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ABSTRACT -vii-

(Harpreet Singh, "State-Space Approach to Network
Synthesis", Ph.D. Dissertation, Department of
Electronics and Communication Engineering, University
of Roorkee!April 1971. Guide and Supervisor :
Dr. M.Lai, Professor, Department of Electronics and

Communication Engineering, University of Roorkee.)

The state-space approach to network analysis and

synthesis has aroused considerable interest during the

recent years, primarily, to develop computer-aided analysis

and design techniques. This thesis is concerned with the

application of this approach to various aspects of network

synthesis problem. In particular, state-space interpretation

of classical synthesis methods is sought and new techniques

for network realization from state-variable or input-output

characterization are discussed with a view to evolve

improved procedures.

The classical synthesis methods for linear, time-

invariant networks are well known. An interesting problem

concerning the use of state variables for network synthesis

would be interpretation, in state-space terms, of common

synthesis procedures such as Foster, Cauer, Brune etc. Tnirs

problem along with the interpretation of some of the proper

ties of network functions in state-space terms is briefly

discussed first. State-space techniques for the determination

of impedance matrix from its given even part and a direct

method for determining the transfer-function matrix from the

given state-space specifications are proposed.

In modern synthesis, many a time, the given

information is in terms of state-variable characterization
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rather than the input-output characterization. In this

case, the natural approach to network synthesis is by state

models. Before developing new synthesis procedures,

generalized state models for RLC networks have been discussed.

ks regards synthesis procedures,, js realization technique was

given by Yarlagadda [86j for state model belonging to n-port

LC networks. An improved method for this class has been

evolved which is suitable for computerization. The proposed

computer algorithm exploits the results reported by Anderson

and NewcombJ,6j and is free from many problems faced while

using Yarlagadda and Tokad[86J procedure. Further, a synthesis

procedure is proposed for a class of n-port RLC networks^in

which there are no cut-sets of inductors only, no loops of

capacitors only and there is no coupling between the link

resistances and tree-branch conductances. A synthesis

procedure for a similar class of LC time-varying networks

is also suggested. A procedure fcr the realization of A-matrix

(portless networks) for a mere general class of RLC networks

in which there is nc coupling between link resistances and

tree-branch conductances is also given. It may be noted that

starting from minimal state model these procedures result

in minimal realizations and in case the given set of time-

invariant state equations is not minimal, procedures exist

for obtaining a minimal sot[50J. In this context, for

synthesis from a given set of non-minimal time-varying state

equations, an interesting algorithm for removing uncontroll

able (unobservable) states is proposed.



CHAPTER I

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 INTRODUCTION

With the emerging of new levels of sophistication,

advent of fast digital computers and the introduction of

non-linear and time-variable devices, it has become mandatory

to accept state-space approach as a powerful tool for network

theory[6J,M,l9],[l9],[37],[38], [47], [90]. The fact is
supported by the recent trends in literature which evidence

a growing interest in the use of this approach in network

theory[81J, [85J. A fairly large amount of work has been done

in network analysis using this approach [9] , [38], [66] . However,

the application of this approach to network synthesis is only

at the beginning stage [37]. The present thesis is devoted to

the synthesis problem.

Network synthesis is concerned with the problem of

passing from a given information to a description of an

interconnection of subnetworks such as resistors, capacitors

inductors etc. The synthesis problem can be broadly classified

into two sub-problems namely, when the given information is

in terms of state-variable characterization ^r the input-

output characterization[37]. As regards state-variable character

ization, it is well known that lumped,linear and passive

networks can be characterized by the state equations

X - AX + BU ,

Y= CX + DU, ••' (1*1)
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where X is n-vector,the str.te, having its components as

capacitor voltages and inductor currents. U is ©-vector,the input

and Y is p-vector, the output. A, B,C and D -;re n x n,

nxm, pxn and pxm dimensional matrices. A is characterized

by network topology and element values', B specifies a

relation between the input and the state; C gives relation

between output and the state*, D describes direct input-

output relation which is independent of the state. The

problem is to find a network which specifies equation(l.l).

Sometimes, we ere given only A-matrix and the problem is

to find the network whose zero-state response is given by A.

As regards input-output characterization, we have

Y(s) = (cUl-ArWjufs) ... (1.2a)

and <>/(s) = CCsI-AT^+D ... (i.2b)

The problem is, given the transfer-function matrix V/Xs),
to determine [a,B,C,D~[ which can be further realized by
passive networks.

Whether the given information is in state-variable

characterization or the input-output characterization in

s-domain, our ultimate object is to obtain a passive RLC

network using state-space approach.

1.2 STATE-SPACE APPROACH IN NETWORK THEORY

The state of a dynamical system is a set of numbers

such that the knowledge of these numbers and the input or

forcing function will, with the equations describing the
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dynamics, provide future state and output of the system.

The state variables constitute a set which is written

as a column matrix called the state vector and the state

space is defined as the set of all possible numbers the

state variables can assume and the state-space approach

is nothing but the characterization of the system by a

set of first-order differential equations [l7], [pi].

The approach has been recognised by many investigators

as a useful tool both in network analysis and synthesis [37],

[38J. Some of the advantages of this approach in network
theory are indicated as under.

(1) The state-space approach provides a general basis
for the analysis and design of not only time-

invariant and passive networks but time-variable

and non-linear networks alsol36], ]j38] , [74].

(2) The state-space methods are especially compatible
with the use of digital computer as computational

aid as they involve only a few basic manipulations

which can be easily programmed[26] .

(3) The first-order differential equations can be

easily simulated on analog computer. So, once the

system is characterised by a set of first-order

differential equations, it is considered solved [32J..

(4) Once the solution of state equations is found,
one knows the instantaneous values of all the

elements in a network in terms of minimal set of

variables, because the other variables can be
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expressed as a linear combination of the chosen

state variables{58],

(5) Time responses can be easily found by Taylor-

series approximation t the transition matrix

instead of inverse transform technique requiring

factoring of characteristic polynomial [40J.

(6) Network functions can be easily found out by

characterizing a network by a set of first-order

differential equations because there exist

algorithms which when applied to state equations

give the network function without the problem of

rational matrix inversion. On the other hand, the

conventional loop or node method for finding these

functions is quite involved (40J.

(7) The state-variable technique offers greater scope
for extensions to problems such as equivalent

network problems. The reason being that once a

realization is found, the other equivalent realiza

tions can be determined through a range of non-

singular transformation. In this way, optimal

realization based on considerations such as

sensitivity etc. can be obtained[8l].

1.3 STATEMENT OF THE PROBLEM

This thesis is concerned with the problem of passing
from a given information to a description of an interconnection
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of passive subnetworks preferably without gyrators and
transformers exploiting the state-space approach. Speci
fically, the problems considered in this thesis can be
stated as follows!

(1) To seek the state-space interpretation of the
well-known results in classioal network synthesis.

This part of the problem deals with the inter

pretation of already well established results

by state-space technique, e.g. the interpreta

tion of the properties of driving-point functions
for two-element-kind networks and the common

synthesis procedures such as Foster, Cauer and

Brune etc. from state-space point of view.

(2) Given information in terms of state-variable
characterization, to evolve new realization

procedures and algorithms convenient for digital

computer studies for different classes of trans

formerless LC, RLC and portless networks.

(3) Given a positive real symmetric matrix, to evolve
synthesis procedures resulting in RLCT networks

without gyrators using the state-space approach
and modify the state-space synthesis procedures
for some common classes of driving-point functions
such as minimum biquadratic functions.

It may be mentioned that some aspects of these problems
have been considered by a few investigators^], [ll], [19], [36J,
lS6K87]and some results are available. For examples regards
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the first problem,the necessary and sufficient conditions

for positive realness of a matrix^], realization of LC

driving-point functions by Foster Method [86], interpretation
of poles,zeros, residues 111], [36] and the multiport
Darlington Synthesis from state-space point of view, have
already been obtained [5].

As regards the second problem, the synthesis of state

models for RC, RL and RLC networks and the realization of

restricted classes of A-matrix have been obtained [l9], [si],
[75], [86], [87], but these methods, due to one reason or the
other, cannot be implemented easily on digital computer.

As far as the third problem is concerned, two proced
ures have recently been proposed by Yarlagadda [85] for the
realization of a symmetric positive real matrix without

involving gyrators. The methods suggested by him can be

modified so as to implement them easily on digital computer.

1.4 ORGANISATION OF THE THESIS

The classical synthesis methods are now a well

established discipline and are discussed in several books

[25J, [27], [79]. But it has been emphasized recently that
state-variable approach is more promising especially due to
the study 0f equivalent networks [81] and so an attempt has
been made in this thesis to first interpret some of the
classical results from state-space point of view.

When the given information is in state-variable
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characterization of RLC networks, the common synthesis

approach is the decomposition of state equations into two

parts, one part giving the elements and the topology of the

reactive elements and the other giving the element values

and topology of the hybrid-resistive network and comple

menting the topology of reactive network [l9] , [87].

Simpler procedures for the decomposition and hence realizat

ion of state equations for different classes of networks

have been sought.

Further, when the given information is in terms of

input-output characterization in s-domain, it has been

recognised by many investigators that state-model approach

to network synthesis is more fruitful, because the state

model of the network provides more direct information about

the network topology than the network matrices [86]. So, an

essential step towards any such synthesis development would

be to translate the given specifications in s-domain to the

formation of a state model. The state model is then subjected

to a non-singular co-ordinate transformation so as to satisfy

the constraints of passivity and reciprocity and thus to

result in a passive reciprocal RLC network. Improved proced

ures for the realization from s-domain specifications

exploiting state models have been proposed.

For convenience the following arrangement has been

adopted in the organisation of this thesis.

Thr review of existing literature related to network

synthesis using state-space approach has been included in
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the second chapter. This chapter also contains derivations

of state models belonging to linear time-invariant, and

time-varying networks. The interpretation of various

terms such as poles, zeros, etc. and necessary and suffi
cient conditions for positive realness, from state-space
point of view,have been included. Some key properties of
passive and reciprocal state models are also recalled with

a view to have a clear perspective and for frequent reference
in the sequel.

Chapter III discusses the state-space interpretation
of well-known properties of networks and their realization.
In particular, the properties of LC and RC driving-point
functions are discussed using state-variable technique. The
state-space interpretation of Cauer procedure for reactance
functions and Brune procedure for biquadratic minimum
functions are discussed. The methods presented are illustrated
by examples. An algorithm for the determination of impedance
matrix from specified even part using state-variable
technique is presented.

In Chapter IV, the realization of state equations
for different classes of networks is discussed. In particular,
a new procedure, suitable for computerization for the decom
position of state equations for LC n-port networks is
proposed. Adigital computer programme and the corresponding
flow chart fo'r the proposed method are given. An example
considered previously[86] is computerized and the method
compared with the existing method. Further, for restricted



A

V

-9-

classes of n-port RLC time-invariant and LC time-varying
state models and for a restricted class of A-matrix,
simpler procedures are developed. Further, a procedure
for removing uncontrollable and/or unobservable modes
from non-minimal time-varying state equations is given.
The methods are illustrated with the help of examples.

In Chapter V, a synthesis procedure for a symmetric
matrix which results in a reciprocal realization is given.
Adifferent procedure is also proposed for the realization
of a symmetric positive real matrix into a passive RLC
networks and without the use of gyrators. The proposed
method is simpler than the methods suggested recently [85].
A comparison of the proposed method is made with the
existing methodsby way of a numerical example considered
previously [85]. The synthesis of minimum biquadratic
driving-point functions is also discussed in this chapter.

A summary of the work done has been given in
Chapter VI. Abrief guide for further work which might
lead to more fruitful results has been included in this
chapter.
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CHAPTER II

CRITICAL REVIEW AND GENERAL CONSIDERATIONS

2.1 INTRODUCTION

Several attempts have been made in utilizing the

state-space approach for the various aspects of network

synthesis problem in the last decade [l]-[9], [32]- [45],

[52j-[67],[69*I-[78l and there is an ever-increasing interest

in the problem as is evidenced by the abundance of recent

papers on the subject [8l], [82], [85], Many useful techniques

and results, long recognised in system design and based on state-

space approach [9l], have begun to illuminate network design

problem. The synthesis from both the transfer-function

description and the state-equation description has been

taken up by various investigators [37]. The validity of
transfer-function description is limited only to the repre

sentation of linear systems while state-space description

is indispensable for non-linear and time-varying systems.

As frequency domain description may still be preferred

for linear time-invariant systems for many design problems,

the translation of one description from the other has also

attracted the attention of several investigators so as to

bridge the gap between the two characterizations [ll]7[36J.
A critical survey of the work done in this field is embodied

in this chapter.
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^ 2.2 HISTORICAL REVIEW

The state-variable technique in network theory was

not used until 1957 when Bashkow[9] gave a new method of

network description by representing the dynamics of RLC

networks by a set of first-order differential equations

in a mathematical form

y Fa +-dT* • Va ••• <2'1>

This procedure for characterizing the network was based

on choosing a 'proper tree1 and selecting capacitor

tree-branch voltages and link inductor currents as state

variables. Following Bashkow, Bryant gave a method to

^ characterize the same in an explicit formfl3],

X = AX + BU » ... (2.2a)

Y = CX + DU • .. . (2. 2b)

The choice was made on 'normal tree'fl2] and again the

capacitor -tree-vcltages and link inductor currents formed

a set of dynamically independent variables. Following the

> work of Bashkow and Bryant, a number of papers appeared in

which the description of the network is made in terms of

the state model. Much of the effort was directed towards

the formation of state models from given network which is

essentially the problem of network analysis.

The synthesis problem, on the other hand, is the
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determination of a structure of the network giving a topo

logical disposition and the element values of the components

from given state equations. The solution of the problem

belonging to reactive n-port networks was given by Yarlagadda

and Tokad in [86] and its extension to RLC networks by the

same authors in [87j. If only portless passive networks are

considered, the network equations simply become

X= AX . ... (2.3)

The problem of realization of A-matrix for different classes

of RLC networks has also been investigated by several

authors [l9], [57]. Dervisoglu fl9J proposed a procedure for
the realization of A-matrix belonging to a class of half-

degenerate RLC networks. Nordgren and Tokad [57] considered

the same problem when A-matrix also admits loops of capacit

ances and cut-sets of inductances only. Yarlagadda [84] gave

a procedure for the realization of A-matrix obtained from

a given characteristic polynomial.

Usually, the given information is in terms of input-

output characterization in s-domain and therefore, the

problem of determining the matrices A,B,C and D from a

specified transfer-function matrix has also been widely

investigated. The problem was first established in the theory
of linear dynamical systems by Gilbert[22] and Kalman [32]
who propounded the theorems concerning the decomposition of

rational matrices when the matrix has only simple poles, and
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^ numerators and denominators of each entry in the matrix

are given in factored form. The non-minimal realizations

of the cases when the numerators and denominators are

not given in factored form has also been discussed in

these papers. These realizations can be made minimal by

removing uncontrollable and unobservable modes by standard

techniques. The realization of transfer-function matrix

, with multiple poles was also given by Kalman[34] first,

using the theory of elementary divisors. Similar methods

for minimal and non-minimal realizations for simple as well

as multiple poles have been given by various authors from

time to time — the suggested procedures having one advantage
or the other over the previous methods. Probably the

simplest method for computing realization from a transfer-

function matrix has been given by Ho and Kalman[28]. The

method was evolved from the study of so-called Markov para

meters [2l], [73]. Although the problem of minimal realization
has reached a state of maturity, the research in this

direction is still going on for improved methods[39]. Once

a set of first-order differential equations is obtained,
the realization is said to have been done as this set can

* be Emulated on analog computer [32J. But in passive network
synthesis, one is always interested in finding such set of

state equations as result in passive RLCT networks. When

one such set of A,B,C,D matrices is found out, all others

can be determined by applying non-singular transformations
to it. Hence, the strategy for passive network synthesis,
is to start with any minimal realization of a positive real
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^ immittance matrix and then introduce the coordinate

. transformation on the realization so as to satisfy the

constraintsof passivity and reciprocity.

Keeping the above in view, Anderson and Newccmb

made successful attempts to establish a synthesis procedure

for lossless n-ports in [7] and for a general positive

real matrix in [6} resulting in RLC elements, transformers

y and gyrators. Youla and Tissit90] considered scattering

parameters and have given synthesis procedures from state

model point of view, using RLC elements and transformers.

Combining the procedures of Anderson and Newcomb, and

Youla and Tissi, Yarlagadda [85] has developed procedures

for realizing the hybrid matrix through state-space

• considerations.

Due to the inevitable use of state-variable technique

4 for non-linear systems and the extensive use of transfer

function for design techniques in linear systems, it is

worthwhile to establish a communication link between the

two approaches. In accordance with this spirit, a number

of investigators initiated the work to bridge this gap*

The state-space interpretation of the common terms used

in s-dcmain synthesis such as poles, zeros, residues

etc. has already been given [ll], [36], [58]. The positive

realness of a matrix and Foster form synthesis etc. have

also been investigated from state-space point of view

DO, [86].
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A Recently, a method has bern proposed to identify

the given system by state equations directly from the

record of input and output sequences rather than deter

mining the transfer-function matrix first [24]. The method

will prove useful in synthesis especially in the

cases when the given input-output data is contaminated

with noise.

• Having given a brief historical review, some recent

work concerning the state-space interpretation of classical

concepts, state models and input-output characterization

is discussed further in the following sections.

2.3 STATE-SPACE INTERPRETATION

It is well known that state-space techniques have

contributed greatly to the modern network and control

theory. Yet the importance of frequency domain methods

cannot be belittled due to their extensive use in the

majority of design problems and the situation is unlikely'

to change in the near future. This has led the system engineer

to communicate both in terms of state-variable characteriza-

r tion and the input-output characterization. Some endeavours

have been made to explore the connection between these two

representations. Brocket [ll] developed expressions fcr

poles and zeros of a system in terms of state matrices.

Kuh.[j36j also obtained the similar relations by signal flow
graph representation of the state-space characterization
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of the linear systems.

Consider a single-input, single-output system

X = AX + bu ,

y = cX + du •
.. (2.4)

It is shown that, for the case d=o, the characteristic

polynomial of A gives poles of the transfer function and

characteristic polynomial of A gives the zeros of transfer

function [36] where

A = (I - k&U
0 ^ cb;A ;

whereas, for the case d^o, A is given as

Ao = <*"-•&*>*

as given in [36], or

Ao =A- Jf*

... (2.5a)

... (2.5b)

... (2.5c)

as given in [67]. The expression for the transfer function

is given by So [67] as follows «

det

z(s) = —

d

b

-c

sI-A

det [sI-A]
... (2.5d)

The interpretation of feedback, return difference etc. has

been given in [36] for the state model (2.4). However, if
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we consider linear RLC networks, it is shown in [76] that

their state-space representation with independent sources

of the network as exclusive component of the input vector

does not always exist. When the state variables are chosen

as capacitor voltages and inductor currents, the state-

spa.ce characterization of linear RLC networks involves

derivative of sources and in general, for single-input

single-output system, the state model is of the form[60],

[76]

X = AX + bu + bQu ,

y = cX + du + d0u •

The expression (2.5d) becomes [43]

det

(s)=

s

d

b

det

o

Jo

0

-c

si-A

[sI-A]

... (2.6a)

... (2.6b)

The various expressions viz. network response, poles,

zeros controllability and observability and models for

composite systems etc. have been derived in J43.] for the
model (2.6).

The relationship between state-space and frequency-

domain descriptions of the dynamical systems has further

led the network theorist to examine the interpretation of

classical synthesis in state-space terms. Anderson and
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Br~cket[5j gave the state-space interpretation of Multiport

Darlington method. The interpretation of Classical Foster

Method in state-space terms was given by Yarlagadda [86].

2.4 STATE-VARIABLE CHARACTERIZATION

State-variable characterization, though long recognised

in system theory, has recently been adopted in network theory.

Network theory is inextricably linked with the mathematics

of differential equations, so the natural approach for the

network models should be in a form compatible with the current

mathematical results. The state variables lead us to a sot

of first-order differential equations known as the state

models. The salient steps in the derivation of a state model

for n-port RLC network are given below.

Let a normal tree£l2] be chosen and the branch voltages
and currents be partitioned as follows :

Vl =

V

v<

vl
V

R

K

and h ' ... (2.7a)

L*kJ

for the links, where the subscripts R,S and L denote link

resistance, elastance and inductance and V^ and IK denote

the voltage and current vectors of current sources and

v2 =

VV

vc

vr
V„

and h =

xv
Jc

Jr
... (2.7b)
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for the tree-branches, where the subscripts C, T and G

denote capacitance, reciprocal inductance and conductance

and Vy and Iy denote the voltage and current vectors of

the voltage source. Let the form of F expressing the topo

logical relations between links and the branches be chosen as

follows [38];

F =

FRV FRC 0 F
rRG

F
rsv Fsc 0 0

FLV FLC FLr FLG

_FKV FKC fkf FKG_

... (2.8)

where FRV expresses the topological relation between resis

tance links and volt age-source tree-branches and similarly,

FKV expresses the topological relation between current-source

links and voltage-source tree-branches.

The Kirchhoff voltage and current law equations can be

written as

L1 F3
V-,

L.V2
- 0 , ... (2.9a)

and [-" g LI? J
= 0 ... (2.9b)

The branch voltage-current relations can be written as

follows [38] .
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V
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lVj
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Ci
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Vr

V
C

RjL 0
•R

0 32j V,

dt

Lll L12

^1 ^2

L

_ L r

... (2.10a)

... (2.10b)

... (2.10c)

Combining (2.9) and (2.10) and eliminating the unwanted

variables, and letting Vv = vv,VK = VK and Iy = -I
represent the vectors of terminal variables for an n-port

RLC network [86] the state model can be obtained in the fo
(2.2 ) where

V,r.

X =

A

and

A =

-1

6

o

r -i

e

0

0

£
-1

0

£
-i

vv

vv

K

K

All A12

A21 ^2

Y =

"FRC(B FRC

i— *

V
K

I

and IK= -IK

rm

... (2.11)

F' -F' **•*'LC-Pr'c^ FRGR2FL

*v^usfln&i*MO -flg^"1flg
... (2.12a)
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!11 "B12 -B
13

23
B 21 0

-FJ 6 -'•FrRC

B

RV

_FLG^ FrgG1FRV-FLV

-FKC+FRC €iFRGR2FKG

FLGflF^G

24

FscciFsv
0

0

L12FKr+FLrL22FKf_
.. (2.12b)-FKC+FKG f lFRGGlFRC-^4 £\x -b^3+b-4 ^-lA2g

C =

BirBi2 %\l -FLV+FRV^lFRGR2FLG+B12 g" ^12

-I -FKV+FKGf ^RgVrV"6^ ^"1b21

FRV € \v~H2 &Xl

.. (2.12c)
0

--1,FsvciFsv-Bi2 g\2

FKG ^lFKG+B24 /flB23 V ^Rf^ '1b24_
FK^-FRV^rlFRGR2FKG-Bi2glB13

where

£ =R1+FRGR2F^ ,

£ =G2+FRGG1FRG .
^ =C2+FSCC1FSC »

=Lii+FLr^i+Li2FLr+FLrL22FLr •/

0

.. (2.12d)

.. (2.13)

« is the loop resistancermatrix for the fundamental lotfpirt^fined
br the resistance S*|*m£4s the cutset Jttttfebftwk* matrix for the
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fundamental cut-sets defined by the conductance tree
branches, both are positive definite, g (symmetric and
positive definite) is the cut-set capacitance matrix for the
normal tree i.e. the cut-set capacitance matrix for those
fundamental cut-sets defined by capacitance tree-branches
and £ (symmetric positive semi-definite) is the loop conduc
tance matrix for the normal tree, i.e. the loop inductance
matrix for those fundamental loops defined by inductance
links [38].

It may be noted that the state -model given by (2.11)
to (2.13) is general enough to encompass all n-port RLC
networks and the model appears to be promising in connection
with the synthesis of n-port general RLC networks. Similar
state models using different approaches have also been
derived elsewhere [is] , fe?], [38] , [4?] , [52] , [53] , [85] .

In order to obtain state-models for linear time-
varying systems, eqn. (2.10) becomes (taking L1P=LC =0)

"V
d

" d t

cx(t) 0 "vs"

..v. 0 c2(t) -V

"vb"1 P"B1(t) 0 "V

-V 0 Gg(t)_ -V

"V
dt

-Ln(t) 0 "V

— mm.

0 L22 (t) A

•• (2.14 a)

•• (2.14b)

•• (2.14c)
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and proceeding in the same way as for time-invariant systems,

and dropping the (t) for convenience the state model is
given by

A 11 ~ ~FRC<£ FRC" € >

A 12 - flc~frc^1frg%flg '
A 21

A
22

FLC+FLG<lFr;GGlFRC -
7

LG f\G~l .-F

B,,= F --1

11 = FRC& ?WFSC^SV '

B
12 FSCC1FSV •

-1,
B 13 " FKC~FRC& FBGE2FKG '

B14 " ° •

B21 =-FLV+FLGflFRGGlFRV '
B22 = 0

,-lp. -23 " FLG^~ FKG~FLrL22FKr "

24 - ^r^^p

.. (2.15)

J
The matrices C and D for the time-varying case will be similar

to (2.12c) and (2.12d) for the time-invariant case.

Following the same approach, the state models can be

obtained for active linear time-varying networks for which
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the voltage-current relations for resistive elements includ

ing some types of active elements and gyrators, transformers

etc. can be described by the hybrid equations^38], [52J

Vr 'Hll H12

H21 H22 Vr
.. (2.16)

The A-matrix for this case has been derived in [52] and B,C

and D are not difficult to obtain. Further, by following the

approach discussed in [53] for decomposing non-linear time-

varying reactive elements, the state-model for the class

of non-linear networks considered in [53] can also be

obtained. The A-matrix for this class has already been given

in [53].

2.4.1 SYNTHESIS FROM STATE MODEL

From the generalised state model obtained for the

time-invariant case (eqn. 2. IE) and for time-varying case

(eqn. 2.15), the state models for different sub-classes of

time-invariant and time-varying networks can be derived.

For example, by substituting R=0 in (2.12), state model

for LC networks can be obtained and by substituting LfO,

state model for RC networks can be obtained and so on.

Given the information in terms of state-variable

characterization, the state models derived in topological

expressions, serve as useful starting point for network

synthesis. By comparing the various topological expressions,
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with the given values, a set of simultaneous equations

can be obtained, the solution of which gives the element

values as well as the topology of the network which can

be tested for realizability by the well-known techniques

[49]. The synthesis of LC and RLC time-invariant state

equations has been discussed by Yarlagadda and Tokad in

[86J and [87]. The realization of active networks from state-

equations has been considered by Martens [48].

2.4.2 SYNTHESIS OF A-MATRIX

Many a time, we are given only zero-input response*

In such cases, we obtain portless networks i.e. networks

without excitations and the state equations (2.2) take the

form

X = AX ,

where A can be decomposed into [57],

r 0~ ~-All A12
"i

0
_ £_1_ -A 'A12 A22_

= D l H3
a a

..'. (2.17)

such that^ and j£ become the terminal matrices of the

capacitor and inductor network and H3 is the terminal
a

hybrid matrix of the resistive network. By decomposing

the given A as shown above, the element values and partly the

topology of capacitor and inductor elements can be obtained

from Da thus reducing the realization problem to the
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realization of hybrid resistive network given by H .

2.5 INPUT-OUTPUT CHARACTERIZATION

When the given information is in terms of input-

output characterization in s-domain, a natural approach to

network synthesis is by decomposing a given positive real

Z(s) into a quadruple A,B,C,D~| given by Z(s)=C(sI-A)~1B+D.
[AjB,C,DJ is known as the realization of Z(s), since by
knowing matrices A,B,C and D, the set of first-order diff

erential equations corresponding to the given n-port can be

simulated on analog computer. There exists a smallest integer

n0 in a minimal (irreducible) set and is known as the

complexity[l2] of the network. If the order of A is more

than n0> the set of equations obtained is non-minimal

(reducible). The number nn is given by the number of

reactive elements less the number of independent capacitor-

only loops less the number of independent inductor only cut

sets in a network. Thus the number is related to the degree

of a rational matrix, written as 6*y/(s) which denotes the

minimum number of reactive elements required in any passive

synthesis of a positive real impedance matrix. Various

definitions of degree have been given from time to time and

were reconciled as one by Kalman[34]. Further, given one

minimal realization, it was shown in [32] that all others

can be obtained choosing a transformation T ranging through

the set of non-singular matrices, such that set

[J^AT, T1B , CtI .. (2.18)
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constitutes another minimal realization. It may be noted

that D is always*V/*(°°) irrespective of T. All transfer-

function matrices^/(s) with'\V(°o) finite, possess minimal

realizations.

2.5.1 GENERAL PASSIVE NETWORK SYNTHESIS

An interesting approach for passive network synthesis

using state variable technique based on reactance extraction

is reviewed in this section.

Consider the minimal passive synthesis of given Z(s).

The resulting n-port can be divided into non-dynamic

elements and dynamic elements of unit inductors. It is

reasonably well-known [4] that capacitors can be replaced

by gyrators and inductors and the ideal transformers can

be used to make all inductors unity. The impedance matrix

of the frequency independent portion is given [37] by

where

Ml =
zll z12

z21 z22

-1Z(s) = zu-z12(sl + z22) z2l

.. (2.19)

.. (2.20)

Comparing (2.19) with (l.2b)and using (2.18), we get

= D ,"11

212

221 =-T-lB ,
z22 —T^AT

- CT



or

Ml =
Lo T

0
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0

.. (2.21
""A 0 T

Therefore, when minimal realization is obtained, the impedance
matrix of the frequency-independent network is given by (2.21),
The non-singular matrix T gives the flexibility to Introduce
passivity and reciprocity constraints. The concepts of

passivity and reciprocity as related to state-space synthesis
are briefly discussed next.

2.5.2 PASSIVITY CRITERION

Passivity as characterized in terms of impedance, matrix is given

first.If Mj is the impedance matrix of a frequency-independent
network, its symmetric part must be positive semi-definite.
The transformation T is thus chosen in such a manner that it

makes the symmetric part of Mx positive semi-definite. It
will be worthwhile in this context to state the Anderson's

lemmas for positive realnewfe] which will lead to the
transformation T.

LEMMA 2.1 - Let Z(s) be a matrix of rational functions such
that Z(~) - 0and Z(s) has poles only in Res<0, Let JA,B,C]
be a minimal realization of z(s). Then Z(s) is positive
real if and only if there exists a symmetric positive definite
matrix P and a matrix L such that

PA + A'P = -L'L ,

PB = C< • .. . (2,22)



-29-

LEMMA 2.2- Let a positive real Z(s) have all imaginary

axis poles with Z(°°) = 0 and let A,B,C be a minimal

realization of Z. Then there exists a symmetric positive

definite matrix P such that

PA+A'P = 0 ,

PB = C .. (2.83)

LEMMA 2.3- Let Z(s) be a matrix of rational transfer

functions such that Z(°°) is finite and Z(s) has poles which

lie in Re s<0 or are simple on Re s = 0 and j~A,B,C,D| be a
minimal realization of Z(s). Then Z(s) is positive real if

and only if there exists a symmetric positive def Init* P and
matrices W f»nd L such that

o

PA+A'P =-L'L ,

PB - C'-L»W0 ,

WoWo=D+D,» .. (2.24)

and there exists a matrix W(s), unique to within left

multiplication by a constant orthogonal matrix such that

Z(s) + Z'(-s) = W'(-s)w(s).

Reference [4] describes procedures for determining the
symmetric positive definite matrix P from which suitable T

given by

P= T'T .. (2.25)

can be determined, which, when applied on JA, B,C,d], makes
the symmetric part of Mx positive semi-definite and its
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realization can be achieved by RTG(Resistance, Transformer
and Gyrator) network [4].

2.5.3 RECIPROCITY CRITERION

The following theorem is stated here concerning
reciprocity. For proof see [85].

Theorem 2.1- Let Z(s) be a nxn matrix of real rational

transfer functions with Z(~) finite. Z(s) possesses a
state model of the form

X = AX + BU ,

Y = CX + DU ,

such that

(I + Z )Mj_ = symmetric matrix .. (2.26)

where I being a unique ordered diagonal

matrix of plus ones and minus ones, + denotes direct sum and

(?;g
I 0 D C

0 2
and M]_ =

^B -A

if and only if Z(s) • Z'(s) .

It has been shown in [37] and [90] that there always
exists a symmetric T such that

M{ = (I + T"1) Mi (I +T), ,

where T can always be expressed as

T = L1SL;[ .

.. (2.27)

.. (2.28)
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2.5.4 PASSIVITY AND RECIPROCITY

The flexibility in choosing a transformation T should

allow us to introduce both passivity constraints and recipro

city constraints i.e. by Lemma 2.1, 2.2, 2.3 and (2.25), T

can be chosen which guarantees passive network while applic

ation of (2.27) guarantees reciprocal synthesis. Unfortunately,
it is difficult to find a T which satisfies both passivity

and reciprocity conditions simultaneously.

It may be mentioned, as has been shown in [37], that

all reciprocal realizations for RL or RC impedance matrices

are passive. So in case of RL and RC networks, once a trans

formation T is found which results in reciprocal realization,

passivity is automatically guaranteed.

2.6 CONCLUSION

The recent literature available on the use of state-

variable technique in network synthesis is an evidence of

the growing interest of research workers in this field.

Both, state-variable characterization and input-output

characterization are being amply used as given specifications

for network synthesis. The synthesis procedures from state-

variable characterization still require further modifications

in order to become amenable to computerization.

Moreover, the synthesis procedures from input-output

characterization, have yet to be moulded so as to evolve

a satisfactory algorithm for the synthesis of positive real

symmetric matrices into passive RLC networks without gyrators.
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In other words, the investigations of transformation which,

when applied on a state model, makesit satisfy passivity

and reciprocity constraints, need be carried out. These

problems are discussed in the following chapters with a

view to achieve the desired objectives.
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CHAPTER III

STATE "SPACE INTERPRETATION

3.1 INTRODUCTION

It cannot be disputed that the state-space techniques

have generated a lot of interest in network analysis and

synthesis in the past few years. Even then, at present,

majority of the design problems are being done using frequency-

domain methods and the situation is not likely to change

within the coming few years. Hence, it becomes imperative to

establish a communication link between the state-space

characterization and the frequency domain methods. Although

classical synthesis methods are well known, their interpreta

tion in state-space terms will be of great interest and some

work has already been initiated in this direction [3] , j»5J,

*ll], [36]. The present chapter discusses the state-space

interpretation of the well-known properties of network

functions and the common synthesis procedures such as Foster,

Cauer and Brune etc. Besides, the determination of minimum

reactance matrix from the given even part specifications and

the determination of transfer-function matrix from the given

state equations are also discussed.

3.2 STATE-SPACE INTERPRETATION OF SOME OF
THE PROPERTIES OF NETWORK FUNCTIONS

Some of the properties of reactance functions are

interpreted first in state-space terms.
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(1) Property No.l

Let Z(s) be a lossless impedance matrix with Z(°°)

finite and let [a,B,C,d] be a minimal realization for

Z(s). Then there exists a symmetric positive definite

matrix P such that

PA + A'P = 0 ,

PB = C! ,

.. (3.1a)

.. (3.1b)

where A,B,C are the state-matrices.

This property has also been proved in [3] but here it

is proved in a more generalized way i.e. from the state

model belonging to the LC networks. This proof gives better

insight as the state models are the basic building blocks

in state-space analysis just as loop and node methods are

in classical analysis. The proof can be carried out by taking

a general LC network having sources at the ports and writing

down its state model in topological entities. This state

model can be obtained by substituting R = 0 in eqn. (2.12)

and is given by

X = AX + BjU + B0U ,

Y = CX + D.U+ D„U ,
t o

wh e re,

A =
\€x 0 0 F* ~

LC

0
_ A'i "FLC 0

Bt=
V1 0 0 ~FKC
0 £Tl. -FLV 0

.. (3.2a)

.. (3.2b)
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B„ =

0

-1
0 FscciFsv

0

0

FLfL22FKT_
. (3.2c)

r. =

o -flv+(fsccifsv%~1flc
' ,•>-!JFKC-(FLrL22FKr^ ("FLC) °

Dt =
*KV ^SC°1^SV;

_-FKV-(FLrL22FKr)X1(-FLV

0

J
.. (3.2d)

'̂ -FKC)1

(3.2e)

Do '
FKrL22FKr -^Lr^^r^-^rVKr

.. (3.2f)
Let us consider the transformation

X = Xj_ i

<1X = X, + B 0
0

Substituting (3.3) and (3.4) in (3.2), we get

X1+B0U = AXj_ + AB0U + BtU + B U •

or

*

Xx = AX1+(Bt+AB0)U

and

Y = CX1+(Dt+CD0)U .

.. (3.3)

.. (3.4)

.. (3.5a)

.. (3.5b)
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*

Xl = AX1 + BU '
Y = CX-l + DU ,

where

B = Bt + ABo

rl«i -IO g*F
KC
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0 e~l*£

.. (3.6a)

.. (3.6b)

61fsccifsv °

.-1

tl FLV ° J u\c 0 L FLrL22FKr_

-1

e
0

0
-1

£

and

D - D+ + CD .
^ o

Let P =
0 I

0 ,-i,_p» +pt r F T F'
KC LCob LT 22 KT

-FLV+FLC ff'^SCplF^ 0

.. (3.7)

, a symmetric positive definite matrix.

.. (3.8)

From (3.2a) we find that

PA + A'P = 0

and from (3.2d),(3.7) and (3.8), we get,

PB = C

Property No.2- Poles and zeros of LC driving-point functions

lie on imaginary axis.
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Proof

A driving-point function z(s) can be written as

eqn. (2.5d). If it is a proper function i.e. z(s) vanish
at s = *>, it becomes

es

det
-c

(s) _ Elsi-=
ls; Qfs)

sI-A
J

'A P

bp =Pl/2b ,
rl/2cp - c P

det[si -a]

If it is not proper, its reciprocal must be proper. Therefore,
no generality is lost in starting with a proper LC driving-
point function.

For lossless z(s), we have from (3.1)

PA + A'P = 0 ,

Pb = c' ' .. (3.10)

Applying a transformation T such that T-1 = pl/2 the set
given by expression (2.18) becomes

A = P1/2A D-l/2

.. (3.9)

.. (3.11)

It may be noted that since, on applying the above transforma
tion, driving-point function remains the same, the poles
and zeros are not affected by a similarity transformation.
From (3.10) and (3.11) we get

AP + Ap " 0 •
b« = c' . .. (3.12)



Th erefore from (3.9)

det

(s)

0

bv
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"bP
si-A

P J

det[sl - Ap]
.. (3 .13 )

Ap is a skew symmetric matrix from eqn. (3.12). Numerator of

eqn.(3.13) is the determinant of bordered Tsl-A ~[ matrix by a
column and its negative transpose row with the added zero

diagonal element. Simple analysis[5l] will show that roots of

numerator and denominator polynomials are imaginary and hence

poles and zeros of LC driving-point function lie on imaginary
axis.

Property No.3- Poles and zeros of LC driving-point functions

interlace.

Proof

Consider a proper driving-point function as discussed

above. In a suitable neighbourhood of infinity, z(s) can

be expanded as \2&]

z(s) = cb s -1 + cAb s ' + cA2b s 3 + (3.14)

As explained in the proof of property no.2, there always

exists a transformation T which transforms A, b, c to a form

such that new A is skew symmetric and new b is equal to the
transpose of new c.
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Since new c is a non-zero column vector, the scalar cc'>0.

Further, since A is skew matrix cAb, which is equal to cAc',

a sclar, will always be zero,

(A is skew symmetric, any matrix product cAc'
is either skew or a null matrix. In our case

as c is a row vector, the product cAc' will be

scalar and hence equal to zero. )

2 9
and cA c' N< 0 since cA c' • cAAc'= cA(-A'c') • -(cA)(cA)'.

Similarly, cA3c' = 0

cA4c' >y 0

cA5c' = 0
g

cA c' ^ 0 and so on.

Therefore

cc' cA2c' cA4c' cA6c'
z(ju>) = — +/.—T" + 7~"T5 + 7~*~/7 + •••* ' •• (3*16)

J CO (J to) (3 6c?) (JOJ)

z(j kf) = jX(<d ) ,
-jcc' jcA c' -jcA c' jcA c'

= _ + + __ + . + (3.17)
^ AT LO^ CO7

or g , -
-cc' cA c' -cA c' cAc1

X((V) = + S- + T~ + =-+ ••• * .. (3.18)
(O lO* 6oD lO-{

From (3.15) and (3.18) it is obvious that V& will always

be positive and therefore poles and zeros of reactance function

will always interlace. It may be noted that it is possible

to interpret and prove various other properties of network

functions from state-space point of view. For example,

Property No.4- Poles and zeros of RC driving-point function

lie on negative real axis and interlace.

.. (3.15)
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Proof

By substituting L - 0 in the generalized state model

given in eqn. (2.12), and letting only a current source at

the input we get the state model for RC impedance function
as

V

T
e

The new state model becomes

V

c rKG y ^KG XK

where, FKG & f^g is a scalar and is denoted by d.

Consider the transformation,

.-1 1/2

..(3.19

... (3.20)

1"€ He ((\c2e/2\S \S 1/2 C-FKC+FEC £ ^BgVkg] iK
.. (3.21)

•1/2

- AVcl+bu ,

KG
VK =[-FKC+FKG^"lFi;GGlFRc]gl/2Vcl+FKG|:l^

= cVcl+du - .. (3.22)

Clearly, A is a symmetric negative definite matrix thus

having negative real eigen-values. Further from (3.21) and
(3.22), b = c*[38] and d is a scalar. So A- ^ is a
symmetric negative semi-definite matrix. Thus zeros of

eqn. (2.5c) are negative real. Hence, poles and zeros of

RC driving point impedance function lie on negative real
axis. As regards interlacing property, matrix A, which
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gives poles is a real symmetric matrix and the matrix

giving zeros (eqn.2.5d) will be bordered [sI-a"] matrix by
a column and its transpose row with the added diagonal

element d. Simple analysis will show that poles and zeros

will interlace for this case[29]. By letting a voltage
source at the input, we can prove this property for RC

admittance functions. Similarly the property can be proved

for RL case. Having discussed the state-space interpretation

of the various properties of network functions, a similar

interpretation for the classical synthesis procedures is

sought next.

3.3 STATE-SPACE INTERPRETATION OF CLASSICAL SYNTHESIS METHODS

3.3.1 FOSTER METHOD

The classical Foster method assumes the topology of

the network a priori. The method of realization for the case

of canonic 1-port LC networks, using state model and without

assuming topology in advance, was considered by Yarlagaddal86J.

Similar realization for RC case is discussed here.

r.insider an RC driving-point impedance function which

can be decomposed as

is Kl *<? KZ(S) = Kc + —*- + *L_ + ... + —D _ (3>23)
s+cr£ s + C£ s + cr

where CT's and K's are positive constants. A state model
corresponding to z(s) can be written as
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•°i

A =
-°2

.. (3.24

^n fK
n

c = p"Ki v"Kg... ykj; j , d = Kr
Applying the transformation

1

1

T =

'- i

»

firn_j

At=T_1AT = •

•

•

-crnj

.. (3.25)

, b+=T lb =

Kl

K

ct = Tcc [ 1 1... 1 ] d = K

Comparing with the state model obtained from eqn.(3.19)

for the class of RH networks having FRG = 0 ,

X = AX + bu

= F1 ] EfRcri1frc]vc +e"1^rA '

and y = cX + du

VK • ~FKCVc + FKGR2FKG^K '

(3.26

.. (3.27)



w

-43-

and noting that the entries of F£c are to be +1, 0 etc.,we

can take

K,

&"x=
h

.. (3.28)

«n

Hence,eqn. 3.27 becomes

K,

*2

vK- [1 1 .

Therefore

(-frcrI1frc) =

RC

and

*n

5
K7

gv^K

-1
, B

Kg

5
Ki

°i

cr
n

K~
n

5

°n

V +
c

K,

*B

K

.. (3.29)

F*
' KC

cr
-Q

Kn

-1

-1

-1

L J

1

1

*K
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Obviously FRG will be 1 and Rg will be th

|"F lj so obtained will be

K

R.

G Cl °2 ... cn
1 -1 -1 -1 1

0 1 0 • • 0

0 0 1 0

0 0 0

. . (3.30 )

e scalar K .
n

.. (3.31)

and the corresponding graph and the network are as shown in

Figs. (3.1a) and (3.1b).

3.3.2 STATE-SPACE INTERPRETATION OF CAUER METHOD

The procedure given below discusses the Cauer reali

zation for one-port LC networks in state-space terms. The

procedure discussed here, exploits the graph-theoretic concepts
and the topology of the network need not be assumed a priori.

Consider a proper reactance function

Ms) =
3iSn-1 + . n-3

T 3g S + . . . + g
n-ls

sn + b2sn 2+ ... + b
.. (3.32
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FIG. 3.1 (a). REALIZATION OF CIRCUIT MATRIX [EQN. 331 ]
(b).REALIZATION OF z(s) [EQN. 3.23]
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(b)

Ln-n-1

nnp—i

Cn

FIG.3.2 (a). REALIZATION OF CIRCUIT MATRIX [EQN.3.42]
(b). REALIZATION OF Zl(s) [EQN. 3.32]
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In order to find out the Hurwitz coefficients,

coefficients of numerator and denominator of eqn.(3.32) are
written in the usual tabular form as

n

1 bg ... bn

3] 3g ... 8
n-1

.. (3.33)

where kQ - 1, kx = a]_ etc. i.e. the entries in the first

column of eqn. (3.33). The state model for eqn. (3.32) can be

obtained in the modified Schwarz form as [46]

0
k

1
0

0 -

ki• k„
V 1 0 _ -1

c
— k2

1 0

}l 1

L

Vic= jl 0 0

0 - r*

0

1

kn-2
0

IT
k

0°

[v
c

0

+
0

L\ 0

•

•

•

0

0

V.

]

K

.. (3.34)

The validity of eqn. (3.34) can also be verified by comparing
its Markov parameter[cb, cAb, cA2b etc.]with those of eqn. (3,32).
These should be same as proved in the following Lemma.
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Lemma 3.1- The products CB, CAB, CA2B etc. of all reali

zation corresponding to a given transfer-function matrix

should be same.

Proof

If A,B,C is a realization of'Y/Xs), any other reali

zation [ApBpC-jl is given by T-1AT, T~1B, CT. Therefore,
C]_B1 = CB *, C]_A1B1 • CAB and so on.

Next, applying the transformation

1
k"

L.

1-

1-

•n-l

to eqn. (3.34) we get the state model
-k.

h

V.

XL

0

h
k2

-kr

k3
0

k„

'23
k2

0

kK

:1k
-kt

0 kK4

0~lad
:n-£

kn-l

- n-T

kn-2
0

J

V.

.• (3.35)

rh

0

0

0

0

0

L°J

iK ,

..(3.36)



V,

& 0 0 0 0

-48-

0 ol
V,

'L

Applying the transformation £84^

T =

T =

1 2 3 <&• n+a n-1 n

1 0 0 0 0 0 0 o" 1

0 0 0 0 1 0 0 0 2

0 1 0 0 0 0 0 0 3

0 0 0 0 0 1 0 0 4 .. (3.37a)
0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 n-1

0 0 0 1 0 0 0 0 n

n is odd and

1 2 3 n
2 2 L n-1 n

1 0 0 0 0 0 0 0~ 1

0 0 0 0 1 0 0 0 2

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

3

4 .. (3.37b)

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 n-1

0 0 0 0 0 0 0 1 n

when n is even, we get the state model

-k-

k2

V.

-k.

kn-2 *<n-2

•h.

ko

0

,k4
-P
1

0

V~
c 0

kn-l
lL_

+

0

0

0

Mi -

K
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VK = f1 0 0 o]
V

The above state model can be written as

V,

K

ko

h
Ko

[»

:2 kc

w4'k

:n-l

^2 k5

_n

:n-l

k 3"k
0=1

kn-2

-1

1 -1

1

*4

"" "~ -

1

0

0

0

0

0

Vi 0

kn-2.

lK'

0 0-0 rO 0 0 1
V.

.. (3.38)

! -1

: 1

-1 i

•1

1 -1

1

.. (3.39)

V.
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i1

-1

-l
'n-1

1 -1

1 -i

"i

_<

fil
0

0

0

~o"
0

-1

n-l_
0

*

[ 0 0-0:0 0-0 ]
V

-1

; -i

i - i

i -i
- •>

i V.

.. (3.40)

from which various submatrices can be found by comparing with the
corresponding model for LC one-port and we get

FLC =

-1 1

-1 1

-1 1

KC m£i o o... o]

Therefore, [F IP can be written as

.. (3.41)
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.. (3.42)

from which the graph and the corresponding network can be

obtained as shown in figs. (3.2a) and (3.2b).

3.3.3 STATE-SPACE INTERPRETATION OF BRUNE METHOD

The classical Brune method requires at the first stage

the determination of the frequency at which the real part of

the impedance function vanishes and the determination of the

imaginary part at that frequency. The imaginary part divided

by this frequency gives the element value of series inductance

(positive ar negative). The removal of the series inductance

leaves a function which after inverting is realized as an

admittance function and so on. In the following, these steps

are discussed by giving them the state-space interpretation.

The discussion is, however, limited only to biquadratic

minimum functions. Various steps are illustrated by taking a

suitable example [79].

Example 3.1

Given z(s) =

Therefore

Zj(s)

1 2
Z5 liii

h

+ £s +h 1
2

:+ h * i
+h ♦i

1

2

4*s +£
2 le 1

s + qS + *•

... (3.43)

... (3.44)
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and the corresponding realization is given by L32J

A =

c =

0 1

.-1 -X
2 2

[f *]•

b =

0

.. (3.45)

Knowing JA,b,c,d] of g(s), JAr, br» cr, dJ of Even
z(s) can be found as [3J

Ar =

A 0

0 -A'

=Ec -*']

br =

[2dJ
.. (3.46)

The zeros of real part are given by finding the eigen

values of AQr feqn. (2.5)1 i.e. by finding the zeros of

det [sI-Aor] - det[sI-(Ar- dbrcr

0
where, for the example under consideration

or

~°
5 _ z

~
brcr- 4 4

Ar -""Jr J Q
— •*- — . 2L

16 16

_ 2L. 1_
16 16

0

0

0

-1

0

5
4

3

4

.. (3.47)

2 2and det (si - AQr) = (s + 1) • Therefore, the frequency (^-,

at which real part is zero is 1. It can be easily proved that
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if [A,_b,cJ is a realization of z(s) then A^, bj_ and c^
give the realization of [z (s)-z' (-s)l where Aif bi, and
Cj_ are determined by

A 0

Ai-
0 -A'

ci = c b1'•1

bi •

dt- [o] .. (3.48)

lr -r 1 clbiP^s^rImaginary part g[z(s) - z'(-s)J is given by 2 s Q(s) |E(+n,l6»
Ref.36| where

biciP(s) = det [si - (I - ~—) Ai"
cibi

and

Q(s) =det [si - a£|

Therefore, for the„ example under consideration

g[z(s) - z' (-s)J = o x 2

1
2

1
'2

-[•'! *]•

3
s - s

**SW' ' L ™J "2 -2 ^ (s2+L}2_(ls)2

2 2which equals (-s) on substituting s = - Uy = -1.

In the conventional Brune synthesis, this reactance

which equals (-s) in this example, is removed from the

given impedance function and the resulting impedance function

is. inverted. In state-space terms, the removal of this

reactance corresponds to changing d in eqn.(3.45) to

(k + s) and the corresponding state model becomes

b =

0

1

•[*♦•]■
.. (3.49)
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In state-space terms, the inverting of the impedance

function in classical Brune synthesis corresponds to

the determination of inverse system f/Li by, cv, dv~|
which is given as follows [90]

Av = A- bd 1c ,
b„ = bd ,

cv = -d c ,

,-1
v

.. (3.50)

and for the example under discussion, Ay, b , cv, dv become

-t =2 . "1_
2l2s+TT 2T2I+1)

bv =

dv =

0

2s+l

' 2

_2s+l

which correspond to the admittance function

2s' + s + 1

yp^s) = —3—2 *
2 s +2s +2s+2

].
.. (3.51)

.. (3.52)

Continuing with this procedure, let us realize the admitt

ance function so obtained in equation (3.52).

In general yg(s) can be written as,

Y2(s) =
s +

r2 s

s^+q<*1

The corresponding state model is given as

.. (3.53)
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A =
b =

•[

-^2 0

32 ! 0 0

o ; 0
"*!

0 "^2 Yl

Choosing the transformation

T =

V

S !
..32 J

"1

i

we obtain the new model as

2 — _ ,

%L
t

0 -1 0
-

r?.( 1 V

t "r2""" l"
1

0 0

t

i rl 0 j 0
-Ql

rl_

I

Ml M t

r 2 i »

2s. ; 0
-_r2 _[_

+
t

t
r2 T

i

1

J rl i

Uriv = [ ]
V

0

• .. (3.54)

.. (3.55)

.. (3.56)
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Comparing with the state model(It can be obtained from (2.12)
by connecting a voltage source at the input and by assum

ing that there are no loops of capacitance only, no cut-sets

of inductance only and F^q - 0)

• — — mmi

Vc
.

cll ° -FBCGlFi F'
^C rLC Vc

A . ° Li _ "FLC -FLGR2FLG_ A
C"1°2 0 -FRCG1FEV

+

p * • • t ^0 • u t )

_° ht "FLV _

* *- _ tv -

*V ' [FRVG1FRC "%] jc

»

L

•

we get,

'LC

-1

0

LV

Further

FRCG1FRC ' ° '

. FRCG1FRV = 0

A possible solution is

FRC = 0 i FRV = ° ' Gl
and as

-FLGR2FLG~
0

0

0

151

-1

-1

= 0
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FLG=

0

1
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II
r1

R2 = ™ etc

For the example under consideration, eqn.(3.53) becomes

1 1 .

T8<«) = r+i + s2 + 1

Therefore,

by 1/2
1/2.

-1C

-1

JiU

from eqn. (3.56) and (3.57) is given

, the corresponding graph and the network for

Y2(s) in (3.52) are shown in Figs. (3.3a) and (3.3b) and

the network corresponding to eqn. (3.43 ) is shown in Fig. (3.3c)

It may be mentioned that the above treatment deals

only with the state-space interpretation of various steps

performed in classical Brune method and the discussion is,

by no means, complete. An elegant state-space interpretation

of Brune sections has been given by Newcomb[55]. The synthesis

procedure described by him is based on reactance extraction

and does not utilise the state models in topological entities.

It is hoped that the discussion given here might lead to a

synthesis procedure exploiting the graph-theoretic concepts.

The determination of network functions from the

information given in some form is closely related to the

synthesis problem. The subsequent portion of the chapter is

thus devoted to the use of state-space techniques for the

determination of impedance matrix from its given even part

and a method for determining the transfer-function matrix
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(a) REALIZATION OF CIRCUIT MATRIX CORRESPONDING TO EQN.3.57

0

A r1
<U7P-

~2
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(b) REALIZATION OF y2(s> [EQN. 3-53]
-1 2

— 1

"T
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11 4

2

(c) REALIZATION OF z(s) [EQN. 3.43J

FIG. 3.3
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from the given state-space specifications.

3.4 DETERMINATION OF Z(s) FROM GIVEN Z(s) + Z'(-s)

In this section, a state-variable technique for

determining the state-model and the impedance matrix Z(s)

when given Z(s) + Z'(-s) is suggested. The technique

presented here is applicable for impedance matrix of any

order n. F0r ready reference Lemma 2.3 is repeated here.

Given an nxn p. r. 2(s), there always exists an rxn
matrix W(s) such that

Z(s) + Z'(-s) = W'(-s) W(s) , .. (3.58)

where r denotes the rank of Z(s) + V (-s)-

Furthermore, if Z(s) be a matrix of rational functions

such that Z(°°) = 0 and Z(s) has poles which lie in

Re s < 0 or are simple on Re s = 0 and if |a,B,C,d] is a
minimal realization of Z(s), then Z(s) is positive real

if and only if there exists a symmetric positive definite

matrix P and a matrix L such that fej

PA + A'P = -L'L, ... (3.59a)

PB = C« - L'W0» ... (3.59b)
WoW0 = D + D'- ... (3.59c)

Now, given jz(s) + Z* (-s)l, .Z(s) can be found as follows •
(i) Determine W(s) as in eqn. (3.58).

(ii) Find JA,B,L,W^j, a minimum realization of W(s)
by any of the known methodsl32j.
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(iii) Determine P from eqn. (3.59a), C from eqn. (3.59b)
and D from eqn. (3.59c). It maybe noted that

D = 0 for Z(°°) - 0 which implies W (s) • 0

and further D is not unique except for the

case when Z(s) is of order 1.

(iv) A,B,C,D thus obtained, give the minimum realiza

tion of Z(s) and Z(s) can be obtained by

Z(s) = C(sI-A)"1B + D .. (3.60)

for which well known algorithms exist which do

not involve the problem of rational matrix

inversion ["see next section]

The procedure is illustrated with the help of an

example.

Example 3.2

Consider

Z(s)+2f(-s) =

s - 1

s - fl
S + 1

1

_

.. (3.61)

It is required to determine positive real matrix Z(s) having
this Z(s) + Z'(-s).

(i) Z(s) + Z'(-s) = 'V(-s)W(s) ,

therefore

W(s) =[l f-T"ij *
(ii) A= ["-1-Ji B= [0 l] ,

L-- [-2],

-L'L= -4 .

W0= [1 f)
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(iii) From (3.59a) P = ^2 ] and from (3.59b) C is

obtained as j^2 ol. From (3.59c), D is obtained
as

1
2

1

or

- I
2

1 -|
2

0 1 1 1
2 2 2

(iv) Thus from eqn. (3.60) , Z(s) becomes

0

or

1

1
2

5^1
s+1

1
2

1

s + 1

1
2"

.. (3.62)

The arbitrariness in Z(s) is obviously due to the

non-uniqueness of D in general except when W = 0 (in this

case D = Z(~) = 0) or when Z(s) is of order 1.

It is observed that Z(s) obtained by this method will

never have poles on the imaginary axis, so Z(s) will always

be minimum reactance matrix* The justification for these

steps is self-evident.

The conditions on Z(s) + Z'(-s) for the successful

implementation of the proposed procedure can be stated as

follows,

(i) Z(s) + Z'(-s) is a parahermitean matrix with real
coefficients,

(ii) On juj axis, Z(s) + Z' (-s) is bounded and is
non-negative definite hermitean.
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This is obvious in view of the fact that the condi

tions]^] stated above which are extension of the scalar

case[68] ensure factorization given in eqn. (3.58) and the
existence of a positive real Z(s). Therefore, a matrix P

satisfying (3.59) will exist [3] and the enumerated steps
can be followed through successfully.

The interesting feature of the proposed technique,

which is based on state-space concepts is its generality of

approach compared with other methods [lp],[25].Even for Z(s)

of order 1, the technique, if not simpler* can well be

compared with the Brune-Gewertz and Bode methods[79]. It is

interesting to note that for the case when Z(s) is of order 1

and Z(s) + Z'(-s) is zero at s = o, the minimal realization.

|A,B,L ,(Wo=0)Jcan be written in phase canonical form [l5J and
as the entries of B are J0,0,0,... fj *etc., it can easily
be checked that the coefficients of the last column of P

give the coefficients of the numerator of Z(s) (denominator

of Z(s) being same as that of W(s) ) and so eqn.(3.60) is

bye-passed in the determination of Z(s). For illustration

lxl matrix is also considered.

Example 3.3

Consider the Butterworth resistance function [79]
1

H(w ) • £ . it is required to determine the minimum
1 + uy

reactance p. r. Z(s) having this response.
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(!) —~g- =1 Z(S) + v
1 +09 ls=j '-

c-,>1--±
1 -

2

i -

Z(s) +Z'(-s) =7——= fa) w(s).

Therefore,

¥2"
W(s) =

(ii) A =

L* -

s3 + 2S2 + 2s + i

0 1 0 "

0 0 1 »

-1 -2 -2

f2~
0 »

-

o

B =

L'L -

0

0

]_

-2

0

_0

0 0

0 0

0 oj
(iii) From eqn. (3.59a) and (3.59b) P is obtained

P =

ra 8 r* I
3 3

1 i

8
5 4 and C = 4

3 3 3

1 4 2 2
3 3 J _ 3 _

.. (3.63)

(iv) [A.B.CJ is the minimal realization of Z(s). As Z(s)
is only 1x1 matrix and the configurations of A and B have

been taken to be in the phase-variable form. So, coefficients

of the last column of P give the coefficients of the numerators
of Z(s) •

Therefore
2 2 4

«., = a! +h +1
8° +28+28 + 1 . . (8. 64 )
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Now Av Bi, C± of the imaginary part of Z(s) can be
found as in eqn. (3.48)

Aj=

0 1 0

0 0 1

1 -2 -2

!°
rl

Io

0 1

0 2

-1 2

0 1

0 4/3

Bi •
0

1
C.=

2/3

0

4/3 0

2/3 1
_

.. (3.65)

The imaginary part, if desired can be obtained by the
usual methods by converting JAif B^ Cfj to phase-variable
form, the C± of which will provide twice the value of each
coefficient of the numerator of imaginary part. The denominator
will be the same as that of the real part.

3.5 DETERMINATION OF TRANSFER-FUNCTION MATRIX
FROM THE GIVEN STATE EQUATIONS

Various methods are available for the determination

of (si - A) " which is required for the evaluation of
transfer-function matrixes) = C(sl - A)-1B + D for a

given linear time-invariant system described by the state
equations (l.l)[40j, [9l]. Adirect method for the deter
mination of transfer-function matrix from given A,B,C,D
is suggested. The method is based on the reverse of the

approach discussed by Ho and Kalman^s] for determining A,B,C,D
from the given transfer-function matrix, and is more interest
ing than the existing methods as it offers a straightforward
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proof for its validity besides avoiding the usual difficulty

in rational matrix inversion. The method consists of

determining det [si - a] and CB, CAB, ... CAn"1B etc.
Det [si - AJ gives the common denominator of each entry of
*^f(s) while the numerator of each entry is given in terms
of the so-called Markov parameters CB, CAB ... CAnB. The

method can be explained as follows:

V(s) =V/i<-S) + D , - .. (3.66)

where

D =V"(s)

and
oo

VflU) = 2 CAn_1B s~n. .. (3p67)
n=l

The integer n denotes the order-'of A-matrix and

the common denominator q(s) is given by

q(s) =det [si - A] = sn + b^""1 + ... + bn .. (3.68)

It has been shown in [28] that the Markov parameters CB,

CAB ... CA B etc. are obtained by dividing numerator of

each entry of the transfer-function matrix by the common

denominator and collecting terms of s"1, s~2 ... sn-1 etc.

So, in the proposed reverse process, CB, CAB ... CAn_1B etc.

are found from the given A,B and C and the corresponding
+ . -1 -2 -n
terms in s , s ... s etc. are written as entries in

a matrix. Multiplying these entries by the common denominator

and collecting terms having only positive powers of s should

naturally give the entries of the required transfer-function

matrix, Just as any transfer-function matrix having a finite

s-*°°
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value at s=°° results in a set A,B,C,D; given any conformable

set, it will always result in a transfer-function matrix.

The process is illustrated with the help of an example,

Example 3.4- Given

'0-2 1

10 0

0 0 0

A =

0 0

0 -2

B =

D =

1 0

0 0

0 1

1 0~

0 1. .. (3.69)

The transfer-function matrix is determined as follows •

n = 3, detfsl - A| = su + 2slet [si - AJ

therefore,

bl = °» b2 =

and

0

2

CB =

CAB =

CA2B =

0 2

:2 0_

-4 d

Lp -2

2, br 0

Thusny1(s) can be written as

s__+_2s

s3 + 2s

r -1 -2 -•*
2S "-+0S -45°

.-1 o.-2^-3

Os~1+2s~2+os"3

Os -2s~2+0s~3 2s~1+0s"2-2s~3

. (3.70)

.. (3.71)



-67-

Collecting terms with positive powers of s, we get

2

1 s5+2s

2s

-2S

2s

2S +2

and therefore from equation (3.66)

V(s) =

" s2+2S+2
2

s +2

2
s^ + 2

s2+2

s3+2S2+2s+2

s3+2s J

.. (3.72)

.. (3.73)

The method is attractive for finding the transfer-function

matrix from the state equations and is often needed to

serve as a check for [a,B,C,d] found from the given transfer-

function matrix, in the synthesis procedures. The method is

particularly suited for the cases when dot [si - Aj can be
easily calculated.

3.6 CONCLUSION

The classical synthesis methods such as Foster's

Cauer's and Brune's etc. are well established. Computationally,

there is not perhaps a great deal to choose between the

classical procedures and state-space methods akin to these

procedures. However, the state-space technique does offer

greater scope for extensions to problems such as equivalent

network problems and discussion of these methods from state-

space point of view has been taken up in this chapter in

this context. Some of the known properties of network functions
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have been derived in state-space terms. A procedure for

determining Z(s) from given |"z(s) + 2'(-s)"[ using state-
variable technique has been evolved. Based on the reverse

process of determining Markov parameters from the transfer-

function matrix, a direct procedure for determining the

transfer-function matrix from the state equations has been

given which does not involve the usual difficulty of

inversion of the rational matrix (si - A).

The modern network synthesis is different from the

classical synthesis in the sense that the given information

may be either in terms of state-variable characterization

or in terms of input-output characterization. The following

chapter discusses the realization techniques when the given

information is in terms of state-variable characterization.
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CHAPTER IV

REALIZATION OF STATE EQUATIONS

4.1 INTRODUCTION

In modern synthesis, many a time, the given information

is in terms of state-variable characterization as the transfer-

function description is not valid for time-varying and non

linear systems. Further, as has been shown recently [24J, state

equations can be obtained from a sequence of input-output

data, without involving the computation of impulse response.

The importance of this characterization is evidenced by

a number of papers published recently giving the procedures

for network realization from the state equations. In this

connection, Yarlagadda and Tokad have given procedures for

network realization of state equations for LC[86] and for

RLC[87] networks. DervisqgluD-9] and Nordgren and Tokad [57]

have considered the realization of A-matrix- In this

chapter simpler procedures have been evolved for the reali

zation of state models for LC networks, and a class of each of time-

invariant RLC, time-varying LC, and A-matrix for RLC net

works. The procedure for the realization of LC networks

has been computerized and actually run on IBM 1620.

4.2 REALIZATION OF STATE-MODEL OF n-PORT LC NETWORKS

Realization of state -model of n-port LC networks

has been discussed earlier[86]. The method consists of

obtaining a state model of general LC networks in topological



-70-

quantities as in eqn. (3.2) in the form

X - AX + BtU + B0U , .. (4.la)

Y = CX + DtU + DQU . .. (4.1b)

The element values and the topology of the network are

determined by comparing these topological expressions given

by (4.1) with the known quantities available from the given

state equations. Consequently, the method results in seeking

solution of a number of equations. The set of matrix equat

ions thus obtained is difficult to solve as the equations

are of the type

PKu = % •

where Ku is known and, in general, is a rectangular matrix,

Qu and P are unknown rectangular and square matrices respect

ively. Obviously, a search for a satisfactory solution of

the set of equations obtained in the method is desirable.

Yarlagadda and Tokad [86] suggest yet another method of

decomposing (4.1a) in the form

X= P"1ArX + P~1BtrU + P_1BorU .. (4.2)

as a first step towards the realization of the given state

equations, where P is a symmetric positive definite matrix

giving element values of capacitances and inductances. The

decomposition procedure suggested in [86] is far from

satisfactory as, in general, it gives a non-unique solution

for P and it is difficult to select the desired symmetric

positive definite P.
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In view of the above mentioned difficulties, it is

worthwhile to obtain a suitable procedure for decomposing

(4.1a) into the form (4.2) and subsequent realization of

the resulting equations. Further finding an algorithm

suitable for computerization of this procedure will be a

fruitful problem [56]. In this section, such an algorithm is
presented for the realization of state equations of LC

netwrics. The algorithm is especially suitable for

computerization.

Consider the state model for LC networks given in (3.2),

It needs be emphasised that the state-model given in (3.2)

does not satisfy the equation (2.23) for some appropriate P.

However, by applying the transformation (3.3) and letting
^6 0

P =

.o I.

relation (2.23) is satisfied and consequently for LC case
under discussion

PA + A'P = 0 ,

PB = C •

From (4.3a) and (4.3b),we find[?]

PAB = -A'PB = -A'C*

PA2B = -A*PAB - (A')2C

pAn-lB = (-D^^A')""^' .

With the controllability matrix

W= [B AB . .. An"1Bj

.. (4.3a)

.. (4.3b)

.. (4.4)

.. (4.5)
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ana modified observability matrix

V- jc* -A'C ... (-l^-^F')0-^']. .. (4.6)
the equations (4.4), (4.5) and (4.6) give

PW = V ,

or

PWW' « VW* . .. (4.7)

Since W has a right inverse by the minimality of the

realization [7] ,

P = (VW' )(ww»r1.

Therefore

.. (4.8)

fP
11

0
22

can be determined from the given A, B.,B and C,D., D ,

Equation (3.2) can be written as

where

X

Y

P lArX + P~1BtrU +P 1BorU ,
= CX + DtU + DQU ,

- n-1 ,-1, - D-llP AAr, Bt - P ABtr> BQ = P ^ etc, .. (4.9)

Thus, Ar> B^.r and BQr can be determined.Hencefrom eqn. (3.2)

0 F*u rLC

-FLC 0

B
tr

B
trl2

Btr2l ° LV

-F
KC

0



B
or

and

Dt =

D =
o
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Borll ° FscciFsv

0 Bor22 0
Lj~L22FKr_ .. (4.10a)

-flv*Cf4cPifsv)S"1fiLC

-F ' .-1L^C-(FLrL22Fir)^(_FLC)

0 D
tl2

Dt2l 0

thrtoUVrf'S1^)

^wr^Lr^B^r'^-^LvJ

Doll 0

0 D ,22

FsvciFsv-(FscciFsv) l%%1 (fSccifsv) o

0 -1/Krh?kr-<hrh**ir*£M<*LrWirl
•. (4.10b)

Therefore, from comparison of eqn.(4.10a) with the known
values of Ar, Btr determined from (4.9), F£c, F£c and FLV are
uniquely determined. In order to determine the element values

C1, C2, Ln and Lgg etc. and to determine the various submatrices
of fF Ij given by



Fsv
rr

FLV FLC

M<V rKC

0

'LP

F„
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the following procedure is adopted.

Construct the matrices

p' r FhSV 1 5V FsvciFsc
Y -

c

F* C F
_iSC"l sv C2 +FSCC1FSC_

and

^s^M-Hi^r
F T F'
-Lr ii kt

ZL =

_ FKrLnFLr
c t pi
Kf 11 KT_

.. (4.11)

1

. (4.12)

• (4.13)

where Y and 2L are given in terms of the various known

quantities as

11
Y 12

Yc =
Y12 Y22

Doll+BorllPllBorll "Borl.l
.. (4.14)

-B
orll 11

and
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22

Bor22

Bor22

Do22+B0'r22P22Bor22

.. (4.15)
Applying Cederbaum's factorization to Yc and Zr> and

rearranging rows and columns as in [86], the submatrices FSv,
FSC and FL|"' FKf~ and element values of Cp Cg, Lq >Lg2
can be determined. The only undetermined submatrix F' is

KV

determined from eqn. (4.10b) as

"o F'
rKV "o n •

Utl2 hB;u 0 "Pll 0 " "° Btl2
-F 0 _Dt2l 0

+

0 Bo22 0 P22 Bt21 °

.. (4.16)

where terms on the right hand side are known. So, [F l"| is

known which can be tested for realizability by the well-known

methods [49].

4.3 COMPUTER ALGORITHM FOR THE PROPOSED METHOD

The computer algorithm for the proposed method for

realization of n-port LC state equations is described in the

following steps.

(i) Read n and m, na and ma where n is the order of

A matrix. Matrix Bt and B0 are nxm matrices, na

denotes number of capacitor voltages as state

variables and ma denotes number of output currents.

(ii) From the given A,Bt, BQ, C, Dand DQ(state model (3.2))
(Bt+ABQ) and (Dfc+ CDQ) are determined in order to obtain
the state model in the form (3.5).
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(iii) Determine P as in equation (4.8).

(iv) Find A_i B. and B from equation (4.9). So FLC,

Fj^q and F,y are known. If the entries of these

matrices are other than +1, -1 or zero (computational

errors are to be accounted) the method fails, i.e.

realization of the given state model is not possible.

(v) For determining Yc (eqn. (4.14 )) and Z^eqn.^. 15 ))

Y12' Y22' ^11 and ^12 are 3vailable from step (iv)
above. In order to determine Y-,, and Zr>2, calculate

D + B" P_1B = D^ + B'PB„ •
o or or o o o

The form of these matrices gives Y,, and 222, i.e.

Doll ° orll
0

+

Do22 0 Bor22j

rp-i
11

0

0

22

B ,. 0
orll

0 B
or22

.. (4.17)

D ,. 0
oil

Binoil
pn 0 B ii ooil

+

0 Do22
0 B

o22
0

22

Doll+BorllPllBorll

Do22+B0r22P22Bor22

Doll+BollFllBoll 0

Do22+B022p22Bo22

11 °

0 %2

0 Bo22_

.. (4.18
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From the above simplification, it is clear that

the inverse of P is not needed although appeared in

steps of calculating various entries of Y and

\ in eqn. (4.14) and (4.15).

(vi) Yc and Z^ are decomposed by Cederbaum factorization
into the form ADA'. For computerization into

c O c

this form, the procedure due to Winter[83] has been

chosen. If diagonal D does not have positive

entries,the matrices Yc and ZL are not realizable.

(vii) From the submatrices found in steps (v) and (vi)

above, |F Ij can at once be written which can be

checked for realizability by any of the available

computer-algorithms [3l].

4.3.1 SPECIAL FEATURES OF THE PROGRAMME

The programme (actual listing given in appendix)

accepts the various entries of the matrices A,B.,B }C,D,

and D^ of eqn. (4.1) and punches the various submatrices of

JF il which can be tested for realizability. The programme

is quite general and can realize the state equations of any

order considering limitations of time and storage.

Machine reads various entries of the matrices A,B* ,

B0,C,D^.,D0 etc. column-wise, the order of the matrices, the

number of capacitor voltages in the state vector and the

number of current outputs in the output vector. Calculation

of symmetric positive definite matrix P(eqn.4.8) requires
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the inversion of matrix WW'(eqn.4.5) for which a subroutine

INVERT has to be called. The programme then determines A ,

B^. etc. from which submatrices FLp, FKC and Fry are found

out. The entries of these submatrices are to be +1 or zero

but due to the computational errors these may not be exactly

+1 or zem and so, these are punched in FLOATING POINT. To

determine the other submatrices of Hf fj, Y and Zt of
eqns. (4.12) and (4.13) need be factorized. The process of

Cederbaum (for programming, Winter's method [83] of factoriz

ation has been chosen) has been used as a separate subroutine

which may be called twice in the process of realization.

The entries in Ac of Kc = AcDcA' are punched in fixed point

while diagonal D is punched in FLOATING POINT. The procedure

fails if entries of submatrices of [F i"l so obtained
are different fr^m +1, 0 (taking into account computational

errors) or elements of diagonal Dc are not positive or

F I j is not realizable, otherwise a network can always

be drawn.

4.3.2 INPUT-OUTPUT

INPUT

CARD NO CONTENTS

1. n,m

2.
V ma

COMMENTS

Punch as a five digit number with no

decimal point. Each of n and m takes

5 column spaces one after the other

Punch as a five digit number with

no decimal point. Each of n., m_

takes 5 column spaces one after the

other.
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CARD NO CONTENTS COMMENTS

3. A1:L, A2l...Anl Punch as 10 digit number, each of A.,,
A12' A22,,,An2 A21 " * takes 10 column .spaces one after

the other. If no decimal point is
punched, it will be placed.as

XXXXXXXX.YY

4. Btll'Bt2l**,Bnl Puncn as 1° digit number, each of B
til

Bt21 *'* "^keslO column spaces one
after the other. If no decimal point is
punched it will be placed as

XXXXXXXX.YY

OUTPUT

B
tl2

tnm

For BQ,C,Dt
and D

o

The same way as A and B, above etc.

The machine will punch intermediate results, the

values of submatrices FLC> FKC AND FLV 0f p 1*1 and
matrix Ac (K = AcDcAo) obtained from applying Cederba urn

factorization to Yc and ZL of eqns.(4.14) and (4.15). By

rearranging Ac and Dc as in 186], the remaining submatrices
of [F I ! and the element values of capacitances and
inductances are known.

A simple problem for the realization of state equations

is given next. The same problem as has been given in [86] is

chosen for comparison.
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Example 4.1

Given the state model of the form (4.1)

V
cl

Vc3
• -

JL7

^LSJ

V

V,
K

r 0 0-1/4 1/4

0 0 0 1/4

10 0 o

•1/2 -1/2 0 0

r v
c2

V
c3

"L7

•L8

rvc2

0 0 1/4 3/4 V
c3

10 0 0
•L7

L•L8

+

+

+

" 0 1/4

0 0

0 0

1/2 0

1/4 0"

0 0 vv

0 0

•

Lo o

0 3/4
v

L-i 0_
*

23/4 0 V.

+

0 3 K

.. (4.19)

Now using transformation (3.3), we get the state model
(3.6) for which '
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0 0 -1/4 1/4" 0 0

0

1

0 0

0 0

1/4

0
»" AB =

0

0

1/4

0

0

1/2 -1/2 0 0 -1/8 0

B = B+ + AB,

0

0

1/4

3/8

1/4

0

0
.. (4.20)

Using eqn. (4.5)

w

0 .25 .09 0 0 -.09 -.02 0

0 0 0 0 0 -.03 -.01 0

.25 0 0 .25 .03 0 0 -.09

.37 .03 0 -.12 -.06 0 0 .06

and using eqn. (4.6)

V =

0 1 .12 0 0 -.37 -.09 0

0 0 .37 0 C -.12 -.06 0

.25 0 0 .25 .03 0 0 -.09

.75 0 0 - OR -.12 0 0 .12

. (4.21)

.. (4.22)
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and using eqn. (4.8), we get

.. (4.23)

Therefore ,from (4.8)

A,

c =

FLC=

Now,

0 0 -1 1

0 0 0 1

1 0 0 0

-1 -i ; 0 0

- Btr=

0 1

0 0

0 0

1 0

« B.
or

•" —.

1 ! o

0 • 0

0 0

0 0

0 Oil/4 3/4

1 0 ; 0 0

from which we find

"0 ;3/4 23/4; 0"

• Dt= -l ! o
» D =

0 0 ; 3

1 0

-1 1
, F LV

0

-1
KC

.. (4.24)

-1 0 J. . . (4.25)

D +B'PB.
0 0 0

23/4

o

0

+

riA 0 0 0

d _o 0 0 0

fi/4 o"

0 0

0 0

L° 0

6

0

0

3 .. (4.26)
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Using eqns^4.14), (4.26) and applying Cederbaum factorization

Y

6 ; -1 0

-1 I 4 0

0 0 4

0 0 11

10-10

-0 1 0 0_
5

0

0

1

1

1

0

-1

0

0

1

0

0 ... (4.27)

and using eqn. (4.15) and (4.26) and applying Cederbaum

factorization

~0 1

0 0ZL =

Further

D+B'PB.
o t

0

1

i 3 -1 o 0_

" 0 3/4~
. +

-1 0

1/4

0

0

0

0

0

0

0

0

-1

1

0
from which submatrix F KV

0

1

-0

0 1

0 0

1 o J

... (4.28)

From eqns.(4.27) and (4.28), element values of capacitances ,

inductances and submatrices Fgy, Fsc, F^r- and F^p can be

found out.

"0 1/4

0 o

0 0

2j 1/2 0_

.. (4.29)

is found.
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From above, [F f] as given in (4.11) can be written at

once as

~-l 1 0 0

1 0 0 0

[F !] = 0 -1 0 0

-1 1 1 0

i -1 0 1 J

.. (4.30)

This is realizable as a circuit matrix resulting in the graph

and the network given in Figs.(4.1a) and (4.1b)

It may be noted that the resulting network by the proposed

method turns out to be the same as in [86]but the main point
besides the novelty of approach which needs be emphasized is

the ease of computerization compared to Yarlagadda[86] method.

4.3.3 PROGRAMME DETAILS

(a) Language: Fortran II

(b) Number of Variables^- 30

(c) Special Word Length Required: None

(d) Number of Statements

(i) in actual programme 20° approximately

(ii) in subroutine CEDBUM :- 60 approximately

(e) Additional relevant information :- It is assumed that
computer library contains subroutines for the inversion

of matrix.



-86-

4.3.4 PERFORMANCE GUIDE

(a) Computer used :- IBM 1620

(b) Core size :- 60 K

(c) Input medium *.- 'Card Reader

(d) Output medium :- Punched cards,

(e ) time taken!

(i) Compilation time.* 5 mts. approximately

(ii) Execution time * 1 mt. 40 sec.(This time is
noted from the moment the input-
data has been entered.

(f) Additional relevant information: None.

4.3.5 FLOW CHART,

The flow chart for the programme is given on

page 87.

4.4 SYNTHESIS OF A CLASS OF n-PORT HLC NETWORKS

Yarlagadda and Tokad [87] have given a synthesis procedure

for RLC n-port networks based on state model approach. The

technique given by them is quite cumbersome firstly because

the decomposition of the given A-matrix is not unique and

secondly a large number of equations given in theorem 1

of Ref. [87J have to be solved for which no satisfactory
algorithm has been proposed in [87]. In this section, a synthesis
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(a) REALIZATION OF CIRCUIT MATRIX [EQN. 4.19]

npp-

(b) REALIZATION OF STATE MODEL [EQN. 4-30]
FIG. 4.1
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procedure is evolved for the class of half-degenerate

n-port RLC networks without mutual inductance and having
no coupling between the link resistances and the tree-

branch conductances. A state model for this class of

RLC networks is derived in the form

X = AX + BU ,

Y = CX + DU »

The basic idea in the realization procedure is to
decompose the Aand Bmatrices of the above equation in
the form A= AAj and B=ABr The matrix A gives the
element values of reactive elements and Ap B,, Cand D
give the topology of the network and the values of the
resistances. For the class under discussion, whereas the
A-matrix can be decomposed merely by inspection, the other
unknowns are determined by factorizing a proposed specialised
decomposition using Cederbaum factorization.

Consider a class of half-degenerate n-port RLC networks
which contain no circuits of capacitorswith or without the
voltage sources, and no cut-sets of inductorswith or without
current sources. The networks, however, may contain cut-sPts
of capacitors with the voltage sources only and circuitsof
inductors with the current sources only. Such anetwork may
be called a canonic RLC network. Further, the network does
not contain mutual inductances and there is no coupling
between link resistances and tree-branch conductances in
the network (FRG = C, page 684 ref. 38).

The theorem concerning the realization of a network
belonging to this special class is given as follows.
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THEOREM 4.1

A state model is realizable as an n-port RLC network

belonging to the class defined in this section if (i) the

matrices A and B admit the factorization A A. and A B.

respectively where /\ is a diagonal matrix with positive

entries (ii) a solution exists for the set of equations(4.35)

or more appropriately the decomposition (4.36) exists for

its right hand side where the matrices Gj and R2 are positive
definite and (iii) |F flso obtained is realizable as a fundamental
circuit matrix.

PROOF

Clearly for this class of networks, a proper tree can

always be drawn and under the above mentioned restrictions,
we have

lSV

h2 = °

FSC = Fr r-= F„LT~ rKr:

L12 = Lgi " ° *nd FRG = °

... (4.31)

and F expressing the topological relation between links

and tree branches for this class becomes

RV RC
n

F =
LV LC LG .. (4.32)

KV KC KG

and substituting above assumptions in (2.12) the state model

for this special class of RLC networks can be obtained as
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X= A axx +AB1u,

Y=A CjX +A Dj_U ,

c"1U2

L-l
Lll

.. (4.33)

+

-1
'2

0

Q o

-1
Jll

•+ (— _ _ _

-F* R F
RCblrRC LC vc

.L "FLC -F R F'rLG 2rLG_ _XL_
1 |—

— -

-F* G FRCUlrRV -F'
KC

L -flv FRF'
rLGn2 KG

*

-F -F R F'
rKC hKGVLG V

F' r f -F'
. RV^lrRC LV

i— *
V.

(4.34a)

"FKV FKGR2FKG V

K

.. (4.34b)

_FRVGrFRV Fkv

It can be seen thata Aj in (4.33) and (4.34) is a
symmetric skew-symmetric (hybrid) matrix [l&J. The synthesis
procedure for this class of n-port RLC network is self-

evident from the form of (4.34a) and (4.34b) and can be

easily implemented since the decomposition of A can be

done by the method given by Dervisoglu and by direct comparison
of a given Aand Bwith the form shown in (4.34a) and (4.34b).
Appropriate decomposition of Bis also straightforward. c2
and Ln can be obtained by direct comparison. Further, it is

clear from (4.34a) and (4.34b) that FLC, FKC, FLV and F^ are
uniquely determined. To find the remaining undetermined
submatrices, Gp R2, FRV, FRC, FLG and FKQ 0f the equation,
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one has to solve the following set of matrix equations.

FRCG1FRC = pe

FIGR2FLG = %

FRCG1FRV = Re

FLGR2FKG ' %

FKGR2FLG = Te

FRVG1FRC = ue

FKGR2FKG = Ve

FRVG1FRV = We

... (4.35)

where P., Qe, B&t SQ, Te, ue, Ve, we are known constant
matrices (R = v^, SJ = T')«

F'
rRC

F*
RV

rLG

0

"KG

e' e _e

The system of equations (4.35) can be written
as

rF.

F
e

0 Re 0

RC
0 FRV o" 0 Qe 0 s

0 F'
LG

0 F'rKG_ u
e

0

0

T

We

0

0

V

R«

e e j

.. (4.36)

The eqn.(4.36) is of special interest since the known
matrix of its right hand side can be decomposed by Cederbaum',
algorithm. Rearranging rows and columns[86] the decomposed
form can always be reduced to the specialised one given on
left hand side of eqn. (4,36) [u].Obviously, the block
partitioned matrix on the far left of eqn. (4.36) contains
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entries +1 and 0. The matrices F -. F p n ^mdxrices rRC, f^, frv, Fkq, and

the diagonal matrices Gj and R2 can thus be found by
comparison. This decomposition is essentially unique
owing to the nature of this algorithm. If the elements of
Gx, R2 are positive and if Jf ij is a circuit matrix,
the state model is realizable. [F ij can be tested for
realizability by well known techniques[49j.

It may,however, be noted that if the conditions in the
theorem are not satisfied, it does not imply that the

network is not realizable as an n-port belonging to the
class specified in the theorem. An equivalent state model
obtained by a similarity transformation on the given model
may be realizable.

The procedure is illustrated with the help of an example.

Example 4.2

Consider the state -model

V
cl

V
c2

•LI

'L2

L^J

4 0 : c 2 c "Vci~
o 0 • c 1/2 0 VcS

0 0 4 0 0 hi
-1/2 -1/2 0 0 0 ri2
-1/4 0 0 0 0 _IL3 .

0 -2

0 : 0

1 0

1/2 0

1/4! 0

v.
V

K

.. (4.37a)
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1 0 | 0 0 0

o o ;-i -l -i

Vcl

Vc2

hi

hi

-hxj

-1 0

0 ; 1

V

*

I

V

- KJ

.. (4.37b)

The matrices A and B can be easily decomposed in the form

A =/\A1 and B =ABj by comparing the given A with the form

given in (4.34a) and noting that the entries X's of the

diagonal matrix must be positive and entries in FLC,
FKC and FLV of equation (4.34) must be -1, 0 or +1 ,

these being the entries of matrix to be realized as funda

mental circuit matrix. Using Dervisoglu's method A can

be found as

4X,

A- \ .. (4.38)

1/2 X,

and comparing as described above 4xX
1 2 i.e. \ = 2 anc*

from B =/\B1 we get 1 = XgXl etc. Therefore

A=-

r»
"••

~2 0 : o l l"

1/2 0 0 ;0 l 0

1 0 0 : 4 0 0

\ 1/2 -1 -1 !o 0 0

< 1/4 -1 0 : o 0 0
—

.. (4.3 9a
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' r o • -i"

0 i o

1 : °

1 1 °
L i ! °

.. (4.39b)

Comparing A and B in (4.39a) and (4.39b) with (4.37a)

we have

c2 =

Pe=

1/2
L

11

"4 0 o~ ~0 ~
2 0

• V
o 0 0

♦ Ro =
o""

i s =
0

0 0 0 0 0
e -0. e

L°.

=[o o o|fue*[o o|.ve=[o], we=[o].

Therefore matrix on the right hand of (4.36) becomes

M_ =

2 0 0 o 0 0 0

0 0 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 0 o 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

which is decomposed by Cederbaum algorithm into



1 0

0 0

Mc =
0

0

1

0

0 0

0
L

0

therefore

R2j
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i oo 0 0 0

0 0 1 o o oj

and the various submatrices in eqn. (4.33) can be written
at once. The matrix to be realised as fundamental circuit
matrix is given by

R.

\t q.= Lc

LK

vv cl C2 G,

0 1 0 0

1 0 0 1

1 -1 -1 0

1 -1 0 0

1 -1 0 0

R. L.
K

' .. (4.40)

J
which is realizable, the graph and the corresponding network
are shown in Figs.(4.2a) and (4.2b) respectively.

4.7 SYNTHESIS OF ACLASS OF n-PORT LC TIME-VARYING NETWORKS
Consider a class of n-port LC networks which contain no

circuits of capacitors with or without the voltage sources,
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' a' REAI-IZATION OF CIRCUIT MATRIX rEQN. 4 4Qj

<b) REALIZATION OF STATE MODEL fEQN.4.37]
PIG. 4.1
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and no cut-sets of inductors with or without current sources.

The network, however, may contain cut-sets of capacitors

with the voltage sources only and circuitsof inductors with

the current sources only. Reactive elements may be time-

varying but differentiable. Further the network does not

contain mutual inductances.

The theorem concerning the realization of a network

belonging to this special class is given as follows:

THEOREM 4.2

A state model of the form

fX * A(t)X + B(t)U ,

Y = C(t)X + D(t)U ,
.. (4.41)

is realizable as an n-port time-varying LC network belong
ing to the class defined in this section if,

(i) the matrices A(t) and B(t) admit the factorization
A-t/^ and A-^ respectively, where At is a

diagonal matrix and having time-varying entries,

(ii) Asolution exists for the set of equations(4.43)
(iii) JF fj so obtained is realizable as a fundamental

circuit matrix.

PROOF

Proceeding in the same way as for the proof of the
theorem in Section (4.6), we get

F =

LV

KV

LC

KC
.. (4.42)
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for this class and the state model derived from eqn. (2.15.)
after making the above assumptions becomes

V

VK

V

0

qlM

-F
KC

0

L-l(t)

L-J(t)

0

-F'
LV

C8(t)

-FLC

r

L"flv

V

+

_ L _

F'
rLC V

Ln(t^ LA J

*-F'
KC

0
KJ L N J

-F
KV

0

0

F'
rKV

V.
V

u1*

.. (4.43)

The synthesis procedure for this class is self-evident
from the form of (4.43). FKC, FLV, F^ are uniquely
determined. As C^t) and ^(t) are diagonal,their values
can be determined by inspection keeping in mind that

entries FLC, FRC and FLV are to be +1 or 0. For a consistent
solution, it is necessary that the values of Cg(t) and L (t)
determined in this way should always satisfy 0, (t) and
Lu(t). Jf i] obtained can be tested for realizability by
well-known conditions [a9].

4.6 REALIZATION OF A CLASS OF A-MATRIX

With the introduction of A-matrix as a new method of
network description by Bashkow in 1957, there has been a
considerable interest in the realization of this matrix.
In particular, Dervis0glu[l9] considered the realization
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of a class of half-degenerate RLC networks i.e. when the
network under consideration has no cut-sets of inductors
only and no circuits of capacitors only. Nordgren and
Tokad [57] gave a procedure for the realization of a more
general class of A-matrix than given by Dervisoglu [19]
i.e. the network may have cut-sets of inductors only and
circuits of capacitors only. This section considers the
realization of a class of A^atrix in which the netowrk
may have cut-sets of inductors only and circuits of

capacitors only but there should be no coupling between
the link resistances and tree-branch conductances in the
network (FRQ - 0,Page 684 Ref.38).

The A-matrix for RLC networks can be written from
eqn. (2.12a) as

rl
A =

0 .-1
z

where

1

= cs + FscciFsc >

• Ln+ hrhJLr

W -3d

1- F'
rRC (R> FRC '

Tt" FLG flFLG,
d4 - FLC ~FRC fi> FBGB2 fLg-
£ - h + FfiG88FBG •

fr> Gg+F ' ft F
RGbl RG •

R - <--l -_., ~ _-l

.. (4.44)

• (4.45)



-100-

If A-matrix in eqn. (4.44) is restricted to a class
such that F

RG 0, it becomes

A S1 ° -F1 G F
RC 1 RC

-F
LC

. FLC

-FLGB2FLG
.. (4.46)

For the same class, the matrix K. defined in [57] is

given as

K =
a

-1
0

-i
£

F' G F
RC 1 RC

- FLC

F*
LC

F R F'
^LG 2rLG

D"1A1
a 1 .. (4.47)

The Ka matrix is decomposed by the method given in [57].
By comparing the elements of ^ found in this way with the
topological expressions in (4.47) various submatrices can

be obtained. The value of the arbitrary parameter « in
-1

D nf [57] is chosen such that entries in FT r and F'
LC LC are

+1, -1 or zero. It is clear from eqn. (4.47) that FLC is
determined uniquely and Gp Rg, FRC and FLQ are found by
applying Cederbaum algorithm to F^GjF^ and FLGR2FuT
Qand /,can be decomposed by Cederbaum' s algorithm.
Rearranging rows and columns gives,

1—

6-ji F'
rsc

<£ "C1 FLr] 11

c. LFsc

LFL'22-^
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from which Cg, C^ Lu, Lg2, Fsc and FL p can be determined.
Fundamental circuit matrix JF f] can be obtained and
tested for the realizability by the well-known techniques
of Gould or iViayeda [4 9J.

EXAMPLE 4.3

In order to illustrate the procedure discussed above,
the example considered previously [57] has been chosen. It

may be noted that the example belongs to the class of RLC

networks discussed in this section.

Let

i.1V
cl

X =AX= V
c2

"L3

and let K be =

-3/5 1/5 J 2/5

1/5 -2/5 ' 1/5
- «. » _ — . 1. m —

1/8 -1/8 '-1/4

rv

L

A
11

A2i

A12

^22

'AU A12

cl

V
c2

•L3

\%

v
cl

V
c2

LZt3

0

L A21 "^i 0 A

• ^S
D-l/2 1/2

Y H

H' Z

(4.48)
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€1/2 \ €l/i ^\ £1/2~
where E =

l/\ <f1/s

• D-1'2P IA P n !/2

a A1/2z r;1/z
a '

is a symmetric matrix which can

be diagonalised into F~/\,F

'P XA p D-i ' v a aa a a

= Q ]\ Qwa/vawa where Q = PJ)1'2
a a a

and D - Q*Q has been calculated to be equal toqu;

15*

2 1 ; 0'

12 0

0 0 i 8

, where a is an arbitrary parameter{57~J

Thus A, = D K
1 a a

15*

0 ; 1

i j i
1 j 2

As the entries of FLC, F^c in eqn. (4.47) are to be +1,
2 i

•1, or zero, or is chosen as tt

Al =

1 0 ' 1

Oil

112

15 and therefore

Now comparing various entries of A with eqn.(4.47) and

using Cederbaum decomposition procedure, we get

F'rLC
1

1_ Lll= [8J ,



Fr G FRCU1 RC

Therefore

-103-

RC

Also, we get

1 0

0 1

1 0

0 1
G, -

1 0~

o 1_
F' -

'^RC
rion

-0 IJ

.. (4.4 9)

FLGH2FLGa- b'_
therefore

FLG = C1] - Re - [»]' FLG= D]
and further, as we get

^sc^sc
2 r

J- 2,.

I 0

P 1

1

1-

"l ;

2 ;

•• L

I 6"

0 1

i L

therefore

C« = [X J- V E1]* Fsc 1

1

[f ,].btained from above is given by

R<-

C, Cr

1 0 0

0 1 0

1 1 1

1 1 0

R. R2 Lx

.. (4.50)

.. (4.51)

.. (4.52)
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which is realizable, the graph and the corresponding
network being giveri in Figs.(4.3a) and (4.3b).

The procedure evolved, though applicable to a restricted

class of networks is simpler than that proposed by Nordgren
and Tokad [57]. This is mainly because the procedure discussed
here gives a simpler technique for realizing the hybrid
matrix and the topology of the network compared to that
discussed in [57].

4.7 MINIMAL REALIZATIONS OF STATE EQUATIONS

The realization procedures discussed earlier in this

chapter are meant for realizations of minimal state

equations. If the given set of state equations is not

minimal, proceduresexist to obtain the one which is minimal,
This problem of minimal realizations of uncontrollable and/

or unbbservable state equations has been investigated by

several authors for time invariant[28] , [50] and time-varying K
state equations. In this section, a simpler algorithm is

given by constructing minimal realization of time-varying
systems.

The state equations for a time-varying system can be
written

X(t) = A(t)X(t) + B(t)u(t),

Y(t) = C(t)X(t) , .. (4.53)

where A(t), B(t) and C(t) are n x n, n x m and p x n
matrices respectively with possibly time-varying elements
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and where A(t), B(t) and C(t) and their (n-2), ^l} and
(n-l) derivatives are continuous functions. The controll
ability and observability matrices for such a system,
are given as

Qc^ - [P0(t)j Pl(t)
wh e re

Pk+1^) - -A(t)Pk(t) + p (t),
and

n-l(*)j • . (4.54 a )

KM = B(t)

Q0(t) Rn(t)

whe
Bl(t) i IVlM •• (4.54b)

re

W*> • V(t) Rk(t) +Bk(t), en(t) =c(t).

The procedure discussed here is an extension of the
method given by Mayne[bo] and although it is applicable to
remove uncontrollable as well as unobservable modes, only
the removal of uncontrollable modes is considered here. In
order to remove such modes, the following algorithm is
suggested.

Algorithm

(1) Construct an n x n, matriv Qf+ \ u j.ux nk matrix 5It J by the procedure

described in fcbj or Jso] using eqn. (4.54), *ere n
and nk are the dimensions of uncontrollable and controllable
sub-space. Let s. (t) e (+ \ t^\l^t;, ss(t),...,snk(t) denote the independent
-lumn vectors in S(t); b^t), b2(t), ... , ^(t)f ^
column vectorsin B(t); n1 n2 m

*V P0 *» Pq ' e column vectors

o >PV PX, ,pj , the column vectors of P1(t) and
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(a) REALIZATION OF CIRCUIT MATRIX [EQN.4-52]

(b) REALIZATION OF STATE EQUATIONS [EQN. 4.48]

FIG. 4.3
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and so oh.

Start with the vector S.(t) = D1(t) = b (t)
i ' o 1

Now select the next vector

Pk+1(t) =-A(t)pJ(t) +p£(t), k=o to n-i

If the selected vector is linearly independent of all the

previous vectors, retain it in the columns of S(t) otherwise

omit it. Next, proceed with the vector bg(t) and repeat the
preceding to find p£+1 (t) and so on (k-0 to n-1). Proceed
till n independent vectors are formed. If there are

uncontrollable modes in the given system, the above process
will terminate at nk where nk ^ n.

(ii) Find any nk x n matrix V(t) such that

V(t)S(t)= *nk .. (4.55)
(iii) The controllable part

Rk(t) =[Ak(t), Bk(t), Ck(t)]
of given realization is found by

Ak(t) = V(t) A(t) S(t),

Bk(t) - v(t) B(t),

^(t)-c(t) s(t) . ,. (4>56)

The proof of the algorithm is similar to that given in
[50] for time-invariant systems. The use of the algorithm
is illustrated with the help of an example considered
previously [8], [23], [70].
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Example- 4.4

Let

t-1 0 -t+2

A(t) = t-2 1 t+2

_t 0 -t-1

~1 0 0 "

c(t) = 0 1 0

_0 0 1 _

B(t) *

1

1

Lo

By step (I) we find

S(t) = 1

0

1-t

1+t

-t

Using step (ii)

V(t)

1+
2t

2t

1
2T

2t

-1

Finally, using step(iii) we find

0 -1

AK(t) = V(t)A(t)S(t) =

CK(t) = C(t)S(t) =

1

1

0

0

1-tl

1+t

-t

J

.. (4.57)

. (4.58)

.. (4.59)

> B„(t) = V(t)B(t) =
K

1

1

LoJ

.. (4.60)



-109-

The method suggested here is simpler than that given
in [8j because S(t) is of lower order than Q^t) of eqn. (8)
in [8j, having retained the independent columns only.
Consequently, further manipulations are with the lower order
matrix. The algorithm is more attractive especially when
the number of uncontrollable/(unobservable) modes is large.

4.9 CONCLUSION

Considerable interest has been shown by various
investigators on the realization of state equations for
n-port LC, RLC and portless RLC networks. However, the
methods used by these investigators are quite involved as
the decomposition of A-matrix of the ^^ equations and

the realization of resulting hybrid matrix are quite
cumbersome. Simpler algorithms have been presented in
this chapter.

In particular, the state-space representation for
a general LC network with independent sources of the

network as exclusive component of the input vector does
not always exist. When the state variables are chosen as
capacitor voltages and inductor currents, the state-space
characterization of LC networks involves derivatives of
sources, so in order to transform the state model (3.2) to

state model (3.6) a transformation (3.3) has been choSen.
Once the state model is in the form (3.6), it is plausible
that its decomposition in the form (4.2) can be carried out,
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simplifying considerably the rest of the procedure. Further,
the available methods proposed for RLC n-port state

equations are quite tedious. But if we restrict the RLC

state equations to a class described in Section (4.4) the

method of decomposition of state equations and the realization
of resulting hybrid matrix becomes quite easy. Similar
procedure has also been proposed for LC time varying case.
Further, interest has also been shown in literature on the
realization of A-matrix. The available methods are quite
tedious. Again, a procedure though applicable to a restricted
class, given in Section (4.6), is simpler than the existing
methods.

Some times the given state equations are not minimal.
However, they can be made minimal by the well-known techniques
available for time-invariant linear state equations. An
algorithm has been presented by which uncontrollable
(unobservable) states can be removed for the given state
equations for linear time-varying systems. The algorithm
which is an extension of the technique given by Maynefcoj
for.linear time invariant systems makes use of time-varying
controllability and observability matrices and appears to be
simpler than the existing methods.

In the next chapter, the other facet of the problem
is touched upon-i.e. the synthesis from input-output
characterization in s-domain is discussed.
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CHAPTER V

SYNTHESIS FROM INPUT-OUTPUT CHARACTERIZATION
IN S-DOMAIN

5.1 INTRODUCTION

Quite often, the given information is in terms of

input-output specifications in s-domain. Anatural approach
to the synthesis, as has been recognised by many investi

gators, is by means of state model since the state model

of the network provides more direct information about the

network and its topology than the network matrices. Several

attempts have been made to realize the network by this

approach[6], The state models derived in these cases
necessitate the use of RLC elements, transformers and

gyrators. Youla and TiSsi[9o] gave a procedure for obtain

ing a network without gyrators from scattering parameters.
Recently, by combining the techniques of Youla and

Tissi[90] and Anderson and Newcomb[6], Yarlagadda has
proposed synthesis procedures from hybrid parameters of

an RLC'network, which eliminate the use of gyrators. This

chapter discusses the improved and systematic synthesis

procedures from the input-output specifications in s-domain.

In particular, the chapter presents (i) minimal reciprocal
realizations from a given symmetric matrix, (ii) minimal

passive reciprocal synthesis from a given positive real

hybrid matrix, and (iii) some aspects of synthesis of minimum

biquadratic functions from state-space point of view.
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5.2 MINIMAL RECIPROCAL REALIZATION FROM
A GIVEN SYMMETRIC MATRIX

The problem of minimal realizations from a transfer-

function matrix has been widely investigated during recent

years, but the method given by Ho and Kalman has been acclaimed

to be the simplest one available [28]. The method essentially
consist of generating "Hankel matrix" S ,

where

sr =

Y

Y,

Y, ... Y .
1 r-1

Y

Y Y Y
r-1 xr ••• 2r-2

... (5.1)

is built of Markov parameters [2l] Y^s determined by divid
ing numerator polynomials of each entry of the transfer-

function matrix by common denominator. Non-singular matrices

Pr and Qr are then found by well-known computing

techniquesfl7j such that

P S Q =
r r^r

0

0

0
Jr • ... (5.2)

where Is is s x s unit matrix and suffix s equals rank

of Sr, and Jr Is idempotent.

If we choose Ep a block matrix j~l 0 ... 0 " and
ulh means the operator which picks out the upper left hand

block in block matrices, then the minimal realization A,B,C

is given by
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The importance of such realizations is attributed to

the fact that they result in reciprocal networks, and

further it has been proved in [37], [90] that all reciprocal

realizations for RC and RL cases are passive. Hence, in

the following, the algorithm by Ho and Kalman is modified

so as to determine such Pr and Qr as further result in

JA, B, C~| satisfying eqn. (5.5).

Now, since the given matrix is symmetric, S of eqn.(5.1)

will obviously be symmetric. Therefore, a non-singular P

can always be found such that

P S P< =
r r r

where

2,

0

= rank of s .

Multiplying both sides of the above equation by

we get

P„S P'Z =
r r r

0

0

.. (5.6)

.. (5.7)
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A=ulh|[jrPr(f Sr)QrJr]

B ulh 'JrPrSrE™ ] - .. (5.3)

and

c • ulh[EPWr]
where

Y.
2 r

f S„ »
Yc Y3 *•' Yr+1

.. (5.4)

Y. Yr+1**' Y2r-1

For a particular S , determination of P and Q

satisfying eqn. (5.2), is a well-known problem in matrix

algebra. For a particular Sr, there can result innumerous P •_,
and Qr'ssuch that eqn. (5.2) is satisfied. Each set of P.
and Qr will give a different realization fA,B,CJ.

In many problems we are given symmetric matrix V(s

and we are interested in finding a realization [a,B,C,d1
such that

C

is symmetric, where

Z =

when £, = number of +1's on diagonal matrix, and

number of -l•s on diagonal matrix.

.. (5.5)
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Therefore

A=ulh["jrPr(f 6r)P^EJp],

B= ulh[ JrPrSrE'

C = ulhfE S P'EJ "1 .
L P r r r J .. (5.8)

It may be seen that this realization will satisfy (5.5)

as is illustrated in the following examples.

Example 5.1

Consider a symmetric matrix [50]

Wis)'
s +1

_1_
s+1

From eqn.(5.1)

i 1

Sr =
1 1

Therefore

-1 -1 '

TV
_-l -1_

From eqn. (5.6),

_1_
s+1

1

s+1

Pr =
1

-1

0

1

' 2

. . (5.9

1

0

0

0

'Jr =
1

0

.. (5.10)
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Therefore from eqn. (5.8), we get

A=L""1] ' B=C1 1J and. C
It can be seen that eqn. (5.5) is satisifed.

ri
_i.

Example 5.2

12 2 9
8 s " r s + §•Given a symmetric V/*(s) = ~

s2
We get

12 2 3
-s + -5 + ~1y;(s)^8i--85.I_8___ 1
s + 2s + 1

S + 2s + l

-2S~3 + 3S4
Hankel Matrix

-n- 4 s ° +

V
o i

_1 -2_
and TSr - I 1 -2

-2 3_

As Sr is symmetric, it can always be decomposed in the
form (5.6)

where

pr =
_ (

{2

3
Y2

~1~

E' =
m

,

-°_

-1

Eb -

J -

L

[1 0],

.. (5.11)

.. (5.12)

.. (5.13)



Using (5.8) , we get

A =

c =

" i
2

1

2

[V2

1
2

2
9

-1T2J

Therefore, we get

I L_ _ L_
8

Y"2 V2

b

B A^

=

V*2
_ 1

2
1
2

_ Y2
_ 1

2
_ 2

2
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and

B

1

V2

_1_

•>-[M.

It can be seen that eqn. (5.5) is satisfied.

The proposed method is a modification of the method

given by H0 and Kalman jj28l for the case of symmetric matrices

and has its novelty because of eqn. (5.7) which according to

author's knowledge, has not been considered earlier. The

method is better than that given by Youla and Tissil90j

as the additional labour of finding inverse of matrices

(Eqn. 1-29 [po] ) is avoided.

5.3 MINIMAL PASSIVE RECIPROCAL SYNTHESIS FROM A
GIVEN SYMMETRIC POSITIVE REAL HYBRID MATRIX

In the synthesis procedure, flexibility in choosing

a transformation T in Section (2.5) allows us to introduce

both passivity and reciprocity constraints. But, unfortunately,
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both the constraints cannot be met simultaneously and

as such it is difficult to choose a T which makes the

state model both passive and reciprocal. T0 remedy this,

two methods have recently been given by Yarlagadda [85].
The salient steps involved in these methods are recapitu
lated first as follows. In method 1, passivity constraints
are satisifed first and then a transformation is chosen

which satisfies reciprocity but maintains passivity. In
method 2, reciprocity is satisfied first and then a

transformation is applied which maintains reciprocity but
satisfies passivity. These methods are briefly discussed

first with aview to obtain an improved synthesis method.

Method 1

Let H(s) represent hybrid parameters of an RLCT

network having no pole at infinity. The method for arriving
at the desired state model is explained in the following
steps.

(i) From given H(s), obtain any state model

Xx = A1X1 + BXU,

U = ClX]L + DlU, ' .. (5.14)

such that H(s) = d1 + r^ (si - A1)"1B1.

(ii) The necessary and sufficient conditions for H(s) to
be positive real have been given in lemma 3 of Section (2.5.2 ).
So, there exists a symmetric positive definite P and matrices
WQ and L such that eqn. (2.24) is satisfied. Determine the
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positive definite matrix P and P1//2,

(iii) Choose a transformation,

Xg = •1/2
X, . .. (5.15 )

and obtain the new state model

M2 =

*2 = AgX2 + B2U,

U = C2Xg + D2U.

D2 C,

-B2 ~A2

is positive semi-definite.

... (5.16a)

•• (5.16b)

It has been shown in [85] that matrix Mg generated from
(5.16)

.. (5.17)

(iv) The next step is to apply eqn. (2.27) to (5.17) i.e.
select the non-singular transformation Tj such that

(li'TA-S« ;Tl)' .. (5.18)
Tx is also symmetric and it can be represented as [85]

Tj = SXE = ES1 ,
• • (5.19)

where Sj is a symmetric positive definite matrix and E
is symmetric and an orthogonal matrix and can be written
as

E = Q,IQ.\
1 ^1' .. (5.20)

where Q, is an orthogonal matrix, and Eis a diagonal matrix
With + i» s.
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(v) Choose a transformation

*2 = Q1X3 .. (5.21)

and apply on eqn.(5.16). Multiply the first equation thus
obtained by Q'S1 to obtain the state mode]

Q1S1Q1*3 " VlA3V3 +QiSlB3U,
U = CLQrXi + DU. fK OQ,3 ••• ^3 . * (5.22)

The state model (5.22) can be realized using RLC elements,
and transformers, the proof being given in [85].

Method 2

In this method reciprocity conditions are satisfied
first. The method consists of the following steps.

(i) Obtain any state model

•

X4 = A4X4 t B4U,

5 =C4X4^04U, __ (5_S3)
such that

H(s) = D4 +C4(sl - A4)~1B4.

(ii) Applying theorem 2.1 in Section (2.5.3), determine T
satisfying eqn. (2.27) and Zand Lj given by eqn. (2.28).

(iii) Applying transformation T« h obtain the neW ^^
model



*5 = A5X5 + S5U'

U - C^ + D5U,
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.. (5 .24 )

which will satisfy the symmetr/ condition, i.e.

Dc

-&

is a symmetric matrix.

C5

*6

.. (5.25

(iv) From (5.24), obtain symmetric positive definite P as
discussed in [85].

(v) The matrix P

Pll P12"]
pi p
12 *22

can always be written as [85]

I -Q

•Q' IJ

P P11 F12

pi p
12 h22~

where K,2 = 0.

rQ'

(vi) Choose the transformation

-Q

T =

•Q' I_

-Q

I

Kll K12

i_Kl2 h2 J
(5.26)

.. (5.27)
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where, T is given by

T
1 _

(I-QQ*)i\-l 0

mri0 (I-Q'Q) Q

such that

and

E T ET = D

ED!
q

D

Q

.. (5.28)

(vii) Using the transformation X6 = T 1X5 given by eqn. (5.27)
and eqn.(5.28) we obtain the new state model as

DqX6 = ZTEAsTX6 + I TZEgU,

0 =c6tx6 + r^u.

It is proved in [85] that state model in (5.29

realized using RLCT elements.

can be

(5.29)

5.4 PROPOSED METHOD SUITABLE FOR COMPUTERIZATION

The first step in both the methods given above is to

determine any state model corresponding to the given specifi

cations. Suitable constraints of passivity or reciprocity

are then applied. As in synthesis problem, we are given a

symmetric positive real matrix and our object is to construct

an RLCT realization without gyrators, the above procedures

can be modified by exploiting the symmetry of the given
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specifications. The proposed synthesis procedure is ga
in the following steps.

lven

(i) Construct [7v,B,C,DJ as follows. Determine the Hankel
Matrix from the Markov parameters of the given positive

real matrix. As the given matrix is symmetric, the Hankel

matrix will also be symmetric. A symmetric matrix can always

be decomposed in the form MSM'[l7], where 2 can be uniquely

determined by H(s) and is the associated reactance matrix.
Now, set

M = M

and

N = EM*

where

r M

M = M,

M
r-1

We get [90]

C - M0 ,

B = EM' ,
o

and N N. Ni N
r-1

.. (5.30)

A=Min. M=(N.AIN*1) , _ (5.31)

where U^ is the 'generalized* companion matrix given by
eqn. 1-14 of [90] as
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0
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!

°m °m

«

_"*Mai ~br4V'

and

D - H(°°)

and also as proved in [90]

EA = A'E

and

ri;g D C

B A
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0
m

1

0
in

m

• • "bi Il m

is a symmetric matrix.

(ii) Calculate W(s) by spectral factorization [88] and
determine Hankel matrix formed from the Markov parameters

of W(s). It has been shown in \6~) that if H(s) has a

realisation [a,B,cJ, w(s^ has a realization (Ja,B,l1. For
H(s) of order lxl, JA,B,fj can be easily determined as is
shown in [6], but for H(s) of higher order and when [a,B,c1
of H(s) are determined from Markov parameters, the author

feels that there is no specific procedure available to find

the realization of W(s) such that LTa, bH of H(s) and that

of W(s) are same [l]. TQ do this, we use the derivation in [58]
used for determining the residues of poles of transfer

function from given stat* equations. This result can be

stated in the form of the following Lemma.
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LEMMA 5.1 If the sequence CB, CAB, ... , CAn_1B and the

sequence B, AB, ... , A " ' B of a minimal realization are

given, then C is determined uniquely by

1-1
C CB CAB CAnlBJ|B AB An_1B (5.32)

For proof see [58].

Now in our case, FCB, CAB ... CAn~1B~jare determined
as the Markov parameters of W(s) and if JB AB ... An-1B
is known, matrix C which in our case of W(s) is L, can be

determined from eqn. (5.32).

It is interesting to note that f~ B AB ... An~1B~

of W(s) which is also equal to Pb AB ... An-1B "1 0f H(s)

is nothing but the matrix Mdetermined already in the

decomposition of Hankel matrix found from Markov parameters

of H(s)[90J. It is seen that Mis often required for finding
the intermediate expressions in the rest that follows and

so can be stored separately for computerization of the

procedure. So knowing L, L'L (Eqn.2.24) can be obtained.

(iii) The next step is the determination of P. It can be

obtained from equation (2.24a). The method as given in [6]

requires the solution of nx(n+l) / 2 simultaneous equations

which becomes quite complicated as n, the order of A,

increases as it would require the determination of inverse

of a large matrix. In the following, a method for the

determination of P is suggested. The method is especially

suited for computerization as P can be obtained in terms

of the already available expressions in the procedure or
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their multiplications etc. F0r simplicity the case when

H(~) = 0 is considered here although similar expressions

can be derived for the case when H(°°) is finite. Equation

(2.22) is rewritten as

PA + A'P = -L*L ,

' pB = C« . .. (5.33)

So we can write

PA • -A'P - L'L

PAB = -A»PB - L'LB = -A*C - L' LB = (-1 )A' C +(-1 )L* LB
2

PA B = -A'PAB - L'LAB = -A' Pa'C'-L1 LB] - L'LAB

= (-l)2A»2C' +(-l)2A'L'LB - L'LAB

PA3B = -A'FA2B - L'LA2B

- -A'[(-l)2A'2C +(-1)2A'L'LB - L'LABJ - L'LA2B
= (-l)3A'3C + (-1)3A»2L'LB + (-1)2A'L'LAB - L'LA2B

PA4B = -A'PA3B - L»LA3B

=-A'[(-1)3A'3C» + (-1)3A'2L'LB + (-1)2A'L'LAB-L'LA2B"|
-L'LA3B

=(_1)4A'4C'+(-i)4A,3L»LB+(-l)3A'2L,LAB+(-l)2A,L,LA23-L'LA33

PA^B = (-l)n-1A'n-1C'+(-l)n-lA'n-2L'LB+(-l)n-2A'n-3L'LAB +.
+(-l)n"3L»LAn-3B-L'LAn-2B

.. (5.34)
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P B AB A" ... a^b]

C (-l)A'C'-L'LB (-D2A,2C' +(-i)2A'L'LB-L'LAB

(-D3a*3c, +(-i)3a,2l'lb+(-i)2a'l'lab-l'la2 B

(-l)n-1A'n-lc' +(-l)n-lA'n-2L'LB+ .. .+ (-1 )n~3L'LAn~3B

-L'LAn 2B

+ (-1) L'L

+(-i)2a'l'l|""o

+(-i)3a'2l'l|o

• • •

+(-l)n-1A'r,-8L'L[ 0

or

P = B AB

C (-l)A'C'

0 B

0

0

.. (5.35a)

(-l)2A'2C\..(-i)n-lA,n-lc, 1

AB A2B ... An*2B 1

B AB ... An~3B "j

0 B ... An~4B 1

[B AB ... A^b]"1^ Qm ]
The inverse of B AB A B .

mm*

known from step (ii) above. So the terms on the right hand
side of eqn. (5.35) are known or can be easily manipulated and
therefore P can be determined without taking inverse of any
matrix once more, which otherwise would have been required
in the method as given in [6] 0r [85].

0

A^B

B J

... (5.35b)

is already
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(lv) The transformation (5.27) is ne*t do+o •
' lb next determined from^.(5.2a)a„dtherestoftheprocedureisidenticaito

that discussed in Method Edescribed -y Yarlagaddg [88]_

„. .„, FUrthe- ""(5) h3S ^*** «* »»'*»ity. it is always
possible to write [6]

H(s) = sL +HjU)

iTfelW ^ n°n"ne9atiVe defl"lte and Hl^» I- Positsreal[6). The synthesis of ..tri, SL can he accomplished by
tr.„.fomers and coupled inductors[6j_ Sb> the probiem ^
synthesis of „(.) can be reduced to the synthesis of Vs>.

The algorithm suggested above is more suitable for
compute motion than the method suggested in fe] because
the reciprocity constraint In the suggested algorithm is
achieved by determlnlng ^ ^^^ ^^ ^
fro. the Markov parameters instead 0f determining it by
"rrt finding any realization and th£n 5eeklng for , trans.
formation which when applied on this realization ^^
it to a reciprocal realization. Besides, the suggested
algorithm presents . uniflerf ^^ ^ ^^ ^
realization of •(.) reguired in the synthesis procedure
by making use of Lemma 5.1. Further, the determlnation ^
sy^etric positive definite matrix Pquired for passivity '
constraint is also achieved in terms of the intermediate
expressions found in the algorithm.

In order to illustrate the procedure suggested above,
an exampie is considered below. F0r comparison, the same
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examole, as has been chosen by Yarlagaddafe], is discussed.

Example 5.3 Synthesise the positive real admittance
function

i(s2+2s+9)
Y(s) = S

s +2 s+1

Solution :

Step (i)

yi(s) J's+2?2>_i

Hankel Matrix

s +2 s+1

1

8

s +2s+1

s~2-2s"3+3s4-4s'5+

o 1

+

(5.36)

(5.37)

Sr =
LI -2

which can be decomposed in the f

.. (5.38)

MZM' =

1- 1_
V2 f2 -1

--V2 OJL

= MN m

1 1
T2 f2

-V"2 0_"

M

"1

LMl.
L' o "i

orm

oh o„

f2 V"2

_ h °

CA J
f B AB j

.. (5.39)



Therefore

C = M. = Lk hi
and

zh i

B = N =

Further,

A = M~Jrl_ M

i_
LfsJ

-t-1

Y2 fe

L-Y2

0
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r1 -2 _

i 1_
f2 f2

-V2 0 _

2
2

1
2

L7 2 " 2""

As a check A can also be found as

A = NJUN-1

- h ^' 0 -1 Z i_
f2 y-2

=_
.

_ k °_ 1
_

-2
i

_ n 0
_

.

"-3 1"
2 2

I 1
- 2 "g

•

(5.40)
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herefore-

ri 1

f2
1_
V2

D

_ B

C |

A „,
-k _2.

2
1
2

.k _1
2

1
2

It can be seen that

r i r D C

B

is symmetric.

Step (ii)

By spectral factorization

i 2
w / „ \ _ 1 _ s +3

« / —

2 ' 2';
s +2 s+1

= WjCs) + w(°°) ,
or

*l (s) =
s^+2s+l

Therefore-

Sr =
-1

_3

31

hi}
From eqn .(5.32)

L= j~CB cab]Tb abI"1

= [~CB OAB][ N]"1

"C 3]
~0 ][2

V2 V2
L?2 1_

V"2

.. (5.41

.. (5.42

.. (5.43)

♦ (5.44

(5.45)



' r -L'L

2_
2

I]
1
2
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.. (5.46)

(iii) Mow considering the case when W(°°) is not 2ero>
eqn. (2.24) is

PA + A'P = -L 'L »

PB = C - L
0

w •TY
0 0

= W(°° ) + w(°°)

So, we can get

PA = -A' P - L'L ,

PAB = -A' PB L'LB

.. (5.47a)

.. (5.47b)

.. (5.47c)

-A»(C'-L»Wo) - L'LB
= -A'P'A'C + A'L'IVo - L'LB . (5.48)

Therefore

P = [C-L' IV

Now W(°°) + W' (°o) = I + I - !
' V ; 8 + 8 ~ 4

Therefore, from eqn.(5.47c)

W

Further

L' W =
0

2 *

3

2V2

-A *C'+A'L'Wo-L'LB]JB AB"]
•• (5.49)

-1



LL'B =

9

2

3

2

2.
2

1

2 J
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~f2

1

L 72.

Y"2

_ i_
- 72 _

- 2?2

- 2T2 _

_ 2.
2

1
L 2

nr -2.

A'L'W,

2

From eqn. (5.49)

P =

Pl =

r 72 272

72 " 2^2

5

4

2
4

21
4

5

4

n

5.
4

2l<r2

2f2 J

72 - r# +- 2u
2T2 V"2

0+2% +k

• • (5.50)

r
0 72

72 72

.. (5.51)

(iv) To determine transformation Tcorresponding to
eqn. (5.27), the procedure identical to the one given in [85]
is adopted. F0r the matrix P]_ given by [85]

the eigen-values a re given by

or taking the positive value X 1, the corresponding eigen-



vector is

"V 1

3

3_ 1
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-1therefore, T (eqn.5.27) and T are given by

T =

1
1 -1

3

and T"1 8
0 1 i"

3

r* 0
-

0 2
8_

1
_3 1

Therefore

r» -i
-

ci =CT =Ik kl
l

o

_ 1_ fS. 2"
" ITS L3 3_ .. (5.52a)

"I oT *"'
- 1 -

"72

Bl =
_° I..Li K 1

L 72 J

"

1 o-1 -_ 7£"
3

»

_° 1. 7a
L 3 . ... (5.52b)

Aj_ - T AT = '1 o" "» f 3

2
1~
2

1
1~
3

i l.
1

2

1

2_
1

7.3 1

* 0~8 U
"_16 8 ~

9 9
4

0 !j
8

_ 9
0 . . . (5 •52c)
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Th ere fore, we have the state model

8

9

0

0

8

9j

V

u

16
9

8

" 9

72 L 3

si V
2 "

9 c

+ *?—

3

0 Ir 72 2

_ L _ - 3 _

2

3

V

+iu

Therefore

"d C "

r I
8

u
3

12
3

_B A_
-

_12
3

_3_
2

1
2

3

i
_ j*

2
1
2

It can be checked that

D C

B A

is a symmetric matrix and the state model (5.53) comes out

to be same as eqn.D-18 0f [85]. Therefore, the network

(Fig.5.1) will also be identical to the one given in [85].

Obviously due to the flexibility in decomposing the symmetric

Hankel matrix obtained from Markov parameters,many equivalent

realizations can be obtained.

u

(5.53

... (5.54)

5.5 SYNTHESIS OF MINIMUM BIQUADRATIC FUNCTIONS

The synthesis of minimum functions has been a challenge

to network theorists for quite a long time until Brune

gave the synthesis procedure for these functions. Later,
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FIG. 5.1 . REALIZATION OF Y(s) [EQN. 5.36]
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Bott-Duffin and several others attacked the same problem,
the different methods giving different number of elements,
Brune method, however, gives the minimum number of elements.
In order to get minimum number of reactive elements, one
can advantageously go in for state-space technique, as a
minimal state model always results in a minimum number of
reactive elements, the number being given by the degree
of the given matrix in rational polynomials. The problem
can also be tackled to get minimum number of resistive
elements (reactive elements not necessarily minimum) based
on the approach recently given by Vongpanitilerd and
Anderson fel]. Further, as the state-space technique
offers greater scope for extensions to problems such as
equivalent networks, the synthesis of these functions
using this technique will be fruitful. Knowing one, a
number of equivalent networks can be obtained, all having
the minimum reactive elements. The problem of realizing
biquadratic functions, although sufficiently tackled,

-still remains interesting feo] and useful due to its
application in cascade synthesis methods. In Section(5.3),
various synthesis procedures using state-model approach
have been given for positive real matrices. As a bye-
product of these procedures, it is interesting to note that
for biquadratic minimum functions, by making use of the
property given in eqn. (5.63) some intermediate expressions
in these procedures become very simple and can be obtained
directly in terms of numerator and denominator coefficients
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of the function. For example a simple relationship express

ing P , required for synthesis, directly in terras of

the coefficients of biquadratic function can be established

as follows :

Consider a driving-point biquadratic minimum function

:(•) =
s + b7 s + b

1 o

(for simplicity, scalar constant is
assumed to be unity)

Becau se

z1(s) = z(s) - z(«0 ,

therefore

(a.-b, )s + (a -b )Zi(s) =—1—1 o__a .
s^ + bn s + b

1 o

The steps required are :

(i) Determine a state model given by

0 0

A = b =

-b. -b.

.. (5.55)

.. (5.56)

• ['•„- bo> (a1-b1 ) = r i . .. (5. 57)

(ii) Determine W(s)

W(s) is found as follows :
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From eqn. (2.24), we get

h(s) +z'(-s) =W(-S)W(S) - Even [z(sfj .. (5.58)
Let z(s) be

ml + nl

therefore

BwnfiUfl •t-yfft'V
L J 2 2m2 - n2

o (s2+aJ(s2+bn)-a,blS2
- 2 °-—• o 11

(s2+bo)2-(bls)2

5^a0V|b|)^a
(s2+bQ)2- ft^s)*

. b
~Q o

=2if!l!a^f +(ao+bo-aibi-27a7F2£
(s2+b0+blS)(s2+b "bjS)

- 2ii!:l^^J"^ibi+2^x-a.-bn)i/2sf
(s2+b0+b1s)(s2+b0-b1s)

Therefore, from (5.58)

p _____ 1 /p

w(s) - y» J-+KbQ +C»A*fiX -yb 3 ,
2 '

s +bQ+ b,s

. w(0) = rr . ,
.. (5.5 9)

(iii) Find L'L

wl(s) is given by
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» Ct) - ~ S '̂?a0bo+L2a1b1+/'̂ aobn-2^o-2bn32 ^ S2-^ S-^p
S + bTS + b

r — i *• (5-6°)_L (2a1b1+4faorr -2an-2bJ^-Y2 b ] s +|j2t b"-Y2 b -j
_o__

2
s + bn s + b

1 o

0 SL

Therefore
.. (5.60)

L=U^o^^ C^^Y^ -2ao-2bo)2 -f2 h]_ ]
and •*• (5-6l)

L'L =

Lll L12

.. " ^21 L
22

. . (5.62)

where

Lll =2bo[ao +bo ~27a0bo],

^1 " L12 =[n~*7; -72 b0][(2a1b1+4ira-b--2a0-2bo)2-rrb12_,
L22 = [2a1b1+4lTa0bo -2a0 - 2bQ ]

+2b2 - 2f2 b1[2a1b1 +4Y"a^b~ -2aQ-2b0 ]

As z(s) in eqn.(5.55) is biquadratic minimum, the following
relation holds good

*ibi - <yr - yto;)2 - a0 +b0-2Yv£ .
Substituting (5.63) in (5.62) we get

... (5.63)
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Lll = 2boalbl '

L21 = L12 =^h^lVo ,

I22 =2b^ . .. (5.64 )

(iv) Find P

As a symmetric positive definite matrix always exists

satisfying equation

PA + A'P = -L'L ,

take

P B

P P
*11 12

P P
12 *22

and A for this case obviously would be

A b

0

-b
L o

-b
1__

Solving for P, we get

11 Vl + aobl '
P12 = a1b1,

22 al + bl *

Therefore

boal+aobl

P =

•lDl

a1b]_

ai+bl

.. (5.65)

(5.66)

. (5.67)
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which is given in terms of the numerator and denominator
coefficients of the minimum function.

Hence, by making use of the property (5.63) of

minimum function, we can find the realization A,b,c,d and
the corresponding F needed in the synthesis procedure by
inspection and directly in terms of the coefficients of
biquadratic function. F0r rest of the procedure, Method I
given by Yarlagadda [85] can be applied. This result
concerning the biquadratic function may also find interest
ing application in cascade synthesis using state-space
approach.

5.6 CONCLUSION

When the given specifications are in terms of input-
output characterization in s-domain, state-model approach
is considered as most useful tool for the synthesis
problem. Many results pertaining to the identification of
systems in terms 0f state equations are available. A

modified method based on the approaches of H0 and Kalman [28]
and Youla and Tissi[9o] is presented here when the given
matrix is symmetric. The realization thus obtained satisfi
the reciprocity constraints. Further, two procedures h
been recently proposed by Yarlagadda [85] for obtaining th
state model which satisfies reciprocity constraints togeth
with passivity constraints. An improved procedure which is
particularly suitable for computerization has been developed
in this chapter. The elegance of the proposed method is

es

e

er
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attributed to the determination of the realization A,B,C
and A,B,L of H(s) and W(s) from the symmetric Hankel

matrices obtained from their respective Markov parameters.

The symmetric positive definite matrix P is determined in
terms of the matrices already found in the algorithm

rather than solving a set of simultaneous equations as
in [85] and so the difficulty in determining the inverse
of matrices is circumvented. Further, by exploiting a well
known property of the biquadratic minimum functions,
results for some intermediate simple expressions e.g. P
etc., have been derived in terms of numerator and

denominator coefficients of the function which facilitate

the procedure for the synthesis of minimum biquadratic
functions.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 INTRODUCTION

The application of state-space techniques to system

synthesis, particularly networks, is a significant recent

development especially with the advent of fast digital

computers. New methods suitable for computer-aided design
are being developed. The present work is essentially

concerned with this problem and proposes new and improved

methods regarding the application of state-variable technique
to modern network synthesis. The procedures embodied here

deal with the synthesis of networks when the given specifica

tions are in either state-variable characterization or

input-output characterization in s-domain. Attempt has been

made to bridge the gap between the twin concepts of these

characterizations. This chapter, after summarising the
results derived in the earlier ones, gives a number of

challenging problems still open for investigation in this
field.

6.2 SUMMARY OF THE RESULTS

A critical review presenting the various phases of

the use of state-space approach in network synthesis has

been given first. Various significant results scattered in

recent publications have been collected in the form of an
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historical sketch with a view to acquaint the reader

with the importance of this powerful tool in the hands

of network designer. Generalized state models for RLC

networks have been derived and the extension of these

models for time-variable and non-linear cases has been

considered. The role of the state models and other various

results, e.g. constraints of reciprocity and passivity,

in arriving at passive-reciprocal synthesis has been

examined.

State-variable technique has become inevitable,

especially, for non-linear systems for which transfer-

function description does not exist while the latter

still carries popularity in many of the design problems

in linear systems. So, attempt has been made to seek the

state-space interpretation of the well-known results in

classical synthesis which will prove to be significant in

the study of equivalent networks. In particular, the state-

space interpretation of classical Foster, Cauer and Brune

methods has been given. A new procedure for the determination

of impedance matrix Z(s) from given Z(s) + Z'(-s) is

proposed which makes use of the well-known Anderson Lemma

for positive real matrices. Further, based on the reverse

of Ho and Kalman method f0r determining state equations,

a method for determining the transfer-function matrix from

given state equations is discussed which does not involve

the determination of the rational matrix inversion (sI-A)"1.

The method is especially suitable for the cases in which

det-j-sI-AJ can be easily determined.
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When the given information is in terms of state-

variable characterization, synthesis is achieved by

comparing the state model in topological entities with

the known quantities and then solving the corresponding

set of equations. Such recently available proceduress are

quite cumbersome and so a satisfactory solution of the

problem is desirable. In the present work, the generalized

state models for time-invariant and time-varying cases

are restricted to various classes of networks for which

synthesis procedures are given. In particular, a procedure

suitable for computer implementation for the synthesis

of state equations belonging to n-port LC networks is

discussed. The procedure has been programmed in Fortran II

and has been actually run on the available IBM 1620. An

easy algorithm for the synthesis of n-port RLC state

equations belonging to a class defined in Section (4.4)

is also given. Similarly, a procedure for a class of time-

varying LC state-equations given in Section (4.5) is also

considered. Further, there has been quite a bit of interest

in the realization of portless networks from given A-matrix-

Again the existing methods are far from satisfactory. An

improved procedure for the synthesis of A-matrix belonging

to a class defined in Section(4.6)is given. Sometimes the

given state equations are not minimal and procedures exist

for making the set minimal for time-invariant and time-

varying state equations. An improved computational procedure

for determining a minimal set of time-varying state-
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equations is given. The technique is based on the computat

ional procedure given by Mayne for time-invariant systems

and makes use of time-variable controllability and/or
observability matrices.

When the given specifications are in terms of input-

output characterization in s-domain, the natural approach

as agreed by many investigators recently, is through the

use of state models. Several procedures are available for

finding state models from the given transfer-function

matrix. An improved procedure for finding the state

equations is proposed f0r the case when the given matrix

is symmetric. The resulting state equations satisfy
reciprocity conditions. If reciprocity is to be satisfied

together with passivity, the determination of the suitable
transformation becomes a difficult problem and so in the

procedures given earlier, gyrators could not be eliminated.

Recently, by combining the approaches of Anderson and Newcomb

and Youla and Tissi, Yarlagadda gave two procedures for the
realization of given symmetric positive real matrix, without

the use of gyrators. A relatively improved procedure suitable

for computerization is given in the present work. Further,
by making use of a well-known condition for biquadratic

minimum functions, it has been found that in synthesis

procedures using state-model approach, some intermediate

expressions can directly be determined in terms of coefficients
of numerator and denominator polynomials of the given function.
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6.3 SOME PROBLEMS FOR FURTHER INVESTIGATIONS

The state-space approach to network synthesis has

been reviewed and applied to the classical synthesis

methods and to the modern synthesis methods when the given

information is in terms of state-variable characterization

or the input-output characterization in s-domain. There are

a number of problems still remaining in the use of state

variables in network synthesis.

1. The state-space methods, despite involving comparat

ively more manipulations because of generalized approach,

are being used to interpret classical synthesis procedures

owing to the extremely important problem of equivalence of

networks. The classical synthesis methods have been well

recognised, while their interpretation in state-space terms

is being investigated recently. The interpretation of some

of the one-port synthesis methods has been presented in

this thesis. The interpretation of some of the remaining

one-port and two-port methods is worth investigating,e-g.

Bott-Duffin procedure and Guilemin Method etc. The inter

pretation for 2-port methods may also indicate some

possible approach to n-port synthesis. Besides, the inter

pretation of one-port Foster, Cauer and Brune methods, in

terms of state space, also indicates the possibility of

n-port synthesis of Foster, Cauer and Brune networks.

2. Inspite of the extensive use of state-space techniques

in modern network and control theory, a majority of design

problems are being solved using frequency-domain methods.
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Therefore, it will be desirable to bridge the gap between
the state-space and frequency-domain description of

dynamical systems and establish a firm connection between

these twin concepts. The interpretation of poles, zeros,

residues, positive real matrices has been done. It will

be worthwhile to give the state-space interpretation of

some other common concepts in network synthesis, e.g.

removing a pole, shifting a zero and other known prooerties
of networks.

3.A well-known property for reactance functions given
in [3J has been proved in Section (3.2) in a different way
i.e. from the general state model of LC networks. The state

models are the basic building blocks in state-space terms

just as the conventional loop and node methods in classical

network theory. In order to have a deeper insight, it will

be worthwhile to prove other known results for RLC cases,

e.g. Anderson's Lemmas given in Section (2.5.2) from the

state models. Further, study 0f state-space methods in

this context, may also reveal certain interesting properties
of n-port networks.

4. A technique has been presented for the determination

of Z(s) from given Z(s) + Z'(-s) in Section(3.4 ). F0r lossless
Z(s), the algebraic process gives Z(s) + Z'(-s) = 0. It

has been shown in [25] that Re z (jo>) for the lossless

scalar function consists of sum of impulses located at the

pole positions which the usual algebraic process fails to
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detect. The reverse process i.e. the determination of

z(s) from such a Re z(ju») has also been discussed in

[25]. It is desirable to extend these results of L25J

to the matrix case exploiting the technique discussed

in Section (3.4 ).

5. The synthesis procedures for a class of n-port

RLC networks and portless RLC networks have been given.

It will be worthwhile to evolve the necessary and sufficient

conditions such that the state equations belong to the

class defined in Section (4.4)of Chapter TV.

6. The realization of state equations belonging to

time-invariant linear networks have been sufficiently

stressed. Little has been done to realize the state-

equations for time-varying,active and non-linear networks.

The state models for these networks can be obtained and so

it should be interesting to evolve the synthesis of time-

varying, active and non-linear state equations.

7.Combining the techniques of Yarlagadda and Tokad and

Anderson and Newcomb, a new algorithm has been proposed

for the realization of LC n-port state-equations. The

extension of the results reported in Section(4.2) to n-port

RLC state-equations obtained in[87] will be very fruitful.

8. The synthesis of a class of A-matrix for non-

degenerate networks when the network is assumed to have

connected resistive part has been given by Dervisoglu Ll9j •

Based on the decomposition of A, given by Nordgren and

Tokad [57] and the one proposed in Section (4.6), the synthesis
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procedure for the realization of A-matrix for degenerate

networks having connected resistive part can also be

done.

9. By making use of time-variable controllability

and observability matrices, Mayne's [50l computational

procedure has been extended to time-varying case in

Section(4.7) It may be possible to extend a number of

other results such as Anderson's Lemmas given in Section(2.5\2)

for time-invariant cases to the impulse response matrices

for the time-varying cases.

10. Currently the growing interest is towards

sensitivity methods as they constitute a vital link between

the discipline of system analysis and system design.

Sensitivity-state models based on graph-theoretic concepts
have been obtained for linear systems [65]. The method can

be easily extended to time-varying and nonlinear cases

based on the derivation of these models for such cases

discussed in Section (2.4).

11. In Chapter V, procedures are given to realize

the state model by RLCT elements. The problem of state-

model realization ultimately reduces to the problem of

R-network synthesis which need be solved in order to have

a transformerless realization [92]. Further the ideas

proposed in [30] may also prove useful in obtaining
transformerless realization.
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12. By exploiting a well-known property of scalar

minimum functions, the symmetric positive definite matrix P

required in the realization procedure has been obtained in

terms of the coefficients of numerator and denominator

of the given function. The results should be extended to

minimum matrix case which may facilitate the synthesis

of Brune n-port sections [54] , [55] .

13. The algorithm presented in Section (5.3) results

in minimum number of reactances, the number being equal

to the degree of the given symmetric positive real matrix,

while the procedure suggested in [8l] gives minimum number

of resistors. There is yet no available procedure for the

realization of positive real matrices which results in

minimum number of reactive as well as resistive elements[4j.

The problem is an open challenge.

In conclusion, it may be said that with the advent of

digital computer, because of the generalized approach,

deeper insight and the importance of equivalent networks >
the state-space approach is being advantageously

used in network problems and much more can be done

to utilise this approach in network synthesis. Once

the synthesis of lumped, linear finite reciprocal, passive,

time-invariant networks based on state-variable technique is

thoroughly investigated, it will not be difficult to extend
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this approach to extremely interesting cases of active »

time-variable and non-linear networks especially in view of

the fact that the state-variable description provides a

general basis for the study of such networks.
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APP3WDIX

C C SYNTHESIS OF LC NETWORKS - A STATE MODEL
DIMENSION A(4,4), 6(4,4), 60(4,4),
DIMENSION 31(4,4), |tf(8 ,8),V(8,8),
DIMENSION CC(4>4) ,AA(4»4),FDKV(4,4)
DIMENSION AR<4»4>*8R(4»4)»B0R(4»4)9P(4,4)
DIMENSION XX(4,4),YY(4,4)',Y(4,4),Z(4,4),XA(4,4) ,XE(4,4)
DIMENSION G(4,4),GG<4,4),NAC(4),PRD<4,4),AN<4>
COMMON A,B,BC,C,D,DO,BI,W,V.B2,DD,E.P,CC,AA,FDKV
COMMON AR,BR,BOR,

IOC READ 99,N»M
READ 99,NA,MA

APPROACH HSS Z
C(4»4J » D(494> , DO(4,4)

B2(4»4)»DD(4»4)»E(4»4)

XX»YY,Y,Z*XA*XB,G♦GG,MAC,PRD,AN

READ 40,((A CI#J), I= 1 9N ) , J=l,N)
RFAD 40,((F (I,j), I• 1 ♦ N) , J=1,M)
READ 4C,((B0(I,J), I= 1 ,N ) , J=l,M)
READ 40,((C (I,J), 1= 1, M) , J=1,N)
READ 40,((D (I,J), 1=1,M)9 J=l»M)
READ 40♦((DO(I,J>, I= 1 9M ) , J=l,M)

40 FORMAT (7F10'„2)
99 FORMAT (215)

COMPUTE W,V

DO 41 I= 1,N

DO 41 J=1,M
C _ (1

DO 42 K = 1,N
42 S=S+A(I,K)*BO(K»J>

S = B(I,J)+S

bk r»j) = s
41 W( I ,J)=S

J1 = 0

Nl=N-l

DO 47 KK=1,N1

J1=J1+M

DO 44 1= 1 ,N
J2 = J1

DO 44 J=1,M
J2=J2+1

S = 0 o

DO 45 K=1,N
45 S=S+A(I,<)*B1(K,J)

B2(I,J)=S
44 W(I,J2)=S

DO 46 1=1,N

DO 46 J=1,M
46 BKI,J)=B2(I»j|
47 CONTINUE

DO 4 8 1= 1, M
DO 48 J=1,N

CC(J, I )=C(I,J)

48 V(J,I)=C(I9J)

DO 49 1=1tN
DO 49 J=1,N

49 AA<J, I )=-A( I ,J)
J1 = C

DO 50 K!< = 1,N1
J1=J1+M

DO 51 I=1,N
J2 = J1
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DO 51 J =' 1 ,'"!

J2=J2+1
S = 0 o

DO 5? K=>1»N
52 S=S + AA ( I

B2 ( I , J ) a
»K)*CC(K»
S

J)

51 V(I,J2 ) =
DO 5 3 1=

DO 53 J=

c

1,N

1, M
53 CC(I»J) = B2(I»J)
50 CONTINUE

J1=J1+M
PUNCH 40 9 ( ( W ( I 9 J ) 9 1=1 »N ) 9 J:•1 »J1J
PUNCH 40 9 ( ( V ( I , J ) 9 1 = 1 ,N) 9 J--•1 ,J])
COMPUTE W*WD

DO 54 1= 1 »N

DO 54 J=1,M
S = 0o

DO 55 K=1,J1

55 S=S+W(I»K)*W(J»K)
54 DD(I,J)=S

PUNCH 40 ,((DD(I,J)9 1=1,
CML INVERT(DD»N»4)
PUNCH 40,((PD(I,J), i=i,M), J=l,N)
COMPUTE P

DO 56 I=1,N
DO 56 J=] ,N
S = 0 a

DO 5 7 K=1,J1

57 S=S+V(I»K)#W<J,K)
56 E(I ,J)=S

PUNCH 40, ((E (I9J), I=1,M)9 J=1,N)
COMPUTF AR,BR,BOR, ETC.
DO 58 1=1,N
DO 5P. J=1,M
s-nO— U o

DO 59 K=1,N

59 S=S+E<I,K)#DD(K,J)
58 P(ItJ)*$

PUNCH 4 ?((P (I,J), I=1,N)9 J=1,M)
NC=N-NA

MC=M-MA

DO 101 1*1,N
DO 101 J=l,N

DO 102 K'«lfN
102 S»S+P(I,K)#A(K»J)
101 AR(I,J)=S

00 103 1*1,N
DO 103 J=1,M
S»0#0
00 104 K=1,N

104 S=S+P(I,KJ*P(K,J)

9 J=1,N)
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103 BR( I,J) = S

DO 105 I=1,N
DO 105 J =1,M
5=0.0

DO 106 K=1,N
1°6 S=S+P(I,K)*B
105 BQR(I,J)=S

PUNCH 107,((AR
NB=MA+1
PUNCH 107,((AR
PUNCH 107,((AR
PUNCH 107,((AR
PUNCH 10 7,((PR
MB =MA + 1

PUNCH 107,((BR

(K , J )

(I,J) ,

fI,J),

( If Jl 9

( I, J) ,

( I 9 J) 9

( I »J)

( I,J)

( I,J)

R(I,J)

PUNCH

PUNCH

PUNCH

PUNCH

PUHCH
PUNCH

107 FORMAT

DO 110
DO 110

S =0o0

DO 111 !< =1,N
111 S=S+B0(K,I >*BOR(fC,J)
HO XX ( I ,J) = s

CONSTRUCT YC
DO 112 1=1,MA
DO 112 J=1,MA

112 Y(I,J)=XX(I,J)+DO(I,J)
I I=MA

DO 1]3 I=1,NA
H=II + 1

DO 113 J=1,MA
Y(II,J)=-B0R(I,j)

113 Y(J,I I)=-R0R(J,I )
I I=MA

DO 114 I=I,NA
11=11+1

JJ = MA

DO 114 J=1,NA
JJ=JJ+1

114 Y(II,Jj)= o( I,J)

PUNCH 107, ((Y(I,J), 1=1
NMN = I I

CALL CEDBUM (Y,NNN)
CONSTRUCT ZL
II = NA

DO 115 I=1,MC
11=11+1

JJ=NA

10 7,((PR

107,((BR

10 7,((BO

107,((P0R(I,j)
107,((80R<I,j)
107,((P-R<I,j)
(7F10.4)
I = 1 ,M

J = 1 ,M

1=1 ,NA), J=l ,ma)

1=1 ,NA),
I=N0,N ),

I*NSfN ),
1=1 »NA),

1=1 ,NA),
I=N3,N ),
I=N3»M ),
1= 1 9NA),

1= 1 ,N A),
I=N3 ,N ),

I=NR,N ),

J=NB,N )

J=l ,NA)

J=NB,N )
J=l 9MA)

J=MBfM )
J*l ,MA)

J=MB,M )

J=l 9MA)
j =m q ,iyi )

J=l ,MA)

J=MB,M )

II), J=l,jj)
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DO 115 J=1,NC
JJ=JJ+1

115 Z(I ,J)= P(I I,JJ)

II = NC

DO 117 I=1,MC
11=11+1

JA=I+MC

DO 117 J=1,NC
IA=J+NC

Z(II,J)=B0R(IA9JA)
117 Z(J,U )=ROR( IA,JA)

DO 116 I=1,MC
II=I+NC

IA= I+MA

DO 116 J=1,MC
JJ=J+NC

JA=J+MA

116 Z( II,JJ)=DC(I A9JA)+xx(I A,JA)
PUNCH 107, ((Z(I,J) , 1=1, II )
NMN=I I

CALL CEDBUM (Z,NNN)
COMPUTE FDKV

DO 118 I=1,N

DO 118 J=1,M
SaO.O

DO 110 K=1,N

119 S=S+P(I,K)*B(K,J)
118 XA(I,J)=S

DO 120 I=1,M

DO 120 J=1,M
s=o.o

DO 121 K=I,N

121 S=S+B0(K,I >#XA(K,J)
120 XB(I,J) =S

DO 122 1= 1,MA

DO 122 J=1,MC
JJ=J+MA

122 FDKV (I,J)=D( I,JJ)+XP( I,JJ)
PUNCH 107, ((FDKVl I,J),1=1,MA) , J=1,MC)
GO TO 100

END

J=1,JJ)



SUBROUTINE

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

COMMON A,P

COMMON A

DO 200 I=1,M

DO 200 J=1,N
200 GG( I,J) =G(I,j)

Ml=N-l

290 DO 201 I=1,N1
K=I + 1

DO 201 J=K,N

IF (G(l9J)) 202,201,202
202 AT=ABS(G(I,J))

11=1

I I= I

JJ = J

GO TO 20 3

201 CONTINUE

GO TO 220

203 DO 204 IsIlfNl
K=I+1

DO 204 J=K,N

IF (G(I,J)) 2059204,205
205 IF (ABS(G(I,J))-AT) 206
206 AT=ABS(G(I,J))

I I= I

JJ = J

2 04 CONTINUE

PUNCH 295,AT,II,JJ

295 FORMAT (Fi:U3,2I5)
IF (G( II,JJ) ) 207,208,208

207 DO 209 I=1,N

209 GG(I,JJ)=-G(I,JJ)
208 DO 21U I=1,N

IF (G( I , II ) )

211 IF (GG( I ,JJ)
213 NAC( I )=-l

GO TO 210

212 IF (GG(IfJJ)) 215,215,216
216 NAC( I )= 1

GO TO 210
215 NAC(I)=0

210 CONTINUE

PUNCH 299, (NAC(I), 1=1,N)
299 FORMAT ( 1415)
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CEDBUM (G,N)

A(4,4), B(4,4), 30(4,4), C(4 ,4)
31(494)9 ••; (898 )9V(8 98),B2(4,4)

CC(4 94 ),AA(4,4 ),FDKV(4,4 )
AR(4f4),BR(4,4},B0R(4,4}fP(4,4)
XX(4,4),YY(4,4)fY(4f4)fZ(4

9 D(4,4)

9DD(4 94)

, DO(4,4)

9E(454)

,BO ,C ,D •

9D0R

G(4,4),00(4,4 )9MAC (4) 9PRD(4,4)
9DO 9B19W9 V 932 9DD,E,P,CC

XX,YY 9Y,Z 9XA,X 3 9G 9GG,f\

4) 9XA(494) ,XB(4,4)

»AN(4)

,AA,FDKV

C,PRD,AN

) 213,215

2049204

212

9215
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DO 231 1=1,N
231 AN(I)=NAC(I)

DO 2 17 I=1,N
DO 2 17 J=1,N

217 PRD(I»J)=AN(I)
PUNCH 298, ((PRD( I,J

298 FORMAT (6F12.3)
DO 218 I=].,N
DO 2 18 J=1,N

218 G(I,J)=G(I,J
GO TO 29 0

220 DO 221 I=1,N
IF (G( I, I ) )

222 PUNCH 223

223 FORMAT(22H MATRIX NOT
221 CONTINUE

PUNCH 297,(0(1,1), 1=1,N)
297 FORMAT(5F 14*3)

RETURN

END

•159-

AN(J)*AT

1= 1

-PRD(I,j)

222,221,221

N ), J = 1,N)

SLE)
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