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A B S T R A C T

REALIZATION OF LINEAR DYNAMICAL SYSTEMS AND NETWORKS

With the increasing use of state-space approach

in control systems and network theory, considerable interest

has been shown in the problem of realization of linear

systems, ^fhis thesis is concerned with the state-space

realization of linear dynamical systems and its application

to networks. la particular, both minimal and n on-minimal

realization techniques have been developed and their

application to problems in network theory have been sought

with a view to obtain better insight and to improve upon

the existing techniques in network and system theory, *"•""

The problem of state model realization of a

symmetric, positive real matrix for passive RLC networks

without the use of gyrators has been investigated and a

new minimal realization technique based on the moments of

impulse response matrix has been proposed. The method is

especially preferable for the cases where the data is

contaminated with noise.

The algorithms for the realization problem of

linear dynamical systems proposed up til now appear compu

tationally rather cumbersome, A simplified technique for

obtaining a non-minimal state-model of a transfer function

matrix has been proposed. In order to determine the
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dimension of the realization, mode matrices M and M

are defined for the multiple pole case.

Roveda and Schmid [91 j have proposed a procedure

for obtaining on upper bound on the dimension of a minimal

realization. Their method is applicable under the assump

tion that no elenent of the transfer-function matrix Ii(s)

has multiple poles. Here, a generalized algorithm is

developed to obtain a n on-minimad. realization for the

case of H(s) having simple as well as multiple poles.

The realization results is a still lower dimension,

compared with the other methods.

Because of a change from transfer-function desc

ription of a dynamical system to a more general state-

space characterization, it is quite important to establish

a communication link between state-space characterization

and frequency domain methods. Some work has already been

initiated in this direction. A technique for determining

the state-model and the impedance matrix Z(s) of order

n from given U(s) = Z(s) + Zr(-s) is presented, which

is simpler than the one proposed earlier [61 J , It

avoids the cumbersome spectral factorization and the

determination of a symmetric positive definite matrix P,

which gets unwieldy in the case of existing methods

especially when the order n of U(s) is largo. Z(s)

obtained thus is a minimum reactance matrix. An algorithm
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is also proposed for obtaining state-space realization

and the impedance matrix Z(s) when V(s) = Z(s) - Z'(-s)

is given. The method is applicable to V(s) of any order n.

Further, a state-space interpretation of the Foster

synthesis method for driving point immittance functions

of LC networks is presented.

A method for determining transfer-function matrix

from .a knowledge of its moments is presented. It is shown

that at the most (n+1) moments of the impulse response

matrix are required in the process, where n is the order

of the state matrix. Also, a method is given for deter

mining the resolvent matrix (sI-A)"1 and its higher

powers, where the given matrix A is in Jordan canonical,

form. Further, when A is in the companion form, an

algorithm is proposed to compute A~k , k = 1,2,... .
These results may be employed to find the moments of the

impulse-response matrix.

A method is given to construct a transformation

N(t) which transforms a time-varying autonomous system

to the companion form. In some cases the transformation

could be made a constant matrix.

Finally, some suggestions are given for further

work in this field.



CHAPTER I

INTRODUCTION TO THE THESIS

1.1 INTRODUCTION

The state-variable approach has emerged as a

powerful tool in the study of dynamical systems and

networks,, State-spaco techniques adapt easily for

computerization, are indispensable for time-varying, and

non-linear systems and afford a more general representa

tion of a physical process, A very important advantage

of these methods lies in their flexibility in generating

"equivalent " canonical representations which are very

useful in system analysis„ Consequently, there has been

a shift in characterizing a dynamical system from impulse-

response, or transfer-function matrix to a state-variable

vector- differential equation

x = Ax + Bu

y = Cx + Du

where x is the state-vector, u is the input vector

and y is the output vector,. While the transfer-function

matrix is an input-output description, the state-model

gives an internal, description of the system. If the state-

variable equations are known, the system is said to be

realized because those first order differential equations

can be easily simulated on an analog computer.



If the state-model (A,B,C,D) of a linear, time-

invariant • dynamical system is known, it is a simple matter

to obtain the. corresponding trans for-function matrix H(s)

which is given by

H(s) = C (si - A)"1 B + D .

The converse, however, is not true. In general, there are

innumerable realizations (A,B,C,D) which will give tho

same input-output response to a given system characteri

zed by H(s).

The problem of realizing the system (A,B,C,D)

from a given H(s) has been actively studied in the recent

past. A we11-developed theory of realization is now

available in the technical literature [90],[100*J . Various

methods for minimal realizations rely heavily on the dual

concepts of observability and controllability. With diff

erent degrees of complexity, most of tho minimal realiza

tion techniques require a lot of computational work. An

endeavor has been made to develop nonminimal realisation

techniques which are easy to apply, so that the realiza

tion problem may be solved quickly. If necessary, this

sub-optimal realization can be made irreducible, by using

standard system reduction techniques.

In the field of network theory, the determination

of a realization (A,B,C,D) is the first step for synthe

sizing a network which corresponds to a specified input-
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output behavior. If a given (A,B,C,D) satisfies

Anderson's positive real lemma [*f 1 , a network using

only passive elements can be synthesized. Further, the set

(A,B,C,D) satisfying reciprocity criterion of Yarlagadda

[118] will lead to reciprocal network realizations. System

theory techniques have also found applications in the

determination of network functions, and in giving state-

space interpretation of several well-known properties of

network functions and classical synthesis methods. The

problem of realization of dynamical systems has thus

attracted wide attention bGc&use of its manifold applica

tions in studying the problems of control, optimization

and network theory.

1.2 STATEMENT OF THE PROBLEM

This thesis is concerned with the problem of a

state-model realization of linear dynamical systems and

networks from input-output data. The specific problems

treated in this thesis can bo stated as follows .

(1) Now methods of realizations of linear,

time-invariant multivariable systems from the

given transfer - function matrix H(s), having

advantages over the existing methods are sought.

In particular, a minimal realization (A,B,C,D)

from a symmetric H(s) using moments such that

the realization is reciprocal , is obtained. The
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use of moments is advantageous in the presence

of noise. Further, new methods of obtaining

non-minimal realisations are developed, which

are easy to construct and have lower upper-

bounds on the dimension, compared with other
methods.

(2) The link between state-space characterisation
and frequency domain methods in network

theory is investigated. In particular, a

state-model realization and the positive real

impedance matrix Z(s) are obtained when its

Hermitian part Z(s) + Z'(-s), or Z( s) - z«(~s)

is given. A state-space interpretation of the

Foster Synthesis method for LC networks,

without considering the topology of the

network, is presented.

A method is also given for obtaining the

transfer - function matrix H(s) from its realiza

tion through the intermediation of moments

of impulse response,

(3) The companion matrix and Jordan canonical

forms, their inverse powers with applications

to system analysis are studied. Methods for

obtaining inverse powers of these canonical

forms are developed. A method to construct

transformations, which wm reduce a time-varying



autonomous system into the companion form,

is also discussed,

1.3 ORGANIZATION OF THE THESIS

The work embodied in this thesis has been

arranged in the following manner.

The problem of minimal realization of linear

systems is introduced in Chapter II. After giving some

preliminaries, an historical review of various realization

methods is given. The algorithm of Ho and Kalman is

discussed in some details beCause of its importance in

so much of subsequent work in the field. A brief review

of the literature on state-space interpretation of

classical results of network theory is also included

in Chapter II. This Chapter is concluded with the key

properties of passive end reciprocal realizations in

state-space terms, which are needed in the sequel.

Chapter III presents new and improved methods

of obtaining system realizations. A minimal realization

technique from a symmetric transfer-function matrix is

discussed. The technique results in reciprocal realiza

tions. The problem of developing suboptimal. realization

methods has also been considered in this chapter. A

method is presented which results in many cases in

lower order realizations. In order to determine the
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suitability of the proposed method, mode matrices are

defined for the multiple pole case, /mother algorithm

for realizing a linear time-invariant dynamical system

has been given in third Chapter. The dimension of the

realization obtained by this algorithm is the lowest

compared with other hitherto known methods. All the

realization methods developed in third chapter are equally

applicable to the multiple pole case. Illustrative

examples are also given.

In Chapter IV, an alternative method is proposed

for finding a state-model realization and the positive-

real impedance matrix Z(s) from its given even part

Z(s) + Z'(-s) . A method to determine a state-model

realization and the positive-real impedance matrix Z(s)

from the given odd part Z(s) - Z'(-s) is also presented.

A state-space interpretation of Foster Synthesis method

for LC networks is presented. A method is presented for

determining the transfer function matrix of a linear

time-invariant system represented by the state-variable

equations,through the intermediation of the moments of

impulse response.

For simplification in system analysis and

synthesis, it is desirable to transform the dynamic

characterization into a canonical form. Chapter four

also deals with these canonical forms. An algorithm

for determining the inverse powers of a companion
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matrix is developed. Another algorithm is proposed to

find the inverse powers of a matrix which is in Jordan

canonical form. These algorithms can be applied for

computing the moments of impulse response. The problem

of obtaining transformations which will reduce a linear

time-varying autonomous system to companion form has

also been discussed. The proposed method is an exten

sion of the method due to Power [76] .

The subject matter of this chapter is also

illustrated with examples.

A summary of the contributions made in this

thesis is given in Chapter V. Some suggestions for

further investigations in this field have also been

incorporated.



CHAPTER II

REVIEW AND GENERAL CONSIDERATIONS

2.1 INTRODUCTION

One of the most important tasks in the study

of dynamical systems is their characterization by a

suitable mathematical model. This mathematical represen

tation serves to optimize, control, or predict future

behavior of the physical process. Determination of a

state-model from input/ output data of a system has

attracted the attention of many a researcher in the

last decade. A host of literature is available in this

field of system theory [1 J - [3 ] , [10 ] , [ll+J - [18 ],
[25] - [26] , [38] -1>8] , [65] - [66] ,[ 66] - [91] , [95 } [W j
[122] , which has led to the evolvement of a complete
theory of realization. It has provided an understanding

between the frequency domain and. the state-space des

criptions of systems [11] - [12 ] , [30} , [60 J . State-
model realization has assumed great importance because

of modern trend of carrying out network synthesis in the

state space [6 J - [7 ] , [52] , [58 ] , [105 j, [ll8 ] .
Several well-known classical methods of network synthesis

have been given state-space interpretation [*+] , [50 ] ,
78] ,[119H . Seme problems of network analysis have

been solved by using system theory concepts [jjfr-J 5[61 ],
\77] . For time-varying, and non-linear systems , state-



model representation is most convenient. This review

chapter surveys representative literature on minimal

state-model realizations of linear dynamical systems,

and some results of system theory as they apply to net

work theory. The realization algorithm of Ho and

Kalman [38*J has been dealt with in detail because of

its importance for much subsequent research in the

field,

2.2 DESCRIPTION OF PHYSICAL SYSTEMS

A multivariable finite-dimensional linear

dynamical system may be specified in many different ways .

However, there are two standard forms in which a precise

definition can be given to the system. We may specify

the state-variable differential equations

x(t) = A(t) x(t) +B(t) u(t) " (2 ^
y(t) = C(t) x(t) + D(t) u(t)

where x(t), u(t), and y(t) designate the nx1 state vector,
the mx1 control or input vector, and the px1 output

vector, respectively. The matrices A(t), B(t) , C(t),

and D(t) have dimensions nxn , nxm , pxn and pxm,
respectively. The second basic system description is

the pxm impulse-response matrix H(t,T) =[*!...( t,T)
which relates the ith output to the jth input. The

set of matrices (A,B,C,D) represents the internal

description of the system and is termed to be a realization
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of H(t,T) [ 1+1 j if for all t > T
i

H(t,T) = C(t) | (t,T) B(T) + D(t) (2.2)

whore 0 (t,T) is the transition matrix of(A,B,C,D).

For the time-invariant case A,B,C, and D have real and

constant elements and the transition matrix becomes

exp (At). In many practical cases, the transfer-

function matrix H(s) = JC [*H(t) ] is given . It is
easily shown that

H(s) = C (si - A)"*1 3 + D (2.3)

where I is nxn unit matrix.

The number n is called the dimension of the

system. The realization is said to be minimal or

irreducible if there is no system of order less than

n which also realizes H(t,T).

A transfer-function matrix H(s) is Said to

be rational if every element of H(s) is a ratio of

polynomials in s with real coefficients* H(s) is

regular if no element of H( s) has a pole at infinity.

H(s) is proper if H(oo) = D = 0.

The realization problem is to pass from an

input-output description of a system in the form of

an impulse-response matrix, or transfer-function matrix,

to a state-space description to the type (2,1) , The

term realization comes from the fact that, using the



11

description (2.1) it is possible to build systems,

namely analog computers, whose behavior simulates the '

behavior of the system. In general, there is no unique

solution to the realization problem and different

realizations of the same input-output response have quite

distinct characteristics. It is necessary, there fore,

to examine the properties of "equivalent11 representations,

The following type of equivalence proves to be the most

important in the realization problem.

Definition : [A(t), B(t), C(t)j is algebraically
equivalent to [I(t), B(t) , C(t)'J if and only if there
exists a continuously differentiable matrix N(t) with

det.N(t) £ 0 for all t , such that [lj-1 ]

A(t) = N(t) A(t) N(t)"1 + N(t) N(t)"1

B(t) = N(t) B(t) (2.1+)

C(t) = C(t) N(t)"1 .

It may be readily verified that

I (t,T) =N(t) 0(t,T)N(t)"1 . (2.5) •

D is not considered since it does not constitute the

dynamic part of the system.

After discussing the preceding preliminaries,

an historical development of the realization algorithms

is given in the next section.
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2.3 HISTORICAL REVIEW OF REALIZATION PROCEDURES

The problem of realization for linear systems

was first stated by Gilbert £31 j in 1963 , who gave an
algorithm for computing state-variable differential

equations from a transfer-function matrix. At the same

time Kalman [_+1 proposed an algorithm for the same

problem, in which the values of A,B, and C could be

found from the coefficients of numerator and denomina

tor polynomials of the elements of H(s). The dual

concepts of controllability and observability play an

important role in these algorithms. In 1965» Kalman

I.M+J proposed a new algorithm for obtaining the state

equations from a given transfer-function matrix having

multiple poles. Kalman had employed the classical theory

of elementary divisors and the language of modules.

This algorithm exhibits the canonical form, under

equivalence, of a rectangular polynomial matrix [29].

Based on Kalman's method [1++ \ , another realization

procedure was suggested by Raju [82]. He employs

Kalman's method Qlhf for finding the order of the

system and for finding the state matrix A. The matrices

B and C are obtained by drawing a signal flow graph.

Another minimum realization algorithm was proposed

by Ho and Kalman [ 38] in 1965 which has been

acclaimed to be one of the most useful and computationally

simpler one. This method was evolved from a study of
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the so called Markov parameters [29] ,[.106] . The

impulse-response data of the system, which is assumed

to have zero initial state, can be given in the time-

or the s-domain in the form of Markov parameters. Ho

and Kalman's algorithm centres on "the generalized

Hankel Matrix" built from the Markov parameters. In

1971, Ackermann and Bucy [l] gave a method for const
ructing a stale-variable model in the canonical form of

Bucy [_ 15 j , from the given matrix of impulse-response

sequences of a finite-dimensional discrete time, linear,

constant dynamical system. The construction is an alter

nate to the Ho-Kalman algorithm [ 38 J in which two

matrices P and Qmust be found. Since P and Q in [38]

are not unique, the realization obtained by Ho and Kalman

is not in any special canonical form ,* in general, all

n(n+m+p) coefficients of (A,B,C) must be determined.

In the canonical form of Bucy, at most n(n+p) parameters

have to be evaluated . A procedure was outlined by Alberston

and Womack [21 for computing the dimension of and const

ructing irreducible realization of a given system transfer-

function matrix. Their procedure is much simpler and

provides more insight into the physical significance

of the problem. The resulting realization is in diagonal

form. However, H(s) is constrained to have only simple

poles. In 1969 , Wolovich and Falb [117_! stated and

proved a structure theorem for time-invariant multivariable



Ik

linear systems. The theorem is then applied to obtain

an algorithm analogous to that of Mayne [ 69 ] for solving

the problem of realization. A computer algorithm had

been developed for applying the algorithm. A. method

of realization based on the moments of the impulse-response

matrix has been proposed by Bruni et. al [i*f j. Their
procedure utilizes the Ho-Kalman algorithm [38] . The point

of difference lies in that the Hankel matrix in [lU-1

is constructed by the moments in place of Markov para

meters as in [38.J «In ^ne Presencc of noise, computation

of moments is preferable to that of Markov parameters

which are the local time-derivatives of the impulse-

response matrix, Kuo [_55 j , and Panda and Chen [73] deter
mine irreducible realizations of a rational matrix in

the Jordan form.

The problem of finding a sub-optimal solution

to the realization problem has also attracted the atten

tion of several authors. In 1963, Kalman [Ml presented

a simple method for computing a good upper bound on

the dimension of a minimal realization, and provided an

algorithm for constructing the corresponding noncanonical

realization. Glass ,[33] proposed a simple procedure

for obtaining a n on-minimal realization of H(s), in 1968$

the resulting realization is always in Jordan form.

In 1970, Rcveda and Schmid [ 91 j presented a method for

computing a new and lower upper-bound, compared with
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Kalman [Vl J , on the dimension of minimal realization
of linear time-invariant dynamical systems. A simple

algorithm was proposed by Roveda and Schmid [91)fcr construcJ-

ing realizations with dimension equal to this upper bound.

However, H(s) is assumed to have only simple poles. The

realizations obtained are the minimal ones having the

property of being structurally invariant with respect

to the variations of the transfer-function-matrix coeffi

cients. All these methods require significantly less

computational work and yield a quick solution to the

realization problem. If necessary, a completely controll

able and completely observable part may be extracted

from the nonminimal realization by the methods suggested

by Mayne [69] and Rosenbrock [87J,which yields a

minimal r e ali z at i on.

Minimal realizations from symmetric impulse-

response, or transfer-function matrix have been obtained

by Lai and Singh [62J and Lai et.al. [65]- [66J .

These methods are modifications of Ho-Kalman clgorithm

[38] . The importance of such realizations lies in

passive network synthesis since they result in reciprocal

realizations and further, all reciprocal realizations for

RC and FiL cases are passive t?2l , [ 123 1 ,
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The minimal realization problem of time-

variable linear systems has been considered by Desoer

and Varaiya [25 J} Silverman £96 ] - [98] , [100] .
Silverman and Meadows [102 I [ 10*f] , Sko.jg [107*1,
Youla [122] , Lai and Singh [59 J . The class of analytic

matrices H(t,l) have been considered as analyticity simp

lifies the development of the methods.

It may be mentioned that the discrete case is

analogous to the continuous one and the methods of conti

nuous-time solutions are equally applicable to the theory

of discrete-time minimum realizations.

The algorithm of Ho and Kalman [38"] is given
in some details in the following section.

2.+ THE ALGORITHM OF HO AND KALMAN

In this section, minimal realizations are const

ructed when the system specifications are given in the form

of Markov parameters [29] . The problem of realization
is then the following ;

"Given a sequence of pxm constant matrices Y,
k

(Markov parameters), k = 0,1,2,... , find a triple (A,B,C)

of constant matrices such that

\ = C Ak B , k =0,1,2,... »

The sequence Yk has a finite-dimensional realiza

tion if and only if there is an integer r and constants
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°(. such that

Y.
•r+o

«*. Y,

i=1 r+j-i
for all j--.* 0 (2.6)

where the degree r of the annihilating polynomial[29;

of Amin is assumed to be known. The method to determine

r is given later in this section. The algorithm for the

construction of a minimal realization is described now.

The algorithm begins by forming the rxr block

matrix ("generalized Hankel matrix") composed of the

Mark ov p arame t e r s.

S

Yo Y1

Y1 Y2

Y H Yr-1 r

Y
r-1

Y.

Y.
'i+3-J

(2.7)

"2r-2

If Y^ has a finite-dimensional realization, then the

dimension of minimal realization is

n = rank S
r

(2.8)

The following steps yield a minimal realization.

Step 1) Form the matrix S

Step 2) Find non-singular matrices P and q such that

P Sr Q
0

0 0

Here, 1^ is a zxz unit matrix, z = rank S , and J is

idempotent.

= J (2.9)
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Step 3) Let E be the block matrix (I 0 ... 0 )
P p p py

and let ULH denote the operator which picks out upper

left-hand block . Then a minimal realization of Y is

given by

ULH ! J P T S Q J |
r * J

B = ULH I J P
m J

C = ULH

where T is a constant and

Y
1

Y,

T S„ =

Y2 Y3

E.,
P

S.

Y.
"r+1

Y Y Y
xr •Lr+1 "" x2r-1

(2.10)

(2.11)

The procedure described in the preceding steps

makes only one assumption, namely a knowledge of the

integer r. In order to determine r , it is given the

values 1,2, ... , etc. For each value of r, the rank of

Sr is determined. That value of r is chosen when rank

Sp = rank Sp+1 .

After treating the realization problem, some

results concerning the state-space interpretation of class

ical concepts are discussed further in the following

section.
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2.5 STATE-SPACE INTERPRETATION OF CLASSICAL RESULTS

OF NETWORK THEORY

There has been a growing interest in the applica

tion of state-space approach in the field of network theory?

apart from the development of control and system theory

in state-space terms. Many concepts of system theory

find their utility in network analysis and synthesis. For

example, a state-model of an RLC network which is completely

controllable and completely observable can be synthesized

using a minimum number of reactive elements . However

frequency domain methods are still extensively being used

in the majority of network design problems. This has led

to the exploration of communication links between the state-

variable characterization and the input-output description

of networks. Several authors have pUt in endeavors in this

connection. The expressions for poles and zeros of a

system in terms of its matrices have been developed by

Brockett [12] . Similar relations were derived by Kuh \%11

by signal flow graph representation of the state-space

description of linear systems. Sandberg and So [9*f1

developed techniques for evaluating the poles and zeros

of a scalar transfer function from the state end output
equations of the system. Recently, Lai and Singh [60]

have derived some well known properties of LC, RC networks
etc. using system theory concepts and have also given
state-space interpretation of classical Foster and Cauer
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methods by considering topological state models of networks.

Capacitor voltages and inductor currents are chosen as

the state variables.

Consider a single-input single-output system

x = Ax + b u

y = ex + d u
(2.12)

When there is no resistance path between the input and

the output, d = 0 , In that case, the characteristic

polynomial of A gives the poles of the transfer function

while the zeros of the transfer function are given by the

characteristic polynomial of A where [52J

o
I -

^c
cb

A
J

(2.13a)

whereas for the case d £ 0 , A is given by [ 52]

o
(2.13b)

or

o
A - ££. (2.13c)

as given in [92 J, The expression for the transfer func

tion as given by Sandberg and So j 92 ! is

det

H(s)

det

d

b

- c

si - A

si - A

(2.13d)
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Further, the state-space interpretation of multiport

Darlington method has been given by Anderson and Brocket;:

|5 J . Recently, Khan et. al. [50] have extended the

technique of Puri and Takeda [ 78 ] for state-space synthe

sis of LC networks to n-port lossless Foster form. Besides,

a state-variable technique has been proposed by Lai and

Singh [61 ] for determining the state-model and the

impedance matrix Z(s) from its given Hermitian part Z(s) +

Z'(-s). Youla's factorization of rational matrices [121 ]
and the system theory criterion for positive real matrices,

developed by Anderson [h ] have been exploited by Lai

and Singh [6i J, alongwith the realization theory, to

obtain the minimum reactance matrix Z(s),

The concepts of passivity and reciprocity useful

for State-space" Synthesis are dealt with next.

2.6,1 Passivity Criterion

Anderson's [i+j system theory criterion for

positive and real matrices is stated here as a lemma..

LEMMA 2.1 Let Z( s) be a matrix of rational transfer

functions such that Z(a) is finite and Z has poles

which lie in Re s < 0 or aro simple on Re s - G

Let (A,B,C ,D) be a minimal realization of Z. Then Z(s)

is positive real if and only if there exist a symmetric

positive definite P and matrices W and L such that



PA + A' P = - L» L ,

P B = C« - L' W

W' Wvvo o
= D + D»

o

22

o
(2.1*4-)

Here W(s) is found by using a lemma on spectral facto

rization, due to Youla [_121] , such that

Z(s) + Z«(-s) = W'(-s) W(s) • (2.15)

W(s) is unique save for multiplication on the left

by an arbitrary orthogonal matrix.

2.6.2 Reciprocity Criterion

A theorem on reciprocity, due to Yarlagadda

[118 J is stated in the following,

THEOREM 2.1 Let Z(s) be an nxn matrix of real

rational transfer functions with Z(oo) finite. Then

Z(s) possesses a state model of the form

x a A x + B u

y = C x + D u ,

(I + I ) M

such that

(2.16)

(2.17)

is a symmetric matrix, where jT is a unique ordered

diagonal matrix of plus ones and minus ones, + denot;

direct sum and

C

; r
I

o

o r
__ I, and M =

A
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if and only if Z(s) a ZU-s) *

It may be pointed out that it is rather difficult

to satisfy both passivity and reciprocity conditions simul

taneously* However, all reciprocal realizations for RL

and BC impedance matrices have been shown in [53]

to be passive <, Thus in these cases a reciprocal reali

zation is automatically passive.

2.7 COMMENTS

It is evident that en abundance of literature

can be found in state-model realization techniques. The

given data may be in the form of an impulse response

which dies out with time, does not disturb the steady

state, and if the system is stable,it returns to the ini

tial value after the application of the impulse. The

data could also be in the form of Markov parameters,

or moments of the impulse response. Of late, there

have been fruitful attempts to find quick and computa

tionally simple methods by looking for suboptimal solutions

to the realization problem,,

While a fairly complete theory of system reali

zation is available, state-space network synthesis methods

are still being developed. However, several well-known

network properties and classical synthesis methods have

been given state- space interpretation.
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The following chapters deal with some new methods

of realization, state-space interpretation, determination

of system functions of positive real network functions,

evaluation of inverse powers of canonical matrices, and

transformation of time-varying autonomous systems to

companion form.



CHAPTER III

REALIZATION OF LINEAR TIME-INVARIANT DYNAMICAL SYSTEMS

3,1 INTRODUCTION

The problem of constructing irreducible (or

minimal) realizations of real, finite-dimensional, conti*.

nuous-time and linear dynamical systems from their

external descriptions has been actively studied in recent

years. The fundamentals of this problem have been esta

blished by Gilbert, and Kalman in 1963. Interest in this

fundamental problem of system theory has been generated

due to a change from transfer-function description to a

more general state-space characterization, for studying

problems of control, filtering, identification and those

in the field of network theory. Realization theory has

served to get a better insight into the relationship

between input-output and state-space models of a system.

In this chapter, methods have been evolved for obtaining

minimal as well as non-minimal realizations. A procedure

is presented for constructing minimal reciprocal realiza

tions of a given system transfer-function matrix H(s), for

the case"" rWW is symmetric, using moments .

Also, the technique proposed by Glass [33} f°r
synthesizing' transfer-function matrices having multiple
poles is modified which may result in a lower dimension.
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In order to determine the dimension of A matrix,

mode matrices M and M are defined for the multiple

pole case. Further, a simple algorithm is proposed for

constructing a realization of a dynamical system described

by means of its transfer-function matrix with multiple

poles. The dimension of the resulting system will be

still lower.

3.2 MINIMAL RECIPROCAL REALIZATIONS USING MOMENTS

The problem of minimal realization from a

transfer-function matrix has been widely investigated.

Various methods are available for the construction of

the matrices A,B,C such that (assuming no direct path

between input and output)

C exp (At ) B = H(t) (3,1a)

C (si - A)"1 B = H(s) (3.1b)
where H(t) is the impulse-response matrix of a linear

time-invariant finite-dimensional strictly proper system,

and H(s) is its Laplace transform. The most relevant from

a theoretical and computational point of view is the Ho-

Kalman algorithm [38 ] , Their algorithm begins by forming
the rxr block matrix Sr (generalized Hankel matrix)

built out of the Markov parameters [29] j [1°6] \-*3i
where

*n Y
1

Y.

.. Y
r-1

Y
» * B -*- _

v y Y
"r-l r "* x2r-2

Lk

(3,2)
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and Y,'s are coefficients of the negative power series

expansion of H(s). Non-singular matrices P and Q are

then found using standard methods [23] such that

I

P Sr Q =

0

0

0

J (3.3)

where I is a zxz unit matrix, z • rank S and J is

idempotent.

If E is the block matrix (I ,0 , ..., 0 )
jy p p p

and ULH denotes the operator which picks out upper left

hand block, then

A - ULH [j P(TSr)(Jj] (3*L!-a)
[J P^ < 1 OAb)Em 'r T:

ULH Ep Sr Q J

is a minimal realization of H( s) , where

Y

Y
'2

T S

Y

Y2 "• Yr

Y Y
3 r+1

Y
r+1 2r-1

(3>c)

(3.5)

Recently, Lai and Singh [62 J have suggested a
modification of the algorithm of Ho and Kalman [38 ] for

obtaining a minimal realization (A,B,C,D) of a transfer-
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function matrix H(s), for the case when H(s) is

symmetric. The realization obtained in [62J is such that

(I + I ) M

is symmetric, where

M =

D

B A

(3*6)

(3.7)

+ denotes direct sum

and the diagonal matrix

I • I,* I,

*-j has only +1'son the diagonal

V has only -1's on the diagonal .

Such realizations result in.reciprocal networks, as

mentioned in [62 j , Further, it has been proved in [53]
and [123 ' that all reciprocal realizations for RC
and RL cases are passive. In the realization process of

[62 ] , since the given matrix H(s) is symmetric, the
Markov parameters and consequently the Hankel matrix S,

will also be symmetric . For the symmetric matrix S,

a non-singular P can always be found [23] such' that

P S P« = ( Z + 0 )» <3.8)

the order of £ being equal to the rank of S.

where
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While applying the method of [62 J to synthesize

H(s), it is also worthwhile to expand H(s) in a positive

power series according to

co

H(s) = Yl ck sk • (3.9)
k=0

This series converges in a suitable neighbo-rhood of the

origin, and it can be analytically continued on the whole

plane except for the singularities of H(s) [ih] . Conse

quently, the sequence c. , uniquely identifies the

H(s). Each C^ is uniquely connected to the corresponding
moment M^ of the impulse- response matrix H(t) by

the relation [itk ]

\ = (-Dk kl Ck (3.10)
where

co

\ • Jtk H(t) at, k = 0,1,2, ... (3.11)
0

Since H(s) is symmetric, its moments are also symmetric

as is clear from (3.9) and (3.10). Then the Hankel

matrix S constructed from the moments will also be

symmetric. Therefore, a non-singular matrix P can again

bo found such that (3,6) is satisfied. The procedure

of [62] can then be applied without any modification
to the Hankel matrix constructed from M* where fjk ]

<-Dk •
\ • * \-1 » k = 1»af. (3.12a)

(k-Dt
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and

M. = [H(t)l = lim sH(s). (3.12b)
1 Jt=0

S -) CO

The matrices A, B, C are related with the quantities

introduced above according to [1*+]

M* =C A"k B , k = 0,1,2, ... (3.13)

Then, in the light of the methods given in [li+] and [62J
we get [ 79 J

A"1 = ULH J P (T S)

B = ULH J P S E«

' h

C - ULH E S P'

D H ( co)

(3.1^&>

(3*1^)

( I + 0) J (3.1^-c)

(3.1^d)

Here p = m . It is obvious that this realization win

also satisfy (3.6) ,

At the end of the calculations, it is necessary,

of course, to invert the matrix A to obtain A .

For reciprocal RC and RL networks H(s) will be

asymptotically stable, and, from [1>+] , A is then non-

singular,

CONCLUSION

A method of minimal realization based on moments

is presented. In the presence of noise, computation of
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moments is preferable to that of Markov parameters

which can be interpreted as time derivative j3 of the impulse-

response matrix calculated in the origin. As pointed

out in [l*+J , when realization is to be constructed

from empirically obtained data ()f H(t) , a method based

on moments is advantageous.

The example of [62J is taken for illustration

purposes '.

Example

Given a

3.1 1 2
8 s

symmetric H(s) =
2

s

2 9+ - a. 4. i
8 s + 8

f 2 s +1

Then

D = 1/8

and

H.j(s) = H(s) - 1/8

1

s2 + 2s + 1

= 1 - 2a + 3s1'-»►/♦5 a " »• • •

Using (3.12a) and (3.12b), we gt3t

* 0 , M* = -1 , *

M2 = 2
*

M
3 - 3 , \ = h * -m5 =- 5 , ...

It can be seen that

*

= ' <\-1 ' k = 1>2> • • •

••



The Hankel matrix

S =

and

TS

0 - 1

-1 2

PL

*

Mn

* 1
Mr

H3

P
- 1

-3
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As S is symmetric, it can be transformed to

the form of Eq. (3.8) with

z_

J =.

E«
m

0

2

o

0 *1

1 0

0 1

1

0

Using Eq. (3.1*1-) , we get

-1
-3/2

1/2

Vf2

1/J2

E
P

•1/2

-V'

1 0
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- 1/ J2
B =

- V

C = -1/ 2 1/ , D = 1/8 ,

With

A -

we set

D

M

JD

and

U *z)

-1/2 1/2

-1/2 -3/2

A

1

0

1/8 -1/J2

-1/J2 -1/2

-1/ 2 -1/2

0 0

0

0 0 -1

Vj2

1/2

-3/2

It can be seen that Eq. (3.6) is satisfied.

Example 3,2

Let

H(s) =

J
+ 1

1

5+1

S + 1

s + 1
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From (3.10) we get the moment:

M.
o

" 1 1
1

, K, *

-1

—

-1

, M2 =

1

-

1

1 1 -1 -1 1 1
-

••

»•'

Using Eqs (3.12a) and (3.12b) M* f3 are obtained as foil ow

M

1 1
*

M

1 1

-1

-1
, M* =
' 2

-1

-1

The Hankel matrix S is found to have rank = 1

1 1

1 1

TS =

Then

+ 0

With

m
= E

P

M.
1

•1 1

1

0

0

0

1

0

-1 -1

-1 -1

i.'ho congruence transformation matrix is

0

, J =

1

0

0

0

0

-1

-1
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and using Eq. (3.1*+), wc get

*- =[-1 ] =

• [1 i]B

"1

1

This realization (A,B,C) satisfies (3.6) and thus would

result in reciprocal realizations using passive network

elements.

3.3 NON-MINIMAL REALIZATION TECHNIQUES

The realization procedures found in the literature

so far appear computationally rather cumbersome, having

different degrees of complexity. Thus, it is worthwhile

looking for sub-optimal solutions of tho realization prob

lem having computational simplicity, by using noncanonical

structures. The followingjfcwo sections deal with this
problem of realization.

3*3.1 Synthesis of Transfer-Function Matrices with Multiple
Poles

Asimplified technique Was presented by Glass [33]
for obtaining a state-model realization (A,B,C) of a

trans for-function matrix H(s), with H(oo) =0. The

constant matrix H(oo) corresponds to "resistance paths"

from.system inputs to system outputs, and does not contri

bute to tho dynamical part of the system. The resulting

A
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system is not always irreducible and standard system

reduction techniques have to be used to obtain an

irreducible realization. Therefore, before applying

this algorithm, it is perhaps worthwhile to consider

whether factoring of H(s) into a slightly different form

will lead to a state-model of lower dimension.

It is apparent that the dimension of the result

ing A matrix in Glass's technique is equal to the

number of rows of Q(s), where Q(s) is obtained by

factoring H(s) as the matrix product

H(s) = C Q (s) . (3,15)

The dimension of A matrix can also be easily obtained by

constructing mode matrices M, M and M [_2 f defined
for the multiple-pole case as follows .Consider H(s) of

[33].

H(s)

1 2 3 2 3

(s+1)2 s+2
m m

s+1 3+1 s+3

2 1 2 1

-

s+1 s+2 (s+3)2 s+5

(3.16)

M is defined as a mode matrix whose elements correspond

to the modes of H(s), and as such can be written by

inspection as

M =

(1) , or,(2)

(1), (2)

(1), (3)

(3),(3)2,(5) (3.17)
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It may be noted that in the multiple-pole case, for a
r

term <=< / (s + o* ) in an element of H(s), the correspond

ing entries of Mcontain all the multiplicities (a ) , (cr)2
...., (cr ) . However, if this element of H(s) contains

/3/ (s+cr) in addition, the corresponding entry in the

matrix M is nil as indicated in (3.17).

M is reduced to column combinations |2l which

are achieved by considering a mode, say (o-)jL in a particu

lar column of M, and retaining it in only one entry while

cancelling it from others in the same column . The

process is repeated for all the modes. Thus M becomes

(1) , (D25(2)
M

CD, (3)

(3)2,C5)
(3.18)

Mis reduced to M by making row combinations, in a

similar way. Then we get M as,

M

r
: (1) , (1)%(2) (3)

(D, (2) (3),(3)2 , (5)
(3.19)

0bvious3.y, the sum of the number of modes of M (7 in this

problem) is equal to the number of rows of Q(s) of (3.15)

m

If it is found that the sum of the number of modes

M is less than the sum of the number of modes in

Mr , a state-model of lower dimension than that given in

33 | can be obtained by factoring H(s) as the matrix

product
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H(s) = PCs) B C3.20)

where the elements of the kth row of P(s) are the poles

appearing in the corresponding row of Il(s), with multi

ple poles listed in order of decreasing multiplicity.

(3.20) may be written as

H(s) = PCs) T"1 (s) T(s) B (3.21)
where T(s) is a non-singular matrix . I~1(s) is construc
ted by a procedure similar to that given in ;33j by

having linear factors (s+p), which correspond to the poles

in the corresponding columns of PCs), as the elements of

the principal diagonal . Ail other elements are zero,

except that a minus one is required in the position below

the principal diagonal, if the corresponding pole of

PCs) is not simple. T~1(s) constructed thus will
ensure that C5 given by C=P(s) T~1(s) , and A, given
by A = si - I Cs), where I is a unit matrix of appro

priate order, are both time-invariant matrices.

The procedure for row or column mode combining

provides an upper bound on the minimal dimension of the

system. Let <x. be the number of ^ modes in MQ and

/3- the number of \. modes in Mp. Then the maximum

number of state-variables required to realize H(s) is

1

n = 7~"0 -7 min (c(±, /3±) (3.22:

The dimension n ^ nQ of irreducible realizations,
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Obviously, in many examples-, the realization obtained

by the proposed method may be of lower dimension than that

obtained by [33 , which will require far fewer computa
tions when a completely controllable and completely observ

able part is extracted from it.

Suppose a system, specified by the transfer-function

matrix H(s) is required to be synthesized, where

1

i+1

H(s) =

s+3

+_JL_+_i

(s+1)

(s+3)
+

S.

s+2

S+>

A-+-1
5+1 (s+1)

:+3 »+?

In order to decide about the suitability of the

method given by Glass or the one proposed here, mode matrix

M is constructed first. Thus

CD , CO*, (2)
M

(3), (3)2,(5)

CD , (1)

(3), (5)

M is reduced to M by column combinations and to M
e 2

by row combinations, i.e.,

CO, (D2 , (2) (1) , CD2
M.

(3), (3)* ,(5) (3) , (5)
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CD ,CD2, (2)

(3), C3)2, (5)

From Mc , the dimension of A is 10 whereas M givesc r

the dimension of A as 6. Of course, a realization of

dimension 6 is to be prefered ,

0 0
1 1 1

From (3.20), we get

2 1 T

H(s)=
(s+1)* s+1 s+2

o o o •
1 1 1

(s+3) s+3 s+5

which

-1
T (s)

s+1

-1

0

0

0

0

gives

0 0 0

s+1 0 0

0 s+2 0

0 0 s+3

0 0

0 0

0

0

0

0

0

0

0 0

1 s+3 o

o o s+5
J

1

1

3

2

1

2

0

0

1

2

Matrix inversion is not required since only T~1(s)

required in the synthesis. The realization (A,B,C,D) is
given below.

A =

-1 0 0 0 0 0

1 -1 0 0 0 0

0 0 -2 0 0 0

0 0 0 -3 0 0

0 0 0 1 -3 0

0 0 0 0 0 -5_

B =

2 1

1 2

1 0

3 0

2 1

1 2
_

is



C s
0 1 1 0 0 0

0 0 0 0 1 1

1
D =

0

0

1+1

0

0

3.3.2 An Algorithm for Lower Dimension Realization of

Dynamical Systems

The aim of this section is to present a method

for computing, a new and lower , upper-bound and to give

a simple algorithm for constructing a realization, with

dimension equal to this upper bound, of a dynamical system

described, by means of its transfer-function matrix with

multiple poles.

A procedure for computing an upper bound n

n was proposed by Kalman [1*1 ] , with

nQ = | min J P m

on

°c.

1= T r1 '
(3.23)

where c^ and /3 are the number of distinct poles

(counting each pole with its maximum multiplicity) in the

ith row raid in the jth column, respectively, of matrix
H(s), and he has provided an algorithm for constructing
the corresponding non-canonical realization.

Recently, Roveda and Schmid f 91 ] have proposed
a procedure for obtaining a good upper bound on the

dimension of a minimal realization. They construct realiza
tions with dimension equal to this upper bound. Their

method is applicable under the assumption that no element
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of the transfer-function matrix H(s) has multiple

poles.The resulting system is

x = A x + B u

(3.2+)
y = c x

where x,y and u are n,p, and mvectors, and A,B,C

are nxn , nxm and pxn constant matrices, respectively.

The condition of simple poles is a big drawback. Here,

a generalized algorithm is proposed to obtain a non-canoni

cal realization for the case of H(s) having simple as

well as multiple poles. The significance of the proposed

algorithm is its computational simplicity. The dimension

of the resulting system will be smaller than the ones

obtained by Kalman [Vl], Glass [33 ] or Lai et.al. [6+] .

The steps of the algorithm are more easily pre

sented by means of an illustrative example given in the

following paragraphs. Given a transfer-function matrix

H(s) =

1 2 1 5 3 1 +
-+

(s+1)* s+1 s+2 s+2 s+1 (s+1^
s+1

o

2—•*••—• •" •"+ ' •'" '•
. o -3+2 <s+2> Cs+1)^ s+2 (s+3)2

. i 1 , 6 l 1
s+3 s+3 (s+1)2 s+1

s+3

s+3

(3.25)
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Step 1 : Compute the coefficient matrices of H(s)

corresponding to the distinct polos and their multiplic:

ties such that

R(1) -

1

V

o

* Vjl
- 1 -

4
0

1

t
1

0

-

, RC1)

2

0 1 0 <
I *

0

0 ! 1 ! 0

RC2):

1

2

!o i o

i

R(3) =

- r

0

0

0
,R(32)

_

0 0 0

0 0 1 t

5 1 2

o

0

0 0

0 2

0 0

(3.26)

Step 2 ; For each coefficient matrix, find the minimum

set of lines (covering set) containing all its non-zero

elements, as shown in the preceding step.

Step 3 : in order to construct A, consider a multiple

pole. Associate with the coefficient matrix of highest

multiplicity, say R(12), a real matrix A(12) constructed
as follows.

1) Scan ROD for columns belonging to the covering
set. Form an upper Jordan block having (s+1)2 as its
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elementary divisor corresponding to each, such column .

In the example considered, there is only one such column

which would generate a 2x2 upper Jordan block.

o

Scan R(1D for rows belonging to the covering

set. Form a lower Jordan block having (s+1)2 as its ele

mentary divisor corresponding to each such row . In the

example considered, there is only one such row which

gives rise to a 2x2 lower Jordan block. Then the direct

sum of the Jordan blocks constructed from R(1 ) by

column scanning and row scanning gives A(1 ).

2) Now consider R(1) which is the coefficient

matrix of the next lower multiplicity corresponding to the

pole of highest multiplicity considered in the preceding.

Scan R(1) for columns belonging to the covering set.

Ignore those columns of the covering set of R(1) in v/hich

the columns in the corresponding position of the covering
2

set of R(1 ) have been considered . Form Jordan blocks

with (s+1) as the elementary divisor for each of the

remaining columns of the covering set which essentially

reduces itself to the same form, as obtained in [91 1 .
Similarly, scan R(1) for rows and form Jordan blocks.

Then the direct sum of the: Jordan blocks formed

from column scanning and row scanning of R(1) as just

described gives A(1).
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3) Repeat the preceding procedure for the remain

ing coefficient matrices. The resulting A matrix for the

example considered obviously becomes

[A(12), A(2) , A(32) , A(3) I

•1

0

1 :

-1:

b2j =] 1 »
0 for j ^ K .

(3.27)

J

Step If : In order to construct B, consider a multiple

pole. Associate with the coefficient matrix of the highest

multiplicity, say R(lD, a real matrix B(12) as follows

1) Scan R(1 ) for columns belonging to the covering

set and let K be the index of the first column in this

set [91 J . Form the first two rows of B(12) by letting

b±j = 0 , for j = 1,..., m

for j = k

(3.28a)

(3.28b)
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Repeat for the remaining columns of R(12) belonging to
the covering set.

o

2) Scan R( 1 ) for rows belonging to the covering

set and let II be the index of the first row in this set.

Form the next row of A(1D, say , row t, by letting

bti(l2) = rHj (l2) i J =V.., n (3.29a)
if the column does not belong to the covering set,

Vl2> *° (3.29b)
otherwise.

The (t+1) th row of A(12) is formed as follows.
Let the index of the first row of the covering set of

R(1) be E. Then,
2f*V.(1 ) for E = II - -1rB3vi j ior js = a , j = i,..., m

bt+l i<1 > - I (3,30a)'J V. 0 f»>/H,Js 1,„(|i

if the column j does not belong to the covering set,

bt+1,J(l2) =0 (3.30b)
Otherwise. Repeat for the remaining rows of R(12) belonging
to the covering set.

3) The procedure of [91 ] for R(1) is now
carried out. Those lines of the covering set of R(1) are,
however, neglected which have already been taken into

account while considering R( 12).

+) Repeat the preceding procedure for the remain

ing coefficient matrices. The resulting B matrix for the

example considered becomes



B

B(12)

B(2)

B(32)

B(3)

-

0 0 0

0 1 0

1 0 1

2 3 If

1 0 0

0 1 0

1 0 2

0 0 1

5 1 2

1*7

• (3.3D

Step 5 ' Again consider a multiple pole in order to

construct C. Associate with the coefficient matrix of

highest multiplicity, say, R(12) , a real matrix C(12)
by letting

2nc±1(i2) r.k(1 ) , i = 1, , p. (3.32a)

The second column is formed as follows. Let L be the

index of the first column of the covering set of R(12).
Then

ci2oo =
I

r,TOD, for L = K , i a 1,2,...,p (3.32b)

for L* K , i = 1,2,...,p0

Repeat for the remaining columns of R(12) belonging to
the covering set.

2) Scan R(1 ) for rows belonging to the covering

set and let H be the index of the first row in this

set. Form the next two columns of C(12), say, columns
u and u+1 , by letting



i,Hu(1 )=°»i=1j...,P

1 , f or i = H

ci,IIu+1^1 *
[0 , f or i/ H

Repeat for the remaining rows of R(12) belonging to the
covering set.

3) The procedure of [91 ] for R(1) is next

carried out. Those lines of the covering set of R( 1),

are , however, ignored which have already been taken

into account while considering R(1 ).

if) Repeat the preceding procedure for the remain

ing coefficient matrices. The resulting C matrix for

the example considered becomes

C = [c(12) C(2) C(32) C(3) ]
0 3 1 0

1

1 1 5 0 0 0

2 0

1

1° 0 2 1 0 1 0

6 1 >0
i

0 0 0 0 0 1

1*8

C3.33a)

(3.33b)

(3.3i+)

It will thus be seen that Glass's technique [33 "

is a special case of the procedure just described when

the covering set consists of the columns onlyj so is

the technique proposed in [61+1 when the covering set

consists of the rows only. As the proposed technique con

siders covering sets from both columns and rows together,

the dimension of the resulting realization will obviously be

smaller than or at the most equal to the lesser of the
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one obtained from [33 ] » [l*1 ] , or 61+ j , The proposed
algorithm is self-evident in the light of the algorithms

already given in [33] and 6+ J. The upper bound on
system dimension can be easily found from step 3 of the

proposed algorithm.

For the example considered, the upper bound given

by Kalman [+1 J is

3

n0 = • Yl °i = 11 *
i=1

The dimension of the realization obtained by [33} is

13 and of that obtained by [6+3 and [1+1 is 11,

Applying the algorithm described in this section results

in a realization of dimension 9 which gives a lower

upper-bound on the dimension of an irreducible realization,

3.If MISCELLANEOUS COMMENTS

The work is this chapter reveals new character

istics of linear dynamical systems described by transfer-

function matrices having multiple poles. A modified proce

dure of minimal realization utilizing the approach of Ho

and Kalman |38~j is presented when the given matrix is

symmetric. The method is based on moments of impulse -

response . In the presence of noise, computation of

moments is preferable to that of Markov parameters which

can be interpreted as time derivatives of the impulse

response matrix calculated in the origin. When realization
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is to be constructed from empirically obtained data of H(t),

a method based on moments is advantageous. The realization

obtained satisfies reciprocity constraints. Further, the

problem of realization without guaranteeing irreducibility

has been investigated. In some applications \77 }, non-
minimal realizations are acceptable if they could be construc

ted easily. If, however, a minimal realization is required,
standard system reduction techniques [69 ] , [87 ] may- be
employed to extract a completely controllable and completely
observable part which gives the minimal realization. A

simplified technique is presented for obtaining a state-

model realization of a transfer-function matrix. It has

been demonstrated how one can often get lower order realiza
tion of a transfer-function matrix.

Continuing with the search for obtain

ing sub-optimal, solutions of system realization problem

using noncanonical structures, another algorithm is proposed
for constructing a realization of a dynamical system having
multiple poles. The proposed algorithm has the advantage that
the dimension of the realization is not greater than tho

dimension of the realization which can be obtained by
Kalman [+1 ] , Glass [33] , or Lai , Singh and Puri [6+].
The computational simplicity of the algorithm emphasizes

the significance of approaching realization problems
through noncanonical structures.

central \mm mmam of roowk
kOORfLEE
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The next chapter is concerned with the appli

cation of system theory for the determination of network

functions and their state-model realization, and also

for a state-space interpretation of classical synthesis

methods.



CHAPTER IV :

NETWORK FUNCTIONS AND STATE-SPACE INTERPRETATION

1*,1 INTRODUCTION

The many advances made in system theory in the

past few years have enlarged its scope to a number of esta

blished fields. It is the mathematical structure of a

system, and not its physical form, that is of interest

to a system theorist, for studying the behavior of various

types and forms of systems. Consequently, much attention

is being paid for network analysis and synthesis using
state-space techniques. This chapter discusses the

determination of network functions and their state-space

realizations utilizing results of system theory. A method

for determining transfer-function matrix from a knowledge

of its moments is given. Procedures are given for obtain

ing the higher powers of the inverse of state matrix when

it is given in Jordan canonical form or in the companion

form. Either of these results may be employed to compute

moments of impulse-response matrix. Also, a method is

presented to generate transformation matrices which would

transform a time-varying autonomous system to companion

form. Besides, state-space interpretation of classical

network synthesis methods is given.
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If.2 DETERMINATION OF IMPEDANCE MATRIX Z(s) FROM GIVEN
Z(s) + Z'(-s)

Recently, a state-variable technique for the deter

mination of the impedance matrix Z(s) of order n from given

U(s) = Z(s) + Z'(-s) has been given by Lai and Singh [61 ] ,
where prima denotes matrix transposition. The first step

in the procedure of [61 ] involves the factorization of the

nxn matrix Z(s) + Z'(-s) such that

Z(s) + Z'(-s) = v/ (-s) W(s)

where W(s) is an rxn matrix and r denotes the normal rank

of U(s). It is also necessary in the procedure of [61]
to determine a symmetric positive-definite matrix P, and
matrices L and W such that

PA+A'P= -LL'

P B = C - L W

W W = D + D«
o o

where (A,B,C,D) is a minimal realization of z( s)

and (A, 3, L,WQ) is a minimal realization of W( s).

_. The aim of this section is to give an alternative
approach for determining the state-model and the impedance
matrix from given U(s) .The proposed technique is simpler
than the one given earlier [6lJ , and is applicable for
any n .

For a positive-real impedance matrix Z(s), assuming
Z(co) B0 for simplicity, and z(s) possessing no imaginary
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axis poles, if (A,B,C) is a minimal realization for Z(s),

then A will have eigenvalues with negative real parts

L**J . Z( s) and Z'(-s) can have no poles in common (those

of Z(s) being in Re s < 0 and those of Z'(-s) in Re ^>0).

Therefor^

Z(s) +Z'(-s) J - 2 6 [z(s) ] CI*.3)
as proved in [if] , where 6 denotes the degree of a rational
matrix. Hence the dimension of the matrix A is half that

of Ag , where ( Ag, Eg, Cg) is a realization of u(s) such

that

UCs) =CH (si - J^)"1 Bjj « (+.+)
Let U(s) satisfy the following conditions [55] *

1) UCs) .is a, real, rational, para-Hermitian matrix

i.e., U(s) = U'(-s)

2) On the jw - axis , U(s) is bounded and is non-

negative definite.

A para-Hermitian matrix as originally defined by Belevitch,

OOno and more precisely by Youla £l21j is by definition

real, rational. Also , if UCs) is para-Hermitian, then it

is Hermitian on jw - axis.

The proposed algorithm for determining zCs) is

now given.

Step 1: Obtain a minimal realization (Ag, Bg , Gg) of
UCs) in the Jordan form by any of the known methods [53],r7ll
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Step 2 : Modify the above realization by re-orderini

the rows of Ag , BU , Cg to get

1 • B

*H

GH

A

r A"'"
! J

C C

1

% =
B

J

(i*.5)

where A consists of Jordan blocks with negative eigen

values and A has Jordan blocks with positive eigen-values,

Step 3 : Reject the sub-matrices A", B~, C" having

positive eigen-values which correspond to the right half

plane poles, to obtain ( A,B,C) realizing Z(s).

Step 1* : Since the inversion of ( si - A) is quite simple

as A is in Jordan form, Z(s) can be obtained quite easily

by the relation

Z(s) =C (si -A)"1 B . (If.6)

The steps enumerated above are, in fact, the

extension of Bodets method [1131 for determining a

positive- real function from even part, for the matrix

case. These steps can obviously be followed through succe

ssful y keeping in view tho properties of a positive-real

matrix, conditions on Z(s) + Z'(-s) mentioned above

(which are an extension of the corresponding scalar case),
and the fact that the eigen-values of A which are to be
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negative, correspond to the left half-plane poles of

Z(s).

It may be noted that the realization (Ag, BH,Cg)
need not be minimal so far as the determination of z( s)

is concerned. In fact, a sub-optimal realization in the

Jordan form may be obtained easily from [33 j or f62 1

Even if a minimal realization is required, a completely

controllable and completely observable part may be extracted

from the non-minimal (A,B,C) thus obtained, by the method
of Mayne [69 ] or Kalman [l+1 ].

Z(s) obtained by this method will have no poles

on the imaginary axis. Therefore, Z(s) will be a minimum

reactance matrix £71 1 .

The given method is illustrated by an example.
Example

Consider

U(s) = Z(s)+Z'C-s) =

1

(S+1)(;-1)

2

(s+1)

If

(s-1) (s+1)(s-1)

The problem is to determine a positive real Z(s) having
this U(s).

U(s) is seen to satisfy conditions 1) and 2).

Step 1: u(s) has a Jordan form realization



% =

cTT=

r-i 0 0 0

0

0

0

0

0

1

0

0

0 1 1 0

0

0

0 1 0 0 0

0 1 %=

1

0
I

0

0 0 -1 1 0

0

0

0

0

0

0

0 -1 0 0

u
1

0 0 1 1

1/2 0 -1/2 -2 0 0

0-2 0 0 2 -2
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Step 2;: The realization is modified to give

% =

Ct~ =

-1 1 0

0 -1 0

0 0 -1

/ 1 1 0

0 1 0

0 0 1

r
i

0 0

% =

0 1

1
0

0 0

1 0

0 1 _

[-2 0 1/2

0 2 0

0 -1/2 0

•2 0 -2 i
j

Step 3 ; Rejecting the second sub-group of matrices, we

get a realization of ZCs) as

-1 1 0

0 -1 0 ! , B =
0 0-1

J

0 0

0 1

1 o



c =
-2 0

0 2

1/2

0

Step kl Z(s) is found to be

r

Z(s) =

1/2,
(s+t)

0

- 2

(s+1)2

(s+1) J
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It is clear that each entry of a positive-real matrix may

not be positive real [ 71 ] .

An alternative state-variable method for the deter

mination of ZCs) from the given Z( s) + Z'(-s) is presented.

I he proposed technique is simpler than the one described

in _61 J since it does not require the cumbersome
spectral factorization, and the determination of a symmetric

positive definite matrix P [ifI which gets unwieldy
especially when the order n of u(s) is large.

If.3 AN ALGORITHM FOR DETERMINING A POSITIVE REAL IMPEDANCE

MATRIX Z(s), GIVEN Z(r.)-2<(-s)

The field of network theory is being widely investi

gated these days in terms of the state space. Several

well-known classical analysis and synthesis problems

have also been given new solutions in state-space terms

Anderson f + J has given a system theory criterion for
positive real matrices. Anderson and Brocket [5] have
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given a state-space interpretation of the Darlington

Synthesis. Recently, Puri and Takeda i_?8 j have described

state-space realization of Foster synthesis for LC networks.

Another interesting problem in network analysis is to

find a relationship between a positive real CPR) impedance

matrix Z(s) of dimension nxn and its parts Z(s)+Z'(-s)

and z(s)-Z' (-s), where the prime denotes transpose of a

matrix. The problem of determining Z(s) from given Z(s) +

Z'(-s), called U(s), has been effectively solved by

Lai and Singh [61 J , where U(s) is a para-Hermitian

matrix v/hich is nonnegative definite . An alternative method

for solving the same problem has been recently given by

Puri et.al. [77 J . However the determination of a posi

tive real Z(s) from given Z(s) -Z'(-s) had remained an

unsolved problem. This is perhaps partly so because no

results are known regarding the factorization of Z(s)-

Zl(-s) in a similar form as is possible for Z(s)+Z'(-s)

which had been exploited by Lai and Singh [61 J . The aim

of this section is to determine a state-model realization

and the PR impedance matrix Z(s) of order n from given

ZCs) - Z'C-s), called herein V(s). The proposed technique

is equally valid when multiple poles are present.

For a successful implementation of the proposed

algorithm, VCs) must satisfy the following conditions.

1) VCs) is real- rational.
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2) V(s) has no multiple pole at the origin.

3) The para-Hermitian part of V(s) is zero.

DISCUSSION OF THE METHOD

Let a partial fraction expansion of VCs) be made,
with a subsequent grouping together of terms with poles
on the j w axis, and poles in the half planes

Re s < 0 and Re s > 0 . Then V(s) always admits the
form

-—. F±s + G.
V(s) = 2 s L+2 2_ ~ —+2 s-1Co +v0(s) (h.7)

1 S + V i

where L is real and symmetric, CQ is also real and
symmetric, F± is real and nonnegative definite symmetric,
and Gi is skew symmetric. Also,

VQ(s) = ZQ(s) - Z-(-s) *. (L..8)

where ZQCs) is positive real and that all poles of elements
of ZQ(s) lie in Re si 0 . The treatment in the preceding
holds in the light of the positive real nature of Z( s) [9 J .
Thus, whenever V( s) has a pole at zero or at infinity ,
half of it is the share of Z(s). The same is true if

there are imaginary poles of v(s). The next step is to
construct Z (s) from V (s).

o O

As in f 77 J , consider a positive real Z(s), with
Z0(oo>= 0 , and assume that it p-ossoses no imaginary axis
poles, i.e., all poles lie in the half-plane Re s < 0
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If (A,B,C) is a minimal realization for z (s), then A
will have eigen-values with negative real parts [if?
Because ZQ(s) and z^C-s) can have no poles in common
Cthose of ZQCs) being in Re s <0 and those of Z'(-s)
in Re s >0 ) , by lemma 2 of [ h].

ZQ(s) + ZJ, C-s) =26 LZo(s) (J+.9)

where 6 denotes the degree of a rational matrix and

gives the dimension of its minimal realization If Z'(-s)
o

is changed to -Z'(-s), only its residues will become

negative . Therefore,

Z0(s) - z»C-s) = 2 5 | Z (s) CW-.10)
I o j

Hence, the dimension of the matrix A is half

that of i^ . (Ay, Bv, Cv) is a realization of Vo(s)such
that

VQ(s) =Cv (si - Ay)1 Bv . (1+.11)
Z0(s) can be found from V0(s) by the following procedure.

Step 1 ; Obtain - a minimal realization (A , B , C )
of v0(s) in the Jordan canonical form by any of the
known methods [ 17 J , [55 1 .

Step 2 ; Modify the above realization by re-ordering

the rows of A^, B^ abd C^ to ge-

B„ , C
A I

*T -1 >

A" J
v

it;

B

B"
v

C | C
i

(+.12)
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where Aconsists of Jordan blocks having eigenvalues
with negative real parts, and a" has Jordan blocks of
the some dimensions all of whose eigen-values have
positive real parts. Such a re-ordering does not affect
input/output relations.

Step 3: The set of submatrices (A,B,C) having eigen
values with negative real parts which correspond to the
left half-plane poles is picked out. lnis set is a
realization of z (s) .

o

Step +: zo(s) may be computed easily by the relation
Z0(s) =C (si - A)"1 B (1^3)

because the evaluation of the resolvent matrix

(si - A) is quite simple as Ais in Jordan form.

This z0(s) is almost the matrix we seek from
V0(s). It passes the direct PR test [ 71 ] except
possibly for the sign of its Hermitian Part at real

frequencies. The addition of a nonzero real, constant
matrix D to Z0(s) will take care of this last difficulty
if it arises. It should be large enough to ensure that
%gU«) is nonnegative definite. To this can be added
any positive semi-definite constant matrix (resistance),
of course, if v(oo) is a nonzero matrix Dy, then the
nxn constant matrix D must satisfy the relation

D - D» = D
V • C^.i»f)
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It may be mentioned here that the statement

of criteria for positive semi-definiteness of matrices

given in [72 J, [116] ( among several others,implies
that a real symmetric matrior is positive semi-definite

iff the leading principal minor determinants are non-

negative, where the mth leading principal minor of the

nxn matrix Z is the determinant of the matrix formed

by deleting the last n-m rows and columns of z [1161.
Application of this criterion, however, leads to erro

neous results. This error contained in several engineer

ing texts on system theory regarding Sylvester's criterion

for positive semi-definite matrices has been pointed out
recently by Swamy (l08 ] . The correct statement given
in [29] , [71 ] is as follows .

A Hermitian matrix is positive semi-definite

if and only if every principal minor is nonnegative.

Considering nxn matrix Z (s), if its

Hermitian part is not already singular at some s =1w
o <j o '

we must form the minimum matrix Zn using the result in
[71 ] .

ZfflCs) =zc(s) - r * °n-1

4 A(u)
min

0 ^ u ^ 00 a(u) Ok 15)

Hero, 4(gj) and ^(u) are the determinant and (1,1)
principal minor of ZqH ( ««) , respectively, z is PR
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with its Hermitian part of rank n-1 at s, - 1 u
o j o »

the frequency at which the minimum determining r occurs.
Further, 6|\ J . 6[ ZQ ] . The process corresponds
to extracting a series resistor from port 1. The result
is stated for port 1 but holds by renumbering, for
any port. Zm is called a minimum matrix. By choosing
any nonzero positive semi-definite (real, constant)

matrix, the above resistance extraction can be made to

get an alternate Z

Then the impedance matrix Z(s) is given by

F • s + G,

ZCs) =sL •s"1 CQ +r 4
i s + w-

+ ZmCs) . (+.16)

Z(s) thus obtained is real rational, has no poles in

o~> 0 ; poles of Z(s) on cr = 0 are simple} for each
pole on cr = 0 , the residue is Hermitian and positive

semi-definite, and ZgCjw) >. 0 because ZgCjw) = Z-gCju)
here.Z(s) is , therefore, a PR matrix.

An illustrative example is given .

EXAMPLE

Consider

if s +

r(s) =

-2

s2+1

2s

2 ,
s +1

s+2

3-1+

s2+1
+

2s

s-2

s+ h

12s

s +1 s2-6+
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which may be re-written as

VCs) 2 s

0

,s+2

s-+

2 0

+2s"1
0 0

s-2

S++

02.
s -6+

0

1

2

s +1

s 1

-1 s

This gives

L =

and

V0(s)

2 0

0 0

0

s+2

i G
o

0

-1

3-2

sl+

12s

0 0

1
»*1 -

«

1

.

0

1 0

0 1

-6

slf

6

^0

sA s2-6+

- 6

s-+

-(• H )
;+8 s-8

o

-1 0

V0(s) has a realization (A^, By, Cv, Dy) given by



+

\ =
-+

-8

1

8

B

1

io

1°
o

66

0

11
1

—

._: .
- -i

•» ••

o ; -6 o 0 0 1

°v • -e ; o -6 ; -6

» Dv =

-1 0

which is re-ordered to give

lr -i+ • |
—

0 1 1
-s;

1 &v =

0

1

1

0

)JV = I +

i 8
0 1

-

1
-.

-6 0 C) 0

. Cv =
I

0 -6 | -i -6

«

i

D is unaffected. Then we get

-+

A s

-8

0

z0Cs) =

0

B =

s+if

-6

s+ 8

0 1

0 1
i c =

+ D

-6 0

0 -6
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The matrix

D =

0

added to
0

0

, satisfying (+.1+) when

-6

s-4f

-6

s+8

makes it positive definite which otherwise is negative

definite.

Z (s)
o

0

s-2

S+*f

s+2

s+8

We must make the resistance extraction in order to make

ZQ(s) a minimum matrix.
r

Z (ju) =
OH

1

jw +2

2(ju-+)

j" -2

2(j« ++)

2 ^
w +16

u +6*+

The determinant a. and (1,1 ) minor a^

A(w) =

are

^•o

2 2
9 (w - 16) 39

2
w +16

6>+(u2+i6)(u2+6>+)
+ •'

6+ u + 63+

2
w +16

•

2
w + &
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Consequently, the resistance to be extracted from port 1
is

r =
nan

A(u)

CJ A (W)
11

39

6+

which occurs at u = k and gives
o

ZfflCs) =

21
6+

0

s-2

s+lf

s+2

s+8

Thus, a PR Z(s) obtained from Z(s) - Z'(-s) is
r

Z(s) =

s-2
1

?«3 4-
B 25 1

2 6+s +1 w 2 „ +s +1

_

1

2
s +1

1 s
- + ———

s 2 .
s +1

s++

s+2

s+8

J

It has been shown how a positive real impedance
matrix Z(s) may be computed from its given part Z(s)-Z'(-s)
employing system theory concepts. It may be pointed out
that the realization (^ , By , Cy) need not necessarily
be minimal so far as the determination of z(s) is concerned.
A sub-optimal realization of VQ(s) may be readily const
ructed by the technique suggested in [ 6+J which will
be in Jordan form . The non-uniqueness of Dcauses an
arbitrariness in Z(s) , except when Z(s) is of order 1.
Bode«s illuminating method [ 112 ] for the scalar case
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cannot be applied to the matrix case since the off-diagonal

entries in a PR matrix need not be pr.

k.h STATE - SPACE INTERPRETATION OF FOSTER SYNTHESIS

METHOD

State-space techniques have generated a lot of

interest in network analysis and synthesis in the past

few years. It is quite important to establish a communi

cation link between state-space characterization and fre

quency domain methods. It is of great interest to provide

state-space interpretation of the well-known properties

of network functions and the coram on synthesis procedures.

Some work has already been initiated in this direction

1.5], [60J , ; 91+j , [118 j . Recently, a procedure
has been given by Jain [39] for Foster synthesis of DC
networks. The method of j 39 j uses nonsingular
observability matrix as a transformation for a canonical

state-model representation of the Foster network

which is then compared with a similar canonical state-

model written directly in terms of the coefficients

of the network function. Thus, the element values are

determined, via state-space characterization, in terms of

the coefficients of the network function to be synthesized.

Here, an altogether different method is presented for

Foster synthesis of driving point immittance functions of
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LC networks [ 77 ] and is much simpler than that in [38] .

Consider an DC driving-point immittance function

ZCs), which may be written as

ZCs) = °c s + Z1(s) (+.17)
where °c is a constant and Z^s) is regular (no pole at

infinity) and proper (Z-jCoo) - 0 ).
Let Z,,(s) have a state-space representation

x = A x + b u
(+.18)

y = c x + d u

where x is an n-dimensional column vector, u is the input?

y is the output and the dimensions of A,b,c and d are nxn,

nx1 , 1xn and 1x1 , respectively.

Since Z^(s) is a proper function, d = 0 . In

a suitable neighborhood of infinity, Z-{s) can be

expanded in a negative power series as |_38 J,
-1 -2 2 - 3Z^(s) = cbs+cAbs''+cA bsJ + ...

(+.19.)

For lossless networks, there always exists a transfor

mation T ! 105 J which transforms A,b arid c to a form

such that the new A is skew-symmetric and the new b

is equal to the transpose of the new c. Let A+, b^

and c.t denote the new values after applying the trans

formation T. Since c+ is a non-zero row vector, the

scalar c^ c* > 0 . Further, since a+ is a skew

symmetric matrix, c^ A* b^ , which is equal to c+ A+ cJ ,

CEMTftALLlEB BBW0F.I00UB'
HOOB&£E
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a scalar,will always be zero CAt is skew-symmetric, and
any matrix c^ cj. is either a skew or a null matrix. In
our case, as ct is a row vector, the product c^c^. will
be scalar and hence equal to zero) and c^ cj. ^ 0 , since

Similarly,

•t*3 H = 0

°t 4 n ^ o

•A «t = 0

.6
°tAt H < o

and so on. Therefore, Z-,(s) becomes

Zl(s) =ct o£ s"1 +ctA^ c{. s"3 +o^l s"? +.. (+.21)
=C b s'1 +c A2 b s"3 +c iS s"5 + ... (^.22)

=Y s"1 +Y0 s"3 +Y, f* + ... •' 0+.23)

where the Y, s are called Markov parameters [29], [106 J . It
can be seen that YQ, Y^, Yg , .., are positive, while Y2,

Y6 , Y10, are negative.

A lossless driving - point function may be written

in its partial - fraction expansion as
A

K JL 2 Ky s
ZCs) = «_ +Hs+ > (+.2+)

s *~7 2 2r=1 s + w£
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where KQ, Kr , w2. and Hare positive and real
2 , ..2constants (wf £ u. ) and

n = <*

n

2

n-1

(n even.)

(n odd)

Comparing (*f,17) with (+.2+), we get H = <* and

K

z.(s) = -2 +

A

n

Z
r=1

Eq C*+-25) can be rewritten as

Z^s) = KQ s"1 +
A

n

r=1

2 Kr s

s2 +W2
r

2 K,

(k.2$)

/ -1 2-3 + -*? 6-7x (s - uj s J + wj s ? . u° s / + ...) (+.26)
A comparison of (+.23) and (If.26) gives an infinite set of

simultaneous equations

YQ = K0 + 2K1 + 2 K2 + + 2K-

-Y2 = 2K^ + 2K2w^ + ....+2KA u2
, , n n

Y^ .= 2K-|U1 +2K2 w2 +...+2K^ J*

Also Z^(s) can be expressed as " 9+~

I (^.27)



Z^s) n(s)

q(s)

10
det

-c

b sI-A

det si - A
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(+.28)

which shows that the poles of Z^s) are given by the eigen
values of A, and that they are not affected by the

2 2 2
transformation T. Thus u. , u„ , ,,,, w„ can be

1 ' 2 ' * •' n

evaluated from the matrix A. Now n+1 unknowns are

left in C^.27) . The first n +1 equations of (1+.27) can

be written in matrix form as

1 1 1

0 4 4
0 A 4

•

*

0

0
2n-

U1
•2 2n-2

U2

-Y,

L+

1

n

n

2n-2
W/.

n

(-1)"+1 Y *1 u x2n-2

Ko

2K

2K,

1

2Ka
n

(+.28)

For LC networks, all the poles of Z..(s) lie on the imaginary
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axis. Therefore u. » . w

n
are all positive.

It is well-known that the coefficient matrix of (+.28) is

then non-singular. Hence a nontrivial solution •of (if.28)
exists.

The constants K having been evaluated, a Foster

canonical network can be drawn 1113] . The procedure is
illustrated with an example.

Example :

Given the set (A,b,c) for an LC impedance function

A =

b =

c =

r

0 0 0 0 0

1 D 0 0 -1/2

0 1 0 0 0

0 (3 1 0 -3/2

0 (D 0 1 0

1 •

0

9/2

0

+

_

0 0 0 0
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The Markov parameters, as obtained by (+.22) are

*o •* |X2--3/2 , Y^ =5A , Y6=-9/8 ,...
The order of the matrix A is 5. Therefore ,there win be
five network elements, one series capacitor and two
parallel lg network configurations. This gives n = 2 .
The characteristic equation of the A matrix is

s(s + 3/2 s2 + 1/2) ^ o

which gives the eigen-values s = 0
22 «- os = -1. Then u^ = 1/2 and w| - 1 .

From (if.28)

K.

2Ki
, 2K2

2 I
1

L1J

j s = -1/2 , and

The procedure given above discusses the Foster

realization for 1-port LC networks in state-space terms.

Similar steps could be followed for RC and RL networks. It

may be noted that there is no necessity to apply the trans

formation T in the actual procedure, since the products

cb, cAb, cA b, ... of all realizations corresponding to a

given Z^(s) are the same. Simplicity of the proposed method

is self evident. The method presented here has recently

been extended to the n-port case by Khan.et.al- [ 50 ].
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if.5 DETERMINATION OF TRANSFER-FUNCTION MATRIX USING
MOMENTS OF IMPULSE RESPONSE

A fast and simple technique for transfer matrix
inversion has recently been given in [HO]. The formulas
stated there for matrix inversion of (sI-A)~1 are

applicable to system matrices in companion matrix

form. Another direct method for the evaluation Of

transfer-function matrix from the given state equations
has been suggested in [63 j . The method of [63] is
based on the reverse of the approach, discussed by Ho
and Kalman [38 J , for determining (A,B,C) from the given
transfer-function matrix . Markov parameters [29 ] aro
used in the process of [63.J.Various other methods are
available for the determination of the resolvent matrix

(si • A) [30] , [51 1 which is required for the

evaluation of the trans for-function matrix. This section

presents a method for determining the transfer-function

matrix H(s) of a linear time-invariant system represen
ted by

x a A x + B u

(^.29)
y = c x

through the intermediation of the moments of the impulse
response. This method is especially suitable for proce

ssing by a digital computer. It requires the inverse

of the real-valued matrix A. Since it is a matrix

of numbers, the standard machine routines for inverting
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matrices can be applied easily. The computation of
H(s) is relatively easy even if the system is of a
higher order.

DETERMINATION OF H(s)

For the determination of H(s), it is necessary
to compute the characteristic polynomial det (sI-A)
which gives, the denominator of each entry of H(s>, and
the moments MQ, ^, ...., ^ (suffix dGnotes thG order
of the moment) which are used to determine the numerator
of each entry.

Before giving th« explanation of the deter

mination ofll(s), the following lemma is presented.

LEMMA [ lif]

If a minimal realization (A,B,C) corresponds

to an impulse-response matrix H(t) which is asymptoti
cally stable, the matrix Ais always non-singular.

The transfer-function H(s) can be described
by an infinite series [1+] as

H(s) = Yl
oo ,_^k

s (+.30)

C-1)k
?̂ Jc

k=0 ki

where the coefficients of this series are determined from
moments. The kth moment M^ is given by

^ =(-Dk+1klCA^B,k,0,1,2,.. (U.31)
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Substituting (if.31) into (if.30), we get

00 . ,

H(s) = -T~ C L*-\ sk •
k=0 K+'3*J

Both (if.30) and (+.32) represent an infinite series in s.
Therefore, H(s) may be written as

00

H(S) a 2_ \ Sk (^33)
kaO K -

where Hk is a pxm constant matrix. Then even if the

system is asymptotically stable and A~k~1,(k=0,1,2 ...)exists
H(s) cannot be found in a closed form, from (+.33). If

however, the characteristic polynomial is replaced as
n

q(s) a det (sI-A) = J q sk • „ ,n
k=o~ k (k.$+)

H(s) can be represented by a polynomial

N(s) w \ sk
H(s) =q^y = z__ ~^r> (v-<a) o+-35)

k=0

where N(s), Nk are pxm matrices. From (T.3!p it is evident

that only (w+1) coefficient matrices Nn,N . N are

necessary to determine H(s).From (if.33) and (if.35) we get

_ 00

N(s)
r~ ••• ••' •—

~ > JJ

kaO *
sk

= q(s) H(s)

n

k=0

00

T
iaO

H.
1

s1 (^.36)

From (if.36), therefore j
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k <

I

k

j=0 J * «

0 .
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,k/w^n

Ok 37)
k > w+1

From (if.37) it is evident that the coefficient matrices

Nk (ka 0,1, , w) are determined .from qk( kaO, 1,... ,n)
and Hk( k= 0,1,....,w) , i.e., in the determination of

Nk , it is enough to determine at the most upto the nth

moment. So, a maximum of (n+1) moments are required in

the above procedure, to determine H(s). In other Words,

first the coefficient matrices N, are determined from

the moments MQ, Mj, , 1^ and then H(s) is computed
from N(s) and q(s) ,

Example

The above procedure is illustrated by an example.

Let (A,B,C) be given by

A

C =

«—

-1 0 0

0 -2 1

0 0 _2

, B a
-2 0 0

!

0 -1 . 1

0 0 -1
-

—

r __

1 0 0 2 0 0

0 if 0 0 1 ° J

1 0

0 0

1 0

0 1

0 0

0 1
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The characteristic polynomial of A is

q(s) =s6 +9s5 +33 s^ +63 s3 +66 s2 +36 s+8.
The moments obtained using (if.31) are

1 1/2 2 1/2
» M2 =

1 2 J 3/2 6

2+ V2 [ 120 15/if

15/2 120 1+5/2 720

M.
o

M-

r
6 3/6

3 31)-

• M1

\ a

M6 =

Thus, H(s) become:

720 +5/+

315A 5o+o

H(S) a
r>~+ 9s5+ 33 s + 63s3+ 66s2+ 36s +8

s6+ 9s5+ 333^+ 63 s3+66s2 +36s +8
52 -,3,>_ J.\ - S + S* -S"+S - S' + S~- ...,

1 - s +3A s2-1/2 s3 +5/16 s^ -3/16 s^ +7/^ 6

1 - 1/2 s +1A s2 - V8 s3 +1/16 sh - 1/32 s?+ 1/6ifs6-..,

1 - 2s +3s2 - ifs3 +5 s** - 6 s5 +7 s6 - ...,
—

which gives

H(s) a

1

s+1

if

(s+2)2

s+2

(s+1)
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if.6 ALGORITHM FOR OBTAINING INVERSE POWERS OF MATRICES

A linear dynamical system may be characterized

by different state-model representations. However, for

simplification in system analysis and synthesis, it is

desirable to transform the dynamic characterization into

a canonical form. Two most convenient canonical forms

are the companion form and Jordan canonical form. Recently,

an algorithm has been proposed " 92 ] for determining the
power of the companion matrix. This section presents an

algorithm for determining the inverse powers of a companion

matrix. Another algorithm is given to find the powers of

resolvent matrix (si - J)"' when the state matrix is

in Jordan canonical form, from which the inverse powers

of J can also be found.

INVERSE POWERS OF COMPANION MATRIX"

Let the (nxn) companion matrix $ be represented

as

0
n-1,1 n-1

Of.38)

where 0 is (n-1)x1 zero matrix, I is (n-1)x(n-1)

unit matrix, and °c is 1xn row vector whose elements

^j j J = 1?2)"«> n are the coefficients of the charac

teristic polynomial of & . It may be seen immediately
that the inverse of ti is
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5
-1 P

0*.39)

0

where

h°

°C.
+1

*1

, j a 1,2,...,(n-1)

(if.ifO)

-J. J = n

1

-1
The powers of 5 are obtained by successive multi

plications :
-(r+1) -r -1

[S] a [*] [*].. C+.+l)

.-1First partition the matrices [£]~r and P& 1 into
submatrices A1, B1, D1, Rj and A2, Bg, Dg, Eg, where the

dimensions of A1, B1, D1, E^nd Ag, Bg, Dg, Eg are 1x(n-1),

1x1 , (n-l)x(n-D , (n-l)x1 and (n-l)x(n-l), (n-l)x1,

Ix(n-1), 1x1, respectively. Substituting the parti

tioned form of rP„ -j"r -, rm T"1
[^ and I C j and carrying out

the multiplication of (+.+1) utilizing (if.ifO), and after

simplification, it is discovered that the element of ith

row and kth column of the -(r+1)th power of '& is

identical with the (i-1)th row of the corresponding

column of the -rth power of 6 , for i= 2, ... n .



Thus -(r+1)
f r
°ik 0±-1»k (+.+2)

k a 1,2,...,n
and the elements of the first row of the -(r+1) th

• -(r)

83

2,3,.- ,n

power of & are given by the recurrence relation

-(r+1) -(r) -(r)

Ik 11 Pk +
r*

1,k+1 , r a 1,2,... (if .if 3)

Following the preceding development, the inverse

powers of the companion matrix are obtained by the

algorithm given below.

-1
For the given companion matrix c? , find <*

using (if.ifO). This gives the row vector £ . Let the

element ft. of ft be denoted by ft a c. k .
Write the rows of ta in the reverse order. Starting

from the last row , successive rows may be generated

by the relation

r. \9 G>
q+1,k q, 1 1,k q?k+1

where q is a positive integer . Thus, we have

0 0 1

0 0

1 0

11 12

fc21 T'2,2

0

0

0

0 0

1 >n--1 B 1n

» 2»n-•1
G

2n

(if.if+)

(+.+5)
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In order to obtain the -rth power of 6 , construc

tion of n+r-1 rows in tb.kf) is required. Of these,the
first n-1 rows are already known. Thus only r rows

-r

have to be formed for determining G~ . Finally G

is obtained by selecting the last n rows of (if.if5),

and writing these rows in the reverse order starting

from the last row. The evaluation of the next higher

power & + j of course, win require the computation
of only one more row, as per (if .if3).

Example :

Considei

o 1 0 0

—<

f, =
0

0

0 1

0 0

0

1

.

1 -1 -2 1
J

Let it be required to find o3 . The set of

if+3-1 = 6 rows of( if .if5) is formed, utilizing (if.ifO) and

(+.++), as

0 0 1 0

0 1 0 0

1 0 0 0

-1 -2 1 1

-1 3 o -1

if 2 -2 -1
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Choosing the last four rows of the above array and writing
them in the reverse order gives

-3

OJ

and so on.

k 2 -2 -1

-1 3 0 -1

-1 -2 1 1

0 0 0

POWERS OF RESOLVENT MATRIX

If the state matrix is in Jordan canonical form

an algorithm is developed for evaluating powers of the

resolvent matrix. Since the Jordan canonical form is the

direct sum of several elementary Jordan matrices, it is

convenient to consider only one elementary matrix.Let J

be such a matrix having the eigen value \ of multiplicity

n. Then the resolvent matrix R can be found from

-1

R = (si - J ) . (if.+6)

A;; in the case of companion matrix, the powers of R are

obtained by successive multiplications :

KJr+1 - 0] [Rjr (k.k7)
Carrying out the operations of (h.h7\ it is seen that each

power of the resolvent matrix is an upper-triangular matrix.

R

(r)

'q+i,k

l"R]r are generated by the relationi of r

f R^q,k-1

0

> k ^ q+1

, k < q
(+.+8)
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q being any positive integer. The elements of [r]
on the main diagonal are all identical. The elements, of

I*

[R] on the first principal diagonal, are also identical
to one another, and so on.Thus the matrix \ ftf
can bo obtained from a knowledge of its first row only.

The first row of the pth power of R can be generated
by the relation

/ \
p+k-2

where

(p) k-1 /
,k

(s-X)P+k-1

N\ NI

K (N-K)i KI

(^.+9)

(>f.50)

It is convenient to remember that several sets of
1

coefficients b. , of maybe quickly
-J- ? J

(s- X)P+M

reproduced with the help of

in the following scheme »

/7i-i-1,j

r a 1 1 1 1 1 1 » » #

r = 2 1 2 3 + 5 • * •

r = 3 1 3 6 10 15 * * •

r = + 1 + 10 20 35 • • *

r = 5

...

1 5 15 35

# # #

70 • • •

0f.5D

(^.52)
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each number being formed at once as the sum of the one

immediately above it and the one preceding the number.

Thus in forming the 5th row, we have

0+1 = 1 , 1+if = 5 , 5 + 10 = 15 , 15+20 = 35 , etc.
-r

It is clear that | jj is obtained from fsl - J ]
by putting s = 0 and then multiplying it by (-1)rI.

Example *

Consider

(Si -J) 3

s+2

0

0

0

-1

s+2

0

0

0

-1

s+2

0

0

0

-1

s+2

-r

Utilizing (+.1+8) , (if. i+9) and (+.52), -5th power of

(sl-j) is

1 5 15 35

(sl-j)"5=

(s+2)5 (s+2)6 (s+2)7 (s+2)8

0

0

0

15

(s+2)? (s+2)6 (s+2)

0

0

1

(s+2)

0

5

5

(s+ 2)'

1

(s+2)5
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One possible application of these algorithms

is in computing the moments of impulse-response matrix.
By a suitable similarity transformation, the state matrix
A can be transformed to the companion form G 0r Jordan
form J . Hence we can write

I1 _ ."1 ro"P[A ] = H" [6
j N (+.53)

-1 -r

=. » UJ N . (l^)

Equations (if. 53) and (h.9+) may be employed to compute

moments ^ of impulse response "81] by the relation

\ = <-1>k+1 « G-'k'1 B , k =0,1,2,.. (+.55)

where (A,B,C) is a realization of the impulse response

matrix. Different inverse powers of A can be evaluated

using either of the algorithms developed earlier.

if.7 TRANSFORMATION OF TIME-VARYING AUTONOMOUS SYSTEMS
TO COMPANION FORM

The problem of obtaining a phase-variable canonical

form for a linear dynamical system characterized by state-
variable equations has been considered by several authors '.

Silverman [95] gave a method for determining the trans
formation matrix for reducing a single-input single-output
system to the phase-variable form. Ramaswami and

Ramar [83 J, [*8+] later presented simpler methods of
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finding the transformation matrix . An algorithm

developed by Power [ 76 j generates a class of matrices
N which transforms a linear time-invariant multivari-

ablo autonomous system into companion form. • The aim of

this section is to extend the method of Power [ 76} to
the time-varying case.

Let the dynamic behavior of the force-free

time-varying system be represented by the vector-matrix

differential equation

x(t) = A(t) x(t) (if. 56)

where A(t) is nxn matrix and x(t) is nxl column vector.

Let N(t) be the transformation matrix which transforms the

system of (if.56) into the system

#z(t) = 6 (t) z(t) (+.57)
where

tS(t) =N(t) A(t) N(t)~1 +N(t) N(t)"1 (+.58)
is in companion form.

Let us consider fundamental transformation matrices

Nk(t) of the coordinate transformation

with

z(t) = N. (t) x(t) (i+.59)

(n-1)
z(t) a column (a-f £«, ...f z1)

when z^t) = ^(t) . The first two rows of Nk(t) are
immediately obtained as
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o o .... 1 ... 0 (I^6o)

V,(t) ak2(t) ... a^Ct) ... a^Ct)

The (p+2)th row of Nfc(t), denoted by ( +2 N(t) ,for
p = 1,2,..., (n-2) is obtained by successive differentia

tions. The jth row of Nfc(t) represents the equation

(;3"1)xk(t) =Nkj1(t) Xl(t) +Nk.g(t)x2(t) +.... +

Nkjn(t) xn(t) • C*.*1)
Differentiating (if.61) and after simplification, wG get

^\(t) =((.Nk(t),A1(t)} +NkJ1(t)jxn(t) ,+ ((.Nk(t),A2(t)>

+Vkjg(t)) x2(t) +... +((/k(t),^(t))+Nk.n(t))
n(t) , (+.62)

where \(t), A,(t) is the scalar product of the

jth row of Nk(t) with the ith colurfi of A(t).

From (if.62),the (j+1)th row of N. (t) becomes

"••'(A(t)';n(t)). +\jn(t) ' •Ct-63)
Thus the elements of each row are obtained by taking the

scalar product of the previous row with each of the columns

of A(t) in turn, and to the row thus obtained, adding the
derivatives of the previous row.
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Let •

-1 1 0

A(t) = 0 -1 -1

-t -t
-e e -2
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Using (if.60) and (if.63) gives N^t) I

N.,(t) =

Also

Ng(t)

r
1 0

-1 1

1 -2

0

0

1

-1

0

0

-1

-t . -t
e 1-e

0

-1

N^t)

» Ng(t)

Similarly, another transformation N0(t) is

0 0.

-t
3 e

H co =
-t

-e
-t I N3(t) -2t

= 7 e

1 ft -, ~t -t 1
+e 3e -e If

Any of these transformations will reduce A(t) to £ (t). Thus

r
1 0

e (t) = 1 0

-2

1

0

0

1

-5-e -if
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The example shows that by a judicious choice of
z1 = ^ , one of the state variables of (if.56), one may
in some problems obtain a time-invariant transformation
matrix (^ in this case) so that subsequent computations
are simplified.



CHAPTER V

SUMMARY AND SUGGESTIONS FOR FURTHER WDRK

5.1 INTRODUCTION

The problem of realization for linear systems

first stated by Gilbertin 1963, and subsequently investi

gated by several researchers, has been discussed in this

thesis. Various results obtained in the preceding chapters

have been summarized in the present chapter. Some sugges

tions for further investigations in this field are also

made.

5.2 SUMMARY

In this thesis, a mathematical description of

linear dynamical systems in the input-output form, and

in the state-variable vector differential equation form

is reviewed, first. The realization problem of linear

systems is introduced next, giving some mathematical

preliminaries. An historical survey of the technical
literature on realization theory, scattered in different

research journals, is provided. The review work also

signifies the importance of this fundamental problem of

system theory. The application of system theory concepts
in the field of network theory is considered and a review

of the literature giving an interpretation of some well-

known properties of network functions, is given in state-

space terms. State-space interpretation of classical
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synthesis methods has also been discussed. System theory

criteria for synthesizing a network by using passive

elements, or realizing a network which satisfies reciprocity

constraints have also been included.

New methods of finding state-model realizations

of a linear dynamical system, from the Specified input-

output data, have been evolved. The data could be in the

form of moments of impulse-response, or transfer-function

matrix. In particular, a method of minimal realization of

a symmetric trans for-function matrix based on moments is

given. The method is a modification of the Ho-Kalnan

algorithm ["38 J in which a Hankel matrix is constructed

from Markov parameters. The realizations, obtained by

the proposed method result in reciprocal networks. Further,

for RC end RL cases, both reciprocity and passivity

constraints are satisfied. In the realization process,

the given symmetric transfer-function matrix is expanded

in a positive power series of s. The moments Mk are

obtained uniquely from the coefficient matrices of s .

The moments will be symmetric. The Hankel matrix built from

the moments will also be symmetric. Then a congruence

transformation can be applied, which will result in

reciprocal realizations. In the presence of noise, compu

tation of moments is preferable to that of Markov parameters.

As such, a method based on moments is advantageous when a
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realization is to be obtained from a data contaminated

with noise.

The problem of finding quick and computationally
simple realization prcceduros by using noncanonicl structures
has also been considered. In some applications, nonminiraal

realizations are acceptable. In case a minimal

realization is required, standard system

reduction techniques may be employed to extract a complete

ly controllable and completely observable part which

gives a minimal realization. A technique has been propo

sed for obtaining a state-model realization, without

guaranteeing irreducibility. It is valid for multiple

poles. The dimension of the system can be easily found

by constructing mode matrices M, M and IL which

have been defined for the multiple pole case. The sum

of the number of modes in M gives the dimension of the

realization. In many examples, the realization obtained

by the proposed method may be of lower dimension than

that obtained by existing methods.

Another algorithm for obtaining a lower-dimension

realization of dynamical systems has been proposed. The

method is equally applicable for multiple poles. In the

realization procedure, coefficient matrices of the transfer-

function matrix H(s), corresponding to the distinct poles

and their multiplicities, .are .computed. For each

coefficient matrix, the minimum set of lines (covering set)
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containing all its non-zero elements are found. Then

submatrices of the realization (A, B, C) are constructed,
starting from the coefficient matrix of highest multi
plicity and scanning columns and rows of the covering
set. The direct sum of the submatrices thus obtained

gives the desired realization. It is pointed out that

Glass's technique [33 J is a special case of the

proposed method when the covering set consists of columns

onlyj so is the technique proposed in [6+] when the

covering set consists of rows only. The dimension of

the realization obtained by the proposed algorithm is

lower compared with the methods of Kalman [ifl] ,
Glass [33"] , Lai et.al. [6+] .

A new method has been presented to find a state-

model and the positive-real impedance matrix Z(s) from

its given even part z(s) + Z'(-s). This is an alternative

to the method of Lai and Singh [61 ] . The proposed

technique utilizes a result from Anderson [if J that if
(A,B,C) is a minimal realization of z(s) ( Z(s) possessing
no poles on the imaginary axis), then A will have eigen

values with negative real parts. Astate-model (Ap, B„,CH)
is obtained in Jordan form, realizing u(s) = z(s) + Zf(-s)

from which ( A,B,C) is picked out which corresponds to a

positive real Z(s). The proposed technique is simpler

than the one described in £61 ]. It does not require the

cumbersome spectral factorization, and the determination of
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a symmetric positive definite matrix P [>] which gets
unwieldy, especially when the order n of U(s) is large.

, Another algorithm has been proposed to determine

a state-model realization and the positive real impedance
matrix Z(s) of order n when its odd part V(s) = Z(s)-Z'(-s)
is given. Conditions on V(s) are given for a successful

implementation of the procedure. The positive real nature

of Z(s) and Anderson's results [+] have been utilized in
the proposed method. The resulting Z(s) is a minimum
matrix.

An attempt has been made to establish yet another

link between state-space and frequency domain methods. A

state-space interpretation of the classical Foster synthesis
method for driving-point immittancc functions of LC

networks has been presented. The poles of the network

function Z(s) are given by the eigen-values of the state

matrix A of Z( s). The residues of a partial-fraction expan-
sion of z(s) are obtained in terms of Markov parameters

which are related to (A,b,c) realizing Z(s). A transfor

mation T is used in arriving at the results. However,
there is no necessity to apply the transformation in the
actual synthesis procedure.

A method for determining transfer-function

matrix from a knowledge of its moments is proposed. It is
shown that at the most (n+1) moments of the impulse-

response matrix are required in the process, where n is
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the order of the state matrix A. In the determination

of the transfer-function matrix H(s), it is necessary

to compute the characteristic polynomial det (sI-A) which

gives the denominator of each entry of H(s), and the

moments MQ , M1 , ..., Mn which are used to determine the

numerator of each entry. The computation of H(s) is rela

tively easy even if the system is of a higher order.

A given dynamical system may be described by

different state-model representations(A,B,C). However,

from the stand point of system analysis, it is convenient

to deal with canonical representations of the system,

like the companion form and the Jordan canonical form.

Algorithms have been evolved for determining inverse

powers of matrices given in companion or Jordan forms.

In order to obtain the -rth power of the companion

matrix g of order n, construction of n-r+1 rows

of an array is required. In order to compute the next

higher power -(r+1) , the formation of only one more rows

is necessary. As in the case of companion matrix, tho

inverse powers of (sl-j) where J is in Jordan form, are

obtained by successive multiplications. It is seen that

each inverse power of (sl-j) is an upper triangular matrix.

These algorithms find application in the computation of

moments of an impulse-response matrix.

The problem of finding a canonical form repre

sentation of a linear time-varying system has been considered
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Amethod of generating transformation matrices which

will transform a time-varying autonomous system to compa
nion form has been given. In some problems, it could
be possible to obtain a time-invariant transformation

matrix. In such a case, subsequent computations become
simple .

5.3 SUGGESTIONS FOR FURTHER INVESTIGATIONS

The problem of giving a mathematical descrip

tion to dynamical systems has been investigated thoroughly
in the past decade. With different degrees of complexity,

a large number of methods for finding a state-model reali

zation from specified input-output data are available .
While a fairly complete theory of realization for linear
time-invariant systems exists, there is a scope for
further work for time-varying systems. State-variable

approach being more general in nature, the field of network

theory is also being investigated in state-sPaCe terms.
Several concepts and results of system theory have been
applied in network problems and a lot more could be done

in this direction. In the following paragraphs, some
suggestions are given along which further investigations
sould be carried on.

If a non-minimal realization is given, there
exist methods by which the realization could be made,
minimal for both time-invariant and time-varying systems.
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There are several quick methods of obtaining a suboptimal

realization from a given transfer-function matrix of a

time-invariant system. However, no similar attempt seems

to have been made for the time-varying case. It is worth

developing simpler methods of realization for time-varying

systems.

A method of state-model realization satisfying

reciprocity constraints has been given . With such a reali

zation as the starting point, procedures for synthesizing

networks without using gyrators are worth investigating.

There is a wide scope for strengthening the link

between frequency domain and state-space characterizations

with particular application to networks. State-space inter

pretation of some of the one-port synthesis methods has

been given recently. The interpretation of some of the

remaining one-port and two-port methods is worth investi

gating, e.g., Bott-Duffin procedure etc. Besides, the

synthesis of Foster, Cauer , Bruno and other networks

seems possible in state-space terms.

State-space interpretation of poles, zeros,

residues, positive-real matrices, reciprocity has been

done. It will be worthwhile to give similar meaning to

some other comm on concepts in network synthesis , e.g.,

removing a pole, shifting a zero etc.
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Algorithms have been given in this thesis for

determining a state-model realization and the positive-

real impedance matrix Z(s) from the given even part

Z (s) + Z'(-s) , or the odd part Z(s)-Z'(-s). It will

be useful to find a realization and th© network function

when the magnitude function is given.

A method has been given in this thesis to find

transformation matrices which will reduce a time-varying

autonomous system to the companion form. Its extension to

non-autonomous systems and the possibility of developing

other simple transformations is worth investigating.

Algorithms for finding inverse powers of companion

and Jordan form matrices, evaluation of moments .and their

application in system realization has been given. Further

work along these lines and its possible application for

time-varying systems and system identification may lead

to some interesting results.

It is hoped that the investigations carried

out in this thesis and further work on suggestions contained

herein will make some more contributions to systems

science.
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