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ABSTRACT

(Kr. Khalil Ahmad Khan, "State-Variable Realiza
tion of lumped Networks and Dynamical Systems',
Ph.D. Thesis, Department of Electronics and
Communication Bngg., University of Roorkee,Roorkee,

August 1974.

Guide and Supervisor*. Dr.M.Lai, Professor, Depart
ment of Electronics and Communication Sngg.,

University of Roorkee,Roorkeo.)

The state-variable approach, because of its inherent

importance, has aroused considerable interest in the study of

systems and networks during the past decade. This thesis is,

primarily, concerned with the problem of state-variable realiz

ation of linear time-invariant dynamical systems and its appli

cation to lumped networks, with a view to evolve new synthesis

procedures suitable for integrated circuit fabrication.

The problem of minimal reciprocal realization of linear,

time invariant dynamical systems is investigated. Two simpli

fied algorithms for constructing minimal reciprocal realization

from a given symmetric transfer function matrix and symmetric

impulse response matrix have been proposed . Both the methods

exploit the symmestry of the given transfer--funct:ion matrix and

impulse response mat rix and require determining the :Hankel

matrix, the first from the Markov--parameters and the second

from the moments of the impulse n esponse m;at rix, the latter

being p:referable in the presence of noise. The order of

-



-iv-

the Hankel matrices required in the procedure of both the

algorithms is much smaller than the existing methods, thereby
reducing significantly the computing time and memory storage

required. The realizations obtained by the proposed algorithms
result in reciprocal networks. Further, utilizing these results,

a passive reciprocal (gyratorless) synthesis of symmetric posi

tive real immittance matrices is given.

Since the classical synthesis methods for linear, time-

invariant networks are well-known, it is quite important to

establish a communication link between the state-variable

characterization and the input-output description. Some endeav

ours have already been initiated in this direction. Here, a

state-space interpretation of classical Foster synthesis of

multiport lossless network has been discussed. Well-known

Cauer driving point synthesis and active RC filter design using

coefficient matching technique are also revisited in state-

space terms using observability matrix as a canonical trans

formation.

Various synthesis techniques,which realize an arbitrary

rational function matrix of a multiport active RC network, have

been developed during recent years. But, the upper bound on the

number of active elements required in these methods is quite

large and in some cases, the number of resistors used in the

realization is also more. In this thesis, a simple and syste

matic synthesis procedure, based on a state-variable approach

and the reactance extraction principle, has been presented

whereby any arbitrary rational function matrix can be realized
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as an immittance matrix of an active RC multiport network

with a minimum number of grounded capacitors having unity

capacitance spread. The proposed technique reduces the upper-

bound on the number of active elements and can be reasonably

expected to require fewer resistors. Besides, the structure

of the realized circuits in terms of the minimum number of

elements and grounded ports make it particularly desirable

for integrated-circuit fabrication.

Finally, some suggestions for further investigations

in this area are also included.
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CHAPTER I

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 INTRODUCTION

During recent years, there has been a growing interest
l

in the application of state-variable techniques for the

study of dynamical systems and networks. This may be attri

buted to the fact that the state-variable approach is compu

tationally more attractive, especially in terms of computer

aided design (CAD) \l^\ .Moreover, the approach is more gen

eral than the classical Laplace and Fourier transform

theory and hence is applicable to many systems for which

transform theory breaks down[l523 • Since the approach is in

time-domain, it is equally applicable to both non-linear

and time-varying systems in addition to the time invariant

linear systems[7f]. Apart from providing a more general

representation of a physical process, a very important

advantage of this technique lies in its flexibility in

generating "equivalent" canonical representations which are

very useful in system analysis. Another important contri

bution of this approach is that it permits problems in net

works and systems to be treated in an unified manner[lO] .

Besides, the technique is particularly useful in multiport

network synthesis[104} and consequently new synthesis proce

dures using this approach are being developedQfj >L^Q "D-3 »
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&5g,£i5g-ni58],D-6Q].
This thesis is concerned with the state-variable

realization of dynamical systems and its application to

the synthesis of finite, lumped, linear, time-invariant,

passive and active multiport networks.

It is well-known that a state-variable characteri

zation of finite, lumped, linear, time-invariant, passive

p-port network is given by the dynamical equations or

state equations

X = AX + BU,
... vl• -*-/

Y = CX + DU,

where X is n-vector, the state, having its components

as capacitor voltages and inductor currents, U is p-vector,

the input, and Y is q-vector, the output. The matrices

A,B,C, and D are real constant matrices of dimensions

n x n, n x p, q x n and q x p, respectively.

In network synthesis, we are mainly concerned with

the realization of a passive or active network that has

a prescribed immittance or transfer function matrix G(s) ',
whereas the system realization problem is to pass from an

input-output description of a system in the form of an impute

response matrix G(t), or a transfer function matrix, G(s),

to a state-space description of the type (1.1). Thus,

system realization problem is intimately related to modern

network synthesis[28] .
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Once the dynamical equation (1.1) is known for a

system, the system can be easily simulated on an analog

computer. Further, transfer function is an input-output

description of a system, whereas a dynamical equation

describes not only the input-output relation but also

the internal structure of a system. Thus, the realization

problem may also be considered as an "identification

problem", a problem of identifying the internal structure

of a system from the knowledge obtained through direct

measurements at the input and output terminals Q?g .Because

of its wide applications, the realization problem has been

actively considered over the past decade by several investi

gators and consequently, a well developed theory of realiza

tion is now available in the technical literature^5] , yS'y >

DL2U.&3D.

In the field of network synthesis, the first-step is

to determine a minimal realization j A, B, C, D | of a given

input-output description. Since the realization is minimal,

the number of dynamic .or reactive elements and integrators

needed to synthesize a network will be minimum, which is

desirable for reasons of economy and sensitivity. If a given

state-model | A, B, C, D[ satisfies Anderson's positive real

lemma[5]> a synthesis of the network using only passive

elements is possible. Further, the realization set

(a, B, C, D}- satisfying reciprocity criterion due to

Yarlagadda[l55] will lead to reciprocal network realizations,

Modern system theory concepts have also been exploited
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to give state-space interpretation of some of the well-

known classical synthesis procedures, and properties of

network functions. Recently, the state-variable technique

has also found application in evolving novel active RC

multiport network synthesis methods suitable for integra

ted circuit fabrication [l§3 •BO »132 , \jl\ , [96] , £98] ,

[122], [12J], [158].

Thus, the problem of realization of dynamical systems

assumes great significance because of its manifold applica

tions in studying problems of various engineering disciplines

such as optimal control, system theory and network theory.

Having introduced the problem of state-variable

realization for linear, time-invariant dynamical systems

and discussed its implications, the specific problems consi

dered in the present thesis are stated in the next section.

1.2 STATEMENT OF THE PROBLEM

The work embodied in this thesis can be broadly

classified in three sections*.

1. St ate-variable realization of linear, time-

invariant dynamical systems,

2. State-space interpretation of some classical syn

thesis procedures, and

3. Multiport active RC network synthesis with a

minimum number of capacitors.
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Specifically, the following problems are considered

in this thesis I

(1) New algorithms are developed for obtaining minimal

reciprocal realization from a given symmetric transfer-

function matrix and symmetric impulse response matrix.The

algorithm for symmetric transfer-function matrix uses

Markov-parameters and gives a simpler procedure, whereas,

moments of the impulse response are used for the reciprocal

realization of impulse response matrix. The minimal reci

procal realization is useful for passive reciprocal net

work synthesis of symmetric positive real (SPR) immittance

matrices.

(2) In order to establish a link between state-variable

characterization and specifications in s domain, a state-

space interpretation of Foster multiport LC network

synthesis, Cauer driving point (dp) synthesis, and well-

known coefficient matching technique of active RC filter

design, is presented.

(3) An active RC multiport network synthesis procedure,

suitable for integrated circuit fabrication, is evolved.

Specifically, the proposed procedure is applied to the

synthesis of short-circuit admittance matrix, open-circuit

impedance matrix, and transfer-impedance matrix using

operational amplifiers.

(4) Given a symmetric positive real (SPR) immittance

matrix, a synthesis procedure, based on the preceding
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results, is stated for passive-reciprocal multi-port

realization using RCT(resistor, capacitor and Ideal

Transformer) network.

It is worthwhile to mention that some aspects of

these problems have been studied by many authors[89] ,

End . [115] , BS3 fD-S »E9g . [1511 , D-56J , Q.66] and some
results are available. The work reported in [85] and

Ql£] is concerned with the first problem where the mini

mal realization of a symmetric matrix is obtained by

modifying the well-known Ho-Kalman algorithmQj^] . The

procedures proposed in the present thesis reduces the

computations considerably by requiring Hankel matrices

of lower order.

The second problem i.e. state-space interpretation

has been considered in \jj, C 9U »t?S »B3 »DO »BT3 »

D-lSl »0-3$} where the classical synthesis procedures and

network properties have been revisited via state-space

characterization with a view to bridge the gap between

the synthesis procedures in s domain and state-space.

As regards the third problem, the procedures due to

Bickart and MelvinQ.8[],0f] ,Mann and Pike[96j , and. Huanggl

are available. But the upper bound on the number of active

elements required in these methods is quite large. In some

cases, the number of resistors required in the realization

is also more.
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The fourth problem i.e. passive reciprocal multi-

port synthesis has been investigated by Youla and

TissiQ.60] , Vongpanitlerd and Anderson Q.5Q] , D-5l[ and

Yarlagadda(j-56j using RLCT network. The proposed proced

ure in this thesis is for passive reciprocal multiport

RCT network and requires a minimum number of capacitors.

1.3 ORGANISATION OF THE THESIS

Having stated the problem in the preceding section,

the organization of the remaining part of the thesis is

given below.

In Chapter II, the problem of state-variable reali

zation of linear, time-invariant dynamical systems is

introduced. Having given some system theory preliminaries,

a historical rcviow of some selective litoraturo on minimal

realization methods of linear dynamical systems, state-

space interpretation of some well-known network properties

and synthesis procedures, general state-space passive

network synthesis based on reactance extraction technique,

and multiport active RC network synthesis procedures, is

presented. The well-known Ho-Kalman algorithmBd is ^-80

discussed because of its importance and use in the subse

quent work in this thesis.

The minimal reciprocal realization algorithms, for

symmetric transfer-function matrix, and symmetric

impulse response matrix using moments, are developed in

Chapter III. The use of moments of the impulse response
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is advantageous in the presence of noise. The proposed

procedures are simpler and computations are considerably

reduced as they require Hankel matrices of lower dimen

sions. Superiority of the realization techniques evolved

here in regard to simplicity and elegance is amply
illustrated with the help of suitable examples.

Chapter IV is devoted to seeking state-space inter

pretation of Foster multiport LC network synthesis,

Cauer driving point synthesis, and coefficient matching

technique for active RC second order filter design.

In Chapter V, new active RC multiport network

synthesis procedure, with a minimum number of capacitors

and suitable for integrated circuit fabrication, is

discussed. The proposed approach of active RC multiport

network synthesis is first outlined. Subsequently, the

synthesis, of short-circuit admittance matrix, open-circuit

impedance matrix, and transfer-impedance matrix using

operational amplifiers is considered. The proposed method

is illustrated with the help of suitable examples. Also,

based on the above approach, a passive reciprocal multiport
synthesis procedure using RCT network for SPR immittance

matrices is briefly described. Examples are given to illus
trate the procedure.

Chapter VI contains a summary of the results presented

in this thesis. Some suggestions, for further investigat
ions in this field which might lead to some interesting

results, have been included at the end of this chapter.
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CHAPTER II

REVIEW AND GENERAL CONSIDERATIONS

2.1 INTRODUCTION

The characterization of a real dynamical system
by a suitable mathematical model tfl considered to be

one of the most important and interesting problems in

the study of systems and networks. Once a mathematical
description is obtained, it can be used to optimize,
control or predict future behaviour of a physical process

The problem of determining a minimal state-model

from input-out or external description has received

considerable attention in the recent years as is eviden

ced by the abundance of technical papers^ 2] , Q.9J , \ji\ ,
C2il ,B2 .E45] , [46] f[JJ] fQiT] f and consequently a fairly
complete realization theory has been evolved.State-model
realization has assumed great importance in network the

ory also because of the modern trend of carrying out net

work synthesis via state-space [K[-[ll] , \J5\ , [85] , Q.04] ,
[108] , Q.35] , [151] . As the frequency domain methods may
still be preferred for linear, time-invariant systems
for many design problems, the interpretation of one des

cription from the other has also attracted the attention

of several authors and some well-known classical synthesis
methods have been re-examined in state-space termsQ 5] ,
C93 ,&<H ,[5a . DQ} ,C74] , C873 , [88] , D.33J . Recently,
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state-variable techniques have been exploited to develop

new active RC multiport network synthesis procedures

suitable for integrated circuit fabrication n.5] , P>9j ,

Dfl»C8a»Dil»Cl0ll»D-2CI»D-2a»El4lI. Also, state-

variable representation is most convenient for time-

varying and non-linear systems and networks[j|] , [86] ,

[103 , [108] , CL21] , [139 . D-4-5] .

This chapter surveys some selective literature on

minimal realization of linear, time-invariant dynamical

systems, and passive and active network synthesis proce

dures. The realization algorithm due to Ho-KalmanQjS]

is discussed in some detail because of its importance in

the subsequent work in this thesis.

2.2 STATE-VARIABLE DESCRIPTION OF LINEAR DYNAMICAL
SYSTEMS AND NETWORKS

A linear, time-invariant, multi-variable, finite-

dimensional dynamical system may be described in many

different ways. However, there are two standard forms in

which a precise definition can be given to the system.

The first is by means of input-output or external desc

ription and the second is by means of internal or state-

variable description. In the first case, the system is

characterized by a qxp rational transfer-function matrix,

G(s), which relates the Laplace transform of the input

p-vector U(s) to the Laplace transform of the output
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q-vector Y(s) through

Y(s) = G(s) U(a) >#g (2#1)

Another input-output description of the dynamical system

is by means of a qxp impulse response matrix

G(t) =[gi;j(t)] , i=l,2,...,q, j=l,2,...,p,

where €j_-j(t) is the impulse response between the jth
input terminal and the ith output terminal.

Thus G(s) or G(t) yield an external description

(input-output mapping) of a dynamical system.

In the case of state-variable representation,

the system is governed by the canonical state-space

equations of the form

x(t) = A x(t) + B u(t)

y(t) =Cx(t) +Du(t) •*• (2'2)

where the output q-vector y(t) and the input p-vector

u(t) are related via an abstract intermediate vector

variable, the state n vector x(t), which is a vector

function of time. The matrices A, B, C, and D are real

constant matrices of dimensions nxn, nxp, qxn and qxp

respectively.

It is easy to see that the transfer function

matrix G(s) is related to the state-variable descript

ion (2.2), by

G(s) = D+ C(sl - A)-1 B ... (2.3)
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It may be noted that while characterizing a system by

the equation (2.2), we have assumed that G(s) has no

pole at infinity, i.e. G(oo) is finite. In fact if

G(s) possesses a pole at infinity, the associated ,

state-space equations (2.2) have extra terms involving

the first derivative of the sources (i.e. u(t) terms

are present) ][9j[, QL4{] • As will be seen later, it is

sufficient in our work to assume that the canonical state-

space equations (2.2) applies.

It is clear that any quadruple {a,B,C,d} deter
mines a G(s) with G(oo) finite. The converse, however, is

not obvious immediately. It is known, however, [[2g] ,

C2€3 >[39 >E63] , D-3'D , [160] , that any G(s) does deter

mine an infinity of triples 'j A, B, C) such that (2.3)

holds with D = G(oo) . The methods of constructing the

triples are discussed in these references, the most

significant ones being the algorithm due to Ho-Kalman[56]>

which will be discussed later.

Definition 2.1

Any quadruple ]A,B,C,d} satisfying (2.3) is called

a realization of G(s); a realization for which A has

the smallest dimension is termed an irreducible or a

minimal realization.

The minimal dimension of A is the smallest dimen

sion of a state vector which is sufficient to describe

the dynamics of the system, and this dimension is called

the degree of G(s), denoted by 6[1j(s[] .
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The concept of degree has appeared in many publica
tions in the field of network and control theory and
various definitions to it have been given from time to

time &0,p.lig,B2jQiiegen defines the order of a net
work as the maximum number of natural frequencies obtained
by embedding the given network in an arbitrary passive
network. His order definition agrees with McMillan's

definition of the degree which denotes the minimum number

of reactive elements required in any passive synthesis

of a positive real impedance matrix Z(s). Kalman[65] has
shown that these other definitions are the same as that of

definition 2.1, provided that poles at infinity are pro
perly accounted for.

Several important properties of minimal realizations
may be noted as follows:

(i) Minimal realizations are determined by G(s) uniquely
to within arbitrary state-space co-ordinate transformat

ions. In other words, if {a, B, C, D> is a minimal real

ization, all possible equivalent minimal realizations are
given by, Q5fJ,

A=T^ATo, B=t;1B, 8=CTo, D=D ... (2.4)

where TQ ranges over all non-singular constant matrices.

Equations (2.4) result from the change of state-space
basis x = Tox,' for a given non-minimal realization, others
are generated by an arbitrary non-singular matrix T in
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(2.4); however not all non-minimal realizations can be
so generated [j}.

(ii) The dimension of a minimal realization of a trans
fer function G(s) is called the degree, 6[>(sQ, of G(s)>
and is related to the minimal number of energy-storage
or reactive elements in any passive network synthesis of
a realizable matrix G(s) .

(Hi) If (A, B, C, D] is minimal, the realization is
completely controllable and observable[63], which means,
that

rank[B, IB, A2B, ..., l?'1^ «rankfc », A'»0»,';.. .t (Jp~l) c[]
= n ... (2.5)

tfhere Ais nxn and prime denotes matrix transposition.

It is clear, on observing property (i), that the

properties of controllability and observability are '

independent of the particular choice of basis in the
state-space.

It may bo noted that the matrix sequence

[p', A'C',..., (A ~ )'Cj is known as an observability
matrix £9?] , [l09] , which will be used in Chapter IV as
a non-singular canonical transformation matrix.

In the next section, a historical review of vari

ous minimal realizations methods and network synthesis
procedures is outlined.
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2.3 REVIEW

In this section, a historical development,of

various minimal realization algorithms, state-space

passive, and active synthesis methods and state-space

interpretation of some classical synthesis procedures,

is briefly discussed.

2.3.1 Historical Review of Minimal Realization Methods

The problem of deriving a minimal realization of

a linear dynamical system was first introduced by

Kalman[j53] in 1963, who gave an algorithm for determin

ing a triple of matrices {A, B, C}, which describes the

system behaviour in the usual state-space, from the

knowledge of any other given characterization. At the same

t±o#jGilbert [42 also gave a method for computing state-

variable differential equations from a transfer-function

matrix. Both the above methods heavily rely on the dual

concepts of controllability and observability. In 1965,

Kalman, employing the classical theory of elementary

divisors and the language of modules, proposed a new

algorithm for constructing the state-equations from a

given transfer-function matrix having multiple poles[65J .

This algorithm exhibits the canonical form, under equi

valence, of a rectangular polynomial matrix [4^] . Based

on Kalman's approach\jS§j , a minimal realization method

was suggested by Raju[ll9j . He obtains the order of the
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system and the state matrix A by following the method

of D>U, and the matrices B and C are obtained by draw

ing signal flow graph. In 1965, Ho and Kalman[JS] , based

on the study of Markov parameters[4-5] , evolved an irred

ucible realization algorithm, which is considered to be

one of the most useful and computationally simpler one.

The impulse response data of the system, which is assumed

to have zero initial state, can be given in the time or

the s-domain in the form of Markov parameters. Ho and

Kalman algorithm hinges on "the generalized Hankel matrix"

constructed from the Markov parameters. An interesting

procedure, for computing a state-variable model, in the

canonical form of Bucy[2 3]., from the given matrix of

impulse response sequences of a finite-dimensional dis

crete-time linear constant dynamical system, was proposed

by Ackermann and BucyQQ in 1971. The construction is an

alternate to the Ho-Kalman algorithm[56] in which two

transformation matrices P and Q must be found. Since P

and Q in Q5&] are not unique, the realization obtained

by Ho and Kalman is not in any special canonical form.

Albert son and WomackQT] also gave an algorithm for comput

ing the dimension of and constructing irreducible realiza

tion of a prescribed system transfer-function. Their

procedure is simple and provides more insight into the

physical significance of the problem. In 1969, Gopinath[45]

suggested a new method for computing the parameters which

determine the differential equations governing a linear
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time-invariant multivariable system. Unlike earlier

approaches, this method [43 does not involve cotiiputation

of the impulse response. One of the main advantages of

the method[45] is its easy generalization to the case

when the given data is contaminated with noise. Based on

Gopinath approaches , a direct procedure for obtaining

a minimal realization from input-output observations was

presented by Budinj^H which improves the computational
requirements. One of the important by-products of this
procedure is a well-defined structure for the realiza
tion. In 1969, Wolovich and Falb[l54] stated and proved

a structure theorem for time-invariant multivariable

linear systems, which is then applied to obtain an algori
thm analogous to that of Mayne[97] for solving the problem
of realization. Another interesting method for the deter

mination of state-space representation for linear multi-

variable systems has been given by WolovichQ.52 •
Bruni et al.Ql] also proposed a realization method based
on the moments of the impulse response matrix. Although,

this procedure^!] utilizes the Ho-Kalman algorithm[3£] »
but the Hankel matrix in this case is constructed from

the moments in place of Markov parameters. As discussed

in r&fj, in the presence of noise, computation of moments
is preferable to that of Markov parameters which are the
local time-derivatives of the impulse response matrix.A

new method for realizing a rational transfer-function

matrix into an irreducible Jordan canonical form state-

equation was presented by Kuo[80]. Youla and Tissi[l60| ,
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and Silverman[l3Tl , also gave procedures, based on the

Hankel matrices, to obtain minimal realizations from

input-output data. Recently, an interesting irreducible

realization algorithm was proposed by Chen and Mital££<3 .

The procedure is a simplification of the methods based

on Hankel matrices]3£I , [137] , [l6£) . Compared with the

existing methods, this algorithm^?] uses Hankel matrices

of smaller order thereby reducing significantly the com

puting time and memory storage required.

Apart from the above procedures of direct computa

tion of minimal realizations from input-output descript

ion, there are some other methods which are based upon

the reduction of sub-optimal realizations to minimal ones,

e.g. Bfl'Btl'O-2!!-

During recent years, the minimal partial realiza

tion problem of multivariable linear constant dynamical

system when only finite input-output data is available,

has been studied by Kalman[jpf] ,TetherQl42 , Ackermann[[l] ,

and Dickinson et a.l.\j>&] .

Recently minimal reciprocal realization from

symmetric transfer-function matrix and impulse response

matrix have been obtained by Lai and SinghQ39[] ,Lal et al.

[83j, Puri and TakedaQ.16] . Essentially, the methods[8?] ,
Q.1S] are the modifications of Ho-Kalman algorithmJ39 •
These realizations are important in passive network

synthesis as they result in reciprocal networks.

It is worthwhile to mention that the discrete case
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is analogous to the continuous one and the methods of

continuous time solutions are equally applicable to the

theory of discrete time minimum realizations.

In the next section the minima]- realization algori

thm due to Ho-Kalman[jjS] is given.

2.3.2 The Ho and Kalman Algorithm

Here we discuss briefly the well-known Ho-Kalman

algorithm[56] to obtain a minimal realization of a linear

constant dynamical system from its input-output specifica

tions given in the form of Markov-parameters[4-2] . The

realization problem can be stated as follows!

"Given a sequence of qxp constant matrices, Y,(Markov

parameters), k=0,l,2,..., find a triple {a, B, 0\ of cons

tant matrices such that

Yv = C Ak B k=0,l,2,... •'.
K ... (2.6)

The sequence Y, has a finite dimensional realization

if and only if there is an integer r and constants

vo' vl'***'vr~l suck that

Yr+j =X Vi Yr+j-i for a11 J>° ••• (2'7)

where the degree r of the annihilating polynomial[42] of

^min is assumed- to be known. Later, a method to determine

r is also given. Now, wo describe the procedure of cons

tructing a minimal realization.

The algorithm begins by generating the rxr block

matrix (Generalized Hankel matrix) built out of the
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Sr =

|Yo Yl
!Y1 Y2
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Y
r-1

• • • • .1.

Yr-1 Yr Y2r-2

"l

Y
i+0-2 (2.8)

If Yk has a finite dimensional realization, then

nQ = rank S^ .

The following steps yield an irreducible realiza

tion.

Step I Generate the matrix S .

Step II Find non-singular matrices P and Q such that

P Sp Q = "n

L
o

0 j

6 I
= j ... (2.9)

where I is an nxn unit matrix, n = rank S , and J is

an idempotent.

Step III Let Ert be the block matrix [i 0 ,.. ., 0 ~|
q u q q ' ' q-1

and let ulh denote the operator which picks out upper

left-hand block. Then a minimal realization of

given by

A= ulhQ J P (t Sp) Qj] ,

B = ulhC J P S B« ] ,
r p

and C= ulh[] Eq Sp Qj] ,

Yk is

... (2.10a)

... (2.10b)

... (2.10c)
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where x is a constant and

Yl Y2
! Y. Y.

r+1

x S ... (2.11)

Y. I
r+1 * * L2r-1

The procedure described above makes only one assumption,

namely a knowledge of the integer r. In order to deter

mine r, it is given the values 1,2,...,etc. . For each

value of r, the rank of Sr is determined. That value of

r is chosen, when

rank S. rank S,
r — r+1 *

In the next section, the state-space interpretation

of well-known network properties and classical synthesis

procedures is briefly reviewed.

2.3.3 State-Space Interpretation

As mentioned earlier, the state-variable techniques

have recently emerged as a powerful tool in the field of

modern network and control theory. However, the importance

of frequency domain methods can not be disparaged because

of their applications in the majority of design problems

of linear, time-invariant dynamical systems and networks.

Therefore, it is quite important to establish communica

tion links between the state-variable characterization

and the input-output description of networks. Some endea

vours have already been made in this direction. The
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state-space interpretation of the common terms such as

poles and zeros etc. has been given by Brocket[[20] .

KuhQ^J also derived the similar expressions for the

poles and zeros by signal flow graph representation of

the state-space description of linear systems. Techniques

for evaluating the poles and zeros of a scalar transfer-

function from the state-equations of the systems were

developed by Sandberg and SoQ.32] .Further, Anderson and

Brocket[9] gave a state-space interpretation of multiport

Darlington synthesis. The positive realness of a matrix

QCI » and determination of an impedance function from

its even[88] , [113] , and oddQ.14] parts have also been

investigated from state-space point of view. Recently,

Lai and Singh[87n have derived some well-known properties

of LC and RC networks etc. in state-space terms and have

also given the state-space interpretation of classical

Foster and Cauer synthesis procedures.

The state-space interpretation of Foster synthesis

method for driving point immittance function of LC net

work has been given by Puri and Takeda(j-15] , and Jain|59].

Puri and TakedafjLlf] realize the LC Foster canonical net

work by finding the residues associated with the partial

fraction expansion of the lossless network function to

be synthesized in terms of the Markov-parameters which

are deduced from a knowledge of the {A, b, c} matrices in

the state-space formulation. On the other hand, JainQ>9U

usee non-singular observability matrix{9^} as a
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transformation for a canonical state-model representa

tion of the Foster network which is then compared with

a similar canonical state model written directly in

terms of the coefficients of the network function. Thus

the element values are determined, via state-space

characterization, in terms of the coefficients of the

network function to bo synthesized.

The notions of passivity and reciprocity useful

for state-space passive synthesis are briefly discussed

next.

Passivity Criterion

The interpretation of the positive real const

raint — usually viewed as a frequency domain constraint-

in terms of a state-space realization of a prescribed

positive real matrix was given by AndersonQ5J and is

generally known as passivity criterion or Anderson's

system theory criterion, or Anderson's positive real

lemma, which is stated as follows'.

Lemma 2.1

Let Z(s) be a matrix of rational functions such

that Z(co) is finite and Z(s) has poles which lie in

Re s -0, or are simple on Re s = 0, and I A, B, C, D)-

be a minimal realization of Z(s). Then Z(s) is posi

tive real if and only if there exists a symmetric posi

tive definite matrix P. and real matrices W and L

such that
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PA + A'P = -L'L

PB = C'-L1 ¥Q ,

W' Wrt = D +D1
o o

i ... (2.12)

and there exists a matrix W(s) , unique to within left

multiplication by a constant orthogonal matrix such that

Z(s) + Z'(-s) = W'(-s) ¥(s). ... (2.13)

W(s) is found by using a lemma on spectral factoriza

tion, due to YoulaQ.0] .

Reciprocity Criterion

The following theorem duo to Yarlagadda[l56j con

cerning reciprocity is stated below.

THEOREM 2.1 Let Z(s) be an pxp matrix of real

rational transfer-functions with Z(co) finite, and let

Z(s) possesses a state-model of the form

X - A X + B U ,
... (2.14)

Y • C X + D U ,

such that

(I +I)M1 = M{(I +1) ... (2-15)

where I is an unit matrix, £ is an unique diagonal matrix

of +l's, + denotes direct sum, and

Mx =
D C

B A
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if and only if

Z(s) = Z'(-s)

It may be noted that it is rather difficult

to satisfy both passivity and reciprocity conditions

simultaneously. However, it has been shown in [75] that

all reciprocal realizations for RL and RC impedance

matrices are passive.

2.3.4 General Passive Network Synthesis

In this section, we review an interesting app

roach to passive network synthesis using state-variable

technique based on the reactance extraction principle.

The concept of reactance extraction method was first

introduced by Youla and TissiQ.60] and extended further

in CQ1> M t Dfl f.Q0fl •

Consider the synthesis of p-port passive network

from, its multiport description, say an admittance

matrix 'Y(s) . Y(s) being the short-circuit admittance

matrix of a passive network will be a positive real

one. Further, we can assume Y(s) to be regular at s = oo.

If it is not so, we can split the given positive real

Y(s) matrix which can have at most one pole at

s = oo , as

Y(s) = 8 DQ + Yx(s) ... (2.16)

where Qc] is non-negative definite symmetric matrix,

and Y1(s) is rational positive real with Y1(oo) <co .Now
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Y(s) can be realized as the parallel connection of

transformer -coupled capacitors and a network having an

admittance matrix Y-L(s). Thus the assumption that Y(s)

is regular at infinity will involve no loss in general

ity. Now wo can obtain a minimal realization {A, B, C, Dj

associated with Y(s) using Ho-Kalman algorithm such that

Y(s) = D + C(sI-A)*1B ... (2.17)

and A has the smallest dimension equal to the degree of

the matrix Y(s). Since the realization is minimal, the

number of reactive elements needed for any network realiz

ing Y(s), and also the number of integrators needed for

analog computer simultation of Y(s), will be minimum.

Let us assume that the multiport network realizing

Y(s) matrix contains capacitors (C), resistors (R),

ideal transformers (T), gyrators(f), and inductors (L).

Since an inductor can always be replaced by a gyrator

loaded by a capacitor, we can assume without loss in genera

lity that there will not be any inductor in the network

realization. Also, as the value of a capactor can be

increased or decreased by terminating it in an ideal

transformer, it can be assumed that all the capacitors

are of unit magnitude. Further, we know that a minimum

of n reactive elements (where n • c-Qy(s)2]} is. needed
for any realization for Y(s) and n dynamic elements are

enough if there is no degeneration in the network. Hence

we can assume that there will be n capacitors in the

network realizing Y(s). Thus, it is concluded that, if a
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realization is possible for Y(s) using R, C, T, and

L, then yet another realization for Y(s) can be found

using R, C, T and only with the minimum possible capac

itors (n) of unit value.

Now we can consider the network N realizing Y(s) to

consist of a (p+n) port network Nr of resistors, trans

formers and gyrators, loaded by another n-port subnetwork

Nc of n capacitors as shown in Fig.2.1. The network Nr is

frequency independent or non-dynamic and its (p+n) port

admittance matrix G is a positive real matrix with all

entries real.

If we partition G with respect to the first.p-ports,

we have,

S =
Gll G12

G21 G22

The p-port admittance matrix Y(s) of N in terms of the

sub-matrices of G is given by

-1 _
Y(s) = txl - Gl2(sln + G22) G21 ... (2.18)

Comparing (2.18) with (2.17), it is clear that any quadr

uple {A, B, C, Df realizing Y(s) can bo identified with

the matrices [~\v -\v \2> \l }• Furtlier» as we noted
earlier, given any minimal realization I A, B, C, Dj , we

can get innumerable equivalent realizations given by

rT-lA T t~1b, C T , D> where T is a non-singular arbi-
"00 o o } o

trary matrix. From this we can easily infer that a realiza

tion for Y(s) is possible if we are able to obtain a
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FIG.21- A REALIZATION SCHEME FOR Y(s) USING n-CAPACITORS.
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quadruple {t^A Tq, T^B, CTq, d) which when identified
with the corresponding submatrices of G, gives a positive

real matrix G. It has been shown " 8^] that once a decomp

osition (A, B, C, D] is obtained for a given positive real

matrix Y(s), a non-singular matrix TQ can be found out so

that the ma,trix

I D C
G =

o

-T^B -T""1a T
o oo

is positive real.

Once G" is obtained, the network realizing Y(s) is

obtained by realizing G with a (p+n) port network Np of

resistors, gyrators, and ideal transformers, and then load

ing the last n-ports of Nr by capacitors of unit value.

2.3.5 Multiport Active RC Network Synthesis

Active RC network synthesis has experienced a tremend

ous growth in the last two decades for essentially two rea

sons. First, active RC networks are particularly suitable

for low frequency applications where inductors and crystals

are not satisfactory. Secondly, the availability of small,

reliable, precise resistors, capacitors and transistors

make these networks attractive for micro-circuit applica

tions. In the following, the historical development of some

active RC multiport network synthesis procedures is briefly
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discussed.

Synthesis of active RC networks from their multiport

description, i.e., from a given matrix of real rational

functions of the complex frequency variable s, has attracted

the attention of many research workers since 1961, when

SandbergQL3l] proposed a method to realize a p-port active

RC network from its short-circuit admittance matrix Y(s)

description. He established the fact that a realization

using p-controlled sources is possible.Subsequently,

Sandberg[l32~] , also showed that a realization using p negat

ive converters (NIC) is possible. Since then many papers

have appeared in the technical literature. Barranger{jL5] has

given u method to realize a given rational function matrix as

the voltage transfer function matrix of an active RC network

using current negative immittance converters. Hazony and

Joseph Q>2] suggested procedures to synthesize transfer

matrices of active RC networks. Joseph and HilbermanpQ have

dealt with the synthesis of immittance matrices of active RC

networks. Subsequently, Hilberman[54] advanced a method for

the realization of active RC multiports with common ground

from given rational transfer and admittance matrices, and

using unity gain voltage amplifiers. MitraQLOl] has dealt

with the synthesis of voltage transfer function matrices

using operational amplifiers. A method for the synthesis of

arbitrary transfer function matrix using RC one port

and operational amplifiers was given by BhattacharyaQ.7] .

Procedures for realizing admittance matrices of active RC
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multiports using voltage controlled voltage sources have

been given by Even[39] , Goldman and Ghausi[48] , and

Hilberman[j>5] . The synthesis technique developed by Goldman

and Ghausi{j4-8] requires not more than 2 p common-ground

voltage-controlled voltage sources, of which p have differen

tial outputs and p have positive gains. The significance of

this technique derives from the fact that an active sub

network of common-ground voltage-controlled voltage sources

is easily implemented. A bound on the number of operational

amplifiers required to synthesize active RC networks from

the voltage transfer matrix description was given by Kim

and Su[j£] . Recently, Yarlagadda and Ye £158] f Ramamoorthy

et al.[l22] gave methods to realize short-circuit admittance

matrices by active RC multiports using nullator-norator

pairs with a common end as the active elements.

All the above papers with the exception of Q>2 and

Q.5S3 either (a) deal with a restricted class of rational

functions or (b) use active elements that are not readily

available, or (c) require the use of excessive number of

capacitors with possibly some of them floating.

Mann and Pike(96] have shown that, by using the state-

space techniques and the reactance extraction principle, it

is possible to realize active RC networks using a minimum

number of capacitors having their one end common and ground

ed, a desirable feature for integrated circuit fabrication.

Subsequently,Melvin and Bickart[98] elaborated this appro

ach and gave an interesting method to realize active RC

network from its short-circuit admittance matrix
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description. Later, they pL8] extended their results to the

synthesis of multiport active RC networks from other types

of descriptions such as voltage gain matrix, current gain

matrix, impedance matrix etc. Based on the approach of [98],

a synthesis procedure to realize a voltage transfer matrix

using operational amplifiers was suggested by Ramamoorthy

et al.[l23j. Huang [Jl] also gave a method to realize a trans

fer-admittance matrix of a p-port active RC network using a

Hamiltonian state-space model. Recently, Lai and Khanjj3l]

proposed a synthesis procedure, for a short-circuit admitt

ance matrix Y(s) when Y(oo ) is either hyperdominant or has

all non-negative entries, which reduces the upper bound on

the number of active elements and can be reasonably expected

to require fewer resistors while retaining all the advantages

of [51.

2.4 CONCLUSION

It is obvious that there is plenty of literature

available on state-variable realization techniques. The

available information or input-output data, from which an

irreducible realization is to be derived, may be in the form

of a rational transfer-function matrix, impulse response

matrix, Markov parameters, or moments of the impulse res

ponse." Recently, there have been several attempts to find

minimal reciprocal realization from the given symmetric

transfer-function matrix and impulse response matrix. The

existing methods need further modifications, which may imp

rove the computational requirements. Although a fairly
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complete theory of realization of linear dynamical systems

is available, state-space synthesis procedures for active

and passive networks are still being developed.

The following chapters deal with some new techniques

of minimal reciprocal realization of linear time-invariant

dynamical systems, state-space interpretation of some

classical synthesis methods, and development of new synth

esis procedures for multiport active RC and passive reci

procal networks with a minimum number of capacitors.
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CHAPTSE-III

MINIMAL RECIPROCAL REALIZATION OF LINEAR

TIME-INVARIANT DYNAMICAL SYSTEMS

3.1 INTRODUCTION

In the past decade, there has been considerable

interest in the problem of computing minimal (or irreduci

ble) realizations of real finite dimensional linear time-

invariant dynamical systems from their input-output speci

fications in the form of either rational transfer-function

matrices, or impulse response matrices. This problem, being

one of the basic problems in linear system theory, was

first introduced by Gilbert [42 and Kalman |J5 3] in 1963, and

it is still an interesting area of research both for theo

retical implications and for the role the state-space

representation plays in the development of unitary and

efficient algorithms for analysis and synthesis purposes [l37] .
Specially, such a realization is useful in analog computer

simulation [?§] , operational amplifier circuit synthesis[lof],
filtering and system identification[66] . Another important

advantage of the realization theory is that it provides

a better insight into the relationship between input-output

and the state-models of the dynamical systems. In this

chapter, some new and simplified algorithms have been devel

oped for obtaining minimal reciprocal realizations from a

given symmetric transfer-function matrix and impulse response

matrix. The attractive feature of the proposed methods is
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that computations are considerably reduced, as they require

Hankel matrices of smaller order.

3.2 MINIMAL RECIPROCAL REALIZATION FROM A GIVEN
SYMMETRIC TRANSFER FUNCTION MATRIX

The minimal realization problem,as mentioned earlier,

has been extensively considered in recent years. Various

techniques have been evolved,Qfj, BO »B§3 »BS »B3 -B2 »
BCi »D€ »B2 • H26H »13-571, [153 »D-60| , for determining
minimal realization {a, B, C} such that

C exp(At) B = G(t) ... (3.1a)

CQsI - g"1B =Q(s) ... (3-lb)

where G(t) is the impulse response matrix of a linear time-

invariant finite dimensional strictly proper system, and

G(s) is its Laplace transform.

Out of the above methods for determining minimal

realization, those based on Hankel matrices are most suit

able for computerization's, [137], Q-60]'• However, the

order of the Hankel matrices required in these methods, are

sometimes unnecessarily large. Recently, Chen and MitalBC
proposed a simplification of the methods based on Hankel

matrices. Compared with the existing methods, their algori-

thm[5<0 uses Hankel matrices of smaller order and thus the
computing time and memory storage required are reduced

s ignif ic antly.

Chen and Mittal determine a minimal realization

{A, B, C, D} from a qxp rational transfer-function
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matrix G(s) by first determining the matrices Q and Q

each of order a x 8, defined as

a4

ind

- A
fi =

!Hn (*l#Pl) H]_2(a1,p2) E^iav^ )
E2l(a2,^1) H22(a2,62) ; H2p(a2,B )

. . .

H11(a1,61)

H2l(a2,B-L)

Hl2(al'P2> Slp(al'Pp)
H22(a2,62) ^2p^a2'Pp^

Hql(aq'Pl} WP2> VVV

... (3.2)

... (3.3)

where H. .(a. ,p.) is the Hankel matrix constructed from

Markov parameters of g. .(s); G(s) = Qg. .(s)[3» a^ denotes

the degree of the least common denominator of tho ith row

of G(s)J (3. denotes the degree of the least common deno-

minator of the jth column of G(s), and

Q

« = 2 ai
i=l

P

and B = J 6
j=l

... (3.4)

is obtained from H. . (a. , B.+l) by deleting the first

column. Then, according to the algorithri[29] , an irreducible

realization of G(s) is given by
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A=pn Bf Q^ j
B - P„ ¥ , .

n K ... (3.5)
C= Z0^ |
D = G(oo)

where P is the matrix consisting of the first n rows of

the P matrix and 0^ is the matrix consisting of the first
n columns of the Q matrix, n being the rank of the Q matrix.

The non-singular matrices P and Q are obtained by

using elementary transformations on matrix Q such that

Xn : A| ... (3.6)

where

P Q Q =
So : o

I an nxn unit matrix

A an nx(B-n) arbitrary matrix

W4 Q (by setting p±=l, i=l,2,...,p) ... (3.7a)
Z= Q (by setting a.=l, j=l,2,...,q) ... (3.7b)

The order of the matrices Wand Z are axp and qxp

respectively.

Determination of P and Qfor a particular Q satisfying

eqn.(3.6) is a well-known problem in matrix algebra. For a
given Q, there can result innumerous P's and Q's such
that eon.(3.6) is satisfied. Each set of P and Qwill give

a different realization [A, B, P) .

In many problems, the given transfer-function matrix

G(s) is symmetric and we are interested in finding a

realization {A, B, C, d} such that

(I +X)Mi is symmetric. ••• (3.8)
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where 7, is the number of +l's on the diagonal matrix,

7 is the number of -l's on the diagonal matrix,and
s
+ denotes direct sum.

The importance of such realization is due to the fact

that they result in reciprocal networks and further it has

been proved in Qg,Q.6<3 that all reciprocal realizations

for RC and RL cases are passive. Hence, in the following, by

exploiting the symmetry of the given rational matrix, the
algorithm of Chen and MitalBS is modified in order to det
ermine such P and Qas further result in {_A, B, 0, D> satis

fying (3.8) .

Since the given transfer--function matrix G(s) is symm

etric having order pxp, the matrices Q and Q each of order

axa obtained by using (3.2) and (3.3) will obviously be symm

etric, and

P P

a = 7 a = 7 p. for symmetric G(s) ... (3.9)
i"l X j=l °

where a± denotes the degree of the least common denominator
of the ith row or column of G(s).

Therefore, a non-singular transformation P can always

be found by the well-known technique in matrix algebra[53 ,
such that

P QP' . (I + 0) , ••• (3'10)

the order of T being equal to the rajak of a matrix and

prime denotes matrix transposition.
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Multiplying both sides of (3.10) by ( 7 + o), we get

P S3 P' I = (In + 0) J ... (3.11)

where J is an idempotent.

Therefore, from (3.5), (3.6) and (3.11), the minimal

realization for symmetric transfer-function matrix G(s)

becomes

A

B

C

D = G(oo)

pn * Pn I
Pn W

wp» 5
n —

... (3.12)

It is obvious that the realization so obtained will

satisfy (3.8), and hence will result in reciprocal networks.

The versatility of the procedure is demonstrated with the

help of examples.

Example. 3.1,lj-28f

Consider a symmetric transfer-function matrix

1r 1

G(s) = j
S2

1
s3

Obviously,

D= G(oo) = jToH .

Here, a-, = 2, ctp = 3 and so a = 5,

and thus ft is of order 5x5 and is given by,
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j 1 0 . 0 l
0

0 o : i 0 o

0 i : o 0 1

1 o : o
•

0

0 o : i 0 o

having rank n as 3.

Since Q is symmetric, it can always be decomposed in the

form (3.10). For the present example, we can get

and

P =

y
L

J =

Furt he r

n

W =

1 0 0 0

0 1/2 1/2 0

0 1/2 1/2 0

0 -1 0 0

1 0 0 1

1 0 0

0 1 0
f

0 0 -1

1
•

0

0 0

o !

1/2

-3/2

1

°J

10 0 0 0

0 1/2 1/2 0 1/2

0 1/2 1/2 0 -3/2

1 0

0 1

0 0

1 0

0 1



and

B =

-41

0 0 1 0 o]

0 0 0 0 0

1 0 0 1 o
1

0 0 1 0 0 '
1

0 0 0 0 0 i

Using (3.12), we get

0 1/2 -1/2j
1/2 0 0

1/2 0 0

B =

and

D •

1

0

0

1

0

0

1

-1

0

1

J

0

1

[o].
Therefore, we get

0 0 1 0 •I
D C|

0 0 0 1 1 ;

j

JB AJ " 1 0 0 1/2 -0/2-

0 1 1/2 0 0

0 -1 1/2 0 0

It can be seen that (3.8) is satisfied.

In the example considered above, the order of the mat

rices Q and 5 is 5x5 as against 6x6 required in the technique

given in [56] or [89] .
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Example 3.2

Given a symmetric matrix G(s) of order 3x3 as

He) =

Obviously,

2s+3
s+1

_. s n
s+1

s+2

s+1

s

s+1

3s+4
s+1

s+2

s+1

+: fcjs

s+i

s+l/2 2s+3 !
s+l" s+1 !

D = G(co) =

2

1

1

1

3

1

1

1 j
2 I

Therefore,

G1(s) = G(s) - G(co)

1
s+1

-1
s+1

1

s+1

-1

s+1

1
s+1

-1/2
s+1

1 i
s+1 I

=1/2 |
s+1

1
i+i f

Here, a-, = B-, = 1

a2 = B2 = 1

a3 = P3 = 1

Therefore, a = 0 = 3

and thus matrices a and Q of order 3x3 are given by

, 1

Q =

1 -1

-1 1 -1/2j

1 -1/2 1 !
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a =

1:
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1 1 -1

1 -1 1/2

1 1/2 -1

Q having rank n as 3.

Since fi is symmetric, it can always be decomposed

in the form (3.10). For the present example, one can get

P =

L -

r

i 1

1°
2

0

1

1

o

1

-1

Obtaining P from P, and ¥ from B simply as stated

in the procedure, and substituting in (3.12), we get

A =

B =

C =

1 0 0

0 -1 0

0 0 -1

1 -1 1 1
0 1/2 1/2

0 -1/2 1/2]
—-

1 0 0

1 1/2 1/2

1 1/2 -1/2



D =

Therefore,

D

B

0
i

A

2 11

13 1

112
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2 1 1 : ~i 0 0

1 3 1 : -l 1/2 1/2

1 1 2 ; i 1/2 -1/2

1 -1 1 | -i 0 0

0 1/2 1/2; 0 -1 0

0 -1/2 I/2! 0 0 -1

It can be seen that (3.8) is satisfied.

It may be noted that for the above example, the

order of the Hank£l matrix required in [5CI or C82 is

9x9, while the order of the matrices B and B used here

is 3x3 only. Since tho memory required and the number

of operations depend upon the number of entries in

the matrices, the proposed method will significantly

reduce the computing time and memory storage required for

many examples. Further, additional labour of finding in

verse of matrices as required in Q.60, Eqn.I-2§] is

avoided.

In the next section, minimal reciprocal realization

from a given symmetric impulse response matrix using

moments is considered.
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3.3 MINIMAL RECIPROCAL REALIZATION FROM A GIVEN
SYMMETRIC IMPULSE RESPONSE MATRIX USING MOMENTS

In recent years, some interest has been generated in

constructing a minimal realization from a given symmetric

rational matrix [89] , Q-lS] . Such a realization was obtain

ed in [89] by modifying the technique given by Ho-Kalman

and was required to determine Markov parameters as a first

step of the algorithm. Puri and TakedaQLlS] obtain such a

realization by exploiting the method given by Bruni et al.

[2±\ , and thus used moments of the impulse response matrix

instead of Markov-parameters for the purpose because of

their preference in the presence of noise, as discussed in

|_2lj . Both [89] and [ll6| require determining the Hankel

matrix, the former from Markov-parameters and the latter

from moments.

Recently it has been shown by Chen end Mital[29] that

the order of the Hankel matrix required in [5<7] can be

reduced considerably, and thus the computing time and memory

storage required are reduced. Based on their algorithm, a

method for determining the minimal reciprocal realization

from a given symmetric transfer-function matrix has been

developed in the preceding section. In the following, a

simplified algorithm for computing an irreducible reciprocal

realization from a given symmetric impulse response matrix,

G(t), using moments is presented.

The procedure for the minimal realization of a given

symmetric transfer-function matrix G(s) discussed in Q.l£]
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requires determining moments by first expanding G(s) in a

positive power series according to

op ,
G(s) = I C sk . ... (3.13)

k=o

This series converges in a suitable neighbourhood of the

origin, .and it can be analytically continued on the whole

plane except for the singularities of G(s)[2l). Consequently,

the sequence {cj identifies uniquely the G(s). Each C
is uniquely connected to the corresponding moments of the

impulse response matrix (G(t) = [^(t)]} by the relation, QJ]
k

Mk = (-1) k|C, ... (3.14)

where

r00 k
Mk = f t {g±i(t)} dt, k=0,l,2,..., .

0 J ... (3.15)

Since G(t) is symmetric, its moments are also symmet

ric as is clear from (3.14) and (3.15). Then the Hankel

matrix B constructed from the moments will also be symmetric.

Therefore, a nonsingular transformation matrix P can again

be found such that (3.10) is satisfied. The procedure of

the previous Section (3.2) can then be applied without any

modification to the Hankel matrix constructed from Mf in

place of Markov parameters, where [2lJ

Mk =7^7Mk-l i k=0,1,2, (3.I6)
(k-1)

and M* = CG(t)Jt=o =lin s G(s) ... (3.17)
t -, oo
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The quantities thus introduced are connected with the

matrices A, B, C according to the relation

M* = C A"k B, k = 0,1,2, (3.I8)

Then, in light of the methods given in [2lj , [82] and [ll5] ,

the minimal realization from a symmetric impulse response

matrix becomes, [83] ,

A'1 - RnQ P' I

B =Pn W ... (3.19)
C = ¥«P^ 7

D = G(oo)

where Pn is the matrix consisting of the first n rows of

the P matrix, n being the rank of the B matrix.

The steps for the proposed algorithm are as follows*.

I. Calculate M* for the given G(t) using (3.14) to (3.17).

II. Determine a± and 6-, as defined in (3.9).

III. Construct symmetric matrices B and B of each of order

a x a from M* , as given by (3.2) and (3.3).

IV. Decompose B in the form (3.10) as discussed in the

preceding section.

V. Obtain Pn from P, and W from B using (3.7a).

VI. Determine jA, B, c} using (3.19).

It is obvious that this realization also satisfies

(3.8). At the end of the calculations, it is necessary, of

course, to invert the matrix A~ to obtain A. For reciprocal

RC and RL networks, G(t) will be asymptotically stable, and
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from [21] , A is then non-singular.

The following example illustrates the procedure.

Example 3.3

Consider the asymptotically stable impulse response
matrix

G(t) =

-t -t
e e

*-* + -te te

(i) Mk for the entries of first row and first column of
G(t) are

«*•M0 =1, Mj =-1, Mf =1, M* =-1, M* =1, Mf =-1,...
and for the entry te_t of G(t),

»T*M* = 0, MJ = -1, Mf = 2, N> = -3, M* . 4, M* = -5,.
4

(ii) Aprocedure for determining a± and p.directly from
the impulse response matrix is suggested below-

Construct a mode matrix M of G(t) as

M =

1

1 (1)

It may be noted that the entries in the mode matrix M

correspond to the distinct poles of G(s) and their multipli

cities; the entries such as (l)2 etc. correspond to t e_t
or a double pole at s - 1. Reduce M to Mp by row combination
or Mc by column combination Q|.
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Here M. = M = !
- (1)

2 (since for symmetric M, M = M )
L

giving a1 = Bjl = 1 and a2 = 62 = 2, thus a = p = 3.

(iii) Symmetric matrices B and B of order 3x3 constructed

from M* are given by

B =

1 1 -1

1 0 -1

1 -1 2

-1 -1 1

, and B =
-1 -1 2 .

i 1 2 -3

B having rank n as 3.

(iv) For the present example, we can get

p =

1

1

-1

0

0

1

o ,
I

1

0 !

and

(v) P = P (in this case), and

W
1

1

1

0

-11

-1

(vi) From (3.19), we get the minimal realization

I -l

A"1.

c =

0

0

1

1

0

-2

1

0

0

0 i

•i!

0

0

and D =

1

o ;

1

I
B =1 ° 0

0 -1

-1
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As discussed in [2l] and [llff] , it is necessary, of course,

to invert the matrix A"1 to obtain A, at the end of the
calculations.Thus, with

A =

-1

0

0

0

0

•1

0'

1

-2 1

it can be seen that

!~D C~

I + T
J I B Aj

is symmetric as discussed in [83] , [89],[ll£] .

In the above example, the order of the matrices B and

B is 3x3 as against 4x4 required in the technique given in

[llg] or [21] . Obviously the computing time and memory stora
ge required will be reduced significantly for many examples

as discussed earlier.

3.4 CONCLUDING REMARKS

Two simplified algorithms have been developed, in this

chapter, for obtaining minimal reciprocal realization from

a given symmetric transfer-function matrix and impulse res

ponse matrix, based on the approach of Chen and Mital[29[] .

The proposed methods require Hankel matrices of smaller order

than the one used in [893, and Q-lQ, and thus the computing

time and memory storage required are significantly reduced.

The algorithm presented in Section 3.3 is based on the compu

tation of moments of the impulse response matrix instead of

Markov-parameters used in Section (3.2). Both the algorithms

CENTRAL IJSMRT UTOSITT OF KWmi FLo*
KOOkOEE V\V\
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yield minimal realizations which satisfy the reciprocity

criterion (2.15) due to Yarlagadda[l55] . These results will

be utilized in evolving a passive reciprocal multiport synth

esis of SPR immittance matrices using RCT network in Chapter V,

However, before discussing the multiport active RC net

work synthesis procedure,the state-space interpretation of

some classical synthesis methods is presented in the next

chapter.
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CHAPTBR IV

STATE - SPACE INTERPRETATION

4.1 INTRODUCTION

In the past few years, it has been recognised by

several network theorists that an elegant approach to net

work analysis and synthesis is by means of state-models,

as the network state-model provides more direct information

about the network topology than the conventional network

matrices. Consequently, there is an increasing emphasis on

network synthesis via state-space techniques in the current

literature £ 03 , Q.$ , Ufl , Q 3 -03 , [53 • &05] , Q.33-D.33 >

D-39] , Q-47_] , D-53-Q-58] . Since the frequency domain methods

are still being used for the majority of design problems,

it is quite interesting and useful to establish some communi

cation link between state-variable characterization and the

specifications in s-domain. Several authors have put in

endeavours in this direction [5] , [jG »C2(3 »[JS »DQ] »D€l >

&n. [no . D-ia.

The present chapter discusses the state-space inter

pretation of classical Foster and Cauer synthesis procedures.

In particular, the interpretation of Foster p-port LC, 1-port

RC and Rl synthesis, Cauer driving point synthesis, and the

well-known coefficient-matching technique of second order

active RC filter design, is done via state-space character

ization.
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4.2 STATE-SPACE INTERPRETATION OF FOSTER SYNTHESIS METHOD

Recently, an interesting procedure to realize Foster

1-port LC network in state-space terms was given by Puri

and Takedajj.15] . In this section, the state-space interpret

ation of Foster 1-port RC and RL networks, and n port LC

network is given by exploiting the technique of [llf].

Let the impedance ma/trix Z(s) has a state-space repre

sentation

X = A X + B U ... (4.1a)

Y = C X + D U ... (4.1b)

such that

Z(s) = C(sI-A)"1B + D

Zx(s) + z(oo)

where X is an n-dimensional state-vector, U is p-dimenslonal

input-vector, Y is q-dimensional output vector, and A, B,

C, D are real constant matrices of dimensions nxn, nxp, qxn,

and qxp respectively.

In a suitable neighbourhood of infinity, Z-,(s) can be express

ed as

Z1(s) = CB s"1 + CAB s"2 + CA2B s"3 + ... + CAn-1B s"n+. . .
- YQ s"1 + Y1 s'2 + Y2 s"3 +... + Yn_1 s"n+. .. j

••• (4.3)

where YQ, Y^ Y2 etc. are called Markov-parameters\j>6\ and

are determined by dividing the numerator polynomial of each

entry of the transfer-function matrix by the common denomi

nator.

> ... (4.2)
1
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For the scalar case, (4.1) is represented as

X = A X + b u ... (4.4a)

y = c X + d u ... (4.4b)

such that

z(s) =c(sI-A)"1 b+d I (4>5)
z1(s) + z(oo)

where c and b become row and column vectors respectively,

and d a scalar. Further, z-,(s) can be expanded as

z1(s) = cb s"1 +cAb s"2 +cA2b s"5 + ... +cA11"^ s"n+...
= Y0s~ + y-^" + y2s~ +... +yn_1 s"n +. ..J

... (4.6)

From the given (a, b, c} Puri and Takeda[ll3 determine

the realization of 1-port LC Foster form by solving a set

of equations obtained by comparing y , y.,, y2, etc. with

similar expressions obtained by expanding z-,(s) written in

partial fraction form. The procedureQ-15] with some modif

ication can be applied to RC and RL cases as explained below.

(i) Foster 1-Port RC and RL Synthesis

Consider first a proper RC driving point impedance

function z, (s), |z(oo>) = 0 i.e. d = OJ a non-zero d will

result in a series resistive element!-

k n k.

^(b) =i2- + 1 —*- ... (4.7)
1 s i=l s + ai

Expanding z-L(s), we get



z,(s) =
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V"1 + I k^s"1
0 i=l

-2a±s + o2s~5 - c?s~4+...)
... (4.8)

where k , k. are positive and real constants, and a.(i=l,2,

...,£), the poles of (4.7) are the eigen values of the

characteristic equation of matrix A and

n = n if A has all non-zero eigen values „

= n-1 if one of the eigen values of A is zero.

Comparing (4.6) and (4.8), an infinite set of equations can

be written, of which the first (n+1) equations in matrix

form are

1

0

0

0

0

al

i

4-1

4

4*

—. - -

1 ko

0n kl

4 *2

4 *L*9 =

• m

m •

m •

n !
k*

n

y0

-*i

y2

"y3
•

•

y*

... (4.9)

The coefficient matrix of (4.9) by virtue of its nature is

non-singular, and so ko, b~ .. etc., the residues of (4.7),
can be evaluated and hence Foster canonical form of RC net

work can be easily drawn.

The RL driving point case can similarly be interpreted

by taking a proper z(s), £an improper function having a pole
at infinity will result in a series inductance} , and
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1*1expanding iL^J- , instead of z(s), such that

z(s) k
_ _p_

s

n

+ I
i=l

k.
i

s s + a.
i

A.

n

kos-a- + £ k±(s ! - o*B~ + a2s~5 - a?s~4+...)
... (4.10)

z(s) = (ko+k1+k2 +.. ,+k^) - (k1a1+k2a2 +.. .+k^a^)s~ +
2 2 2 —2 ""5 ^ ^5 ^(k1a1+k2a2 +. ..4k^a^)s ' - (k1o£+k2a^+. .. +k^a^) s~J

+ ... (4.11)
A

where n = n .

Proceeding as above, the expression corresponding to (4.9)

becomes,

1

0

0

0

a*
n

a2,\
ni

Cu Op a,
-1 h

k.

k*
n

d

-y

y

o

1

n
(-D"ys

ri-1

... (4.12)

from which the residues k's etc. can be evaluated and thus,

the Foster form of 1-port RL network can be easily constructed,

(ii) Foster p-Port LC Network Synthesis

The treatment given in the preceding for state-

space interpretation of FOSTER synthesis method of 1-port

networks is extended to p-port LC network as follows.
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Consider a lossless positive real (PR) impedance

matrix Z(s) in partial fraction form as [lOS]

, n s © . +i.
Z(s) = l + s © + £ © + £ •« ?• t

GO CO S O .*--,£. 2 //tin1=1 s + Wj^ v ... (4.13)

(oo) + Z.(s)
J

where each term is separately lossless positive real,* all

the © matrices are symmetric and positive semi-definite,

while all the E, matrices are skew symmetric. £ is the

constant term at infinity which must be skew symmetric.

Actually n is finite and if any diagonal element of ©.

is zero, the corresponding row and column of ®. and £. are

both zero, for finite i. These properties, of course, follow

from the fact that the residue matrix £, at s=ja>. satisfies

&j»0 and

0i = (K± + &[) i = 0,1,..., h , oo 1
l% =jw.^-K') i = 1,..., fi \ •«• '̂l4)

where prime denotes matrix transposition.

In state-space terms, Z(co) of (4.13) corresponds

to matrix D of (4.1). The realization of the first two

terms of (4.13) is simple and is achieved by using congru

ence transformationsQ.05] . The realization of the remaining

two terms i.e. Z1(s) is discussed here using state-variable

technique.

Thus,
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1

©o +

n

L.
i=l

s 8± + h
s 2

s

= (©0-f©1+©2+...4©ii)s-i + (^n2+...+^)s
;2co2

-2

51w1+e2a)|+.>4©^w|)s"3- (^J +£
r 2n -4
£AU) a ) s +
sn n'

2 , „ 2
COo +. . .+

where ©^ and £a are residue matrices (4.14) and

(4.15)

(4.16)

2 2
>!» w2 >1-., w0 ,..., w- are the eigen values of the character

istic equation of A-matrix which are positive and real
(w. ^ w^), and

r./\ I o
n = < «

I n-1
I 2

(n even)

(n odd)

Comparing (4.3) with (4.16), we get

Y. =

Yn =

-Yo =

-Y, =

©o4©1+02+ ... +@.A

^1+^2^3+ ... +£-

©1a)2+e2aJ2+... +9,0)!
2 2 ?

^la)l+^2a)2+* ' * +^w^

... (4.17)

Writing (n + 1) equations in matrix form for ©a and t -
n ^n

separately, we get

.1 1 1

0
2

co1 2
o>2

0 4 co2

• • •

* • •

• • •

•

0
_

*2n--2 2n--2

wl oo2

— —|
1 i

1 :

eo
2

Wn »1
4

wn ®2 • s

•
•

• •

•
•

/2ri-2 *

Wn . ©A j
_ nj

-Y.

... (4.18a)
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w- 0),

1

2
U).
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CO
2n-2 2&-2 2n-2
1

CO U).

-Y,

i j

1
i '-i

2
i
* **

i ^2 =

o

i

•

i

•

• j •
2n-2

wn

1

I ^n

i

|

... (4.18b)

For lossless networks, all the poles of Z-^s) lie on the
2 2jco-axis. Therefore, o>1, ...,o)^ are all positive. Then the

coefficient matrix of (4.18) will obviously be non-singular.

Thus, residue matrices ©a and £* having been evaluated

from (4.18), p-port Foster form can be easily drawn. The

procedure is illustrated with an example.

Example 4.1

Given the state-model for a lossless impedance funct

ion Z(s) as

X

0 1/2 1 1 0

0 0 01 X +
1

0 2 u « a « (4.19a)

2 0
1

Oj _0 0.

2

0

0

1

1

0

1_

j

X + j
0

-1

1

0.

u +

1

_1

1

1_

dU
dt

• * • (4.19b)

From (4.3), the Markov-parameters are

Y =
o

2

0

0

2 Ll

r

i 0

L-2 0 !
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0 -4

4 01

T2 =
-4 Oi

!

0 -2'
• V

Here, the order of the matrix Ais 3. This gives n = 1.
The characteristic equation of A-matrix is

s (s2 + 2) = 0

which gives the eigen values s = 0, and s2 = -2. Then,
to2 =2. Using (4.18), the residue matrices can be obtained as

eo=

Thus

o

0

0

1
' 01=

55, (s) = jL
io o i

s 10 1

and from (5.19b)

To i
z(s) =!

-it 0

J

+ s

1

1

2

0

2s 0

+ 2 L o

1 i

+ -1- Ia

I o
1

Lo

o

+ !
-2

0

2

0

2

0
f ... (4.20)

i +
2s

T
1 s + 2 [ -2 sj

... (4.21)

which results in non-reciprocal Foster form shown in Fig.4.1,
[70], [106] .

It may be noted that the treatment discussed above
is quite general and is not restricted to scalar LC case
as implied in [115] . it is shown that the techniqUe ±8 appl±_
cable to RC, RL, and LC p-port networks.

In the next section, a state-variable approach for
Cauer driving point synthesis is discussed.
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e

i r

1/2

i i

£
V2

FIG.4-1- EXAMPLE 4-1

Realization of Eqn.(4.21)
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4.3 STATE-VARIABLE APPROACH FOR CAUER 1-PORT SYNTHESIS

The concepts of controllability and observability

define some fundamental characteristics of linear systems and
have been widely used in optimal control, estimation and
identification problems. Recently, the observability

matrix[92[j has been employed in network synthesis as a non-
singular canonical transformation to realize Foster and Brune

1-port networks[59] •

In this section, the Cauer synthesis method for driving

point immittance function is re-examined via state-space
characterization exploiting the technique of [59] .

Cauer First Form of RC Network

Consider xRC driving point impedance function z(s) which

may be written as

z(s) = Y + Z]_(s)

where Y = z(co) = d ,

n-1 , v „n-2

(4.22)

md i * ^ +*2*' + •'• +'n ..- (4.23)
ZltSJ = sn +a^*-1 +... +S-18

The first Cauer form for the RC driving point impedance
function z(s) is shown in Fig.4.2 (a) where HU) ** represent
ed by the enclosed dotted line. The normal tree is indicated
by the thick lines. Assuming port excitation to be a current
driver I and choosing the voltages across the capacitors

' VC ' VCo' ••' ' VC. ci c2 n J

as the state-variables, the following
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state-model for Fig.4.2(a) can be easily obtained[28J,Qoj.

V

'2

V

1 . __!_R^rx r^;

1 t l ir^ct; "^r^c~+ R^up

i

1

E2C2

/ 1• , 1_ 1

3 3

R ,C
n-l n

V

V
°2

V

3

l\j
R .0
n-l n

/ 1 , 1 i • V

1

C.

0

0

0

... (4.24a)

Let -E be the output.

y = -E=[l 0 0 ... 03£V VC2 ... VCn[]
1 ... (4.24b)

Symbolically

I = A X + b u

y = c x

The observability matrix T~, given by, Q)d»

... (4.25a)

... (4.25b)
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-1

obT

C

C A

C A2

C A11"1

is used as a non-singular transformation for obtaining

a canonical state-model representation of the Cauer net

work.

Applying the transformation X = T . X, the canonical

state-model is given by

A

dX

dt

y -

T"J A T , X + T"J b u
ob ob ob

C T . X
ob

A X + b u

C X

... (4.26)

... (4.27a)

... (4.27b)

Also the phase-canonical state-model, in terms of the coeff

icients of the given immittance function (4.23) can be

directly written as [3^]

dX
dt

y =

where,

0 1

0 0

. .

0 1

0 "an-l "an-2

[ 1 o o .... 0 -A-

i fa
1

h.

n-l

hn

u

... (4.28a)

... (4.28b)
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h1 . bx - aibo

h2 ,- b2 - a2bQ - a^

h^ = b^ - a^bQ - a2h1 - a-^

hk = bk " akbo " ak-lhl " alhk-l

... (4.29)

The canonical state-models (4.27) and (4.28) are identical

in the sense that z-L(s) for both the cases is the sane.Thus

the element values of IL and C. can be easily determined

by comparing the corresponding entries of (4.27) and (4.28).

Cauer First Form of LC Network

The first Cauer form of LC network can also be re

examined via state-space characterization on the same

lines discussed above and the canonical state-model can

again be achieved by using the observability matrix as a

non-singular transformation as follows.

Consider the LC driving point impedance function z(s)

of the form

b s11"1 + b^sn"3 + ... + b
2(s) = y 8 + ^L_- Z—^ . XL. ... (4.29)

s +a9s + . .. + a, ns
<- n-l

= Y s + zx(s) .

where n is odd.

The first Cauer form of LC network is shown in Fig.4.3(a)

where thick lines indicate the normal tree. The state-

model for this network can also be constructed easily^s] .
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Taking the voltages across the capacitors and currents

through the inductors as state-variables (V V ...
co cl

V : i i
Jl h2'n-l *

It ) .
Ln-1

the state model of Fjg.4.3(a) can be obbained as given below,

1

L

X +

-1

1

o

0

0

u

1

" C"~
0

1 1

1 1

-ft;

"3

1

1

1

L2
1

"L2

Ln-1
"2"

l

n-l
T

... (4.30a)

... (4.30b)y - Ci

whe re,

X =

0 0

V V

— 0 1

u = 1.

0] X

V

'n-l
T ITL1 L2 ^n-l-l

Now, the phase canonical state-model can be obtained using

the observability matrix T~ given by (4.26) as a non-

singular transformation, which is then compared with the one
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given by (4.27) and the element values L. and 0^ are

determined in the same way as discussed in the preceding.

The above procedure for both the cases is illustrated

with the help of examples Q.43] .

Example 4.2. [l49,p.151]

Given RC driving point impedance function z(s) as

z(s) s + 4s + 3

s2 + 2s

. l +2s_±_1_
s + 2s

Obviously,
1 » z (oo ) = d

and
r \ 2s + 3• (s) = —6 ^

s + 2s

The state-model obtained using (4.24) is given by

... (4.31)

... (4.32)

A =

*k
, b =

^2
1

"V2
.01

[l o]
... (4.33)

Observability matrix T~ is obtained from (4.2 6) as

,-1
"ob

0

•R7c~ 1 *Fl
... (4.34)

The canonical realization, thus obtained from (4.33) and

(4.34) is
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0

0

°1

1

RlCl

-(R~C. +

iui ¥2'
... (4.35)

Now A- and B of the given function (4.32) are obtained by

inspection as,

A =

0

i 0

1

-2

A

B =

I
2

-1

... (4.36)

Comparing the corresponding entries of the matrices of (4.35)
and (4.36), the element values are found as

.Cx =^ , R-l =4, C2 =I and RQ =y=1.

The corresponding Cauer first form of RC network is shown

in Fig.4.2(b) .

Example 4.3, Q-49, p. 125]

Given LC driving point impedance function

(s)

Obviously,

.4 + 10s + 9

s-5 + 4s

s +
6s^ + 9

s5 + 4s

Y « 1

and

.., (4.37)
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The state-model obtained from (4.30) is given by

X =

0 0 - n-
°o I

0 0 ^ j

i Li Li
L

-C 0 0

x +

X

; i j
< c"~S

o

0

0

u

... (4.38)

(4.39a)

(4.39b)

Observability matrix T"J is obtained from (4.26) as

,-1
'ob

1 0

0 0

^0 ^0

0

1

"c"

0 i

... (4.40)

The canonical state-model thus obtained from (4.39) and

(4.40) is given by

dX
dt

y -

0

0

1

0

. 1

0!

1 I X +

0 -(-^ + fa-) 01
¥o Lri i

[ 0 o \ x

1
'» c~

o

0

T C2Ll°0„

u ... (4.41a)

... (4.41b)

Also, the canonical state-model for the given function (4.38)
can be written by inspection as

™mi uaw mmm of m
m
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j o i o: ; 6 ;
d x JO Oli+;0;u ••• (4.42a)

! 0 -4 o -15 I

y s= [l 0 0] X ... (4.^b)
Thus comparing (4.41) and (4.42), the network element values

are determined as

Co =I ' Ll =¥ ' °1 =fe and Lo =Y=X
as shown in Fig.4.3(b).

It may be noted that the procedure given above can

similarly be applied to Cauer second form also.

4 4 STATE-VARIABLE APPROACH FOR ACTIVE RC FILTER DESIGN
USOG COEFFICIENT MATCHING TECHNIQUE

The coefficient matching technique is a very efficient
and practical method of designing second order active RC
filters which form the basic building blocks in cascade
realization of higher order transfer-functionsQ.0?] .
The inherent advantage of this type of design procedure is
that the network topology is known a priori. Therefore, the
procedure of the preceding section can be easily applied to
this case also, as discussed below.

Consider an active RC low pass filter section, Fig.4.4,
proposed by Sallen and Key[130]. The thick lines indicate
the normal tree. Choosing the voltages across the capacitors
as state-variables the state-model of Fig.4.4 can be easily

written as
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V.
i Cl i0!

j !-^(G1+G2) £
Iii -1

i V, ... (4.43a)

\ V »
- c •
! 21

G2

v9 = Co

G,
- ir v„ I oI

2 '

o

'2_

1]

:2J

; v
! C

V

.. (4.43b)

The observability matrix T~£, from (4.26), is obtained as

T
-1

ob

0

G.
'2 , "2

k 7?" - k ?T
, °2 °2

G,
... (4.44)

The canonical state-model is then achieved from (4.43) and

(4.44) as

T A Tob A ob

* * Tob b

c = c T ob

GXG2
•lqc7

0

G1G2
k 5T(r

o

♦«!%-#]

12 !

-[x o]

(G1+G2)
—c~—

G
2i

d I

(4.45a)

(4.45b)

(4.45c)

The procedure is illustrated with an example.

Example 4.4, D-02,p.330|

The following second order low pass Butterworth filter
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is to be realized with the help of the above procedure.

2V2
17

... (4.46)

'1 s" +J2" s+1

The canonical state-model of the given transfer function (4.46)

is written by inspection as

0 1

... (4.47a)
A =

-i -J*

r

b =

c =

0

2

0
J

... (4.47b)

... (4.47c)

Comparing the corresponding entries of (4.45) and (4.47), the
element values are obtained (assuming C± = C0 = l) as

»! -vfS , G0 = *— and k =2.
2 4?

The realization of (4.46) is indicated in Fig.4.5.

4.5 CONCLUSION

In this chapter, the state-space interpretation of some

well-established classical synthesis procedures such as Foster's
and Cauer's methods is given. The well-known coefficient match

ing technique of active RC filter design is also re-examined
in state-space terms. It may be remarked that computationally
there is not, perhaps, a great deal to choose between the class

ical procedures and state-space methods akin to these procedu
res. But the state-space technique does offer greater scope

for extension to problems such as the equivalent network
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problem £ 34H and discussion of these methods from state-

space point of view has been taken up here.

The next chapter is devoted to develop new active

RC multiport network synthesis procedure for the realization

of immittance matrices.
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CHAPTER V

MULTIPORT ACTIVE RC NET WORE SYNTHESIS WITH

A MINIMUM NUMBER OF CAPACITORS

5.1 INTRODUCTION

With the publications of SandbergQ.31] -Q-3?] in
1961, multiport active RC network synthesis has received

much attention during the past decade [J3 »D3 »C55 »B3 '

132 »D€ »D-o:Q »Ljd . These papers, with the exception of
Hilberman[53] , use more number of capacitors (with possibly

some of them floating) than the minimum number which is

equal to the degree of the given matrix Q>2 .

In the early years efforts were directed towards

reducing the number of active elements; but with the

advent of integrated circuit technology, the trend is

towards reducing the number of passive elements, parti

cularly capacitors and having their one end common and

grounded, even if it results in an increase in the number

of active devicesQLOU . It was shown by Mann and PikejjSJ
that, with the help of a state-variable approach and the

reactance extraction principle,it is possible to realize

active RC networks using a minimum number of capacitors.

Subsequently Meivin and Bickart[98], exploiting the tech

nique of 0*3 » proposed an interesting synthesis procedure

to realize active RC network from a given admittance

matrix Y(s) using voltage-controlled voltage sources. Later

they extended their results[9d\ to the synthesis of other
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types of multiport network functions[l8].

This chapter presents a simple and systematic synthesis

procedure for the active RC realization of immittance matrices

using a similar approach due to Melvin and Bickart[98].The

structures of the realized circuits in terms of the minimum

number of elements and grounded ports make them particularly

attractive for integrated circuit fabrication.

First, the proposed synthesis approach is briefly dis

cussed in Section (5.2). Then, synthesis of short-circuit(s.c.)

admittance matrix, open-circuit (o.c.) impedance matrix, and

transfer-impedance matrix using operational amplifiers is

considered. Later utilizing this approach and the results

of Chapter III, a new passive reciprocal synthesis procedure

for SPR immittance matrices using RCT network is evolved.

5.2 PROPOSED APPROACH TO ACTIVE RC MULTIPORT NETWORE SYNTHESIS

The general idea in the proposed approach is to realize

a given multiport network function with the help of capaci-

tive and resistive sub-networks and, by introducing suitable

active elements,to force the short-circuit conductance matrix

of the resistive sub-network to be hyperdominant which can be

easily realized, while ensuring that the state-model of the

realized network corresponds to the state-model obtained

from the given network function.

Let N be a multiport network excited at p of its ports

by voltages and/or currents which are elements of the p-vector

u(t). Let the responses, the voltages and/or currents of q
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of the ports, be elements of the q-vector y(t). If N is

excited at a port irom which a response is derived, then at

that port, if the excitation is a voltage (current), the

response must be a current(voltage). Let T(s) be a qxp matrix

of real rational functions of the complex variable s such

that

Y(s) * T(s) U(s)

where U(s) =/[u(t)] and Y(s) =i'Qy(t) J ,* then T(s) is

said to be a multiport network function.

A synthesis procedure, based on the above idea,is to

be developed by which T(s) may be realized as an immittance

matrix of an active RC multiport network with a minimum

number of grounded capacitors n = 6QT(s)3 and at the most

(p+2n) inverting, grounded voltage amplifiers.

In the synthesis method to be presented, T(s) is assumed

to be regular at s = oo . If it is not so, it can be made

regular at infinity by invoking Mobius transformation[55]

s = f-6 ... (5.1)
-L — Z

A

where -s is a point of regularity of T(s) on the negative

real axis. The synthesis procedure to be discussed is

applied to the newly formed T(z) matrix which is of the

same degree as T(s). The realization for the original matrix

is then obtained by inverse transformation i.e. the final

network is obtained by replacing each capacitor of value c in

the realization of T(z) by a capacitor and a resistor in

series having admittance —-. .
s +s
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Aminimal realisation set {A, B, C, d) associated
with T(s) can be easily obtained by applying Ho-Ealman

algorithm (Section 2.3.2) to give the state equations of

the form

X = AX + BU r#t (5.2)

Y = C X + D U

such that

T(s) = D + C(sl-A)"1 B

and A has the minimum dimension n equal to the degree

Q?(s)3 and D = T(oo) .

The network that realizes T(s) will be the inter

connection of a n port grounded capacitive sub-networks,NQ,and

a (p+n) port grounded resistive sub-network, NR, as shown

in Fig.5.1. Let e2 and i2 denote respectively the n-

vectors of voltages and currents at the ports common to

ND and Nn sub-networks. The relationship imposed by Nc
R o

on e2 and i« is

i2=-£e2 •••(5.3)

where & is an nxn nonsingular matrix and can be assumed

to be diagonal with positive entries only, resulting in a

capacitive sub-network in the form of a star of n-capacitors

as shown in Fig.5.2, thereby ensuring that no more than

n capacitors are needed in the realization. That the real

ization requires at least n capacitors follows from the

fact that & would be singular if the sub-network NQ- contained

fewer than n-capacitors.

Assuming the structure of the sub-network, NR, consist

ing of resistors and active elements as shown in Fig.5.3(a,b),
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the short-circuit parameter equations of IR may be written

as

I = GB ... (5.4)

where G, is the short-circuit conductance matrix, of a

common ground resistive network, which will be forced to-
be hyperdominant* by incorporating suitable active elements.

With the help of (5.3), (5.4) and the constraints
imposed by the active elements (Fig.5.3 (a,b)| , the state-
model [A, B, G, D} of the given structure for each-case is
obtained in terms of the sub-matrices of G and the gains of
the active elements. Thus, the problem of realization of any

multiport network function T(s) is reduced to that of specify
ing the various sub-matrices of Gsubject to the condition
that it is hyperdominant.

First, the synthesis of a short-circuit admittance

matrix is discussed.

5.2.1 Short-Circuit Admittance Matrix Synthesis

The result established in this section can be enun

ciated as the following theorem*.

Theorem 5.1

Any pxp matrix T(s), of real rational functions of

* A matrix is called 'hyperdominant' if it is dominant
and all the off-diagonal entries are non-positive, ^urth.r,
a real matrix is defined to be 'dominant* if each of its
main diagonal entries is not less than the sum of the
absolute values of all the other entries in the same row
£5], Q-40].
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the complex frequency variable s when T(co) is the sum

of a strictly hyperdominant matrix plus a non-negative

matrix, can be realized as the short-circuit admittance

matrix of a p-port active RC network using a minimum

number of n capacitors with a unity capacitance spread,

n = 6'CT(b)3 *^d at thG most ^p + 2n^ invertinS* grounded
voltage amplifiers. All the capacitors, active elements

and ports will have the ground as a common terminal.

The proof of the theorem is a logical consquence of

the realization procedure for T(s) given as follows*.

As T(s) is assumed to be a pxp short-circuit admittance

matrix l(s), it is implied that p-vector U is the vector

of network port voltages e1 and that Yis the p-vector of
corresponding port currents ±1 (Fig.5.la). Thus the state

equations (5.2) become,

e2 = Aa2 +Bex _ {5_5)
i _ C e2 + D e,

where e2, an n-vector of state variables,is the port voltages
at the ports common to Np and Nq subnetworks (Fig.5.la).

Assuming the subnetwork, NR, consisting of resistors and
inverting, grounded voltage amplifiers to have a structure

shown in Fig.5.3(a), where NR is a (2p + 3n) port common

terminal resistive network.The short-circuit parameter

equations of IL can be written as
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g-L! gl2 ^13 §14 S15

§21 g22 g23 g24 S25

g31 g32 g33 g34 g35

g41 g42 g43 g44 g45

g51 g52 g53 S54 g55

e2 i

:3| = G ... (5.6)

e4

where i^ ±y o± and e^ are each p-vectors5 i2, i^, ij. e2,
e and e- are each n-vectors,* and, the elements of Gare the
submatrices with g±. = g!± , where prime denotes matrix trans
position. Gbeing the short-circuit conductance matrix of a
common ground resistive network has to be hyperdominant, a
necessary and sufficient condition for the (2p + 3n) port
common terminal resistive 1R to be realizable without internal

nodesQ-40] .

The following constraints are imposed due to active elements

(Fig.5.3a)

e, = Q e
'3

e4

e5

1

= K e-

H K e.

... (5.7)

where the matrices Q, K and H are

Q=diag. {qx, ... , dpf . with q±, 0 for all I,
K= diag. {kr ... , knf , with kJN(0
H= diag. jh-^, ... , \\ , with h .s( 0

for all j, and

for all j.

From (5.3), (5.6) and (5.7), we obtain the state equa

tions in the form (5.5) and (a, B, 0, Djcan be expressed as
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•*-l , rr a w t\ ... (5.8a)A=^1(g22 +g24 K+g25 HKj
B- "^ (g21 +g23 Q)
C= («!2 +gl4K+gl5 HK) •** N
D- (glX + gi3 Q)

Thus the problem of realization of T(s) has been
reduced to that of specifying the g sub-matrices associated
with NR and given by (5.8), subject to the condition that
G is hyperdominant. The existence of such a realization is
evident from the following steps in the procedure for specify
ing the various submatrices of G.

Step I

Sinoo Dis the sum of a strictly hyperdominant matrix
plus a non-negative matrix, while gix is hyperdominant and
g Qis non-negative, we oan eeleot suitable values for
g1 and Qsuoh that S,,,as specified in (5.8d),has only
toll XJ

non-positive entries.

Step II

As (5.8b) contains both non-negative and non-positive
elements, therefore, by a suitable choice of (J, the sub-
matrices g2l and g25 are obtained such that these have non-
positive entries.

Step III

From (5.8c), we have

gi4K+g15HK=C-gl2 =P+M ••• <5-9)
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where P= p. •"] contains all the non-negative entries
L x3 -J nxnpxn

of C - gl2, and

M m. .1 contains all the non-positive entries
L x3-I pxn

of C - g12.

Thus from (5.9) we have

p k - P • ... (5.10a)
g14

g15 HK=M ••• (5.10b)

Obviously, by taking the |kj| and the |h..| sufficiently large,

che non-zero elements of g14 and g±5 can be made as small in
magnitude as is necessary to make the rows of C&n gi2 g13
ft g r-1 hyperdominant. Later it will be shown that it is
614 615-J , +
always possible to select such amplifier gains. If HQKJ
denotes the pseudoinverse (jl] of hQ K] , then (5.10) yields

p. - v k+ ... (5.11a)
g14 ~ *

provided the consistency condition p£ I - K K^= 0 is satis

fied, and

g15 =MK+ H+ ••• (5.Hb)

provided the consistency conditions,

M[I - K+ K] • 0, and
M K+[l - H+ H^ = 0, arc satisfied.

Step IV

Rewriting (5.8a) as

g24 K+g25 HK=-t?A - g22 =Pl+Mi ... (5.12)



-87-

where Pn = "P-.-l contains all the non-negative entries
1 *- l.j —' nxn °

>f -tU " g 22
and

M_ = " m. . ~\ contains all the non-positive entries
1 •— i J —' nxm *

of - (J A - g2 2•

Thus, from (5.12),

g24 K = P-]_ ... (5.13a)

g25H K - M-l ... (5.13b)

Since K and H are already known, the submatrices g2* and

g2c- can be obtained from (5.12) and (5.13) with a suitable

choice of g22. It may be noted that g~2 may be selected such

that the modulus of the sum of tho rows corresponding to it

is just equal to zero, thereby reducing the number of resistors

required in tho realization.

Thus, having determined the g's that appear in (5.8),

the remaining entries of the G matrix can be filled in arbit

rarily, however, a maximum numbor of zero entries, such that

the hyperdominant nature of G is retained, is advantageous.

Amplifier Gain Selection

The above synthesis procedure was developed on the

observation that amplifier gains (K and H) exist such that

the equations in (5.10) have solutions corresponding to which

the rows of C gn t» ••• t g-i c U are hyperdominant. Now some

criteria for choosing the amplifier gains will be described.

From (5.8d), g.,, g,_ and Q are found. g2, and g2,

are obtained from (5.8b).
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Let gu be amatrix with only positive diagonal entries
g•and S. be the sum of the magnitude of entries in the
ith row of gl2 and g^. For dominance,

Let

'ii >Si

11

.> %. where %\ > 0,
i l J-

From step III,we have

Let

g
14

K = P , and g15 H K = M

p- = T d. ."I where d. .&0
Si4 L ijJ pxn 13

'15
r e. ."1 where e..i 0
L- 13 -1 pxn ij

From (5.10), we get

dijkj =PiJ

°ijhjkj =mi3

Choosing k, in (5.10c) such that

i pii'2n 1'k,| > max { —*• J »

then

Hence

D1

4iJ<^ <gii
n

I
0=1

Similarly by cons

ii.

1^1 <r •

... (5.10c)

... (5.10d)

idering (5.10d), hj is chosen such that

I h« | ^ max
m. . . 2n
_2J

kj • *i

which ensures

n

j=l
|eial <̂
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Therefore

n n

A 'dijl + X |ei
3=1

U' - 1
D=l

S:Since gl2, g13, g14, g15 are the only submatrices
(corresponding to the rows denoted by gl2 to glQ) in the

various expressions, it is clear that the rows of

C«ii gi2 gi3 gi4 gi5^ wil1 be hyperdominant- Similarly
it can be easily shown that the rows of [S21» •••'625-1 wl11
also be hyperdominant, thus ensuring that it is always

possible to construct a hyperdominant matrix G of NR for

the proposed structure^ig.5.3(a). This completes the speci-

fication of the G and hence the theorem.

Example 5.1

The example of Melvin and Bickart QS\ is taken for

illustration.

1
I

T(s) = Y(s)

2 s+1
s+1

s

s+1

s + 1/2 2s- 1
I s+1
L

S+1

Obviously,

D = T(oo) =21

1 2_

Using the Ho-Kalman algorithm an irreducible realization is

obtained; thus:

1 1

A =

-1 0

0 -1

B = I
L°

, 0
-1 0

-1/2 -5/2J
i_



Select

'11

0

From (5.8d), we obtain

0 -1/2

o1

-90-

and Q

i -2

0

0

-2

>13
-1/2 0

Choosing Q

H =

from (5.8c) and (5.8b), the sub-matrices obtained are

-1/2 0

-1/2 -1/2'12

and g
23

|l/2 0 -1 0

L. !/2_
K =

0 -i._
t

-4
•

.0 -l/2 -1/2

0 -4_
,and g21= L 0 -112.

•

9

514 " 1

0
2

0
2 515

-1/8

0

0

•1/2

It is easily verified that the rows of Ig^l g12 Si3 gi4 gi5
are hyperdominant.

Then select g22 in the manner discussed earlier, thus;

7/6 0

g22 =
0 1/2

From (5.8a), set

g24
0,

-1/6

and gpt- = J
^ 0 0

"1
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The remaining entries of G matrix can be filled in arbitrarily

such that it remains hyperdominant. A suitable choice for

G is given below.

G =

2 0 -1/2 0 0 -1/2 0 0 -1/8 0

0 2 -1/2 -1/2 -1/2 0 0 0 0 -1/2

-1/2 -1/2 7/6 0 0 0 0 0 -1/6 0

0 -1/2 0 1/2 0 0 0 0 0 c

0 -1/2 c 0 1/2 0 0 c 0 0

-1/2 0 0 0 0 1/2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-1/8 0 -1/6 0 0 0 0 0 7/24 0

0 -1/2 0 0 0 0 C 0 0 m

Having obtained the G-matrix of NR, the network can be

easily constructed as shown in Fig.5.4. It may be noted that
the G matrix obtained above has all zero entries in two rows

and two columns, meaning thereby, that the nodes correspond

ing to them (in this case e41 and e42) will disappear; so tho
cascaded active elements can be combined as shown in Fig.5.4.
Further, only 9 resistors are needed in tho above realization

as against 12 used in QS\ , while the numbers of capacitors
and active elements remain same. In general, this procedure

will require at the most p+2n active elements compared to at
the most 2p+2n elements required by Melvin and Bickar|J5| for
the Y(s) under consideration. It may be noted that the network
ND (Fig.5,4) which realizes the hyperdominant Ghas no inter-

nal nodes as indicated earlier.
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5.2.2 Open-Circuit Impedance Matrix Synthesis

When T(s) is assumed to be a pxp open-circuit impedance

matrix Z(s), it is implied that the p-vector U is the vector

of network port currents ix and that Y is the p-vector of
ft

corresponding port voltages e-^.

Consider the network block diagram in Fig.5.1(b),

where NR and Nc are specified as in the previous case.e^

e± and 3^ are related through the resistor R as

•1 = °i +Rii •" (5,14)
The state equations (5.2) in this case become

e2 =Ae2 +Bi1 ••• (5.15a)
e: =C e2 +Dix ••• (5.15b)

We may choose the same structure of NR E Fj-g*5•"3(a) J as in
the preceding section, then (5.6) and (5.7) will remain

unaltered. From (5.3), (5.6), (5.7), and (5.14), the state-

equations in the form (5.15) are obtained and JA,B,C,D} can
be expressed as!

D. R+ (gn +g13 Q)"1 ••' (5-l6a)
B=-&_1(g21 +g25 Q>(gll +g13 Q)_1 ••' (5*l6b)
C. -(gu +gl3 Q)-1(gl2 +gl4 K+gl5 HK) ... (5.16c)

*• -C?"1 {<«22 +g24 H+ g25 HK) '
(g21 +g23 Q) (gll +gl3 Qr^U K+gl5 HK)}

... (5.l6d)

Thus the problem of realization of Z(s) has been

reduced to that of identifying the various terms of
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g-submatrices of IR given by (5.16) subject to the condi

tion that G is hyperdominant. The existence of such a

realization is evident from the following steps in the

procedure for specifying the various submatricos of G.

Step I.

In (5.l6d), if D is non-singular, R can be set as

R = E°I]; otherwise the elements of R can always be speci

fied such that (D-R) is non-singular. Assuming suitable values

of g_- and Q, g-,, can be obtained such that it has all

negative entries or zeros.

Step II.

Since g13» g,* and Qare fixed, then by suitable choice

of T^b, g2l and g2, can be obtained from (5.16b) such that these

have non-positive entries.

Step III.

On substituting the values of g^, g-j*, Q and gl2 in

(5.16c), we get

-(«u +g15 Q) 0 - «i2 - gl4 K+g15 H.^ (5>17)

The right hand side of (5.17) can be split up into matrices P

and Mwhere PEMH contains all the non-negative Enon-positive]]

elements of -(g^ + g^- Q) C - gl2. Thus

«14 K = p
g15 H K = M

Suitable values for K and H can be assumed such that g^ and

g, c- are as small in magnitude as is necessary to make the
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rows of Egn gi2 gl3 g14 g15^ hyperdominant.

Step IV.

Now (5.l6d) can be written as

... \J»ID/

Substituting in (5.18) tho values of the terms obtained

earlier, the only unknowns to be determined are g22, g24»

and g25. Thus with suitable choice of diagonal sub-matrix
g22, g24 and g25 can be found from (5.18) such that these
have negative or zero entries. It may be noted that we may

select g22 such that the modulus of the sum of the rows
corresponding to it is just equal to zero', thereby reducing

the number of resistors required in the realization.

Thus having determined the terms appearing in (5.16),

the remaining entries of the "G" matrix can be filled in

arbitrarily*, however keeping maximum zero entries such that
the hyperdominant nature of G is retained is advantageous.

Now, the main result established above can be stated

as the following theorem*.

Theorem 5.2

Any pxp matrix T(s), of real rational functions of
the complex frequency variable s, can be realized as the
open-circuit impedance matrix Z(s) of a p-port active RC
network using a minimum number of n capacitors having unity

capacitance spread, n = 6|lT(s)l and at the most (p + 2n)
inverting, grounded voltage amplifiers. All the capacitors
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and amplifiers will share a common ground.

The procedure described above is illustrated with

the help of the same example as in Q.8] and it is shown that

the realization is possible with only four active elements

instead of six required in [l8j .

Example 5.2 E1!]

The following 2x2 matrix is to be realized as the

open-circuit impedance matrix of a two port:

s+1

T(s) = Z(s) =
s-1

Since T(s) is not regular at s = oo , a Mobius trans

formation can be invoked to make T(s) regular at s=oo .

z

Let

then

s = »

1-z

z

1-z

1

1-z

) =
-l+2z z

1-z 1-z

T(z)

will be realized; lateron each capacitor having admittance

cz will be replaced by a capacitor and a resistor, having

c s
admittance •"rr-r*

Applying Ho and Kalman algorithm., a minimal realization

set fA, B,C,D} of T(z) is obtained as
r-*~\ [-1 0

, D = T(oo) =
_1 -2 -1a= LiD, b = Ei ill- c -

Since D is non-singular, R can be set as R = L°J •
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r
-5

0

0

From (5.16a), with g^* =
4 0

and Q -
_0 4_

~-l 0

2

Z 5

•

-5

g „ is obtained as g.^.

Choosing (J= E1!* from (5.16b), we obtain

g2i • G-2 oil and g23 =[" i i
5 " 5.

From (5.16c) and (5.17), with K = [>53- H. E"5l],we find'
0

g 14 -1/5
and gl5

0 J

It is easily verified that the rows of [g1]L gl2 g15 g14 gi5_J
are hyperdominant. Now substituting the values determined

above in (5.16d) or (5.18), we get

g24K + g25H£ = -5 - g22 •

Selecting g22 in the manner discussed earlier,thus with

g 22

we obtain j

>24
=E°3 and g25 =[- ^

The remaining entries of G can now be filled in arbitrarily

such that it remains hyperdominant. A suitable choice for G

is given below
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4 0 -2 -1 0 -1/5
-

0

0 4 0 -2/5 0 -1/5 0

-2 0 ft -1/5 -1/5 0 -.21-
120

-1 -2/5 -1/5 16/5 0 0 0

0 0 -1/5 0 1/5 0 0

-1/5 -1/5 0 0 0 2/5 0

0 0 - u 0 0 0 3*
120

Having obtained the G-matrix of NR, the network can now be

constructed as shown in Fig.5.5. The number of active ele

ments used in the realization is four instead of six

required in [1S\ . It nay be noted that a capacitor and a

resistor are in series at each capacitive port of NR,as

Mobius transformation has been invoked in this example.

5.2.3 Transfer-Impedance Matrix Synthesis using
Operational Amplifiers

This section presents a synthesis procedure to realize

T(s) as a q x p O.C. transfer-impedance matrix of a multi-

port active RC filter using commercially available operational

amplifiers (OA), and inverting, voltage-controlled voltage

sources (VCVS), which can be easily constructed from OA,

as active elements. The main result established in this

section can bo given as the following theorem:

Theorem 5.3

Any qxp matrix T(s), of real rational functions of

the complex frequency variable s, can be realized as the
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O.C. transfer-impedance matrix of a (q + p) P°rt active
RC network containing a minimum number of n capacitors with
unity capacitance spread, n = &ET(s)I], q operational,
amplifiers (OA), and at the most (p +2a) inverting, common^
ground voltage-controlled voltage sources(VCVS). All the
capacitors, ports and active elements will have the ground
as a common terminal.

The following proof incorporates a step by step reali

zation procedure for T(s).

By assuming that T(s) is a q x p O.C transfer-
impedance matrix, it is implied that the p-vector Uis a
vector of source port currents i]_, the q-vector Yis a
vector of response port voltages oy with the response ports
open i.e. i» = 0 E Fig- 5.l(cQ.

The state equations (5.2), in this case, become

*2-V**B1l . ... (5.19)
e3 = C e2 + Dix

Assuming the sub-network, NR, consisting of the resis
tors, OA and inverting VCVS to have a structure shown in
Fig.5.3(b), where NR is a (2p +2q +3n) port grounded sub
network of resistors. The short circuit parameter equations

of Nr, can be denoted as
R

i. vi , ••• (5-20)
where,

I - ZH i2 h *4 l5 i6 *7^ '
E= EGi G2 G3 c4 e5 e6 e7^ '
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and S = EgijH (2p+2q+3n)x(2p+2q+3n)

where i,, i4, ©-, and eA are each p-vectors, ly i^, e^ and e^
are each q-vectors, i2, ly ig, e2, e^ and e6 are each n-
vectors and the elements of G are the submatrices with

„ _ gi . q heing the short circuit conductance matrix of
eij &ji
a common ground resistive network has to be hyperdominant, a

necessary and sufficient condition for the (2p+2q+3n) port

common terminal network NR to be realizable without internal

nodes Q.40} .

The active elements |l,ig.5.3(bO impose the following-

constraints;

G4 " "el

er- = K e,

eg =s HK e2

'1
Irj = C

... (5.21)

where the matrices K and H are

K = diag.fk-L, ...,knJ' , with k±;s 0 for all i and

H= diag.f^, . ..,hn} , with h^O for all i.

From (5.3), (5.20), and (5.21), we obtain the state equations

in the form (5.19), and {a, B, C, Dj can bo expressed as!

D=-g73(g71-g74)(gii-gi4)"1 ... (5.22a)

B=-^1(g21-g24)(g1i-gi4)"1 •'• (5-22b)
C=-g-1 {(g75K+g76H K)-(g71-g74)(g11-g14)"1(gl2+gl5K+gl6H K)}

... (5.22c)

A=-(--1f(g22+g25E+g26H K)-(g2l-g24)(g11-g14)"1(gl2+gl5K+gl6HK)}
... (5.22d)
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Thus the problem of realization of T(s) has been reduced to
that of specifying the g submatrices associated with NR
and given by (5.22), subject to the condition that-G is hyper
dominant.The existence of such a realization is evident from
the following steps in the procedure for identifying the

various submatrices of G.

Step I.

Since g?3 is assumed non-singular with non-positive
entries, while g±1 is hyperdominant and gl4 is non-positive,
we can select suitable values for g73, gu and g]_4 such that
g?1 and g74 as specified in (5.22a) have only non-positive
entries.

Step II.

As gir gl4 and g?3 are fixed, then by a suitable
choice of ft . the submatrices g21 and g24 are obtained from
(5.22b) such that these have non-positive entries.

Step III.

From (5.22c),assuming g?5 = g?6 = 0, we get

g15K ♦ gl6HK =(g71-&74)-1(e11-S14)&730-6i2 - »*«- <5-2?)
whe re,

B= EP D contains all the non-negative entries of
1D PXn (g7i-g74^1(gll-gl4)g73C-gl2 and

M= f~m .1 contains all the non-positive entries of
<- io -'pxn _-,

(g7l-g74) (g11-gi4)g73C-gi2'

Thus, g,-I = P ••' (5'24aJ
Al- M ••• ^.24b)
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It is obvious that,by making |k.| and the |h.| sufficiently
J J

large, the non-zero elements of g^c and g^ can be made as

small in magnitude as is necessary tc make the rows of

&-,-]»••• ,g17II hyperdominant. It will bo shown later that it
+ r +~iis always possible to select such amplifier gains. If E [_ H J

denotes the pseudoinverse E 31D of KpT] , ihen (5.24) yields

g15 =P K+ ... (5.2 5a)

provided the consistency condition P [I - K KJ = 0 is

satisfied, and

g]6 =MK+ H+ ... (5.25b)

provided the consistency conditions M [I - K Ej = 0, and

MK+ E1 ~ H+ HZ1 =° are satisfied.

Step IV.

From (5.22d), we get

g25K+g26HK =" 0A+(g2l"g24^ (gll"g14)~1(gl2+g15K+gl6HK^"g22
... (5.26)

Thus g2c and g2g can be found from (5.26) by selecting a

suitable value of g22 such that these have non-posj tive

entries. We may also select g22 in such a way that the modulus

of the sum of the rows corresponding to it is just equal to

zero, thereby reducing the number of resistors requii ed in the

realization.

Thus having determined the g*s that appear in (5.22), ,

the remaining entries of G matrix can be filled in arbitrarily,*

however, a maximum number of zero entries such that the hyper

dominant nature of G is retained, is advantageous.
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Amplifier Gain Selection

The above synthesis procedure was developed on the

observation that amplifier gains (K and H) exist such that

the equations in (5.2 4) have solutions corresponding to which

the rows of ESn> ••• • &V7 "2 are hyperdominant. Now some
criteria will be given for choosing the amplifier gains.

From steps I and II, the various submatrices appearing

in (5.2 2a) and (5.22b) are obtained. Let g-, be a matrix with

only positive diagonal entries g.^ and S, be the sum of the

magnitude of entries in the ith row of g-, 2 and g-j*« For

dominance,

g. . > S. .
bn l

Let g. . - S. > tc• where ti^ > 0 .

From step III,wo have

g15K = P and gl6HK = M

Now let gl5 = Cdi:jl]pxn- where d^' 0.j-4 pxn' 13

•"] where e. •
.J -1 pxn 13and g^,g - E ° • i 3 where e, „•/' 0

From (5.24) we get,

aijkJ -P13 ••• (5-24c)

and °X}h3*l =aij "• (5,24d)
Choosing k. in (5.24c) such that

p. ..2n %
|k |> max \ -3J }

j i > '*i

then dii<2i<gii-
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d
ij

Similarly by considering (5.24d), h. is chosen such that
J

.. m. .. 2n

J- J X

which ensures

n

I lo
j=l

n

Therefore, £ |d. ,| + 7 |e. .| < it.
j=l 1J j=l 1J 1

Since gl2, g14» giy gl6, g17> are the only submatrices

(corresponding to the rows denoted by g-« to gln) in the

various expressions, it is clear that with the choice of g--=»0,

the rows of Lgn» •••»gl7 H wil1 be hyperdominant. Simi

larly it can be shown that the rows cf E gpi* *••'g27-1 wil1
also be hyperdominant; thus ensuring that it is always possible

to construct a hyperdominant matrix G of NR for the proposed

structure |Fig.5.3(b)|. This completes the specification of

the G and hence the theorem.

71.

ij|s 2
n

Example 5.3

To illustrate the above result, the following 2x2 matrix

will be realized as an open-circuit transfer impedance matrix

of a two port'.

T(s) =

r~,

2s=l
s+1

S+p-

s+T

-1 2s+1
s+1 s+1

Here p = q = 2 and n = 2.

Since T(s) is regular at s = oo, a Mobius transformation
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will not be needed-. Using the Ho-Kalman algorithm an irred

ucible realization of T(s) is obtained; thus*.

Select

A =

-1 0

o -1

f-3 0

' t

C =

-1 -5/6
J

B =

1 1/6

0 1 J

D = T(oo) =
2 1

0 2

gll=

1

0

0

1

g 73

j -1/10 0

0 -1/10. -oaand gl4

From (5.22a), we obtain

"-2/10 -1/10

0 -2/10^74 '

Choosing/3 =

(5.22b) are

g2r

Select K =

and g71 = E°2H•

l/lO 0
' , the submatrices obtained from

0 1/10 j

-1/10 -1/60|
and g24 = E °2^ '

0 -1/10

r-5 o" f-1 o"
and H = j

1 o -1.

From (5.23) and (5.24), we obtain

-27/100 0 I

S15

0 -1/24

0
I and gl6 =•

-31/300 -31/300 x 0

It is easily verified that the rows of E Sn» gi2'

liy g14, g15, gl6. 617H are hyperdominant. Then select g22
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in the manner discussed earlier*, thus:

g25"

322

1586.
11520

0

From (5.26), the submatrices obtained are,

0
1

" 2~88

0 0

Therefore, the following G composed according to

lines set forth earlier will be hyperdominant.

0

and g 26

16244
57700

1

100

0

76
4800_

the guide-

Lr =

1 0
1

" 10
0 0 0 0 0

27
" 100

0 0
1

24
0 0

1 1
0 0 0 0 _ 2L .ft. o 0 0 0

0 1 " So "10 300 300

1

"10
1

""So
1586

11520
0 0 0 0 0 0

1 1624^
"2"88 "57700

0

4800

0 0

0
1

" 10
0

133
960

0 0 0 0 c 0
1

~ 100
0

1

10

0

0 0 0 0
1

10
0 C 0 0 0 C 0 C

1

• IC0 0 C C 0
1

1C
0 0 C 0 0 0 C -

0 0 0 C 0 0
2

Ic
c c 0 0 c

2

10
0

0 c 0 C 0 0 c
3_
10

c 0 0 0
1

10

2

"10

22
100

-21
300

0 0 0 0 C c
112

3CC
u C 0 0 o

0 _21_
30c

1
*2"58

c 0 0 c c 0
769
T&oo

0 0 c 0

0 0
16244

"57701
1

"ITo
0 r 0 0 c 0

16821

57700 c

276
48CC

c 0

1

"24
0 C "48C€

c c 0 0 C 0 c c

C 0 c c
1

'10
c

2

~1C
1

" IC
0 c 0 0 1_

10
i

0 ' 0 c c 0
1

" 10
C

2

" 10
c 0 0 0 0

Iv

The realization of T(s) based on the realization of G is

shown in Fig.5.6. Note that two differential output CA are
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shown rather than the cascade of two with gains k^k^-5
and h1=h2=-l. Thus the total number of active elements used
is 6. Further, the network NR (Fig.5.6) which realizes the
hyperdominant 13 has no internal nodes as indicated earlier.

It may be noted that the proposed method has two distinct
advantages over the one due to Bickart and Melvin[l8] for the
case of C.C transfer-impedance matrix. First, it uses comm

ercially available CA instead of voltage amplifiers and
secondly, it will usually require fewer resistors, because the
submatrix g22, as discussed in tho procedure and illustrated
in the example, can always be chosen to be hyperdominant.

5.3 PASSIVE RECIPROCAL RCT MULTIPCRT NETWCRK SYNTHESIS
The problem of realizing a given SPR immittance matrix

with passive reciprocal RLCT multiport network (without gyra
tors) is one of the important and interesting problems in
network synthesis and has been studied via state-variable

approach by several authors during recent yearsElO] , Q-1] ,
E139H , E15Q , E131] . E15Q •M .

In this section, a new synthesis procedure to realize

a given SpR immittance matrix using passive reciprocal RCT
multiport network with a minimum number of capacitors is
presented. The method is essentially an extension of the
technique of active RC multiport synthesis discussed in the
preceding section and uses ideal transformers in place of
active elements. By selecting suitable transformation ratios

[149], the hyperdominant matrix G is again constructed.
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Cf course, this synthesis is only possible if the minimal

realization set [A, B, C, J)\, associated with the given

SPR immittance function, satisfies the following constraints.

(i) K1 + M-[ > C ... (5.27)
(ii) (I + I )M1 = M{(I + I ) ... (5.28)

Td c]
where M-, = i -n . . and , is an unique diagonal matrix of

l L-tt AJ

+ l's as defined earlier.

More precisely, the first condition (5.27) saysthat

ML possesses a passive synthesis, while the second condition

(5.28) guarantees reciprocal realization [lO] , E7H »E5-6£] •

A minimal reciprocal realization, of a given SPR immi

ttance matrix, that fulfills the above conditions can be

constructed with the help of the algorithms proposed in

Chapter III. Once such a realization is in hand, a passive

reciprocal synthesis of the given immittance function can bo

obtained by using an identical procedure as given in Section 5.2.

In the following, the main result of the passive reci

procal synthesis of SpR short-circuit admittance matrix Y(s)

and SPR open-circuit impedance matrix Z(s) is stated in the

form of the following theorem:

Theorem 5.4

Any pxp SPR matrix T(s), of real rational functions of

complex frequency variable s, can be realized as the immitt

ance matrix |._Y(s) or Z(s)] of a p-port passive reciprocal RCT

network using a minimum number of grounded capacitors

n = 6[T(s)] and at the most (p+2n) ideal transformers. In
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addition, the ports will be grounded.

Notol If 1(b) is a short-circuit admittance matrix, then
T(oo) must be the sum of a strictly hyperdominant
matrix plus a non-negative matrix.

Since proof of the theorem follows identically to the

one given in Section (5.2.1) when T(s) is Y(s) with the above

constraint on D,and in Section (5.2.2) when T(s) is Z(s),the

synthesis procedure is illustrated with the help of suitable
examples for both Y(s) and Z(s) respectively. It may be noted
that the entries of the diagonal matrices Q, K and H, in this

case, will correspond to the transformation-ratios rather than
the gains of the amplifiers. Further, the network block dia

gram is same as shown in Fig.5.1(a,b) whereas, Fig.5.3(c)
depicts the block diagram of NR consisting of ideal transfer

ers and resistors.

First, the synthesis of SPR Y(s) is illustrated with

the help of the following example*.

Example 5.4

The following 2x2 SpR matrix T(s) is to be realized as

the short-circuit admittance matrix Y(s) of a 2-port RCT

network!

1

T(s) = Y(s) =

2s+3
s+1

s+2

s+1

s+2 2s2+4s+^
s+1 (s+ir

2 1

:co) =
1 2Obviously, D = T(oo) =

p = 2, n = 3.
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T]_(s) = T(s) - D

A

C =

1

s+1

1

1

s+1

_s+1 (s+1)2]

Aminimal reciprocal realization {a, B, C, DJ associated
with IjU) satisfying (5.27) and (5.28) is obtained by the
algorithm presented in Chapter III, E8H • Thus

1 0 0 | 1 1

0 o 1 ,
B = C C

c -1 -2 .
i r,
L v -1_

1 0 °1 r2 l"
! . and D =|

1 0 i_ i L.i 2.

Now wo realize the 2-port RCT network corresponding to this

state-model using the procedure of Section (5.2.1)•

Select, gjj = jq 2 j '

from (5.8d), gl5 is obtained as

o ">

>13

C -1/4

-1/4 0

1

r-4
Q= I c

0 1

-4 j! ,

Choosing t^ -
1/2 0 0

0 1/2 0

0 0 1/2

, the submatrices obtained

from (5.8b) are

g23

0

0

0

0

-1/8 _.

and g21

1
" 2"

0

1

2

0

0
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Select K =

•4

C

0

0

•4

0

u

-4

from (5.8c), we obtain

-3/8 0

614= -3/8 C -1/4

H

1 0 0

0 -1 0 ,

C c -1.

rc c o"]
15

= 0

0

0

c

0

cJ
!and g15 =

Then select g00 in the manner discussed earlier,* thus :
>22

g22 =

From (5.8a), the submatrices obtained are

g

! 7/6 0

0 c

0

1/6 C

0 C 2/5

•1/6 0 0

0 -1/24 -1/8

1

24
0 0 0

0 -1/8 -5/2C\- _

and gpr

_ U 0 J

The remaining entries of G matrix can be filled in arbitrarily

such that it remains hyperdominant. A suitable choice for G is

given below.
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2 0
1

" 2
0 0 0

1

"4 8
0 0 0 0 0 |

0 2
1

"2
0 0

1

"4
0 1

8
0

1

"4
0 0 0

1
"2

0

1

"2

0

7
t
0

0

1

t

0

0

0

0

0

0

0

0

0

0

0

0

1

"5

0

0

1

0

1

"8

0 0 0 0
2

5
0

1

" 8
0

1

"8 "Jo 0 0 0

0
1

4
0 0 0

1

4
0 0 0 0 0 0 0

1

"4
0 0 0

1

"8
0 1 0 0 0 0 0 0

_1
8

_2
•8

0 0 0 0 0 1
4

0 0 0 0 0

0 0 0 0
1

"8
0 0 0

1

8"
0 0 0 0

0
1

"4
0 0

_3
20

0 0 0 0
2

5
0 0 0

0 0
1

"6*
0 0 0 0 0 0 0

1

% 0 0

0 0 0
1

"74
0 0 0 0 0 o 0

1

24
0

c 0 0
1

" 8
0 0 0 0 0 0 0 0

1

8_

The realization of Y(s) based on the realization of G is

shown in Fig.5.7. Note that the network NR which realizes the

hyperdominant G has no internal nodes as indicated earlier.

Next the passive reciprocal synthesis of SPR Z(s) is

illustrated.

Example 5.5

The following 3x3 SPR matrix T(s) is to bo realized

as the O.C. impedance matrix of a 3-port RCT network:



*11

S12

Q

[1 : C-4 )]
H

[1:I-D]

tftiu c&l) + -nj&j Ud~lj^f

rw tto^ jw

e31 ©32 <>53

11/4 1/8

;7/8

5/8

fftT)

<?52

3/8

-M/W
1/2

JW

©51

:i/24 •1/6

1/2

K

[l-frO]

lSDrTQD~li^

]W| flflP ART

1/4

-G43 '42

.1
:20

•1/8

AW
3/8

FIG. 5-7-Example 5.4.REALIZATION OF SPR Y(s).

:41
"~1

M

1^22

'23

r~N R

UNITS

FARADS

MHOS

"il/2

r1/2

:V2



2s+l
s+1

-115-

s+1

s+2.
s+1

T(s) = *Z(s) *
s 3_s+4 s +l/2

s+1 s+1 s+1

s+2 s +1/2 2s+3
s+1 s+1 s+1

A minimal reciprocal realization set [A, .

above function has been constructed in Chapter III (Example

3.2); thus

A

C =

- —

-1 0 \J

0 -1 0 t B =

0 0 -1

" 1 0 0 "
r

-1 1/2 1/2 t D =

1 1/2 -1/2

1-11

0 1/2 1/2

0 -1/2 1/2 _

"2 11

13 1

1 1 2
_

C, D[ of tho

It is verified that this realization satisfies both

passivity and reciprocity conditions i.e. (5.27) and (5.28).
Therefore, we can proceed to realize it as an o.c. impedance

matrix of a 3-port RCT network following the procedure of

Section 5.2.2, and using Fig.5.Kb) and Fig.5.3(c).

Since D is nonsingular, R is set as R = ECD •

Select

gll =

"5/7 -1/7 -2/7 j
-1/7 3/7 -1/7 j and Q
-2/7 -1/7 5/7

g , is obtained from (5.16a) as

gl3 = EO^

-2

0

0

-2

0

c

0

-2
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1/50 0 0

C 1/50 0

o c 1/50!

from (5.16b), the submatrices obtained aro

g 21

.2/50 0 -2/50

-1/50

0

•2/50 -3/lCO

0 -1/100

g 23

Select

K =
-4

0

c

0

•4

0

0

-4

and H
-4

0

c

from (5.16c) and (5.17), we obtain

g 14

and

g
15

0 -13/1400 0

0

0

0

0 -277/2800

-93/2800 0 -1/224

-5/112 -9/1400 -1/56

-93/2800 -197/21200 0

-1/100 0

0 0

-1/100 0

0

•4

0

"1

0

0

-4
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It can easily be seen that the rows of [gxl gl2 ^3 614 S15J

are hyperdominant.

Now select g22 in tho manner discussed earlier; thus*.

'22

90961
1C500C

u

0 c

83452 0
5T5

25118
1050

from (5.l6d)or (5.18), the submatrices obtained are

'24

g25

0

213.2
" 350CC

0

22 •<H

0

359
'14C0C

140000

0

0

0

249
• ~2T

'40000

0

133
'140ceo

c

217
112000

795
672000

. . - «* "o r>c,n nnw be filled in arbitrarilyThe remaining entries of G can now do ±x_lxuu

such that its hyperdominant nature is retained.

A suitable choice of G is given below,
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Once Gmatrix of NR is obtained, the network consist
ing of R, C and T can be easily constructed as shown in
Fig.5.8. Further, the network NR (Fig.5.8) which realizes
the hyperdominant Ghas no internal nodes as indicated

earlier.

6.4 CONCLUDING DISCUSSIONS

A simple and systematic synthesis procedure, based on

a state-variable approach and the reactance extraction princ

iple, has been developed whereby any qxp matrix T(s), of
real rational functions of the complex frequency variable s

can be realized as (i)a s.c. admittance matrix,(ii)an o.c.imped

ance matrix, and (iii) a transfer-impedance matrix of an active RC
multiport network with the ports grounded. The realized network,
in each case, contains a minimum number of n grounded capacitors

having unity capacitance spread, n = 6[]T(s)Il, and at the
most (p + 2n) inverting VCVS. Of course, in the case of qxp

transfer-impedance matrix synthesis q OA are also needed.

The facts that all the minimum number of capacitors have

same value and that all the active elements, capacitors and

ports are grounded, are very much desirable if the network
is to be fabricated as an integrated circuit. The distinct

advantages of the proposed method over the one due to Bickart
and MelvinTlg] are that it requires, in general, less number

of active elements and resistors while retaining all the

advantages of their method. Also, for the case of transfer-

impedance matrix synthesis, this method uses commercially

available operational amplifiers in place of finite gain
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voltage amplifiers used in Q-8\ .

Based on the synthesis approach in Section (5.2) and

the result of Chapter III, a new passive reciprocal synthesis

of a SPR immittance matrix using RCT multiport network with

a minimum number of capacitors has beon evolved.

Since a minimum number of capacitors is used,it is conjec

tured that the realization of T(s) will be relatively insensitive

to capacitance variations. It is hoped that further investiga

tions of this synthesis procedure will provide a quantitative

assessment of the sensitivity of selected network attributes

and validity of the conjecture. Finally, the procedure can

be reduced to a digital computer program.
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CHAPTER VI

SUMMARY AND SUGGESTIONS FOR FURTHER WORK

6.1 INTRODUCTION

The problem of realization of a rational transfer-

function matrix into an irreducible (controllable and observable)

dynamical equation is one of the fundamental problems in linear

system theory. In this thesis, the problem of minimal reci

procal realization from a given symmetric transfer-function

matrix and symmetric impulse response matrix has been discussed.

New methods for the design of multiport active RC, and passive

reciprocal networks using state-variable techniques are evolved.

Some endeavours are also made to re-examine some of the well-

known classical synthesis procedures via state-space character

ization. The present chapter gives the summary of the various

results obtained in this thesis, along with some suggestions

for new research problems to be pursued for further investiga

tions in this area.

6.2 SUMMARY OF THE RESULTS

A mathematic description of linear time-invariant dyna

mical systems and networks in the input-output form and state-

variable vector differential equation form is reviewed first.

Having stated some system theory preliminaries, the problem

of state-variable realization of linear, time-invariant

dynamical systems and networks is discussed with a view to
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have a clear understanding of the subsequent results obtained

in this thesis.

The problem of minimal reciprocal realization of linear

time-invariant dynamical systems is considered. Two new and

simplified algorithms have been evolved for obtaining minimal

reciprocal realization from a given symmetric transfer-

function matrix and symmetric impulse response matrix, one

using the Markov-parameters and the other requiring moments

of the impulse response matrix. Both the methods exploit the

symmetry of the given transfer-function matrix or the impulse

response matrix. In both tho algorithms, the order of the

Hankel matrices required in the procedure is much less than

the existing methods and consequently, the computations and

memory storage required are considerably reduced. The methods

are essentially a modification of the Chen and Mital algorithm

E29] . The realizations obtained by the proposed algorithms

result in reciprocal networks. Further, a method based on the

computation of the moments of the impulse response matrix is

preferable when a realization is to be constructed from an

empirically obtained data of G(t) which may be contaminated

with noise.

An attempt has been made to establish yet another link

between state-space and frequency domain methods. A state-

space interpretation of the classical Foster multiport synth

esis method for LC network has been presented. The proposed

method is essentially an extension of the one given by Puri

and Takeda \j-15] for 1-port Foster LC network realization.
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State-variable techniques are also exploited to re-examine the

well-known Cauer driving point synthesis of RC and LC networks,

and active RC filter design using coefficient matching tech

nique. Anon-singular observability matrix has been employed

as a canonical transformation to convert tho state-model

representation of the Cauer network or the active RC filter

section into a canonical state-model.

Anew and systematic synthesis procedure, based on a state-

variable approach and the reactance extraction principle, has

been developed whereby any qxp matrix T(s), of real rational

functions of the complex frequency variable s , can be realized

as an active RC multiport, network with the ports grounded.

Specifically, the proposed procedure is applied to the active

synthesis of a pxp short-circuit admittance matrix Y(s) when

Y(oo) is the sum of a strictly hyperdominant matrix plus a non-

negative matrix, a pxp open-circuit impedance matrix,and a

qxp transfer-impedance matrix with operational amplifiers. The

realized network contains a minimum number of n grounded capaci

tors with unity capacitance spread, n being the McMillan's

degree of T(s), and at th-fl most (p+2n) inverting, grounded

voltage amplifiers. Of course, in the case of qxp transfer-

impedance matrix synthesis q-operational amplifiers are also

required. The facts that all the minimum number of capacitors

have the same value,and that all the active elements, capacitors

and ports are grounded, are very much desirable if the network

is to be fabricated as an integrated circuit.

The proposed method is essentially a modification over

the one given by Bickeart and Melv±n[lf3 . The modification
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reduces the upper bound on the number of active elements

from (2p + 2n) to only (p + 2n). Mso, it will usually require

fewer resistors because the sub-matrix g22> as discussed in

the procedure and illustrated in the examples, can always

be chosen to be hyperdominant. Moreover, in the case of

transfer-impedance matrix synthesis, the proposed method uses

commercially available operational amplifiers instead of

voltage amplifiers as used in E1^ • T^e other advantages of

El8] are retained. Further, it is conjectured that the reali

zation of T(s) will be relatively insensitive to capacitance

variations because of their minimum number used in the network.

Based on the approach of multiport active RC network

synthesis, considered here, and the results of minimal reci

procal realization from a given symmetric rational matrix, a

new method for passive reciprocal multiport synthesis of a SPR

immittance matrix using RCT network with a minimum number of

capacitors, has been evolved. Since the given immittance

matrix is symmetric positive real, the minimal realization set

fA, B, C, Df , obtained with the help of the algorithm dis

cussed earlier, will satisfy both reciprocity and passivity

constraints, a necessary and sufficient condition for

fA, B, C, D} to be realizable with passive and reciprocal

network elements QlOJ .

6.3 SUGGESTIONS FOR FURTHER INVESTIGATIONS

The state-variable approach to linear systems realiza

tion, and passive and active network synthesis has been

reviewed and applied to minimal reciprocal realization of



-12 6-

linear time-invariant dynamical systems, classical synthesis

methods, and modern active as well as passive multiport network

synthesio procedures. Based on the research contribution of

the thesis, some suggestions are given for further investiga

tions in the following paragraphs:

1. Algorithms for obtaining minimal state-models ]a,B,C,d],

satisfying reciprocity constraint, from a given symmetric

rational transfer-function matrix and a symmetric impulse

response matrix have been given in Chapter III. These state-

models in general do not result in any canonical structure. It

would be worthwhile to develop a method by which the minimal

reciprocal state-model is in some standard canonical form, such

that they can be realized further by standard techniques. In

this connection, the references Q.9] , [25] , [Jf] , [80] , Q.00] and

0-61] will be useful.

2. In network problems, usually the given transfer-function

matrix or impulse response matrix are symmetric. By exploiting

the symmetry of the positive real immittance matrices, a passive

reciprocal synthesis procedure using multiport RCT network with

a minimum number of capacitors has been presented in Section (5.3).

A passive reciprocal synthesis method using a minimum number

of resistors was proposed in |_15l] • Investigations leading to

a passive reciprocal synthesis procedure, from a symmetric

positive real matrix, resulting in minimum number of reactive

as well as resistive elements will be quite useful.

3. From a given symmetric impulse matrix, a method for

constructing a minimal reciprocal realization using moments of
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the impulse response has been given in Section (3.3). It
would be interesting to extend this technique for time-

varying impulse response matrices.

4. Because of some interest in the problem of sub-optimal

approximation of a linear system of large dimension by one

of the smaller dimension, a method has been recently given in

\J2 for obtaining a sub-optimum reduced model from the given
input-output data in the form of Markov-parameters. It would
be worthwhile to further reduce the order of Hankel-matrices

used in C5Jl ^ exploiting the technique given in Chapter III
in order to reduce the computation time and memory storage

required.

5. The existing state-space techniques for the synthesis

of positive real functions result either in RLC networks with

transformers Q.0] or transformerless active networks. The

equivalence of even simple transformerless procedures such as

Bott-Duffin methodE152] etc. in state-space has not been done

so farQ.0] . It will be worthwhile to give state-space inter
pretation to such simple classical techniques possibly result

ing in transformerless RLC synthesis.

6. A multiport active RC network synthesis procedure with

a minimum number of capacitors for the realization of immitt

ance matrices has been given in Section (5.2). The procedure

reduces the upper bound on the number of active elements from

(2p + 2n) required in Q.SJ, to only (p+2n) . Investigations

leading to further reduction of upper bound on tho number of

active elements, of course, with a minimum number of capacitors 1
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will be quite useful.

7. The network structure proposed in Section (5.2) is

for the active RC realization of immittance functions with

a minimum number of capacitors. Since the number of capacitors

is minimum, it is conjectured that the realization of immi

ttance matrices will be relatively insensitive to capacitance

variations. However, further investigations are required in

order to provide a quantitative assessment of the sensitivity

of the selected network attributes and validity of the

conjecture.

8. An approach of multiport active RC network synthesis

presented in Section (5.2) is applied to the realization of a

short-circuit admittance matrix, open-circuit impedance matrix,

and transfer-impedance matrix. It may be extended to the active

synthesis of other multiport network functions such as current

gain matrix, transfer-admittance matrix, etc.

9. A passive reciprocal multiport RCT network synthesis

of SPR immittance matrices is given in Section (5.3). It is

worthwhile to extend this technique to the realization of

other SPR multiport network functions such as voltage gain

matrix, current gain matrix, transfer-impedance matrix etc.

which are often available as given specifications in network

synthesis.

10. Synthesis procedures described in this thesis are

limited to linear networks and systems. Hardly any work has

been done in the synthesis of non-linear networks. Recently,

state-variable formulation of Lagrangian and Hamiltonian
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equations for nonlinear networks has boon proposed by Chua

ana McPhorson[2f] . It is hoped that a break through in the

synthesis of nonlinear networks woulc1 be possible in the

light of the procedure suggested in [2 7] .

In conclusion, the theory of state-variables has opened

new viotas in tho realization of dynamical systems and lumped

networks. It is hoped that the applications of the new tech

niques suggested in this thesis will help in solving more

fascinating practical problems of nonlinear and distributed

networks and systems.
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