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ABSTRACT

Shallow footings on or upper surface of slopes are often encountered in many

engineering structures such as bridge abutments, highway and railway overpass

structures, retaining walls, transmission towers, structures placed on benches cut into the

slopes, buildings situated close to the open section of underground railways etc. Footings

of such structures are generally subjected to eccentric- inclined loads. In such situations,

the major problem is that of obtaining the ultimate bearing capacity of the foundation

from i) local foundation failure consideration, ii) the settlement and tilt of the footing and

iii) the overall stability of the slope.

Several theories are available to compute the ultimate bearing capacity of a footing

on or upper surface of a slope subjected to central vertical load. Various investigators

have solved the problem by applying i) slip line method (Sokolovski, 1960; Siva Reddy

and Mogaliah, 1975; Graham et al., 1988; Cheng and Au, 2005), ii) limit equilibrium

approach (Meyerhof, 1957; Mizuno et al., 1960; Siva Reddy and Mogaliah, 1976;

Bowles, 1977; Myslivec and Kysela, 1978; Saran et al., 1989), iii) limit analysis (Chen,

1975; Kusakabe et al., 1981; Saran et al., 1989; Xiao et al., 2007) and iv) finite element

(Arduino et al., 1994,1998; Liu et al., 2006).

Many investigators have conducted model tests to study the behaviour of footings

on slopes. Most of these tests were conducted on footings on slopes subjected to central

vertical loads. Peynircioglu (1948), Shields et al. (1977), Saran et al. (1989) have

reported the results of experiments to measure the ultimate bearing capacity of footings

placed at various locations within and on the top of granular slopes. Kusakabe, Kimura et

al. (1981) have reported the results of model tests on a c- ^ soil slope.

Very few investigators have studied the problem ofa footing on or upper surface of

a slope and subjected to an eccentric-inclined load. Jao et al. (2001, 2008) studied the

effect of eccentric vertical load on the bearing capacity and settlement of a footing placed

on upper surface of a slope using finite element method. Shields et al. (1981) have

conducted some experiments on footings placed on and upper surface of slopes with

central inclined loads. Marechal et al. (1999) reported the results of centrifuge tests for



footings on upper surface of slopes and subjected to eccentric-inclined loads. However,

no rational method has been reported to determine the bearing capacity, settlement and

tilt of a footing placed on the upper surface of a slope and subjected to eccentric-inclined

load. So the need was felt to take up this problem for study.

In the present investigation the ultimate bearing capacity has been obtained by limit

equilibrium approach. It is assumed that failure occurs on the side of the slope and the

rupture surface is a log-spiral. The eccentricity and obliquity of the load is assumed

towards the slope. The resistance mobilised on this side is full passive and that on the

other side of the slope is partial and characterised with a mobilization factor, m, which is

less than unity. Expressions for bearing capacity factors have been developed by

considering the equilibrium of a triangular elastic wedge below the strip footing. The

mobilised passive earth pressures corresponding to the maximum valueof msatisfying all

the three conditions of equilibrium have been adopted in computing the bearing capacity

factors. Non-dimensional bearing capacity factors Nc, Nq and Ny have been obtained

considering three cases separately i.e. i) c = q = 0, ii) y = c - 0 , iii) y = q = 0, and the

bearing capacity is expressed as

qu=\yBNy+yDfNq+cNc (1)
These bearing capacity factors depend on angle internal friction of the soil mass (^),

slope angle (/?), edge distance to width ratio (De /B), depth to width ratio (Df /B),

eccentricity to width ratio (e/B) and the load inclination (/), and are presented in the form

of design charts convenient for use in design.

It has been observed that the values of these bearing capacity factors increase with

increase in the edge distance and after a certaindistance; this value becomes independent

of the slope. These factors reduce with the increase in eccentricity and obliquity of the

load, though the rate of increase or decrease is different for the three bearing capacity

factors.

The values of Nr factor for central vertical load on slope have been computed and

compared with the work of earlier investigators. It is observed that the Ny values from

the present analysis are less than Graham's (1988) and Saran's (1989) values, but higher

than Meyerhofs (1957), Cheng's (2005). and Xiao's (2007) values. The difference may
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be attributed to the difference in the nature of rupture surface adopted in the methodology

for estimating the Ny values. The reduction in the factor Nr for different values of

eccentricity and inclination of load for a footing on a level ground have been calculated

from the present analysis and then compared with earlier investigators (Meyerhof, 1963,

Hansen, 1970, Vesic, 1975, Saran & Agrawal (1986). It has been observed that the

proposed reduction in N values tallies reasonably well with the earlier investigators.

For comparing the Nq factor, qJyB values have been obtained from the present

analysis for a footing on a cohesionless slope and subjected to central vertical loads and

then compared with those given by earlier investigators. It has been observed that the

qJyB values from the present analysis are higher as compared to those by Cheng (2005),

but less than Graham (1988) and Saran (1989) values.

The Nc values obtained for footings on slopes from the present investigation for

central vertical load have been compared with those given by the earlier investigators. It

has been observed that the values from the present analysis are less than Saran's (1989)

values, but higher than Hansen's (1970) and Xiao's (2007) values. The reduction in the

factor Nc for different inclination and eccentricity of the load have been obtained from the

present analysis for level ground and compared with those given by the earlier
investigators. The reduction factors compare well with Saran & Agrawal (1991) values,

but are higher than Meyerhof s (1963) values.

Pressure-settlement and pressure-tilt relationships are essentially functions of non

linear constitutive laws of soil. In this investigation a methodology has been proposed to

predict the pressure-settlement and pressure-tilt characteristics of a rigid strip footing
placed on the upper surface ofa slope and subjected to an eccentric-inclined load using
non-linear constitutive laws of soil. Firstly, the analysis has been developed for a flexible

footing subjected to an eccentric-inclined load. The contact pressure distribution is
assumed to be i) uniform for central loading, ii) trapezoidal, when eccentricity to width

ratio, (e/B) is less than 1/6, and iii) triangular when eccentricity to width ratio, (e/B) is

greater than 1/6. The soil below the footing has been divided into thin strips upto a
significant depth. For the assumed contact pressure on the base ofthe footing, the vertical

stresses, horizontal stresses and shear stresses have been obtained at the centre of

different strips along vertical sections using theory of elasticity. Presently no method is

ni



available to calculate the stresses due to footing load on a soil mass which is restricted by

a slope on one side. Hence, a new method is proposed for finding the stresses due to a

footing load placed on a slope. Using these stresses, principal stresses and their directions

arc evaluated. Principal strains and strains in the vertical directions have been obtained

using non-linear constitutive laws. The vertical settlement of any layer along a vertical

section is computed by multiplying the strain with the thickness of each layer. The total

settlement along any vertical section is computed by adding the settlement of all the

layers along the vertical section and thus the settlement below various points of the

footing have been determined. This settlement pattern of the flexible footing is compared

with that of a rigid footing. Since the settlement of a rigid footing will be linear, having

maximum settlement on one side (Smax) and minimum on the other side (Smm), these

settlements are obtained by applying the following principles.

i) The area of the settlement diagram of the flexible footing is equal to the area of

the settlement diagram of the rigid footing,

ii) The distance of the centre of settlement diagram of the flexible footing from one s-

edge of footing is equal to the distance of centre of settlement diagram of the rigid

footing from the same edge of the footing.

Knowing the values of Smax and Smi„, average settlement (Sav) and tilt (t) are computed as

follows:

(2)

(3)
B

This was repeated for different footing loads and complete pressure-settlement and

pressure-tilt characteristics of the footing have been predicted. The validity of this type of

approach has already been shown by Sharan (1977), Amir (1992) and Agrawal (1986).

The above method was adopted to predict the pressure-settlement and pressure-tilt

characteristics of footings placed on upper surface of a cohesionless soil slope of Ranipur

sand. Stress-strain characteristics of Ranipur sand at 70% relative density were obtained

by performing triaxial compression tests at different confining pressures. From these test

sav =
max

+ Smin
2

t =

c
max

- •Smin

IV
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data, Kondner's (1963) hyperbolic constanta and b were obtained and used to obtain the

pressure-settlement and pressure-tilt characteristics.

To verify the analytical solutions, model tests were conducted on strip footings of

size 150 mm x 600 mm in a tank, 3000 mm long, 601 mm wide and 900 mm deep

containing sand deposited at a desired relative density. The tests were conducted on

Ranipur sand at relative density of 70 percent. The footings were tested at two slope

angles (/? = 30° and 26.56°), four edge distance to width ratios (DJB = 0, 1, 2 and 3),

three eccentricity to width ratios (e/B = 0, 0.1, 0.2) and three load inclinations (i = 0, 10°,

20°). In each case, the footing was loaded upto failure and its pressure-settlement and

pressure-tilt characteristics were obtained.

The values of ultimate bearing capacity obtained from the present theory and the

model tests were compared. The failure load has been taken as the peak load. It was

observed that the values of ultimate bearing capacity obtained from the model tests data

compare well with the corresponding values obtained from the proposed theory.

T The pressure-settlement characteristics predicted from the proposed theory were

compared with those obtained from the model tests. It is observed that the two curves are

similar in nature and upto about 50% of the failure pressure, the tally between predicted

and experimental values is reasonable. From the point of view of design, the settlements

are usually obtained corresponding to a pressure equal to one-third of the failure pressure.

For this pressure, the present methodology gives the estimate of settlement almost

precisely.
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CHAPTER-I

INTRODUCTION

1.1 GENERAL

Shallow footings on or upper surface of slopes are often encountered in case of

many engineering structures such as bridges, flyovers, retaining walls, transmission

towers, structures placed on benches cut into the slopes, etc. Many highway and

railway overpass structures and abutments of river bridges are built on approach

embankments. Buildings and retaining structures are sometimes constructed adjacent

to a ravine. Foundations of buildings situated close to the open section of underground

railways are very frequent in crowded metros.

In general, a foundation is subjected quite often to vertical and horizontal loads

and moment as well. The resultant of these forces may be expressed as an equivalent

eccentric-inclined load on the foundation, Fig. 1.1. When a footing is placed close to

the crest of a slope, its bearing capacity is reduced as compared to a footing placed on

a level ground; and it is further reduced if the applied loads are either eccentric,

inclined or any combination thereof.

For the design of a footing on a level ground under the action of eccentric-

inclined load, the important design criteria considered are: i) the ultimate bearing

capacity due to shear failure and ii) the failure due to excessive settlement and the tilt

of the structure. When such a footing is placed on upper surface of a slope, the overall

stability of the slope should also be checked. In case of non-cohesive soils, the

bearing capacity of the footings will always be governed by the foundation failure,

while the bearing capacity of footings on cohesive soils may be limited by the overall

stability of the whole slope.

1.2 FOOTINGS ON UPPER SURFACE OF SLOPES AND SUBJECTED TO

CENTRAL VERTICAL LOADS

Several theories are available for computation of the bearing capacity of

footings on or upper surface of slopes and subjected to central vertical loads. Various

investigators have attempted the problem by applying: i) slip line method, ii) limit

analysis method, iii) limit equilibrium method and iv) finite element method.



Resultant

(a) Portal Frame Structure on the Bench Cut on a Slopeor Near an Excavation

(b) Bridge Abutment on the Top of a Slope

Fig. 1.1 Structures on Top of Slopes with Eccentric-Inclined Load

Meyerhof (1957) was the first to study the problem of ultimate bearing capacity

of a footing placed on or near the edge of slopes and subjected to central vertical

loads. Meyerhof extended his classical theory of bearing capacity of foundations on a

level ground and combined it with the theory of stability of slopes to cover the

♦
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stability of foundations on slopes. The slip lines were constructed by taking into

account the slope angle, the distance from the edge of the slope and the angle of

shearing resistance of the slope material.

Using the theory of plasticity, Sokolovski (1960) obtained the magnitude of

uniform pressure which can be applied on the top of a slope. Mizuno et al. (1960)

investigated the performance of footings resting on the crest of cohesionless soil

slopes using limit equilibrium approach. Chen (1975) investigated the problem by

limit analysis and solved it by taking the same failure surface as that of Meyerhof

(1957). Kusakabe et al. (1981) also attempted the problem using limit analysis

approach incorporating the effect of the footing location from the crest of the slope.

Graham et al. (1988) approached the problem by applying the method of stress

characteristics for cohesionless soil. The nonfailing zone of soil immediately beneath

the footing was assumed asymmetric. Saran et al. (1989) developed analytical

solutions for obtaining the ultimate bearing capacity of footings on upper surface of

slopes using limit equilibrium and limit analysis methods. One sided rupture failure

on the side of the slope was assumed and partial mobilisation was considered on the

side of the flat ground. Arduino et al. (1994, 1998) analysed the problem of bearing

capacity of a footing placed on top of a slope subjected to central vertical loads by

finite element method and obtained both the ultimate bearing capacity and the

settlement. Cheng and Au (2005) derived the expressions for bearing capacity factors

Nq and Nrfor the case of a footing resting on a sloping ground and under the action of

a central vertical load based on the slip line method and verified it by using the finite

difference analysis. Yang et al. (2007) applied energy dissipation method to determine

the bearing capacity of footings on a sloping ground. The soil failure was assumed to

be governed by a linear Mohr-Coulomb yield criterion.

Few investigators have conducted model tests for investigating the behaviour of

footings on or upper surface of slopes. Peynircioglu (1948) performed series of model

tests on cohesionless slopes. Shields et al. (1977) reported the results of experiments

for footings located at various locations within a granular slope. The footings were

placed both on and upper surface of the slopes. The primary conclusion of the

investigation was that the theory proposed by Meyerhof (1957) did not predict

correctly the magnitude of the bearing capacity of a footing for its various locations.

Saran et al. (1989) conducted tests to study the behaviour of footings on slopes and
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compared the results with the theoretically predicted results from different available

theories. Some investigators have also conducted centrifuge model tests for footings

on slopes. Gamier et al. (1994) reported the results of a series of centrifuge tests to

study the bearing capacity of a footing on upper surface of the slopes and subjected to

central vertical loads and proposed an equation for reduction factor in bearing

capacity due to nearness of a footing to the edge of a slope.

1.3 FOOTINGS ON UPPER SURFACE OF SLOPES UNDER ECCENTRIC-

INCLINED LOADS

Jao et al. (2001, 2008) investigated analytically the performance of strip

footings placed on upper surface of a slope and subjected to eccentric vertical loads

using a two dimensional plane-strain elasto-plastic finite element method.

Shields et al. (1981) reported the results of experiments for footings placed at

various locations within a granular slope. The loading on the footings was central

inclined in some experiments. Marechal et al. (1999) reported the results of centrifuge

model tests for footings on or upper surface of slopes and subjected to eccentric-

inclined load and expressed the bearing capacity reduction due to the presence of a

slope and due to eccentricity and obliquity of the load.

1.4 SCOPE OF WORK

The literature reveals that there is no rational method available for the

estimation of bearing capacity, settlement and the tilt of a footing placed on upper

surface ofa slope and subjected to eccentric-inclined load. Except one finite element -i

study and one centrifuge model study, no other study has been reported in this area.

Thus, it becomes essential to develop a simplified procedure for estimation of the

bearing capacity, settlement and tilt of a foundation placed onupper surface ofa slope

and subjected to eccentric-inclined load.

To study the behaviour of footings placed on upper surface of a slope and

subjected to eccentric-inclined loads, the following investigations have been

proposed:

a) To obtain the ultimate bearing capacity of footings by limit equilibrium

approach.
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b) To develop an analytical procedure for evaluating pressure-settlement and

pressure-tilt characteristics of foundations using constitutive laws of soil.

c) To conduct model tests for verification of the analytical results.

1.5 ORGANISATION OF THESIS

The relevant literature on the subject has been critically reviewed and

presented in Chapter II. The review of the literature mainly covers the following

aspects:

i) Ultimate bearing capacity

ii) Constitutive laws

iii) Model tests

Chapter III deals with the assumptions made and the theoretical formulation

proposed for obtaining the ultimate bearing capacity by the limit equilibrium method.

An analytical procedure to predict pressure-settlement and pressure-tilt

characteristics of a footing placed on upper surface of a slope under eccentric-inclined

load using the constitutive laws is presented in Chapter IV.

Chapter V includes constitutive relations obtained for Ranipur sand and

description of model tests in detail.

Interpretations of analytical investigations and model test data have been

presented in Chapter VI. Finally, the summary of the work, the conclusions and the

scope of future work have been given at the end of the thesis in Chapter VII.
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CHAPTER-II

REVIEW OF LITERATURE

2.1 GENERAL

In this chapter, a detail review of literature related to the behaviour of footings

founded on or upper surface of slopes is presented. Firstly, the analytical solutions of

the problem of determining the ultimate bearing capacity of footings on or upper

surface slopes and subjected to different types of loadings are reviewed. Thereafter,

constitutive laws for soils, factors affecting them, various constitutive models and the

methods for predicting the settlement and tilt are discussed. Lastly, the experimental

model studies and the centrifuge model studies of foundations placed on and upper

surface of the slopes are discussed.

2.2 ULTIMATE BEARING CAPACITY

The well known techniques used in the solution for ultimate bearing capacity

can be divided into four groups, namely,

i) Slip Line method

ii) Limit Equilibrium Analysis

iii) Limit Analysis

iv) Finite Element Method

After discussing the salient features of each method, detailed review of

literature with special reference to footings on or near the slope has been presented.

2.2.1 Slip-Line Method

In a slip line solution, soil mass near the footing is assumed to be in the state

of plastic equilibrium. The solution consists of constructing a slip line field in the

region, which satisfies all the stress boundary conditions that directly concern the

region, as well as the equilibrium and the yield conditions at every point in the region.

Plastic flow of soil occurs when a sufficiently large region beneath the footing

is stressed to its limiting or yield condition, resulting in an unrestricted plastic flow of

the soil. At the instant of impending plastic flow, both equilibrium and the yield

conditions are satisfied in the region near the footing. For soils, Mohr-Coulomb

criterion has been widely used as the yield condition. Combining Mohr-Coulomb



criterion with equations of equilibrium, a set of differential equations of plastic

equilibrium in this region are obtained. Together with the stress boundary condition,

this set of differential equations can be solved to obtain the stresses in the soil beneath

the footing at the instant of impending plastic flow. In order to solve specific

problems, the set of equations are generally transformed to a curvilinear co-ordinate

system, whose direction at every point in the yield region coincides with the direction

of the failure or the slip plane. These slip directions are known as slip lines and the

network is called as the slip-line field.

Kotter (1903) was the first to derive these slip line equations for the case of

plane deformation. Prandtl (1920) obtained an analytical closed form solution to these

equations for a footing on a weightless soil. These results were subsequently applied

by Reissner (1924) to some specific problems of bearing capacity of footings on a

weightless soil, when the slip lines of at least one family are straight and the solutions

have a closed form. Sokolovski (1960) adopted a numerical procedure based on a

finite difference approximation of the slip line equations and obtained solutions of

number of problems related to bearing capacity of footings, for which it was

impossible to find the closed form solutions.

Sokolovski (1960) presented a solution to the problem of a slope of c-</> soil

making an angle, fi with the horizontal and predicted the maximum vertical load that

can be applied along x-axis (Fig. 2.1) such that limiting equilibrium can be

maintained.

q

Ik

c - <f> soil

Fig. 2.1 Rapture Surface (Sokolovski, 1960)
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The soil below the loading area was divided into three zones, an active zone AOA|,

passive zone A2OA3 and a transition zone A1OA2. Sokolovski presented the values of

maximum load, cr:/c along the x-axis (in units of ylc) for a range of <f> and B values as

given in Table 2.1.

Table 2.1 Values of (<rz/c) for Different Values of (f> and B (Sokolovski, 1960)

^=20° <* = 40°

0 10° 20° 10° 20° 30° 40°

0 14.8 12.7 10.9 55.9 41.4 30.6 22.5

2.0 25.4 19.9 15.0 186.0 115.0 68.4 38.1

4.0 34.0 25.8 18.3 299.0 179.0 101.0 50.4

6.0 41.8 31.4 21.4 409.0 241.0 132.0 61.7

Siva Reddy and Mogaliah (1975) have studied the effect of anisotropy and

non-homogeneity of soil on the ultimate bearing capacity of foundations on slopes for

the case of central vertical loads using Sokolovski's (1960) method of characteristics.

The variation of cohesion in any direction was given by -

c=c„[l +(/t-l)sinV] (2-1)
where c = cohesion corresponding to any value of 1//,

y/= angle made with the horizontal, by the bisector of the angle between the

failure planes at a point,

c//= cohesion in horizontal direction, corresponding to 1// = 0 and

k = coefficient of anisotropy

The variation of cohesion with depth was expressed by the following equation:

cv=cvs+a(Df+z) (2.2)

where cv = cohesion in vertical direction at any point,

cvs = cohesion in vertical direction at top of slope,

a = rate of increase of cv with z, and

D/= depth of foundation

The rupture surface was taken similar to that of Meyerhof (1957) as shown in Fig. 2.2.
*



(a) (b)

Fig. 2.2 Plastic Zone and Slip Surfaces below a Strip Footing (a) on Face of
Slope, (b) on Top of Slope (Siva Reddy and Mogaliah, 1975)

The ultimate bearing capacity was expressed as,

(2.3)

where Nc, Nq and Ny are non dimensional bearing capacity factors.

The values of p0 and s0, the stresses on the equivalent free surface were

calculated from the assumed value of a, D'j, fi and D'e. All the quantities with primes

are dimensionless. The non dimensional stresses and distances were obtained by

dividing the stresses and distances by the characteristic stress, cvs and the

characteristic length, / = cvs/y. The values of Nc corresponding to k=l and aJ/cvs = 0

(for homogeneous and isotropic soils) were obtained by the investigators and

compared with those of Meyerhof(1957) as presented in Table 2.2. It can be observed

from the table that the calculated values of Nc were, in general, in good agreement

with the values given by Meyerhof (1957). The other bearing capacity factor, Nyq

corresponding to k=l and ccl/cvs = 0 was calculated and compared with the results of

Meyerhof(1957) and given in Table 2.3. It can be observed that the values obtained

by the investigators were higher than those given by Meyerhof (1957). The footing

loads were central vertical and the effect of eccentricity and inclination of the loads

were not incorporated in the analysis.

^
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Table 2.2 Comparison of Nc Values Given by Siva Reddy and Mogaliah (1975)
with those by Meyerhof (1957)

p ft0 De/B Df/B
Nc

Siva Reddy,
Mogaliah(1975)

Nc
Meyerhof

(1957)

0 15 0 0.23 5.04 5.08

0 45 0 0.648 4.41 4.48

0 30 0.8 0.102 5.03 5.10

0 60 0.97 0.121 5.03 4.90

10 15 0 0 7.11 7.10

20 15 0 0 11.78 11.80

30 15 0 0 21.82 21.90

30 30 0 0 15.68 15.70

30 45 0 0 11.14 11.20

Table 2.3 Comparison of N7q Values Given by Siva Reddy and Mogaliah (1975)
with those by Meyerhof (1957)

<t>° P° De/B Df/B
Nn

Siva Reddy,
Mogaliah (1975)

Nyq
Meyerhof

(1957)

30 15 0 0 13.76 10.0

30 30 0 0 5.01 3.10

30 15 0 0.681 33.60 30.0

30 15 0 0.308 20.10 17.0

30 15 1.42 0.236 28.10 24.50

Graham et al. (1988) employed the method of stress characteristics to solve

the problem of bearing capacity of foundation on slopes for central vertical loads. The

difference with the earlier methods was that the method has been used to solve the

problem for purely cohesionless soil and took particular account of the stress

conditions immediately beneath the footing. The nonfailing zone of soil immediately

beneath the footing has been assumed as asymmetric as shown in the Fig. 2.3. The

problem was solved numerically and the bearing capacity was expressed as

qu =0.5/BNf (2.4)
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The authors have developed charts for the bearing capacity factor, Nyq as a function of

slope angle, Bfor different values of edge distance and depth of footing. The charts

have been reproduced in Figs. 2.4 and 2.5. The results were compared with the results

of earlier investigators as shown in Fig. 2.6. It can be observed from Fig. 2.6 that the

results of Graham et al. (1988) gives values of Nyq which lie above those given by the

previous investigators.

45°-<£/2

Fig. 2.3 Schematic Diagram of Failure Zone for Footing at Crest of Slope
(Graham et al., 1988)

P=0 (GRAHAM AND STUART 1971)
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Fig. 2. 4 Charts for Bearing Capacity Factor, Nyq (Graham et al., 1988)
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Investigators

12



Cheng and Au (2005) derived the expression for the bearing capacity factor,

Nq for a footing on sloping ground for the case of central vertical load based on slip

line method and verified it by using the finite difference analysis. The bearing

capacity factor, Nr for the case of a sloping ground was also obtained by an iterative

finite difference method which gave the solution of the slip line equations. The values

of Nr obtained from slip line analysis were found to be in close agreement with those

of Vesic (1973) and Hansen (1970), but the values of Graham et al. (1988) were much

larger than the values given by all other methods as shown in Table 2.4. The

investigators proposed design charts for the bearing capacity factors as a function of

the slope angle, B as shown in Figs. 2.7 and 2.8.
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Fig. 2.7 Charts for Bearing Capacity Factor, Nyq (Cheng and Au, 2005)

Table 2.4 Comparison of Ny Values from Different Methods of Analysis with
those by Cheng and Au (2005) Values for 0=35°

p°
Cheng & Au

(2005)
Vesic (1973)

Hansen

(1970)
Graham etal. (1988)

10 22.50 32.59 21.38 40.0

20 14.90 19.43 12.42 25.0

30 9.70 8.58 6.18 10.0

35 0.00 4.32 3.90 0.00
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2.2.2 Limit Equilibrium Method

The limit equilibrium method is the most commonly used method for

obtaining an approximate solution for the stability problems which include: i) ultimate

bearing capacity of the footings, ii) lateral earth pressure on retaining walls, and iii)

stability of slopes. The method generally assumes a failure surface of simple shape -

planar, circular, log spiral, or a combination of these, based on experience and

experimental results. Some simplified assumptions regarding the stress distribution

along the failure surface are made so that over all equations of equilibrium, in terms

of stress resultants can be written for the given problem. With these assumptions, each

stability problem is reduced to finding the most critical position of the failure or slip

surface of the shape chosen, which may not be particularly well defined, but quite

often gives fairly good results. Therefore, this simplified approach makes it possible

to solve various problems by employing simple statics.

Common assumptions made in limit equilibrium method are as follows:

i) The soil mass follows the Mohr-Coulomb failure criterion,

r = c + crtan^ (2-5)
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where r represents the shear stress, c, the cohesion, a, the normal stress on

the failure plane and </>, the angle of internal friction.

ii) A failure surface of simple shape, e.g. planar, circular, log spiral or

combination of these is assumed,

iii) The distribution of stress along the failure surface is also assumed,

iv) The general shape of various regions in the failure zone remains unchanged

(straight slip lines remaining straight) irrespective of the consideration of the

weight, and

v) Principle of superposition holds good. The three important factors - the weight

of the soil and the effect of the strength parameters of the soil are assessed

separately on the basis of a conservative mechanism and the three, in turn,

provide a conservative estimate.

Terzaghi (1943) followed the limit equilibrium method and presented his

classical theory for obtaining the bearing capacity of both rough and smooth shallow

foundations on a level ground. Terzaghi chose the model of the failure mechanism

similar to that chosen by Prandtl (1920) for the penetration of punches into the metal,

replaced the soil above the base of the footing by a uniform surcharge and presented

the results in terms of non-dimensional bearing capacity factors Nc, Nq and Ny.

Meyerhof (1951) extended the work of Terzaghi (1943) to both shallow and deep

foundations. Meyerhof assumed the yield surfaces which extend right up to the

ground surface, and the resistance which acts along the whole yield surface. Brinch

Hansen (1961), starting from the basic equation of Terzaghi, accounted for the

influence of depth of foundation, shape of the foundation and inclination of the load.

Many other investigators have also employed the limit equilibrium analysis by using

different rupture surfaces to find the bearing capacity of foundations on a level

ground.

Meyerhof (1957) was the first to use the limit equilibrium analysis for finding

the ultimate bearing capacity of a footing placed on or near the slopes and subjected

to central vertical loads by extending his classical bearing capacity theory (Meyerhof,

1951) of foundation on level ground and combined it with the theory of the stability

of slopes to cover the stability of foundations on slopes. Meyerhof considered the

following two cases, namely

15
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Case I: Strip Foundation on the slope face

Case II: Strip foundation on top of the slope

The failure surfaces considered for both the cases are reproduced in Figs. 2.9 a, b

respectively.

H^

(a) (b)

Fig. 2.9 Plastic Zone and Slip Surfaces for a Strip Footing (a) on Face of Slope,
(b) on Top of Slope (Meyerhof, 1957)

The region above the failure surface of a shallow rough strip foundation was

assumed to be divided into a central elastic zone ABC, a radial shear zone ACD and a

mixed shear zone ADEF for the case of footing on a slope or zone ADEFG for the

case of footing on top of a slope and at a distance, De from the edge of the slope. The

stresses in zones of plastic equilibrium were computed by replacing the weight of soil

wedge AEF (case I) or AEFG (case II) by equivalent stressesp0 and s0, the normal and

tangential respectively to the plane AE inclined at an angle a to the horizontal. The

bearing capacity ofa foundation on slope having a slope angle, fi has been given by

the following equation

qu=cNcq+-yBNyi (2.6)

where c is the cohesion of soil, y, the unit weight of soil, and B is the width of

foundation. Ncq and Nyq are the bearing capacity factors depending on slope angle, B,

angle ofshearing resistance ofthe soil, <f>, the depth/width ratio, Df/B and in addition a

ratio of distance from edge of the slope to the footing width, De/B in case of footing

on the top of slope and stability number Ns (Ns =yH/c;H =height of the slope) in

case of purely cohesive soil.
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In case of a strip foundation on the face of the slope, charts for bearing

capacity factors are presented in Figs. 2.10 a and b for purely cohesive (</> =0) and

cohesionless (c = 0) materials, respectively. The factors decrease with greater

inclination of the slope to minimum for [3=90° in case of purely cohesive material

and for B=(j> in case of cohesionless soil, when the slope becomes unstable. For

cohesive material with a small or no angle of shearing resistance, Meyerhof combined

his theory with the theory of slope stability, since in this case; the bearing capacity of

a foundation can be limited by the stability of the whole slope.
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Fig. 2.10 Bearing Capacity Factors for a Strip Foundation on Face of Slope for
(a) Purely Cohesive and (b) Cohesionless Soil (Meyerhof, 1957)

In case of strip foundation on top of the slopes, charts for the bearing capacity

factors have been reproduced in Figs. 2.11a and b for purely cohesive (</> =0) and

cohesionless (c = 0) materials, respectively. While the Ncq and NN factors decrease

with greater inclination of the slope, they have been found to increase rapidly with

greater foundation distance from the edge of the slope. Beyond a distance of about 2

to 6 times the foundation width (depending upon <j> and D//B), the bearing capacity

17
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has been found to be independent of the inclination of slope and becomes the same as

that of a foundation on an extensive horizontal ground surface. For slopes on cohesive

soil, Meyerhof performed an analysis for the case of slope failure (through toe or

base) under a foundation load on the assumption of a cylindrical slip surface as for

unloaded slopes (Fellenius, 1927), and the average load over the whole foundation

area was replaced by a uniform surcharge.

0 / 2 3 4 5 6

Distance of foundation from edge of slope
De IB (for Ns=0) orDeiH(forNt>0)

(a)

Foundation depth/width
Df IB = 0

Df/B = 1
Linear interpolation
for intermediate depths

(b)

0 1 2 3 4
Distance of foundation from edge

5 6

of slope De/B

Fig. 2.11 Bearing Capacity Factors for a Strip Foundation on Top of Slope for
(a) Purely Cohesive and (b) Cohesionless Soil (Meyerhof, 1957)

For a surcharge on the whole horizontal top surface of the slope, a solution of the

slope stability was obtained on the basis of dimensionless parameters (Janbu, 1954)

and the bearingcapacity was represented by the following equation:

qu=cNcq+yD (2.7)

where the bearing capacity factor, Ncq depends on De/B as well as Band the stability

factor of the slope, Ns. It can be observed from Fig. 2.1 la that the bearing capacity of

foundations on top of a slope is governed by the foundation failure for a small slope

height (Ns approaches zero) and by theoverall slope failure for greater heights.

18



Mizuno et al. (1960) proposed limit equilibrium method to predict the sliding

surface as well as bearing capacity of a slope of cohesionless soil under vertical

central load acting on its horizontal top or berm. The sliding surface was divided into

an active pressure region, a transition region and a passive pressure region as shown

in Fig. 2.12. The stresses in the state of limit equilibrium at a point at a vertical depth

below the sloping surface BE, within the passive region has been assumed as

conjugate and the stresses were calculated by Mohr stress circle method. The

transition region between the two zones has been divided into a number of small

wedges. For these wedges, force equilibrium condition was applied successively and

at the same time, the sliding surface was drawn by taking into account the sliding

condition, the stress components being found by means of Mohr stress circle and the

bearing capacity was determined. The relation between the slope angle, B and bearing

capacity factor, (2q/yB) was obtained for various values of angles of internal friction,

(j> and are reproduced in Fig. 2.13 in the form of a chart. In this analysis, distance of

the foundation from the edge of the slope has not been taken into account. The values

of factor, Ny given by this method are on the higher side as compared to the values

given by Meyerhof (1957). The Ny values for ^=40° and B=20° are 30 (Meyerhof,

1957) and 44 (Mizuno et al., 1960), respectively.

Active
pressure
wedge

Transition
region Passive

pressure
region

^
Fig. 2.12 Plastic Zone and Slip Surface (Mizuno et al., 1960)
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Fig. 2.13 Bearing Capacity Factors for Footing with Central Vertical Load on
Top of Berm (Mizuno et al., 1960)

Siva Reddy and Mogaliah (1976) analysed the problem of a foundation on a

slope from the point of view of the overall stability of the slope. The authors

considered the slope failure through the toe or base under a foundation load using the

friction circle method (Taylor, 1937) for c-<f> soils possessing anisotropy and non-

homogeneity in cohesion. Figure 2.14 shows the schematic diagram for the case of

slope failure under a foundation load, q acting over a width, B as considered by the

authors. The variation of cohesion with depth and direction were given in Eqs. 2.1 and

2.2. The authors presented the values of bearing capacity factor, Nc for purely

cohesive soil (^=0) for different values of Ns and compared with those given by

Meyerhof (1957) as shown in Table 2.5. It is observed from this table that the values

of Nc are higher than those of Meyerhof (1957), since Meyerhofs values correspond

to a foundation of infinite width, while in this investigation, foundations are of finite

width.
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Fig. 2.14 Schematic Diagram Showing Slope Failure under a Foundation Load
(Siva Reddy and Mogaliah, 1976)

Table 2.5 Comparison of Nc Values by Siva Reddy and Mogaliah (1976) and
Meyerhof (1957)

p° Ns

Siva Reddy and
Mogaliah (1976)

Meyerhof (1957)

B/H Nc Nc

15 5.0 0.25 0.53 0.52

60 5.0 0.25 0.67 0.1

60 4.5 0.25 1.52 0.5

75 4.5 0.25 0.18 0.0

75 4.0 0.25 1.28 0.50

75 3.5 0.25 2.10 0.75

Bowles (1977) presented tables of reduced values of bearing capacity factors

Nc and Nq for estimation of bearing capacity of footings on or upper surface of slopes

for central vertical loads on the basis of reduced length/area of failure envelope as

compared to a flat ground. The failure surface is shown in Figs. 2.15a and b.
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(b)

Fig.2.15 Failure Surface for Footing on Face of Slope or Upper surface of Slope
(Bowles, 1977)

The angle of exit was taken as (45°-^/2), since the slope line is a principal line. The

value of factor, Nc has been reduced proportional to the reduction in length of the

failure surface and expressed as:

L.
N. =N„ (2.8)

where Ls = length of failure surface for footing on slopes,

V = length of failure surface for footing on level ground.

Similarly, factor, Nq was reduced on the basis of area under the failure envelope and

expressed as-

A.

N'=N<A
(2.9)
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where As = area Efg, Fig. 2.15a and area Efgh, Fig. 2.15b for failure surface of

footing on or upper surface of slope and

A = area cjkL, Fig. 2.15b for footing on level ground

The other bearing capacity factor, Ny was adjusted to Ny to account for the reduction

in passive pressure on the slope side of the wedge, caf when the base is either within

De /B<2 on top of slope or when De/B = 0 and expressed as-

N„ N„
N„ =

2B\ '
(2.10)

where R =
K.

K.
(2.10a)

Kmin = coefficient of Coulomb passive earth pressure on side, afof the slope side

Kmax = coefficient of Coulomb passive earth pressure on side, caon the flat side

Myslivec and Kysela (1978) used the graphical solution as proposed by

Przedechi - Rossinski et al. (1961) for prediction of the ultimate bearing capacity of a

foundation subjected to central vertical load and influenced by a slope in a c-</> soil.

Fig. 2.16 Graphical Solution for Bearing Capacity (Myslivec and Kysela, 1978)

The solution for the ultimate bearing capacity of a foundation of width B = 1 m, Df =

1 m and De/B = 0.5 and for a slope angle, B= 15° has been obtained for a soil having </>

=20°, c = 10 kN/m2 and ^=20 kN/m3 (Figure 2.16). The ultimate bearing capacity

works out to be 380 kPa while Meyerhofs (1957) method predicts the value of 310

kPa, which is 23% less than the bearing capacity obtained by the graphical solution.
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Saran et al. (1989) developed analytical solutions for obtaining bearing

capacity of footings on upper surface ofa slope for central vertical loads by applying

limit equilibrium method. One sided failure was assumed to occur along the surface,

DEI as shown in Fig. 2.17.

T

-45-$m/2 f
IV

.'^

45-0 m

Fig. 2.17 Rapture Surface in Limit Equilibrium and Limit Analysis Approaches
(Saran et al., 1989)

The failure region was divided into two zones, Zone I - an elastic region and Zone II -

a combination of radial and passive shear bounded by a logarithmic spiral, El. The

soil on the side of the flat ground was assumed to be partially mobilized and to

compute the partial resistance offered by this side, a rupture surface shown by dotted

lines was considered. Bearing capacity expressions were then developed by

considering the equilibrium of the elastic wedge ADE (Figs. 2.17 and 2.18). The

forces acting on the wedge included earth pressure on the sides AE and DE, vertical

load and cohesion on sideAE and DE. The bearing capacity was expressed in terms of

bearing capacity factors Nc, Nq and Nr bythe following expression:

Qu=B -yBNy+yDfNq+cNc
\2

Fig.2. 18 Forces on Elastic Wedge ADE(Saran et al., 1989)
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2.2.3 Limit Analysis Method

In contrast to slip line and limit equilibrium methods, limit analysis method

considers the stress-strain relationship of soil in an idealised manner. This

idealisation, termed as normality principle (or the plastic flow rule), establishes the

limit theorems on which limit analysis is based. The plastic limit theorems of Drucker

et al. (1952) are conveniently used to obtain the upper and the lower bounds of the

collapse load. The two theorems are:

i) Lower Bound Theorem: If a safe and statically admissible state of stress

exists for a given loading, failure does not occur under this loading. A safe and

statically admissible state of stress is one in which the stress distribution satisfies the

equilibrium condition under the given loads, and in which the stresses are less than

the yield stress at every point. The lower bound technique considers only the

equilibrium and the yield. It gives no considerationto soil kinematics.

ii) Upper Bound Theorem: If a kinematically admissible failure state can be

found for any loading, failure must impend or must have taken place already. The

loads are determined by equating the external rate of work to the internal rate of 4

dissipation of energy in an assumed deformation mode (or velocity field) that

satisfies: a) velocity boundary conditions and b) strain and velocity conditions which

are not less than the actual collapse load: The dissipation of energy during plastic flow

associated with such a field can be computed from the idealised stress-strain rate

relation. A velocity field satisfying the above conditions has been termed as a

kinematically admissible velocity field. The upper bound technique considers only the

velocity or failure modes and energy dissipation. The stress distribution need not be in

equilibrium and is only defined in the deforming regions of the mode.

Many stability problems have been solved using this method by many

investigators such as Drucker and Prager (1952), Finn (1967), Chen (1975). Chen

(1975) has used Prandtl type of failure mechanism to calculate the bearing capacity

factor, NY by limitanalysis for footings on slopes withcentral vertical loads. The chart

giving the values of Ny computed for slope angle varying from 0-30° and friction

angle, <p ranging from 10° to 45^ nas been reproduced in Fig. 2.19. The difference <
betweenthis upper bound limit analysis and Meyerhof (1957) method ranges from 1.5

to 45 percent.
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Fig. 2.19 Bearing Capacity Factors Ny (Chen, 1975)

Kusakabe et al. (1981) calculated the bearing capacities of slopes loaded with

central vertical loads on top surfaces by using the upper bound theorem of limit

analysis. The authors considered the failure mechanism consisting of a triangular

active wedge, DCE, a logarithmic spiral, BC and a straight line, AB joining the log

spiral smoothly and intersecting the inclined surface of the slope at point, A (Fig.

2.20). Equating the rate of internal energy dissipation to the rate of external work, the

investigators obtained the following equation:

-vrs:

Fig. 2.20 Failure Mechanism (Kusfckabe et al., 1981)

qu=cNc+^Ny
(2.12)
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where 5 is the area of the quadrilateral ABEF. The solution to this problem was

obtained by the authors numerically. The bearing capacity normalized with respect to

yB was plotted against the normalized height as shown in the Fig. 2.21 and the curve

yielding the minimum value was taken as an upper bound solution. The authors

presented the comparison of values of bearing capacity thus obtained with those by

other investigators as presented in Table 2.5.

Fig. 2.21 Critical Values of (q/yB) and Failure Surface for Various Slope
Inclinations (Kasukabe et al., 1981)
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Table 2.6 Comparison of Bearing Capacity Obtained by Kasukabe et al. (1981)
with other Investigators

De/B
din

degree
c/yB

q/yB

Kusakabe

(1981)
Bishop
(1955)

Fellenius

(1927)
Kotter

(1903)

Lower

Bound

0 0 25.0 102.0 103.0 103.0 102.0 89.58

0 0 5.0 20.2 20.5 20.5 20.4 17.82

0 0 1.0 3.84 3.95 3.95 3.98 3.61

0 0 0.5 1.78 1.42 1.42 — 1.68

0 30 25.0 395.0 439.0 276.0 — 159.2

0 30 5.0 81.0 88.0 58.3 81.2 32.11

0 30 1.0 18.3 17.1 12.9 18.2 6.86

0 30 0.5 10.3 11.3 7.45 10.2 3.84

0.4 30 1.0 20.7 20.4 14.0 — 8.72

0.8 30 1.0 23.2 27.9 16.3 — 8.85

1.0 30 1.0 24.4 28.3 16.5 — 9.2

2.0 30 1.0 30.0 32.0 19.5 — 12.12

It is observed from the Table 2.6 that the bearing capacity values given by

Kotter's and Bishop's slice method compares well with the values predicted by

Kusakabe et al. (1981), while Fellenius method gives values less than those of upper

bound theory.

Saran et al. (1989) developed analytical solutions for obtaining the bearing

capacity of a footing on upper surface of the slope by applying limit analysis method

for central vertical loads. The bearing capacity equation was obtained by equating the

total rate of energy dissipated to the total rate of work done and expressed as:

q»=\rBNy+yDfNq+cNc (2.15)

where Nc, Nq and Nr are the bearing capacity factors which depend upon the slope

angle, B, friction angle, (j), distance of the foundation from the edge of the slope, De

and the depth of the foundation, D/. The authors have developed design charts for

these factors which are reproduced in Figs. 2.22 a, b and c respectively.
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Fig. 2.22 a Design Chart for Nyfor Df/B = 0 and De/B = 0,1.0 (Saran et al., 1989)
+

4

Fig. 2.22b Design Chart for Nq for D/B =1.0 and />,/» = 0, 1.0 (Saran et al., 1989)
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Fig. 2.22 c Design Chart for Nc for Df/B=0.0 and De/B = 0, 1.0 (Saran et al., 1989)

A comparison of the values of Ny obtained by the authors with earlier investigators is

presented in Table 2.7. It can be observed that values predicted by the authors are, in

most cases, higher than the values of the earlier investigators.

Table 2.7 Comparison of N7 Values of Saran et al. (1989) with other Investigators

t P De/B Df/B
Meyerhof

(1957)
Mizuno

(1960)

Siva

Reddy &
Mogaliah

(1975)

Chen

(1975)

Saran

et al.

(1989)

40° 30° 0.0 0.0 20. 17.0 - 19.5 25.37

40° 30° 1.0 0.0 40.0 — - - 62.20

40° 20° 0.0 0.0 34.0 44.0 - 55.0 53.47

40° 20° 1.0 0.0 55.0 - - - 85.98

40° 20° 2.0 0.0 70.0 - - - 121.22

40° 20° 0.0 1.0 125.0 - - - 168.00

30° 30° 0.0 0.0 3.1 - 5.01 - 6.14

30° 20° 0.0 0.0 7.5 8.0 - 10. 11.61

30° 15° 0.0 0.0 10.0 11.0 13.76 12.0 15.25

30° 15° 0.0 0.68 30.0 - 33.60 - 32.20
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Xiao et al. (2007) used energy dissipation method to obtain the bearing

capacity of footings on a sloping ground for vertical central load. A multi wedge

failure mechanism as shown in Fig. 2.23 was used to calculate the bearing capacity

factors of a strip footing. The potential sliding soil mass was divided into a number of

triangular wedges using a series of inclined straight lines and each triangular wedge

was assumed to move as a rigid wedge. Equating the work done by the external load

to the rate of internal energy dissipation, the bearing capacity was calculated and

expressed as:

qu =cNc +q0Nq +0.5yBNy (2.16)

where Nc, Nq and Ny are bearing capacity factors which depend on slope angle, Band

soil friction angle, <j>. The investigators developed design charts for these factors

which are presented in Figures 2.24 a, b, and c. In this analysis, the distance of the

foundation from the edge of the slope was not taken into consideration and it is

applicable to situations with central vertical loads only.

ftMJitU

20 25 30 35 40

tp/o
Fig. 2.24 a Design Chart for Bearing Capacity Factor, Nc (Xiao et al., 2007)
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Fig. 2.24 b Design Chart for Bearing Capacity Factor, Nq (Xiao et al., 2007)

Fig. 2.24 c Design Chart for Bearing Capacity Factor, N7 (Xiao et al., 2007)
Slope Angle 6 °: 1 -5°, 2 - 10°, 3 -15°, 4 - 20°, 5 - 25°

2.2.4 Finite Element Method

Arduino et al. (1994,1998) analysed the problem of the bearing

capacity of footings on slopes subjected to central vertical load only by finite element

method and compared the results with those of classical bearing capacity theories and

centrifuge model tests. To simulate the non-linear characteristics of the granular

material, the authors proposed a new constitutive model namely MRS-Lade model.

This model was pressure sensitive, three stress invariants dependent, cone-cap elasto-

plastic model. The material parameters were obtained by physical calibration by using
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conventional triaxial compression test data from three tests and one isotropic

compression test data. The selected prototype slope geometry (Fig. 2.25 a) and load

conditions were simulated by an appropriate finite element discretization with 9-

noded isoparametric finite elements as shown in Figures 2.25 b and c. From the

analysis, the ultimate bearing capacity was predicted as 1044.46 kPa and the same

from the centrifuge model test was obtained as 1072.92 kPa. The authors concluded

that since the finite element method gave both the ultimate bearing capacity and the

settlement, it is a better method.
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Fig.2.25 a) Prototype Slope, b) Undeformed and c) Deformed Mesh Showing

Slope and Boundary Conditions (Pedro Arduino et al., 1994, 1998)
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Jao et al. (2001, 2008) studied the performance of strip footings situated on

top of a slope and subjected to central vertical or eccentric vertical loading using a

two dimensional plane-strain elasto-plastic finite element method. In the analysis, the

foundation soil was idealised as an elastic-perfectly plastic material. Within the elastic

range, Duncan-Chang hyperbolic stress-strain law was used whereas, Drucker-Prager

yield criterion was employed to model the plastic behaviour. The slopes analysed

were i) 18.4° (3H: IV), ii) 26.6° (2H: IV), and iii) 45° (1H: IV) with a height of

7.3m. The strip footing was parallel to the slope with its centre located at 1.4, 2.3, 3.2,

4.1, 5 and 5.9 m from the slope crest. The computer analyses were performed for

three loading conditions, i.e., e = 0, -5/6 (on the slope side) and +5/6 (off the slope

side). The finite element mesh adopted for analysis and the growth of the yield zone

are shown in Figs. 2.26 a and b.
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Fig.2.26 a) Undeformed Mesh and b) Growth of the Yield Zone for Strip

Footings on a Slope (Jao et al. 2001, 2008)
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In this study, the ultimate bearing capacity was taken as the smaller of the

following two values:

i) On the curve relating footing pressure to the area of yielded soil elements, the

pressure beyond which the slope of the curve attains a minimum constant value;

it is a criterion proposed by Wang et al. (1994).

ii) The pressure under which the yielding soil spreads to the face of slope as

illustrated in Fig. 2.26b.

The variation of bearing capacity thus obtained with change in the distance from the

crest of slope and the change in the slope angle are reproduced here in Figs. 2.27a and

b respectively. The results of analysis show that both progressive soil yielding and the

ultimate bearing capacity are greatly affected by the load eccentricity. The ultimate

bearing capacity is significantly greater for the load that acts on the slope side than on

the other side of the footing centre. Furthermore, for a 2(H): 1(V) slope in silty clay,

the influence of slope on the footing behaviour decreases with increasing distance

between the footing centre and the slope crest, and disappears when the distance

reaches about 5-times the footing width.
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Fig. 2.27 a Variation of Bearing Capacity Ratio with De/B (Jao et al. 2008)
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Liu et al. (2006) simulated the problem of bearing capacity and deformation

behaviour of a strip footing on sand slope subjected to central vertical load by finite

element method. Figure 2.28 shows the mesh and boundary conditions of the slope

model.

Fined in the

Fig.2.28 Mesh and Boundary Condition (Liu et al., 2006)

An eight-noded isoparametric quadrilateral element with reduced two-point Gaussian

integration was employed. A newly developed constitutive model, the MMX- model,

which was based on a double yield surface theory, was used. The investigators

compared the analytical results with experimental model tests and concluded that the

relationship between bearing capacity and settlement of slope obtained through finite

element analysis agreed well with experimental data. The bearing capacity became
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independent of the slope when the footing was placed far away i.e more than 10B

from the crest of the slope.

2.3 CONSTITUTIVE LAWS FOR SOILS

The behaviour of soils over a wide range of stresses is non-linear, inelastic and

dependent upon the magnitude of the confining pressure. To estimate the settlement

of soils under a foundation load, it is essential to represent accurately the laboratory or

field stress-strain curves in a form suitable for easy incorporation in the analysis.

Constitutive laws of soil define the relation between the physical quantities such as

stress, strain and time. Various factors influencing the constitutive laws of soil include

physical properties of soils, sample size, moisture content and density, confining

pressure, intermediate principal stress, rate of strain and stress history, and it is

difficult to establish a general law which takes into account all these factors.

Therefore, laboratory testing under simulated field conditions is done to establish the

constitutive laws for a given foundation soil. Various but limited simplified

mathematical models which take into account the non-linearity, stress dependency

and inelasticity have been described below:

i) Bilinear and Multi-linear Models

The simplest type of nonlinear model is the bilinear one. The material has

initial Young's modulus until the stresses reach a yield value, after which the modulus

is changed. The non-linear curve can also be divided into a number of linear curves

known as multi-linear or piecewise linear models.

ii) Hyperbolic Functions ^

Kondner (1963) and Kondner and Zelasko (1963) have found that the non

linear stress-strain curve of both clay and sand obtained in a triaxial test can be

represented by hyperbolae of the following form:

s
= a + b£ (2.17)

cr, -a.

or e= g^LZfi) (2.18)
1- %, - cr3 )

where s = axial strain

a,b = constants of hyperbola
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The plot of s/{ax -cr3) versus s gives a straight line, where a is the

intercept on the Y axis and b is the slope of the line. At a very small strain,

s
a",-cr3 =• (2.19)

so that —represents the initial tangent modulus E,. At very large strains, the relation
a

becomes

cr, - o-3 = (2.20)

so that - is the ultimate ste^faWic strength which is larger than the failure
b

strength. This is expected since the failure compressive strength at all finite values of

strain will be reached before the curve becomes asymptotic.

Duncan and Chang (1970) have used hyperbolic form of functions to simulate

stress-strain curves in terms of shear strength and initial tangent modulus as given

below:

E. = E. 1
Rf (gj - ^X1-sin </>)

2<r3 sin <j> + 2c.cos (f>

where E, = tangent modulus and R/is the failure ratio given by-

(ax-cr3)f
*/ =

(2.21)

(2.22)

The initial tangent modulus, E, has been found to vary with the confining

pressure according to the following expression (Janbu, 1963):

f \"

k.P„
yPaj

(2.23)

where Pa is atmospheric pressure. The values of constants, k and n can be readily

determined. The main limitation of the hyperbolic simulation is that it is valid only for

stress belowthe peak stress-strain curve, usually for monotonically increasing loads,

iii) Parabolic Functions

Hansen (1963) proposed two functional representations of stress-strain

relationships.

f £ ^y^
(o-, -o"3) =

a + b
(2.24)
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{cr]-CTi) = (2.25)

a + b

The first equation accounts for the possibility of parabolic variation of stress-strain

curves at small strains. The second equation is an alternative form to account for the

parabolic variation and possesses the property of giving a maximum value of

(cr, -cr3) for finite strain. Hansen (1963) used one of the data from Kondner (1963)

and compared the stresses obtained from the above equations and found that if the

stress-strain curve is initially parabolic, Eq. 2.24 is better and if it shows work

softening, Eq.2.2£should be used. -*

iv) Spline Functions

Desai (1971) used cubic spline functions to define analytically the curve

drawn through a number of data points. A spline function approximates a given stress-

strain, non-linear curve by a number of polynomials of a given degree spanning a

number of nodes or data points.

Many other constitutive models have been developed by different

investigators for use in finite element or finite difference calculations. Some of the 4

important models are: Modified Drucker-Prager/Cap Model (Drucker et al., 1957),

Modified Cam-Clay model (Burland, 1965), Single Hardening model (Lade et al.,

1988), Plaxis Soft Soil model (Brinkgreve and Vermeer, 1977), Plaxis Hardening

model (Brinkgreve and Vermeer, 1977) etc.

No soil can be accurately modelled by any stress strain law, partly because of

the complexity of its behaviour and partly because of its variability in the ground

(Naylor, 1978). In the present investigation, a simple and an acceptable model as

proposed by Kondner (1963) has been adopted for predicting the settlement behaviour

of footings.

2.4 MODEL TESTS

Many investigators have conducted model tests for studying the behaviour of

foundations on slopes. Most of these tests were for foundations on slopes subjected to

central vertical loads. Peynircioglu (1948) performed series of model tests in a box

measuring 550x330x260 mm, the size of the test plate was 256x75 mm and the main

conclusions were
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i) Almost in all the tests, the formation of the sliding wedge occurred on one side

of the fill,

ii) The observed values of the angle of triangular wedge were found to lie between

<f> and (45°+^/2)

iii) The surface of sliding in a uniform sand mass produced by a strip load consisted

of a curved part and a straight part. The observed curved part coincided

practically either with an arc of a circle or a logarithmic spiral.

Shields et al. (1977, 1981).reported the results of experiments conducted to

measure the ultimate bearing capacity of footings placed at various locations within a

granular slope. The authors also studied the scale effect and the influence of load

inclination on the bearing capacity of footing on slopes. The tests were conducted in a

sand box measuring 15 m in length, 2 m in width and 2.2 m in height. The tests were

performed on a 0.3 m wide footing stretching across the 2 m width of the box to

create a two dimensional loading case. Few tests were also conducted with a 0.6 m

wide footing to study the scale effects. The sand used in the test series consisted of a

specially crushed uniformly graded quartz material. The sand was deposited in an air

dry condition by means of a rotating drum spreader. Tests were conducted at relative

densities of 70% and 90% and on a standard slope of 2 horizontal to 1 vertical. The

bearing capacity factor, Nyq was back calculated from the experimental data by the

following equation and then compared with Meyerhofs (1957) theoretical values:

N=--^ (2-26)
n yB

> The authors concluded that Meyerhofs (1957) theory in general gives higher value of

bearing capacity as compared to experimental results. However, at shallow depths

close to the crest of the slope, the theory is closer to the actual bearing capacity. For a

footing with an inclined load, the experimental results were compared with the

inclination factor as suggested by Meyerhof (1963) namely,

lr \->"
<t>.

where i = angle of load inclination from vertical and (/>, the angle of frictional

resistance.

On an average, inclination factors from the experimental results were 0.28 and

0.53 for 300 mm and 600 mm wide footings respectively. The same factor when

(2.27)
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computed using Meyerhof s (1963) theory works out to be 0.44, which falls between

the two experimental average values.

Kusakabe et al. (1981) carried out model tests to study the applicability of

their theory. A steel container of size 500 mm long, 125 mm wide and 300 mm high

was used for the experiments. Load was applied to the model through a 50 mm wide

rigid loading plate using a manually operated loading jack. Soil used was a c- </> soil

having the following properties:

Specific gravity = 2.86

Liquid limit = 87.0%

Plastic limit = 37.5%

Apparent cohesion in termsof effective stress = 1.5kN/m

Angle of shear resistance in terms of effective stress = 30.3°

The undrained strength of the c-<f> soil as measured was in the range of 8 kN/m to 10

kN/m2. The load tests were performed under the plane strain condition by applying

the settlement at a rate of 1 mm per minute until the total settlement reached 10 mm.

The experimental values of bearing capacity were in general about 30% higher than

the theoretically predicted values. The difference in the values was explained on the

basis of the fact that the loading tests were conducted under plane strain condition,

while the values of undrained shear strength were obtained from the unconfined

compression tests under axi-symmetrical condition and the existence of friction

between the sample and the wall of the container.

Saran et al. (1989) conducted tests to study the behaviour of footings on

slopes. The tests were performed in a sand box, 3 m long, 0.6 m wide and 0.9 m high.

Dry Ranipur sand at two relative densities of 84% and 72% was used. The angles of

shearing resistance of sand at the two relative densities were obtained by performing

drained triaxial tests, and the corresponding values were 39° and 37.5° respectively. A

box type footing, 120 mm wide and 600 mm long was used and the tests were

conducted on three slopes with angles of 30°, 26.56° and 20° and at seven different

edge distances. Pressure-settlement characteristic of the footing was obtained in each

test and failure pressure was then computed using intersection tangent method. The

authors compared these results with their theoretically predicted values and concluded

that there was a good agreement among them.
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Borthakur et. al. (1988) reported the results of the experimental work

conducted with a strip footing placed on the top of a non-cohesive soil slope with

varying slope inclination and footing placed at various edge distances. A test box

measuring 1.21m x 0.6 m x 0.5 m with Perspex sheet as side wall was used for the

experiments. The test bed was prepared by placing local sand at a density of 15.20

kN/m . Two model footings of size, 71 mm x 580 mm and 58 mm x 472 mm were

used for conducting the tests. Load tests were carried out with slope angles of 0°, 10°,

15°, 25° and 30° and varying the edge distance from \B to 55. It was observed that

the experimental values of bearing capacity were higher as compared to Meyerhof s

(1963) theoretical values. The authors have concluded that for all the slope

inclinations, the bearing capacity becomes independent of the slope when the

foundations are placed at an edge distance of 5B.

Bransby and Davidson (2008) conducted a series of model tests to examine the

response of shallow foundations on upper surface of a slope and subjected to a

vertical load. They investigated the effect of fixity of a foundation on bearing capacity

and load settlement response of a footing placed on upper surface of a slope. The tests

were conducted on slopes of slope angle, [3= 0°, 10° and 20° for three different fixity

conditions: i) horizontal displacement, h, and rotation, /, prevented - 'fully fixed'; ii)

horizontal displacement only prevented -'pinned'; iii) neither h nor / constrained -

'free'. Model testing was carried out in the laboratory under plane strain testing

conditions. Soil was contained within an aluminium box of internal dimensions 670

mm wide, 500 mm broad and 500 mm deep. The box had a Perspex front face which

allowed digital photography of the soil and foundation movements as the tests

proceeded. The soil was prepared by spot pluviation to give a relative density, Dr ~

65%. The authors concluded that: i) Both angle of the slope and the fixity of the

foundation affected the bearing capacity of the foundation, ii) When the foundation

was fully free to rotate and slide the vertical bearing capacity of the foundation next to

the slope was found to be in good agreement with previous recommendations of Vesic

(1973) and Hansen(1970).

2.5 CENTRIFUGE MODEL STUDIES

Some investigators have carried out model studies in geotechnical centrifuge

for footings on slopes and subjected to central vertical and eccentric-inclined loads.
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Kimura et al. (1985) conducted experiments for foundations on slopes

subjected to central vertical loads. The following four parameters were varied: the

width of the footing, the height of the slope, the distance of the footing from the crest

of the slope and the slope angle. Toyoura sand was poured into a container from a

hopper through two sieves to form a sand deposit with uniform density. Subsequently

a slope former assembled and attached to the container and the slope was made by

sucking in sand particles with a vacuum pump. The relative density was 90±1.5 %and

the angle of shearing resistance in plane strain condition was 49°. The observed effect

of the edge distance and the slope angle was presented in terms of a ratio of Ny on

slope and Ny on level ground as shown in Fig. 2.29.

Strip
footing

:'.>.'.':::/.•//&,

(a)

0-5 1-0 1-5 2-0

Distance parameter X

(b)

Fig.2.29 Reduction in Bearing Capacity with Variation in Slope Angle and
Distance from Crest of Slope (Kimura et al., 1985)
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Gemperline (1988) reported the results of 215 centrifuge tests on model

footings located at the top of a slope of cohesionless sand. Based on the outcome of

these experiments, the author proposed an equation for determining the bearing

capacity factor, Nyq that can be used in Meyerhofs (1957) bearing capacity equation

q = 0.5yBN
Y1

(2.28)

where

A'
yq :/(<p) Xf(B) Xf(B/L) Xf(D, /B.B/L) Xf(fi./D,B) Xf(p.b/B.D, /B) Xf(/},D, IB.B/L) (2-28a)

4) =10(0,i59,-,3S6). /{g)=l0(0.34-0.2lOgt0B). f{D/B) =l+0,65(D//B), (2.28b)

f{B/L) =\-Q.21(B/L);f[Df/BB/L) =\+0.39(Df/L); (2.28c)

Ap.t/B) =1-0.4-{l-tanpY]{2/[2 +(De/Bf tan/}}}; (2-28d)

f{/},b/B,8/L) =\+0.6{B/L)[\-(\-tan/3f}ia/[2 +(De/Bf land}; (2.28e)

f(p,b/BD/B) =\+0.33(Df/B)tanfJ'{2/l2 +(De/B)2tanfj} (2.28f)

where L = length of the foundation. Various terms related to the geometrical

dimensions are explained in Fig. 2.30.

/a

rf7v.>*•*!..••',;•.'•:';.•';,*»!' -vi•.•"••V-."."''--' •"* v -•'.: '-''V*'

.,,.« <..'v*ys B /* ~- i7**V*i - \r.7p
^sfQvA '.• '••'• Df '";\///S// '<:; '.'•OtV'-.Vav't;

De :.vi:^

Fig.2.30 Definition of Terms (Gemperline, 1988)

Gamier et al. (1994) reported the results of a series of centrifuge tests to study

the bearing capacity of footings near the slopes and subjected to central vertical

loads. The sand was deposited by pluviation. The relative density and bulk unit

weight were 80% and 16.1±0.2 kN/m respectively and the angle of friction was

40.5±1.5°. The results were presented in terms of reduction factor which is the ratio

of bearing capacity on slope and bearing capacity on level ground as shown in Fig.
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2.31. Analysis of the test data led to development of an equation for reduction factor

for bearing capacity as expressed below:

"l.8tan£-0.9(tan/?)2][l-De/6fl]2 forD,IB<6
for DJB>6

where /> is the reduction factor, 8 the slope angle and De is the distance ofthe footing

from the edge of the slope

1kifi
1 •

0.8-

0.6 i

i

A/k
\/y/\rA/

0.4;

0.2-
7

18. 4#

5 - 2i.«" |

fl - 33.7* |

B

Cotg0 = 3/2, Z/t. 3/1
De/fl =0, /. /-5. 2. 3. 4. a>

Configuration* itudths Jd^

Fig.2.31 Reduction Factor for BearingCapacity for Different Slope Angles,
(Gamier et al., 1994)

Marechal et al. (1999) reported the results of centrifuge tests for footings on or

near the slopes subjected to inclined and eccentric load. The reduction in bearing

capacity of the footing onslope with reference to the bearing capacity on level ground

were expressed in terms of coefficients, ie for load eccentricity, is for load inclination

and is for slope angle. The combined effect of these three factors was represented by a

coefficient, ietw and expressed as

leSp - leXlS Xlp (2.30)

Tests were conducted for studying the effect of the individual parameters and then for

the combined parameter. The density of sand attained was 16.1 kN/m at a relative

density of 70%. The centrifuge tests were conducted at 50gon a strip footing, 40 mm

wide (2 m in prototype scale) and L/B = 1. Figure 2.32 shows various notations of

geometry used in the experiments. Different parametric values considered for the

investigation and the results of the tests are presented in Table 2.8 and Table 2.9
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respectively. It was concluded that the values of global combined reduction

coefficient, iesp were close to the product of the basic coefficients, ie x ig x i„.

Fig. 2.32 Notations Used in the Experiments (Marechal et al., 1999)

Table 2.8 Experimental Conditions (Marechal et al., 1999)

Test No. tanB Df/B De/B e/B /

1-3 y2 0 1 + 1/8 15°

4-5 Vi 0 1 + 1/8 20°

6 Vi ' 3/8 1 -1/8 15°

7 Vi 0 2 -1/8 15°

8 Vi 1/2 2 -1/8 15°

Table 2.9 Bearing Capacity Reduction Coefficients (Marechal et al., 1999)

Test No. qrei<kPa) ie is h ledp ie x is x ip

1 2016 0.85 0.47 0.67 0.27 0.27

2 1776 0.83 0.52 0.64 0.31 0.28

3 1768 0.82 0.5 0.67 0.28 0.28

4 1779 0.75 0.34 0.66 0.23 0.17

5 1941 0.75 0.28 0.64 0.18 0.13

6 2246 0.82 0.54 0.55 0.2 0.24

7 1573 0.84 0.56 0.84 0.34 0.40

8 2596 0.79 0.57 0.6 0.31 0.27
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2.6 CONCLUDING REMARKS

Various methods to determine the ultimate bearing capacity of foundations on

and upper surface of slopes have been discussed. In all these methods, the loading

considered is central vertical. No rational analytical method is available to calculate

the bearing capacity of foundations on slopes subjected to eccentric-vertical, central-

inclined and eccentric-inclined loads. Most of the model tests for foundations on

slopes reported were also for central vertical loads only.

From the above discussions, it appears that enough literature is available to

compute the ultimate bearing capacity of footings on slopes subjected to central

vertical loads. However, no rational method has been proposed as yet to obtain the

ultimate bearing capacity of footings on slopes subjected to eccentric-inclined loads.
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CHAPTER-II1

ULTIMATE BEARING CAPACITY BY LIMIT

EQUILIBRIUM APPROACH

3.1 GENERAL

In this chapter, an analytical solution for determining the ultimate bearing

capacity of a footing placed near the top edge of a slope and subjected to an eccentric-

inclined load has been presented. The solution makes use of the limiting equilibrium

method. For critical state, the eccentricity and inclination of the applied load are taken

towards the slope side. At failure, the resistance offered by the soil on the side of the

slope will be smaller than the resistance offered by the soil on the other side. Due to

this reason, the soil on the slope side attains the state of plastic equilibrium earlier and

hence a rupture surface develops on the slope side only. The shear strength of soil on

the other side will not be fully mobilised.

3.2 ASSUMPTIONS

For the development of the analytical solution, following assumptions have

been made:

i) The footing considered for analysis is a shallow strip footing having a rough

base.

ii) The weight of the soil' above the base of the footing is replaced by an

equivalent surcharge.

iii) One sided failure of soil is assumed to occur along the surface AED (Figure

3.1a). The failure region is divided into two zones. Zone I represents an elastic

region and Zone II is a combination of radial and passive shear bounded by a

log spiral ED. The centre of the log spiral is assumed to be at the edge of the

footing B, (Saran, 1970). The log spiral is represented by the equation,

9 tan 4> (1 1 \r = r0e v (j.l)

where ro = initial radius of the log spiral equal to BE,

r = radius of the log spiral at an angle #and

(j) = angle of internal friction of soil mass



F
Df

in

(a) Full Contact

(b) Partial Contact

Fig.3.1 Boundaries of Zone of Plastic Equilibrium after Failure of Soil
beneath a Strip Footing Placed on Top Surface of Slope
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The sides of the elastic soil wedge are inclined at angles ax and a2 with the

horizontal.

iv) A similar rupture surface is considered when the footing loses its contact with

the soil due to excessive eccentricity. The rupture surface starts from A'

instead of A (Fig. 3.1 b). The effective width is represented byB-x:, where x,

is the ratio of contact width to the total width of the footing.

v) The shear strength of soil on the left side of the failure plane, AE or A'E is

assumed to be partially mobilised and this is characterised by a mobilisation

factor, m. Shear strength of the soil is then expressed as-

r = m(c + a tan <fi) (3.2)

To compute the partial resistance offered by the soil on the left side of

A'E , a rupture surface as shown by the dashed line is considered which is a

combination of radial and passive shear bounded by a log spiral EF. ^^JtdXi

vi) Method ofsuperposition holds good. /($' <^\L(Cf:
/^•ACCNo

3.3 ANALYTICAL SOLUTION \ Date

An analytical solution to the problem of ultimate bearing capacity o'NLsIiiJli

footing with eccentric-inclined load has been obtained using the following steps:

i) Geometry of the failure wedge (Fig. 3.1) has been expressed in terms of

footing width, B, angle of internal friction, tp, log spiral angle, 0} and 02, wedge

angles, ax andcc2> slope angle,/?, distance of the footing from the slope edge,

De, depth of the footing, Df and contact width factor, x,

ii) Bearing capacity expression has been then developed by considering the

equilibrium of the wedge A'BE (Fig. 3.2). The forces acting on the wedge

include passive pressures on the sides BE and A'E, vertical and horizontal

components of the eccentric-inclined load, Cohesion Ca on side BE and C'a

on side A'E .

The earth pressure consists of three components, computed separately and

representing the contribution of: a) friction of the material possessing weight

and carrying no surcharge, b) friction of a weightless material upon addition of

a surcharge, q on the ground surface and c) the cohesion and friction of a

weightless material carrying no surcharge.
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Fig. 3.2 Forces on Elastic Wedge A'BE
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Fig.3.3 Forces on Soil Mass BEDC
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Fig. 3.4 Forces on Soil Mass A'EF

iii) Expressions for the passive earth pressure on the side, BE have been

developed by considering the equilibrium of the soil mass, BEDC (Fig. 3.3).

iv) Expressions for the mobilized earth pressures on the side, A'E have been

developed by considering the equilibrium of the soil mass, A'EF and taking the

mobilization factor, m (Fig. 3.4).

v) Relationship between wedge angles, a, and a2 has been derived by solving

the three equilibrium equations obtained by statics of the wedge, A'BE (Fig.

3.2). The ultimate bearing capacity has been evaluated for the case when a) all

the three equilibrium conditions are satisfied and b) the mobilization factor, m

attains the maximum value.

3.3.1 Geometry of the Failure Surface

Equations have been developed for a general case when the footing has lost

part of its contact with the soil below. The contact width, A'B has been assumed as

Bxv

For full contact width, Bxx = B i.e. x,= 1.0. In Fig. 3.2, from triangle, A'BE

A'B BE A'E

Sin(al +a2) Sina2 Sinaf

A'BSina,
Therefore, BE =

Sin(al +a2)

52

(3.3)



Substituting A'B = Bx}

BE==_BxLSmaI =^ (3 4)
Sin(a{ +ol2) ^*---

where x = (3.5)
Sin(a] +a2)

A'BSina, Bx.Sinax n M
Also, 4'£ = 4 =——J "-r = 5«xfy (3.6)

S/wfa, + a2) Sin(a] +a2)

where v = ' @-7)
Sin(ax +a2) Jf

The log spiral angle onthe side of partial mobilisation is

6>2=180-a2 (3-8)

Then A'F = A'E-eeM=B-xl-yew» (3.9)

fhe log spiral angle, #,on the side of the full mobilisation on the slope side is

unknown. This angle has been determined by trial and error as below.

Consider the triangle BCD (Fig. 3.3)

BC =De+--=- (3-10)
tanB

where %= B+ctj+0,-180° (3.11)
Sin$ SinB

DD_ BCSinB _(Pe+DfI^B) SinB (3 J2)
Sing SinE,

From the log spiral

BD= BE e0^ =B*x:xew (3-13)

(De +Dj /tan BJSinB
•= B#..xe',m*

Sin%

(Dt/B+Dj/BtanB)SmB _^ ^,an, (3 M)
Sing '

01 can be obtained by trial from the above expression.
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3.3.2 Expression for Bearing Capacity

At failure, the following forces act on the wedge, A'BE (Fig. 3.2).

i) Passive earth pressure, Pp acting on the face, BE at an angle, <j) with the

normal at that point,

ii) Passive earth pressure, Pm at partial mobilisation, acting on the face, A'E at

an angle, (f)m with the normal at that point, where </>m is given by the following

relation:

<pm =tan-'(mtan<*) (3.15)

iii) Cohesive force, Ca acting along the face, BE.

iv) Cohesive force, C'a acting along the face, A'E

v) Eccentric-inclined load, Qd at point, C at a distance, e from the centre of the

footing, C/.

Neglecting the weight of the wedge A'BE , the equilibrium of the footing requires that

ZF = 0

QdCosi = PpCos(ax -</)) +PmCos(a2 -(pm) + CaSina{ +C'aSina2 (3.16)

If c is the unit cohesion, then

Ca=c-BE =c-B-x, lY--= (3.17)
Sin(ax +a2)

C'a=m-c-B>x{ --"-= (3.18)
Sin(a] +a2)

Substituting for Ca and C'a from Eqs. 3.17 and 3.18 in Eq. 3.16 gives-

,-.„.„•,, ,-.„„, , - C'Bx.'SinasSina, m'cB-x,'Sina-,-Sina,Qd Cost =PpCos(a] -</>) +PmCos(a2 -<pm) +—-/- 2——-= + —\ =—-=
bin(al + a2) Sin(a} +a2)

^ s-i • r. ^ , „ ^, , in (\ + m)c'B'X.>Sina* Sina, „ ...or QdCosi =PpCos(a,-(l)) +PmCos(a2-(pm)A >-—J \ L (3.19)
Sm(a] +a2)

The passive earth pressure, Pp can be divided in to three parts P , Ppq and

Ppc. The pressure, P represents the resistance due to the weight of the soil mass

BEDC (Figure 3.3). The point of application of P is located at lower one third of

BE. The forces, Ppq and Ppc represent the resistance due to surcharge and cohesion

respectively. Since both the pressures, Ppq and Ppc are uniformly distributed, their
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point ofapplication is located at the midpoint ofBE. Similarly the earth pressure, Pm
at partial mobilisation, m can be divided into three parts Pmy, Pmq and Pmc,

representing the forces due to weight, surcharge and cohesion respectively ofthe soil

mass A'EF (Fig. 3.4).

The expression for bearing capacity can be evaluated by substituting the expressions

for Pp and Pm in Eq. 3.19 as (Ppy +Ppq +Ppc) and (Pmy +Pmq +Pmc) respectively.

QllCosi =(Ppy+Ppq+Ppc)Cos(al -</>) +(Pmy+Pmq+Pmc)Cos(a2 -<t>m)
(1 +m)c>B'Xi-SinarSina] (3.20)

py pi

+ -

Sin(a] +a2)

The surcharge intensity, qon the side ofthe slope (Figure 3.1) can be expressed as-

DeyDf+~yDf2/tanB
q= i-2 (3.21)

De+Df/tanB

The surcharge intensity, q on the side without slope can beexpressed as-

q' =YDf (3.22)

By introducing Ny, Nq and Nc factors as-

2[PprCos(ai-^)+PmrCos(a2-^)] (l23)
7 yB2Cosi

2[P„Cos(al-t) +PmqCos(a2-*m)] (124)
' yDfBCosi

_2[PpcCos(a] -</>) +PmcCos(a2 -&,)](! +m)x, Sina, Sina2
cBCosi Sin(ax+a2)Cosi

and substituting these factors in Eq. 3.20, the bearing capacity can be expressed as-

Qd=B -yBNr+yDfNq+cNc
2*

(3.26)

fhe quantities Ny , Nq and Nc are referred to as the bearing capacity factors. These

are non-dimensional quantities which depend upon <fi,B,De/B,Df/B, e/B and i

only.
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3.3.3 Computation of Passive Earth Pressures Ppy , Ppq and Ppc

The equilibrium of the soil mass BEDC has been considered to express the

components of passive earth pressures, Ppp Ppq and Ppc, (Fig. 3.3). The forces, which

have been considered to determine these passive earth pressures, are listed below:

i) Weight, Wof the soil mass BEDC which acts vertically downward through the

centre of gravity of the soil mass,

ii) Surcharge weight, q acting on side BC. This surcharge is assumed to be

uniformly distributed along BC.

iii) Cohesive force, C acting along the log spiral, DE.

iv) Cohesive force, Ca acting along the face, BE.

v) Passive earth pressure, P acting on the face BE. It acts at lower one third

point of BE and it makes an angle, ^ with the normal at that point,

vi) Passive earth pressure, Ppq acting on the face BE. It acts at mid point of BE and

makes an angle, <p with the normal at that point.

vii) Passive earth pressure, Ppc acting on the face BE. It acts at the mid point of BE

and makes an angle, </) with the normal at that point,

viii) Resultant, F of the normal and frictional forces acting along the log spiral. It

will pass through the centre of the log spiral, since it makes an angle, </> with

the normal at the point of application.

The passive earth pressures namely, Ppy, Ppq and Ppc have been determined by

taking moment of all the forces about the centre of the log spiral, which is at the edge

of the footing, B. The moment due to the force, F becomes zero as it passes through

the centre of the log spiral. The moments of the other forces are listed below in the

same order:

i) Moment of the soil wedge, BEDC (Fig. 3.5):

Mly = Moment of wedge, BED + Moment of wedge, BDC

Moment of wedge BED (Fig.3.5),

ft 1 ?
M\(\)= \-y/dO -rSin(d-Tj')

o 2 3
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Fig. 3.5 Method for Computing Moment of Soil Wedge BED

or

or

M\(\) 1 x,V e3e,tm*{StandiSin(0] -rj')-Cos(0] -n')}
yB? 3 (9 tan2 <p +\) + cos 77' + 3tan tpSinr]'

(3.27)

Moment of wedge BDC,

M\(2)= Moment of wedge BJD - Moment of wedge CJD

1 2
=~y(BD)Siny/(BD)Cosy/ -(BD)Cosy/

1
y(CD)SinB(CD)CosB (BC) + -(CD)CosB

^^J-xA'SimjfCos^e^
yBi

3 3 30, tan t)
CosB

Sin2y/ SinE, 2 Sin y/CosB

SinB [SinB 3 SinB

M\ =M\(\) +M\(2)

(3.28)

(3.29)

ii) Moment due to surcharge weight acting on BC:

Mlq=q(BC)-^-
1

2
j DeyDf+-yD//tanB
2 De+Df/tanB
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or

yDfB

D, 1 Df i D. Dt i«. + . f

iii)

iv)

v)

B 2 B tanB){ B B tanB

Moment of cohesive force, C acting along the log spiral, DE:

t 2<?ltan<* _ jx
M\ =\cr2 <te =cr02 \e26i3n*d0 =cBx2x2

2tan^

M\ ._ 2 2(e
or

29\ tan <j> i\

cB2 ' 2tan^

Moment of the cohesive force, Cfl acting along BE about 5 will be zero

Moment of the passive earth pressure, P :

My=PnyCoS(p-(BE)

Substituting the expression for BE from Eq. 3.4,

My=^PpyBCos<px]x =PpyBr]

where r, =fcos**,*
vi) Moment of the passive earth pressure, Ppq:

Mq =PpqCoS(pX-(BE) =PpqCos^BX]x

where r1 = —cos d>x. x
2 2

vii) Moment of the passive earth pressure, .PpC:

Mc = Ppc Cos<p-(BE) = Ppc Cos(t>-Bx,x

= PpcBt2 .

viii) Moment of the force F about B will be zero

For equilibrium of the soil mass BEDC,

ZM = 0

or M\ +M\ +Mxc=PpyBrx +PpqBr2+PpcBr2

or N„ yB3+ Npq yDf B2 +Npc cB2 =PpyBh +PpqBz2 +PpcBx2

where
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\I
My

JV yB3

NPq
M\

yDfB2

NpC
M\
cB2

py
h

(3.36)

(3.37)

(3.38)

Eq. 3.35 has been solved by considering three independent cases, namely,

Case 1: For soil having weight only, without surcharge i.e. c = 0,q = 0,

NpyyB'=PprBh

PDY=^YB2 (3-39)

Case 2: For weightless soil whose ability to sustain a surface stress depends on the

presence of surcharge only i.e. y = c = 0,

NpqyDfB2=PpqBr2

P,a=^LrDfB (3.40)
/"/

r2

4

Case 3: For weightless soil with no surcharge, but possessing cohesion,

i.e. y = q = 0,

NpccB2=PpcBr2

Ppc-^cB (3.41) ^
T2

3.3.4 Computation of Passive Earth Pressures Pmy, Pmq and Pmc

The passive earth pressures, Pmy , Pmq and Pmc at the mobilisation factor, m

can be determined by considering the rupture surface A'EF as shown in the Fig. 3.1.

For the determination of the passive earth pressures, the equilibrium of soil mass,

A'EF (Fig. 3.4) has been considered. The forces, which have been considered for the

determination of the passive earth pressures, are listed below:

i) Weight W3, ofthe soil wedge, A'EF which acts vertically through the centre of

gravity of the wedge,

ii) Surcharge, q acting on A'F uniformly.
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iii) Cohesive force, C acting along the log spiral EF.

iv) Cohesive force, C'a acting alongA'E .

v) Passive earth pressure, Pmy acting on the face A'E . It acts at lower one third

point of A'E and makes an angle, d>m to the normal at that point,

vi) Passive earth pressure, Pmq acting on the face A'E . It acts at mid pointof A'E

and makes an angle, <f>m to the normal at that point,

vii) Passive earth pressure, Pmc acting on the face A'E At acts at mid point of A'E

and makes an angle, <j)m to the normal at that point.

viii) Resultant, Fm , of the normal and the frictional force along the log spiral, EF.

It passes through the centre of the log spiral.

The passive earth pressures, Pmy, Pmq and Pmc have been determined by taking the

moments of all the forces about the centre of the log spiral, which is at the edge of the

footing A'. Expressions for moments of all the forces are given below in the same

order as the forces are listed above:

i) Moment of the weight of the soil wedge, A'EF (Fig. 3.6):

Fig. 3.6 Method for Computing Moment of Soil Wedge A 'EF

M m7 = Moment of wedge A'EF

"21 ?= \-yr2 dd-rSin(O-ri)

^,a"'" {3 tan <t>m Sin(02 -tj)- Cos(d2 - tj)}
or

oJ2 3

M my 1

3

*,y .
rB3 (9 tan2^+l) + cos n + 3 tan d>m Sin n
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ii) Moment of the surcharge, q 'acting on A'F :

'A'F^M\,q=q'(A'F) — =-yDfB2x2y2e
2

1 >2„ 2.,2„20,tan<i

V ^ J 2'

M\a 1^_ =_LXi2^2e2e2tan^„ (343)
^D752 2

iii) Moment of mobilised cohesive force C" acting along the log spiral, £F:

#2 »2

M'mt = YmcrdOr =mc \r02e2e,wipmd6

= mcB2xx y2
/ 202tan&, _j\

2tan^m •

M mc W .X]2y2( e2&2lanPm -\)
c Z?2 2tan(pt

(3.44)

iv) Moment of the cohesive force, C„ about ^' will be zero.

v) Moment of passive earth pressure, Pmy :

Mmy =Pmy Cos<pm -(A'E) =Pmy Cosi,m-Bxxy = Pmy Br, (3.45)
v- - / my t m ~.

2
where r3 = —Cos$mx}y

vi) Moment of passive earth pressure, POTt?:

M-, = PmqCos<pm -(A'E) =PmqCos</>m-BX]y =PmqBr< (3.46)

where r4 =—Cosi>mx^y

vii) Moment of passive earth pressure, />mc:

Mmc =PmcCos<pm X-(A'E) =PmcCosd,mX-Bxxy =PmcBr4 (3.47)

(viii) Moment of resultant Fm will be zero as it passes through the centre of the log

spiral.

For equilibrium of the soil mass, A'EF f

ZM = 0

MlmY+Mxmq+MXmc = Pmr Br,+PmqBT4 +PmcBT4
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or Nmy yB3+ NmqyDfB2 +Nmc cB2 =Pmy Z?r3 +PmqBr4 +PmcBz4 (3.48)

where

ML..
(3-49)

(3.50)

(3.51)
cB

Equation 3.48 has been solved by considering three independent cases.

Case 1: For soil having weight only, without surcharge i.e. c = q = 0,

NmyyB3=PmyBr2

or Pmy=^--yB2 (3.52)

Case 2: For weightless soil whose ability to sustain a surface stress depends on the

*- presence of surcharge only i.e. y = c = 0

NmqyDfB2=PmqBv4

N
or Pmq=^--yDfB (3.53)

Case 3: For weightless soil with no surcharge, but possessing cohesion, i.e.

y = q = 0

*" NmccB2=PmcBr4

or Pmc =!--=-cB (3.54)
r4

The expressions foxPpy, Ppq, Ppc and/^ , Pmq, Pmc thus obtained have been used in

Eqs. 3.23, 3.24 and 3.25 to calculate the bearing capacity factors. But these values

cannot be calculated unless the wedge angles ax and OL2 are known. The values of Ct\

and a2 have been determined by considering the equilibrium of the wedge, A'BE

separately for soils having weight only, cohesion only and surcharge only.

Nmy
M^my
yEr

Nmq
M^mq

yDfB2

M
M\c
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3.3.5 Wedge Angle Relation

i) For soil having weight only (c = q = 0)

By considering the static equilibrium of the wedge^'5£ (Fig. 3.7), three

equilibrium equations have been obtained to determine the wedge angle relationship,

ax and a2 for a particular inclination of load and eccentricity/width ratio. In Fig. 3.7,

e represents the eccentricity of the load Qdy from the centre of the footing C/,

whereas et represents the effective eccentricity, which is the distance of the load from

the centre C2of the contact width B.xj.

B Qd\

A'

B* \ i

C1 C2 C

^ \/a2 I ei OiV

- BE

y
my

Fig.3.7 Forces on Soil Wedge A'BE for c = q = 0

From the Fig. 3.7,

B-x, ^B >
e

^2 ;

B-x, B
— - + cCi —

2 2 2

Dividing by Bxi, one gets

e, 1 1 e
- +

1 B-*\B • jc, 2 2x

Applying the equations of equilibrium,

ZV = 0

Ppy cos(a, -d>) + Pmy cos(a2 -<f>m) = Qdy cosi

Z// = o

F^sin^, -d>) -P cc
my

>s(a2-<f>m) = Qdysini
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(3.56)

(3.57)
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-*

2
Pmrcostmx-A'E +Ppycost -BE +A'E •cos (a, +a2) + /* sin d> •A'E•sin(«l + a2)

IBx,
= Qdy COsi + e,

Substituting the expressions for BE and A'E from Eqs. 3.4 and 3.6

2 , Bxx sin a,-^ cos^m —J ^ +P cos^
3 sin(a, + a2)

1 Z?x,sina, 5x, sin aI .11 1 I (A |

3 sin(a, + a2) sin(«,+a2)
cos(a, +a2)

+ P sin?)
Bx, sin a1 .Mil IA,

sin(«, + a2)

1 sin a

sin(«, + «2) = £?. cos i
Bx,

+ e,

or -Pmy cos <f>m+Ppy cos</>
3 sin a,

+ cos(a, + a2) + P sin <j> sin(a, + «2)
/>r

= Qdycosi
sin(a{ +a2)

sin a 2 Bx
(3.58)

i J

Solving the above three equations of equilibrium i.e. Eqs. 3.56, 3.57 and 3.58, the

wedge angle relations ax and a2 have been obtained in terms of <f>, 0m , e/B, i andx/.

From Eqs. 3.56 and 3.57, one gets,

Qdysm(ax-<l>-i)
P =

my sin(a,+a2 -<j>-<frm)

Qd sm(a2-tm+i)
and P = —

sm(ax+a2-ifi-(pm)

(3.59)

(3.60)

Substituting these expressions of P and P from Eqs. 3.59 and 3.60 and

expression for —— from Eq. 3.55 in Eq. 3.58, one gets,
Bxx

2 sin(a, -<p-i) ^A sin(a2 -</>„,+ i)
3 sin(a,+«2 -</>-(/>„)

cos<pm+-
sin(a,+a2-0-0J

cos^sina2

3 sin a,

sin(a, + a2)

+ cos(a, +a2-</>)

1
= COS I •

sin a

+ -

Bxx 2X| j
(3.61)

Equation 3.61 has been simplified and expressed as a quadratic equation in terms of

tana2 as given below.

A,, tan2 a, + B„ tana,+C„ = 02TV-y
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or tana2 =

where

By±^B/-4AyCy
2/f

(3.62)

Ay =cos^cos(^m -/) +2sina,cos^msin(a, -^-/)-3sin«, cos(^„, -/)sin(a, -</>)

3cos/ cos a, cos(«, -<fi-</>„) 1 +
/ j . \ i —.V|

Z?y = 3sina, cos(a, - ^ - ^m + /) - cos 0 sin(^m - /)

'i+J-A."-3cosi sin(2a, -0-<f>m)

C = 2sina, cos </>m sin(a, - 0 - /) - 3sin a, cos(a, - ^) sin(^m - i)

•3sin«, cos/' sin(«, -<f>-<f>m) 1 +
5x, 2x, j

ii) For soil having surcharge only (y= c = 0)

Figure 3.8 shows the forces acting on the wedge, A'BE .

Fig.3.8 Forces Acting on Wedge A'BE for y= c = 0

Applying the equations of equilibrium, one gets,

TV = o

PPu cos(a, -</>) + P cos(a2 -</>„)= Qdq cos i
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(3.63)

(3.64)

(3.65)

(3.66)
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Z// = 0

Pp„ S'n(«l -#)- Pm S'n(«2 ~K ) = 6* Sin /mV J'"V"-2 YmJ-^Jq (3.67)

IM,=0

Pmq™s<f>mx-A'E + Ppqcos</> —BE +A'E •cos(a] +a2) + P sin^-^'£-sin(«, +a2)

= 0rfaCO5<
£x,

+ e,

Substituting the expression for BE and ^'£ from Eqs. 3.4 and 3.6, the above equation

reduces to

-Pmq^s^>m+Ppq
s'ma2 cos^

2 sin a,
+ cos(a, +a2 -0)

From Eqs. 3.66 and 3.67, one gets,

£Lsin(«i-0-O

mq sin(a,+a2-^-0J

and P„„ =
Q.sm(a2-(f)m+i)

!"l sin(a,+a2-^-^J

Substituting these expressions for Pmq and Pdq from Eqs. 3.69 and 3.70 and

expression for —— from Eq. 3.55 in Eq. 3.68, one gets,
5x,

1 sin(«, -(p-i) ^A sm(a2 -(pm+ i)

QdQ cos i
. sin(a, +a2)

sin a 2 Bx
(3.68)

i J

(3.69)

(3.70)

2 sin(a] + a2 -</>-<f)m)
cos(pm+-

sin(a,+a2-0-^J

cos^sina2

2sin«,
+ cos(«, +a2 -</>)

= cost
sin(ax + a2)

sin a

1 +
Bx{ 2x, j

The above equation can be simplified and expressed as a quadratic equation as,

A tan2 a, + B,, tan a, + C„ = 0-2 ' "q <•«""-2 ^q

bb

(3.71)



or tana2 =

where

:JB;-AAqCq
2A„

A, = cost/>cos(t/)m -O +sina.cos^si^a, -^-/)-2sina, cos(^„, -/)sin(a,

2cos i cos a, cos(«, -<t>-<pm) 1 +
DXi ZXi y

5 = 2sina, cos(«, - (/> - </>„, + /) - cos^ sin(^m - /)

2cosi sin(2a, -<p-<pm) 1 +
e 1

Bx{ 2x, y

C0 = sin a, cos <j)m sin(a, -<f>-i)- 2sin a, cos(a, - 0)sin(^m - /)

-2sin a, cos/ sin(a, -$-$m)
e 1

Ej*\ i ji^^v i

iii) For soil having cohesion only (q = y = 0)

Figure 3.9 shows the forces acting on the wedge A'BE .

Qdc
B \

A'*

Bxi \ i
i

Ci c2 C

S/tt2 I ei
a\

B

Y
- BE

/
mc

pc

Fig.3.9 Forces Acting on Wedge A'BE for q = y= 0

Applying the equations of equilibrium, we get,

1^ = 0

P cos(«, - <f>) + Pmt cos(a2 - (j>m ) + Cu sina, + Cu sina2 = gA cos/

67

(3.72)

(3.73)

(3.74)
+

(3-75)
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Substituting the expressions for Ca and Ca from Eqs. 3.17 and 3.18, one gets,

Ppc C0S(«. - P) + Pmc C0S(«2 - </>m ) +
(1 + m)cBx, sina, since, _ ,_ _,.

=2dccos' (3.76)
sin(a, +«2)

S// = o

P„tsin(a, -(t>)-Pmc sm(a2 -</>„)•+ m.c.A'E .cosa2 -c.BE.cosai =Qdcsini

Substituting the values of BEand A'E from Eqs. 3.4 and 3.6 and after simplification,

one gets,

Ppc Sin(°M -4)- Pmc Sin(«2 -<t>m) +
cBxx(m sin a, cosa2 - cos a, sin a2)

sin(a, +a2)

Qdcsini (3.77)

XM,=0

Pmc ^S(/>m-A'E + Ppc cos^>
1

5£ + ^'£.cos(a, +«2) + T5 sin^.^'£sin(a, +a2)

£x,^
+ c.BE.A'E. sin(a] +a2) = Qdc cosi e,+

Substituting the expressions for 5£ and A'E from Eqs. 3.4 and 3.6, expression for

from Eq. 3.55 and simplifying, one gets,
Bx,

1
Ccos^+P.pc

cos^sina2

2 sin a,
+ cos(a, +a2-</>) + c.5x,.sin«2

= Qdc cosi
sin(ax + a2)

sin a*

1 +
BXX 2X| y

(3.78)

The equilibrium equations (Eqs. 3.76, 3.77 and 3.78) are non-homogeneous. The

quantities Ppc, Pmc and Qdc cannot be eliminated as it was possible in cases i) when

soil is having weight only (c = q = 0) and ii) when soil is weightless having surcharge
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on\y(y = c = 0). To obtain the relation between a, and a2 for a particular value of <f>,

<pm , e/B and /, trial and error method has been used. This method is explained below:

i) Assume a value of wedge angle, ax for a given set of values of <fi, $m, e/B , i,

De/B, Df/B and B.

ii) For the above values of parameters, assume a value ofa2. Find the value of

6Xby trial using Eq. 3.14. Compute the value of Ppc/cB, Pmc/cB using Eqs.

3.41 and 3.54.

iii) Substitute the values of Ppc/cB, Pmc/cB in Eq. 3.76 and calculate the value of 4

Qdc/cB.

iv) Substitute the values of Ppc/cB, Pmc/cB and Qdc/cB in Eq. 3.78 and obtain

the value of £M .

v) If Y.M * 0, then select another value of a2 and repeat the steps from ii) to

iv), till £M=0.

vi) For X M ~ 0, pick up that set of values of ax and a2 for the given set of
-4-

values of (/),(/>„,, e/B, i, De/B, D//B and B and substitute in Eq. 3.77 to

satisfy I# = 0.

vii) If zZ H - 0, then pick up ax, a2 for the given set of values of </>,(/>m, e/B, i,

De/B, D/B and B. If £// * 0, then assume another value of ax for the same

given values of parameters and repeat steps from i) to vi) till XH = 0

condition is satisfied.

In this way, the wedge angle relation between ax and a2 for the given set of

parameters can be determined.

3.4 COMPUTATIONS AND RESULTS

As indicated earlier, computations for bearing capacity were carried out

separately for three different cases, namely- i) for soils considering its weight only,

without surcharge and cohesion, ii) for weightless and cohesionless soil having -*.

surcharge only and iii) for soils having cohesion only but without weight and

surcharge, so as to evaluate the bearing capacity factors Ny, Nq and ./Vc

respectively.
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The following steps were followed to find the values of Ny for a given value

of angle of internal friction, <f), slope angle, B, depth factor, Df/B, edge distance, De

/B, eccentricity, e and inclination of the load, /:

i) A value of mobilisation factor, m is assumed,

ii) The value of 4>m is calculated using Eq. 3.15.

iii) The value ofax is assumed.

iv) The value of a2 is obtained from the wedge angle relationship developed in

± Eq. 3.62.

v) The value of angle 9X is calculated by trial using Eq. 3.14.

vi) The passive earth pressures, Ppy / yB and Pmy / yB are obtained by using

Eqs. 3.39 and 3.52.

vii) The above computed values of passive earth pressures satisfy the two

equations of equilibrium, namely Y,V = 0 and £ A/ = 0 simultaneously as the

former is used for determining the bearing capacity, Qd and later is used for

developing the wedge angle relationship. The equilibrium equation, £// = 0

remains only to be satisfied.

viii) Substitute the values of earth pressures obtained in step vi) in Eq. 3.57. If this

equation Y.H = 0 is satisfied, then pick up the value of ax and a2.

Otherwise assume another value of <xx and repeat the steps iv) to vii).

ix) Repeat the steps ii) to vii) for different values of mobilization factor, m. The

passive earth pressures corresponding to the maximum value of m satisfying

all the three conditions of equilibrium are adopted in computing the bearing

capacity factor, Nr

x) The passive earth pressures and wedge angles for the maximum value of

mobilization factor, m which satisfies all the conditions of equilibrium are

substituted in Eq. 3.23 to obtain bearingcapacity factor, Ny .

The maximum value of m was adopted because for failure, the soil must

develop maximum possible resistance compatible with stability. The corresponding

bearing capacity factor is the smallest in this case. Computations for Ny were carried

out for range of values of <j> ,B, Df/B, De /B, e/B and i and presented in the form of

*
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charts in Figs. 3.10 a, b, c, d for parametric values, /=0°, D/B=0, e/B=0.0, 0.1, 0.2 and

0.3, and De /B varied between 0 to 5.0 and for values of slope angles, B varied

between 0° to 40°. Charts for Ny values are presented in Figs. 3.11 a, b, c, d for load

inclination, /=10° and in Figs. 3.12 a, b, c, d for load inclination /=20°. Similar charts

for Ny have also been presented for D//B=Q.5 and Df/B=\.0 in Appendix-I. It is to be

noted that for cohesion less soil, Ny value is to be taken only when angle of friction

<j> is greater than the slope angle, B, or otherwise the slope becomes unstable and this

analysis cannot be applied.

The same procedure as given above for Ny has been followed for the

evaluation of bearing capacity factor N' and the computations were carried out and

presented in the form of charts in Figs. 3.13 a, b, c, d for parametric values, /=0°,

D/B=0, e/B=0.0, 0.1, 0.2 and 0.3, and De/B varied between 0 to 5.0. Charts for Nq

values are presented in Figs. 3.14 a, b, c, d for load inclination, /=10° and in Figs. 3.15

a, b, c, d for load inclination /=20°. The Nq values for surface footing (Df/B = 0)

have been found to be independent of slope angle B. Similar charts for Nq have also

been presented for D/B=Q.5 and D/B=\.0 in Appendix-II. While using these tables

for cohesionless soils, Nq values will be picked up only when slope angle B is less

than friction angle (/>.

The procedure for computation of bearing capacity factor, Nc is different.

Here the earth pressures, Ppc /cB, Pmc /cB, determined during calculations of the

wedge angles ax and a2, satisfy all the three conditions of equilibrium. So these

values are substituted in Eq. 3.25 to calculate the bearing capacity factor, Nc. These

values of Nc are presented in the form of charts in Figs. 3.16 a, b, c, d for parametric

values, /=0°, Df/B=0, e/B=0.0, 0.1, 0.2 and 0.3, and De/B varied between 0 to 6.0 and

for values of slope angle, Bvaried between 0° to 50°. Similarcharts for Nc have been

presented in Figs. 3.17 a, b, c, d for load inclination, /=10° and in Figs. 3.18 a, b, c, d

for load inclination /=20° . Similar charts for Ny have also been presented for D/B=0.5

and Df/B=\.0 in Appendix-Ill.
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CHAPTER-IV

PRESSURE-SETTLEMENT CHARACTERISTICS OF

FOOTINGS ON UPPER SURFACE OF SLOPES

4.1 GENERAL

In this chapter, a methodology has been presented to predict the pressure-

settlement and pressure-tilt characteristics of a footing placed near the edge of a slope

and subjected to eccentric-inclined load using the constitutive laws of soil.

Sharan (1977) studied the behaviour of a footing resting on both clay and sand

surfaces using non-linear constitutive laws and the footing was considered to be

subjected to central vertical load. One of the important findings of this study was that

the pressure versus average settlement response of a flexible footing is very close to

the pressure versus settlement response of a rigid footing. For a given pressure

intensity, the maximum difference between the average settlement of a flexible

footing and the settlement of a rigid footing was found to be less than 3.5%.

Advantage of this concept has been taken in the present study. Initially, the footing is

analysed considering it to be a flexible footing, and then the results are interpreted for

the case of a rigid footing. The method makes use of theory of elasticity only for

stress calculation; the stress-strain relations needed for the subsequent phase of

calculation are taken from the results of triaxial tests performed on actual soil

specimens. Since the method takes care of the non-linearity of a real soil obtained
from experiments, a good agreement can be obtained between the calculated and

actual settlements.

4.2 STRESS EQUATIONS

Soil, in general, is a non-homogeneous and anisotropic material. In sands,

Young's modulus, E is dependent on the confining pressure. However, E is

independent of confining pressure in fully saturated over consolidated clays.

Presently, there is no method available in which variation of E with confining

pressure can be considered for computing the stresses in soil. The equations which are

available for calculating the stresses in a soil mass due to different load conditions are

derived from Boussinesq's equation, which assumes the soil to be elastic, isotropic
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and homogeneous. Further, these equations are applicable to the footing load applied

on a surface of a level ground. No method is yet available for calculating the stresses

due to footing load on a soil mass which is restricted by a slope on one side. Hence, a

new method is proposed for finding the stresses due to a footing load placed on a

slope. In the first step, the stresses are calculated considering the footing placed on a

level surface ABE as shown in Fig. 4.1.

C D"

B /

Extending to
•

OO

Extending to
1>

oo

D

Fig. 4.1 Calculation of Stress due to Loading on the Top of a Slope

Then the soil is loaded with an imaginary embankment loading, BC'D'E which is

exactly opposite to the wedge BCDE and the stresses are calculated due to this

loading. These stresses are then deducted from the previous stresses computed in the

first step so as to get the stresses due to a footing load on a sloping surface.

This concept of calculating the stress at any point is verified by comparing

with the experimental results reported by Bathurst et.al. (2003) and reproduced in Fig.

4.2. It can be observed from this figure that the calculated stresses match very well

with the experimental stress values.
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150 200

Pressure, kPa

300

Fig. 4.2 Comparison of Calculated and Experimental Stresses
(Bathurst et.al. (2003)

Different available stress equations used in the present study are reproduced

below:

i) Uniform vertical loading (Fig. 4.3)

i 2b

Fig. 4.3 Uniform Vertical Loading

Inplane stresses ax, ay and txz are given by-

az = —[a +sin a •cos( a +28)\
n

109
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ii)

<jx=—[a - sin a -cos/a +28)]
n

txz = —sina •sin(a + 28)
n

Uniform horizontal loading (Fig. 4.4)

o~z = —sina •sin(a + 28)
n

<J.. -
71

R
log, —]— - sina. sin/a + 28)

R/

txz =—[a - sin a •cos(a +28)]
n

2b

Fig. 4.4 Uniform Horizontal Loading

iii) Vertical loading increasing linearly along footing width (Fig. 4.5)

CT.

o\

2n

2k

/L
2n

X,. =

x
a- sin28

—a log„ —]— + sin 28
b b 5t R/

1 + cos 28
za
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(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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iv)

2b

Fig. 4.5 Vertical Loading Increasing Linearly along Footing Width

Horizontal loading increasing linearly along footing width (Fig.4.6)

ct. =

CT,.

r„

2n

JL
2n

J_
2n

1 + cos 28 -
za

3za x. R,

—-Jhs-J7
•cos 28 -5

x z Rx .
—a—log,, —— + sin28
b b &e R/

2b

(4.10)

(4.11)

(4.12)

Fig. 4.6 Horizontal Loading Increasing Linearly along Footing Width
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(v) Embankment loading (Fig. 4.7)

n a

CTV =•
n a

aS + xa + 2zlog(

rx. = za
na

R,

*• °o

(4.13)

(4.14)

(4.15)

Fig. 4.7 Embankment Loading

where

<JX = normal stress along horizontal direction

ct. = normal stress along vertical direction

Tx. - shear stress

other notations are shown in respective figures

4.3 ASSUMPTIONS

Following assumptions have been made in the analysis:

i) The footing has been assumed as flexible and the contact pressure distribution

as uniform for central vertical loading. The contact pressure distribution for

central vertical load is shown in Fig. 4.8 a, eccentric vertical load in Figs. 4.8

b, c, for central inclined load in Fig. 4.8 d and for eccentric- inclined load in

Figs. 4.8 e and f respectively.
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11 A "

B

2
q =

Fig. 4.8 a Contact Pressure Distribution for Central Vertical Loading

92
5

B
<7i =

6^
+ —

5/

Fig. 4.8 b Contact Pressure Distribution for Eccentric Vertical Loading
for e/B<l/6

v^ J

40
/ i„\2e

By
3/3

Fig. 4.8 c Contact Pressure Distribution for Eccentric Vertical Loading
for e/B>l/6

o

ii ii n A a n

• • • • H

q,

-•9*

(9 cos/

J B
Qsm i

B

Fig. 4.8 d Contact Pressure Distribution for Central Inclined Loading
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qv2

11,2

°s Ij
<1

»
Qcosi

B
1-

oe~\

' Bj
1

1

1

1

(?sin/

S

6e_
B

•—•—•—•

* '*"••"--—

?»i-

qh\

£)cos/

B

Qs'mi

B

f 6e^
1 + —

Bj

1 + —
B

Fig. 4.8 e Contact Pressure Distribution for Eccentric Inclined Loading
for e/B<l/6

AQCosi

2e

B
3B

4(9 sin/

2e_
~B

3B

Fig. 4.8 f Contact Pressure Distribution for Eccentric Inclined Loading
for e/B>l/6

ii) The whole soil mass below the footing has been divided into large number of

thin horizontal strips.

iii) There is no slippage at the interface between the layers of the soil mass,

iv) The effect of weight of the soil mass has been added in the determination of

stresses in soil mass.

v) A coefficient, F has been introduced such that at all the stress levels, the

following relationship is satisfied:
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^r

qu °u
= F (4.16)

q 0-1-0-3

where

qu = ultimate bearing capacity

q = intensity of load less than ultimate bearing capacity

<7U= ultimate stress from hyperbola relationship of Kondner(1963) and is equal

to 7/6

ct/ and ctj = major and minor stresses in the soil due to load, q and weight of

soil

4.4 VERTICAL SETTLEMENT AND TILT

Procedure adopted for obtaining pressure-settlement and pressure-tilt

characteristics under different loading conditions are given in the following steps:

Step 1. Evaluation of contact pressure

For a given eccentric-inclined load, the vertical and horizontal contact

pressure distribution (qv, qu) is calculated according to art. 4.3.

Step 2. Evaluation of stresses

The soil mass supporting the footing has been divided into a large number of

thin layers (say n layers) up to a depth at which the pressure intensity is less than

0.05<?.

x=0 x=B/4 x=B/2 XF3B/4 x=B

\
O

W///////A

1st layer

2na layer

3ra layer

n,n layer

Fig.4.9 Soil Mass Divided into n Layers and the Vertical Sections where Stresses
and Settlement are Calculated
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The stresses in each layerof the soil mass at five vertical sections (Fig. 4.9) due to qv,

qh and weight of soil are obtained separately and the corresponding stresses are

added. Vertical stress due to weight of the soil has been taken as yz, where y is the

unit weight of soil and z is the depth of soil layer from the top surface. The horizontal

stress due to soil weight has been taken as k0yz, where k0 is the coefficient earth

pressure at rest. The stresses due the embankment loading are calculated by applying

Eqs.4.13-4.15 and subtracted from the above stresses which give the stresses due to

different loadings on a sloped surface.

Step 3. Evaluation of principal stresses

Fig.4.10 Principal Stresses at a Point and their Directions

The principal stresses and their directions with respect to the vertical axis (Fig.

4.10) are computed using the following equations:

<T,
CT. + o-,

2

<T + o,
<T, =

tan29 =
2vr.

(4.17)

(4.18)

(4.19)
o_- - ox

Positive value of 0 is measured in counter clockwise with direction of<r..

where cr,, the major principal stresses; <T3, the minor principal stresses; a,, the

stress in z direction; <JX, the stress in x direction and ^.represents the

shear stress.
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Step 4. Evaluation of principal strain using constitutive laws of soil

Kondner (1963) has shown that non-linear stress strain curve for soil may be

closely approximated by a hyperbola (Fig. 4.11 a), and the relation between stress and

strain is given by the following relationship:

s,
ct,-ct3

a + bs,
(4.20)

where cr. and (J3 are the major and minor principal stresses and sx is the axial strain.

r

6

b
i

8i Ki

(a) (b)

Fig.4.11 Hyperbolic Stress Strain Representation (Kondner, 1963)

As shown in Fig. 4.1 lb, parameter a is the reciprocal of the initial tangent modulus, E,

and b is the reciprocal of the asymptotic value of deviatoric stress, (cr, -<r3)u/, i.e. the

value at which the stress-strain curve becomes asymptotic. The values of a and b can

be readily determined if the stress-strain data is plotted on the transformed axis as

shown in Fig. 3.1 lb and the above equation can be written as:

e,
-a + bs,

a,-a,

a(o,-o3)
or s, =

\-b(ax-a3)

The ultimate bearing capacity (qu) for the given eccentric inclined load is calculated

by applying the principles of chapter III. To calculate the settlement at any pressure

intensity q, coefficient, Fis determined from Eq. 4.16.
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F
cr, -cr, =

Then Eq. 4.22 can be modified as:

fl(cra/F)
*1 = l-b(au/F)

The modulus of elasticity (Es) at any stress level (01/F) (Fig. 4.12) and the strain (s/)

in each layer in the direction of major principal stress are then calculated by applying

the following relations:

Stress _ 1- b(au IF)
E. =

Strain

e\ =
0,-0-3

D
I

<j"l

au/F

(4.23)

(4.24)

(4.25)

Fig.4.12 Determination of Es from Hyperbolic Stress Strain Relation

Step 5. Evaluation of lateral strain

The strain, s2 in the direction of intermediate principal stress, <r2 is equal to

zero in plain strain condition. Therefore from theory of elasticity

or

£i =— [o2-/"(o, +^3)]=°
E

(o, +o3)a2=ju\

(4.26)

±
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and

Assuming

' E
o, ^ o3

E
o3 , o,

M = and £, = , from Eq. 4.27 and 4.28 one gets,

(4.27)

(4.28)

*i =— [o, -A o3]

^3 =—[03-A o,]
£1

Dividing Eqn. 4.30 with Eqn.4.29, one gets,

s3 _ er3 -HXGX

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

Let

Then

ex a]-^]cr3

s.
-3

= -th

fh
-Oj+^CT,

0,-/40-3

So the strain in the direction of minor principal stress is calculated using Eq.4.32 as

s, = -fi2Sx (4.34)

Step 6. Evaluation of vertical strain

The strain in the vertical direction, s-_ in each layer along vertical sections is

computed using the following relation:

s. = sx cos2 0[ +s3 cos2193' (4.35)

where 0'/ and 03 are the directions of the principal strain with respect to vertical axis

(Fig. 4.10)

Step 7. Evaluation of settlement

The vertical settlement (Se) of any layer along a vertical section is computed

by multiplying the strain, s:with the thickness of each layer, & as -

Se = s. Sz (4.36)

The total settlement S along any vertical section is computed by adding the settlement

of all the layers along the vertical section.
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S=%ezSz (4.37)

The total settlement is computed along all vertical sections for each pressure intensity.

The settlement patternof a flexible footing will be as shown in Fig. 4.13.

Step 8. Evaluation of settlement and tilt of rigid footing

A rigid footing will follow the settlement pattern as shown in Fig.4.14. The

values of Smax and Smi„ of a rigid footing (Fig. 4.14) are obtained using the following

concept from the settlement diagram of the flexible footing (i.e. Fig. 4.13)

Q

Fig. 4.13 Settlement of Flexible Footing

Fig.4.14 Settlement of Rigid Footing

i) The area of the settlement diagram of Figure 4.14 is equal to the area of the

settlement diagram of Fig. 4.13 (2h,) and

ii) The distance of centre of settlement diagram of Fig.4.13 from edge of footing,

point B i.e. 3c, is equal to the distance of centre of settlement diagram of
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Fig.4.14 from the edge of the footing point B. Values of Zat and x.

may be obtained using the numerical integration technique. Then,

and x, = x —
5'_„+5„1- 3

max mm

Z^x

(4.38)

(4.39)

where

^wax = Maximum settlement of the footing edge on the side of eccentricity

Smw = Minimum settlement of the footing edge away from the eccentricity

Knowing the values of Smax and Smin, average settlement (Sav) and tilt (t) are computed

as follows:

S„„ =
e i c

max mm

and / =-5,Mr '
5

(4.40)

(4.41)

Step 9. The average settlement and tilt for various pressure intensities on footings are

computed by repeating steps 1 to 8 and the pressure versus settlement and pressure

versus tilt curves are drawn.
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CHAPTER-V

> EXPERIMENTAL PROGRAMME

5.1 GENERAL

In any geotechnical engineering problem, field tests on prototype foundations

give realistic results. However, economical considerations and other practical

difficulties either eliminate prototype tests completely or restrict their scope to a large

extent. Under such circumstances, model tests, if carefully conducted, could be used

with good confidence. Model studies normally are less expensive and also have the

flexibility of varying the parameters envisaged to influence the particular behaviour

under controlled conditions. In model studies, it is possible to set some of the

influencing parameters as constant and the effect of other parameters can be studied.

Model tests thus provide useful qualitative data, which can subsequently be used to

study the influence of important variables through prototype tests.

-t In the present study, model tests were conducted under pla?i2 strain conditions

for predicting the ultimate bearing capacity and pressure-settlement as well as

pressure-tilt behaviour of a strip footing resting on upper surface of a sand slope and

subjected to an eccentric-inclined load. The purpose of the model tests conducted in

this study was to examine the validity of the proposed theoretical analysis. Triaxial

tests were also conducted to develop the constitutive law of the soil used in the model

tests.

5.2 SOIL USED

The soil used in this investigation was dry Ranipur sand. The particle size

distribution curve of the sand is shown in Fig. 5.1. According to Indian Standard (IS

1498-1970) on soil classification for general engineering purpose; the sand used in the

investigation was classified as poorly graded sand (SP). The other engineering

properties of sand as determined in the laboratory according to Indian Standard Code

-+ IS: 2720 are presented in Table 5.1. The mechanical property affecting the bearing

capacity of sand is its shearing resistance. Shear strength of sand is a function of angle

of internal friction, <p . Model tests were conducted on Ranipur sand at a relative

density of 70% and the angle of internal friction corresponding to this relative density



was determined by triaxial compression tests. Triaxial tests were performed on oven

dry sand samples under confining pressures of 25, 50, 100 and 150 and 200 kN/m .

These test results yielded value ofangle of internal friction, <p as 39.5°.

120

100

<x> 80
!_

0)
m

ro b'U
c
(I)
C)

UJ

n 40

20

---*, ii •

r

0.01

S. No.

0.1 1

Particle diameter (mm)

10

Fig. 5.1 Grain Size Distribution of Ranipur Sand

Table 5.1 Physical Properties of Ranipur Sand

Property

Soil type

Effective size (D/o)

Uniformity coefficient (Cu)

Coefficient of curvature (Cc)

Mean specific gravity, G

Maximum dry density yd max (kN/m )

Minimum dry density yd mm (kN/m )

Relative density, Dr

Unit weight ofsand at 70% Dr (kN/m3)

123

Value

SP

0.16

1.84

0.93

2.60

17.4

14.1

70%

16.6

*
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5.3 EVALUATION OF CONSTITUTIVE PROPERTIES

For obtaining the constitutive relationships of Ranipur sand, triaxial
•y

compression tests were performed with confining pressure varying from 25 kN/m to

200 kN/m2 and at relative density of 70%. The stress-strain curves thus obtained are

presented in Fig. 5.2. The transformed hyperbolic stress-strain relationships have been

plotted in Fig. 5.3. It is observed that hyperbolic equation (Kondner, 1963) can be

used to represent these stress-strain relationships. The parameters, 'o' and '6' of the

hyperbola were correlated with confining pressures and are plotted in Fig. 5.4 and Fig.

5.5. respectively.

800

0
Strain e (%)

8

Fig. 5.2 Stress-Strain Plots of Ranipur Sand for Different
Confining Pressures

The following relationships hold good for tests performed on Ranipur sand.

—= kx +^,ct3

= &2CT3
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ki, A/ and k2 are constants obtained from analysis of triaxial tests data whose
values are presented in Table 5.2; <r3 is the confining pressure in kN/m and

Vt7 and 1/l represent respectively initial tangent modulus E„ and ultimate
deviator stress, (ct,-ct5)u in kN/m .

Table 5.2 Parameters of Constitutive Laws

Dr k, A, k2

70% 11595 398 4.0

0.04

0.035

0.03

0.025

b

£ 0.02
CO'

0.015

0.01

0.005

a, =25kN/m2

50kN/m2

0 2 4 6 8

Strain s (%)

Fig. 5.3 Transformed Stress-Strain Response of Ranipur Sand
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Fig. 5.4 Variation of 1/a (Ei) with Confining Pressure
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Fig. 5.5 Variation of 1/b with Confining Pressure
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5.4 MODEL TESTS

Model tests were performed in which Ranipur sand was used at a relative

density of 70%. The physical properties of sand have already been presented in Table

5.1. The experimental setup used in the study is shown in Fig. 5.6.

Fig. 5.6 View of the Experimental Setup

5.4.1 Footing

A 25 mm thick steel plate was used as the model strip footing. The footing

was 150 mm wide and 600 mm long. The length of the footing was almost equal to

the width of the tank so as to maintain the pla*u> strain condition. To ensure the rough

base of footing, a sand Uv. .../was attached to the bottomof the steel footing plate. The

footing was provided with small grooves so as to position the loading plunger either

centrally or at some eccentricity.

5.4.2 Tank

The inside dimensions of the tank used were 601mm in width, 3000 mm in

length and 900 mm in height, built of angle iron frame. The two consecutive sidewalls

of the tank were constructed using well-polished wooden planks, 20 mm thick and the

other two consecutive walls were constructed using transparent Perspex sheets (25

127

•f

t



*

mmthick) for the ease of observing the failure mechanism during testing. Ononeside

of the tank, the perspex sheet was fixed in a groove so that it could be removed to

open this side for removal of sand so as to make a slope at a desired angle. Horizontal

steel stiffeners were provided for strengthening the side walls. In order to prevent the

effect of friction with the inside walls of the tank constructed of wooden planks, a

smooth polythene sheet was pasted over their surfaces. Line markings were made on

the longer sides of the tank for preparing slopes of 30 and 26.56 .

5.4.3 Loading Device

Inclined load on the footing was applied by using inclined loading device

developed by Murthy (1967). It consists of two arcs of mild steel plates, 20 mmthick,

making an angle of 50° at the centre (Figure 5.7). The two plates separated by a web,

were cut at the top and bottom in V-grooves to facilitate the ball bearings over which

a cast iron block of 100 mm ><89 mm* 165 mm size slides. A screw jack with a

capacity of 30 kN was inserted into the cast iron block. The plate was marked with

graduations from 0° to 35° so that the inclination of the applied load can be directly

read. The screw jack was fitted to a calibrated proving ring and in turn, to a rod

tapered at the end. The whole assembly was fixed to a beam with supports across the

whole tank. The view of the loading device is shown in Fig. 5.7.

Fig.5.7 View of the Loading Device
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5.4.4 Measuring Device for Vertical Settlement and Horizontal Displacement

To measure the vertical settlement and horizontal displacement of the point of

load application, a steel plate (250 mm long and 30 mm wide) was fixed in between

the proving ring and the plunger as shown in Fig. 5.6. This plate remains always

normal to the plunger. Two dial gauges were fixed normal to this plate, which

measure the displacement of the point of application of load along the direction of

movement of the plunger. For a given inclined load, knowing the displacement along

the plunger and the inclination of the plunger, vertical settlement and horizontal

displacement can be calculated as shown in the Fig. 5.8.

s = I cos i

h = I sin i

where / = displacement along the
plunger

s = vertical settlement

h = horizontal displacement

Fig. 5.8 Determination of Vertical Settlement and Horizontal Displacement

5.4.5 Measurement of Tilt

Tilts were measured with specially designed tilt meters. Tilt meters were

provided with a micrometer screw, with help of which tilt upto an accuracy of

O.OOlradian can be measured. For each footing, two tilt meters were fixed along the

two edges of the footing. A view of the footing plate with the tilt meters fixed on it is

shown in Fig. 5.9.

Fig.5.9 View of Footing Plate with Tilt Meters
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5.4.6 Sand Filling

The inner faces of the walls of the tank were marked with lines at 50 mm

intervals to facilitate accurate preparation of sand bed in layers with desired relative

density of sand. Sand was deposited in weighed quantity in layers of 50 mm each and

compacted to achieve a relative density of 70%. Every layer was compacted

uniformly so as to obtain a uniform density.

5.4.7 Slope Formation

Sand was first placed uniformly up to the same level over the entire length of

the tank at the desired density. The Perspex sheet was then removed from the end

where the slope was to be constructed. From the marked line of the slope at top, sand

was slowly removed downwards with thehelp of a plane edge. The whole of theextra

sand above the desired slope line was removed from the tank. The view of the

completed slope is shown in the Fig. 5.10.

Fig.5.10 View of Completed Slope

5.5 TEST PROCEDURE

Sand surface in the tank was first levelled and the slope was formed. The

footing was positioned at the desired location with respect to the edge distance of the

footing from the crest of slope in the tank, taking care that the gap between the

footing sides and the tank is uniform on either side. The loading frame was then
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moved above the footing and the loading device was adjusted at the desired angle of

load application. The proving ring and the plunger were fixed in between the screw

jack and the footing. In all the tests, load was applied by means of the hand-operated

screw jack. Increments of load were applied when the settlement under any given

applied load increment becomes reasonably constant i.e. less than 0.01mm in ten

minutes. The displacements along the plunger were recorded with the help of two dial

gauges and the average of these two readings was recorded. Similarly, the tilts were

measured with the help of the two tilt meters placed along the edge of the footing and

the average of these two was recorded. Several tests were repeated to confirm the

reproducibility of the test data.

5.6 TESTS PERFORMED

In all, 39 tests were performed for a footing on sloping ground and 9 tests on

level ground. Details of these model tests are presented in Table 5.3 and the notations

used to represent different geometric parameters are illustrated in Figs. 5.11 and 5.12.

The pressure versus settlement and pressure versus tilt characteristics obtained for

various cases under consideration are presented in Figs. 5.13 through 5.42. The results

of these tests and their interpretation have been discussed in the next chapter.

Table 5.3 Parametric Values for Laboratory Model Tests

Flat ground, 8 = 0 e/B i

0,0.1,0.2 0,10°, 20°

Slope angle/? = 30° De/B e/B i

1.0,2.0,3.0 0,0.1,0.2 0,10°, 20°

Slope angle/? = 26.56° 2.0 0,0.1,0.2 0,10°, 20°

0,0.5,1.0 0 0
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Eccentric-inclined load-* Q

Edge distance

Inclination of the load -*

Eccentricity of the load

Slope angle-*

Fig. 5.11 Geometric Parameters used in Various Tests

Initial position

Final position

Fig. 5.12 Settlement and Tilt of a Footing with Eccentric-Inclined Load
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Fig. 5.13 Pressure versus Vertical Settlement Curves for Footing on Level
Ground (i = 0°)
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Fig. 5.14 Pressure versus Tilt Curves for Footing on Level Ground (/ = 0°)
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Fig. 5.15 Pressure versus Vertical Settlement Curves for Footing on Level
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Fig. 5.16 Pressure versus Tilt Curves for Footing on Level Ground (i = 10°)
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Fig. 5.17 Pressure versus Vertical Settlement Curves for Footing on Level
Ground (/=20°)
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Fig. 5.18 Pressure versus Tilt Curves for Footing on Level Ground (/=20°)

135



t

20

Pressure, kN/m2

40 60

-e/B=0

•e/B=0.1

-e/B=0.2

80

Fig. 5.19 Pressure versus Vertical Settlement Curves for Footing on a Slope
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Fig. 5.20 Pressure versus Tilt Curves for Footing on a Slope
(fi =30°, De/B=l.0, i=0°)
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Fig. 5.21 Pressure versus Vertical Settlement Curves for Footing on a Slope
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Fig. 5.25 Pressure versus Vertical Settlement Curves for Footing on a Slope
(fi =30°, De/B=2.0, i=0°)
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Fig. 5.27 Pressure versus Vertical Settlement Curves for Footing on a Slope
(fi =30°, De/B=2.0, /=10°)
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Fig. 5.29 Pressure versus Vertical Settlement Curves for Footing on a Slope
(fi =30°, De/B=2.0, i=20°)
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Fig. 5.30 Pressure versus Tilt Curves for Footing on a Slope
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Fig. 5.31 Pressure versus Vertical Settlement Curves for Footing on a Slope
(fi =30°, De/B=3.0, i=0°)
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Fig. 5.32 Pressure versus Tilt Curves for Footing on a Slope
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Fig. 5.33 Pressure versus Vertical Settlement Curves for Footing on a Slope
(fi =30°, De/B=3.0, i=l0°)
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Fig. 5.35 Pressure versus Vertical Settlement Curves for Footing on a Slope
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Fig. 5.37 Pressure versus Vertical Settlement Curves for Footing on a Slope
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CHAPTER-VI

RESULTS AND DISCUSSION

6.1 GENERAL

In this chapter, the results obtained from theoretically predicted values of

ultimate bearing capacity and settlements have been discussed. The limit equilibrium

analysis has been used to predict the ultimate bearing capacity of footings placed on

upper surface of slopes and subjected to eccentric-inclined loads. The results so

obtained are compared with the existing solutions and also with those obtained from

the model tests.

The pressure-settlement and pressure-tilt characteristics of footings placed

near the crest of a slope with eccentric-inclined loads and resting on Ranipur sand are

obtained using constitutive law of the soil. The stress-strain relationship for Ranipur

sand has been obtained from triaxial compression tests.

6.2 LIMIT EQUILIBRIUM ANALYSIS

The ultimate bearing capacity of footings on upper surface of slopes and

subjected to eccentric-inclined load is given by the Eq. 3.25 as -

qu=^yBNr+yDfNq+cNc
where N , Nq and A^ are the non-dimensional bearing capacity factors, which

depend upon parameters, <p, fi ,De / B, Df / B, e/B and i. In addition to these factors

the value of ultimate bearing capacity may also be limited by the overall stability of

the slope. In cohesionless soils, there is always a possibility of foundation failure

rather than slope failure whereas in cohesive fills, the load carrying capacity may be

governed by overall stability of the slope.

To design a foundation placed on upper surface of a slope, present analysis

may be used to obtain the ultimate bearing capacity of a footing due to foundation

failure, and then the overall stability of the slope should be checked for this surcharge

load using any slope stability method.



6.2.1 Evaluation of Assumptions

Of the six assumptions made in the development of the analysis (Ch. Ill), three

assumptions listed at sl.nos. iii), iv) and v) in art. 3.2 of Chapter III need justification.

The other assumptions are commonly made in the bearing capacity computations by

limit equilibrium method.

As the length of the failure surface is smaller on the slope side, the resistance

offered from this side of the footing will be less than that from the other side. Due to

this fact, it seems reasonable to assume that one sided failure occurs. The observation

made in the model tests performed by Peynircoiglu (1948), Mizuno et al. (I960),

Shields et al. (1977) and Saran et al. (1989) have shown that the failure occurs on the

side of the slope. Also in the present analysis, the load eccentricity and load

inclination are assumed to be on the slope side, due to which the pressure on the base

of the footing on the side of the slope will be more and the footing is likely to fail by

tilting on this side. Some pressures do develop on the other side as well. At

equilibrium, the resistance developed on the other side of the slope will not reach the

full mobilisation value. Hence, pressure on this side has been considered at partial

mobilisation of strength for computation of bearing capacity.

According to assumption iii), the centre of the log spiral has been taken at the

edge of the footing. Saran (1970) has shown that for a footing on level ground, the log

spiral will be tangential to the vertical only when the centre of the log spiral is on line

EB (Fig. 3.1) or its extension. Agrawal (1986) has concluded that the minimum value

of bearing capacity factors Nq and Nc axe obtained when the centre of the log spiral

coincides with the edge of the footing. Keeping this in view the centre of the log

spiral was kept at the edge of the footing.

According to the assumption iv), footing loses its contact due to excessive

eccentricity. Theeffective width of the footing is represented by B•x,, where xj is the

ratio of contact width to the total width of the footing. This assumption is quite

logical. However, a variation of xj should be considered in a proper way. In the

present analysis, conventional variation has been adopted.

149

?

4

4



+

3f

6.2.2 Av Factor

i) Mobilization factor m

To obtain the pressure developed on the level side, partial mobilisation,

characterised by a mobilisation factor m as given in assumption iv), has been

considered. Some values of m have been given in Table 6.1 for different cases. It can

be seen that the value of m increases with increase in distance of the footing from the

slope edge. It also increases with the decrease in the slope angle. For inclined loads,

the value of m is less as compared to vertical loads and it decreases with the increase

in the obliquity of the load.

Table 6.1 Mobilization Factor m for Nr: <p= 40°

De/B p e/B i m

0.0 30° 0.0 0° 0.393

1.0 30° 0.0 0° 0.733

2.0 30° 0.0 0° 0.837

3.0 30° 0.0 0° 0.914

0.5 30° 0.1 10° 0.387

0.5 20° 0.1 10° 0.470

0.5 10° 0.1 10° 0.550

1.0 30° 0.2 0° 0.471

1.0 30° 0.2 10° 0.426

1.0 30° 0.2 20° 0.291

ii) N7 values

To study the effect of the slope angle (fi), edge distance (De), depth of the

footing (Dj), eccentricity (e) and load inclination (/), some typical plots are drawn as

shown in Figs. 6.1 through 6.6. It can be observed from Figs. 6.1 and 6.2 that value

ofNY increases with increase in the edge distance and after some distance, this value

becomes independent of the slope. This distance at which it becomes independent of

the slope depends on all of the above parameters. Some of these distances at which

Ny values become indifferent to slope and the corresponding parameters are given in

Table 6.2. The value of Ny decreases with increase in eccentricity and obliquity of

the load as can be observed in Figs. 6.3 through 6.6. This decrease is not uniform, but

depends on slope angle (fi ), edge distance (De), depth of the footing (DJ), eccentricity

(e) and inclination of the load (/).
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Table 6.2 Minimum Edge Distance at which Nr is Independent of Slope

# P Df/B e/B i
Minimum

DeIB <P P D/B e/B i
Minimum

DeIB

40° 30° 0 0 0 5.56 30° 25° 0 0.2 0 1.97

40° 25° 0 0 0 5.56 30° 20° 0 0.2 0 1.97

40° 20° 0 0 0 5.56 30° 10° 0 0.2 0 1.97

40° 30° 0.5 0.1 0 4.20 30° 25° 0.5 0.1 0 1.52

40° 30° 0.5 0.2 0 3.15 30° 25° 0.5 0.2 0 0.60

40° 30° 0.5 0.3 0 1.81 30° 25° 0.5 0.3 0 0.25

40° 30° 1.0 0 10° 3.34 30° 25° 1.0 0 10° 0.84

40° 30° 1.0 0 20° 2.96 30° 25° 1.0 0 20° 0.49

35° 25° 0 0.1 0 3.57 25° 20° 0 0.3 0 0.91

35° 20° 0 0.1 0 3.57 25° 15° 0 0.3 0 0.91

35° 10° 0 0.1 0 3.57 25° 10° 0 0.3 0 0.91

35° 25° 0.5 0.1 0 2.20 25° 20° 0.5 0.1 0 0.49

35° 25° 0.5 0.2 0 1.71 25° 20° 0.5 0.2 0 0.29

35° 25° 0.5 0.3 0 0.78 25° 20° 0.5 0.3 0 0.00

35° 25° 1.0 0 10° 1.86 25° 20° 1.0 0 10° 0.00

35° 25° 1.0 0 20° 1.34 25° 20° 1.0 0 20° 0.00

100-

0 —i—
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-•-/? = 40°
-•-/?= 35°
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Fig. 6.1 Variation of Nr with De/B for <p= 40°, Df/B=0, e/B=0, i=10°
for Different Slopes
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iii) Comparison of Ay Values with the Analysis of Earlier Investigators

Table 6.3 shows the comparison of Ny values obtained in the present study

for footings restingon level ground (fi =0) for / = 0 and e/B= 0 and those obtained by

earlier investigators.

Table 6.3 Comparison of Ar Values for Footings on Level Ground

+
Terzaghi

(1943)

Meyerhof

(1963)

Hansen

(1970)

Saran

(1971)

Vesic

(1973)

Ingra &

Baecher

(1983)*

Frydman

&Burd

(1997)

Dewaikar

(2003)
Present

Analysis

10° 1.2 0.4 0.4 1.14 1.2 1.06 - - 1.38

20° 5.0 2.9 2.9 6.05 5.4 6.0 - - 6.67

30° 19.7 15.7 15.1 28.89 22.4 33.9 21.7 21.4 29.76

40° 100.4 93.6 79.4 165.4 109.3 191.2 147.0 141.3 160.08

*Experimental values
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The N values obtained in the present study for different values of <p are

higher than those predicted by earlier investigators and almost same as those predicted

by Saran (1970). It is generally known that Tezaghi's values give conservative

estimates. Experiments performed by Feda (1961), De-Beer (1965), Balla (1962), Bolt

(1982), Cichy et al. (1978), Ingra and Baecher (1983), Hartikainen and Zadroga

(1994), Saran and Agarwal (1991), Shiraishi (1990) and many others have shown that

Terzaghi's analysis underestimates the bearing capacity. Hence Ny values predicted

in the present study may be more realistic.

The Ny values obtained for footings onslopes in the present investigation for

the cases when i = 0 and e/B = 0 are compared with those predicted by other

investigators andpresented in Figs. 6.7 and6.8. It canbe observed that the Ny values

obtained in the present study are less than those given by Graham's (1988) and

Saran's (1989), but higher than those given by other investigators. The difference may

be attributed to the difference in the rupture surface adopted in the proposed

methodology for estimating the Ny values.
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The load inclination factors, iy obtained in the present study for a level

ground (B=0) axe compared with those given by the earlier investigators and

presented in Fig. 6.9 where the load inclination factor, iy is defined as -

Nv for inclined load
i = ^-^-
r Ny for vertical load

It is observed that the effect of inclination of load on Ny values obtained in

the present study compares well with those of previous investigators. Figure 6.10

compares the effect of load eccentricity factor ey obtained from the present analysis

with those by the previous authors, where the load eccentricity factor, eris defined as-

N for eccentric vertical load
e = —

7 N for central vertical load

It can been seen that the proposed er values tally reasonably well with those

given by the previous investigators.
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(iv) Comparison of Ay Values with Model Test Data

The tests were performed on sand at a relative density of 70%, and the

corresponding angle of friction <p as determined from the triaxial compression tests

was 39.5°. The details of the tests have already been presented in chapter V. Figure

6.11 shows the comparison between the ultimate bearing capacity obtained from the

proposed theory and the model tests. The failure load has been taken as the peak load.

It is evident from this figure that the values of ultimate bearing capacity obtained from

the model tests data compare very well with the corresponding values obtained from

the proposed theory.
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6.2.3 A, Factor

i) Nqvalues

To study the effect of edge distance (De), depth of the footing (Dj), load

eccentricity (e) and load inclination (i)on the bearing capacity factor, Nq, some typical

plots have been presented Figs. 6.12 through 6.15. It can be observed from Figs. 6.12

and 6.13 that Nq value increases with the increase in edge distance and beyond some
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distance Nq value becomes independent of the slope. It can be observed from

Figs.6.14 and 6.15 that Nq value decreases with the increase in eccentricity and

inclination of the load, but the rate of decrease is less as compared to the same for

Ny values.
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ii) Comparison of Nq Values with Earlier Investigators

Table 6.4 shows the comparison of Nq values obtained from the present study

for footings resting on level ground (fi =0) for values of i = 0 and e/B = 0 with those

obtained from earlier investigators.

Table 6.4 Comparison of A^ Values for Footings on Level Ground

t Terzaghi
(1943)

Meyerhof
(1963)

Hansen

(1970)
Vesic

(1973)
Saran

(1971)
Present

Analysis

10° 2.7 2.5 2.5 2.5 2.5 2.9

20° 7.4 6.4 6.4 6.4 7.4 8.7

30° 22.5 18.4 18.4 18.4 22.5 27.5

40° 81.3 64.1 64.1 64.1 81.4 103.4

The values of Nq obtained from the present analysis are higher than those

predicted by all the earlier investigators, because the failure surface assumed is

different from the previous investigators. In comparison to Terzaghi's (1943) and

Saran's (1971) analysis, the values are about 20% higher.

The Nq values obtained for footings on slope in the present study could not be

compared directly with those given by other investigators as their bearing capacity

equations are different from those proposed in the present study. The bearing capacity

of a footing on a cohesionless soil slope in the present case is expressed as -

qu=^yBNy+yDfNq
which can be modified as -

^=l-N+-
Dt

•N„
yB 2 r B

Similarly the bearing capacity equation used by Graham (1988) and Cheng (2005) can

be modified as -

yB 2 YH

(6.1)

(6.2)

(6.3)

The values of qJyB obtained in the present study for the case of e/B=0 and i=0 axe

compared with qJyB values of other investigators as shown in Figs. 6.16 and 6.17.
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It can be observed that qJyB values predicted in the present study are higher

than those given by Cheng (2005), but less than those predicted by Graham (1988)

and Saran (1989).
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Figures 6.18 and 6.19 show the comparison of the reduction factor in Nq values

with eccentricity and inclination of load for footings on level ground with those given

by Saran & Agrawal (1991) and Meyerhof (1963). The comparison is reasonably

good.

6.2.4 Ac Factor

i) A^ values

It can be observed from Figs. 6.20 through 6.23 that Nc values follow similar

trend as that of Nq and Nr . The values of Nc increase with the increase in edge

distance, De and decrease with the increase in eccentricity, e and inclination, i of the

load. The difference is that the rate of increase with De and the rate of decrease with

eccentricity and inclination are less as compared with those for Ny values.
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iii) Comparison of Ac Values with Earlier Investigators

Table 6.5 shows the comparison of Nc values obtained in the present study for

footings resting on level ground (fi =0) and for i = 0 and e/B = 0 with those obtained

by previous investigators. It can be observed that the Nc values from the present

analysis compare very well with Terzaghi's (1943) and Saran's (1970) values.

Table 6.5 Comparison of Ac Values for Footings on Level Ground

t
Terzaghi

(1943)
Meyerhof

(1963)

Hansen

(1970)
Vesic

(1973)
Saran

(1971)

Present

Analysis

10° 9.6 8.3 8.3 8.3 9.6 9.9

20° 17.7 14.8 14.8 14.8 17.5 17.7

30° 37.2 30.1 30.1 30.1 37.2 37.3

40° 95.7 75.3 75.3 75.3 95.4 96.0

Nc values obtained for footings on slopes in the present investigation for the

cases of i = 0 and e/B = 0 are compared with the Nc values of other investigators and

are presented in Fig. 6.24. It can beobserved that Nc values in the present study are on
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lowerside as compared with Saran's (1989) values, but higherthan those givenby the

other investigators.
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The load inclination factor icobtained in the present study for level ground (fi

=0) are compared with those by the previous investigators and presented in Fig. 6.25.

Similarly the load eccentricity factors from the present analysis for footings on level

ground are compared with those by previous investigators in Fig. 6.26. The results

compare quite well with those presented by Saran & Agrawal (1991), but ic is on

conservative side and ec is on higher side when compared with Meyerhof s (1963)

results.

6.3 PRESSURE - SETTLEMENT CHARACTERISTICS

6.3.1 Pressure-Settlement Curves

The methodology proposed to predict the pressure-settlement and pressure-tilt

characteristics of a footing placed on upper surface of a slope and subjected to

eccentric-inclined load has been discussed in detail in Chapter V. The results obtained

using the proposed methodology are discussed in the following sections:

The average settlements for strip footings having the width of 100 mm, 150

mm, 200 mm and 250 mm resting on Ranipur sand slope of 30° were computed. The

footings were considered at an edge distance of De /B=2.0 and the load applied was
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central vertical. The pressure versus settlement curves obtained following the

proposed methodology are plotted in Fig. 6.27. These curves show that the settlement

increases with applied load intensity and the rate of settlement increase also increases

at higher load intensities. It can also be seen that the settlements increase with

increase in footing size.
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The pressure-settlement curves for a 150 mm wide strip footing on a 30° slope

have been plotted in Fig. 6.28 for an edge distance to width ratio, ZV5=1.0, 2.0, 3.0

and 4.0 for central vertical loads. It is evident that settlement for a particular pressure

decreases with the increase in edge distance.

The settlements were also computed for a 150 mm wide strip footing resting

on Ranipur sand at De/B=2.0 for three slope angles 20°, 25° and 30°. The curves are

plotted in Fig. 6.29. The figure shows that the settlement of a footing at given pressure

increases as the slope becomes steeper.
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The pressure-settlement curves for a 150 mm wide strip footing resting on a

30° slope with De /B =2 are presented in Fig. 6.30 for different values of load

eccentricity. The loads are eccentric and vertical. It can be observed that for a given

pressure, the settlement increases with eccentricity. The pressure-settlement curves

follow similar trend when the loads are inclined to the vertical. Figure 6.31 shows the

pressure-settlement curves for a 150 mm wide strip footing resting on a 30° slope

with De/B =2 and the loads are central and inclined at 0°, 10° and 20° to the vertical.

It can be observed that for the same pressure, the settlement increases at higher values

of load inclination.
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6.3.2 Pressure-Tilt Curves

The pressure versus tilt curves obtained via the proposed methodology show

similar trends as the pressure-settlement curves. Figure 6.32 shows the pressure-tilt

curves for a 150 mm wide strip footing resting on a 30° slope and subjected to an

eccentric-inclined load (e/B=0A, z-10°) and for different De/B ratios. It is evident

that tilt for a given pressure intensity reduces with increase in the edge distance.

Figure 6.33 shows pressure-tilt curves for the same footing resting on slopes with

different values of slope angle. The footing is subjected to an eccentric inclined load

(e/B=0A, z=10°) and placed at De/B ratio= 1.0. It can be observed from this plot that

the tilt attains higher values for steep slope angles. Figure 6.34 shows the pressure-tilt

curves for a footing placed on a 30° slope at De/B=\.0 and subjected to eccentric

loads (e/B=0A) with different load inclinations. It can be seen that for the same

pressure intensity, the tilt of footing increases with the increase in the load inclination.

Figure 6.35 shows the effect of eccentricity on the tilt of the footing. The footing is

placed on a 30° slope at De/B=l.O and subjected to inclined loads (/=10°) at different

eccentricities. It can be seen that the tilt of the footing increases with the increase in

the eccentricity of the applied load.
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6.3.3 Comparison with Test Data

Pressure-settlement curves predicted by employing the proposed methodology

have been compared with the experimental curves for a 150 mm wide strip footing

resting on a 30° slope placed at different edge distances and subjected to loads with

different eccentricities and inclinations and are plotted in Figs. 6.36 through 6.39. The

two curves are found to have the similar in nature. Upto about 50% of the failure

pressure, the predicted and the experimental values tally reasonably well. The

predicted values are slightly lower in this range. From the point of viewof design, the

settlements are usually obtained corresponding to pressure equal to one-third of the

failure pressure. For this pressure, the present methodology gives the estimate of

settlement almost precisely.
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CHAPTER-VII

CONCLUSION AND SCOPEFOR FURTHER RESEARCH

7.1 SUMMARY

Foundations of many engineering structures are sometimes placed near the edge

of a slope. Abutments of bridges and flyovers, buildings near the open section of
underground railways and buildings and retaining structures constructed adjacent to
ravines are some examples of foundations placed on upper surface of a slope. The

footings ofsuch structures are subjected to eccentric-inclined loads due to moments and
horizontal thrusts along with vertical loads. The main criteria for a satisfactory design of

foundations of such structures are the ultimate bearing capacity, permissible settlement,

tilt and the overall stability of the slope.

This study is aimed at investigating the behaviour ofstrip footings placed near the

edge of a slope and subjected to an eccentric-inclined load. Theoretical investigation

forms the backbone of this study, though of course, the study also includes some

experimental work which was undertaken for verification of theoretical results. The

analytical work includes development of methodologies to predict the ultimate bearing
capacity and the pressure-settlement and pressure-tilt characteristics of such a footing.

The experimental work was aimed at obtaining the ultimate bearing capacity, the

pressure-settlement and the pressure-tilt characteristics ofa model strip footing placed on
a sand slope and subjected to eccentric-inclined loads. This data was subsequently used

for comparison with the results obtained from proposed methodologies.

7.2 CONCLUSIONS

Based on the work reported in this thesis, the following conclusions have been

drawn.

7.2.1 The Ultimate Bearing Capacity

i) Atheory based on limit equilibrium approach has been proposed for determining

the bearing capacity ofa strip footing on upper surface ofa slope and subjected to

an eccentric-inclined load using the concept of one sided failure. The results have

been presented in terms of non-dimensional bearing capacity factors Ny, Nq, Nc

which depend upon parameters <p, B, De /B, Df /B, e/B and /. These bearing
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capacity factors have been presented in the form of charts convenient for use in

design.

ii) The bearing capacity factors increase with increase in the edge distance and after

a certain distance; these values become independent of the slope. The minimum

edge distance at which these factors become independent of slope depend upon

values of <j>, B, e/B, i and D//B.

iii) The bearing capacity factors reduce with the increase in eccentricity and

inclination of the load. These bearing capacity factors obtained by the proposed

approach have been compared with those obtained by using the reduction factors

as suggested by earlier investigators and a reasonable agreement has been found.

iv) Model tests were conducted under plane strain conditions with a strip footing

resting on upper surface of a sand slope and subjected to eccentric-inclined loads.

The failure loads obtained from the model tests compared very well with the

corresponding values from the proposed theory.

7.2.2 Pressure-Settlement and Pressure-Tilt Characteristics

i) A procedure has been developed to predict the pressure-settlement and pressure-

tilt characteristics of a strip footing resting on top of a slope and subjected to an

eccentric-inclined load, using non-linear constitutive laws of soil.

ii) Comparison of results obtained by the present analysis for pressure-settlement

and pressure-tilt characteristics show a good agreement with the test data.

7.3 SCOPE OF FURTHER RESEARCH

i) In the present study, the analysis has been carried out using the limit equilibrium

approach. Limit analysis and finite element method may well be applied for the

solution of the same problem,

ii) Model tests may be carried out on footings to obtain contact pressure distribution

using sensitive pressure cells. This may help in understanding the behaviour of

such footings.

iii) Model tests on clayey soils may also be conducted and the present analytical

procedure may be verified by the test data on clays.
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