repre

sents ventricular repolarisation. Depolarised state of ventricles

is represented by ST segment. QT interval represents the time

required for the completion of ventricular depolarisation and

repolarisation (electrical systole). The interval from the end

of T wave to the beginning of QRS complex represents electrical

diastole of the ventricles. PR interval is the duration between

the onset of atrial and ventricular depolarisation. It corres

ponds to the time of travel by the impulse from SA node to the

ventricles [81 ].

Thus the ECG represents the electrical activity of the

heart which has good correlation with its own mechanical activity.

It indicates systolic and diastolic periods, conduction delay,

opening and closing of valves, and the sequence of various events.

The amplitude of EGG segment potential depends on the shape, size

and orientation of the tissues responsible for its generation.

The various timings on the ECG depend on the state of the conduc

tion mechanism. The relative phase shift among the segments
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depends on relative disposition of the tissues in space. In case

of right and left ventricular hypertrophy, there is enlargement

of respective portion of the ventricle. So, there is increase in

corresponding segment potentials. Due to predominance of right

or left ventricle there may be right or left axis deviation. In

myocardial infarction, the damaged tissues are unable to generate

and transmit the action potential. Therefore, ECG is a very useful

diagnostic aid about the state of heart as it reflects various

types of abnormalities.

The development in electrocardiography started with capil

lary electrometer by Lipman in 1872 and string galvanometer by

Einthovan in 1901. Einthovan, Lewis and Wilson did useful work

in the early days of electrocardiography [73,123-126,236-2^].

Frank lead system is commonly used corrected lead system [78-79]•

Burger et al. applied scalene triangle correction to Wilson's

tetrahedron [31-3^]. With the introduction of computers a number

of methods are developed for the analysis of electrocardiogram

[ 2,13,92,118,138,1^3,155,209, 219, 2^-5, 2U6]. In last twentyfive

years a lot of work has been done for the computer assisted

interpretation of ECG in the various parts of the world [6,21-23,

^1,57,71,91,106,117,131,135,166,168,172,177,185,197,201,202]

Presently, microprocessor based systems are also being developed

for the purpose of recording, monitoring and analysis of ECG.

1.2.2 Cardio-Vascular and Pulmonary Systems

There is a very large number of living cells for the

muscular activity through out the body. They consume Oxygen as
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the fuel from the blood and return carbon dioxide. One side of

the heart pumps blood for the systemic circulation and the other

side for pulmonary circulation.

The systemic circuit has a higher resistance resul-

ting in larger pressure gradient between the arteries and veins.

Left ventricle pumps blood at peak systolic pressure of about

120 mm of Hg and diastolic pressure of about 80 mm of Hg. Left

heart is effectively a pressure pump. The pulmonary circuit has

a lower resistance and smaller pressure difference between arte

ries and veins. Right ventricle pumping blood at about 25 mm of

Hg is effectively a volume pump. Blood has to depend on the lungs

for the exchange of carbondloxide and Oxygen.

The details of the circulatory system are shown in

figure 1.3. The schematic representation of the same is shown in

figure 1.H- [59]. Superior vena cava leads from the upper extre

mities of the body and inferior vena cava from the bodily organs

and extremities below the heart. Through these two main veins

and coronary sinus the blood enters the right atrium. It flows

to right ventricle from right atrium through tricuspid valve.The

blood is pumped by right ventricle to the two lungs through semi

lunar pulmonary valves and pulmonary artery. In the alveoli of

the lungs, the red blood cells get rid of carbon dioxide and get

charged with oxygen. The pulmonary artery is divided many times

to form arterioles of very small cross sections. The necessary

blood for the exchange of carbondloxide and oxygen is supplied

to the alveolar capillaries by these arterioles. On the other

side of the lung mass capillaries feed in to venules.Combination
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of venules form larger veins which combine to form a pulmonary

vein carrying Oxygenated blood to left atrium. It flows to aorta,

through left ventricle and aortic valve.. While reaching the

extremities, the arteries undergo many bifurcations. In the last

stage leading to arterioles, the cross section decreases and the

number of branches increases. The arterioles feed in to the

capillaries. Here, exchange of oxygen and carbondloxide takes

place between the blood and the cells. The low velocity of

blood facilitates this exchange. Starting from capillaries, the

combination of branches results in venules, small veins, larger

veins*, and superior and inferior vena cava [V7,59L

The metabolic process consumes oxygen and liberates

carbondioxide. The tissue cells are not in direct contact with

the environment. The cells are bathed in a fluid. The cells can

exchange oxygen and carbon dioxide with this fluid. The circula

tory blood exchanges carbondioxide and oxygen with the tissue

fluid. The exchange of gases between the blood and external

environment takes place in the lungs. The inflow of air to the

lungs and outflow to the atmosphere takes place through the respi

ratory system.

The details of the pulmonary system are shown in figures

1.5 and 1.6 [59]. The respiratory tract includes the nasal

cavities, pharynx, larynx, trachea, bronchi, and bronchioles.

The lungs are elastic bags and are located in a closed thoratic

cavity. The right lung has three lobes and left lung has two.

Epiglottis above the larynx prevents liquids and solids from

entering the respiratory tract. The diameter and length of
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trachea are 1.5-2.5 cm and 11 cm, respectively. The right and

left bronchi enter in to respective lungs. Successive branching

forms bronchioles and finally respiratory bronchioles, where some

alveoli are attached as small airsacs in the walls of the lungs.

During inspiration, the muscular changes increase thorax

volume. The negative pressure developed initiates inflow of air.

During expiration, the release of muscles and elasticity of lungs

reduce thorax volume, and develop a positive pressure that

creates outflow of air.

The cardiovascular and pulmonary systems have interdepen

dence. Proper functioning of one system is essential for the

proper functioning of the other. Some symptoms of cardiovascular

abnormality lead back to the pulmonary disorder and vice versa.

Modelling of the cardiovascular system started with the

Wind Kessel model [80]. A large number of models or modifications

in the models are proposed later on [7,15,29,30,1+9,50,67,89,93,

122,181,199,206,229]. The efforts of the modelling of pulmonary

system started with Rohrer [18*+-]. Some of the models are related

to respiratory airways [7^,88,97,1 36,1 61,196, 2^+]. There are

certain models devoted to only gas exchange in the pulmonary

system [19,111,186,22^,225]. Some interaction models have covered

both the external airways and internal gas exchange [3,76,101,192,
193].

1.3 ORGANISATION OF THE THESIS

The work embodied in this thesis deals with the analysis

of electrocardiogram, and cardiovascular and pulmonary systems.
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The major portion is devoted to analysis of electrocardiogram.

The first chapter deals with the importance of model analysis and

the details of electrocardiogram and cardiovascular and pulmonary

systems. •

The second chapter deals with the analysis of electro

cardiogram. In the beginning the developments in the field of

electrocardiographic analysis are reviewed. Various methods of

representation for the ECG are discussed. The methods of data

compression, selection of lead system and method of recording the

12 lead ECG are discussed. A method is developed for the repre

sentation of ECG by Frontal plane Peak Resultant vectors (FPR)

using Einthovan and Burger triangle representations. An algo

rithm is developed for measurement error and lead proximity

corrections. In the next section of this chapter, a model based

on new basis functions is developed for the representation of

electrocardiogram. At first, coefficients of the polynomial

expression representing various basis functions for the different

segments are computed. These polynomial expressions for the

basis functions are combined to develop mathematical model for

the overall ECG pattern. The reconstruction of the group of ECG

patterns at the six frontal plane leads by a common model expres

sion is also illustrated.

Computer assisted interpretation of electrocardiogram is

given in Chapter III. In the beginning, clinical criteria are

given for ECG interpretation. The review part covers the various

methods of wave recognition, and the development of various ECG

interpretation programs. In the next section of the chapter, a
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method is developed for the computation of diagnostic parameters,

their effective representation in signal space, and definition of

normal pattern space. Using this approach, electrocardiograms

are screened in to normal and abnormal categories. Composite

binary codes are developed and used for generation of symptom

patterns. Symptom multipliers and weighted sums of symptoms are

used for the discrimination of training cases of different cate

gories. Method of computation of weight factors is also discussed.

A method is also developed for the detailed classification of

electrocardiograms. The last section of the chapter shows the

implementation of the method developed, on microprocessor.

The fourth chapter deals with the analysis of cardio

vascular system. After brief review of the models developed so

far, the cardiovascular system is analysed using a recently

proposed model. Model analysis is used to investigate the effect

of variation of aortic valve resistance, resistance and compliance

of proximal part, inertance of blood column, compliance of distal

part, peripheral resistance; and improper opening and closing of

aortic valve. Correlation is established among model parameters,

some abnormalities and affected response. The scope of model

simulation of abnormalities of cardiovascular system is also

highlighted. Effort is made to correlate the cardiac arrhythmia,

abnormal set of model parameters, and model responses. It is

also discussed as how this arrhythmia can be arrested.

The analysis Of pulmonary system is carried out in the

fifth chapter. Two methods have been used for parameter estimation.

One method is a nonlinear iterative technique and the other one
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is a simple noniterative technique. Effort is made to establish

the basis of comparison for the normal and abnormal cases. The

main problem in the diagnosis of pulmonary system is with the

abnormalities in the lower airways. So, more stress is given to

the estimation of diagnostically significant model parameters for

the lower airways.

The last chapter 'deals with general conclusions, discuss

ion and scope for future work.



CHAPTER II

ANALYSIS OF ELECTROCARDIOGRAM

a

2. 1 INTRODUCTION

The electrocardiogram is recorded from the surface of

human body. The recording is affected by the placement of elect

rodes and also by some human and instrumental errors. It necessi

tates proper correction before making its use for interpretation.

This chapter deals with the work done towards ECG data correction

and representation using mathematical expressions. A correction

algorithm is developed. A method is developed for the effective

and accurate representation of electrocardiogram. Burger triangle

with measurement error and lead proximity corrections is used to

compute frontal plane peak resultant vectors for individual ECG

segments. A model based on new basis functions is also developed

to yield diagnostically significant parameters suitable for cate

gorization in addition to reconstruction of electrocardiogram.

2.2 HISTORICAL DEVELOPMENTS

Development of electrocardiography started with the intro

duction of capillary electrometer by Gabriel Lippman in 1872. But

permanent photographic recording became possible only after its

modification by Marey in 1876 [113]. The surface potential

measurement was introduced by Augustus Desire Waller [226] and

Jimmie. The diagnostic significance of these measurements was

first recognized by Willem Einthovan. A high precision string
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galvanometer was developed by Einthovan in 1901. The labelling

of ECG segments was also introduced. The Einthovan triangle and

Einthovan's laws for frontal plane leads are commonly used by the

cardiologists all over the world. Some useful work was contri

buted by Thomas Lewis between 1910-1913 [123-126]. Frank Wilson

is known for his contributions in electrocardiography from 1920

to 19*+7 [236-2liO]. In 1913, Einthovan et al. introduced the

cardiac vector and described the method for determining the mean

electrical axis of the QRS complex [73]. A vectorcardiogram

from simultaneously recorded leads *as constructed by Williams

in 191U- [23>+]. The first vector loop was constructed in 1920[139]•

The heated stylus with waxed paper for ECG recording was intro

duced by Haynes in 1936 [102]. Cathode ray tube was introduced

to vector cardiography in 1937 [19*+]. The heart vector and lead

vector were correlated by Burger and Van Millan during 19^-19^

[31-33]. Burger et al. also introduced scalene* triangle in

1956 [3H-]. Frank lead system [78-79] shown in Figure 2.1 is very

commonly used corrected system. It is based on detailed torso

model and requires only seven electrodes with a built in resistive

network. It is orthogonal and has a good anatomical correlation

[78]. Rijalant System [183] with 72 electrodes, inspite of sound

scientific footing, had problems in clinical practice [113].

Schmitt's system uses 1*+ electrodes. The X component of cardiac

vector is derived from the right and left arm electrodes along

with components derived from chest and back electrodes placed at

the level of 5th intercostal space. The Y component is obtained

from the head and left leg electrodes, and the Z component from
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8 electrodes located on the chest and back at the 3rd and 6th

interspaced 13]. *The lead, field concept was substituted for lead

vector type correlation coefficients by McFee and Parungao in

1961 [1M*].

2.3 METHODS OF ELECTROCARDIOGRAM ANALYSIS

The application of computer has brought revolution in the

analysis of electrocardiogram (ECG). In case of forward problem

of electrocardiography, the electrical generators at the heart

are considered as functions of time over complete cardiac cycle

and effort is made to determine the electrical potentials over

the same span at the body surface. In case of inverse problem,

the electric potentials at the body surface are assumed to be

known over the complete cycle and effort is made to determine

electrical generators at each instant of time in the heart. The

known geometry and conductivity of human torso and surface

potentials simply do not result in unique solution for the gene

rators. The orientation and number of dipoles and their time

sequence of operation are to be assumed [211 ], The principle

problem in electrocardiography is to find the means to recover

the dipolar information, which represents 75-80 % of the electric

field [U-], The recovery of the remaining nondipolar information

is difficult. It requires registration of unipolar leads from

100-250 points of the thoratic surface. Although, surface poten

tial mapping with multiple electrodes is more informative, but

unavailability of commercial instrumentation system, lack of

interpretation and classification techniques, and relatively



-18-

high overall cost are in the way of its routine application

[10*+, 213]. Some methods of ECG analysis try to correlate the

large number of ECG potentials measured on the body surface to

one or more generators at the heart. In the other approach,

models are used to simulate the ECG patterns at one or more leads.

The model parameters are representative of a particular ECG

pattern. In some cases the model parameters have good diagnostic

significance and form the basis of classification algorithms.

Some methods of ECG analysis are discussed here.

2.3*1 Intrinsic Component Theory

The intrinsic component theory is known as Eigen value

and factor analysis problem. In this approach, spatially non-

orthogonal, stationary sets of current sources and sinks are

considered [2U-?]. The amplitude variation in a set follows a

single pattern of intrinsic component orthogonal (uncorrelated),

to other components in the time domain.

Let,

H = correlation matrix

hj. = elements of H, ith row and jth column

h. . * = complex conjugate of hi .

x^(t)= ith ECG measurement with complex conjugate x.(t)

X, = kth Si gen value

eik = *"*k elemeivfc °f kth Eigen vector with complex conjugate

eik
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J x.(t)*. x. (t) dt
* J

temporal .correlation of ith and jth ECG measurements

ECG voltage at point P

coefficient relating kth intrinsic component and

ECG measurement at point P.

For n measured components of ECG, x., x„,...., x a signal

correlation matrix H is formed as follows.

< x1 J x1 > < x1 | x2 >

H = < x2l x-, > < x2l x2 >

< xnl x1 > < xnl x2 >

< x1 | xn >

<x2l xn>

< X X >
n' n

Matrix element h. . is a correlation between x. and x. •

oo

h. . = < x. | x. > = j" x. (t) .x. (t) dt
ij i j -.1 j

... (2.1)

.. (2.2)

It is independent of t. Eigen values ^k's and Eigen elements

eik's are foun(3- sucn that 2 h, . eiic=^keik'hii = ^m > and-
J

Eigen vectors satisfy the orthonormal conditions.

Z e-n*^, = 6,, = Krone eke r delta

= 1 (for 1= k) and 0 (1 A k) ... (2.3)

The intrinsic component is defined as

Uk(t) =.| eik xi(t) ... (2.1+)

Matrix H has m significant Eigen values (m < n). The coefficient
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C, (p) relating kth intrinsic component and field point P is a

function of space. The voltage at P is expressed as

m co m

V(p,t) = E C.(p) U,(t), where, C, (p) = J V(p,t) U.(t)dt ...(2.5)
k=1 K K K o *

Due to orthogonality of intrinsic components in signal space,

< U1|Uk > = j U1(t) Uk(t)dt =0 for 1 4 k ...(2.6)
o

The magnitude of intrinsic component is equal to the square root

of Eigen value X . Each ECG is considered as a linear combination

of m intrinsic components. It is claimed that this representation

is better than multipole theory, because the cardiac tissue is a

combination of spatially fixed dipoles discharging in an ordered

temporal sequence. The approach requires less data and is

suitable for digital computation. For normal ECGs, eight most

significant Eigen vectors are sufficient for representation of

QRST segment with 98. ^+3 '/• accuracy, but for abnormals more

components may be necessary [98].

Using factor analysis, a given set of N electrocardiograms

may be represented as [1V3],

fi = ai fI + bi fII + Gi fIII + ••••* ...(2.7)

where, f. is the represented ECG, a's and b's are constants and

f-r, f-rj , .... are functions of time. The values of a's and fy are

found at first by least square error criterion using expression

N ?
S = 2 5 (f. - a. fT)* dt ...(2.8)

1=1 ill

The residue functions are used to find the successive factors and

associated coefficients.
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2.3»2 Amplitude and Duration Method

It is a simple method considering amplitudes and durations/

intervals at leads II and V- as representative of an ECG for a

particular case [209]. The sampling rate is 625 samples per

second. As shown in Figure 2.2, amplitudes of waves P,Q,R,S, and

T and of segment ST, durations Pd, Qd, Rd, Sd and Td of respective

waves, and intervals Pf^, ST1, QTi and RRi are measured and stored.

The derivatives are also found for various segments.

2.3.3 Latent Components in ECG

In this decomposition technique the components C.(t) are
J

positive between start and finish, and zero elsewhere [92]. They

start in a sequence. At one time, not more than three components

are nonzero. The k observed waveforms are represented as

M

D.(t) = £ A.. C.(t) + E.(t) ... (2.9)
1 j =1 1J 3 x

where, A^. is the constant coefficient and B.(t) is the error.

The number of components M depends on the set error criterion.

The addition of a component alters the shapes of other components.

The decomposition procedure is shown in Figure 2.3. The coeffi

cients are plotted as vectors within a unit circle for horizontal,

frontal and left sagittal planes. The computational algorithm is

as followsi

Step I %The components are set to unit impulses located at the

centroid of the previously derived components. Unit

impulse is added at the instant of peak absolute error.
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Step II s (a) The coefficients are evaluated for least squared

error and then are normalised. The component

amplitudes are adjusted,

(b) Positive components are extended for minimum squared

error. The starting and ending sequence is kept

same and the simultaneous components are limited to

three.

Step IIIi Return to step I for peak absolute error larger than

the acceptable one, otherwise the decomposition is

complete.

2.3A Matched Exponents

A set of matched orthonormal exponentials found by an

iterative process is used to represent the ECG in this method[2U6].

The orthonormal exponentials are linear combination of ordinary

exponents

exp (- ak t ± 4 |fc t).

where, t is the time, and ak and §k are the constants. N real

exponentials are chosen to form initial basis for the measured

ECG. The number of significant exponentials D is decided by Eigen

vector process. They are represented by the Eigen vectors weighted

by the square root of the Eigen values. The weighted Eigen vector

is a linear combination of N original exponentials. They are

then approximated by D new exponential basis, so that all the

energy measured in the original N dimensional space is contained

within this D dimensional space. The remaining (N-D) basis

functions are chosen empirically. The signal is again measured
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on this new H dimensional basis and the process is repeated until

satisfactory results are obtained. The iterative process is

shown in Figure 2.M-. The final basis consists of 6 pairs of

complex exponentials? the first pair for small Qwave, next three

for QRS complex and last two for T wave. The error is limited

within +5'/.. The Fourier series requires 28 sine and cosine

terms and a constant term. The analog simulation is possible by

orthonormal exponential filter [2^6].

2.3.5 Fourier Series Analysis

Diagnostically significant upper frequency for ECG is

still undecided [118]. The fundamental frequency lies between

6.6 and 12 Hz. The frequency components greater than or equal to

80 Hz contribute less than 3 %to the total amplitude [195]. The

ECG reconstructed from 3^ to 37 Fourier terms has agreement with

original ECG within + 1 %D*5], Use of 60 harmonic components

reduces the reconstruction error to V/.. Beyond this order the

improvement is very slow [118]. Waveform amplitude information

extends only to 200 Hz and waveform duration information lies

below 60 Hz [87]. The Fourier series can also be found for indivi

dual ECG segments as the significant range is different for

different segments. The frequency analysis is also used to

specify the minimum value of upper frequency limit for ECG

equipments. It is specified between 50 and 1000 Hz by different

countries. Therefore, minimum sampling rate of 100 samples per

second and quantization interval less than 10 ms are desirable.
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The ECG can be represented by a Fourier series in the

following form [69]*

00

u(t) = A /2 + 2 (A cos not + B sin n cot) ••• (2.10)
n=1

wbe re,

p T/2
A s| { u(t) cos n cot dt,n T _T/2

? T/2
B = # ) u(t) sin n oat dtn I _T/2

u(t) = U + Z U cos (n cat + 0n) . • • (2.11)
0 n=1 n

where,

Uo - V2' \=/^"+Bn>
0n =t£m-1 i-vv

00

u(t) =U + S U sin (nc»t + 0)
0 n=1 n n

0 = tan"1 (A /B ) ••• (2.12)
n n n

The advantage of the approach is that the Fourier coefficients

are independent of the number of harmonic components considered.

The baseline shift during ECG recording affects only the average

value. It is a convenient method for computation on a digital

computer. Inspite of reduced error with large number of components,

in some regions the shape matching is poor. There may be wide

variation in the values of Fourier coefficients from individual

to individual and lead to lead.



-26-

2.3.6 Cross Correlation Technique

This technique relies more on shape than area, amplitude

or duration. It is claimed to be more informative. Matched

filters are also used as the analog equivalent of correlation[208],

Digital cross correlation is also used [ 1U-7, 21 53- For periodic

functions fv(t) and f (t) with N+1 sampled values in sets X, and
X S K

S, , the discrete time correlation is given by

1 N
<WT) S1RT^ Xksk+T ••• (2-13>
where, T a time delay, f (t) is normal or specific disease ECG,

and fx(t) is unknown ECG. The normal heart rate of 75 BPM is

considered for linear time normalisation- The mean square value

of unknown waveform is made equal to mean square value of refe

rence wave for amplitude normalisation. Bach sample value is

divided by square root of the ratio of mean square value of

unknown ECG to that of the mean square value of the reference ECG.

In case of perfect shape matching, cross correlation is reduced

to auto-correlation. With the multiple adaptive matched filter

system, a variety of operations namely normalisation, weighing,

comparison, decision, modification and adaptation are performed

on the original data sampled at 600 samples per second. QRS is

assigned evenly spaced 3° intervals. This 31 dimensional vector

becomes time normalised and synchronised pattern [13].

2.3.7 Template Matching

The approach uses a linear combination of a set of

template waveforms to fit in, a set of pattern waveforms [138].
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The template of m waveforms sampled at n points and represented

by n x m matrix T is considered. The template is used to synthe

size a set of k pattern waveforms, represented by n x k matrix P.

The m x k matrix W is found to minimise the squared error. The

error is normalised to make it independent of amplitude and

dimensions of P. The specific patterns of normal Frank lead

x- y- z wave forms are used as template in matching normal and

abnormal pattern waveforms. The parameters obtained for matching

are stored as representative of a particular ECG. The QRS complex

is considered in the illustration [138].

2.3.8 Orthogonal Transforms

The Karhunen Loeve Transforms (KLT), Haar Transform (HT),

Discrete Cosine Transform (DCT), and Identity Transform (IT) are

considered for data compression and compact representation of

ECG pattern [2]. The normalised mean squared errors (MSE) for

various transforms are compared in table T.2.1 [2].

TABLE - T.2.1

Orthogonal Transforms

No. of
components

M

Normalised MSE

KLT DCT HT IT

8 0.2332 0.2838 0.3)40^ 0.8767

16 0.0773 O.m-51 0.1763 0.7813

32 0.0031+ 0.0293 O.O6O3 0.6180

6h 0.0000 0.0069 0.0088 0.3599

96 0.0000 0.0000 0.0000 0.1608
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The value of M equal to 32 to 6^ results in data compression of

2s 1 to -t-*1 (number of points 128) with good accuracy for DCT and

HT. The KLT can also be applied to P and QRST segments considered

separately [2V3].

2.3.9 Some Other Approaches

Cadzow et.al.[U6] have reported that the continuous

periodic signal may be represented by a set of values measured

at some interval, forming a parameter vector, a = (a-j , a«, ••••, a^).

The linear recursive representation of finite length sequences is

discussed. Twelfth order direct recursive match of 91 samples

for one period of ECG is illustrated [U6]« The compression of

data achieved is 91 s25* The minimum value of normalised inner

products, f(a) is equal to 0.0105 for the whole wave. For DCT

with m = 28, f(a) is O.OO963 in the illustration.

The signals are decomposed into their minimum and maximum

phase components through homomorphic filtering in homomorphic

analysis and modelling. The components are modelled by Poles

and Zeros [155]. The best extraction procedures may fail to give

good results due to noise and artefacts. The frequency domain

techniques are less suitable for diagnostic purposes due to lack

of spectral feature variability associated with pathological

states [219]» The part of the ECG wave is represented as a

combination of 27 linear segments with specified lengths and

slopes in a syntactic approach [219 ]• The piecewise approxi

mation approach [10 5] is somewhat similar to this approach. The

ECG pattern is thought of as a series of triangles or trapezoids

separated by some intervals. The line segments on the ECG are
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i

specified by the heights, lengths, and intervals. A spin harmonic

model is also developed and applied for the investigation of

properties of ECG, location of ECG neutral point, and study of

reversal of phases of unipolar ECG records [1^9,1 50,1 51 ]•

2,h DATA COMPRESSION

The ECG data to be used for the analysis should be

acquired and stored or transmitted economically. The higher

sampling rates are desirable for ECG to retain diagnostically

significant high frequency components. But, the limitations are

due to cost of storage and transmission. Digital data trans

mission is free from noise and is suitable for direct use on

digital computers. The transmission of three leads sampled at

250 samples per second with a 10 bit word length creates more than

7500 bits per second which is beyond the capacity of standard dial

up telephone lines [227]. Therefore, data compression is essen

tial. The reduction of sampling rate and shortening of word

length are rarely used for data compression. In case of expansion

of ECG using orthogonal transforms, only coefficients of indivi

dual functions are transmitted. The prediction formula* is used

for the sampled data in another approach. The error between the

predicted and actual value is transmitted. The bit rate can also

be minimised by transmission of signal, only if, the ECG potential

has changed by a predetermined value A. The value of A and its

time of occurrence are transmitted. In straight line interpola

tion, the transmission occurs only when the interpolation error

exceeds a predetermined criterion. Beat to beat variation is
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involved in serial comparison. It is economical to store a few

significant parameters describing the variation rather than a

series of patterns [HV],
i

Ruttiman and Pipberger digitized the ECG with 12 beat

resolution at a rate of 500 samples per second[l90-l9l ].The sample
values are stored by integer multiples of 1 ,uv. The degradation
of amplitude measurements increased with digital filtering and
time measurements were almost unaffected with the decrease in

bandwidth. The rate of 200 samples per second and f response

up to 100 Hz are considered sufficient for practical purposes.

For further compression, prediction formulae is used. It is
reported that the variance does not decrease substantially for a
predictor of higher than that of second order. The scheme is
suitable for microprocessor implementation. If the transmission
is not otherwise protected, adequate error control is mandatory

adding to cost. The use of first UO-60 coefficients of KLT
results in data compression of 750*^0 to 750*60. The reconstruc

tion is good in terms of energy and absolute average error but
maximum amplitude errors of 20-30 ,uv could occur at unpredictable

points in the signal. The error may be tolerated up to the limit
the diagnostic accuracy is unaffected. In AZTEC (Amplitude Zone
Time Epoch Coding) preprocessing the ECG is represented by a
series of straight lines with specific slopes. Data reduction

is 10 si [58]. Many of the methods of ECG representation discussed

earlier also result in considerable data reduction . The

data reduction scheme should not be selected only on the basis of

compression ratio. The computing effort, ease in manipulating
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the compressed and expanded data, acceptable least squared error

and effect on diagnostic accuracy depending on the type of

classifier are the deciding factors. According to Bonner [20],

the reconstruction which does not show visual difference is

sufficient. The effect of inaccuracies due to compression is

less than that caused by normal beat to beat and day to day varia

tions and also by noise and baseline shift.

2. 5 LEAD SELECTION AND RECORDING

2.5.1 Lead Selection

The attempts to find the best lead system for picking up

the total information content of the electrical field of the heart

and optimal classification of ECG pattern, are not fully success

ful. Even the most commonly used lead systems like Einthovan,

Goldberger, Wilson, Frank etc. have not fully met this requirement.

More than 90 /.of ECG recordings in the world are made using the

12 lead ECG system. Many research centres use in addition a

corrected orthogonal three (Frank) lead system [2*+7]. The infor

mation content of 12 lead ECG and Frank (x y z) lead system is

almost same [2^,1 33,1^2,169]. With respect to lead variability

and number of leads orthogonal three lead system is considered

better. It is reported that it combines the advantages of scalar

and vector electrocardiography and has a. *+«1 data reduction [166].

Recently it is reported that different information is available

in different lead systems [13^]. The hybrid 15 lead system

(x y z + 12)[1 27,21*+] and a system consisting of nine optimally

placed chest leads [119] aim at combining the information of the
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two systems. In 1970's, the computer analysis of ECG was carried

out at Royal Infirmary , Glasgow using three orthogonal leads

derived from modified axial lead system [128]. It was not favoured

by the clinicians and it became necessary to incorporate 12 leads

in further development C1351- In hybrid lead system, the conven

tional 12 lead electrodes are retained. One additional electrode

at V6R position and another on the left side of the neck are

added. In the conventional form twelve lead ECG is reported [70]

to be less informative than polar and vector cardiograms. At the

same time, there is lack of generally accepted diagnostic criter

ion for orthogonal lead ECGs and VCGs. It is also reported that

VCG supplements ECG but does not replace it. It adds to diagnos

tic accuracy in only 15% cases [81]. It has much to offer as a

teaching aid. It has a limited clinical value and will not

replace ECG in routine application [8^]. The vector loop does

not contain any additional information which is not present in

the two scalar leads producing it. It has not established its

diagnostic role so far. The final settlement on lead system may

be decided depending upon the diagnostic significance and not

only on the faithfulness of reproduction of the equivalent dipole.

The justification for the twelve lead ECG lies in its worldwide

acquaintance and commercial availability of recording equipment.

It stands on a solid basis of clinical experience and is supported

by anatomical, physiological and radiological evidences. It ensu

res some continuity with the existing practice and, hence, gets

more support from the clinicians. In India, the ECG data collec

ted is usually by 12 lead system. Even at All India Institute of
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Medical Sciences, from where the data is collected, uses 12 lead

system in routine use. So 12 lead system is selected for the

present work. The aim is to retain the advantages and to overcome

the limitations of this system.

2.5.2 Recording

The twelve lead ECG is a sequential record of 12 different

leads connected one by one through a selector switch. Leads I,II

and III are the bipolar standard limb leads. As shown in Figure

2.5, lead I connects the right (-ve) and left (+ve) arms. Lead II

connects right arm (-ve) and left(+ve)leg.Lead III connects left

arm (-ve) and left leg (+ve) [228]. In case of unipolar leads

one exploring electrode is used to detect the actual potential

over a particular point and the other indifferent electrode

provides the reference. Wilson's central terminal is used for

this purpose. VR, VL and V^ are the potentials recorded by the

unipolar leads at right and left arms, and left leg with respect

to the central terminal. These potentials are relatively small.

Goldberger augmented the leads by breaking the connection between

the Wilson's central terminal and the extremity whose potential

is being recorded as shown in Figure 2.6(a,b) [81]. The augmented

potentials are related as aVR = 1. 5 VR, aVL = 1. 5 VL and aV-=1.5 ¥-,

Leads I,II,III, aVR, aVL and aV^ are also called frontal plane leads.

Figures 2.7(a) and (b) show the Einthovan triangle and hexaxial

reference system for the frontal plane leads.

The standard precordial leads include the six unipolar

leads V1 to Vg as shown in Figure 2.7(c). The negative electrode
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is connected to the central terminal and the positive exploring

electrode is connected to the corresponding point on the chest.

The spatial relationship for these transverse plane leads based

on Abildskov and Wilkinson reference system is shown in Figure

2.7(d).

The type of electrode depends on the application and point

of measurement. The electrodes may consist of two rectangular

(3.5 cm x 5 cm) or circular (^.75 cm) plates of German silver,

nickel silver or nickel plated steel. They are fixed at the site

of recording with electrode jelly. Suction cup configuration is

suitable as chest electrode. For quick application an electrode,

contained in adhesive tape is also used. It consists of a light

weight metallic screen backed by a pad for electrolyte paste. The

multipoint electrode is more suitable for quick placement and

removal in mass screening. Due to absence of electrode pastes

and jellies, it is also suitable for application in abnormal

environment. The floating electrode with liquid contact is suit

able for aerospace studies and exercising subjects. A silver-

silver chloride disk mounted behind a stiff baffle with holes

filled by electrode jelly has a better contact and high mechanical

and electrical stability [8*+].

The ECG recorder used by the cardiologist has a heated

stylus attached to the D'Arsonval movement. The waxed paper

moves under the heated stylus. The frequency response up to 80 Hz

is easily obtained with the heated stylus and ink recorders. The

chart speed is 25 mm/second. The sensitivity is 1 mV/centimeter

of deflection. The patient is kept in supine position. The
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electrodes are firmly attached to respective locations. After

switch on the sensitivity is checked and for particular position

of the selector switch when the pointer is steady, the chart is

run for the recording. In case of high speed recording, magnetic

tape can be used to store the signal. For detailed study it can

be played back at a slower speed on a conventional recorder.

2.6 REPRESENTATION OF ELECTROCARDIOGRAM BY FPR

The classification of electrocardiograms is based on

certain diagnostic parameters. The accuracy of classification

depends on the accuracy and precision of estimation and diagnostic

significance of these parameters. This section deals with the

improvement in accuracy of estimation of the diagnostic parameters.

The ECG parameters are related to the method of representation.

The final aim is to develop an interpretation algorithm using

minimum number of leads for 12 lead system. The first stage is

the estimation of parameters. The Einthovan triangle is based on

some assumptions [*+8].

(i) The body is considered as a homogeneous volume conductor

(ii) Equilateral triangle assumes symmetry of leads I,II, and

III.

(iii) A single equivalent dipole is considered at the centre of

the volume conductor.

The vector concept is applicable to instantaneous and

mean vectors and also to various ECG segments. The area under the

segment is found by observation in clinical practice for the

location of axis. Calculation of quadrant for QRS vector using
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ratio of maximum deflections in leads I and aV^ (and/or II) in

the conventional form is reported to be less precise [U8], The

heart is a multipolar source, but studies have revealed that

80-90 7. of body surface potentials may be attributed to the

presence of a single, fixed, equivalent dipole [36]. Therefore,

resultant ECG segment vector is a good approximation of the

source. The resultant ECG segment vector is used to represent

the resultant amplitude and phase of individual ECG segments. In

the transverse plane, the relative amplitudes and phases of poten

tials V« to V, have much variability as compared to the frontal

plane leads. They are affected much by shape and size of the

chest and electrode placement. The points of contact are not

equidistant from each other and from the heart. Being inversely

proportional to the square of the distance, these potentials have

a very wide range of variation from lead to lead. One alternative

is to locate the neutral axis in the transverse plane by zero

crossing or polarity change by the segment potential. The axis

of peak resultant vector would be perpendicular to the null axis

and towards the positive potential. With respect to the reference

axis, if the frontal plane resultant direction is at an angle a,

transverse plane resultant direction is at an angle Y, and the

amplitude of the net resultant is A, the resultant in frontal

plane is equal to A cos Y and in transverse plane is equal to

A cos a. The equivalent net resultant A at the frontal plane

distance is given by

A = Frontal plane re suitant/ cos Y.
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In the conventional form, it is not convenient to find the trans

verse plane resultant amplitude or phase and the null method

involves the modification of the measurement procedure itself.

It is not permitted in the present set up. So, the computation

is limited to frontal plane peak resultant vector (FPR). Frequent

ly the segment vector is represented by the area under the segment

[1^,81,109]. In the present work, the Frontal plane Peak Resul

tant vector (FPR) derived from the peak values of the segments in

the concerned leads is used.

2.6.1 Einthovan Triangle Method

The Frontal plane Peak Resultant vector (FPR) can be

found out from the Einthovan's equilateral triangle and hexaxial

reference system shown in Figures 2.7(a,b) [60,66]. The following

relationships are used2

FPR amplitude (1) x Square root of (square of I + square of

1-1 5*+7 aVF) ... (2.1M
FPR phase 0(1) = Arc tan (1.1 5^+7 aV^/I) with respect to

lead axis I ... (2.15)

FPR amplitude (2) = Square root of (square of II +square of

1-15^7 aVL) ... (2.16)

FPR phase 0(2) = Arc tan C1 -1 5*+7 aVL/II) with respect to

lead axis II ... (2.17)

FPR amplitude (3) = Square root of (square of III + square

of 1.15^7 aVR) ... (2.18)

FPR phase 0(3) = Arc tan (1.15^7 aVR/III) with respect to

lead axis III ... (2.19)



-1+0-

The FPR vectors are found separately for each segment, P,Q,R,S

and T. Here 1,11, III, aVR, aV, and aV„ are the peak values of

segment potentials at the respective leads. The correction

factor of 1.15^7 is derived from the geometry of the Einthovan

triangle and is applied to the augmented leads for making the

order of their magnitudes same as that of the bipolar leads. The

angles a(1), a(2) and 0(3) are found by refering the phase angles

0(1), 0(2) and 0(3) to a common reference lead axis I

Mean FPR amplitude x (FPR amplitude (1) + FPR amplitude (2)

+ FPR amplitude (3))/3 ... (2.20)

Mean FPR phase = (a(1) + a(2) + a(3))/3 ... (2.21)

The variation observed among the three values and their arithmetic

mean is more. Therefore, the approach gives a very rough approxi

mation for FPR.

2.6.2 Burger Triangle Method

The Wilson's central terminal is not at zero potential.

The lead extremities are neither equidistant from each other nor

from the heart. The body tissue resistance may be different in

different directions. The bipolar and augmented leads are not

orthogonal. So, Einthovan*s equilateral triangle was replaced by

scalene Burger triangle as shown in Figure 2.8(a). Figure 2.8(b)

shows Langner*s reference system which explains the phase relation

ship of various leads derived from Burger triangle with different

scales for different leads. The different scales account for the

effect of the distance of the point of measurement from the source

and variation in conductivity along various paths. Burger
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triangle is claimed to be better representation of the spatial

relationship of ECG segments for various leads.

From the Burger triangle and Langner*s reference system,

the FPR can be derived [62]. If the FPR is at an angle a with

respect to reference axis I, then

I = FPR cos a ... (2.22)

The lead voltages are considered as the projections of FPR vector

in respective directions.

II = FPR cos (a + 96°), III = FPR cos (a + 12^°) ... (2.23)

1/11= cos a/cos (a + 96 )

= cos a/(cos a. cos 96 - sin a. sin 96 )

= 1/(cos 96° - tan a. sin 96°) ... (2.2H-)

The solution of this equation results in

tan ct(D = Y1/X1 ... (2.25)

where,

Y1 = I cos 96°-II and XI = I sin 96° ... (2.26)

So, a(D = Arc tan (Y1/X1) ... (2.27)

and FPR(1) = I/cos cc(D ... (2.28)

Again,

II/III = cos (a + 96°)/cos (a + 12^°)

= (cos a. cos 96°-sin a. sin 96°)/(cos a. cos 12M-0

-sin a. sin 12*+°)

x (cos 96°-tan a. sin 96°)/(cos 12l+°-tan a. sin 12^°)

... (2.29)

Resulting in tan a(2) = Y2/X2 ... (2.30)
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Y2 x (II cos 12^° - III cos 96°) ... (2.3D

X2 = (II sin 12^° - III sin 96°) ... (2.32)

a(2) = arc tan (Y2/X2) ... (2.33)

and FPR(2) = II/(cos a(2) -t- 96°) ... (2.3^)

Again,

I/III = cos a/cos (a + 12U-°)

= cos a/(cos a.cos 12^ -sin a. sin 12^ )

=1/(cos 12^° - tan a. sin 12^°) ... (2.35)

Resulting in

tan a(3) = Y3/X3 ... (2.36)

where,

Y3 x (I cos 12^°-III) and X3 = I sin 12^-° ... (2.37)

a(3) = arc tan (Y3/X3) ... (2.38)

and FPR(3) = III/cos (a(3) + 12h°) ... (2-39)

Here also the lead axis I is taken as the reference axis

for the phase angles. The quadrant of the vector is decided on

the basis of polarity of X and Y components. The angles are then

reduced to absolute values between 0 and 36O degrees. The nega

tive angles are converted to corresponding positive values. Mean

Phase angle a is given by

a = (a(1) + a(2) + a(3))/3 ... (2.U-0)

while taking the mean angle, due care is taken, if the three

angles lie on either side of the reference axis. If FPR(1),

FPR(2) or FPR(3) is zero, its phase angle has no significance

and is ignored. In that case, mean is taken of only the remaining
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angles. When all the three resultant amplitudes are zero, the

mean phase angle has no significance.

Mean FPR amplitude x (FPR(1 )+FPR(2)+FPR(3))/3 ••• (2M)

If a(l) or (a(2)+96°) or (a(3)+12U-°) is equal to or an odd multi

ple of 90°, it makes FPR(1) or FPR(2) or FPR(3) indeterminate.

Therefore, it is ignored while finding the value of mean FPR

amplitude.

2.6.3 Measurement and Lead Proximity Corrections

(A) Measurement Error Correction

Burger triangle is a better representation than the

Einthovan triangle. For further improvement of Burger triangle

representation, measurement error and lead proximity correction

algorithms are developed in the following section.

When the potentials are measured consecutively along a

series of points returning to the original point, the algebraic

sum of all these potentials equals to zero. It leads to Binthovans

law.

I-II+III = 0 and aVR+aVL+aVF =0 ... (2A2)

It has nothing to do with the orthogonality of leads or equal

distances. The law is applicable to both Burger and Einthovan

triangles. The rule is applicable to overall and to instantaneous

values of potential. In this analysis, the rule is applied to

peak lead potentials. In the ideal case, if the measurements are

perfect, the sum in Einthovan's lav; is zero. But in the measure

ment and digitisation, some human and instrumental errors are
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always there, leading to nonzero sums.

SUM 11 = I 1 - II 1 + III 1 ... (2.U-3)

where, 11, II 1 and III 1 are the measured peak potentials for

the respective leads for a segment under consideration. If there

is no measurement error, SUM 11 equals zero and no correction is

required. For nonzero value of SUM 11, the algorithm proceeds

further for measurement error correction.

Applying Einthovan's law to the measured peak potentials,

another set of peak lead potentials 12, 112 and III2 is computed.

12 = II 1 - III 1 , 112 x I 1 + III 1 and III2 = II 1 - I 1

... (2AM

These values are different than the measured values I 1 , II 1 and

III 1 , if measurement error is present. Again, there is a non

zero sum.

SUM 12 = 12 - 112 + III2 ... (2A5)

If the measured values I 1 , II 1 and III 1 have positive or

negative errors Al, All and AIII,

SUM 11 = I 1 - II 1 + III 1

= (I + Al) - (II + All) + (III + AIII)

x (Al - All + AIII) + (I - II + III) ... (2.W6)

But, I - II + III = 0

So, SUM 11 = Al - All + AIII ... (2.U-7)

Again,

SUM 12 x 12 - 112 + III2

x (II 1 - III 1)-(I 1 + III 1)+(II 1-11)

= -2(1 1 - II 1 + III 1)

= -2(AI - All + AIII) ... (2A8)
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.*. SUM 12 x -2(SUM 11) ... (2.U9)

SUM 11 and SUM 12 may be positive or negative. The true values

I,II and III lie between measured values I 1, II 1 and III 1, and

computed values 12, 112 and III2. Now assume same order of error

magnigude (not same value of error) for the three leads. The

results will justify (have justified) the assumption. As the

SUM 12 is twice the value of SUM 1l with the negative sign, the

order of error magnitude is twice in the second case compared to

the first one. The polarities of error are opposite in the two

cases. So, the true values can be easily interpolated as follows*

Consider ratio S = SUM 12/(SUM 12 - SUM 11)

x -2 SUM 11/(-2 SUM 11 - SUM 11)

= 2/3 ... (2.50)

The values I,II,III corrected for the measurement error can be

found as follows.

I = 12 + S(I 1 - 12) = 12 + (2/3)(I 1-12) ... (2.5D

II = 112 + S(II 1 - 112) = 112 +(2/3) (II 1 " 112) ... (2.52)

III = III2+ S(III 1-IH2) = IIl2+(2/3)(IH 1- III2) ... (2.53)

SUM 13 = I-II+III is computed for a check.

Low value of SUM 13 compared to SUM 11 indicates that the measured

error has been corrected properly. If the procedure is continued

the error may be reduced further.

Alternatively, consider ratio

S* = SUM 11/(SUM 12 - SUM 1 1)

= SUM 11/C-2 SUM 11 - SUM 11)

= -1/3 ... (2.5*+)
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The values I,II,III corrected for the measurement error can be

found as

I =11+ S'(I 1 - 12) = I 1 - (1/3>(I 1-12) ... (2.55)

II = II 1 + S*(II 1 - 112) = II 1 - (1/3)(II 1-II2) ... (2.56)

III = III 1+ S'ttll 1-III2) = III 1- (1/3)(III 1-III2) ... (2.57)

Here values of SUM 11, SUM 12, S and S' may be positive and/or

negative.

Similarly the measured values of augmented leads can be

corrected for the measurement error. If R1, LI, F1 are the

measured peak values and R,L,F are the corrected values of the

leads aVR, aV^ , aVp, for a segment under consideration, then

SUM 21 = R1 + L1 + F1 ... (2.58)

R2 = -(L1+F1), L2 = -(R1+F1), F2 = -(R1+L1) ... (2.59)

SUM 22 = R2 + L2 + F2 ... (2.60)

Ratio SS = SUM 22/(SUM 22 - SUM 21 ) ... (2.61)

The corrected values for the measurement error are given as

R = R2 + SS (R1 - R2) ... (2.62)

L = L2 + S3 (L1 - L2) ... (2.63)

F = F2 + SS (F1 - F2) ... (2.61+)

SUM 23 = R + L + F , which is very less compared to SUM 21.

(B) Lead Proximity Correction

As shown in Figure 2.9 for a pair of charge q, separated

by distance L, the dipole moment is given by

M = <1L- ... (2.65)
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The potential V at point P in a medium of dielectric constant K

is given by,

V = Work done per unit charge = W/a

=Mcos a/(K r2) =K1 cos a/r2 ... (2.66)

where, r is the distance of point P from the centre of the dipole

and a is the angle between the axis of the dipole and line joining

point P with centre of the dipole [81+]. Thus the potential at a

point is inversely proportional to the square of the distance

from the source. It also depends on the orientation of the point

with respect to the axis of the dipole.

The measured lead voltages may be affected by the distance

of point of measurement. But, there is no appreciable change in

potential for a distance greater than 15 cm. Therefore, Einthovan

considered the points of measurement for leads I,II,III and aV^ ,

aVL » aVF to be Qcluidistant for practical purposes. There after,

Burger and Milan C3'|-31+] proposed the scalene* Burger triangle

and ruled out the independence of lead voltages of the distance

of measurement. From the geometry of the Burger triangle

I/sin 28° = II/sin 56° = Ill/sin 96° ... (2.67)

If I is taken as one unit, then

II = sin 56°/sin 28° = 1.7658951

III = sin 96°/sin 28° = 2.1183858

Similarly, aVR = 0.96811+1+2 , aVL = 1.1+011+929 and aVF= 1.88^+9328.
The reciprocals of these relative values specify the lead proxi

mity factors LPF 1 to LPF6 for the frontal plane leads I,II,III,

aVR> aVL and aVF respectively.



LPF1 = 1.0 , LPF2 = 0.566285 , LPF3 = 0.1+720575 ,

LPFlf = I.O329O39 , I*PF5 = 0.713521+8 , LPF6 = 0.5305228.

The lead voltages multiplied by the lead proximity factors (LPF)*

result in lead proximity corrected values. These lead proximity

corrected voltages have same orders of magnitudes.

2.6.!+ Data Acquisition and Analysis

The twelve lead ECG data required for the present work is

collected at All India Institute of Medical Sciences, New Delhi.

Three cycles of ECG are recorded for the twelve leads I,II,III,

aVR, aVL , aV^ and VI to V6 for all the cases along with the

calibrating signal. To facilitate the comparison of analysis with

the conventional clinical analysis, the data was collected under

normal clinical set up in the cardiac clinic without any sophisti

cation prevailing in the research centre dedicated to ECG analysis.

From the research point of view, this is a raw data from which

effort is made to extract as much information as possible with

the attainable accuracy and precision. The mean value of peak

lead potentials in a segment over three consecutive cycles is

found for segments P,Q,R,S,T and ST for all the cases. The data

collected includes four categories, namely Normal, Myocardial

Infarction (MI), Right Ventricular Hypertrophy (RVH) and Left

Ventricular Hypertrophy (LVH).

The objective of the first stage is to compare the accu

racy and precision of Einthovan and Burger triangle methods with

and without measurement error and lead proximity corrections for

the representation of ECG patterns in terms of the Frontal plane
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Peak Resultant segment vectors (FPR). In the first set Einthovan

triangle without measurement error and lead proximity corrections

is used to find FPR. In the second set, measured lead values

are first corrected for the measurement error and then they are

used to find FPR. In the third set, Burger triangle is used

without measurement and lead proximity corrections. In the fourth

set, only lead proximity correction factors are applied to the

Burger triangle before finding the FPR. In the fifth set, at

first the measurement error correction is applied to the measured

lead values, followed by application of lead proximity correction.

The corrected values are considered while finding the FPR using

the Burger triangle. In case of Einthovan triangle lead values

I,II,III,aVR,aVL and aV? are used to find FPR. The method of

computation is explained in earlier section. Lead pairs I,aV?;

II,aVL; and III,aVR are used to find three sets of values for FPR

amplitude and phase. In case of Burger triangle only lead values

I,II and III are used to find the FPR as explained in earlier '

sections. Lead pairs I,II; II,III; and III,I give three sets of

amplitude and phase values. For all the five sets mean amplitudes

FPR and phase a are also found. The three amplitude values have

some deviation A FPR from the mean value of FPR and the three

phase values have some deviation Ace from the mean value of a. To

compare the accuracy and precision of representation of ECG pattern

in terms of the Frontal plane Peak Resultant vector, maximum values

of A FPR and Act are computed for all the five sets.

twrsiL m,m' mum* <•' umm
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2.6.5 Results and Discussion

The results of the analysis are shown in Tables T2.2 and

T2.3. Table T.2. 2 shows the maximum deviations in FPR amplitudes

for segments P,Q,R,S, and T for all the five sets and 25 normal

cases. Table T.2. 3 shows the maximum deviations in FPR phase for

three lead pairs. The amplitude deviations are expressed in mv

and the phase deviations are expressed in degree. The order of

magnitudes for the different sets being the same, the maximum

deviations are not converted to percentage or relative values.

The comparison is made on the basis of absolute values.

In the first set of Einthovan triangle without corrections,

the deviations of amplitude and phase angles are large. In the

second set as the measurement error correction is used with

Einthovan triangle the amplitude deviation decreases for some

cases and increases for the others. As such the phase deviation

is reduced in many of the cases but still it is quite large. In

the third set when Burger triangle is used without corrections

the results improve for some cases and deteriorate for the others.

There is not appreciable improvement for the fourth set using

only lead proximity correction with the Burger triangle. When

both the measurement error and lead proximity corrections are

applied to the Burger triangle in the fifth set, there is a

drastic improvement in the results as compared to other four sets.

The maximum deviation of amplitude is reduced to less than

0.0000002 mv for all the cases and segments. The maximum devia

tion of phase is reduced to less than 0.00000lf degree for all the

cases and segments. In most of the cases the maximum deviation
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TABLE - T.2.2

Maximum Deviation of Amplitude (A FPR) mv

Case seg

ment

A FPR for

code

no.
Set I Set II Set III Set IV Set V

1 2 3 + 5 6 7

6 P 0.0222669 0.0 21 70 25 0.01786+5 0.0331952 0.7^+51 E-08

Q 0.011672+ 0.011+2333 0.0000116 0.00+0687 0.2980 S-08

R 0.01580 57 0.021+27 57 0.0378879 0.0266072 0.1788 E-07

S 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.0158116 0.0085^+87 0.01+0311 0.0306736 0.1788 E-07

7 P 0.0 2376 58 0.0201+063 0.0120859 0.0151821 0.5960 E-08

Q 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

R 0.0 586978 0.1672390 0.1780060 0.2297700 0.1788 E-07

S 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.017901+5 0.0 3301+93 0.0050833 0.03233^5 0.1192 E-07

8 P 0.0195500 0.011+7191*- 0.02+6287 0.0063693 0.7^51 E-08

Q 0.0152679 0.0131166 0.00+7682 0.00 22770 0.1118 E-08

R 0.0 215661+ 0.0360153 0.0799020 0.033+3+5 0.2980 E-07

S 0.01+1+9999 0.0181379 0.0177971 0.0063033 O.+098 S-08

T O.033+OO6 0.0 237687 0.00 57617 0.298E-08 0.2980 E-08

9 P 0.0039257 0.0091 5^9 0.0025738 0.013+921 0.2235 E-08

Q 0.0183330 0.0161111 0.00832+3 0.0030275 0.2235 E-08

R O.O+O36O7 0.03991 2+ 0.0+59211 0.0063616 O.89M E-08

S 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.0328902 0.02+1926 0.0 5666 52 0.0108786 0.1+90 E-08
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(Table T.2. 2 contd )

1 2 3 1+ 5 6 7

10 P 0.0198915 0.0135335 0.0227797 0.015357^ 0.5960 E-08

•Q 0.0+71002 0.0+71002 0.015889^ O.7H-5E-09 0.7+51 E-09

R 0.0399312 0.0+52589 0.2759368 0.108+990 0.3576 B-07

S 0.0199695 0.0 257877 0.0067330 0.0109+81 0.++70 E-08

T 0.0355179 0.02161 27 0.0389253 0.0062121 0.1788 E-07

11 P 0.00 55153 0.013+976 0.01786+5 0.0331952 0.7^50 E-08

Q 0.0666667 0.0222222 O.O6O3IO9 0.028+702 0.2980 E-08

R 0.0813970 O.I32+OOO O.O29OIII 0.126+751 0.0^76 e-07

S 0.1501110 0.0 500370 0.0000000 0.0000000 0.0000

T 0.0330 571 O.O+92OI9 0.137+560 0.0172611 o.sgi+o E-07

12 P 0.0192880 0.0 236166 0.0025086 0.0101251 O.89+O B-08

Q 0.0192+50 O.OO9+3O3 0.008780 2 0.22+E-08 0.2235 E-08

R O.OI+8923O 0.052+680 O.O9078IO O.050+O+3 0.2980 E-07

S 0.026 5958 0.0650858 0.0+76683 O.I+9E-O8 0.1+90 E-08

T O.O2+8263 0.0212382 0.01+76683 0.1+9E-08 0.1+90 E-08

13 P O.O13896I 0.016+613 O.OO97I63 0.0082195 O.596O E-08

Q D.0300000 0.0277778 0.0012629 0.00+196+ 0.1862 E-08

R D. 07 2788+ 0.0708372 0.191+3+10 0.0622762 0.1192 E-07

S l3.0333333 0.0333333 O.OO+39OI 0.11 2B-08 0.1118 E-08

T iD.0182973 0.0089739 0.0 220188 O.O113+IO 0.2682 E-07

i
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(Table T.2. 2 contd....)

1

1 +

15

16

17

R

S

T

R

S

T

R

S

T

P

G

R

S

T

1+

0.020+883 0.0225906 0.0330329

0.01+5786 0.02916+0 »0.0l3+660

0.09^+769 5 0.0 580 229 O.05098O2

0.0U61880 0.015396O 0.0000000

0.0962687 O.O8525++ 0.0+7+56+

0.0+60138 0.0516513 O.O352829

O.OIO3I3+ 0.0181119 0.0087802

0.1008500 0.09782+5 O.O366295

0.0869092 0.0687012 0.0078902

0.0207166 0.05835+5 0.0+89011

0.01+1+373 0.5960 B-08

0.0218962 0.89+1 E-08

0.+17E-07 0.1+172 E-07

0.0000000 0.0000 ,

0.01520+3 0.1788 B-07

0.012738+ 0.7+51 S-09

0.22+E-08 0.2235 B-08

0.0683999 0.6557 E-07

0.0067^92 O.++7O B-08

0.0 250761 0.238+E-07

0.007^32+

0.0+23390

O.OI315+9

O.O38+9OO

0.0 215039

0.0309+71

0.0000000

0.069 2099

O.O38+9OO

0.0++8817

O.OO9898+

0.0000000

0.03+8520

O.OI283OO

O.OI+I279I

0.01788+6

0.0000000

0.08908++

0.0128299

0.01+65898

0.0+86+++ 0.010827^ 0.+768 E-07

0.0000000 0.0000000 0.0000

0.1+675910 0.0353^37 0.71 53 E-07

0.0000000 0.0000000 0.0000

0.1625030 0.028+056 0.1+1+70 E-07

O.OI39550 0.011+059 0.1+1+70 E-08

0.0000000 0.0000000 0.0000

0.1587100 0.01+71075 0.238+E-07

0.0000000 0.0000000 0.0000

0.0635578 0.298E-08 0.2980 E-08

Contd,



-55-

(Table T.2. 2 contd....)

1 2 3 + 5 6 7

18 P 0.01+7580 0.01+7580 0.0057617 0.298E-08 0.2980 E-08

Q 0.0359117 O.OO98387 0.0301 55+ 0.011+2351 0.11+90 B-08

R 0.0155670 0.06+1 353 0.0 29+81 5 0.1036+30 0.1132 E-06

S 0.0359117 0.0098387 0.0251377 0.0251377 0.1862 S-08

T 0.052331 + 0.0650++1 0.0590+65 0.298E-08 0.2980 E-08

19 P 0.016656!+ 0.0099015 0.02+3231 0.011+1+108 0.1++70 E-08

Q 0.0166667 0.0055555 0.0125689 0.0125689 0.9313 E-09

R 0.0526835 0.017^907 0.2886990 0.0957730 0.2980 E-07

s 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.00887^+2 0.0076598 0.072702+ 0.0171353 0.3576 E-07

20 P 0.0118385 0.0095917 0.03+3602 0.373S-08 0.3725 E-08

Q 0.0+00000 0.0133333 0.0639016 0.0361865 0.2235 S-08

R 0.0631315 0.0309133 0.0136516 0.119E-07 0.1192 B-07

S 0.0700517 0.0 281 528 0.020197I+ 0.01+28593 0.1788 B-07

T 0.03092+8 0.02812+1 0.0+213+5 0.13+E-07 0.13+1 E-07

21 P 0.0205229 0.027363+ 0.01+1+201+0 0.7+5E-08 0.71+51 B-08

Q 0.0333333 0.0111111 0.053251!+ 0.0301551+ 0.2235 E-08

R 0.0218256 0.0975620 0.5623560 0.0++3901+ 0.1192 E-07

S 0.0359117 0.0098387 0.053251^ 0.030155+ 0.2235 S-08

T 0.03160+0 0.0118+98 0.0761621 0.0+21+15

Contd,

0.89+1 E-08
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(Table T.2.2 contd....)

1 2 3

1

+ 5 6 7

22 P 0.0150858 0.01 50858 0.02383+2 0.71+5E-09 0.7*51 B-09

Q 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

R 0.0911139 0.0539300 0. 2++6750 0.0898165 0.1+172 E-07

S 0.0000000 0.0 000000 0.0000000 0.0000000 0.0000

T 0.008663+ 0.009 5118 0.0635578 0.298B-08 0.2980 E-08

23 P 0.005+21 5 0.0088119 0.006787 5 0.0088272 0.3725 S-08

Q 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

R 0.0073+13 0.0063017 0.21 8 2870 0.001+2903 0.1192 B-07

S 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.0131+27 0.0121003 0.0300395 0.0112987 0.20+1 E-06

2+ P 0.0115200 0.0080611 0.0166+88 0.00605+9 0.+1+70 B-08

Q 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

R 0.01598+0 0.119E-06 0.02+368+ 0.0336159 0.536+ E-07

S 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.0083855 0.010332+ 0.1219+90 0.01770++ 0.2235 E-07

25 P 0.0109326 0.0071+187 0.0311781 0.0098553 0.1+90 E-08

Q 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

R 0.0023+16 0.01+8300 0.0215210 0.0168005 0.131+1 E-07

S 0.0000000 0.0000000 0.0000000 0.0 000000 0.0000

T 0.0256077 0.0295890 0.1377990 0.0351652 0.89l+1 E-08

Contd,
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(Table T. 2. 2 contd....)

1 2 3 + 5 6 7

26 P 0.016+130 0.0193053 0.0072710 0. 596B-O8 0.5960 E-08

Q 0.0271679 0.0+26089 0.0131703 O.298E-O8 0.2980 E-08

R 0.0978176 0.1078790 0.0+6093+ O.238E-07 0.238+ E-07

S 0.02891 88 0.0 5986 53 0.0081128 O.OO96157 0.2086 E-07

T 0.078570+ O.O6++O37 0.02+1717 0.03036+2 O.H92 E-07

27 P 0.01+3156 0.00 2698+ 0.0+58572 0.0163926 0.1+1+70 E-08

Q 0.0+2125+ 0.0260620 0.015889!+ 0.7!+5E-09 0.7*51 E-09

R O.O+6+OI3 0.0695269 0.0150 562 0.050 50+8 0.2980 E-07

S 0.0807 550 0.028998+ O.O9O+663 0.01+270 53 0.5215 S-08

T 0.0221111 0.0112729 0.0988585 0.0170693 0.2980 B-07

6+ P 0.0178888 0.00 52333 O.010553+ 0.0029728 0. 521 5 E-08

9 0.0 2+6090 0.00+8799 0.0065852 0.1+9E-08 0.1+90 E-08

R 0.0 507635 0.0+1+1209 0.0102619 0.0322970 0.1+172 E-07

S 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.010+372 0.02+729+ 0.003327!+ 0.0163999 0.1192 B-07

65 P O.O263297 0.0169+60 0.00355+9 0.0136292 0.1++70 E-08

Q 0.0323915 0.0322+79 0.006 5321 0.00+703+ 0.6706 E-08

R 0.0 28700 2 0.0 5889!+0 0.1 5811 50 0.0570880 0.+768 E-07

S 0.0000000 0.0000000 0.0000000 0.0000000 0.0000

T 0.0+091+1+1 0.03171+53 0.0305951 0.01+3359 O.89VI B-08

66 P 0.0117575 0.0122666 0.0326253 0.0067308 0.2235 E-08

Q 0.011 2117 O.OO9+3O3 0.0087802 0.22+E-08 0.2235 E-08

R 0.01+5720+ 0.0851129 0.16 2+200 0.011538+ 0.71 53 E-07

S 0.0211325 O.O385+I+O 0.0+86+++ 0.010827!+ 0.1+768 E-07

T 0.010+869 0.00970 267 0.076++26 0.0017073 0.1+90 B-07
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TABLE - T.2.3

Maximum deviation of phase (A Alpha) degrees

Case
code

no.

Seg
ment

A Alpha for

Set I Set II Set III Set IV Set V

1 2 i + 1 b /

8

P 22.629635 1 5-65l+167 +.5W+7 9.OO3666 0.0000

Q 16.368868 13.553622 0.021791 l0.5685!+9 0.3815E-05

R 8.579838 3.+3!+616 6.022903 +. 99070+ O.3815S-05

S 0.000000 0.000000 0.000000 0.000000 0.0000

T 5.200081 2.062111 2.386631 5.300983 0.3815E-05

P

Q

R

S

T

P

Q

R

S

rp

P

Q

R

S

T

H.838882 12.626057 7A!+0+76 9.079227 0.0000

0.000000 0.000000 0.000000 0.000000 0.0000

20.2+1+++ 10.35+332 10.396378 12.517609 0.0000

0.000000 0.000000 0.000000 0.000000 0.0000

15-367367 8.571735 0.777!+28 5.3^610+ 0.0000

11.10910+

l5.7%!+90

6.263050

0.000010

18.998500

16.0+5600

60.000000

6.532803

0.000000

!+. 265930

IO.968+33 7.6+8853

16.333237 29.31+6515

+.209106 +.115620

+1.516125 17.158805

18.0675^3 !+.37l506

9.796959 1.117!+20

60.000000 6.963+05

6.588120 i+. 27701 2

0.000000 0.000000

6. 863163 12.+53007

2.W68323 0.0000

16.+77626 0.5722 E-05

2.1680 57 0.0000

7.639320 0.1907 E-05

0.000000 0.0000

6.855995 0.0000

2.8650 50 O.9536 E-06

0.6831++ 0.0000

0.000000 0.0000

2.83+580 0.0000

Contd.
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(Table T. 2. 3 contd.

1

.)

10

11

12

13

p

Q

R

S

T

P

q

R

S

T

P

Q

R

S

T

P

Q

R

S

T

5.826725

22.195587

6.070072

18.998502

+.9161 26

1+.03711++

0.000000

9.!+06 506

0.000000

8.258171

1+

6.27568+

22.195587

2.27 3^57

15.3089 52

!+.835835

5.956398

60.000000

5.93399!+

60.000000

5.6+5180

8.696808 6.+++283

0.67E-0 5 3.963230

7.860+0 5 1+.+1708+

++.O3++79 22.982759

7.22626 5 7. 551689

1 3.180 53+

9.333336

9.075>+85

6.5^905

16.138975

5.56+358

+8.000000

0.753551

0.000000

7.079907

0.928387

13.333330

8.+57878

9.333336

9.333332

7

io.++53!+9 O.3815E-05

0.000002 0.1907 E-05

+.231735 0.0000

15.1781++ O.3815E-05

0.990982 0.0000

0.900367 0.0000

1+8.000000 0.6199 B-05

3.+85806 0.0000

0.000000 0.0000

1.08+011 0.3815E-05

5.101+06 0.3815E-05

0.29E-05 0.2861 E-05

5.850369 0.3815E-05

0.19E-05 0.1907 E-05

O.38E-05 0.3815 E-05

10.85+1+39 8.592098 i+.659!+66 +.515579 0.0000

30.000000 60.000000 2.6798+9 12.+75^96 0.2861 E-05

6.038757 5.010180 7.731522 2.897!+!+6 0.0000

30.000000 30.000000 13.333333 0.28E-05 0.2861 E-05

0.668213 3.938885 5.52+571 3-l!+920+ 0.3815B-05

Contd....
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(Table T.2.3 contd....)

1 2 3 + 5 6 7

1 + P 8.21321 5 6. M999+ 13.68+1+83 7.785213 0.3815 E-05

Q 11.001500 6.788778 6.5*0905 15.1781++ 0.3815 B-05

R 1.322319 3.899025 +.971 218 0.38E-05 0.381 5 s-05

S 0.000000 60.000000 0.000000 0.000000 0.0000

T 31.011+86 32.21 1899 6. 506020 2.3*1789 0.0000

15 P 15.963356 13.908+78 9.682*65 *. 589172 0.0000

Q 19.999999 10.2080+3 13.333333 0.29S-05 0.2861 E-05

R 1+.+38335 12.63*312 2.095585 *. 66*970 0.0000

S 19.+7+1+ +!+. 508+2+ 39.15670* 29.367016 0.6676 B-0 5

T 13.015873 7.269852 8.795220 5.66922* O.38I5 B-05

16 P 8.101975 5.063973 13.1*209+ 3A95998 0.0000

Q 30.000000 60.000000 0.000000 0.000000 0.0000

R 3-8+9953 2.332850 12.3262** 1.0 51106 O.38I5 B-05

S 0.000000 60.000000 0.000000 0.000000 0.0000

T 15.67*515 9.917896 18.529533 3. 251 221 0.0000

17 P 5-965527 1+.+5050+ *. 1+1+689 2 3.98666* 0.0000

Q 0.000000 0.000000 0.000000 0.000000 0.0000

R 8.572868 6.66 5012 7.71*027 2.7*0*10 0.0000

S 0.000000 0.000000 0.000000 0.000000 0.0000

T 10.893+02 10.1+0 2618 9.333332 0.38E-0 5 0.3815 E-05

Contd,
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(Table T.2.3 contd....)

18

19

20

21

+

p 1+.173267 1*.173267 *. 371 506

Q 15.000000 1*. 173272 +8.000000

R 11.837753 6.2*3778 1.35*98*

S 1 5.000000 1*. 173279 11+.000000

T 11.726273 8.806576 5.193611

P 7.017239 7.16185* 11 .61 2839

q 0.000000 60.000000 1+.000000

R 3.875610 1.21*066 9.089035

S 0.000000 0.000000 0.000000

T 2.33268+ 1.673256 5.871601

P 6,*68800 5.859192 2.369835

Q 0.000000 60.000000 28.000000

R 12.0 23*3* 5.16*311 1.800781

S 2*. 29 5118 12.3*876* *. 733982

T 9.*0+518 10.095066 5.558323

P 15-393616 9.2768*8 7.538303

Q 0.000000 60.000000 28.000000

R 11 . 221 500 6.W3OO39 13. 271667

S 1 5.000000 1*.173268 28.000000

T 2.33213* 3.01+1+58 7.98*8+1+

0.000000 0.0000

1+8.000000 0.6199 E-05

5.55**70 0.0000

1+.000000 0.190 B-05

0.000000 0.0000

8.6+9921 0.3815E-05

1+.000000 0.1907 B-05

3.93*818 O.3815E-05

0.000000 0.0000

1.700737 0.0000

0.38B-05 0.3815E-05

28.000000 0.1907 E-05

0.38E-05 0.3815 B-05

10.392771 0.1907 E-05

0.000000 0.0000

0.000000 0.0000

28.000000 0.1907 E-05

1.1*2265 0.3815S-05

28.000000 0.1907 E-05

7.177387 0.0000

Contd,
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(Table T.2.3 contd....)

1 2 3 +

1

5 6 7

22 P 8.9*828* 8.9+828+ 9.333332 0.38E-05 0.3815 B-05

q 0.000000 0.000000 0.000000 0.000000 0.0000

R *. 107662 5.312992 7A38038 2.8+3155 0.3815 E-05

S 0.000000 0.000000 0.000000 0.0 00000 0.0000

T *. 391186 2.196266 9.333332 0.38E-05 0.3815 E-05

23 P 13.791706 7.175266 1+.607987 6.169*68 0.0000

Q 0.000000 0.000000 0.000000 0.000000 0.0000

R O.38822O 0.969620 1*. 263596 0.263237 0.3815 B-05

S 0.000000 0.000000 0.000000 0.000000 0.0000

T 7.701759 +.835+00 6.213657 2.60 20 58 0.3815 B-05

2+ P 3.8783*9 5.73*211 6.963*02 2.8650*8 0.0000

Q 0.000000 0.000000 0.000000 0.000000 0.0000

R 1.1+15802 0.76E-0 5 8.578175 1.55019* 0.3815 s-05

S 0.000000 0.000000 0.000000 0.000000 0.0000

T 6.138397 3.961102 1 5.1007*2 2.U09897 0.3815 B-05

25 P 7.26226* 6.239075 10.1+669*2 *. 628525 0.0000

Q 0.000000 0.000000 0.000000 0.000000 0.0000

R 9.972355 +.70927* 3.23090* 3.120853 0.3815 B-05

S 0.000000 0.000000 0.000000 0.000000 0.0000

T J>1.588 566 1*. 1+0 591 19.6770+0 5.607700

Contd.

0.381 5 B-05
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(Table T.2.3 contd....)

1 2 3 1+ 5 6 7

26 P 10.355656 8.6**196 +.+301++3 O.38E-05 0.3815 E-05

Q 2*. 732563 18.+7+321 13.333330 O.I9E-05 0.1907 E-05

R 1+.63620+ 1*. 028 271 *. 371 506 0.000000 0.0000

S 2k. 6 326 28 13.8+0799 *.*83369 7.216726 O.38I5 B-05

T 15.039 555 17.773716 7.*+0+76 9.079227 0,0000

27 P 8. 5833** 1.808003 11.632675 5.92O956 0.0000

Q 5.**6700 31.50+789 9.333336 0.19E--0 5 0.1907 S-0 5

R 13.2272*2 9.959629 1.210976 *.89616* 0.0000

S 1 5.000000 31.55*501 +8.000000 1+8.000000 0.596O B-05

T 3.789787 3.697*72 10.560570 2.338*86 0.0000

6* P 6.068169 3.181 229 1+.862732 1.529350 0.381 5 E-05

Q 7. 58908+ 2.833101 13.333333 0.19E^05 0.1907 B-05

R 2.167137 1.90*678 0.575890 2.3691** 0.0000

S 0.000000 0.000000 0.000000 0.000000 0.0000

T 10.217907 5.9*5099 3.*66251 2.122753 0.0000

65 P 7.32608+ 13.329952 1.163906 5.296875 0.0000

Q 9.190 260 9.158958 6.12*878 5.9*9208 0.5722 B-05

R 5. 2307*7 2.90 5159 16.81 3202 8.310+25 0.3815 B-05

S 0.000000 0.000000 0.000000 0.000000 0.0000

T 5.909191 7.870091+ 5.193337 2.872578 0.3815 B-05

66 P 8.327110 12.16 2552 9.962738 2.720600 0.0000

Q ' 0.893391 3.963230 13.333333 0.28E-0 5 0.2861 E-0 5

R 5.955830 3.375511 10.181 550 1.017868 0.3815 B-05

s 30.000000 18.157867 13.1*2090 3.+96000 0.1907 B-05

T 2.556351 2.78+386 8.012631 0.225**9 0.0000
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is much less than this value. In about 50 7. cases the maximum

deviation of phase is reduced to zero in the fifth set.

The general feeling is that the 12 lead ECG system is

less informative and less specific in the conventional form. The

results of the present analysis show that if Burger triangle with

measurement error and lead proximity corrections is applied to

the 12 lead ECG data, the FPR amplitude and phase are computed

with very high accuracy and precision. In past the failure to

correlate the 12 lead potentials to the dipole source might have

created doubt about its validity and utility of 12 lead system.

It is felt that the consistency of the results attained here

should clear this doubt. For segments P,Q,R,S,T,ST separate single

dipole sources are conceived. As the frontal plane lead poten

tials for an BCG segment can be correlated to the single dipole

source representation of the electric field at heart with high

precision, it is not necessary to go in to the complexity of

multipole concept. It is true that the amplitude of internal

potential vector (even for frontal plane) will be much larger

than the equivalent FPR found here corresponding to the frontal

plane lead distance. But, the relative values are more signifi

cant. The hypothetical potential vector FPR considered here is

unique for a particular set of lead voltages and has a good

diagnostic significance. It is true that the points of origin or

locations of sources for vectors P,Q,R,S,T, and ST may be diffe

rent in space. But, compared to the size of the body or lead to

lead distances the size of the heart is very small and the inter-

source distance is quite negligible. So, each segment vector is
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related to a separate source but the point of its location is

almost same for the practical purpose.

Another important point is about the number of leads to

be recorded and associated cost of amplification, detection,

storage and processing. In the analysis illustrated, six leads

are used with Einthovan triangle and three leads with Burger

triangle representation for the computation of FPR. Here three

values of FPR are computed just to highlight the accuracy and

precision of the Burger triangle representation with measurement

error and lead proximity corrections. In routine application only

two leads are sufficient with Burger triangle representation for

FPR computation. The remaining four frontal plane leads provide

redundant data which can be accurately and easily generated from

the FPR amplitude and phase.

2.7 ANALYSIS OF ELECTROCARDIOGRAM USING NEW BASIS FUNCTIONS

2.7.1 Limitations of Other Functions

In the preceding section peak segment potentials at various

leads are simply represented by a set of FPR vectors corresponding

to various segments. The aim of this section is to represent the

set of ECG patterns over the whole cycle at the six frontal plane

leads by a single model. Till now, number of approaches has been

tried to develop the mathematical model to specify the potential

variations in the BCG pattern qualitatively and quantitatively.

It is observed that most of the models are successful for singular

pattern and a specific lead. Many of these models fail when the

question of categorization of diagnostic model parameters comes in.
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Bemmel [220] has pointed out that these methods describe the sig

nals and set of parameters in an objective and quantitative

manner. It is difficult to understand the mechanical process or

abnormal condition of heart and also to have the suitable classi

fication by these methods. In most of the cases, the feature

variability has no direct correlation with the pathological states.

Sometimes inspite of the least squared error, the shape matching

is not satisfactory. Gaussian function, unit impulses, matched
exponentials, sine, cosine and many other functions have been

tried as the basis functions. The shapes of these basis functions

are quite different than the shapes of individual ECG segments

P,Q,R, etc. For example, if an effort is made to represent the

half wave rectified sine wave or a square wave by a regular sine

series,more components may be required and yet the representation

may not be satisfactory. Moreover, use of the same basis function

is not suitable for all the segments. A set of new basis functions

with shape resemblence to respective ECG segments has been proposed
here [6*].

2.7.2 Development of Proposed Model

The aim in the present work is to develop a mathematical

model whose response matches with the corrected values of exter

nally measured lead potential variations over the complete cardiac
cycle at the six frontal plane leads. At the same time the wave

pattern is to be expressed in terms of diagnostically significant

parameters suitable for categorization. Here a set of hypothetical

potential vectors is conceived. The movement of the end of these
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vectors with respect to time traces to* resultant ECG pattern over

the cardiac cycle in the three dimensional space. A single basis

function is not sufficient to describe the various BCG segments

effectively. Therefore, different basis functions are proposed

for different segments. The shapes of conventional basis functions

are much different than those of various BCG segments. Therefore,

here the segmentwise basis functions are derived from the BCG

pattern itself. The shape variation of ECG pattern from lead to

lead is attributed to their different angular positions in space.

The source for potential variations over a particular segment at

different leads is same. So, it is justifiable to assume some

common source pattern for a segment and to consider the lead

potential variations as the segmentwise projections along the

respective lead axis. The maximum amplitude of a source potential

may vary from individual to individual. Therefore, unit basis

functions are proposed. There may be some attenuation of source

potential while reaching the points of measurement. The attenua

tion factor can be assumed constant for a short interval of time

and as such there may not be much distortion of the waveform as

it reaches the body surface. The variability of BCG segment

pattern from individual to individual is mainly in the form of

horizontal and/or vertical elongation and/or contraction of basic

segment pattern. Therefore, the proposed basis function is

assumed to have unit peak value and unit duration. The shape of

this basis function is the average shape of a resultant segment

for a normal adult subject with amplitude and time normalisation.

Friedman [81 ] has discussed some intrinsic segment patterns
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P,Q,R,S,T, and PT responsible for the generation of BCG pattern

as shown in Figure 2.10. From the specified normal shapes of

various intrinsic components the unit basis functions derived for

the present work are as shown in Figure 2.11. The basis functions

are assumed to have amplitude variation between 0 and 1 in the

positive direction only. In the earlier work by the author

[60,65] an effort was made only to specify these functions geomet

rically and also the possibility of its utility was investigated.

In the present work a systematic approach is made for the mathe

matical representation of these basis functions. The periodic

time of the segment basis function is divided in to ten equal

parts. The value of data point x along the horizontal axis ranges

from 0 to 10. The amplitudes y at all the eleven points are

measured for a basis function. These are the relative point

values with respect to the peak value of the respective segment on

a standard normal average ECG. Curve fitting technique is used to

find the mathematical expression for the unit basis function des

cribed by the eleven data points. A polynomial expression of the

following form is used for its representation.

y=A-, +A X+A^ X2 + .... +An X10 ... (2.68)

The coefficients A. to A.^ are computed to match the evaluated

polynomial to the measured point values. Larger number of data

points and higher order of polynomr'.al can also be taken. There

is a convergence problem when the order is high. So, some compro

mise is to be made about the order of the polynomial.
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(A) Gauss Seidel Technique

In the first part tenth order polynomial is considered.

The values of y are known for x equal to 0 to 10 for a particular

basis function. The set of equations are solved using Gauss

Seidel iterative technique to find coefficients &, to A^ . A very

large number of iterations are required due to slow and oscilla
tory type of convergence. The variation of individual coefficients

for two successive iterations is checked at each iteration. The

maximum percentage variation in the set of coefficients is reduced

appreciably after 2000 iterations. Table T.2.* shows the maximum

percentage variation in the set of coefficients for various basis

functions. The point errors at all the points except the end

points and average point errors are also found for checking the

goodness of curve fitting. Maximum and average point errors for

respective basis functions are also shown in the same table. The

curve fitting is very poor except for functions T and PT. It

means that fixed order (10) polynomial may not be reasonable for

all the basis functions. Pennington has stated that the optimum

order of polynomial for curve fitting may be 50 to 75 %of the

number of data points [16*]. Therefore, in the second stage

different orders of polynomial are considered for various basis

functions.
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TABLE - T.2.*

Results of Gauss Seidal Iterative Process

Basis
Function

Max. 7» variation
of coefficient

Max. %
Point error

Av. 7.
Point error

p 0.25116*76 19.53582* 3.1+106*65

Q 0.06818139 16.072697 3.366*713

R 0.1000 5*72 33.292577 6.0167916

s 1.915*9200 9*. 889*11 18.6098320

T 0.3*6 50913 3.399192 0.8735776

PT 0.23109692 6.62891* 1.6013007

(B) Least Square Technique

Here also the same polynomial expression is used to

define the various basis functions. Gauss Jordon elimination

technique with least square error criterion is applied to the

set of eleven data points for each basis function. Coefficients

A-, to AN 1 are found for the Nth order polynomial. Fifth order

to tenth order polynomials are tried with the basis functions for

segments P,Q,R,S,T and PT. The least square algorithm provides

the minimum sum of squared errors for a particular order of poly

nomial, but it may not be absolute minimum. It varies with the

order of the polynomial. As a check the percentage errors are

computed at all except the end points. The maximum and average

of percentage point errors are computed for each order of poly

nomial for each basis function. The order of polynomial which
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results in minimum values of maximum and average values of per

centage point errors provide the best fit. Table T.2.5 shows

the maximum and average values of percentage error with respect to

the true value at the respective points for basis functions of

segments P,Q,R,S,T and PT for 5th to 10th order polynomials.

It is observed that for basis function of segment P a

nin^th order polynomial results in minimum value of maximum

percentage point error. Eighth order polynomial results in a

slightly more maximum percentage point error and minimum average

error. Basis function of Q has the minimum values of maximum and

average errors for 8th order polynomial. Similarly polynomials

of 9th order for R and 8th order for S and T provide the best fits.

Tenth order polynomial has the minimum value of maximum error for

PT. Nin«*th order polynomial has the maximum error slightly more

than the 10th order but the minimum for an average error. Thus

compared to the results of Gjuss Seidal iterative process, the

results of Gauss Jordon elimination algorithm with the least

square error criterion are better. The orders of the polynomials

with the best fit are different for different basis functions.

The pecularity of these basis functions is that each one

is defined by an Nth order polynomial,

y = A1 + A2 x + A., yr + .... + AN+1 x ... (2.69)

The basis functions for different segments can be specified by

specifying the coefficients A1 to AN+1 , which are to be evaluated

only once and stored permanently. The mathematical model of the

ECG pattern can be represented as
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TABLE - T.2. 5

Results of Least Square Technique

Basis Order of Maximum Average
Function Polynomial Percentage error Percentage error

P 5 *. 5586 216 1.6*83535 <

6 10.1+028670 2.7328321
7 76.*06*010 1*. 1396870
8 2.5991783 I.H339IO Best fit

9 2. *29 *89* 1.2199611
10 3.9338701 1.580 5*37

Q 5 25.89975*0 7.7690001
6 8.9*5**85 *. *517780
7 No convergence
8 5.01+5116* 2.885*60* Best fit

9 7.6288878 2.9731*36
10 10.1+60 389O *. 0738 583

R 5 18.33886*0 6.2909*51
6 25.7281380 6.7*02567
7 21*. 878 2000 *2.31 37*50
8 5.7808527 2.7366557
9 5.0 208097 2.7*8*'. 62 Best fit

10 5.6193*59 2.85*0876

S 5 23.09 52560 6.7375990
6 1+9.3131760 11 .2978320
7 No convergence
8 7.035787* !f. 1+1+8*001 Best fit

9 1 5-72206*0 5.521 *513
10 13.8168670 5.038OO8I

T 5 29*82 +260 9.22285*2
6 5.8636801+ 2.50 50092
7 20.9570*10 5.6722518
8 3.7228825 1.2315937 Best fit

9 *.3916711 1.590*652
10 *. 50 28768 1.5382368

PT 5 6.866182* 2.8*30353
6 1 2. 27 52250 2.8069560
7 86.7327710 2O.1+IO3I 20
8 1.6303272 O.70OI+1+O8
9 1.*6 39778 0.5201858 Best fit

10 1.*2'0738 0.7502***
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e = A -P. cos (a - 9-. ) + A ..PT.cos (a . - 0,)
p p 1 pt pt 1

+ A .Q.cos (a - e,) + A .R.cos (a - ©-,)
q q l r r 1

+ Ag.S.cos (as - Qj) + At.T.cos (at - Qj) ... (2.70)

Vhere, e is the instantaneous potential at some lead and P,PT,Q,R,

S,T segment basis functions expressed by respective polynomials

with the corresponding coefficients. These are the functions of

x which itself is a function of time. The basis functions are

discontinuous functions effective over only a certain interval of

time. A ,A t,A ,Ar,Ag, and A^ are the amplitude coefficients for

respective segments. The proposed model is suitable for defining

the resultant ECG pattern in terms of overall resultant cardiac

vectors for respective segments. In the present work twelve lead

SCG data is used. As mentioned earlier there is much variability

in the transverse plane and there is a difficulty of computing

transverse plane resultant dvm to the variation in chest shape

and size and variation in electrode placement. Therefore here

the application of the model is limited to frontal plane only.

In this case the amplitude coefficients are equal to the corres

ponding frontal plane peak resultant vector amplitudes. The phase

angles of FPR with respect to the reference axis taken along lead

axis I are a ,a ,ar, etc. The computation of FPR amplitude and

phase using Burger triangle with measurement error and lead

proximity corrections is explained earlier. ©-, is the phase angle

between the reference axis and lead considered. It has some fixed

values corresponding to leads I,II,III,aVR,aVL and aVp as defined

by the Burger triangle. For known or computed parameters, ECG
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pattern at any lead can be described instant to instant over the

complete cardiac cycle. The model is also suitable for orthogonal

lead system with slight modification.

2.7.3 Justification for the Model

The following points justify the proposed model,

(i) A single model expression is able to describe the ECG

pattern of any subject at any frontal plane lead,

(ii) The coefficients A's for the respective basis functions

are to be evaluated only once and are stored permanentlyo

(iii) The relative segment durations or time coefficients

account for horizontal elongation or contraction of

respective segments along the time axis as follows"

(a) Different values of these parameters for the same

subject with the same condition of health account for

varying heart rates.

(b) Different values of these parameters for different

subjects account for individual variations of segment

durations or heart rates. Variation beyond certain

normal range may be due to some abnormality.

(iv) Different values of amplitude coefficients account for

the vertical expansion or contraction of various segments

due to individual physiology and health,

(v) Variation in values of phase angle a for respective seg

ments accounts for the variation in the disposition of tha

tissues of the heart. Individual to individual variation

is due to variation of physiology. Variation for the sarve
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individual at different times may be due to changes in the

state of health,

(vi) Basis function PT accounts for the almost horizontal line

(idle period) and ST elevation or depression observed in

case of some BCG patterns,

(vii) Different values of ©^ account for lead to lead variation

in the frontal plane,

(viii) The unit basis functions proposed are assumed to be unaffec

ted individually. Because, the main variations in the ECG

patterns are the horizontal and vertical expansion and/or

contractions of various segments and the phase shifts

among them with respect to time. All these variations

alongwith the lead axis are properly accounted for in this

model.

The main advantage of the approach is the simplicity of

computation and ease of gent ralisation of parameters. The number

of quantities to be measured, computed and stored or transmitted

is reduced appreciably. The ECG interpretation problem also

became suitable for implementation on a minicomputer or a micro

processor.

The proposed model can be used for twelve lead as well as

orthogonal three lead system. The two systems are compared in

the earlier section. In computer assisted ECG interpretation

programs, the main argument in favour of orthogonal three lead

system is *sl data compression as compared to 12 lead system.

This point is important when the ECG pattern is to be recorded

and stored in the analogue or digital form for all the (6 or 12)
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leads over one or more cardiac cycles. It would require a very

large number of samples to be stored. The sampling rate is deci

ded by the upper frequency of interest. In light of the proposed

model, the approach for specifying the ECG pattern is totally

different. Now the pattern is not to be specified lead to lead or

instant to instant. The resultant (overall resultant or frontal

plane resultant) ECG pattern is specified in terms of the model

parameters. In the present approach only the FPR amplitudes or

amplitude coefficients,durations and relative phase shifts are

to be stored. For a remotely located ECG interpretation machine

this method needs less than or equal to eighteen parameters to be

transmitted. At the receiving end the corrected BCG wave patterns

at leads I,II,III,aVR,aVL and aV^ can be reconstructed with the

help of the model expression and the associated parameters.

2.7.* Reconstruction of Electrocardiogram

It uses the stored values of coefficient A's of the poly

nomials defining the various segment basis functions. For a

particular ECG pattern, peal: amplitudes for various segments at

leads I,II, and III are used to find the FPR amplitude and phase.

The segment durations are also measured at the three leads. The

average durations are used. The values of amplitude coefficients

A ,A A , etc. for different segments P,Q,R, etc. are taken same

as the values of the FPR amplitudes. The durations T ,T ,T , etc.

are taken same as the respective segment durations. The lead axis

angles ©-, for various leads are specified by the Burger triangle.

All these parameters are substituted in the model expression.
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The instantaneous potential at any lead can be computed by using

the detailed expression as follows?

e = A .P. cos (a -©-,) from t = 0 to T
P P x p

= VPT.cos SfV
from t=T to T +0.1+ T .

P P pt

= Aq.Q.cos (aq-©x) + Apt.PT.cos (a^-©^

from t = T +0.* T , to T +0.* T .+T
P pt p pt q

= Ar.R.cos (c^-©-^ + At>PT.cos (a .-©-,_)

from t = T +0.1+ T .+T to T +0.!+ T .+T +T .
P pt q p pt q r

= As.S.cos (a,,-©^ + A ..PT.cos (a t-©1)

from t = Tp+0.* Tpt+Tq+Tr to Tp+0.1+ Tpt+Tq+Tr+Ts

= At.T.cos (at-©1)+A .PT.cos (a t-©]_)

from t = T +0.1+ T .+T +T +T to T +,p
P pt q r s P pt

= At.T.cos (c^-O^

= 0.0

iroiu t = T +T , to T +0.* T .+T +T +T +T.
P pt p pt q r s t

from t = Tp+0.1+ Tpt+Tq+Tr+Ts+Tt to tou ... (2.71)
where, e is the instantaneous ECG potential at a lead, P,PT,Q,R,S,T

are the unit basis functions, T ,T ,T , etc. are segment durations
1 p' q' r7 °^

in ms, and tou is cycle length in ms.

A ,A ,A^ etCr amplitude coefficients.
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For generalisation of the expressions the basis functions are

expressed in terms of x. For actual evaluation of instantaneous

ECG potential x is expressed in terms of time t. The basis

functions are discontinuous functions, effective over only a

certain interval of time. For basis function P, from t =0 to T ,

x = lOt/T . In this region only basis function P is effective.

At the end of this period basis function PT becomes effective.

For basis function PT, from t =Tp to Tp +Tpt, x =10(t-Tp)/Tpt.
From T to T +0.* T . only basis function PT is effective. At the

p p pt

end of this period basis function Q becomes effective.

For Q, from t =Tp+0.* Tpt to Tp+0.* Tpt+Tq, x =10(t-Tp-0.* Tpt)/Tq.
In this region both Q and PT are effective. At the end of this

period function R becomes effective.

For R, from t = Tp+0.* Tpt+Tq to Tp+0.* Tpt+Tq+Tr,

x = 10(t-T -0.!+ T .-T )/T . In this region R and PT are effective,
p pt q r

At the end of this period bisis function Sbecomes effective.

For S from t = Tp+0.* Tpt+Tq+Tr to Tp+0.* Tpt+Tq+Tr+Ts,

x = 10(t-T -0.1+ T .-T -T )/T . In this region S and PT are
p pt q r s

effective. At the end of this period basis function T becomes

effective.

For T, from T=Tp+0.* Tpt+Tq+Tr+Tg to Tp+0.l+ Tpt+Tq+Tr+Ts+Tt,

x = 10(t-T -0.!+ T t-T -T -Tg)/Tt. In the initial part of this

period both T and PT are effective. PT terminates before the

termination of T. So, in the later part of this period only T is

effective. Start and finish of PT are selected arbitrarily. PT

accounts for the almost horizontal line between P and Q segments
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and ST elevation or depression observed in some ECG patterns.

For most of the normal patterns there may not be ST elevation or

depression and the idle period between P and Q segments. So, to

simplify the analysis PT can be ignored. But, for the general

justification of the model PT is to be considered.

The value of x lies between 0 and 10 for each segment.

The cardiac cycle length is divided in to 300 parts. Starting

from t = 0, the time is increased in steps of 1/3 /. of the cycle

length. At each point, the value of x is found. The segment

basis function which is effective at the point is also determined.

The function is evaluated and instantaneous value of ECG poten

tial is computed. The procedure is repeated for all the points

for a lead and then for all the six frontal plane leads. The

results are plotted directly using a subroutine PLOT.

2.7.5 Results and Discussion

The results for one case are shown in Figure 2.l2(a,b).

The recorded ECG is shown in (a) and the model generated ECG is

shown in (b). The reconstructed wave corresponds to ECG poten

tials after the application of measurement error and lead proxi

mity corrections. Most of the methods provide mathematical model

for curve fitting or reconstruction of ECG pattern at only one of

the leads. The pecularity of the present approach is the common

model for the curve fitting or reconstruction of a group of ECG

patterns at the six frontal plane leads. The results are very

encouraging. It is not necessary to measure, store and transmit

hundreds of instantaneous values at the six leads necessitating
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a very large memory capacity. Only about 18 parameters are to be

stored or transmitted. The resulting data compression is worth

noting. FPR amplitude and phase used as the model parameters can

be computed with very high accuracy and precision. They have

very high diagnostic significance.

So long as the cardiologists are not satisfied with the

performance of the computer and fully reliable computarized

interpretation is not achieved, the overview of computer inter

pretation by cardiologist has to be continued. For the overview,

the reconstruction of 1 2 lead ECG may be necessary. Even with

orthogonal three lead programs sometimes 12 lead ECG is recorded

for this purpose. The philosophy of hybrid ECG system is somewhat

similar. But if the purpose is served by only three of the 12

leads it is much advantageous. The real advantage of this approach

is in its suitability for categorization of model parameters.



CHAPTER III

COMPUTER AIDED INTERPRETATION OF ELECTROCARDIOGRAM

3.1 INTRODUCTION

In normal clinical practice ECG usually becomes available

to cardiologist after a clinical diagnosis. So, some cardiolo

gists make purely electrocardiographic diagnosis and others

'custom fit' diagnosis [*8]. In computer aided diagnosis of

electrocardiogram, computer programs are based on the premise that

ECG interpretation should be standardized, and the objective and

semiquantitative criteria should be used instead of qualitative

interpretation. An advantage of computer aided diagnosis which

has not been emphasized enough is enhanced efficiency with which

a heart station can operate at purely technical level. It includes

storage of data and consistency of ECG interpretation. The econo

mics of computer aided diagnosis involves operating costs, pay

roll, overhead, professional fees, etc. With this type of system,

there may be more productive utilisation of cardiologist's time
and skill for the analysis of complex cases, treatment of critical

patients, and development of new methods and criteria. The mea

surements of amplitudes, durations, and intervals are extremely

accurate using computer. As such, computer is a good alternative

for a physician practicing in a hospital where there are no expert

cardiologists.
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This chapter deals with the work done towards computer

aided interpretation of ECG. Electrocardiogram is represented in

terms of frontal plane peak resultant vector amplitudes and phases

for various segments and the normal pattern space is defined for

individual parameters in the form of relative values. A method is

developed for screening of ECGs in to normal and abnormal cate

gories. Composite binary code is introduced for effective and

compact representation of symptom patterns. An ECG interpretation

algorithm is developed for the detailed classification in to

various disease categories, namely myocardial infarction, right

ventricular hypertrophy and left ventricular hypertrophy. The

soft ware implementation of the developed interpretation algorithm

is also shown on a 8085 based microprocessor system.

3.2 CLINICAL CRITERIA

It is necessary to have some idea rbout the method of

clinical classification before going to computer aided interpre

tation. With years of experience, the cardiologists have speci

fied some clinical criteria for screening of cases in to normal

and abnormal categories and detailed classification. Friedman has

reproduced tabulated values for the normals for a large number of

cases o^ different age groups [81 ]. The mean values and ranges

of potential variation for segments Q,R,S and T at all the 12

leads are tabulated for these grout)s. In another table, corrected

values of normal QT intervals for various age groups are also

given. The mentioned leadwise segment variations are very wide.
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Normal heart rate is somewhere between 60 to 100 beats per

minute. P wave has amplitude of 0.05 to 0.25 mv and duration of

0.07 to 0.11 second. It has a phase displacement of 17.5 to 87

degrees in clockwise direction in frontal plane with respect to

axis I. The distance between peaks of P notches should not be

greater than 0.03 second in normal ECG. The amplitude of normal

Q wave is less than 0.2 mv or 25 7. of succeeding R in leads I and

II and less than 0.6 mv in lead III. The normal QRS wave has

duration of 0.08 to 0.09 second and phase displacement of 30 anti

clockwise to 103° clockwise. The frontal plane maximum value of

R wave is 2.1 mv. PR interval is 0.10 to 0.22 second. The ratio

of P duration and PR interval is 1.0 to 1.6. The corrected QT

duration is 0.35 to 0.** second for adults. The angle between

mean QRS and T is less than *5° in frontal plane and less than 60

in anterior posterior plane.

RI+SIII < 2«5mv> % < L*mv, Rn+RII]: < *.5 mv, R&y < 1.1 mv,

RaV < 2.0 mv, RV1 < 0.6 mv, Rv1/Sy1 <1.0,Ry5/Sv5= Rv6/Sv6 > 1.0,
R

Rv5 < 2.6 mv, Rv6 < 1.8 mv, RV5+Sy1 op V2 < 3> mv,

RV5 or V6+SV1 * 3.0 mv, RvV Qr y? + Sy2 < 3. 5mv, Rmax+deepest S

in precordial leads < *.0 mv, Sy1 < 2. 5 mv, Sy2 < 2.9 mv.

The T wave has amplitude of 0.1 to 0.5 mv and duration of 0.1 to

0.27 second. The segment U is hardly detectable in limb leads.

In limb leads of healthy subjects, ST elevation is absent. ST and

PR are parts of a continuous curve.
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In case of Right Ventricular Hypertrophy (RVH), the right

axis deviation makes the axis greater than i20°. Some of the main

symptoms for the indication of RVH are increase in QRS amplitude,

anteriorly directed QRS with normal interval, tall R in V1 and

unusually large S in V6, inversion of T and depression of ST in

right sided chest leads, and/or abnormally deep and vide S in left

sided chest leads.

In case of Left Ventricular Hypertrophy (LVH), there is

an increase in the amplitude of QRS without much change in direc

tion. The older subjects have more horizontal QRS complex by

left axis deviation. Some other main symptoms are posteriorly

directed QRS, QRS duration of 0.09 to 0.11 second, STr1 Tro+R„.>
7 vi or V2 vo

*.0 mv, precordial R+S > 3. 5 mv, (Rmax + Smax) > *. 5 mv, ST and T
opposite in direction to QRS, and/or abnormally tall R in V. and

deep S in V,.

In case of Myocardial Infarction (MI), ST vector points

towards the injured region. T and mean QRS vectors for the first

0.0* second point* away from the infarct. The QRS interval may be

normal or prolonged. The Q wave is not indicative of infarction

unless it has duration greater than 0.0!+ second regardless of its

amplitude. After the occurrence of MI, there is ST elevation in

some leads and depression in the others. After several weeks, ST
becomes normal but the change in T persists. In case of MI there

is localised ST elevation (convex upward) in infarcted areas and

depression in remote areas. The amplitude of R wave diminishes

and at times disappears altogether.
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Some idea about the clinical criteria collected from the

literature [1*,81 ,109,116,162] is given here. There is ample

variability in the criteria from cardiologist to cardiologist and

clinic to clinic. The interpretation of same cardiologist may be

affected by time, place, training, experience and non-BCG symptoms.

The clinical classification is more qualitative and subjective.

The identification of LVH by ECG is very difficult. It is repor

ted that the voltage based criterion loses specificity with increa

sed sensitivity.

Vectorcardiography is generally used for QRS loop. It

represents 5 X of the tracings taken in general hospitals and is

more useful for suspected MI. The leads X, Y and Z have some

correspondence with I, aV„ and Vp. The QRS loops are observed for

frontal (xy), sagittal (zy) and horizontal (xz) planes. The loop

display expands time scale. Most of the patterns can be recog

nized in the horizontal projection. VCG should not be a routine

procedure. There is an unacceptably high cost benefit ratio when

it is used indiscriminantly [2*1].

3.3 STATE OF ART FOR COMPUTER ASSISTED INTERPRETATION OF

ELECTRO CARDIO GRAM

A new era of electrocardiography started with the intro

duction of computers for ECG interpretation. In 1957, Veteran

Administration (VA), USA, started the development of methods of

computerised ECG analysis [167]. The first stage of the work was

the development of A/D converters [170,171,212]. The first compu

ter program for classification of normals and abnormals was based
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on the ventricular gradient [168]. The other workers also started

work in the same direction [*5]- At that time, one of the serious

problems was automatic identification of onset and end of P,Q,R,S

and T segments of BCG. The following section deals with some

methods of wave recognition.

3.3." •tfave Re co gnit ion

Stallman and Pipberger reported probably the first program

on automatic wave recognition. Above 60 Hz, signal to noise ratio

is low. Filter is used for the elimination of noise before auto

matic wave recognition [207]

+N

X(t) = Z g(T)X(t-T) ... (3.D
T=-N

+N

Y(t) • Z g(T)Y(t-T) ... (3.2)
T=-N

+N
Z(t) = Z g(T)Z(t-T) ... (3.3)

T=-N

where, g(T) = g(-T) to avoid phase shifts. The weight of g(T)

employed in this case is

g(T) =^ (1 + 2 cos fg- T) T=0,+1, , +15-
g(T) = -1/6* T =+ 16

For x(t) = sin N (7r/16)t or cos N (ir/l6)t, N = 2,3, ...,16;

g(T) is orthogonal to x(t).

For x(t) = sin N (7r/l6)t or cos N(Tr/l6)t or constant, g(T) leaves

x(t) unchanged.

For wave recognition spatial velocity D is considered.
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D = (square root of (Ax2 + Ay2 + Az2))/At ... (3.*)

For lead x, rate of change of voltage is given by

Ax/At = (x(t+At) - x(t))/At. ... (3.5)

Similarly Ay/At and Az/At can be found. The beginning and end of

a wave can be defined by determination of the points where D

crosses certain threshold values. All programs developed since

then have employed same general principles for wave detection[l79]«

The QRS onset is easy to locate, while P wave onsets, and P and T

ends vary considerably.

Caceres along with others did a pioneering job in wave

recognition [37,*1 ,*3,**,209], The rules and definitions based

on conventional criteria were formulated to define wave onset,

wave peak, wave termination, significant voltage fluctuations and

time intervals as shown in Figure 2.2. The onset of P is the

point immediately after the region of minimum slope fluctuation.

The end of P is the point following the region of minimum slope

on the descending limb of the P wave. The onset of QRS is the

first point of increased slope above a minimum of 0.01 mv for 0.01

second. The end of Q and onset of R is the point where the QR

segment crosses the base line. The end of R and onset of S is

the poiivt at which the trailing edge of R wave crosses the base

line. The end of S is the point where the trailing edge of S

crosses the base line. ST segment is the unit of time and the

average voltage quantity above or below the base line per 0.01

second between the end of S and peak of T. Onset of T is the

first positive or negative slope change of 0.01 mv for 0.01 second
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from the base line after the end of S. The end of T is the point

preceding the area of least voltage fluctuation. The peaks of

P,Q,R,S,T are detected in respective regions. Leads II and V3

are used for this purpose [209],

Bonner et al. used level crossing and slopes for wave

detection [21]. In the wave detection described by cornfield

et al.t1^7] for Frank lead system, QRS onset is determined by

comparing spatial velocity V. with standard spatial velocity V .

The standard curve is obtained by averaging spatial velocity for

a series of records. The time of QRS onset for a new record t
q

is defined as the value of t which minimises ZW. (V. . -\)2 in

the neighbourhood of t and W, is inverse of estimated variance
q x;

around the standard curve. The end of P wave is taken first in a

sequence of points preceding t at which V. exceeds 1.12-1.63 liv/ms.
q «

P onset is similarly determined. End of QRS is determined using

standard spatial velocity curve. Searching back ward from the end

of cycle, the first in a sequence of points having V. greater than

threshold is end of T. In the method reported by Smets and

Kornreich [200], the pattern is transformed in any positive

function like spatial amplitude or spatial velocity amplitude.

It is integrated and the times needed for the integral to attain

certain percentage of total variation due to the signal are noted.

The signal sampled at certain epoch points provides diagnostic

parameters. The amplitude of external cross product of VCG at

time t+1 by the smoothed VCG at time *• is proportional to the

surface of the triangle formed by the two vectors. This vector
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is used for P wave detection in noisy signals. This method could

be helpful in avoiding the delicate problem of strict definition

of the limits of the waveform.

Murthy and Rangaraj have

reported detection of QRS complexes using first difference in

amplitudes of successive ECG samples [15*]. Simple transformation

is used to get a single peak at the QRS complex.

N

g.(n) = Z |x(n-i+D - x(n-i) |2 (N-i+1) ... (2.6)
1 i=1

where, N is the width of the window within which N past differences

are computed, squared and weighted by factor (N-i+1), n the running

index of signal, and its transform g.. The methods based on angle

patterns,"the local variance of the amplitude of the external

product of consecutive sampled points", combination of spatial

velocity and amplitude, integral etc. are used. The spatial

velocity and amplitude are parameters of general choice. Low

amplitude, low signal to noise ratio, wide range of morphologies

associated with onset and offset make P wave identification

difficult [1*5]. A technique is also developed for recording and

identifying the P wave from esophagus [112]. Rubel et al. have

reported QRS detection based on threshold crossing of spatial

velocity function S . varying from 1* to *0 nv/ms [188]. Shibata

has reported a template method developed for P wave detection

[198]. Murray et al. have combined clinical criteria with mathe

matically extracted parameters [152]. Use of atleast two of the

three parameters amplitude, slope and area under the curve with
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filtering improves QRS detection [751. In linear approximation,

the ECG is considered as a series of triangles or trapezoids

separated by intervals described by a series of line segments[10 5].

This syntactic approach suitable for mini and microcomputers works

well for QRS detection. Udupa et al. also reported syntactic ECG

representation in terms of Lengths and angles of a series of 27

linear segments C219 3• Rubel has also discussed a method using

spatial area and spatial velocity [187].

In another approach [2*2], prediction formulae are used

for rough estimation of point of maximum or minimum amplitude for

various segments. A window covering twice the standard deviation

around this point is considered and exact point of maxima or

minima is searched over this window. Okado has developed a five

step digital filter which removes components other than QRS

complex from ECG [158]. A square wave is produced whose interval

corresponds to the segment with QRS complex in original ECG.

Bockmann et al. have derived polynomial regression age dependent

functions for estimation of standard spatial velocity values [18].

The spatial velocity curves are also derived for the 12 leads.

SPV^ =aQ.. +a^.Age +a2j.Age2 +a^.Age3 ... (3.7)

The adaptive polynomials are given as

SPV.. =aQ;. +a1;..Age +a2j.Age2 + b2, SPVMAX2 ... (3.8)

where, SPV. is expected value of spatial velocity of QRS onset

and offset in different approximation points. Broda et al. found

P wave phase more reliable for its detection [28]. Okajima et al.
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employed multiple adaptive matched filter [159]«

It is possible most of the times to detect the presence

of ventricular complexes with level detection methods [210]. A

threshold method is always sufficient except for low amplitude

waveforms and with small signal to noise ratio. Zero crossing

estimated by linear interpolation gives best results. The validity

of detector output pulse is tested by the time interval between

positive and negative deflections crossing the lower level in

digitally filtered signal [220], In learning population, this

time appeared to vary from 10 to *0 ms. If a level of about *0 /.

is crossed and the Interpulse criteria are fulfilled, there is

true detection. If a lower level (about 15 X) is crossed and the

interpulse criteria are also satisfied, it should be further

checked by software. The detector implemented in hardware saves

computer time [230,90]. If the waveform is stable spatial velocity

template can be used [222]. In another method by Hengeveld and

Bemmel [103] illustrated in Figure 3.1(a-f) for detection of P

waves, digital bandpass filtering is applied to ECG after cutting

away QRS. Before applying filtering, routine rough estimation of

end of preceding T wave is made by regression formula

QT max = (2/9) RR + 250 (ms) ... (3.9)

The filtered signals are rectified and two thresholds are applied

at 50 and 75 % of maximum amplitude, resulting in ternary signal.

The cross correlation is computed with the template. The corre

lation function has maximum value at P wave. This routine is

only applied if an earlier algorithm could not find coupled P
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waves. Van Bemmel et al. have reported QRS detection as follows

[223A].

BCG(i) = (x1(i),x (i),x_(i)) for three simultaneous leads (from

12 or 3 lead system).

Detection function d(i) = £ T(x, (i)) ... (3.10)
k K

T is a transform of x,(i). The derivative is computed by the two

sided first difference.

T= |xk(i+1) -xk(i-1)|2 ... (3.11)

Spatial velocity = square root of (d(i)) ... (3»12)

There exist neither definitions nor recommendations

which can be applied on discrete ECG signals and translated in to

computer statements. The location of points of onset and offset

vary from program to program. Even with logically correct prog

ram remarkable differences in performance can be observed with

different programs for the same ECG. The European working group

is trying to improve and standardise the method [2*7].

3.3.2 Interpretation Methods

The classification of ECG interpretation programs as

first and second generation types is related to the complexity

and not the time. The first generation programs simulate clinical

methods of classification using decision trees [23,172,177]. When

certain measurements are greater than normal, the record is label

led abnormal and is classified according to matching of abnorma

lity with a disease. The number and type of measurements vary
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with the program. The advantage of these programs is that the

program users are familiar with the criteria and relatively

follow the program logic easily. Since there is no general

agreement on optimal criteria, diagnostic strategies and program

performance vary considerably [167]. Large number of measurements

leads to false positives. When a selected group of electrocardio-

graphers was tested in a study by Simonson et al.0966), the

correct interpretation was achieved only in 5* % cases. According

to Pipberger C172], the programming of the criteria of ECG experts

can lead at best to the same results.

In second generation programs, large number of parameters

is employed with multivariate statistical analysis. As compared

to human readers, better diagnostic results are reported. But

the program logic is difficult to follow, the measurements are

not familiar to the program user, and assumption about mutual

exclusiveness of diagnostic categories is unrealistic. Unlike

decision tree programs, a small variation of singular measurement

or noise may not affect the final diagnosis much [167].

So far, a large number of programs has been developed in

Europe and North America. Some of these programs are AVA (3.6),

TNO (7603), HP-5, ECAN-D, IBM (1 and 2), CIMRTJB, THE LYON,

HANNOVER, GLASGOW, SIEMENS, PADOVA and THE GIESSEN 12 lead

programs, the Modular developed in Utrecht, THE LOUVAIN, HP78,

MAYO, MSDL, MOUNT SINAI, DREIFUS, TELEMED and HALIFAX. Some of

these programs are based on 12 lead system and some are on

orthogonal three lead system [91,235]. A program based on

hybrid lead system is also being developed at Royal Infirmary?



-97-

Glasgow. It is not possible to give details of all the programs

here. Therefore, only some idea is given about the development

of 1st and Ilnd generation programs.

Caceres did the pioneering work in 12 lead ECG analysis

[37,38]. Smith and Hyde [20*] developed the Mayo program for VCG

analysis which is replaced by a version with greater specificity

[106]. Computer analysis of arrhythmia complemented these prog

rams later; Bonner, Pordy and associates [21,22,17*] reported on

detailed algorithms for identification of cardiac rhythm distur

bances. The program was replaced by a more powerful program as

tested by Bailey et al.[8]. For analysis of orthogonal ECGs and

VCGs, other operational programs are also reported [6,177]. For

these first generation programs, when the normal limit for a

given ECG measurement is exceeded, this finding may lead to a

diagnostic statement or the statement may be qualified by a 2nd

or 3rd measurement before a final decision is made, as shown in

Figure 3.2. For reasonable specificity number of criteria is to

be limited. In the illustration reported [117] the gain in

correct classification is 5 % against loss of 11 /. in specificity

with increased measurements. The computer print out of MSDL

program [91 ] included amplitudes, amplitude ratios, and intervals

for 12 leads; axes for P,QRS,T,Q,R,S,STO,ST-T,QRS-T etc.; inter

pretation and 12 lead plots for visualisation.

IBM developed a program with three cardiologists for

interpretation of scalar 12 leads just like clinical interpre

tation [23]. The five sets of three simultaneously recorded

leads (12 + modified x,y,z or V1,II,V6) are used. The last set
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is used for rhythm analysis of averaged measurements. The diag

nostic criteria accompany the interpretation print out for a

check. The measurement matrix includes amplitudes and durations,

frontal plane angles for QRS,P,T and QRS area for the twelve

leads. It can also be used as a teaching aid.

Whiteman et al.[233] have reported a compact scheme of

representing 12 lead data in matrix form. The 12 columns corres

pond to 12 leads. Different rows provide the results of comparison

of various segment amplitudes and durations with the set criteria.

The normal values are indicated by 0 and abnormals by 1. The

frontal plane vector program computes mean electrical axis with

reference to two of the hexaxial reference system at 60°. Leads

with the greatest amplitudes are selected. For certain catego

ries, some matrix elements are masked and significant ones are

retained. For final interpretation, all tentative diagnostic

statements are combined.

The capability of computer to perform more complex ana

lytical procedure is harnessed in multivariate statistical analy

sis. The Vote ran Administration (VA) program is based on Frank

leads. The following parameters are obtained for the three

leads [166].

(1) Amplitudes of P,Q,R,S and T

(2) Q/R and R/S

(3) Peak to peak time intervals of notched or biphasic waves

(*) Curves of spatial magnitude, orientation and velocity

(5) Spatial maximal vectors for P,QRS, and T
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(6) Selected series of instantaneous vectors

(7) Durations/intervals for PR,QRS,Q,R,S,QT.

For time integrals positive areas are added while negative areas

are subtracted. Ventricular gradient which is the sum of time

integrals of QRS and T indicates net effect of ventricular depola

rization and repolarisation. Eigen vectors of spatial P, QRS and

T vector loops are also computed. A series of Instantaneous

vectors leads to optimal separation (more than 90 '/.). Measure

ments derived from scalar orthogonal leads, Eigen-vectors, time

integrals and spatial maximum vectors led to markedly lower

recognition rates (h5-55 '/.). They are suitable only for screen

ing of normals and abnormals. The vector difference between

unknown patient vector and various means of pathological entities

indicates the probability for each of these entities C166].

Cady et al.[*5] applied stepwise linear discriminant

function analysis on Fourier coefficients derived from a set of

orthogonal leads. Fourier coefficients (50 pairs of C and S )
P P

are found for x,y and z leads.

P=l x p =1 * **

For LVH the discriminant function equation is given as

LVH status = 0.00016* + 0.0008*3 S? + O.OOO832 C? - 0.00221 CXr
1 ' 25

- 0.00878 S^7 - 0.00593 S^6 - O.OO389 C^ ... (3.1*)
The score for normals ranged from 0.0 to 0.!+ and for LVH cases

0.6 to 1.3. The separating line is provided by a score of O.53.
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In a stepwise search procedure, a Fourier coefficient making

greatest improvement in fit is added at each step. The discrimi

nant solution gives least square best fit values of weight

factors for a particular sample of ECGs.

Linear discriminant function technique is also used with

selected set of measurements [72,83]. Adoptive filter [208]

initially resolves around training sets of records for various

entities. A cross correlation is performed between each new,

unknown record and the various training sets. The unknown record

is then entered in to the group of best correlation. The selected

training set is up dated on the basis of new material. Polynomial

Discriminant Method (PDM)[20 5] is its different form. It is a

nonparametric statistical technique in which the pattern classi

fication is based on estimates of probability density functions

for each of the possible states. Bayes strategy is used for

final classification. Fifteen samples at 5 ms after onset of

QRS on each lead and duration of QRS provided *6 measurements.

Thirty coefficients (27 linear, 2 squared and a constant term)

are found significant. According to Stallman and Pipberger

(unpublished observation)[71] the number of training cases greater

than 100 results in overlapping and finally merging of groups in

adaptive filter approach.

The ECG library of Veteran's Administration has tens of

thousand of cases classified on the basis of non ECG symptoms.

Matched filter, Fourier and Power spectrum and discriminant

function analysis were tested using this data. The later approach

proved much successful and was adopted for VA programs [71 ]. This
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approach has since been extended to Bayesian likelyhood ratio

reported earlier [56]. It forms the basis for the ECG computer

program available to the public which except for the criterion

of 126 ms for QRS duration to define conduction defects uses

multivariate analysis exclusively [71 ]. The program computes

posterior probabilities for 26 different categories. Figure 3.3

shows the flow chart for the program based on Frank lead system.

Some details of this program are reported by Cornfield et al. [57].

The group of seven categories without conduction defect includes

(i) Normal (ii) Anterior Myocardial Infarction (AMI),

(iii) Posterior MI, (iv) Lateral MI (v) Left Ventricular Hyper

trophy (vi) Right Ventricular Hypertrophy and (vii) Pulmonary

emphysema. The measured variables are (a) voltage amplitudes on

time normalised scale (b) maximum amplitudes for each wave

(c) angles for time normalised points on QRS and maximum angle

for each projection in that complex (d) durations Qd, Rd, S^, T^

(e) time of peak amplitudes for each wave and (f) areas. QRS

measurements are obtained from unfiltered records and P, ST-T

from smoothed derivatives. About 10-15 significant measurements

are retained for each pairwise comparison e.g. normal and AMI.

Most of the amplitudes are specified leadwise. Posterior probabi

lities are computed for all the categories as explained by pip-

berger et al. [172]. The results are affected strongly by the

prior probabilities based on tentative diagnosis marked in the

request form depending on non ECG symptoms. When more than one

categories are marked combination sets of prior probabilities

are applied. The sets of prior probabilities are determined
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arbitrarily to minimise misclassifications. The method necessi

tates that the marking of tentative diagnosis and selection of

prior probabilities are proper. The prior probabilities vary

among populations. The prior probabilities used here are percen

tage of cases in each category in files of well diagnosed cases.

Due to very large number of parameters any data base may become

inadequate. The number of parameters should not be more than

1/20th the number of training cases [172]. The assumptions

about multivariate normality and equal covariance matrices may

not be true in reality [973.

The point score technique is claimed to be most success

ful of recently developed criteria [131]. Romhilt et al. have

reported point score technique with 12 lead ECG for detection of

LVH cases [185]. Computerized Electrocardiography Laboratory at

University of Louisville also uses a point score system for RVH

and LVH with 12 lead system [197]. Macfarlane et al.[l3l] have

applied point score technique to orthogonal leads for LVH, RVH

and BVH. In this approach, certain point score is assigned to

an amplitude, duration, ratio of amplitudes, sum of amplitudes or

phase angle exceeding a specified value or value at some other

lead. Total score is used for the categorization. Depending on

the total score the classification is RVH or probable RVH or possi

ble RVH and LVH or probable LVH or possible LVH.

The type of diagnostic criteria used with the computer

are as follows [132]



-103-

LVH: QRS vector amplitude > 2. 5 mv

or Rx > 2.1 mv or Sz > 1. 2 mv

or transverse plane QRS axis 270°-310°.

RVH: (R/S) > 3 or R > 0.85 mv
z z

or (Sx > 0.55 mv and Sx > Rx)

or transverse plane QRF axis 30-270°

or frontal plane QRS axis 90-270°.

MI : (1) Anterolateral:

(Q/R)x > 1/3 possible MI

and if Qx duration > 0.03 second consistent with MI

(2) Inferior : Similar to (1) but for lead Y.

(3) Anteroseptals

Q_ present and Q„ duration > 0.02 second
z z

or R < 0.11 mv
z

(R/S) < 0.10 and transverse plane axis of

QRS vector 0.03 second after its onset I8O-33O0.

In all the three instances ST segment and T wave appearances are

used to determine age of infarction.

Royal Infirmary Glasgow group started with simultaneously

recorded orthogonal leads in early seventies. Three leads are

used simultaneously for amplitude and duration measurements of

P,Q,R,S,T in each lead. Certain measurements describing ampli

tude and phase of resultant electrical force are obtained. Due

to reluctance of cardiologists in accepting orthogonal lead

program, hybrid system program is under development. Till the
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diagnostic criteria for hybrid system are established, mixture of

conventional and new criteria for 12 lead system are used. Hybrid

ECG is recorded using microprocessor based electrocardiograph in

which 15 leads are recorded simultaneously. The program is

commercially available from Siemens Elema [135].

The value of generally used two dimensional concept of

normality and abnormality ir limited [39]. Fuzzy set approach

is an attempt to avoid problem of single border line value between

normal and abnormal. A grey area between normal and abnormal is

conceived [130]. In fuzzy set approach, the measure of belonging
to a set is arbitrarily scaled from 0 to 1. Classical sets are

particular cases of fuzzy sets where measure of association or

otherwise may be 1 and 0 (yes and no). Fuzzy sets and probabili

ties cover two distinct sources of ignorance. One deals with our

ignorance about the patient and the other with our ignorance about

the definition of the diagnostic entity. A better approximation

of human behaviour and capacity have been obtained with fuzzy

sets [202], In the experiments, the clinicians are reported to
be more at ease with subjective probabilities and fuzzy sets than

with the more classical frequentist probability and classical
sets [201 ].

3»3»3 Accuracy of Interpretation

The accuracy of classification is very difficult to

measure and the methods and philosophy of program evaluation are

intensely debated topics. There is also difficulty due to the

lack of standardization of diagnostic criteria [5]. Various
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claims and conclusions are made about the accuracy and effective

ness of various programs. The sensitivity of a program is the

ratio of cases of a category detected by the computer (i.e. Posi

tives) to the actual number of cases of that category. Specifi

city is the ratio of cases decided by the computer as not belong

ing to a category (i.e. negatives) to the actual number of cases

not belonging to the category.

In 1967, Whiteman et al.[233] have reported complete

agreement for 72 7. and complete disagreement for 28 7. in cases of

normals; and complete agreement for 73 7. , agreement on abnormality

but disagreement on nature of abnormality for 26 7. and disagreement

for 0.8 7. in case of abnormals [233]. In 1968, Romhilt et al.

[185] have reported sensitivity of 62.2 7. and specificity of

96.7 7. for application of point score system to twelve lead

data for LVH. In 1970, Gorman and Evans have reported 97.8 7.

agreement and 2.2 percent disagreement for normals; and 75*1 X

agreement, 3.* 7. disagreement and 21.5% partial agreement with

12 lead MSDL system [91 ]. In 1973, Cornfield et al. [ 57] have

reported 69.* as the over all percentage correctly classified in

seven group analysis. Twelve percent of the normals are mis-

classified with only 3 7. misclassified as infarcts. For infarct

cases the correct classification ranged from 70 to 88 7. . For

LVH and RVH, the values are 50 7. and 38 7. . When posterior

probabilities were calculated using the likelyhood ratios from

well diagnosed file, the correct classification rose to 70 7. and

more.
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Bailey et al. made a systematic approach for testing and

evaluation of some computer programs. Each ECG is reviewed by a

board of * cardiologists unaware of the computer interpretation,

computer-cardiologist disagreement may be attributed to criteria

differences, program errors or reader errors. Specified criteria

are followed by the readers. According to 197* report IBM 71

program had 76 7. agreement and 20 7« disagreement due to criteria

difference and * 7. disagreement due to program errors [12]. In

case of version D of PHS program the agreement was ^5*5 '/• , 29 7.

disagreement due to criteria difference and 25. 5 7. disagreement

due to program errors. In case of Mayo program (1968) the

agreement was *7 7. , criteria difference disagreement 30.9 % and

program error disagreement 22.1 7. . With PHS program the error

resulted primarily from mismeasurements and deficient program

logic. With Mayo program the errors were mainly due to pattern

recognition [11]. For checking reproducibility two digital

representations of the same ECG were separated by one millisecond.

The reproduction of diagnostic statements was 60 % with Mayo('68)

program. The reproducibilities for version D of PHS and new IBM

programs were !+3. 3 7- and 76 7. respectively. The results improved

to *9.8 and 79.7 7. by analog filtering. The need for human over

view and quality checking is reemphasized [10]. In 1975,

Pipberger et al. have reported that the results of 12 lead inter

pretations were correct, partially correct and incorrect by 68 7.,

* % and 28 % respectively. Multivariate analysis with orthogonal

leads increased correct classification by 18 7. . The misclassi-

fi cat ions were reduced from 28 to 9 7. • The correct recognition



-107-

rate for MI was 85 % against 79 7. by conventional analysis C172].

In 1976, Caceres has reported that MSDL Scalar system had agree

ment of measurement on amplitude, duration and slope of waveforms

in the range of 39.7 to 100 % and repeatability of measurements

9* 7. . For normals the agreement was 98.5 % and for abnormals

82. 5'/' • IBM 71 program showed 75*5 7» agreement between computer

and physician with NIH technique [*0]. In 1976, Bailey et al.

have reported that for AVA 3.!+ program by Pipberger et al. repro

ducibility is 75.1 7. without filtering [9]. Heavy analog filtering

may improve the diagnostic reproducibility but sometimes results

in loss of diagnostic statements. In 1979, Macfarlane [129] has

reported sensitivity, specificity and index of merit of 70 7.,

97 */. and 0.67 for LVH and 53 7. , 89 % and 0.1+2 for RVH using

scoring technique with orthogonal leads. In 1981, Macfarlane

et al. [1 31 1 have reported sensitivity and specificity for LVH,RVH

and BVH as 7*,9*;67,100; and 6*,100 % in the training group and

65,91; 53*90; and *2,93 V. in the test group using scoring technique

for orthogonal leads. In 1982, a sample computer output of

computerized Electrocardiography Laboratory at University of

Louisville the percentage of agreement is *0.9. For hypertrophies

range of sensitivity is *2-65 7. and that of specificity is

90-93 V' [197]. For three mutually exclusive and exhaustive

groups, Smets et al.[203] have suggested the use of two sensiti

vities and one specificity.
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3.3«1+ Some Remarks

This comparison is not aimed at criticising any of the

methods. It highlights the limitation of the computer interpre

tation in the present form. According to Friedman and Gustafson

it merely tries to duplicate what a physician can already do

quite well [82]. Only as a last resort agreement and disagree

ment between computer and majority opinion of group of observers

should be used for evaluation [5]. Physician computer difference

indicates criteria difference and not the computer system error

[*2]. The overreading does not answer the question whether the

electro cardio grap her or the computer is right or wrong [167].

Use of majority opinion of observers should be limited to descrip

tive statements only [180]. The fact that 12 lead ECG classifi

cation with decision tree logic is inferior to orthogonal three

leads with multivariate analysis does not mean that the basic

information content is different [172]. So far the computer

has not become fully reliable. It has remained Computer Assisted

Reporting of Electrocardiogram rather than automatic interpre

tation of ECG. Overview is still inevitable. After sufficient

development only some complex ECGs may be required to be reviewed

by the cardiologists [ 130]. The CSE European working group [235]

is trying to establish measurement standards in computer ECG

analysis. In pilot study (1st stage) basic library of 250 ECG

(Frank and 12 leads) is planned. Referees will locate on and

offsets of waves from beats enlarged 10 times vertically and

10-20 times horizontally. The ECGs are to be processed by seven

VCG and eleven 1 2 lead ECG computer programs developed in
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Europe and North America. The second stage will use 2500 ECGs.

In third stage guidelines for standards of ECG measurements are

to be vorked out.

According to Caceres unfortunately there has been too

much expenditure and effort on studies to determine which program

does what best and not enough on studies for constructive changes

to ECG criteria that physicians should use, which could then be

easily evaluated and added to, by any or all existing ECG prog

rams. The saving in one year by computer assisted ECG interpre

tation alone is sufficient to purchase the hardware needed to do

the entire nation's job. We should not wait anymore and lose a

huge sum every year in patient savings, lose 60 7. of cardiolo

gists' time in ECG reading or lose half of the time of clerical

services in the heart station and continue to have inconsistent,

unstandardized answers with the observer variability common to

all of us [39].

The existing programs should not become frozen. There is

still ample room for imaginative innovation in computer systems

designed for ECG analysis [167]. The last remark has inspired

and encouraged to put some fresh approach in the present work

for the analysis of electrocardiogram. It is more useful to

combine decision tree (1st generation) and multivariate statisti

cal analysis (Ilnd generation) methods. Poor performance of

quadratic discriminant analysis is due to lack of adequate sample

size for training sets. Linear discriminant analysis presumes

that ECG measurements are multivariate and normally distributed,

which is not true. So, it seems attractive to use statistical
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modelswhich are not based on these assumptions [1*8].

3.!+ SEARCH FOR THE NORMALITY OF NORMAL ELECTROCARDIOGRAM

3.*. 1 Method of Representation

whether it is screening of large population of patients

or routine classification, the first task is the classification

of the ECG patterns in to normal and abnormal categories. The

normal electrocardiogram is not a single unique pattern, other

wise, the job would have been very simple. Actually it covers a

wide spectrum of patterns. In the earlier section on clinical

criteria, it is seen that usually normal average values of ampli

tudes and durations at different leads of the 12 (or orthogonal 3)

lead system for various segments P,Q,R,S,T and ST are specified.

The upper limits for lead potentials at respective leads and

segment durations for the normal ECG are also specified. Sometimes

sum of deflections at two leads for segment R, sum of deflection

R at one lead and deflection S at another lead, and upper limit

for the ratio of R and S deflections for a pair of leads are

specified. The upright and inverted deflections for some segments

at some leads are also specified. The specified ranges of

variation of ECG potentials for various segments of different

leads are very wide and fail to define the normal pattern space

with specificity. Therefore, this is ambiguous definition of

normal ECG. Even arithmetic mean + 2 times the standard deviation

is not able to cover the total range of variation of the concerned

parameter. The uncertainty about the criteria reduces the sensi

tivity and specificity of ECG interpretation. It may be one of
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the reasons that ECG only is not considered as a sufficient

evidence for clinical diagnosis of cardiac cases. It is supported

by physiological and radiological observations, pattern of varia

tion of blood pressure and flow; nature, location and duration of

pain; study of heart sounds, pulse rate, colour of part or whole

of the body, case history, and clinical observations. Long back

Wilson remarked that ECG Science may be exact but its clinical

utilisation is often wretched. It is hoped that computer will

overcome this limitation.

The aim in this section is to derive and represent diagnos

tic parameters from 12 lead system to define normal ECG with more

specificity and to ensure good clustering of parameters of the

normal cases in the normal pattern space. The lead potentials

are dependent on phase angle of the potential vector. The concept

of potential vector is ^Tell known. The spatial vector approach

discussed in literature usually considers mean vector. In this

case, shift of baseline may give erroneous results. In clinical

nractice, it is used for rough estimation of axis and rarely for

amplitude. Sometimes instantaneous vectors at some specific

points in the cardiac cycle are also found. The peak potential

vector with orthogonal leads is also used. Sufficient weightage

is not given to it as there may be difficulty in its accurate

computation or interpretation [166].

The present approach is mainly based on the Frontal plane

Peak Resultant vectors (FPR) for the various ECG segments. It

has been explained in the earlier chapter that by applying measure'

ment error and lead proximity corrections to the ECG lead
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potentials with Burger triangle representation, FPR amplitude and

phase can be determined very accurately. The precision achieved

is 0.0000002 mv for amplitude and 0.00000!+ degree for phase.

The ECG representation in terms of amplitudes and phases of FPR

for the various segments is a very effective and efficient method

of representation.

3.*. 2 Specification of Normal Pattern Space

Twenty five normal and sixtynine abnormal cases are

analysed in this work. The average values for peak segment

potentials P,Q,R,S,T and ST at leads I,II,III and segment inter

vals PQ,QR,RS,ST,TP are measured. Due to the presence of noise

and frequent shift of baseline , there is always some difficulty

in detecting the instant of zero crossing by the ECG potential.

The duration from the beginning to the end of a segment considered

normally in clinical practice can not be measured accurately.

Therefore, time intervals between peak values of consecutive seg

ments are considered in the present work. The sums and differen

ces of some segment amplitudes are considered in clinical criteria.

The algebraic sum of areas is considered while finding the mean

spatial vector. Additional parameters Q+R, Q-R, R+S, R-S, S+T

and S-T are considered here to account for similar effect. These

are the arithmetic sums or differences of respective peak values.

FPR amplitudes and phases are computed for P,Q,R,S,T,ST,Q+R,

Q-R,R+S,R-S,S+T and S-T using Burger triangle representation with

measurement error and lead proximity corrections for all the

normal and abnormal cases. The computation procedure has been

explained in section 2.6.
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The actual values of FPR amplitude and phase are used as

the polar co-ordinates for position vector for the point corres

ponding to a particular segment of a particular case in the

pattern space. On the basis of analysed 25 normal cases, the

ranges of variation of respective segment amplitude and phase is

characterized by boundaries of certain sector in the circular

plot as shown in Figure 3.*. The normal ranges of variation for

absolute values of FPR amplitudes and phases corresponding to

P,Q,R,S,T,Q+R,Q-R,R+S,R-S,S+T and S-T are clearly displayed on

the plot by different sectors which specify the normal pattern

spaces for respective parameters. The normal range of variation

for absolute values of FPR amplitudes for a segment is very wide.

The range varies from segment to segment. The arithmetic means

and standard deviations are also found for these parameters. The

distribation is irregular and even arithmetic mean with + 2 times

standard deviation is not able to cover the total range of varia

tion for the normal cases. So actual maximum and minimum values

are used to specify the range. The normal pattern spaces for

some segments are quite apart. Moreover, the generalisation of

diagnostic parameters is not convenient at this stage.

In the next stage, the above parameters are converted to

relative values. The FPR amplitude of a particular segment for a

case is divided by the arithmetic mean NMFPR of corresponding

FPR amplitude for all the 25 normal cases to get the relative

value of FPR amplitude. The relative value of phase angle for a

segment is obtained by subtracting the average value NMa of phase

angles for all the 25 normal cases from the actual value of phase

t
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angle for a particular case. The use of relative values has made

the order of amplitude and phase independent of the segment

under consideration. In the normal pattern space, all the rela

tive values for the normal cases cluster around 1 and 0 for

amplitude and phase, respectively. The peak to peak segment

intervals INT are first converted to percentage of cycle length T.

The percentage interval is further divided by the arithmetic mean,

NMINT of corresponding percentage intervals for the 25 normal

cases to get relative value. The clustering of these parameters

for normals is around 1.

Pa'Qa'Ra'Sa'Ta'STa^+Ra^-Ra'R+Sa'R-Sa'S+Ta and S~Ta are the
relative values of FPR amplitudes for P,Q,R,S,T,ST,Q+R,Q-R,R+S,

R-S,S+T and S-T. a ,a .a ,a ,a.,a 4.,cc ,a ,a '.a ,a , and
» p» q> r' s' t' st' q+r' q-r' r+s' r-s' s+t

a . are the relative values of corresponding FPR phase angles.

PRd . PQd+QRd , RTd = RSd+STd,

PTd = PQd+QRd+RSd+STd or PRd+RTd

PQd,QRd,RSd,STd,PRd,RTd,TPd and PTd are the relative values of

respective peak to peak segment intervals.

/P,R is the phase difference between P and R segments

/T,R is the phase difference between T and R segments

/T,P is the phase difference between T and P segments.

Vith relative values of 32 parameters P ,Q ,R ,S ,T ,ST ,a ,a ,
a' a' a' a' a' a' p' q'

^'S^t'^t'^a'^a'^a^^a'^a'^a^q+r^q-r^r+s^r-s'
as+t'as-t»^kase differences /P,R,/T,R, and /T,P, 35 parameters,

S1 to Sjj, are computed for the 25 normal and 69 abnormal cases.

Upper and lower limits, NMAX. and NMIN., for each parameter are
J J
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set from the results of the normal cases. They define the normal

range of variation for various diagnostic parameters.

Relative values of parameter vectors P,Q,R,S,T,Q+R,Q-R,

R+S,R-S and S-T for the normal cases are plotted in Figure 3.5

(a-k). The relative values of phase angle and amplitude of

respective parameter vectors are taken on vertical and horizontal

axes, respectively. The numerals indicate the code numbers assig

ned to various cases. These numbers are assigned in some blocks

according to the sequence in which the cases are collected. So

there should not be any confusion even if the numbers are out of

sequence or the sequence is discontinuous. The relative values

of segment intervals for normal cases are plotted in Figure 3*6

(a-h). Here, the segment intervals are taken along the horizontal

axis. For clarity some points are shifted upward or downward.

The vertical scale has no significance. In Figures 3*5 (a-k) and

3.6(a-h) very good clustering of FPR vectors and segment intervals

for various segments of ECG patterns for the 25 normal cases is

observed in the pattern space. It is possible to define the

boundaries of the normal pattern space for various parameters

which is very useful for screening of cases in to normals and

abnormals.

The diagnostic utility of the approach is verified by

the analysis of 69 abnormal cases including 29 cases of Myocardial

Infarction (MI), 20 cases of Right Ventricular Hypertrophy (RVH),

and 20 cases of Left Ventricular Hypertrophy (LVH). For illus

tration, the results for R and T vectors with the cases of MI

are presented in Figure 3.7(a-b). With the help of the results
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for the normal cases, the boundaries of the normal pattern spaces

are drawn in these figures. The abnormal parameters are scattered

away from the normal reference value (1,0). For a normal case,

C^^s^all the parameters are lying within the normal pattern
space. For abnormal cases, the affected parameters are lying

outside the normal pattern spaces and unaffected parameters are

lying within the normal pattern spaces. Large number of para

meters lying outside the normal pattern spaces for a case indi

cates degree of severity of abnormality.

3.^.3 Screening : Normals and Abnormals

Computer algorithms are developed for the classification

of ECGs in to normal and abnormal categories. In the first method,

actual values of 35 parameter set are considered. Actual values

of maxima and minima are used to specify the normal range of

variation for the normal parameters. (If arithmetic mean +2 times

the standard deviation is used for the purpose, many normal cases

are classified as abnormals). For all the cases being analysed,

the parameters are converted to the binary form. Parameters

within the normal range are specified by 0 and beyond the normal

range by 1. The sum of these binary symptoms is carried out for

each case. For the 25 normal cases, all the symptoms are 0. So

the sum of binary symptoms is also zero. For abnormal cases,

some symptoms are zero and others are 1. The sum of sumptoms is

having some positive value. Higher positive value corresponds to

severe abnormality. The results for all the cases are shown in

Figure 3.8. The sum of binary symptoms and the case code numbers
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are taken along vertical and horizontal axes, respectively. Due

to the sum being zero all the normal cases lie along the horizon

tal axis. All the abnormal cases lie above the horizontal axis.

For some abnormal cases, the sum is very small. So in the pattern
space the separating belt between normal and abnormal categories

is very narrow. The threshold sum for classification in to abnor
mal category is to be set to a low value.

In the second method maxima and minima of relative values

MAX.. and NMIN.., are used to specify the range. The relative

values of parameters S, for the various cases are converted to

binary form (B..) using the simple binary code. The sum of binary

symptoms is computed. The results are plotted in Figure 3.9.

The sum of binary symptoms and case code number are considered

along vertical and horizontal axes respectively. In this case

the grey area is increased. The threshold value for classifi

cation can be increased and misclassifications can be avoided.

So the relative values are found more suitable for screening.

For screening of EGG patterns in to normals and abnormals,
an algorithm 'SCRIN' is developed. The measured parameters for
the case to be classified are converted to relative values. They

are further converted to the binary code by comparison with the

stored values of maxima and minima for the 35 parameters. A case

to be classified is represented by a 35 bit binary pulse train.

The sum of all the 35 bit values is carried out. If the sum is

greater than or equal to specified threshold value, the case is

classified as abnormal. If the sum is less than the threshold

value, the case is classified as normal. For the abnormal case,
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abnormality index is equal to (sum of symptoms/35). This simple

algorithm is sufficient for screening. A complex algorithm is

developed for detailed classification.

3. 5 DETAILED CLASSIFICATION

3.5.1 Composite Binary Code

A three state and two bit composite binary code is

developed for detailed classification. The relative value of

amplitude or duration or phase within normal range is represented

by 1 1. The relative value above normal range for amplitude or

duration and anticlockwise shift beyond the normal range for

relative phase angle is represented by 10. The relative value

below normal range for amplitude or duration and clockwise phase

shift beyond the normal range for phase angle is represented by

01. From the 35 relative parameter values S. for various cases,

symptom patterns with 35 pairs of binary bits CB. are generated.

For all the 25 normal cases, all the 35 pairs of bits are 11.The

composite binary pulse trains generated for the 29 cases of MI,

20 cases of RVH, and 20 cases of LVH are shown in Table T.3.1.

At first, pulse trains for 29 cases of MI are studied

closely. For the jth symptom, if majority of the 29 cases of MI

are having the value 10 and/or, if majority of the hO cases of

RVH and LVH are having the value 01 , the jth symptom for MI is

specified as 10. Similarly all the 35 symptoms are specified for

MI, and a generalised symptom pattern consisting of 35 pairs of

binary bits is specified for the category of MI. The same

procedure is followed to specify symptom patterns for the
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TABLE T.3.1 Symptoms in composite binary code

SYMPTOMS (1-35) P,Q,R,S,T,OT,ap,o5,ar,a?,at,ast,PQd,QRd,RSd,STd,
PRd,RTd,TPd,PTd,PR,ni,TP,Q+R,Q-R,R+S,R-S,S+T,S-T,

ZQ+R,Z.Q-R,ZR+s,ZR-s,Z.S+T,Zs-T

Case

No.
21 22

If

23 2h

7

25 26 27

1 10 11 11 11 01 10 10
11 11 11 11 11 11 11

2 11 11 01 11 01 10 11
11 11 11 01 01 01 01

3 11 11 11 11 11 10 10
01 01 01 11 11 1111

30 01 11 11 10 11 10 01
01 11 10 11 11 11 10

31 10 10 11 11 11 10 11
01 01 01 11 11 11 11

32 11 10 11 11 01 10 11
11 10 10 11 11 11 11

33 11 10 11 10 11 10 01
11 01 11 11 11 11 11

3^ 11 11 11 11 11 10 11
11 11 01 11 11 11 11

35 11 11 11 11 01 11 11
11 01 01 11 11 11 11

36 11 11 11 11 01 10 10
11 11 01 11 11 11 11

37 10 11 11 10 01 1011
11 11 01 11 11 11 11

38 11 11 11 11 01 10 11
11 11 11 11 11 11 11

39 11 11 11 10 01 10 11
10 11 01 11 11 01 11

HO 11 11 11 11 01 11 11
10 01 10 11 11 11 11

8 9 10 11 12 13 1*f 15 16 17 18 19

28 29 30 31 32 33 3^ 35

1 10 10 10 01 10 11 01 11 10 11 11
1 11 10 10 10 10 11 10

1 11 11 11 01 11 11 11 11 11 11 11
1 01 11 11 11 11 11 11

01 10 11 01 10 11 11 10 01 11 11 11
1 11 10 10 10 10 11 01

1 11 10 10 01 11 11 11 11 01 11 11
1 1011 11 11 10 11 10

0 10 11 01 10 10 10 10 01 11 11 11
1 11 10 10 10 10 01 01

1 11 11 10 10 10 11 11 01 10 01 11
1 11 11 11 11 11 10 10

1 11 10 01 01 1
011 11 11 11 1

1 11 11 11 01 1
1 11 11 11 11 1

1 11 11 01 11 1

1111111111

1 11 11 01 10 1
1111111111

1 11 11 01 10 1
1111111111

1 11 11 11 10 1
1111111111

1 01 11 01 10 1
1 11 01 01 10 0

11 11 11 11 11 10
11 11

111111111111
11 01

11 11 11 11 11 11
01 01

11 11 11 11 11 11
11 11

n 11 11 11 11 11
10 01

11 11 11 1011 11
11 11

11 1111 10 11 01
10 01

1 01 11 10 11 10 11 10 11 10 11 01
1 11 01 01 01 01 10 10

Contd...

20

0

c
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(Table 1••3. 1 contd.. .) •

Case
No

1 2 3 H 5 6 7 8 9 10 11 12 13 1H 15 16 17 18 19 20

21 22 23 2h 25 26 27 28 29 30 31 32 33 3^ 35

*f1 11 11 11 11 01 10 11 11 01 11 10 01 11 11
10 01 10 11 11 11 11 11 11 01 01 01 01 1u

k2 11 10 11 11 01 11 11 11 11 11 10 11 11 01
11 11 10 11 11 11 11 11 11 10 11 10 11 10

62 11 11 11 11 11 10 11 11 10 11 11 10 11 11
01 01 11 11 11 11 11 11 11 10 10 10 10 11

63 1111 01 11 01 11 11 11 10 10 10 11 11 11
01 11 10 01 01 01 01 11 11 10 10 10 10 11

68 11 11 11 11 11 11 10 01 10 11 01 11 11 11
01 10 01 11 11 11 11 11 11 !0 10 10 10 01

69 11 11 11 10 01 11 11 11 10 11 10 11 11 11
11 11 11 11 11 01 11 11 11 10 10 10 10 01

70 11 11 11 11 01 11 10 10 10 11 01 11 11 11
11 10 01 11 11 11 n n 11 10 10 10 10 01

97 10 11 11 11 01 10 10 11 10 10 10 01 10 11
11 11 11 11 11 11 11 11 11 10 10 10 10 11

98 01 11 11 10 11 10 01 11 11 10 10 01 11 11
01 11 10 11 11 11 10 11 10 11 11 11 10 11

99 11 11 11 11 01 10 11 11 11 11 11 10 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11

100 11 11 11 10 01 10 11 11 01 11 01 10 11 11
10 11 10 11 11 01 11 11 11 01 01 10 01 10

7H 11 11 11 11 01 11 11 11 01 11 10 11 11 11
10 10 10 11 11 11 11 11 11 01 01 01 01 11

79 10 10 11 10 01 10 11 11 11 11 11 10 11 11
1111111111111111111111111110

80 11 11 11 11 01 11 11 11 01 11 01 11 11 11
10 01 01 11 11 01 11 11 11 01 01 01 01 01

75 11 10 11 11 01 io 11 11 11 11 10 10 10 n
tl 10 10 11 11 11 11 11 11 11 n ii 11 10

11 10 11 10 11 11
10

11 11 11 11 11 11
01

10 10 11 10 01 10
11

11 11 11 11 11 11
11

11 11 11 01 10 01
01

11 11 11 11 11 11
10

11 11 11 11 11 11
01

01 11 10 11 11 11
10

11 11 01 11 n 11
10

11 11 10 11 11 11
11

11 11 10 11 01 10
01

11 11 10 11 01 10
10

11 10 11 11 11 11
01

11 11 11 11 11 11
01

11 01 10 01 11 11
10

Contd....
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(Table T.3. 1 contd.. .)

Case
No.

1 2 3 H- 5 6 7 8 9 10 11 12 13 14- 15 16 17 18 19 20

21 22 23 24- 25 26 27 28 29 30 31 32 33 34- 35

^3 11 10 11 11 11 11 11 01 01 11 01 11 11 11 11 10 11 10 11 11
10 10 01 11 11 11 11 11 11 01 01 01 01 01 01

4-M- 10 10 11 10 11 11 11 11 11 11 11 11 11 11 01 10 11 11 11 11
11 11 11 11 11 11 10 11 10 11 11 11 11 10 11

h5 11 IS !! !? 11 10 11 11 11 11 11 10 1i n 1° 10 11 10 01 1011 10 11 11 10 11 10 11 10 11 01 01 11 01 11

4-6 10 11 11 11 01 11 01 01 01 11 01 11 10 11 11 10 10 10 01 10
10 10 11 11 11 11 11 11 11 01 01 01 01 11 11

^ }} ll 10 11 11 11 11 01 01 11 11 11 10 11 11 11 10 10 01 10
11 10 11 10 10 10 10 11 11 01 01 01 01 11 11

49

50

51

28

29

67

11 10 10 10 11 10 11 01 01 11 11 10 11 11 11 11 11 11 11 11
11 10 11 11 10 10 10 11 10 01 01 01 01 11 11

11 11 11 11 11 10 10 01 01 11 10 10 11 11 11 01 10 01 11 11
01 01 11 11 11 11 11 11 01 01 01 01 01 10 10

10 11 11 11 11 11 01 11 01 11 11 11 11 11 11 11 11 11 11 11
11 10 11 11 11 11 11 11 11 01 01 01 01 11 11

10 10 10 10 10 10 11 01 01 11 10 10 11 11 11 11 11 11 11 11
10 01 10 10 10 10 10 10 10 01 01 01 01 ^jjoirc?"' mmm 6*w
11 11 11 11 11 10 11 01 01 11 10 10 10 11 11 11
10 10 10 11 11 11 11 11 11 01 01 01 01 11 10

11 11 11

10 10 11 11 11 10 11 01 01 11 11 10 11 11 11 11 11 11 11 11
10 10 11 11 11 11 11 11 11 01 01 01 01 11 11

10 11 10 11 11 11 11 11 01 11 10 11 11 11 11 11 11 11 11 11
10 10 11 10 10 10 10 11 11 01 01 01 01 11 10

88 01 11 11 10 01 11 01 11 01 11 01 11 11 11 11 11 11 11 11 11
10 10 11 11 11 11 11 11 11 01 01 01 01 10 11

89 10 11 10 11 11 11 11 11 01 it 10 11 11 11 11 11 11 11 11 11
10 10 11 10 10 10 10 11 11 01 01 01 01 11 10

90 10 11 11 11 01 11 11 01 01 11 10 11 10 11 11 10 11 11 11 11
10 10 10 11 11 11 11 11 11 01 01 01 01 10 10

Contd. • •
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(Table 1'.3. 1 contd.. .)

Case
No

1 2 3 if 5 6 7 8 9 10 11 12 13 1H 15 16 17 18 19 20

21 22 r>3 24- 25 26 27 28 29 30 31 32 33 34- 35

91

71

77

78

81

10 11 11 10 11 11 11 11 01 11 11 11 11 10 11 10 11 10 01 10
10 11 11 11 11 11 11 11 11 01 01 01 11 10 11

J] jo ii 10 11 10 11 11 11 11 11 10 11 11 10 10 11 10 01 10
11 10 11 11 10 11 10 11 10 11 11 01 11 01 11

11 10 11 11 11 11 11 01 01 11 01 11 11 11 11 10 11 10 11 11
10 10 01 11 11 11 n 11 11 01 01 01 01 01 01

U U 1? n n 11 11 °1 oi 11 n 11 10 11 11 11 10 io 01 10
10 10 11 10 10 10 10 11 11 01 01 01 01 11 11

11 10 10 10 11 10 11 01 01 11 11 10 11 11 11 11 11 11 11 u
10 10 11 11 10 10 10 11 10 01 01 01 01 11 11

4- 11

01

5 10
01

52 10
11

53 11
11

54- 11
11

55 11
11

56 10
11

57 11
11

58 11
11

59 10
11

10 11 11
10 01 11

11 10 11

10 01 10

10 11 11
11 11 11

11 10 11
10 10 10

11 10 11
11 11 10

11 10 11
11 1 1 10

11 10 11
01 01 10

10 10 10
10 10 10

11 11 10
01 01 11

11 10 11

10 01 10

11 11 11 10 10 11 01 11 11 11 11 11 11 11 11 11
11 11 11 11 11 10 10 10 10 01 01

11 10 10 01 10 10 01 01 10 10 11 11 10 01 11 11
10 10 10 11 11 10 10 10 10 01 01

11 10 11 11 11 11 11 10 11 11 11 11 11 11 11 11
10 10 11 10 11 11 11 11 11 11 11

°1 11 11 11 11 11 10 11 11 11 11 11 11 11 11 11
10 10 10 11 01 11 11 11 11 10 01

11 11 11 11 11 11 10 11 11 11 11 11 n 11 11 11
10 10 10 11 11 11 11 11 11 11 10

11 11 10 10 11 11 11 11 n 11 11 11 11 11 n 11
10 10 10 11 11 11 11 n 11 11 11

11 10 11 11 11 11 01 10 11 11 11 11 11 01 11 11
10 10 10 11 11 11 11 11 n 01 01

11 10 11 10 11 10 10 10 10 11 11 01 10 01 11 11
10 10 10 10 11 11 11 11 11 01 10

11 io 11 11 11 11 01 10 11 11 11 11 11 11 11 11
11 11 11 11 10 11 11 10 11 10 01

11 10 01 11 11 11 10 10 11 11 11 11 11 11 11 11
10 10 10 10 11 11 11 11 11 10 10

Contd...

A
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categories of RVH and LVH. These symptom patterns are established

just by observation. So it is necessary to check the validity of

the symptom patterns. At the same time, all the 35 symptoms may

not be significant for all the categories. Moreover, a symptom

may be common to more than one category, but the assigned weights

maybe different with respect to different categories. If the

sjmptom is wrongly specified, (e.g. 10 instead of 01) the weight

maybe negative. For nonsignificant symptom, the weight may be

zero or very small. So, it is very essential to find the weight

factors for all the 35 symptoms for all the 3 categories which

can establish proper discrimination among the cases of different

categories.

3.5.2 Training Phase of Interpretation Algorithm

A training phase is used in the analysis of ECG to arrive

at the function required for the discrimination among various

categories and to estimate the values of coefficients or weight

factors associated with each symptom corresponding to different

categories. For discrimination among the cases of different

categories, weighted sum of symptoms is considered. For the

weighted sum of symptoms, presence or absence of a symptom of the

specified type is indicated by a symptom multiplier, whose value

maybe 1, 0 or -1 . Presence of a symptom of a specified type is

indicated by 1, absence by 0, and presence of symptom of opposite

nature by-1. The logic for symptom multipliers is as shown in

Table T.3.2.
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TABLE T.3. 2

LOGIC FOR SYMPTOM MULTIPLIERS

Sr. No, 1 3 4-56789

Specified
Symptom SS

11 11 11 10 10 10 01 01 01
3,k

Actual Symptom
CB.

Symptom
Multiplier

The following expressions are considered to establish the

discrimination among the training cases of different abnormal

categories.

N

YM(I) = I WfCJ).MM(I.J)
j =1

N

YR(I) = 2 WR(J).MR(I,J)
0=1

N

YL(I) = 2 Ttf.(J).ML(I,J)
3=1

... (3.15)

... (3.16)

... (3.17)

where,

I and J are case and symptom numbers, YM,YR,YL are weighted sums

of sjjnptoms with respect to MI,RVH,LVH,

Wf,1ft,Hi are weight factors assigned to different symptoms with
respect to MI,RVH and LVH,

MM(I,J), MR(I,J), ML(I,J)are symptom multipliers associated with
jth symptom of ith case with respect to MI,RVH,LVH.
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Positive value of the weighted sum of symptoms with res

pect to a category indicates the presence of symptoms of that

disease. The negative or zero value indicates absence of symptoms

of that category. For the development of the method, well diag

nosed 29 cases of MI, 20 cases of RVH and 20 cases of LVH are

analysed. For 29 cases of MI, YM(I) should be greater than speci

fied positive threshold value AMIT. For 40 cases of RVH and LVH

(non MI), YM(I) should be less than specified negative threshold
value (-AMIT). The datafile of training cases is arranged to

have first 29 cases of MI, next 20 cases of RVH and next 20 cases

of LVH. The following conditions are to be satisfied.

N

YM(I) = 2 1aM(J).MM(I,J) > + AMIT for I = 1,29 ... (3.18)

N

XM(I) = 2 Wi(J).MM(I,J) < - AMIT for I = 30,69 ... (3.19)
j=1

These conditions can be satisfied by proper values of weight

factors WM(J). For the estimation of weight factors linear prog
ramming technique seems more suitable. For the discrimination of

MI and non MI cases, the problem can be formulated as follows.
N

((( I >M(J).MM(I,J) > AMIT), J=1,35), 1=1,29) ... (3.20)

N

(« I >M(J).MM(I,J) <-AMIT), J=1,35), 1=30,69) ... (3.21)

These constraints can also be expressed as

35
((-MIT + EMM(I,J).1M(J) > 0), 1=1,29) ... (3.22)

35
((-AMIT - 2 MM(I,J).VM(J) ^0), 1=30,69) ... (3.23)

J I
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To minimise misclassifications, the sum of weighted sum of

symptoms for 29 cases of MI

~ sum of weighted sum of symptoms for 40 non MI cases should

be minimised without violating the above constraints.

The objective function becomes

Minimi se,

35 29 69
2 ( 2 MM(I,J) - 2 MM(I,J)).H1(J) ... (3.24-)

j=i 1=1 1=30

As all the constraints are inequalities and all coefficients of

the objective function to be minimised are nonne gative,Dual simplex

method is more suitable. It can also account for degenracies [120].

For the Dual Simplex method, the problem is formulated as follows*

Minimise the objective function

35 29 69
2 ( 2 MM (I, J) - 2 MM(I,J)).^M(J) ... (3.25)

3=1 1=1 1=30

Subject to the constraints

35
((-MIT + 2 MM(I,J).WM(J) > 0), 1=1,29) ... (3.26)

J=1

35
((-MIT- 2 MM(I,J).-WM(J) > 0), 1=30,69) ... (3.27)

J=1

Here 35 weight factors *M(J) are to be estimated which will mini

mise the objective function and satisfy the 69 constraints. In

the Dual simplex method, there is one limitation. The coefficients

(weight factors) of the constraint expressions and objective

functions to be estimated should be nonnegative. The actual

weight factors to be evaluated here may be positive, negative or
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even zero. Because, the symptom pattern for the category is

generalised just by observation of symptom patterns for the

training cases without bias for any medical criteria. Due to

this reason, when the attempt was made to find the weight factors

with the above formulation it led to 'no feasible* solution. So

the problem is modified further. Individual weight factor is

taken as a difference of two positive values of weight factors.

Depending on the magnitudes of the two, the net value may be

positive, negative or zero. The problem is reformulated as

follows*

Minimise the objective function

35 29 69
2 ( 2 MM(I,J)- 2 MM(I,J)).Wi(J))

J=1 1=1 1=30 *

70 29 69
- 2 ( 2 MM(I,J) - 2 MM(I,J)).WM(J)) ...(3.28)

3=36 1=1 1=30

Subject to constraints

35 70
(-AMIT +C2(MM(I,J).VM(j))-( 2 (MM(I ,J) .WM(J) ))>0) ,1=1 , 29)

J=1 j=36
... (3*29)

35 70
(-MIT-( 2 (MM(I,J).UM(j)_( 2 (MM(I, J) .WM(J) ))>0) ,1=30,69)

J-1 J=36
... (3.30)

Now, 70 weight factors are to be estimated which will minimise

the objective function, subject to 69 constraints. The effective

values of weijht factors are given by

(wCr) = C*M(J) - vjm(j+35)), j = 1,35) ... (3.3D

e.g. w(1) = -WMO) - WM(36), and so on.
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Here all *M(J) are positive and still W(J) can have positive,

negative or zero values. This approach led to feasible solution

of weight-factors for the 35 symptoms by the Dual simplex method

of linear programming. The estimated values of weight factors

are further checked by computing the weighted sum of symptoms

with respect to MI. For all the cases of MI, the weighted sum

of symptoms is found to be greater than the positive threshold

value. For all the non MI cases, the weighted sum of sjraptoms is

found to be less than the negative threshold value. Thus 100 */.

sensitivity and 100 '/. specificity are achieved for the 69 training

cases.

For RVH,

N

YR(I) = 2 WR(J).MR(I,J)> + RVHT for I = 30 to 1+9 ... (3.32)
J =1

and

N

TZR(I) = 2 WR(J).MR(I,J)< - RVHT for I = 1,29 and 50 to 69
J =1 X

... (3.33)

The problem is formulated as follows.

Minimise the objective function

35 49 29 69
2 ( 2 MR(I,J)- 2 MR(I,J)- 2 MR(I,J)).WR(J)

J=1 1=30 1=1 1=50

- 70 4-9 29 69
-2(2 MR(I,J)- 2 MR(I,J)- 2 MR(I,J)) .WR(J) ... (3.3I+)

J=36 1=30 1=1 1=50

Subject to constraints

35 70
(-RVHT+( 2 (MR(I,J).WR(J))_( 2 (MR(I.J) .WR(J) ))>0) ,1=30,1+9)

J=1 J=36
... (3.35)
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35 70
(-RVHT-C 2 (MR(I,J).WR(J)-( 2 (MR(I,J).WR(J)))>0),1=1,29:50,69)

J=1 J=36 '
... (3-36)

For LVH,

N

1lL(I) = 2 "WL(J).ML(I,J)> + LVHT for I = 50,69 ... (3.37)

N

YL(I) = 2 VL(J).ML(I,J)< - LVHT for I = 1,1+9 ... (3.38)
J=1

The problem is formulated as follows.

Minimise the objective function

35 69 4-9
2 ( 2 ML(I,J) - 2 ML(I,J)).VL(j)

J=1 1=50 1=1

70 69 1+9
-2(2 ML(I,J) - 2 ML(I,J)).VL(J) ... (3.39)

J=36 1=50 1=1

Subject to constraints

35 70
(-LVHT + ( 2 (ML(I,J).WL(J))-( 2 (ML(I,J) .V!L(J) ))>0) ,1=50,69)

J=1 J=36
... (3.40)

35 70
(-LVHT - ( 2 (ML(I,J).WL(J)- ( 2 (ML (I, J).WL(J) ))>0) ,1=1,1+9

J=1 J=36
... (3.4-1)

For RVH and LVH also, 70 coefficients and 35 weight factors are

estimated. Using the estimated values of weight factors, weighted

sums of symptoms are found with respect to RVH and LVH. For

both of them, 100 '/. sensitivity and 100 7. specificity are achieved

for the 69 training cases. In training phase, the number of cases

is to be limited. During the actual application, the weight

factors can be updated by including more and more typical cases

of respective category covering the whole range of severity of

the disease.
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3.5.3 Classification Phase of the Algorithm

The procedure for the classification of an unknown case

is as follows. The peak segment amplitudes at lead I,II and III;

and peak to peak segment intervals are measured. FPR vectors are

computed. The computed parameters are converted to relative

values. By comparison with the stored upper and lower limits

for relative values of various parameters, composite binary

symptom pattern is derived for this case. It is to be decided,

whether the case under consideration is normal or abnormal on the

basis of this symptom pattern. If the case is completely normal,
all the 35 pairs of bits in the symptom pattern would be 11. If

the sum of 70 bits is carried out, it would be 70 in the ideal

case. If all the 35 sjmptoms are abnormal, some of the 35 bits

would be 10 and some would be 01. In the extreme case, the sum

would be 35. The actual sum would be between 35 and 70. The

lower extreme corresponds to most severely abnormal case and

upper extreme corresponds to ideal normal. The abnormality index

can be specified as
(sum of 70 bits - 35)/35.

To provide grey area between normals and abnormals, some thres

hold value can be specified. Abnormality index > threshold is

used to specify the case as abnormal. If the abnormality index

is less than the threshold, the case is classified as normal and

classification algorithm is terminated.

For abnormal case, the procedure is continued for

detailed classification. Now weighted sum Y(k) is computed for

the same case with respect to different categories.
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((Y(k) = W(J,K).MM(J,K), J = 1,35), K = 2,4-) ... (3.4-2)

Here, J the symptom number and K is the category. Categories

1,2,3 and 4- are normal, MI,RVH and LVH. w(J,K) specifies the 35

weight factors for the 3 abnormal categories. The weight factors

found during the training phase are permanently stored and used

as required. By comparison of the actual symptem pattern of the

unknown case with the specified symptom patterns for the three

abnormal categories, three sets of 35 symptom multipliers are

found. They are used to find weighted sums of symptoms with

respect to the three categories.

If only Y(2) is positive, the case is classified as MI.

If only Y(3) or Y(i+) is positive, the case is classified as RVH

or LVH, respectively. For more than two sums positive symptoms

of two diseases maybe present. If none of the sums is positive,

some miscellaneous disease maybe suspected. For the indication

of complex and miscellaneous diseases, additional tests are

recommended. If two sums are positive, but one is much larger

than the other one, the class with higher sum is considered

predominant and the case is classified accordingly.

During training phase, four sets of cases were formed

corresponding to one normal and three abnormal categories. As

the available data is limited, therefore, for testing of the

program, all the 94- cases corresponding to the four categories

are mixed up to reshuffle their sequence. From this mixed group
normals and abnormals were separated successfully by the program.

For detailed classification of the abnormal cases weighted sums
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of symptoms of individual cases with respect to three abnormal

categories were carried out. The results are as shown in

Table T.3.3. The classification on the basis of maximum positive

sum is indicated in the last column. It is observed from the

table that each of the case is having positive sum only for the

category to which it belongs. For the other categories the sum

is negative. So all the 94- cases are correctly classified and

well discriminated from the other categories.

3.6 MICROPROCESSOR BASED ANALYSIS OF ELECTROCARDIOGRAM

The current research trends in this area are towards the

development of new methods for increasing the accuracy of ECG

interpretation. At the same time, the quest for new, reliable,

reasonably accurate, compact, portable and low cost instrumenta

tion for ECG processing continues. Presently, work in the first

direction is carried out on main frame computers and in the second

direction using microprocessor based systems.

The cost of microprocessor is going down rapidly. It is

reported that a microprocessor with a built in A/D converter costs

less than 150 $ [221]. Microprocessor based units are flexible

and can be made available at desired locations in the hospitals.

The external interference and additional cost inherent in tele

metering system are eliminated in bedside signal processing using

microprocessor based system. The microprocessor can not compete

with the speed and numerical accuracy of main frame computer, but

has reasonable accuracy and sufficient capability to cope up

with the daily ECG load of a hospital without much sacrifice of
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TABLE T.3,3

RESULTS OF DETAILED CLASSIFICATION

Case
code

no.

VEIGHTED SUM v. r. t. Classifi
cation

Actual
MI RVH LVH

•
category

1 2 3 1+ 5 6

1 10.00 -25.00 -31.39 MI MI

2 109.13 -10.00 -11.98 MI MI

3 9.83 -13.64- -32.02 MI MI

if -14-. 54- -35.60 9.88 LVH LVH

5 - 9.95 -11.1+4- 9.85 LVH LVH

28 -13.06 30.57 -22.95 RVH RVH

29 -22.1+9 15.57 -32.22 RVH RVH

30 10.02 - 9.99 -10.02 MI MI

31 9.81 -10.03 -10.13 MI MI

32 10.02 -10.00 - 9.96 MI MI

33 9.98 - 9.98 - 9.94- MI MI

3^ 14-. 89 -12.25 - 9.96 MI MI

35 10.02 -15.82 - 9.93 MI MI

36 9.99 -20.69 - 9.88 MI MI

37 10.01 -10.02 -60.73 MI MI

38 15.28 -10.00 - 9.99 MI MI

39 10.12 -10.03 -32.07 MI MI

40 10.11 -10.00 -32.83 MI MI

1+1 10.16 - 9-97 -21.4-4- MI MI

4-2 9.99 -10.00 -10.00 MI MI

^3 -9.92 10.02 - 9.82 RVH RVH

Contd....
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(Table T.3. 3 contd...)
1 2 3 4- 5 6

1+1+
•

-9.94- 10.02 -36.39 RVH RVH

^5 -9.92 9.99 -15.21 RVH RVH

46 -9.75 9.98 -101.96 RVH RVH

4-7 -29.64- 10.00 - 9.72 RVH RVH

hS -62.80 10.03 - 9.65 RVH RVH

49 -29.4-3 10.03 - 9.85 RVH RVH

50 - 9.90 19.59 -59.08 RVH RVH

51 -50.06 + 10.04- - 9.71 RVH RVH

52 -97.37 -17.23 10.18 LVH LVH

53 -55.29 -10.00 78.24- LVH LVH

54- -10.55 - 9.99 10.14- LVH LVH

55 -27.26 -30.03 10.10 LVH LVH

56 -14-. 3 - 9.99 10.12 LVH LVH

57 - 9.92 -14-.95 10.07 LVH LVH

58 -4-1.72 -10.00 15.89 LVH LVH

59 - 9.86 -10.01 33.84- LVH LVH

60 - 9.98 -18.67 10.09 LVH LVH

62 9.84- -34-. 12 -10.08 MI MI

63 66.56 -22.97 -10.22 MI MI

67 - 9.70 IO.O3 -35.93 RVH RVH

68 9.87 - 9.99 -10.18 MI MI

69 4-9.62 -29.70 -4-5.88 MI MI

70 19.64- -4-1 .99 -14-.98 MI MI

71 -57.02 12.34- - 9.82 RVH RVH
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(Table T.3. 3 contd...)

T~5"

72 -9.98 -18.67 10.09 LVH LVH

73 -37.15 -10.00 10.21 LVH LVH

71+ 10.14- -10.01 -57.4-1 MI MI

75 10.02 -10.00 - 9-96 MI MI

76 - 9.85 -4-2.69 106.90 LVH LVH

77 - 9.92 10.02 - 9-82 RVH RVH

78 -37.10 10.51 - 9-72 RVH RVH

79 18.35 -24-. 2 -54-. 34- MI MI

80 10.13 - 9.98 -9.82 MI MI

81 -70.26 10.55 -9.65 RVH RVH

82 - 9.97 -20.11+ 10.14- LVH LVH

83 - 9.96 - 9.99 10.02 LVH LVH

81+ -35.28 -27.15 5L32 LVH LVH

85 -17. 9+ -18.62 10.10 LVH LVH

86 - 9.81 - 9.98 10.30 LVH LVH

87 - 9-32 -12.39 24-. 25 LVH LVH

88 - 9.90 10.01 -62.15 RVH RVH

89 - 9.70 10.03 -35.93 RVH RVH

90 -19.77 10.02 -70.12 RVH RVH

91 -10.05 9.97 -218.78 RVH RVH

97 10.00 -25.06 -31.39 MI MI

98 10.0 I - 9.90 -10.02 MI MI

99 15.28 -10.00 - 9.90 MI MI

100 10.12 -10.03 - 9.87 MI MI
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accuracy of classification. Macfarlane and Pipberger have shown

that various ECG interpretation programs could be implemented on

minicomputers. If the same is made true for microcomputers,
benifits of unit dedication can be achieved [121]. Use of micro

processor based system for data acquisition is becoming common.

One such system using 8 bit microprocessors (8080 or Z80 and 8746)

is reported by Rubel et al.[l89]. Okamoto has also reported use

of Motorola 6800 microprocessor with digital ECG recorder [160]

and rhythm analysis. Bemmel has commented that with decreasing

cost of microprocessor and central memory, advantages of multi-

lead analysis should be exploited [221], Macfarlane has observed

that development in microprocessor hardware and software keep

pace with each other. Hardware is being developed for simultane

ous acquisition of multiple leads. Research is also in progress

for complete interpretation of ECG through microprocessor based

system [130]. Bertrand et al. have reported numerical encoding

and transmission of electrocardiogram using microprocessor [16].

Murray et al. [152] have reported a microprocessor based real

time ECG contour analysis. First, it determines whether an ECG

is normal or abnormal. For an abnormal ECG it further defines

the abnormality. Patient data matrix includes Pa,Pd,Q ,Qd,R ,Rd,
Sa>Sd»PR»^T>RR» etc* for the 12 leads. Certain conditions are

checked. The results Yes, No and Irrelevant are converted to

binary image matrix using 1,0 and 0, respectively. Due to 8 bit

byte of 8080, sets of 8 conditions are checked one by one and

presence or absence of symptoms of a category are checked and

probabilityof concerned abnormality is indicated. Mahoudeaux
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et al. have reported simple microprocessor based system for on

line arrhythmia analysis including wave detection [137].

In this section the software implementation on 8085 based

microprocessor system of the ECG interpretation method developed

in earlier sections is given.

3.6.1 Software Development

The problem is divided in to number of stages. Figure

3.10 shows the general flow chart for the overall system. It

includes wave recognition, measurement error and lead proximity

corrections, calculation of Frontal plane Peak Resultant vector

FPR, calculation of relative values, generation of simple binary

symptom pattern, classification of normals and abnormals, genera

tion of composite binary symptom pattern, finding the symptom

multipliers, calculation of weighted sum of symptoms, detailed

classification, and storage and/or display of diagnosis.

The flow chart for the measurement and lead proximity

corrections developed in section 2.6.3 is shown in Figure 3,11.

It uses the measured peak values of lead potentials 11, 111 and

III1. The peak values I, II, III after measurement and lead

proximity corrections are stored in memory. The computation of

FPR amplitude and phase developed in section 2.6.2, is shown in

the flowchart of Figure 3.12. It uses the stored values of I,II,

cos 96 , and sin 96°. The following series expression is used

for computation of phase angle a.
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ct = arc tan Z

= Z(l-Z20/3+Z2(1/5-Z2(1/7+Z2(1/9-Z2)))))

= Z(l-ZSQ(l/3+ZSQ(1/5-ZSQ(1/7+ZSQ(l/9-ZSQ))))) ... (3.4-3)

where, Z = Y1/X1 and ZSQ = Z*Z

The values of phase angles for respective segments a ,a ,a ,a .
p» q' r' s>

at>ast>aq+r'aq-r'ar+s'ar-s,as+t and as-t are comPuted and stored.

FPR amplitude = I/cos a = I sec a ... (3.4-4-)

The value of sec a is computed by expanding it in series as

seca = U(l/2)a2+(5/24-)A...+(-1)n. —2a- .a2n+ ( w?)
(2X1) .

where, Euler numbers B are defined as

Eo = 'i ^+1)k+ (S-1)k =0, k = 1,2,3
1

Amplitudes Pa,Qa,Ra,Sa,Ta,STa,Q+Ra,Q-Ra,R+Sa,R-Sa,S+Ta and S-T&
are computed and stored. The amplitude FPR, Phase a, and peak to

peak interval INT are converted to relative value and stored as

parameters S.. as shown in Figure 3.13. The necessary computations

are explained in section 3.4-. 2.

The conversion of parameter set S. to simple binary

symptom pattern B. and screening of cases in to normals and

abnormals explained in section 3.4-.3 is shown in upper part of

Figure 3.14-. The generation of composite binary symptom pattern

explained in section 3.5.1 and its storage are shown in lower

part of Figure 3.14-. The method of finding the symptom multi

pliers for various symptoms with respect to different categories

developed in section 3.5.2 is explained by the flow chart of

Figure 3.15. The calculation of weighted sum of symptoms for a



B,*-0

S-«- S* B, Zl
| 7T7

ES

iO| CBj-^-10 |

zzz

FIG.3.14. BINARY CODE

149

FIG.3.15. SYMPTOM MULTIPLIERS



-150-

case to be classified with respect to different categories

explained in section 3.5.3 is shown in the flowchart of Figure

3.16. The procedure for the classification of the cases according

to weighted sum of symptoms developed in section 3»5.3 is shown

by the flow chart of Figure 3.17. D equal to 1,2, and 3 corres

pond to diagnosis for MI, RVH and LVH respectively. D equal to

12,13*23 and 123 correspond to overlapping symptoms for two or

more categories. If there are no appreciable symptoms for any of

the three categories, miscellaneous category is indicated by D

equal to 64-.

Subroutines are developed for the addition, subtraction,

multiplication and division of real numbers on 8085 microprocessor.
+E

The numbers are stored as M*2— . VJhere, M is mantissa and E is

exponent. The exponents are biased by adding 128. For negative

numbers 2*S complements are used. Mantissa and exponents are

stored and operated separately. For addition and subraction

exponents are equalised. Negative multiplier is complemented in

the beginning and the product is complemented at the end. Use of

biased exponents and separate storage of mantissa and exponents

have practically removed the limitation of 8085 microprocessor on

the size of the number.

In the present section it has been shown that micropro

cessor can be used for BCG interpretation. Its use is no longer

limited to wave recognition and arrhythmia analysis. Inspite of

the low speed and limited capability the microprocessor based

system can meet the daily load of BCG interpretation in a hospital

without sacrificing the accuracy of interpretation.
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CHAPTER IV

ANALYSIS OF CARDIOVASCULAR SYSTEM

4-. 1 INTRODUCTION

Electrocardiogram reflects the electrical activity of

heart. It originates with impulse generation at the SA node

which initiates the contraction of atrial muscle and starts

cardiac cycle. The blood is taken in or pumped out by the heart

due to the relaxation and contraction of heart muscles. One side

of the heart pumps blood for the systemic circulation and the

other side for pulmonary circulation. This chapter deals with

the analysis of cardiovascular system. Amodel is considered for

left heart systemic circulation system. The effects of variation

of model parameters on system response are investigated. Apossi
ble mechanism of cardiac arrhythmia is also analysed.

4-. 2 CARDIOVASCULAR SYSTEM MODELS

Wind Kessel model proposed by Frank in 1899 and shown in

Fig.4-,1 is the simplest R-C model [80]. Here aorta and major
arteries are considered as an elastic reservoir. Due to over
simplification it is unable to account for physically observed
undulations in pressure during dicrotic portion of the cardiac
cycle. This model was modified by Landes in 191+3 [122]. Initially
resistance r was added in series with parallel R-C combination.
Later on, inertance L was also introduced as shown in Fig.4-. 2
in series with r to account for the frequency dependence of
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response. Cope considered nonlinear relationship between changes

in pressure and reservoir volume in 1960 [551. Roston considered

linear relationship between reservoir volume and pressure [178],

Spencer and Denison proposed a model in 1963 which is shown in

Fig. 4-. 3 [206]. They considered two elastic reservoirs with

individual peripheral resistances. In 1967, Goldwyn and Watt

considered a model as shown in Fig.4-. 5 [89]. Two elastic reser

voirs are connected by a long column of blood. The corresponding

physical model of the circulatory system is shown in Fig.4-.4-.

The equations of the system are set up on the basis of conserva

tion of mass. Eigen vectors and Eigen values are found. For a

measured pressure curve, the set of coefficients is found by least

square technique which are further used to find C<pc2 and L in

terms of R for one normal and two abnormal persons. Rideout

and Dick reduced Navier Strokes equations for fluid flow in

distensible tubes to difference form suitable for analog computer

implementation in 1967 [182]. Equations for fluid resistance R ,

inertance L_ , and capacitance C are derived.
m' r m

\ =81 uAZ/(8rr r\ ... (4-.1)
Lm =9$AZ/(4-ttR2) ... (1^2)

Cffl = 2ttR3(1-o-2) AZ/(Eh) = 3ir R3A Z/(2Eh) if a = 1/2 ... (4-.3)

where, u is the viscosity of blood, R is the radius of vessel

wall, <3 is the blood density, E is the modulus of elasticity for

the blood vessel wall, and h is the thickness of vessel wall.

Beneken proposed two forms of model in 1968 [153* In one

of them a lumped circuit representation is considered for
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simulation of pressure,flow and volume relationships. The second

one is coupled to it for simulation of substances transported by

blood. In another type of model perturbation analysis is used.

The analog part may be used for the circulatory system and digital

part for control loops using a hybrid computer. In 1968,

Westerhof [23O] gave the following interpretation of the para

meters of r-C-R model [122].

(i) r+R = total peripheral resistance

= mean aortic pressure/mean flow,

(ii) The characteristic resistance r is the model representation

of characteristic impedance of aorta where pressure and

flow are measured. Its value is related to mechanical and

geometrical properties of aorta.

(iii) Total compliance C of arterial bed is equal to the change

in volume/change in pressure of all arteries lumped toge

ther.

Noordergraaf presented a review of some models In 1969

[156]. Wind Kessel representation of arteries considers that all

pressure changes are simultaneous in arterial tree, effectively

taking wave velocity equal to infinity. From the model of Goldwyn

and Watt [89] information of clinical value may be obtained from

numerical values of parameters calculated by digital computer

through a least square algorithm. If aortic wall is considered

viscoelastic and peripheral resistance pressure dependent, the

model response improves. The electric network theory is exten

sively used for analysis. In 1971, Burrus et al.[35] reported

the method of identification of parameters of a third order
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model of arterial circulatory system [89]. TheZ transform of

third order digital signal for the network with given a. and b.

is

G(Z) = (ao+a1Z"1+a2Z"2)/(Ub1Z"1+b2Z-2+b Z"3)
=g^Z-1^-2 ^ ... (4-.1+)

The coefficients ai and b± are found such that autonomous solution

of g^_ closely approximates in some sense to the sampled blood

pressure curve. Finally, digital filter parameters are converted

to corresponding electrical analogue using Z transform [86],

In 1972, Cook and Simes reported a simple analogue heart

model for biological system simulation as shown in Fig. 4-. 6 [54-].

It is a third order model developed for teaching purpose. The

pumping action of heart is represented by a variable capacitor,

systemic circulation by RC filter, and aortic and mitral valves

by diodes Dg and D1. It is assumed that right atrium, right

ventricle and left atrium have constant volume. Left ventricle

is assumed to be two state time varying fluidic capacitor.During

systole left ventricle is represented by a small fixed capacitor

and during diastole it is increased by 20 times. The valves are

taken as ideal diodes with a pressure drop for forward flow.

Aorta is assumed as linear, lossless fluidic capacitor.

In 1972, Rideout reported a hybrid computer model for

cardiovascular system simulation involving 27 equations running

at real time rate for biomedical engineering education [181].

Models are extended for parameter estimation, studies, hypothesis

checking, and clinical applications. In the model shown in



RIGHT

HEART

157

-• l<h -WW

Ql RS 02/^~NPP R—[—* WW-T*H J— VWV t»f

!jCa CsTPs C^fpv
FIG.4.6. COOK AND SIMES MODEL

PULMONARY CIRCULATION -7

^JRRP- P2
L2

pi!

FIG.4.7. SYSTEMIC CIRCULATION: RIDEOUT

LEFT

HEART



-158-

Fig.4-,7, effort is made to simulate presence and size of various

defects like ventricular septal defect (VSD), aortic valve incompe
tence, mitral valve incompetence, stenosis of any valve, heart
rate change, peripheral resistance change, haemorrhage, etc.

In 1973, Green and Clark, represented elastance curves

for animals by a mathematical expression [94-]. Green et al.

developed a model in 1973 as shown in Fig. 4-.8. The ventricular

elastance is characterized as a function of end diastolic volume

and time. The model of heart is terminated in a. modified Wind

Kessel load and accurately simulates mechanical response of the

heart to various pre - and after load conditions. The elastance

is represented by

H

V^d'^ = *. Ai(Ved} exP £-Bi (Ved)(t-Ci(Ved))2 +D^ -••• CW.5>

where, D is a constant amplitude term. The coefficients of

Gaussian distribution are evaluated from the data taken for the

dogs. Pressure and volume relationship is assumed as

Pv = h2 Vv + h1 Vv + ho ... 0*6)

Differential equations are numerically integrated via a subroutine

that uses fourth order Runge Kutta starter method and continues

with Adams-Bashforth, Adams-Moulton predictor corrector pair. In

1973, Wesseling et al. tried L, T and w models for arterial

system with analogue computer [229]. The models of T and tt type

are more accurate in representation while model L is simple for

programming. The estimated compliances were higher than the

expected values. The peripheral resistance was under estimated.
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Westerhof et al. calculated input impedance of arterial

tree by Fourier series for seven dogs in 1973 and justified the

Wind Kessel model [231 ]. The impedance in the control situation

may be modelled by means of a three element Wind Kessel consist

ing of a peripheral resistance and arterial compliance, together

with a resistance equal to the characteristic impedance of the

aorta. Buoncristiani et al. in 1973 used a model shown in

Fig.4-.9 [29]. The parameters are estimated for ejection phase

only. It is remarked that Fourier series analysis ignores the

discontinuity (nonlinearity) due to aortic valve and may lead to

nonphysiological results. The model used accounts for second

order effects, ventricular compliance, inertia of blood and aortic

compliance and has very little nonlinearity. In case of completely

distributed parameter model identification of clinically signifi

cant model parameters from a single pressure measurement Is

unrealistic and unnecessarily complicates the model. Detailed

models developed by Sims in 1972 [199] and Chang et al. in 1974-

[49] are very complex. The limitations on the nature and number

of measurements that can be taken conveniently and safely with

human subjects, also make these models impracticable.

In 1974-, Green and Clark reported a model of ventricular

mechanics that reflects changes in inotropic state, end diastolic

volume (preload) and time [93]. In 1977, Clark et al. analysed

elastance curves for dog and human subjects [51]. For humans,

left ventricular volume V is determined by single plane cine

angiography, f

V= 0.667 A2 C3/L + 7.8 (ml) ... (U-.7)
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where,

A = calculated area of planar projection

L = longitudinal length from aortic valve to apex

C = correction factor.

Maximum values and slopes of various phases of elastance curve

are diagnostically significant. In 1977, Deswyson considered

the model as shown inFig.4-.10 [67]. Here, V. corresponds to

aortic pressure, i to ejected flow 0 (t) , C(t) to ratio of

instantaneous left ventricular volume and pressure, C. and C? to
distensibility of vascular wall, L to mass of blood flowing, R to

friction between molecules flowing through vascular bed. The

procedure for computation of model parameters for dog data is

illustrated in the reference [67]. The peripheral resistance r

is taken as the ratio of average pressure and flow. In 1977

Westerhof et al. reported improvement of model response by inclu

sion of inertance L with proper value [232].

In 1977, Hanmer considered a mathematical model for

combination of left ventricle and arterial system [99] Starting

from Navier stroke equations a set of five equations is derived

for five unknowns namely, velocity of left ventricular contractile

element shortening Vce, Ventricle spherical radius R, muscle

tension T, arterial pressure P, and average cross sectional blood

velocity V. A model of human arterial system based on anatomical

branching was reported in 1980 [7]. The uniform thin walled

elastic tubes were represented by 128 segments with realistic

arterial dimensions and wall proportions. It was observed that

there was good agreement with experimental results for pressure,
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flow and impedance at various locations. The wave propagation in

certain pathological conditions and action of vasoactive agents

can be simulated. Noninvasive flow measurement also allows para

meter estimation associated with some pathological conditions. In

1980, a model was proposed which was based on finite difference

solution of Navier Stroke equations retaining certain nonlinear

features of the system using data from the dogs [157]. A model

of arterial hemodynamics was reported in 1980, encompassing Wind

kessel and Pulse propagation effects [96].

In 1980, Deswysen et al. reported that large flow harmo

nics make interpretation of input impedance difficult. The useful

parameters are total peripheral resistance (modulus of Zin at f=0)

and characteristic impedance (average of moduli of Z in between

3 to 10 Hz). The report has also compared earlier models [68].

In 1980, Huisman et al. reported comparison of models used to

calculate left ventricular force [107]. Burattini and Gnudi in

1982, proposed two new simple models for the arterial tree input

impedance' [30]. The first, as shown in Fig.4-. 11 is a four element

Wind Kessel model. The second, is a tube model with a complex

load. The electrical analogue of this model is shown in Fig.4-. 12.

Powell algorithm is used for parameter estimation. By choosing

the flow as input and best fitting the pressure signal the arter

ial input impedance works as a lowpass filter. It behaves as a

highpass filter by choosing the pressure as an input.

Aguilar et al. simulated variable compliance on analogue

computer in 1982 [1]. A simplified electronic model is applied

to cardiovascular system to obtain left ventricular pumping
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action. The multicompartment model developed by Hardy et al.

in 1982 [101] simulates pulsatile blood flow, and transport and

exchange of gases. The effect of short term whole body accelera

tion in aerial combat is mainly investigated.

In 1980, Clark et al. proposed a model of left ventricle

and systemic circulation shown in Fig.4-. 13 [50]. It is a compact

discrete component model and contains most of the useful infor

mation without unnecessary complexity. It is a modified version

of earlier used similar models [35,67,89]. A resistance R. is

included in series with the proximal compliant element C, to

account for frequency dependent behaviour of the system. The

model consists of two parts. The first part is the model of left

ventricle and the second part is the model of systemic arterial

load. The term elastance of the left heart is explained earlier

[51,9S95L It is an index of contractibility of left ventricle.

The instantaneous elastance is the ratio of left ventricular

pressure and volume at a particular instant. It is a reciprocal

of left ventricular compliance. The left ventricle can be consi

dered as a pressure source with a voltage analog or a flow source

with current analog. Here left ventricle is represented by a

variable pressure source PLV(t). The systemic load model is a

linear third order modified Wind Kessel model. The arterial

tree is lumped in to two major compartments, proximal and distal.

The proximal compartment is represented by the lumped viscoelas-

tic properties of aorta and large arteries. Here, C, and R. are

the corresponding compliance and resistance respectively. The

distal compartment of the systemic circulation is represented by
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compliance Cr and peripheral resistance Rp. The inertance of the
long fluid columns connecting the two compartments is represented
byL. Aortic valve is represented by a diode in series with

resistance R The switching function Sn specifies the state
(open or closed) of the aortic valve. Mitral valve is represented
by a resistance 1^. The pulmonary circuit is not considered in
this model.

Using this model Clark et al.[50] have developed a two
stage identification scheme for the determination of model para
meters of the systemic arterial system for a patient undergoing
cardiac catheterization. The aortic root pressure Pjf the peri
pheral pressure at the right proximal brachial artery ?2 and the
left ventricular pressure PLy are measured by using solid state

catheter tipped transducer and an FM tape recorder as shown in

Fig.4-. 14-. Radiopaque die is injected to provide X-ray fluoro-

scope image of the heart. The analysis of the ventriculogram

provides the ventricular outline and ventricular volume is calcu

lated according to a formula adopted from Kasser and Kennedy
[1153. The ventricular stroke volume was obtained by difference
between the end-diastolic and end-systolic volumes. The system
equations are formulated as follows.

_f

vhe re,

Wo B(1+SaW • W1 • CV^+VW^o' W2 =VLWo'
W3 = 1/ClWo, W)+ = 1/RaC51W<) , W5 =Rt/RaWo

"W1
0

1/L

W.

-1/R C
r r

-1/L

-W-

0

p1

P2 + 0

S W-
a 5

0

_f 0 0

LV

LV (1+.8)

C+.9)
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Switching function SQ is defined as

Sa = 1 if PLV > P1 and ° ^ ?LV * P1 •

The pressures are in mm of Hg, flow in litres/minute, resistance

in mm of Hg. minutes/litres, compliance in litres/mm of Hg, and
inertance in mm of Hg. minutes2/litre.

The parameters to be identified are C ,L,R.,0. and initial

flow f(0). R& is presumed to be known and R is taken to be the

ratio of mean brachial arterial pressure and cardiac output. In

the first stage only diastolic part of the cardiac cycle is consi

dered. During this part the systemic arterial system is isolated

from the left heart. By assuming nominal value of R,, parameters

L, 01 and Cp are estimated by Prony method [35]. The mathematical

expression for Pp is [89]

P2(t) = q1 e + q^ e cosCq^t+qg) ... (1+.10)

With a Z-transform

P2(Z) =(ao+a1Z"1+a2Z"2)/(l+b1Z"1-fb2Z"2+b3Z"'3 ... (4-.11)
and laplace transform

P2(S) =.(N2S2+N1S+No)/(S3+D2S2-fD1S+Do) ... (4..12)

At firsc, constants aQ, a1 , a2, b, , bg, and b, are found out. Then

constants q1 to c^ and NQ,N1 ,N2,DQ,D1 and D2 are found [50]

N2 = P2(0), ^ = (RtP2(0))/L + f(0)/C

NQ = P1(0)/LCr+P2(0)/LC1+Rtf(0))/LC



-167-

D2 = Rt/L + 1/RrCr , D, =Rt/(LRrCr)+lACl +1/LCr
D0 = 1/(LClCrRr) _ (lf#l3)

For given values of Rt and Rr, and by elimination of L and C
from the expressions of DQ,D1 and D2, we have

Gl + 2K2C1 +K1G1+K0 = ° ... (4.11+)

where,

K2 = (D2/D1)/(Rt+Rr) _ (if#15)

K1 = (D1/D3)/(Rt(Rt+Rr))+K2 ... (M-.16)
KQ = ((D3-D1D2)/D2)/(Rt(Rt+Rr)2) ... (l,#17)

The real root out of three roots of C^ which produces minimum
observational error in P1 (t) and P (t), is chosen.

Then, Cp = V./D0KT - (R^R^D^ ... (lf.,8)

L = 1/D0C^CrRr) ... (i,.19)

and f(0) = Cr1I1-RtCrP2(0)/L. ... (1+.20)

In the modified Prony method Fibonacci interval elimination search

method [17] is used to minimise the observational errors in P. (t)

and P£(t) during the diastole and optimum value of R is found.

In the second stage the parameters found in the first stage are

used as the starting values. The iterative nonlinear least

square Marquardt algorithm [140] is used for the estimation of

model parameters. The pressures PJjV(t),P1 (t) and P (t) over the
entire cardiac cycle and calculated values of R and R are used

a r

as input data. Marquardt algorithm adjusts parameter vector
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consisting of C^R^L and C to minimise the square of the diffe

rence between observed and computed values of P. (t) and Pp(t).

Initial flow f is calculated as

f0 = P2(0)/Rr+Cr dP2 /dt at t=0. ... (4-.21)

1+. 3 MODEL ANALYSIS

The equations for change in pressure and flow are written

in the following form [61] for the model shown in Fig. 4-. 13.

P1 = (-(VL+Sa/RaCl)P1 + P2Rt/L ~ F/Gl + SaPLv/RaCl

+ SaVLV/Ra)/(USaVRa) •" ••• ^' 22)

P2 = - P2/Rrcr + F/Cr ... (M-.23)

F = P., A - P2/L ... (4-. 24-)

In the first part of the analysis, during the cardiac

cycle, when PLy is greater han P., value of S is taken 1; when

PLV ^"s -Less "than or equal to P^, value of S is taken zero. In

the later part of the analysis different values of SQ are used.

The effect of variation of individual model parameters on the

response of the cardiovascular system is to be analysed. The

actual cardiac cycle length may vary with the individual and time.

For a typical normal subject it is taken 800 ms and kept fixed.

Its effect is just like normalisation in time domain. The selec

tion of left ventricular pressure P^ytt) as the forcing function

corresponds to voltage analogue. In systems approach the model

response is compared under various conditions with the known

input. For the present work the required pressure wave is
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derived using the elastance and volume curves reported by Clark

et al.[50]. This pressure vave is considered typical for a normal

subject. The present work is concentrating more on the abnormali

ties on the systemic side, the source being intact. So, assump

tion of normal typical left ventricular pressure wave as the

forcing function is well justified. It also provides a good basis

of comparison for the response under various conditions. The cycle

length is divided in to 512 equal intervals and the left ventri

cular pressure wave is digitised at the resulting points. Its

first derivative is also found using a subroutine on digital

computer. Fourth order Runge Kutta method is used for the numeri

cal solution of the model equations. The point by point solution

is used to get the response over the complete cycle. The response

includes pressures P1 ,P2 and flow F. For the convenience of

comparison maximum, minimum and average values of response over

one complete steady cycle a^e considered. If the variation of

response over two consecutive cardiac cycles subsides to less

than 0.01 percent, the response is considered steady.

For the first six suts of computation, S is taken one

for the period when PLy is greater than P., and zero for the

period when PLy is less than or equal to P-,. Initially a set of
normal values is taken for Ka,Rt,L,C1,Cr, and R . In the first
set, value of aortic valve resistance R& is varied from 50 percent
to 150 percent of its normal value, in steps of 2.5 '/• . The other

parameters are kept constant. In the second set, resistance R

is varied keeping the other parameters constant at their respec
tive normal values. Similarly third, fourth, fifth, and sixth
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sets are taken corresponding to the variation of L,C:,C , and R ,
' l7 r' r '

respectively. For the sever.th set all the parameters are brought

to their respective normal values. For the period when PT v is

less than or equal to P., value of S0 is fixed at zero. In this

set variation of S& for the period when PLv is greater than P1
is considered. Sa is not varied from instant to instant. In the

respective parts of the cycle there is a fixed value of S . The
a

aim is to investigate the response for effective value of S less
a

than one. For the different cases, value of S for the period

when PLV is greater than P., is successively decreased from one to

zero in steps of 0.05, by taking S& = 1-0.051, and varying I

from 0 to 20. For the eighth set all the parameters are kept

normal. The value of S& for the period when PLV is less than or

equal to P1 is considered variable. For different cases its

value is successively increased from 0 to 1 in steps of 0.05, by

taking S& = 0 + 0.0 51, and varying I from 0 to 20. For the nineth

set all the parameters are again kept normal. The value of S
a

for the period when PLV is less than or equal to P1 is increased

from 0 to 1 and value of Sfi for the period when PLy is greater
than P. is decreased from 1 to .0 by taking S =0+0.051 and

9.

Sft = 1 - 0.0 51 respectively. For all the nine sets maxima,

minima and average of P<,,P2 and F during one cycle of steady
response are computed. The time required to reach the steady

cycle is also computed.
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4-.1+ RESULTS

It is observed that the response is independent of the

initial conditions. Except some small regions of discontinuities,
the response stabilises and repeats with 0.01 percent accuracy

only within a few cycles. The results are plotted in Figs.4-. 15-19.
The variable relative value of parameter is taken along horizontal

axis. The maximum, minimum and average values of responses P.,P
and F are taken along vertical axis. The corresponding maxima,
minima and average are P1H,P2H and FH; P^P^ and FL; and P
P2av and Fav* Sffect of variation of R& and R. on the response
are shown In Figure 4-.15. Effect of variation of L and CL are

shown in Figure 4-. 16. Effect of variation of C and R are
r r

shown in Figure 4-. 17. The Figure 4-. 18 corresponds to the varia

tion of Sa for the period when PLy is greater than P. .
Figure 4-. 19 shows the effect of variation of increased value of

sa for the Period when PLy < P1 observed for set (8).
It also shows the combined effect of decreased value of S for

a

the period when PLy is greater than P, , and increased
value of Sa for the period when PLy < P1 observed for
set (9). In most of the cases the variation of response with
respect to the parameter being varied is almost linear. In some

cases after the discontinuity the response curve settles at a

slightly different level, the slope remaining almost the same.

With respect to variation of S& the response curves have drooping
characteristics in most of the cases.
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4-. 5 CLINICAL CORRELATION AND DISCUSSION

It is the intrinsic tendency of an organ to maintain

normal blood pressure and flow despite physiological variations.

In case of temporary requirement of increased blood flow by a

particular organ, vasodilation reduces the local resistance and

vice a versa. The blood is diverted from the system to the organ

with higher blood requirement. Thus in a healthy subject inherent

regulation is able to adjust the system parameters in such a way

that the response is normal.

The cardiac system forms a complex closed loop control

system involving multiple feedbacks affecting heart and peripheral

system. The equilibrium systemic pressure is decided by the

intersection of venous return curve with the atrial pressure

axis as shown in Fig.4-. 20. The variation in mean systemic

pressure occurs as a result of blood (affecting inertance) and

venous compliance changes. The changes in resistance to venous

return cause a rotation of venous return curve about the mean

systemic pressure end point. The resistance to venous return is

influenced by resistance and compliance of peripheral circulation.

To meet the demands of the body, the changes occur in both the

venous return and cardiac output curves to establish a new opera

ting point. In a closed loop control system some change in input

is considered. It results in deviation of the output from the

desired value. The deviation is the error signal which is

sensed by the sensing device, amplified and used to actuate the

correcting system, it offsets the deviation and restores the

controlled condition. In the present case the set of model
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parameters acts as the correcting device and tries to restore the

controlled state. Under normal conditions the controlled state

is easily maintained. But, in case of certain abnormalities the

system fails to reach equilibrium at the normal set condition and

equilibrium is reached at some other point which may be abnormal

for the physiological system. Thus controllability of the system

depends on the effect of individual parameters. Moreover, it

seems that for the investigation of the working of the model it

should be isolated from feedback. Because, in the closed loop

system the abnormalities in response created by the system para

meters may be nullified by the control action. Therefore, in the

present analysis effect of individual model parameter is investi

gated separately. One or more of them are responsible for the

different abnormal states. So, resultant response can be predic
ted.

The opening resistarce RQ of aortic valve increases in

aortic stenosis. The improper opening of valve reduces the out

flow. The effective value of S is reduced from one, for the

period when PLy is greater than P,,. The dilation of ascending

aorta may reduce R.. Aortic incompetence is a closing defect of

aortic valve. The effective value of S for the period when PT -
a r LV

is less than P1 is increased from zero and accounts for regurgi

tation (back flow during diastole). Hypertension is associated

with arteriolar thickening, sclerosis, narrowing of peripheral

vessels and at times coarctation of aorta resulting in loss of

blood pressure in legs and enlarged collateral vessels. The

arteriolar tone increases. In case of elderly patients with
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systolic hypertension atheroma of aorta and loss of elasticity

takes place. The diastolic hypertension depends on constriction

of arterioles. In this case, Ry,Rt and L may increase and C and
Q1 may decrease. In case of hyperthyroidism peripheral vaso

dilation may decrease Rr and L, and may increase C [27,108,14-1,
218].

The electrocardiogram is a well defined signal suitable

for direct recording and online analysis. The pressure and flow

involved in circulatory system measured by indirect methods are

less suitable for such analysis. As compared to ECG, very little

work is done for the computerized analysis of this aspect of the

cardiovascular system. It would also be necessary to establish

data bank and criteria for the interpretation of cardiovascular

system. At this stage it would be premature to attempt at the

computerized interpretation of the abnormalities of the cardio

vascular system, but the scope can not be denied. The actual

system parameters are distributed, some of them maybe variable

and that too nonlinearly. But assumptions of linearity and

lumped parameters are more common and convenient in model analy

sis. It is true that parameters of cardiovascular system are not

independent of each other. At the same time it is also true that

some parameters are more adversely affected under certain patho

logical conditions and some are less affected. Moreover some

parameters have predominant effect on the response where as

inspite of wide variation some parameters have negligible effect

on the response. The effects of some parameters maybe opposite

in nature. In the simulation of certain pathological states on
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the model it may be necessary to adjust many parameters. A simple

trial and error procedure for parameter adjustment may involve

many steps and plenty of time. So, investigation of the trend

analysis is not only helpful but desirable for simulation purpose.

The definition of the parameter is based on the relationship

between change of parameter and resulting response, keeping the

other parameters same. The variation of individual parameters

may seem unphysiologic but is necessary for such analysis.

The analysis of model response under various conditions

has a good scope for the simulation of abnormalities. For

teaching purpose it is possible to create various abnormal states

on the model without the presence of actual patient. For clinical

diagnosis of cardiovascular system, some invasive measurements

add to the discomfort and risk to the patient. So, they may not

be permissible in some cases. With the model analysis the inva

sive measurements can be mitximised. If necessary the additional

quantities can be computed. Thus, the approach also aids in

diagnosis indirectly. If computer analysis of pressure-flow

signals and ECG are combined, much better results can be obtained

for the diagnosis of cardiovascular system.

4-.6 CARDIAC ARRHYTHMIA

4-.6.1 A Possible Mechanism

In the cardiovascular system analysis discussed in sections

4-. 3 and 4-.H- [61] one interesting phenomenon was observed. In this

analysis one of the model parameters was varied and the observed

response was in the form of pressures P1 and P • and flow F.
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The response was independent of the initial conditions and settled

down to a steady response cycle within a few cycles. But there

were some typical sets of parameter values for which the response

failed to stabilize even after sufficiently long time (50 times

the normal periodic time). In Figures 4-. 15-17, maxima, minima

and average of the responses corresponding to variation of diffe

rent parameters are shown. The dotted lines in these curves

correspond to the regions of discontinuity where the response

fails to stabilize. This pecularity of response inspired for

further investigation of the problem reported here [63].

The heart can be considered as a biological (fluidic)

oscillator. During the normal operation, it beats rhythmically.

At this time the values of the system parameters are within some

normal range. To maintain the physiological requirement of cer

tain pressures, and flows at various points of the system and to

match with the electromechanical action the biological oscil

lator attains stable operation at some frequency called the

normal heart rate. From electrical point of view this frequency

is related to the internal pacemaker or impulse generation at the

SA node. But, the impulse generation is also related to the

myocardial muscular contraction. From the point of view of the

biological oscillator, the heart rate (frequency of oscillation)

is also dependent on the values of the system parameters. When

the system parameters are gradually varied on either side of the

initial normal values, the response cycles for pressures and flow

attain some stable pattern within a short interval of time. The

maxima, minima and average values of pressures P. and Pp, and
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flow F follow some systematic variation as shown in Figures

4-. 15-17. For some typical set of parameter values, the response

cycles fail to stabilize. The instantaneous values of pressures

and flow undergo abnormal variations. If the cardiovascular

system is unable to withstand the abnormal stresses developed it

may fail. The heart tries to continue to oscillate at initial

normal heart rate. The systolic and diastolic periods of the

biological oscillator are similar to the charging and discharging

periods of capacitors in the electronic oscillator. At the end

of a stable response cycle the instantaneous pressures and flow

should reach the values which prevailed in the beginning of the

cycle. With abnormally changed values of parameters the charging

and discharging (rise and decay) periods are not matching properly.

Due to the mismatching of the periods the instantaneous pressures

and flow fail to reach the initial values at the end of the cycle.

There is a cumulative rise or fall in the pressures and flow.

The heart becomes unstable and it seems that this may lead to

cardiac arrhythmia.

4-.6.2 Arresting Cardiac Arrhythmia

Earlier it is mentioned that on the curves relating

maxima, minima and average values of pressures P1 and Pp, and

flow F to the variation of parameters, there are certain regions

of discontinuity. For Ra,Rt,L,C1,Cr and Rr certain regions of
discontinuity are observed. In case of R at a point correspond

ing to 130 X of the normal value such discontinuity is observed.

Initially for this subject the heart had stable operation at
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75 beats per minute (BPM) with a periodic time of 800 ms. But,
at the same heart rate, for RQ equal to 130 7. of the normal

value, the systolic and diastolic periods are not matching properly.

So, the oscillator is unable to stabilize at 75 BPM. Alternatively

if the heart rate is varied the systolic and diastolic periods

will change. Because, they are decided by the aortic valve

switching function S&, depending on the relative values of pres

sures PLy and P1# So, it is possible that the heart may stabilize

at some other frequency (heart rate).

In the present analysis the periodic time of the cardiac

cycle is varied from 600 to 1000 ms, corresponding to the heart

rates of 100 BPM to 60 BPM. For the purpose of computation as

mentioned earlier PLV and PLy are used as the forcing functions.

Fourth order Runge Kutta method is used for the numerical solution

of the model equations. For different values of periodic time

(heart rate) maxima, minima and average values of response over
a complete steady cycle are computed. Figures 4-. 21 and 4-. 22 show

the variation of maxima, minima and average values of pressures

P1 and P2, and flow F on the vertical axis with respect to varia

tion of periodic time (heart rate) for specified values of R and
a

L respectively on horizontal axis. The crosses on the curves

correspond to the missing points (discontinuities) and zones at

which the heart can not stabilize. It is observed from these

plots that between 70 BPM and 100 BPM there is a large number of

frequencies of oscillation at which the heart can attain stable

operation. It is desirable to restore normal operation with the

minimum disturbance. It is seen from the results that even a
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variation of 0. 5 7. from the initial normal heart rate is suffi

cient to restore the normal stable operation. In case of a

healthy subject the marginal change of heart rate required is

easily accomplished by the natural control mechanism. The arrhy

thmia is arrested before it aggravates or even being noticed. In

case of severe abnormality the system may not be self adaptive.

The arrhythmia may persist and at times may prove fatal. In such

case external intervention is inevitable. There are many medi

cines which can provide the required small change in the heart

rate. Alternatively an external pacemaker may be operated at a

frequency slightly higher than the previous value of normal heart

rate. It will pull the heart in to synchronism to provide stable

operation at a slightly different heart rate. From the Figures

H-.21 and 4-. 22 it is also verified that the maxima, minima and

average values of pressures P-, and pg, and flow F at this slightly
different heart rate (75 BPM + 0.5% of this value) are same as

they should be at the previous normal heart rate of 75 BPM, with
the corresponding values of the parameters, if the response

curves in Figures 4-.1 5 and 4-. 16 were continuous.

The available literature explains the cardiac arrhythmia

in terms of faulty generation and/or conduction of cardiac action

potentials. The present analysis envisages a a new possible
mechanism leading to cardiac arrhythmia. On the basis of this

analysis it is concluded that some typical variation or combina

tion of left heart and systemic circulatory system parameter
values may also be a cause of cardiac arrhythmia. The cardiac

system can be corrected and brought to its normal operation by
using either some medicine or an external pacemaker.



CHAPTER V

ANALYSIS OF PULMONARY SYSTEM

5.1 INTRODUCTION

The circulatory system consists of two parts* systemic
circulation and pulmonary circulation. The analysis of cardio
vascular system has been carried out in the previous chapter.
Pulmonary system is basically responsible for the purification of
blood through lungs. The exchange of gases takes place between
the blood flowing in pulmonary capillaries and the lungs. The
C02is taken out from the blood and 02 is diffused in the blood as
shown in Figures 1.3 and 1.4-. The blood rich in 02 content is
later on used by the cardiac system for systemic circulation

through left ventricle and aorta. The proper exchange of gases
depends upon the state of tbe pulmonary sysbem. The parameters of
the pulmonary system are affected by the abnormalities of the

pulmonary system and influence the exchange process. The analysis
of the equivalent model for the normal and abnormal conditions of
pulmonary system provides a good insight into its working. The
work in the present chapter is in this direction.

5.2 PULMONARY SYSTEM MODELS

The lumped parameter models are generally used for the

analysis of pulmonary system. In 1915, Rohrer [18>+] proposed a
model of pulmonary system by using the following relationship
between alveolar pressure (Palv) and airflow at the mouth (V ).

3v
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Palv =K1 \o+K2(\o)2 ... (5.D

In 1967, Bouhuys and Johnson [26] revealed that this model satis

fies tha inspiratory flow conditions but fails to predict flow

limitation due to compressed airways during expiration. The

models proposed in 1967 by Pride et al. [175] and in 1970 by

Yamayashi et al. [24-4-] included the airway resistances which are

functions of transmural pressure across the airway walls. The

models account for the expiratory flow limitation but not for the

expiratory loops. In 1972, Albergoni et al. proposed a two

compartment interaction model between the circulatory and respi

ratory systems [3]. The functional description of the model is

as shown in Figure 5.1. It explains the exchange of 0 and G02
between pulmonary blood and alveolar air. To obtain the driving

functions of the interaction model, the circulatory and respira

tory systems are modelled separately. The circulation part is

modelled by an RLC network as shown in Figure 5.2. Right ventri

cular output pressure P& is the forcing function resulting in

blood flow qa at the input to the pulmonary system. The outputs

are pulmonary vein (or left atrium input) pressure P and blood

flow in pulmonary vein qv. Electrical analog of the respiratory
system is as shown in Figure 5-3- Variable part of intrathoratic

pressure acting as the driving function is assumed sinusoidal.

ps = % sin (27r ft + 0) ... (5.2)

The tidal volume is taken as the output function.

While passing through the pulmonary system blood leaves

part of its C02 in pulmonary compartment and receives 0 bound to
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hemoglobin. Hemoglobin increases capability of absorbing 0 . The

curve for C02 dissociation is almost linear where as that for 0

is exponential. Blood running through vascular bed exchanges 0
and C02 with alveolar air. A step by step procedure is followed

for digital solution of circulatory, respiratory and interacting

sections. The versatality of model permits the change of most of

the parameters necessary for physiological and pathological condi
tions during the simulation run.

In 1972, Saidel et al. reported a dynamic lumped parameter

mass-balance model of pulmonary oxygen transport [193]. As shown

in Figure 5A, the gas side of the lung is modelled as a series-

parallel arrangement of five perfectly mixed variable volume

compartments G1 to G^. Blood side of lung is modelled as a

series of perfectly mixed, constant volume compartments B1 to B4-

of pulmonary capillary bed. The compartments used have functional

significance rather than anatomical. The model simulations indi

cate that the oxygen-hemoglobin reaction does not reach equilibrium

in the pulmonary capillaries, as assumed commonly in analysis of

pulmonary oxygen transport. The model aims at predicting the 0

concentration of the blood leaving the lung from input conditions,
forcing functions and system parameters; and to discriminate

normals and abnormals on the basis of oxygen transport ability.

Oxygen transport on gas and blood sides of the lungs is simulated

solving the system equations using fourth order Runge Kutta algo
rithm.

in 1973, Golden et al. [88] proposed lamped representation

of ventrilatory system and electrical analog as shown in
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Figures 5.5 and 5.6. For collapsible segment volume and trans

mural pressure, hyperbolic relationship is assumed. The rigid

and collapsible parts of small airways are represented by fixed

and variable resistances R and R respectively. The value of

R is assumed as

Rc=0.2 (0.02/Vc)2 ' ... (5.3)

The collapsible segment volume is V . The large airway has a

constant component of resistance K1 and flow dependent component

K2lVaol> to account for turbulent flow. Considering flow less
than 2 1/s, lung volume and elastic recoil are assumed constant.

During inspiration overall airway resistance decides the flow.

During expiration airway collapses, small airway resistance and

lung elastic recoil decide the flow. Numerical integration is

used to simulate panting maneuver with various values of model

parameters. The sinusoidal variation of alveolar pressure at

frequency 1.6 Hz is considered. The model is also used with

plethysmographic data of panting maneuver at high frequency (2Hz)
and volume less than 0.1 1. p^ and V& at mouth are recorded.
Parameters Pel,Rg,K1 and K2 are estimated using Gauss-Newton least
square algorithm with Levenberg adjustment. The alveolar pressure

is used as input. The computed and observed airflow are compared.
It is also remarked that inclusion of more parameters in the model

may improve the curve fitting, but will not add any insight in to
the physiological occurances during a pant.

In 1975, Shaffer developed a 3-compartment pulmonary

model as shown in Figure 5.7 and investigated the frequency
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response sensitivity for impedance, resistance and capacitance.

The lung parameters are determined as function of frequency,
peripheral airway contribution to total airway resistance and

relative %obstruction of peripheral airways. The frequency
sensitivity as an indicator of small airway obstruction is con

firmed, but frequency sensitivity is limited to specific range

of airway obstruction and breathing frequency. Under certain

circumstances this measure may be of little or no clinical value.

In 1976, Olender et al. [161] did an analog computer

simulation of expiratory flow limitation using a model as shown

in Figure 5.8. It is remarked that large number of parameters

involved makes the parameter identification difficult. The

constants K1 and K2 are adopted from Bouhuys and Jonson [26] and

Mead [146]. The resistance of collapsible segment is taken to be

Rc=k3 (Vvc)2 _ {5M

where, constants K and K< are adopted from literature and V is
j ^ c

collapsible segment volume. The small airway resistance R is
s

related to % vital capacity VC by a graphical relationship
adopted from Maclem and Mead [136] and Bouhuys [25]. Ratio of

collapsible segment volume to maximum value of collapsible airway

volume is also related to transmural pressure by a graphical

relationship derived from Murtaugh et al. [153] and Hyatt and

Flath [110]. Static lung compliance curve is derived from

Colebatch et al. [53] and dynamic compliance curve is derived

using static compliance curve and data by debuts et al. [52]

and Glaister et al. [85]. Using sinusoidally varying pleural
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pressure as the input, effects of variation of various model para

meters are investigated on the analog computer.

In 1978, Gupta [97] considered the lumped representation

of ventilatory system as shown in Figure 5.9(a). The equivalent

nonlinear circuit for the model of the conducting airways is as

shown in Figure 5.9(b). The modified David-Fletcher Powell

optimization method used for parameter estimation and diagnosis

by Feinberg et al. [77~1 is reported to have unstable and slow

convergence with too much computation. Gupta [97] has considered

panting maneuver with small volume 50 ml and high f(2-3 Hz).

Pleural pressure is used as the forcing function and airflow at

the mouth as the response. The effects of blood flow and gas

exchange are neglected. The parameters are estimated by least

square curve fitting of human data with extended Gauss-Newton

method. Some diagnostic interpretation and expiratory looping

are illustrated [97].

In 1978, Pederson et al. [I63] have investigated the

potential of using low intensity penetrating microwave energy in

diagnosis and monitoring of pulmonary diseases like edema and

emphysema for selected animal models. The lung water in these

diseases modifies the conductivity and permitivity of the lung

tissue. Both the reflection and transmission measurement techni

ques are examined. In 1979, Tsai et al. [ 217] have applied

pattern recognition principles to spirometric data. Different

categories like Normal, moderately, severely and very severely

obstructed are considered. A five element pattern vector is

formed by normalised values of FVC,FEV, midmaximum flow rate
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MMFR and flow rates with 50 and 25 %vital capacity remaining. A
parametric Bayes classifier and one and two layer pairwise

Fisher linear classifiers are designed. The rates of recognition
up to 81-82/. are achieved. For normal and abnormal classifica

tion, the rate of recognition achieved is 94- 7. .

In 1979, Tsai and Pimmel reported a forced oscillatory

method ?or rapidly measuring total respiratory impedance as a

function of frequency for dogs [216]. For humans forced random

noise is used. Series combination of resistance R, compliance C,
and inertance I forms the total impedance,

Z = R + j2Trf I + E/j27rf. ... (5#5)

The elastance E is reciprocal of compliance C. The optimum
values of parameters are found by least square error criteria.

N

1 a J, ^t'i^^i)Wbj2tf4 I4VJ2?f^]|2 ... (5.6)

where, U(fi) and V(fj_) are the real and imaginary parts of measu
red impedance at frequency f± and Nthe total number of measure
ments. The value of J is real. The values of R,I, and C are

found by equating 9J/3R, 3J/9I and 3J/3E to zero. The forced

oscillatory parameters are found as

1 N

Rp0 " f i=1 U(fl> •«• (5'7)
N N N

*F0 ••&,£, •<*!>/2 »ff±- & I 2rrf v(f ) ... (5.8)

b N NBpo =c .^ V(f.)/2rrf. - §^ 2rr f. v(f.) =1/Cp() ... (5.9)
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N N
a = ri/latf±)z, b = z (2TTf )2 0 =1T2.ab _ ( ,

1=1 1=1 x

For series-parallel RLC combinations the equations become non

linear and inseparable. In 1980 Pimmel et al.[l65] found total

respiratory impedance for six dogs using forced oscillations

ranging from 0.9 to 16 Hz. The values of R, L and C are found by
linear regression. It is claimed that transient mechanical changes
induced by vagal stimulation can be characterised by this techni
que.

In 1981, Eyles and Pimmel [74-] have reported that simple
RLC series model explains the impedance data for normals but fails
in case of lung disease. Time constant discrepancies between the
parallel compartments can simulate the diseased states but para
meter estimation involves iterative minimization algorithms. For

the forced random noise technique used a loudspeaker is coupled
to the respiratory system by a mouthpiece and random signal with

bandwidth 4-35 Hz is used for excitation. The induced pressure
and flow are recorded and digitised. By spectral analysis

complex impedance is found at 1Hz interval. For all the three

models as shown in Figures 5.10 a,b and c, one and two stage
gradient descent and one and two stage Simplex algorithms are
used for the parameter estimation. Here, R and I represent
viscous and inertial properties of central airways. The 0, and
R2- C2 paths in model 1 and C, , Rg- 1^ C2 paths in model 2
represent an airway and a parenchymal compartment. R, - C1 and
R2- C2 in model 3 represent parenchymal compartments. The cri
terion function minimised is
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2

... (5.1D

In one stage gradient descent algorithm random search

subroutine is used to find the starting values. With two stage
gradient descent algorithm in second random search R and I are

c c

always fixed and C1 is fixed for models 1 and 2. This second

random search is followed by a second application of gradient
descent subroutine in which all the parameters are adjusted. One

and two stage simplex algorithms correspond to one and two stage
gradient descent methods with Simplex subroutines in place of
gradient descent subroutine. (In first random search 4-7000 and

in second random search 3000-5000 sets of parameters are tested).

Gradient descent subroutine uses combination of Gauss Newton,
Newton Raphson, Optimum gradient and gradient projection methods

to gain the advantages and overcome the limitations. Unlike the

gradient descent methods in the Simplex algorithm it is not

necessary to compute derivatives of criterion function at each

iteration. For the data used two stage Simplex algorithm with

model 1 offered the best approach for parameter estimation in

parallel compartment models. For six parameters no suitable

combination is found. It is also reported that different model-
method combinations may be optimum for different data.

In addition to the modelling related to the respiratory
tract a lot of work is done on gas exchange in the interacting
zone. In I909, Bohr [19] introduced the mathematical basis of

calculations of transfer of oxygen between alveolar gas and
capillary blood using diffusion principle. The kinematics of
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combination of hemoglobin with oxygen was stressed by Roughton

and Foster in 1957 [186], With the introduction of digital

computers in the field much more complicated models have been

emerged to account for interaction between 02 and C02, chemical
reactions of these gases and pulsatality of capillary blood flow.

In I971+, Wagner et al. have considered areas with low, zero and
high values of ventilation-perfusion ratios VA/Q and unperfused
area (dead space) separately [225]. In 1977, Wagner has analysed
the factors affecting 02 and C02 exchange [224-]. Oxygen transfer
to blood is in the dissolved form and bound to hemoglobin. The

higher capacity of blood for C02, chemical reaction and nearly
linear C02 dissociation curve slow down equilibrium of CO between

alveolar gas and capillary blood. The reduction of mass transfer

of 02 and C02 automatically results in fall in venous P02 and
rise in Pco and total alveolar ventilation. This restores normal

Prn but not P .
UU2 02

In 1975, Jaliwala et al. have used a variable metric (or
method

Davidson Fletcher Powell) optimization/of numerical analysis to

recover known distributions of intrapulmonary ventilation-perfu-

sion ratios from inert gas data [111], The hypothetical lungs
are simulated by a 50 compartment model. It is reported that the

prevailing levels of measurement error represent an important

limitation in current techniques for deriving distributions from

inert gas measurements. After the analysis of simulation model

shown in Figure 5.11, Farrell and Siegel have reported that simul

ation parameters provide functional indices of ventilation/perfu-
sion disparity, diffusion gradients, venous-arterial pulmonary
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shunt and respiratory dead space [76]. The efficacy of cardio

respiratory support maneuvers in changing blood gas and PH values

in clinically ill post coronary bypass patient with an acute

respiratory distress syndrome can also be estimated.

In 1981, Poon et al. have proposed a one compartment,

continuous time model for dynamic gas exchange in lungs [173].

The dynamics of alveolar gas concentrations (x.) are critically

dependent on blood-gas partition coefficients and inspired concen

trations (Uj.) of component gases. The Eigen values of the system
are all real and negative and can be simultaneously maximised if

the most soluble gas of the inspirate alone is inhaled. In 1982.

Saidel has presented a mathematical model of inert gas exchange

as shown in Figure 5.1 2, that accounts for a diffusion limitation

as well as ventilation-perfusion inhomogeneity [192]. The model

suggests that the input of inert gases by inhalation rather than

by venous infusion is feasible and sampling of venous blood is

unnecessary. So, inert gas study of abnormal pulmonary gas

exchange may yield more information and may be more readily app
lied to clinical studies than currently recognised.

In 1982, Primiano et al. have reported a digital computer
program developed to evaluate vital capacity, expiratory reserve

volume, and inspiratory capacity from the spirograms [176]. In

1982, Hardy and Collins tried to fit data of flow resistance

against transmural pressure for pulmonary vascular system of a

dog [100], Adigital many compartment model of the human circu
latory system proposed by Hardy et al. simulates pulsatile blood

flow, gas transport and exchange, and passive breathing for
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human data [101]. The computed C02 and 0_ partial pressures vary
realistically around measured average partial pressures.

5.3 PULMONARY SYSTEM ANALYSIS

The model shown in Figure 5.13 is used for the analysis

of pulmonary system. The model parameters are defined as follows.

R-j = Fixed part of upper airway resistance

L = Inertance of air

Rq = Collapsible segment resistance

GAW = CcO-laPsible segment compliancex

R^ = Lower airway resistance

F1 = Airflow at nose

K|F-j I e Turbulent component of upper airway resistance

PTM = Pressure developed across C...

PALV= Alveolar pressure

PLE = Pleural pressure

PEL = Lung elastic recoil.

The following units are used.

Pressure : cm H20

Flow : lit res/second

Resistance : cm HJD/1 iters/second

Inertance s cm H20.Second2/litre
Compliance : litre/cm HO.

By taking flow F1 through the inertance and pressure F2 across

the compliance as the state variables the state equations are

written in the following form.

F1 = ((-(X(1) + X(2)*ABS(F1)*F1 - Pg . PLE)/X(3) ... (5.12)
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F2 = (F1 - (F2 ♦ PEL)/X(5))/X(If) _ (5#13)
where,

X(1) = R1+Rc
X(2) = K

X(3) = L

X(^ • CAW
x(5) = Rla

F1 = flow with derivative F.

F2 = transmural pressure PTM with derivative F .

The parameters of this model have good correlation with

the actual pulmonary system. The estimated parameters of this
model can prove to be very useful for the diagnostic purpose.
Generally in pulmonary system analysis panting maneuver is consi
dered. It takes very small air volume, assuming lung volume and
lung elastic recoil almost constant. Using sinusoidal pressure
wave as the forcing function shallow high frequency breathing is
considered. In the present analysis actual pressure wave, air
flow and variable lung volume are considered. Forced oscillatory
response is a totally different approach. It estimates model

parameters under different conditions than the normal working of
the pulmonary system. The aim in the present analysis is to

estimate the parameters of pulmonary system under actual physio
logical conditions using minimum assumptions. The technique
commonly used for this type of problem is regression analysis in
which curve fitting is used to obtain values of parameters utilis
ing known input and output. Gauss Newton method is suitable for
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nonlinear regression equations but with poor initial guesses for
unknown coefficients there is convergence problem. Marquardt
method can converge for poor guess but proper selection of A and

computation time are the problems. Powell (SSQMIN ALGORITHM)

method is a modification of Gauss Newton technique and is suitable

for nonlinear regression equation. So, it was tried in the
beginning.

For the parameter estimation of pulmonary system pressure
and flow data are required. In this connection All India Insti

tute of Medical Sciences, New Delhi, Medical College at Aurangabad
and Pulmonary functions laboratory, Houston were contacted but the
effort was in vain. Finally the data available in literature

l>7,116] for alveolar and pleural pressures and flow of air were
used for the analysis. Starting with pressure data, fourth order
Runge Kutta method was used to compute flow F1 and transmural
pressure F^. The initial values of pressure and flow are decided

by an iterative process so that the response cycle stabilises and

repeats periodically. Least square technique with Powell (SSQMIN

ALGORITHM) method is used to fit the computed flow curve with the

actual flow curve and effort is made to estimate the parameters.

In this approach there are number of problems. Five para
meters and unknown initial pressures and flow make the number of

unknowns very large. The noise and inconsistency inherent in

the type of data available has aggravated the problem further.
So there are convergence and reproducibility problems. Olender
et al.[l61] and Tsai and Pimmel [216] have also confirmed this
limitation. To reduce the number of unknowns R1+Rc and Kvera
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adjusted externally by trial and error process to minimise the

initial sum of squared errors and only three parameters L, C.
'AW

and RLA were estimated by Powell algorithm. In this case the

convergence is achieved but the estimated parameter values are

much sensitive to initial values of L,CAW and R^ and set constant
values of R1 + Rq and K. Moreover, the aim in the present work is

not only the parameter estimation of a single case, but to deve
lop a generalised method of parameter estimation suitable for

discrimination among the cases of different categories. For this
purpose the approach was also applied to the data of an abnormal

case. In this case the use of same set of constant values for

R1 +Rc and K, and initial values of L, CAW and R^ did not result
in convergence. So the whole objective of establishing basis of
comparison for different cases is lost and the method is not

suitable at least for the present purpose.

In another approach, a model shown in Figure 5.8 is consi

dered. For simplicity inertance is dropped. The lower airway
resistance is considered in two parts. One part having fixed
value Rg and another collapsible part having resistance R and

corresponding compliance CAW. V&o is input airflow and VL is
flow at the lungs having compliance C^. K1 is fixed part of
upper airway resistance and K2|vAq| is its turbulent component.

Palv> ppl» P™ and PEL are alveolar, pleural and transmural
pressures and lung elastic recoil. VL is the lung volume with

initial value VLq. Vc is collapsible segment volume, V initial
value and V, flow through collapsible segment.
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Pulmonary pressure, pleural pressure and airflow curves

are enlarged and digitised. By interpolation with the spline

fits 601 data points are generated on each curve. Numerical

integration is used to get corresponding values of tidal volume.

Lung elastic recoil PEL = P - - P . ... (5.1^)

cL = (vL-vLo)/pel ... (5.15)

From the data of Maclem and Mead [136] and Bouhuys [25] the curve

relating small airway resistance and lung volume as '/. of vital

capacity is reported [161] to be as shown in Figure 5»11+. This

curve is enlarged and digitised. The coefficients for the spline-

fits in the resulting 52 intervals are computed so that the value

can be interpolated at any desired point.

PTM = PEL + RS*VL ... (5.16)

Lung volume as */. vital capacity = (Functional residual capacity

FRC + Tidal volume)/vital capacity FRC is taken 2.3 litres and

vital capacity is taken 6. 5 litres. At a point first vital capa-

city and then corresponding value of R is computed. PEL and VT

are already known. So PTM can be found out.

Airway compliance is expressed by a curve relating

V /V m^ and PTM [110,153] as shown in Figure 5.15. This curve
C C III SIX

is also enlarged and digitised. By spline fit corresponding to

value of PTM, V /V is computed. V is reported to be

0.1 litre [161 ].

V = V *(v /v )
c c max c c max

At this point V is found by numerical differentiation. Flow at
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nose and alveolar flow are related by

Vao • ^c +V ... (5.17)

Resistance Rq is computed as followss

Rc = -(PTM+Ppl+(K1+K2|Vao|)Vao)/Va0

= -((PTM+Ppl)/VaD+K1+K2.|Vao|) ... (5.18)

Reported values of K1 and Kg, 0.5 and 0.2 respectively are taken
here [26,1U6,161 ].

Total upper airway resistance R is computed as

^VV'^aol ...(5.19)

Compliance of the collapsible segment is given by

GAW= <VVco)/P™ ... (5.20)

Using these relationships instantaneous values of Rs,Cj. , flow
Vao' Rc' Ru' and CAW are comPUted. Average values of various
parameters for inspiration, expiration and over the whole respi
ratory cycle are computed for one normal and one abnormal case.

The values for the ratio of parameter value of the abnormal case

to that for the normal case are shown in Table T.5.1.

%\ RESULTS AND DISCUSSION

The main difficulty with the pulmonary system is about

the diagnosis of the abnormalities in the lower airways. Sputum
production, blood-gas tests and forced vital capacity help in

detection of mechanical impairment. It is difficult to locate

the cause and site of obstruction. Early detection of emphysema,
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TABLE T. 5. 1

Relative values of parameters of abnormal case
w.r.t. corresponding values of the normal case

Sr.No. Quantity Rel. value

1 Inspiratory lung compliance a, 1.0175
2 Expiratory lung compliance CV™ 0.9025

3 Average lung compliance Cr 0.9560

h Average flow F 0. 8^+90

5 Small airways inspiratory resistance ROT 1.0000

6 Small airways expiratory resistance R„„
hoi

1.0000

7 Small airways average resistance Ra
s

1.0000

8 Collapsible segment inspiratory resistance
RCI

1.9180

9 Collapsible segment expiratory resistance R^
utu

11 .2900

10 Average collapsible segment resistance Rr 6.1650

11 Upper airway av. t irbulent resistance R1T 0.8M+0

12 Total upper airway resistance 0.9800

13 Collapsible segment inspiratory compliance O.951+O

1*+ Collapsible segment expiratory compliance 1.70 50

15 Av. collapsible segment compliance 1.0710
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bronchitis and asthama is difficult. In the present analysis,the
upper airways are considered intact and the corresponding para
meters are assumed constant. The parameters for lower airways and
inner part of the pulmonary circuit are computed. With the Powell

algorithm due to large number of unknowns, noise and inconsistency
of the data there are convergence and reproducibility problems.

It has not been possible to establish a generalised method of

analysis and basis of comparison for normal and abnormal cases.

Earlier Eyles and Pimmel also had concluded on similar lines that

simple RLC series model explains the impedance data for normals

but fails in case of lung disease. The results of second method

are better. Estimated parameters for the abnormal case show

considerable deviation from the values for the normal case.

Therefore the approach has a good diagnostic utility. Unlike the
first method there is no convergence problem in this case. More-
aver, here the local inconsistency or noise in the data is not

much troublesome as experienced with Powell algorithm. Inspite
of very large number of data points the computation time is very
small (about 5 second) in this case. It is true that it is not a
very sophisticated method, but with some simple computations and

very small computation time it provides a good basis of comparison
for diagiostically significa.it parameters. As observed by Eyles
and Pimmel different parameter estimation algorithm maybe suitable
with different types of models and the nature of data.



CHAPTER VI

CONCLUSIONS AND DISCUSSION

6.1 ELECTROCARDIOGRAM

Computer assisted ECG interpretation requires accurate and

compact form of representation of ECG pattern with suitability of

categorization of diagnostic parameters. In the present work the

ECG pattern is represented by the Frontal plane Peak Resultant

vectors (FPR) corresponding to different segments. When the

measurement and lead proximity correction algorithm developed is

applied to Burger triangle representation, FPR amplitudes and

phases are computed with very high accuracy and precision. The

results contradict the general feeling that 12 lead ECG system is

less specific and less informative. One more important point is

that it is necessary to measure peak segment potentials at only

two leads for FPR computation.

When measurement and storage of instantaneous potentials

at hundreds of points over the cardiac cycle at all the leads is

considered orthogonal three lead system has inherent advantage of

^si data compression compared to 12 lead system. If the proposed
model based on new basis functions is used, it is necessary to

measure and store less than or equal to about eighteen parameters.

With this information it is possible to reconstruct the set of

ECG patterns at leads I,II,III, aVR,aVL and aV? with the potentials
corrected for measurement error and lead proximity. Compared to

250 x 3 (orthogonal leads) or 293 x 6 (six of 12 leads) samples/
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second, the storage of 18 parameters results in notable data

compression. Moreover, these parameters have high diagnostic

significance and are suitable for categorization. The coefficients

of the basis functions are to be evaluated only once for all. The

model accounts for horizontal and vertical elongation and/or

contraction of various ECG segments and relative phase shifts

among them, effect of individual lead axis, and other physiologi

cal changes. It has the simplicity of computation and ease of

generalisation of diagnostic parameters. The fiducial points on

the ECG pattern are clampted to the corrected values computed

with high accuracy and precision. Good shape matching is ensured

for the individual segments. The deviation of intermediate poten

tials from the corrected true values may be less compared to beat

to beat variation. Moreover the reconstruction of ECG which does

not affect the accuracy of interpretation adversely is considered

sufficiently accurate for diagnostic purpose. Actually for the

interpretation algorithm developed here instantaneous values are
not necessary at all.

One of the most important and difficult problem in compu

ter interpretation of ECG is the development of criteria for

normal/abnormal and other diagnostic entities. Effort was made

to know if any such criteria are fixed by American and British

Heart Association. According to information collected from

Dr. P.W. Macfarlane, Dr. H.V. Pipberger and Dr. J.J. Bailey

(personal communications in September-October 1982) British
Cardiac Society, American Heart Association find American College

of cardiology have not established such criteria. Dr. Pipberger
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further pointed out that there are substantial differences between

the different races in electrocardiography. He suggested that to

achieve accuracy in the present work criteria for normality should
be established based on large samples of Indian population. He

also agreed that it might take considerable time. As the research

is to be completed in limited time with limited means, just to

start with the development of methodology some typical normal

cases were collected from All India Institute of Medical Sciences,

New Delhi. The relative values of parameters were used to define

boundaries of the normal pattern spaces for respective parameters.

The use of relative values ensured very good clustering of the

cases of the same category in the pattern space and scattering

away of cases of different categories. Use of peak to peak seg

ment intervals instead of segment durations between start and

end increased accuracy of measurement. An algorithm based on

simple binary code is successful in screening the ECGs in to

normals and abnormals.

The developed composite binary code provided a very com

pact method of representing the symptom patterns for various cases.

The algorithm started without bias for any medical criteria of ECG

interpretation. From the training sets of cases the computer was

allowed to decide its own criteria so that the cases of different

categories could be discriminated with 100 /. sensitivity and 100 %

specificity. The generalised symptom patterns for different

categories and associated weight factors were decided by the

computer itself during the training phase. It can minimise the

criteria error if the data bank includes well diagnosed cases.
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On the basis of weighted sum of symptoms, all the cases considered
are correctly classified and well discriminated from the other

categories. The method has combined the first and second gene

ration programs. Multiple measurements and statistical techniques
are used but assumptions about multivariate measurements, normal
distribution and probability denties are avoided. The value of

weighted sum of symptoms indicates the degree of severity of

abnormality and provides graded diagnosis instead of two state i.e.

yes/no type diagnosis. Thus the advantage of fuzzy set approach
is also incorporated. Generation of symptom patterns with compo
site binary code, derivation of symptom multipliers and weighted
sum of symptoms can also be implemented through hardware.

In the present work the interpretation algorithm is very
much simplified and arithmatic computations are much reduced. In
the final stage of the interpretation the symptom multipliers
used have values 1, -1 and 0. The weighted sum of symptoms
involves only addition or subtraction of various weight factors
(no multiplication or division is involved). So, microprocessor
implementation of interpretation algorithm is very much conven
ient. Use of microprocessors should no longer be limited to data
acquisition, wave recognition and arrhythmia analysis. Inspite
of the low speed and limited capability, microprocessor based
system can meet the daily load of ECG interpretation in a hospital
without sacrificing the diagnostic accuracy.

This is not the end of the problem. It is just a beginn
ing for the solution of the problem. It should be kept in mind
that this is not the commercial version of the program. This
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research work was aimed at the development of an ECG interpretation

program with some novel features to overcome some of the limita

tions of certain methods and to reduce complexity of computations

without sacrificing the diagnostic accuracy. It is required that

before exposing the program to commercial application and/or

testing a rich data bank covering the whole range of normality

and abnormality and various degrees of severity for various diag

nostic entities should be established. This data bank can be

used to define the pattern spaces for individual diagnostic

parameters and to update the generalised symptom patterns and

associated weight factors for various diagnostic entities.

6.2 CARDIOVASCULAR AND PULMONARY SYSTEMS

The lumped parameter model of the cardiovascular system

considered is a useful tool for the analysis of the system with

reasonable accuracy. The open loop analysis of the model allows

investigation of effect of variation of various model parameters

on the system response. Most of the abnormalities of the cardio

vascular system are reflected in the variation of model parameters.

The simulation of abnormalities like aortic stenosis, aortic

valve incompetence, hypertention, etc. is much suitable on this

type of model. The reverse flow in aortic incompetence could

also be simulated. For teaching purpose it is possible to create

various abnormal states on the model without the presence of

actual patients. With the model analysis harmful and risky

invasive measurements can be minimised and additional information

required can be computed. This approach indirectly helps for the
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diagnostic purpose. With the limitation of unavailability of data

for various abnormalities of cardio-vascular system, the diagnosis

part could not be covered but the scope for diagnosis can not be

denied. It is felt that if computer analysis of pressure-flow

signals and ECG are combined, much better results can be obtained

for the diagnosis of cardiovascular system.

Generally, cardiac arrhythmia is explained in terms of

faulty generation and conduction of cardiac action potentials.

In the present analysis it is observed that abnormal set of

parameter values for the cardiovascular system may also lead to

cardiac arrhythmia, which can be arrested by some medicine or

pacemaker.

Large number of parameters involved in the pulmonary

system, noise and inconsistency in the data make the estimation

of parameters of the pulmonary system very difficult. In the

absence of the availability of actual and accurate data, the use

of text book data has aggravated the problem still further. The

convergence is difficult even with the Powell algorithm. If the

convergence is attained, the estimated parameters are much depen

dent on the initial values of the variable parameters and values

assigned to the fixed parameters. The objective of establishing

the basis of comparison for normal and abnormal cases is not met

with in this approach. The second noniterative method is simple,

involves less computation and computation time. Local Inconsis

tency and noise in data are not as trouble some as with the

Powell algorithm. It provides a good basis of comparison for the

parameters of the lower airways of the normal and abnormal cases.
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The parameters considered have direct correlation with the actual

physiological system. So the method has good diagnostic utility.

6.3 SCOPE FOR FURTHER DEVELOPMENT

In the area of computerized ECG analysis, the work was

started about three decades back. A good amount of work has been

carried out so far, but still, the ECG interpretation programs

have not reached perfection. The problems are due to some of the

limitations like inaccuracies in automatic wave recognition and

loss of information during data compression. The difficulties are

partly overcome by advancement in electronic equipment, capabili

ties of computers and computational methods. Yet there is a lot

of scope to carry out work in this area with reference to follow

ing aspects. m

(i) Wave recognition

(ii) Data compression

(iii) Location of transverse plane axis and computation of
overall resultant vector

(iv) Establishment of data banks corresponding to different
age, sex and race groups

(v) Updating the criteria to make the method suitable for
routine application.

For the cardiovascular system, if necessary data is avail

able, closed loop analysis can be carried out by including venous

return. If large number of cases corresponding to different

abnormalities are available, it may be possible to devise inter

pretation algorithms based on the model parameters for
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cardiovascular and pulmonary systems. An interpretation algorithm

incorporating all the parameters of ECG, cardiovascular and pulmo

nary systems may give useful information about the interdependence

of different abnormalities.
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