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Ap BT-H EDT

REALIZATION OF LINEAR DYNAMICAL SYSTEMS AND NETWORKS

With the incrcasing use of state-space approach.
in control systcms and network theory, considerable interest
has been shown in the problem cf reczlization of lincar
systems, his thesis is concerned with the state-space
realization of linear dynamical systems and its opplication
to networks., In particular, both minimal and non-minimal
realization techniques have been developed and their
application to problems in network theory have been sought
with a view to obtain better insight and %o improve upon

the existing techniques in network and system theory, v

The problem of state model realization of a
symmetric. positive real matrix for passive RIC networks
without the use of gyrators has been investigated and a
new minimal realization techniquc based on the moments of
impulse response matrix has been proposed, The method is
especially preferable for the cases where the data is

contaminated with noisc,

The algorithms for the realigation problem of
lincar dynamical systems proposed uptil now appear compu-
tationally rathor cumbersome, A simplified technigue for
obtaining o non-minimal state-model of a transfer funetion

matrix has been proposcd, In order %o determine the
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dimension of the realization, mode natrices and

are defined for the multiple pole case.

Roveda and Schmid {91] have proposed a procedure
for obtaining an upper bound on the dimension ©f a minimal
realization, Their method is applicable under the assurp
tion that no element of the transfer-function matrix I(s)
has multiple poles., Herc, o gencralized algorithm is
developed to obtain a non-minimel realizetion for the
case of H(s) having simple as well os multiple polces,

The realization results is a still lower dimension,

compared with the other methods.

Because of a change from transfer-function desc
ription of a dynamicol system to a more genercl state-
space Characterigzation, it is quite important to establish
a communication 1link between state-space characterization
and freguency domein methods., Some work has already been
initiated in this direction, A technique for determining
the state-model nnd the impedance metrix Z(s) of order
n from given U(s) = Z(s) + Z'(-s) is presented, which
is simpler than thc one proposed carlier Ty -
avoids the cumbersome spectral factorization end the
determination of a symmetric positive definite matrix P,
which gets unwieldy in the casc of cxisting methods
especially when the order n of U(s) is large. Z(s)

obtained thus is a minimum recactance matrix., An algorithm
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is also proposcd for obtaining state-space realization
and the impedance matrix Z(s) when V(s) = 2(s) - 2!(=s)
is givcn, The method is applicable to V(s) of any order n.
Marther, a state-space interpretation of the Foster
synthegis mcthod for driVing point immittance functions

of IC networks is presented,

A method for determining transfer-function metrix
from a knowledge of its moments is presented. It is shown
that at the most (n+1) moments of the impulse response
matrix are rcquired in the process, where n is the order

|

or deter-

bty

of the state matrix. Also, a method is given
mining the resolvent matrix (SI-A>_1 and its higher
powers, where the given matrix A is in Jordan canonical
form. Further, when A is in the companion form, an
algorithm 1s proposed to compute AT s X = 1,8:69v 2

Thesc results may be employed to find the moments of the

impulse=response matrix.

A method is given to construct a transformation
N(t) which transforms a time~-varying autonomous systen
to the companion form, In some cases thé transfornation

could be made a constant matrix,

Finally, some suggestions are given for fupther

Work in this {ield,



CHAPTER I
INTRODUCTION TO THE THESIS

1.1 INTRODUCTION

The state-variablc approach has emerged as a
powerful tool in the study of dynamical systems and
networks,. State-spacc techniques adapt easily for
computerization, are indispensable for time-varying, and
non-linear systems and afford a more genecral repressnta~-
tion of a physical process. A vefy importaht advantage
of these methods lies in their flexibility in generating
"equivalent " canonical reprcsentations which are very
useful in system analysis, Consequently, there has been
a shift in characterizing a dynamical system from impulse-
response, or transfer-function matrix to a state-variable

Ay

vector- differential equation

X T R R

Cx + Du

5
1

whére =x 1is the state-vector, u is the input vector

and y 1is the output vector., While the transfer-function
matrix. is an input-output description, the stats-model
gives ah inteérnal description of the systém. If the state-
variable equations arc known, the system is said to be
realized because these first order differontial equations

can be easily simulated on an analog computer,



If the state-model (4,B,C,D) of a linear, time-
invariant - dynamical system is known, it is a simple matter
to obtain  the corresponding transfer-function matrix H(s)

which is given by

His) = @ (&8I ~ A)-1 - S v

The conversc, however, is not true, In gencral, there arc
innumerable rcalizations (4,B,C,D) which will give the
same input-output response to a given system characteri-

zed by H(s).

The problem of realizing the system (A,B,C,D)
from a given H(s) has been actively studied in the recent
past. A well-dcveloped theory of realization is now
available in the technical literature [90] [1007 . Various
methods for minimal realizations rely heavily on the dual
concepts of observability and controllability, With diff-
erent degrees of complexity, most of the minimal realiza-
tion tcchniqucs require a lot of computational work, in
endeavor has boen made to develop nonminimal realization
techniques which are casy to apply, sO that the realiza-
tion problem may be solved quickly. If neeessary, this
sub-optimal rcalization can be made irreducible, by using

standard system rcduction techniquas,

In the field of notwork thoory, the determination
of a realization (4,B,C,D) is the first step for synthe-

- sizing a network which corresponds to a specified input=-
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output behavier, If a given (A,B,C,D) satisfies
Anderson's positive real lemma [1+] s & network using
only passive clements can be synthesized. Further, the set
(£,B3,C,D) satisfying reciprocity criterion of Yarlagadda
[118} will lead to reciprocal network realizations. System
theory techniquces have alse found applications in the
detcrmihation of network functions, and in giving state-
spece interpretation of several well=-known prbpertios of
network functions and classical synthesis methods, The
problem of realization of dynamical systems has thus
attracted wide attention boecgusc of its manifold applica-
tions in studying the problems of control, optimization

and nctwork theory.
1.2 STATEMENT OF THE FROBLEM

This thesis i1s concerned with the problem of a
state-model realization of linGar dynamical systems and
networks from input-output data, The specific problems

treated in this thesis can be stated as follows .

(1) New methods of rcalizations of linear,
'timo-invariant'multivariablo systems from the
given transfer - function matrix H(s), having
advantages over the existing methods arc sought.
In particular, a minimal rcalization (4,B,C,D)
from a symmeetric H(s) using moments such that

the rcalization is reciprocal , is obtained., The
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use of moments is advantageous in the presence
of noise, Further, new methods of obtaining
non-minimal realizations are developed, which
are easy to construct and have lower upper=
bounds on the dimension, compared with other
methods,
(2) The link between state~space characterization
and frequency domain methods in network
theory is investigated., In particular, a
state-model realization and the positive real
impedance matrix Z(s) are obtained when its
Hermitian part z(s) + 2'(-s), or 2(s) - Z!(-s)
is given, A state-spacc interpretation of the
Foster Synthesis method for I1C nétworks,
without considering the topology of the
network, is presentcd,

A method is glso given for obtaining the
transfer - function matrix H(s) from its realiza-
tion through the intermediation of moments

of impulse rcsponse.

(3) The companion matrix and Jordan canonical
forms, their inverse powers with applications
to system analysis are studied., Methods for
obtaining inverse powers of these canonical
forms arc developed, A method to conStruct

transformations, which Will reduce a time~varying
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autonorious system into the companion forim,

is also discussed.

1.3 ORGANIZATION OF THE THESIS

The work embodied in this thesis has been

arranged in the following manner,

The problem of minimal realization of linear
systems is introduccd in Chapter II. After giving some
preliminaries, an historical review of various rcalization
methods is given, The algorithm of Ho and Kalman is
discussed in some details because of its irportance in
so much of subscquent werk in the field, A brief revicw
of the literature on state-space interpretation of
classical results of network theory ls glso inclipded
in Chapter II, This Chapter is concluded with the key
properties of passive and reciprocal realizations in

state-space terms, Wwhich are needed in the sequel.

Chapter III presents new and improved methods
of obtaining system realizations. A minimal realization
technique from a symmetric transfer-function matrix is
discussed, The technigue results in reciprocal realiza-
tions. The problem of developing suboptimal realization
methods has also been considered in this chapter. A
method is presented which results in nany cases in

lower order realizations. In order to determine the
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suitability of the proposed method, mode matrices are
defined for the multiple poleé case, /Another algorithm
for realizing a linear time=-invariant dynamical system

has becen given in third Chapter, The dimension of the
recalization obtained by this algorithm is the lowest

comparcd with other hitherto known methods. All the
realization methods developed in third chapter are equally
applicable to the multiplec pole case, Illustrative

examples arc alsc given,

In Chapter IV, an alternative method is proposed
for finding a state-model realization ahd the positive=-
real impedance matrix Z(s) from its given cven part.>
Z(s) + 2'(-s) . A method to determine a state~-model
recalization and the positive-recal impedance matrix z(s)
from the given odd part z(s) - Z!'(=-s) is also presented.
A state-space interpretation of Foster Synthesis method
for LC networks is presented, A method is presented for
determining the transfer function matrix of a linear
time-invariant system represented by the state-variable
gquations,through the intermediation of the moments of

impulse recsponse,

For simplification in system analysis and
synthesis, it is desirable to transform the dynamic
characterization into a canonical form., Chapter four
also dcals With these canonical forms., An algorithm

for determining the inverse powers of a companion
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matrix is developed, [nother algorithm is proposed %o
find the inverse powers of a matrix which is in Jordan

anonical form. These algorithms can be applicd for
computing the moments of impulse rcsponsc, The problen
of Qbﬁaining transformations Which will reduce a linecar
time=varying autonomous system to companion form has
also been discussed, The proposcd method is an exten-

sion of the mecthod due to Power [76] .

The subject matter of this chaplter is also

illustrated with examples,

A surmary of the contributions made in this
thegis is given in Chapter V, ©Some suggestions feor
further investigations in this field have also been

incorporated,



CHAPTER 1II
REVIEW AND GENERAL CONSIDERATIONS

2.1 INTRODUCTION

Onc of the most important tasks in the study
of dynamical systemns is their characterization by a
suitable mathematical modcl, This matheématical represen-
tation serves to optimize, control, or predict future
behavior of the physical process., Deterrmination of a
state=nodel from input/ output data of a systcm has
attracted the attention of many a rescarcher in the
last decade, A host of literature is available in this

-

field of system theory [1]- [3],[10],[m]~-[18 }
[25]-[26] ,[38] -[v8] ,[65] - [667 | 86] - [91] , 95 F [107]
[ 122} , Which has led to the evolvement of a complete
theory of reglization, It has provided an understanding
between the frequency domain and. the state-space des-
criptions of systems [11] -[12],[30], [60] . state-
rnodel realization has assumed great importance because

of modern trend of carrying out network synthesis in the
statc space [:6] - [7] § [52J f58-1 BOS 118 1
Several well-known classical methods of network synthcsis
have been given state-space interpretation [4],[50],
L78] ,[1T9J . BSome problens of network analysis have

been solved by using system thecory concepts [9@ ,[61},

L??] . For time-varying, and non=lincar systems , state-



nodel representation is most convenient, This review
chapter surveys represcntative literature on minimal
state-model realizations of linear dynamical systems,
and some results of system theory as they apply to net-
work theory, The realization algorithm of Ho and
Kalman (38" has been dealt with in dotail because of
its ilmportance for much subscquent rescarch in the

field,

2,2 DESCRIPTION OF PHYSICAL SYSTEMS

A mﬁltivariable finite-dimensional linear
dynamical systcm may be specified in many different ways.
However, therc aré two stondard forms in which a precise
definition can be given to the system. We may spcecify

the state-variable differential ecquations

xt) = A(E) =x(t) 4 B(t) ult)
y(E} = C(t) =x(t) + D(%) u(t)

where x(t), u(t), and y(t) designate the nx1 state vector,

LRaty

the nx1 control or input vector, and the px? output
vector, respoetively. The matrices A(t), B(t) c(t),
end D(t) have dimemsions nxn , nxm , pxn and pxm ,
respeétively, ‘Tho second basic system deseription is
the pxm impulse-response matrix H(t,T) = [hij(t;r)]
Which relates the ith output to the Jth input. The
set of matrices (4,B,C,D) represents the internal

description of the system and is termed to bo a realization
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of H(t,w) f W1 lif forallt 0y v

-

1

H(t,T) a(e) b (&,7) BT D(t) (2.2)

where @ (t,T) is the transition matrix of(A,B,C,D),
For the time—invarian£ case AyB,C,and D have real and
constant cloments and the transition matrix becomes
exp (At). In many practical - cases, the transfer-
function matrix H(s) = als YH(%) J is glven . It is

casily shown that

Blg) = 0 (&l = A)"1 B +D {243)

where I is man unit patirix,

The number n 1is czlled the dimension of the

systen. The reslization is said to be ginimal or

irredueible if there is no gystem of order less than

n Wnich also realizes H(t,T).

A transfer-funchtion matrix H(s) is said to

be rational if cvery element of H(s) is a ratic of

polynomials in 8§ With real coefficicnts, H(s) is
recgular if no element of H(s) has a pole at infinity.

H(a) ig proper if H{(oo) =D =0,

The realization problem is t» pass from an

input-output description of a system in the form of
an impulse-response matrix, or transfer-function matrix,
to a state-space description to the type (2.1) . The

term realizati.a comesg from the fact that, using the
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description (2.1) it is possible to build systenms,

nawely analog computers, whcose behavior simulates the
behavior of the system. In general, there is no unique
solution to thé realization problem and different
realizations »f the samc input-output response have quite
distinet characteristics, It is noccessary,therefore,

to examine the properties of Yequivalent® represcntations,
The follawing type »f cquivalence proves to be the most

important in the realization probleomn,

Definltim. 3 [A(t), B(t), C(t)] is algebraically
equivalent to [ A(t), B(t) , C(t)] 4if and only if there
exists a continuously differentiable matrix N(t) with

Lu]

dot N(t) £ 0 far g1l € , such That

it = N(t) A(t) N(t>"1 +_ﬁ(t) N(t)'1
B(t) = N(t) B(t) (2.4)
Ge) = ey e~ .

It may be rcadily wverificd that

0 (1) =:H) 6 () Me)T (2.5)
D is not considered since it does not constitute the

dynamic part »f thc system.,
After discussing the preceding preliminaries,

an historical development of the realization algorithms

is given in the noxt seetinn.



2,3 HISTORICAL REVIEW OF REALIZATION PROCEDURES

The probiem of realization for linear systems
was first stated by Gilbert f 31 ] in 1963 , who gave an
algorithm for computing state-variable differential
equations from a transfer-function matrix, At the same
time Kalman D+1] propnsed an algorithm for the same
problem, in which the valucs of 4,B, and C could be
found from the coefficients of numerator and denomina-
tor polynomials of the elencnts of H(s), The dual
concepts of controllability and observability play an
important role in these algorithms. In 1965, Kalman
[44} proposed a new algorithm for cbtaining the state
equations from a given transfer-function matrix having
multiple poles, Kalman had employed the classical theory
of elementary divisors and the language of modules,
This algorithm exhibits thé canonical form, under
equivalence, of a rectangular polynomial matrix [29}.
Based on Kalman's method [44} , another realization
procedure was suggested by Raju [82]. He employs
Kalman's method (44} for finding the order of the
system and for finding the stabe matrix A. The matrices
B and C arc obtained by drawing a signal flow graph.
inothér minimum realization algorithm was proposed
by Ho and Kalman [ 38] in 1965 which has been
acclaimed to be one of the most useful and computationally

simpler one, This method was evolved from a study of
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the so called Markov parameters [29] ,[ 106 ] . The
impulse-response data »f the system, which is assumed
to have'éero initial state, can be given in the time-
or the s-domain in the form of Markov parameters. Ho
and Kalman's algorithm centres on "the generalized
Hankel Matrix" built from the Markov parameters. In
1971, Ackermann and Bucy [1J gave a ncthod for const-
ructing a state-variable model in the canonicnl form of
Bucy{i15} y from the given matrix of impulse-respmmse
sequences of g finite-dimensional discrete time, lincar,
constant dynamical system. The construction is an alter-
nate to the Ho-Kalman algorithm {38.3 In: whieh ftwo
matrices P and Q must be found. Since P and § in £38]
are not unique, the realization obtained by Ho and Kalman
is not in any special canonical form ; in general, all
n(n+m+p) coefficients »f (A,B,C) must be determined.
In the canonical form of Bucy, at most n(n+p) parameters
have to be evaluated . A procedure was cutlined by Alberston
and Womack [2] for computing the dimension of and const-
ructing dirreducible realization of a given System transfer-
function matrix, Their procedure is much simpler and
provides more insight into the physical significance
of the problem. The resulting realization is in diagonal
form, However, H(s) is constrained to have only simple
poles. In 1969 , Wolovich and Falb [117 ] stated and

proved a structuTre theorem for time-invariant multivariable
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linear systems, The theorem is then applied to obtain

an algorithm analogous to that of Mayne [69] for solving
the problem of reelization, ‘:A computer algorithm had

been developed for applying the algorithm, A method

of realization based on the moments of the impulse-response
matrix has been proposed by Bruni et, al [14]. Their
procedure utilizes thc Ho-Kalman algorithm [38]. The point
of difference lics in that the Hankel matrix in [1h4]

is constructed by the moments in place <of Markov para-
meters as in [38.] .In the presence of noise, computation
of moments i1s preferable to that of Markov paramcters
which arec the local time~derivatives of the impulsec-
response matrix, Kuo [551', and Panda and Chen'[73j deter-
mine dirreducible realizations of a rational matrix in

the Jordan form.

The problem »f finding a sub=-optimal solution

to the recalization problem has also abttracted the atten-
tion of several authors, In 1963, Kalman D+1j prescnted
a simple mCthod for computing o good upper bound on

the dimension of a minimal realization, and provided an
algorithm for constructing tht¢ corresponding nmmcanonical
reéaligation, Glass.[337 proposed a simple procodure

for obtaining a non-minimal realization of H(s), in 1968;
the resulting realization is always in Jordan form.

In 1970, Roveda and Schrmicd [91:?prosentcd a method faor

computing a ncw and lower upper-bound, compared with
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Kalman {41 }, on the dimension of minimel realization

of lincar time~-invarient dynamical systems. & simple
algorithm was proposcd by Roveda and Schmid[91}for construc’ -
ing rcalizations With dimension cqual to this upper bound.
However, H(s) is assumed to have ~nly simple poles, The
rcalizati-ns ~btained are the minimal ones having the
property of being structurally invariant with respect

to the voriations of the transfer-functisn-matrix coeffi-
cients, All these methods require sipgnificantly less
computational work and yicld o quick solution t» the
realigation problem. If necessary, a completely controll-
able and complctely obscrvable part may be extracted
from the nonminimel realigation by the methods suggested

1

by Mayne [69] and Rosenbrock [87],which yields a

minminmpl Trealization,

Minimal recalizations from symmetric impulse-
résponse, cr trensfer-function matrix have been obtained
by Lal and Singh [62] and Lal et.al. [65 ]~ [66] .
These nethods are modifications of Ho-Kalman algorithm
[383 s The im;ﬁftanco of such realigations lies in
passive network synthesis since they result in reciprocal
realizations and further, all reciprocal realizations for

R and RL cases arc passive [52], [123].
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The minimal realization  problem »f time-
variableé lincar systems has been considered by Desocr
and Varaiya [25 :, Silverman [96] - [98j ; ﬁOO] .
Silverman and Meadows [102}, [ 104] , sko.g |:107],
Youla [122], Lal and Singh [59]. The class of analytic
matrices H(%,7) have been considered as analyticity simp-
lifies the development of the methads.

It may be mentioned that the discrete case is
analogous to the continuous one and the methods of conti-
nuous-tine solutins are equally applicable %o the theery

of discrete~time minimum realizations,

The algorithm of Ho and Kalman [387] is given

in someé detalls in the following section,

2.4 THE ALGORITHM OF HO AND KALMAN

In this section, minimal realizations are const-
ructed when the system specifications arc given in the form
of Markov parameters [291 . The problem 0i resligation

is then the following :

"Given o sequence of pxm constant matrices Y,
(Markoy parameters), k = 0,1,2,... , find g triple (haB;0)
of constant matrices such that

iZ I i u

I

Thc sequence Yk has a finite~dimensional recaliga-

tion if and only if there is an integer r and constants
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qi suchh  that

P
= 1 for all j-» C (2
Yr+j = % Yr+3-1 for all j-z O (2,6)
where the degree r of the annihilating polynbmialf29]

of Amim 18 assumed to be known. The method to determine
r 1is given later in this section. The algorithm for the

construction of a minimal realization is described now,

The algorithm begins by forming the rxr block
matrix ('"generslized Hankel matrix") composed of the

Markov parameters.

YO Y1 & e Yr—‘l ~
Y,[ Y2 E YI’ ’ - 1
- . | o
SI‘ = . L= ‘ fl*’j—l—; kL-I?)
o & | L
[ e - | g
Y Y Y !

- P 1 e e

=

i 5 Vk has a finite-dimensional realization, then the

dimension of minimal realigzation is

n = vrank S (2.8)

The following ste;

e

s yield a minimal realization.
Step 1) Form the matrix e

Step 2) Find non-singular matrices P and Q such that
= :

‘IZ O |

|
| 0 0 |

Here, I, is a 2zxz unit matrix, z = rank S,y and J is

idempotent.
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Stej Let E be th blo wrd P ALY SR
p 3) " e ck matrix ( o Op)
and let ULH denote the operator which picks out upper

left~hand block , Then a minimal realization of - d.8

k
given by
As sy evE eT |
2 q i s = |
B = ULE|J P53, B | (2.10)
& = 1D {Ep 5 Q@ 7 |
waere T 18 a constant and
:Y,] Yg rve —l—r ;
£ , . ?
AL 5. Ty ses Yo oy
| r —_ - . =
- d !
LYr 1r+1 il z2r—‘|

The procedure described in the preceding stens
makes only one assumption, namely a knowledge of the
integer r. In order to determine r y 1t 1s given the
values 1,2, ... , etec, For each Value of r, the rank of
Sr is determined. That value of r is chosen Waen rark
Sr = rank Sr+1 -

After treating the realization problem, some
results concerning the state-space interpretation of class-

ical concepts are discussed further in the Tolliowing

section.



2,5 BSTATE-SPACE INTERPRETATION OF CLASSICAL RESULTS

OF NETWORK THEORY

There has been a growing interest in the applica-
tion of state-space approach in the field of network theory,
apart from the development of control and system theory
in state-space terms., Many corcepts of system theory
find their utility in network analysis end synthegis. For
example, a state-model of an RIC network which is completely
controllable and completely observeble can be synthesized
using a minimum number of reactive elements , However,
frequency domain methods are gtill extensively being used
in the majority of network design problems. This has led
to the exploration of communication links batween the state~
variable characterization and the input-output description
of networks. Several authors have put in endeavors in this

connection, The expressions for poles and zeros of a
system in terms of its matrices have been developed bv

Brockett [12] . Similar relations were derive

=
!
|

= ; e ot

o

by signal flow graph representation of the state-space
description of linear systems, Sandberg and So [ ol ]
developed techniques for evaluating t

of & scalar transfer function from the state and output
equations of the system, Recently, Lal and Singh [601
have derived some well known propertics of IC, RC networks
etc. wusing system theory concepts and have also given

state-space interpretation of classical Foster and Cauer
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methods by considering topological state models of networks.
Capacitor voltages and inductor currents are chosen as

the state variagbles.

Consider a singlc-input single=output system
2 ! g ¥ Y

¥ = i I R R )
(2. 18)

1

Faoo = X e

q

When there i1s no resistance peth between the input and
the output, d =0 , 1In that case, the characteristic
polynomial of A gives the poles of the transfer functicn
while the zeros of the transfer fqnction are given by the

characteristic polynomial of AO where [52

Seol

f be |
AO = !’-I T B JA (2.13a)

wpergas Top the cage 4 % O Ao is given by [521

A, = |T-—28_ I, (2.13Db)
L g8d + eb j
(@)1 g
TR . (2.13¢)
@ d

as given in '[ 92 ]. The cxpression for the transfer func-

tion as given by Sandberg and So {92 J is
|
. 'S - C
det : 1
B LT A
H(s) = : (2.134d)



e

1

Further, the state-space interpretation of multiport
Darlington method has been given by Anderson snd Brockeh’
{5 ]. Recently, Knan et, al. [50] have extended the
technique of Puri and Takeda [78 jfor statc=-space synthc-
sis of I0 networks to n-port lossgless Foster form, Bosliden,
a state-variable technique has been proposed by Lal and
singh [61] for determining the state~model and the
impedance matrix Zz(s) from its given Hermitian part Z(s)+
Z'(=s). Youlal's factorization of rational matrices[121j
and the system theory criterion for positive real matrices,
developed by Anderson [4 ] have becn exploited by Lal

and Singh [61 ], alongwith the realization theory, to

obtain the minimum reactance matrix 2z(s),

The concepts of passivity and reciprocity useful

for state-spuct synthesis are deslt with next.

3 o : ghan- g 3
Anderson's [MJ system theory critericn for

positive and real matrices is stated here ag a lomma.

LEMMA 2.1 Let Z(s) bc a matrix of rational transfer
functions such that Z(o) is finite and Z has poles
which 1ie in Re s £ O r -ar8 gimple on Be s =C
Let (A,B,C ,D) be a minimal realization of Z, Then Z({s)
is positive real 1f and oniy if there exist a symmetric

positive definitc P and matrices WO and L. such that
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o

B %P = ibi
PR = O =qtW (2.14)
WL Wo = D% Dé

Here W(s) is found by using a lemmo on spectral foeto-

rization, due to Youla [121] , such that
Z(s) + Z1(-8) = W'(-s) W(s) - (2415

W(s) is unique save for multiplication on the left

2.6.2 Reciprocity Criterion

A theorem on reciprocity, due to Yarlagadda

[118 ]is stated in the following,

THEOREM 2.1 Let Z(s) be an nxn nmatrix of real
rational transfer functions with Z{os) finite, Then

Z(s) possesses a state model of the forn

I B AX +8B=n» : v
(2.16)
LB R
such that
L
3 i
(T + 2 )M - (2.17)
. . o - . - . 5 ]
is a symmetric matrix, where ) is o unique ordercd

diagonal matrix of plus oncs and minus ONes, + denotcs

direct sun and

33 Z = % Z 3 and [y TS | i 3 l‘

l; ol
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if and only if Z(s) = Zt(«~g)-

It may be pointed out that it is rather difficult
to satisfy both passivity and reciprocity conditions sirml-
tancously. However, all rsciprocal realizations for RL
and RC  impedance matrices have been shown in [53]
to be passive . Thus in these cases a reciprocal reali-

zetion is automaticelly passive.

2,7 COMMENTS

It is c¢vident that an abundance of literature
can be found in state~model reslization techniques. The
given data maoy be in the form of an impulse response
which dies out with time, does not disturb the steady
state, and if the system is stable,it returns to the ini-
tial vealue :fter the application of the impulse, The
data could also be in the form of Markov parameters,
or moments of the impulse response, Of late, there
have been fruitful attempts to find quick and computa=
tionally simple methods by loocking for suboptimal solutions

t0 the realization problen,

While a fairly complete theory of system reali-
zation 1s available, statc-space network synthesis methods
are still being'developed. However, scveral well=known
network propertics and classical synthesis methods have

been given state~ space interpretation,
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The following chapters deal with some new methods
of realization, stato—épaco interpretation, determination
of system functions of positive rcal network functions,
evnluation of inversc powers of canonical mabrices, and
transformation of time-varying aut-nomous systcms to

companicn form,



CHAPTER III
REALIZATION OF LINEAR TIME-INVARIANT DYNAMICAL SYSTEMS
3,1 INTRODUCTION

The problem of constructing irreducible (or
minimal) realizations of real, finite-dimensional, conti=
nuous-time and linear dynamical systems from thelr
external descriptions has been actively studied in recent
years, The fundamentals of this problem have been esta-
blished by Gilbert, and Kalman in 1963. Interest in this
fundamental problem of system theory has been generated
due to a change from transfer-function description to a
more general state-space characterigzation,for studying
problems of control, filtering, identification and those
in the field of network theory. Realization theory has
served to get a better insight into the relationship
between input-output and state-space models of a system,
In this chapter, methods have been evolved for obtaining
miniral as well os non-minimal realizations. A procedure
is presented for consStructing minimal reciprocal realiza-
tions of a given Systew transfer-function matrix H(s), for
the case  when sy ds symmetric, using moments .
Aiso, the technique proposed by Glass [333 for
syhthesizing transfer-function matrices having rultiple

poles is modified which may result in a lower dimension.
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In order to determine the dimension of.A natrix,

riode matrices M ond MC are defined for the multiple
pole case, Further, a simple algorithm is proposed for
cohstructing a reclization of a dynamical systen described
by means of its transfer-function matrix with rultiple
poles. The dinension of the resulting system will be

still lower,
3.2 MINIMAL RECIPROCAL REALIZATIONS USING MOMENTS

. The problen of minimel realization from a
transfer-function matrix has been widely investigated,
Various methods are available for the construction of
the matrices 4,B,C such that (assuming no direct path
between input and output)

C exp (4t ) B = H(E) £3.%n)

¢ (sT-W"TB = Hs) (3.1b)

where H(t) is the impulse-response matrix of a linear

tipe~invariant finite-dimensional strictly proper systen,
and H(sg) is its Laplace transform. The most relevant from
a theoretical and computational point of view is the Ho-
Kalman algorithn {38] , Their algorithm begins by foriing
the rxr block matrix Sr (generzlized Hankel metrix)

’ B T IR, I =ell | Mans v oo
built out of the Markov parameters L29] y |1qu - -

L, k
where
T h'd r l
5 O ,L,] PR 1r_1 f
g o Y1 “2 vee Yo ! {323
fis
v ! i L ’
L .x.l,'._,l YT’ FIa J_:.).I.‘f_).- !




)
and Yk's are coefficients of the negative power series
expansion of H(s). Non-singular matriccs P and Q are

then found using stgndard methods [23] such that

I o]
N £ i (3.3)
o ol
where IZ isn gx% unlt matrix; z = rgik Sr and J is

iderpotent,

If B, is the block matrix (T590,5 veey op)

09
and ULH denotes the operator which picks out upper left

hand block, then

L =V [ P(rs)Qa] (3.k%a)
B = ULH P E B j (3.4b)
C = ULH [ Sy } (3.k4c)

F

is a minima]l realization of H(s) , where

Y1 Y2 * o @ Yr
Vi a4 play il
2 3 r+1
¥ 8 = . 3 ; (3.5}
I‘ -
Y 0 S g e 23T ‘
- r+1 2r=1 J

Recently, Lal and Singh [52 ] have suggested a

modification of the algorithm of Ho and Kalman [38] for

obtaining a minimal realization (A,B,C,D) of a transfer-
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function matrix H(s), for the cése vhen H(s) is

syrmetric. The realization obtained in [62] is such that

¥ T3 M \ (3.6)

is symmetric, where

3
M = (3.7)
B4

L] .
+ denotes direct sunm

and the diagonal matrix
V—- e [
e Z-]+Zg

where
z% has only +1'soan the diagonol

}:' has only =1's on the diagonal .
2
such realizations result in reciprocal networks, as
. i ?

mentioned in [62j . PFurther,it has been proved in [53]
and [123 ] that all reciprocal rcalizations for K

and RL cases are passive, In the realization process of
{62 ], since the given matrix H(s) is symmetric, the
Markov parameters and conscquently the Hankel matrix S,
will also be symmetric , For the symmetric matrix 8§,

a non-singular P can always be found {23] such' that

AP = ¥+ D K (3.8)
the order of § being equal to the rank of S.
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While applying the method of {62 ] to synthesize

H(s), it is also worthwhile to expand H(s) in a positive

- power series according to

H(s) = Z Gy ., (3.9)
k=0

This series converges in a suitable neilghbo.rhood of the
origin, and 1t can b€ analytically continued on the whole
plane except for the singularities of H(s) [1%] . Canse~

quently, the sequéence C y uniquely identifies the

k

H(s). Each Ck is uniquely connected to the corresponding
moment M. of the impulse- response matrix H(t) by

the relation [14 ]

Mk = (-1)k k! Ck (3.10)
where
o
e k
M}c e ‘St H(t) dt, ¥ = 0,1,2, 3 o (3011)
0

Since H(s) is symmetric, its moments are also symmetric
as 1s clear from (3.9) and (3,10), Then the Hankel
matrix 8 constructed from the moments will elso be
symnmetric, Therefore, a non-singular matrix P can agaln
be found such that (3.6) i1s satisfiled. The procedure
of [62] can then be epplied without any modification
to the Henkel matrix constructod from M; where L1q.J

b U85 (3.120)
N = ———— 5 k=1,2y,0, 3'125
.5 oty A e
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and

W= [m®)] = 1m sHEHG) - (3.120)
L
8 < 00
The matrices 4, B, C are related with the quantitics
introduced above according to [1#]

e -k
M. =CA

B ) k 20’1,2, ¢ e (3:13)
Then, in the light of the methods given in [141 and {62 ]

we get [ 79]

A-1 = ULH [J P(T 8) PY(Y + 0) 7 J (3.148)

B = ULH [J P& B } (3.14b)
) il

& =~ ULH [Ep sp (Y+0) 7 J (3.14c)

D a H{ o) - (3.14d)

Here p =m . It is obvious that this realization will

also satisfy (3.6),

At the end of the calculations, it is necessary,
of course, %o invert the matrix A"Y to obtain 4 .
For reciprocal RS and RL networks H(s) will be
~asymptotically stable, and, from [1+] , A4 is then non-
| singular,
CONCLUSION

4 method of minimal realization based on moments

is presented, In the presence of noise, computation of
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moments is preferable to that of Markov parameters

which can be interpreted as timc derivatives of the impulse-
response matrix calculated in the Origin; As pointed

out in [ﬂ+j ; When realization is to bc constructed

from empirically obtained data of H(t) , a method based

on moments is advantageous.

The example of [621 i1s taken for illustration

L4

purposes i

Example 3.1

Given a symmetric H(s)

i

Then

and

|
e
”~~
n
g
e
—
e
o)

H1(S)

= 1 -2:§+332-)+33+5' (_:+_ o e .

Using (3.12a) and (3.12b), we get

* ok *
M* | * *
T = 3 ) I\/}LI- = )+ ] MS = = 5' ] o e

It can be seen that

* b
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The Hankel mnmatrix

e = |
*
% e
=
-
—
)
i

5 S5 1s symmetri 1T can he ansforne 0
As 8 synrnetric, it can be transformed t

the form of Eq, (3.8) with

0 1/J’§
IE 1 ]2

Using Eq. (3.14) , we get

v -} A
a7

/2 -1/ 2



With

we ge t

It can be seen that Eq., (3.6) is satisfic

Example

Let

H< S) =

(

33

~1/2 1/2 ')
= ; |
-1/2  -=3/2 J
L
- 1/8 -1/}5- 1/]2
D C 1 .
| -1/]2 =172 1/2
A =5 -1/ 2 -1/2 -3/2
L
ol e
= 0 4 0 2
O O -
=. B

3.2

Ay

L
é

o

wn |



From (3.10)

Using

, [ 1

I.'I.,,
O
.1

The Hankel
3
TS

The

Eqs {3.12a) and {3.72n)

congruence

we get the moments
1_ -1
y My =
1 -1

1 N* .-1
, "1 =
1 -1
matrix & 4s found
r -
L 1 1
|
&S
" -1
%
[ ; -

I 0
e
L A
{0 |
g =
"
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K
M 's are cbtgined as follow .

-1 - -1 -1
TR ' ’
?
-1 2 -1 -1
'
to have rank = 1

'-1 1

=]

transformation matrix is
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and using Eq. (3.14), wc get

| 1

This realization (A,B,C) satisfies (3.6) and thus would
result in rceiprocal realizations uging passive network

elienments,
3,3 NON-MINIMAL BZALIZATION TECHNIQUES

The realization procedurcs found in the literature
sc far agppear computationally rather cunbersom2, having
different degrees of complexity, Thus, it i worthwhile
locking for sub-optimal solutiong of the rcalization prob-
lem having computational simplicity, by using noncanonicai
structurcs, The following two scetions deal With this

problem of realization,

3.3.1 Synthesis of Transfer-Function Matrices with Multiple
Poles |
A simplificd technique was presented by Glass [33:}
for obtaining a state-model realization (4,B,C) of a
transfer~-function  matrix H(s), with H(w) = 0, The
constént metrix H(oo) corrcsponds to "resistance paths®

from system inputs to systenm outputs, and does not contri-

bute to the dynamical part of the system, The resulting
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system is not always dirreducible and standard systen
reduction techniques have to be used to obtain an
irreducible realization, Therefore, before applying
this algorithm, it is perhaps worthwhile to consider
whether factoring of H(s) into a slightly different forn

will lead to a state-model of lower dimension.

It is apparent that the dimension of the result-
ing A mabtrix in Glass's technique is cqual to the
number of rows of Q(s), Where Q(s) is obtained by
factoring H(s) as the matrix product

Blw) & QIRCEy . €315
The dimension of A matrix can also be easily obtained by
constructing mode mobrices M , M, and M, [2] defined

for the multiple-pole case as follows , Consider H(s) of

[33]. il ’ = 3 - 3 ]
+ 5 + o
s+1 (s+1) S+2 S+1 S+3
3 g - 2 % 1
i S+1 S+2 (s+3)2 45 )
(3.16)

M is defined as a mode matrix whose elements correspond
to the medes of H(s), and as such can be written by

inspecticn as

(1) , (N2, (). 08

iy, (&) (3),(2,(5) | 317
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]

It may be noted that in the multiple-pole case, for a

term o« / (s + o‘)r in an element of H(s), the correspond=-
ing entries of M contain all the multiplicities (o) , (o-)2
I - i However, if this element of H(s) contains
A/ (s+o) 1in addition, the corresponding entry in the

maticdy M 12 nil as indicated in (3.17).

M 1s reduced to column combinations ;27 which
are achleved by considering a riode, say (O‘)k in a particu-
lar columm of M, and retaining it in only one entry while
cancelling it from others in the same column . The

process is repeated for all the modes. Thus M, becomes

—

Ty, (13,2 (1), (3) |
i e | 5 = (3.18)
i > (3)7,(5) |

M is reduced to M, by meking rov combinations, in a

similar way. Then we get M, as,

T, (03,2 (3)
M., = - £3419)
[m), (2) B0 ) L

Obviously, the sum of the number of modes of MC(7 in this

problem) is equal to the number of rows of Q(s) of (3.15) .

If it is found that the sum of the number of modes
kg M is less than the sum of the number of modes in

M. , a state-model of lower dimension than that given in

[33:} can be obtained by factoring H(s) as the matrix

product



H{s) =P{(s) B (3.20)

where the elements of the kth row of P(s) are theé poles

appearing in the corresponding row of 1(s), with multi-
ple poles listed in order of decreasing multiplicity -
(3.20) may be written as

H(s) = P(s) 11 (s) T(s) B (3.29)

where T(s) is a non-singular matrix . T~1(s) ig construc=
ted by a procedure similar to that given in i}j} by
having linear factors (s+p), which correspond to the poles
in the corresponding columms of P(s), as the elements of

the principal diagonal ., All other element

W
o
l—.)
@
N
)
i
G

B

except that a minus one is required in the position below
the principal diagonal, if the corresponding pole of
P(s) is not simple, T-q(s) constructed thus will
ensure that C, given by C = P( —1( s) , and A , given
hr & = g » T_1(s), where I is a unit matrix of appro-

priate order, are both time-invariant matrices.

The procedure for row or colurm mode combining

provides an upper bound on tht minimal dimension of the

4

system, Let <« Dbe the number of ¥, modes in I, and

[%_ the numbeér of A. modes in M. Then the maximun

number of state-variables required to reslize H(s) i

{2{ min (<, A4 ) (3225

The dimension n £ n of dirreducible realizations.,



39

Obviously, in many examplews, the realization obtained
by the proposed method may be of lower dimension than that
obtained by [33] , Which Will require far fewer computa-
tions when a completely controllable and completely observ-

able part is extracted from it,.

Suppose a system, specified by the transfer-function

matrix H(s) is required to be synthesized, where

F

] 3 £ " 1 i i 1
g+ (s+1)%  s42 241 (s+1)2
H(s) =
B I e
343 (8+3)% g4 543 545

In order to decide about the suitebility of the
method given by Glass or the one proposed hére, mode natrix
M 18 conslructed firsgt, Thus

——

(1), (12, (2) (1) 5 (e ]

13}, (D (D (3), (5)

M 1is reduced to MC by columm combinations and to Mr

by row combinations, i.e.,

r -

(1 (1Y (@) (1) , (1)2

vl =

(3), (3)% ,(5) s
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—

5 :
(1) ) (1) s (2> s

=]

’

L
From M, , the dimension of A is 10 whereas M, gives
the dimension of 4 as 6, OFf course, a recaligation of

dimension 6 dis to be prefered . Fron (3.20), we get

R 1 1 112 T
R R (i 5|
(s+1)2 541 842 | ]
H(s) = 1 & 4 : bl
0 0 0 5 3 0 |
(o+3) 843 845|) 2 1
4 l
1 2
Which gives

I ]
sd 0 & B DB
-1 s+1 O 0 0

=
s (S) =
0 0" s B 0

0 0 =1 8s+3

0
0
g o ¥ g g
0
OOOOS+5J

o ;7

1
|
|
I
Matrix inversion is not required since only T-1(s) is

required in the synthesis. The realization (&4,B,0,D) is

given below,

(-1 B0 6 0 2 1
T A - T S R 1 2
{o B -2 &8 & D 1 0

A = | D 0 0 -3 O 0 s B {3 0 ’
}o 0 0 1 =3 ¢ 2 1
L0 0 0 0 0 =5 | 1 2 |



3.3.2 in Algorithm for Lower Dimension Realigzation of

Dynamical Systems

The aim of this section is to present a method
for computing, a new and lower y upper-bound and to give
& Simple algorithm for constructing a realization, with
dimension equal to this upper bound, of a dynamical system

described by meens of its transfer-function matrix with

multiple poles.

4L procedure for computing an upper bound n, on

n was proposed by Kolman [41 ]  with

i;) I
n. = |mn j; ﬂ’qi, i:: /3j § (3.23)
A= 7 = !

whore % and /3j are the number of distinct poles
(counting each nole with its meximum multiplicity) in the
ith row and in the jth colum, respectively, of matrix
H(s), and hé has provided an algorithm for constructing

the corresponding non-canonical realization,

Recently, Roveda and Schmid {j91] have proposed
a procedure for obtaining a good upper bound on the
dinmension of & minimal realization, They construct realiza~
tions with dimension equal to this upper bound, Their

method 1s applicable umder the assumption that no element
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of the transfer-function metrix H(s) has multiple

poles.The resulting system is

*
X = My +B g

(3.24)

e
i

ED

o =
where x,y and u are n,p, and m vectors, and A,B,C
are nxm , nxm and pxn constent natrices, respectively.

The condition of simple poles is a big drawback, Her

o)

!

a generaligzed algorithm is proposed to obtain a non-cancni-
cal realization for the case of H(s) having simple as
well as multiple poles., The significance of the proposed
algorithm 1s its computational simplicity., The dimension

of the resulting system will be smaller than the ones

obtained by Kalman fh1j, Glass [33]'or Lal &t.al, [@+] :

The steps of the algorithm are more easlily pre-
sented by means of an illustrative example given in the
following paragraphs. Given a transfer-function matrix

E‘I( S) =

ik , < | ¥
B o o1 5, i S
L (1) s+l 842 542 s+1 (s+1P S+1
3
..r....‘:...._'_ 1 2 +1 2 +1
S42 (s+ 2 2 (s41) % Lo
S+ « S+ s+2 (s+3) S+3

. SR s

543 543 (s+41)2 541 543

(3,25)
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Step 1 I Compute the coefficient matrices of H(s)
corresponding to the distinct poles and their multiplici-

ties such that

1 i e | el s S T
| 5 4 i ‘2 33 W
g R e v S ey SRS
Bl =| B 2y BN el R D
¢ ;
T N s ot o
L | i . i { :
e S = === g
T S g .
R 0 0 0. |
! ] ! e = = - - - ]
SO AR (£ TR
- N B3 = [ e T
o L O W 0 0 0 |
f '
L 1~~ - ] -
] ]
0 0 0 |
L L i S e e (3.26)
"5 i 2 |
Step 2 : For each coefficicnt matrix, find the minimunm

set of lines (covering set) containing all its non=zero

elements, as shown in the preceding step.

Step 3 2 In order to construct A, consider a multiple

pole. Associate With the coefficient matrix of hirghest

2y

o |
miltiplicity, say R(1 a real matrix A(1°) constructed

as follows,

=2
1) Scan R(1%) for colurms belonging to the covering

]

set, Form an upper Jordan block having (s+1)° as its
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elementary divisor corresponding to each. such columm .

In the examplé considered, therc is only one such columm

which would generate a 2x2 upper Jordan block.

Scan R(12) for rows belonging to the covering
set, Fornm a lower Jordan block having (S+’|)2 as its ele~
mentary divisor corresponding to each such row , In the
example considered, there is only one such row which
gives rise %o a 2x2 lower Jordan block. Then the direct
surn of the Jordan blocks constructed from R(12) by

_ , . . 2
column scanning and row scanning gives A(1°).

2) Now consider R(1) which is the coefficient
matrix of the next lower multiplicity corresponding to the
pole of highest multiplicity considered in the Preceding.
Scan R(1) for columns belonging to the covering set,
Ignore those columns of the covering set of R(1) in which
the columrs in thé corresponding position of the covering
set of R(12) nave been considered . PForm Jordan blocks
with (s+1) as the elementary divisor for each of the
remaining colums of the covering set which essentially

reduces itself to the same form, as obtained in [91‘1.

Similarly, scan R(1) for rows and form Jordan blocks,

Then the direct sum of the Jordan blocks formed
from column scamming and row scanning of R(1) as just

described gives A(1).
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3) Repeat the preceding procedure for the remain-
ing coefficient matrices., The resulting & mnatrix for the

example considered obviously becomes

6 4 -
A o= atag | A1), AR , AG3D , A(3) |

-1 I
0 -1

= SRS -1 0
[

(Y]

*

Step L+ In orger +to construct B, consider a multiple
pole. Lssociate with the coefficient matrix of the highest

) 2
multiplicity, say R(1d), a real matrix B(1%) as followa

1) Scan R(12) for columms belonging t¢ the covering

set and let K be the index of the first columm in thlE

set qu | . Form the first two rows of B(12) by letting

Dyqg =0y T § = Tyaeo, (3.28a)

(3.28b)
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Repeat for the remaining columms of R(12) belonging to

the covering set.

2) Scan R(12) for rows belonging to the covering
set and let I be the index of the first row in this set.

2 .
Form the next row of L(17), say , row t, by letting

e 1= 2 L g ‘ ]
btj(1 :’ - rI_Ij (1 ) g o) = ismoey I (3.29&)
1f the column does not belong to the covering set,

by (1% =0 (3.29b)
otherwise,

The (t+1) th row of A(12) is formed as follows.
Let the index of fthe first row of the covering set of
R(1) be B, Then,

- 2 TR '

- S e for B =F = i~ S (P ITON S
q (13 . < B : S (3.50m)
t+1, ] \ 0 i< A S - GRS SRS

-

if the columm j does not belong to the covering set,

b 2y

£41,3017 =0 (3430D)
Otherwise., Repeat for the remgining rows of R(12) belmging

to the covering set.

3) The procedure of [91 J for R(1) 18 now
carried out, Those lines of the covering set of R(1) are,
however, neglected which have already been taken into

account while considering R( 12).

%) Repcat the preceding procedure for the remain-
ing coefficient matrices. The resulting B matrix for the

exampleé considered becomes
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L 4
0 0 0
0 1 0
813 1 o 1
2 L
B(2) :
1 0 0
B(3) 1 0 9
i ; grlsdvia §
SR AR

Step 5 ¢  fAgain consider a multiple pole in order to
construct C. Lssociate with the coefficient matrix of
Mighest multiplicity, say, 3(12) y & real matrix C(12)
by letting

S0 & A0 (S 1 N PR TR (3.32a)

ik

The second columm is formed as follows. Let L be the

index of the first column of the covering set of R(12).
Then, o

riL(1‘), for L ek 1 e1i@i...50 (3.3
- 2
C; 2017

- 0 for I K 5 1 =1,2,,..,p
L

Repeat for the remaining columms of R(12) belonging to

the covering set,

2) Scan R(12) for rows belonging to the covering
set and let I be the index of the first row in this
set. Form the next two columms of 0(12), say, columns

u and u+l 4, by letting
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2 . 5
Ci,I‘Iu(1 ) =0 ) x = 1,0.:, P (3'_.53&)

2, §- , Pl sw

¢ mustl1) = 4 (3.33b)
0 , for izH

Repeat for the remaining rows of R(12) belonging to the
covering set.

3) The procedure of [91 ] for R(1) 4is next
carried out, Those lines of the covering set of R( 1),
are , however, ignored which have already been taken

into account while considering R(12).

+) Repeat the preceding procedure for the remain-
ing coefficient matrices. The resulting C matrix for

the example considered betomes

ol i limet® oy o6 o |

Fg g Vi 1'1 5{9 .0 ba)
i
- 2y B 808 S W A 4 0 (3.34)
6 1'0 olo olo o |1

It will thus be seen that Glass's technique [33 ]
is8 a special case of the procedure just described when
the covering set consists of the columns only; so is
the technique proposed in [64] when the covering set
consists of the rows only. 4s the proposed technique con=
siders covering sets from both columns and rows together,
the dimension of the resulting realization will obviously be

smaller than or at the most equal to the lesser of the
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one obtained from [33] , P+1] , Or [64; . The proposed
algorithm is self-evident in the 1light of the algorithms
already given in [33} and [6# }. The upper bound on
system dimension can be easily found from step 3 of the

proposed algordithi,

For the example considered, the upper bound given
by Kalman [41] is

3
n :-Z <, = % X

o} - 4
1=

The dimension of the realigzation cobtained by [331 is
13 and of that obtained by [64] and [h1 } i
Lpplying the algorithm described in this section results
in a realigzation of dimension 9 which gives a lower

upper-bound on the dimension of an irreducible realization.

3.4 MISCELLANEOUS COMIENTS

The work is this chapter reveals new character-
istics of linear dynamical.systcms described by transfer-
function matrices having multiple poles., A modifiad proce-
dure of minimal realization utiligzing the approach of Iio
and Kalman j38} is presented when the given matrix is
symmetric, The method is bgsed on moments of lmpulse -~
response ., In the presence of noise, computation of
moments is preferable to that of Markov parameters which
can be interpreted as time derivatives of the impulse

response matrix calculated in ‘the origin, When recalizasion
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1s to be constructed from empirically obtained data of H(%),
a method based on moments is advantageous, The realization
obtained satisfies reciprocity Constfaints. Further, the
problem of realigzation without guarantecing irreducibility
has been investigated., In some applications (77 1, non~
minimal realizations are acceptable if they could be conshruc-
ted easily, If, however, a minimal reslization is reguired,
7

- 4 : : Féa 1 I
standard system reduction techniques 169 | 4 L87

may be

-

0]

employed to extract a completely controllable and completely
observable part which gives the minimal realization, 4
simplified techmique is presented for obtaining a state-
model realization of g transfer-function matrix. It has
been demonstrated how one can often get lower order realiza-

tion of a transfer-function matrisx.

Continuing with the search for obtain-
ing sub=-optimal solutions of systém realization problenm
using noncanonical structures, another algorithm is proposed
for constructing a realization of 2 dynamical system having
miltiple poles. The proposed algorithm has the advantage that
the dimension of the realization is not greater than the

dimension of the realigation which can be obtainec

j@N

by
Kaiman [41], Glass[33], or Lal , Singh snd Pupi [64].

The computational simplicity of the algorithm emphasizes

the significance of approaching realization problems

through noncanonical gtructures., fﬁﬁ?ﬁ\

<IN
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The noxt chapter is concerned With the appli-
cation of systen theory‘for the determination of network
functions and their statc-model realization, and also
for a state-space interpretation of classical synthesis

methods.



CIAPTER v
NETWORK FUNCTIONS AND STATE-SPACE INTERPRITATION
4.1 INTRODUGTION

The mnany advances made in systen theory in the
past few years have cnlarged its scope to a number of esta-
blished ficlds, It is the mathenatical structurc of 2
syster, and not its physical form, that is of interest
to a systen theorist, for studying the behavior of variou:
types and forms of sy stems., Consequently, much attention
is being paid for network analysis and synthesis using
state-space techniques. This chapter discusses the
determination of network functions and their state-space
realizations utilizing results of system theory., A method
for determining transfer-function natrix from a knowledge
of its moments is given. Procedurcs are given for obtain-
ing the higher powers of the inverse of state matrix when
it 18 given in Jordan canonical form or in the companion
forn, Either of these results may be employed to compute
moments of impulse-rosponse matrix. s#lso, a method is
presented to genCrate transformation matrices which would
transform a time-varying autmporious system to companion
form, Besides, state-space interpretation of classical

network synthesis methods is given.
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4,2 DETERMINATION OF IMPEDANCE MATRIX Z(s) FROM GIVEN
Z(g) + Zr({=8)

Recently, a state-variable technique for the deter-
mination of the impedance matrix Z(s) of order n from given
U(s) = Z(s) + Z'(~s) has been given by Lal and Singh[611 g
where prime denotes matrix transposition. The first step
in the procedure of {61] involves the factorization of the

nxn matrix Z(s) + 2Z'(-s) such that

2(8) + Z'(=8) = W (=8) W(s)
where W(s) is an rxn matrix and r denotes the normal rank
of (s), It is also necessary in the vrocedure of [61}
to determine a symmetric positive-definite matrix P, and

matrices L and W, such that

PA + AP = « L L
152 = I 5 A WO
W - !
/\]o WO i

“here  (A4,B,C,D) is a minimal realization of Z( g)

and (A, By L,W)) is a minimal realization of W(s).

The aim of this section is to give an alternative
approéch for determining the state-model and the irmpedance
metrixz from given U(s) ,The proposcd technique is simpler
than the one given earlier L61J y and is applicable for

any n. .

For a positlveerecal impedance matrix Z(s), assuming

Z(o) =0 for slmplicity, and Z(s) possessing no imaginary
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axis polsg, I (A,B,Csmis a minimal realization for Zz(s),
then A will have eigenvalues with negativé real parts

Y41 . 2(s) and 2'(=s) can have no poles in common (those

r
- -

of Z(s) being in Re % < 0 and those of Z!(~s) in Re 7>0),

Therefore .

|

b \rz<s> pae) | =2 b [xe) ] @)

as proved in [4] , Where & denotes the degree of a rational

matrix., Hence the dimension of the matrix A is half that

of Ay , Where ( Ay, By, Cy) is a realization of U(s) such

that

Hs) = Cy (sI - AH)'1 By * (4.4)
Let U(s) satisfy the following conditions 1597 -

1) U(s) is a real, rational, para-Hermitian matrix

» i.e., U(s8) = U1(=8)

2) On the jw = axis , U(s) is bounded and is non-

negative definite.

A para-Hermitien matrix as originally defined by Beleviteh,
OOno and more precisely by Youla [121] is by definition
real, rational. Also , if U(s) is para-Hermitian, then it

is Hermitian on jw=- axis,

The proposed algorithm for determining Z(s) is
now given,
Step 1. Obtain o minimal realization (Ayy By Cy) of

U(s) in the Jordan form by any of the known methods [53],r71j
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Step 2 I M~dify the above realization by re-ordering

the rows of A. , B, , Cf to get
- - v q
B 1. | i
Ay & R =TI R )
H | :-A . | B
5 ! J ke =i
c. . [C - e (4.5)
i I 9

wheére A consists of Jordan blocks with negative eigen-

velues and A" has Jordan blocks with positive eigen-values.

Step 3 . RHeject the sub-matrices A”, B", C~ having
positive eigen-values which correspend to the right half

plane poles, to obtain ( 4,B,C) realizing Z(s),

Step & : Since the inversion of ( sI - A) is quite simple
as A is in Jordan form, Z(s) can be obtained cuite easily
by the relation

gl =0 sl «a)"t B = (%,6)

The steps enumerated above are, in fact, the
extension of Badel's method ['113j for determining a
positive- real function from even part, for the matrix
case, Thuse steps can obviously be followed through succe-
ssf"1y7  keeping in view the properties of a positive=real
matrix, conditions on Z(s) + 2'¢s) mentioned above
(which ere an extension of the corresponding scalar case),

and the fact that the eigen-values of A which are to be
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negative, correspond to the left half-plane poles of

Z(s),

It may be noted that the rc~?ization (Ayy ByyCpp)
need not be minimal so far as the determination of 2(s)
ls concerned, In fuct, a sub-optimal realization in the
Jorden form may be obtained easily from [33} or {62i} .
Bven 1f a minimal realization is required, a completely
controlable.and completely observable part may be extracted
from the non-minimel. (4,B,C) thus obtained, by the method

of layne f69 Jor Kalman £41}.

Z(s) obtained by this method will have nn poles
on the imaginary exis, Therefore, Z(s) will be a minimum

reactance matrix '[717.

The glven method is illustrated by an example,

Example
Consider
~ 1 2
] 2
(s+1)\p-1) (s+1)
. 1 = = i
U(s) = Z(8)+2'(~5) 5 N
2
1. (s=1) (s+1)(s=1)

The problem is to determine a vositive real Z( &) having
this U(s).
U(s) 1is seen to satisfy conditions 1) and 2) .

Step 1: U(s) has a Jordan form realization



modified to give

0. 0 @ 0
1 410 0
o - 41 o 0
6 6 |-1 0
|
8 © 'L 0
a8 o 1
12 0  -1/2 e D
=2 0 2
T™he realizaticy is
1 0 : 1
o
0 -1 by
r
=]
0 0
0 1|
0 /2 -1/2
a P 0

Rejecting the second

1
-1
0

o |
G nd
- j

3y realigation of Z(s8) ags

]
|
x
|

]

b |

[ 4

2

G N, G ek

@ ey e D
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e




Step Y4: Z(s) 1s found to be

I~ "
| 1/2 - |
e e
}(s+1) (s+1)2
Z(s) = 5 e
: et 1
[ 2 10

It is clear that each entry of a positive-real malrix may
not be positive real [:71_} L

fn zlternative state-variable method for the deter-
mination of Z(s) from the given Z(s) + Z!'(=-s) is presented.
The provosed technicue is Simpler than the one described
in I'61 ] since 1t does not regquire the cumbersome
spectral factorizatilon, and the determination of a symuetric
positive definite matrix P [MSI which gets unwieldy

espécially When the order n of U(s) is large.

L.3 AN ALGORITHM FOR DETERMINING A POSITIVE REAL IMPEDANCE
MATRIX Z( S) y GIVEN Z( '_'_.)uZl ( -'S)

The field of network theory is being widely investi-
gatod these days in terms of the stato space., Several
well-known classical analysis and synthesis problems
have also been given new solutiuns in state-space terms .

Anderson{1+J has given a system theory criterion for

positive real matrices., Anderson and Brocketi 5;] have
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given a statc-space interpretation of the Darlington
Synthesis., Recently, Puri and Takeda E783 have deseribed
state=-space realization of Foster synthesis  for IC networks.
inother intoresting problem in network analysis is to
find a relationship between a positive rcal (PR) impedance
matrix Z(s) of dimension nxm and its parts Z(s)+2'(=s)
and Z(s)mz'(-s), wherce the prime denotes transposc of a
matrix. The problem of determining Z(s) fray given Z(s)+
z'(-s), called U(s), has becn effectively solved by
Lal and Singh |61 1 y Where U(s) is a para-Haermitian
matrix which is nonnegative definite . fn alternative method
for solving the same problem has been recently given by
Purd et.al, L??] . Howcver the determination °f a posi-
tive real Z(s) from given Z(s) =-Z'(-s) had remained an
unsolved problem. This is perhaps partly so because no
results arc known vregarding the factorization of 2(s)-
Z!'(=s) in a similar form as is possible for Z(s)+Z!(=s)
which had been exploited by Lal and Singh [611., The aim
of this scction is to determine a state-model realization
and th¢ PR impedance matrix Z(s) of order n from given
Z(s) = Z'(-s), called herein V(s). The proposed technique

is equally valid when rultiple poles are present.,

For a successful impgementation of the proposcd

algorithm, V(s) must satisfy the following conditions.

1) V(s) is real- rational,



2) V(s) has no miltiple pole at the origin,

3) The para~-Hermitian Part of V(s) is gzero.

DISCUSSION OF THiI METHOD

Let a partial fraction expansion of V(=) bs made ,
with a subsequent grouping together of terms with poles
on the j w axis, and polos in the half planes

Re s <0 and Re s > 0 . Then V(s) always admits the

forg

: Y—_ ﬁiS -+ Ji -1 )

V(s) TR Dy e et D 2 O 4V (8 (&.7)
.L- - T SN
i TR R

where L is real and symmetric, C, 1s also real and

symmetric, Fi 1s real and nonnegative definite symmetric,

and Gi 1ls skew symmetric. Al so,
W c — n - M= f;
T(8) = 2.(8) = Z1(-8) (1+.8)

where Zo(s) is positive recal and that all poles of elements
of Z(s) 1lie in Re s{ 0 , The treatment in the preceding
holds in the light of the positive real nature of Z( s) [9_].
Thus, whenever V(s) has a pole at zero or at infinity ,
nalf of it is the share of Z(s), The same ig true if

there are imaginary poles of V(s). The next step is to
construct Zo(s) from V _(s).

As in f?ﬁ’}, consider a positive real Zo(s), with
Z{n)=0 , and assume that 1t roseoses no imaginary axis

poles, i.e., all poles lie in the half-plane Be s £ 0
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If (A,B,C) is a minimal Trealizgtion for Z,(s), then A
will have eigen-values with negative real parts [l+} p
Because Zo(s) and Z!(€) can have no poles in common
(those of Zo(s) being in Re s <0 and those of Zg(-s)

in Re s>0 ) , by lemma 2 of [ 4]
b [ZO(S) + 2L (-s)J = 2B j_zo(s) _]l (%+.9)

where & denotes the degree of a rational matrix and
glves the dimension of its minimal realization, If Zé(—s)
is changed to -Z'(-s), only its residues will become

negative . Therefore,
: '« J lz() ]
Zo(s) = Z1(=g) | = 23 Lzo s) | (%.10)

Hence, the dimension of the matrix A 1is half

thet of Be (AV, Bv’ Cv) 1s a realization of Vo(s)such

that .

Vols) =cC_ (sI - Bl B (%.11)
Z,(s) can be found from Vo(s) by the following procedurs.
Step 1 : Ohtain - a minimal realization (4, B,y C)
of Vo(s) in the Jordan canonical form by any of the
known methods E e J | [55 J .

Step 2 : Modify the above realization by re-ordering

the rows of A, Bvﬁabd C% to get
A | B -f SISy
Av = __-‘.'_,-_ y BV' :. '-:-! ,CV = {C ‘C
| F 38 :
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vhere A consists of Jordan blocks having eigenvalues
With negative real parts, and 4~ has Jordan blocks of
the same dimensions all of whose eigen-values have

positive real parts, Such g re-ordering does not affect

input/output relations.

Step 3: The set of submatrices (4;B,C) having eigen-
values with negative resl parts which correspond to the
left half-plane poles is picked out. This set is a

realization of ZO(S) g
Step 4: Zo(s) may be computed easlly by the relatiop
Z(8) =0 (sI - "7 B (%, 13)

because the evaluation of the resolvent matrix

(sI - A)-1 is quite simple as A is in Jordan form,

This 2z (s) is almc;i the matrix we seek from
Vo(s). It passes the direct PR test [ 71 ] except
possibly for the sign of its Hermitian part at real
frequencies, The addition of a nonzero real, constant
matrix D to Zo(s) Wwill take care of this last difficulty
1f 1t ardses, It should be large enough to ensure that
ZbH(jm) is nonnegative definite, To this can be added
any positive semi-definite constant matrix (resistance),
of course, If V(o0) is a nonzero matrix D, then the

nxn constant matrix D must satisfy the relation

D =Dl = D, . (&, 14)
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It may be mentioned here that the statement
of criteria for positive semi~definiteness of matrices
glven in [72 ], [116] , among several others, implies
that a real symmetric matrix is positive seml-definite
negative,where the mth leading principal minor of the
nx  metrix Z is the determinant of the matrix formed
by deleting the last n~m rows and columms of z [116].
application of this criterion, however, leads to erro-
neous results. This error contained in several engineer-
ing texts on systenm theory regarding Sylvester!s criterion
for positive semi-definite matrices has been pointed out
recently by Swamy .[108_1. The correct statement given
in [29] y [71 ] T8 as follows .

A Hermitlan matrix is pesitive Serii-definite

if and only if cvery principal minor is nonnegative,

Considering nxn matrix Z,le); 1if its
Hermitian part is not already singular at sone 8y :jwo ’

we must form the minimum matrdx er1 using the result in

[741].

Z,(8) =12 (s) = [r = on'_{ J
Al W)
i = min Sy o E = (!_1_.15/>

0 Qg ww Aﬂ(w)

Hore, p(w) and pq4(w) are the determinant and (1,1)
principel minor of zy, (' w) , respectively, 45 - Lo-RR
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with its Hermitian part of rank n-1 at s. = §ierscy

the frequency at which the minimum determining r occurs.
Further, bijzm J = 4 ['Zo J . The process corresponds
to extracting a series resistor from port 1. The result
1s stated for port 1 but holds by renumbering, for

gny port. Zm is called a minimum matrix, By choosing
any nonzero positive semi-définité (real, constant)
matrix, the above resistance extraction can be made to

get an alternate Zm .

L

Then the impedance matrix Z(s) is given by
- Fis + Gi
CO +é_ e e W Zm(s) e (4%,16)

W,
I 5

A0 I

Z(s) thus obtained is real rational, has no poles in

>0 § poles of Z(s) on o =0 are simple; for each
pole on o =0 , the residue is Hermitian and positive
semi~definite, and ZH(jw) = 0  Dbecause ZH(jw) = zmH(jw)

here .Z(s) is , therefore, a PR matrix,

In illustrative example is given .

EXAMPLE
Conslder
i 1 2s 2 s-2 i
2 & »
32+1 8% 41 8+ 4

Al = ‘

A Ste By w22 . 128

S2+1 Selt s %41 §2=6l
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which may be re-writton as

i 0 ] '.(-) 0 5 }S 1
-1
Tta) = 2.8 +25 ; e
0 0 O 1 S +1 - q
T, s=2
0
s+t .
S+2 T
5=k sT=64
This gives |
f—2 0 {o oT 4.0 g
B = ,
L:‘ ,CO:rO , v |>/
| o 0 ] J R
o 1]
l
H :\ %,
: ‘-1 o |
and : BT .-O -6
O . s+
si = 1 6 6
Tils) = S+2 12s 6 -( 9 )
a - a. P 5=l s+8 -8
L S"‘6L|‘J k.

V,(s) has a realization (45 B,y Co, D,) &lven by




(@
i

D is

v

ZO(S)

( .
L’-__'--_.\.-
S
| »
| -
| S .
g 8
J
b AT T e
| |
-6 :o ot i

=l

it . 1 ?
"
,'i-- s By
r
| 8
[ 6 ol‘ 0
R
]

0 1
0 1
1 0
0 1

unaffected., Then we get

] B -
-8 ‘
™ -6
o s+t
. b
O ———————
A s+ 8
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The matrix

IR
B -2 y satisfying (4.14) when
! o 1|
. : -
added to g+t
-6 i
5 58 |

makes it positive definite which otherwise is negative

definite. ~ . T
1 —
B4lf
.l' Z (,S) = O >(J+/-¢
S+3

We must make the rosistance extraction in order to make

ZO(S) a minimum matrix,

§ jw =2
1 2(jw ) '
Z (Jb)) = o
OH ja 42 7 _f__ilé
2( ju~le) w2 +6l

The determinant p and (1,1 ) minor Ayq are

2 2
9 (W= 16) 351 AT o
A.(.w) = l 2 f) + 2A‘ 9
G4 (W 416) (W= +64) 6l W il
wa +16
8.{w) = 2 -

w +61+
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Consequently, the resistance to be extracted from port 1

is

rmin A(w) = 22
il = : ) - 6)+ 9
- ;
W A11(
which occurs at wo =4 and gives
[ 25 25
6l s+ .
(s) = : 542
2y i 3+2
s+8
R J

Thus, a PR Z(s) obtained from Z(s) - Z!(-s) is

- *
| i
; 2s + _EE—_ + 2 ] = |
= afe
Z( S) = .
1 1 S S+42
— = ?
S +1 b s2+1 s+3 J

It has been shown how a positive real impedance
matrix Z(s) may be computed from its given part Z(s)=z!'(=s)
cmploying systom thoory concepts. It mgy be pointed out
that the realization (Av y By, Cv) necd not necessarily
be minimal so far as the determination of Z(s) 1is concerned,
4 sub-optimal reglization of Vo(s) may be readily const-
ructed by the technique suggested in [ 6% ] which will
be in Jordan form . The non-uniqueness of D causes an
arbitrariness in 2(s) , except when Z(s) is of order 1.

Bode's illuminating method [ 112 ] for the scalar case
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cannot bc applicd te the matrix case since the off-diagonal
entries in a PR matrix need not-be pr.
4.4 STATE - SPACE INTERPRETATIOE OF FOSTER SYNTHESIS.
METHOD |

State-space techniques have generated a lot of
intercst in network gnalysis and synthesis in the past
few years, It is quite important to establish a communi-
cation 1link betwcen state-space characterization and fre-
quency domain methods. It is of great interest to provide
state-spacc interpretation of the well-known propertics
of network functions and the comm on synthesis proccdures.
Some work has alrcady been initiasted in this direction

[53g L8805 o] ,{118 i . Decently, a procedure

has been given by Jain {39?@ for Foster synthesis of IC
networks, e nethod of f39:; uses nonsingular
sbservability matrix as a transformation for a canonical
state-model representation of the Foster network

which is then comparcd with o similar canonical state-
model written directly in terms of the coefficients

of the network function. Thus, the element valucs are
determined, via state-space characterization, in terms of
the cocfficients of thc network function to be synthesized,

Here, an altogether different method is presented for
] g i

Foster synthesis of driving point immittance functions of



70
IC networks |77 Jand is mch simpler than that in [38] .

Consider an IC driving-point immittance function
Z(s), which may be written as

Z(s) = « s + Z4(s) (4+.17)
"~ where & 1is a constant and 21(s) is regular (no pole at
infinity) and proper (Z1(oo) =0 ).

Let Z1(s) have a state-space representation

¥ =A% +bu
(4+.18)

I T R |

"
where xz is an n-dimensional column vector, u is the input,
y is the output and the dimensions of A,b,c and d are nxn,

nx!1 , 1xm and 1x1, respectively.

Since 21(3) 12 a proper funotion; 4 = 0°5 In
a suitable neighborhood of infinity, 2,(s) can be
expanded in a negative power series as [38 1

L AP O L T\

Z4(s) =cbs
(%.19)
For lossless networks, there always cxists a transfor-
mation T [j105 ] which transforms A,band ¢ to a form
such that the new A is skew-symmetric and the new b
is equal to the transpose of the new c. Let Apy by
and cg denote theé new values after applying the trans-
formation T, 8ince c¢, 1S a non-zero row vector, the
scalar cy c: » O . TFurther, since A, 1is a skew

t

symmetric matrix, ci Ly by , Which is equal to cy Ay el

-L__,:‘:m-llb L e
JRKEE
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a scalar,will always be 2zero (At is skew=-symmetric, and
any matrix cyhy cl is either a skew or a null matrix. In
our case, as Ccy 15 a row vector, the product c Aicl will

")
be scalar and hence equal to zero) and cyhy ¢l & 0, since

cihcl = ctﬁt(-A% c%) = -(ctAt) (CtAt)' = (%,20)
Similarly, '
23 -
Ct .ﬁ.t C.E = O
4
cy Ay ci 2 O
-] 7
Ct.f;t C.E - O
c A6 ¢! & o
% - 2

and so on, Therefore, Z1(s) bec omes
Z1(s) = g q% o ctA% C£.S-3 5 ctAic% i vo DTS
- 5 =~ &
=t b 8 L 0 A" s 3 + C Aub s 5 + e (4,22)

=Y, 8  + 1, 573 4 Ty, s-5 + eve (%023

where the Y, s are called Markov parameters [29], [106] . T%
can be seen that ¥ , ¥ s ¥g 4 ... aTe positive, while Y¥,,
Ye 9y Y400 --- BaIre negative.

A lossless driving - point function may be written

in its partial - fraction expansion as

JAN
n : :
b1 7 | 2 K. s
2(8) = —— 4+ Hs + E SRS (%, 24)

S :
r=1 32 + wl



e

2 = '
where Kos K. w,. and H are positive and real

P P
2 2
constants (wi 2 wg ) and
% (n even)
n = 4
=l oaa)
e

Comparing (4.17) with (4,24), we get H = « and

A
K n . K, s
"
Bk = <2y ¥ -, (k. 25)
r=1 s° + wé

Eq (4.,25) can be rewritten as

n

- -1 g
Z4(s) =K, s + Z 2,
: =1 _
& a Lol 2
x {5 R wi ™3 +-w; s P wS s * vend (263
A comparison of (4.23) and (4,26) gives an infinite set of

simultaneous equations

¥, = 2K,WE 4 2K WE 4 ,,..42K, w2
2 1% 2 2 A A
o (%.27)
| )y N k. 3 :

'
* *
L

A1so Z,(s) can be expressed as [ 94 |
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r
IO "'C
det[

b sI-A
Z4(s) = %éé)l . , (4.28)
det [sI - A]

Which shows that the poles of Z1(s) are given by the eigen-

values of 4, and that they are not affected by the

2 2

transformation T, Thus Wy g Wo g weey Wn

can be

evaluated from the matrix 4, Now ﬁ+1 unknowns are

laft  in (%5.27) ., The first u +1 equations of (4,27) can

be written in matrix form as

- iy o =
1 1 ‘j o e 1 Ko
2 2 2
0 wy Wy s wﬁ 2K1
i I L
0 w1 wg e wﬁ | 2K2
L4 %_2 A- * \- L 4
0 w1 w§n2 S w§n2 r21{4
2 n gl
o e d
. =
X
0
-Y2
o ()"'028)
Ty
| N+ .
g ¥ 2T I ;

Por IC networks, all the poles of Z1(s) lie on the imaginary



7

2 2
axis. Therefore g ¥ Eesxy “ﬁ are all positive,
It is well=known that the coefficient matrix of (4,28) ig
then non-singular, Hence a nontrivial solution-of (4,28)

exists,

The constants K having been evaluated, a Foster
canonical network can be drawn r113i] « The precedure is

1llustrated with an example.

Example ¢

‘Given the set (Lybyc) for an IC impedance function .

roooo.o‘[
L W e B
A =

R S R
Ty R R s
QARSI D -
s

|

0
L 9/2

0

N

b =t izl

o
"
e
)
o
€|

Ay
L]
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The Markov parameters, as obtained by (4,22) are

The order of the matrix A is 5, Therefore ,there will be
five network elements, one series capacitor aad two
parallel IC network configurations, This gives B = 2 .

The characteristic equation of the A mgtrix 1is

s(st+ 32 82 4 1/2) =0

which gives the eigen-values s = 0 : e -1/2 . and
2 -
82 = =1, Then w,] = /2 and wg =1 .
From (%,28)
| =
J— KO 2 i
| 2K 1

| B -

The procedure given above discusses the Foster

realization for 1=-port LC networks in state-space terms,
Simllar steps could be followed for RC and RL networks, It
may b€ noted that there is no necessity to apply the transe
formation T in the actual procedure, sincc the products
cb, cib, CAEb, «.. 0f all realizations corresponding to a
given Z1(s) are the same. Simplicity of the proposed method
is self evident. The method presented here has reccently

been extended to the n-port case by Khan.et.al. [50 ].
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4.5 DETERMINATION OF TRANSFER-FUNCTION MATRIX USING
MOMENTS OF IMPULSE RESPONSE

»

A fast and simple technique for transfer matrix
inversipn nas recently been given in [110 ], The formulas
stated there for matrix inVersion af (sI-A)_1 are
applicable to system matrices 1in companion matrix

form, Another direct method for the evaluation of
transfer-function matrix from the given state equations
has been suggested in [63J « Ihe method of (63 ] is
based on the reverse of the approach, discussed by Ho

and Kalman [38 ], for determining (4,B,C) from the given
transfer-function matrix . Markov paramcters [29} arc
used in the procecss of [63.],Various other mcthods are
available for the determination of the Tesolvent matrix
(8T = A)_1 [30] p [51 ] which is required for the
evaluation of the tranéfer-funotion matrix, This section
presents o method for determining the transfer-function
matriﬁ H(s) of a linear time-invariant sy stem rcpresen=
ted by

~r
‘e

=AX +Bu (4.29)
T s e

through the intermediation of the moments of the impulse

response, This method is cspecially suitable for proce=

ssing by 2 digital computer, It requires the inverse

of the rcal-valued matrix A, Since it is a matrix

Of numbers, the standard mgchine routines for inverting
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matrices can be applicd easily, The computation bf
H(s) is relatively easy even if the system ig of g5
higher order.

DETERMINATION OF H(s)

For the detcrmination of H(s), 1t is necessary
to compute the characteristic polynomial det (SI-A)
which gives the denominator of each entry of H(s), and
the moments Mor Mgy wune, M, (suffix denotes the order
of the moment) which are used to determine the numerstor

of each entry.
Beforec giving the@ explanation of the deter-

mination of H(s), the following lcmma is presented,

LEMMAL [ 14]
1f a minimal realization (4,B,C) corr: spends
to an impulse-rcsponse matrix H(t) which is asymptoti=-

cally stable, the matrix A is always non-singular,

The transfer-function H(s) can be described

Py an infinite serics [14] as

@
H( S) = z
k=0

where the cocfficients of this scrics arc determined from

(=1)K M

5K (%.30)
Kl

moménts, The kth moment MP is given by

II}{ = (—1)k+1 k& C [’a-k-‘l B ’ k = 0,1,2’00 ()+-31)
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Substituting (%.31) into (4+.30), we get
o8]
H(s) = = e d k 1B K
k=0

(4. 38)
Both (4,30) and (%.32) represent an infinite series in s,

Theérefore, H(s) may be written as

Bis) = 2

5 v Wl

(%.33)

wherc B 1s a pxm constant matrix,

Then even if th
. ; g
system is asymptotically stable and 4™ 1,(k:

o

0,172’001)3'}{-181;87
H(s) cannot be found in a closed form, from (%.33). If

however, the characteristic polynomial is replased as

n
| O T i Kk
a(s) = det (sI-i) = 2. #e (&.34)
k=0 :
H(s) can be represented by a polynomial
k
N(s) W Nk 2
H(s) = gy ——— e 1l (4.35)
q(s) e a(s) ?
k=0

where N(s), N, are pxm matrices. From (4.35) it

is evident
that only (w+1) coefficient matrices i

T i ~
O ,l\./l ’ '. ey J_'u‘r'_"f a,rb
necessary to

determine H(s).From (4.33) and (%.35) we get

-1
o R R - K
k=0
= q(S) H(S)
I X .
D T Sl I T S 1
k=0 nef)

therefore;



9
k -
J%O 4 By s kgwgn
N = / (%.37)
L 5 k » wed

From (4,37) it is cvident that the coefficient matrices
N (k=0,1,...., W) arc determinecd from @ ( k=0,1,,,.,n)
and H ( k= 0,1,....,w) , i.c,, in the determination of
N, , 1t is cnough to determine at thc most upto the nth
moment, 8o, a maximum of (n+1) moments are required in
the above proccdure, to determine H(s). In other words,
first the coefficient matrices N, are determined from
the moments Mys N1, ce..y M, and then H(s) is computed
from HW(s) and q(s) .

Example

The above procedure is illiustrated by an example.

Let (A,B,C) bc given by

r
1 0 o s G S
0 -2 1 JOo 0
0o 0-2| | gl -
& | i et B U
0 -1 1 0 0
0 0 =1 0 1
J i |
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The characteristic polynomial of A is

a(s) = s6 + 9 s5 +:33 sL'L + 63 g3 + 66 §° + 36 5 +8e

The moments obtained using (%.31) are

> § S { pr A%
MO = ’ M,] = ’ MQ = )
1 ! 1 2 [;/2 6
6 3/6 ) 2 372 120 15/% ‘(
My = y M, = 1 Meis Ly
3 3k 1572 120 k572 920 J
o ="
| 720 4 5/4 }
M

6~ ! 3150 amﬁ

Thus, H(s) becomes

S

2
~

.,j+ 987+ 33 S)++ 6383+ 6682-!- 36s +8

86+ 985+ 33s1+

H(s) =

+ 63 S3+6682 +36s + 8

=

) B
Y =8 4 &% -s3+sh— 85+ 36-

Feey

3

| 3 | ) 5
L? -0 4 172 63 4516 5t 316 7 4 ek 6L

1-1/25 + 1/ s° - 4/8 83 + 1/16 s - 1/32 874 1/gkst-..

1 - 28 382 - Lgd + 5 shr - 6 s5 + 7 s6 -

which gives

1 2
Bl o S+1 S+2 ]
b a7
(s42)2 (s41)2 J

)

| B, e |
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4.6 ALGORITHM TFOR OBTAINING INVERSE POWERS OF MATRICES

A lintar dynamical system may be characterized
by different state-model representations. However, for
simplification in system analysis and synthesis, it is
desirable to tramsform the dynamic characterigzation into
‘a2 canonical form, Two most convenlent canonical forms
are the companion form and Jordan canonical form, Recently,
an algorithm has becn proposcd ['92j] for determining the
power of the companion matrix. This section presents an
algorithm for detcrmining the inverse powers of a companion
matrix. Another algorithm is given to find the powers of
resolvent matrix (sI = J)-1 when the state matrix is
in Jordan canonical form, from which the inverse powers
of J can also be found,

INVERSE POWERS OF COMP.NION M.TRIX

Let the (nxn) companion matrix ¥ be represented

as e

& = , (4.38)

where 0 1s (n-1)x1 zero matrix, I is (n-1)x(n-1)

unit matrix, and <« is 1xn row vector whose elements
dj ¢ = 1,25:009y 0 are the cocfficients of the charac-
teristic polynomial of % « It may be seen immediately

that the inverse of € 1is
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-1 p :
& = . ) ()“‘039)
X 0
where )
. 1
d -i—*- Wl RTR R ey ()
P3 1 (4.40)
| —‘1_. pak &R
L1

The powers of W i are obtained by successive multi-

plications ¢
-(r+1) ~-r

bl |l 4%

o

-1
6} RUED

First partition the matrices {T;}-r and [f31-1 into
submatrices A, B1,'D1, B, and A, Byy Dyy E,, where the
dimensiéns of A4y By, Dy, Bjand Ay, By, D,, E, are 1x(n-1),
11, (n=-Dx(n-1) , (n=1)x1 and (n-1)x(n-1), (n-1)x1,

1x(n-1), 1x1, respectively. Substituting the parti-

i Q. o T -
tioned form of 7§ ] and [G ] and carrying out

the multiplication of (L4.41) utilizing (4+.,%0), and after
simplification, it is discovered that the element of ith
row and kth column of the -(r+1)th power of & 1is
ldentical with the (i-1)th row of the corresponding

columm of the -rth power of & , for i=2, ,,,, n,
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Thus -(r+1)

P f"(r)
"D - ,

1 = Mg 11 =230

(4.42)
k = 1,2,.-.,1'1
and the elements of the first row of the -(r+1) th

power of & are given by the recurrence relation

-(r+1) -(r) _r‘—(r)
k»ik e 1'1 ‘31{ - G 1,k+1 ? oz 1By v an{B3)

Following the preceding development, the inverse
powers of the companion matrix  are obtained by the

algorithm given below,
-1
For the given companion matrix & , find
using (4+.40), This glves the row vector p . Let the

element By of p be denoted by 'Pk = f;1 ko -
i b ]

Write the rows of ﬁ>'1 in the reversge order, Starting
from the last row , successive rows may be generated

by the relation

(L Ll )

b = [ .fJ + ta/
a+1,k Qy ] 1,k g,k +1

Where q is a positive integer . Thus, we have

O O o eoe 1 O
0 0 & b i 0 0
T c e ® ® g 0 o e v e . ()_'_.)_*_54)
1 0 . s 0 0
G & |
© {3 t3es ., i C i
\(321 t‘) 2,2 ® e v v \C’: 2,n_1 @21,1
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In order to obtain the =-rth power of © y construc-
tion of n+r-1 rows in (4.45) is required. Of these, the
first n=-=1 rows are already known. Thus only r rows
have to be formed for determining €%, Finally G{r
1s obtained by selecting the last n rows of (4.45),

and writing these rows in the reverse order starting

from the last row., The evaluation of the next higher

.6-(r+‘1)

power y of course, will require the computation

of only one more row, as per (4.,43),

Example

Consider _
o 1 o o
2 T R B ?
=" £ i & "0 0 ¥
LI o Bt i
Let it be required to find a « The set of

4431 = 6 rows of(L,45)is formed, ubilizing (4.40) and
(%.44), as

0 0 1 0
0 1 0 0
1 0 0 0
~] w2 1 1
= 3 0 -1
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Choosing the last four rows of the above array and writing

them in the reverse order gives

s Bl e
— R S S
[“’J A (N 1 1

i 1 0 0 0 j

and so on,
POWERS OF RESOLVENT MATRIX

If the state matrix is in Jordan canonical form )

an algorithm is developed for evaluating powers of the
resolvent matrix, Since the Jordan canonicgl form is the
direct sum of several elementary Jordan matrices, it is
convenlent to consider only one elenentary matrix.l.et J

be such a matrix having the eigen value A of multiplicity

n. Then the resolvent matrix R can be found from
-1
R = 2 S (4.46)

As 1n theé casc of companion matrix, the powers of R are

obtained by succe¢ssive multiplications

[R ]”1 = [R]‘ [ (4. %7)

=

Carrying out the operations of (.47), it is seen that each

power of the resolvent matrix is an upper-triangular matrix.

. , r :
Successive rows of JﬁRJ are generated by the relation

o1
P ) [ R e Pk 3 G4
q+1,k
| o

(4.48)
p g



86
_ r
q being any positive integer. The elements of [R]
on the main diagonal are all identical, The elements, of
[R]r on the first principal diagonal, are also identical
to one another, and so on.Thus the matrix '[RJF
can be obtained from a knowledge of its first row only.

The first row of the pth power of R can be generated

by the relation

A R R
l
(p) \ k-1
R = (%.49)
T,k
where
/VN\ N!
-] o ‘ (%.50)
\ K/ (N=K)! K!
It 1s convenient to remember that several sets of
1 »
coefficients -fyi 3 of may be quickly
b

( . }\)p+k'."1

reproduccd with the help of

3 + | (+.51)
h i’j ni’j"1 ”i'1,j
in the following scheme .
- 1 1 1 A
- 3 L 5 A
& 18 i (%.52)

1
i R L
T | os's

o N TR I (Y L 'y
.5 ; FaE = NGRS (R

e
L]
L ]
L]
.
L]
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each number being formed at once as the sum of the one
immediately above it and the one preceding the number.

Thus in forming the 5th row,we have

O#1 =1 4 1 =5 , 5 +10 = 15 , 15420 = 35 , ete,
o

- =]
It is clear that { JJ' is obtained from {EI - J']
by putting s = 0 and then multiplying it by (-1)TT.

Example !
Consider
r [ d
| s+2 =1 0 0
[0 % aan s e
l
UBE =33 =] g 0 842 -1
Y 0 0 542

Utilizing (%*.%8) , (4.%9) and (4.52), <-5th power of

(8I=J3) 1ie
i 1 5 15 35
(s+2)5 (s+2)6 (s+2)7 (s+2)8
<1 = 1 ] 13 .
(3X=2) "= : !
; (s+2)5 (s+2)6 (s+2)7 ‘
a e 1 5
(s+2)5 (84 2)6
0 0 o, L L .
{ ' (s+2)7 d
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One possible application of these algorithms
is in computing the moments of impulse-response matrix,
By a suitable similarity transformation, the state matrix
L can be transformed to the companion form G op Jordan
form J , Hence we can write
-7 = r

[A] e l’c,j N (%.53)

=] =

T SE (L. 5)

i

Equations (4.53) and (4.5%) may be employcd to compute

moments M. of impulse response ['81J by the relation

M, = (=15 ¢y g ¥ 1 g g K =018 0 (&%.55)

where (4,B,C) is a realization of the impulse response
matrix, Different inverse powers of 4 can be evaluated

using either of thc algorithms developed earlier,

4.7 TRANSFORMATION OF TIME-VARYING AUTONOMOUS SYSTEMS
TO COMPANION FORM

The problem of obtaining a phase-variable canonical
form for a linear dynamical system characterized by state-
variable equntions has been considered by several authors ,
Silverman [95 ] gave a method for determining the trans-
formation matrix for reducing a single-input single-output
system to the phase-variable form, Ramaswami and

=

Ramar [83 J,[éh] later presented simpler methods of



89

finding the transformation matrix. in algorithm
devecloped by Power [76.J generates a class of matrices
N -which transforms a linear time-invariant multivari-
able autonomous system into companion fofm. . The aim of
this scction is to extend the method of Power [76] to
the time-varying case.

Let the dynamic Dbehavior of the force-free
time-varying system be represented by the vector-matrix

differential equation

ey = AlE) =(t) (%.56)
where A(t) is nxn matrix and x(t) is nx1 column vector.
Let N(t) be the tramsformation matrix which transforns the

systen of (4,56) into tho systen

Z(t) = 6 (%) a(t) (%.57)

6 (6) = N(t) at) N8 adee) mee)Tl (.58)

is in companion form.

Let us consider fundamental transformation matriges

Nk(t) of the coordinate transformation

z(t) = N (t) x(t) (%.59)

e (n-1)

z(t) = colum (z,, Bty wer Z4

whan z1(t) = xk(t) . The first two rows of Nk(t) are

immediately obtained as
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" Bl w1 B 1 1 (%,60)

akT(t> of (1) ... akk(t> oo oy (8)

The (p+2)th row of N, (t), denoted by { Nk(t) y for

p+2
P = 12,..., (n=2) 1is obtained by successive differentia-

tiong, The jth row of Nk(t) represents the equation

TV (8 = W) 2, (8) A (82 (8) + ., 4

kJnkt) X, (t) " (4,61)

Differentiating (4.61) and after simplificntion, We get

+kaj2(t)> () + ...+ < ij(t),An(t))+Nkjn(t) )
x (%) ) (%.62)
Where N (8), 4 (%) is the scalar product of the
J & - 5 i
jth row £, (t) with the ith colwmn of 4(t).

From (4+.62),the (j+1)th row of Nk(t> becores

<\ij<t) ~/ s (8D 4, (t)\ - Nkﬂ(t) : \Sﬂk(t),AZ(t)> +Nkj2(t),

,...,< INORNONES SRS (4.63)

Thus the elcuents of cach row are obtained by taking thec
scalar product of the previous row with cach of the columms
of A(t) in turn, and to the row thus obtained, adding the

derivatives of the previous row,
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Example ¢
Let
| < R S ]
A(t) = 0 "1 "1 | e
et et e
Using (4.,60) and (4.63) gives N1(t) :
B ks B ]
Nyft) = |4 1 o [ vy = -1 .
g L ills o
JJ_SO, : -
0 1 5
| 3
N2(t) - 0 "'1 "1 ’ * Ng(t)l = e
¢% gug™V 3

0 0 SR
ol . L
B5Reti = | =8 oV w2 |y |= 7 o728,
/‘”C—t 3e" -t Pl

iny of these transformations will reduce 4A(%t) to B (t). Thus

1 0

o

C (%) 0 1 .

r
=| o
L 2 5Tt oy
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The exarple shows that by a judicious choice of

Z4 = X, one of the state varisbles of (%.56), one may

in some problems obtain g time-invariant transformation

matrix (N1 in this case) so that subsequent computations

aré simplified,



CHAPTER V
SUMMARY AND SUGGESTIONS FOR FURTHER WORK
5.1 INTRODUCTION

The problem of realization for linear systems
first stated by Gilbergin 1963, and. subsequently investi=-
gated by several researchers, has been discussed in this
thesis, Various results obtained in the preceding chapters
have been summarized in the present chapter. Some'sugges—
tiong for further investigations in this field are also

made.

He2 SUMMARY

In this.thesis, a mathematical description of
linear dynamical systems in the input-output form, and
in the stote-variable vector differential equation form
is reviewed, first. The realization problem of linear
systems is introduced next, giving some nathematical
preliminaries. An historical survey of the techinical
1iterature on realization theory, scattered in different
research journals, is provided. The reyiew Wwork also
signifies the importancce of this fundamental problcm of
system theory. The application of system theory concepts
in the field of network theory 1is considered and a review
of the literaturc giving an interpretation of some well-
kxnown properties of network functions, is given in state-

space terms. State-space interpretation of classical
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synthesis methods has also been discussed. System theory
criteria for synthesizing a network by using passive
elements, or reallizing a network which satisfies reciprocity

constraints have also becn included,

New methods of finding state-model recalizations
of a 1ineaf dynamical system, from the specified input-
output data, have been evolved. The data could be in the
forn of moments of impulse-response, or transfer-function
matrix. In particular, a method of minimal recalization of
0 syrmetric tremsfor-function matrix based on moments is
given, The method is a modification of the Ho=Kalnan
algorithm [38 ] in which a Hankel matrix is constructed
from Markov parameters, The realizations obtnained by
the proposed method result in reciprocal networks, Further,
for R0 and RL cases, both reciprocity and passivity
constraints are satisfied. In the realization process,
the given symmetric transfor-function matrix is expanded
in a positive power serics of s, The moments Mk are
obtained uniquely from the cocfficient matrices of s .
The moments will be symmetric. The Hankel matrix built from
the moments will also be symmetric, Then a congrucnce
transformation can be applied, which will result in
reciproea) realizations. In the prescence of noise, compu-
tation of moments is preferable to that of Markov. paramcters,

As such, a method based on moments is advantageous When a
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realization is to be obtained from a data contaminated
with noise,

The problem of finding quick and computationally
simple renlizaticn procedures by using noncancnicnl structureg
has also been considersd, In seme applications, nonminimal
realizations are accepbable, In cnse a minimal
realization is required, standard system
reduction techniques may be employed to extract a complete=-
1y controllable and completely observable part which
gives a minimal realization. A technique has been propo-
sad for obtaining a state-model realization, without
guaranteeing irreducibility., It is valid for multiple
poles, The dimension of the system can be easily found
by constructing mode matrices M, M, and M, which
have been defined for the multiple pole case. The sum
of the number of modes in Mc gives the dimension of the
realization. In many cexamples, the realization obtained
by the¢ proposed method may be of lower dimension than

that obtained by existing methods.,

Another algorithm for obtaining o lower-dimension
realization of dynamical systems has been propoésced. The
method 1s equally applicable for multiple poles, In the-
realigation procedure, coefficicnt matrices of the transfer-
function m~trix H(s), corresponding to the distinet poles
and their multiplicities, arc.computad, For each

" coefficient matrix, the minimum set of lines (covering sct)
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containing all its non-zera clements are found. Then,
submatrices of the realization (4, B, G) are constructed,
starting from the cocfficiont motrix of highest multi-
plicity and scanning coiumns and rows of the covaring
set. The direct sum of the submatrices thus obtained
gives the desired realization., It is pointed out that
Glass's technique [33] 4is a special casc of the
proposed méthod when the covering set consists of columns
only; so is the féchnique proposed in [64} when the
covering set consists of rows only., The dimension of
the realization obtained by the proposed algorithm is
lower corpared with the nethods of Kalman [ﬁ1] y

Glass [33] y Lal et.al. [64] .

A new nethod has been presentcd to find a state-
nodel and the pasitive-real impedance matrix Z(s) fron
its given even part Z(s) + Z'(-s)., This is an alternative
to the method of Lal and Singh [61]. The proposed
technique wutilizes a result from Anderson [hxjthat 4
(A,B,C) 1s a minimal renlization of Z(s) ( z(s) possessing
no poles on the imaginary axis), then 4 will have cigen-
values with ncegative rcal parts. .. state-model (AH, BH,CH)
1s obtained in Jordan form, realizing U(s) = 2Z(s) +'Z'(-S),
from which ( A,B,C) is picked out which corresponds to a
positive real Z(s), The proposcd technique iS.simpler
than the onc deseribed in [61 7. It does not require the

cumbersone spectral factorization, and the determination of
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@ symmetric positive definite matrix P [L4] which gets

unwileldy, especially When the order n  of U(s) is large.

Another algorithm has been proposed to determine
a state-model realization and the positive real impedance
matrix Z(s) of order n when its odd part V(s) = Z(s)~2'(-8)
1s given. Conditions on V(s) are given far 2 successful
implementation of the procedursc, The positive real nature
of Z(s) and Anderson's rosults [h] have been utilized in
the proposed method, The resulting Z(s) is o mininum

matrix,

Ah attempt has been made to cstablish yet another
link between state-space and frequency domain mothods, A
state-space interpretation of the classical Foster synthesis
nethod for driving-point immittance functions of 1C
networks has been presented., The poles of the network
function Z(s) arc given by the elgen-vnlues of the sgtate
Hatrix A of Z(s). The residues of a3 partial-fraction expan-
sion of Z(s) arec obtained in terms of Markov parameters
which are related to (4,b,c) realizing Z(s)., 4 transfor-
mation T 1is used in agrriving at the results, However,
therc is no nceessity to apply the transformation in the

actual synthesis procedurc,

A method for determining transfer-function
mxtrix from o knowledge of its monents is proposed, It ig
shown that at the most (n+1) moments of tho impul se-

response matrix are required in the process, where n is
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the order of the state matrix A. In the determinatinn
of the transfer-function matrix H(s), it is necessary
to compute the characteristic polynomial det (sI-A) which
gives the donominator of each ontry of H(s), and the
morents M, My sy evey M, which arc used to determinc the
nuncrator of each entry. The computation of H(s) is rela=-

tively casy even if the system is of a higher order.

A given dynamlcal systcm may be described by
different state-modcl representations(a,B,C). 'However,
fron the stand point of system analysis, it is convenient
to deal with canonical representations of the systen,
like the companion form and the Jordan canonical form,.
algorithms have been evolved for determining inverse
powers of matrices given in companion or Jordan forns,

In order %o obtain the -rth power of the companion

mtrix G of order n, construction of n-r+1 rows

of an array is required. In order to compute the next
higher power -(r+1) , the formaticn ©f only one more rows
is nceessary. 4As in the case of cowpanion matrix, the
inversc powers of (sI-J) where J is in Jordan form, arc
obtained by successive multiplications, It is secn that
each inverse power of (sI-J) is an upper triangular matrix.
These algorithms find application in the computation of

noments 2f on impulse~response natrix,

The problem of finding a canonical form repre=-

sentation ~f a lincar time-varying system has been considered
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A

& nethod of generating transformation lgtrices which
will transforn a time~varying autonomous system to corpa-
nion form has been given, In gouc problems, it could

be possible to obtain g time-invariant transformatim
matrix., In such a case, subsequent computations become

simple .
5.3 SUGGESTIONS FOR FURTHER INVESTIGATIONS

_.The problem of giving a mathematical descrip-
tion to dynamical systems has been investigated thoroughly
in the past decade. With different degrees of complexity,
a lafge number of methods for finding a state-model reali-.

zation from specified input-output data are available .
While a fairly complete theory of realization for linear
time-invariant systems exists, there is a scope for
further work for time-varying systems, State-variable
approach being more general in nature, the field of network
theory is also being investigated in state-space terms.
Several concepts and results of system theory have been
applied in network problems and g lot more could be done
in this direction, In the following paragraphs, some
suggestions are given along which further investigations

gould be carried on.

If a non-minimal realization is given, there
exist methods by Which the realization could be made,

minimal for both time-invariant and time=varying systems.

‘
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There are several quick methods of obtaining a suboptimal
realization from a given transfer-function matrix of a
time~invariant system. However, no similar attempt seems
to have been made for the time-varying case. It is worth
developing simpler methods of reaiization for time=varying

systems,

A method of state-model realization satisfying
reciprocity constraints has been given , With such a reali-
zation as the starting point, procedures for synthesizing

networks without using gyrators are worth investigating.

There is a wide scope for strengthening the link
between frequency domain and state-space characterizations
with particular application to networks. State-space inter=-
pretation of some of the one-port synthesis methods has
been given recently. The interpretation of some of the
remaining one-port and two-port methods is worth investi-
gating, ¢.g., Bott-Duffin procedure etc, Besides, the
synthesis of Foster, Cauecr , Brunc and other networks

seems possible in state-space torms,

State-space interpretation of poles, zeros,
residues, positive-real matricces, reciprocily has been
done, It will be worthwhile to give similar meaning %o
some other comm on concepts in network synthesis , e.g.,

removing a pole, shifting a zero etlec.
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Al gorithms have been given in this thesls for
dotermining a state-model realization and the positive-
real impedance matrix Z(s) from the given even part
7 (s8) + 2'(-s) , or the odd part Z(s)-Z'(-s). It will
be useful to find a realization and the nctwork function

when the magnitude function is given.

A method has becen given in this thesis to find
transformation matrices which will reduce a time-varying
autononous system to the companion form. Its extonsion to
non-autonomous systems and the possibility of developing

other simple transformations is worth investigating.

Algorithms for finding inverse powcrs of companion
and Jordan form matrices, cvaluation of moments and their
application in system realization has been given, Further
work onlong thesc lines and its possible application for
time-vorying systems and system identificotion may lead

to some interesting rcsults.

It is hoped that the investigations carried
out in this thesis and further work on suggestions contained
norein will make some morce contributions to systems

sciencea.
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