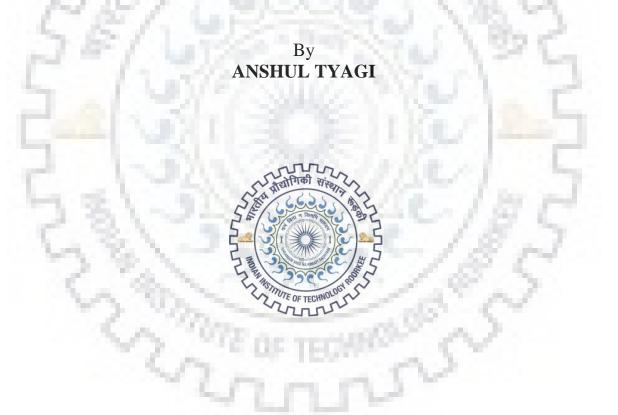
Use of Rice Husk Ash as an Adsorbent for the Removal of Zinc from Standard Solution


A DISSERTATION

Submitted in partial fulfilment of the Requirements for the award of the degree

of MASTER OF TECHNOLOGY

in

ENVIRONMENTAL MANAGEMENT OF RIVER AND LAKES

DEPARTMENT OF HYDRO AND RENEWABLE ENERGY INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE – 247667 (INDIA) JUNE, 2019

CANDIDATE DECLARATION

I hereby certify that the work which is being presented in progress report, entitled "Analysis of Rice Husk Ash as an Adsorbent to remove Zinc from its Synthetic Solution" in partial fulfilment of the requirement for the award of the degree of Masters Of Technology with specialization in "Environment Management of River and Lakes", submitted in DEPARTMENT OF HYDRO AND RENEWABLE ENERGY, Indian Institute of Technology Roorkee is an authentic record of my own work carried out during the period from May 2018 to May 2019 under the supervision of Prof. S.K. Singal and Prof. M.P. Sharma, Department of Hydro And Renewable Energy, Indian Institute of Technology Roorkee India.

I have not submitted the matter embodied in this seminar report for award of any other degree.

Dated:

Place: ROORKEE-247667 (ANSHUL TYAGI)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

Prof. S.K. Singal Department of Hydro and Renewable Energy Indian Institute of Technology Roorkee - 247667

Prof. M.P. Sharma

Department of Hydro and Renewable Energy Indian Institute of Technology Roorkee - 247667

ABSTRACT

In the present study Rice Husk Ash has been used as a fixed bed in Column Adsorption Test to study the removal of Zinc metal from its Standard Solution. Various parameters such as pH, Initial Metal Ion Concentration were studied to find the optimum conditions for maximum efficiency. Temporal analysis was carried out to obtain the breakthrough curve which shows the time at which the bed has been fully utilized and cannot be further utilized. Experimental data obtained from the column study were fitted in two well established column models, Yoon-Nelson Model and Thomas Model to calculate the breakthrough time and adsorption capacity of the adsorbate respectively. Morphological Characteristics of Rice Husk Ash was also studied using the Image obtained from Scanning Electron Microscope and its analysis using ImageJ software. From the study it is concluded that RHA is highly porous and have high specific surface area, and from the results obtained from the tests it was concluded that Rice Husk Ash has high efficiency for the removal of zinc.

KEYWORDS: Rice Husk Ash, Adsorption, Fixed Bed Column, Zinc, Scanning Electron Microscope

ACKNOWLEDGEMENT

I would like to express my deep sense of gratitude and indebtedness to my supervisor **Dr. S.K. Singal and Dr. M.P. Sharma, Professor, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee** for guiding me to undertake this progress report work as well as providing me all the necessary guidance and support throughout this work. He has displayed unique tolerance and understanding at every step of progress, without which this work would not have been in the present shape.

I would also thankful to all staff of **Department of Hydro and Renewable Energy** for their constant support at and all my friends, for their help and encouragement at the hour of need.

TABLE OF CONTENT

Candidate Declaration	1
Abstract	2
Acknowledgement	3
List of Figures	6
List of Tables	7
CHAPTER 1 IN	FRODUCTION
1.1 General Introduction	1
1.2 Rice Husk Ash	2
1.3 Removal of Heavy Metals	3
1.4 Adsorption	4
1.5 Types of ColumnAdsorption methods	5
1.6 Breakthrough Curve	7
1.7 Literature Review	10
1.7.1 Major Findings	14
1.7.2 Gaps Identified from the Literature	15
1.7.3 Objectives	15
1.7.4 Methodology	15

CHAPTER 2 SAMPLE COLLECTION AND METHODOLOGY

2.1 General	17
2.1.1 Material	17
2.1.2 Standard Solution	18
2.2 Methodology	19
2.2.1 Morphological Analysis of RHA	19
2.2.2 Experimental Procedure	22
2.3 Effect of Parameters on Adsorption	23
2.3.1 Effect of pH	23
2.3.2 Effect of initial metal ion concentration	23

2.3.3 Time Varying Analysis of Adsorption	24
2.4 Data Analysis	24
2.4.1 Yoon Nelson Model	24
2.4.2 Thomas Model	25

.

CHAPTER 3

RESULTS AND DISSCUSION

4.1 Effect of pH	26
4.2 Effect of Initial Metal Ion Concentration	27
4.3 Time Varying Analysis of Adsorption on Fixed bed	28
4.4 Yoon-Nelson Model	29
4.5 Thomas Model	30
CHAPTER 4	CONCLUSION
5.1Conclusion	31
CHAPTER 5	REFERENCES

LIST OF FIGURES

Fig No.	Description		
		No.	
1.	Relation between Breakthrough curve and Fixed bed Adsorption	8	
2	Breakthrough Curve, showing relation between ratio of effluent	9	
2.	concentration to IMC with Volume of fixed bed column		
3.	Location of Ganga Dairy from Google Maps	17	
4.	RHA being burnt in updraught kiln	18	
5.	Scanning Electron Microscope	20	
6.	Sample Preparation for analysing the Morphological Characteristics	20	
0.	of RHA	0	
7.	SEM Images of RHA	20	
8.	calculation of pore size and particle size using ImageJ software	22	
9.	Preparation of Zinc Sample of standard value of 1000 ppm	23	
10.	Fixed bed Column	23	
11.	Schematics of the Experimental Setup for Fixed Bed Column Test	23	
11.	Operation	1	
12.	Effect of pH on Percentage Removal of Zinc	28	
13.	Effect of Initial Metal Ion Concentration on Percentage Removal of	29	
15.	Zinc	2	
14.	Breakthrough Curve for Zinc	29	
15.	Yoon Nelson Model	32	
16.	Thomas Model	34	

LIST OF TABLES

Table No.	Description	Page No.
1	Comparative study of all methods of their features is done	5
	here	
2	Literature Review	10
3	Effect of pH on Adsorption	27
4 5	Effect of IMC on % Removal	28
5	Calculation for Yoon Nelson Model	31
6	Calculation for Thomas Model	33
5-		
ť.	A MARCE MARCH	
5		15
	200 - 20 - 2 de	5
	2 more and and and	× .
	A COLOR INCOME	

1.1 GENERAL INTRODUCTION

Industrial activities such as mining, electroplating, tanning, metallurgical operation and manufacturing have led to the release of heavy metals into the environment. Unlike the organic pollutants which are bio-degradable, heavy metallike Cadmiumand Zinc are not biodegradable. These heavy metals have hazardous effects on theenvironment and humanhealt h. A little exposure to these heavy metals even at low concentrations can cause many serious diseases. They start to bio-accumulate in the human body. Therefore, both human health and agriculture are at risk. Hence, the removal of heavy metals from water is to be considered. So for removal of heavy metals adsorption is used. Adsorption is a very efficient process if carried out in a proper way. It is the process by which molecules of gas or a liquid binds on the surface of a substance, such as a another substance such as a solid is called adsorption. Solids that adsorb a component are called the adsorbents and the component adsorbed is called the adsorbate. This process arises due to presence of unbalanced or residual forces at the surface of liquid or solid phase. These forces have tendency to attract and retain the molecular species with which it comes in contact with the surface. This is essentially a surface phenomenon. [12]

Removal of heavy metals is of utmost importance. "Heavy metals" refers to any metallic element that has a relatively high density and is toxic or poisonous even at low concentration. Their atomic density is said to be greater than 4 g/cm³, or 5 times greater than water. However, chemical properties are of more concern than density. Most heavy metals are toxic and carcinogenic in nature and represent a serious threat to the human population and the fauna and flora of the receiving water bodies. Hence, the removal of heavy metals from water is to be considered. Some methods have been developed to remove heavy metals from waste water before discharge into the water bodies. These methods include reduction, precipitation, ion exchange reverse osmosis, dialysis and adsorption by coated carbon. But these are not economically suitable for developing countries. Adsorption is the most widely used methods among existing techniques. This has therefore led to the use of agricultural wastes in removal of heavy metals. Agricultural wastes are characterized by ready availability, affordability, Eco friendliness and high uptake capacity for heavy metals due to the presence of functional groups which can bind metals to effect the removal of

heavy metal from effluents. Peanut hull (an agricultural waste) was found to be 36 times more efficient compared to granular activated carbon which is the widely used adsorbent.[12][13]

Other agricultural wastes which have been investigated for their metal adsorption property include sugar cane bagasse, soybeans hulls, cotton seed hull, rice bran, rice husk and straw as efficient heavy metal adsorbents.Need for safe and economical methods for the removalof heavy metals from contaminated waters has necessitated the use of Rice Husk. Rice husk because of its reasonable cost & greater availability can be used as an adsorbent in countries like India.

1.2 RICE HUSK ASH

Rice husks (or rice hulls) are the hard protecting coverings of grains of rice. It is an agricultural waste material generated in rice producing countries, especially in Egypt. They are the coatings of seeds, or grains, of rice. The seed is protected by husk during the growing season, since it is formed from hard materials, including silica and lignin. The husk is mostly indigestible to humans. The rice husk is separated from rice by the process of winnowing. It is one of the simplest processes which involve throwing of the mixture into the air so that the wind blows away the lighter husk, while the heavier rice fall back down for approximately 600 million tons of rice is produced recovery. Globally, each year. On average 10-20% of the rice paddy is husk, giving an annual total production of 120 being one of the biggest rice million tons. India producers in the world, not surprisingly, also produces vast amounts of rice husk. Bihar alone is estimated to produce 1.8 billion kilograms of rice husk every year.

In majority of rice producing countries much of the husk produced from processing of rice is either burnt or dumped as waste. Burning of Rice husk (RH) in ambient atmosphere leaves a residue, called rice husk ash. [14]

For every 1000 kgs of paddy milled, about 220 kgs (22 %) of husk is produced, and when this husk is burnt in the boilers, about 55 kgs (25 %) of RHA is generated. Some of the major problems caused by rice husk is its disposal due to less commercial interest and handling and transportation of RH due to its low density. This causes a great damage to land and surrounding area where it is dumped. Hence, commercial use of rice husk and its ash is the alternative solution to disposal problem.

Suitability of RH to be used for different applications depends upon the physical and chemical properties of the husk such as ash content, silica content etc. Apart from its use as

fuel, RH finds its use as source raw material for synthesis and development of new phases and compounds. Applications of rice husk in industrial sectors as well as other fields include.

- As a Fuel in Power Plant
- Production of Portland cement
- Fireworks
- Formation of Activated Carbon
- As a source of Silica and Silicon Compounds Porous SiO2/C composite from RH
- Insulating fire brick using RH
- Other uses RH is used as a raw material for production of xylitol, furfural, ethanol, acetic acid, lingo sulphonic acids

In recent years, attention has been focused on the utilization of unmodified or modified rice husk as a low cost (agricultural by-product) bio-adsorbent for the removal of various heavy metals (such as Pb, Cd, Zn, Ni) and metalloids (As) from both groundwater and surface water. The present study is focused on review of previous and current available information on potential rice husk for the removal of heavy metals and metalloids. Various studies on adsorption of rice husk taking into account the parameters: contact time, adsorbent dose (rice husk), and Initial concentration of heavy metals, pH, and temperature.[15]

1.3 REMOVAL OF HEAVY METALS

The adsorption process of heavy metals from waste water is influenced by various physical and chemical parameters like pH, temperature, initial heavy metal concentration, amount of adsorbent, particle size of adsorbents etc. These parameters determine the overall adsorption through affecting the selectivity and amount of heavy metals removed.

Heavy metals have a huge tendency to bio-accumulate and end up as permanent additions to the environment. Heavy metals include mercury (Hg), lead (Pb), cadmium (Cd), zinc (Zn), arsenic (As), silver (Ag) chromium (Cr), copper (Cu) iron (Fe), and group elements of platinum. Heavy metals like Cu, Zn, Ni, and Ar are known to have toxic effects at very low concentrations as well as very high concentration.

The binding to the surface is usually weak. The fluid that dissolves or suspends the material of interest is bound but compounds with color and those that have taste odor tend to bind strongly. Compounds that contain chromogenic groups (atomic arrangements that vibrate at frequencies in the visible spectrum) very often are strongly adsorbed on activated carbon.

Decolorization is very efficient by adsorption and with negligible loss of other materials. Most commonly used industrial adsorbents are activated carbon, silica gel, and alumina because they present enormous surface areas per unit weight. Adsorption phenomenon provides an excellent method of separation particularly at low concentrations and hence it is recognized as an important mass transfer operation.

Among all the heavy metals above mentioned, our focus will be on Zinc, therefore a brief introduction is preferable. Zinc is a lustrous bluish-white metal. It is found in group IIB of the periodic table. It is brittle and crystalline at ordinary temperatures, but it becomes ductile and malleable when heated between 110°C and 150°C. It is a fairly reactive metal that will combine with oxygen and other non-metals, and will react with dilute acids to release hydrogen. Its uses are quite variable from galvanization of steel to the manufacture of the negative plate in electrical batteries, passing through the preparation of some alloys. As a pigment, zinc is used in plastics, cosmetics, photocopier paper, wallpaper, printing inks etc, whereas in rubber production its role is to act as a catalyst during manufacture and as a heat disperser in the final product. Zinc metal is included in most single tablet, it is believed to possess anti-oxidant properties, which protect against premature aging of the skin and muscles of the body. Zinc is the 23rd most abundant element in the Earth's crust and its concentrations are rising unnaturally, due to addition of zinc through human activities. Most zinc is added during industrial activities, such as mining, coal and waste combustion and steel processing. When it less quantity is present in in human's body, it affects considerably human's health. Although humans can handle large extent of zinc, too much of it can still health problems. Zinc is widely used in cause eminent industries such as galvanization, paint, batteries, smelting, fertilizers and pesticides, fossil polymer stabilizers, etc, and the wastewater from these fuel combustion, pigment, industrie is polluted with zinc, due to its presence in large quantities. This wastewater is not consequences is that rivers purified satisfactory. One of the are depositing zincpolluted sludge on their banks. [16]

1.4 Adsorption

Adsorptionis the process of adhesion of any substance on the surface of another substance. The Substance which gets adsorbed is called adsorbate and the substance on which the adsorbate gets adsorbed is called adsorbent. When a solid surface is exposed to a gas or a liquid, molecules from the gas or the liquid phase starts accumulating at the surface of the solid. This phenomenon of accumulation of molecules of a gas or liquid at a solid surface is called adsorption.

Forces of attraction exist between adsorbate and adsorbent. These forces of attraction can be due to Vander Waal forces of attraction which are weak forces or due to chemical bond which are strong forces of attraction. On the basis of type of forces of attraction existing between adsorbate and adsorbent, adsorption can be classified into two types: Physical Adsorption or Chemical Adsorption.

1.5 Types of ColumnAdsorption methods

In Column Adsorption methods, the Adsorbate is in continuous supply and always remains in contact with the Adsorbent; therefore the concentration of the Adsorbate that comes in contact with Adsorbent always remains constant.[22] There are various methods to bring the adsorbate and adsorbent in contact with each other such as:

- Batch Adsorption method
- Continuous moving bed method
- Continuous fixed bed method
- Continuous fluidize bed method
- Pulsed bed method

Parameters	Batch	Continuous	Continuous	Continuous	Pulsed bed
	Adsorption	fixed bed	moving bed	fluidize bed	
Contact	In batch	In continuous	In this	Adsorbate is	In the
Mechanism	Adsorption	fixed bed	method	in contact	method the
	adsorbate	adsorbate is	Adsorbent	with fluidized	adsorbate is
	and	allowed to	and	adsorbent	brought in
	adsorbent	continuously	Adsorbate	beds with	the contact
	are brought	pass down	are in	adequate or inadequate	with same
	in intimate	through the	continuous	flow in this	adsorbent
	contact by	adsorbent.	motion	method.	until

Table: 1 Comparative study of all methods of their features is done here

	directly		where the		satisfactory
	mixing the		bed length		removal is
	known		remains		achieved.
	weight of		constant but		
	both.		continuous		
			removal and		
		1200	regeneration		
		00	of bed is		
	100	A Second	done	100	
Advantages	It is an easy	It is also an	Complicated	Complicated	Very easy
	and cheap	easy and	and very	and very	and cheap
	method	cheap	costly	costly	technique
12	88 F .	method	method.	method.	Sec. 1
1.6.1	Generally	1996		1.00	Easy as it is
	used by	It is widely	As	It is also	controlled
	researchers	usedin the	adsorbent is	useful for the	automatically
	for analysis	industrial	substituted	industries	0.4
L. Carter	of	world as it	continually	having	It is
	Adsorption	can handle	and new	greater load	beneficial as
	behaviour	higher waste	adsorbent is	and pollution	it requires
23	as it is to	water load	constantly in	level.	lesser
14	understand	having	intimate	-18	quantity of
100	the different	higher degree	contact of	Also,	adsorbent.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	parameters	of pollution,	the	applicable to	Also as soon
	affecting	it is so	adsorbent.	industrial	as the bed is
	Adsorption.	achieved as	Frank,	sectors as it	utilised it is
		the adsorbate	5 m.	enables fast	reenergised.
		is in	the state of the s	mixing of	
		continuous		sorbate and	
		supply and		sorbent and	
		fresh waste		also	
		water		adsorbate	
		remains in		flows	

		contact with		continuously	
		the		with	
		adsorbent.		controlled	
				operation	
				and easy	
				handing	
Disadvantage	This	The	There is	Adsorbent	This method
	method is	difficulties	wastage of	flow is not	is also not
	not used	arise in this	adsorbent in	evaluated	useful at
	industrially	method are	this method	with	industrial
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	as it can	adsorbate	therefore it	significant	level as it is
- C	handle mere	does not pass	require	deviation	used for low
14	quantity of	through the	higher	from plug	pollution and
5.6	waste water	bed	quantity of	flow and	waste water
100	having low	uniformly,	adsorbent as	bubbling or	load.
1	degree of	feed	compared to	feed	1
100	pollution,	channelling	others for	channeling,	0.4
	So it is not	etc	completeads	resulting in	
1	generally	1.1.27	orption	inadequate	1 mg
1000	used in	Interaction		adsorbent	the pull
83	industries.	between the	It is vital to	contact.	2.5
24	No. N. 1	adsorbate	continuously	-13	100
- C.	1.42	and	regenerate	1.90	<u> </u>
~	D 92	adsorbent is	adsorbent	15 1	<u> </u>
	5	pressurised	and to have	20	
	1.5	in this	an adsorbent	0	
		method to	storage.	3	
		reduce space			
		and time. So			
		it is difficult			
		to design and			
		optimize the			
		fixed bed.			

## **1.6 LITERATURE REVIEW**

Heavy metals such as chromium, cadmium, zinc, lead, mercury and copper in waste water are hazardous to the environment. The term "heavy metal" does not have a rigorous scientific basis or chemical definition. In observation, this group should preferably have been referred to as "toxic elements".

In view of toxicities associated with these heavy metal ions, their removal from industrial effluents has become one of the thrust areas in modern research. Table 2 shows various literature which have been studied, discussed underneath, their findings have been concluded and gaps have been identified.

S.No	AUTHOR	TOPIC	WORK DONE	GAPS IDENTIFIED
1	Srivastava,	Competitive	His study deals with the	All parameters needs
1.64	2008	adsorption of	competitive adsorption of	to be studied
		nickel and	cadmium and nickel ions	10.4
	Contraction of the local division of the loc	cadmium metal	from aqueous solution onto	and the second se
1.00	- L-	ions from	rice husk ash.	al has
1.1	1.20	aqueous solution		I St pol
	1.2.1	on Rice Husk	10.00	12 5
	N 80	Ash		3 14
2	Foo, 2009	Utilization of	Study about the state of the	Study can be done by
	5	Rice Husk Ash	art review of the rice milling	varying pH conditions
	50	as novel	industry, its background	
		adsorbent	studies, fundamental	
		- 57	properties and industrial	
			applications	
3	Pramada,	Rice Husk as an	The possible utilization of	Study on heavy metals
	2010 adsorbent for		Rice Husk Ash as an	needs to be done
		methylene blue	adsorbent for methylene	
		effect of ashing	blue dye from aqueous	
		temperature	solutions has been	

			investigated	
4	Muneer,	Removal of Zn,	Biosorption technique has	Comparitive study of
	2010	Pb and Cr in	been employed for the	RHA can be done
		textile waste	treatment of textile	with Activated carbon
		water using Rice	processing industrial waste	
		Husk as	water using rice husk as	
		adsorbent	biosorbent for the metal	
			binding.	
5	Nhapi, 2011	Removal of	Adsorbent like Carbonized	1. Research needs to
	1	heavy metals	Rice Husk and Activated	be carried out on the
		from industrial	Rice Husk are investigated	competitive effects of
	10.00	waste water	as viable materials for	these dissolved metals
	N. 19	using rice husk	treatment of Pb, Cd, Cu and	with each other on the
	N. 5.		Zn containing industrial	adsorption
1.0	2.00%	- <b>W</b> 1796	wastewater at controlled pH	2. Applicability of
- L.	1	10000		these adsorbents to
	100			remove these heavy
		- A - C -		metals at different pH
10		- <b>32</b> A S S	91TE SI 160	needs further research
6	Trgo et.al,	Application of	The study examined the	1.39 10
	2011	mathematical	applicability of the	18 5
	14 Y S	empirical	mathematical empirical	S 14
	6.23	models to	models by Adam-Bohart,	8
	1	dynamic	Wolborska, Thomas and	- C*
		removal of lead	Yoon-Nelson on lead	V
		on natural	removal from aqueous	
		zeolite	solution on a fixed bed of	
		clinoptilolite in	natural zeolite.Applicability	
		a fixed bed	these models has been	
		column	evaluated by fitting the	
			experimental breakthrough	
			curves with the curves	
			obtained from the applied	

			model	
7	Gupta, 2012	Rice Husk and	Studies on the adsorptionof	1. Study should be
		its ash as low	various pollutants by rice	carrying out on pilot
		cost adsorbent in	husk materials are reviewed	plant to verify their
		water and waste	and the adsorption	viability at an
	water treatment		mechanis, influencing	industrial scale.
		1.246	factors, favorable condition,	2. Real waste water
			etc. are discussed	should be used instead
		0.3	CP 6m	of synthetic solutions
	~	11000	and the c	3. The interaction of
	1.	1997 - M	100	different adsorbates in
	14.16	0/1	6355	solution will play
1.1	rd 19	12.1	20.9 I N	important role on
	5.50			adsorption of other
10	1 1 1	. 19360		heavy metals.
8	Munaf,	The use of Rice	The ability of rice husk to	The high selectivity
-	2012	Husk to remove	remove chromium, zinc,	for the interested
		toxic metals	copper and cadmium from	adsorbates is most
10	1. 1.	from waste	waste water has been	important for the
	1.27	water	investigated. And several	removal of interested
	r. 9.7		parameters that can affect	adsorbates from large
	N 76	N	metals uptake such as	volume of solution.
			particle size, pH, and	e
	~	m	temperature are discussed.	- C*
9	Kumar et.al,	Utilization of	Various industrial and	Can be used as a
	2013	Rice Husk and	domestic application of Rice	source of bio ethanol
		their Ash	Husk and Rice Husk Ash	production
			are discussed	
10	Hegazi,	Removal of	This research studies the	Rice Husk ability to
	2013	heavy metals	utilization of less expensive	effectively remove
		from waste	adsorbents for the	these dyes,
		water using	elimination of heavy metals	surfactants, phenols
		agricultural	from waste water	present in industrial

		waste as		effluent should also be
		adsorbent		done
11	Chauhan,	Rice Husk Ash	This review summarizes	The adsorption is
	2015	as a potential for	some latest development	influenced by various
		removing of	using rice husk and its	parameters like pH,
		metal ions- A	derivatives for removal of	temp., initial metal ion
		review	heavy metals	concentration, amount
			105.	of adsorbate, size of
		N. 5	a the	particle, these
		Witnes S	APPI WARK C	parameters determine
	1.00	1. 1997	110	the overall efficiency
12	Biswas	Continuous	The efficiency of chemically	For industrial
	et.al, 2015	Fixed-Bed	carbonized rubber wood	prospective, series of
	N. 6.	Column Study	sawdust for the removal of	column should be
1.00	2.00.1	and Adsorption	lead ion from the aqueous	attached for better
1.5	1	Modeling:	stream as investigated by	adsorption results.
1.00		Removal of	column process.	Other factors such as
		Lead Ion from		column containing
1.00		Aqueous	29TX - 24 Au	multiple adsorbents,
	1.20	Solution by	and the second	numerous adsorbate
	4. 2. 3	Charcoal		system and also their
	14 X 26	Originated from		appropriate ratio are
	6.3	Chemical		to be considered.
		Carbonization of		C1
		Rubber Wood	ic rensel?	<u></u>
		Sawdust		
			nn	
13	Rouf et.al,	Modeling of	Removal of diazo dye	
	2015	Fixed Bed	Brilliant Black BN from	
		Column Studies	aqueous solution was	
		for Adsorption	studied by conducting	
		of Azo Dye on	adsorption in fixed bed	
		Chitosan	column using chitosan	

		Impregnated	beads impregnated with a	
		with a Cationic	cationic surfactant Cetyl	
		Surfactant	Trimethyl Ammonium	
		Surractant	Bromide.Effect of flow	
			rate, bed height and initial	
			dye concentration were	
			investigated.	
1.4	Dobooti	Utilization of		Study people to be
14	Rohacti,	and the last	Comparison of Rice Husk	
	2016	Rice Husk as	and Rice Husk Ash in	
	- 0	lead adsorbent	reducing the concentration	metals
	100	in blood cockles		5.4
15	Diasa et. al,		Blends of rice waste streams	It is an expensive
	2018	synthetic and	Contraction in the second second	procedure.
	581	industrial	gasification assays. The	1800
	4 m (	wastewaters by	resulting chars were	1-14
1.00	1.1	using co-	characterized and used in	1
1	100	gasification	chromium removal assays	19-4
		chars of rice	from synthetic solution	
1.00	1.1	waste streams		( hay
16	Patel, 2019	Fixed-bed	Review of fixed bed column	1. Real industrial
	e 19,1	column	studies for removal of	waste water from
	64, Ye	adsorption	various contaminants from	industries like textile,
	16.74	study: A	synthetic wastewater study	dyeing, electroplating,
	5	comprehensive	of breakthrough curve for	tanning, paper, etc
	- 50	review	designing adsorptive	effluent must be consi
		000	column is interpreted	dered for the
		- 27	n nur	removal of
			and have been	components
				contributing the COD,
				BOD, Color and other
				parameters
				2.Regeneration studie

		s and desorption step
		modeling must be
		conducted.

# **1.6.1 MAJOR FINDINGS**

From the study it has been found that Rice Husk Ash is a low cost adsorbent having specific surface area of 30-80 m²/gm, it has also strong affinity and high selectivity towards heavy metals. So it can be used as an adsorbent for the removal of heavy metals from waste water. Many parameters affect the adsorption of heavy metals such as pH, temperature, initial metal ion concentration, adsorbent doze etc which should be properly taken care of during the study.

# **1.6.2 GAPS IDENTIFIED FROM THE LITERATURE**

- Study can be done by varying pH conditions.
- RHA can be used as a source of bioethanol production.
- Study should be carry out on pilot plant to verify their viability at an industrial scale.
- Real wastewater should be used instead of synthetic solution.
- The interaction of different adsorbates in solution will play important role on adsorption of other heavy metals.
- The adsorption is influenced by various parameters like pH, temp, initial metal ion conc, amount of adsorbate, size of particle, these parameters determine the overall efficiency.
- The high selectivity for the interested adsorbate is most important for the removal of interested adsorbate from large volume of solution.
- Research needs to be carried out on the competitive effects of these dissolved heavy metals with each other on the adsorption.
- Rice Husk ability to effectively remove dyes, surfactants, and phenols, present in industrial effluent should also be done.
- Comparative study of RHA can be one with activated carbon.

# **1.6.3 OBJECTIVES**

- To collect the RHA sample.
- To find the Morphological Properties of RHA.

- To study the effect of adsorption of Zinc solution of different concentration RHA under the different conditions of pH, metal ion concentration and time.
- Model development for Fixed Bed Column Adsorption.
- To interpret the result.

# **1.6.4 METHODOLOGY**

Methodology adopted will be Fixed Bed Adsorption.

The steps involved are-

- Collection of RHA samples.
- Morphological study of RHA using SEM.
- Preparation of Solution of Zinc metal.
- Study the adsorption on RHA using different metal conc.
- Preparation of models for Adsorption capacity and 50% breakthrough time.
- Analysis of the Results

# 1.7 Breakthrough Curve

The relation between fixed-bed adsorption and breakthrough curves can be explained by using mass transfer zone or primaryadsorption zone. As per Fig 1, feed water or waste water is supplied through the inlet of the column, Adsorption starts at the upper layers where the adsorbate gets adsorbed on the adsorbent rapidly and effectively during the initial stage of the operation. This can be explained due to the fact that at initial stages all the active sites of adsorption are available for adsorption and adsorption takes place very rapidly at these sites and no adsorbate is passed downed the lower layers and no adsorbate is observed in the effluent in the first stage. So, primary adsorption zone or MTZ is attained near the top or influent end of the column. At this point, concentration of adsorbate (C) is zero in the effluent therefore the ratio of effluent and initial concentration (C/C0) is zero. Thereafter, due to the continuous supply of adsorbate the active sites at the upper layer of adsorbent gradually starts to saturate, with feeding the water into the column, which makes the adsorbent less efficient progressively. Thus, the primary sorption zone also travels down to the fresher or unadsorbed part of adsorbent in the column. Further, as the mass transfer zone moves down the column effluent concentration of adsorbate increases gradually as per points C1/C0, C2/C0, C3/C0 and C4/C0. The movement of this zone is mainly increasing with increasing initial concentration compared to linear velocity of the feed water. After some time (*C*s), all the sites of the adsorbent have been completely utilized and after that adsorption does not occur. At this point, the ratio of C/C0 is 1. In most of the cases of the sorption by column method operation of water and wastewater, breakthrough curves exhibit a characteristic 'S' shape but with varying degree of steepness.[21][22]

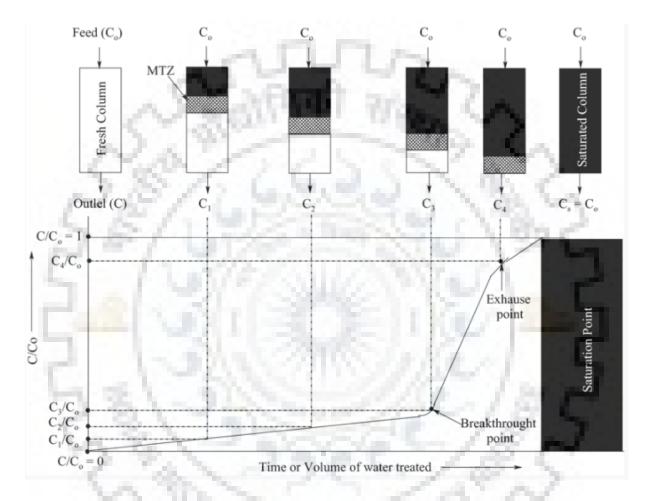



Fig: 1 Shows the relation between Breakthrough curve and Fixed bed Adsorption

Fig 2 shows the breakthrough curve that incorporates a typical S form, breakthrough point is chosen from the breakthrough curve in such a way that at break point concentration the ratio of effluent concentration to influent concentration starts increasing rapidly which generallycommence at lower value of break point concentration (*C*b) and exhaustion point concentration (*C*x) is identified when the same ratio approaches unity. *V*x is the volume of effluent at the exhaustion point and *V*b is the volume of effluent at break point concentration. The primary sorption zone (PSZ) is the portion where active adsorption takes place at a particular time it travels downwards with time. If PSZ is assumed to have a constant length many parameters can be found easily like amount of bed adsorbed, rate of adsorption, these are important parameters which guides a designer to design a Fixed Bed Column.[21][22][23]

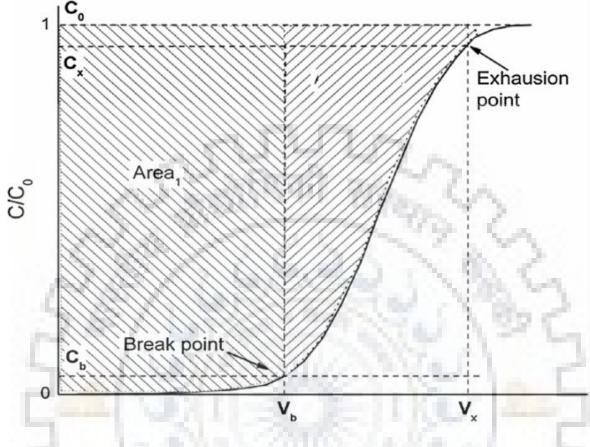



Fig: 2 Breakthrough Curve, showing relation between ratios of effluent concentration to IMC with Volume of fixed bed column

#### **2.1 GENERAL**

In the present study, the sample of RHA collected was generated as waste in Ganga Dairy which is situated in Ramzanpur District of Bihar Fig 3, where Rice Husk is used as a fuel to convert milk into milk powder, RH is burnt here at around 400^oC for about 3 to 4 hours. RHA thus produced was disposed of in nearby open farmlands where it is leached out into the ground water creating ground water pollution which can be seen in Fig 3 where the farmlands on left side of the Dairy have turned blackish and the soil has lost its fertility.



Fig: 3 Location of Ganga Dairy from Google Maps

# **2.1.1 MATERIAL**

The adsorbent material used in the present study is rice husk ash, as it is readily accessible in India and has excellent surface features and contains a large amount of carbon, silica and hydrogen ions, making it an excellent heavy metal adsorbent.



Fig: 3 Shows RH being burnt in updraught kiln

## 2.1.2 Standard Solution

weighted concentration of standard solution contains a In chemistry, a any substance. to create a particular quantity, a known solvent weight is dissolved. Standard solutions are used to determine the concentrations of other substances, such as solutions in titrations. The concentrations of standard solutions are normally expressed in units of moles per liter (mol/L, often abbreviated to M for molarity), moles per cubic decimetre (mol/dm3), and kilomoles per cubic metre (kmol/m3) or in terms related to those used in particular titration. A simple standard is obtained by the dilution of a single element or a substance in a soluble solvent with which it reacts.

В

Standard solutions are also commonly used to determine the concentration of an analyte species. By comparing the absorbance of the sample solution at a specific wavelength to a series of standard solutions at differing known concentrations of the analyte species, the concentration of the sample solution can be found via Beer's Law. Any form of spectroscopy can be used in this way so long as the analyte species has substantial absorbance in the spectra. The standard solution is a reference guide to discover the molarity of unknown species. Titration methods can be used to acquire the concentration of a standard solution. These involve using equipment such as a burette.

Standard solutions of zinc of varying concentration are prepared from the stock solution of Zinc of 1000ppm, Stock solution are concentrated solution of the solute by the use of which standard solution of lower concentration are prepared by diluting a part of stock solution. Benefits of stock solution are it saves preparation time, conserve materials, reduce storage space, and improve theaccuracy with which working lower concentration solutions are prepared. For preparation of the Stock solution of zinc of 1000 ppm, measure 1g of zinc accurately by weighing and dissolve it in 1 liter of 2% nitric acid. To make 2% nitric acid, add 20 ml of nitric acid and add distilled water in volumetric flask to make the volume up to 1 liter. From the stock solution different metal ion concentration of 20 ppm, 10 ppm, 5 ppm wasprepared.

### 2.2 METHODOLOGY

## 2.2.1 MORPHOLOGICAL ANALYSIS OF RICE HUSK ASH

Morphological analysis of RHA was performed by analyzing the Scanning Electron Microscope Image, The sample of RHA analyzed was directly obtained from the waste site for its Morphological Characteristics, which was burned at 400 ^oC in kiln for 4 hours.

Fig 4 shows Scanning electron microscope which works on the principle that when electron beam is generated at top and passed through the column, accelerated down the column and passed through a combination of lens and apertures to produce a focused beam of electrons which strikes the surface of the sample which is covered with a gold film as shown in the fig 5 to produce the image of the surface and magnify it using electromagnetic fields.



Fig: 4ScanningElectronFig: 5SamplePreparationfor analysing theMicroscopeMorphological Characteristics of RHA



Fig: 6 SEM Images of RHA, Fig A shows Image at 400X magnification, Fig B shows at 1000X

From the SEM images generated it can be infered that RHA is highly porous and irregular in shape and size, which indicates it has high specific surface area.



#### 🛓 ImageJ

 File
 Edit
 Image
 Process
 Analyze
 Plugins
 Window
 Help

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

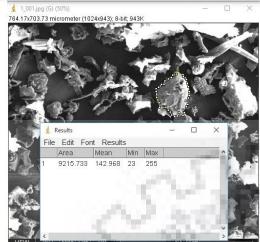

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 </tr




 Imagel
 ×

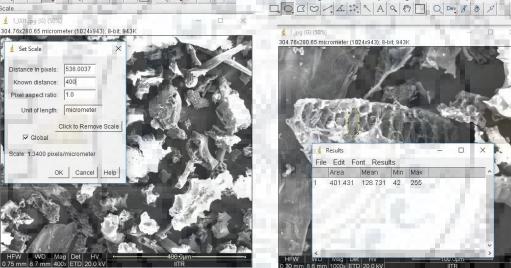
 File Edit Image Process Analyze Plugins Window Help
 ×

 □
 ○
 △
 ×
 ▲

 ♥
 □
 ○
 ▶
 >

С




File Edit Image Process Analyze Plugins Window Help

🛓 Imagel

 File
 Edit
 Image
 Process
 Analyze
 Plugins
 Window
 Help

 Image
 <

m 400x ETD 20



E

 
 File Edit Image Process Analyze Plugins Window Help

 Image Process Analyze Plugins Window Help

 Image Process Analyze Plugins Window Help

 Image Process Analyze Plugins Window Help
 File Edit Image Process Analyze Plugins Window Help G  $\Box, \bigcirc, \square \oslash / \checkmark, \measuredangle \ddagger \checkmark, \land \land \land \And \circlearrowright \Box \bigcirc \mathsf{Dev}, \mathscr{B} \land \mathscr{P} ) \longrightarrow$ Nand (tracing) tool x=458, y=204, value=80 4 1.jpg (5) 1024x943 pixels; 8-bit; 943k ometer (1024x943); 8-bit: 943 64 d Set Scale Distance in pixels: 336 Known distance: 100 Pixel aspect ratio: 1.0 Unit of length: micrometer Click to Remove Scale & Results Global File Edit Font Results 
 Area
 Mean
 Min
 Max

 260.771
 90.584
 37
 189
 Scale: 3.36 pixels/micromete Area OK Cancel Help HFW WD Mag Det HV WD | Mag [ E

Fig: 7 Shows calculation of pore size and particle size using ImageJ software; A, D shows the magnification of the image; B, E, G shows setting of the scale; C shows the result of particle size; F, H shows the result of pore size

F

Η

### **2.2.2Experimental Procedure**

Adsorption of heavy metals was performed by constructing a glass column filled with RHA, through which standard solutions of Zinc was passed as shown in Fig 9. RHA was used as the fixed bed material for the column, which acts as adsorbent. A base was created to support the fixed bed in the column above and a stopper to control the flow of solution. Laboratory prepared solutions werethen passed through the column containing RHA with a varying head (maximum head was 0.5m). The solution after passing through column were collected at the bottom of the column. Samples were collected after 4 hours for finding the optimum pH and Initial Metal ion concentration, and for obtaining the time varying removal of zinc the samples were collected at an interval of 10min. The solutions were then tested in a HACH Spectrophotometer for obtaining the residual concentration of the zinc in the solution as well as to find out the adsorptive capacity rice husk for adsorption of zinc metal. All experiments were carried out under room temperature.




Fig: 8 Preparation of Stock solution of Zinc Sample of standard value of 1000 ppm

Fig: 9 Fixed bed Column

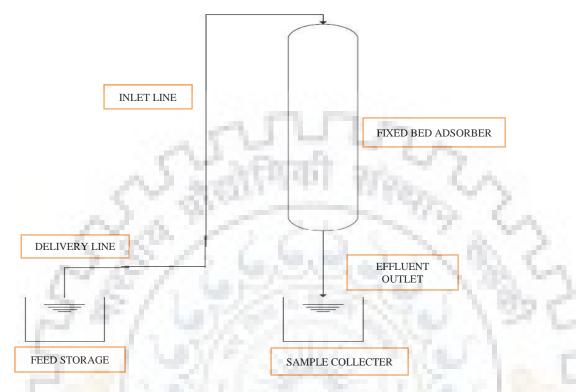



Fig10 Schematics of the Experimental Setup for Fixed Bed Column Test Operation

## 2.3 Effect of Parameters on Adsorption

#### 2.3.1 Effect of pH

1000 mL of the working solution was put in conical flasks at varying pH. The pH was adjusted in the range 2-6 by the addition of HNO₃and NaOH solution depending upon the pH desired; pH of the solution was measured using a pH meter. In the end, a graph will be plotted between % removal efficiency and pH.

#### 2.3.2Effect of initial metal ion concentration

The metal ion concentration effect will be studied in the range of 2-20 mg/L, at optimum pH found out above initial metal ion concentration variation was studied keeping other conditions i.e. adsorbent dose, contact time same as used in other conditions. The residual metal ion concentration was measured and a graph is plotted between % removal efficiency and metal ion concentration.

#### 2.3.3 Time varying Analysis of Adsorption

The time of contact for the column studies should be in the range of 0-250 minutes. The optimum initial metal ion concentration and pH was used. 2000ml of the working solution was passed through the RHA column and the graph of effluent concentration to influent concentration v/s time is plotted, the plot thus obtained is also known as breakthrough curve.

#### 2.4DATA ANALYSIS

Data obtained from the experiment has been subjected to Yoon Nelson and Thomas Models for calculation of 50% breakthrough time and Adsorptive Capacity of Fixed Bed respectively.

#### 2.4.1 Yoon Nelson Model

Yoon Nelson Model is relatively simple model compared to Thomas's and Adam Bohart's model because it is a single component system.

If 'C' is the amount of solute being adsorbed in the system and 'Ce' is the amount of solute in effluent, then the rate of adsorption can be expressed as

 $-dC/dt = Kyn^{*}(t-T)$  ..... (1)

Where Kyn is Yoon-Nelson Coefficient (min⁻¹) It is Time of breakthrough

Substituting C=1-Ce and at C=0.5 (Yoon Nelson Model is valid only for 50% breakthrough)

Integrating the above equation yields

$$\ln(C/Co-C) = Kyn^*(t-T) \qquad \dots \qquad (2)$$

Where It is time when Ce/C=0.5

Model parameters Kyn and T can be calculated as ln(C/Co-C) vs time linearly dependent.

Value of 'T' obtained is known as 50% breakthrough time.

For symmetrical breakthrough curves total breakthrough will occur at 2T.[24]

#### 2.4.2 Thomas Model

Thomas model is the most widely used model, its behaviour is similar to Langmuir model.

Thomas model is

 $C/Co=1/(1+e^{((Kth)*(q*m/Q-Co*t)))}$  .....(3)

Where Kth is the rate constant (l/mg min)

Co is Initial metal ion concentration

C is metal conc at different time

Q is the flow rate (l/h)

It is time (min)

M is mass of the bed (g)

q is the adsorption capacity

Linearization of the above equation yields

 $\ln ((Co/C)-1) = (Kth^{*}q^{*}m)/Q - (Kth^{*}Co^{*}t) \qquad \dots (4)$ 

From the linear dependency of  $\ln ((Co/C)-1)$  vs t, model parameters q and Kth can be calculated.

'q' obtained from equation 4 is known as the Adsorption Capacity of the Adsorbent.[24]



Fixed Bed Column Adsorption Test were conducted by using standard solution of Zinc of different concentration as adsorbate and using Rice Husk Ash as Adsorbent. Experiments were conducted to find the optimum pH and initial metal ion concentration for finding out the maximum efficiency of Adsorption, Time varying analysis was carried out to obtain the breakthrough curve and breakthrough time. The Results of the Experiment and their Discussions are depicted below.

# 3.1 Effect Of pH

The pH of the working solution plays an important role in the adsorption process. The experiments were conducted for the zinc concentration of 10 mg/L and the pH was studied in

the range 2-6. From the results obtained a graph between %removal vs the pH of the sample was obtained which is shown in Fig 11, from the graph it can be inferred that the % removal efficiency is very low at pH 2. But, as the pH increases, the removal efficiency increases and is found to be maximum i.e. 84% at pH 5 and then again decreases. Thus, pH 5 is chosen as the optimum pH.

Table: 3 Effect of pH on Adsorption



S. No.	рН	Effluent Conc.	% Removal
1	2	7.5	35
2	3	4.2	58
3	4	2.2	78
4	5	1.6	84
5	6	1.9	81

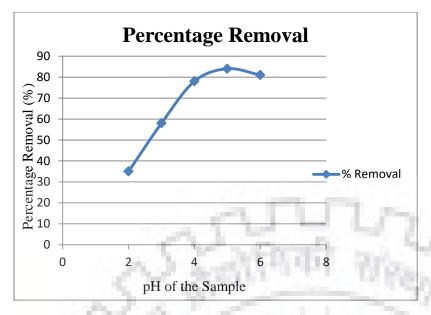


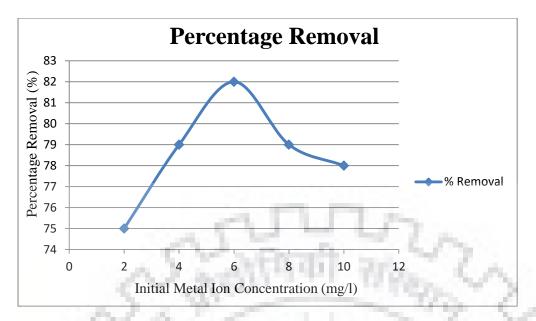

Fig: 11 Effect of pH on Percentage Removal of Zinc

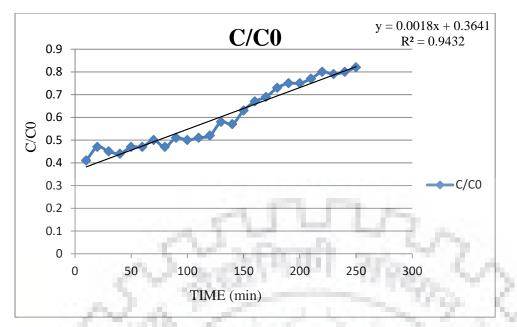
# **3.2 Effect of Initial Metal Ion Concentration**

The effect of metal ion concentration was studied for the metal ion concentration of 2, 4, 6, 8 and 10 ppm. From the results obtained the graph between percentage removal and initial metal ion concentration was made and it was inferred that with increase with initial metal ion concentration, the removal efficiency showed an increasing trend line up to 6ppm and thereafter decreases. The maximum removal of 82% was observed for 6 ppm.

S. NO.	Initial Metal Ion Conc.	Effluent Concentration	% Removal
1	2	0.49	75
2	4	0.844	79
3	- 6	1.068	82
4	8	1.656	79
5	10	2.22	78

Table 4 Effect of IMC on % Remov
----------------------------------





Fig: 12 Effect of Initial Metal Ion Concentration on Percentage Removal of Zinc

# 3.3 Time Varying Analysis of Adsorption on Fixed bed

2

The time varying analysis of Adsorption on fixed bed of RHA was carried out varying from 0 to 250 min.

The test was conducted at optimum pH of 5 and optimum initial metal ion concentration of 6ppm. The tread shows that the effluent to initial metal ion concentration increases slowly in the beginning but increases rapidly after 120 min and again slows down after 200 min.





the time after which the bed has been almost completely utilized, the point after which there is an rapid increase in the curve shows the breakthrough time, after this point it is advised to remove the bed and replace it with new fixed bed.

From the Breakthrough curve of zinc thus obtained the breakthrough time is found out to be around 150 min.

# 3.4 Yoon Nelson Model

Time required for 50% breakthrough was found on the basis of Yoon Nelson Model, The value of Yoon Nelson coefficient and 50% breakthrough time were found by fitting the Experimental data in the following Equation

Ct is effluent conc. (mg/l) T is 50% breakthrough Time (min)

Time	Ct (mg/l)	Co-Ct	Ct/(Co-Ct)	ln(Ct/(Co-Ct))
10	2.46	3.56	0.6910	-0.3696
20	2.82	3.18	0.8868	-0.1201
30	2.70	3.30	0.8180	-0.2010
40	2.64	3.36	0.7860	-0.2410
50	2.82	3.18	0.8868	-0.1201
60	2.82	3.18	0.8868	-0.1201
70	2.98	3.02	1.0000	0
80	2.82	3.18	0.8868	-0.1201
- 90	3.06	2.94	1.0410	0.0402
100	3.00	3.00	1.0000	0
110	3.06	2.94	1.0410	0.0402
120	3.12	2.88	1.0830	0.0800
130	3.48	2.52	1.3810	0.3230
140	3.42	2.58	1.3256	0.2820
150	3.78	2.22	1.7030	0.5320
160	4.02	1.98	2.0300	0.7100
170	4.14	1.86	2.2260	0.8000
180	4.38	1.62	2.7040	0.9950
190	4.50	1.50	3.0000	1.0980
200	4.50	1.50	3.0000	1.0980
210	4.62	1.38	3.3480	1.2083
220	4.80	1.20	4.0000	1.3860
230	4.74	1.26	3.7620	1.3250

Table: 5 Calculation for Yoon Nelson Model

240	4.80	1.20	4.0000	1.3860
250	4.92	1.08	4.5500	1.5150

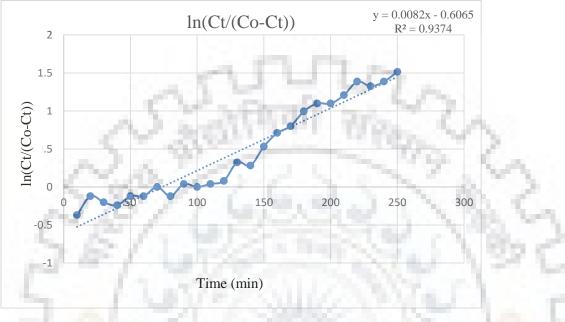
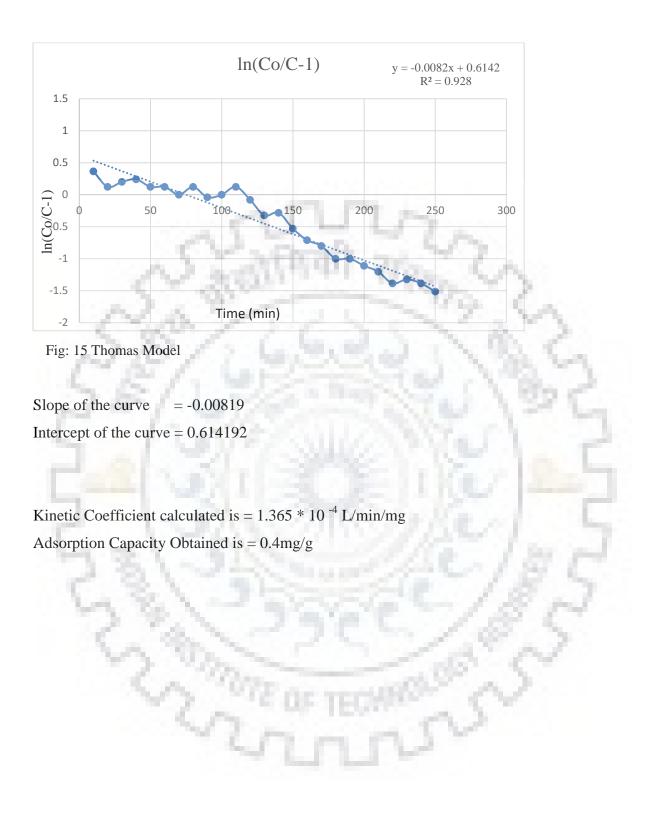



Fig: 14 Yoon Nelson Model

Slope of the Curve = 0.008212 Intercept of the Curve = -0.60651


From the above result Yoon Nelson Coefficient was found to be 0.008212 50% breakthrough timeiscalculated to be 73 min.

## **3.5 Thomas Model**

Thomas model was modelled for obtaining the value Adsorption Capacity and Kinetic Coefficient. Experimental values were fitted in equation and Thomas parameters were obtained

ln((Co/C)-1) = (Kth*q*m)/Q - (Kth*Co*t)

Table: 6 Calcu	lation for Thomas Model	22	5
Time (min)	Effluent Conc. (Co) (mg/l)	Co/C-1	ln(Co/C-1)
10	2.46	1.44	0.3646
20	2.82	1.13	0.1220
30	2.70	1.22	0.2000
40	2.64	1.27	0.2400
50	2.82	1.13	0.1220
60	2.82	1.13	0.1220
70	2.98	1.00	0
80	2.82	1.13	0.1220
90	3.06	0.96	-0.0408
100	3.00	1.00	0
110	3.06	1.13	0.1220
120	3.12	0.923	-0.0800
130	3.48	0.724	-0.3230
140	3.42	0.754	-0.2820
150	3.78	0.59	-0.5300
160	4.02	0.49	-0.7100
170	4.14	0.45	-0.8000
180	4.38	0.37	-1.0000
190	4.50	0.37	-1.0000
200	4.50	0.33	-1.1100
210	4.62	0.30	-1.2040
220	4.80	0.25	-1.3860
230	4.74	0.26	-1.3240
240	4.80	0.25	-1.3860
250	4.92	0.22	-1.5140



From the above mentioned study on the removal of Zinc from its aqueous solutions using rice husk ashas fixed bed, Column Adsorption study, it may be concluded that

- Column adsorption experiments have shown that adsorption is greatly dependent on process parameters like pH and initial metal ion concentration.
- The optimum conditions for the removal of Zinc as obtained from column studies may be summarised as
  - Optimum pH is 5.
  - Optimum IMC is 6 mg/l.

- Breakthrough Occurs at Around 150 min.
- From Yoon-Nelson Model
  - Yoon-Nelson Coefficient was found to be 0.008212
  - 50% break through was calculated as 73 min.
- From Thomas Model
  - Kinetic Coefficient is 1.365*10⁻⁴L/min/mg
  - Adsorption Capacity Obtained is 0.4 mg/g
- Fixed Bed Adsorption Data obtained from the experiment can be explained by both Yoon-Nelson and Thomas model, however for removal Zinc by using RHA as an adsorbent Yoon-Nelson model better correlates then Thomas model.
- Morphological Analysis shows that Rice Husk Ash is highly porous and irregular in shape and has high specific surface area.

1. K.Y. Foo, B.H. Hameed Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste, *Advances in Colloid and Interface Science*, *152* (2009) 39–47

2. Kumar S., Sangwan P., Dhankhar R. MOR V., and Bidra S. Utilization of Rice Husk and Their Ash: A Review *Res. J. Chem. Env. Sci., Volume 1 Issue 5 December 2013: 126-129* 

3. Sathy Chandrasekhar · P. N. Pramada Rice husk ash as an adsorbent for methylene blue effect of ashing temperature *Adsorption* (2006) 12:27–43

4. Eti Rohaeti, Wenny Permata Sari and Irmanida Batubara Utilization of Rice Husk as Pb adsorbent in Blood Cockles *Earth and Environmental Science 31 (2016) 012044 DOI:10.1088/1755-1315/31/1/012044* 

5. M. Ahmaruzzaman and Vinod K. Gupta. Rice Husk and Its Ash as Low-Cost Adsorbents in Water and Wastewater Treatment *Ind. Eng. Chem. Res. 2011, 50, 13589–13613* 

6. Sandeep Chauhan Rice husk as a potential adsorbent for removal of metal ions – A review *Der Chemica Sinica*, 2015, 6(6): 90-93

7. Innocent Nhapi Noble Banadda Umaru Garba Wali Removal of Heavy Metals from Industrial Wastewater Using Rice Husks DOI: 10.2174/1874829501104010170

8. Hala Ahmed Hegazi Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents *HBRC Journal (2013) 9, 276–282* 

 MAJID MUNEER, IJAZ A. BHATTI and SHAHID ADEEL* Removal of Zn, Pb and Cr in Textile Wastewater Using Rice Husk as a Biosorbent Asian Journal of Chemistry Vol. 22, No. 10 (2010), 7453-7459 10. D. Diasa,*, N. Lapaa, M. Bernardob, W. Ribeiroa, I. Matosb, I. Fonsecab, F. Pintoc Cr(III) removal from synthetic and industrial wastewaters by using cogasification chars of rice waste streams *Bioresource Technology 266 (2018) 139–150* 

11. Vimal Chandra Srivastava*, Indra Deo Mall, Indra Mani Mishra Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash *Chemical Engineering and Processing 48 (2009) 370–379* 

12. Adediran.G, Owalude.S, Tella.A, Olaremu.A "Equilibrium sorption of Pb(II) and nitrate ions from aqueous solution using chemically modified rice husk" (2004).

13. Ageena.N "The use of local sawdust as an adsorbent for the removal of copper ion from Waste water using fixed bed adsorption". *Engineering & amp; Technology journal. (2010)* 28(2).

14. Ahamed.A, Shajudha.A "Adsorption of copper from aqueous solution using low cost Adsorbent". *Archives of Applied Science Research.* (2012) 4(3); pp 1532-1539.

15. Ahluwalia.S, Goyal.D "Removal of Heavy Metals by Waste Tea Leaves from Aqueous Solution". *Engineering in Life Sciences. (2005) 5(2); pp 158-162.* 

16. Ahmedna.M. Marshall.W, Rao.R "Production of granular activated carbons from select Agricultural by-products and evaluation of their physical, chemical, and adsorptive properties".

Bioresource Technology. (2000) 71(2); pp 113-123.

17. CharifGakwisiri, NitinRaut, Amal Al-Saadi., Shinoona Al-Aisri, Abrar Al-Ajmi "A Critical Review of Removal of Zinc from Wastewater" 2012, *Proceedings of the World Congress on Engineering 2012 Vol I* 

18. Himanshu Patel," Fixed-bed column adsorption study: a comprehensive review",2019, *Appl Water Sci* (2019) 9: 45. https://doi.org/10.1007/s13201-019-0927-7

19. Swarup Biswas1 and Umesh Mishra "Continuous Fixed-Bed Column Study and Adsorption Modeling: Removal of Lead Ion from Aqueous Solution by Charcoal Originated from Chemical Carbonization of Rubber Wood Sawdust", 2015 *Journal of Chemistry Volume 2015, Article ID 907379* 

20. Shadeera Rouf, M. Nagapadma" Modeling of Fixed Bed Column Studies for Adsorption of Azo Dye on Chitosan Impregnated with a Cationic Surfactant"2015, *International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 538 ISSN 2229-5518.* 

21. Marina Trgo, NedijkaVukojevic and JelenaPeric "Application of mathematical empirical models to dynamic removal of lead on natural zeolite clinoptilolite in a fixed bed column" 2011 *Indian Journal of Chemical Technology Vol. 18, pp123-131* 

22.

ShodhaGanga

"https://shodhganga.inflibnet.ac.in/bitstream/10603/22665/8/08_chapter3.pdf"