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ABSTRACT | —vii-

(Harpreet Singh, "State- Space Approach to Network
Synthesis", Ph.D.Dissertation, Department of
Electronics and Communication Engineering, University
of RoorkeeyApril 1971. Guide and Supervisor :

Dr. M.Lal, Professor, Department of Electronics and

Communication Engineering, University of Roorkee.)

The state-space approach to network analysis and
synthesis has aroused considerable interest during the
recent years, primarily, to develop computer-aided analysis
and design techniques. This thesis is concerned with the
application of this approach to various aspects of network
synthesis problem. In particular, state—-space interpretation
of classical synthesis methods is sought and new technigues
for network realization from state-variable or input-output
characterization are discussed with a view to evolve
improved procedures.

The classical synthesis methods for linear, time-
invariant networks are well known. An interesting problem
concerning the use of state variables for network synthesis
would be interpretation, in state-space terms, of common
synthesis procedures such as Foster, Cauer, Brune etc. This
problem along with the.interpretation of some of the proper-
ties of network functions in state-space terms is briefly
discussed first. State-space techniques for the determinatinn
of impedance matrix from its given even part and a direct
method for determining the transfer-function matrix from the
given state-space specifications are proposed.

In modern synthesis, many a time, the given

information is in terms of state-variable characterization
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rather than the input-output characteriza%ion. In thie
case, the natural approach to netwsrk synthesis is by state
models. Before develnping new synthesis rrocedures,
gencralized state models for BLC networks have been discussed.
As regards synthesis procedures, é realization technique was
given by Yarlagadda[86} for state model belonging tc¢ n-port
LC networks. An improved method for this class has been
evolved which is suitable for computerizetion. The propecsed
computer algorithm exploits the results reported by Anderson
and NewcombI6] and is free from many problems faced while
using Yarlagadda and Tokad[86] procedure. Further, a synthesis
procedure is proposed for a class of n-port BRLC networks, in
Which there are nc cut-sets of inductors only, no lcops of
capacitors onl? and tﬁere is no coupling between the link
resistances and tree-branch conductances. A synthesis
procedure for a similar class of LC time-varying networks
is also suggested. A procedure fcr the realizatinn of A-matrix
(portless networks) for a mcre ganéral class of BLC networks
in.which there is nc coupling between link resistances and
tree-branch eonductances is also given. It may be noted that
starting from minimal state model these procedures result
in minimal realizationsand in case the given set of time-
invariant state equatinns is net minimal, procedures exist
for obtaining a minimal sot[50]. Ia-this context, for
synthesis from a given set of non-minimal time-varying state
equations,an interesting algorithm fsr removing uncontroll-

able (unobservable) states is proposed,



CHAPTER I

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 INTRODUCTION

.With the emerging of new levels of sophistication,
advent of fast digital computers and the introduction of
non-linear and time-variable devices, it has become mandatory
tn accept state-space apprrach as a powerful tool for network
thearvia], (71, [07. [18], [57), (58], [a7], Io0). The fact is
supported by the recent trends in literature which evidence
a growing interest in the use of this approach in network
theory[élj,[85j. A fairly large amcunt of work has been dene
in network analysis using this approach[9],[381,[66]. However,
the application of this approach to network synthesis is only
at the beginning stage[S?]. The present thesis is devoted to

the synthesis problem.

Network synthesis is concerned with the problem of
passing from a given information tr a description of an
interconnection of subnetworks such as resistors, capacitors
inductors etc. The synthesis problem can be broadly classified
into two sub-problems namely, when the given informatinn is
in terms nf state-variable characterization ~r the input-
output characterization[SVJ. As regards state-variable character-
izatinn, it is well known that lumped,linear and passive

netwnrks can be characterized by the state equations

X
) 3

AX + BU,
CX + DU,

»ue N0 )
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where X 1s n-vector,the stsate, hqv1ng its components as
capacitor antages and inductor currents U is m~vector, the input
and Y is p-vector, the sitput. A; B,C and D are 0 'x B,
nxm, pxn 2nd pxm dimensinnal matrices. A is characterized
by network topology and element values; B specifies a
relation between the input and the state; C gives relation
between output and the state} D describes direct input-
output relation which is independent of the state. The
problem is to find a network which specifies equation(1.1).
Sometimes, we are given only A-matrix and the problem is

to find the network whose zero-state response is given by A.

As regards input-cutput characterization, we have

i)

1l

E‘,(sI—A)-lB+D]U(s) BT [

c(sI~A)"LlB+D caw C10BED

and W (s)

il

The problem is, given the transfer—function matrix W (s),
to determine Eé,B,C,ﬁ] which can be further realized by

passive networks.

Whether the given information is in state-variable
characterization or the input-output characterization in
s-domain, our ultimate object is tc obtain a passive RLC

network using state-space approach.

1.2 STATE-SPACE APPROACH IN NETWORK THEORY
The state of a dynamical system is a set of numbers
such that the knowledge of these numbers and the input ar

forcing function will, with the equations describing the



dynamics,

The state
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provide future state and output of the system.

variables constitute a set which is written

as a column matrix called the state vector and the state

space is defined as the set of all possible numbers the

state variables can assume and the state-space approach

is nothing but the characterization of the system by a

set of first-order differential equations[l?],[91].

The

apprcach has been recognised by many investigators

as a useful toocl both in network analysis and synthesis[B?],

E38]. Some of the advantages of this apprcach in netwnrk

theory are indicated as under.

(1)

(2)

(3)

(4)

The state-space approach provides a general basis
for the analysis and design of not only time-
invariant and passive networks but time~variable
and non-linear networks also[361,1381,£74].

The state-space methods are especially compatible
with the use of digital c-mputer as computational

aid as they involve anly a few basic manipul=tinns

which can be easily programmedf26].

The first-order differential equations can be
easily simulated on analog computer. Sn, ance the
system is characterised by a set of first-order

differential equatirns, it is considered solved{S%j,

Once the sclution of state equ-tions is found,
one knows the instantaneous values of all the
elements in a network in terms ~f minimal set of

variables, because the other variables can be



—4_—
expressed as a linear combination of the chosen

state variables{SB].

(6) Time responses can be easily found by Taylor-
series approximatinn t- the transiticn matrix
instead of inverse transform technique requiring

factrring of characteristic polynomial[éO].

(6) Network functions can be easily found out by
characterizing a network by a set of first-order
differential equatinns because there exist
algorithms which when applied to state equations
give the network function without the problem of
rational matrix inversion. On the other hand, the
conventional loop ar node methnd for finding these

functions is quite involved[40].

(7) The state-variable technique offers greater scope
for extensions t~ problems such as equivalent
network problems. The reasmn being that once a
realization is found, the other equivalent realiza-
tions can be determined thrcugh a range of nnn-
singular transformation. In this way, optimal
realization based on considerations such as

sensitivity etc. can be ﬁbtained[8l].

1.3 STATEMENT OF THE PRORLEM
This thesis is concerned with the problem of passing

from a given informatinn to a description of an interconnection



-5-

of passive subnetworks preferzbly with~ut gyrators and
transformers exploiting the state-space approach. Speci-
fically, the problems ccnsidered in this thesis can be

stated as followst

(1) To seek the state-space interpretation of the
well-known results in classical netwnrk Ssynthesis.
This part of the problem deals with the inter-
pretatinn of already well established results
by state-space technique, e.g. the interpreta-
tion of the properties of driving-point functions
for two-element-kind networks and the common
synthesis procedures such as Foster, Cauer and

Brune etc. from state-space point nf view.

() Given infsrmation in terms of state-variable
characterization, to evolve new realization
procedures and algorithms convenient for digitad
computer studies for different classes of trans-

formerless LC, BLC and portless networks.

(3) Given a positive real symmetric matrix, to evnlve
synthesis procedures resulting in RLZT netwerks
without gyrators using the state-space approach
and modify the state-space synthesis procedures
for some common classes of driving-point functions

such as minimum biquadratic functions.

It may be mentirned that scme aspects of these problems
have been considered by a few investigators[B},[ll],[l9],[36],

{85}{87]and some results are available. For exampleras regards
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the first problemsthe neccessary and sufficient conditions
for positive realness of 2 matrixIBJ, realization of LC
driving=point functions by Foster Method[86], intérpretatinn
nf polesszercs, residues fllJ,[SG] and the multiport
Darlington Synthesis from state-space peint of view, have

already been obtained[BJ.

As regards the second problem, the synthesis of state
model s for RC, RL and RLC networks and the realization of
restricted classes of A-matrix have been obtained[l9],[6l],
[75],[86],f87], but these methods, due to one reason or the

other, cannot be implemented easily on digital computer.

As far as the third problem.is concerned, two proced-
ures have recently been proposed by Yarlagadda[85] for the
realization of a symmetric positive real matrix without
invelving gyrators. The methods suggested by him can be

modified so as to implement them easily on digital computer.

1.4 ORGANISATION OF THE THESIS

The classical‘synthesis methods are now a well
established discipline and are discussed in several books
{281, [27], [79]. But it has been emphasized recently that
state-variable approach is more promising especially due to
the study of equivalent networks[SlJ and so an attempt has
been made in this thesis tn first interpret some of the

classical results from state-space point of view.

When the given information is in state~variable
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characterization of RLC netwcrks, the common synthesis
approach is the decomposition of state equations inte two
parts, one part giving the elements and the topnlogy of the
reactive elements and the other giving the element values
and topology of the hybrid-resistive network and comple-
menting the topology of reactive network[l9],[87j.
Simpler procedures for the decomposition and hence realizat-
ion of state equations for different classes of networks

have been scught.

Further, when the given information is in terms of
input-output characterization in s-domain, it has been
recognised by many investigators that state-model approach
to network synthesis is more fruitful, because the stateb
model of the network provides more direct information about
the netwcrk topology than the network matrices[SG]. So, an
essential step towards any such synthesis development would
be to translate the given sbecifications in s-domain to the .
formation of a state model. The state model is then subjected
t» a non-singular co-crdinate transformation so as to satisfy
the constraints of passivity and reciprocity and thus to
result in a passive reciprocal RLC network. Improved proced-
ures for the realization from s-domain specifications

exploiting state models have been proposed.

For convenience the following arrangement has been

adopted in the organisation of this thesis.

The review nf existing literature related to network

synthesis using state-space approach has been included in
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the secend chapter. This chapter also contains derivations
of state médels belonging te linear time-invariant, and
time-varying networks. The interpretation of varinus
terms such as poles, zernos, etc. and necessary and suffi-
cient conditions for positive realness, from state-space
point of view,have been included. Some key properties of
Passive and reciprocal state models are also recalled with
a view to have a clear perspective and for frequent reference

in the sequel.

Chapter III discusses the state-space interpretation
of well-known properties of networks and their realizaticn.
In particular, the properties of LC and RC driving-point
functions are discussed using state-variable technique. The
state-space interpretation of Cauer procedure for reactance
functions and Brune procedure for biquadratic minimum
functions are discussed. The methods presented are illustrated
- by examples. An algorithm for the determinaticn of impedance
matrix from specified even part using state-variable

technique is presented.

In Chapter IV, the realization ~f state equations
for different classes of netwnrks is discussed. In particular,
@ new procedure, suitable for computerization for the decom-
Position of state equations for LC n-port networks is
proposed. A digital computer programme and the corresponding
flow chart f~p the proposed method are given. An example
considered previously[86] is computerized and the methnd

compared with the existing method. Further, for restricted
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classes of n-port RLC time~invariant and LC time-varying
state models and for a restricted class nf A-matrix,
simpler procedures are developed. Further, a procedure
for removing uncontrollable and/or unobservable modes
from non-minimal time-varying state equations is given.

The methods are illustrated with the help of examples.

In Chapter Vv, 3 synthesis procedure for a symmetric
matrix which results in a reciprocal realization is given.
A different procedure is also proposed for the realization
of a symmetric positive real matrix int- a passive RLC
networks and without the use of gyrators. The propesed
method is simpler than the methods suggested recently[85].
A comparison of the proposed method is made with the
existing methodsby way of a numerical example considered
previously[85]. The synthesis of minimum biquadratic

driving-point functinns is alsn discussed in this chapter.

A summary ~f the werk done has becn given in
Chapter VI. A brief guide for further work which might
lead to mere fruitful results has been included in this

chapter.
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CHAPTER 1I1I

CRITICAL REVIEW AND GENERAL CONSIDERATIONS

2.1 INTRODUCTION

Sevéral attempts have been made in utilizing the
state-space approach for the various aspects of network
synthesis problem in the last decade [1]—[9], [32]-[45],
b21-[57], [69}-[] and there is an ever-increasing interest
in the problem as is evidenced by the abundance cf recent
papers »n the subject[Bl], [82], [85]. Many useful techniques
and results, long recognised in system design and based on state-
space approach[9l], have begun to illuminate network design
problem. The synthesis from both the transfer—function
descripticrn and the state-equaticn descripticn has been
taken up by varinus investigators[B?I. The validity of
transfer-function description is limited only to the repre-
sentatinn of linear systems while state—space descripticn
is indispensable for non-linear and time~-varying systems.
As frequency domain description may still be preferred
for linear time-invariant systems for many design problems,
the translaticen of one descriptibn from the other has also
attracted the attention nf several investigators so as to
bridge the gap between the twn characterizations [11]5[36].
A critical survey of the work done in this field is embodied

in this chapter.
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2.2 HISTORICAL REVIEW

The state-variable technique in network theory was
not used until 1957 when Bashkow[9] gave a new methnd of
network description by representing the dynamics of RLC
networks by a set of first-order differential equatinns

in @ mathematical form

£Yy
By ™ TR =

owe KB
This procedure for characterizing the network was based

on chnosing a 'proper tree' and selecting capacitnr
tree-branch veltages and link inductor currents as state
variables. Following Bashkow, Bryant gave a method t»o

characterize the same in an explicit form[lB],

AX + BU P

>
I

CX + DU - BURPE P .

]

The chnice was made on 'normal tree'[12] and again the
capaciter -trece-veltages and link inductor currents fermed
a set of dynamically independent variables. Following the
work.of Bashkow and Bryant, a number of papers appeared in
which the description of the network is made in terms of
the state model. Much of the effort was directed towards
the formation of state models from given netwnrk which is

essentially the problem of network analysis.

The synthesis problem, on the other hand, is the
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determinatinn of a structure ~f the netwerk giving a topo-
logical disposition and the element values of the cemponents
from given state equatirns. The sclution of the problem
belonging tec reactive n-port networks was given by Yarlagadda
and Tnkad in [86] and its extension to RLC networks by the
same authors in [87]. If only portless passive netwnrks are

considered, the network equations simply become

><.
It

2% . ior Eal]

The prcblem of realization of A-matrix for different classes
of BRLC netwcrks has also been investigated by several
authors[l9],[57]. Dervisoglu[i9] propesed a procedure for
the realization of A-matrix belonging t~ a class of half-
degenerate RLC netwerks. Nordgren and Tokad [57] censidered
the same problem when A-matrix alsn admits loops of capacit-
ances and cut-sets of inductances only. Yarlagadda[84] gave
a procédure for the realization of A-matrix obtained from

a given characteristic polynomial.

Usually, the given information is in terms of input-
output characterizatinn in s~domain and therefore, the
problem of determining the matrices A,B,C and D from a
specified transfer-functicn matrix has also been widely
investigated. The problem was first established in the thenry
of linear dynamical systems by GilberthE] and Kalman[32]
who propounded the theorems concerring the decomposition of

rational matrices when the matrix has anly simple poles, and
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numerators and denominators of each entry in the matrix
are given in factored form. The non-minimal realizations
of the cases when the numerators and denominators are
not given in factored form has also been discussed in
these papers. These realizations can be made minimal by
removing uncontrollable and unobservable modes by standard
techniques. The realization of transfer-function matrix
with multiple-poles was also given by~Kalman[34] first,
uéing the theory of elementary divisors. Similar methods
for minimal and non-minimal realizations for simple as well
as multiple poles have been given by various authors from
time to time — the suggested procedures having one advantage
or the other over the previous methods. Probably the
simplest method for computing realization from a transfer—
function matrix has been given by Ho and Kalman[?8l. The
method was evolved from the study of so-called Markov para-
meters[?l], EE]. Althcugh the problem ¢f minimal realizatinn
has reached a state of maturity, the research in this
direction is still going on for improved methods[SQj. Once
a set of first-order differential equations is obfained,
the realization is said to have been done as this set can
be simulated on analog computer[szj. But in passive network
synthesis, cne is always interested in finding such set of
state equations as result in passive RLCT networks. When
one such set of A,B,C,D matrices is found out, all others
can be determined by applying non-singular transformations
to it. Hence, the strategy for passive network synthesis,

is to start with any minimal realization of a positive real
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immittance matrix and then introduce the coordinate
- transformation on the realization so as to satisfy the

constraintsof passivity and reciprocity.

Keeping the above in view, Anderson and Newcomb
made successful attempts to establish a synthesis procedure
for lossless n-ports in [7] and for a general positive
real matrix in f6j resulting in RLC elements, transformers
and gyrators. Youla and Tissi[90] considered scattering
parameters and have given synthesis procedures from state
model point of view, using RLC elements and transformers.
Combining the procedures of Anderson and Newcomb, and
Youla and Tissi, Yarlagadda[85] has develeoped procedures
for realizing the hybrid matrix through statespace

considerations.

Due to the inevitable use of state-variable technique
for non-linear systems and the extensive use of transfer
function for design techniques in linear systems, it is
worthwhile to establish a communication link between the
two approaches. In accordance with this spirit, a number
of investigators initiated the work to bridge this gap-
The state-space interpretation of the common terms used
in s-domain synthesis such as poles, zeros, residues
etc. has already been given[11], [36], [58]. The positive
realness of a matrix and Fnster form synthesis etc. have

also been investigated from state-space point of view

[z], [e6]).
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Reéently, a method has been proposed tn identify
the given system by state equations directly from the
record of input and cutput sequences rather than deter-
mining the transfer-function matrix first@é]. The method
will prove uscful in synthesis especizlly in the
cases when the given input-output data is contaminated

with nonise.

Having given a brief histcrical review, some recent
work concerning the state-space interpretation of classical
concepts, state models and input-output characterization

is discussed further in the following sections.

2.3 STATE-SPACE INTERPRETATION

It is well known that state-space techniques have
contributed greatly to the modern network and control
theory. Yet the importance of frequency domain methnds
cannct be belittled due tc their extensive use in the
majority of design broblems and the situation is unlikely
to change in the near future. This has led the system engineer
to communicate both in terms of state-variable characteriza-
tion and the input-output characterization. Some endeavours
have been made to explore the connection between these two
representations. Brocket[11] developed expressions fer
poles and zercs of a system in terms of state matrices..
Kuh[56] alsc obtained the similar relaticns by signal flow

graph representation of the state-space characterization
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of the linear systems.

Consider a single-input, single-output system

Xo= A <+ Broa
e CEBED
X Fdu e

1

b

It is shown that, for the case d=o, the characteristic
polynomial cf A gives pnles nf the transfer functicn and
characteristic polynomial of A, gives the zeros of transfer

function[36] where

& = {1 - kclg)A; R )

whereas, for the case d#o, A. is given as

0

Ag Bt = =By .o (2.5D)

as given in [36], or

A = p - ke

2 § o eu | BB

as given in [67]. The expressicn for the transfer function
is given by Sc[67] as follows ¢
d .
det
b sI-A
z(e) = . . M 5. )
det sI—A]

The interpretatinn of feedback, return difference etc. has

been given in [36] for the state model (2.4). However, if
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We consider linear RLC netwarks, it is shown in [#6] that
their state-space representatinn with independent sources
of the network as exclusive component ~f the input vector
does not always exist. ®When the state variables are chosen
as capaciter voltages and inductor currents, the state-
space characterization of linear RLC networks involves
derivative cf sources and in general, for single-input
single-output system, the state mondel is of the form[60],

[76]

A= 8K ¥ bu + boU ’

' ses 1R:BE)
b e el G s dOU .
The expression (2.5d) beccmes [43]
s -1 0
det|d dO -C
b bO sI-A
z (s)= e — ... (2.6b)
det sI-A]

The varicus expressions viz. network response, poles,
zeros contrellability and abservability and models for

composite systems etc. have been derived in E4$] for the

model (2.6).

The relationship between state-space and frequency-
domain descriptions of the dynamical systems has further
led the netwerk theorist to examine the interpretation of

classical synthesis in state-space terms. Anderson and
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Br*ckot[B] gave the state-space interpretation of Multiport
Darlington method. The interpretaticn of Classical Foster

Method in state-space terms was given by Yarlagadda[86].

2.4 STATE~-VARIABLE CHARACTERIZATION

State-variable characterization, though long reccgnised
in system.theory, has recently been adnpted in network theonry.
Netwcrk thecry is inextricably linked with the‘mathematics
of differential equations, sn the natural approach for the
network models should be in a form compatible with the current
mathematical results. The state variables lead us t~ a set
of first-order differential equations known as the state
models. The salient steps in the derivation of a state model

for n-port BLC network are given below.

Let a normal tree[12] be chosen and the branch voltages

and currents be partitinned as follows :

r— — —
VR In
V I
S S
Vi, = and Iy = vea LELTRY
1 = 17
L Vg ] ]

for the links, where the subscripts R,S and L denote link
resistance, elastance and inductance and Vi and Ix denote

the voltage and current vectors of current sources and

- e M
VV -] ) IV .
Vv I
L C and I =f G e o 5
o Vi 2 IF
\Y ¥
G [ it
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for the tree-branches, where the subscripts C,T'and G

denote capacitance, reciprocal inductance and conductance

and Vy and Iy dennte the voltage and current vectors of

the voltage source. Let the form of F ‘expressing the topo-
lo9ical relations between links and the branches be chosen as

follows[38]"

Fev Fre O Fpg
F E 0 0
v Fsc - ¥
F =1 S LI Y (2 » 8 )
ov. o Bama e Fop
L fv  Fke  Fyxr Fkao

where Fpy expresses the topnlngical relation between resis-
tance links and voltage-source tree-branches and similarly,
Fry expresses the trpnlogical relation between current-source

links and voltage—srurce tree-branches.

The Kirchhoff voltage and current law equations can be

written as

T LVl w0 . as [REGR)

i
O

ssa (BuSh)

and  [FF' 1] [ i; :{

The branch vnltage-current relations can be written as

follnws[38j.
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e ‘__0 = el
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= ) .. (2.10p)
e 0 Gy vG_[
VL . Lir  Lye IL_i

= d{ i oo a (2.10C)
o L1 L2 || IF

Combining (2.9) and (2.10) and eliminating the unwanted
*

. : kot * ¥
variables, and letting V., = VV,VK = VK and IV = —Iv and IK= —IK

V
represent the vectors of terminal variables fsr an n=port
RLC network [86] the state mrdel can be cbtained in the form
(2.2) where

MW
vy
x 2
Ve ¥ Vi
X = ’ Us=| & ’ Y = o ne (2-11)
1 g i
L , o0
and
- 5
A = é B &1 A12
0 =k A A
- L 7] Aoy Asg
L7 | i AT | | o !
e 8 Fre® “Fre FlcFoc k£ Frafellg)
i s
1 = I -1
o L :FLC+FLG§, FhaC1 e ‘FLG? Fls |

soe (2.1Ra)
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i o 0
FratFie FraReFlg
?
;'l e = gl L
FLe % "Fie s 0 i el A o
{(2.12% )
[ ~FgatFyg 401EL G Epmnt 1a ~Bg,+Bd, /1A 1
C = ,‘_]_ ' -T'l ] 1 ~,<;,_]-
Bi17Bie £ Ay FLvFRv & FraBeFlg*Blp £ "Ays
+ {2.128)
,'/-]. "_l
B = £ ,/','_lF —B! cz—lB Bl B i ’O-_lB .
L RV 7% BY 718 % 11 1S 1% 12
E,. ¢7ip: +8! s 1p E F. .-B! p»~1p
KG ¥ Tkg'Bos L Bos K beefkr =Bl f "By,
-1 =1 -
FvFry 7, " FraBeFigBlo & 'Bys 0
PR ¢ 2
where
=
R =By *FpeRoFyg 3
4
i =Co*+F¢-CiFgc Lo 2L ERS
Ao =Ly PP Loy tLyoFl p +FL - LooFl -
; -l

is the loop resistance~matrix for the fundamentat dogpsdefined

by the resistance liaga;S%is the cut-set cohductance matrix for the
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fundamental cut~sets defined by the conductance tree
branches, both are positive definite. & (symmetric and
positive definite) is the cut-set capacitance matrix for the
normal tree i.e. the cut-set capacitance matrix for those
fundamental cut-sets defined by capacitance tree-branches
and JC (symmetric positive semi-definite) is the loop conduc-
tance matrix for the normal tree, i.e. the loop inductance
matrix for those fundamental loops defined by inductance

links[38].

It may be noted that the state model given by (2.11)
to (2.13) is general enough to encompass all n-port RLC
networks and the model appears to be promising in connection
with the synthesis of n-port general RLC networks. Similar
state models using different approaches have alsc been

derived elsewhere [13], [37], [38], [a7], [52]1, [653], [85].

In order to obtain state-models for linear time-

varying systems, egn. (2.10) becomes (taking L12=L21=0)

[‘18 » Exld o Ve
= at ’ (2.14a)
| I O gt v
Vg | R (t) B B
eu . s YA
Io | 0 Gplt) [| vg
T'vL 4 BandEy o ~ X
T dt ‘ (2.14¢)
Ve 0 Ly, (t) I
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and proceeding in the same way as for time~-invariant systems,
and dropping the (t) for convenience the state model is
given by
A = -F! »Ra_lF —é ’
11 RCt KC i
Rep = Bourr gl oo |
12 = Frcfac R Frefefig
A ~F; +F o £ YF!_G.E.
B1 7 R R LGJ RG-1 &BC*?

a2=1 .
Agg = ~Frg§ Flo- L >

— ) ‘
B11 = Fac K FrvFeelFsy o

Byg = FgeCiFgy »

Hyg o= S Pﬁ FreBeFrg | .. (2.15)
By =0 o

B22 = 0

B = B~ "lF' ~-F L E!

g3 = LG% K5 cLT ee il »

Boa = FrprlepFyr .

-
The matrices C and D for the time-varying case will be similar

to (2.12¢) and (2.12d) for the time-invariant case.

Following the same approach, the state models can be

obtained for active linear time-varying networks for which
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the voltage-current relations for resistive elements includ-

ing some types of active elements and gyrators, transformers

etc. can be described by the hybrid equations[58],[52]

L vo (B8]

The A-matrix for this case has been derived in [52] and B,C

and D are not difficult to obtain. Further, by following the
approach discussed in [53] for decomposing non-linear time-

varying reactive elements, the state-model for the class

of non-linear networks considered in [53] can also be

obtained. The A-matrix for this class has already been given

in [53}.

2.4.1 SYNTHESIS FROM STATE MODEL

From the generalised state model obtained for the
time-invariant case(eqn. 2.12) and for time~-varying case
(egqn. 2.15), the state models for different sub-classes of
time-invariant and time-varying networks can be derived.
For example, by substituting R=0 in (2.12), state model
for LC networks can be obtained and by substituting L=0,

state model for BT networks can be obtained and s» on.

Given the information in terms of state-variable
characterization, the state models derived in topological
expressions, serve as useful starting point for netweork

synthesis. By comparing the various topological expressions,
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with the given valﬁes, a set of simultaneous equations
can be nbtained, the solutinn nf which gives the element
values as well as the topelegy af the network which can
be tested for realizability by the well-known techniques
[49]. The synthesis of LC and RLC time-invariant state
equations has been discussed by Yarlagadda and Tnkad in
[86] and [87]. The realization nf active networks from state-

equations has been considered by Martens[48].

2.4,2 SYNTHESIS OF A-MATRIX

Many a time, we are given only zero-input response.
In such cases, we obtain portless networks i.e. networks
without excitations and the state equations (2.2) take the

form
szX,

where A can be decomposed into [57],

-1
€ | i O T
= H . e’s (2-17)

~1 a a
A e
such thaté? and l; become the terminal matrices of the
capacitnr and inductor netwnrk and Ha is the terminal
hybrid matrix of the resistive network. By decompesing
the given A as shown above, the element values and partly the
topology of capacitor and inductor elements can be obtained

from D, thus reducing the realization problem tn the
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realization ~f hybrid resistive network given by H.

2.5 INPUT-OUTPUT CHAEACTERIZATION

When the given infermatinn is in terms of input-
output characterization in s-demain, a natural approach %>
network synthesis is by decompnsing a given positive real
Z(s) into a quadruple [é,B,C,?] given by Z(s)=C(sI—A)_lB+D.
Eé,B,C,?] is known as the realizatinn of Z(s), since by
knrwing matrices A,B,C and D, the set of first-nrder diff-
erential equations corresponding t~ the given n-port can be
simulated on analog cemputer. There exists a smallest integer
n, in 2 minimal (irreducible) set and is known as the
complexity[l2] of tha netwnrk. If the order of A is more
than n,s the set nf equations obtained is non-minimal
(reducible). The number n_ is given by the number of
reactive elements less the number of independent capaciter-
only loops less the number of independent inductor nnly cut-
sets in a network. Thus the humber is related tr the degree
of a rational matrix, written as 8" (s) which denotes the
" minimum number of reactive elements required in any passive
synthesis nf a positive real impedance matrix. Various
definitinns of degree have been given from time tr time and
were recnnciled as one by Kalman[34]. Further, given one
minimal realization, it was shown in [32] that all others
can be obtained chnnsing a transformatinn T ranging through

the set of noan-singular matrices, such that set

'Er‘lm", TRE CT] « (2ai8)
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constitutes another minimal realization. It may be noted

that D is always'\y/ () irrespective of T. All transfer -
function matrices v (s) with "W (o) finite, pnssess minimal

realizatinns.

2.5.1 GENERAL PASSIVE NETWORK SYNTHESIS
An interesting approach for passive network synthesis
using state variable technique based on reactance extraction

is reviewed in this section.

Consider the minimal passive synthesis of given Z(s).
The resulting n-port can be divided into non-dynamic
elements and dynamic elements of unit inductors. It is
reasonably well“known[4] that capacitors can be replaced
by gyrators and inductors and the ideal transformers can
be used to make all inductors unity. The impedance matrix

of the frequency independent portion is given[B?] by

3% 1
My = s (ESAE]
- gl 222
where
Z(S) = le'le(SI g 222)_1 2210 o (?.20)

Comparing (2.19) with (1.2b)and using (2.18), we get

31 - O a
Z =—T_lB
21 2

Zoo =—T_1AT
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or T 0 D C ,“1 0]

J' P
_l T

0 T -B -A _Lo

Therefore, when minimal realization ié obt2ined, the impedance
matrix ~f the frequency-independent network is given by (2.21),
The non-singular matrix T gives the flexibility to tntroduce
passivity and reciprocity constraints. The concepts nf
passivity and reciprocity as related to state-space synthesis

are briefly discussed next.

2.5.2 PASSIVITY CRITERION

Passivity as characterized in terms of impedance matrix is given

first.If My is the impedance matrix of a frequency-independent
network, its symmetric part must be positive semi-definite.
The transformation T is thus chosen in such a manner that it
makes the symmetric part of M; positive semi-definite. It
will be worthwhile in this context to state the Anderson's
lemmas for pnsitive realness[BJ which will lead tn the

transformation T.

LEMMA 2.1 - Let Z(s) be a matrix of ratinnal functisns such
that Z(e) = 0 and Z(s) has poles only in Res<0. Let [},B,@]

be a minimal realizatinn nf Z(s). Then Z(s) is positive

real if and only if there exists a symmetric positive definite
matrix P and a matrix L such that

PA + "R =GN | ¢

ey CEERE
PB =-0f.
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LEMMA 2.2~ Let a positive real Z(s) have all imaginary
axis poles with 2Z(») = O and let A,B,C be a minimal
realization of Z. Then there exists a symmetric positive

definite matrix P such that

PA+A'P = 0,
PB = C" ° (2.23)

LEMMA 2,3- Let Z(s) be a matrix of ratinnal transfer

functions such that Z(~) is finite and Z(s) has poles which
lie in Re s<0 or are simple on Re s = O ana.Eé,B,C,qj be a
minimal realization of Z(s). Then Z(s) is positive real if

and only if there exists a symmetric positive definite P and
matrices Wo and L such that

PA+A'P =-L'L ,
pB = C'—L""lo )

w(;'rao= D+D', «s [Ex28)

and there exists a matrix W(s), unique to within left
multiplicatinn by a constant orthogonal matrix such that

Z(s) + 2'(~-s) = W' (-s)W(s).

Reference [4] describes procedures for determining the
symmetric positive definite matrix P from which suitable T

given by

R w1826}

can be detefmined, which, when applied on [},B,C,?], makes

the symmetric part of M1 positive semi-definite and its
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realization can be achieved by RTG(Resistance; Transformer

and Gyratnr) network [4].

2.5.3 RECIPROCITY CRITERICN

The following theorem is stated here concerning

reciprocity. For proof sec [85].

Uhekram 2«1~ Let 2(e) ba 3 f%n matelz of veal rational
transfer functions with Z(e) finite. Z(s) possesses a

state model of the form

AX + BU ,

oSS e Ry
such that

bE + % M; = symmetric matrix e (REE)

where X being a unique ordered diagonal

matrix of plus ones and minus ones, + denotes direct sum and

. 1 ¢ : R
[1+zj=(_o z_) and Mf[_B _J,

if and only if Z(s) = Z%(8) .,

It has been shown in ES?] and [90] that there always

exists a symmetric T such that

M= @ +TH) ua i, o (2.87)
where T can always be expressed as

T = LlZL]'_ . v e (2.28)
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2.5.4 PASSIVITY AND RECIPROCITY

The flexibility in choosing a transformation T should
allow us te intrnduce both passivity constraints and recipro-
city constraints i.e. by Lemma 2.1, 2.2, 2.3 and 13 - P
can be chosen which guarantees passive network while applic-
ation of (2.27) guarantees reciprocal synthesis. Unfortunately,
it is difficult to find a T which satisfies both passivity

and reciprocity conditions simultaneously.

It may be mentioned, ss has been shown in EB?], that
all recipreocal realizations for RL or RC impedance matrices
are passive. So in case of KL and RC networks, once a trans-
formation T is found which results in reciprocal realization,

passivity is automatically guaranteed.

2.6 CCNCLUSION

The recent literature available on the use of state-
variable technique in netwnrk synthesis is an evidence of
the growing interest of research warkers in this field.
Both, state-variable characterization and input-output
characterization are being amply used as given specifications
for network synthesis. The synthesis procedures from state-
variable characterization still require further modifications

in order to become amenable to computerization.

Moreover, the synthesis procedures from input-output
characterization, have yet tn be moulded so as to evolve
a satisfactory algorithm for the synthesis of positive real

symmetric matrices intn passive KELC networks without gyrators.
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In nther words, the investigations of transformation which,
when applied on a state model, makesit satisfy passivity
and reciprocity constraints, need be carried out. These
problems are discussed in the follrwing chapters with a

view tr achieve the desired cbjectives.
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CHAFIER 1IX

STATE -SPACE INTERPRETATION

3.1 INTRODUCTION

It cannot be disputed that the state-space techniques
have generated a lot of interest in network analysis and
synthesis in the past few years. Even then, at present,
majority nf the design preoblems are being done using frequency-
domain methods and the situation is not likely to change
within the cnming few years. Hence, it becomes imperative t»
establish a communicatinn link between the state-space
characterization and the frequency dremain methnds. Althrugh
classical synthesis methods are well known, their interpreta-
tion in state-space terms will be of great interest and some
wnrk has already been initiated in this direction[E],[5J,
[11],[36]. The present chapter discusses the state-space
interpretation of the well-knnwn properties of network
functions and the common synthesis procedures such as Foster,
Cauer and Brune etc. Besides, the determinatisn of minimum
reactance matrix from the given even part specificatisns and
the determination of transfer-functisn matrix from the given
state equations are alsn discussed.
3.2 STATE-SPACE INTERPKETATION QF SOME OF

THE PROPERTIES OF NETWORK FUNCTIONS

Some of the properties of reactance functions are

interpreted first in state-space terms.
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(1) Property No.1l
Let Z(s) be a lossless impedance matrix with Z(=)
finite and let [A,B,C,D] be a minimal realization for
Z(s). Then there exists a symmetric positive definite

matrix P such that

PA +A'P= O [} LA} (Sala)
PR =.CF, M LTy

where A,B,C are the state-matrices.

This property has also been proved in [5] but here it

is proved in a more generalized way i.e. from the state

model belonging to the LC networks. This proof gives better
insight as the state models are the basic building blocks

in state-space analysis just as loop and node methnds are

in classical analysis. The proof can be carried out by taking
a general LC network having snurces at the ports and writing
down its state model in topological entities. This state
model can be obtained by substituting R = O in eqgn.(2.12)

and is given by

X = AX + BU+ B,U »

<
fl

CX + Dy U+ DoiJ ;

f'g 0 0 Fio]

A = -1 g SRR LS
= i T

g h 0 0  -Fgg

g i J .. (3.2p)
Al & JI=Fy 0
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fre= L=

_l. E ;
0 ~BL CuF 0
- SC 175V
B, = 12 2 . =6 TBeia)
0 o 0 FrLrLooFir
sy ' g P d
3 § o Fivt (FgeCrFsy) FLC‘]
—Fir~ (F: LooF! )'*'l( Fopd 0 ;
i el Wty 330 R R (i
MRS T
s |
Vi E [ >
0 Fev™(FscCriFsu)' &7 (-Fie)
Dy =
..l ?
L_‘FKv‘(FLI‘LzeFkr’)LC, (-Fpy) B
i (B.2s)
F&yC1Fev(FscCiFsy) %~ (FgcCiFgy) 0
B = 3
L ? i l,r\_ '
B FrrLeef = (P LopFe P )i LR
;o (EBE)
Let us cnnsider the transformation
X=X +BU, ot PEE)
X=X B ' : . L by,
Substituting (3.3) and (3.4) in (3.2), we get
X3+BU = AX) + AB,U + B,U + B U
or
xl‘= AX1+(Bt+ABO)U v (Bybe)
and

Y = CX;+(D4+CD,)U . .+ (3.5b)
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Or
>'<l = AX; + BU , ou  AB.Ba)
Y =CXy + DU, | .+ (3.6Db)

=1 =1_ o =
© & Fxc O € "Frel| -6 FscGFsy v
= +
e
- 3 0 =1 el
L b Fye 0 R A S R P
g | o | 0 ~Fl,.SE1 .-"']-1: L Er
- ko FLrlesfkr
...l-
0 2E0
oL | I=FrytFc @ Fact Fey) 0 |
BaT )

and

DZDt+CDQ .

0 ' :
Let P = 1:80 L ] y a symmetric ponsitive definite matrix.
v £3.8)

From (3.2a) we find that
PA 4 A'F = O

and from (3.2d),(3.7) and (3.8), we get,
FB = ! X

Property No.2~ Poles and zerns of LC driving-point functions

lie on imaginary axis.
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Froof
A driving-point functicn z(s) can be written as
egn. (2.5d). If it is a proper functinn i.e. z(s) vanishes

at s = »©, it becomes

det ;
b sI-A
PO 1 T TR L. pcoien L T
iy TLRE éﬁ) = .. (3.9)
det[sI - A]

If it is not proper, its reciproncal must be proper. Therefore,
no generality is lost in starting with a proper LC driving-

point function.

For lossless z(s), we have from (8 1)
PA + A'P = 0O ’

Pb = C, L LI (3.10)

Applying a transformation T such that ) B2 e pl/2 the set

given by expressinn (2.18) becomes

p
I

pl/2, p-1/2 |

P
B pl/2y e B33
Cp =@ P—l/2 :

It may be noted that since, on applying the abave transforma-
tinn, driving-pnint functinn remains the same, the poles

and zeros are not affected by a similarity transfrrmatinn.
Epon ~(3210) and (3.I1) we get
A‘*‘A{D:O,

p 1
bp o cp 8

sv FBLIR)
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Therefrre from (3.9)

0 - T

det Vv —!
I-
b 5 Ap

if{s) = £ . e (H.EED

det[ gl - A.O:[

Ap is a skew symmetric matrix from eqn. (3.12 ). Numerator cf
eqn. (3.13) is the determinant of bordered [}I A.l matrix by a
column and its negative transpyse row with the added zero
diagonal element. Simple analysis[5l] will show that r-ots of
numerator and denominator polynomialsare imaginary and hence
poles and zeros nf LC driving-point function lie nn imaginary

axis.

Property Ne.3- Poles and zerns of LC driving-pnint functinns

interlace.

Prnof
Consider a proper driving-point function as discussed

above. In a suitable neighbourhnod of infinity, z(s) can

be expanded as [?8]

z{(s) = ¢cb s—l + cAb 5—2 + gA%h 3_3 B & es Bl

As explained in the proof of property no.2, there always
exists a transformation T which transferms A, b, ¢ tr a form
such that new A is skew symmetric and new b is equal t» the

transpose ~f new c.
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Since new ¢ 1is a non-zern column vecter, the scalar cc'>0.
Further, since A is skew matrix cAb, which is equal to cAc',
a sclar, will always be zern,
(A is skew symmetric, any matrix product cAc'
is either skew or a null matrix. In our case

as ¢ is a rrw vector, the prnduct cAc' will be

scalar and hence equal tr zern.)
r
and cA c' €0 sginee cA®ct = eAMe'= cA{=ate' ) = ={callen)t.

Similarly, cAdct = 0
4

cAc' 2 0 ( )
' ie (Ba1D
O 4
EATie =)
6 4
cA e’ £ © and s on.
Therefore
( . ) ge! cAgc‘ cA4c‘ cA6c' ( )
Z jtk) = +_ Z +— 5 + : 77 + o0 o o ’ . e 5.16
jw el (Gw) (3w)
Z(j &) = jX(QJ) ’ o 6
=5 eg" Jech ¢! -ch4c' b o 0 0
- . 4 -+ —— o e —— - W e P (3!17)
W (\,15 w5 Ldv
or
-pp! cAzc' —cA4c' cA6c'
X(w) = S el g Sl |
@ w w s

From (3.15) and (3.18) it is nbvious that §% will always
be positive and therefrre pnles and zercs of reactance functinn
will always interlace. It may be noted that it is pnssible
t~ interpret and prove varinus nther properties nf netwnrk

functions from state—space print of view. Far example,

Property Nn.4- Poles and zercs of RC driving-point functinn

lie on negative real axis and interlace.
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By substituting L = 0 in the generalized state model
given in eqn.(2.12), and letting only a current source at
the input we get the state model for RC impedance function

GE.-

= _l /”;—1 —l _l -)f
Ve =8 [Fac R FaglV, * £ [FéctFac & FraReFrg) ik

s (3319 )
P SR e g Ty v Sher B
Ve = [FFie KG - "rc"1°RC|'c * *KG 3 Tk ik
where, FKG‘glekG is a scalar and is denoted by d.
Consider the transfoarmation,
T‘1=§1/2 ; . ve ASBEES

The new state model becomes

TR -1 ~1/2 -1/2 ~1 ) ¥
Y91 =8 EFE‘?C R FRC]C Vei" ¥ EFIQCJFFE'%C & “Fraho FKG] s

.. (3.21)
= AVCl+bU [}
o -1 - ~1/2 -1
vk = [FFkctFig €, FicG1Frc| & Ve1*Fie & "Fko
= ¢V tdu , -« (3.22)

Clearly, A s a symmetric negative definite matrix thus
having negative real eigen-values. Further from (3.81) and
(3.82); b= c'[38] and d is & scalar. Se A — 28 vy a
symmetric negative semi-definite matrix. Thus zeros of
eqn. (2.5¢) are negative real. Hence, poles and zeros of
RC driving point impedance function lie on negative real

axis. As regards interlacing property, matrix A,which
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gives pnles is a real symmetric matrix and the matrix
giving zeros (eqn.2.5d) will be bordered [?I—é] ﬁatrix by
a8 column and its transpnse row with the added diagonal
element d. Simple analysis will shaw that poles and zeros
will interlace for this case£29]. By letting a voltage
source at the input, we can prove this property for RC
admittance functiens. Similarly the property can be rroved
far RL case. Having discussed the state-space interpretation
nf the various properties nf netwnrk functinns, a similar
interpretation for the classical synthesis procedures is

sought next.

3.3 STATE-SPACE INTERPRETATION OF CLASSICAL SYNTHESIS METHODS
3.3.1 FOSTER METHOD

The classical Foster methnd assumes the trpology nf
the netwnrk a priori. The method of realizatinn for the case
nf cannnic l-port LC netwnrks, using state mndel and without
assuming topology in advance, was crnsidered by YarlagaddaIBGJ.

Similar realizatinn for RC case is discussed here.

Cansider an RC driving-pnint impedance functien which

can be decomposed as

K K
Els) =K, + L. %2 + o, o+ =D -5 Fe00 ]
Tos0p st g =+ by

where O 's and K's are positive constants. A state model

corresponding to z(s) can be written as
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-0y 1 | r‘\lej
-0 (K.
E 2 VK
A= : I . . ve kBB4 ]
_ % T
c = WKI VKZ ¥ V'E;] 9 A= Kﬁ
Applying the transfarmatinn
i i
R1 1
Tiose vk; _ ’ (3.256)
o
e~
L= .
ol g 7 :
1% My o4
-1 ‘02 Y K‘Z i
AT TAT = fye g L) o
. , & g (3.26)

) )|
b - e 3
i
u _ = = !
op = oot Sl Ebtaal ] d =K ]

Comparing with the state mndel obtained from egn. (3.19)

for the class of RC netwnrks having Fog = 0 ¢

X

AX + bu

& EF'CRIlFRC]VC L el a S L

cX + du

and vy
*

Vi =

1t

¥*
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can take
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the entries of ch are tr be +1, O etc.,we

Hence, eqn. 3.27 becomes
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Obviously Fi will be 1 and Bo will be the scalar Kof

r? i} so cbtained will be

F_G Cl 62 e b Cn
K 1 -1 -1 o RSN |
Rl 0 1 C 0 o
Rz 0 0 1A 0 1
Bn @] 0 0 1

1

ul

(%.31)

and the crrresponding graph and the netwnrk are as shawn in

Figs. (3.189 and (3.1b),

3.3.2 STATE-SPACE INTERPGRETATION OF CAUER mETHQD

The procedure given belaw discusses the Cauer reali-

zation f~r ene-port LC netwnrks in state-space terms. The

procedure discussed here, explnrits the graph=the~retic cnncepts

and the tnprlngy ~f the netwnrk need not be assumed a priori,

Consider a proper reactance functinn

e EE.a0
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FIG.3.1(a)_REALIZATION OF CIRCUIT MATRIX [EQN. 331]
(b).REALIZATION OF z(s) [EQN. 3.23]
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FIG.3.2(a) -REALIZATION OF CIRCUIT MATRIX [EQN.3.42]
(b). REALIZATION OF zy(s) [EQN. 3.32]
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In order to find out the Hurwitz coefficients,
coefficients of numerator and denominator of eqn. (3.32) are

written in the usual tabular form as

«n 1 BoEa]

where B =1,y a; etc. i.e. the entries in the first
column of egn. (3.33). The state model for eqn. (3.32) can be

obtained in the modified Schwarz form as f46]

— k o
0 - =2 N D—
; ko k. ko
. —kl 0
e 1 kg
V 1 Q) - E Vv 0
.C > 2 k5 C
1 T 410 ¥
1 3 kg 1 K
L 1 0 o L| (O
ot 4
L] » [ k [ ]
I & 8 0
k
n-2
L ] 0 0_
e
* . C
"K:E‘l 0 0 0 YT 0 0 ] A
¥
2o 135:84)

The validity of eqn. (3.34) can alss be verified by comparing
its Markov parameter[}b, cAb, cAzb etc{]with those of eqn.(3.32).

These should be same as proved in the following Lemma.
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Lemma 3.1- The products CB, CAB, CAzB etc. of all reali-

zation corresponding to a given transfer-function matrix

should be same.

Proof

If A;B,C is a realization ofﬂwp(s), any other reali-

zation Eél,Bl,Cij is given by 71
ClBl = CB ; ClAlBl = CAB and so on.

Next, applying the transformation

=
o
" b
2
%_
5
&
T = 4 . 1
k
5
——
n—l__l_
L k
tn eqn. (3.34) we get the state model
8
kO :
k -k
-2 0 Rt
k k
1 1
ks ~kg
—— 0 ———
b Ko Ko
k i -k
Ve % 0 4
ks kg
'IL= e % T
s o T
k
n-2 K
=l
i kn{

AT, T™1B, CT. Therefore,

O O‘K’ l_.?{‘

(&)

(3.35)

%.(5.36)
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Applying the transformation [84]

0
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»
VK=

n

n%l n%“;’;. n-1

g 3

1

(3.37a)

4

when n is odd and

n

n-1

D+
51

D
2

2 3

i

(3.37b)

n-1

n

G .54

0

1

0

0

when n is even, we get the state model
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* \Y%
- | 2 .o (3.38)
vg=[1l-0 0o o o0-0 0] L

The above state model can be written as

o 6 1 !
k i A
bt : -1
ke k : ;
i ' ] l _l
k2 k : j
=2 | : 1 -1
;= kg "k ! :
V i f :
g = --____..-__.I.(.n-_-l',.:-,_ - __1‘..-_ I e e R o S L
. k '
IL 2 5 v
K1k |
: Ei T
! 3k -1 .
: 2N 1 -1
- : p=E1 ]
fut] ij. : 0
= i) : 0
L .
+ . 0 R 9
k K
e - ===l o oy
s
L kg 0
.
. lfﬂ:l 0
L Kn-2|] |
d V]
» . c
il : e O -0 £ s (B.39)
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from which various submatrices can be found b
corresponding model for LC one-

=] -
= «4

® 2’

=], 1

Fe=[-1 0 0... 0]

Therefore,[? f] can be written as
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Yy comparing with the

port and we get
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€, Cy C5C,
k, ~
s =Y 1 1
G 2 1 1
“ . e .o (3.42)
Lol Py 1
R T T 1]

from which the graph and the corresponding network can be

obtained as shown in figs.(3.2a) and (3.2b).

3.3.3 STATE-SPACE INTERPRETATION OF BRUNE METHOD

The classical Brune method requires at the first stage
the determination of the frequency at which the real part of
the impedance function vanishes and the determination of the
imaginary part at that frequency. The imaginary part divided
by this frequency gives the element value of series inductance
(positive ar negative). The removal of the series inductance
leaves a function which after inverting is realized as an
admittance function and so on. In the following, these steps
are discussed by giving them the state-space interpretation.
The discusgion is, however, limited only to biquadratic
minimum functions. Various steps are illustrated by taking a

suitable example[?Q].

Example 3.1

%-9;2' + %s + 1
Given z(s) = 5 R con LB 0S)
it s 3
Therefore &
%s +ds 41 1s + 2
s E -2-5 + g S + ETS i §
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and the corresponding realization is given by [32]

0 1 0
" £ 4 ’ B ’
.2 _'%__J 0
s 5 O ATE
Vo A R sl
€ = Z 4-‘ ’ = [?-' .

Knowing Eé,b,c,%] of z(s), Eér, bps Cpo dé] of Even
z(s) can be found as [3] |

5 "LEbAAD

€. =[c —b': . d,. E?dj 6

The zeros of real part are given by finding the eigen-

values of A, [éqn.(2.5§] i.e. by finding the zeros of

' o bpc.
det sI—Aor:[ = dethI— (A~ —g--):[

where, for the example under consideration

o 1 0 0]
. 3 _
P brCr_ R AR Ea
Aorztxr = :]- g | el = 5 o (3.47)
16 16 4
- PRI W N
16 16 2

and det(sI -~ A_.) = (sz ¥ 1)2- Therefore, the frequency Odl

or
at which real part is zero is 1. It can be easily proved that
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14 [A,_b,éj is a realization of z(s) then Ajy bi and Ci‘
give the rcalization of [z(s)-z'(—sﬂ where A bi’ and

c; are determined by

A 0 b
A1 = 0 -~A' : & gl :
ci '—':C b':. ’ di = ’:O] - L Mo (3.48)

; g P(s)
Imaginary part 2[2(5) o UL S)J is given by 5 '—S—Q(;—’_I'Sqn 16,

Ref. 36] where

|
P(s) = det|sI - (I - 2l )Ai] .
and
el = det[sl = A-l]

Therefore, for the. example under consideration

3
3 = =8

1 - oy
g[z(s) - 2'(-¢)] = 5 x él- x (52+%-)2—(-ls)2
L)

which equals (-s) on substituting 32 = —wz = =1

In the conventional Brune synthesis, this reactance
which equals (~s) in this example, is removed from the
given impedance function and the resulting impedance function
is inverted. In state=-space terms, the removal of this
reactance corresponds to changing d in egn.(3.45) to

(%- + g) and the corresponding state model becomes

0 1 'o:l
A= b = ’
. e 1
5 &

1
2
c=[ 2 1], a=[k+s]-

s (349
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In state-space terms, the inverting of the impedance
function in classical Brune synthesis corresponds to

the determination of inverse system [@V, b,» ¢y dé]

which is given as follows[QOJ

A, = A - bd"le,
b, = bd 1,
<3 .» (3.80)
Cxp ™ -d “¢c,
_ -l
do = /4

and for the example under discussion, A, bv’ o dV become

v
0 ; I A
A = b =
v _25 _4: _25_2 b} v 2 9
2(2sfl) 2(2s+1) S+l
= i3 . # =X « (3.1}
c = [ _3 _]- 7 d - __2._—-‘
2(stl) 2(2s+1)|’ v gstl J

which correspond to the admittance function

( 252 T L ( 2)
yols) = . I .
g 233+252+25+2

Continuing with this procedure, let us realize the admitt-

ance function so obtained in equation (3.52).

In general yo(s) can be written as,

r

L -
+oaq ¥ setqe

(3.53)

vz(s) = =

The corresponding state model is given as



& g g e
A = q2 ; O O b b = V;g : L3N] (5'54)
0 ; 0 ‘QEJ V?I
Choosing the transformation
= |
v, | ‘]
q 1
. R P R
i —— oo EBBES
2 Vry
we obtain the new model as
2 - |
rga | r- L T oy
: ! ' SN | 0
Vv e, = i Vv
E _C -,_? R s, g L EE S N gl S M e = . i __MC__
I ; : -q I
: r1 0 L) ;L E
3 . o I gl
" e
<& 0
_rz el e il e
¥ : 7‘2 1 VV ’
: ry l-J
o 1: ] | | * e (3.56)
L3 ,_'V
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Comparing with the state model(It can be obtained from (2.12)
by connecting a voltage source at the input and by assum~-

ing that there are no loops of capacitance only, no cut-sets

of inductance only and Fgpg = 0)

—l — - ' — [ —
Ve l-cz O | [-FreliFae Flc Ve
= I
L] -l -
o] e I 1 “Fae ~Fiatse 1 By
- e .
1
o 0 ] -FgeCiFry
+ ”»
Vy s e & Wt
0 _l. ~Frv
®» e VC
. l ]
iy = [ FgyG Fac i sk
L
we get,
M =1
Fre = ’ Flv = .
0 <¥
Further

3 o il

li

FacGiFry = O

A possible solution is

Fpc =04 Fgy=0, G =0
and as
0 0
=
~FraRefiG™ et
o - By
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hence

F R SL it
= b =

2 etc.
LG 1 ™1

For the example under consideration, eqn.(3.53) becomes

I
yo(s) st el
=ik
Therefore, Co iy from eqn. (3.56) and (3.57) is given
L
1

» the corresponding graph and the network for

K
gl LR
SR e
¥(s) in (3.52) are shown in Figs. (3.3a).and (3.3b) and

the network corresponding to eqn. (3.43) ‘is shown in Figs {3.3¢).

It may be mentioned that the above treatment deals

only with the state-space interpretation of various steps
performed in.classical Brune method and the discussion is,

by no'means, complete. An elegant state-space interpfetation
of Brune sections has been given by Newcombt55]. The synthesis
procedure described by him is based on reactance extraction
and does not utilise the state models in topological entities.
It is hoped that the discussion given here might lead to a

synthesis procedure exploiting the graph-theoretic concepts.

The determination of network functions from the
information given in some form is closely related to the
synthesis problem. The subsequent portion of the chapter is
thus devoted to the use of state-space techniques for the
determination of impedance matrix from its given even part

and a method for determining the transfer—function matrix
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(c) REALIZATION

A 9
Y — _.
|
fis
|
|
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: |
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]

OF z(s) [EQN.3.43]

FIG. 3.3
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from the given state-space specifications.

3.4 DETERMINATION OF Z(s) FROM GIVEN Z(s) + z'(-s)

In this section, a state-variable technique for
determining the state-model and the impedance matrix Z(s)
when given Z(s) + 2'(-s) is suggested. The technique
presented here is applicable for impedance matrix of any
order n. For ready reference Lemma 2.3 is repeated here.

Given an nxn p.r. Z(s), there always exists an rxn
matrix W(s) such that

2(s) + 2'(-s) = W'(~s) W(s) , . (3.,58)

where r denotes the rank of Z(s) + 2Z'(-s).

Furthermore, if Z(s) be a matrix of rational functions
suchlthat Z(~) = 0 and 2Z(s) has poles which lie in
Re s < Q or are simple on Re s = O and if E%,B,C,é] is a
minimal realization of 2(s), then Z(s) is positive real
if and only if there exists a symmetric positive definite

matrix P and a matrix L such that IZJ

PA + A'P = <L"Ly cre 13.58a)
PR =07 = L'Wby vor (3.59)
wswo =D + D, vea LBARES

Now, given [?(s) & Z'(—s{},.l(s) can be found as followss
(i) Determine W(s) as in egn. (3.58).

(1ii) Find E@,B,L,Wé}, a minimum realization of W(s)
by any of the known methods[32].
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(iii) Determine P from eqn.(3.59a), C from eqn. (3.59b)
and D from egn.(3.59c). It may be noted that
D=0 for Z(~) = 0 which implies Wo(s) =0
and further D is not unique except for the
case when Z(s) is of order 1.

(iv) A,B,C,D thus obtained, give the minimum realiza-

tion of Z(s) and Z(s) can be obtained by
Z(s) = c(sI-A)"1B + D «o s L560)

for which well known algorithms exist which do
not involve the problem of rational matrix

inversion[%ee next sectio@]

The procedure is illustrated with the help of an

example.

Example 3.2

Consider
1 si=_1
s + L
Z{s)+#~e) = SR |
5._+_Jl. 1
s -—

It is required to determine positive real matrix Z(s) having
this 2Z(s) + 2'(-s).

(1) Z(s) + Z'(=s) = W' (=s)W(s) ,

W(s) = l:l ?—I-Jl‘:]
(ii) A = (_——1],, B= [0 i
L'= [—2], W, D g,

-L'L= -4

therefore



=g=

(iii) From (3.59a) P = [2 j and from (3.59b) C is
obtained as '_‘-2 o]. From (3.59¢), D is obtained

L
e

(iv) Thus from eqn.(3.60) , Z(¢) Becomes

O O
e

2
2
L
2

o] (R

B s=1

4 gl
1

0 5 |

or
1 3

1 - ot

2 s+ 1

1 : oo [BeBR)

5 -

The arbitrariness in Z(s) is obviously due to the
non-uniqueness of D in general except when W, ik (in this
case D = Z(») = 0) or when Z(s) is of order 1.

It is observed that Z(s) obtained by this method will
never have poles on the imaginary axis, so Z(s) will always
be minimum reactance matrix. The justification for these

steps is self-evident.

The conditions an Z(s) + Z'(-s) for the successful
implementation of the proposed procedure can be stated as

follows,

(i) Z(s) + 2'(~-s) is a parahermitean matrix with real
coefficlients,

(ii) On jw axis, Z(s) + 2'(~s) is bounded and is
non-negative definite hermitean.
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This is obvious in view of the fact that the cohdi—
tions[88] stated above which are extension of the scalar
case[68] ensure factorization given in eqgn. (3.58) and the
existence of a positive real Z(s). Therefore, a matrix P
satisfying (3.59) will exist[3] and the enumerated steps

can be followed through successfully.

The interesting feature nf the proposed technique,
which is based on state-space concepts 1is its generality of
approach compared with other methods[ﬁﬂ,[25]-Even for Z(s)
of order 1, the technique, if not simplem can well be
compared with the Brune-Gewertz and Bode methnd{?QJ. i 14
interesting to note that for the case when Z(s) is of order 1
and Z(s) + 2'(-s) is zero at s = o0, the minimal realization.
E,B,L,(Wozcﬂjcan be written in phase canonical form [15] and
as the entries of B are [@,0,0,...yj’ etc., it can easily
be checked that the coefficients of the last column of P
give the coefficients of the numerator of Z(s) (denominator
of Z(s) being same as that of W(s) ) and so eqn. (3.60) is
bye-passed in the determination of 2Z(s). For illustration

1x1 matrix is also considered.

Example 3.3

Consider the Butterwarth resistance function[79]

i
B(w ) = ———% . It is required to determine the minimum
1 +

reactange p.r. Z(s) having this response.



s

( £ | LolE [ ' B 1
i) l—+;8‘s:j —g'-_z\s)+z(—sﬂ—z-:'—s'g . - 0
Z(s) + 2'(-s) = '"E~—g" = WZS) W(s).
i SR ‘
Therefore,
(/758
i 35 + 252 + 285 + 1 '
0 ik 0 '
(31} A= 8 0 I B o= e,
=1 =2 <& 1
RE -0 e
) il “L'L & 0 0 O
0 - - O

(iii) From eqn. (3.59a) and (3.59b) P is obtained

8 8 i - j
3 3 ! 1
a 8 4 ang CF = 4 1.
ek T e 3 |
i 2 2
. 3 7 _3_‘

(iv) E%,B,q] is the minimal realization of Z(s). As Z(s)

i1s only 1xl matrix and the configurations of A and B have

been taken to be in the phase-variable form. So, coefficients
of the last column of P give the coefficients of the numerators
of E(s)

Therefore
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Now Aj» B;, C; of the imaginary part of Z(s) can be
found as in eqn. (3.48)

['o 1 0. 7 =2 B A
1
o RS « P e 0 4/3
F <2 =8 0 2/3
= e e B: = Sl P SN M
bt SCR B - 1 ’ ?
=3 T R 4/3 0
i - 2 2
] S St B o
P, Y.

The imaginary part, if desired can be obtained by the
usual methods by converting Eéi’ Bj Ci] to phase-variable
form, the C; of which will provide twice the value of gach
coefficient of the numerator of imaginary part. The denominator

will be the same as that of the real part.

5.5 DETEBRMINATION OF TRANSFER-FUNCTION MATRIX
FROM THE GIVEN STATE EQUATIONS

Various methods are available for the determination
of (51 —.A)-l which is required for the evaluation of
transfer-function matrixW(s) = C(sI - A)_lB + D for a
given linear time-invariant system described by the state
equations (1.1)[40], [91]. A direct method for the deter—
mination of transfer- function matrix from given A,B,C,D
is suggested. The method is based on the reverse of the
approach discussed by Ho and Kalman[28] for determining A,B,C,D
from the given transfer. function matrix, and is more interest-

ing than the existing methods as it offers a straightforward



_65._
proof for its validity besides avoiding the usual difficulty
in rational matrix inversion. The method consists of
determining det[%l - é] ah) BBy TaB, e cah1p etc.
Det[}l - é] gives the common denominator of each entry of
%NKS) while the numerator of each entry is given in terms
of the so-called Markov parameters CB, CAB ... CA"™B. The

method can be explained as follows:

W(s) =Wji(s) + D, co (B:58)
where
D =W (8)] gumo
and

(\/1(1(5) =

8

calg 0. C ae LB

kg

n=1
The integer n denotes the order‘of A-matrix and

the common denominator q(s) is given by

as) = det[sI ~ A] = s" + bys™t + ... + b .. (3.68)

It has been shown in [28] that the Markov parameters CB,
CRB Lo BA™ 1B cte. are obtained by divising mmereter of
each entry of the transfer—function matrix by the common

denominator and collecting terms of s_l, 5_2 s sn_l

etc.
So, in the proposed reverse process, CB, CAB ... CAM 1B etc.
are found from the given A,B and C and the corresponding
terms in s—l, 3_2 ve. s " ete. are written as entries in

a matrix. Multiplying these entries by the commnon denominator
and collecting terms having only positive powers of s should
naturally give the entries of the required transfer-function

matrix, Just as any transfer-function matrix having a finite
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value at = results in & set A,B,C,D; given any conformable

set, it will always result in a transfer-function matrix.

The process is illustrated with the help of an example.

Example 3.4~ Given

Fé -2 1
A=13 o -8, B

& B el

"2 o &
C= ) D

Lo -2 £

-

-

1
0
0

i
0

0]
0
L

0

.. (3.69)

The transfer-function matrix is determined as follows s

n= 3, detEsI—A]=sS+23

therefore,
by = G, by = 2, bz = 0
and

ca= [0 Z]
2 ol

cpls= 4 O]
ey =3

Thusqwfl(s) can be written as

=3

3 25 1405754573 s lipsRigsd

e +gs 0s t-g2s %4050

ps™l 08 Eops D

oo LERTE

oo (371
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Collecting terms with positive powers of s, we get

RES 25 |

W(s\z—l—— L] (3.72)
3 S4os 2
: & wil 8 28" +2

and therefore from equation (3.66)

~ Lios42 2
52+2 52+2
AW(s) = T
2 53+252+25+2
= 52 . o 53+25 J

The method is attractive for finding the transfer-function
matrix from the state equations and is often needed to

serve as a check for [A,B,C,D] found from the given transfer-
function matrix, in the synthesis procedures. The method is
particularly suited for the cases when<jot[}1 - é] can be

easily calculated.

3;6 CONCLUSION

The classical synthesis methods such as Foster's
Cauer's and Brune's etc. are well established. Computationally,
there is not perhaps a great deal to chonse between the
classical proceduresand state-space methods akin to these
procedures. However, the state-space technique does offer
greater'scope for extensions to problems such as equivalent
network problems and discussion of these methods from state-
space point of view has been taken up in this chapter in

this context. Some of the known properties of network functions
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have been derived in state-space terms. A procedure for
determining Z(s) from given [?(s) + Z'(-S{] using state- -
variable technique has been evolved. Based on the reverse
process of determining Markov parameters from the transfer-
function matrix, a direct procedure for determining the
transfer-function matrix from the state equations has been
given which does not inveolve the usual difficulty of

inversion of the rational matrix (sI - A).

The modern netwcrk synthesis is different from the
classical synthesis in the sense that the given information
may be either in terms of state-variable characterization
or in terms of input-output characterization. The following
chapter discusses the realization techniques when the given

information is in terms of state-variable characterization.
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CHAPTER 1V

REALIZATION OF STATE EQUATIONS

4.1 INTRODUCTION

In modern synthesis, many a time, the given information
is in terms of state-variable characterization as the transfer-
function description is not valid for time-varying and non-
linear systems. Further, as has been shown recently[24], state
equations can be obtained from a sequence of input-output
data, without involving the computation of impulse response.
The importance of this characterization is evidenced by
a number of papers published recently giving the procedures
for network realization from the state equations. In this
connection, Yarlagadda and Tckad have given procedures for
network realization of state equations for LC[86] and for
RLC[87] networks. Dervisqglu[lQ] and Nordgren and Tokad [57]
have considered the realization of A-matrix. In this
chapter simpler proéedures have been evolved for the reali-
zation of state models for LC networks, and a class of each of time-
invariant RLC, time-varying LC, and A-matrix for RLC net-
works. The procedure for the realization of LC networks

has been computerized and actually run on IBM 1620.

4.2 REALIZATION OF STATE-MODEL OF n-PORT LC NETWORKS
Realization of state model of n-port LC networks
has been discussed earlier[86]. The method cnnsists of

obtaining a state model of general LC networks in topological
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quantities as in eqn.(3.2) in the form

X

AX + ByU + BJU , .o (4.1a)
VAT S HES R .o (4.1b)

The element values and the topology of the network are
determined by comparing these topological expressions given
by (4.1) with the known quantities available from the given
state equations. Consequently, the method results in seeking
solution of a number of equations. The set of matrix equat-
ions thus obtained is difficult to solve as the equations

are of the type

L T
where K, 1is known and, in general, is a rectangular matrix,
Q, and P are unknown rectangular and square matrices respect-
ively. Obviously, a seéarch for a satisfactory solution of
the set of equations obtained in the method is desirable.
Yarlagadda and Tokad [86] suggest yet another method of

decompesing (4.1la) in the form

= 1 1

SN v Pl P oU o s R

as a first step towards the realization of the given state
equations, where P is a symmetric positive definite matrix
giving element values of capacitances and inductances. The
decomposition procedure suggested in [86] is far from
satisfactory as, in general, it gives a non-unique solutinn
for P and it is difficult to select the desired symmetric

positive definite P.
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In view of the above mentioned difficulties, it is
worthwhile to obtain a suitable procedure for decomposing
(4.1a) into the form (4.2) and subsequent fealization of
the resulting equations. Further finding an algorithm
suitable for computerization of this procedure will be a
fruitful problem[56]. In this section, such an algorithm is
presented for the realization of state equatinns of LC
netwerks. The algorithm is especially suitable for

computerization.

Consider the state model for LC networks given in (3.2).
It needs be emphasised that the state-model given in (3.2)
does not satisfy the equation (2.23) for some appropriate P.
However, by applying the transformation (3.3) and letting
G
o [

relation (2.23) is satisfied and consequently for LC case
under discussion

PA =i A'p O 9 LN ) (4.33)

PB = C! . ve (hSE)
From (4.32) and (4.3b),we find[7]
PAB = -A'PB = ~A'C!
PAB = -A'PAB - (A')%C! - ()

PA"IB = (-1)""1(ar)Mlcr .

With the controllability matrix

W= Ea AB ... An-lB] -« {455)
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ana modified observability matrix
V= [_' =AY .., (—1)“"1(F')“‘1c{], .. (4.6)
the equations (4.4), (4.5) and (4.6) give

PW = V,

il

or
PWW' = VW', oo 1553

Since W has a right inverse by the minimality of the

realization[?],

P = (vw')(ww )L, .. (4.8)
‘Therefore
P11 0
Pm
0 Poo

can be determined from the given AyBys B and C’Dt’ Dox
Equation (3.2) can be written as |

a _l s _l )
D
X I ArX 1+ P r‘U + P BorU ’

1

By

Y = CX + DU + DOU 4

where

o P—lBor ste. o SR

1l

: e o et
A PAr,Bt—PB

Thus, Aps Bi, and B . can be determined.Hencefrom eqn. (3.2)

= ' =
¢ Hn O Bipiz 0 Fye
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=
Féorll 5 -} ‘bscchSV 0
B = =
or
u Boree =) (2 Purleetkl ) .. tai08)
and r :
t [}
0 ~Fly+ (F§CiFgy ) 18 LFy
g ,
-F r =]
- Kc‘(FLFL22F1'<F)aC (-F1 ) 0
r
0 Di12
Ry
| Dy O
l.:l o =
0 Frv~ (FgeCy Foy ) '™ (-Fle)
— y
~Fv (FL-LegFi )/ -Fpy) 0
-
Daay O
D =
(o]
48 Rype
=
FeyC1Fsv=(FgcCyFoy) g~ (FgcCy Fgy) 0

]
|
|

O FyrLogFg = (F Lo B (FLrLzzFKr_f

«. (4.10p)
Therefore, from comparison of eqn.(4.10a) with the known
values of Ap., By, determined from (4.9), Fl o2 Fge and Fry are
uniquely determined. In order to determine the element values

Cl’ Cz, Lll and L22 etc. and to determine the various submatrices
of E’ I] given by



Fgy Tgc O 1
FLV FLC FLr‘ : 1 . (4.11)
T sl Rt 1

the following procedure is adopted.

Construct the matrices

{"Févansv FeyCiFsc
¥,
L;Fécchsv Gy "t Tae | o (4.12)
and
(g FLrlyfi- Forlufire |
o ,

1 &
Fr LiafLr Fer Ly Frr | IR

where Y.C and Z; are given in terms of the various known

quantities as

=

| 11 Yio
Fa¥y
¥, £F

. Yyg Yoo |

o ol T

ail “eril 117 erll orll
5 - UL T4
~Byr11 P11 |

and
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T Poo  Bores

polp

¥
Do22™BroPesByres

t
L?i2 222 orl2
.2 (R.15)
Applying Cederbaum's factorization to Y. and ZL’ and
rearranging rows and columns as in [86], the submatrices Foys
_FSC and Fy -, Fg and element values of C;, Co, Lyj; »Lgo
can be determined. The only undetermined submatrix Foy 1s

determined from eqgn. (4.10b) as

¥ Fevl [ © 0 DPeag By © 59 O By
3 +
sBey O APy P O Byga|| O Pyo|f Bygy O
.o 2187

where terms on the right hand side are known. So, [? i] is
knownbwhich can be tested for realizability by the well-known

methods f4 9] .

4,3 COMPUTER ALGORITHM FOR THE PROPOSED METHOD
The computer algorithm for the proposed method for
realization of n-port LC state equations is described in the

following steps.

(1) Read n and m, n_. and m, where n is the order of

a
A matrix. Matrix By and B  are nxm matrices, ng
denotes number of capacitor voltages as state

variables and my denotes number of output currents.

(ii) From the given AyBys Bys C, D and D_(state model (3.2))
(Bt+ABo) and (Dt+ CD,) are determined in order to obtain
the state model in the form (3.5).



B
(1ii) Determine P as in equation (4.8).

(iv) Find Ans By and Bor from equation (4.9). So FLC’
Fgc and Fy, are known. If the entries of these
matrices are other than +1, -1 or zero (computational
errors are to be accounted) the method fails, i.e.

realization of the given state model is not possible.

(v) For determining Y _(egn.(4.14)) and ZL(eqn.@.l5))
le, Y22, 211 and 212 are available from step (iv)

above. In order to determine Yy; and Zyg, calculate

| ! e = 1 L 7))
D, *+ Bor P Bor D, + BOPBO i Al T

The form of these matrices gives Y;; and Zpo, 1i.e.

' "
Byyp © Biovi @ TP O ELgt ©
+
O Dyoa| | O Blao]| O Fool| O Biree
5 ' P Bl
T O TRy s STy o Sl
= T
] -
| 0 Dygp O Bigal|l © TFaa{f © Boes
I 1 T l O
Do11tBoma®f11Por11
B 0 D oo+B' ~1lp
- . 022 “orl2 22 0rll
] )
Dh111B5115 118011 0 1
L 0 D022+B$22p228022J
Wy - E
e - oo (27380
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From the above simplification, it is clear that
the inverse of P is not needed although appeared in
steps of calculating various entries of Y. and

Z, in egn.(4.14) and (4.15).

(vi) Y, and Z are decomposed by Cederbaum factorization
inte the form AchAé' For computerization into
this form, the procedure due to Winter[83] has been
chosen. If diagonal D, does not have positive

entries,the matrices‘!c and ZL are not realizable.

(vii) From the submatrices found in steps (v) and (vi)
above, [? ?] can at once be written which can be
checked for realizability by any of the available

computer~algorithms[31].

4.%5.]1 SFECIAL FEATURES OF THE PROGRAMME

The programme (actual listing given in appendix)
accepts the various entries of the matrices A’Bt’Bo’C’Dt
and D of eqn.(4.1) and punches the various submatrices of
fF %] which can be tested feor realizability. The programme
is quite general and can realize the state equations of any

order cnonsidering limitaticns of time and storage.

Machine reads various entries of the matrices AyBy
BysCyDys Dy etc. column-wise, the order of the matrices, the
number of capacitor voltages in the state vector and the
number of current outputs in the output vector. Calculation

of symmetric positive definite matrix F(eqn.4.8) requires
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the inversion of matrix WW'(eqn.4.5) for which a subroutine
INVERT has to be called. The programme then determines Ar’

Btr etc. from which submatrices FLC’ Fyc and Fiy are found
out. The entries of these submatrices are to be +1 or zero
but due to the computational errors these may not be exactly
*1l or zern and so, these are punched in FLOATING POINT. To
determine the other submatrices of [? %], Y. and Z; of
eqns. (4.12) and (4.13) need be factorized. The process of
Cederbaum (for programming, Winter's method [83] nf factoriz-
atinn has been chosen) has been used as a separate subroutine
which may be called twice in the process of realizétinn.

The entries in Ao rof K, = AchAé are punched in fixed point
while diagonal D, is punched in FLOATING POINT. The procedure
fails if entries of submatrices of [? %] so obtained

are different from +1, O (taking into account computational
errors) or elements of diagonal D, are not positive or

r% {] is not realizable, ontherwise a network can always

be drawn.

4.%.2 INPUT-OUTPUT

INFUT
CARD NO| CONTENTS | COMMENT S
1. n,m Punch as a five digit number with no
decimal point. Each of n and m takes
85 cnlumn spaces one after the other
- ngs» my Funch as a five digit number with

no decimal point. Each of n_, m

a' Ta
takes 5 column spaces nne after the
other.




=, 1

CARD NC| CONTENTS ] CCMMENTS

. SEL A2l"'Anl Punch as 10 digit pumber, each of All’
A12’ A22'°'An2 Azl ... takeslO column spaces one after
the other. If no decimal point is
punched, it will be placed . as

XXXXXXXX,YY
4, | Btll’BtZl"'Bnl Punch as 10 digit number, each of Btll
Bt12 oS BtZl «++ takeslQ® column spaces one
- Btnm after the other. If no decimal point is
punched it will be placed as
AXXXXXXX.YY
For Bo’C’Dt The same way as A and Bt above etc.

and Do

OUTFUT

The machine will punch intermediate results, the
values of submatrices F;., Fy~ AND Fi,, of [? i] and
matrix Ag (KC = AchAé) obtained from applying Cederbaum
factorization to Y. and Z; of eqns.(4.l4)'aﬁd (4.15). By
rearranging A, and D, as in [86], the remaining submatrices
of [? I! and the element values of capacitances and

=3

inductances are known.

A simple problem for the realization of state equations
is given next. The same problem as has been given in [86J is

chosen for comparison.



Example 4.1

=50

Given the state model of the form (4.1)

f"vcl‘ T T I
3 B @ 0 1/4
It 1 B 0 0

BRET- T R Vs VA o |L

-
*
L, 6 O 1/4 3/a
.* =1
vK_ i .2 0 0

Vo o  1/4
V > i
(7% 0 0 VV
+
L
Iy 0 0 LIK
IL8_ _1/2 0_
MN/a o7
_;_ -
+ |0 0 Vy
. 3 -
0 0 IK_
O 0 |
ch
: ;T
Mok o R 17 vy,
+
*
I
L8
i
3
2
3/4 0 Vy
+ .
2
0 3 1| Ik
ve (45X

Now using transformation (B.3)y we get the state model

(3.6) for which

106A%6



¢ 0 -1/4
o 0 0 0
1 ) 0
Sl/e ~1/8 0
and
o
B + -
B =By + AB, = o
3/8

Using eqgn. (4.5)

"o 25 .09
w L 0 0 Q
.25 0 0
.37 .OZ O

and using eqn.(4.6)

o 1 .12
0 0 .37

V =
25 0 0
750 0

_81_

1/4

1/4
b

0

(%)

1/4'[

0

0

0

0 0
0 0
25 .0
~.12 -.06
0 0
0 O
$£5 | 08
il =.12

AB

-009
- 03

- .37
']
0
0

— 68
.0l
0

-, 09
-.06
0
0

1/4
1/8

- .08

D o S e

e DT

0

09

.O6

(4.21)

'l%J
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and using eqn. (4.8), we get

[ 4

[ o ey o b1
' A 0 1 M
e R P I N el
M i B SRR e L R or
- g 0 10
e i — v s’
B 11/ aM 0 .3/4]
2 e ol w i y By = SR e iy SR
= o 0o L Ry

from which we find

21 o7 [ 0
Bo= i £ = g -
LC Ll . W= KC
Now,
a4 OBl e oo o
ALRIPR. = +
. 0 B N EJ [_O o 0

N

vs (4,25
r— : ==
D
0 0
________ ]
o @
0 O
23/5: ©
e S
o3
oo (ALBEY

<

vu (4,283

o T T W
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Using eqns{4.14), (4.26) and applying Cederbaum factorization

(@5}

AU e
Bl s o oy
H
B S
3 0 ST oo (4.27)

and using eqn. (4.15) and (4.26) and applying Cederbaum

factorization

1 L B3
ZL: 2 i — 0 0
= 1 Q

0 3 ;R R
1 1 I & @®©
0 glLe T ¢
rae VIR

From eqns.(4.27) and (4.28), element values of capacitances ,

inductances and submatrices Fgys Fge FLr

found out.

" Further

D PB 2 3/47
+B! _
s 5 C)J

i

1/4 ©
+
O

&

I

and Fi - can be

2 1o 1/4]
0 0 4 3SR,
0 01 1 S
—_ Bli17/2 ©_] .
co (£.29)

0
[ e Jfrom which submatrix FKV is found.
=1 | O
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From above, E3 1] as given in (4.11) can be written at

once as .
=1 1 @ 9 |} i
1 B B8 1
[F I:l S R T T 1 R % T
ST T 1
| 1 -1 0 1 1|

This is realizable as a circuit matrix resulting in the graph

and the network given in Figs(4.la) and (4.1b)

1t may be noted that the resulting network by the proposed
method turns out to be the same as in [86]but the main point
besides the novelty of appronach which needs be emphasized is

the ease of computerization compared to Yarlagadda[86] method.

4.3,5 PROGRAMME DETAILS

(a) Language:Fortran II

(b) Number of Variables:- 30

(¢c) Special Word Length Required: None

(d) Number of Statements
(1) in actual programmg: 200 approximately
(ii) in subroutine CEDBUM :- 60 approximately

(¢) Additional relevant information :- It is assumed that
eomputer library contains subroutines for the inversion

of matrixe.
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4.3.4 PERFORMANCE GUIDE

(a) Computer used ?— IBM 1620

(b) Core size :- 60 K

(¢) Input medium :- " Card ﬁeader
(d) Output medium :- Punched cards.

(e) time taken®
(1) Compilation time: 5 mts. approximately
(ii) Execution time t 1 mt. 40 sec.(This time is

noted from the moment the input-
data has been entered.

(f) Additional relevant information: None.

4,3.5 FLOW CHART .

The flow chart for the programme is given on

page 87.

4 .4 SYNTHESIS OF A CLASS OF n-PORT RLC NETWORKS

Yarlagadda and Tokad [87] have given a synthesis procedure
for RLC n-port networks based on state model approach. The
technique given by them is quite cumbersome firstly because
the decomposition of the given A-matrix is not unique and
secondly a large number cf equaticns given in theorem 1
of Ref.[87J have to be solved for which no satisfactory

algorithm has been proposed in [87]. In this section, a synthesis
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ta) REALIZATION OF CIRCUIT MATRIX [EQN. 4.19]

1
T
2 RO IR
RS
s ]
vV _FS 1 a_l__
Tg
2
B 00 D
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70— E

(b) REALIZATION OF STATE MODEL [EQN. 4.30]

FIG. 4.1



READ
A, By, By C, D¢
Do ETC.

87

COMPUTE
B= Bt + ABO

Y

STORE IN

COMPUTE
ﬁr. Br, Bor ETC

W AND v

COMPUTE P

4.3.5.FLOW CHART

COMPUTE CALL SUBROUT.
Do+Bo P Bo o} “ONSTRUGT: Sl e e BL ot
TO GIVE %L 5. ¢ CEDERBAUM
Y11, Z22 FACT,
Y
COMPUTE YES CHECK ENTRIES
Di++ B.PB OF DIAGONAL
ke Eh MATRIX D- OF }—
NOT
REALIZABLE
NO EQVT. MODEL
> —»— MAY BE
REALIZABLE
DETERMINE PUNCH
[F 1] FOR REALIZABL REALIZABLE
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procedure is evolved for the class nf half-degenerate
n-port RLC networks without mutual inductance and having
no céupling between the 1link resistanées and the tree-
branch conductances. A state model for this class of

RLC networks is derived in the form

X

AX + BU

i

Y CX + DU »

The basic idea in the realization procedure is to
decompnse the A and B matrices nf the above equation in
the form A = A A1 and B =AB;- The matrix A gives the
element values of reactive elements and Ays Bl’ C and D
give the topology of the netwnrk and the values of the
resistances. For the class under discussion, whereas the
A-matrix can be decomposed merely by inspection, the other
unknowns are determined by factnrizing a prnposed specialised

decomposition using Cederbaum factorization.

Consider a class nf half-degenerate n-port RLC networks
which cnntaih no circuits of capacitorswith or without the
voltage soﬁrces, and no cut-sets nf inductorswith or without
curreht snurces. The networks, however, may centain cut-sets
of capacitors with the voltage sources only and circuitsof
inductors with the current snurces only. Such a network may
be called a canonic RLC network. Further, the network does
not contain mutual inductances and there is no coupling
between 1link resistances and tree-branch c¢onductances in
the network (FRG = 0,page 684 ref, 38),

The theorem concerning the realization of a network

belonging to this special class is given as follows s
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THEOREM 4.1

A state model is realizable as an n-port RLC network
belonging to the class defined in this section if (i) the
matrices A and B admit the factorization,ﬁ\Al and A Bl
respectively where/A is a diagnnal matrix with positive
entries (ii) a solution exists for the set of equations(4.35)
or more appropriately the decomposition (4.36) exists for
its righﬁ hand side where the matrices G; and Ry are positive
definite and(iiD[F Ilso obtained is realizable as a fundamental

circuit matrix.

PROQF
Clearly for this class of networks, a proper tree can

always be drawn and under the abave mentioned restrictions,

we havé
Fgy = Fgo = FLr.z FKr.z o con 31}
1,22 = 6 le = L21 = 0 and FRG = 0

and F expressing the topnlogical relatinn between links

and tree branches for this class becomes

Frv  Fge i |
Foe b Bran Fleo Flg 2 ap AEBE )
Fv Fxe  Fg

and substituting above assumptinns in (2.12) the state model

for this special class of BLC netwnrks can be obtained as



A AX +AB,U,
Y = ACX +A DU, .5 (k207
Y l_ “l I-_ t Fl il ’— i
AN S FrcC1Fre LC -
: =1 i .
4y _ oo 0 N IR
r-c‘l A tF’G F IB g v ¥
ol % RC7L RV KC £
g R {—* ¥
R O L Fra®eFke | | Ik |
va ipEn)
e 1 b v I el
[-VK g R ey S
* - F'
et 4 -
|1y FrvC1Fre B LA
: g
Foue Faiatle v 7] |
+ oo LE. B8N
*
- 1
FavG1T Ry Fv | Iy

It can be seen that/\/—\l in (4.33) and (4.34) is a

symmetric skew-symmetric (hybrid) matrix[191. The synthesis

procedure for this class of n-port RLC network is self-

evident from the form of (4.34a) and (4.34b) and can be

easily implemented since the decomposition of A can be

done by the methond given by Dervisoglu and by direct comparison

of a given A and B with the farm shown in (4.34a) and (4.34b).

Appropriate decompnsition af B is alsn straightforward. C2

and Lll can be obtained by direct comparison. Further, it is

clear from (4.34a) and (4.34b) that Fres

KC? PLV and FKV are

uniquely determined. To find the remaining undetermined

submatrices, Gl’ Ro FRV’ F

HC?
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one has tn solve the following set of matrix equations,

where Pe’ Qe’ Re’ .

Fac®1Fre
FleReFlg
FrcCrFrv
FLaReFka
FraReFi g
FrvG1 Fac
FiaBaFyg

=il

Fave: Fry

'
RV

i

e,

T

e’

U

-1 = | ! et ]
matrices (Re = ve, Se = Te).

[ F Pl

5 0

vo (ESEER)

e’ Ve» Wy are known constant

The system of equations (4.35) can be written as

RC

¢ Fig

RV

0 Fyg

The eqn. (

Iél B ©
L R2 {_ 0 F

d
LG

F

RV
0

0

H
Fxa

[P

0

B, B
0 S
e

w, o
0 \Y;

e

v ALE6)

4.36) is of special interest since the known

7

matrix of its right hand side can be decomposed by Cederbaum’s

form can always be reduced tc

algorithm. Rearranging rows and columns[86] the decompo sed

the specialised one given on

left hand side of eqn.(4,36)[lé]. Obviously, the blnck

partitioned matrix on the far left of eqn.(4.36) contains



entries *1 and O. The matrices F

o

RC?

F

=t

Fays

E

KG? and

the diagnnal matrices Gy and Bo can thus be found by

comparison.

This decompositinn is essentially unique

owing to the nature of this algorithm. If the elements of

Gl’ By are positive and if [?

g is a circuit matrix,

the state model is realizable.[?

q can be tested for

realizability by well known techniques[49].

It may,however, be noted that if the conditions in the

theorem are not satisfied, it does nnt imply that the

network is not realizable as an n-port belonging to the

class specified in the theorem. An equivalent state model

obtained by a similarity transformation on the given model

may be realizable.

The procedure is illustrated with the help of an example.

Example 4.2

Consider the state model

vcl

) ’
¢ R

» —“6» —-o_
-1/2 -1/%
-1/4 0

S

O 1 =B
g s

N A »
1 a olbw,
1/25 0 IK
1/4'! QJ



vcl T
» : ch G *
vK_1050001+—10vV
” a0 i e e N S B ol it "
L, LO 0 -1 -1 -1 ] o B IK_
L2
sx (4:378)
LILSJ

The matrices A and B can be easily decomposed in the form
A =/A\Aj and B =/\By by comparing the given A with the form
given in (4.34a) and noting that the entries A's of the
diagonal matrix must be positive and entries in Fros

Fgc @nd Fry  of equation (4.34) must be -1, O or +1 ,
these being the entries of matrix to be realized as funda-
mental'circuit matrix. Using Dervisoglu's method A can

be found as

F4>\1

L 1/22\1

and comparing as described above 4)(}‘]_ =2 i.e. }‘1 = 2l and

from B =/AB; we get 1 = Axl etc. Therefore

Fa o TR - M AR L i
1/2 © 0io 1 o

Nmi [T 00400 .o (4.39a)
L 1/e s T B
; s /4] |-t oio o o]




and

1/2
1/4

- .

5 AT o)

Comparing A and B in (4.39a) and (4.39b) with (4.37a)

we have

[1/2

_1

s

£

o ve= [o]. w,

2 18
BSSRREE
n
®
[

(4.39b)

Therefore matrix en the right hand of (4.36) becrmes

[2

C

¢

0
0

o (e S - T

Q

@ 0
0 Q
Z 0
0 C
0 0
0 C
0 O

=

L

L

O

= e

2. O

0|
0
0

which is decomposed by Cederbaum algnrithm intn



therefeore

o |

IR o T

180

-05~

8 = a o

and the varinus submatrices in eqn. (4.33) can be written

at once. The matrix +o be realised as fundamental circuit

matrix is given by

which isg realizable,

v
[0

Vv

C

=]

0

&

the graph and the corresponding network

are shown in Figs. (4.2a) and (4.2p) respectively.

4.7 SYNTHESIS OF A CLASS OF n~-PORT LC TIME—VARYING'NETWDRKS

Consider a class of n=port LC netwnrks which contain no

circuits »~f capacitors with or without the voltage sources,
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(b) REALIZATION OF sTATE MODEL [ Ean. 4.37 ]

FIG. 4.1



=g,
and nn cutsets of inductors with or without current sourées.
The network, however, may contain cutsets nf capacitors
with the voltage srurces only and circuitsof inductnrs with
the current snurces only. Reactive elements may be time-
varying but differentiable. Further the network dnes not

contain mutual inductances.

The theorem crncerning the realization of a netwnrk

belonging to this special class is given as fnllows:

THEOREM ¢ ,2

A state model nf :he form

x

A(t)X + B(t)U , (4.41)

¥ =C)X + Dit )y,

ll

is realizable as an n-port time-varying LC netwnrk belnng-
ing to the class defined in this-section if,
(i) the matrices A(t) and B(t) admit the factorization
AtAy  and AtB; respectively, where NAi is a

diagonal matrix and having time-varying entries.

(ii) A solution exists for the set of equatinns(4.43)
(leg Y [? i] sn nbtained is realizable as a fundamental
circuit matrix.
PROQF

Prnceeding in the same way as for the proof of the

theorem in section (4.6), we get

Frv FLC‘[
b

E

T
E

kv kel
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for this class and the state mndel derived frem eqn. (2.15)

after making the above assumptions becomes

. -'__l\_ . i
Vel _ %7 (80) o '1 2(t Fl o s
i: -
L i (& ] Lll ('t)—‘ i IL
I~ T
il ]
C2 ('t) "'Flé(‘ W
+ ’
*
0 0 _J IK
" - i grany
* %*
k| |"Fke Few  © Yy
» 6. s J
, 1

The synthesis procedure fnr this class is self-evident

from the form of (4.43). are uniquely

Fker Fryr Fyy

' determined. As C2 (t) and Lll(t) are diagonal,their values

can be determined by inspectinn keeping in mind that

entries Froy Fye and Fly are to be +1 or 0. For a consistent

snlutinn, it is necessary that the values of Cy(t) and Lll(t)

determlned in this way shnuld always satisfy Cz(t) and
ll(t) [? i] nbtained can be tested for realizability by

well-known cond1t10nsf49].

4.6 REALIZATION OF A CLASS OF A-MATRIX

With the intrnductinn of A-matrix as a new method of
network description by Bashkow in 1957, there has been a
considerable interest in the realizatinn of this matrix.

In particular, Dervisoglu[lQJ considered the realization
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of a class.of half-degenerate RLC networks i:e. when the
network under cnrnsideratinn has ne cut-sets of inductnrs
nnly and nn circuits of capacitnrs nnly. Nordgren and
Tnkad[S?] gave a procedure fnr' the realizatinn of a more
general class of A-matrix than given by Dervisoglu[l9]
i.e. the netwnrk may have cut-sets nf inductars anly and
circuits ~f capacitnrs only. This section cnonsiders the
realizatinn nf a class of A-matrix in which the netowrk
may have cut-sets nf inductors only and circuits ~f
capacitors only but there shnuld be nn coupling between
the link resistances and tree-branch cenductances in the

netwnrk (FRG = O,page 684 Ref.38),

The A-matrix frr RLC netwerks can be written frem

eqgn. (2. 12a) as

1 1,
PO L~ o ||-¥ o ] .o (4.44)
Lo LR

&
L=+ FLi LogFl -
/LP =iSge P

¥ = Fig %;lFie,
H - Fle ~Fhc £ Faahe 16 ’
K = B) + FreBaFlg »

5/ = G¥FpeGiFpg o

R, b

G’ and G = RIl : R 7 3 T Y
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If A-matrix in eqn.(4.44) is restricted tn a class

such that FRG = 0, it becnmes

w1 ] fli :
O !'—F G, F F ~

= é) _1 | RC l RC " LC . . (4.46)

. 1

B 6 _H ~Fio “Frefeiyn

For the same class, the matrix Ka defined in [57] isg

given as
- Bl ']
k = |6 FrcC Fre LC
2 P Iy F F..R. F?
i S T LG2 LG
= p71a (4.47)
o By .o A

The K, matrix is decomprsed by the methnd given in[57].
By crmparing the elements f Al found in this way with the
topnlngical expressions in (4.47) various submatrices can
be obtained. The value of the arbitrary parameter ~ in
D;l nf [57] is chnsen such that entries in FLC and FﬁC are
*ly =1 or zern. It is clear from eqn.(4.47) that Fio is
determined uniquely and Gl, Ro FRC and FLG are fmound by
applying Cederbaum algorithm tn FéPGlFRC and FLGR2FiG'
égand i;can be decrmpnsed by Cederbaum's algorithm.

Rearranging rows and columns gives,

G =E Féc:! ‘!-_62 CJ‘ F;
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from which C2, Cl’ Lll’ L22, FSC and FLF' can be determined.
Fundamental circuit matrix I? é] can be obtained and
tested for the realizability by the well-knnwn techniques

of Gould nr Mayedal49].

EXAMFLE 4.3

In order to illustrate the procedure discussed abave,
the example crnsidered previnusly [57] has been chosen. It
may be nnted that the example belongs tn the class nf RLC

networks discussed in this sectinn.

Let
] (_—5/5 1/5 R/B |V
PO e 1= DB /5 D /s Vs
] i x e b
iz | [-1/8 -1/8 ‘-1/4 I3 |
[ v
cl
A1 Al s
= Vv wwr LA
cl !
Aoy Aoo
o - 0
il A 51 a1y H
11 12 &
and let K be =

i
|
!
i——l



and Da

iz

15 rv2 1 b

Thus Al = K

p~1/2p-
a a

QU NAQ,
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'g‘l/z Y, é’_l/.z (gl/ZH d’:,—l/z

where Ea = -
ffl/zHa YR g z. /;—1/2_
is a symmetric matrix which can
be diagnnalised into F AP
e
where Qa il TaDi/g

Q &, has been calculated tn be equal to

; O |,where & 1is an arbitrary parameter&ﬁ]

Sy

2 :
= MEx O 1: 3
1 1312

As the entries nf Fj ., Flo in eqn.(4.47) are t» be +1,

-1, or zern, q2

s
e
& L

is chosen as %5 and therefore

Naw comparing varinus entries »f Ay with eqgn. (4.47) and

using Cederbaum

=[]

decompositien prncedure, we get

= e],



-1 (-

3 1 0
! i3 Ty = .
BGT E=RG 0 1

Therefore

Fpe =

e
=N
)

(.

il
=
(@] =
L
ISyl

|

e
Cl
H

Also, we get
FLaRefig = [2] :
therefore

Fa=[17], _Rzz[zj’ Fﬁez[l]

and further, as we get

e 1
f —
CotFge 4Fgc = ;

=
—
O

I

o =1

)

o e
' 0
=0
'—l

therefnre
<2 4]
T

[% i} obtained from above is given by

Bl 8 By B L &
B, vy 0 0 ] E
R2 0 1 0 1 ’
Ly | 2 1 1 1
5p | 1 1 0 B

= 0D
S]]

(4.49)

os bALER)

(4.51)

{4 .52 )
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which is realizéble, the graph and the'correéponding

network being given in Figs.(4.3a) and (4.3b).

The procedure evolved, though applicable to a restricted
class of networks is simpler than that proposed by Nordgren
and Tokad{57]. Thie 1s mainly because the procedure discussed
here gives a simpler technique for realizing the hybrid
matrix and the topology of the network compared tn that

discussed in [57].

4.7 MINIMAL REALIZATIONS OF STATE EQUAT IONS

The realization procedures discussed earlier in this
chapter are meant for realizations of minimal state
equations. If the given set of state equations is not
minimal, proceduresexist tn nbtain the one which is minimal,
This problem of minimal realizations of uncontrollable and/
or undébservable state equations has been investigated by
several authors for time invariant[EB],[SO] and time—varying[Bj
state equations. In this section, a simpler algorithm is
given by constructing minimal realization of time-varying
systems.

The state equations for a time-varying system can be

written
x(t) = A(t)X(t) + B )u(t),
Y{t) = ClENER) , : e s 1k DB

where A(t), B(t) and C(t) are n x ny, nxm and p x n

matrices respectively with possibly time-varying elements
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and where A(t), B(t) and C(t) and their (n-2), (n-1) and
(n-1) derivatives are continuous functions. The controll-
ability and nbservability matrices for such 3 system,

are given as

@G = [Po(t)§ Py (t) 3fpn_l(t)j .o (4.543)
where

Prep () = =A(£)P, () + B (¢), P.(t) = B(t)
and

Rty = E’n&); Ry (t) ..... ;:Rn_l(t{, .. (4.54D)
where

Bip (8) = AT () R (6) + B (2), R (t) = C'(t).

The procedure discussed here is an extension of the
methnd given by Mayne[EO] and although it is applicable tn
remove uncontrollable as well as unnbservable modes, nnly
the removal of uncontrollable mndes is considered here. In
order tn remove such modes, the following algorithm is

suggested.

Algnrithm

(1) Construct an n « N matrix S(t) by the procedure

describoed in ‘5‘5) or [50.] using egn. (4.54), where n

and N are the dimensions nf uncontrnllable and contrnllable
sub-space. Let Sl(t), Sg(t)""’snk(t) denote the independent

column vectors in Si%): bl(t), bg(t). cvs bm(t), the

cnlumn vectnrsin B(t)s pi, pE,...,pg » the cnlumn vectors

R ) 4 p%, pi,-...,pT » the column vectors of Pl(t) and
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(b) REALIZATION OF STATE EQUATIONS [EQN. 4.48]

FIG. 4.3
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and so nn.
Start with the vectar Sl(t) i pi(t) = bi(t).

Now select the next vectnr
1 C -k " By A8
Pe+1 (E) = ~a(tIp (£) + p (t), k=0 to n-1

If the selected vector is linearly independent nf all the
previous vectors, retain it in the columns of S(t) otherwise
omit it. Next, proceed with the vector bs (t) and repeat the
preceding to find pE+l(t) and so on (k=0 tﬂ:n_l). Proceed
till n independent vectnrs are formed. If;there are
uncontrnllable mndes in the given system, the above process

will terminate at ng where n < n.
(1i) Find any Nng x n matrix V(t) such that

vit)s(t) = 1, s {4.85)
(i) The contrnllable part

of given realization is found by

A ) = v(t) At) s(x),
B{t) = v(t) B(t),
Ck(t) = C(t) 5(t) . <o (4.56)

The proof nf the algorithm is similar t~ that given in
[SOJ for time-invariant systems. The use nf the algorithm
is illustrated with the help nf an example considered

previously [8], [23], [7n].
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Example 4.2
Let
k] 0 g+ 11
A(t) =[t-2 1 t+2] | B(t) = 1| 1],
Ro~ o ool &l
I-]_ 0 c>1
C(t) =[-o 1 0 |
Q 0 l_j v (487
By step (1) we find
1 1-t
Bt =1 1 1+ 1 s es (4,.858)
e, -t
Using step (ii)
e
: Ve :
1+5% - 5% -1 7
V(t) = . o [4.59)
iy L
LT 2t OJ

Finally, using step(iii) we find

0 —1] fl]
A{t) = V(R)A(t)S(x) = » B(t) = V(£)B(t) =
K \ | =3 O‘l K 1 i ’9
Lo
1 1-¢
Clt) = c(e)s(¢) = | 1 3+

B ~t .. (4.60)
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The methed suggested here is simpler than that given
in [8] because S(t) is of lower order than Qc(t) of eqgn. (8)
in ISJ, having retained the independent columns only.
Consequently, further manipulations are with the lower onrder
matrix. The algorithm is more attractive espeéially when

the number of uncnntrollable/(unnbservable) modes is large.

4.9 CONCLUSION

Considerable interest has been shown by variocus
investigators on the realization of state equations for
port LC, RIC and portless RLC netwnrks. However, the
methods used by these investigators are quite involved as
the decompnsitinn of A-matrix of the state equations and
the realizatinn of resulting hybrid matrix are quité
cumbersome. Simpler algorithms4have been presented in

this chapter.

In particular, the state-space representatinn far
a general LC network with independent snurces of the
netwnrk as exclusive component nf the input vector deres
not always exist. When the state variables are chasen as
capacitor voltages and inductnry currents, the state-space
characterizatinn of LC networks invnlves derivatives of
snurces, sn in order to transform the state model (3.2) to
state mndel (3.6) a transfrrmatinn (3.3) has been chasen.
Once the state mndel is in the form (3.6), it is plausible

that its decompositinon in the form (4.2) can be carried out,
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simplifying considerably the rest ~f the procedure. Further,
the available methnds propnsed for RLC N-pnrt state |
equations are quite tedious. But if we restrict the RLC
state equatinns tr a class described in Sectinn (4.4 ) the
methnd of decomposition of state equations and the realizatinn
of resulting hybrid matrix becrmes quite easy. Similar
pracedure has als~ been prepnsed far LC time varying case.
Further, interest has alse been shown in literature on the
realizatinn nf A-matrix. The available methnds are quite
tedinus. Again, a procedure thnugh applicable t~ a restricted
class, given in Sectinn (4.6), is simpler than the existing

methnds.

Srme times the given state equations are nnt minimal.
However, they can be made minimal by the well-known techniques
availatle for time-invariant linear state equatinns. An
algorithm has been presented by which uncantrollable
(unobservable) states can be removed far the given state
equatinns far linear time-varying systems. The algorithm
which is an extensinn ~f the technique given by Mayne[50]
for.linear time invariant systems makes use nf time-varying
contrnllability and nbservability matrices and appears tr be

simpler than the existing methnds.

In the next chapter, the nther facet n~f the problem
1s touched upon-:i.e. the synthesis from input-~utput

characterizatinn in S—-drmain is discussed.



~11i=~
CHAPTER V

SYNTHESIS FROM INPUT-QUTPUT CHARACTERIZATION
IN s-DOMAIN

5.1 INTRODUCTION

Quite often, the given information is in terms nf
input-output specificatinns in S-demain. A natural apprnach
to the synthe51s, as has been recognised by many investi-
gators, 'is by means of state mndel since the state mndel
of the Qetwnrk provides more direct information abeut the
network and its topnlogy than the netwark matrices. Several
attempts have been made tn realize the netwnrk by this
apprnach[6]. The state models derived in these cases
necessitate the use of RLC elements, transfrrmers and
gyratars. Ynula and Tissi[90] gave a procedure faor nbtain-
ing a network withnut gyratnrs from scattering parameters.
Recently, by combining the techniques of Ynula and
Tissi[90] and Andersnn and NeWCGmb[6j, Yarlagadda has
prnpné@d synthesis procedures from hybrid parameters nf
an RLC netwnrk, which eliminate the use nf gyratnrs. This
chapter discusses the imprrved and systematic synthesis
procedures from the input-mutput specificatinrns in s~dnmain.
In particular, the chapter presents (i) minimal reciprncal
realizatinrns from a given symmetric matrix, (ii) minimal
passive reciprncal synthesis from a given pnsitive real
hybrid matrix, and (iii) seme aspects nf synthesis nf minimum

biquadratic functinsns from state-space pnint of view.



_.]_12_

5.2 MINIMAL RECIPROCAL REALIZATION FROM
A GIVEN SYMMETRIC MATRIX

The prnblem of minimal realizatinns from a transfer-
function matrix has been widely investigated during recent
years, but the methnd givenby Ho and Kalman has been acclaimed
to be the simplest nne available [28]. The methnd essentially

consist of generating "Hankel matrix" S.»

where
T £y LA .
S = | ¥y i | sxa (Bu1)
L P T

is built of Marknv parameters [2l] Y&S determined by divid-
ing numeratnr pnlynomials of each entry ~f the transfer-
function matrix by common denmminatnor. Non-singular matrices
P. and Q. are then frund by well-known computing

techniquesflVJ such that

PrSrQr= =3 S £ % oA
0 0

where I, is s x s unit matrix and suffix s equals rank

of Sr’ and J,. is idempotent.

~ i 0 o o @
If we chnnse Ep 8 block matrix [lp o Op] and
ulh means the operator which picks nut the upper left hand
black in bleock matrices, then the minimal realizatinn A,B,C

is given by
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The imprrtance ~f such realizatinns is attributed tn
the fact that they result in reciprncal netwnrks, and
further it has been praved in [37], [90] that all reciprncal
realizatinns for RC and RL cases are passive. Hence, in
the follrwing, the algnrithm by Hn and Kalman is mndified
so as te determine such P, and Q. as further result in

E}, B, §j satisfying eqn. (5.5).

Now, since the given matrix is symmetric, Sr nf egn.(B.1)
will nbvinusly be symmetric. Therefare, a non-singular Pr

can always be found such that

Sy
PrSrP} = o K os kB BY
-
where
'
1
- 22

Multiplying bnth sides of the abnrve equation by

[z, i
Lo
2 50
we get
I, 0
4 =xs
Prsrprz =
0 0
= I sy ABERY
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A=ulh[ 3P TS0, 7,
B =ulh ["J.PSE T, v (8.3)
and
C=ulh[ESQJ. T,
where g Hn
W sy ¥
Y Y Y
_ g B, P st 1 7
Tsr R 'l ', ) L LI ) (504)
! 1 v
L Ve Ypapee Yoo |

Far a particular Spy determinatinn of Pr and Q.
satisfying egn.(5.2), is a well-known preblem in matrix

algebra. For a particular Sps, there can result innumerous i 's
and Q 'ssuch that eqn.(5.2) is satisfied. Each set of P
and Qr will give a different realization [@,B,E}.

In many problems we are given symmetric matrix W(s)
and we are interested in finding a realizatinn Eé,g,c,q1

such that

L LB A o KBRS

is symmetric, where

number cf +1's nn diagnnal matrix, and

=

iy
®
os

(g
=
I

Zs = number ~f -1's nn diagrnal matrix.
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Therefare
A= uln[ 3P (F5)P12T T,
B = ulhf“_"Jr.DT,ern;1 _'J .
C e

= ulh [ EpsrP;ZJrj .

(5.8)

It may be seen that this realizatinn will satisfy (5.8)

as is illustrated in the frllowing examples.

Example 5.1

Consider a symmetric matrix [5OJ

e I e
EE gtk
W (s)= .
1
= 57T |

'1'1 1
ST": .
¥ L
Therefare
-1 -1
-1 =1
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Therefore from eqn.(5.8), we get

A=[—lj, B = [1 1:[ and,c='r

1_1:] TR b
It can be seen that eqn.(5.5) is satisifed.

Example 5.2

é82+gs+-9-
Given a symmetric\Nr(S) = e S . s (B 2)
52+23+l
We get
L& 2 o
s + x5 + 2
W)= B 88 g
g + 28 + I 8
1
B -
SO R s I
< g + 3%4 i BT e

Hankel Matrix

s;[‘O l:{ ~ TR (S ‘2] o L)
. - =2 3

.___. '

As S, is symmetric, it can always be decrmprsed in the

form (5.6)

where
l- - —
e WJ 1 1 ,
P .= e A, {9

r ’ ’ |

. -1 b 1
0 2 - *

1=



Tr7=

Using (5.8) , we get

Ch R i'-:l-]
high 2 V2
A= | " B = | )
1'_1«. 2 e
L= =B N
- 1 )
B & i_\-lf'g -E—‘ and  D=[ g 7,

Therefore, we get

1 | R

= e Ve

Roadl . S 5 !
N e~ i |
gt R
L 1|'||"'2 2 2 —!

It can be seen that eqgn.(5.5) is satisfied.

The proposed method is a modification of the method
given by Ho and Kalman[28] for the case of symmetric matrices
and has its movelty because of eqn.(5.7) which according to
autnor-s knowledge, has not been considered earlier. The
method is better than that given by Youla and Tissil9d]
as the additional labour of finding inverse of matrices
(Egn.I-29 EQO]) is avoided.

5.3 MINIMAL PASSIVE RECIPROCAL SYNTHESIS FROM A
GIVEN SYMMETRIC POSITIVE REAL HYBRID MATRIX
In the synthesis procedure, flexibility in choosing

a transformation T in Section (2.5) allows us to introduce
both passivity and reciprocity constraints. But, unfortunately,
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both the constraints cannot be met simultaneously and
as such it is difficult to choose a T which makes the
state model both passive and reciprocal. To remedy this,
two methods have recently been given by Yarlagadda[BS].
The salient steps involved in these methods are recapitu-
lated first as follows. In method 1, passivity constraints
are satisifed first and then a transformation is chosen
which satisfies reciprocity but maintains passivity. In
method 2, reciprocity is satisfied first and then a
transformation is applied which maintains reciprocity but
satisfies passivity. These methods are briefly discussed

first with a view to obtain an improved synthesis method.

Method 1

Let H(s) represent hybrid parameters of an RLCT
network having no pole at infinity. The method for arriving
at the desired state model is explained in the following

steps.

() Prgn given Hi{s), abtain any state model

it

Xl Ale + Blﬁ,

U =X + U, «s 03T

such that H(s) = D; + ¢, (eI - Al)'lBl.

(ii) The necessary and sufficient conditions for H(s) to
be positive real have been given in lemma 3 of Section(®.5.2 ).
So, there exists a symmetric positive definite P and matrices

Wy and L such that eqn.(2.24) is satisfied. Determine the
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positive definite maAtrix P and Pl/g.
(iii) Choose a transformation,

and obtain the new state model

X2

U = CoXo + DoU. .. (5.16D)

It

A2X2 + 82U9 o (5-163)

It has been shown in [851 that matrix M2 generated from
(5.16)

M, = or (BaXT)
: =By -A,

1s positive semi-definite.

(iv) The next step is to apply eqn.(2.27) to (5.17) i.e.

select the non-singular transformation Tl such that

(T +TyMg = (1 % T .+ (5.18)
Tl is also symmetric and it can be represented as f85]

Ty = SlE | v SR

where Sl is a symmetric positive definite matrix and E
is symmetric and an orthogonal matrix and can be written

as

E = Q) 2Qy, -+ (B.20)

where Q; is an orthogonal matrix, and £ is a diagonal matrix

with + 3's,
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(v) Choose a transformation

X = le3 v (DGR

and apply on eqn. (5.16). Multiply the first equation thus
obtained by QiSl to obtain the state mode]

1 = 1 '
NS K5 = 4 51A,Q X, + Q 5BU,

= C3le5 + %U. o a2 )

The state model (5.22) can be realized using RLC elements,

and transformers, the proof being given in [85].

Method 2

In this method reciprocity conditions are satisfied
first. The method consists of the following steps.
(i) Obtain any state mode 1

X, = A%, + B,U,

U = CaXy + D,U, er (5.83)
such that
H(s) = Dy + Cy(sI - a,)71p,,

L) Applying theorem 2.1 in Section(2.5.3, determine T

satisfying eqn.(2.27) and & and L1 given by eqn.(2.28).

(11i) Applying transformation T = L; obtain the new state

model



m 12 L=

= A5X5 i B5U,

A

1

U CsX5 + DgU, | o (GuBed
which will satisfy the symmetry congltion, i.eoa
I r De e
ZJL‘% ~Ag
(5.25)

is a symmetric matrix.

(iv) From (5.24), obtain symmetric positive definite P as

discussed in [85].

(v) The matrix T

11 plz_’

R
y 1
Fle Pzz,}

can always be written as [85}

P

2 ‘Q] Fia P |) I 'Q‘l [Ky Kpg
L=l

b 1] Vg Fag JIEW I 12 Koo e4BE)
where Ko = 0.
(vi) Choose the transformation
P -7
¥ o ASEF)
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where, T_l is given by

. - =
r(I—QQ')l o [ 1 Q
Tl =
o (-a'Q)71|| q I
3 . 20 _
such that
ETET = Dq s (G028
and
EDT w=q
q q

(vii) Using the transformation Xg = T_lX5 given by eqn. (5.27)
and eqn. (5.28) we obtain the new state model as

DX = ZTZAT Xg + £ TERU,

U =CeT Xz + QU . e (5.29)

It is proved in [85] that state model in (5.29) can be

realized using RLCT elements.

5.4 PROPOSED METHOD SUITABLE FOR COMPUTERIZATION

The first step in both the methods given above is to
determine any state model corresponding to the given specifi-
cations. Suitable constraints of passivity or reciprocity
are then applied. As in synthesis problem, we are given a
symmetric positive real matrix and our object is to construct
an RLCT realization without gyrators, the above procedures

can be modified by exploiting the symmetry of the given
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specifications. The proposed synthesis procedure is given

in the following steps.

(i) Construct Eé,B,C,ﬁ} as follows. Determine the Hankel
Matrix from the Markovnparameters of the given positive

real matrix. As the given matrix is symmetric, the Hankel
matrix will also be symmetric. A symmetric matrix can always
be decomposed in the form MZM'[lVE, where £ can be uniquely

determined by H(s) and is the associated reactance matrix.

Now, set
M=M
and
N = I’
where
e
o) =3
M = Ml and N = (No Nl 5 Nr—l"'
M
o k] v {550
We get[90}
0 = Mo’
B =" Zi
o)
i _ e |
A=MxinM= (NN ), v ABE13

where .{L- is the 'generalized' companion matrix given by

eqn.I-14 of [90] as



I— o e o,
0 @ K e
Y - ! : : ; :
v 1 { 0 N
QO O R 3
__‘br-Im -b 4L _bl‘[m_
and
D = H(e)

and also as proved in [90]

LA = /'

and
- D r‘
fe £ ° ]
s A

is 2 symmetric matrix.

(ii) Calculate W(s) by spectral factorization [88] and
determine Hankel matrix formed from the Markov parameters
of W(s). It has been shown in [6] that if H(s) has a
realisation EA,B,C_J, W(s) has a realization EA,B,L]. For
H(s) of order 1xl, Eé,B,g] can be easily determined as is
shown in [6], but for H(s) of higher order and when [é,B,é]
of H(s) are determined from Markov parameters, the author
feels that there is no specific procedure available to find
the realization of W(s) such that EVM I3] of H(s) and that
of W(s) are same [l]. To do this, we use the derivation in ISBJ
used for determining the residues of poles of transfer
function from given state equations. This result can be

stated in the form of the following Lemma.
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LEMMA 5.1 If the sequence OB, CAB, ... , CA" 1B and the
sequence B, AB, ... , Tt of a minimal realization are

given, then C is determined uniquely by

" ) oAl
c=q_c3 cAB  cAl lB:H_B AB AnlB] .o (Bua®)

For proof see [58].

Now in our case, erB, A e e CAn—lBi]are determined
as the Markov parameters of W(s) and if L? AB 24 An—lB.J
is known, matrix C which in our case of W(s) is L, can be

determined from eqgn. (5.32).

It is interesting to note that [ B AB ... A”‘lB]
of W(s) which is also equal to [ﬁB AB s An—lBjJ of H(s)
is nothing but the matrix M determined already in the
decomposition of Hankel matrix found from Markov parameters
of H(S)[QOJ. It is seen that M is often required for finding
the intermediate expressions in the rest that follows and

So can be stored separately for computerization of the

procedure. So knowing L, L'L (Eqn.2.24) can be obtained.

(1ii) The next step is the determination of F. It can be
obtained from equation (2.24a).The method as given in [6]
requires the solution of nx(ntl) / 2 simultaneous equations
which becomes quite complicated as n, the order of A,
increases as it would require the determination of inverse
of a large matrix. In the following, a method for the
determination of F is suggested. The method is especially
suited for computerization as P can be obtained in terms

of the already available expressions in the procedure or
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their multiplications etc. For simplicity the case when
H(=) = 0 is considered here although similar expressions
can be derived for the case when H(») is finite. Equation

(2.22) is rewritten as

PE < ATR = <L ,
PB = ' . ia (BB%)
So we can write
PA = AP - L'L
PAB = -A'"PB'- L'LB = -A'C' = L'LB = (-1)A'C'+(-1)L'LB
PAZB = -A'PAB - L'LAB = —A'[lA'c'—L'LQJ - LYLAR
= (—1)2A'2C'+(—1)2A'L'LB ~ L'LAB
PASE = —A'PA°B - L'1a®B
= -A'[@quA'gc' % (—1)2A'L'LB - L‘LA%] - L'LAgB
= (—l)gA'BC' + (—1)3A'2L'LB + (—1)2A'L'LAB - L'LA®B
PA°B = -A'PA°B - L'1A%B
( < P 2 >
: _A'[}_l)BA'zc' + (-1)°A"°L'1B + (-1) A'L'LAB"L'LAPé7
~L'LAB

=(-1)*Ar%c +(-1) A 3L L+ (-1 )PA 2L LaB+ (-1)%A L' LAZE ¢ 1A%

pat iy (=) LA Loy (g )=Laen=Ry vy py (1R in=B 1 an 4.

$ (=1 )" S At Spop a2

(5.34"
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Therefore
P
P[B EB A&°B ... An—lB]

iﬁ‘" ((DA'C'-L'LB (-1)°A'®C'+(-1)%A"L 11 1aB

(-1)5A'3c'+(-1)3A'2L'LB+(-1)2A'L'LAB-L'LA28 il

(~1)"tarndory ()P lanmBr gy (g )BL a3

a 5.3%%a )

- o comer paen. coprtamice ]

+ (-1) L'L[o B AB AZB PRl j

+(—1)2A'L'L__o 0 B AB PR il :}

+%—1)3A'2L’L[c> 0 0 B AT 4g ;

+(—l)n_lA'n_2L'L[- 0 0 0 0 \ B j
:r & vas {DBRE

B = [B L A“'lB]—l['_ Q, ]

The inverse of [% AB AZB Ji:8 An_lB.] is already

known from step (ii) above. So the terms on the right hand
side of eqn.(65.35) are known or can be easily manipulated and
therefore P can be determined without taking inverse of any
matrix once more, which ogtherwise would have been required

in the method as given in [6] or [85].
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(iv) The transformation (5.27) is next determined from
eqn. (5.26) and the rest of the procedure is identical to

that discussed in Methog o described by Yarlagadda[88].

Further, if H(s) has a pole at infinity, it is always

possible o write[6]

where, L = L' jq non-negative definite and Hl(s) is positive
realf6]. The synthesis of matrix sL can be accomplished by
transformers ang coupled inductors[Gl. S0, the problem of

Synthesis of H(s) ean be reduced to the synthesis of Hl(S)-

The algorithm suggested above is more suitable for
¢omputerization than the method suggested in (85] becau se
the reciprocity constraint in the suggested algorithm is
achieved by determining the appropriate realization directly
from the Markoy parameters instead of determining it hy
First finding any realization and then seeking for a trans-
formation which when applied on this realization transforms
iTe e reciprocal realization. Besides, the suggested
algorithm presents a unified approach frr determining the
re=lization of W(s) required in the synthesis procedure
by making use of Lemma 5.]. Further, the determination of
symmetric positive definite matrix P required for passivity
constraint is alsg achieved in terms of the intermediate

eéxpressions found in the algorithm.

In order to illustrate the pProcedure suggested above,

an example is considered below. For comparison, the same
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€xample, as has been chosen by Yarlagadda[35}, is discussed.

Example 5.3 Synthesise the positive real admittance
function

1l 2

5(s"+2s+9)

Yis) = Sp——', (5.36
F el tq .36)

Solution :

Step (i)

Yl(s)

Li 2.,
E(S +25+9)

e

QOfj—

52+?S+l
1

52+2 s+1

s 225 34zs4 457D, L BT

1

Hankel Matrix

0 1 '
Sr= ; s ’ «» (5.38)

which can pe decomposed in the form

MZM'= ¥ [ \:}'2- e
= 1 J %5 0
v

I

1
I
=
1
i
=
i
'__l
E |
il
£
—_ _I
|
i
>
oo
|

(5.39)



=130~

Therefore
= = l—-
RO S = R fz ]
and ot
o
V2
B=nN, =
=
Further,
A= MIou
=}
1
- VL§ fz 9 L1 v&
=2 0 -1 -2 11-Ve

L.
=
',..

As a check A can also be found as

A= NA'NL
- T2 Vg} 0 -\

:'_ fz o

E

(5.40)



Therefore-

RN )
Qo=
J—
tavli
20
-
BL

e

is symmetric.
Step (ii)
By spectral factorization

52+3
5 8]

W(s) =

DOfj—

1
1l

Wl(S) i W(oo)

or
Wy (s) = :§_i.l_ ]
Utz er]
Therefore.
<1 37
‘5‘"—’__3 G

From eqgn. (5.32)

[ caB B | aB 71
[cB CAB][ N ]-‘1

]

%

0 Ve
A R o R
V2 V2

(6.41)

(Eeam

(5.44 )

(5.45)
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9 2
SRS
£t - J .. (5.46)
) 1
2 2

(iii) Now considering the case when W(e) is not Zero,

eqn. (2.24) is

PA +A'P = -1 , wu A=A R
P = Ot - L'WO g <o [5.4989

LR, - 1, fo'e] co =
W = W) + W(ew) . s (6.4%c)

So, we can get
R S S TR AL
PAB = -A'PB - L'LB
=R Gl ) - 1itR

= =ATEY 3 A'L'WO - L'LB. S &P
Therefore
4 il
= ([ = 1 Vi = t
P = }:C L'W, A'C'+A'L'W -L LB][_'B AEE]
(5.49)
oo W' (oo e l -]: - l.
Now W(e) + W' () = §+t5= 3

Therefore, from eqn. (5.47¢)

‘M = .

Further

0
3
*(5\_[—2-_
L'Wo s ’
&z

D=



2 3. 11 3 e
2 2 '3 Ve
LL'B = | = ,
3 1 dg e
2 b, ¥ W B
gy S e ’"_;_
| 2 % ove { V2
A'L'W = = :
St B L_%_
2 2 2ye 272 vo (B.58)
From eqn. (5.49)
L. 35 I g
2 - 578 L 1[5_( S
P =
e R O (e o L
i}'z 572 CTEETE ||V O
5 3
4 47
3 2
4 v (RS
(iv) To determine transformation T corresponding to

eqn. (5.27), the procedure identical to the one given in [85]

is adopted. For the matrix Pl given by [85]
Y 1 3
4 4
oy 2
4 4
the eigen-values are giyen by

8.
16

or taking the positive value A = 1, the corresponding eigen-

A+DHa-2) - & -
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vector is

%] T
L%J i ‘l_ :

therefore, T (egn.5.27) and 7 are given by

M1 - 2 9
% 3 -1_ |38 gt le
= and =i = 3 |
1
o ik g L
3 1 ) ) z l_“
Therefore
1 o
Lo 1 ’
e as " "
ol \fzj
% - i
=3
Ve L3 Bl .. (5.52a)

(en)
—
it
{ 1
) (638] Vo]
@0 )
e ] i |
Qlfp— b~
P N~
| i
]
s il (o
of ol

(5.52p)

g
‘—-J
|
.._]
o>
—]
it
O
—

o
0] o}

O @O

(5.62¢ )

04 [Vo]

B
e —
=)

‘—I

[
i

4] IR T RN
DOji— DOf—
e =il
S

.—-J

1

[GN] [B
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Therefore, we have the state model

8 . - -
5= A O SR T SR
G 1 ) 9 C 3
L 8‘ : _‘ g’ b +\_1f'2- T
@ §_J_IL_ _—5 O_l__IL_ z
%
o het B B + 4
e \fz[s 51| 1 g Y.
P R (.
Therefore
i N R -
8 3 3
B o
ao- S L E 3 (5.54)
3 " 3 2 5 .
R S |
i il g T

It can be checked that

" i)

z B A

is a symmetric matrix and the state model (5.53) comes out
to be same as egn.D-18 of [85]. Therefore,the network
(Fige8.1) will also be identical to the one given in [851.
Obviously due to the flexibility in decomposing the symmetric

Hankel matrix obtained from Markov parameters,many equivalent

realizations can be obtained.

5.5 SYNTHESIS OF MINIMUM BIQUADRATIC FUNCTIONS
The synthesis of minimum functions has been a challenge
to network theorists for quite a long time until Brune

gave the synthesis procedure for these functions. Later,
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FIG. 5.1 - REALIZATION OF Y(s) [ EQN. 5.36]
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Bott-Duffin and several others attacked the same problem,
the different methods giving different number of elements,
Brune method, however, gives the minimum number of elements.
In order to get minimum number of reactive elements, one
can advantageously go in for state-space technique, as a
minimal state model always results in a minimum number of
reactive elements, the number being given by. the degree
of the given matrix in rational polynomials. The problem
can also be tackled to get minimum number of resistive
elements (reactive elements not necessarily minimum) based
on the approach recently given by Vongpanitilerd and
Anderson [81]. Further, as the state-space technique
offers greater scope for extensions to problems such as
equivalent networks, the synthesis of these functions
using this technique will be fruitful. Knowing one, a
number of equivalent networks can be obtained, all having
the minimum reactive elements. The problém of realizing
biquadratic functions, although sufficientiy tackled,
.8till remains interesting [80] and useful due to its
application in cascade synthesis methods. In Section(5.3),
various synthesis procedures using state-model approach
have been given for positive real matrices. As a bye-
product of these procedures, it is interesting to note that
for biguadratic minimum functions, by making use of the
property given in eqn.(5.63) some intermediste expressions
in these procedures become very simple and can be obta;ned

directly in terms of numerator and denominator coefficients
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of the function. For example a simple relationship express—

ing P, required for synthesis, directly in terms of

the coefficients of biquadratic function can be established

as follows @

Consider a driving-point biquadratic minimum function

o
S AdliiaE g
z2(s) = ————i——0 . » .. (5.55)

g bls ¥ bO

(for simplicity, scalar constant is
assumed to be unity)

Because
zl(s) = 2(s) = z(=) ,

therefore

TPl s Bt L

2
= bls + bO

The steps required are :

(1) Determine a state model given by

LEY)

1]

5 0 & 0 ]

[(ao—bo) (al'-bl)] 9 d

I
| 1
-

i S
oy
o
(9]

Q

Determine W(s)

W(s) is found as follows :
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From eqn. (2.24), we get

Let z(s) be
i i |
mé S nz
therefore
oot m - n.n
Even’z(s{} = B -%T&____%_a
3 e
2 2 2
i (52+a0);s +bo);albls
. A >
(s bo) (bys)
54*’( b .-a:b )52+ b
- 2 — ao O ly]. ao 0

(52+bo)2~ (bys)?

2, p——. 0 f—— D
(s"+/a b, )" + (a *b, a;b,-2V3 b )s

(52+bo+b15)(82+bo_b15)

2. . r~—r=2 - —_ 178 =P
(s"Vaghy)" - [(ayby*2yazby -a_-b )1/2, ]

2
(s +bo+b15>(sg+bo—b15)

Therefore, from (5.58)

2 -3 1/2
v__é_ S 'Hfaobo +Ealbl+2vaobo —ao—boj g

W(s) =

’

52+bo+ bls
wien =1r" . .. (5.59)
(iii) Find L'L

Wy (s) is given by
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1
V2 *#Ta b +[Bayb *Vab.-2a,-2b. T2 V7 s °—2b, s-1EP,

W, (s) =
1 )
S s b]_s + bO
l o EBEGY)
_ L (eaybytava by ~2a,-2b )"-VE by 1%+ [{%a b -2 b T
82 o bls il o
o .. (B.60)
Therefore 1
e 2 = - -
[V&a 5 /2, (2a;by+4Va b -2a -2b_ )° -2 by ]
(881
and - -
iy Ly
YL - 3 .. (5.62)
L —
21 Loo
where
- 2bo[ao + b, - 2_Vaobo],
Lo

]

= o e . e — ¥ LM
Loy = Lip = | VB35, V2 by [ (2a;b) +4V3 B-2a ~2b_)*-V2 TR

Leg = [2a)by*aVa b, ~2a, - 2b, |
s )

As z(s) in eqn.(5.55) is biquadratic minimum, the following

relation holds good
LT g 5 R (5.63)
O ¥ o ao O o o O 0 .

Substituting (5.63) in (5.62) we get
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L) = 2by2 by
by = Tyg = “2nVE;
o Bbi . .. (5.64)
(iv) Find P

As a symmetric positive definite matrix always exists

satisfying equation

pA+A'p:_L'L [}

take

P o= B

14 2e

Solving for P, we get

Tan =Pt sy
Pio = aiby,
Ege = a2y by -
Therefore
boal+aobl 3101
53— i (5.67)
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which is given in terms of the numerator and denominator

coefficients of the minimum function.

Hence, by making use of the property (5.63) of
minimum function, we can find the realization A,b,c,d and
the corresponding P needed in the synthesis procedure by
inspection and directly in terms of the coefficients of
biquadratic function. For rest of the procedure, Method I
given by Yarlagadda [85] can be applied. This result
concerning the biquadratic function may also find interest-
ing application in cascade synthesis using state-space

approach.

5.6 CONCLUSION

When the given specifications are in terms of input-
output characterization in s-domain, state-model approach
is considered as most useful tool for the synthesis
problem. Many results pertaining to the identification of
systems in terms of state equations are available. A
modified method based on the approaches of Ho and Kalman [28]
and Youla and Tissi[QO] is presented here when the given
matrix is symmetric. The realization thus obtained satisfies
the reciprocity constraints. Further, two procedures have
been recently Proposed by Yarlagadda[85] for obtaining the
state model which satisfies reciprocity constraints together
with passivity constraints. An improved procedure which is
particularly suitable for computerization has been developed

in this chapter. The elegance of the proposed method is
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attributed to the determination of the realization A,B,C
and AyB,L of H(s) and W(s) from the symmetric Hankel
matrices obtained from their respective Markov parameters.
The symmetric positive definite matrix P is determined in
terms of the matrices already found in the algorithm
rather than solving a set of simultaneous equations as
in [85] and so the difficulty in determining the inverse
of matrices is circumvented. Further, by exploiting a well
known property of the biguadratic minimum functions,
results for some intermediate simple expressions e.g. P
etc., have been derived in terms of numerator and
denominator coefficients of the function which facilitate
the procedure for the synthesis of minimum biquadratic

functions.



-144-
CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 INTRODUCTION

The application of state-space techniques to system
synthesis, particularly networks, is a significénf recent
development especially with the advent of fast digital
computers. New methods suitable for computer-aided design
are being developed. The present work is essentially
concerned with this problem and proposes new and improved
methods regarding the application of state-variable technique
to modern network synthesis. The procedures embodied here
deal with the synthesis of networks when the given specifica-
tions are in either state-variable characterization or
input-output characterization in s-domain. Attempt has been
made tn bridge the gap between the twin concepts of these
characterizations. This chapter, after summarising the
results derived in the earlier ones, gives a number of
challenging problems still open for investigation in this

field.

6.2 SUMMARY OF THE RESULTS

A critical review presenting the various phases of
the use of state-space approach in network synthesis has
been given first. Various significant results scattered in

recent publications have been collected in the form of an
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historical sketch with a view to acquaint the reader
with the importance of this powerful tool in the hands
of network designer. Generalized state models for RLC
networks have been derived and the extension of these
models for time-variable and non-linear cases has been
considered. The role of the state models and other various
results, e.g. constraints of reciprocity and passivity,
in arriving at passive-reciprocal synthesis has been

examined.

State-variable technique has become inevitable,
especially, for non-linear systems for which transfer-
function description does not exist while the latter
still carries popularity in many of the design problems
in linear systems. So, attempt has been made to seek the
state-space interpretation of the well-known results in
classical synthesis which will prove to be significant in
the study of equivalent networks. In particular, the state-
space interpretation of classical Foster, Cauer and Brune
methods has been given. A new procedure for the determination
of impedance matrix Z(s) from given 2(s) + 2Z'(-s) is
proposed which makes use of the well-known Anderson Lemma
for positive real matrices. Further, based on the reverse
of Ho and Kalman method for determining state equations,

a method for determining the transfer-function matrix from
glven state equations is discussed which does not involve
the determination of the rational matrix inversion (sI—A)_l.
The method is especially suitable for the cases in which

.det{}l—éj can be easily determined.
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When the given information is in terms of state-
variable characterization, synthesis is achieved by
comparing the state model in topological entities with
the known quantities and then solving the corresponding
set of equations. Such recently available proceduress are
quite cumbersome and so a satisfactorysolution of the
problem is desirable. In the present work, the generalized
state models for time-invariant and time-varying cases
are restricted to various classes of networks for which
synthesis procedures are given. In particular, a procedure
suitable for computer implementation for the synthesis
of state equations belonging to n-port LC networks is
discussed. The procedure has been programmed in Fortran II
and has been actually run on the available IBM 1620. An
easy algorithm for the synthesis of n-port BLC state
equations belonging to a class defined in Section (4.4)
is also given. Similarly, a procedure for a class of time-
varying LC state-equations given in Section (4.5) is also
considered. Further, there has been quite a bit of interest
in the realization of portless networks from given A-matrix.
Again the existing methods are far from satisfactory. An
improved procedure for the synthesis of A-matrix belonging
to a class defined in Section(4.6)is given. Sometimes the
given state equations are not minimal and procedures exist
for making the set minimal for time-invariant and time-
varying state equations. An improved computational procedure

for determining a minimal set of time-varying state-
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€quations is given. The technique is based on the computat-
ional procedure given by Mayne for time-invariant systems
and makes use of time-variable controllability and/or

observability matrices.

When the given specifications are in terms of input;
output characterization in s-domain, the natural approach
as agreed by many investigators recently, is through the
use of state models. Several procedures are available for
finding state models from the given transfer-function
matrix. An improved procedure for finding the state
equations is proposed for the case when the given matrix
is symmetric. The resulting state equations satisfy
reciprocity conditions. If reciprocity is to be satisfied
together with passivity, the determination of the suitable
transformation becomes a difficult problem and so in the
procedures given earlier, gyrators could not be eliminated.
Recently, by combining the approaches of Anderson and Newcomb
and Youla and Tissi, Yarlagadda gave two procedures for the
realization of given symmetric positive real matrix, without
the use of gyrators. A relatively improved procedure suitable
for computerization is given in the present work. Further,
by making use of a well-known condition for biquadratic
minimum functions, it has been found that in synthesis
procedures using state-model approach, some intermediate
expressions can directly be determined in terms of coefficients

of numerator and denominator polynomials of the given function.
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6.3 SOME PROBLEMS FOR FURTHER INVESTIGATIONS

The state-space approach to network synthesis has
been reviewed and applied to the classical synthesis
methods and to the modern synthesis methods when the given
information is in terms of state-variable characterization
or the input-output characterization in s-domain. There are
a number of problems still remaining in the use of state

variables in network synthesis.

1. The state-space methods, despite involving comparat-
ively more manipulations because of generalized approach,
are being used to interpret classical synthesis procedures
owing to the extremely important problem of equivalence of
networks. The classical synthesis methods have been well
recognised, while their interpretation in state-space terms
is being investigated recently. The interpretation of some
of the one-port synthesis methods has been presented in
this thesis. The interpretation of some of the remaining
one~-port and two-port methods is worth investigating,e.qg.
Bott-Duffin procedure and Guilemin Method etc. The inter-
pretation for 2-port methods may also indicate some
possible approach to n-port synthesis. Besides, the inter—
pretation of one-port Foster, Cauer and Brune methods, in
terms of state space, also indicates the possibility of

n—-port synthesis of Foster, Cauer and Brune networks.

2. Inspite of the extensive use of state-space techniques
in modern network and contrel theory, a majority of design

problems are being solved using frequency-domain methods.
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Therefore, it will be desirable to bridge the gap between
the state-space and frequency-domain description of
dynamical systems and establish a firm connection between
these twin concepts. The interpretation of poles, zeros,
residues, positive real matrices has been done. It will
be worthwhile to give the state-space interpretation of
some other common concepts in network synthesis, e.g.

removing a pole, shifting a zero and other known proverties
of networks.

3.A well-known property for reactance functions given
in [3] has been proved in Section(3.2)in a different way
i.e. from the general state model of LC networks. The state
models are the basic building blocks in state~space terms
Just as the conventional loop and node methods in classical
network theory. In order to have a deeper insight, it will
be worthwhile to prove other known results for RLC cases,
e.9. Anderson's Lemmas given in Section (2.5.2) from the
state models. Further, study of state~space methods in
this context, may also reveal certain interesting properties

of n-port networks.

4. A technique has been presented for the determination
of 2(s) from given Z(s) + Z'(-s) in Section(3.4 ).For lossless
Z(s), the algebraic process gives z(s) + Z'(~-s) =0, It
has been shown in [25] that Re z (jeo) for the lossless
scalar function consists of sum of impulses located at the

pole positions which the usual algebraic process fails to
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detect. The reverse process i.e. the determination of
z(s) from such a Re z(jw ) has also been discussed in
[25]. It is desirable to extend these results of [25]
to the matrix case exploiting the technique discussed

in Section (3.4).

5. The synthesis procedures for a class of n-port
RLC networks and portless RLC networks have been given.
It will be worthwhile to evolve the necessary and sufficient
conditions such that the state equations belong to the

class defined in Section(4.4)of Chapter 1IV.

6. The realization of state equations belonging to
time-invariant linear networks have been sufficiently
stressed. Little has been done to realize the state:
equations for time-varying,active and non-linear networks.
The state models for these networks can be obtained and so
it should be interesting to evolve the synthesis of time-

varying, active and non-linear state equations.

7.Combining the techniques of Yarlagadda and Tokad and
Anderson and Newcomb, a new algorithm has been proposed
for the realization of LC n-port state-equations. The
extension of the results reported in Section(4.2)to n-port

RLC state-equations obtained in[87] will be very fruitful.

8. The synthesis of a class of A-matrix for non-
degenerate networks when the network is assumed to have
connected resistive part has been given by Dervisoglu[l9j.
Based on the decomposition of A, given by Nordgren and

Tokad[57] and the one proposed in Section (4.6), the synthesis
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procedure for the realization of A-matrix for degenerate
networks having connected resistive part can also be

done.

9. By making use of time-variable controllability
and observability matrices, Mayne's [50] computational
procedure has been extended to time-varying case in
Section(4.7) It may be possible to extend a number of
other results such as Anderson's Lemmas given in Section(2.52)
for time~invariant cases to the impulse response matrices

for the time-varying cases.

10. Currently the growing interest is towards
sensitivity methods as they constitute a vital link between
the discipline of system analysis and system design.
Sensitivity-state models based nn graph-theoretic concepts
have been obtained for linear systems[65]. The method can
be easily extended to time-varying and nomdinear cases

based on the derivation of these models for such cases
discussed in Section (Bl

11. In “hapter V, procedures are given to realize
the state model by RLCT elements. The problem of state-
model realization ultimately reduces to the problem of
B-network synthesis which need be solved in order to have
a transformerless realization[92j. Further the ideas
proposed in [30] may also prove useful in obtaining

transformerless realization.
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12. By exploiting a well-known property of scalar
minimum functions, the symmetric positive definite matrix P
required in the realization procedure has been obtained in

terms of the coefficients of numerator and denominator
of the given function. The results should be extgnded to
minimum matrix case which may facilitate the synthesis

of Brune n-port sections[54],[55].

13. The algorithm presented in Section (5.3 ) results
in minimum number of reactances, the number being equal
to the degree of the given symmetric positive real matrix,
while the procedure suggested in [81] gives minimum number
of resistors. There is yet no available procedure for the
realization of positive real matrices which results in
minimum number of reactive as well as resistive elementsL&J.

The problem is an open challenge.

In conclusion, it may be said that with the advent of
digital computer, because of the generalized approach,

deeper insight and the importance of equivalent networks;

the state-space approach is being advantageously
used in network precblems and much more can be done
te wutllise thisg approach in network synthesis. Once
the synthesis of lumped, linear finite‘reciprocal, passive,
time-invariant networks based on state-variable technique is

thoroughly investigated, it will not be difficult to extend
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this approach to extremely interesting cases of active,
time-variable and non-linear networks especially in view of
the fact that the state-variable description provides a

general basis for the study of such networks.
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40
99

42

41

44

46
47

49

AP

SYNTHESIS OF LC NE

DIMENSION A(&4s4),

PELNDIYX

. TWORKS

B(4s4),

A STATE MODEL APPROACH HSS Z
BOCAs4) s Cl4sb)s D(bhobh)s DO(4ok)

DIMENSION B81l(4.4), W(898)9V(895)982(494)900(494)9E(494)
DIMENSICN CCl454) s AA(L4s4) sFDKV (494 )

DIMENSICN AR(494)99R(494)950&(494)9p(494)

DIMENSIQCN XX(49Q}9YY(494)9Y(4s4)9?(494)9XA(494)9XB(494)
DIMENSION G(494)96G(494)9NAC(4)9PRD(494)9AN(4)

COMMON AsEsUUaCeDBDQeBlaWaVsHZ9D09E9P9CC9AA9FDKV
{XsYY9YaZ9XA9X5969669NﬂC9PRD9AN

COMMON ARsPERsPBOR,
READ QQon oM

READ 99 4NA s MA

READ 405 U4A (Fsd)s
READ 405C08 1800,
READ 4Co((BGUIsd) s
READL AGxi( e (0 s Llis
READ 4G (1B (Teil)s
READ 4Gs{(DO(IsJ)s
FORMAT(7F15.2)
FORMAT (215)
COMPUTE MgV

DO 41 I=1sN

DO 41 J=1.M

e L

DO 42 K=s1sN
S=5+A(1 s K)*¥RO(K s J)
S=B(1sJ)+S

e, =8
W{lsJ)=S§

J1=0

N1=N-1

DO 47 KK=1.N1
J1=J1+M

DO 44 I=1,pN

J2=J1

Do 44 J=1.M
J2=J2+1

S: ) o

DO 45 K=1sN
S=S+A(T sK)I*L1(KsJ)
G ) B =T
W(IsJd2)=8

DO 46 1=14N

DO 46 J=1sM
B1(Is0)=R2(1sJ)
CONTINUE

DO 48 I1=1,M

DO 48 J=1.M
CCCIR T H=C (] »0)
Viide I N=Gl B

DO 49 I=1,N

DO 49 J=1,p
AACJs I Y==A(1l5J)
J1=C

B B0 KK=1 sN1
J1=J1+M

DO 51 I=1,N

J2=J1

I=1sN)s
]-=19N) 5
I=1sN) s
I=19M)»
I=1opM) s
I=1oM) o

J=1sN)
J=1+M)
J=1 1)
J=1sM)
J=1-M)
J=1sM)



M)

52

52
50

57
56

n*ﬁ 51 J:]_’r‘.f
J2=J2+1

X
)

DO 52 K=1sN
S=S+AM(T sK)*CCUK s J)
B2(T44)25
BTl T

DO 53 I=14N

DO 53 J=14M

CCU B J)=B2( 1)
CONTINUE

J1=J1+M

PUBCH 405 01WIiled)s
PUNCH 40 ((V(TsJ)s
COMPUTE WD

DO Bk T=14H

D@ 54 J=148

S=00

DO 55 K=1sJ1
S=S+HW (T oK) %W (JsK)
DD(IsJ)=8

PUNGH 40 ad (DDA T 5J
CALL INVERTI(DDsNs4G)
PUNCH 40:( (DD Ts0)s
COMPYUTE P

DO 56 I=1sN

DO 56 J=1,N

S=t o

D0 8T K=ls21
S=S5+VIIsK)#W(JsK)
E(IsJ)=S8S

PUNCH 405 ((F (IsJ)s
COMPUTE AR sBRsPORS
By e A e

DO BR J=1,N

=1 °

CO 59 K=1.N

5=(

S=S+E(TsK)#¥DD(K s J)
P{TsJ)=s

PUNCH L7 ((P (IeJ)9
NC=MN=MNA

MC=M~M

DO 101 Ie=il,.N

DO 101 J=1.N

520 50

DO 1€2 K=14N
SaS5+P{IKI#A(X s )
AR(T14J)=8

DO 103 I=z1,N

DO 103 J=1,M
Sal.n

DO 104 K=1sN
SESHP(IKI®PR (Ko y)
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I=1sN)s
I=1sN)s

s I=1sMN)s

I=19N)9

[=1sN)o
ETCa

I=1sN)>s

J=1,J1)
J=1,J1)

J=1-N)

J=1,M)

J=1sN)

J=1sM)



103 BR(Is) =58
DO 105 I=1,N
DO 105 J=1.m

107

o
114

ieee

113

114

$=0,0

DO 106 K=1,N

~156—=

SESHP (1K) ¥R (Ko J)

BORII,J)=§
1775 ( (AR

PUNCH
NB=NA+1

PUNCH 107, ( (AR
PUMCH 127s( (AR
PUNCH 127s( (AR
PUNCH 107,( (PR

MBE =MA+T
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

1075 ( (PR
1075 ( (PR
1ICT7: (PR
107 ((RR( I +J)
1075 ((POR(TIsJ) s

(IsJ)

(Is)
(IsJ)
(IsU)
(IsJ)

fIait)
(IsJ)
¢ Fady)

9
S
9

9

PUNCH 1075 ((BO°R (154},
PUNCH 107, ((R"R(IsJ),

FORMAT
DO 110
DO 110
S=020

DO 111
S=S5+RO(K

DO 112

IT=tA
DO 113
IT=11+1

DO 113 J=1,Mp

(TF 104
IZI,P4
=] 9 I

K=19P'

s [ )*BOR (K )
XX(Isd)=8

CONSTRUCT YC

[=1,MA

DO 112 J=1,MA
Y(IsJ)=XX(I9J)+DO(IeJ)

I=19NA

Y(II9J)=—B$R(I9J)
Y(JsIT)==R0R(Js1)

IT=MA

PO 114 I=1I,NA

IT=11+1
JJ=MA

DO 114 J=1,NA

JJI=JU+1

Y(I1sJJ)=
PUNCH 1927,

NMN=T I

CALL CEDRuUM
CONSTRUCT 7zZL

IT=NA
B0 118
[I=11+1
T

I=1,NC

(01551
(RO Pwi)is

(Y s NMN)

=10

I=1 oNA),
I=1 +MA),
I=pNR N ),
[=NR N ),
I=1 .NA),

I=1 .NA)Y,
I=NB,N ),
I=Nem ),
I=T s N o
I=1 NA),
I=NB.N ),
T=NRsN ),

J=1 HNA)

J=NZ,N )
J=1 g"\;','f\.)
J=NBsN )
J=1 sMA)

S =T S Y S R

wn oo n o

J=14JJ)
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EX7

116

EXg
118

121
120

122

e

Bz e [
JJ=JJ+1

20 F 30l Ve SPNERT SN
IT1=NC

DO 117 1=1.MC
IT=11+1

JA=T+MC

RORTET | U= FaNT
IA=J+NC

ZEED s JF=RORY TAs J&)
ZUJ s T TV=RORETAsJA&)
DO 116 1=1.MC
I1=1+NC

IA=T1+MA

0 LE6 Jd=T MG
JJ=J+NC
JA=J+MA

Z0E T o I =RO
PUNCH 107, (
NMN=T1

CALL CEDRUM (ZsNNM)

COMPUTE FbhkV

DO g T=1 a0

DO 118 J=1,M

S=Oon

B0 119 K=1sN
S=S5+P(1,K)*B(KsJ)

XB{I,J)=5§

g0 120 I=71.M

DO 120 J=1,M

SEsE

B@ 121 K=71,N
S=S+RO(KsI)#XA(K s J)

XB(IsJ) =8

DO 122 I=1,MA

B 22 = s MC

JI=J+MA

FOKV (Te)=D{ ToJJ)+XP( 1sJJ)

PUNCH 1075 ((FDKV(IsJ)sI=1sMA),

GQ TO 104
END

J=1.,MC)



200

290

202

201

203

205
206

204
295
207

209
208

211
213

212
216

215
21C

299
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SUSROUTINE CERBUM (GsN)

DIMENSTION A{4s4)s B(444), BO(4s4)s Clbsh)s Dibstk), DO(444)
DIMENSION Bl(4s4)s ¢(898)9V(898)9B2(4,4),DD(494)9E(494)
DIMENSION CClhs4) s AA(L L) sFDKV (Lot )

DIMENSION AR(494)9ER(494)9BOR(494)9P(494)

DIMENSION XX(494)9YY(494)9Y(494)9Z(494)9XA(494)aXB(494)
DIMENSION 6(494)9GG(494)9NAC(4)9PRD(494)9AN(4)

COMMON A9P9359C9D9D09ﬂ19“9V9929DDsE9P9CCeﬂA9FDKV

COMMON ARLER AR, XXuYYeYeZ9XA9XﬁeGsGGaNﬁC9PQD,AN

DO 200 I=1.N

DO 260 <J=1sN

GG(IsJ)=G(1IsJ)

MNl=N-1

BIDE o L) S ey

K=1+1

DO 201 J=KsN

IF (G(IsJ)) 202,201,202

AT=ARS(G(I5J))

I1=1

II=1

JJ=J

GO TO 203
CONTINUE

GO TO 220

DO 204 I=I1sN1
K=I+1

DO 204 J=K,N
IF (G{IsJ)) 205,204,205

IF (ABS(G(IsJ))=AT) 20652045204
AT=ABS(G(1,J))

11=1

Jd=J

CONTINUE

PUNCH 295,ATs11sJJ

FORMAT (F10.35215)

IF (G(I1sJJ)) 207,208,208
DO 209 I=1,N

GGL T »JJ) ==G(TsJJ)

DO 21u I=1,N

IF (BT ITH) 21152155212
IF (GG(IsJJ)) 213,215,215
NAC(I)=-1

GO TO 213

IF (GG(IsJJ)) 21552155216
NAC(T)=1

GO TO 210

NAC(I)=0

CONTINUE

PUNCH 2995 (NAC(I)s I1=1,N)
FORMAT (1415)
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DO 231 I=1:N
ANCT)I=NAC(T)
DO 217 I=1sN
DO 217 J=1,N
PRO(T o J)=AN(T ) #AN(J)%AT

PUNCH 2985 ((PRD(I,J), I[=1sN)1s J=1sN)

FORMAT (6F12.3)

BQ 2¥8 T=1aN

DO 218 J=1N
G(IaJ)=G(IsJ)—PRD(IsJ)

GO TO 292

B 22F T=lah

IF (G(Isl)) 22292215221
PUNCH 223

FORMAT (22H MATRIX NOT REALISABLE)
CONTINUE

PUNCH 29T (G(Tal) g T=1sN)
FORMAT (5F 14.3)

RETURM

END



INPUT DATA

RESULTS

0,00
0,00
«25
LU
0600
0,00
Cs00
25
"‘012
0,00
«07
0,00
«05
14,50
0.00
-2086
029
0,00
05
3099
0.00
Q0
00000
-29999
02000
0.C0N00
00000
09999
00000
9999
Co000

000
o173
012

~

o .J
o6

D |

o

v

o

R O O

{ a2 B o

° i
—025
Q.00
Co00
0000
000

016

—9'0:'2
D.00
ToQ4

«02
OQCQ

032
060
0,00
159

C.0020
C.Q000
~.5999
CeGC00

[‘\ DNMN
J o LU

0.0000

09999
C.0080
00000
00,0000

'9075
0.0

Q0000

09599
0.0000
Oo:‘DC(\

= 1B

_\3@5
060

0.0

340

037
0,00
C.00
~o02

0«06

075
0.00
0600
-.09

12
0.00

013

Co00
8,58

0«00
013

000
1.00

Ne0ONO

0« 9999
e TR
0.0000

e 25
0.00
003
_001

1.00
0.00
003

—006

0.00
205

=9,.,02
—2086

C.00
0.00

0 e 00
0.00
“006
0,00

0.00
0,00
=512
0.00

01
0.00

1Q05s51
000

04
0.00

3.99
0.00



00000
00,0000
509999
0.0000

=909

1 =1

0999
2000
5,000
1.0000
0.0000
CoOO")

1 1
D000
"‘of‘,OO

1.000

29999

0.0000
0.C0C0
~s8999 0.0000
369999
1 2
0
-0999
0.0C0
3,000
De0020 0.0000
3.0000
1 2
0
0,000
0.000
1999
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= 9999 3.9999
OOOOO —0999
0.000

3999

Ce0DCOQ 19999
0,000 0.0CO
0,000

3,000

0,0000

0.0CO

0.0000

00000

0.000
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