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ABSTRACT

In recent years there has been a tremendous increase in the contamination of

groundwater due to rapid industrial growth and use of fertilizers and pesticides in

agriculture. This contaminated water passes through the soil and may produce

hazardous chemicals, which are risk to public health. The definition of contaminant is

defined as the presence of any objectionable substance in water which make unsafe

for drinking. The substance may be physical, chemical, biological or radiological. The

biological contaminants are bacteria and virus. It is viruses in drinking water that are

an important source of human enteric diseases. Pathogenic microorganisms from
*

sewage sludges, septic tanks and other sources can transport with subsurface water to

drinking water wells. Production wells for drinking water must be at an adequate

distance from source of contamination. Thus, there is a need to predict the

contaminant distribution in ground water once these are released from the source.

Understanding of the movementof contaminants in subsurface is necessary for

taking up proper remedial measures. Numerical models are very important tools for

studying the movement of contaminants in subsurface. The present study is concerned

with the modeling of conservative as well as nonconservative virus transport in

subsurface. The model is based on an operator split approach which employs a

globally second order accurate explicit finite volume method for the advective

transport and an implicit finite difference method for the dispersive transport. The

performance of the numerical model in predicting solute/virus movement for both

advection dominated and dispersion dominated flow scenario is studied by comparing

the model prediction with the corresponding analytical solutions for a wide range of
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Peclet numbers and Courant numbers. The comparison is made for various cases of

movement of conservative, reactive and virus transport in subsurface. In addition the

virus transport numerical model is coupled with Richards equation governing

moisture flow through the unsaturated zone. The numerical model simulating

moisture flow through unsaturated zone is based on a mass conservative fully implicit

finite difference numerical scheme. The application of the flow and transport models

on virus movement throughunsaturated zone is demonstrated through an example.

The present study is also concerned with the estimation of transport

parameters of virus movement in subsurface. The parameter estimation is formulated

as a least square minimization problem in which the parameters are estimated by

minimizing the deviation between the model predicted and observed virus

concentrations. For this purpose, a hybrid finite volume numerical model simulating

one dimensional virus transport in subsurface is coupled with Levenberg-Marquadart

optimization algorithm. The efficacy and robustness of the optimization procedure is

evaluated by estimating the parameter from hypothetically generated virus

concentration data in both saturated and unsaturated zones. The present study also

investigates the performance of the objective function while estimating transport

parameters using inverse procedures in the presence of data errors. In this study the

Gaussian noise is added to the hypothetical data generated at discrete times and at

discrete distances from the source. A detailed statistical analysis is carried out to study

the effect of bias induced by the objective function on the estimated parameters when

the data contains the errors. The optimization algorithm is also applied to estimate the

transport parameters from the virus concentration data of two column experiments

involving MS2 and OX 174 virus transport in saturated and unsaturated zones.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Ground water is an important source of drinking water. Majority of the people

depend on the ground water as the principal source of drinking water. Traditionally,

ground water has been considered safe for human consumption and hardly requires

conventional drinking water treatment. The quality of ground water is better in

comparison to surface water because of the natural purification property of the soil.

However, due to increase in population, industrial and agricultural activities it is being

subjected to contamination. Management of a ground water system means assuring

availability of water in terms of both quantity and quality (Dhiman and Keshari,

2003). It is necessary to develop the appropriate ground water quality management

plan with proper understanding of physical phenomena of contaminants movement.

Pollution of ground water occurs due to mixing of physical, chemical and

bacteriological contaminants from different sources. The definition of contaminant is

defined as the presence of any objectionable substance in water which makes it unsafe

for drinking. The substance may be physical, chemical, biological or radiological in

nature. As per Freeze and Cherry (1979), contaminant is defined as "all solutes

introduced into the hydrologic environment as a result of man's activities regardless

of whether or not the concentrations reach levels that cause significant degradation of

water quality." The definition given by Miller (1980) is "Ground water contamination

is the degradation of the natural quality of ground water as a result of man's

activities." Most of the contaminants are released at or slightly below the land surface

1



by design, by accident or by neglect. The shallow ground water is more affected by

these contaminants as compared to the deep ground water. There are at least four

ways by which ground water contamination occurs, a) Infiltration b) Direct migration

c) Interaquifer exchange and d) Recharge from surface water.

Land application

Vitus
Migration »

TVtttttx

Groundwater pti Microbial anisganisffl
(aesoDs vs WiMTObfC}

Tarap Row ra» •
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Fig 1.1 Factors affecting the entry, survival, and migration of viruses ingroundwater

Fig 1.1 explains the factors affecting the entry survival and migration of

viruses in groundwater. The biological contaminants are bacteria and virus. It is

viruses in drinking water that are an important source of human enteric diseases (Chu

et al., 2003). Pathogenic microorganisms from sewage sludges, septic tanks and other
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sources can travel with ground water to drinking water wells. It has been shown that

the viruses travel considerable distances through the subsurface depending on their

size, their adsorption characteristics and their degree of inactivation. It is considered

that soil passage is an important barrier against virus movement. For example, in

Germany and in the Netherlands, 60 days traveling of ground water is adequate to

inactivate pathogenic microorganisms (Schijven, 2001; Pekdeger and Matthess,

1983). Viruses moved at greater than 300 m/day and survived at least for 7 days

(Keswick and Gerba, 1980). Thus, after certain time or certain distance traveled by

the water, viruses are removed. The removal of virus is defined as the logarithmic

reduction of virus concentration, log io(c/cO). The removal of viruses from

groundwater occurs due to the processes of adsorption and inactivation (Chu et al.,

2001). In addition, advection and dispersion affect spreading of viruses and thereby

attenuation of virus concentrations. Bacterial breakthrough is slightly faster in

columns with lower clay content and that the most rapid rate of bacterial adsorption

may occur during the first 60 min of exposure (Banks et al., 2003). If the inactivation

coefficient equal to zero then the transport is considered as conservative and if the

inactivation coefficient is considered, then the transport is considered as

nonconservative.

1.2 PROBLEM IDENTIFICATION

Groundwater may become contaminated with pathogenic microorganisms

from artificial recharge with wastewater or surface water, or from septic tanks or

leakage of sewage pipes. Therefore, to protect groundwater from contamination,

adequate setback distances between these sources of contamination and production

wells for drinking water are needed. Surface water may also be contaminated with



pathogenic microorganisms mainly due to discharge of wastewater to produce safe

drinking water pathogen need to be removed. To assure production of safe drinking

water, adequate travel times and distances are needed. It is difficult to eliminate

completely the source activities and subsurface will continue to receive increasing

quantity ofcontaminants. Since the source activities cannot be completely eliminated,

it is necessary to protect the ground water from the source of contamination. This goal

can be effectively achieved after acquiring the definite knowledge of the transport of

biological contaminants in the subsurface environment. The unsaturated zone acts as a

conduit for the passage of the water from the ground to water table. The biological

contaminants present in the ground can be carried by the water infiltrating into the

ground and become a potential threat to the groundwater quality (Jyothish, 1999). In

order to prevent or minimize such a water quality hazard, a thorough understanding of

the flow processes combined with mechanism of virus transport in the unsaturated

zone and groundwater is essential (Powelson et al., 1990; Powelson et al., 1991;

Zhuang and Jin., 2003).

Pathogens of major threat to human health are viruses and the pathogenic

protozoa. Little is known about the fate of these pathogenic protozoa during soil

passage (Hancock et al., 1998). But much more information is available for viruses

compared to pathogenic protozoa. It is believed that the processes that determine the

removal of viruses during soil passage also apply to protozoa (Scijven, 2001).

Therefore, this problem will be confined to the study of virus. The most common

types of viruses found in ground water which may infect human body are animal

viruses such as: adenovirus, coliphage, coxsackievirus, enterovirus, hepatitis,

poliovirus and rotavirus (Gerba and Keswick, 1981; Yates and Yates, 1988, John and

Rose, 2005).
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Bacteriophages were selected as model virus as they serve as ideal indicators

of viral pollution (Chattopadhyay et al., 2002). Two common bacteriophage used as

tracer in groundwater are MS2 and PRDl (Kinoshita et al., 1993). Bacteriophages

such as MS2 and PRDl have properties similar to pathogenic human viruses

suggesting that bacteriophages can be used as proxies for virus transport (Corapcioglu

et al., 2006). MS2 and PRDl are considered to be good model viruses because they

attach less than most pathogenic viruses and are relatively persistent during transport

through subsurface. MS2 and PRDl have relatively low isoelectric points (Bales et

al., 1991) and are therefore expected to attach poorly to most soils (Gerba, 1984).

1.3 OBJECTIVE OF THE PRESENT STUDY

The present study is concerned with the numerical modeling of conservative

as well as nonconservative virus transport in ground water and identification of

relevant transport parameters. With this in view, the following objectives have been

set for the present research.

1. To develop numerical models for virus transport both in saturated and

unsaturated zones.

2. To develop an optimization model for estimating virus transport parameters.

3. To address the issue of identifiability of model parameters from the known

concentration measurements.

4. To study the effect of data errors on the parameter estimates.

5. To provide an insight into the use of virus transport models with a focus on

parameter selection.



1.4 ORGANISATION OF THESIS

A brief description of the layout of the thesis is presented in the following

paragraphs.

A comprehensive literature review on modeling of virus transport through

saturated zone and unsaturated zone, solution techniques, parameter estimation

procedures is presented in Chapter 2.

Chapter 3 deals with the development of a numerical model to solve the virus

transport equation through saturated zone. The numerical model solves the one

dimensional movement of virus through ground water. The model is based on an

operator split approach which employs a globally second order accurate explicit finite

volume method for the advective transport and an implicit finite difference method for

the dispersive transport. The model is validated with the available analytical solution

for advection dispersion equation. ^

Chapter 4 deals with the optimization technique which is coupled with the

virus transport equation in saturated zone to estimate the virus transport parameters.

The inverse problem is formulated as a nonlinear optimization problem, i.e

parameters are estimated by minimizing a suitable objective function which expresses

the discrepancy between observed and predicted system response (Kool and Parker,

1988). Levenberg-Marquardt algorithm is used as the optimization algorithm due to

its simplicity and robustness. The performance of inverse procedure is tested by

hypothetically generated virus concentrations data. To study the effect of objective

function on parameter estimates, Gaussian noise is added to a hypothetically

generated data and detailed statistically analysis is carried out. The transport

parameters are also estimated from the virus concentrations data from a column



experiment conducted by Bales et al. (1991) and Jin et al. (2000) for MS2 and

(DX174.

Chapter 5 deals with the development of a numerical model for virus transport

in unsaturated zone. A fully implicit numerical model is developed to solve Richard's

equation and the virus transport equation is coupled with the Richard's equation. The

model results in the spatial distribution of nodal pressure head which are used to

calculate the velocity at each grid point. These velocities are used in the virus

transport equation to determine the concentration of the virus at different locations.

Chapter 6 discusses virus transport and estimation of transport parameters in

the unsaturated zone. It includes development of an implicit finite difference model

for moisture flow, a finite volume model for virus transport, coupling with the flow

and transport models with an optimization algorithm for parameter estimation. To

study the effect of objective function on parameter estimates, Gaussian noise is added

to a hypothetically generated data and detailed statistically analysis is carried out.

Chapter 7 summarizes the main findings of the study and discusses the scope

for future investigations.
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Soils sustain life on earth. They are important not only from an agronomic

standpoint for supporting growth of plants but also from an environmental standpoint

for mitigating many of the potentially adverse effects of surface applied contaminants

on the quality of ground water resources (Rockhold et al., 2004). Microbial activities

directly affect the environmental quality of water, soil and sediments. It should be

noted that although sludges are treated by various disinfection methods such as

chlorination and heat conditioning prior to disposal, highly resistant virus may remain

intact (Berg, 1977).Viruses are colloid particles with size ranging from 0.02 to 0.3 urn

(Brock and Madigan, 1991). They vary widely in shape and chemical composition.

Their surface charge is established by the ionizable groups comprising the virus

surface; and also at natural subsurface conditions viruses are generally negatively

charged (Taylor and Bosmann, 1981; Elimelech et al., 1995). Because viruses do not

have their own respiratory and biosynthetic functions, they reproduce inside other

cells by a process called infection. Therefore, unlike bacteria or protozoa, viruses

present in groundwater cannot increase in numbers but only decrease (Sim and

Chriskopoulos, 1998).

The transport of virus in ground water and the use of bacteriophage as tracers

were first studied by Wimpenny et al. (1972). Virus transport in subsurface has gained

much attention during the past few decades. Considering its importance in different

areas researchers have made immense efforts towards understanding the complexities
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underlying this phenomenon. In the following Section, a comprehensive literature

review on i) different mechanisms of virus transport in subsurface ii) the

mathematical modeling of virus transport in subsurface and iii) estimation of virus

transport parameters is presented.

2.2 VIRUS TRANSPORT MECHANISM

In recent years, studies of transport in groundwater systems have focused on

understanding the mobility and degradation characteristics of contaminants

(Sureshkumar and Sekhar, 2005). During subsurface transport the virus are subject to

variety of hydrological, physical and biochemical process (Mallen et al., 2005; Islam

et al., 2001). Subsurface virus migration is controlled by advective-dispersive

transport and sorption mechanisms (Kim, 2005; Kim, 2006). In porous media, virus

can partition between the aqueous phase and solid matrix and the contaminant

transport can be delayed relative to groundwater flow as a result of sorption (Kim and

Kim, 2003). Attenuation processes of viruses result mainly from biodegradation and

sorption (Hiscock and Grischek, 2002).

There are three mechanisms that govern the transport of virus.

1. Virus transportcaused by the flow of ground water is called advection

2. Virus transport caused by the irregular mixing of waters during

advection is called dispersion.

3. Chemical mechanisms which occur during advection are called

retardation.

2.2.1 Advection

It is the movement of virus caused by ground water flow. Due to advection,

viruses travel at an average rate equal to seepage velocity of the fluid. Seepage

r
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velocity is defined as

v=^- (2.1)

where v is seepage velocity or pore velocity of the ground water (LT1), Vd is Darcy's

velocity (LT1), <f> is porosity of the porous material. In the above equation it is

assumed that all the voids in the media are equally effective in conducting the flow.

2.2.2 Hydrodynamic Dispersion

Hydrodynamic dispersion involves the spreading of the viruses from the path

that would be computed to follow according to the advective hydraulics of the flow

system (Freeze and Cherry, 1979). Dispersion is due to the mechanical mixing during

fluid advection (termed as mechanical dispersion) and because of molecular diffusion.

2.2.2.1 Mechanical dispersion

Mechanical dispersion is most easily viewed as a microscopic process. On the

microscopic scale, dispersion is caused by three mechanisms. The first occurs in

individual pore channels because molecules travel at different velocities at different

points across the channel due to the drag exerted on the fluid by the roughness of the

pore surfaces. The second process is caused by the difference in pore sizes along the

flow paths followed by the water molecules. Because of differences in surface area

and roughness relative to the volume of the water in individual pore channels,

different pore channels have different bulk fluid velocities as shown in Fig 2.1. The

third dispersive process is related to tortuosity, branching and interfingering of pore

channels as shown in Fig 2.2.
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Fig 2.1 Mixing in individual pores

Fig 2.2 Mixing of pore channels

2.2.2.2 Molecular diffusion

Diffusion is the process whereby ionic or molecular constituents move under

the influence of their kinetic activity in the direction of their concentration gradient.

Diffusion occurs in the absence of any bulk hydraulic movement of the solution. If the

solution is flowing, diffusion is a mechanism, along with mechanical dispersion, that

causes mixing of ionic or molecular constituents. Diffusion ceases only when

concentration gradients become nonexistent. The process ofdiffusion isoften referred

to as molecular diffusion.

Fick's first law states that the mass of diffusing substance passing through a

given cross section per unit time is proportional to the concentration gradient and is

expressed as

dC
F = -D_

dx
(2.2)

where, F is the mass ofsolute per unit area per unit time [ML"2T*]. Dm is the diffusion

coefficient [L2T_1], C is the concentration of the virus [ML3], and dC/dx is the

11
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concentration gradient. The negative sign in Eq. (2.2) indicates that the virus moves in

the decreasing direction of concentration.

Fick's second law relates the concentrations of a diffusing substance to space

and time.

dC d2C

where x is the space coordinate and / is the time coordinate. The hydrodynamic

dispersion is the sum of mechanical dispersion and molecular diffusion and is given

as

D = a,v + Dm (2.4)

where as [L] is the characteristic property of the porous medium known as dynamic

dispersivity.

2.2.3 Sorption

During transport, virus undergo some type of reaction, the most common

being sorption (Mojid and Vereecken, 2005). There are three types of adsorption,

i) physical adsorption ii) chemical adsorption and iii) exchange adsorption

(Corapcioglu and Haridas, 1984). Sorption tends to retard or delay the virus

movement. Sorption occurs due to chemical and physical processes and implies an

exchange of virus mass between mobile fluid and the immobile regions existing in the

porous medium (Brusseau and Rao, 1989; Sardin et al., 1991). Adsorption of viruses

to soil may be modeled as either reversible or irreversible (Agarwal et al. 2006). In

the case of irreversible attachment, there is no detachment. In the case of reversible

adsorption, one may haveequilibrium and/or kinetic adsorption sites. In general, both

kinds of adsorption may occur in a given medium. There are sites where attachment
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and detachment are fast relative to flow velocity; allowing equilibrium to occur, i.e. a

high mass transfer rate implies fast reactions that are usually approximated by

equilibrium mass transfer. Similarly there are some other sites where adsorption is

kinetically limited relative to flow velocity, with constant attachment and detachment

rate coefficients, i.e. for low mass transfer rates, the reactions are rate limitingand the

kinetics of sorption is significant. The transport of virus in heterogeneous porous

media is the result of a spatially variable velocity field and spatially variable

retardation factor. The bulk velocity (average velocity over travel path) of reactive

virus is smaller than that of nonreactive virus (inactivation coefficient is equal to zero)

because of the partitioning of the virus onto the solid phase (porous medium). This

reduction in velocity of virus transport is called the retardation and is usually

described by sorption isotherm as shown in Fig 2.3.
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Fig 2.3 Langmuir-Freundlich isotherm with differentexponent P

The sorption isotherm can be described by Langumir-Freundlich model

(Huang et al., 1998) which is given as
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C = \ \p (2-5)
i+(kcy

where C is the concentration of virus in adsorbed phase, Q is the total amount of

surface sites or the maximum sorption capacity, k (L3M_1) is an overall affinity

coefficient, 0 < P < 1 is a dimensionless fitting parameter. For p=l Eq (2.5) reduces to

the Langmuir sorption scenario, given as

c-#Bl (2.6)
]+(kC)

In the limiting case \lk »C, Eq (2.5) reduces to Freundlich isotherm (Huang

et al., 1998) and is given as

C* =kfC" (2.7)

where kf =Qkp (2.8)

where kf is equilibrium constants.

Viruses are subject to reversible adsorption and desorption processes which

approximately follow the model of the Freundlich's isotherm (Matthess et al., 1988).

This model describes the equilibrium between the concentration of suspended (Q and

adsorbed (C*) viruses. In dilute suspensions, if p=l the constant kf equals to

distribution coefficient kd (Matthess et al., 1988). The subsequent adsorption-

desorption processes cause a retardation of the virus with respect to the transporting

groundwater which may be described by the retardation factor R. R is defined as the

ratio of the mean transport velocity of the microorganisms to the mean groundwater

flow velocity and can be approximated if the distribution coefficient kd of the viruses

is known and is given as

R=IsL =i+£.kd (2.9)
Vw <t>

where vw is the mean flow velocity of the groundwater, vm is the mean transport

14



velocity of the microorganisms, p is the bulk density of aquifer material, </> is the

effective porosity and kd is the distribution coefficient.

2.2.4 Inactivation

Viruses lose their ability to infect host cells with time by inactivation. Viruses

are inactivated because of disruption of coat proteins and degradation of nucleic acids

(Gerba, 1984). The factors that influence inactivation of viruses have already been

reviewed by Yates et al. (1987). Virus inactivation is usually regarded as a first order

process (Traub et al., 1986; Anders and Chrysikopoulous, 2006). The most important

factors that influence virus inactivation rates are temperature, adsorption to particular

matter and soil, unsaturated conditions and microbial activity. Effects of other factors

are found to be of insignificant importance. Yates et al. (1985) found that pH,

ammonia, magnesium hardness, total hardness, nitrate, total dissolved solids and

turbidity did not significantly affect inactivation of MS2, poliovirus 1 and echovirus

1. However, inactivation of MS2 increased significantly with calcium hardness. Virus

inactivation is generally quantified by their inactivation rate coefficients. During the

transport, viruses are inactivated by various mechanisms. Experimental observations

suggest that the inactivation rate is smaller for attached phase than for liquid phase

viruses (Hurst et al., 1980; Gerba, 1984). Studies of Sobsey et al. (1980) and Yates et

al. (1987) indicated that there exists a strong correlation between virus adsorption and

inactivation. They showed that the viruses which are adsorbed onto the solid matrix

survive longerperiod becausethey are protected against disruption of coat proteinand

degradation of nucleic acid. Thus inactivation rates of liquid phase and attached

viruses should not be assumed equal (Sim and Chrysikopoulous, 1995). Table 2.1

shows an inventory of the values of inactivation rate coefficient for viruses in ground

water and sewage water from several studies.
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Table 2.1: Inactivation rate coefficient of viruses in ground water and waste water

[source Schijven, 2001]

°c Water MS2 FRNAPH PRDl POLIO 1 ECHOl HAV Reference

4 GRW 0.063 Yates etal. (1985)

7 GRW 0.0058 0.01 Yahyaetal. (1993)
7 GRW 0.10 0.10

10 GRW 0.11 0.025 0.11 0.19 Blanc and Nasser (1996)

10 GRWa 0.010 Matthess etal. (1988)

10 GRW-deionized 0.032

10 GRW 0.013

10 GRW 0 0 0.10 Nasser etal. (1993)

10 PEa 0 0.046 0.17

10 PE 0.031 0.0077 0.12

10 SE 0.077 0.054 0.03 Blanc and Nasser (1996)

10 TE 0.091 0.051 0.11 0.17

12 GRW 0.16 0.18 0.24 Yates etal. (1985)

13 GRW 0.22 0.20 0.25 Yates etal. (1985)

16 GRW(5.4 mg/1 O;.) 0.21 Jansonsetal.(1989)

16 GRW(0.2 mg/1 O; ) 0.069

17 0.18 0.31 0.28 Yates etal. (1985)

20 GRW 0.0077 0.038 0 Nasser etal. (1993)

20 PEa 0.038 0.077 0.15

20 PE 0.084 0.14 0.15

20 SEa 0.054 Sobsey etal. (1980)

20 SE 0.14

22 GRW (0.06 mg/1 Oi) 0.16 Jansonsetal.(1989)

22

23

23

GRW 0.10 Bitton etal. (1983)

GRW 0.36 0.035 0.17 0.18 Blanc and Nasser (1996)

GRW 1.3 0.12 Yahyaetal. (1993)

23 GRW 0.58 0.30

23 GRW 0.73 1.2 0.92 Yates etal. (1985)

23 SE 0.38 0.18 0.23 0.025 Blanc and Nasser (1996)

23

25

TE 0.28 0.069 0.15

GRWa 0.082 Sobsey etal. (1986)

25 GRW 0.33

25 PEa 0.10 0.10 >0.055

25 PE 0.33 0.33 0.055

25 SEa 0.13 0.082 0.055

25

30

SE 0.13 0.13 0.073

GRW 0.031 0.12 0.054 Nasser etal. (1993)

30 PE* 0.038 0.12 0.20

30 PE 0.015 0.21 0.18

°C= temperature; GRW = groundwater; PE,SE= primary andsecondary effluent; "sterilized
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2.3 ANALYSIS OF VIRUS TRANSPORT IN SUBSURFACE

Numerous studies have been reported in literature for the analysis of virus

transport in subsurface. These studies involve both experimental investigations and

mathematical simulations. A brief review of these studies is reported in the following

Sections.

2.3.1 Experimental Investigations

Several researchers have conducted the experiments for the analysis of virus

transport in porous media. Few of them are presented here. Lance and Gerba (1984)

have conducted the experiments on virus movement in soil during both saturated and

unsaturated flow. They added the poliovirus to sewage water and applied thatwater at

different rates to a 250 cm long soil column equipped with ceramic samplers at

different depths. They found that movement of virus during unsaturated flow of

sewage through soil columns is much less than during saturated flow. Viruses did not

move below 40 cm level when sewage water was applied at less than the maximum

infiltration rate. Virus penetration in columns flooded with sewage was at least

160 cm.

Bales et al. (1991) conducted series of seven column experiments using PRD-

1and MS2 as a bacteriophage to study the attachment of these bacteriophages to silica

beads. They found that at pH 5.0-5.5, the attachment was at least partially reversible.

However, release of attached phage was slow and breakthrough curves exhibited

significant tailing. They found the rate coefficient for attachment and detachments

were of the order of 10"4 and 10"6-10"4 /s respectively.

Jin et al. (2000) conducted column flow experiment to determine the role of

unsaturated flow on virus sorption and inactivation during transport through sand
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columns. Two bacteriophages namely MS2 and OX 174 were used in the experiment.

The input solution containing bromide tracer and the viruses was applied to the

column as a step function and the samples were collected at the effluent end using

fraction collector. They concluded that the mechanisms of removal of both the

bacteriophages were different. The increased removal of MS2 was due to inactivation

whereas the increased removal of OX174 was due to sorption. They concluded that

this difference was probably due to difference in their isoelectric points.

Scijven (2001) conducted experiments with batch suspensions, recirculating

columns and flow through columns involving sandy soils and five bacteriophages:

MS2, PRDl, OX174, QP and PM2. In batch and recirculating column experiments

the attachment and detachment rate coefficients were determined. He found MS2

appeared to detach faster in presence of strong advective flow. In the case of flow

through column experiment, he found a large proportion of OX174 adsorbed to

equilibrium sites where as a small proportion of bacteriophages MS2, PRDl, QP

adsorbed to equilibrium sites.

Chu et al.(2003) conducted experiment to investigate inactivation and sorption

of virus during saturated and unsaturated transport in different soils. Their results

showed that greater virus removal occurred from unsaturated column than in saturated

column. They found that presence of in situ metal oxides was a significant factor

responsible for virus sorption and inactivation.

2.3.2 Mathematical Models for Analysis of Virus Transport in Groundwater

The transport of viruses in subsurface is usually studied by solving the

advection-dispersion equation governing virus movement involving sorption and

inactivation. The one dimensional virus transport in hydraulically homogeneous,
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saturated porous media accounting for virus adsorption and inactivation can be

expressed as (Simand Chrysikopoulous, 1996),

d£+pdCi=d_(DdC)_v^._AC_^PC (2.10)
dt 6 dt dx

dt dx dx

dx dx 6

where Cis the aqueous phase virus concentration, C* is the mass ofvirus adsorbed on

the solid matrix, D represents the hydrodynamic dispersion coefficient, v is the pore

water velocity in the flow direction, p is the bulk density of the solid matrix, Xis the

first order inactivation rate coefficient in the aqueous viruses, X is the first order

inactivation rate coefficient in the sorbed viruses, x is the Cartesian coordinate and t is

the time coordinate.

In terms of the virus concentration in the liquid phase, the virus transport

equation canbe written as (Jin et al., 1997)

.V?£-ARC (2.11)
dx

where R is retardation factor, defined in Eq. (2.9).

The solution of the virus transport equations canbe found outboth analytically

and numerically. There have been numerous studies in modeling of virus transport in

groundwater using analytical, numerical and experimental methods. Abrief review of

various analytical and numerical studies on solute and virus transport in subsurface is

provided in the following Sections.

2.3.2.1 Analytical solutions of virus transport in groundwater

Several researchers have given the analytical solutions for virus transport in

groundwater for different initial and boundary conditions. Analytical solutions for

simple form of the governing equation known as constant parameter advection-
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dispersion equation are widely available (Ogata and Banks, 1961; Bear, 1979; Van

Genuchten, 1981). The utility of these analytical solutions are 1) they provide an

exact solution when problem at hand is aptly described by constant parameter

advection-dispersion equation and 2) they provide a means to check the accuracy of

numerical solutions that are developed for more complex cases. The analytical

solutions for the constant parameter advection-dispersion are available for two types

of input loading scenarios. 1) finite amount of mass is instantaneously released at the

upstream boundary and 2) solutes are continuously released into system at the

upstream boundary. A special case for scenario 2 is continuous source of finite

duration. The analytical solution for virus transport given in Eq. (2.11) is given by

Van Genuchten and Alves (1982). The analytical solution for virus transport equation

without retardation for continuous source of infinite duration is given by O'Loughlin

and Bowmer (1975). The analytical solution for virus transport equation without

retardation for continuous source of finite duration is given by Runkel (1996). The

approximate analytical solutions for continuous source of both finite and infinite

duration are given by O'Loughlin and Bowmer (1975) and Rose (1977). Van

Genuchten (1981) reviewed the analytical methods available for different initial and

boundary conditions of transport involving advection, dispersion and retardation.

Runkel et al. (1996) also reviewed and compared the accuracy of the approximate

analytical equation with exact analytical equation for the governing transport equation

without sorption.

2.3.2.2 Numerical solutions of virus transport in ground water

The development of efficient numerical solution methodologies for the

advection-dispersion transport equation has received considerable attention in recent
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years (Rao et al., 2005). Numerical instability resulting from the inherent hyperbolic

nature of the equation is one of the major numerical problems. The advection term

causes several numerical oscillations and instability, especially when advection is

dominant in the advection-dispersion transport equation and sharp concentration

fronts exist. Eulerian methods such as finite difference and finite elements are

commonly used for the solution of mass transport equations (Young et al., 2000).

Several studies in the past have suggested that the higher order finite difference

schemes lead to numerical oscillations (Hossain, 1999). The oscillation can be

eliminated by reducing space steps which considerably increases the computational

cost of the solution. First order upwind methods are used for avoiding numerical

oscillations but the accuracy of the solution is reduced due to excessive numerical

smearing. Extensive research has been carried out in the recent past for improving the

accuracy of these numerical schemes. Al-Rabeh (1993) has compared the

computational efficiency of various upwinding schemes for the discretisation of the

one dimensional advection dominated transport equations. He has compared first

order upwind, second order upwind, weighted scheme and the quadratic upstream

interpolation for convective kinematics (QUICK) scheme. The result of this study

shows the superiority of the central difference scheme for small Peclet numbers. For

higher Peclet numbers both central difference and QUICK schemes are observed to

show oscillations. It was also concluded that the second order upwind method is

accurate and efficient at higher Peclet number cases. It was also shown that for

moderate Peclet numbers, QUICK scheme produces a better solution but is

computationallymore expensive than the second order upwind method. Man and Tsai

(2007) developed a numerical scheme to solve advection diffusion equation in
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staggered system. They have used Adams-Bashforth predictor-corrector method for

time derivative and Von Neumann method for stability analysis.

Another major problem in solving advection-dispersion equation is the mass

balance error pertaining to its nonlinear nature when transport involves physical and

chemical reactions such as degradation, adsorption and production. Although a good

mass balance error does not guarantee an accurate solution, mass conservation is an

essential requirement for an accurate numerical algorithm. To reduce the mass

balance error, small time steps and iterative procedures are usually required to solve a

nonlinear equation or a system of coupled nonlinear equations, which in turn makes

the solution very time consuming. In flow and transport modeling, most attention has

been paid to overcoming the nonlinearity of the flow problems and eliminating the

numerical dispersion and spurious oscillations of the transport problems. Celia et al.

(1990) presented an Optimal Test Function (OTF) method to solve the contaminant

transport problem involving nonlinear reaction and biodegradation. The operator

splitting technique has received much attention in the groundwater modeling literature

for nonlinear transport (Yeh and Tripathy, 1989; Wheeler and Dawson, 1987; Rifai

and Bedient, 1990). The nonlinear system of advection-dispersion-reaction equations

is split into a system of linear partial differential equations involving the advection-

dispersion equations and a system of nonlinear ordinary differential equations

involving the reaction equations. Cheng et al. (2003) compared the full coupling,

operator splitting and predictor-corrector techniques to solve the reactive transport

equation. Their investigation has led to conclusion that both operator splitting and

predictor-corrector technique can effectively solve reactive transport equation.

Starting with Van Leer (1974), upwind methods based on Godunov's scheme
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have beenderived that are non-oscillatory and globally second order accurate in space

for the solution of hyperbolic equations. These methods are based on exact or

approximate solutions to local Riemann problems and on the concept of monotone

interpolation of the variable to avoid oscillations. Van Leer (1974, 1977a, 1977b,

1984) developed the Monotone Upwind Scheme for Conservation Laws (MUSCL)

method in which differences are first limited and then used for the solution of Local

Riemann problems, a procedure known as preprocessing. The method is forced to be

monotone and to maintain global second order accuracy. Furthermore it uses cell

balances and averages that enhance the non-oscillatory property. Harten (1983)

constructed a second order accurate Total Variation Diminishing (TVD) upwind

scheme in which an extra diffusion flux is added to minimize the numerical diffusion.

The TVD property guarantees that the total variation of the solution will not increase

as the solution progresses in time. This property ensures that the integration scheme is

monotonicity preserving, thereby preventing the formation of spurious oscillations in

the solution.

A triangular finite volume approach based on a second order TVD scheme

which is fully explicit was proposed by Putti et al. (1990), for the solution of

advection-dispersion equation. It is shown that finite volume method is ideally suited

for advective dominated problems and for tracking sharp fronts. However model

application is limited to flow fields aligned along the grid directions. Since the

advective and dispersive fluxes are calculated explicitly, a serious limitation on the

time step for high dispersive situations is imposed. It is observed that for advection

dominated cases some numerical smearing occurs which depends on Courant number.

Celia et al. (1989) have presented a one dimensional numerical model for the
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simulation of reactive transport in porous media using an Optimal Test Function

(OTF) method. The test function was automatically selected based on the relative

domination ofeach processes of advection, dispersion and reactions. The applicability

of this method for variable coefficient requires interpolation. Kindred and Celia

(1989) have used this model for simulating contaminant transport with

biodegradation.

Tim and Mostaghimi (1991) developed a numerical model, VIROTRANS for

simulating the vertical movement of water and virus through soils treated with

wastewater effluent and sewage sludges. They coupled the set of partial differential

equations that describe the transient flow of water and suspended virus particle

movement through variably saturated media and used Galerkin finite element method

to accomplish the solutions to the partial differential equations. They compared the

simulated model to an analytical solution and to experimental measurement of soil

moisture content and poliovirus transport.

Yates and Ouyang (1992) developed a numerical model VIRTUS for

predicting virus fate and transport in unsaturated soils. They compared their model

with measured data of virus transport from column experiment. Their model also

estimates the number of viruses entering into the groundwater after traveling through

the soil from a contamination source. In this model the virus inactivation rate was

allowed to vary on the basis of changes in soil temperature.

Park et al., (1992) developed a numerical model VIRALT for simulating the

virus transport in groundwater. Chrysikopoulos and Sim (1996) developed a

stochastic model for one dimensional virus transport in homogeneous, saturated

medium. Their model accounts for first order inactivation of liquid phase and
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adsorbed viruses with different inactivation rate constants and time dependent

distribution coefficient. They described the virus adsorption process by a local

equilibrium expression with stochastic time dependent distribution coefficient.

Clement et al. (1996) developed a numerical transport model that describes

subsurface biological processes under radial flow conditions. They used a numerical

procedure that incorporates the attractive features of Eulerian-Lagrangian and

reaction-operator split methods for solution. They studied the sensitivity of biomass

distribution and concluded that the microbial detachment and attachment processes

are important transport parameters that control biomass distribution inanaquifer.

Huang et al. (1998) have presented a model for the simulation of reactive

transport in groundwater. They have generalized the modified Picard iteration

algorithm developed by Celia et al. (1990) for unsaturated flow to solve the nonlinear

transport equation. The transport equation was written in a mixed form and the total

concentration is expanded in a Taylor series with respect to the solution concentration

to linearise the transport equation which is solved by using finite element method. It

was shown that the numerical results of the mixed form algorithm resulted in

negligible mass balance errors and required less computational time than the

conventional iterative scheme. The numerical results were obtained by implementing

the proposed modified Picard iteration algorithm into the HYDRUS software code.

Sim and Chrysikopoulous (2000) developed a one dimensional numerical

model for virus transport in homogeneous unsaturated porous media. They have

considered the virus sorption onto liquid-solid and air liquid interfaces as well as

inactivation of viruses suspended in the liquid phase and viruses attached at both

interfaces in their model. Also they investigated the effect of moisture content
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variation of virus transport in unsaturated porous media.

Verma et al. (2000) developed overlapping control volume method for solute

transport. The method is applicable for nonorthogonal grids.

Schijven and Simunek (2002) studied the removal of bacteriophages MS2 and

PRDl by dune recharge and also removal of MS2 by deep well injection. They have

used the software HYDRUS-ID and HYDRUS-2D, which simulate the water flow

and solute transport in one and two dimensional variably saturated porous media.

Gallo and Manzini (2003) proposed a numerical model that is based on cell

centered finite volume method for the system of advection-dispersion equations of

contaminants with a mixed hybrid finite element method for the solution of a single

phase Darcy's equation.

2.4 FLOW IN UNSATURATED ZONE

The analysis of transport of virus in unsaturated zone is a complex process due

to the nonlinearity of flow in this zone (Persson and Berndtsson, 1998). The moisture

velocity in the unsaturated zone greatly depends upon the degree of saturation and

varies considerably in this zone. In such a situation, it becomes essential to solve the

flow equation priorto the solution of virus transport equation.

In unsaturated zone, voids present in the soil are partly filled with water and

partly with air. Water is held in the voids due to surface tension forces. The pressure

in the unsaturated zone is always less than the atmospheric pressure. The flow and

storage characteristics are function of the pressure head. Flow in the unsaturated zone

is usually simulated by solving Richards equation givenby Richards (1931).

Richards equation can be expressed in several forms with either pressure head

or moisture content as dependent variable (Celia et al., 1990). The constitutive
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relationships between the moisture content and the pressure head allow conversion of

one form of the equation to another. There are three standard forms of Richards

equation available.

Pressure head based (y/- based)

KY' dt dz *<»>{H
Moisture content based (0-based)

Mixedform

d6__d_
dt ~ dz v ' dz

+

dK(e)

'8t ^
dz

dz

(2.12)

(2.13)

(2.14)

where y is the pressure head, 6 is the moisture content, z is the vertical coordinate

dG
taken positive upwards, t is the time coordinate. C = is the specific moisture

dy/

capacity of the soil, K is the unsaturated hydraulic conductivity of the soil and

D = K/C is the soil moisture diffusivity.

The Abased formulation results in significantly improved performance (Hills

et al., 1989) compared to y/-based formulation, when modeling infiltration into very

dry soils but it can not be used for problems containing saturated regions, since the

soil moisture diffusivity becomes infinity in the saturated regions. In contrast y/-based

formulation can be used for both saturated and unsaturated soils. However, while

simulating problems involving steep wetting fronts moving into a very dry soil,

^/-based formulation requires very small time steps in order to maintain stability and

minimize truncation errors. A mixed form of Richards equation that contains both

moisture content and pressure head as unknowns has advantage over the ^/-based
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Richards equation because the former is more mass conservative than later (Celia et

al., 1990; Clement et al., 1994).

Richards equation is highly nonlinear in nature, since the storage properties K,

C and D are functions of dependent variable. The functional relationships between

soil hydraulic properties (K, 0, yf) are needed for analyzing unsaturated water flow in

soils (Govindraju et al., 1992). It is common practice to use a K-yi relationship which

is derived from the 0-yi relationship using some physically based approach such as the

distribution of pore sizes (Mualem, 1976).

0-yj Relationship:

The water retention characteristics (0-y/ Relationship) of the soil describe the

soil's ability to store and release water. The 0-y/ Relationship is called soil moisture

retention curve or soil moisture characteristic curve. The shape of the SMC depends

upon the pore size distribution of the soil. Many investigators used empirical and semi

empirical relations to describe the characteristics. Among the many empirical

functional forms existing in literature for the SMC, the most popular relationships are;

Brooks and Corey (1964), Campbell (1974) and Van Genuchten (1980) relationships.

Brooks and Corey's Relationship:

©

v/

1 for y/ > y/b

iov¥<¥b

where y/b is the bubbling pressure, X is the pore size index and 0 is the effective

saturation defined as

0 =-^- (2.16)

where 0S and Qr are the saturated moisture content and residual moisture contentof the

soil respectively.
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Campbell's Relationship:

0 'V
e.

¥V r j

1

0

i

for y/ <Hb

1 for y/ > Hb

whereHb is the scalingparameterwith dimension of length and b is a constant.

Van Genuchten Relationship:

for y/ < 0

for ^ > 0

(2.17)

(2.18)

where av and nv are unsaturated soil parameters. mv = 1

7ST-0 Relationship:

The hydraulic conductivity AT is a measure of the abilityof the soil to transmit

water and depends upon both the properties of soil and water. The unsaturated

hydraulic conductivity K is a nonlinear function of moisture content 6. Many

investigators used the empirical and semi empirical methods for describing the K-0

relationship. Childs and Collis-George (1950), Burdine (1953) and Mualem (1976)

proposed the concept of relative hydraulic conductivity for the K-0 relationship. Two

approaches are generally used for predicting the hydraulic conductivity in unsaturated

soils. The first approach is, the relative hydraulic conductivity Kr is a power function

of the effective saturation 0 which is given by

Kr = — = ®7
K,„,

(2.19)

where Ksa, is the saturated hydraulic conductivity of the soil. For a wide range of soils

y =3.5, leads to a better agreement with experimental observations (Brooks and Corey,

1964 and Campbell, 1974).
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The second approach is the use of saturated moisture content to derive the

unsaturated hydraulic conductivity which is given as follows.

Burdine Equation:

Kr{9) =®2

a

j" dO/y/2
e=o

]dO/ys2
0=0

Childs-Collis George equation:

Kr{0) =&
I
[2Q-Q +1]

¥
s

1
[>('-0+l]

_'=i ¥

(2.20)

(2.21)

where s represents total number of intervals into which 0 domain is divided, / is the

number of intervals upto a prescribed value of 0 and Qis the exponent whose value

ranges between 0 and 4/3.

Mualem (1976) derived an expression for the relative hydraulic conductivity

which is given as

1/2Kr (0) =0

V

jdO/y/

\d9/y/
(2.22)

Van Genuchten (1980) derived an expression for Kr by combining Eq (2.22)

given by Mualem (1976) and the Q-\\i relationship given by Eq (2.18) which is given

as

-<a"/2K =0 l-(l-0,/m")" (2.23)
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2.4.1 Solution of Richards Equation

There have been numerous studies in modeling unsaturated flows in soils

using analytical as well as numerical techniques. Feddes et al. (1988) reviewed the

developments in modeling soil moisture movement in the unsaturated zone.

Numerous numerical models have been developed based on finite difference and

finite element methods for solving Richards equation. Feddes et al. (1978) used

Crank-Nicolson finite difference scheme for solving Richards equation. The equation

was taken up in suction head form. Narsimhan et al. (1978) adopted finite element

method for solving problems in subsurface hydrology using a mixed explicit-implicit

scheme. Cooley (1983) used the sub-domain finite element method to solve Richards

equation. Huyakorn et al (1986) developed two dimensional Galerkin finite model for

solving Richards equation in which the element matrix is evaluated in a simple and

efficient manner using influence coefficient technique. Celia et al. (1990) proposed a

mixed form of Richards equation to improve the poor mass balance and less accuracy

in \|/-based formulation. Kirkland et al. (1992) proposed algorithms for solving

0-based form of Richards equation. But 0-based formulation has limited application

since it can not be applied to saturated soils. Kirkland et al. (1992) defined a new

variable for the transformed Richards equation which has the characteristics of water

content, when soil is unsaturated and of pressure head when soil is at or near

saturation. Clement et al. (1994) developed a physically based two dimensional finite

difference algorithm based on mixed form of Richards equation proposed by Celia et

al. (1990). The finite difference equations are solved by computationally efficient

preconditioned conjugate gradient method. Rathfelder and Abriola (1994) developed

efficient conservative solutions of the head based form of the Richards equation. They

have demonstrated that the proper evaluation of specific moisture capacity term
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improves the mass conservation of the numerical schemes. Janz and Stonier (1995)

used 0-based Richards equation with a macroscopic sink term to produce soil water

content profiles at any time. They used Crank-Nicholson finite difference scheme and

solved it by employing implicit central difference approximation. Singh and Murty

(1996) developed a numerical model based on MacCormack finite difference scheme,

to study the effect of flow depth in the infiltration calculations on the simulation

results. Hari Prasad et al. (2001) developed a numerical model to perform the

sensitivity analysis of gravity drainage and infiltration processes on unsaturated soil

parameters. Sato et al. (2003) investigated the importance of soil texture properties

and water content on pore water velocity and associated solute dispersion in

unsaturated zone. Dogan and Motz (2005a, b) solved finite difference formulation of

mixed form of Richards equation with volumetric source or sink term using modified

picard iteration scheme. In their study a new saturated-unsaturated 3-D rainfall driven

groundwater flow model (SU3D) has been developed to simulate most of the

important elements of the hydrological cycle. A square symmetric positive definite

matrix consisting of coefficients of the finite difference formulation is formed. The

nonlinear terms in the matrix are linearized at every modified Picard iteration level

and then the linear system of the equations is solved using the preconditioned

conjugate gradient method, which has advantage overother iterative methods in terms

of computer memory requirements and faster convergence.

2.5 INVERSE PROBLEM

Accurate prediction of solute/virus transport in subsurface is essential for

adopting proper contaminant remedial measures. Computer simulations based on

numerical models have been widely used for these purposes. With greater model
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sophistication comes a need for more intensive data requirements, and real

improvements in precision will eventually hinge on our ability to accurately

determine the required model (transport) parameters (Kool et al., 1987). Hydraulic

and transport properties of the unsaturated zone are commonly determined by

imposing rather restrictive initial and boundary conditions so that the governing

equations can be inverted by analytical or semi-analytical methods. Such procedures

allow direct computation of the specific functional form of deterministic model

coefficients. However, these direct inversion methods also have a number of

limitations which restrict their practicality, in particular when used for calibrating

field scale models. Experimental analyses based on direct methods are generallyquite

time consuming and hence costly owing to the need to meet conditions requisite for

the explicit calculation of model coefficients. Another limitation results from the need

to impose relatively simple initial and boundary condition. This is especially

problematic for field experiments where accurate control of the boundary conditions

on a large scale can be difficult and expensive. Parameter estimation using inverse

procedures have become an alternative to direct inversion methods (Kool and Parker,

1988). In such a procedure, the parameters are estimated by minimizing the deviations

between the observed and model predicted output for prescribed, but arbitrary initial

and boundary conditions. Contrary to the direct inversion methods, the optimization

approach does not put any inherentconstraint on the form or complexityof the model,

on the stipulation of the initial and boundary conditions, on the constitutive

relationships, or on the treatment of inhomogeneities via deterministic or stochastic

representations. Thus, a major advantage is that experimental conditions can be

selected on the basis of convenience and expeditiousness, rather than by a need to

simplify the mathematics of the direct inversion process.
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2.5.1 Posedness, Identifiability, Uniqueness and Stability

Three important factors that need attention while estimating parameters using

inverse procedure are i) identifiability ii) uniqueness and iii) stability (Russo et al,

1991). Consider a functional relationship between the response R and the set of

parameters p, i.e. R=F(p). The inverse relationship i.e. p=I(R) determines the

parameters which is known as inverse problem. This problem is properly posed if and

only if i) a solution exists; ii) the solution is unique for any given R; and iii) the

solution is stable (Russo et al., 1991). The illposedness may sometimes be due to

nonuniqueness, sometimes due to nonidentifiability or sometimes due to stability

(Carrera and Neumann, 1986). If the inverse problem fails to satisfy one or more of

these requirements, it is then referred to as being ill posed. Uniqueness refers to the

inverse relationships /. When /represents the minimization of an estimation criterion

(such as the deviation between observed and predicted concentration), the inverse

solution is nonunique whenever the criterion to be minimized is nonconvex, i.e. it has

local minima or global minimum at more than one point in the parameter space. In

other words, if a given response R leads to more than one set of parameter values p,

the inverse solution is nonunique. If more than one parameter set p leads to a given

response R, the parameters are unidentifiable. In contrast Stability means that small

errors in the response data must not result in large changes in the estimated

parameters. Instability may arise from a lack or poor degree of identifiability and it is

generally associated with an estimation criterion that is flat near minimum.

2.5.2 Classification of Parameter Identification Methods

Newman (1973) classified the inverse problem of parameter estimation into

two different approaches. 1) direct 2) indirect. The direct approach treats the model
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parameters as dependent variables in a formal inverse boundary value problem. The

indirect approach is based upon an output error criterion where an existing estimate of

the parameters is iteratively improved until the model response is sufficiently close to

that of the measured output (Yeh, 1986). Kubrusly (1977) classified the distributed

parameter estimation procedures into three categories, i) direct method which consists

of those methods that use optimization techniques directly to the distributed model ii)

reduction to a lumped parameter system, which consists of those methods that reduce

the distributed parameter system to a continuous or discrete-time lumped parameter

system which is described by ordinary differential equation and iii) reduction to an

algebraic equation which consists of those methods that reduce the partial differential

equation to an algebraic equation.

2.5.3 General Formulation of the Estimation Problem

Many parameter estimation problems can be formulated as a weighted least-

squares minimization problem.

min O(b) =-[C* -C(b)J W[C* -C(b)] (2.24)

where the objective function, 0(b), is a function of the model parameters b,

b={b1,b2, bm}T ;C" =icl, C"\ is the observation vector whose elements

represent measured concentrations; C(b) ={C,(Z>), Cn(b)} represents the

predicted response for a given parameter vector b, and W is symmetric weighting

matrices. The coefficient 1/2 in above equation is purely for notational convenience.

The objective is to find the parameter vector b that minimizes the Eq (2.24) or in

other words, results in a best fit between the model and available data. The weighting
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matrices W contain information about measurement accuracy, as well as possible

correlations between measurement errors and between parameters. In the absence of

any additional information besides the observations C*, the simplest and

recommended approach is to set W equal to the identity matrix W=l. In this case the

Eq (2.24) reduces to the well known ordinary least squares (OLS) problem.

min 0(b)=i[<r -C(b)J [C* -C(b)] =±£[C -C(b)] (2.25)

The OLS formulation has probably been the most popular one for parameter

estimation problems. Its attraction is due to its simplicity and because it requires a

minimum amount of information. When observation errors are normally distributed,

are uncorrected and have a constant variance, the OLS estimates possess optimal

statistical properties. When these conditions are not met, the OLS method will no

longer yield optimal parameter estimates in terms of precision and minimum variance.

More serious difficulties arise due to violation of the constant variance and

uncorrelated errors assumptions. These situations often occur in practical problems.

For instance, error variances are commonly found to increase with the magnitude of

the property being measured.

2.5.4 Studies on Estimation of Parameters using Inverse Procedure

Parameter estimation techniques have been widely used in subsurface flow

and transport (Yeh, 1986; Kool et al., 1987; Ghidaoui and Prasad, 2000; Barth and

Hill, 2005a, b). Parameter uncertainty issues are particularly relevant to the transport

of biodegradable contaminants, as the coupling of hydrodynamic, chemical and

microbiological processes results in significant complexity, with numerous sources of
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variability and attendant uncertainty in associated parameters (Brusseau et al., 2006).

However, very few studies have been reported on estimation of transport parameters

in case of virus transport in ground water. Schijven (2001) estimated the virus

transport parameters by calibrating HYDRUS ID and HYDRUS 2D model, with

measured data using iterative procedure.

Barth and Hill (2005a) examined the use of observed value weighting,

breakthrough curve temporal moment observation and transport time step size

in sensitivity analysis of virus transport parameters. The results suggest that

i) sensitivities using observed value weighting are more susceptible to numerical

solution variability ii) temporal moments of the breakthrough curve are a more robust

measure of sensitivity than individual conservative transport observations, and iii) the

transport simulation time step size is more important than the inactivation rate in

solution and about as important as at least two other parameters, reflecting the ease

with which results can be influenced by numerical issues. For the numerical

simulation of virus transport, they have used flow program MODFLOW96 and

MT3DMS. MODFLOW's PCG2 solver has been used to solve for heads and flows.

Barth and Hill (2005b) evaluated the importance of seven types of parameters

to virus transport namely hydraulic conductivity, porosity, dispersivity, sorption rate

and distribution coefficients and in-solution and adsorbed inactivation. The

importance of four type of observations such as hydraulic heads, flow, temporal

moment of conservative transport concentrations and virus concentrations are

evaluated to estimate the virus transport parameters. They concluded that these

observations are not sufficient to estimate the parameters uniquely.
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The present study focuses on

1. developing numerical models for virus transport in soil during

saturated and unsaturated flow using finite volume method.

2. developing an optimization model for estimating virus transport

parameters.

3. addressing the issue of identifiability of model parameters from the

known concentration measurements.

4. effect of data errors on the parameter estimates and also bias induced

by the objective function on the estimated parameters when the data

contains the errors.

5. providing insight into the use of virus transport models with a focus on

parameter selection.
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CHAPTER 3

ANALYSIS OF VIRUS TRANSPORT IN

SATURATED ZONE- MODEL DEVELOPMENT

3.1 INTRODUCTION

The present Chapter discusses the development of a numerical model for the

analysis of virus transport in groundwater. The differential equation describing virus

transport in groundwater is solved using finite volume method. The finite volume

method is based on monotone upwind schemes for conservation laws (MUSCL) by

Van Leer (1977a) which is globally high-order accurate and non-oscillatory. The

performance of the numerical model is evaluated for both advective and dispersive

dominated transport by comparing the model results with available analytical

solutions. The development of the numerical model is described in detail in the

following Sections.

3.2 GOVERNING EQUATION

The one dimensional virus transport in hydraulically homogeneous, saturated

porous media accounting for virus adsorption and inactivation can be expressed as

(Sim and Chrysikopoulous, 1996),

K+p?c:=±(D?£U?c_zc_x.f,c.
dt 9 dt dx dx dx 0

where C is the aqueous phase virus concentration, C is the mass of virus adsorbed on

the solid matrix, D represents the hydrodynamic dispersion coefficient, v is the pore

water velocity in the flow direction, p is the bulk density of the solid matrix, Xis the
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first order inactivation rate coefficient in the aqueous viruses, X is the first order

inactivation rate coefficient in the sorbed viruses, x is the Cartesian coordinate and t is

the time coordinate.

The left hand side of the Eq. (3.1) consists of the virus accumulation terms and

last two terms on the right hand side represent the inactivation of liquid phase and

adsorbed viruses respectively.

Eq. (3.1) consists of advection, dispersion, sorption and inactivation. In the

absence of sorption, Eq (3.1) reduces to (Runkel and Bencala, 1995)

dC d

dt dx

If there is no sorption and inactivation, then Eq (3.1) reduces to

dC__d_
dt ~ dx

(

dx

dx j

-V—-XC (3.2)
dx

dC
-v—

dx
(3.3)

3.3 INITIAL AND BOUNDARY CONDITIONS

Eq. (3.1) needs initial and boundary conditions to obtain unique solution for a

given problem.

Initial condition:

Initially, i.e. at t = 0, the concentration of virus is usually assumed to be zero, i.e.

t = 0, C(x) = 0, 0 < x < oo (3.4)

Boundary conditions:

At the source (x = 0), two different types of boundary conditions are usually

employed. In the first type, Dirichlet type boundary condition wherein the virus

concentration at the inlet is set to the virus concentration of the incoming flux Co- i.e.

t >0, C(t) = C0, x = 0 (3.5)
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In the second type, flux type boundary condition is applied which is represented as,

t>0, -D—+vC = vCo(t),x = 0 (3.6)
dx

where C0 (t) denotes the source concentration.

For away from the source (x —>oo) the concentration flux is set to zero. i.e.

dC
t>0, — = 0, x-»oo (3.7)

dx

3.4 NUMERICAL SCHEME

In the present work, the governing transport equation Eq. (3.3) is solved using

an operator-split approach for advection and dispersion. In such a situation, the

governing transport equation Eq. (3.3) can be written as (Putti etal., 1990):

Advective transport:

dC dC dF ....
= -v = (3.8)

dt dx dx

where F is the advective flux

Dispersive transport:

dC df^dC^

dt dx

Since an operator-split approach is used in the present study for the advective

and dispersive transport parts, there is a necessity to specify two separate inlet

boundary conditions for both parts. One of the ways, this can be implemented is by

specifying that the total incoming flux as the advective flux while specifying the

dispersive flux as zero. For the case where the flow is leavingthe domain, the flux for

the dispersive part is ignored, while it is assumed that the advective flux is kept

constant across the boundary.

D—
dx

(3.9)
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In the present study, the finite volume method which is globally second order

accurate is used for advective transport and central finite difference method for

dispersive transport.

3.4.1 Advective Transport

The finite volume method used for solving the advective transport is based on

monotone upwind schemes for conservation laws (MUSCL) by Van Leer (1977a)

which is globally high-order accurate and non-oscillatory (Putti et al., 1990). The

advective transport is given as

dC dF A
— + = 0
dt dx

ji+1

E

f
Xj.i Xj.i/2 Xj xi+l/2 Xi+i

Distance

Fig 3.1 Space-time diagram

(3.10)

In the finite volume method, Eq. (3.10) is integrated over the solution domain

Q. in space and time as

x 8fWoft dt dx J
(3.11)
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Taking the limits of the domain Q. as depicted in Fig. 3.1, Eq. (3.11) can be

written as

J Cdx+ JFdt =0 (3.12)

Integration of Eq. (3.12) leads to

—n+l —n \ I—n —n \
C, -C, F,+i/2-F/-i/2

'-+* ^=0 (3.13)
At Ax

where,
I -*M-l/2

Ci =— f C"dx
Av J 'Ax

*f-l/2

1 <« (3-14)
At f„

The Eq. (3.10) can be written in a discrete form by assuming the cell centered

concentration C, as cell averaged concentration as,

(r""+1 —C"\ ' F'+i'2 ~F'-

At Ax

where C, is the cell centered concentration and the flux Fmh is the time averaged

flux.

Various methods have been used for the calculation of the flux at each cell

boundary. In this work, the advective flux is calculated using a second order upwind

method similar to the one adopted by Putti et al. (1990).

Assuming a linear distribution in the cell, the mass concentration value at the

cell interface is reconstructed using a MUSCL approach as (Van Leer, 1977a):

Clm=C,+\sCt (3.16a)
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Cll2=CM-X-8CM (3.16b)

where SCi is the gradient of the concentration distribution in cell /' while L and R

represent the left and right faces of the cell interface.

The value of gradient SC, is calculated using limiters to ensure that no

overshoot or undershoot occurs. The limiters give maximum allowable gradient in cell

i without causing numerical oscillations. The limiter adds a certain amount of

dissipation to the scheme. The accuracy of the advective transport is influenced by the

choice of suitable limiter. The minmod limiter is used by Putti et.al., (1990) and Cox

and Nishikawa (1991). In this work, comparison is made in the solutions of the finite

volume scheme when Superbee, Van Albada and Minmod limiters are employed.

The gradient of the concentration distribution in cell i for monotonicity,

prescribed bythe Superbee and Minmod limiters is,

{SC,)m<m=ave(A_C„A+C,) (3.17)

with

b_C,=C,-CM
A+C,=CM-C,

where ave(a,b) in Eq (3.17) for Minmod and Superbee limiters are as follows,

Minmod limiter:

f«gw(a)min(|a|,|6|) ifab>0
ave(a,b)-\ KiA^)

[0 otherwise

Superbee limiter:

fs/gH(a)min(2|a|,max(|tf|,|Z>|),2|6|) if ab >0
ave(a,b) = < (J.zv)

[0 otherwise

The gradient of the concentration distribution in cell i, for applying Van

Albada limiter,
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<5C, = R, i(l-*XA-C,)+i(l+*XA+C() (3.21)

where Rj is the Van Albada limiter,

[2KC,)(A,C,H
[(A.C,)!+(A.C,f+^]

where s is very small number, used to avoid occurrence of division by zero in

Eq. (3.22). In Eq. (3.21), when A=l/3, gives a third order accurate scheme.

The fluxes at the interface are evaluated based on Eqs. (3.16) as,

Fm,i = v,C,L+1/2 when v, > 0 (3.23a)

Fm/2 = v,+1C*1/2 otherwise (3.23b)

Integration over time:

Explicit and implicit methods are commonly used for the time integration of

the discretised Eq. (3.15). Achoice of f" as given in Eq. (3.23) in Eq. (3.15), results

in an Euler scheme which is first order accurate in time and is unconditionally

unstable (Tai et al. 1997). Toalleviate this difficulty, Hancock's Scheme (Van Albada

et al., 1982) is usually employed which is a two step second-order accurate explicit

scheme (Putti et al., 1990). The two halftime steps in this method can be represented

as predictor and corrector stepsas follows,

Predictor step:

c»+./2=c„__A£_vSC (3_24)
' 2Ax

Corrector Step:

cr-cr-^-M-K?) (3.25)
Ax\ l
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The d obtained from the predictor step is used for calculation the fluxes. The

same gradient SCt is used in both predictor and corrector steps. For the above

scheme, the time step is limited by the courant number. For stability of this scheme,

Courant number, Cu= , should be less than or equal to 1.
Ax

3.4.2 Dispersive Transport

The dispersive transport is performed on the concentrations, resulting from the

advective transport in each time step.

3(DdC^
dt dx dx

(3.26)

The dispersive part is solved by a conventional, fully implicit, finite-difference

scheme, which is unconditionally stable, for the final concentrations.

time level -

n+\

time level w
i-l » i+1

Fig 3.2 Definition sketch of finite difference discretization

3.4.2.1 Discretization in space and time

For a typical interior node'/, surrounded by the adjoining nodes z'-l and z'+l,

the finite difference approximation of Eq. (3.26) can be written as

D

Ax2
c;_r +

2D 1

Ax2 At
c:

< D N C"

AtvAx j

46

(3.27)

-f

*



where Ax and At are the spatial and temporal increments, n denotes the time level at

which solution is known and n+\ denotes the time level where the solution is sought.

Eq. (3.27) can be written in matrix form as,

[A][C] = [B] (3.28)

where A is a tridiagonal coefficient matrix, C is the vector of unknown concentration

Cj at time level n+\ and B is the vector of known quantities at the time level n. The

tridiagonal systems of Eqs (3.28) is solved using Thomas algorithm (Remson et al.,

1971)

The present formulation has the advantage of using an implicit numerical

scheme for the dispersive transport, while using an explicit numerical scheme for

advection transport there by either advection dominated or dispersion dominated

systems can be accurately handled. However, in this approach the restriction on the

time step is due to Courant number.

A code is written using FORTRAN 90 for the implementation of the

numerical model which is provided in APPENDIX-I.

3.5 NUMERICAL RESULTS

The performance of the numerical model in predicting solute/virus movement

for both advection dominated and dispersion dominated flow scenario is studied by

comparing the model prediction with the corresponding analytical solutions for a wide

vAx
range of Peclet numbers P =

D .

comparison is made for various cases of movement of conservative, reactive and virus

transport in subsurface.

and Courant numbers
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3.5.1 Continuous Conservative Source of Infinite Duration

The problem consists of studying the movement of a conservative solute. A

continuous source of conservative solute with a concentration of 100 units (C0 = 100)

applied at the inlet. A steady state flow velocity of 0.5 m/day is assumed the

movement of such a solute is governed by Eq. (3.3). The solute concentration prior to

the injection is assumed to be zero in the entire domain. The analytical solution for

Eq. (3.3) subjected to initial and boundary conditions Eqs.(3.4, 3.5 & 3.7) is given by

Ogata and Banks (1961) as

C__ 1
C ~ 2

erfc
x-vt

2yjDt
+ exp

(- \
vx

erfc
f - \

x + vt

2y/Dt
(3.29)

In Eq. (3.29) erfc denotes the complementaryerror function.

The present model is applied to predict the solute movement. The spacing

Ax between the consecutive grid points is taken as 1.0m and the time step is taken

such that the Courant number is less than unity. The dispersion coefficient is varied to

obtain required Peclet number.

Figs. 3.3a to 3.3c show the comparison of numerical and analytical solutions

for advection dominated transport (Pe=200) at time equal to 150 days. It is seen from

Fig 3.3a that numerical solution matches exactly with the analytical solution

indicating that numerical model performs very well for the case of advection

dominated transport. Fig 3.3b shows the effect of Courant number on the numerical

solution. It is seen from Fig 3.3b that Courant number does not have much effect on

the accuracy of the numerical solution. In Fig 3.3c, the choice of limiters on the

numerical solution is shown. It is clear from Fig. 3.3c that the numerical solution with

Superbee limiter is least dissipative while the Minmod limiter is most dissipative.

Superbee limiter is recommended for accurately tracking the sharp advective fronts.
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- Analytical solution
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Courant number = 0.75
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Fig 3.3(a) Comparison of analytical and numerical solution for advection dominated

transport
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Fig 3.3(b) Effect of Courant number on the numerical solution for advection

dominated transport
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Fig 3.3(c) Effect of limiter on the numerical solution for advection dominated

transport

Fig 3.4 shows the comparison of numerical and analytical solution for

dispersion dominated transport (Pe = 2) at time equals to 150 days. Fig 3.4a indicates

that numerical model also performs very well at low Peclet numbers with the

numerical solution very closely matching with the analytical solution. Fig 3.4b shows

the effect of Courant number on the numerical solution at low Peclet numbers. It is

also seen from Fig 3.4b that Courant number does not affect on the accuracy of the

numerical solution. In Fig 3.4c, it can be seen that there is no significant effect of

limiters in the dispersion dominated transport. For dispersion dominated case all the

limiters perform equally well while tracking theconcentration profile.
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Fig 3.4(a) Comparison of analytical and numerical solution for dispersion dominated

transport
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Fig 3.4(b) Effect of Courant number on the numerical solution for dispersion

dominated transport
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Fig 3.4(c) Effect of limiter on the numerical solution for dispersion dominated

transport

3.5.2 Instantaneous Gaussian Conservative Solute Pulse

In this case, the model performance in simulating transport of a solute which

has an initial distribution represented by a Gaussian hill is studied in a uniform steady

flow field. For the governing equation (3.3), the initial and boundary conditions are as

follows,

C(x,0) =C0(x) =exp (x-*o)
2\

2a20 (3.30)

C(x,f)->0 x-*co (3.31)

where C(x,t) is the concentration at adistance xand time /, x0 is the center ofmass of

the initial concentration field and a0 is the standard deviation of the initial

concentration field. The analytical solution for the above case is given as (Yeh, 1990),
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C(x,t) = —exp (3.33)
Ix-xj

2a2

where a2 =cr2 +2Dt and x=x0 + j'0 v(t)dt

The numerical model is used to simulate the transport for different Peclet and

Courant numbers and different limiters. The flow velocity is taken as 0.5 m/day. The

domain is discretized into 100 grids so that spacing between the grids Ax is equal to

1.0m. Center of mass of the initial concentration field x0 = 45m. Standard deviation of

the initial concentration field <j0 = 5m, and Courant number equal to 0.75 is used in

this simulation.

Fig 3.5 shows the comparison between numerical solution and analytical

solution for different Peclet numbers wherein the concentration breakthrough curves

are shown with respect to distance at the end of simulation period of 150 days. It is

seen from Fig 3.5 that the numerical solution is in good agreement with the exact

solution for an advection dominated case (Pe = 200) with little peak clipping. It is also

observed that the present numerical scheme matches very well with analytical

solution for lower Peclet numbers (Pe = 2 and 20), which is expected for a second

order accurate scheme. A comparison of the numerical solution with analytical

solution for various Courant numbers is studied in Fig. 3.6. It is observed from

Fig. 3.6 that the numerical accuracy slightly decreases with a decrease in Courant

number. The effect of various limiters on the numerical solution for a high Peclet

number case is presented in Fig. 3.7. It is clear from Fig. 3.7 that the Suprebee limiter

captures the peak better than the other two limiters.
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Fig 3.5 Comparison of numerical and analytical solutions for the transport of

instantaneous Gaussian solute pulse
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Fig 3.6 Effect of time step in the numerical solution for one dimensional transport

of an instantaneous Gaussian solute pulse
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Fig 3.7 Effect of limiter in the numerical solution for advection dominated one

dimensional transport of an instantaneous Gaussian solutepulse

3.5.3 Continuous Source of Finite Duration with Biodegradation

Analytical and numerical solutions are compared for various cases to assess

the performance of numerical scheme for the contaminants with only biodegradation

described in Eq. (3.2). The effect of Courantnumber on the accuracy is also studied.

To compare the numerical solution with the analytical solutions, a continuous source

of 2 hourduration is imposed such that the concentration at the upstream boundary is

100 units. The flow velocity and dispersion coefficient are assumed as 0.1m/s and

5.0 m/s respectively. The problem is solved using the finite volume method with

Courant number of 0.75 and employing Superbee limiter. Let x represent the duration

of the continuous source and for this problem the initial and boundary conditions is

given as follows.
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C(x,0) = 0 forx>0

C(0,0 = C0 for t > t > 0

C(0,/) = 0 for t>z

C(oo,t) = 0 for t > 0

(3.34)

The exact analytical solution for the governing equation 3.2 subject to initial

and boundary conditions (Eq. 3.34) for nonconservative solute (X i- 0) is presented by

O'loughlin and Bowmer (1975)

where

exp -0-0
2D

erfc
x-vtr

2-Jdt

rx-v(t-r)T^
erfc

2jd(i-T)

x + v(t - r)f
C(x,0 =y

+ exp -o+n
2D

erfc
x +vtT } ,

- - erfc
24bl) 2ylD(t-T)

r = Vi+2//

(3.35)

(3.36)

(3.37)

Fig 3.8a and Fig 3.8b show the comparison ofconcentration profiles predicted

by numerical and analytical solution as a function of time at 100m and 2000m from

the source respectively for the case of conservative solute (X =0). It can be seen from

Fig 3.8a and Fig 3.8b that the numerical predictions are in close agreement with the

exact solution for both the distances.

Fig 3.9a and Fig 3.9b show the variation of model predicted and analytically

predicted concentration as a function of time at distances 100m and 2000m

respectively for a nonconservative solute with X is equal to 0.36 /hr. In this case also

the model predictions are in close agreement with the analytical predictions. From

Figs 3.8 and 3.9 it can be observed that the deviation between the numerical and

analytical predictions decreases with distances.
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Fig 3.8(a) Comparison of analytical and numerical solution for conservative solute

transport at 100m
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Fig 3.8(b) Comparison of analytical and numerical solution for conservative solute

transport at 2000m
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Fig 3.9(b) Comparison of analytical and numerical solution for nonconservative

solute transport at 2000m

58



Table 3.1 shows the maximum error between the numerical and analytical

solutions as a percentage of peak analytical concentration at 100 and 2000m for

different values of X. From Table 3.1, it can be seen that at a given distance the error

percentage increases as the decay rate Xincreases. In addition, for a given X, the error

percentage decreases as the distance increases.

Table 3.1. Maximum Error as percentage of peak concentration

Decay rate (hr) Distance from the source

x=100m x = 2000m

k = 0.0 0.4532 0.2903

X = 0.36 0.4962 0.414

X = 0.72 0.6552 0.5396

Fig 3.10 shows the effect of Courant number on the numerical solution for the

nonconservative solute transport. It is seen that the Courant number has no significant

effect on the accuracy of the numerical solution for the nonconservative solute

transport.
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Courant number=0.75

Courant number=0.5

2000 2500

Fig 3.10 Effect of Courant number on the numerical solution for nonconservative

solute transport
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3.5.4 Virus Transport

The one dimensional virus transport in hydraulically homogeneous, saturated

porous media accounting for virus adsorption and inactivation is given in Eq. (3.1).

Virus adsorption in homogeneous porous media is commonly described by an

equilibrium adsorption relationship assuming an instantaneous equilibrium between

viruses in the liquid phase and onto the solid matrix (Chrysikopoulos and Sim, 1996).

A general expression for the adsorption isotherm is given by

C'=f(C) (3.38)

where f(C) is an arbitrary function which is commonly given by either Langmuir or

Freundlich model (Schijven, 2001). Maraqa (2007) investigated the effects of

assumption of linear sorption on retardation of nonlinearly sorbed solutes and

concluded that it is appropriate to estimate the retardation coefficient of a nonlinearly

sorbed solute using a linearized isotherm if all soil particles experience sorption with

liquid concentration equal to the induced concentration. For linear sorption the

equilibrium solid phase concentration C* will be linearly proportional to the

equilibrium liquid phase concentration C.

C* =kdC (3.39)

where kd is linear distribution coefficient. Substituting Eq (3.39) in Eq. (3.1), Eq. (3.1)

reduces to

dt

fd2C^

\dxl .
_V^_AC-A*^-C (3.40)

dx 0

where R is the retardation coefficient which is expressed as

fl =l+^= (3.41)
0

In terms of the virus concentration in the liquid phase, the virus transport

equation can be written as (Jin et al., 1997)

R^^
dt dx dx

v—-XRC (3.42)
dx
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The analytical solution of the Eq. (3.42) subjected to boundary conditions

given in Eqs. (3.4), (3.5) and (3.7) is given as (Van Genuchten and Alves, 1982)

exp

CI f xv^

Q 2
exp

\2D;

exp

— Uv2+4XD
2D\

erfc

^(Vv2+42Z))W

Rx-Uv2+4AD\t

24dr1

Rx-Uv2+UD\t

2y[DRt

+

(3.43a)

The analytical solution of the Eq. (3.42) subjected to boundary conditions

given in Eq. (3.34) is given as

CI ( xv A

C0 2
exp

K2Dj

exp

exp

2D
Uv2 +4Xd\

— Uv2+4Xd\
2D\ I

erfc
Rx-Uv2+UD)t

ifDRt

-erfc
Rx-Uv2+4XD\(t-r)

2yJDR(t-r)

Rx-Uv2+4XD\t

2jDRt

Rx-Uv2+4XD\(t-r)
2^DR(t-r)

erfc

-erfc

(3.43b)

To test the accuracy of the numerical scheme, the numerical solutions are

compared with analytical solutions (Van Genuchten and Alves, 1982) for a wide

range of Peclet numbers. These comparisons are made for continuous source of both

infinite and finite durations.

3.5.4.1 Virus injection of infinite duration

In this problem, a continuous source of virus is imposed such that the

concentration at the upstream boundary is 100 concentration units (C0 = 100). The
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pore water velocity, bulk density of soil and Distribution coefficient are assumed as

34 cm/day, 1.11 gm/cm3 and 0.02 ml/gm. The domain is discretized into 100 grids so

that spacing between the grids Axis equal to 1.0cm. The governing equation 3.1 is

solved numerically subject to initial and boundary conditions given in Eqs (3.4, 3.5 &

3.7). The simulation is carried out for both advection dominated (Peclet numbers

equal to 100) and dispersion dominated (Peclet number equal to 1) situations.

Fig. 3.11 to Fig. 3.13 shows the comparison of numerical and analytical

solutions for a continuous source of infinite duration. Fig. 3.11 shows the comparison

of virus concentration after 2 days for advection dominated virus transport (Pe =100)

considering inactivation coefficient X= X*= 0. It is seen from Fig. 3.11 that the model

predicted concentrations are in an excellent agreement with those predicted

analytically. Incontrast, Fig. 3.12 shows the comparison of virus concentration after 2

days for dispersion dominated transport (Pe =1) and inactivation coefficient X= X= 0.

It is also seen from Fig. 3.12 that both numerical and analytical solutions are in very

good agreement with each other. In addition, Fig. 3.13 shows the comparison of

numerical and analytical solutions involving virus inactivation with inactivation

coefficient X= X*= 0.58 /day. Inthis case also, the finite volume model predicted virus

concentration matchesvery well with the analytically obtained concentrations.

3.5.4.2 Virus injection of finite duration

This case is similar to virus injection of infinite duration except the virus is

injected only for 2 days. The simulation is carried out for 6 days. Fig 3.14 shows the

comparison of breakthrough curves obtained by both numerical and analytical

solutions at 20m from the source. It is seen from Fig. 3.14 that the numerical model

slightly underpredicts the peak as compared to the analytical solution.
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Fig 3.11 Comparison of analytical and numerical solution of advection dominated

virus transport considering inactivation coefficient X= X* =0.0
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Fig 3.12 Comparison of analytical and numerical solution of dispersion dominated

virus transport considering inactivation coefficient X= X* =0.0
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3.6 CONCLUDING REMARKS

In the present study a hybrid finite volume numerical model has been

developed using operator split approach for solving conservative, nonconservative

solute and virus transport equation in ground water. This approach uses a globally

second order accurate explicit finite volume method for the advective transport and an

implicit central difference method for the dispersive transport. It is observed that the

numerical model is capable of simulating transport of conservative, nonconservative

solute and virus under advection dominated and dispersion dominated situations. The

effect of Courant numbers on numerical solution is found to be insignificant for all

cases considered. The accuracy of the model is also tested for different types of

limiters. It is observed that the Suprebee limiter is least dissipative, while Minmod

limiter is most dissipative among the three limiters.
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CHAPTER 4

ESTIMATION OF TRANSPORT

PARAMETERS IN SATURATED ZONE

4.1 INTRODUCTION

it In Chapter 3, a numerical model is developed for simulating conservative and

nonconservative virus transport in groundwater. The model predicts the transport of

virus as a function of space and time for a given set of transport parameters. However,

the accurate prediction depends upon the reliability of the transport parameters used in

the analysis. Virus transport parameters are usually estimated by conducting

^ laboratory column experiments and the parameters are obtained by direct numerical

inversion of the governing equation (Kool et al., 1987). These methods are time

consuming and require rather restrictive initial and boundary conditions. In addition,

the parameters so obtained may not be applicable at field scale level. An alternative to

these methods are the estimation of transport parameters using inverse procedure. In

such an approach, the transport parameters are obtained by minimizing the deviation

between the model predicted and experimentally observed virus concentrations in an

experiments. The advantage of such an approach is that the experiments can be

selected on the basis of convenience and expeditiousness, rather than by a need to

simplify the mathematics of the direct inversion process. The main disadvantage of

inverse procedure is that the inverse problem is often ill posed (Carrera and Neumann,

1986). The illposedness may be due to non-identifiability, nonuniqueness or

instability.
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In the present Chapter, a parameter estimation algorithm is developed to

estimate virus transport using inverse procedure. For this purpose, the numerical

model developed in Chapter 3 is coupled with Levenberg-Marquadart optimization

algorithm. The identifiability of the transport parameters is discussed in detail by

estimating the transport parameters from synthetically generated virus concentration

data. The effect of errors in the data on the estimated parameters is also studied and a

detailed statistical analysis is carried out to study the bias induced by the objective

function at different noise levels.

4.2 GENERAL FORMULATION OF THE ESTIMATION PROBLEM

The inverse problem is formulated as a nonlinear optimization problem i.e. the

transport parameters are estimated by minimizing the deviation between observed and

model predicted response as

min<9(b) =-[C* -C(b)J W[C* -C(b)] (4.1)
b 2

where the objective function, 0(b), is a function of the model parameters b,

b={bvb2, bm}T •,€* ={C,\ C*} is the observation vector whose elements

represent measured concentrations; C(b) ={C,(&), C„ (6)}rrepresents the

predicted response for a given parameter vector b and W is the symmetric weighting

matrix. In the present study, the parameter vector b comprises inactivation coefficient

in liquid phase X, inactivation coefficient in sorption phase X, dispersion coefficient

D, and distribution coefficient kd i.e. b={A,A* ,D,kd} . The objective is to find the

optimum parameter vector b that minimizes the objective function 4.1. When the

observation errors are assumed to be independent and normally distributed the
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weighting matrices W becomes an identity matrix and Eq. (4.1) reduces to ordinary

least squares (OLS) problem.

min6>(b) =l[c*-C(b)]r[c*-C(b)] =̂ [c4-C(b)]
b 2 1 i=x

where N is the number of observations.

(4.2)

The OLS formulation has probably been the most popular one for parameter

estimation. Its attraction is due to its simplicity and because it requires a minimum

amount of information. When observation errors are normally distributed, are

uncorrelated and have a constant variance, the OLS estimates possess optimal

statistical properties (Kool et al., 1987). When these conditions are not met, the OLS

method will no longer yield optimal parameter estimates in terms of precision and

minimum variance.

4.3 SOLUTION ALGORITHM

In the present section, Levenberg-Marquadart algorithm is used to optimize

the objective function (4.2) and is explained in detail. Let e represents the vector of

residuals defined as

c,

c.

c;-cx(b)

c;-c2(b)

c;-c„(b)

Then Eq. (4.2) can be written as

inO(b) =Ve=i£e,2
z z ,=1

mm

(4.3)

(4.4)

The objective function (4.4) is a nonlinear function of the parameter vector b

and hence the minimization has to be carried out iteratively. At each iteration /', the
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parameter correction vector Ab'is determined suchthat

0(b'+Ab')<0(b') (4.5)

Newton's method can be derived by writing 3-term Taylor series expansion

for 0(b) around b1.

0(b'+Ab) =0(b')+V0(b')rAb +-Ab7"V20(b')Ab +5wa// (4.6)

One wishes to select Ab' such that 0(b' +Ab')is approximately minimized.

Newton's method (Kool et al., 1987) for obtaining the parameter correction leads to

the system of equation

(jrJ+S)Ab'=-Jre (4.7)

where J is a Jacobian matrix whose columns contain the partial derivatives of the

residuals e with respect to the elements of the parameter vector b and S is a matrix

containing second derivative of e withrespect to element of b. The implementation of

Newton's method is computationally expensive, because of computation of second

derivatives and hence is not generally adopted in practice (Kool et al., 1987).

In Gauss-Newton method, S is neglected in Eq. (4.7) and Ab' is obtained by

solving the system of equations.

JrJAb'=-J7e (4.8)

Jacobian has dimension N*P, where N is the number of observations and P is

the number of unknown parameters to be estimated. The element of J are obtained by

forward finite difference approximation as

de^ =_dQ Cjx^bj+SbJ-Cjx^bj)
"-Ob,' dbj 8b,

where 8b. =0.0 lx^ withy denotes the index for the parameter.
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(j7J +/?DrD)Ab =-Jre (4.10)

In Eq. (4.10) 6 is a positive scalar and D=diag(dvd2,...dp) is a scaling

matrix that takes into account differences in the magnitude of the sensitivities for the

different parameters. Following Kool and Parker (1988) the elements of Dare

updated in each iteration i, as

d) =

dj =max{dj-\\j'M />0
(4.11)

where Jy denotes they'th column of J and the vertical bars denote the Euclidian

norm. The parameter 6 controls both the step direction and step length. Following

Osborne (1976) and More (1977) scheme for updating R is coupled with the solution

of Eq. (4.10) as discussed below. The system of Eq. (4.10) can be represented as

normal equations for the linear least squares problem as

(i \ '-e ^
min

e e =

v/?/2Dy
Ab-

V <v

(4.12)

The minimum of Eq. (4.12) is found in two steps. In the first step Eq. (4.12) is

multiplied by an orthogonal Householder matrix Qr so that

Q7J = R, (4.13)

where R, is P*P uppertriangular. The right hand side of Eq. (4.12) becomes

R, rc\

Ab + (4.14)

B&D v«y

Then the subdiagonal elements Bl/2 D in Eq. (4.14) are zeroed out by applying

a series of orthogonal Givens Rotations which yield
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Ab +

K»J
(4.15)

where R is P *P upper triangular and the subvectors f and g have lengths P and N

respectively. The minimum of Eq. (4.12) can be obtained if parameter corrections

Ab are chosen such that

RAb = -f (4.16)

The acceptedvalue of 6 is one that reduces the value of the objective function.

After obtaining the acceptable value, Bis updatedin each iteration by computing yas

T T
e e-e+e+

f'f

where, e =• e(b) and e+ = e(b + Ab)

(4.17)

If/ > 0.75 , B is decreased by multiplying it by a factory < 1. Ify < 0.25 , B is

increased by multiplying it by a factors, >1. The optimization is terminated when

either of the following termination criteria is satisfied.

frf<{\ +t\f2xex (4.18)

\Ah

6,+10
5T**2 (4.19)

where £/ and £2 are the specified tolerance limits. The following values are used for

optimization parameters in the study; /initial =1.0. cox =1.75, co2 =0.25, £/ = 0.000002

and £2 = 0.0001.

As the objective function does not exhibit a convex nature uniformly over the

entire parametric space, it is found necessary to impose some constraints on the

corrections to ensure convergence to the global minimum, from the initial guess in

any region of the parametric space. The constraints proposed by Cobb et al. (1982) on
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the relative changes of the parameter are imposed in the computations which is given

by

Ab]
-0.2<-^<0.5 (4.20)

b)

Cobb et al., (1982) observed that with these constraints the convergence to

true values can be obtained even when initial assumptions differs from true values by

orders of magnitude. These constraints are incorporated in the Levenberg-Marquardt

algorithm in the present study.

A computer code is written in FORTRAN 90 to implement the inverse

procedure and is presented in APPENDIX-II.

4.4 IDENTIFICATION OF TRANSPORT PARAMETERS

In the present Section, the parameter estimation algorithm developed in

Section 4.3 is used to estimate the virus transport parameters X, D, X and kd- Initially

it is checked whether the optimization yields unique estimates of the transport

parameters from hypothetical generated virus concentration data and the

identifiability of the parameters are discussed. Later, the effect of noise (errors) in the

measurements on the parameter estimates is studied.

Hypothetical virus concentration data:

Hypothetical data of virus concentration as a function of time are generated by

solving Eq. (3.1) subject to initial and boundary conditions given by Eqs. (3.4), (3.5)

and (3.7). The initial concentration of virus in flow domain is considered to be zero. A

virus concentration of 1 unit is applied continuously at the source. The virus

concentration far away from the source is assumed to be zero. A steady groundwater

velocity (v) of 34 cm/day is considered. The transport parameters used in
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the simulation are X= 0.58 /day, D = 34 cm2/day, X* = 0.46/day, kd = 0.02 ml/gm,

y9 = 1.11 gm/cm3 and # = 0.4. Virus concentration at discrete times (0.5, 1.0, 1.5, 2.0,

and 2.5 days) and at a discrete distance from the source (1, 3, 5, 7, 9, 11, 13, 15, 17,

20, 22 cm) is generated by solving Eq (3.1) subjected to initial and boundary

conditions given in Eq. (3.4), Eq. (3.5) and Eq. (3.7). Table 4.1 presents the

hypothetically generated virus concentration data. These data are used as observed

concentration data in the parameter estimation.

Table 4.1: Hypothetical virus concentrations data for parameter estimation

^\Time (Days)

Distance^^
in cm x^

0.5 1.0 1.5 2.0 2.5

1 0.96962 0.98128 0.98193 0.98193 0.98193

3 0.88107 0.94213 0.94773 0.94785 0.94785

5 0.74232 0.89680 0.91364 0.91496 0.91496

7 0.55359 0.84059 0.87860 0.88315 0.88320

9 0.33772 0.76859 0.84116 0.85201 0.85255

11 0.15664 0.67732 0.79944 0.82074 0.82295

13 0.05572 0.56651 0.75127 0.78865 0.79428

15 0.01554 0.44019 0.69455 0.75487 0.76614

17 0.00348 0.30658 0.62775 0.71831 0.73792

20 0.00026 0.13602 0.50802 0.65573 0.69438

22 0.00004 0.06578 0.41728 0.60726 0.66369

The robustness of the optimization procedure is studied by changing the

number of transport parameters to be estimated from 1 to 4. In addition, the efficacy

of the optimization procedure is analyzed by starting the initial guesses of individual

parameters considerably far away from their true values. The parameter estimation is

discussed in detail in the following Section.
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4.4.1 Case 1: Estimation of One Unknown Parameter

Case 1 considers the estimation of one unknown transport parameters while

treating the other three parameters as constant to their respective values used for the

generation of hypothetical data. Further two sub cases (case A and case B) are

considered. In case A, the initial guess parameter is over estimated by one order from

its true value while in case B it is under estimated by one order from its true value.

Table 4.2 presents the initial guess values and the optimal estimated values of the

transport parameter X, X*, D, and kd. It is clear from Table 4.2 that the optimization

algorithm converges to the truevalues in bothsubcases (case A and Case B). Further,

it can be seen from Table 4.2 that starting the initial guess as over estimated value

results in less number of iterations to converge to the optimal solution.

4.4.2 Case 2: Estimation of Two Unknown Parameters

In case 2, two among the four transport parameters are considered as unknown

and are estimated while keeping other two parameters a constant to their respective

values used for the generation of the hypothetical data. Such an estimation results in

six combinations of two unknown parameters; (X, D), (X, kd), (X, X), (D, kd), (X , D)

and (X*, kd). For each of these combinations, four subcases are considered. In case A,

the initial guess of the parameters are over estimated by one order from their true

values. In case B, the initial guess of the parameters are underestimated by one order.

In case C, the initial guess of the first parameter is over estimated by one order while

the initial guess of the second parameter is under estimated by one order. In contrast

in case D, the initial guess of the first parameter is under estimated by one order while

initial guess of second parameter is over estimated by one order. During optimization,

it is observed that for the particular combination in which the inactivation coefficients

X and X* are considered as unknown parameters, the optimization resulted in non
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unique solutions. The identifiability of these two parameters is discussed later in this

Section. Table 4.3 presents the initial guess values and the final estimated values of

the parameter for the other five combinations of parameters considering all the four

sub cases (case A to case D). It is seen from Table 4.3 that the optimization algorithm

yields true values of the parameters in all the four sub cases. Table 4.3 also suggests

that the convergence to the optimal solution is most rapid when initial guesses are

over estimated. The convergence of the optimization to the true values for the five

combinations discussed is further evidenced by the convexity of the objective

function in their respective parametric spaces. Fig 4.1 to 4.5 show the contours of the

objective function in the parametric spaces (X, D), (X, kd), (D, kd), (X , D) and (X , kd)

respectively. It can be seen from Figs 4.1 to 4.5 that the objective function <$> is

strictly convex in nature with one global minimum at their true values in all these five

parametric spaces. This results in the optimization algorithm converging to the true

values from any point in the parametric space.

Fig 4.1

10 20 30 40 50 60 "'O

Dispersion coefficient

80 90 100

Contour showing objective function as a function of dispersion coefficient

D (cm2/day) and inactivation coefficient in liquid phase X(/day).
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Fig 4.2 Contour showing objective function as a function of distribution coefficient

kd (ml/gm) and inactivation coefficient in liquid phase X(/day).
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Fig4.3 Contour showing objective function as a function of dispersion coefficient

D (cm2/day) and distribution coefficient kd (ml/gm).
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Dispersion coefficient
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Fig 4.4 Contour showing objective function as a function of dispersion coefficient D

(cm2/day) and inactivation coefficient in sorption phase X (/day).

0.35 04 0.45 0.5 0.55

Inactivation coefficient in sorption phase

Fig4.5 Contour showing objective function as a function of distribution coefficient

kd (ml/gm) and inactivation coefficient in sorption phase X (/day).
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4.4.3 Identifiability of Inactivation Coefficients Xand X

The movement of viruses in ground water is greatly influenced by inactivation

(Bales et al., 1991) and it has been observed that the inactivation process is different

in aqueous and sorbed phases and inactivation coefficients vary significantly for these

two phases (Gerba, 1984). An attempt has been made to test whether the inverse

procedure uniquely estimates the inactivation coefficients from the measured virus

concentration data. For this purpose optimization is carried out by treating Xand X as

unknown parameters. Table 4.4 presents the initial guess values and the optimal

estimates of parameters Xand X for four sub cases of over estimated, under estimated

and mixed. It is evident from Table 4.4 that the optimization results in nonunique

estimates of Xand X*. Further it can be observed that in all the sub cases, the estimated

values of the parameter X are close to the true value. However, the estimates of

parameter X* deviates significantly from the true value. Convexity of the objective

function ^ on the X- X* parametric space is studied and is shown in the form of

contours in Fig. 4.6.

Values indicate objective function

0.62-

0.15 0.2 0.25 0.3 0.35

Inactivation coefficient in sorption phase (/day)

Global minimum

Fig4.6 Contour showing objective function as a function of inactivation coefficient in

sorption phase X* (/day) and inactivation coefficient in liquid phase X(/day).
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From Fig. 4.6, it is clear that the objective function has many local minima in

X- X* parametric space and hence an optimal estimate depends upon the initial guess

values from which the optimization is started. It can also be inferredfrom Fig. 4.6 that

the local minima are concentrated over a small range around the true value of the

parameter X (= 0.58/day) resulting in parameter estimates close to the true value.

However, for the case of X*, the local minima is spread over a wide range around its

true value (= 0.46/day). As a result, the optimal parameter estimates deviate

significantly from the true value.

4.4.4 Case 3: Estimation of Three Unknown Parameters

Case 3 considers the estimation of three unknown transport parameters

simultaneously while keeping the remaining one parameter as constant to its

respective value used for generation of hypothetical data. Such an estimation results

in four combination of three unknown parameters; (X, D, kd), (X, X, kd), (X, X, D) and

(X*, D, kd). For each of three combinations, three subcases are considered. In case A,

initial guess parameters are over estimated by one order from their true values, while

for case B, the initial guess parameters are underestimated by one order and case C

considers the case where initial guess of some parameters are over estimated while the

initial guess of rest of the other parameters are underestimated. In case 3 also, it is

observed that the simultaneous presence of inactivation coefficient X and X in any

combination of unknown parameters, the algorithm converges to non unique solution.

However, if one of the parameter (X or X*) is considered as a known parameter, the

optimization resulted in the unique estimation of the other three unknown parameters

as shown in Table 4.5. From Table 4.5, it can be seen that if the initial guess values

are over estimated, the optimization required less number of iterations for

convergence as compared to the cases of under estimation and mixed.
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Table 4.2: Parameter estimates for the hypothetical data - Case 1

Parameter True values Case A (over estimated) Case B (Under estimated)

Initial guess Final estimate

value

No of

iterations

Initial guess Final estimate

value

No of

iterations

X(/day) 0.58 5.8 0.58 6 0.058 0.5797 8

D (cm2/day) 34 340.0 34.0 9 3.4 34.0 10

X* (/day) 0.46 4.6 0.4609 4 0.046 0.4586 4

Kd (ml/gm) 0.02 0.2 0.02 4 0.002 0.02 5



Table 4.3: Parameter estimates for the hypothetical data - Case 2

Parameters True

values

Case A (over estimated) Case B (Under estimated) Case C (Mixed) Type I Case D (Mixed) Type II

Initial

guess

Final estimate

value

No of

iterations

Initial

guess

Final estimate

value

No of

iterations

Initial

guess

Final estimate

value

No of

iterations

Initial

guess

Final estimate

value

No of

iterations

X (/day) 0.58 5.8 0.58 16 0.058 0.58 34 0.058 0.58 21 5.8 0.5799 40

D (cm2/day) 34 340.0 34.0 3.4 33.95 340.0 34.0 3.4 33.985

X(/day) 0.58 5.8 0.58 23 0.058 0.5797 30 0.058 0.58 23 5.8 0.5797 35

kd(ml/gm) 0.02 0.2 0.02 0.002 0.0199 0.2 0.02 0.002 0.0199

D (cm2/day) 34.0 340.0 34.0 21 3.4 33.93 45 340.0 33.99 38 3.4 34.0039 25

kd(ml/gm) 0.02 0.2 0.02 0.002 0.0199 0.002 0.0199 0.2 0.02002

X' (/day) 0.46 4.6 0.461 18 0.046 0.468 20 4.6 0.4614 20 0.046 0.4615 35

D (cm2/day) 34.0 340.0 34.0 3.4 33.987 3.4 34.1 340.0 33.15

X' (/day) 0.46 4.6 0.4674 27 0.046 0.461 32 4.6 0.463 29 0.046 0.461 28

kd(ml/gm) 0.02 0.2 0.02 0.002 0.0199 0.002 0.02 0.2 0.02102

Table 4.4: Non uniqueness of decay parameters Xand X

Parameters True

values

Case A (over estimated) Case B (under estimated) Case C (Mixed) Type I Case D (Mixed) Type II

Initial

guess

Final estimated

values

Initial

guess

Final estimated

values

Initial

guess

Final estimated

values

Initial

guess

Final estimated

values

X(/day)

X'(/day)

0.58

0.46

5.8

4.6

0.5191

1.553

0.058

0.046

0.5998

0.1055

5.8

0.046

0.6034

0.0409

0.058

4.6

0.3477

4.6421



Table 4.5: Parameter estimates for the hypothetical data -Case 3

Parameters True values Case A (over estimated) Case B (under estimated) Case C (mixed)

Initial

guess

Final

estimated

values

No of

iterations

Initial

guess

Final

estimated

values

No of

iterations

Initial

guess

Final

estimated

values

No of

iterations

X(/day) 0.58 5.8 0.5797 28 0.058 0.5797 48 0.058 0.58 42

D (cm2/day) 34.0 340.0 34.041 3.40 33.9 340.0 33.943

kd (ml/gm) 0.02 0.2 0.02 0.002 0.0199 0.002 0.0199

X* (/day) 0.46 4.6 0.459 27 0.046 0.4535 49 0.046 0.4585 39

D (cm2/day) 34.0 340.0 33.96 3.40 33.9 340.0 33.94

kd (ml/gm) 0.02 0.2 0.02 0.002 0.0199 0.002 0.0199



4.5 DATA ERROR AND BIAS

In Section 4.4, the performance of the optimization algorithm is studied by

estimating parameters from hypothetically generated error free virus concentration

data. As stated by Kool et al. (1987), the reliability of the parameters estimates

obtained by inverse procedure greatly depend upon the quality of the experimental

data. In addition, Khatibi et al. (1997) have demonstrated that the nature of the

objective function may induce bias in the parameter estimates obtained from inverse

procedure. The present Section discusses the effect of data errors and bias induced by

the objective function on the transport parameter estimates. The least square

minimization techniques based on the following assumptions i) the error vector has

zero mean and constant variance ii) the errors are mutually uncorrelated and iii) the

error distribution is normal in a statistical sense (Diskin and Simon, 1977). In the

absence of errors, the identification procedure normally identifies a unique set of

values for the parameters. In their presence, the individual values of the identified

parameters depend on the individual samples and therefore the identified parameters

do not appear to be unique. However, the treatment of the problem in a statistical

sense using the sampling theory clearly renders the uniqueness of the means, provided

that the objective function does not introduce any undue bias. Bias is induced in the

parameter estimates due to following reasons (Williams, 1978). i) the statistical

distribution of the sample is different from that of the population ii) the error

measurements which creates "inconsistent" data and iii) the functional form of the

estimator is such that the average overall samples is not equal to the true value. The

present study is aimed at evaluating the bias induced by the objective function in the

presence of errors. For this purpose, Gaussian noise is added to hypothetically

generated virus concentration data (Refer Section 4.4) through specifying a mean p
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and a standard deviation a as follows:

Cojj=CtJ>Je (4.21)

with e =N(ju,a) (4.22)

where C0jJ is the observed virus concentration and Qy is the hypothetically

generated virus concentration data and e is the Gaussian error, i and j are the number

of space and time observations respectively. The p of every sample is assigned a value

equal to 1 to ensure unbiased perturbation through Eq (4.21), where the errors are

randomly distributed above and below Qy. For each value of a, 10 samples are

generated by changing the seeding of the random number generator. In the present

study, a is changed from 0.025 to 0.15 in increments of 0.025.

As discussed in Section 4.4, when the data contains no errors, the objective

function converges to the true values of the parameters as shown in Table 4.2, 4.3 and

4.5 for one two and three unknown parameters respectively. This indicates that when

data is free from errors, the objective function does not induce any bias in the

estimated parameters. When the data contains errors, the objective function does not

converge to true values. Percentage errors in estimating the transport parameters X, X,

D and kd are presented in Tables 4.6 to 4.9 respectively at two noise levels 0.05 and

0.1 for 10 different samples. From Tables 4.6 to 4.9, it is concluded that i) the noisy

data introduces errors in the estimated parameters, ii) the amount of induced error

increases with the noise level and iii) for any given noise level, the individual values

of identified parameters deviate from the true value. In addition it is observed that the

error percentage in case of X* is very high as compared to other parameters. As the

individual values of the identified parameters generally deviate from their true values,

the error contained in these values reveal very little in their behavior and hence

statistical analysis is necessary in terms of means and confidence intervals. In the

present study, 95% confidence interval is used for carrying out the statistical analysis.

84



Table 4.6: Effect of data error and objective function on estimated parameterX

Sample No Noise level a =0.05 Noise level a =0.1

Value of X Error percentage
\x\X

Value of X Error

percentage in X

1 0.5733 1.15 0.5667 2.2931

2 0.5711 1.534 0.5624 3.034

3 0.5693 1.844 0.5586 3.6896

4 0.5672 2.206 0.5547 4.362

5 0.6232 -7.448 0.6672 -15.0345

6 0.5799 0.0172 0.5799 0.0172

7 0.573 0.7 0.566 2.4137

8 0.56 3.448 0.5405 6.8103

9 0.5483 5.465 0.5174 10.7931

10 0.5617 3.155 0.5436 6.2758

Table 4.7: Effect of data error and objective function on estimated parameter X

Sample No Noise level a =0.05 Noise level <r=0.1

Value of X Error percentage
in X

Value of

X"
Error percentage

in X

1 0.3282 28.6521 0.2564 44.26

2 0.3005 34.6739 0.132 71.3

3 0.2795 39.2391 0.09194 80.013

4 0.2538 44.826 0.0706 84.652

5 1.2402 -169.6 2.0286 -341.0

6 0.4509 1.9782 0.4654 -1.1739

7 0.3307 28.1087 0.2551 44.5434

8 0.0961 79.1087 0.01737 96.2239

9 0.0188 95.913 0.04242 90.7782

10 0.1285 72.0652 0.2528 45.0434

85

* .



Table 4.8: Effect of data error and objective function on estimated parameter D

Sample No Noise level a =0.05 Noise level fr=0.1

Value ofD Error percentage
inD

Value of D Error

percentage in D

1 34.672 -1.9764 35.349 -3.9676

2 34.965 -2.8382 35.976 -5.8117

3 33.806 0.5705 33.603 1.1676

4 34.766 -2.2529 35.477 -4.3441

5 33.191 2.3794 32.676 3.8941

6 33.306 2.0411 32.601 4.1147

7 35.068 -3.1411 36.225 -6.5441

8 35.077 -3.1676 36.284 -6.7176

9 35.122 -3.3 36.288 -6.7294

10 33.393 1.7852 32.694 3.8411

Table 4.9: Effect of data error and objective function on estimated parameter kd.

Sample No Noise level a =0.05 Noise level o =0.1

Value of kd Error percentage
in kd

Value of kd Error percentage
in kd

1 0.0198 1.0 0.0198 1.0

2 0.01944 2.8 0.01884 5.8

3 0.0179 10.5 0.01599 20.05

4 0.01833 8.35 0.01659 17.05

5 0.02512 -25.6 0.0308 -54.0

6 0.02257 -12.85 0.0251 -25.5

7 0.01885 5.75 0.01767 11.65

8 0.01794 10.3 0.01601 19.95

9 0.01588 20.6 0.01374 31.3

10 0.02157 -7.85 0.02349 -17.45
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Figs 4.7 to 4.10 show the mean values and the 95% confidence intervals of

estimated parameters X, X*, D and kd respectively. The following conclusions can be

drawn from Figs 4.7 to 4.10. i) the deviation of the mean from the true value increases

with an increase in noise level in case of parameters X and D. However, the mean

remains significantly unchanged and is closer to the true value in case of A and kd. ii)

the true value is contained within the 95% confidence interval of all the identified

parameters at all noise levels indicating that the objective function does not induce

bias on the parameter estimates, when they are estimatedindividuals.

Fig 4.1 la and 4.1 lb show the variation of means of identified Xand D with

noise level o by treating Xand D is unknown parameters. Similarly Fig 4.12a and

4.12b, Fig 4.13a and 4.13b, Fig 4.14a and 4.14b, and Fig 4.15a and 4.15b show the

variation of means of identified Xand kd, X* and D, X* and kd, and D and kd with noise

level a respectively by treating them as unknown parameters. From Figs 4.11 to 4.15,

it can be seen that in the case of estimation of two unknown parameters also, the

objective function does not induce any undue bias in estimated parameters. This is

evident from the fact that the true value falls within the 95% confidence interval of

the identified parameters at all noise levels.

Fig 4.16a, 4.16b, 4.16c and Fig 4.17a, 4.17b, Fig 4.17c show the variation of

means of identified X, D, kd, and X*, D, kd with noise level a while estimating three

unknown parameters. From Figs 4.16 and 4.17, it is seen that the objective function

induces bias in estimated parameters as the true value does not fall within the 95%

confidence interval of the identified parameters.

It is to be noted that in some cases, the lower confidence limit for X (Fig. 4.8,

Fig. 4.13a, Fig. 4.14a and Fig. 4.17a) show negative value which have no physical

relevance. However, they are retained in these figures for showing the upper and

lower confidence intervals.
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4.6 ESTIMATION OF TRANSPORT PARAMETERS FROM COLUMN

EXPERIMENT

In this Section, the optimization algorithm is also applied to estimate the

transport parameters from the virus concentration data of two column experiments.

4.6.1 Column Experiment 1

Bales et al., (1991) conducted three column experiments with MS2 virus at

pH 5. Experiments were done at 4° C using a 15 cm x 0.9 cm i.d. precision-bore glass

chromatography column packed with 45-90 urn glass beads. Flow rates monitored

continuously remained fairly steady. The average moisture content during the

experiment was about 0.35. The mass density of glass beads was 1.6 gm/cm and the

average velocity was about 13.32 cm/hr. The virus concentrations at the outlet for a

period of 4.7 hr are given as the observed data for the estimating parameters. Since

the experiments were conducted at 4° C, the inactivation coefficients Xand X are

taken as 0.0 (Sim and Chrysikopoulous, 1996). The remaining two parameters D and

kd are estimated using the inverse procedure as explained in Section 4.3. Table 4.10

presents the initial guess value andthe optimal parameter estimates of D and kd. It can

4 be seen that, in all the cases (over estimated, under estimated and mixed) the

optimization resulted in more or less unique values for the estimated parameters. The

RMS error in all the cases is almost the same. Further it can be seen that starting the

parameter estimation with over estimated values resulted in least number of iterations.

Fig. 4.18 compares the observed and model predicted virus concentration with

V optimal parameter values (D=41.472 cm2/hr and kd = 0.0286 ml/gm). Fig 4.18

suggests that the model predictions with optimal parameter estimates match

reasonably well with the observed virus concentrations.
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Table 4.10: Estimation of transportparameters from Column Experiment 1 (Bales et al., 1991)

Parameters Case A (over estimated) Case B (under estimated) Case C (mixed)

Initial

guess

Final

estimated

values

RMS

error

No of

iterations

Initial

guess

Final

estimated

values

RMS

error

No of

iterations

Initial

guess

Final

estimated

values

RMS

error

No of

iterations

D (cm2/day)

kd (ml/gm)

400.0

0.40

41.472

0.0286

0.0847 22 4.0

0.004

41.457

0.0286

0.0847 150 4.0

0.40

40.911

0.02858

0.0853 24
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Fig 4.18 Comparison of normalized virus MS2 breakthrough concentration from

Column experiment 1 (Bales et al., 1991)

4.6.2 Column Experiment 2

Jin et al. (2000) conducted OX174 virus transport experiment for saturated

conditions. The column used for saturated experiments consisted of a top and bottom

plate and was sealed by an o-ring on each end. There were 17 syringe needles evenly

distributed on the bottom solution-filling column to ensure a uniform supply of the

input solution. A stainless steel porous plate (3.1/5 mm thick) with a pore size of

0.5 um and a bubbling pressure of 10.1-13.5 kpa was placed at the bottom of the

column. Column outlet was connected to a vacuum chamber with a fraction collector

inside. By adjusting the vacuum pressure and flow rate of the input solution, steady

state and essentially uniform water content was reached. Two small tensiometers were

installed at depths of 3.3 and 6.6 cm to verify that the column indeed had a uniform

water distribution.

The column was made of acrylate and was 7.6 cm in diameter and 10 cm long.

The experiments were conducted in a cold room at 4 C to minimize the inactivation
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due to high temperature. Viruses were added to the sand column as a constant input at

an approximate concentration of 5 * 104 pfu/ml. Input solution containing bromide

tracer, and OXl 74 was applied with a peristaltic pump. Outflow samples were

collected in 15 ml polypropylene centrifuge tubes with a fraction collector. The

bromide tracer was used to test the performance of the column and to obtain transport

parameters. The average moisture content during the experiment was about 0.363.

The mass density of sand column was 1.72 gm/cm3 and the average velocity was

about 1.38 cm/hr. The inactivation coefficient in both liquid and sorption phase is

taken zero. The remaining two parameters D and kd are estimated using the inverse

procedure as explained in Section 4.3.
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/ •
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Predicted concentration
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Fig4.19 Comparison of normalized virus OX174 breakthrough concentration from

Column experiment 2 (Jin et al., 2000)

Table 4.11 presents the initial guess values and the optimal parameter

estimates of D and kd by considering different initial guess values. The optimal

parameters estimated in each case are used to predict the final virus concentrations.
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Table 4.11: Estimation of transportparameters of OXl 74 from Column Experiment2 (Jin et al., 2000)

Parameters Case A (over estimated) Case B (under estimated) Case C (mixed)

Initial

guess

Final

estimated

values

RMS

error

No of

iterations

Initial

guess

Final

estimated

values

RMS

error

No of

iterations

Initial

guess

Final

estimated

values

RMS

error

No of

iterations

D (cm2/hr)

kd (ml/gm)

100

0.4

31.882

0.005879

0.174

4

33 1.0

0.004

22.357

0.00277

0.1476 18 100.0

0.004

29.8835

0.00235

0.1727 20

D (cm2/hr)

kd (ml/gm)

200

0.02

32.765

0.009796

0.174

8

35 2.0

0.0002

29.8341

0.00022

0.1723 14 200.0

0.0002

28.0837

0.00022

0.1671 18



The RMS error in all the cases is also found out for each case and is shown in

Table 4.11. The parameters corresponding to minimum RMS error is finally used to

predict the virus concentrations. Table 4.11 shows that for the minimum RMS error is

0.1476 for which the value ofthe parameters are D=22.357 cm2/hr and kd = 0.00277

ml/gm respectively. Fig. 4.19 compares the observed and model predicted OXl74

virus concentration with optimal parameter values (D=22.357 cm /hr and

kd = 0.00277 ml/gm). Fig. 4.19 suggests that the model predictions with optimal

parameter estimates match reasonably well withthe observed virus concentrations.

4.7 CONCLUDING REMARKS

In the present Chapter, the parameter estimation is formulated as a least square

minimization problem in which the parameters are estimated by minimizing the

deviation between the model predicted and observed virus concentrations. Levenberg-

Marquadart algorithm is employed for the nonlinear optimization. The efficacy and

robustness of the optimization procedure is evaluated by estimating the parameter

from hypothetically generated virus concentration data. It is found that with the virus

concentration data, it is not possible to estimate the four transportparameters D, X, X,

and kd uniquely. If the number of parameters to be estimated is less than or equal to

three, the inverse procedure uniquely estimates the unknown parameters. Further it is

observed that in the cases of estimation of three or two parameters, if the parameters

to be estimated involve Xand X, the optimization does not yield unique estimates. The

analysis of the convexity of the objective function in X-X parametric space shows the

presence of local minima which result in the nonunique estimation of the parameters X

and X*. It is concluded that apriori estimation of one of the inactivation coefficient is

necessary for unique estimation of other unknown parameters. Optimization results on
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the hypothetical data indicate that starting the initial guess from over estimated values

results in least number of iterations for the algorithm to reach the optimal solution.

The present Chapter also investigates the performance of the objective

function in the presence of noisy data during estimation of transport parameters. To

study the effect of objective function on parameter estimation, Gaussian noise is

added to hypothetically generated data and detailed statistical analysis is carried out.

It is found that the objective function does not induce any bias into the estimated

parameters when unknown parameters are less than three but when the unknown

parameters are equal to three, then the objective function induces bias into the

estimated parameters. The parameter estimation is also applied to estimate the

transport parameter from a column experiment involving virus transport. It is found

that the model predictions with optimal parameter estimates match reasonably well

with experimental data.
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CHAPTER 5

ANALYSIS OF VIRUS TRANSPORT THROUGH

UNSATURATED ZONE- MODEL DEVELOPMENT

5.1 INTRODUCTION

In Chapter 3 and 4, the numerical modeling for virus transport in saturated

zone and estimation of virus transport parameters are discussed in detail. Numerous

studies (Yates and Ouyang, 1992; Sim and Chrysikopoulous, 2000) have indicated

that nature of virus movement in unsaturated zone is significantly different from that

in saturated zone. These studies have shown that the virus removal in unsaturated

zone is much higher as compared to saturated zone. Modeling of virus transport in

unsaturated zone is much more difficult than modeling in the saturated zone since the

velocities and moisture content in unsaturated zone depends on the pressure head

unlike saturated zone. The nonlinearity of the governing flow equation (Richards

equation) needs mass conservative schemes for accurate prediction of velocities and

moisture contents. The objective of the present Chapter is to develop moisture flow

and transport numerical model for predicting virus movement in the unsaturated zone.

A mass conservative fully implicit finite difference scheme (Celia et al., 1990) for

predicting moisture movement in unsaturated zone is coupled with hybrid finite

volume numerical model (developed in Chapter 3) predicting virus movement.

5.2 GOVERNING EQUATION

The mass conservation equations for the simultaneous transport of water and

suspended virus particles through variably saturated media under transient flow

condition can be written as (Tim and Mostaghimi, 1991)
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Flow equation (Richards equation):

(5.1)d9__d_
dt dz

rW*+.

Virus transport equation:

^5C=A
dt dz

(

Da-£-
dz

-V—-XRC (5.2)
dz

In Eq. (5.1) and (5.2), R is the retardation coefficient, y/ is pressure head, 6 is

volumetric moisture content, and K(0) is hydraulic conductivity. Here the vertical

coordinate is taken positive upwards.

Eqs. (5.1) and (5.2) are coupled equations since the velocity v appearing in

Eq. (5.2) has to be obtained by solving the flow equation (5.1). The solution proceeds

in two steps. First, the Eq. (5.1) is solved first to obtain the pressure head in the

solution domain as a function of space and time. From the computed pressure head

distribution, the velocity of moisture v is computed using Darcy's law. Knowing v,

Eq. (5.2) is solved for the virus concentration. The solution of Eq. (5.2) has been

discussed in detail in Chapter 3. The solution of Eq. (5.1) is discussed in detail in the

following Section.

5.3 NUMERICAL SOLUTION OF RICHARDS EQUATION

Eq. (5.2) is nonlinear in nature as the hydraulic conductivity (K) and moisture

content (0) on the pressure head y/ and needs the constitutive relationships for

solution. The constitutive relationships proposed by Van Genuchten (1980) are used

in the present study.

5.3.1 Constitutive Relationships

The relationship given by Van Genuchten (1980) are used for 0-yi and K-0

relationships which are given as
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0-y/ Relationship:

0 =

l+KHf,

where av and nv are unsaturated soil parameters with

m., = 1- -
n„

0 is the effective saturation defined as

0 = 0-Or
9-0.

where 6S is saturated water content and 0r is residual water content of the soil.

K-0 Relationship:

K(®) = Ks 1—U-0 &

(5.3)

(5.4)

(5.5)

(5.6)

where Ks is saturated hydraulic conductivity.

5.3.2 Initial and Boundary Conditions

Initial condition:

Usually, the pressure head or moisture content distribution at the beginning of

the simulation is used as initial condition, i.e.

t = 0,y/=y/0 0<z<L (5.7)

or t = 0,0 = 00 0<z<L (5.8)

where y/o and Oo are the specified pressure head and moisture contents at the

beginning of the simulation.

Lower boundary condition:

Depending on the presence of water table, the following two boundary

conditions are used as lower boundary condition.
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In the presence of water table very near to the ground surface, atmospheric

pressure head (y/ = 0) is applied at the water table, i.e.

t>0,y/ = 0 z=0 (5.9)

where L is the depth of the water table.

[Pi "N
= 0

dz

boundary condition is applied at certain depth below the ground surface, i.e.

dy/
t>0, = 0

dz
z = 0 (5.10)

Upper boundary condition:

The process occurring at the ground surface such as infiltration or evaporation

is assigned as upper boundary condition. For infiltration under ponding conditions,

Dirichlet type boundary condition is assigned at the ground surface i.e.

/>0 y/=¥top z= L (5.11)

For infiltration/evaporation with constant flux, Neuman type condition is

assigned at the ground surface, i.e.

dy/
t > 0, -K

where qtop is the infiltration/evaporation rate

+1
dz

-ft.. z = L (5.12)Hop

5.3.3 Discretization in Space and Time

For solving the differential equation (5.2), a finite difference grid is

superposed over the solution domain. The solution domain L is divided into a number

of grids of equal length Az as shown in Fig 5.1. The spatial index, j, in z direction

increases from bottom to top. j = 1 coincides with the bottom boundary and j = N

coincides with ground surface and n is the temporal index. The time domain is
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discretized by finite number of discrete times of size At. n denotes the discrete time

level at which the solution is known, n+\ denotes the discrete time level at which

solution is unknown. The previous and current Picard iteration levels are denoted as m

and m+\ respectively.

IdL

7=1

Ground surface

7V\'yrz\

Fig 5.1 Finitedifference discretization of solution domain
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5.3.3.1 Spatial approximation

For a typical interior nodey, a fully implicit finite difference approximation of

the term on right side of the Eq. (5.2), based on Picard's scheme for the non linear

terms can be written as (Clement et al., 1994)

dz
K(0)

dy/ l

Az
+ i = —

( jy-n+l,.

V

n+i,m \
+ K

( n+l,m+l n+l.M+l '
Vj+ ¥j7^

Az

n+\,m \f ...n+\,m+\ n+l.m+l '
¥j ~ ¥j-\Kj +Kj_x

v

+ -
1

Az

( rn+1>zrn+l,m . y

Kj + KJ^
n+\,m \

Az

( vn+\„
K + K

J

J

(5.13)

where n denotes the discrete time level at which the solution is known. At-f - f is

the time step. K(0) is a nonlinear function of 0; it is linearized using a Picard iteration

scheme. The current and previous Picard iteration levels are denoted as m+\ and m

respectively. The hydraulic conductivity is arithmetically averaged between nodes.

Use of arithmetic mean is justified by the finding of Kirkland et al. (1992) that

solution of the Richards equation is relatively insensitive to the interblock-averaging

scheme used for hydraulic conductivity. Kirkland et al. (1992) also found that use of a

Crank-Nicholson scheme on the mixed form of Richards equation fails to reduce

truncation error and subject to potential inabilities. So here fully implicit formulation

is used.

5.3.3.2 Temporal approximation

A backward Euler approximation, coupled with a Picard iteration scheme, is

used to discretize the left hand side of Eq. (5.1), containing the time derivative of

water content as
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4

dt

o
n+l,m+l -0]

At
(5-14)

where m denotes the Picard's iteration and n denotes the time level.

Using a fully implicit (backward Euler) time approximation and representing

the water content, #"+1>",+15 by the first order approximation

Ue^
0

n+\,m+\ /)«+!,ms\n+l,m , %) [wT-^-rr]

The specific water capacity of a soil is defined as follows

dO
C(¥) =

dy/

(5.15)

(5.16)

The time derivative of moisture content of Eq. (5.1) is approximated as follows.

d0_
dt

0
n+Lffl r\n

e:

At

n+\,m
+ C

At
(5-17)

The first term on the right side of Eq. (5.17) is an explicit estimate for time

derivative of water content, based on the m'h Picard level estimates of pressure head.

In the second term of the right side of Eq. (5.17), the numerator of the bracketed

fraction is an estimate of the error in the pressure head at node j between two

successive Picard iterations. Its value diminishes as the Picard iteration process

converges. As a result, as the Picard process proceeds, the contribution of the specific

water capacity is diminished.

Interior Node:

The finite difference expressions for the spatial and temporal derivatives given

inEqs. (5.13) and (5.17) are rearranged by collecting all the unknowns onthe left side

and all the known on the right, in agreement with Eq (5.1).
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KJ + Kj-x
2Az2

•j^i (K"^m +2
2Az2 At

y/^m+]

2Az2

f /in+l,m /i«,m ^ ^ js-n+\,m _ r^n4\,m \ ( ^lrt+l,ml„n+l,m ^

+ ¥"jTl
/jH+l,m /i«

"v+i Ly-i "; ' V,

A? 2Az A/

(5.18)

Using the above implicit finite difference approximation, the pressure heads at

the n+\th time level and m+lth Picard level are obtained from solution of the

following system of simultaneous linear algebraic equations.

n+\,ma¥"T +b¥j +c¥"T =d +e-fy/r;

where coefficients a,b,c,d,ef'are defined as

a =

e =

Kj + K/-i
2Az2

pm+\,m irn+\,
kj-i ~ KJ+i

2Az

2Az2
c -

^n+\,m

f
At

d =

r\n+\,m f\n,m

At

b = - -[a + c + f]

(5.19)

(5.20)

Eq. (5.19) applies to all interior nodes; at boundary nodes this equation is

modified to reflect the appropriate boundary conditions.

Top Node:

Drichilet type boundary condition at top node is assigned as

¥J^m=¥top (5-21)

where, y/lop is a prescribed head at the ground surface.

Coefficients present in the left side of the Eq. (5.19) for the top node can be

written as:

aN = 0 (5.22a)

bN=\ (5.22b)

cN=0 (5.22c)
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Coefficient present in the right side of the Eq. (5.19) for the top node can be

written as y/ .

For flux type boundary condition, the coefficients of Eq. (5.19) for the top

node are:

KN +KN_X KN +AW+1

cN=0

2Az' 2Az2

, ... KN-\ +ZKN +KN +\ , LN
D\1

2Az' At

dN+eN-fN¥N
Al

M top

2Az

(5.23a)

(5.23b)

(5.23c)

( r\n+\,m Qn,m\ ( isn+l,m r^n+\,m \ ( s~m+\,m,,.n+\,m \
tfu —o« A*,.,, -a„_, l,n y/N

At

\( yn+\,m . r/-n+\,m \

. -1
Az

(5.23d)

In Eq. (5.23) hydraulic conductivity at imaginary node N+l is assumed to be

same as that of A^ node.

Bottom Node:

Dirichlet boundary condition for the bottom node is assigned as

xj/^'m =y/bomm where y/bottom is the prescribed head at the bottom boundary. For

Dirichlet boundary condition coefficients present in the left side of the Eq. (5.19) for

the bottom node are:

a, = 0 (5.24a)

b, = 1 (5.24b)

c/ = 0 (5.24c)

Coefficients present in the right side of the Eq. (5.19) for the bottom node can

be written as y/botlom.

If gravity drainage is considered at the bottom boundary, then it is a Neumann/
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flux type boundary condition. To formulate the finite difference approximation,

procedure similar to the one at the top node is followed for the bottom node too. For

gravity drainage a unit hydraulic gradient is assumed and hence qbottom, which is

considered as the moisture flowing out of the boundary, is kept equal to incident

hydraulic conductivity at the bottom node. The coefficients of Eqn. (5.19) for the

bottom node are:

a,=0

b =K0 +2AI +A2 , Cl
rn+\.m , i/-n+\,m /rn+l.M

2Az' At

C — ! 1 ' —
1 ia 2 taJ2Az2

n+\,mdx+ex+ fy/'x

+

2Az2

f nn+hm f\nm \ ( £-«+!,'" irn+\,m \ ( /~in+l,mtlrn+\,m \

At

-Hbottom

rn+\,m . r/-n+\,mrsn+l,m rs

Cx"+hmy/x"
2Az

1

\f T/rn4\,m . Trn+\,m\KQ +KX

Az

At

(5.25a)

(5.25b)

(5.25c)

(5.25d)

In Eq. (5.25) hydraulic conductivity at imaginary node N = 0 is assumed to be

same that of 1st node. The term qbottom in the approximation is equivalent to the

corresponding hydraulic conductivity at each iteration and time level.

The resulting system linear algebraic equations, for the unknown pressure-

head values, is written in a matrix notation

A\|/ = B (5.26)

where A is coefficient matrix consisting of coefficients of the finite difference

equation (5.19), \|/ is vector of unknown pressure heads and B is known right hand

side vector. The coefficient matrix A is tridiagonal in nature. The set of linear

equations thus formed for all the nodes in the solution domain, results into a

tridiagonal matrix, which is solved by Thomas algorithm (Remson et al., 1971).
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Convergence Criteria:

For the first time step of a transient simulation, the initial estimate used is

same as the initial conditions supplied as input to the numerical program. For all

subsequent time steps the initial estimates can be extrapolated from the pressure heads

at previous time steps (Cooley, 1971) and Huyakorn et al., 1984).

Convergence in the computer implementations of the Picard scheme is

monitored by computing the maximum error norm L^+1,m+1 - vj+1,m w. Convergence

is achieved when norm falls below some specified tolerance level. This represents an

absolute convergence criterion. Input tolerance level affects the accuracy of the

numerical solution, within limits imposed by spatial and temporal truncation error

(Paniconi et al., 1991). In the present work the error at each node, for each iteration

level is obtained by

£.=\\y/"+lm+'-y/n+hm\\ \<j<N (5.27)
J \\T J T J J v

The solution at each iteration level converges when maximum change falls

below the pre-stipulated value of the convergence factor E2, which is taken as 0.001 m

in the present work.

Max (Ej) < S2

5.3.4 Model Validation

The unsaturated flow numerical model is validated by considering different

problems of unsaturated flow with diverse boundary conditions, available in literature.

The model results are compared with the reported results and are discussed below.

5.3.4.1 Infiltration into a very dry soil with Dirichlet type boundary condition at top

Problem of infiltration into a very dry soil solved by Celia et al. (1990)

is taken here for model validation. This problem considers infiltration into a
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homogeneous soil column, which is initially dry. The soil parameters are

av = 0.0335 cm"1, 0S = 0.368, 0r = 0.102, nv=2, wv=0.5, Ks - 0.00922 cm/s. Length of

the soil sample is 100 cm. The initial and boundary conditions are;

^(z,0) = -1000 cm, 0 < z < 100 cm

y<0,t) = ¥ bottom = -1000 cm

¥(40, t) = yitop = -75 cm

Celia et al. (1990) obtained finite element as well as finite difference solution

using coarse and dense grid. For the dense grid consideration, the over all soil domain

length L is divided into 101 grids such that the distance between two grids will be

1.0 cm. The problem is simulated using the present model with At = 20 sec. Fig. 5.2

compares the model predicted pressure head after one day of simulation with Celia et

al. (1990) dense grid simulation.

0 10 20 30

Depth (cm)
40 50 60

0

-200

j| -400
ea

•S -600

1 -800
(X,

•1000

•1200

Numerical solution

Dense grid solution by Celia et al

70 80 90 100

Fig 5.2 Model validation for infiltration into a very dry soil - Dirichlet boundary

condition at top

It is clear from Fig. 5.2 that the model predictions are in excellent agreement

with the reported predictions.
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5.3.4.2 Gravity drainage from an initially saturated soil

Dane and Hruska (1983) simulated gravity drainage from a hypothetical soil

with the following set of soil parameters. av = 0.02912 cm"1, nv = 3.57168,

Ks = 0.00305 cm/sec, 0S = 0.365 and 0r = 0.069.

The problem involves allowing a soil column of length (Z) = 1.4m, which is at

an initial moisture content of 0.3 throughout, to drain due to gravity at the lower

boundary. The Darcy's flux at the top is zero.

The initial and boundary conditions for the problem are as follows

t = 0:0 = 0.30 0<z<1.4m

t > 0: qbottom = -K z = 0

qtop = 0 z = 1.4 m

The problem is simulated using the present model with Az=2 cm. Fig 5.3

shows a comparison between the moisture contents obtained after 12 hours of

simulation by Dane and Hruska and the present model.

1.4 -I

1.2 -
k. "

A
• • '1=0.5 days,
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& k + nt—U
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0.4 - 4

4

Hruska's

Results

0.2 -
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U -i— \ r" i

0.1 0.15 0.2 0.25 0.3

Moisture Content

Fig 5.3 Model validation for gravity drainage from an initially saturated soil
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It can be seen from Fig. 5.3 that results are in excellent agreement with those

of Dane and Hruska.

5.3.4.3 Infiltration into a very dry soil with Neuman type boundary condition at top

Problem 3 considers infiltration into an initially dry, producing sharp moisture

fronts and a four order of magnitude change in relative hydraulic conductivity across

the wetting front (Paniconi et al., 1991). The parameter values for sharp front

infiltration are, Ks = 1.11 * 10"5 cm/sec, 0S = 0.38, 0r = 0.15, nv = 4.0 and L=1.25m.

The initial and boundary conditions are

f = 0:^ = -3.0m 0<z<1.25m

t>0: y/= -3.0m

t> 0: q= 0.0008 m3/hr

The problem is simulated using the present model with Az = 0.004167 m and

At = O.Olhr. Figs 5.4 and 5.5 show a comparison betweenpressure head and moisture

content obtained after 120 hours of simulation by Paniconi et al. (1991) and the

present model.

z = 0

z=1.25m

1.2 - /
1 - /

0.8 -

•

__^-^
0.6 -

0.4 -

i

— Present Study

0.2 -

n -

•

•

• Paniconi et al.'s

Results

-7 1 1 1 1

-3.5 -2.5 -2 -1.5
PressureHead(m)

-0.5

Fig. 5.4 Model validation for infiltration into a dry soil- Neuman boundary

condition: Comparison of Pressure heads
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Fig. 5.5 Model validation for infiltration into a dry soil- Neuman boundary

condition: Comparison of moisture content

It is evident from Fig. 5.4 and Fig. 5.5 that the results of the present model are

in excellent agreement with those of Paniconi et al. (1991).

5.4 COUPLING OF MOISTURE FLOW AND VIRUS TRANSPORT

MODELS

As discussed earlier, the moisture flow and virus transport models (Eq. 5.1 and

5.2) are coupled partial differential equations as velocity v, appearing in Eq. (5.2) has

to be obtained by solving Eq. (5.1).

Numerical solution of Eq. (5.1) discussed in Section 5.4, provides the nodal

pressure heads in the solution domain at successive time steps. Let y/" represent the
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pressure head at/h node at time level n. From nodal pressure heads, the corresponding

seepage velocity are computed as

v; =—'-
1 9"j

"fKr^k+1
v

2Az
(5.28)

where 9" is the moisture content and K" is the unsaturated hydraulic conductivity at

node j at time level n. These model seepage velocities are used in Eq. (5.2) and

Eq. (5.2) is solved using hybrid finite volume model as discussed in Chapter 3.

A computer code is written in FORTRAN 90 for the implementation of the numerical

model which is provided in APPENDIX-III. Since the performance of the virus

transport model has been discussed in detail in Chapter 3, in the present Chapter the

application of the model for the analysis of virus transport in unsaturated zone is

presented.

5.5 MODEL APPLICATION

Analytical solutions for virus transport through unsaturated zone are available

only for steady state flow and constant moisture content throughout the solution

domain (Ogata and banks, 1961; Van Genuchten and Alves, 1982). A review of

literature suggests that analytical solution for virus transport in case of unsteady

unsaturated flow with variable moisture content in the solution domain is not

available. Hence, in the present Section the application of the developed numerical

model is demonstrated through an example.

5.5.1 Analysis of Moisture Flow

The unsaturated medium is initially assumed to be very dry at a pressure head
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of -1000 cm in a soil length of 500 cm. A pressure head of -75 cm is applied at the

ground surface. Due to the change in pressure head, the moisture starts flowing into

the soil. The soil parameters are av = 0.0335 cm"1, 9S = 0.368, 0r = 0.102, nv = 2,

mv= 0.5 and Ks = 0.00922 cm/s. The initial and boundary conditions are;

Initial condition:

Initially at t = 0, the head is assumed to be -1000 cm at each node, i.e.

y/(z,0) = -1000 cm, 0< z < 100 cm (5.29)

Boundary condition:

For t > 0, the head at bottom of the solution domain is assumed to be -1000 cm where

as 75 cm is assumed at the top.

^(0,t) = ^o„om=-1000cm (5.30)

y/(100,t) = y//op = -75cm (5.31)

The numerical model discussed in Section 5.4 is used to obtain the

nodal pressure heads and corresponding seepage velocities by solving Eq. (5.2)

subjected to initial and boundary conditions given in Eq. (5.29) to (5.31). Fig. 5.7

shows the variation of seepage velocity at each node after 1, 2, 4, 8, 10, 15 days

interval. It is seen from Fig. 5.6 that as the time period increases the nodal

seepage velocity becomes constant at higher depth. Fig. 5.7 shows the variation of

moisture content with depth at each node after 1, 2, 4, 8, 10, 15 days interval.

It is seen from Fig. 5.7 that the moisture has flown upto 450 cm from ground surface

after 15 days.
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5.5.2 Analysis of Virus Transport due to Injection of Infinite Duration

Initially, the virus concentration in the unsaturated soil domain is assumed to

be zero. A continuous source of virus is imposed such that the concentration at the

ground surface is 1 concentration units (Co = 1). The bulk density of soil is assumed

as 1.11 gm/cm . The inactivation coefficient of liquid and sorption phase is assumed

as 0.58 /day. The distribution coefficient is assumed as 0.02 ml/gm. The initial and

boundary conditions are;

Initial condition:

Initially, i.e. at t=0, the concentration of virus is usually assumed to be zero, i.e.

r = 0, C(jc) = 0, 0<x<oo (5.32)

Boundary conditions:

At the source (x=0), a constant concentration boundary condition is used. i.e.

t>0,C(t) = C0, x = 0 (5.33)

where C0 (t) denotes the source concentration.

For away from the source (x —><») the concentration flux is set to zero. i.e.

/>0, — = 0, x->oo (5.34)
dx

The virus transport model is used to obtain the virus concentrations for Peclet

numbers 1 and 100 by solving Eqs. (5.2) subjected to initial and boundary conditions

(Eqs. 5.32 to 5.34). Fig. 5.8 and Fig. 5.9 show the model predicted virus

concentrations at each node after 1, 2, 4, 8, 10, 15 days interval for Peclet numbers

100 andl respectively. It can be seen from Fig. 5.8 and 5.9 that for advection

dominated transport (Pe = 100), the systems reaches steady state in 8 days as

compared to 10 days in dispersion dominated transport.
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Fig 5.9 Variation of concentration of virus in unsaturated soil for Peclet number 1.0
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5.6 CONCLUDING REMARKS

In the present Chapter, a numerical model is developed for analysis of virus

transport in unsaturated zone. The model couples a mass conservative fully implicit

finite difference model simulating moisture flow in the unsaturated zone with the

hybrid finite volume model (Discussed in detail in Chapter 3) for virus transport. The

applicability of the model is demonstrated with an example. It is observed that virus

transport reaches steady state earlier in advection dominated transport as compared to

dispersion dominated transport.
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CHAPTER 6

ESTIMATION OF VIRUS TRANSPORT

PARAMETERS IN UNSATURATED ZONE

6.1 INTRODUCTION

In Chapter 5, a numerical model is developed for the analysis of virus

transport in unsaturated zone. In the present Chapter, the numerical model is coupled

with Levenberg-Marquadart algorithm to estimate the virus transport parameters.

Identification of flow and transport parameters in the unsaturated zone is much more

complicated as compared to the saturated zone due to the significant variation of the

seepage velocity and the moisture content which affect the virus movement

considerably. The present Chapter deals with the estimation of only the transport

parameters and does not involve the estimation of flow parameters. An optimization

model is developed using Levenberg-Marquadart algorithm and is applied to estimate

the transport parameters from hypothetical virus concentration data. Further the effect

of data errors and bias is also discussed. The algorithm is also used to estimate the

virus transport parameters from a column experiment.

6.2 GENERAL FORMULATION OF THE ESTIMATION PROBLEM

As discussed in Chapter 4, the inverse problem is formulated as a nonlinear

optimization problem i.e. the transport parameters are estimated by minimizing the

deviation between observed and model predicted response as

minO(b) =-[c*-C(b)]rw[c*-C(b)] (6.1)
2
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where the objective function, 0(b), is a function of the model parameters b,

7*

b={bx,b2, bm}T ;C" ={C,\ C*} is the observation vector whose elements

represent measured concentrations; C(b) ={Cx(b), Cn(b)}T represents the

predicted response for a given parameter vector b and W is the symmetric weighting

matrix. In the present study, the parameter vector b comprises inactivation coefficient

in liquid phase X, inactivation coefficient in sorption phase X and distribution

coefficient kd i.e. b=iX,X,kd\ . The objective is to find the optimum parameter

vector b that minimizes the objective function 6.1. When the observation errors are

assumed to be independent and normally distributed the weighting matrices W

becomes an identity matrix and Eq. (6.1) reduces to ordinary least squares (OLS)

problem.

minO(b) =i[c*-C(b)J[c*-C(b)] =i^[c*-C(b)] (6.2)
b 2 2 ,=1

where N is the number of observations.

The OLS formulation has probably been the most popular one for parameter

estimation problems. Its attraction is due to its simplicity and because it requires a

minimum amount of information. When observation errors are normally distributed,

are uncorrected and have a constant variance, the OLS estimates possess optimal

statistical properties. When these conditions are not met, the OLS method will no

longer yield optimal parameter estimates in terms of precision and minimum variance.

6.3 SOLUTION ALGORITHM

The solution algorithm involves the estimation of transport parameters by

coupling the numerical model with Levenberg-Marquadart algorithm. The details of
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the procedure have been already discussed in Section 4.3. A computer code is written

in FORTRAN 90 to implement the algorithm and is presented in APPENDIX-IV.

6.4 IDENTIFICATION OF TRANSPORT PARAMETERS

In the present Section, the parameter estimation algorithm developed is used to

estimate the virus transport parameters X, X and kd. Initially it is checked whether the

optimization yields unique estimates of the transport parameters from hypothetical

generated virus concentration data and the identifiability of the parameters are

discussed. Later, the effect of noise (errors) in the measurements on the parameter

estimates is studied.

Hypothetical virus concentration data:

Hypothetical data of virus concentration as a function of time are generated by

solving Eqs. (5.1) and (5.2) subject to initial and boundary conditions given by Eqs.

(5.7 to 5.9 and 5.29 to 5.31). The soil is initially assumed to be very dry at a pressure

head of -1000 cm and the virus concentration in the soil is assumed to be zero. A

pressure head of -75 cm and a virus concentration of 1 unit is applied at the ground

surface. The pressure head at far below the ground surface is assumed to be -1000 cm

and the virus concentrations is assumed to be zero. The soil parameters used in the

simulation are av = 0.0335 /cm, 0S = 0.368, 9r = 0.102, nv= 2, mv=0.5, Ks = 0.00922

cm/sec and the transport parameters are assumed as X =0.58 /day, X = 0.46 /day,

kd= 0.02 ml/gm, p = 1.11 gm/cm3. Virus concentration atdiscrete times (0.5, 1.0, 2.0,

4.0 and 5.0 days) and at a discrete distances from the source (1.0, 2.0, 4.0, 8.0, 10.0,

12.0, 15.0, 20.0 and 22.0 cm) is generated by solving Eq (5.1) and (5.2) subjected to

initial and boundary conditions given in Eqs. (5.29 to 5.34). Table 6.1 presents the

hypothetically generated virus concentration data. These data are used as observed

concentration data in the parameter estimation.
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Table 6.1: Hypothetical virus concentrations data for parameter estimation

^\. Time (Days)

Distance ^n.
(cm) \

0.5 1.0 2.0 4.0 5.0

1.0 0.97379 0.96879 0.96556 0.96442 0.96433

2.0 0.94094 0.92906 0.92142 0.91874 0.91855

4.0 0.87664 0.84834 0.83069 0.82455 0.82408

8.0 0.75499 0.71616 0.6757 0.66179 0.66083

10.0 0.59968 0.66853 0.61076 0.59302 0.59181

12.0 0.27042 0.62264 0.55436 0.53155 0.52997

15.0 0.02234 0.51631 0.4816 0.4514 0.44928

20.0 0.00006 0.06739 0.39465 0.34455 0.3414

22.0 0.0 0.01417 0.36527 0.30961 0.30603

The robustness of the optimization procedure is studied by changing the

number of transport parameters to be estimated from 1 to 3. In addition, the efficacy

ofthe optimization procedure is analyzed by starting the initial guesses of individual

parameters considerably far away from their true values. The parameter estimation is

discussed in detail in the following Sections.

6.4.1 Case 1: Estimation of One Unknown Parameter

Case 1 considers the estimation of one unknown transport parameters while

treating the other two parameters as constant to their respective values used for the

generation of hypothetical data. Further two sub cases (case A and case B) are

considered. In case A, the initial guess parameter is over estimated by one order from

its true value while in case B it is under estimated by one order from its true value.

Table 6.2 presents the initial guess values and the optimal estimated values of the

transport parameter X, X*, and kd. It is clear from Table 6.2 that the optimization

algorithm converges to the true values in both sub cases (case A and case B). Further

it can be seen from Table 6.2 that starting the initial guess as under estimated value

results in less number of iterations to converge to the optimal solution.
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Table 6.2: Parameter estimates for the hypothetical data- Case 1

Parameter True values Case A (over estimated) Case B (Under estimated)

Initial guess Final estimate

value

No of

iterations

Initial guess Final estimate

value

No of

iterations

X(/day) 0.58 5.8 0.5804 15 0.058 0.5798 9

X* (/day) 0.46 4.6 0.4629 13 0.046 0.4574 9

kd (ml/gm) 0.02 0.2 0.02013 13 0.002 0.0198 9



Table 6.3: Parameter estimates for the hypothetical data - Case 2

Parameters True

values

Case A (over estimated) Case B (Under estimated) Case C (Mixed) Case D (Mixed)

Initial

guess

Final estimate

value

No of

iterations

Initial

guess

Final estimate

value

No of

iterations

Initial

guess

Final estimate

value

No of

iterations

Initial

guess

Final estimate

value

No of

iterations

I (/day)

kd (ml/gm)

0.58

0.02

5.8

0.2

0.58

0.0203

12 0.058

0.002

0.5813

0.0199

7 5.8

0.002

0.5792

0.0199

7 0.058

0.2

0.574

0.021

18

A* (/day)

kd (ml/gm)

0.46

0.02

4.6

0.2

0.4574

0.02

32 0.046

0.002

0.461

0.0199

27 4.6

0.002

0.4573

0.02

29 0.046

0.2

0.452

0.0208
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6.4.2 Case 2: Estimation of Two Unknown Parameters

In case 2, two among the three transport parameters are considered as

unknown and are estimated while keeping other parameter as constant to its value

used for the generation of the hypothetical data. Such an estimation results in three

combinations of two unknown parameters; (X, kd), (X, X*) and (X*, kd). For each of

these combinations, four subcases are considered. In case A, the initial guess of the

parameters are over estimated by one order from their true values. In case B, the

initial guess of the parameters are underestimated by one order. In case C, the initial

guess of the first parameter is over estimated by one order while the initial guess of

the second parameter is under estimated by one order. In contrast in case D, the initial

guess of the first parameter is under estimated by one order while initial guess of

second parameter is over estimated by one order. During optimization, it is observed

that for the particular combination in which the inactivation coefficients Xand X are

considered as unknown parameters, the optimization resulted in non unique solutions.

Table 6.3 presents the initial guess values and the optimal parameter estimates for

case 2. It can be seen from Table 6.3 that the optimization results in the estimation of

true values in all the cases. Further, starting the initial guess as under estimated values

resulted in the least number of iterations needed for convergence to the optimal

solution.

6.5 DATA ERROR AND BIAS

In Section 6.4, the performance of the optimization algorithm is studied by

estimating parameters from hypothetically generated error free virus concentration

data. As stated by Kool et al. (1987), the reliability of the parameters estimates
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obtained by inverse procedure greatly depends upon the quality of the experimental

data. The present Section discusses the effect of data errors and bias induced by the

objective function on the transport parameter estimates. In the absence of errors, the

identification procedure normally identifies a unique set of values for the parameters.

In their presence, the individual values of the identified parameters depend on the

individual samples and therefore the identified parameters do not appear to be unique.

However the treatment of the problem in a statistical sense using the sampling theory

clearly render the uniqueness of the means, provided that the objective function does

not introduce any undue bias. The present study is aimed at evaluating the bias

induced by the objective function in the presence of errors. For this purpose Gaussian

noise is added to hypothetically generated virus concentration data (Refer Section 6.4)

through specifying a meanp and a standard deviation a as follows:

C0,IJ=C,Js (6.3)

with s =N(n,a) (6.4)

where C0jJ is the observed virus concentration and Qy is the hypothetically

generated virus concentration data and e is the Gaussian error, i and/ are the number

ofspace and time observations respectively. The p ofevery sample is assigned a value

equal to 1 to ensure unbiased perturbation through Eq (6.3), where the errors are

randomly distributed above and below CtiiJ. For each value of o, 10 samples are

generated by changing the seeding of the random number generator. In the present

study, a is changed from 0.025 to 0.15 in increments of 0.025.

As discussed in Section 6.4, when the data contains no errors, the objective

function converges to the true values of the parameters as shown in Table 6.2 and 6.3
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for one and two unknown parameters respectively. This indicates that when data is

free from errors, the objective function does not induce any bias in the estimated

parameters. When the data contains errors, the objective function does not converge to

true values. Percentage errors in estimating the transport parameters X, X and kd are

presented in Tables 6.4 to 6.6 respectively at two noise levels 0.05 and 0.1 for 10

different samples.

Table 6.4: Effect of data error and objective function on estimated parameter X

Sample No Noise level a =0.05 Noise level <r=0.1

Value ofX Error percentage

in A

Value of X Error percentage

in X

1 0.49401 14.82586 0.40859 29.55

2 0.39255 32.31897 0.21825 62.37

3 0.55605 4.12931 0.53198 8.2793

4 0.54788 5.537937 0.51632 10.979

5 0.96919 -67.1017 1.38399 -138.61

6 0.56928 1.8482 0.55824 3.7517

7 0.43024 25.8206 0.27323 52.891

8 0.13669 76.4327 0.00188 99.675

9 0.021474 96.2795 0.15838 72.693

10 0.78158 -34.7552 0.99207 -71.046
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Table6.5: Effect of data error and objective function on estimatedparameter X

Sample No Noise level a =0.05 Noise level cr =0.1

*

Value of X Error percentage

in X

Value of

X*

Error percentage

in X

1 0.042427 90.7767 0.021722 95.277

2 0.03394 92.6217 0.20231 56.0195

3 0.2704 41.2173 0.25631 44.2804

4 0.49392 -7.3739 0.49392 -7.3739

5 4.0933 -789.84 7.86999 -1610.87

6 0.39513 14.1021 0.39513 14.1021

7 0.003503 99.2384 0.003473 99.245

8 0.20231 56.0195 0.39513 14.1021

9 0.77175 -67.7717 0.02715 94.0978

10 2.4565 -434.022 4.4955 -877.283

Table 6.6: Effect of data error and objective function on estimated parameter kd.

Sample No Noise level o =0.05 Noise level <r=0.1

Value of kd Error percentage

in kd

Value of kd Error percentage

in kd

1 0.017269 13.655 0.014163 29.185

2 0.02169 -8.45 0.023047 -15.235

3 0.019139 4.305 0.018245 8.775

4 0.015301 23.495 0.009232 53.84

5 0.022316 -11.58 0.024326 -21.63

6 0.006186 69.07 0.000198 99.01

7 0.028831 -44.155 0.03862 -93.1

8 0.0255 -27.5 0.003036 84.82

9 0.01484 25.8 0.008399 58.005

10 0.04 100 0.061985 -209.925
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From Tables 6.4 to 6.6, it is concluded that i) the noisy data introduces errors

in the estimated parameters, ii) the amount of induced error increases with the noise

level and iii) for any given noise level, the individual values of identified parameters

deviate from the true value. In addition it is observed that the error percentage in case

of X* is very high as compared to other parameters. As the individual values of the

identified parameters generally deviate from their true values, the error contained in

these values reveal very little in their behavior and hence statistical analysis is

necessary in terms of means and confidence intervals. In the present study, 95%

confidence interval is used for carrying out the statistical analysis.

Figs 6.1 to 6.3 show the mean values and the 95% confidence intervals of

estimated parameters X, X* and kd respectively.

in

Q.

-2

0.8

e

u

19 °
o
o

a
p

>

O

a

,0.6

-o

0.4

0.2

•*— Lower confidence limit
-*—Average value
-♦— Upper confidence limit
-•— True value

0.02 0.04 0.06 0.08 0.

Noise level (a)
0.12

Fig 6.1 Variation of means of identified Xwith noise level a

136

0.14 0.16



Fig 6.2 Variation of means of identified X with noise level a
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The following conclusions can be drawn from Figs 6.1 to 6.3. i) the deviation

of the mean from the true value increases with an increase in noise level in case of

parameters X . However, the mean remains significantly unchanged and is closer to

the true value in case of X and kd. ii) the true value is contained within the 95%

confidence interval of all the identified parameters at all noise levels indicating that

the objective function does not induce bias on the parameter estimates, when they are

estimated individuals.

6.6 ESTIMATION OF TRANSPORT PARAMETERS FROM COLUMN

EXPERIMENT

The optimization algorithm is also applied to estimate the transport parameters

from the virus concentration data of a column experiment involving virus movement

in unsaturated zone. Jin et al. (2000) conducted virus transport experiment for

unsaturated conditions also. The apparatus used for unsaturated experiments was

more complicated, with an additional solution-filling column positioned on top of the

transport column. Column outlet was connected to a vacuum chamber with a fraction

collector inside. By adjusting the vacuum pressure and flow rate of the input solution,

steady state and essentially uniform water contentwas reached.

The column was made of acrylate and was 7.6 cm in diameterand 10 cm long.

The experiments were conducted in a cold room at 4° Cto minimize the inactivation

due to high temperature. Viruses were added to the sand column as a constant input at

an approximate concentration of 5 x 104 pfu/ml. Input solution containing bromide

tracer and OX174 was applied with a peristaltic pump. Outflow samples were

collected in 15 ml polypropylene centrifuge tubes with a fraction collector. The

average moisture content in unsaturated condition during the experiment was about

0.077. The mass density of sand column was 1.75 gm/cm3 and the average velocity
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was about 1.42 cm/hr. The inactivation coefficient during unsaturated condition was

3.31 /hr. The remaining two parameters D and kd are estimated using the inverse

procedure as explained in Section 4.3.

Table 6.7 presents the initial guess value and the optimal parameter estimates

of D and kd by considering different initial guess value for OX174. The parameters

estimated in each case are used to predict the final virus concentration. The RMS

error in all the cases is also found out for each case and is shown in Table 6.7. The

parameter estimates corresponding to minimum RMS error is finally considered as

optimal estimates and are used to predict the virus concentration. Table 6.7 shows that

for the case of OXl 74 the minimum RMS error is 0.0275 for which the value of the

parameters are D=270.742 cm2/hr and kd = 0.1997 ml/gm respectively. Fig. 6.4

compares the observed and model predicted OX 174 virus concentration with optimal

parameter values (D=270.742 cm /hr and kd = 0.1997 ml/gm). Fig 6.4 suggests that

the model predictions with optimal parameter estimates match reasonably well with

the observed virus concentrations.
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Fig 6.4 Comparison of normalized virus OX174 breakthrough concentration from

column experiment (Jin et al., 2000)
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Table 6.7: Estimation of parameters of OX174 from a columnexperiment for unsaturated condition conducted by Jin et al. (2000)

Parameters Case A (over estimated) Case B (under estimated) Case C (mixed)

Initial Final RMS No of Initial Final RMS No of Initial Final RMS No of

guess estimated

values

error iterations guess estimated

values

error iterations guess estimated

values

error iterations

D (cm2/hr) 400 270.742 0.0275 10 40 47.144 0.0281 9 400.0 47.5356 0.028 18

kd (ml/gm) 0.2 0.1997 0.002 0.00197 0.002 0.00235



6.7 CONCLUDING REMARKS

In the present Chapter, the parameter estimation is formulated as a least square

minimization problem in which the parameters are estimated by minimizing the

deviation between the model predicted and observed virus concentrations. Levenberg-

Marquadart algorithm is employed for the nonlinear optimization. The efficacy and

robustness of the optimization procedure is evaluated by estimating the parameter

from hypothetically generated virus concentration data. It is found that with the virus

concentration data, the three transport parameters X, X, and kd can be estimated

uniquely if the number of parameters to be estimated is equal to one. If number of

unknown parameters is more than two then it is impossible to estimate the transport

parameters uniquely using the inverse procedure.

The present Chapter also investigates the performance of the objective

function in the presence of noisy data during estimation of transport parameters. To

study the effect of objective function on parameter estimation, Gaussian noise is

added to synthetically generated data and detailed statistical analysis is carried out. It

is found that the objective function does not induce any bias into the estimated

parameters. The inverse procedure is also used to estimate the transport parameters

from a column experiment involving virus movement in unsaturated zone.
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CHAPTER 7

CONCLUSIONS

7.1 GENERAL

In the present study a hybrid finite volume numerical model is developed

using operator split approach for solving advection-dispersion equation of solute

movement in ground water. This approach uses a globally second order accurate

explicit finite volume method for the advective transport and an implicit central

difference method for the dispersive transport. The numerical model is used to

analyse the virus transport equation. The accuracy of the model is tested for a wide

range of Peclet and Courant numbers. The accuracy of the model is also tested for

different types of limiters such as superbee, mimmod and van albada. The accuracy of

the numerical model in predicting virus movement for both advection and dispersion

dominated from continuous source of infinite and finite duration is tested. The

comparison of model prediction with analytical solutions indicates that the numerical

model accurately predicts virus movement in all the cases.

The present study is also concerned with the estimation of transport

parameters of virus movement in ground water. The parameter estimation is

formulated as a least square minimization problem in which the parameters are

estimated by minimizing the deviation between the model predicted and observed

virus concentrations. For this purpose, the hybrid finite volume numerical model

simulating one dimensional virus transport in groundwater is coupled with

Levenberg-Marquadart optimization algorithm. The efficacy and robustness of the
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optimization procedure is evaluated by estimating the parameter from hypothetically

generated virus concentration data in saturated zone. The present study also

investigates the performance of the objective function while estimating transport

parameters using inverse procedures in the presence of data errors. Gaussian noise is

added to the hypothetical data generated at discrete times and at discrete distances

from the source. A detailed statistical analysis is carried out to study the effect of bias

induced by the objective function on the estimated parameters when the data contains

the errors. The optimization algorithm is also applied to estimate the transport

parameters from the virus concentration data of two column experiments involving

MS2 and OX174 virus transport.

A numerical model has also been developed to analyze the virus transport in

unsaturated zone. The model couples a mass conservative fully implicit finite

difference model simulating moisture flow in the unsaturated zone with the hybrid

finite volume model for virus transport. The applicability of the model to analyse

virus transport in unsaturated zone is demonstrated with an example. Further the virus

transport parameters are estimated from hypothetically generated virus concentration

data in unsaturated zone. The performance of the objective function while estimating

transport parameters in unsaturated zone using inverse procedures in the presence of

data errors is also studied. A detailed statistical analysis is carried out to study the

effect of bias induced by the objective function on the estimated parameters in

unsaturated zone when the data contains the errors. Finally, the optimization

algorithm is also applied to estimate the transport parameters from the virus

concentration data of a column experiments involving OX174 virus transport. The

following conclusions are drawn from the study.
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7.2 CONCLUSIONS

^ 1. The numerical model is capable of simulating virus transport under

advection dominated and dispersion dominated situations.

2. The present model simulates the transport of virus very well for a wide

range of Peclet numbers. The effect of Courant numbers on virus

transport is found to be insignificant.

•^ 3. Among the limiters, the Suprebee limiter is least dissipative, while

Minmod limiter is most dissipative among the three limiters tested in

the study. It is also found that the numerical model predictions are

quite accurate for the virus injected for infinite as well as finite

duration.

4. It is found that with the virus concentration data in saturated zone, it is

not possible to estimate the four transport parameters D, X, X, and kd

uniquely while estimating the transport parameters. If the number of

parameters to be estimated is less than or equal to three, the inverse

procedure uniquely estimates the unknown parameters. In the cases of

estimationof three or two parameters, if the parameters to be estimated

involve the combination of X and X, the optimization does not yield

unique estimates. The analysis of the convexity of the objective

function in X-X* parametric space shows the presence of local minima

which result in the nonunique estimation of the parameters Xand X . So
A.

apriori estimation of the inactivation coefficient in sorption phase is

necessary for unique estimation of other unknown parameters. In all
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the cases, starting the initial guess parameter as overestimated results

in least number of iteration to converge to the optimal solution.

5. In case of estimating one and two unknown virus transport parameter

in saturated zone, it is concluded that in the absence of noise,

parameters estimated coincide with the true values but the noisy data

induces errors in the estimated parameters. The amount of induced

errors increases with an increase in the noise level. The true value of

the parameter lies with in 95%) confidence interval of the identified

parameters. The deviation of the mean from the true value increases

with an increase in noise level in case of parameters Xand D. However,

the mean remains significantly unchanged and is closer to the true

value in case of X* and kd. The objective function does not induce any

bias in the estimation of one unknown parameters

6. In case of estimating the three unknown virus transport parameter in

saturated zone, the study shows that in the absence of noise,

parameters estimated coincide with the true values but the noisy data

induces errors in the estimated parameters. The true value of the

parameter does not lie with in 95% confidence interval of the identified

parameters. The error in the average value of the estimated parameters

increases with the increase in the noise level. The objective function

induces bias that increase with increase in noise levels.
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7. The model predicted virus concentrations with optimal parameter

estimates match reasonably well with experimental data of both MS2

and OX174 virus transport in saturated zone.

8. The numerical model is also capable of simulating the transport of

virus in unsaturated zone. It is found that with the virus concentration

data in unsaturated zone, it is not possible to simultaneously estimate

all the three transport parameters X, X , and kd uniquely. If the number

of parameters to be estimated is less than or equal to two, the inverse

procedure uniquely estimates the unknownparameters. The results also

show that, in the cases of estimation two parameters, if the parameters

to be estimated involve the combination of X and X, the optimization

does not yield unique estimates. Further, it is observed that starting the

initial guess parameters as underestimated leads to less number of

iterations to converge to optimal solution.

9. The statistical analysis in terms of means and confidence intervals

while unsaturated virus concentration data containing errors shows that

the deviation of the mean from the true value increases with an

increase in noise level in case of parameters X. However, the mean

remains significantly unchanged and is closer to the true value in case

of X* and kd. The true value is contained within the 95%) confidence

interval of all the identified parameters at all noise levels indicating

that the objective function does not induce bias on the parameter

estimates, when they are estimated individuals.
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10. It is also found that the model prediction with optimal parameter

estimates matches reasonably well with experimental data of OXl 74

virus transport in unsaturated zone.

7.3 SCOPE FOR FUTURE WORK

The present work is mainly focused on numerical modeling of virus transport

and estimating the transport parameters. There are certain issues, which are worth

mentioning for future investigations.

1. In the present work, equilibrium adsorption has been considered for

numerical modeling of the virus transport. The model can be

developed by considering non equilibrium adsorption or kinetic

sorption for virus transport.

2. Laboratory and field experiment can be conducted for better

understanding of virus transport in saturated and unsaturated zones.
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APPENDIX -I

NUMERICAL MODEL FOR SIMULATING VIRUS

TRANSPORT IN SATURATED ZONE

! 1 =Total Length
! Nnode=no of nodes

! v =velocity
! Cou =Courant number

! Pe =Peclet Number

! delx =Grid length
! d =Dispersion coefficient

parameter(Nnode=101)
real x(Tvlnode),cold(>Jnode),cpre(>Jnode),cadv(Nnode),delc(Nnode),ai(Nnode),bi(Nnode)
realae(Nnode),be(Nnode),ce(Nnode),re(Nnode),alpha(Nnode),bita(Nnode),cte(Nnode)
realy(Nnode),c(Nnode),ri(Nnode),cnew(Nnode)
realsl(>Jnode),s2(Nnode),s3(Nnode),s4(Nnode),cana(Nnode),yl(Nnode),y2(Nnode)
real l,Cou,Pe,delx,delt,tmax,v,time,d,fl 1,fl2,erfc,lamda,k,eps,max,t0,row,kd,theta

open(5,file="dn.in")
open( 1,file="ana.out")
open(2,file="anal .out")
open(3,file="ana2.xls")
open(6,file="dnl.out")
open(7,file="dn2.out")
open(8,file="dn3.xls")
open(9,file="dn4.xls")
open(10,file="dn5.xls")
open(ll,file="finall.xls")
open(12,file="break.xls")
read (5,*) l,v,tmax,Cou,Pe,k,eps,cO,coefl ,coef2,t0,row,kd,theta,limitercode
delx=l/(Nnode-l)
delt=Cou*delx/v

d=v*delx/Pe

print*,d
x(l)=0.0

doj=2,Nnode
x(j)=x(j-l)+delx
enddo

***********************ANALYTICAL SOLUTION BEGINS****************************
time=delt

do while(time.le.tmax)
cana(l)=1.0

doj=2,(Nnode-l)
sl(j)=x(j)-v*time
s2(j)=x(j)+v*time
s30)=xG)*v/d
s4(j)=2*sqrt(d*time)
enddo

write(l,*XslGXs2a),s30),s4G)j=2,Nnode-l)
doj=2,(Nnode-l)
yiaHsia)/s40))
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enddo

y2(j)=(s2(j)/s4(j))
enddo

write(2,*)(yl(j),y2a)J=2!Nnode-l)

doj=2,Nnode-l
if(s3(j).ge.500) then
cana(j)=0.5*c0*(erfc(yl(j)))
else

canaa)=0.5*cO*((erfc(ylO)))+exp(s3a))*erfc(y2(j)))
endif

enddo

write(3,100)time,cana( 100)
100 format(lx,fl5.5,f9.5)
time=time+delt

i**************************ANALYTICAL SOLUTION ENDS***************************

i**************************NUMERICAL SOLUTION BEGINS**************************

r= 1+(row*kd/theta)

do j=2,(Nnode-l)
cold(j)=0.0

enddo -V
cold(l)=c0
time=delt

do while (time .le. tmax)
if(time .le. t0)then
cold(l)=c0
else

cold(l)=0
endif

delc(l)=0.0
doj=2,(Nnode-l)
ai(j)=coldG)-cold(j-l)
biO)=cold(j+l)-coldG) .

if(ai(j).ge. 0.0)then
sign=l
else

sign=-l
endif

if(limitercode .eq.l)then
if ((ai(j)*bi(j)) .gt.0.0)then

if (abs (aiQ)).gt. abs(bi(j))) then
delc(j)=sign*abs(bi(j))
else

delc(j)=sign*abs(ai(j))
endif

else 4
delc(j)=0.0
endif

else if(limitercode .eq. 2)then
if ((ai(j)*biG)) .gt.0.0)then

if (abs (ai(j)).ge. abs(bi(j))) then
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max=abs(ai(j))
else

max=abs(bi(j))
endif

if(2*abs(aiG)) -le. 2*abs(biG)))then
if(2*abs(ai(j)) -le. max)then
delc(j)=sign*2*abs(ai(j))
else

delcQ)=sign*max
endif

else

if(2*abs(bi(j)) -le. max)then
delcG)=sign*2*abs(biG))
else

delc(j)=sign*max
endif

endif

else

delcG)=0
endif

else if(limitercode .eq. 3)then
riG)=((2*aiG)*biG))+eps)/(aiG)**2+biG)**2+eps)
delcG)=riG)*((0.5*(l-k)*aiG))+(0.5*(l+k)*biG)))
endif

cpre(l)=cold(l)
cpre(j)=coldG)-0.5*(delt/delx)*v*delcG)
fll=cpreG)+0.5*delcG)
fl2=cpreG-l)+0.5*delcG-l)
cadvG)=coldG)-(l/r)*(delt/delx)*v*(fll-fl2)
enddo

cadv(l)=cold(l)
write(8,10)(cadvG) j=1 ,Nnode)

10 format(lx,f9.6)

lamda=(d*delt/(r*delx**2))

doj=l,Nnode-l
if (j.eq.l) then
aeG)=0
beG)=l

T ceG)=0
reG)=cadv(l)
else

aeG)= -lamda
beG)= l+(2*lamda)
ceG)= -lamda
reG)=cadvG)
endif

enddo

ae(Nnode)= 0
be(Nnode)= 1
ce(Nnode)=0.0

^ re(Nnode)=cadv(Nnode)

alpha(l)=be(l)
bita(l)=ce(l)/alpha(l)
y(l)=re(l)/alpha(l)
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doj=2,(Nnode)
alphaG)=beG)-(aeG)*bitaG-l))
bitaG)=ceG)/alpha(j)
yG)=((reG)-aeG)*yG-l)ValphaG)) 4
enddo

cte(Nnode)=y(Nnode)
doj=(Nnode-l),l,-l
cteG)=yG)-(bitaG)*cteG+l))
enddo

doj=l,(Nnode)
cG)=cteG)
enddo

write(9,20)(xG),cG) j=l ,Nnode)
20 format(lx,f4.0,f9.6) ^

coef=(coefl+(coef2*row*kd/theta))
doj=l,Nnode
cnewG)=cG)-(coef*cG)*delt/r)
enddo

doj=l,Nnode
coldG)=cnewG)
enddo

write(12,50)time,cnew(21)
50 format(lx,fl5.5,fl0.5)
time=time+delt

enddo

write(l l,200)(xG),cnewG)J=l,Nnode) \
200 format (Ix,fl0.5,f20.15)

!200format(E15.8)
stop

end

i***********************NUMERICAL SOLUTION ENDS******************************

function erfc(yl)
real z,t
z=abs (yl)
t=1.0/(1.0+0.5*z)
erfc=t*exp(-z*z-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+t*(-

0.18628806+t*(0.27886907+t*(-1.13520398+t*(l.48851587+t*(-0.82215223+t*0.17087277)))))))))
if(yl.lt.0.0)then "*
erfc=2.0-erfc

endif

return

end
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APPENDIX- II

NUMERICAL MODEL FOR ESTIMATING VIRUS

TRANSPORT PARAMETERS IN SATURATED ZONE

parameter(nz=101)
parameter(nm=7)
real cobs(nz,nm),z(nz),b(nm),paracode(nm),cpred(nz,nm),cori(nz,nm),timeobs(nm)
real ccal(nz,nm),nelt(nz),zobs(nz),p(nm),plast(nm),err(nz),wj(nz,nm),d(nm),dold(nm)
real qtl(nz,nz),wjnew(nz,nz),errnew(nz),qt2(nz,nz),wjfin(nz,nz),errfin(nz),delp(nm),ratio(nm)
real depth,row,kd,theta,r,v,coefl ,coef2,dis
integer maxpar,maxunpar
open(5,file="dn.in")
open(6,file="cnew.xls")
open(l l,file="cobs.xls")
open( 12,file="cpred.xls")
open(13,file="cori.xls")
open(14,file="err.xls")
open(15,file="jac.xls")
open( 16,file="householder.xls")
open( 17,file="wjnew.xls")
open(18,file="given.xls")
open(19,file="wjfinal.xls")
open(20,file="error.xls")
open(21 ,file="check.out")

read(5,*)maxpar,maxunpar,depth,row,delt,timemax,maxtobs,maxzobs,almb,v
read(5,*) (paracode(i),i=l ,maxpar)
read(5,*) (b(i),i=l,maxpar)
read(5,*) (timeobs(i),i=l,maxtobs)
read(5,*) (zobs(i),i=l,maxzobs)
read(5,*) (p(i),i=l,maxpar)
read(5,*) omegal,omega2,toll,tol2
delz=depth/(nz-l)
z(l)=0.0
doj=2,nz

zG)=z(l)+G-l)*delz
enddo

i=l

k=l

zl=0

itotal=maxzobs*maxtobs

do while(i .le. maxzobs)
if (zobs(i) .gt. zl)then
k=k+l

zl=zl+delz

else

nelt(i)=k-l
diff=zobs(i)-zl
i=i+l

endif

enddo
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doj=l,maxpar
ifG .eq.l)then
coefl=b(l)
elseifG .eq.2)then -f
theta=b(2)
elseifG .eq.3)then
coef2=b(3)
elseifG .eq.4)then
dis=b(4)
elseifG .eq.5)then
kd=b(5)
endif

enddo

r=l+((row*kd)/theta)
call
transport(nz,nm,delz,r,delt,timemax,coefl,coef2,v,dis,kd,row,theta,timeobs,maxtobs,ccal,maxzobs,nelt, ^
zobs,cobs,objf)

doj=l,maxzobs
dok=l,maxtobs
cobsG,k)=ccalG,k)
enddo

enddo

write(11,100)((cobsG,k),k=1,maxtobs)j=1 ,maxzobs)
100 format(lx,5fl0.5)

iout=l

ioutconv=0

do while (ioutconv .eq. 0)
do ipar=l,(maxunpar+l) ^

if (ipar .eq. l)then
doj=l,maxpar

plastG)=pG)
enddo

icountpar=l
icpar=0
else

ikode=0

do while (ikode .eq. 0)
if (paracode(icountpar) .eq. l)then
ikode=l

icpar=icountpar
icountpar=icountpar+1
else

icountpar=icountpar+1
endif

enddo

endif

doj=l,maxpar
ifG eq. icpar)then
pG)=plastG)+0.01 *plastG)
else

pG)=plastG)
endif

enddo 4
doj=l,maxpar

ifG .eq.l)then
coefl=p(l)
else ifG .eq.2)then
theta=p(2)
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else ifG .eq.3)then
coef2=p(3)
else ifG .eq.4)then
dis=p(4)
else ifG .eq.5)then
kd=p(5)
endif

enddo

r=l+((row*kd)/theta)

call

transport(nz,nm,delz,r,delt,timemax,coefl,coef2,v,dis,kd,row,theta,timeobs,maxtobs,ccal,maxzobs,nelt,
zobs,cobs,objf)

write(21,*)objf
if (ipar .eq. l)then
objfpre=objf
doj=l,maxzobs

dok=l,maxtobs
coriG,k)=ccalG,k)
enddo

enddo

write( 13,200)((coriG,k),k=1,maxtobs) j=1,maxzobs)
200 format(lx,5fl0.5)
else

doj=l,maxzobs
dok=l,maxtobs

cpredG,k)=ccalG,k)
enddo

enddo

write(12,300)((cpredG,k),k=l,maxtobs)j=l,maxzobs)
300 format(lx,5fl0.5)
endif

if (ipar .eq. l)then
doj=l,maxtobs
ierr=G-1)*maxzobs

do i=l,maxzobs
err(ierr+i)=cobs(ij)-cori(ij)
enddo

enddo

write (14,40) (err(i),i=l,itotal)
40 format(lx,fl0.5)
else

doj=l,maxtobs
ierr=G-l)*maxzobs

do i=l,maxzobs
wj(ierr+i,ipar-l)=(cpred(ij)-cori(ij))/(p(icpar)-plast(icpar))
wj(ierr+i,ipar-1 )=-wj(ierr+i,ipar-1)
enddo

enddo

endif

enddo

write (15,50) ((wj(ij)J=l,maxunpar),i=l,itotal)
50format(lx,3fl0.3)
do i=l,maxunpar
sum=0

doj=l,itotal
sum=sum+wjG,i)*wJG,i)
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enddo

d(i)=abs(sqrt(sum))
enddo

if (iout .eq. l)then t
do i=l,maxunpar
dold(i)=d(i)
enddo

else

do i=l,maxunpar
if (dold(i) .gt. d(i))then
d(i)=dold(i)
dold(i)=d(i)
else

dold(i)=d(i)
endif

enddo ^

endif

call householder(wj,qtl,nz,nm,maxunpar,itotal)
write(16,60)((qt1(ij)j=1 ,itotal),i=1,itotal)
60 format(lx, 55fl5.8)
mtot=itotal+maxunpar
almbcode=1.0

do while(almbcode .eq. 1)
write(21,*)almb
do i=l,mtot

doj=l,maxunpar
wjnew(ij)=0
enddo 4.

enddo

do i=l,mtot
errnew(i)=0
enddo

do i=l,mtot
doj=l,maxunpar

if (i .le. itotal)then
dok=l,itotal
wjnew(ij)=wjnew(ij)+qtl(i,k)*wj(kj)
errnewG)=errnew(i)+qtl(i,k)*err(k)
enddo

else .

lll=i-itotal

ifG .eq.lll)then
wjnew(ij)=almb*dG)
else

wjnew(ij)=0
endif

errnew(i)=0
endif

enddo

enddo

write(17,70)((wjnew(ij)j=l,maxunpar),i=l,mtot)
70 format(lx,fl5.5)
write(17,80)(errnew(i),i=l,mtot) 4
80 format(lx,fl0.5)

callgivrot(itotal,maxunpar,nz,nm,wjnew,qt2)
write(18,90)((qt2(ij)j=1 ,mtot),i= 1,mtot)
90 format(lx,56fl0.5)
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do i=l,mtot
doj=l,maxunpar
wjfin(ij)=0
enddo

enddo

do i=l,mtot
errfin(i)=0
enddo

do i=l,mtot
doj=l,maxunpar

do k=l,mtot
wjfin(ij)=wjfin(ij)+qt2(i,k)*wjnew(k,j)
errfin(i)=errfin(i)+qt2(i,k)*errnew(k)
enddo

enddo

enddo

write( 19,150)((wjnew(ij)j=l ,maxunpar),i=l ,mtot)
150format(lx,3fl5.5)
write( 19,250)(errnew(i),i=l ,mtot)
250 format(lx,fl0.5)
ffin=0

doj=l,maxunpar
ffin=ffm+errfinG)*errfinG)
enddo

gfin=0
do j=maxunpar+1 ,mtot
gfin=gfin+errfinG)*errfinG)
enddo

call gauss(nz,nm,maxunpar,wjfin,errfin,delp)
print*,(delpG)j=l .maxunpar)
icount=l

do i=l,maxpar
if(paracode(i) .eq. l)then
con=delp(icount)/plast(i)

if((con .ge. -0.2) .and. (con .le. 0.5))then
p(i)=plast(i)+delp(icount)
elseif (delp(icount) .It. (-0.2))then
delp(icount)=plast(i)*(-0.2)
p(i)=plast(i)+delp(icount)
elseif (delp(icount) .gt. (0.5))then
delp(icount)=plast(i)*(0.5)
p(i)=plast(i)+delp(icount)
endif

ratio(icount)=abs(delp(icount))/(plast(i)+10.0* *(-20))
icount=icount+l

endif

enddo

doj=l,maxpar
ifG .eq.l)then
coefl=p(l)
elseifG .eq.2)then
theta=p(2)
elseifG .eq.3)then
coef2=p(3)
elseifG eq.4)then
dis=p(4)
elseifG .eq.5)then
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kd=p(5)
endif

enddo

r=l+((row*kd)/theta) y

call
transport(nz,nm,delz,r,delt,timemax,coefl,coef2,v,dis,kd,row,theta,timeobs,maxtobs,ccal,maxzobs,nelt,
zobs,cobs,objf)
write(21 ,*)iout,objf,objfpre

if (objf .gt. objfpre)then
almb=almb*omega1
almbcode=l

else

almbcode=0

endif a
enddo

ratio l=gfin/ffin
sumpl=sqrt(l .0+objfpre)
if(ratiol .ge. 0.75)then
almb=almb *omega2
else if(ratiol .le. 0.25)then
almb=almb*omegal
endif

if(ffin .le. (sumpl*toll))then
ioutconv=l

endif

great=ratio(l) 4
if(maxunpar ,ge.2)then

do i=l,maxunpar
if (ratio(i) .gt.great)then
great=ratio(i)
endif

enddo

endif

if (great .le. tol2)then
ioutconv=l

endif

write(20,*) iout,objf
iout=iout+l .

enddo

print*,p
stop

end

l********************CONCENTRATION CALCULATION STARTS**********************

subroutine
transport(nz,nm,delz,r,delt,timemax,coefl,coef2,v,dis,kd,row,theta,timeobs,maxtobs,ccal,maxzobs,nelt,
zobs,cobs,objf)

real ae(nz),be(nz),ce(nz),re(nz),cdis(nz),cold(nz)
real alpha(nz),bita(nz),y(nz),cte(nz) 4

real cpre(nz),cadv(nz),cobs(nz,nm),delc(nz),ai(nz),bi(nz),fl1(nz),fl2(nz)
real cnew(nz),ccal(nz,nm),timeobs(nm),nelt(nz),zobs(nz)
real v,dis,lamda,kd
do j=2,(nz)
coldG)=0.0

175



enddo

cold(l)=1.0
time=0.0

* 112=1

do while(time .le.timemax)
cold(l)=1.0
delc(l)=0.0

doj=2,(nz-l)
aiG)=coldG)-coldG-l)
biG)=coldG+l)-coldG)

if (aifj) -ge. 0.0)then
sign=l
else

sign=-l
x endif

if ((ai(j)*biQ)) .gt.0.0)then
if (abs (aiG)).gt. abs(biG))) then
delcG)=sign*abs(biG))
else

delcG)=sign*abs(aiG))
endif

else

delcG)=0.0
endif

enddo

cpre(l)=cold(l)
X doj=2,nz-l

cpreG)=coldG)-0.5*(delt/delz)*(v)*delcG)
enddo

doj=l,nz-l
fll(j)=cpreG)+0.5*delcG)
fl2G)=cpreG)-0.5*delcG)
cadvG)=coldG)-(l/r)*(delt/delz)*(v)*(fllG)-fl2G))
enddo

cadv(l)=cold(l)
lamda=(dis*delt)/(delz**2*r)
doj=l,nz-l

if (j.eq.l) then
aeG)=0

T beG)=l
ceG)=0
reG)=cadv(l)
else

aeG)= -lamda
beG)= l+(2*lamda)
ceG)= -lamda
reG)=cadvG)
endif

enddo

ae(nz)= 0
be(nz)= 1

-A- ce(nz)=0.0
re(nz)=cadv(nz)
alpha(l)=be(l)
doj=l,nz-l
bitaG)=ceG)/alphaG)
alphaG+l)=beG+1)-(aeG+l)*bitaG))
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enddo

y(l)=re(l)/alpha(l)
do j=2,(nz)
yG)=((reG)-aeG)*yG-l))/a'phaG))
enddo

cte(nz)=y(nz)
doj=(nz-l),l,-l
cteG)=yGHbitaG)*cteG+l))
enddo

doj=l,(nz)
cdisG)=cteG)
enddo

doj=l,nz
cnewG)=cdisG)-((coefl+(coef2*kd*row/theta))*cdisG)*delt/r)
enddo

cnew(l)=1.0
if (((time-delt) .le. timeobs(112)) .and. (timeobs(112) .It. time))then
doj=l,maxzobs
cdiffl =cnew(neltG))-cold(neltG))
tdiffl =timeobs(112)+delt-time
cl=cold(neltG))+((cdiff2/delt)*tdiffl)
cdiff2=cnew(nelt(j)+1 )-cold(neltG)+1)
tdiff2=timeobs(112)+delt-time
c2=cold(neltG)+l)+((cdiff2/delt)*tdiff2)
if (neltG) .eq. l)then
cdiff=c2-cl

zdiff=zobsG)
ccalG,H2)=c1+(cdiff*zdiff)/delz
else

cdiff=c2-cl

zdiff=zobsG)-((neltG)-l)*delz)
ccalG,H2)=c1+(cdiff*zdiff)/delz
endif

enddo

112=112+1

endif

doj=l,nz
coldG)=cnewG)

enddo

time=time+delt

enddo

sum=0

do i=l,maxzobs
doj=l,maxtobs
sum=sum+(cobs(ij)-ccal(ij))**2
objf=sum
enddo

enddo

return

end

i************************************************************************

[program for QR decomposition using House holder transformation for an unsymmetric matrice
subroutine householder(wj,qtl,nz,nm,maxunpar,itotal)
real wj(nz,nm),h(nz,nz),q(nz,nz),r2(nz,nm),w(nz),temp1(nz,nm),temp2(nz,nz)
real prod(nz,nm),qqt(nz,nz),qt 1(nz,nz),r1(nz,nm)

nr=itotal
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nc=maxunpar

do ii=l,nr
dojj=l,nc

T r2(iijj)=0
enddo

enddo

do ii= 1,nr
dojj=l,nc
prod(iijj)=0
enddo

enddo

do ii=l,nr
dojj=l,nr
qqt(iijj)=0
enddo

^ enddo
do i=l,nc
sum=0 /

do k=i,nr
if(i .eq. l)then
sum=sum+wj(k,i)*wj(k,i)
else

sum=sum+r2(k,i)*r2(k,i)
endif

enddo

s=sum**(0.5)
if(i .eq. l)then

X den=(2.0*s*(s+abs(wj(i,i))))**(0.5)
else

den=(2*s*(s+abs(r2(i,i))))**(0.5)
endif

dok=l,nr
if(i .eq. l)then

if(k .It. i)then

else

w(k)=0
else if(k .eq. i)then

if (wj(k,i) .gt. 0)then
w(k)=(wj(k,i)+s)/den
else if(wj(k,i) .eq. 0)then
w(k)=(wj(k,i))/den
else

w(k)=(wj (k,i)-s)/den
endif

else

w(k)=wj(k,i)/den
endif

if (k .It. i)then
w(k)=0
else if(k .eq. i)then

if(r2(k,i) .gt. 0)then
w(k)=(r2(k,i)+s)/den
else if(r2(k,i) .eq. 0)then
w(k)=r2(k,i)/den
else

w(k)=(r2(k,i)-s)/den
endif

else
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w(k)=r2(k,i)/den
endif

endif

enddo . t

Icalculation of house holder matrix

doj=l,nr
do k=l,nr

if(k .eq. j)then
hG,k)=1.0-2.0*wG)*w(k)
else

hG,k)=-2.0*wG)*w(k)
endif

enddo

enddo

calculation of r matrix

do ii=l,nr
dojj=l,nc
templ(iijj)=0
enddo

enddo

doj=l,nr
dok=l,nc

do 1=1,nr
if(i .eq. l)then
templG,k)=templG,k)+hG,l)*wj(l,k)
else ^
temp1G,k)=temp1G,k)+hG,0*r2(l,k)
endif

enddo

enddo

enddo

doj=l,nr
do k=l,nc
r2G,k)=templG,k)
enddo

enddo

calculation of q matrix
do ii=l,nr

dojj=l,nr
temp2(iijj)=0
enddo

enddo

if (i .eq. l)then
doj=l,nr

dok=l,nr
temp2G,k)=hG,k)
enddo

enddo

else

doj=l,nr
dok=l,nr

do l=l,nr
temP2G,k)=temp2G,k)+qG,l)*h(l,k)
enddo

enddo

enddo
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endif

doj=l,nr
dok=l,nr

qG,k)=temp2G,k)
enddo

enddo

enddo

do i=l,nr
doj=l,nr

qtlG,i)=q(ij)
enddo

enddo

do ii=l,nr

dojj=l,nc
dokk=l,nr
rl(iijj)=rl(iijj)+qtl(ii,kk)*wj(kkjj)
enddo

enddo

enddo

do ii=l,nr

dojj=l,nc
do kk=l,nr
prod(iijj)=prod(iijj)+q(ii,kk)*r2(kk,jj)
enddo

enddo

enddo

do ii=l,nr

dojj=l,nr
do kk=l,nr

qqt(iijj)=qqt(iijj)+q(ii,kk)*qt1(kkjj)
enddo

enddo

enddo

return

end
i*******************************************************************************

(program for Given's rotation
subroutine givrot(itotal,maxunpar,nz,nm,wjnew,qt2)

realgl(nz,nz),wjnew(nz,nm),r3(nz,nm),temp3(nz,nm),temp4(nz,nz)
real q1(nz,nz),prod1(nz,nz),qt2(nz,nz),qqt1(nz,nz)

nr=itotal+maxunpar
nc=maxunpar

nin=itotal

doii=l,nr
dojj=l,nr
prodl(iijj)=0
qqtl(iijj)=0
enddo

enddo

do ii= 1,nr
dojj=l,nc
r3(iijj)=0
enddo

enddo

do i=l,nc
if (i .eq. l)then
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den=sqrt(wjnew(i,i)*wjnew(i,i)+wjnew(i+nin,i)*wjnew(i+nin,i))
cos=wjnew(i,i)/den
sin=wjnew(i+nin,i)/den
else

den=sqrt(r3(i,i)*r3(i,i)+r3(i+nin,i)*r3(i+nin,i))
cos=r3(i,i)/den
sin=r3(i+nin,i)/den
endif

doj=l,nr
do k=l,nr

ifG .eq. i)then
ify .eq. k)then
glG,k)=cos
else if(k .eq. G+nin))then
glG,k)=sin
else

gl(j,k)=0
endif

else ifG -eq. (i+nin))then
if(k .eq. G-nin))then
glG,k)=-sin
else ifG .eq. k)then
glG,k)=cos
else

glG,k)=0
endif

else

ifG .eq. k)then

glG,k)=l
else

glG,k)=0
endif

endif

enddo

enddo

doj=l,nr
dok=l,nc
temp3G,k)=0
enddo

enddo

doj=l,nr
dok=l,nc

do 1=1,nr
if(i .eq. l)then
temp3G,k)=temp3G,k)+glG,l)*wjnew(l,k)
else

temp3G,k)=temp3G,k)+glG,l)*r3(l,k)
endif

enddo

enddo

enddo

doj=l,nr
dok=l,nc
r3G,k)=temp3G,k)
enddo

enddo

write(6,700)((r3G,k),k=l,nc)j=l,nr)
700 format (lx,3fl5.5)
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write (20,*) 'R2 matrix'
doj=l,nr
write(20,*)(r2G,k),k=l,nc)
enddo

doj=l,nr
dok=l,nr
temp4G,k)=0
enddo

enddo

if(i .eq. l)then
doj=l,nr

do k=l,nr

temp4G,k)=glG,k)
enddo

enddo

else

doj=l,nr
dok=l,nr

do 1=1,m
temP4G,k)=temp4G,k)+qt2G,l)*gl(l,k)
enddo

enddo

enddo

endif

doj=l,nr
dok=l,nr

4. qt2G,k)=temp4G,k)
enddo

enddo

write (20,*) 'QT given matrix'
doj=l,nr
write(20,*)(qt2G,k),k=1,nr)
enddo

enddo

do ii=l,nr

dojj=l,nr

qi(iijj)=qt2GJ,ii)
enddo

enddo

Iwrite (20,*) 'Q matrix'
!do j=l,nr
!write(20,*)(qG,k),k=l,m)
!enddo

doj=l,nr
dok=l,nc

do l=l,nr
ProdlG,k)=prodlG,k)+qlG,0*r3(l,k)
enddo

enddo

enddo

Iwrite (20,*) 'product matrix'
!doj=l,nr
!write(20,*)(prodG,k),k=l,nc)
!enddo

doj=l,nr
dok=l,nr

do l=l,nr
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qqtlG,k)=qqtlG,k)+qlG,l)*qt2(l,k)
enddo

enddo

enddo

Iwrite (20,*) 'qqt matrix'
!doj=l,nr
!write(20,*)(qqtG,k),k=1,nr)
!enddo

return

end
i**********************************************************************

subroutine gauss(nz,nm,maxunpar,wjfin,errfin,delp)
real wjfin(nz,nm),errfin(nz),delp(nm)
do i=maxunpar,l,-l

if (i.eq. maxunpar)then
delp(i)=-errfin(i)/wjfm(i,i)
else

sum=-errfin(i)
do j=maxunpar,i+1,-1
sum=sum-wjfin(ij )*delpG)
enddo

delp(i)=sum/wjfin(i,i)
endif

enddo

return

end
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APPENDIX-III

NUMERICAL MODEL FOR SIMULATING VIRUS

TRANSPORT IN UNSATURATED ZONE

! Depth =Total depth
! delt =small time step
Ithetas =saturated water content

Ithetar =residual water content

!alpha = van genucheten parameter, is a measure of the first moment of the pore size density
function

Iks =saturated hydraulic conductivity
In =inverse measure of the second moment of the pore size density function
Ihold =old value of pressure head
Ihnew =new value of the pressure head
lhassum =assumed value of the pressure head
!thetaold=old value of the water content

Ik =hydraulic conductivity
Isc =specific water capacity
!z =define the coordinate of the grid
INnode =total number of nodes

!a,b,c,d,f,g=coefficient of banded coefficient matrix
parameter(Nnode=251)
real

z(Nnode),k(Nnode),lmew(Nnode),hold(Nnode),a(Nnode),b(Nnode),cCNnode),d(Nnode),theta(Nnode)
real ae(Nnode),be(Nnode),ce(Nnode),re(Nnode),variable(Nnode),v1(Nnode)
real

hassum(Nnode),f(Nnode),fl(>lnode),g(Nnode),thetaold(Nnode),sc(Nnode),rCNnode),roldCNnode),v(Nn
ode)

real
cold(Nnode),cpre(Nnode),cadv(Nnode),delc(Nnode),ai(Nnode),bi(Nnode),fll(Nnode),fl2(Nnode)

real cnew(Nnode),cdis(Nnode),disOvJnode),lamda(Nnode), rlfNnode)
real 11(87000),cnew1(87000),theta1(87000),hnew1(87000)
real m,n,alpha,thetas,thetar,ks,max,pe,hini,htop,c0,row,kd,coefl,coef2

open(5,file="dn.in")

open(10,file="dn5.xls")
open(ll,file="dn.xls")
open(12,file="final.xls")
open(14,file=" velocity.xls")
open(15,file="adv.xls")
open( 16,file="cnew.xls")
read (5,*) depth,delt,thetas,thetar,alpha,n,ks,timemax,pe,hini,htop,cO,row,kd,coefl ,coef2

|************DEFINE THE COORDINATES OF EACH GRID**********************

delz=depth/(Nnode-1)
z(l)=0.0
z(Nnode)=depth

doj=2,Nnode-l
zG)=z(l)+G-l)*delz

enddo

184



do j=2,Nnode
coldG)=0.0
enddo

cold(l)=cO T
[♦♦♦♦♦♦♦♦♦♦♦♦p^jyjAL AND BOUNDARY CONDITIONS*************************

il = l

doj=l,Nnode
holdG)=hini
enddo
,************cALCULATION OF thetaold VALUE FROM hold VALUE* ************

m=l-(l/n)
doj=l,Nnode

if(holdG).gt.O.O)then
thetaoldG)=thetas
else

roldG)=(l+(alpha*abs(holdG)))**n) +
thetaoldG)=((thetas-thetar)*(l/(roldG)**m))+thetar)
endif

enddo

time=delt
i***********************-pjjyjE ITERATION STARTS****************************

do while(time .le. timemax)
doj=l,Nnode
hassumG)=holdG)
enddo

error=l

itr=0

|********TO MAKEMASS CONSERVATION ERRORCALCULATION STARTS****** 4.
do while(error.gt. 0.001)

doj=l,(Nnode)
rG)=(1+(alpha*abs(hassumG)))**n)

if (hassumG).gt.0.0)then
sc(j)=0.0
thetaG)=thetas
else

scG)=((thetas-thetar)*(alpha*m*n)*((alpha*abs(hassumG)))**(n-
l)))/rG)**(m+l)

thetaG)=((thetas-thetar)*(l/(rG)**m))+thetar)
endif

kG)=ks*((l-(l-((thetaG)-thetar)/(thetas-thetar))**(l/m))**m)**2)*((thetaG)-
thetar)/(thetas-thetar))**0.5

enddo

doj=2,Nnode-l
aG)=(kG)+kG-l))/(2*delz**2)
cG)=(kG)+kG+l))/(2*delz**2)
dG)=-(kG+D-kG-l))/(2*delz)
fG)=scG)/delt
flG)=fG)*bassumG)
gG)=(thetaG )-thetaoldG ))/delt
bG)=-(aG)+cG)+fG))
enddo

doj=l,Nnode-l
if (j.eq.l) then 4
aeG)=0

beG)=l
ceG)=0
reG)=hini
else

185



aeG)=aG)
beG)=bG)
ceG)=cG)
reG)=dG)+gG)-flG)
endif

enddo

ae(Nnode)=0
be(Nnode)=l
ce(Nnode)=0.0
re(Nnode)=htop
call tdma(ae,be,ce,re,variable,Nnode)

doj=l,Nnode
hnewG)=variableG)
enddo

I write( 10,20)(zG),hassumG),hnewG),kG)j=1 ,Nnode)
! 20format(lx,f8.3,fll.4,fll.4,fll.4)

error=abs(hnew( 1)-hassum( 1))
doj=2,Nnode

if (error .It. (abs(hnewG)-hassumG)))) then
error=abs(hnewG)-hassumG))
endif

enddo

print *,error
doj=l,Nnode
hassumG )=hnewG)
enddo

itr=itr+l

enddo
t**************************** ERROR CALCULATION ENDS*************************

print *,'total no of iteration is', itr
doj=l,Nnode

if(hnewG).gt.0.0)then
thetaG)=thetas
else

rG)=(1+(alpha*abs(hnewG)))**n)
thetaG)=((thetas-thetar)*(1/(rG)**m))+ thetar)
endif

enddo

! write(l l,30)(zG),hnewG),thetaG),kG)j=l,Nnode)
I 30 format(lx,f8.3,fl 1.4,fl0.7,n0.5)

i**************************time ITERATION ENDS**********************************

i*********************** YELOCITY CALCULATION STARTS**************************
v(1)=(-k(1)/theta(1))*(((hnew(2)-hnew(1))/(delz))+1)

doj=2,Nnode-l
vG)=(-kG)/thetaG))*(((hnewG+1 )-hnewG-1 ))/(2*delz))+1)
enddo

v(Nnode)=(-k(Nnode)/theta(Nnode))*(((hnew(Nnode)-hnew(Nnode-l))/(delz))+l)

doj=l,Nnode
vl(j)=v(Nnode+l-j)
enddo

doj=l,Nnode
vG)=(-i)*viG)
enddo
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,*****************CONCENTRATION CALCULATION STARTS*************************

doj=l,Nnode
rl G)=1+(row*kd/thetaG))
enddo

cold(l)=cO
delc(l)=0.0

doj=2,(Nnode-l)
aiG)=coldG)-coldG-l)
biG)=coldG+l)-coldG)

if (ai(j) .ge. 0.0)then
sign=l
else

sign=-l
endif

if((aiG)*biG)) .gt.0.0)then
if (abs (aiG)).ge. abs(biG))) then
max=abs(aiG))
else

max=abs(biG))
endif

if(2*abs(aiG)) .It. 2*abs(biG)))then
if(2*abs(aiG)) .It. max)then
delcG)=sign*2*abs(aiG))
else

delcG)=sign*max
endif

else

if(2*abs(biG)) .It. max)then
delcG)=sign*2*abs(biG))
else

delcG)=sign*max
endif

endif

else

delcG)=0
endif

cpre(l)=cold(l)
cpre(j)=coldG)-0.5*(delt/delz)*(vG))*delcG)

if(vG).gt.0.0)then
fllG)=cpreG)+0.5*delcG)
fl2G)=cpreG-l)+0.5*delcG-l)
cadvG)=coldG)-(delt/delz)*(vG))*(fHG)-fl2G))
else

fl1G)=cpreG+1)-0.5*delcG+1)
fl2G)=cpreG)-0.5*delcG)
cadvG)=coldG)-(delt/delz*(rlG)))*(vG+l))*(fllG)-fl2G))
endif

enddo

cadv(l)=cold(l)

write( 15,60)(zG),cadvG)j=1 ,Nnode)
60format(lx,f8.3,fll.4)

doj=l,Nnode
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disG)=(vG)*delz/pe)
lamdaG)=(disG)*delt/((delz**2)*rlG)))
enddo

\ doj=l,Nnode-l
if (j.eq. 1) then
aeG)=0
beG)=l
ceG)=0
reG)=cadv(l)
else

aeG)= -lamdaG)
beG)= l+(2*lamdaG))
ceG)= -lamdaG)
reG)=cadvG)
endif

± enddo
ae(Nnode)= 0
be(Nnode)= 1
ce(Nnode)=0.0
re(Nnode)=cadv(Nnode)

stop

end

call tdma(ae,be,ce,re,variable,Nnode)
doj=l,Nnode
cdisG)=variableG)
enddo

doj=l,Nnode
cnewG)=cdisG)-((coefl+(coef2*kd*row/thetaG)))*cdisG)*delt/rlG))
enddo

cnew(l)=1.0
doj=l,Nnode
coldG)=cnewG)
hold(j)=hnewG)
thetaoldG)=thetaG)
enddo

tl(il)=time
cnew 1(i 1)=cnew(26)
thetal(il)=theta(26)
hnew1(i 1)=hnew(26)
il=il+l

time=time+delt

enddo

write(12,40)(zG),hnewG),thetaG),kG)j=l,Nnode)
40format(lx,f8.3,fll.4,fJ0.7,fl0.5)
write(14,50)(zG),vG)j=l,Nnode)
50format(lx,f8.3,fll.4)
write (11,*)(tl(il),cnewl(il),thetal(il),hnewl(il),il=l,86400,4)
write(16,70)(z(j),cnewG),vG)j=l,Nnode)
70 format(lx,f8.3,fll.4,fll.4)

i******************************jj^OMAS ALGORITHM*******************************

subroutine tdma(ae,be,ce,re,variable,Nnode)
real ae(Nnode),be(Nnode),ce(Nnode),re(Nnode),variable(Nnode)

real alpha(Nnode),bita(Nnode),y(Nnode),cte(Nnode)
alpha(l)=be(l)

188



return

end

doj=l,Nnode-l
bitaG)=ceG)/alphaG)
alphaG+l)=beG+l)-(aeG+l)*bitaG))
enddo

y(l)=re(l)/alpha(l)

doj=2,(Nnode)
yG)=((reG)-aeG)*YG-1 ))/alphaG))
enddo

cte(Nnode)=y(Nnode)
doj=(Nnode-l),l,-l
cteG)=yGHbitaG)*cteG+l))
enddo

doj=l,(Nnode)
variableG)=cteG)
enddo
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APPENDIX- IV

NUMERICAL MODEL FOR ESTIMATING VIRUS

TRANSPORT PARAMETERS IN UNSATURATED ZONE

I Depth =Total depth
I delt '=small time step
Ithetas =saturated water content

Ithetar =residual water content

Ialpha = van genucheten parameter, is a measure of the first moment of the pore size density
function

Iks =saturated hydraulic conductivity
In =inverse measure of the second moment of the pore size density function
Ihold =old value of pressure head
Ihnew =new value of the pressure head
lhassum =assumed value of the pressure head
!thetaold=old value of the water content

Ik =hydraulic conductivity
Isc =specific water capacity
!z =define the coordinate of the grid
Inz =total number of nodes

!a,b,c,d,f,g=coefficient of banded coefficient matrix

i***************************************************************************

parameter(nz=101)
parameter(nm=7)
realcobs(nz,nm),z(nz),b(nm),paracode(nm),cpred(nz,nm),cori(nz,nm),timeobs(nm)
realccal(nz,nm),nelt(nz),zobs(nz),p(nm),plast(nm),err(nz),wj(nz,nm),d(nm),dold(nm)
realqtl(nz,nz),wjnew(nz,nz),errnew(nz),qt2(nz,nz),wjfinGiz,nz),errfin(nz),delp(nm),ratio(nm)
real depth,row,kd,coefl ,coef2
real n,alpha,thetas,thetar,ks
integer maxpar,maxunpar,codeobj
open(5,file="dn.in")
open(6,file="cnew.xls")
open(l l,file="cobs.xls")
open(12,file="cpred.xls")
open( 13,file="cori.xls")
open( 14,file="err.xls")
open(15,file="jac.xls")
open(16,file="householder.xls")
open(17,file="wjnew.xls")
open(18,file="given.xls")
open( 19,file="wjfinal.xls")
open(20,file="error.xls")
open(21,file="check.out")

read(5,*)maxpar,maxunpar,depth,row,delt,timemax,maxtobs,maxzobs,almb,codeobj,hini,htop,pe
read(5,*) (paracode(i),i=1,maxpar)
read(5,*) (b(i),i=l,maxpar)
read(5,*)(timeobs(i),i=l,maxtobs)
read(5,*) (zobs(i),i=l,maxzobs)
read(5,*) (p(i),i=l,maxpar)
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read(5,*) omegal,omega2,toll,tol2
read(5,*)n,alpha,thetas,thetar,ks
read(5,*) ((cobs(i j)j=1 ,maxtobs),i= 1,maxzobs)
delz=depth/(nz-l) y
z(l)=0.0
doj=2,nz

zG)=z(l)+G-l)*delz
enddo

i=l

k=l

zl=0

itotal=maxzobs*maxtobs

do while(i .le. maxzobs)
if (zobs(i) .gt. zl)then
k=k+l

zl=zl+delz ±
else

nelt(i)=k-l
diff=zobs(i)-zl
i=i+l

endif

enddo

iout=l

ioutconv=0

do while (ioutconv .eq. 0)
do ipar=1,(maxunpar+1)

if (ipar .eq. l)then ^
doj=l,maxpar

plastG)=pG)
enddo

icountpar=l
icpar=0
else

ikode=0

do while (ikode .eq. 0)
if (paracode(icountpar) .eq. l)then
ikode=l

icpar=icountpar
icountpar=icountpar+l
else

icountpar=icountpar+1
endif

enddo

endif

doj=l,maxpar
ifG .eq. icpar)then
pG)=plastG)+0.01*plastG)
else

pG)=plastG)
endif

enddo

doj=l,maxpar v*
ifG .eq.l)then
coefl=p(l)
else ifG .eq.2)then
coef2=p(2)
else ifG .eq.3)then

191



kd=p(3)
endif

enddo

\ call
transport(z,nz,nm,delz,delt,timemax,coefl,coef2,kd,row,timeobs,maxtobs,ccal,maxzobs,nelt,zobs,cobs,
objf,codeobj,n,alpha,thetas,thetar,ks,hini,htop,pe)

write(21,*)objf
if (ipar .eq. l)then
objfpre=objf

doj=l,maxzobs
dok=l,maxtobs
coriG,k)=ccalG,k)
enddo

enddo

! write( 13,30)((coriG,k),k= 1,maxtobs),j=1 ,maxzobs)
+ ! 30 format(lx,5fl0.5)

else

doj=l,maxzobs
dok=l,maxtobs

cpredG,k)=ccalG,k)
enddo

enddo

I write( 12,20)((cpredG,k),k=1,maxtobs) j=1 ,maxzobs)
I 20 format(lx,5fl0.5)

endif

if (ipar .eq. l)then
if (codeobj .eq. l)then

4 doj=l,maxtobs
ierr=G-1)*maxzobs

do i=l,maxzobs
err(ierr+i)=cobs(ij)-cori(ij)
enddo

enddo

else if (codeobj .eq. 2)then
doj=l,maxtobs
ierr=G-1)*maxzobs

do i=l,maxzobs
err(ierr+i)=(cobs(ij)-cori(ij))/cobs(i,j)
enddo

^ enddo
else if (codeobj .eq. 3)then

doj=l,maxtobs
ierr=G-1 )*maxzobs

do i=l,maxzobs
err(ierr+i)=(cobs(ij)-cori(ij))/cori(ij)
enddo

enddo

endif

I write (14,40) (err(i),i=l,itotal)
I 40format(lx,fl0.5)

else

if (codeobj .eq. l)then
doj=l,maxtobs
ierr=G-1 )*maxzobs

do i=l,maxzobs
wj(ierr+i,ipar-1 )=(cpred(i j)-cori(i j))/(p(icpar>

plast(icpar))
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plast(icpar))

plast(icpar))

wj(ierr+i,ipar-l)=-wj(ierr+i,ipar-l)
enddo

enddo

else if (codeobj .eq. 2)then
doj=l,maxtobs
ierr=G-l)*maxzobs

do i=l,maxzobs
wj(ierr+i,ipar-1)=(cpred(i j)-cori(ij))/(p(icpar)-

wj(ierr+i,ipar-l)=-wj(ierr+i,ipar-l)/cobs(i,j)
enddo

enddo

else if (codeobj .eq. 3)then
doj=l,maxtobs
ierr=G-1)*maxzobs

do i=l,maxzobs
wj(ierr+i,ipar-l)=(cpred(ij)-cori(ij))/(p(icpar)-

enddo

endif

wj(ierr+i,ipar-l)=-wj(ierr+i,ipar-l)*cobs(i,j)/(cori(ij)**2)
enddo

endif

enddo

Iwrite (15,50) ((wj(ij)j=l,maxunpar),i=l,itotal)
150 format(lx,3fl0.3)
do i=l,maxunpar
sum=0

doj=l,itotal
sum=sum+wjG,0*wjG,i)
enddo

d(i)=abs(sqrt(sum))
enddo

if (iout .eq. l)then
do i=l,maxunpar
dold(i)=d(i)
enddo

else

do i=l,maxunpar
if (dold(i) .gt. d(i))then
d(i)=dold(i)
dold(i)=d(i)
else

dold(i)=d(i)
endif

enddo

endif

call householder(wj,qtl,nz,nm,maxunpar,itotal)
write( 16,60)((qtl (ij)j=l ,itotal),i=1,itotal)
60format(lx, 55fl5.8)
mtot=itotal+maxunpar
almbcode=1.0

do while(almbcode .eq. 1)
write(21,*)almb
do i=l,mtot

doj=l,maxunpar
wjnew(i,j)=0
enddo
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enddo

do i=l,mtot
errnew(i)=0

4 enddo
do i=l,mtot

doj=l,maxunpar
if (i .le. itotal)then

dok=l,itotal
wjnew(ij)=wjnew(ij)+qtl(i,k)*wj(kj)
errnew(i)=errnew(i)+qt1(i,k)*err(k)
enddo

else

lll=i-itotal

ifG .eq.lll)then
wjnew(ij )=almb*dG)

j. else
wjnew(ij)=0
endif

errnew(i)=0
endif

enddo

enddo

!write(17,70)((wjnew(ij)j=l,maxunpar),i=l,mtot)
170 format(lx,fl5.5)
Iwrite( 17,71)(errnew(i),i=1,mtot)
171 format(lx,fl0.5)

^ call givrot(itotal,maxunpar,nz,nm,wjnew,qt2)
!write(l 8,80)((qt2(i j)j=l ,mtot),i=l ,mtot)
180 format(lx,56fl0.5)
do i=l,mtot

doj=l,maxunpar
wjfin(ij)=0
enddo

enddo

do i=l,mtot
errfin(i)=0
enddo

do i=l,mtot
t^ doj=l,maxunpar

dok=l,mtot
wjfin(ij)=wjfin(ij)+qt2(i,k)*wjnew(k,j)
errfin(i)=errfin(i)+qt2(i,k)*errnew(k)
enddo

enddo

enddo

Iwrite(19,90)((wjnew(iJ) j=l ,maxunpar),i=1,mtot)
!90format(lx,3fl5.5)
Iwrite( 19,91 )(errnew(i),i=1,mtot)
191 format(lx,fl0.5)
ffin=0

doj=l,maxunpar
ffin=ffin+errfinG)*errfinG)
enddo

gfin=0
do j=maxunpar+1 ,mtot
gfin=gfin+errfinG)*errfinG)
enddo
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call gauss(nz,nm,maxunpar,wjfin,errfin,delp)
print*,(delpG)j=l,maxunpar)
icount=l

doi=l,maxpar -7-
if(paracode(i) .eq. l)then
con=delp(icount)/plast(i)

if((con .ge. -0.2) .and. (con .le. 0.5))then
p(i)=plast(i)+delp(icount)
elseif (con .It. (-0.2))then
delp(icount)=plast(i)*(-0.2)
p(i)=plast(i)+delp(icount)
elseif (con .gt. (0.5))then
delp(icount)=plast(i)*(0.5)
p(i)=plast(i)+delp(icount)
endif

ratio(icount)=abs(delp(icount))/(plast(i)+10.0**(-20)) ^
icount=icount+l

endif

enddo

do j= 1,maxpar

enddo

ifG .eq.l)then
coefl=p(l)
elseifG .eq.2)then
coef2=p(2)
elseifG .eq.3)then
kd=p(3)
endif

call

transport(z,nz,nm,delz,delt,timemax,coefl,coef2,kd,row,timeobs,maxtobs,ccal,maxzobs,nelt,zobs,cobs,
objf,codeobj,n,alpha,thetas,thetar,ks,hini,htop,pe)
write(21, *)iout,obj fobj fpre

if (objf .gt. objfpre)then
almb=almb*omegal
almbcode=l

else

almbcode=0

endif

enddo

ratio l=gfin/ffin
sump 1=sqrt( 1.0+objfpre)
if(ratiol .ge. 0.75)then
almb=almb*omega2
else if(ratiol .le. 0.25)then
almb=almb*omegal
endif

if(ffin .le. (sumpl*toll))then
ioutconv=l

endif

great=ratio(l)
if(maxunpar .ge.2)then

do i=l,maxunpar
if (ratio(i) .gt.great)then
great=ratio(i)
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endif

enddo

endif

\ if(great .le. tol2)then
ioutconv= 1

endif

write(20,*) iout,objf
iout=iout+l

enddo

print*,p
stop

end

!******************qq^q£I^'PI^'Pjq|Sj CALCULATION STARTS***********************

subroutine

n-ansport(z,nz,nm,delz,delt,timemax,coefl,coef2,kd,row,timeobs,maxtobs,ccal,maxzobs,nelt,zobs,cobs,
objf,codeobj,n,alpha,thetas,thetar,ks,hini,htop,pe)

real ae(nz),be(nz),ce(nz),re(nz),cdis(nz),cold(nz)
real cpre(nz),cadv(nz),cobs(nz,nm),delc(nz),ai(nz),bi(nz),fl 1(nz),fl2(nz)
real cnew(nz),ccal(nz,nm),timeobs(nm),nelt(nz),zobs(nz)
integer codeobj
realk(nz),hnew(nz),hold(nz),a(nz),b(nz),c(nz),d(nz),theta(nz)
real variable(nz),vl(nz)
realhassum(nz),f(nz),fl(nz),g(nz),thetaold(nz),sc(nz),r(nz),rold(nz),v(nz)
real rl(nz),dis(nz),lamda(nz),z(nz)
real kd,row,m,ks,n

i*********************************************************************************

open(30,file="dn5.out")
open(31,file="dn.out")
open(32,file="final.out")
open(3 3,file=" velocity .out")
open(34,file="adv.out")
open(35,file="cnew.out")

i*********************************************************************************

do j=2,(nz)
coldG)=0.0
enddo

cold(l)=1.0
time=0.0

112=1

|************INITIAL AND BOUNDARY CONDITIONS*************************

doj=l,nz
holdG)=hini
enddo

|************CALCULATION OF thetaold VALUE FROM hold
VALUE* * ****************************

m=l-(l/n)
doj=l,nz

if(holdG).gt.O.O)then
thetaoldG)=thetas
else

roldG)=( 1+(alpha*abs(holdG)))* *n)
thetaoldG)=((thetas-thetar)*(l/(roldG)**m))+thetar)
endif
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enddo

time=0.0

,************************jjmE ITERATION STARTS***************************
do while(time .It. timemax)

doj=l,nz
hassumG)=holdG)
enddo

error=l

itr=0
,******T0 MAKE MASS CONSERVATION ERROR CALCULATION STARTS********

do while(error.gt. 0.001)
doj=l,(nz)
rG)=(1+(alpha*abs(hassumG)))**n)

if (hassumG).gt.0.0)then
scG)=0.0
thetaG)=thetas
else
scG)=((thetas-thetar)*(alpha*m*n)*((alpha*abs(hassumG)))**(n-

l)))/rG)**(m+l)
thetaG)=((thetas-thetar)*(l/(rG)**m))+thetar)
endif

kG)=ks*((l-(l-((thetaG)-thetar)/(thetas-thetar))**(l/m))**m)**2)*((thetaG)-
thetar)/(thetas-thetar))* *0.5

enddo

doj=2,nz-l
aG)=(kG)+kG-l))/(2*delz**2)
cG)=(kG)+kG+l))/(2*delz**2)
dG)=-(kG+D-kG-l))/(2*delz)
fG)=scGydelt
fl(J)=fG)*hassumG)
gG)=(thetaG)-thetaoldG))/delt
bG)=-(aG)+cG)+fG))
enddo

doj=l,nz-l
if(jeq.l) then
aeG)=0
beG)=l
ceG)=0
reG)=hini
else

aeG)=aG)
beG)=bG)
ceG)=cG)
reG)=dG)+gG)-flG)
endif

enddo

ae(nz)=0
be(nz)=l
ce(nz)=0.0
re(nz)=htop
calltdma(ae,be,ce,re,variable,nz)

doj=l,nz
hnewG)=variableG)
enddo

error=abs(hnew( 1)-hassum( 1))
doj=2,nz

if (error .It. (abs(hnewG)-hassumG)))) then
error=abs(hnewG)-hassumG))
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endif

enddo

print *,error
\ doj=l,nz

hassumG)=hnewG)
enddo

itr=itr+l

enddo
i************************* ERROR CALCULATION ENDS* * **************************

print *,'total no of iteration is', itr
doj=l,nz

if(hnewG).gt.O.O)then
thetaG)=thetas
else

rG)=( 1+(alpha*abs(hnewG)))* *n)
* thetaG)=((thetas-thetar)*(l/(rG)**m))+ thetar)

endif

enddo

I*************************TIME ITERATION ENr)S ******************************** *

I write(32,220)(zG),hnewG),thetaG),kG)j=l,nz)
I 220 format(lx,f8.3,fl 1.4,fl0.7,fl0.5)

i***********************VELOCITY CALCULATION STARTS************************

v( 1)=(-k( 1)/theta( 1))*(((hnew(2)-hnew( 1))/(delz))+1)
doj=2,nz-l

± vG)=(-kG)/thetaG))*(((hnewG+l)-hnewG-l))/(2*delz))+l)
enddo

v(nz)=(-k(nz)/theta(nz))*(((hnew(nz)-hnew(nz-1 ))/(delz))+1)

doj=l,nz
vlG)=v(nz+l-j)
enddo

doj=l,nz

vG)=(-D*viG)
enddo

I write(33,230)(zG),vG)j=l,nz)
^ I 230format(lx,f8.3,fll.4)

,*******************CONCENTRATION CALCULATION STARTS**********************

doj=l,nz
rlG)=l+((row*kd)/thetaG))
enddo

cold(l)=1.0
delc(l)=0.0

doj=2,(nz-l)
aiG)=coldG)-coldG-l)
biG)=coldG+l)-coldG)

if (ai(j) -ge. 0.0)then
sign=l
else

sign=-l
endif

if ((ai(j)*biG)) .gt.0.0)then
if (abs (aiG)).gt. abs(biG))) then
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delcG)=sign*abs(biG))
else

delcG)=sign*abs(aiG))
endif

else

delcG)=0.0
endif

enddo

cpre(l)=1.0
doj=2,nz-l
cpreG)=coldG)-0.5*(delt/delz)*(vG))*delcG)
enddo

doj=l,nz-l
if(vG).gt.0.0)then
fllG)=cpreG)+0.5*delcG)
fl2G)=cpreG-l)+0.5*delcG-l)
cadvG)=coldG)-(l/rlG))*(delt/delz)*(vG))*(fllG)-fl2G))
else

fHG)=cpreG+l)-0.5*delcG+l)
fl2G)=cpreG)-0.5*delcG)
cadvG)=coldG)-(1/rlG))*(delt/delz)*(vG+l ))*(fl1GM12(j))
endif

enddo

cadv(l)=1.0

doj=l,nz
disG)=(vG)*delz/pe)
lamdaG)=(disG)*delt/(delz**2*rlG)))
enddo

doj=l,nz-l
if (j.eq.l) then
aeG)=0
beG)=l
ceG)=0
reG)=cadv(l)
else

aeG)= -lamdaG)
beG)= l+(2*lamdaG))
ceG)= -lamdaG)
reG)=cadvG)
endif

enddo

ae(nz)= 0
be(nz)= 1
ce(nz)=0.0
re(nz)=cadv(nz)
call tdma(ae,be,ce,re,variable,nz)

doj=l,(nz)
cdisG)=variableG)
enddo

doj=l,nz
cnewG)=cdisGH(coefl+(coef2*kd*row/thetaG)))*cdisG)*delt/rlG))
enddo

cnew(l)=1.0
if (((time-delt) .le. timeobs(112)) .and. (timeobs(112) .It. time))then
doj=l,maxzobs

199



cdiffl =cnew(neltG))-cold(neltG))
tdiffl =timeobs(112)+delt-time
c1=cold(neltG))+((cdiff2/delt)*tdiff1)

f- cdiff2=cnew(nelt(j)+1 )-cold(neltG)+1)
tdiff2=timeobs(112)+delt-time
c2=cold(neltG)+1 )+((cdiff2/delt)*tdiff2)
if (neltG) .eq. l)then
cdiff=c2-cl

zdiff=zobsG)
ccalG,H2)=c 1+(cdiff*zdiff)/delz
else

cdiff=c2-cl

zdiff=zobsG)-((neltG)-1 )*delz)
ccalG,H2)=cl+(cdiff*zdiff)/delz
endif

^ enddo
112=112+1

endif

doj=l,nz

coldG)=cnewG)
holdG)=hnewG)
thetaoldG)=thetaG)
enddo

time=time+delt

enddo

! write(35,250)(zG),cnewG)j=l,nz)
I 250format(lx,f8.3,fll.4)

4
sum=0

if (codeobj .eq. l)then
do i=l,maxzobs

doj=l,maxtobs
sum=sum+(cobs(i j)-ccal(i j))* *2
objf=sum
enddo

enddo

else if(codeobj .eq. 2)then
do i=l,maxzobs

doj=l,maxtobs
> cnum=(cobs(ij)-ccal(ij))

cden=cobs(ij)
sum=sum+((cnum/cden)* *2)
objf=sum
enddo

enddo

else if(codeobj .eq. 3)then
do i=l,maxzobs

doj=l,maxtobs
cnum=(cobs(i,j)-ccal(ij))
cden=ccal(ij)
sum=sum+((cnum/cden)* *2)
objf=sum
enddo

enddo

endif

print*,objf
return

end
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I************************************************************************

Iprogram for QR decomposition using House holder transformation for an unsymmetric matrice
subroutine householder(wj,qt1,nz,nm,maxunpar,itotal)
real wj(nz,nm),h(nz,nz),q(nz,nz),r2(nz,nm),w(nz),temp1(nz,nm),temp2(nz,nz) y
realprod(nz,nm),qqt(nz,nz),qtl(nz,nz),rl(nz,nm)

nr=itotal

nc=maxunpar

do ii=l,nr
dojj=l,nc
r2(iijj)=0
enddo

enddo

do ii=l,nr
dojj=l,nc
prod(iijj)=0 ^
enddo

enddo

do ii=l,nr
dojj=l,nr
qqt(iijj)=0
enddo

enddo

do i=l,nc
sum=0

do k=i,nr
if(i .eq. l)then
sum=sum+wj(k,i)*wj(k,i) r
else

sum=sum+r2(k,i)*r2(k,i)
endif

enddo

s=sum**(0.5)
if(i .eq. l)then
den=(2.0*s*(s+abs(wj(i,i))))**(0.5)
else

den=(2*s*(s+abs(r2(i,i))))**(0.5)
endif

dok=l,nr
if(i .eq. l)then ^

if(k .It. i)then *
w(k)=0
else if(k .eq. i)then

if(wj(k,i).gt. 0)then
w(k)=(wj(k,i)+s)/den
else if(wj(k,i) .eq. 0)then
w(k)=(wj(k, i))/den
else

w(k)=(wj(k,i)-s)/den
endif

else

w(k)=wj(k,i)/den
endif ^

else

if (k.lt. i)then
w(k)=0
else if(k .eq. i)then

if(r2(k,i) .gt. 0)then
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w(k)=(r2(k,i)+s)/den
else if(r2(k,i) .eq. 0)then
w(k)=r2(k,i)/den
else

w(k)=(r2(k,i)-s)/den
endif

else

w(k)=r2(k,i)/den
endif

endif

enddo

Icalculation of house holder matrix

doj=l,nr
dok=l,nr

if(k .eq. j)then
hG,k)=1.0-2.0*wG)*w(k)
else

hG,k)=-2.0*wG)*w(k)
endif

enddo

enddo

! calculation of r matrix

do ii=l,nr
dojj=l,nc
templ(ii,jj)=0

^ enddo
enddo

doj=l,nr
do k=l,nc

do 1=1,nr
if(i .eq. l)then
templG,k)=templG,k)+hG,l)*wj(l,k)
else

templG,k)=templG,k)+hG,l)*r2(l,k)
endif

enddo

enddo

enddo

doj=l,nr
dok=l,nc
r2G,k)=templG,k)
enddo

enddo

calculation of q matrix
do ii=l,nr

dojj=l,nr
temp2(ii,jj)=0
enddo

enddo

if (i .eq. l)then
doj=l,nr

do k=l,nr
temP2G,k)=hG,k)
enddo

enddo

else
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doj=l,nr
dok=l,nr

do 1=1,nr
temp2G,k)=temp2G,k)+qG,l)*h(l,k)
enddo

enddo

enddo

endif

doj=l,nr
dok=l,nr

qG,k)=temp2G,k)
enddo

enddo

enddo

do i=l,nr

doj=l,nr

qtlG,i)=q(ij)
enddo

enddo

do ii=l,nr
dojj=l,nc

dokk=l,nr
rl(iijj)=rl(iijj)+qtl(ii,kk)*wj(kkjj)
enddo

enddo

enddo

do ii=l,nr
dojj=l,nc

dokk=l,nr
prod(iijj)=prod(iijj)+q(ii,kk)*r2(kkjj)
enddo

enddo

enddo

do ii=l,nr
dojj=l,nr

do kk=l,nr
qqt(iijj)=qqt(ii jj)+q(ii,kk)*qt1(kkjj)
enddo

enddo

enddo

return

end
i*******************************************************************************

Iprogram for Given's rotation
subroutine givrot(itotal,maxunpar,nz,nm,wjnew,qt2)

real gl(nz,nz),wjnew(nz,nm),r3(nz,nm),temp3(nz,nm),temp4(nz,nz)
real q1(nz,nz),prod1(nz,nz),qt2(nz,nz),qqt1(nz,nz)

nr=itotal+maxunpar
nc=maxunpar

nin=itotal

do ii=l,nr
dojj=l,nr
prodl(iijj)=0
qqtl(iijj)=0
enddo

enddo
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do ii=l,nr
dojj=l,nc
r3(iijj)=0
enddo

enddo

do i=l,nc
if (i .eq. l)then
den=sqrt(wjnew(i,i)*wjnew(i,i)+wjnew(i+nin,i)*wjnew(i+nin,i))
cos=wj new(i, i)/den
sin=wjnew(i+nin,i)/den
else

den=sqrt(r3(i,i)*r3(i,i)+r3(i+nin,i)*r3(i+nin,i))
cos=r3(i,i)/den
sin=r3(i+nin, i)/den
endif

doj=l,nr
do k=l,nr

ifG .eq. i)then
ifG .eq. k)then
glG,k)=cos
else if(k .eq. G+nin))then
glG,k)=sin
else

glG,k)=0
endif

else ifG .eq. (i+nin))then
if(k .eq. G-nin))then
glG,k)=-sin
else ifG .eq. k)then
glG,k)=cos
else

glG,k)=0
endif

else

ifG .eq. k)then
glG,k)=l
else

glG,k)=0
endif

endif

enddo

enddo

doj=l,nr
dok=l,nc
temp3G,k)=0
enddo

enddo

doj=l,nr
dok=l,nc

do 1=1,nr
if(i .eq. l)then
temp3G,k)=temp3G,k)+glG,0*wjnew(l,k)
else

temp3G,k)=temp3G,k)+glG,l)*r3(l,k)
endif

enddo

enddo

enddo
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doj=l,nr
dok=l,nc

r3G,k)=temp3G,k)
enddo 4

enddo

write(6,700)((r3G,k),k=l,nc)j=l,nr)
700 format (lx,3fl5.5)
write (20,*) 'R2 matrix'
doj=l,nr
write(20,*)(r2G,k),k=l,nc)
enddo

doj=l,nr
do k=l,nr
temp4G,k)=0
enddo

enddo ^
if(i .eq. l)then

doj=l,nr
dok=l,nr

temp4G,k)=glG,k)
enddo

enddo

else

endif

doj=l,nr
do k=l,nr

do 1=1,nr
temp4G,k)=temp4G,k)+qt2G,l)*gl(l,k)
enddo

enddo

enddo

doj=l,nr
dok=l,nr
qt2G,k)=temp4G,k)
enddo

enddo

write (20,*) 'QT given matrix'
doj=l,nr
write(20,*)(qt2G,k),k=l,m) -.
enddo

enddo

doii=l,nr
dojj=l,nr

qi(iijj)=qt2GJ,ii)
enddo

enddo

Iwrite (20,*) 'Q matrix'
!doj=l,nr
!write(20,*)(qG,k),k=l,nr)
Ienddo

doj=l,nr i
dok=l,nc ^

do l=l,nr
ProdlG,k)=prodlG,k)+qlG,l)*r3(l,k)
enddo

enddo

enddo
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Iwrite (20,*) 'product matrix'
!doj=l,nr
!write(20,*)(prodG,k),k=l ,nc)
Ienddo

doj=l,nr
dok=l,nr

do 1=1,nr
qqtlG,k)=qqtlG,k)+qlG,l)*qt2(l,k)
enddo

enddo

enddo

Iwrite (20,*) 'qqt matrix'
!doj=l,nr
Iwrite(20, *)(qqtG,k),k=1,nr)
Ienddo

return

end
i**********************************************************************

subroutine gauss(nz,nm,maxunpar,wjfin,errfin,delp)
real wjfin(nz,nm),errfin(nz),delp(nm)
do i=maxunpar,l,-l

if (i.eq. maxunpar)then
delp(i)=-errfin(i)/wjfin(i,i)
else

sum=-errfin(i)
do j=maxunpar,i+1,-1
sum=sum-wjfin(i,j)*delpG)
enddo

delp(i)=sum/wjfin(i,i)
endif

enddo

return

end

i******************************THOMAS ALGORITHM*******************************

subroutine tdma(ae,be,ce,re,variable,nz)
real ae(nz),be(nz),ce(nz),re(nz),variable(nz)

real alpha 1(nz),bita(nz),y(nz),cte(nz)
alphal(l)=be(l)
doj=l,nz-l
bitaG)=ceG)/alphalG)
alpha 1G+1)=beG+1)-(aeG+1)*bitaG))
enddo

y(l)=re(l)/alphal(l)

do j=2,(nz)
yG)=((reG)-aeG)*yG-l))/alphalG))
enddo

cte(nz)=y(nz)
doj=(nz-l),l,-l
cteG)=yG)-(bitaG)*cteG+l))
enddo

doj=l,(nz)
variableG)=cteG)
enddo

return

end
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