IMPACTS OF CLIMATE CHANGE ON ENERGY DEMAND OF A MID RISE OFFICE BUILDING – A CASE OF NEW DELHI

ARN 702 - Dissertation

FOURTH SEMESTER M. ARCH

Submitted by

CHINMAY JHA

17510003

Guided by

Dr. E RAJASEKAR, Associate Professor Architecture & Planning Department, IITR

DEPARTMENT OF ARCHITECTURE & PLANNING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

25th, MAY-2018

CANDIDATE'S DECLARATION

I hereby declare that the report entitled "IMPACT OF CLIMATE CHANGE ON BUILDING ENERGY DEMAND OF A MID SIZE OFFICE BUILDING- A CASE OF NEW DELHI" submitted in partial fulfilment of the requirement for the award of the degree of Master in Architecture at the Department of Architecture and Planning, Indian Institute of Technology Roorkee, is the authentic record of my own work carried out during the period from July 2018 to May 2019 under the guidance of Dr. E. Rajasekar, Department of Architecture and Planning, Indian Institute of Technology Roorkee, India.

Date: 25th June, 2019 Place: Roorkee

Mr. Chinmay Jha

This is to certify that above statement made by the candidate Mr. Chinmay Jha is true to the best of my knowledge.

Dr. E RAJASEKAR,

Associate Professor, Architecture & Planning Department,

IIT Roorkee, Roorkee

Date: 25th May, 2019 Place: Roorkee

CERTIFICATE

Certified that the report entitled "IMPACT OF CLIMATE CHANGE ON BUILDING ENERGY DEMAND OF A MID SIZE OFFICE BUILDING- A CASE OF NEW DELHI" which has been submitted by Mr. Chinmay Jha, for partial fulfilment of the requirement for the award of the post graduate degree of Master of Architecture, in the Department of Architecture and planning, Indian Institute of Technology Roorkee, is the student's own work carried out by him under my supervision and guidance. The matter embodied in this dissertation has not been submitted for the award of any other degree of this or any other institute.

Dr. E. RAJASEKAR,

Associate Professor, Architecture & Planning Department, IIT Roorkee, Roorkee

Date: 25th May, 2019 Place: Roorkee

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor **Dr. E. Rajasekar**, Assistant professor, Department of Architecture and Planning, Indian Institute of Technology Roorkee. The door to Prof. Rajasekar office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right direction whenever he thought I needed it. I am highly indebted to him for providing his valuable time and suggestions during the period of the work.

I thank my brothers, Akhil & Amandeep for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last two years. I also thank Saniya & Ipshita for always supporting me throughout master's period at Indian Institute of Technology Roorkee for helping me to successfully complete the study. I would also like to thank Purvi for being such a wonderful support throughout the time of my thesis.

I would also like to acknowledge PhD Scholar, Shobhit Chaturvedi & Subramaniam of the Indian Institute of Technology as the second reader of this thesis, and I am gratefully indebted to them for their very valuable comments on this thesis.

I must express my profound gratitude to my parents, for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Above all I thank the Almighty for giving me all these opportunities. Last, but certainly not the least, I am extremely grateful for my family for their continual support, love, patience, encouragement and for being a constant source of inspiration.

Chinmay Jha M. Arch, IIT Roorkee

TABLE OF CONTENTS

ABSTRACT	1
INTRODUCTION:	3
RELEVANCE:	3
DISSERTATION TITLE:	3
RESEARCH QUESTIONS:	4
AIM:	4
OBJECTIVE:	
RESEARCH METHODOLOGY:	4
SCOPE AND LIMITATIONS:	7
LITERATURE REVIEW –	
Approaches identified by existing literature studies	7
Some of the studies carried out on climate change impact on Building.	7
CLIMATE SEVERITY ANALYSIS	
Climate Data Analysis for current Scenario and Future Scenario	
CLIMATE CLUSTER ANALYSIS	21
CASE STUDY - DEVELOPMENT ALTERNATIVES WORLD HEADQUARTERS	
BUILDING MODEL & SIMULATIONS FOR DA HQ BUILDING	
Development Alternatives Building Model Energy Consumption Validation	37
MODELLING 5 TYPICAL MID SIZE OFFICE BUILDING LAYOUTS	
Identification of 5 typical office layouts	
Modelling 5 base cases layout	40
Area & occupancy	41
ENVELOPE SERVICES PRESCRIBED IN ECBC FOR BASE CASE OFFICE BUILDING	
ECBC Prescriptive values for Base Case Standard	41
Daylighting:	41
Window to Wall Ratio:	41
Visual Light Transmittance:	41
U- Values:	41
HVAC System for a Base Case Design	42
Scheduling for Lighting & HVAC	42
BASE CASES ENERGY CONSUMPTION SIMULATION ANALYSIS	43
Energy benchmark of commercial buildings (BEE)	43
IMPROVEMENT STRATEGIES	44

ANALYSIS & DISCUSSIONS	45
Mitigative strategies used to Cap Energy Consumption to Base Year 1990	64
RESEARCH FINDINGS	82
CONCLUSIONS	84
REFERENCES:	87

LIST OF FIGURES

Figure 1 Research Methodology			6
Figure 2 Min Temperature Range for Both Climate	e Scenario		10
Figure 3 Min Temperature Range for Both Climate	e Scenario		10
Figure 4 Avg. Temperature Range for Both Climat	e Scenario		10
Figure 5 RH Range for Both Climate Type			
Figure 6 RH range for both Climate Type			11
Figure 7 GHI Range for Both Climate Scenario			
Figure 8 CDD Range for Both Climate Scenario			
Figure 9 HDD Range for Both Climate Scenario			
Figure 10 Hourly Reading for 1st week of June & D	ec for both Climate typ	e	12
Figure 11 5 Degree Celsius Bins			13
Figure 12 Difference in Frequency as to standard	EPW		13
Figure 13 2 Degree Celsius Bins for Summer Mont	:hs		14
Figure 14 Difference in Frequency to 2020,2050,2	.080		14
Figure 15 2 Degree Celsius Binning for winter mor	1ths		15
Figure 16 Difference in Frequency to 2020, 2050,	2080		15
Figure 17 T(min) Frequency Difference b/w 2020,	2050,2080		16
Figure 18 T(max) Frequency Difference b/w 2020,	,2050,2080		16
Figure 19 10% RH Bins			
Figure 20 Difference in Frequency as to standard	EPW		17
Figure 21 Difference in DNR Bin			18
Figure 22 100W/m2 GHI BIN (DNR)			
Figure 23 100 W/m2 GHI BIN (DHR)			
Figure 24 Difference in Frequency (DHR)			19
Figure 25 Delta T Daily (December)			
Figure 26 Delta T Daily (June)			
Figure 27 Climate Data Grouped into 9 clusters			21
Figure 28 Clusters Identified into Seasonal Cluster			
0	Source: Author		
Figure 30 Clustered Days Comparison			
Figure 31 Total Energy Consumption Comparison			
Figure 32 Average Energy Consumption Comparis			
Figure 33 TEC Relationship with Shift in days			
Figure 34 AEC Relationship with shift in days			25
Figure 35 DA Headquarters Building, New Delhi			
Figure 36Labrynth Floor Plan or original Building			
Figure 37 First Floor Plan			
Figure 38 Ground Floor Plan			
Figure 39 External Wall Section			
Figure 41 Prototype Air- Handling unit			
Figure 41 Displacement Cooling Techniques instal			
Figure 42 Hybrid Air-Handling Unit			
Figure 43 Elevation of DA Headquarters			
Figure 44 Section 1 of DA Headquarters			
Figure 45 Section 2 of DA Headquarters			31

Figure 46 Kota stone Floor	.32
Figure 47 Sanitary tiles on Roof	.32
Figure 48 Fly ash & Red Mud Brick	.32
Figure 49 First floor Workspace	.32
Figure 50 Reading space beside library	.32
Figure 51 Ground floor Cafeteria	.32
Figure 52 Hybrid AC Split unit	.33
Figure 53 Conference room 3rd floor	.33
Figure 54 Roof without Solar panels	
Figure 55 Facade installation for plants	.33
Figure 56 Cafeteria & conference area	
Figure 57Balcony attached to each floor	.33
Figure 58 Ceiling light reflectors	.33
Figure 59 Light wells on roof	.34
Figure 60 Reused wooden frame	.34
Figure 61 Typical Floor plan of DA Building, New Delhi	
Figure 62 Design Builder model of DA world Headquarters, New Delhi	.36
Figure 63 Plan Forms studied to Derive Typical Floor Layout Source: Author Source: Author.	
Figure 64 Typical Square Layout Source: Author	. 39
Figure 67 Typical Rectangle layout Source:Author	. 39
Figure 68 Typical U Shape Layout Source:Author	. 39
Figure 69 Typical Curve layout Source:Author	.39
Figure 70 Typical Triangle Layout Source:Author	. 39
Figure 71 Rectangle Typical floor Model	.40
Figure 7 <mark>2 Square</mark> Typical Floor Model	.40
Figure 73 Triangle Typical floor model	
Figure 74 Curve Typical floor Model	
Figure 75 U Shape Typical Floor Model	
Figure 76 EPI BEE Benchmarking for Commercial Building	.43
Figure 77 DA Building Heating Loads	.46
Figure 78 DA Building Cooling Loads	.47
Figure 79 DA Building Total HVAC Loads	.48
Figure 80 Square base Heating Loads	.49
Figure 81 Square base Cooling Loads	.50
Figure 82 Square Base Total HVAC Loads	51
Figure 83 Rectangle Base heating Loads Figure 84 Rectangle Base Cooling Load	.52
Figure 84 Rectangle Base Cooling Load	.53
Figure 85 Rectangle Base HVAC laods	
Figure 86 Curve Base Heating Loads	
Figure 87 Curve Base Cooling Loads	
Figure 88 Curve base HVAC Loads	
Figure 89 Triangle Base Heating Loads.	.58
Figure 90 Triangle Base Cooling Loads	
Figure 91 Triangle Total HVAC loads	
Figure 92 U-shaped Heating Loads	
Figure 93 U-shaped cooling loads	
Figure 94 U-Shaped total HVAC	.63

LIST OF TABLES

Table 1 Summary on studies carried on climate Change	7
Table 2 Actual Energy Consumption Data, DA Building.Source: DA Building	
Administration 37	
Table 3 Simulated Energy Data in 2020 validation with Actual monthly Mean Data (2016, 2017, 2018)	
Table 4 HVAC & Lighting Schedule	
Table 5 Base Case Models Energy Performance Index	
Table 6 DA Building Heating Loads comparison between 1990, 2020 & 2050Source: Author	
Table 7 DA Building cooling Loads comparison between 1990, 2020 & 2050Source: Author	
Table 8 DA Building HVAC Loads comparison between 1990, 2020 & 2050Source: Author	
Table 9 Square Base Heating Loads comparison between 1990, 2020 & 2050Source: Author	
Table 10 Square base Cooling Loads comparison between 1990, 2020 & 2050Source: Author	
Table 11 Square Base HVAC Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 12 Rectangle Base Heating Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 13 Rectangle Cooling Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 14 Rectangle HVAC Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 15 Curve Base Heating Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 16 Curve Base Cooling Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 17 Curve Base HVAC Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 18 Triangle Base Heating Loads comparison between 1990, 2020 & 2050 Source: Author	58
Table 19 Triangle Base Cooling Loads comparison between 1990, 2020 & 2050Source: Author	
Table 20 Triangle Base HVAC Loads comparison between 1990, 2020 & 2050 Source: Author	
Table 21 U-Shaped Base Heating Loads comparison between 1990, 2020 & 2050 Source: Author	r61
Table 22 U-Shaped Base Cooling Loads comparison between 1990, 2020 & 2050Source: Autho	r 62
Table 23 U-Shaped case HVAC Loads comparison between 1990, 2020 & 2050 Source: Author .	63
Table 24 DA Building Energy Consumption at 0.14 U-Value Source: Author	64
Table 25 DA Building Energy Consumption at 0.1 SHGC Source: Author	65
Table 26 DA Building Energy Consumption at 0.1 U-Value window Source: Author	
Table 27 Square Base Energy consumption at 0.023 U-Value Source: Author	
Table 28 Square Base Energy consumption at 0.01 SHGC Source: Author	
Table 29 Square Base Energy consumption at 0.1 U-Value Window Source: Author	
Table 30 Rectangle Base Energy consumption at 0.028 U-Value Source: Author	
Table 31 Rectangle Base Energy consumption at 0.028 SHGC Source: Author	
Table 32 Rectangle Base Energy consumption at 0.1 U-Value window Source: Author	
Table 33 Curve Base Energy consumption at 0.025 U-Value Source: Author	
Table 34 Curve Base Energy consumption at 0.01 SHGC Source: Author	
Table 35 Curve Base Energy consumption at 0.1 U-Value window Source: Author	
Table 36 Triangle Base Energy consumption at 0.027 U-Value Source: Author	76
Table 37 Triangle Base Energy consumption at 0.01 SHGC Source: Author	
Table 38 Triangle Base Energy consumption at 0.01 U-Value window Source: Author	
Table 39 U-Shaped Base Energy consumption at 0.035 U-Value Source: Author	
Table 40 U-Shaped Base Energy consumption at 0.03 SHGC Source: Author	
Table 41 U-Shaped Base Energy consumption at 0.1 U-Value Window Source: Author	
Table 42 AVERAGE ENERGY CHANGE FOR EACH CASE TYPE (2020, 2050)	
Table 43 Variations in Energy Consumption in Various Profile	
Table 44 DA Building Mitigative Capping Values and Efficiency	
Table 45 Square Case Mitigative Capping Values and Efficiency	
Table 46 Rectangle Case Mitigative Capping Values and Efficiency.	
Table 47 Curve Case Mitigative Capping Values and Efficiency	
Table 48 Triangle Base Mitigative Capping Values and Efficiency.	
Table 49 U-Shaped Mitigative Capping Values and Efficiency	
Table 50 Table of Final Mitigative values.	86

ABSTRACT

Climate change is a most concerning issue in the last few decades. As per the IPCC (Emission Scenarios)^[1] this phenomenon is expected to result in a global temperature increase of 1.5 °C. Apart from its impact on annual mean temperature, it has brought significant changes to the temporal weather events. Such a change is seen as a critical factor for building designers given its impact on building's thermal behaviour, occupant's thermal comfort and resultant energy use. Buildings which are designed to current day's cooling and heating design day scenarios may exhibit inferior performance in the above context. In this context, this study intends to decipher the climate change phenomena using a bottom-up approach and delineate strategies for climate change resilience. The study has the following objectives (a) to map the impact of climate change based on the magnitude and temporal variations of dry bulb temperature, relative humidity and global horizontal irradiance; (b) to establish the effect of climate change on the energy use of a mid-size office building; and (c) to delineate design strategies for climate change resilient building envelope. The scope of the study is limited to a mid-sized office building located in the composite climate of Delhi. For this purpose, a review of plan-form configurations is carried out. Based on this, five representative spatial layouts are prepared. The weather data made available by Indian Society of Heating Refrigeration and Air conditioning Engineers (ISHRAE) for the year 1990 is morphed for the years 2020 and 2050 using the climate change world weather file generator. This tool uses IPCC TAR model summary data of the HadCM3 A2 experiment ensemble. A statistical analysis of dry-bulb temperature (Ta), relative humidity (RH) and global horizontal irradiance (GHI) is carried out to map the magnitude and temporal variation between the years 1990 (base), 2020 and 2050. It is found that the climate variables exhibit a significant change in magnitude due to the impact of climate change. The analysis further reveals the presence of significant temporal variations. In order to assess the implication on the energy demand, a representative office building in the city of Delhi (Development Alternatives World Headquarters) is modelled using Design Builder software tool. The energy demand of the building is simulated for the years 1990, 2020 and 2050. A comparative assessment of energy demand and the impact of changes in climate variables is presented. Desirable changes to the building envelop are identified in order to cap the energy demand of the building to the base year's limits. Further the representative office building layouts are

modelled as per ECBC and Super-ECBC criteria and the impact of climate change on their energy demand is presented. The climate-change resilient building envelop interventions are discussed for these layouts.

INTRODUCTION:

Climatic change and global warming are two of the most concerning issues of ecosystem which are continuously becoming a threat to ecosystem in last few decades. The year 2016 was the hottest year recorded in history with an average of about 0.94°C temperature globally. Moreover, the Intergovernmental Panel on Climate Change (IPCC) have has shown concern for increasing concentration of global warming and greenhouse gases (GHGs) into its report of fifth assessment. Since 1850, the last few decades have the highest temperatures due to the continuous emission of carbon dioxide, methane, nitrous oxide etc. which has resulted in rise in global temperature.

Due to changing climatic conditions, the energy consumption of a building also gets adversely affected with different heating and cooling demands. It will also impact the consumption of fuels mixture by buildings with increased electricity consumption for cooling and reducing the usage of natural gas for heating. Due to such variations, the capitals invested by businesses and individuals to cool down the buildings also fluctuate, with the total energy consumption depends upon whether increased cooling demands outweighs decreased heating demands.

RELEVANCE:

Consumptions of energy sources and thermal comfort are highly dependent upon the weather conditions. Variation in climatic conditions has increased global temperature which imparts similar effect on the energy and space conditioning of buildings in upcoming time. Tropical areas will also experience a decrease in energy demand for space heating due to increasing temperature. Indoor thermal temperature of building is also rising due to the rise in temperature at the lands near the temperate zone due to which the energy demands for more cooling has been increased. Therefore, the importance of strategic building design has become important which will incorporate certain suitable equipped framework to minimize or reduce the impacts of increasing energy demand by buildings for heating and cooling loads. It is now required to design Building with adaptive strategies to mitigate the impact of increased demands for heating and cooling energy.

DISSERTATION TITLE:

IMPACTS OF CLIMATE CHANGE ON ENERGY DEMAND OF A MID RISE OFFICE BUILDING – A CASE OF NEW DELHI.

RESEARCH QUESTIONS:

- 1. How much impact does climate change is going to make on thermal severity and Building energy demands?
- 2. What thermal performance improvement strategies are required, and to what extent these strategies will address the issue?

AIM:

This study aims at investigating the impacts of climate changing scenario on heating & cooling energy demands in an office Building – A case of New Delhi.

OBJECTIVE:

- To Identify the impacts of Climate Severity on the basis of Dry Bulb Temperature (DBT), Relative Humidity (RH) and Global Horizontal Irradiance (GHI).
- To establish the effect of climate change on thermal performance and energy demand of an office building.
- To Identify strategies for the design of climate change resilient built envelope.

RESEARCH METHODOLOGY:

Stage 1:

Quantifying Impacts of thermal severity of climate change for current & future scenario.

- Climate analysis for the city of new Delhi on the basis of present-day Climate Data.
- Generating weather Data For future Scenario.
 - Emission Scenario Selection- from IPCC SRES Report.
 - Setting up Climate change world weather data Generation tool.
 - Generating weather Data files for 2030. 2050, 2070 using CC world File Generator.
- Climate thermal severity Analysis. For this analysis, 3 Parameters have been recognised to calculate the impact of thermal Severity.
 - Dry Bulb Temperature (° C)
 - Relative Humidity (%)
 - Global Horizontal Irradiance (kWh/sqm)

Stage 2:

Changes established in thermal performance & overall energy demand of a medium size office building in New Delhi, for current & future climates, on Building thermal & energy simulation program.

- Preparing a Building software Model out of an existing Building, DA World Headquarters.
- - Preparing 5 Typical Office Model Based on studying various Parameters
 - Building form/Layout
 - Area/Occupancy
 - Type of Building Materials
 - ECBC Standards for an Office Building.
 - HVAC & Occupancy.
- Computer Simulations

- To Assess the thermal performance and Energy Performance Demand of the Building Model for the current and future climate types. Energy Plus Computer Simulation Program, Design Builder will be used. Weather Data Generated for Each Scenario using weather Data File in Energy Plus Weather (EPW) Format.

Comparative Analysis between Simulated and Actual model Energy Consumption Data.

- Validating the performance and authenticity of simulated model with Actual Energy Consumption Data

- Indoor thermal conditioning and building energy Performance Analysis of the mid-size office building.

- Indoor thermal comfort condition analysed on the basis of simulated results for each zone of the Building Model.

10.000

Stage 3:

Identification of climate Resilient Design Strategies on Built Envelope in order to account for thermal energy performance of office building for current & future climate change scenario.

- Identifying the Mitigation Strategies for Built envelope in Indian Context.

- Using these measures, Either Individually or in combination, to cap the future Building

Energy Demands to present consumption scenarios

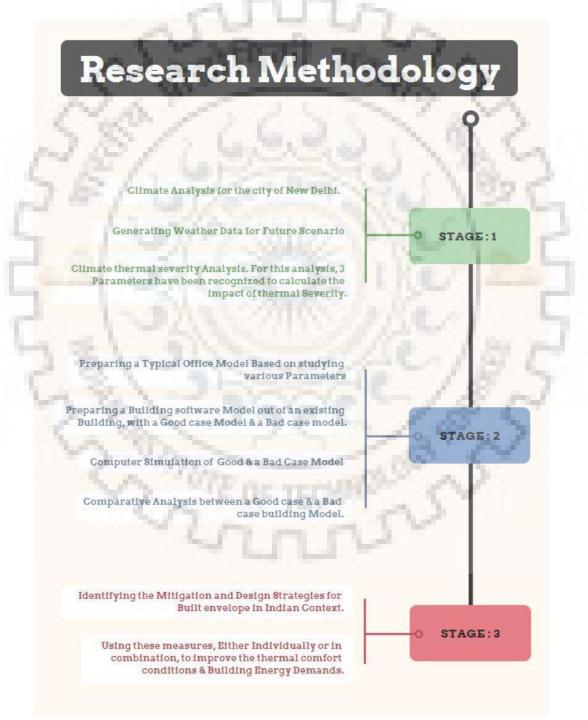


Figure 1 Research Methodology

SCOPE AND LIMITATIONS:

Some aspects which will not be covered by this thesis outcome

- Study is limited to a *typical mid-size office building*.
- Study is limited to the *city of New Delhi*.

LITERATURE REVIEW -

The impacts of climatic change on building energy expenditures throughout the globe need to be understood. Due to increasing electricity consumption for cooling purpose, the related expenditure has also raised. Studies have shown that there exists no special difference in the changes in net expenditure all over the globe. Net expenditure has been decreased in Canada, Russia and other areas where there is high heating demands and similarly it increases in the areas where there exists low demand for space heating and high demands of space cooling. All these results are explained depending upon the key drivers linking building energy with regional climate.

Approaches identified by existing literature studies

- 1. There are studies which incorporated the statistical and econometric relationship between energy and important primary climate variable, statistics of temperature and energy demand are most commonly used.
- Another approach attempts to employ the implications of Building specific energy simulation models. This approach involves Building impacts at global level; & Building impacts using a detailed service-based building energy model.

Some of the studies carried out on climate change impact on Building.

Author	Period	Type of Building	Country	Conclusion
		- L L L	1.12	Cooling demand increased
L. Guan	2070	Commercial	Australia	from 28% to 59%
				Variation in Total energy-
Wang et al.	2100	Residential	Australia	48% to 350%
				cooling energy increased by
				11-20% & heating energy
Wan et al.	2100	Commercial	China	decreased by 13-55%.

Table 1 Summary on studies carried on climate Change

				Heating demand decreased
				by 36-58% & cooling
		Commercial and		demand increased by 223-
Frank	2100	residential	Swiss	1050%
				Heating demand decreased
				by 11-56% & cooling
		200102010	1000	demand increased by 28-
Berger et al.	2050	Commercial	Austria	91%
	200	and the second s	- C	Cooling demand increased
	1. C.A	20120-001	7500	by 33-49% & heating
	2.48			demand decreased by 13-
Dodoo et al.	2050-2100	Residential	Sweden	22%.
	810	1.0.0	Finland,	N 10. C.
1.67.8	1.0		Holland,	122.73
12.16	/ : Lat	146 A. S. 199	Germany,	cooling demand increased
	Not-	Commercial and	France &	& heating demand
Pilli-Sihvola <mark>et a</mark> l.	Mentioned	residential	Spain	decreased.
- Ind. a Mar				cooling demand increased
		1.000	1.00	by 40-80% & heating
1.	2030-2050-	0.000110	1810	demand decreased by 20-
Yilha et al.	2100	Residential	Finland	40%.
1.2			754 80.	heating demand decreased
	2.10	m		by 44-75% & cooling
Asimakopouloset	28.0	Commercial and	1	demand increased by 28-
al.	2100	residential	Greece	59%.
	0.0	ALC: UN TEL	1000	Electricity consumption
	- ~ ~ ~	- Proc	- C	increased by 1.2-2.1% & gas
	Not-	Commercial and	United	consumption decreased by
Amato et al.	mentioned	residential	States	7-14%
		Commercial,		cooling demand increased
		residential and	United	& heating demand
Wang and Chan	2040-2080	public	States	decreased.
		Commercial,	United	total energy consumption
Dirks et al.	2052-2089	Residential	states	varied by -31.4 to + 15.4%.

				cooling energy increased by
Radhi	2050-2100	Residential	UAE	23.5%
	2020-2050-			Cooling energy demand
Huang & Hwang	2080	Residential	Taiwan	increased by 31-82%
Casagrande &	2020-2050-			cooling energy demand
Alvarez	2080	Commercial	Brazil	increased by 10.7-25.6%

CLIMATE SEVERITY ANALYSIS

The city Delhi Being located in the Northern plains of Indian Subcontinent, the Himalayas and Thar Desert highly influences the city's climatic condition. Such conditions cause to have both, hot and cold extremities, with 5 distinct seasons, i.e., summer, rainy, autumn, winter & spring. Distribution of the climate pattern in New Delhi can be understood by subdividing climate into summer, monsoon, short cold winters, & two pleasant transition seasons.

Summer season starts early in April and peaks in May, with and average temperatures near **32 °C**, sometimes occasional heat waves results in as high as **45 °C**.

Winters season starts around late November or early December, which later peaks in January. Delhi's proximity to Himalayas is responsible for lower temperature due to chill winds, resulting in average temperature to be around **12-13** °C.

Climate Data Analysis for current Scenario and Future Scenario-

Climate Data for Current and 2050 A2b Future Scenario done comparing on the basis of 3 Parameters.

- Dry Bulb Temperature (Degree C)
- Relative Humidity (%)
- Global Horizontal Irradiance (kWh/Sqm)
- Heating and cooling Degree Hours

Temperature-

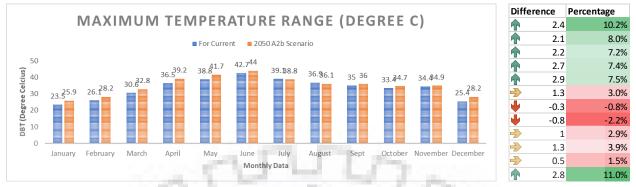


Figure 2 Min Temperature Range for Both Climate Scenario

Maximum temperature for 2050 A2b scenario shows an 10-12% increase, 2.4 to 2.8 degrees increase

in future temperature for the month of December to February.

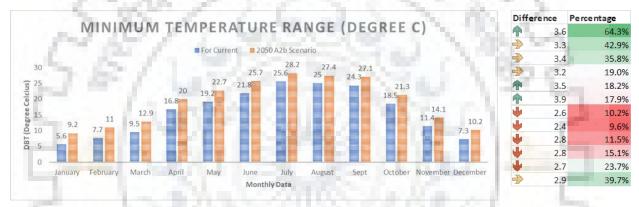


Figure 3 Min Temperature Range for Both Climate Scenario

Minimum temperature for both climate slices saw an increase of around 4 degrees in the month of June, showing a percentage increase of 18%.

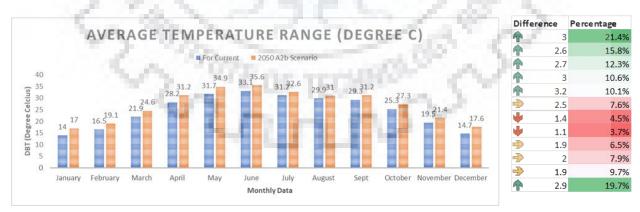


Figure 4 Avg. Temperature Range for Both Climate Scenario

Average Temperature for shows a percentage increase in 2050 A2b scenario of around 21%, with an average increase of 3 degrees.

Relative Humidity-

Figure 5 RH Range for Both Climate Type

RH Study for both current and future time scenario is compared at two times of the day. Simulated studies show that for winter months & Early months of summer, percentage of RH declined by **2-5 %**.

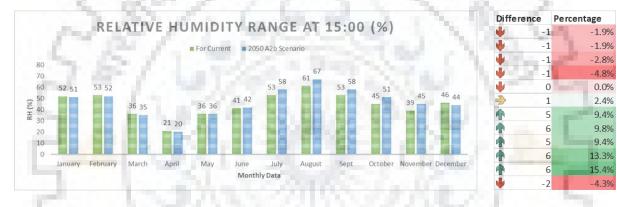
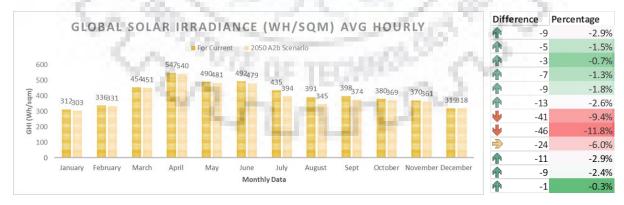



Figure 6 RH range for both Climate Type.

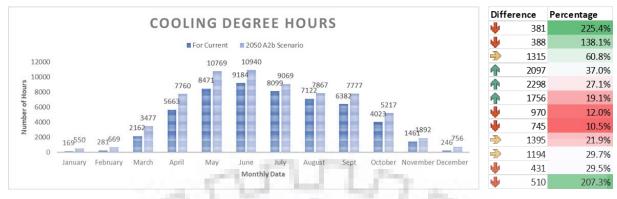
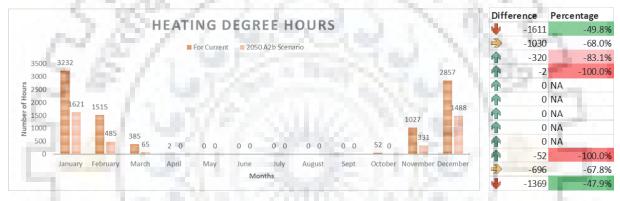
Whereas for the months of late summer and early winter, RH has risen up from 2% to 15%.

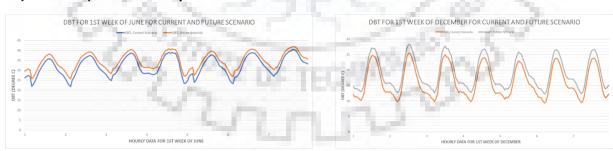
Global Horizontal Irradiance-

Figure 7 GHI Range for Both Climate Scenario

GHI Values show a Reduction in the Magnitude for the weather data of A2b Scenario of 2050. This Impact varies between 1% to 12%, most in the months of July, August and September.

Heating and Cooling Degree Hours-


Figure 8 CDD Range for Both Climate Scenario

Cooling Degree Hours show a significant increase for the weather data 2050 scenario, with most in the case of summer months and least in the winter months

Figure 9 HDD Range for Both Climate Scenario

Heating Degree Hours shows a Significant Reduction for the Future case scenario reducing the load on heating space appliances. The impact is reduced by mostly 50% for the total Heating load.

Dry Bulb Temperature Hourly Data Variation-

Figure 10 Hourly Reading for 1st week of June & Dec for both Climate type

Graph Comparison shows Temperature Readings on hourly basis for Both Climate Scenarios in the 1st Week of June and December. Hourly Data Comparison for both months shows a significant Increase in Average DBT, touching around 4-5 degree Celsius.

5 °C TEMPERATURE BINNING (Hours)

5 DEC	GREE BINS					DIFFRENCE	DIFFRENCE	DIFFRENCE
						AS TO 2020	AS TO 2050	AS TO 2080
	1990	2020	2050	2080	T (5-10)	-215	-303	-331
T (5-10)	331	116	28	0	T (10-15)	-156	-490	-825
T (10-15)	1155	999	665	330	T (15-20)	1234		
T (15-20)	1197	2431	1280	2397	T (20-25)	-122	-93	-202
T (20-25)	1365	1243	1272	1163				
T (25-30)	2354	2211	1852	1381	T (25-30)	-143	-502	
T (30-35)	1887	2160	2478	2835	T (30-35)	273	591	948
T (35-40)	638	690	902	1336	T (35-40)	52	264	698
T (40-45)	99	153	279	443	T (40-45)	54	180	344
T (45-50)	0	0	4	38	T (45-50)	0	4	38

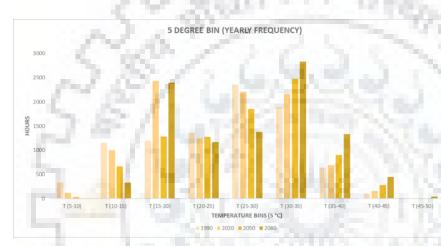


Figure 11 5 Degree Celsius Bins

temperature bins.

Hours have been clearly reducing from the lower temperature bins significantly for every year. These hourly number were increasing in higher temperature bins. Among Higher temperature bins, bin category 0f 30-35 registers higher number of hours increased up to 2080.

DIFFERENCE IN OCCURANCE AS TO STANDARD EPW

Result: 5 Degree Celsius binning shows

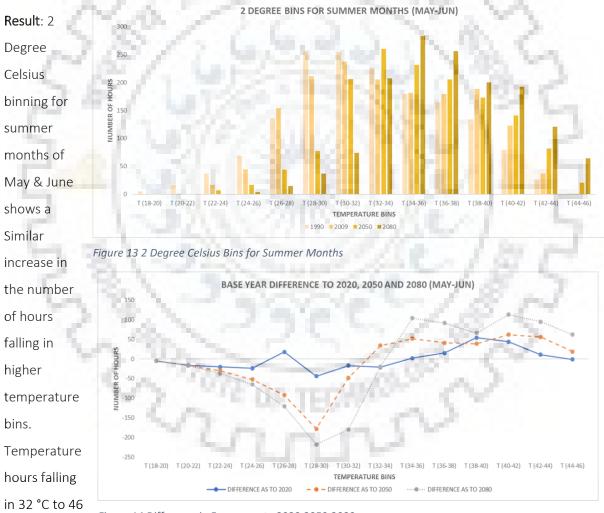
Figure 12 Difference in Frequency as to standard EPW

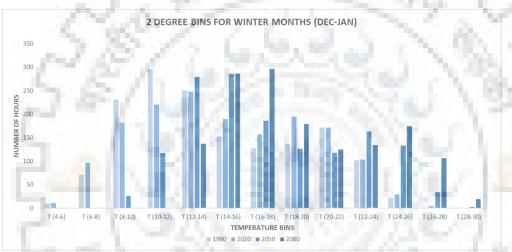
a significant increase in the number of hours falling in higher temperature bins. Temperature hours falling in 30 °C to 45 °C binning has shown a strong increase, which states that future climate temperature occurrences are going to be on higher side.

Number of temperature hours reduced from lower temperature bins and increased to higher temperature bins. It states that the total number of hours are decreasing from cooler temperature bins and increasing into hotter

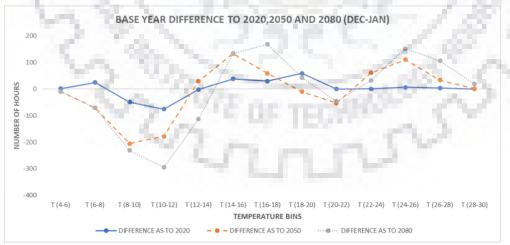
2 °C TEMPERATURE BINNING SUMMER (Hours)

2 DEG	REE BINS FOR S	UMMER M	IONTHS (IV	1AY-JUN)		DIFFERENCE	DIFFERENCE	DIFFERENCE
						AS TO 2020	AS TO 2050	AS TO 2080
	1990	2009	2050	2080	T (18-20)	-5	-5	-!
T (18-20)	5	0	0	0	T (20-22)	-16	-17	-1
T (20-22)	17	1	0	0	T (22-24)	-20	-30	-37
T (22-24)	37	17	7	0	T (24-26)	-24	-52	-65
T (24-26)	69	45	17	4	T (26-28)	18	-92	-121
т (26-28)	136	154	44	15	T (28-30)	-44	-178	-218
T (28-30)	255	211	77	37	T (30-32)	-17	-48	-180
T (30-32)	254	237	206	74		-17	-40	-100
T (32-34)	226	205	260	207	T (32-34)		-	-
T (34-36)	179	181	231	283	т (34-36)	2	52	104
T (36-38)	164	179	205	256	T (3 6-38)	15	41	92
T (38-40)	134	188	173	200	T (38-40)	54	39	66
T (40-42)	79	123	141	192	T (40-42)	44	62	113
T (42-44)	26	37	82	121	T (42-44)	11	56	95
T (44-46)	2	1	21	64	T (44-46)	-1	19	62




Figure 14 Difference in Frequency to 2020,2050,2080

°C binning


has shown a strong increase, which states there is going to an increase in Higher temperature hours in future.

2 °C TEMPERATURE BINNING WINTER (Hours)

	E BINS FOR					DIFFERENCE	DIFFERE
2 DEGRE	E DINS FOR			EC-JAN)		DIFFERENCE	DIFFERENCE
						AS TO 2020	AS TO 2050
	1990	2020	2050	2080	Т (4-6)	2	-9
т (4-6)	9	11	0	0	Т (6-8)	25	-71
Т (6-8)	71	96	0	0	T (8-10)	-49	-205
Т (8-10)	231	182	26	0	T (10-12)	-75	-178
T (10-12)	295	220	117	0	T (12-14)	-2	29
T (12-14)	250	248	279	137	T (14-16)	38	133
т (14-16)	152	190	285	286	T (16-18)	30	59
T (16-18)	127	157	186	296			
T (18-20)	136	195	126	179	T (18-20)	59	-10
T (20-22)	171	171	118	125	т (20-22)	0	-53
T (22-24)	102	103	163	134	т (22-24)	1	61
T (24-26)	22	29	133	174	T (24-26)	7	111
T (26-28)	0	4	34	106	T (26-28)	4	34
т (28-30)	0	0	2	19	T (28-30)	0	2

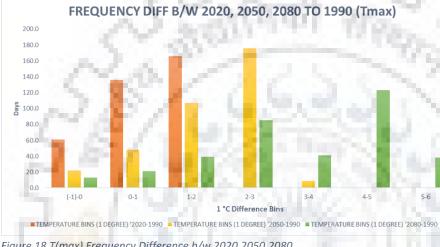
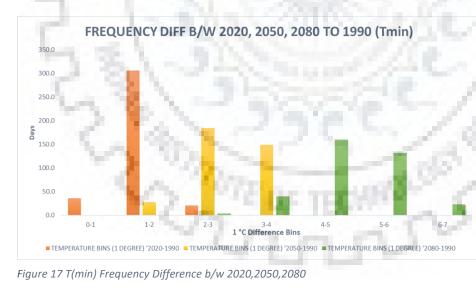

Result: 2 Degree Celsius binning for winter months of May & June shows a Similar increase in the number of hours falling in higher temperature bins. Temperature hours falling in 14°C-18°C t& 22°C-30°C binning has shown a strong

Figure 16 Difference in Frequency to 2020, 2050, 2080


increase, which states there is going to an increase in Higher temperature hours in future.

DAILY TEMPERATURE DIFFERENCE BINNING (Days)

For T(max) BIN CATEGORY	TEMPERATURE BINS (1 DEGREE) '2020-1990	TEMPERATURE BINS (1 DEGREE) '2050-1990	TEMPERATURE BINS (1 DEGREE) '2080-1990	For T(min) BIN CATEGORY	TEMPERATURE BINS (1 DEGREE) '2020-1990	TEMPERATURE BINS (1 DEGREE) '2050-1990	TEMPERATURE BINS (1 DEGREE) '2080-1990
(-1)-0	61.0	22.0	13.0	(-1)-0			
0-1	136.0	48.0	21.0	0-1	36.0		
1-2	166.0	107.0	39.0	1-2	306.0	28.0	
2-3		176.0	85.0	2-3	21.0	184.0	
3-4		9.0	41.0	3-4		149.0	40.0
4-5			123.0	4-5			160.0
5-6			38.0	5-6			132.0
6-7				6-7			2 <mark>3.0</mark>
7-8				7-8	1		

Figure 18 T(max) Frequency Difference b/w 2020,2050,2080

Number of hours in

Result-

temperature difference categories has shown a larger spread into a higher number of temperature difference categories. Data for 2080 shows number of hours falling to a higher difference category. This explains the hourly temperature difference is going to be around 4-6°C for 2080, 2-4°C for 2050 & 1-2°C for 2020.

10% RELATIVE HUMIDITY BINNING (Hours)

10% RH	BINS					DIFFRENCE AS TO	DIFFRENCE AS TO	DIFFRENCE AS TO
						2020	2050	2080
	1990	2009	2050	2080	Т (10-0)	0	0	1
RH (10-0)	0	0	0	1	T (20-10)	-3	-4	61
RH (20-10)	83	80	79	144	T (30-20)	-115	-102	-147
RH (30-20)	536	421	434	389	T (40-30)	-131	-128	-207
RH (40-30)	972	841	844	765	T (50-40)	-198	-179	-184
RH (50-40)	1214	1016	1035	1030			-	-
RH (60-50)	1498	1230	1249	1152	T (60-50)	-268	-249	-346
RH (70-60)	1441	1274	1300	1271	Т (70-60)	-167	-141	-170
RH (80-70)	1587	1382	1428	1324	Т (80-70)	-205	-159	-263
RH (90-80)	1504	1503	1505	1514	Т (90-80)	-1	1	10
RH (100-90)	784	1013	886	1170	T (100-90)	229	102	386

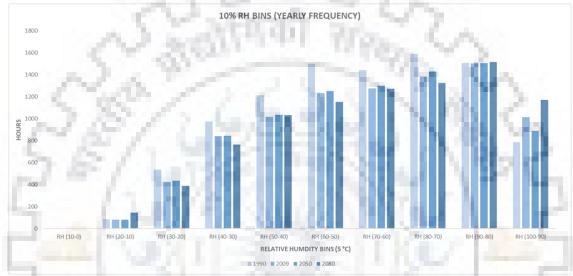
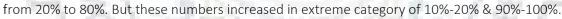
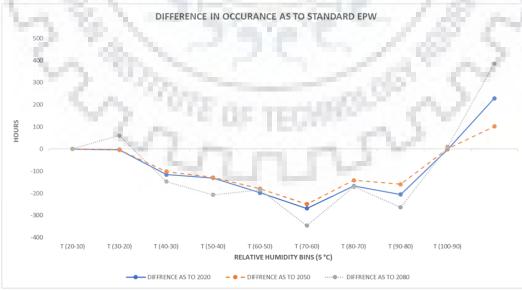




Figure 19 10% RH Bins

RH hours shows a slight reduce in the numbers consecutively from 1990 to 2080, for the categories

Figure 20 Difference in Frequency as to standard EPW

Graph above explains the aforementioned scenario how the hours been increasing in the extreme low and high category of relative humidity, while reducing slightly in all other categories.

Direct Normal R	adiation			
100 W/m2 BINS				
	1990	2020	2050	2080
GH (100-30)	475	480	519	556
GH (200-100)	622	600	623	648
GH (300-200)	572	529	529	527
GH (400-300)	300	423	421	392
GH (500-400)	310	362	356	332
GH (600-500)	329	317	296	282
GH (700-600)	312	277	258	254
GH (800-700)	266	226	230	235
GH (900-800)	210	201	180	178
GH (1000-900)	164	111	101	94
GH (1000 & Above)	238	50	38	32

100 W/m² GHI BINNING (Hours): Direct Normal Radiation GHI BINNING (Hours)

	DIFFRENCE AS TO 2020	DIFFRENCE AS TO 2050	DIFFRENCE AS TO 2080
GH (100-30)	5	44	81
GH (200-100)	-22	1	26
GH (300-200)	-43	-43	-45
GH (400-300)	123	121	92
GH (500-400)	52	46	22
GH (600-500)	-12	-33	-47
GH (700-600)	-35	-54	-58
GH (800-700)	-40	-36	-31
GH (900-800)	-9	-30	-32
GH (1000-900)	-53	-63	-70
GH (1000 & Above)	-188	-200	-206

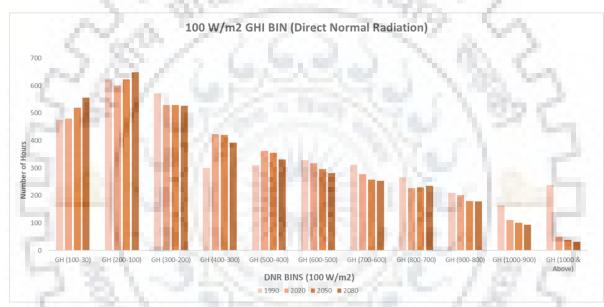


Figure 22 100W/m2 GHI BIN (DNR)

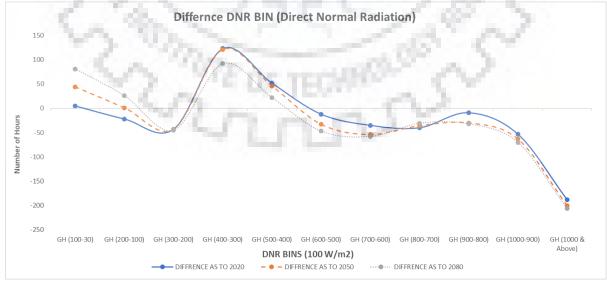


Figure 21 Difference in DNR Bin

100 W/m² GHI BINNING (Hours): Diffuse Horizontal Radiation GHI BINNING (Hours)

Diffuse Horizontal	Radiation			
100 W/m2 BINS				
	1990	2020	2050	2080
GH (100-30)	1050	581	571	556
GH (200-100)	1265	1285	1277	1269
GH (300-200)	782	1035	1038	1035
GH (400-300)	425	641	630	628
GH (500-400)	289	303	327	348
GH (600-500)	11	4	5	9

		DIFFRENCE AS TO 2050	
GH (100-30)	20	12	4
GH (200-100)	253	256	253
GH (300-200)	216	205	203
GH (400-300)	14	38	59
GH (500-400)	-7	-6	-2

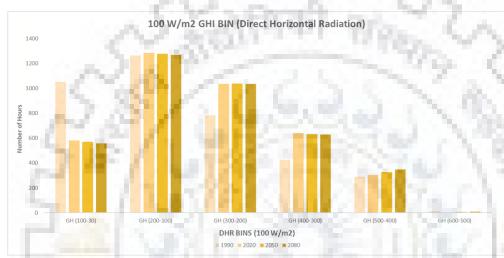


Figure 23 100 W/m2 GHI BIN (DHR)

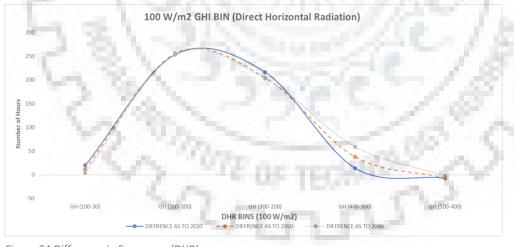


Figure 24 Difference in Frequency (DHR)

Result- Graph above explains that the Number of hours which falls in the category of 600 W/m2 GHI will reduce in numbers for the coming years. For 2020, the number will reduce, then increase for 2050 and then a steep reduction in 2080 again.

(ΔT) DAILY DIFFERENCE IN TEMPERATURE

ΔT	1990	2020	2050	2080	
	14.5	14.4	14.1	13.2	
	15.7	15.7	15.6	14.7	
	15.3	15.3	15.2	14.3	
	14.2	14.2	14.1	13.3	
	12.4	12.4	12.3	11.6	
	14.5	14.5	14.4	13.5	
	14.3	14.3	14.2	13.4	
	14.8	14.8	14.7	13.8	
	16.4	16.4	16.3	15.3	
	14.0	14.0	13.9	13.1	
	14.2	14.2	14.1	13.3	
	14.6	14.6	14.5	13.6	
	15.3	15.3	15.2	14.3	
	12.7	12.7	12.6	11.9	
	15.8	15.8	15.7	14.8	
DEC	15.2	15.2	15.1	14.2	
	14.5	14.5	14.4	13.5	
	14.9	14.9	14.8	13.9	
	12.2	12.2	12.1	11.4	
	11.0	11.0	10.9	10.3	
	12.5	12.5	12.4	11.7	
	13.1	13.1	13.0	12.2	
	11.9	11.9	11.8	11.1	
	11.3	11.3	11.2	10.6	
	7.3	7.3	7.3	6.8	
	7.2	7.2	7.2	6.7	
	12.1	12.1	12.0	11.3	
	14.1	14.1	14.0	13.2	
	13.9	13.9	13.8	13.0	
	15.7	15.7	15.6	14.7	
	19.3	20.8	22.1	23.4	

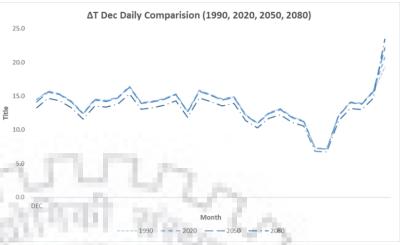
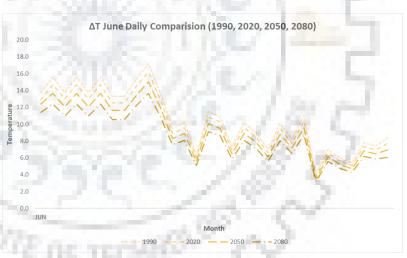



Figure 25 Delta T Daily (December) Δ T is the difference between Maximum and the minimum temperature of the day. It has been observed that daily Δ T for winter months has been shrinking by a magnitude of 1.28 °C, for the winter month of December.

ΔΤ	4000	2020	2050	2000
ΔΙ	1990	2020	2050	2080
	13.8			
	15.6			
	13.8			
	15.6			
	13.8			
	15.6			
	13.3			
	13.3	12.5	11.6	10.6
	15.4			
	17.2	16.2	15.0	13.7
	13.7	12.9	12.0	10.9
	9.5	8.9	8.3	7.5
	10.2	9.6	8.9	8.1
	6.4	6.0	5.6	5.1
JUN	11.5	10.8	10.0	9.1
JUN	10.9	10.3	9.5	8.7
	7.4	7.0	6.5	5.9
	10.2	9.6	8.9	8.1
	9.0	8.5	7.9	7.1
	7.0	6.6	6.1	5.6
	10.1	9.5	8.8	8.0
	8.2	7.7	7.2	6.5
	11.0	10.4	9.6	8.7
	4.0	3.8	3.5	3.2
	7.0	6.6	6.1	5.6
	6.0	5.7	5.2	
	5.4	5.1	4.7	4.3
	7.8			
	7.4			
	8.4			

- Figure 26 Delta T Daily (June)
- Daily ΔT for the summer month of June for every consecutive year
- has been shrinking by a magnitude of 2.4 °C.

CLIMATE CLUSTER ANALYSIS

Climate clusters have been prepared by considering 4 factors affecting change in climate severity, i.e., T_max (Daily), T_min (Daily), Rh_avg (Daily) & GHI_avg (Daily). Considering data values for all these parameters, all 1460 data points have been grouped into 9 clusters. each cluster has a total of 160 data points. following a similar pattern, 9 clusters for 1460 data points are prepared. every cluster has unique mean daily parameter values, different from each cluster. these clusters are later identified into three seasons (Summer, Monsoon & Rainy) based on parameter weight. clusters having highest T_max (Daily) & T_min (Daily) are classified into summer & winter months. cluster with clusters with high RH_avg (Daily) & low GHI_avg (Daily) classified into monsoon clusters. every season is assigned 3 clusters, divided into severe, moderate and low. clusters in summer, monsoon, and winter seasons have been categorized as pre-summer, summer, post-summer, pre-monsoon, monsoon, postmonsoon, pre-winter, winter & post-winter.

1990	a /								
CLUSTER	7	8	1	6	2	3	4	5	9
SIZE (Days)	76	70	68	45	37	25	24	19	1
Tmax	22.61	29.26	34.83	31.85	38.56	40.45	33.32	18.23	31.6
Tmin	9.19	14.75	26.02	24.63	27.19	25.93	20.05	10.97	18
GHIavg	373.15	443.58	455.33	368.49	520.86	610	560.31	260.82	280
Rhavg	69.29	58.23	65.64	77.51	52.53	38.37	39.97	84.12	51.26
2050	1000					1			1
CLUSTER	3	5	9	2	8	4	7	1	6
SIZE (Days)	84	63	56	41	41	32	31	16	1
Tmax	35.33	30.91	25.24	40.22	23	36.87	32.65	43.54	33.7
Tmin	28	17.27	11.74	29.67	13.95	23.33	27.62	31.2	20.9
GHlavg	411.86	435.99	382.92	503.62	296.37	553.39	333.19	608.31	310
Rhavg	71.31	61.46	65.05	53.31	80.06	39.04	85.37	38.42	55.65

Figure 27 Climate Data Grouped into 9 clusters.

Seasonal clusters prepared for comparing how base year's (1990 ISHRAE) climate severity nodes are getting affected when compared with seasonal clusters of extrapolated climate data of 2050.

Through this analysis, we tried to find out

- By what magnitude the number of days will shift when seasonal clusters of 1990 compared with 2050.

- How Energy consumption is changing per cluster?

- How days shifting among cluster is impacting energy consumption among the clusters?

		SEVERE		MODERATE		LOW	
		1990	2050	1990	2050	1990	2050
SUMMER CLUSTER		3(25)	1(16)	2(37)	2(41)	4(24)	4(32)
	Tmax	40.45	43.54	38.56	40.22	33.32	36.87
	Tmin	25.93	31.2	27.19	29.67	20.05	23.33
	GHlavg	610	608.31	520.86	503.62	560.31	553.39
	Rhavg	38.37	38.42	52.53	53.31	39.97	39.04
		1990	2050	1990	2050	1990	2050
WINTER CLUSTER		7(76)	9(56)	5(19)	8(41)	8(70)	5(63)
	Tmax	22.61	25.25	18.23	23	29.26	30.91
	Tmin	9.19	11.67	10.97	13.95	14.75	17.27
	GHlavg	373.15	383.88	260.82	296.37	443.58	435.99
	Rhavg	69.29	64.99	84.12	80.06	58.23	61.46
		1990	2050	1990	2050	1990	2050
RAIN CLUSTER	100 Barr	6(45)	7(31)	9(1)	6(1)	1(68)	3(84)
	Tmax	31.85	32.65	31.6	33.7	34.83	35.33
	Tmin	24.63	27.62	18	20.9	26.02	28
	GHIavg	368.49	333.19	280	310	455.33	411.86
100 C	Rhavg	77.51	85.37	51.26	55.65	65.64	71.31

Figure 28 Clusters Identified into Seasonal Clusters

Change in the number of days has been shifting from the 1990 seasonal cluster to the 2050 seasonal cluster.

following daily data clustering for the base year 1990 & 2050, it has been observed that there is a significant shift in the number of days among seasonal clusters. when clustered days among different seasons for the base year 1990 was compared with extrapolated weather data of 2050, it was found out that a slight decrease in the number of days from winter season clusters of 2050. This decrease in number from winter clusters are unequally compensated into summer & monsoon clusters. a total of 5 number of days from winter clusters of 2050 has shifted. unequal compensation of 3 days to summer clusters & 2 days to winter clusters.

further breaking down these seasonal clusters, each seasonal cluster is further categorized into severe, moderate & low impact subcategories. a similar pattern of change is noticed among subcategories of every season. when these impact categories of the 2050 year were compared with 1990, it is noticed that the number of days from a severe impact category of each cluster has reduced. this reduction of days from severe impact category is compensated into moderate & low impact categories. severe impact category, or also termed as severe summer cluster, (25 days), when compared with severe summer cluster (16 days) of 2050, a reduction of 9 days. similarly, severe impact clusters of winter & monsoon season show similar behavior, with a reduction in several days, 14 days for monsoon severe category & 20 days for severe winter category. another important behavior noticed is that where the number of days is reducing from severe impact category of each season, these difference in numbers are shifted into moderate & low impact categories of these seasons.

1990			2050				
Seasons	Clusters	Days	Seasons	Clusters	Days		Shifting Days
Summer	4 (Low)	24	Summer	4 (Low)	32		
Season	3 (Severe)	25	Season	1 (Severe)	16		3
JEason	2 (Moderate)	37	5685011	2 (Moderate)	41		
Monsoon	1 (Moderate)	68	Monsoon	3 (Moderate)	84		
Season	6 (Severe)	45	Season	7 (Severe)	31		2
Jeason	9 (Low)	1	Jeason	6 (Low)	1		
Winter	5 (Moderate)	19	Winter	8 (Moderate)	41		
Season	7 (Severe)	76	Season	9 (Severe)	56	<u></u>	-5
Jedson	8 (Low)	70	3683011	5 (Low)	63	1	

Figure 29 Cluster days Comparison

from the analysis above, it has become clear that

 The number of days is shifting from winter clusters, and are compensated into summer & monsoon seasons.

2) It is obvious that

climate parameters extremes

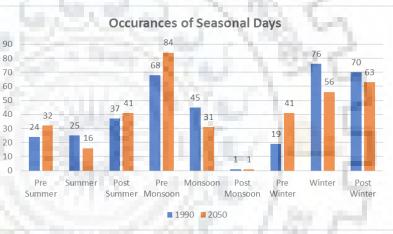


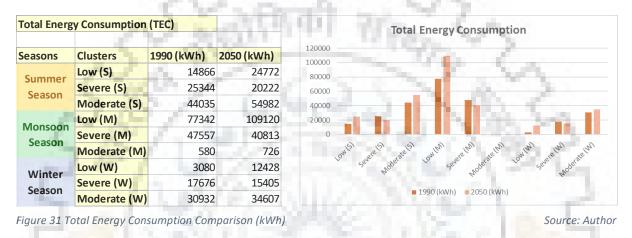
Figure 30 Clustered Days Comparison

Source: Author

are rising in each cluster, total number of days experiencing these extremities for 2050, when compared with the data of 1990, shows that the days from severe impact category has reduced from every seasonal cluster, which implies that climate extremes will keep on rising, but with less number of severe impact days & more number of moderate to lower impact days.

Energy Consumption per Cluster

to understand how the energy consumption of an office building is changing when seasonal clusters of 2050 were compared to 1990, an ECBC prescribed base case modeled in the design-builder was simulated for the base year of 1990 & for 2050. Daily energy consumption values of the respective year were associated with seasonal clusters of the same year. The energy impact for each cluster was calculated by summing up the energy consumption values associated with perspective clusters, to find out the impact of the respective cluster on total energy consumption of the cluster.


Source: Author

Analysis of the seasonal impact on energy consumption was done in two ways.

- 1) Comparing total energy consumption of 1990 & 2050
- 2) Comparing average energy consumption for 1990 & 2050.

Comparison through Total Energy Consumption (TEC)

Simultaneous comparison between change in the number of days & change in energy consumption shows a similar pattern. energy consumption changes as the number of days shift among the cluster. energy consumption increases when the days' increase, it reduces as the number of days reduces.

Comparison through Annual Energy consumption (AEC)

Average energy consumption explains the energy consumed per day in a seasonal cluster. The total energy consumption of each cluster of the respective year was distributed among the day's belonging to different clusters to find out the average energy consumed in a cluster per day. it is observed that clusters with higher energy consumption average are identified as summer, post-summer, pre-monsoon & monsoon, and clusters with lower average energy consumption for pre-summer, post-summer, post-monsoon, pre-winter, winter, post-winter.

Average End	Average Energy Consumption (AEC)							
			1. A.					
Seasons	Clusters	1990 (kWh)	2050 (kWh)					
Summer	Low (S)	619	774					
Season	Severe (S)	1014	1264					
Season	Moderate (S)	1190	1341					
Monsoon	Low (M)	1137	1299					
Season	Severe (M)	1057	1317					
Jeason	Moderate (M)	580	726					
Winter	Low (W)	162	303					
Season	Severe (W)	233	275					
Jeason	Moderate (W)	442	549					

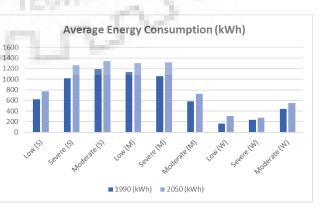


Figure 32 Average Energy Consumption Comparison (kWh)

Energy consumption affected by shifting days among seasonal clusters

On comparing the relationship of change in shifting days among seasonal clusters with total energy consumed by such cluster, it is found out that total energy consumed has a positive relationship with the change in numbers. As the number of days reduces in a cluster, the total energy consumption also reduced with it, & vice versa.

Days					Total Energy Con	sumption (TEC)	
Seasons	Clusters	Days (1990)	Days (2050)	Diffrence	TEC 1990 (kWh)	TEC 2050 (kWh)	Rise (kWh)
Summer	Low (S)	24	32	8	14866	24772	9906
Season	Severe (S)	25	16	-9	25344	20222	-5123
Season	Moderate (S)	37	41	4	44035	54982	10947
Monsoon	Low (M)	68	84	16	77342	109120	31779
Season	Severe (M)	45	31	-14	47557	40813	-6744
Season	Moderate (M)	1	1	0	580	726	146
Winter	Low (W)	19	41	22	3080	12428	9348
Season	Severe (W)	76	56	-20	17676	15405	-2271
Season	Moderate (W)	70	63	-7	30932	34607	3675

Figure 33 TEC Relationship with Shift in days

On the contrary, when average energy consumption was compared with the shifting days among the clusters, it shows close to no revelation with an increase or decrease in number, reduction & increase in the number of days doesn't have any impact on the change in average energy consumption. this comparison shows that actual energy consumption per cluster per day will keep on increasing year by year. However, change in the number of days among different clusters may impact the Actual energy consumption by increasing & decrease the magnitude, but can never bring it down below zero.

Days	(Average Energy	Consumption (A	EC)
Seasons	Clusters	1990 2050)	Diffrence	AEC 1990 (kWh)	AEC 2050 (kWh)	<mark>Rise (kWh</mark>
Summer Season	Low (S)	24	32	8	619	774	155
	Severe (S)	25	16	-9	1014	1264	250
	Moderate (S)	37	41	4	1190	1341	151
Monsoon Season	Low (M)	68	84	16	1137	1299	162
	Severe (M)	45	31	-14	1057	1317	260
	Moderate (M	1	1	0	580	726	146
Winter Season	Low (W)	19	41	22	162	303	141
	Severe (W)	76	56	-20	233	275	43
	Moderate (W	70	63	-7	442	549	107

Figure 34 AEC Relationship with shift in days

CASE STUDY - DEVELOPMENT ALTERNATIVES WORLD HEADQUARTERS

Architecture	Ashok B. Lall Architects,					
	New Delhi					
Site Location:	New Delhi, Qutab					
	Institutional Area					
Climate:	Tropical, composite					
Construction Period:	November 2005					
	to November 2008 (est.)					
Building type:	Institutional	Figure 35 DA Headquarters Building, New Delhi				
11.6	headquarters	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Building volume:	Basement: 5,479m3; superstructure: 10,160m3					
Maximum number		S.J. N.25, M				
of occupants:	Workplaces: 245; visitors: 210					
Mechanical systems:	Hybrid cooling, evaporative and refrigerant modes					
Development Alternatives World Headquarters, Outub Institutional Area, New Delhi, has been						

Development Alternatives World Headquarters, Qutub Institutional Area, New Delhi, has been construction of November 2005 to November 2008. It sits in a composite climate of tropical region, in an urban setting with forest bordering.

DA Headquarters falls into the category of institutional Headquarters/Office Building with 5 floors and 1 basement an occupancy of 250+ and a parking space of 18 cars and 30 motor cycles in basement garage 9 cars and 12 motor cycles on grade. Construction has been done with reinforced concrete frame, Masonry walls (cement stabilized compressed earth blocks, & cement stabilized fly ash lime gypsum blocks.

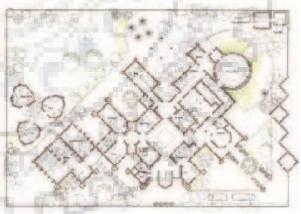


Figure 36Labrynth Floor Plan or original Building

The establishment is the nerve center of world Development Alternatives and is named on the basis of its primary objective which is to deliver the sustainable building alternatives for urban development.

DA stood in need of more capacious region by the year 2006 to occupy 150 to 200 occupants. Therefore, in order to form required space, DA was ordered either to undergo for its demolishment or to opt for an upward or lateral building expansion or to look for an additional office area to any other location.

Inclusive Design process

To obtain required objectives, suitable design briefs, related consents, the architects made a discussion with all the representatives and staff of DA. The future occupants were so much concern about the impact of building on environment and components of nature and other aspects of mankind. They were thinking of constructing the building in a way that it can deliver the experience of nature. They were to be embracing the elements of flora and fauna. Unfinished and more environmental centric surfaces were chosen. The building plan should be convenient for both the urban and rural visitors.

New building in the same spirit

The architect along with the team reached to a conclusion of building new establishment prevailing the essence memory and of authentic property. All its components and designs, the old domed lobby, vaulted ceilings courtyard and in center reflects the essence of old building. The presence of a tree at the main entrance has clearly reflected the essence of old building in the new one.

Figure 37 First Floor Plan

Space & Materials used

On the contradiction to the accepted and established industrial architecture of glass and metal, DA world headquarter demonstrated the importance of low embodied energy materials in constructing more advantageous urban buildings.

Reduced gray energy

Despite of the fact that there are no suitable requirements lay down by building codes for the conservation of gray energy, the architects have focused upon the energy consumption in construction methods. Recycled and renewable substances followed by natural materials were opted. Highly

embodied energy materials were used productively where it was crucially required.

Most of the inner and outer walls constructed by cement are stabilized compressed earth or fly- ash lime gypsum block. The curtain wall is primarily constructed by strengthened thick sheet of glass which is said to an elementary building be material of modern architecture. For constructing windows of DA building, Lall opt to use small panes of five- millimeter glass similar to the structural glazing. The lesser the use of reused glass, the lesser will be the thickness of glass.

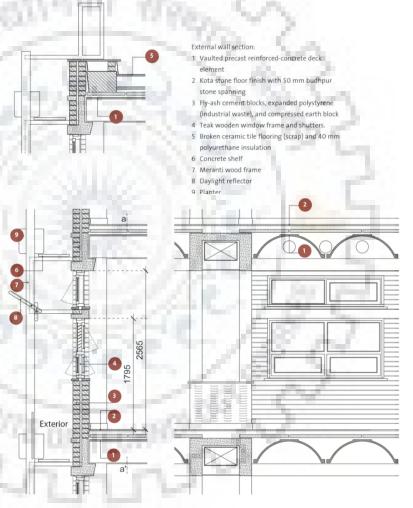
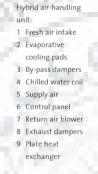


Figure 39 External Wall Section

Low energy through Passive cooling


The application of Lal tends to regulate the thermal gain abstracted from the vernacular architecture. Initially the establishment is considered to be opaque, then he located light, ventilation and view openings. Glaring is used at an area of about twenty or less percentage of the envelope. Shading of windows is done during warm climatic conditions. The windows facing towards east and west direction are constructed with a small size and shades are placed to block intense sunrays.

Following types of glazing are used in building

- (1) fixed insulating glass panels with a 16 mm air space,
- (2) operable windows with insulating glass with a 16 mm airspace, and
- (3) windows consisting of a fixed single-pane outer panel and an operable inner sash, with an adjustable venetian blind in between

Heating, Ventilation & Air Conditioning (HVAC

Direct and indirect evaporation cooling systems would be utilized to control dryness in an extreme hot weather. Similarly, in an extreme humid climate, refrigerant cooling would be used. There is an

unavailability of such systems in Indian markets which gave Lal an option to develop its first model by

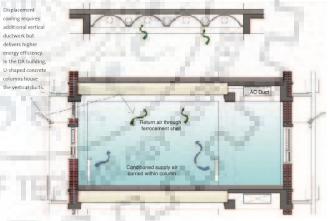


Figure 41 Displacement Cooling Techniques installed

working with conditioning specialists. The consultants arranged the whole cooling system as per Lal's office and converted the whole system into a single packed unit which could be better suited with the architecture.

Design Process Research & Development

It is the most feasible alternative for accomplishing the project and to assess its loopholes. Required alterations can be done on the $_{Figure \ 42 \ Hybrid \ Air-Handling \ Unit}$

basis of certain technical, suitable procedures which deliver estimated results to take the rest of the process in an appropriate direction.

All the lights, casements, Venetian blinds, fans are controlled by the employees of DA as per the climatic conditions. Therefore, it is necessary for the employees to identify the functioning and importance of windows and shades in controlling building's environmental temperature

Water conservation

All the estimations related to water conservation in the establishment of DA had to be done at low price. Provision of drinking water is conducted by municipality network which is not unreliable. Therefore, an onsite well was considered as an alternative.

All cost-effective methods such as sand, biomimetic multilayer water purification procedures are utilized for rural areas by DA for rural areas.

Along with it, the waste water treatment is completed with the help of onsite biological digesters that are being timely charged by particular pathogens. The biologically treated water is reused after filtration in flush away toilets and watering plants. The plants are watered by the means of drip watering system which irrigate root of the plants through small volume of water.

Economic value

The economic value has always been the most critical element of the whole project. It needs to be started earlier than the completion of funding process. The value of designs was reduced with an inclusion of simpler techniques of experimenting in the replacement of a detailed and complicated study. The price of constructing building was cut down by defining the most reasonable materials with a simpler method of construction was used. Yet they declined the construction of a cut price building. 2225

ROLD CL

Elevation & Sectional Details

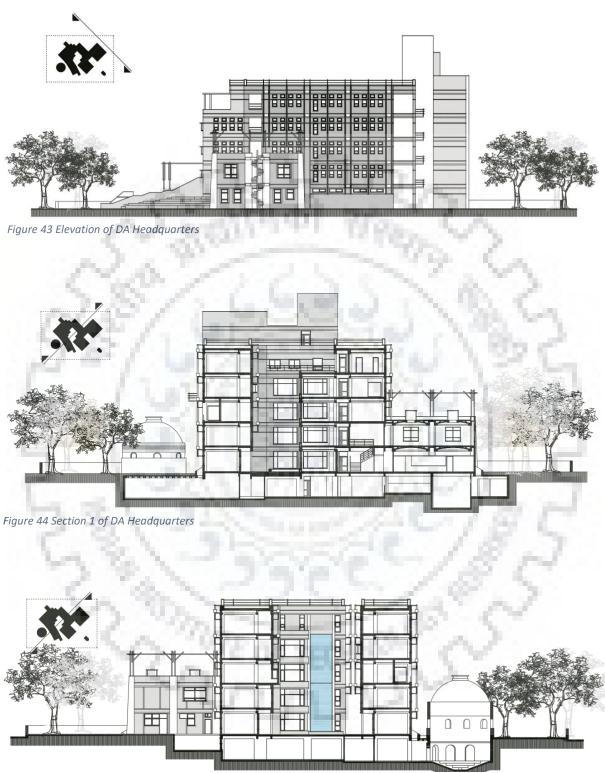


Figure 45 Section 2 of DA Headquarters

SITE STUDY OBSERVATIONS

Materials used -

Materials used are ferro cement concrete, Mud bricks, Red brick, fly ash bricks, terracotta cladding tiles, kota stone for the flooring, broken sanitary tiles for roof, Reused wood from the old project lowering the embodied energy of the structure. Certified plantation wood from Nagpur. Glass

Figure 46 Kota stone Floor partitions made up of embedded steel wires for fire safety purposes.

Figure 47 Sanitary tiles on Roof

Figure 48 Fly ash & Red Mud Brick

Design Observations -

- Building is constructed of 5 levels, starting from Ground floor giving access to Basement & first floor, second floor and third floor.
- Circular stepped unit is for the purpose of Reading along the future basement library. Currently, basement is used for storage and parking purposes.
- All three upper floors have been superimposed with similar floor pattern (with difference in furniture layout on all three floors).
- Hybrid Air conditioners have been installed on roof to take care of the floor conditioning. Use of water as a refrigerant during winters, and coolant during scarcity of water during summers.

Figure 49 First floor Workspace

Figure 50 Reading space beside library

Figure 51 Ground floor Cafeteria

• Each floor has a floor specific HVAC control room unit which takes care of the HVAC cooling specific of each floor.

Figure 53 Conference room 3rd floor

Figure 52 Hybrid AC Split unit Figure 54 Roof without Solar panels

- No solar panels installed on the roof of the building as stated earlier in the description.
- Light wells on the roof of the conference above the ground cafeteria to reduce day light energy consumption.
- Occupants have been asked to acclimatize according to increase thermal comfort temperature to further reduce down the energy consumption of the building.

Figure 56 Cafeteria & conference area

F<mark>igure 55</mark> Facade installation for plants

- Each floor has a small balcony area attached to its workspace that is incorporated to make occupant feel the transition between the outside temperature with inside workspace.
- Installation on the external façade of every window is built for the purpose of catering plants and creepers. Now they are solely used for the purpose of maintenance.
- Ceiling reflectors have been installed outside the windows to reflect outside light inside the ceiling.

Figure 58 Ceiling light reflectors

Figure 57Balcony attached to each floor

- Inner courtyard has a wall which is used for water to flow down on it to the ground floor tank, creating a waterfall effect which lowers down the courtyard temperature by increasing humidity. Mostly rain water is used for this purpose.
- Sanitary tiles pieces have been used as flooring material on roof to reflect most of the heat & light.
- Masons have been given the freedom to creates aesthetic patterns on the brick cladding & the mud plaster.

Figure 59 Light wells on roof

Figure 60 Reused wooden frame

U-Value Calculation for External wall (Development Alternative World Headquarters)

t1

t2

t3

m2.k/W

m2.k/W

W/m2. K

U-Value of Fly Ash Brick Block (**R1**) U-Value of Extended Polystyrene (**R2**) U-Value of Brick Blocks (**R3**) Thermal Resistance of Outer Surface (**Ho**) Thermal Resistance of Inner Surface (**Hi**)

0.856 W/m.K

0.0321 W/m.K

0.771 W/m.K

1.246106

19.86 W/m.K

9.36

1.681868

0.594577

0.132009346 m2.k/W

0.146562905 m2.k/W

W/m.K

k1

k2

k3

R1

R2

R3

Но

Hi

Rt

Ut

- R= Thermal Resistance of materialk= Thermal Conductivity of material
- U= Thermal transmittance of material

0.113 **m** (where t = thickness of the wall) 0.0275 **m**

0.113 **m**

(where R = t/k)

(where Rt = R1+R2+R3+1/Ho+1/Hi)

(where Ut = 1/Rt**)**

So, U-Factor of External wall is 0.5945 W/m2.K

BUILDING MODEL & SIMULATIONS FOR DA HQ BUILDING

Various existing buildings in the region of National Capital region were considered to be taken as a live case stud. among these examples, Development Alternatives world Headquarters was finalised because if its recognition for the use of many green passive and active strategies to bring down the overall energy consumption of the building, which the building claims to be 25-30% less than any similar typical building.

About the Building

Development alternatives World HQ, designed by Architect Ashok B. Lal is famous for its energy saving climate resilient design strategies. This building has been selected as a case study for this dissertation as a representative office building in the city of new Delhi.

Constructed in 2008, has a total built-up area of 4500 sqm., is a G+5 floor construction. Materials used are fly ash cement blocks for most of the external façade, with double glazed 6mm glass window. Uses a hybrid HVAC system, mix of Evaporative cooling and refrigerant cooling.

Thermal Properties

U-factor of external wall, roof and window glazing has been taken into consideration according to the material and requirements used on the actual building.

- U- Value for External wall- 0.594 W/m2.K
- U- Value for Roof- 2.930 W/m2.K
- U- Factor window-

SHGC- 0.697

VLT- 0.78

U- Value- 2.708 W/m2.K

3-D Modelling of Development Alternatives World Headquarters, New Delhi.

Model for this building has been designed energy plus tool, Design Builder to Quantify the impact of energy consumption for 1990, 2020 & 2050. This building thermal properties,

shading installed and wall profile has been incorporated in detail to get accurate energy consumption Data.

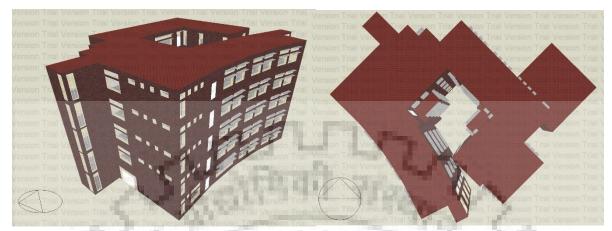


Figure 62 Design Builder model of DA world Headquarters, New Delhi

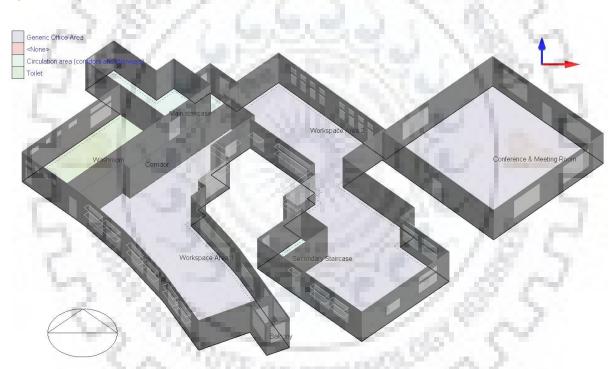


Figure 61 Typical Floor plan of DA Building, New Delhi

Energy consumption Data Analysis for Base year (1990) with Morphed future years (2020 & 2050) has been done in the later chapter of Analysis and Discussion. energy consumption of Energy plus tool simulated model of DA headquarters done on the basis of comparing Heating energy demand, cooling energy demand & Total HVAC energy.

Development Alternatives Building Model Energy Consumption Validation

1997 B.

.

To validate the Energy performance of the Design Builder Generated model of DA Building, New Delhi, Last three years of Actual Energy Consumption Data has been provided by the DA building Administration. Collective Mean Monthly Energy consumption for 2016, 2017, 2018 has been taken derive out Average of actual energy consumption for all three years. This monthly mean and annual average data used to validate the Simulated DA Building Model Energy Consumption Data for year of 2020, extrapolated from the 1990 ASHRAE weather file.

Months	Consumption in 2016-17 (kWh)	Consumption in 2017-18 (kWh) C	Consumption in 2018-19 (kWh)
April	35802	33132	25074
May	40212	41994	35328
June	41556	40434	38976
July	38496	41874	39184
August	36402	37008	36284
Sept	33996	35584	25694
October	24180	23154	18988
November	15480	13716	10626
December	19956	20010	26998
January	31228	28609	25502
February	17970	20435	21132
March	23562	10968	17770
Total	358840	346918	321556

Table 2 Actual Energy Consumption Data, DA Building.

Source: DA Building Administration

100	Actual monthly Mean (kWh)	Simulated energy in 2020 (kWh)	Difference in Units (kWh)
JAN	28446	28004	-443
FEB	19846	7558	-12287
MAR	17433	12475	-4958
APR	31336	21157	-10179
MAY	39178	36356	-2822
JUN	40322	38900	-1422
JUL	39851	38271	-1581
AUG	36565	42333	5768
SEP	31758	35972	4214
ОСТ	22107	22801	694
NOV	13274	10026	-3248
DEC	22321	19027	-3295
TOTAL	342438	312879	-29559

Table 3 Simulated Energy Data in 2020 validation with Actual monthly Mean Data (2016, 2017, 2018)

Comparison between simulated vs Actual energy consumption Data shows **91.37%** similarity with the performance of simulated Design Builder Generated Energy Model. Monthly Data comparison shows Simulated Model is working strikingly similar with the summer and monsoon months (May to Oct) with **102.31%** similarity, while winter months (Nov to Apr) works in cohesion with **74.06%** efficiency.

MODELLING 5 TYPICAL MID SIZE OFFICE BUILDING LAYOUTS

To identify Typical office Layout used in Indian context, a set of 50 existing Plan forms for Office buildings referred. These Building plan forms were selected on the basis of different shape forms, and Different Service Cores. For example, Square, Rectangle, circular etc., in shape forms; & single service core and multiple service core system, in differential service cores.

Plan forms Referred for Deriving out Typical Office layouts are Given Below.

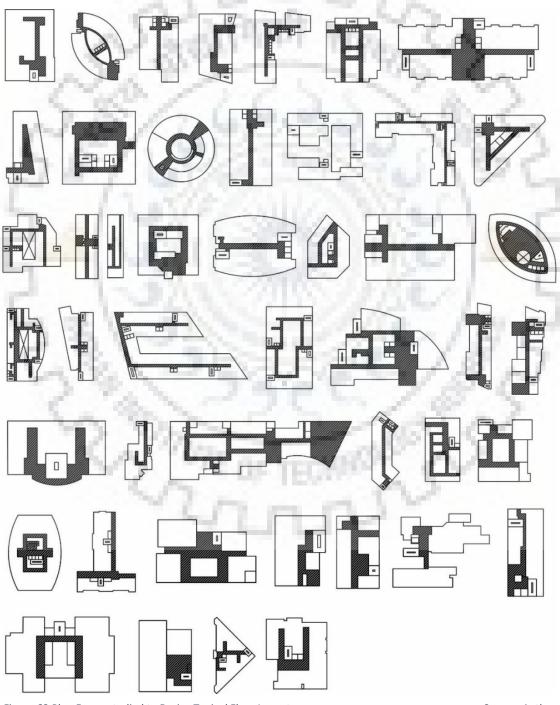


Figure 63 Plan Forms studied to Derive Typical Floor Layout

Source: Author

Identification of 5 typical office layouts

1. Square Layout

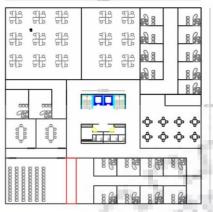
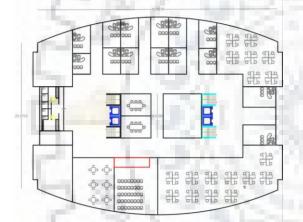



Figure 64 Typical Square Layout

3. Curve Layout

5. Triangle Layout

Figure 68 Typical Triangle Layout Source:Author

2. Rectangle Layout

Figure 65 Typical Rectangle layout Sour

Source:Author

4. U Shaped Layout

Figure 66 Typical U Shape Layout Sc

Source:Author

Modelling 5 base cases layout

Various Existing plan forms have been studied and 5 typical layouts for a small sized office building. To study the effects of climate type on the energy performance of every typical building layout, a model for has been prepared in Energy Plus's Design Builder for each Building layout type. Every Base model have been equipped with ECBC prescribed values for a small size office building.

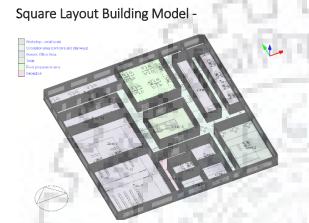
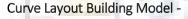



Figure 70 Square Typical Floor Model

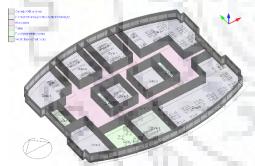


Figure 72 Curve Typical floor Model

U Shape layout Building Model -

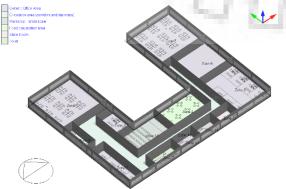


Figure 73 U Shape Typical Floor Model

Rectangular layout Building Model -

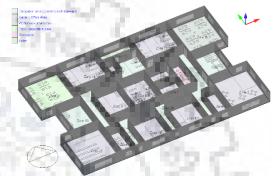


Figure 69 Rectangle Typical floor Model

Triangle Layout Building Model -

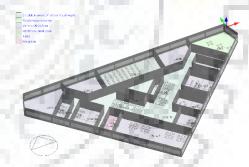


Figure 71 Triangle Typical floor model

Area & occupancy

Area of the Derived typical Office Layout has been limited to 1600 sq.m Most of the Existing Office Building has been constructed in the range of 1600 sq.m Another reason to set this limit to 1600 sq.m is that it makes it feasible to carry Energy and Heat Gains analysis on the Typical floor Layouts. Occupancy of a small size office building according to NBC is prescribed to be 1 per 10 sq.m So, occupancy of the office space is limited between 130 and 150.

ENVELOPE SERVICES PRESCRIBED IN ECBC FOR BASE CASE OFFICE BUILDING

The main provision of energy building code inhibits minimum consumption of energy for designing and construction purpose. In addition to this, it also includes developmental requirements for attaining high level of energy efficiency for buildings.

All the Typical Office Layouts has complied with the mandatory provisions for a base case small sized office building in ECBC

Base Case Values Mentioned for a small Size office layout are discussed below;

ECBC Prescriptive values for Base Case Standard

Daylighting:

For a small size office Building Case, ECBC prescribes minimum 40% of daylighting to enter into the envelope.

Window to Wall Ratio:

Prescribed WWR for a base case should not be more than 40%.

Visual Light Transmittance:

Minimum 0.27 of the Light Transmittance is allowed in ECBC base case office type.

U- Values:

Roof- for a composite Climate type, U-Value Should not be more than 0.33

External Walls- for a composite Climate type, U-Value Should not be more than 0.63.

Window- U-Factor – 3.0 w/m2k

SHGC – Non-North – 0.27

North > 15 Degrees – 0.5

North < 15 Degrees – 0.27

HVAC System for a Base Case Design

Building with less than or equal to 12,500 sqm of conditioned area

System B-

System type - VRF (Variable Refringent flow)

Fan Control – Constant Volume

Cooling type – Direct Expansion with air cooled condenser

Heating type – Heat pump

Scheduling for Lighting & HVAC

Scheduling for Lighting & H	IVAC	5
Table 4 HVAC & Lighting Schedule	Marrison all	200
Business - Office	1.2.2.2	12. M.
Time Period	HVAC Fan Schedule (On/Off) Daytime Business	External Lighting Schedule
00:00 - 01:00	0	0.80
01:00 - 02:00	0	0.80
02:00 - 03:00	0	0.80
03:00 - 04:00	0	0.80
04:00 - 05:00	0	0.80
05:00 - 06:00	0	0.80
06:00 - 07:00	0	0.00
07:00 - 08:00	1	0.00
08:00 - 09:00	1	0.00
09:00 - 10:00	1	0.00
10:00 - 11:00	1	0.00
11:00 - 12:00	1	0.00
12:00 - 13:00	1	0.00
13:00 - 14:00	1	0.00
14:00 - 15:00	1	0.00
15:00 - 16:00	1	0.00
16:00 - 17:00	1	0.00
17:00 - 18:00	1	0.00
18:00 - 19:00	1	0.80
19:00 - 20:00	1	0.80
20:00 - 21:00	1	0.80
21:00 - 22:00	1	0.80
22:00 - 23:00	0	0.80
23:00 - 24:00	0	0.80

BASE CASES ENERGY CONSUMPTION SIMULATION ANALYSIS

After creating models for each typical office floor plan, every Design builder model is equipped with the prescribed values from ECBC 2016 for making a standard design Office building following basic requirements. Every model after fulfilling the basic requirement is simulated against the New Delhi climate, and simulation results for cooling load, heating load, system loads and space gains in Kilo Watt Hours (kWh) measured monthly for the period of one year.

Energy benchmark of commercial buildings (BEE)

Data has been accumulated from 1160 commercial establishments through random sampling across all climatic zones which included offices, hotels, hospitals, BPOs and malls. As a part of analysis, it has been observed that centralised air-cooling chiller systems have been used by small- sized buildings which inhibits comparatively higher **EPIs**.

Moreover, additional research and studies need to be conducted to analyse the co- relation between EPI and other components affecting or influencing energy performance of a building.

However, further studies would be required to establish the co-relation between EPI and various factors impacting the energy performance of a building.

ENERGY PERFORMANCE INDEX OF BASE CASE

Energy performance Index Benchmarking has been formulated by Building Energy Efficiency, India. It recommends the acceptable limits on the energy consumption in commercial buildings. For office building, domain has been set between **86 to 179 kWh/m2/yr,** for composite climates.

Climate Zone	Less than 50% AC	More than 50% AC
1	EPI (kWh/m²/yr)	1
Warm & Humi d	101	182
Composite	86	179
Hot & Dry	90	173
Moderate	94	179

Figure 74 EPI BEE Benchmarking for Commercial Building

CASES	Energy Consu	mption Annually
	kWh/yr	kWh/m2/yr
		(Area: 1600 sq.m.)
SQUARE	200750.20	125.47
RECTANGLE	196996.24	123.12
CURVE	220292.29	137.68
TRIANGLE	182389.49	113.99
U-SHAPED	201195.34	125.75

Table 5 Base Case Models Energy Performance Index

All 5 Building layouts, when Base 1990 ASHRAE weather file energy Consumption Data Compared with BEE Issued Energy performance index Bench-marking, EPIs for all 5 building layouts satisfied the domain of **86 to 179 kWh/m2/yr**.

IMPROVEMENT STRATEGIES

Various Parameters play important part in affecting the HDD and CDD of a building envelope. Throughout the world, there are various factors identified which affects the energy and thermal comfort of buildings; for ex – Aspect ratio, Window to Wall Ratio, Shading Devices, Orientation and Glazing. Out of given 5 factors, this study is taking 3 most important factors as building energy performance improvement strategies, they are-

1. U-Value (External Wall)

Optimization carried on by estimating the best U-Value, which in turn can bring down the energy consumption of year 2020 & 2050 at same level with the energy consumption of the Base Year (1990). This Process of achieving the desired U-Value which brings down the energy consumption of the base case model is by Trial & error Method.

2. SHGC

Optimization carried on by estimating the best range of SHGC value, which in turn can bring down the energy consumption of year 2020 & 2050 at same level with the energy consumption of the Base Year (1990). This Process of achieving the desired SHGC which brings down the energy consumption of the base case model is by Trial & error Method.

3. U-Value (Window)

Optimization carried on by estimating the best range of SHGC value, which in turn can bring down the energy consumption of year 2020 & 2050 at same level with the energy consumption of the Base Year (1990). This Process of achieving the desired SHGC which brings down the energy consumption of the base case model is by Trial & error Method.

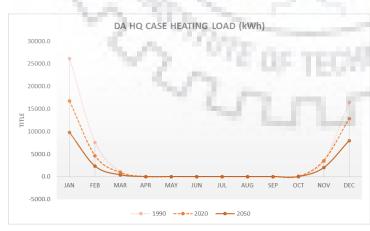
ANALYSIS & DISCUSSIONS

Energy Consumption by all three Building design models have been simulated to check how Base year's Energy Consumption is Changing for Future year Simulations (i.e. 2020 & 2050). Energy Data has been analysed by simulating the Building Model and extracting Heating energy Demand, Cooling Energy Demand & Total HVAC load. These individual load types are then compared with respective Base (1990) and Future years loads (2020 & 2050).

Design Builder Models of DA Building and Five Base cases with different building profiles have been simulated in a composite climate type; & energy consumption for each is analysed.

1. Development Alternative World Headquarters, New Delhi

Plan profile for this model has been taken from 5 typical plan forms (Square, Rectangle, Triangle, Curve & U-Shaped). This plan form later extruded to a 3D Office Space with a standard occupancy for Office building According to NBC (10 m2/person). This model has been designed in compliance with all the prescriptive values recommended for an ECBC Base case.


DA Building Heating Loads (kWh)

DA HEAQUAR	IERS				
	HEATING LOAD (kWh)	HEATING LOA	D (kWh)	HEATING LOAD (kWh)	
		1990	2020		2050
JAN	26	158.9	16743.4		9743.1
FEB	7	596.9	4630.6		2312.4
MAR	1	087.6	894.1		383.7
APR		0.0	0.0		0.0
MAY		0.0	0.0		0.0
JUN		0.0	0.0		0.0
JUL		0.0	0.0		0.0
AUG	and the second sec	0.0	0.0		0.0
SEP	— — — — — — — — — — — — — — — — — — —	0.0	0.0		0.0
ОСТ	and the second sec	125.9	49.1	Contraction of the second	6.6
NOV	34	448.0	3548.3		1986.3
DEC	16-	417.7	12860.2	- C	7994.7
Total	54	835.0	38725.6	2.4.5	22426.8

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	-9415.6	-35.99371228	-7000.3	-41.80923662
FEB	-2966.3	-39.04672896	-2318.2	-50.06314576
MAR	-193.5	-17.78814114	-510.4	-57.08294413
APR	0.0	0	0	0
MAY	0.0	0	0	0
JUN	0.0	0	0	0
JUL	0.0	0	0	0
AUG	0.0	0	0	0
SEP	0.0	0	0	0
ост	0.0	0	0	0
NOV	100.3	2.909642583	-1562.0	-44.02173071
DEC	-3557.6	-21.66912133	-4865.4	-37.83338621
Total	-16032.6	-29.23792621	-16256.3	-41.97826512

Table 6 DA Building Heating Loads comparison between 1990, 2020 & 2050

Source: Author

Heating Energy Demands:

for **2020** Units: -16032 kWh Percentage: -29.93%

for **2050** Units: -16256 kWh Percentage: -41.97%

Figure 75 DA Building Heating Loads

DA Building Cooling Loads (kWh)

DA HEAQUAR	RTERS		
	COOLING LOAD (kWh)	COOLING LOAD (kWh)	COOLING LOAD (kWh)
	199	0 2020	2050
JAN	206	1 3153	4500
FEB	365	6 5190	7135
MAR	1424	8 16642	19790
APR	2348	9 26239	28726
MAY	4012	2 44155	48503
JUN	4246	1 45465	48914
JUL	3984	6 42432	44967
AUG	4046	0 43587	45942
SEP	3374	0 37402	40523
ОСТ	2384	6 27258	30721
NOV	912	8 9865	12148
DEC	257	3 3515	4906
Total	27563	1 304902	336775

	(kWh)	PERCENTAGE (%)	(kWh	1)	PERCENTAGE (%)	
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff.	of 2050 to 2020	Diff. of 2050 to 2020	
JAN	109	92	53	1347	and the second second	43
FEB	153	34	42	1946		37
MAR	239	94	17	3147		19
APR	274	19	12	2487		9
MAY	403	33	10	4348		10
JUN	300)4	7	3449	A COLUMN	8
JUL	258	36	6	2536		6
AUG	312	27	8	2355	A DESCRIPTION OF THE OWNER OF THE	5
SEP	366	52	11	3121		8
ОСТ	34:	.2	14	3463		13
NOV	73	37	8	2283	And the second	23
DEC	94	12	37	1391	the past	40
Total	292	/1	11	31873	100	10

and the second sec

Table 7 DA Building cooling Loads comparison between 1990, 2020 & 2050

Source: Author

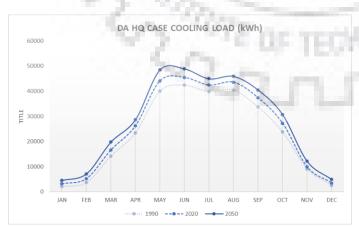
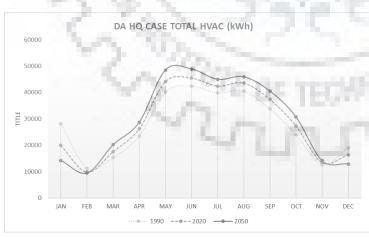


Figure 76 DA Building Cooling Loads

Cooling Energy Demands:

for **2020** Units: **29271 kWh** Percentage: **11 %**

for **2050** Units: **31873 kWh** Percentage: **10 %**


DA Total HVAC (kWh)

DA HEAQUAR	TERS			
	TOTAL HVAC (kWh)	тот	AL HVAC (kWh)	TOTAL HVAC (kWh)
	ľ	1990	2020	2050
JAN		28220	19897	14243
FEB		11253	9820	9448
MAR		15336	17536	20173
APR		23489	26239	28726
MAY		40122	44155	48503
JUN		42461	45465	48914
JUL		39846	42432	44967
AUG		40460	43587	45942
SEP		33740	37402	40523
ОСТ		23972	27307	30728
NOV	100 A 400	12576	13413	14134
DEC	- <u>San San</u>	18991	16375	12901
Total	TV. B. 1	330466	343628	359202

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	-8323	-29	-5653	-28
FEB	-1433	-13	-372	-4
MAR	2200	14	2637	15
APR	2749	12	2487	9
MAY	4033	10	4348	10
JUN	3004	7	3449	8
JUL	2586	6	2536	6
AUG	3127	8	2355	5
SEP	3662	11	3121	8
ОСТ	3335	14	3420	13
NOV	837	7	721	5
DEC	-2616	-14	-3474	-21
Total	13162	4	15574	5

Table 8 DA Building HVAC Loads comparison between 1990, 2020 & 2050

Source: Author

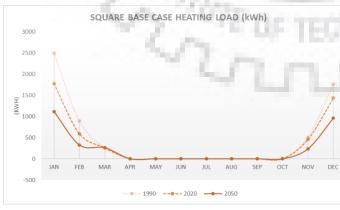
Total HVAC Energy Demands:

for **2020** Units: **13162 kWh** Percentage: **4 %**

for **2050** Units: **15574 kWh** Percentage: **5 %**

Figure 77 DA Building Total HVAC Loads

2. Square ECBC Base Case


Square Base Heating (kWh)

SQUARE BASE CA	SE		
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	HEATING LOAD (kWh)
	199	2	2050 2050
JAN	2493	2 1	.773 1117
FEB	89	7	593 328
MAR	26	2	262 262
APR)	0 0
MAY			0 0
JUN	and the second second second		0 0
JUL	Contraction of the second second)	0
AUG)	0
SEP)	0
ост		5	0 0
NOV	51:		458 235
DEC	176	3 1	.436 960
Total	5931.0	452	21.8 2902.4

	(kWh)	PERCENTAGE (%)	(kWh)	PERC	ENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 205	0 to 2020 Diff.	of 20 50 to 2020
JAN	-719		-29	-656	-37
FEB	-304		-34	-265	-45
MAR	0		0	0	0
APR	0		0	0	0
MAY	0		0	0	0
JUN	0		0	0	0
JUL	0		0	0	0
AUG	0		0	0	0
SEP	0		0	0	0
ост	0		0	0	0
NOV	-53		-10	-223	-49
DEC	-327	Contraction in the second	-19	-476	-33
Total	-1403.2	-23.65858	956	-1619.5	-35,81440344

Table 9 Square Base Heating Loads comparison between 1990, 2020 & 2050

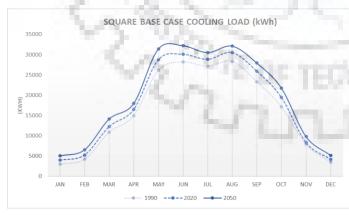
Source: Author

Heating Energy Demands:

for **2020** Units: **-1403 kWh** Percentage: **-23 %**

for **2050** Units: **-1619 kWh** Percentage: **-35 %**

Figure 78 Square base Heating Loads


Square Base Cooling (kWh)

SQUARE BAS	E CASE		
	COOLING LOAD (kWh)	COOLING LOAD (kWh)	COOLING LOAD (kWh)
	199	0 202	2050
JAN	301	7 397	70 5041
FEB	422	8 525	64 6551
MAR	1089	5 1226	54 14137
APR	1498	2 1651	.8 17988
MAY	2613	1 2879	31413
JUN	2821	7 3010	32203
JUL	2713	3 2888	33 30510
AUG	2833	3 3053	3 32108
SEP	2332	7 2595	0 27925
ОСТ	1713	3 1946	21747
NOV	790	0 831	.6 9791
DEC	352	4 418	37 5154
Total	194818.	5 214241.	7 234569.8

Total	and the second	1010101			20100010	
	(kWh)	PERCENTAGE (%)	(kWh)	PERCENT	AGE (%)	
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020		50 to 2020	
JAN		953	32	1071	27	
FEB	1	1026	24	1297	25	
MAR	1	1369	13	1873	15	
APR	1	1536	10	1471	9	
MAY	2	2664	10	2618	9	
JUN	1	889	7	2098	7	
JUL	1	1750	6	1627	6	
AUG	2	2200	8	1575	5	
SEP	2	2623	11	1975	8	
ОСТ	2	2334	14	2280	12	
NOV		416	5	1476	18	
DEC		663	19	967	23	
Total	194	23.2 9.9698	80785 2	0328.1	9.488397969	

Table 10 Square base Cooling Loads comparison between 1990, 2020 & 2050

Source: Author

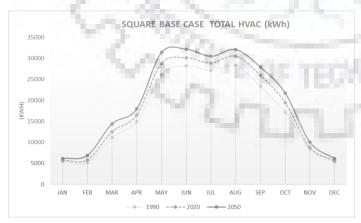
Cooling Energy Demands:

for **2020** Units: 19423 kWh Percentage: 9.96 %

for **2050** Units: 20328 kWh Percentage: 9.48 %

Figure 79 Square base Cooling Loads

Square Base Total HVAC (kWh)


SQUARE BAS	E CASE		
	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)
	199	0 2020	2050
JAN	550	9 5742	6158
FEB	512	5 5847	6879
MAR	1115	7 12526	14399
APR	1498	2 16518	17988
MAY	2613	1 28795	31413
JUN	2821	7 30105	32203
JUL	2713	3 28883	30510
AUG	2833	3 30533	32108
SEP	2332	7 25950	27925
ОСТ	1714	0 19467	21747
NOV	841	0 8774	10027
DEC	528	7 5623	6114
Total	200750.	0 218763.5	237472.1

100	(kWh)	PERCENTAGE (%)	(kW	/h)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff	. of 2050 to 2020	Diff. of 2050 to 2020
JAN		233	4	416	7
FEB		722	14	1032	18
MAR	13	369	12	1873	15
APR	1!	536	10	1471	9
MAY	20	664	10	2618	9
JUN	18	889	7	2098	7
JUL	1	750	6	1627	6
AUG	22	200	8	1575	5
SEP	20	523	11	1975	8
ОСТ	23	327	14	2280	12
NOV		364	4	1253	14
DEC	2	336	6	491	9
Total	1801	3.5 8.973	07512	18708.6	8.551995739

1

Table 11 Square Base HVAC Loads comparison between 1990, 2020 & 2050

Source: Author

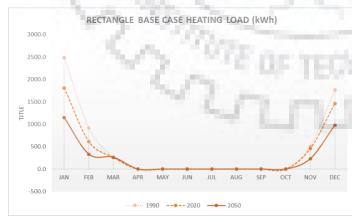
Total HVAC Energy Demands:

for **2020** Units: **18013 kWh** Percentage: **8.97 %**

for **2050** Units: **18708 kWh** Percentage: **8.55 %**

Figure 80 Square Base Total HVAC Loads

3. Rectangle ECBC Base Case


Rectangle Base Heating (kWh)

	HEATING LOAD (kWh)		HEATING LOAD (kWh)	HEATING LOAD (kWh)
		1990	2020	2050
JAN	2	2489.0	1806.8	1144.9
FEB		918.0	614.4	332.5
MAR		262.0	262.4	262.4
APR		0.0	0.0	0.0
MAY		0.0	0.0	0.0
JUN		0.0	0.0	0.0
JUL		0.0	0.0	0.0
AUG		0.0	0.0	0.0
SEP		0.0	0.0	0.0
ост	- 1. C.	5.0	0.0	0.0
NOV	10 m 10 000	507.0	458.3	229.9
DEC	12 1 X 1	1767.0	1462.7	978.4
Total	5 05 × 5	5 <mark>948.0</mark>	4604.6	2948.1

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	-682.2	-27.4082945	-661.9	-36.63220967
FEB	-303.6	-33.06719826	-281.9	-45.88580453
MAR	0.4	0.152671756	0.0	0
APR	0.0	0	0	0
MAY	0.0	0	0	0
JUN	0.0	0	0	0
JUL	0.0	0	0	0
AUG	0.0	0	0	0
SEP	0.0	0	0	0
ОСТ	0.0	0	0	0
NOV	-48.7	-9.610941617	-228.4	-49.84101098
DEC	-304.3	-17.2203056	-484.4	-33.11373313
Total	-1338.4	-22.50100208	-1656.6	-35.97639526

Table 12 Rectangle Base Heating Loads comparison between 1990, 2020 & 2050

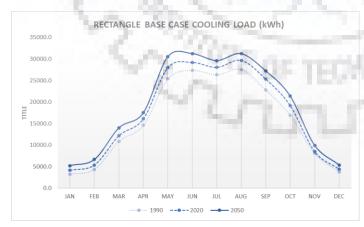
Source: Author

Heating Energy Demands:

for **2020** Units: **-1338 kWh** Percentage: **-22.5 %**

for **2050** Units: **-1656 kWh** Percentage: **-35.97 %**

Figure 81 Rectangle Base heating Loads


Rectangle Base Cooling (kWh)

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	COOLING LOAD (kWh)
	1	990 20	2050
JAN	320	8.8 414	5.9 5215.1
FEB	434	5.1 536	2.6 6650.1
MAR	1081	3.8 1215	7.3 13973.7
APR	1457	8.1 1608	2.9 17517.0
MAY	2536	7.2 2796	9.6 30513.9
JUN	2735	9.0 2917	9.7 31210.1
JUL	2631	5.7 2803	1.1 29592.1
AUG	2753	2.6 2965	9.6 31180.2
SEP	2277	7.8 2532	2.4 27215.7
ОСТ	1692	2.4 1916	8.6 21363.2
NOV	807	7.6 848	1.0 9930.8
DEC	374	9.0 440	2.8 5354.4
Total	19104	7.0 20996	3.5 229716.2

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	937.0	29.20189221	1069.3	25.79125787
FEB	1017.5	23.41843126	1287.5	24.00820829
MAR	1343.5	12.42416339	1816.4	14.94091719
APR	1504.8	10.32266801	1434.0	8.91655889
MAY	2602.4	10.25887604	2544.2	9.096399135
JUN	1820.8	6.65510653	2030.4	6.958272299
JUL	1715.4	6.518490123	1561.0	5.568808289
AUG	2127.0	7.725363634	1520.6	5.126891072
SEP	2544.6	11.17142541	1893.3	7.476831252
ОСТ	2246.2	13.27329293	2194.6	11.4490078
NOV	403.4	4.994139601	1449.7	17.09393827
DEC	653.8	17.44060644	951.6	21.61332888
Total	18916.5	9.901494189	19752.7	9.407681988

Table 13 Rectangle Cooling Loads comparison between 1990, 2020 & 2050

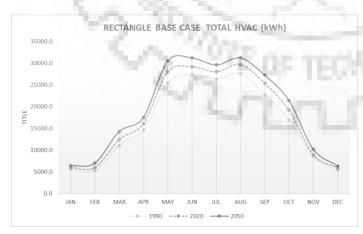
Source: Author

Cooling Energy Demands:

for **2020** Units: **18916 kWh** Percentage: **9.90 %**

for **2050** Units: **19752 kWh** Percentage: **9.40 %**

Figure 82 Rectangle Base Cooling Load


Rectangle Base Total HVAC (kWh)

	TOTAL HVAC (kWh)	TOTAL HVAC	(kWh)	TOTAL HVAC (kWh)	
		1990	2020		2050
JAN	5	698.0	5952.7		6360.1
FEB	5	263.4	5977.1		6982.6
MAR	110	076.2	12419.7		14236.1
APR	14	578.1	16082.9		17517.0
MAY	25	367.2	27969.6	1	30513.9
JUN	27	359.0	29179.7		31210.1
JUL	26	315.7	28031.1		29592.1
AUG	27	532.6	29659.6		31180.2
SEP	22	777.8	25322.4		27215.7
ост	16	927.6	19168.6	1	21363.2
NOV	8	584.8	8939.3		10160.6
DEC	5	516.2	5865.6		6332.8
Total	196	996.3	214568.2	1 N N	232664.3

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	254.7	4.469517726	407.4	6.843939551
FEB	713.7	13.56008138	1005.5	16.82309833
MAR	1343.5	12.12982842	1816.4	14.62524901
APR	1504.8	10.32266801	1434.0	8.91655889
MAY	2602.4	10.25887604	2544.2	9.096399135
JUN	1820.8	6.65510653	2030.4	6.958272299
JUL	1715.4	6.518490123	1561.0	5.568808289
AUG	2127.0	7.725363634	1520.6	5.126891072
SEP	2544.6	11.17142541	1893.3	7.476831252
ОСТ	2241.0	13.23870721	2194.6	11.4490078
NOV	354.5	4.129778277	1221.3	13.66251831
DEC	349.4	6.334131907	467.2	7.965822487
Total	17571.8	8.91987088	18096.1	8.433738048

Table 14 Rectangle HVAC Loads comparison between 1990, 2020 & 2050

Source: Author

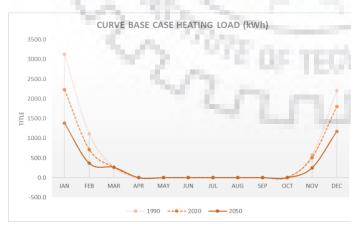
Total HVAC Energy Demands:

for **2020** Units: **17571 kWh** Percentage: **8.91 %**

for **2050** Units: **18096 kWh** Percentage: **8.43 %**

Figure 83 Rectangle Base HVAC laods

4. Curve ECBC Base Case


Curve Base Heating (kWh)

CURVE BASE	CASE				
	HEATING LOAD (kWh)	HEATING LO	AD (kWh)	HEATING LOAD (kWł	ı)
	·	1990	2020	·	2050
JAN	3	126.0	2228.4		1381.1
FEB	1	110.0	710.3		365.4
MAR		262.0	262.4		262.4
APR		0.0	0.0		0.0
MAY		0.0	0.0		0.0
JUN		0.0	0.0		0.0
JUL		0.0	0.0		0.0
AUG		0.0	0.0		0.0
SEP	and the second s	0.0	0.0		0.0
ОСТ	- V V 2013	8.0	0.0		0.0
NOV		575.0	508.1		250.0
DEC	N 6 /2	206.0	1804.4	C	1174.4
Total	3 10 1 1	287.0	5513.6	10.0	3433.2

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	-897.6	-28.71244754	-847.4	-38.02613799
FEB	-399.7	-36.00849694	-344.9	-48.55393752
MAR	0.4	0.152671756	0.0	0
APR	0.0	0	0	0
MAY	0.0	0	0	0
JUN	0.0	0	0	0
JUL	0.0	0	0	0
AUG	0.0	0	0	0
SEP	0.0	0	0	0
ОСТ	0.0	0	0	0
NOV	-66.9	-11.63333426	-258.1	-50.79919532
DEC	-401.6	-18.20642022	-630.0	-34.91532931
Total	-1765.4	-24.22630339	-2080.4	-37.73176845

Table 15 Curve Base Heating Loads comparison between 1990, 2020 & 2050

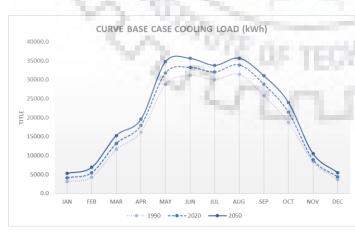
Source: Author

Heating Energy Demands:

for **2020** Units: **-1765 kWh** Percentage: **-24.22 %**

for 2050 Units: -2080 kWh Percentage: -37.73 %

Figure 84 Curve Base Heating Loads


Curve Base Cooling (kWh)

CURVE BASE CA	ASE				
	COOLING LOAD (kWh)		D (kWh)	COOLING LOAD (kWh)	
	1	1990	2020		2050
JAN	30	78.8	4100.0		5253.2
FEB	42	96.9	5425.8		6858.4
MAR	116	07.5	13149.5		15270.6
APR	161	84.2	17915.7		19556.2
MAY	287	57.5	31794.8		34761.2
JUN	311	26.6	33246.8		35620.1
JUL	300	21.4	32018.2		33778.0
AUG	313	98.5	33892.7		35658.9
SEP	257	99.9	28806.7		31030.9
ост	187	16.7	21415.8	and the second se	24007.0
NOV	83	83.3	8862.8		10495.6
DEC	36	33.0	4368.7	100	5421.9
Total	2130	04.4	234997.5	1.11	257712.0

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	1021.2	33.16989721	1153.1	28.12552045
FEB	1128.9	26.27159413	1432.6	26.40419343
MAR	1541.9	13.28405203	2121.1	16.13103965
APR	1731.5	10.69867183	1640.5	9.156742028
MAY	3037.2	10.5615757	2966.4	9.329973957
JUN	2120.2	6.811498339	2373.3	7.138279689
JUL	1996.8	6.65136445	1759.8	5.496138461
AUG	2494.2	7.943644861	1766.2	5.211120929
SEP	3006.8	11.65447753	2224.2	7.721142308
ОСТ	2699.1	14.42085877	2591.2	12.09940975
NOV	479.4	5.718835286	1632.8	18.42358419
DEC	735.7	20.25063465	1053.2	24.1086252
Total	21993.1	10.325177	22714.5	9.665865094

Table 16 Curve Base Cooling Loads comparison between 1990, 2020 & 2050

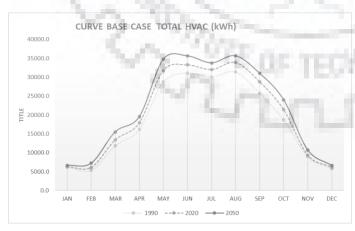
Source: Author

Cooling Energy Demands:

for **2020** Units: **21993 kWh** Percentage: **10.32 %**

for **2050** Units: **22714 kWh** Percentage: **9.66 %**

Figure 85 Curve Base Cooling Loads


Curve Base Total (kWh)

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	TOTAL HVAC (kWh) 200 2050
JAN	620		
FEB	540	6.6 613	5.1 7223.8
MAR	1186	9.9 1341	1.9 15533.0
APR	1618	4.2 1791	5.7 19556.2
MAY	2875	7.5 3179	4.8 34761.2
JUN	3112	5.6 3324	5.8 35620.1
JUL	3002	1.4 3201	8.2 33778.0
AUG	3139	8.5 3389	2.7 35658.9
SEP	2579	9.9 2880	5.7 31030.9
ОСТ	1872	5.1 2141	5.8 24007.0
NOV	895	8.0 937	0.9 10745.6
DEC	583	9.3 617	3.0 6596.3
Total	22029	2.1 24051	1.1 261145.3

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	123.5	1.989629976	305.8	4.831437777
FEB	729.5	13.49184671	1087.8	17.72714343
MAR	1541.9	12.99039098	2121.1	15.81543991
APR	1731.5	10.69867183	1640.5	9.156742028
MAY	3037.2	10.5615757	2966.4	9.329973957
JUN	2120.2	6.811498339	2373.3	7.138279689
JUL	1996.8	6.65136445	1759.8	5.496138461
AUG	2494.2	7.943644861	1766.2	5.211120929
SEP	3006.8	11.65447753	2224.2	7.721142308
ОСТ	2690.7	14.36961502	2591.2	12.09940975
NOV	412.9	4.609055631	1374.7	14.67017923
DEC	333.8	5.715982508	423.2	6.856043904
Total	20219.0	9.178283459	20634.1	8.579291672

Table 17 Curve Base HVAC Loads comparison between 1990, 2020 & 2050

Source: Author

Total HVAC Energy Demands:

for 2020 Units: 20219 kWh Percentage: 9.17 %

for 2050 Units: 20634 kWh Percentage: 8.58 %

Figure 86 Curve base HVAC Loads

5. Triangle ECBC Base Case

Triangle Base Heating (kWh)

TRIANGLE BA	SE CASE				
	HEATING LOAD (kWh)	HEA	TING LOAD (kWh)	HEATING LOAD (kWh)	
		1990	2020		2050
JAN	3	577.9	2189.8		1300.5
FEB		963.6	633.9		337.2
MAR		262.4	262.4		262.4
APR		25.8	34.4		41.4
MAY		35.1	54.6		67.5
JUN		51.3	41.4		47.8
JUL	and the second sec	14.6	25.4		27.0
AUG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.8	12.7		13.7
SEP	and the second sec	14.0	9.0	C	13.6
ост	- P. P. 20131	16.9	9.2		13.5
NOV		411.1	297.4		135.3
DEC	2	557.5	1839.6		1206.0
Total	7	945.9	5409.8		3465.9

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	-1388.1	-38.79755216	-889.2	-40.60927845
FEB	-329.7	-34.21121576	-296.7	-46.8085778
MAR	0.0	0	0.0	0
APR	0.0	0	0	0
MAY	0.0	0	0	0
JUN	0.0	0	0	0
JUL	0.0	0	0	0
AUG	0.0	0	0	0
SEP	0.0	0	0	0
ОСТ	0.0	0	0	0
NOV	-113.7	-27.66056281	-162.1	-54.49791666
DEC	-717.9	-28.06933557	-633.7	-34.44507051
Total	-2549.4	-32.08406094	-1981.7	-36.63170941

Table 18 Triangle Base Heating Loads comparison between 1990, 2020 & 2050

Source: Author

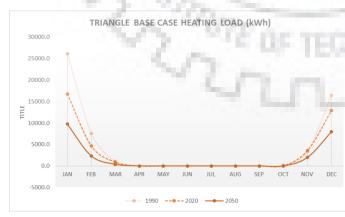
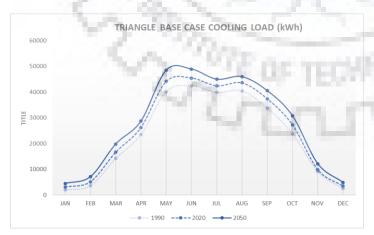


Figure 87 Triangle Base Heating Loads.

Heating Energy Demands:

for **2020** Units: **-2549 kWh** Percentage: **-32.08 %**

for **2050** Units: **-1981 kWh** Percentage: **-36.63 %**


Triangle Base Cooling (kWh)

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	COOLING LOAD (kWh)
	19	990 20	20 2050
JAN	819	0.0 9775	5.7 11836.0
FEB	1404	1.4 17468	3.7 20940.2
MAR	3135	4.5 36869	9.1 41738.8
APR	5466	6.4 61122	2.8 65444.9
MAY	7146	9.5 77982	2.5 84384.5
JUN	7182	7.1 76623	8.2 81127.9
JUL	6123	6.1 64868	3.3 66138.7
AUG	5875	4.3 62499	9.0 63382.7
SEP	5574	7.5 60455	5.5 62444.5
ОСТ	4362	2.4 48346	5.5 52082.7
NOV	2356	0.2 26207	7.7 29560.7
DEC	1171	2.7 14698	3.3 17931.8
Total	50618	2.1 556917	7.3 597013.5

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	1585.7	19.36100576	2060.3	21.07583392
FEB	3427.3	24.40855352	3471.6	19.87327929
MAR	5514.6	17.58795137	4869.7	13.20815716
APR	6456.3	11.81038087	4322.1	7.071189656
MAY	6513.1	9.11310904	6402.0	8.209465862
JUN	4796.1	6.677251616	4504.7	5.878977601
JUL	3632.3	5.931558331	1270.4	1.958362636
AUG	3744.7	6.373446092	883.8	1.414045862
SEP	4708.0	8.445239649	1989.0	3.290016319
ОСТ	4724.1	10.82952077	3736.2	7.72791505
NOV	2647.5	11.23729729	3352.9	12.7937093
DEC	2985.6	25.4902501	3233.6	21.99957
Total	50735.2	10.0231164	40096.2	7.199659086

Table 19 Triangle Base Cooling Loads comparison between 1990, 2020 & 2050

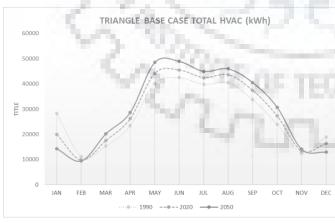
Source: Author

Cooling Energy Demands:

for **2020** Units: **50735 kWh** Percentage: **10 %**

for **2050** Units: **40096 kWh** Percentage: **7.19 %**

Figure 88 Triangle Base Cooling Loads.


Triangle Base Total HVAC (kWh)

	TOTAL HVAC (kWh)	TOTAL HVAC (kW	h)	TOTAL HVAC (kWh)	
		1990	2020		2050
JAN	11	767.9	11965.5		13136.5
FEB	15	004.9	18102.6		21277.4
MAR	31	616.9	37131.5		42001.2
APR	54	692.2	61157.2		65486.3
MAY	71	504.6	78037.1		84452.0
JUN	71	878.4	76664.7		81175.7
JUL	61	250.6	64893.7		66165.7
AUG	58	770.1	62511.7		63396.4
SEP	55	761.5	60464.5		62458.1
ост	43	639.3	48355.7	1	52096.3
NOV	23	971.3	26505.1		29696.0
DEC	14	270.2	16537.9		19137.8
Total	514	128.0	562327.1		600479.4

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	197.5	1.67860749	1171.1	9.787051518
FEB	3097.6	20.64412079	3174.9	17.53816135
MAR	5514.6	17.44198257	4869.7	13.11481805
APR	6465.0	11.82066901	4329.1	7.078591653
MAY	6532.5	9.135835347	6414.9	8.220304089
JUN	4786.2	6.658766912	4511.0	5.884075247
JUL	3643.1	5.9478178	1272.0	1.960117326
AUG	3741.5	6.366408894	884.8	1.415373903
SEP	4703.0	8.434216452	1993.6	3.297137087
ост	4716.4	10.80758861	3740.5	7.735470344
NOV	2533.8	10.57027423	3190.9	12.0387685
DEC	2267.7	15.89141245	2599.9	15.72091002
Total	48199.1	9.374925375	38152.3	6.784719484

Table 20 Triangle Base HVAC Loads comparison between 1990, 2020 & 2050

Source: Author

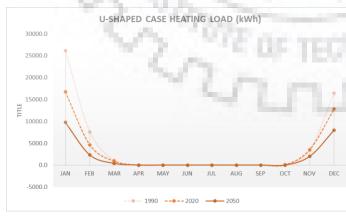
Total HVAC Energy Demands:

for 2020 Units: 48199 kWh Percentage: 9.37 %

for 2050 Units: 38152 kWh Percentage: 6.78 %

Figure 89 Triangle Total HVAC loads

6. U-Shaped ECBC Base Case


U-Shaped Base Heating (kWh)

U-SHAPED BA	ASE CASE				
	HEATING LOAD (kWh)	HEATING LOA	D (kWh)	HEATING LOAD (kWh)	
		1990	2020	•	2050
JAN		3578	2190		1301
FEB		964	634		337
MAR		262	262		262
APR		26	34		41
MAY		35	55		68
JUN	and the second sec	51	41		48
JUL	Contraction of the	15	25		27
AUG		16	13	1	14
SEP	- 1. A.	14	9		14
ост		17	9		14
NOV	the second second	411	297		135
DEC	(1,0-/-)	2557	1840	2.5	1206
Total	718774	7946	5410	100.00	3466

	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020
JAN	-1388	-39	-889	-41
FEB	-330	-34	-297	-47
MAR	0	0	C	0
APR	0	0	C	0
MAY	0	0	C	0
JUN	0	0	C	0
JUL	0	0	C	0
AUG	0	0	C	0
SEP	0	0	C	0
ост	0	0	C	0
NOV	-114	-28	-162	-54
DEC	-718	-28	-634	-34
Total	-2549	-32	-1982	-37

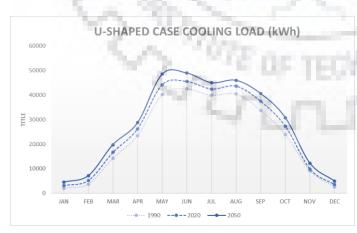
Source: Author

Heating Energy Demands:

for **2020** Units: **-2549 kWh** Percentage: **-32 %**

for **2050** Units: **-1982 kWh** Percentage: **-37 %**

Figure 90 U-shaped Heating Loads


U-Shaped Base Cooling (kWh)

U-SHAPED BA	ASE CASE		
	COOLING LOAD (kWh)	COOLING LOAD (kWh)	COOLING LOAD (kWh)
	199	2020	2050
JAN	819	9776	5 11836
FEB	1404	1 17469	20940
MAR	3135	4 36869	41739
APR	5466	6 61123	65445
MAY	7146	9 77983	84384
JUN	7182	7 76623	8 81128
JUL	6123	6 64868	66139
AUG	5875	4 62499	63383
SEP	5574	8 60456	62445
ОСТ	4362	2 48347	52083
NOV	2356	0 26208	29561
DEC	1171	3 14698	17932
Total	50618	2 556917	597013

1.	(kWh)	PERCENTAGE (%)	(kWh)	PERCENTAGE (%)	
	Diff. of 2020 to 1990	Diff. of 2020 to 1990	Diff. of 2050 to 2020	Diff. of 2050 to 2020	
JAN		1586	19	2060	21
FEB		3427	24	3472	20
MAR		5515	18	4870	13
APR		6456	12	4322	7
MAY		6513	9	6402	8
JUN		4796	7	4505	6
JUL		3632	6	1270	2
AUG		3745	6	884	1
SEP		4708	8	1989	3
ОСТ		4724	11	3736	8
NOV		2648	11	3353	13
DEC		2986	25	3234	22
Total	5	0735	10	40096	7

Table 22 U-Shaped Base Cooling Loads comparison between 1990, 2020 & 2050

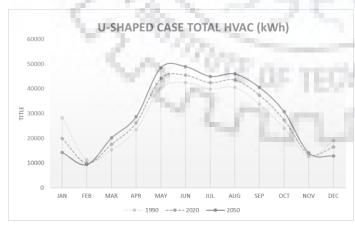
Source: Author

Cooling Energy Demands:

for 2020 Units: 50735 kWh Percentage: 10 %

for **2050** Units: 40096 kWh Percentage: 7 %

Figure 91 U-shaped cooling loads


U-Shaped Base Total HVAC (kWh)

U-SHAPED B	ASE CASE			
	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	
	1990	2020	2050	
JAN	11768	11965	13137	
FEB	15005	18103	3 2127	
MAR	31617	37131	1 4200	
APR	54692	61157	65486	
MAY	71505	78037	84452	
JUN	71878	76665	81176	
JUL	61251	. 64894	66166	
AUG	58770	62512	63396	
SEP	55761	. 60465	62458	
ОСТ	43639	48356	52096	
NOV	23971		29696	
DEC	14270	16538	19138	
Total	514128	562327	600479	

	(kWh)	PERCENTAGE (%)	PERCENTAGE (%) (kWh)		PERCENTAGE (%)		
	Diff. of 2020 to 1990	Diff. of 2020 to 1990		Diff. of 2050 to 2020		Diff. of 2050 to 2020	
JAN		198	2		1171	1	10
FEB	3	098	21		3175		18
MAR	5	515	17		4870		13
APR	6	465	12		4329	Ð	7
MAY	6	533	9		6415	5	8
JUN	4	786	7		4511		6
JUL	3	643	6		1272	2	2
AUG	3	742	6		885	5	1
SEP	4	703	8		1994		3
ОСТ	4	716	11		3741	1	8
NOV	2	534	11		3191	L	12
DEC	2	268	16	1.1	2600		16
Total	48	199	9	and the second	38152	2	7

Source: Author

Total HVAC Energy Demands:

for **2020** Units: **48199 kWh** Percentage: **9 %**

for **2050** Units: **38152 kWh** Percentage: **7 %**

Figure 92 U-Shaped total HVAC

Mitigative strategies used to Cap Energy Consumption to Base Year 1990

- 1. Development Alternative World Headquarters, New Delhi
 - A) U-Value (External Wall)

HEATING LOAD				
0.14 U-VALUE DA	HEAQUARTERS 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	26158.9	7702.5	-18456.4	-70.55482009
FEB	7596.9	1861.8	-5735.1	-75.49286913
MAR	1087.6	361.1	-726.5	-66.79710774
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	0
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	0
AUG	0.0	0.0	0.0	0
SEP	0.0	0.0	0.0	0
ост	125.9	9.0	-116.9	0
NOV	3448.0	1789.8	-1658.3	-48.0930204
DEC	16417.7		-9948.9	-60.59826139
Total	54835.0	18193.1	-36642.0	-66.82216437

COOLING LOAD

0.14 U-VALUE DA HEAQUARTERS 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)		(kWh)	PERCENTAGE (%)
	19	0	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2061	.1	4844.8	2783.7	135.1
FEB	3656	.0	7315.1	3659.2	100.1
MAR	14248	.4	18751.3	4502.9	31.6
APR	23489	.3	26073.6	2584.4	11.0
MAY	40122	.5	43760.1	3637.6	9.1
JUN	42460	.6	44264.1	1803.5	4.2
JUL	39846	.2	40848.6	1002.4	2.5
AUG	40459	.9	41931.9	1472.0	3.6
SEP	33740	.3	36839.2	3098.9	9.2
ОСТ	23846	.4	28415.9	4569.6	5 19.2
NOV	9127	.6	11823.0	2695.4	29.5
DEC	2573	.1	5213.7	2640.6	5 102.6
Total	275631	.3	310081.4	34450.1	12,49860674

TOTAL HVAC

0.14 U-VALUE DA HEAQUARTERS 2050

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	28220.0	12547.3	-15672.7	-55.5
FEB	11252.8	9176.9	-2075.9	-18.4
MAR	15336.0	19112.4	3776.5	24.6
APR	23489.3	26073.6	2584.4	11.0
MAY	40122.5	43760.1	3637.6	9.1
JUN	42460.6	44264.1	1803.5	4.2
JUL	39846.2	40848.6	1002.4	2.5
AUG	40459.9	41931.9	1472.0	3.6
SEP	33740.3	36839.2	3098.9	9.2
ост	23972.2	28424.9	4452.7	18.6
NOV	12575.6	13612.8	1037.1	8.2
DEC	18990.9	11682.6	-7308.3	-38.5
Total	330466.4	328274.5	-2191.9	-0.663267983

Table 24 DA Building Energy Consumption at 0.14 U-Value

HEATING LOAD				
0.1 SHGC DA HEA	QUARTERS 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	• •	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	26158.9	13500.8	-12658.1	-48.38924987
FEB	7596.9	3294.7	-4302.2	-56.63061027
MAR	1087.6	528.3	-559.3	-51.42876189
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	0 C
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	C
AUG	0.0	0.0	0.0	C
SEP	0.0	0.0	0.0	0
ост	125.9	24.3	-101.5	C
NOV	3448.0	2579.2	-868.9	-25.19873736
DEC	16417.7	10624.5	-5793.2	-35.28646452
Total	54835.0	30551.8	-24283.2	-44.28416489

COOLING LOAD

0.1 SHGC DA HEAQUARTERS 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)	
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990	
JAN	2061.1	. 3040.6	979.5	47.5	
FEB	3656.0	5247.0	1591.1	43.5	
MAR	14248.4	16466.5	2218.1	15.6	
APR	23489.3	24984.3	1495.0	6.4	
MAY	40122.5	44269.9	4147.4	10.3	
JUN	42460.6	44695.8	2235.1	. 5.3	
JUL	39846.2	41324.7	1478.5	3.7	
AUG	40459.9	42567.8	2107.9	5.2	
SEP	33740.3	37419.3	3679.0) 10.9	
ОСТ	23846.4	27550.6	3704.2	15.5	
NOV	9127.6	9574.2	446.6	4.9	
DEC	2573.1	. 3352.0	778.9	30.3	
Total	275631.3	300492.6	24861.3	9.019754596	

TOTAL HVAC

0.1 SHGC DA HEAQUARTERS 2050

	TOTAL HVAC (kWh)	TO	TAL HVAC (kWh)	(kWh)		PERCENTAGE (%)	
		1990	2050	Diff. of 2	2050 to 1990	Diff. of 2050 to 1990	
JAN	282	20.0	16541.4		-11678.6	5	-41.4
FEB	112	52.8	8541.7		-2711.1		-24.1
MAR	153	36.0	16994.7		1658.7		10.8
APR	234	89.3	24984.3		1495.0)	6.4
MAY	401	.22.5	44269.9		4147.4		10.3
JUN	424	60.6	44695.8		2235.1		5.3
JUL	398	46.2	41324.7		1478.5	,	3.7
AUG	404	59.9	42567.8		2107.9)	5.2
SEP	337	40.3	37419.3		3679.0)	10.9
ОСТ	239	72.2	27574.9		3602.7	1	15.0
NOV	125	75.6	12153.4		-422.3	1	-3.4
DEC	189	90.9	13976.5		-5014.3	8	-26.4
Total	3304	66.4	331044.4		578.0	0.174	914829

Table 25 DA Building Energy Consumption at 0.1 SHGC

HEATING LOAD				
0.1 U-VALUE (WI	NDOW) DA HEAQUARTERS 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	26158.9	7013.6	-19145.3	-73.18834142
FEB	7596.9	1602.1	-5994.8	-78.9111999
MAR	1087.6	261.1	-826.5	-75.99504226
APR	0.0	0.0	0.0	C
MAY	0.0	0.0	0.0	0
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	0
AUG	0.0	0.0	0.0	C
SEP	0.0	0.0	0.0	C
ост	125.9	0.5	-125.3	C
NOV	3448.0	1426.8	-2021.3	-58.62069166
DEC	16417.7	5763.1	-10654.7	-64.89736712
Total	54835.0	16067.2	-38767.8	-70.69905276

COOLING LOAD

0.1 U-VALUE (WINDOW) DA HEAQUARTERS 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2061.3	5149.0	3087.9	149.8
FEB	3656.0	7819.2	4163.3	113.9
MAR	14248.4	20053.3	5805.0	40.7
APR	23489.3	3 28022.4	4533.2	19.3
MAY	40122.5	6 46874.9	6752.4	16.8
JUN	42460.6	6 47178.6	4718.0	11.1
JUL	39846.2	43683.2	3836.9	9.6
AUG	40459.9	44960.1	4500.2	11.1
SEP	33740.3	39638.0	5897.7	17.5
ОСТ	23846.4	30564.1	6717.8	3 28.2
NOV	9127.6	5 12689.3	3561.6	39.0
DEC	2573.2	5527.7	2954.6	114.8
Total	275631.3	332159.9	56528.6	20.50875919

TOTAL HVAC

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)		(kWh)	PERCENTAGE (%)
		1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN		28220.0	12162.7	-16057.3	-56.9
FEB		11252.8	9421.3	-1831.5	-16.3
MAR		15336.0	20314.4	4978.4	4 32.5
APR		23489.3	28022.4	4533.2	2 19.3
MAY		40122.5	46874.9	6752.4	16.8
JUN		42460.6	47178.6	4718.0) 11.1
JUL		39846.2	43683.2	3836.9	9.6
AUG		40459.9	44960.1	4500.2	2 11.1
SEP		33740.3	39638.0	5897.7	7 17.5
ОСТ		23972.2	30564.7	6592.4	4 27.5
NOV		12575.6	14116.0	1540.4	1 12.2
DEC		18990.9	11290.8	-7700.2	-40.5
Total		330466.4	348227.1	17760.7	7 5.374440925

Table 26 DA Building Energy Consumption at 0.1 U-Value window

2. Square ECBC Base case Layout

A) U-Value (Wall)

	HEATING LOAD (kWh)	HEATING LOAD (kWh)		(kWh)	PERCENTAGE (%)
	1990	205)	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2492.0	925.	L	-1566.9	-62.87732905
FEB	897.0	254.	L	-642.9	-71.67493701
MAR	262.0	262	1	0.4	0.152671756
APR	0.0	0.)	0.0) (
MAY	0.0	0.)	0.0) (
JUN	0.0	0.)	0.0) (
JUL	0.0	0.)	0.0) (
AUG	0.0	0.)	0.0) (
SEP	0.0	0.)	0.0) (
ОСТ	6.0	0.)	-6.0) (
NOV	511.0	181.	9	-329.1	-64.39441781
DEC	1763.0	777.	5	-985.4	-55.89397221
Total	5931.0	2401.	L	-3529.9	-59.51599106

COOLING LOAD

0.023 U-VALUE (WALL) SQUARE ECBC BASE 2

	COOLING LOAD (kWh)	COOLING LOAD	(kWh)	(kWh)	PERCENTAGE (%)	
		1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990	
JAN		8016.9	4083.4	1066.5		35.4
FEB		227.7	5405.9	1178.2		27.9
MAR	10	894.5	11917.2	1022.7		9.4
APR	14	981.5	15264.1	282.6		1.9
MAY	26	5130.7	26651.5	520.8		2.0
JUN	28	3216.6	27389.8	-826.9		-2.9
JUL	27	/133.0	25869.1	-1264.0		-4.7
AUG	28	3333.1	27137.1	-1196.0		-4.2
SEP	23	327.1	23560.9	233.8		1.0
ОСТ	17	/133.4	18291.4	1158.0		6.8
NOV		/899.6	8150.0	250.4		3.2
DEC		3524.3	4207.6	683.3		19.4
Total	194	818.5	197928.0	3109.5	1.596	09121

TOTAL HVAC

	TOTAL HVAC (kWh)	100	TOTAL HVAC (kWh)	100 million (1990)	(kWh)		PERCENTAGE (%)	
		1990		2050	Diff. of 2050 to 1990		Diff. of 2050 to 1990	
JAN		5509.0		5008.5		-500.5		-9.1
FEB		5124.7		5660.0		535.2		10.4
MAR	and the second	11156.9		12179.6		1022.7		9.2
APR		14981.5		15264.1		282.6		1.9
MAY	1	26130.7		26651.5	and the second sec	520.8		2.0
JUN		28216.6		27389.8		-826.9		-2.9
JUL		27133.0		25869.1	-	1264.0		-4.7
AUG		28333.1		27137.1		1196.0		-4.2
SEP		23327.1		23560.9		233.8		1.0
ОСТ		17139.8		18291.4		1151.5		6.7
NOV		8410.4		8331.9		-78.5		-0.9
DEC		5287.1		4985.2		-301.9		-5.7
Total	2	200750.0		200329.1		-420.9	-0.20968	4978

Table 27 Square Base Energy consumption at 0.023 U-Value

0.01 SHGC SC	QUARE ECBC BASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2492.0	1610.3	-881.	7 -35.38063644
FEB	897.0	515.3	-381.	7 -42.55694314
MAR	262.0	262.4	0.	4 0.152671756
APR	0.0	0.0	0.	0 0
MAY	0.0	0.0	0.	0 0
JUN	0.0	0.0	0.	0 0
JUL	0.0	0.0	0.	0 0
AUG	0.0	0.0	0.	0 0
SEP	0.0	0.0	0.	0 0
ОСТ	6.0	0.0	-6.	0 0
NOV	511.0	421.3	-89.	7 -17.56320626
DEC	1763.0	1303.6	-459.	4 -26.05658593
Total	5931.0	4112.9	-1818.	-30.6549795

COOLING LOAD

0.01 SHGC SQUARE ECBC BASE 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990		Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	3016.9		405.9	
FEB	4227.7	4786.7	559.0	13.2
MAR	10894.5	11522.6	628.1	5.8
APR	14981.5	15397.5	416.0	2.8
MAY	26130.7	28472.4	2341.7	9.0
JUN	28216.6	29268.4	1051.8	3.7
JUL	27133.0	27820.9	687.9	2.5
AUG	28333.1	29507.5	1174.4	4.1
SEP	23327.1	25494.3	2167.2	9.3
ОСТ	17133.4	19173.0	2039.7	11.9
NOV	7899.6	7527.8	-371.8	-4.7
DEC	3524.3	3519.1	-5.1	-0.1
Total	194818.5	205913.2	11094.7	5.694879514

TOTAL HVAC

0.01 SHGC S C	QUARE ECBC BASE 2050			
	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	5509.0	5033.1	-475.9	-8.6
FEB	5124.7	5302.0	177.2	3.5
MAR	11156.9	11785.0	628.1	5.6
APR	14981.5	15397.5	416.0	2.8
MAY	26130.7	28472.4	2341.7	9.0
JUN	28216.6	29268.4	1051.8	3.7
JUL	27133.0	27820.9	687.9	2.5
AUG	28333.1	29507.5	1174.4	4.1
SEP	23327.1	25494.3	2167.2	9.3
ост	17139.8	19173.0	2033.2	11.9
NOV	8410.4	7949.1	-461.3	-5.5
DEC	5287.1	4822.8	-464.3	-8.8
Total	200750.0	210026.0	9276.0	4.620672672

Table 28 Square Base Energy consumption at 0.01 SHGC

HEATING LOA	D			
0.1 U-VALUE (WINDOW) SQUARE ECBC BASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2492.0	925.1	-1566	-62.87732905
FEB	897.0	254.1	-642	-71.67493701
MAR	262.0	262.4		0.152671756
APR	0.0	0.0		D.O (
MAY	0.0	0.0).O
JUN	0.0	0.0		0.0
JUL	0.0	0.0		D.O (
AUG	0.0	0.0).O
SEP	0.0	0.0		0.0
ОСТ	6.0	0.0	-6	5.0 (
NOV	511.0	181.9	-329	-64.39441781
DEC	1763.0	777.6	-985	5.4 -55.89397221
Total	5931.0	1506.1	-4424	-74.6059855

COOLING LOAD

0.1 U-VALUE (WINDOW) SQUARE ECBC BASE 2050

	COOLING LOAD (kWh)	COOLING LOAD (kW	h)	(kWh)	PERCENTAGE (%)	
	199	0	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990)
JAN	3016	9	4083.4	1066.5		35.4
FEB	4227	7	5405.9	1178.2		27.9
MAR	10894	5	11917.2	1022.7		9.4
APR	14981	5	15264.1	282.6		1.9
MAY	26130	7	26651.5	520.8		2.0
JUN	28216	6	27389.8	-826.9		-2.9
JUL	27133	0	25869.1	-1264.0		-4.7
AUG	28333	1	27137.1	-1196.0		-4.2
SEP	23327	1	23560.9	233.8		1.0
ОСТ	17133	4	18291.4	1158.0		6.8
NOV	7899	6	8150.0	250.4		3.2
DEC	3524	3	4207.6	683.3		19.4
Total	194818	5	232910.3	38091.8	19.55	245166

.1 U-VALUE (WINDOW) SQUARE ECBC BASE 2050		 and the second
	 	 ALC: 1 1
OTAL HVAC		

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	19	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	5509	.0 5008.5	-500.5	-9.1
FEB	5124	.7 5660.0	535.2	10.4
MAR	11156	.9 12179.6	1022.7	9.2
APR	14981	.5 15264.1	282.6	1.9
MAY	26130	.7 26651.5	520.8	2.0
JUN	28216	.6 27389.8	-826.9	-2.9
JUL	27133	.0 25869.1	-1264.0	-4.7
AUG	28333	.1 27137.1	-1196.0	-4.2
SEP	23327	.1 23560.9	233.8	1.0
ОСТ	17139	.8 18291.4	1151.5	6.7
NOV	8410	.4 8331.9	-78.5	-0.9
DEC	5287	.1 4985.2	-301.9	-5.7
Total	200750	.0 234416.4	33666.4	16.77029979

Table 29 Square Base Energy consumption at 0.1 U-Value Window

3. Rectangle ECBC Base case Layout

A) U-Value (Wall)

HEATING LOAD				
	ALL) RECTANGLE ECBC BASE 2050			
0.028 0-VALOL (V	VALLY RECTANGLE LEBE BASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2489.0	949.1	-1539.9	-61.86874528
FEB	918.0	256.4	-661.6	-72.06587375
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	C
MAY	0.0	0.0	0.0	C
JUN	0.0	0.0	0.0	C
JUL	0.0	0.0	0.0	C
AUG	0.0	0.0	0.0	C
SEP	0.0	0.0	0.0	(
ОСТ	5.0	0.0	-5.0	0
NOV	507.0	175.9	-331.1	-65.30770888
DEC	1767.0	792.1	-974.9	-55.17455291
Total	5948.0	2435.9	-3512.1	-59.04711205

COOLING LOAD

Total

	COOLING LOAD (kWh)	COOLING LOA	D (kWh)	(kWh)	PERCENTAGE (%)
		1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN		3208.8	4303.2	1094.4	4 34.1
FEB		4345.1	5554.7	1209.	7 27.8
MAR		10813.8	11837.9	1024.	1 9.5
APR		14578.1	14883.8	305.	3 2.1
MAY		25367.2	25930.0	562.	7 2.2
JUN		27359.0	26596.3	-762.	-2.8
JUL		26315.7	25146.9	-1168.	9 -4.4
AUG		27532.6	26436.1	-1096.	-4.0
SEP		22777.8	23033.9	256.	1 1.1
ОСТ		16922.4	18062.9	1140.	5 6.7
NOV	the second s	8077.6	8343.7	266.	1 3.3
DEC		3749.0	4445.5	696.	5 18.6
Total		191047.0	194574.8	3527.	8 1.846538297

TOTAL HVAC 0.028 U-VALUE (WALL) RECTANGLE ECBC BASE 2050 PERCENTAGE (%) TOTAL HVAC (kWh) TOTAL HVAC (kWh) (kWh) 1990 Diff. of 2050 to 1990 2050 Diff. of 2050 to 1990 JAN 5698.0 5252.3 -445.7 FEB 5263.4 5811.2 547.8 11076.2 12100.3 1024.1 MAR APR 14578.1 14883.8 305.8 MAY 25367.2 25930.0 562.7 JUN -762.7 27359.0 26596.3 JUL 26315.7 25146.9 -1168.9 AUG 27532.6 26436.1 -1096.5 SEP 22777.8 23033.9 256.1 1135.4 ОСТ 16927.6 18062.9 NOV 8584.8 8519.6 -65.2 DEC 5516.2 5237.5 -278.6

197010.6

Table 30 Rectangle Base Energy consumption at 0.028 U-Value

196996.3

Source: Author

14.3

0.007261108

7.8

10.4

9.2

2.1

2.2

-2.8

-4.4

-4.0

1.1

6.7

-0.8

-5.1

B) SHGC (Wall)

HEATING LOAD					
0.028 SHGC RECTA	NGLE ECBC BASE 2050				
	HEATING LOAD (kWh)	HEATING LOAD (kWh)		(kWh)	PERCENTAGE (%)
	1990	2050		Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2489.0	1691.5		-797.5	-32.0391362
FEB	918.0	543.7		-374.3	-40.76977331
MAR	262.0	262.4		0.4	0.152671756
APR	0.0	0.0	1.00	0.0	0
MAY	0.0	0.0		0.0	0
JUN	0.0	0.0		0.0	0
JUL	0.0	0.0		0.0	C
AUG	0.0	0.0		0.0	0
SEP	0.0	0.0		0.0	C
ост	5.0	0.0		-5.0	0
NOV	507.0	439.7		-67.3	-13.26775878
DEC	1767.0	1382.2		-384.8	-21.77624505
Total	5948.0	4319.6		-1628.4	-27.37683937

COOLING LOAD

0.028 SHGC RECTANGLE ECBC BASE 2050

	COOLING LOAD (kWh)	COOLING LOA	AD (kWh)	(kWh)	PERCENTAGE (%)
		1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN		3208.8	3414.8	206.0	6.4
FEB		4345.1	4748.5	403.4	9.3
MAR	1	0813.8	11294.3	480.6	4.4
APR	1	4578.1	15035.9	457.8	3.1
MAY	2	5367.2	27746.3	2379.0	9.4
JUN	2	7359.0	28497.7	1138.7	4.2
JUL	2	6315.7	27042.4	726.6	2.8
AUG	2	7532.6	28623.8	1091.2	4.0
SEP	2	2777.8	24790.1	2012.3	8.8
ост	1	6922.4	18668.7	1746.3	10.3
NOV		8077.6	7417.4	-660.2	-8.2
DEC	- 12 - L	3749.0	3500.3	-248.7	-6.6
Total	19	1047.0	200780.2	9733.2	5.094639818

TOTAL HVAC	1 A.			1 22	1 No. 1
<mark>0.028 SHGC R</mark>	RECTANGLE ECBC BASE 2050	1	-	 C. (2) (
	TOTAL HVAC (kWh)	то	OTAL HVAC (kWh)	 (kWh)	PERCENTAGE (%)
		1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN		5698.0	5106.4	-591.	6 -10.4
FEB		5263.4	5292.2	28.	9 0.5
MAR		11076.2	11556.7	480.	6 4.3
APR		14578.1	15035.9	457.	8 3.1
MAY		25367.2	27746.3	2379.	0 9.4
JUN		27359.0	28497.7	1138.	7 4.2
JUL		26315.7	27042.4	726.	6 2.8
AUG		27532.6	28623.8	1091.	2 4.0
SEP		22777.8	24790.1	2012.	3 8.8
ост		16927.6	18668.7	1741.	1 10.3
NOV		8584.8	7857.1	-727.	6 -8.5
DEC		5516.2	4882.5	-633.	6 -11.5
Total	1	96996.3	205099.8	8103.	5 4.113504243

Table 31 Rectangle Base Energy consumption at 0.028 SHGC

C) U-Value (Wall)

HEATING LOAD				
	NDOW) RECTANGLE ECBC BASE 2050			
0.10-04202 (0010				
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2489.0	949.1	-1539.9	-61.86874528
FEB	918.0	256.4	-661.6	-72.06587375
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	C
JUN	0.0	0.0	0.0	C
JUL	0.0	0.0	0.0	C
AUG	0.0	0.0	0.0	C
SEP	0.0	0.0	0.0	C
ОСТ	5.0	0.0	-5.0	C
NOV	507.0	175.9	-331.1	-65.30770888
DEC	1767.0	792.1	-974.9	-55.17455291
Total	5948.0	1420.5	-4527.5	-76.11768662

COOLING LOAD

0.1 U-VALUE (WINDOW) RECTANGLE ECBC BASE 2050

	COOLING LOAD (kWh)	COOLING LOAI	D (kWh)	(kWh)	PERCENTAGE	(%)
	19	90	2050	Diff. of 2050 to 1990	Diff. of 2050 to	1990
JAN	3208	3.8	4303.2	1094.4		34.1
FEB	4345	5.1	5554.7	1209.7		27.8
MAR	10813	3.8	11837.9	1024.1		9.5
APR	14578	3.1	14883.8	305.8		2.1
MAY	2536	7.2	25930.0	562.7		2.2
JUN	27355	9.0	26596.3	-762.7		-2.8
JUL	2631	5.7	25146.9	-1168.9		-4.4
AUG	27532	2.6	26436.1	-1096.5		-4.0
SEP	2277	7.8	23033.9	256.1		1.1
ост	16922	2.4	18062.9	1140.5		6.7
NOV	807	7.6	8343.7	266.1		3.3
DEC	374	9.0	4445.5	696.5		18.6
Total	191043	7.0	228240.2	37193.2		19.46808445

TOTAL HVAC

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)		(kWh)	PERCENTAGE (%)
	1990	20	50	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	5698.0	5252	.3	-445.7	-7.8
FEB	5263.4	5811	.2	547.8	10.4
MAR	11076.2	12100	.3	1024.1	9.2
APR	14578.1	14883	.8	305.8	2.1
MAY	25367.2	25930	.0	562.7	2.2
JUN	27359.0	26596	.3	-762.7	-2.8
JUL	26315.7	25146	.9	-1168.9	-4.4
AUG	27532.6	26436	.1	-1096.5	-4.0
SEP	22777.8	23033	.9	256.1	1.1
ОСТ	16927.6	18062	.9	1135.4	6.7
NOV	8584.8	8519	.6	-65.2	-0.8
DEC	5516.2	5237	.5	-278.6	-5.1
Total	196996.3	229660	.7	32664.4	16.58121333

 Table 32 Rectangle Base Energy consumption at 0.1 U-Value window

4. Curve ECBC Base case Layout

A) U-Value (Wall)

HEATING LOAD				
0.025 U-VALUE CL	JRVE BASE CASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	3126.0	1156.4	-1969.6	-63.00782956
FEB	1110.0	278.8	-831.2	-74.88684054
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	C
MAY	0.0	0.0	0.0	C
JUN	0.0	0.0	0.0	C
JUL	0.0	0.0	0.0	C
AUG	0.0	0.0	0.0	C
SEP	0.0	0.0	0.0	C
ОСТ	8.0	0.0	-8.0	C
NOV	575.0	185.0	-390.0	-67.81897026
DEC	2206.0	956.4	-1249.6	-56.64434995
Total	7287.0	2839.0	-4448.0	-61.0402377

COOLING LOAD

0.025 U-VALUE CURVE BASE CASE 2050 COOLING LOAD (kWh) COOLING LOAD (kWh) (kWh) PERCENTAGE (%) 1990 2050 Diff. of 2050 to 1990 Diff. of 2050 to 1990 JAN 3078.8 4239.6 1160.8 FEB 1341.3 4296.9 5638.3 MAR 11607.5 12875.1 1267.6 APR 16184.2 16585.2 401.0 MAY 28757.5 29665.0 907.5 JUN 31126.6 30489.1 -637.5 JUL 30021.4 28855.2 -1166.2 AUG 31398.5 30415.5 -983.0 620.5 SEP 25799.9 26420.3 ОСТ 18716.7 20371.3 1654.6 NOV 8383.3 8747.7 364.4 DEC 3633.0 4419.3 786.3 Total 213004.4 2.684158925 5717.4

218721.8

TOTAL HVAC

0.025 U-VALUE CURVE BASE CASE 2050

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	6205.0	5396.0	-809.0	-13.0
FEB	5406.6	5917.0	510.4	9.4
MAR	11869.9	13137.5	1267.6	10.7
APR	16184.2	16585.2	401.0	2.5
MAY	28757.5	29665.0	907.5	3.2
JUN	31126.6	30489.1	-637.5	-2.0
JUL	30021.4	28855.2	-1166.2	-3.9
AUG	31398.5	30415.5	-983.0	-3.1
SEP	25799.9	26420.3	620.5	2.4
ост	18725.1	20371.3	1646.2	8.8
NOV	8958.0	8932.8	-25.2	-0.3
DEC	5839.3	5375.7	-463.6	-7.9
Total	220292.1	221560.8	1268.7	0.575915107

Table 33 Curve Base Energy consumption at 0.025 U-Value

Source: Author

37.7

31.2

10.9

2.5

3.2

-2.0 -3.9

-3.1

2.4

8.8

4.3

21.6

HEATING LOAD				
0.01 SHGC CURVE	BASE CASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	3126.0	1913.8	-1212.2	-38.77835125
FEB	1110.0	574.3	-535.7	-48.26288964
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	0
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	0
AUG	0.0	0.0	0.0	0
SEP	0.0	0.0	0.0	0
ОСТ	8.0	0.0	-8.0	0
NOV	575.0	445.7	-129.3	-22.49210452
DEC	2206.0	1561.8	-644.2	-29.20372076
Total	7287.0	4757.9	-2529.1	-34.70691665

COOLING LOAD

0.01 SHGC CURVE BASE CASE 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	3078.8	3604.1	525.3	17.1
FEB	4296.9	5092.5	795.6	18.5
MAR	11607.5	12719.5	1112.0	9.6
APR	16184.2	17154.3	970.1	6.0
MAY	28757.5	32091.5	3334.0	11.6
JUN	31126.6	33014.7	1888.1	6.1
JUL	30021.4	31406.5	1385.1	4.6
AUG	31398.5	33209.4	1810.9	5.8
SEP	25799.9	28696.3	2896.4	11.2
ОСТ	18716.7	21456.4	2739.7	14.6
NOV	8383.3	8185.1	-198.3	-2.4
DEC	3633.0	3729.4	96.5	2.7
Total	213004.4	230359.8	17355.4	8,147886844

TOTAL HVAC	

0.01 SHGC C	URVE BASE CASE 2050		1 1 11	
	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	6205.0	5517.9	-687.1	-11.1
FEB	5406.6	5666.8	260.2	4.8
MAR	11869.9	12981.9	1112.0	9.4
APR	16184.2	17154.3	970.1	6.0
MAY	28757.5	32091.5	3334.0	11.6
JUN	31126.6	33014.7	1888.1	6.1
JUL	30021.4	31406.5	1385.1	4.6
AUG	31398.5	33209.4	1810.9	5.8
SEP	25799.9	28696.3	2896.4	11.2
ост	18725.1	21456.4	2731.3	14.6
NOV	8958.0	8630.7	-327.3	-3.7
DEC	5839.3	5291.2	-548.1	-9.4
Total	220292.1	235117.7	14825.6	6.729967506

Table 34 Curve Base Energy consumption at 0.01 SHGC

HEATING LOAD				
	IDOW) DA HEAQUARTERS 2050			
0.1 0-VALOE (WIN	DOW) DA HEAQUARTERS 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	3126.0	907.9	-2218.1	-70.9552382
FEB	1110.0	172.7	-937.3	-84.43719739
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	0
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	0
AUG	0.0	0.0	0.0	0
SEP	0.0	0.0	0.0	0
ОСТ	8.0	0.0	-8.0	0
NOV	575.0	97.1	-477.9	-83.11551183
DEC	2206.0	717.8	-1488.2	-67.46226337
Total	7287.0	2158.0	-5129.0	-70.3862407

COOLING LOAD

0.1 U-VALUE (WINDOW) DA HEAQUARTERS 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	3078.8	3 5804.4	2725.7	88.5
FEB	4296.9	7328.3	3031.3	70.5
MAR	11607.5	5 15433.0	3825.5	33.0
APR	16184.2	19190.3	3006.1	18.6
MAY	28757.5	33965.4	5207.9	18.1
JUN	31126.6	34775.6	3649.0	11.7
JUL	30021.4	33099.5	3078.2	10.3
AUG	31398.5	35064.5	3665.9	11.7
SEP	25799.9	30510.8	4710.9	18.3
ОСТ	18716.7	23951.7	5235.0	28.0
NOV	8383.3	3 10899.7	2516.4	30.0
DEC	3633.0	5931.4	2298.4	63.3
Total	213004.4	255954.7	42950.3	20.16403717

TOTAL HVAC

0.1 U-VALUE (WINDOW) DA HEAQUARTERS 2050

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	6205.0	6712.4	507.4	8.2
FEB	5406.6	7501.0	2094.4	38.7
MAR	11869.9	15695.4	3825.5	32.2
APR	16184.2	19190.3	3006.1	. 18.6
MAY	28757.5	33965.4	5207.9	18.1
JUN	31126.6	34775.6	3649.0	11.7
JUL	30021.4	33099.5	3078.2	10.3
AUG	31398.5	35064.5	3665.9	11.7
SEP	25799.9	30510.8	4710.9	18.3
ост	18725.1	23951.7	5226.6	27.9
NOV	8958.0	10996.8	2038.8	22.8
DEC	5839.3	6649.2	809.9	13.9
Total	220292.1	258112.6	37820.6	17.16837121

Table 35 Curve Base Energy consumption at 0.1 U-Value window

5. Triangle ECBC Base case Layout

A) U-Value (Wall)

HEATING LOAD				
0.027 U-VALUE TR	IANGLE BASE CASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2464.0	870.7	-1593.3	-64.66301238
FEB	843.0	211.1	-631.9	-74.95477817
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	0
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	0
AUG	0.0	0.0	0.0	0
SEP	0.0	0.0	0.0	0
ост	5.0	0.0	-5.0	0
NOV	439.0	143.5	-295.5	-67.32067335
DEC	1712.0	720.1	-991.9	-57.93562208
Total	5725.0	2207.8	-3517.2	-61.43512683

COOLING LOAD

0.027 U-VALUE TRIANGLE BASE CASE 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2615.4	3547.6	932.3	35.6
FEB	3648.	4729.3	1080.6	29.6
MAR	9832.6	5 10838.4	1005.8	10.2
APR	13721.3	14032.9	311.6	2.3
MAY	23757.8	3 24271.9	514.1	2.2
JUN	25575.5	5 24821.8	-753.8	-2.9
JUL	24636.9	23495.6	-1141.3	-4.6
AUG	25779.3	3 24680.6	-1098.7	-4.3
SEP	21327.2	2 21505.6	178.4	0.8
ОСТ	15595.0	16676.1	1081.1	6.9
NOV	7087.	7328.3	240.6	3.4
DEC	3087.	3713.5	625.9	20.3
Total	176665.0	179641.7	2976.7	1.684934543

TOTAL HVAC

0.027 U-VALUE TRIANGLE BASE CASE 2050

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	()	kWh)	PERCENTAGE (%)
	1990	2050	D	iff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	5079.0	4418.3		-660.7	-13.0
FEB	4491.5	4940.4		449.0	10.0
MAR	10095.0	11100.8		1005.8	10.0
APR	13721.3	14032.9		311.6	2.3
MAY	23757.8	24271.9		514.1	2.2
JUN	25575.5	24821.8		-753.8	-2.9
JUL	24636.9	23495.6		-1141.3	-4.6
AUG	25779.3	24680.6		-1098.7	-4.3
SEP	21327.2	21505.6		178.4	0.8
ост	15599.8	16676.1		1076.3	6.9
NOV	7527.1	7471.8		-55.3	-0.7
DEC	4799.3	4433.7		-365.6	-7.6
Total	182389.6	181849.5		-540.1	-0.296103479

Table 36 Triangle Base Energy consumption at 0.027 U-Value

HEATING LOAD					
0.01 SHGC TRIANG	GLE BASE CASE 2050				
	HEATING LOAD (kWh)	HEATING LOAD (kWh)		(kWh)	PERCENTAGE (%)
	1990	2050		Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2464.0	1637.1		-826.9	-33.56126907
FEB	843.0	489.1		-353.9	-41.98436785
MAR	262.0	262.4		0.4	0.152671756
APR	0.0	0.0		0.0	0
MAY	0.0	0.0		0.0	0
JUN	0.0	0.0		0.0	0
JUL	0.0	0.0		0.0	0
AUG	0.0	0.0		0.0	0
SEP	0.0	0.0		0.0	0
ост	5.0	0.0		-5.0	0
NOV	439.0	389.8		-49.2	-11.20354305
DEC	1712.0	1321.9	1.1	-390.1	-22.78800292
Total	5725.0	4100.2		-1624.8	-28.38064725

COOLING LOAD

0.01 SHGC TRIANGLE BASE CASE 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	19	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2615	.4 2659.5	44.2	2 1.7
FEB	3648	.7 3868.9	220.3	6.0
MAR	9832	.6 10037.4	204.7	2.1
APR	13721	.3 13803.7	82.4	0.6
MAY	23757	.8 25893.8	2136.0	9.0
JUN	25575	.5 26612.7	1037.2	4.1
JUL	24636	.9 25265.6	628.7	2.6
AUG	25779	.3 26684.6	905.3	3.5
SEP	21327	.2 23038.0	1710.8	8.0
ОСТ	15595	.0 17084.7	1489.7	9.6
NOV	7087	.7 6349.5	-738.2	-10.4
DEC	3087	.7 2778.0	-309.7	-10.0
Total	176665	.0 184076.4	7411.4	4.19517999

TOTAL HVAC

	TOTAL HVAC (kWh)		TOTAL HVAC (kWh)		(kWh)	PERCENTAGE (%)
		1990		2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN		507 9.0		4296.6	-782.4	4 -15.4
FEB		4491.5		4358.0	-133.4	4 -3.0
MAR	1	0095.0		10299.8	204.	7 2.0
APR	1	3721.3		13803.7		4 0.6
MAY	2	3757.8		25893.8	2136.	9.0
JUN	2	557 5 .5		26612.7	1037.	2 4.1
JUL	2	4 63 6.9		25265.6	628.	7 2.6
AUG	2	5779.3		26684.6	905.	3.5
SEP	2	1327.2		23038.0	1710.	8 8.0
ост	1	5599.8		17084.7	1484.	9.5
NOV		7527.1		6739.3	-787.	B -10.5
DEC		4799.3		4099.9	-699.	4 -14.6
Total	18	2389.6		188176.6	5787.	3.172895983

Table 37 Triangle Base Energy consumption at 0.01 SHGC

HEATING LOAD				
0.1 U-VALUE (WIN	NDOW) TRIANGLE BASE CASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2464.0	558.7	-1905.3	-77.32429099
FEB	843.0	100.6	-742.4	-88.06146311
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	0
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	0
AUG	0.0	0.0	0.0	0
SEP	0.0	0.0	0.0	0
ост	5.0	0.0	-5.0	0
NOV	439.0	46.3	-392.7	-89.44994579
DEC	1712.0	440.7	-1271.3	-74.26080794
Total	5725.0	1408.7	-4316.3	-75.39316957

COOLING LOAD

0.1 U-VALUE (WINDOW) TRIANGLE BASE CASE 2050

	COOLING LOAD (kWh)	COOLING LO	AD (kWh)	(kWh)	PERCENTAGE (%)
		1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN		2615.4	4956.7	2341.3	89.5
FEB		3648.7	6266.1	2617.4	71.7
MAR		9832.6	13093.1	3260.5	33.2
APR	1	3721.3	16180.7	2459.3	17.9
MAY	2.	3757.8	27710.8	3953.0	16.6
JUN	2	5575.5	28201.9	2626.4	10.3
JUL	24	4636.9	26906.9	2270.1	9.2
AUG	2	5779.3	28501.6	2722.3	10.6
SEP	2	1327.2	24939.5	3612.3	16.9
ОСТ	1	5595.0	19809.6	4214.6	5 27.0
NOV		7087.7	9234.3	2146.6	30.3
DEC		3087.7	5071.8	1984.1	64.3
Total	17	6665.0	210873.0	34208.0	19.36319753

TOTAL HVAC

0.1 U-VALUE (WINDOW) TRIANGLE BASE CASE 2050

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	5079.0	5515.4	436.4	8.6
FEB	4491.5	6366.8	1875.3	41.8
MAR	10095.0	13355.5	3260.5	32.3
APR	13721.3	16180.7	2459.3	17.9
MAY	23757.8	27710.8	3953.0	16.6
JUN	25575.5	28201.9	2626.4	10.3
JUL	24636.9	26906.9	2270.1	. 9.2
AUG	25779.3	28501.6	2722.3	10.6
SEP	21327.2	24939.5	3612.3	16.9
ОСТ	15599.8	19809.6	4209.8	27.0
NOV	7527.1	9280.7	1753.6	23.3
DEC	4799.3	5512.4	713.1	. 14.9
Total	182389.6	212281.8	29892.1	16.38917191

Table 38 Triangle Base Energy consumption at 0.01 U-Value window

6. U-Shaped ECBC Base case Layout

A) U-Value (Wall)

HEATING LOAD				
0.035 U-VALUE U-	SHAPED BASE CASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2720.0	977.8	-1742.2	-64.05024816
FEB	962.0	251.3	-710.7	-73.88012921
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	(
MAY	0.0	0.0	0.0	(
JUN	0.0	0.0	0.0	C
JUL	0.0	0.0	0.0	(
AUG	0.0	0.0	0.0	C
SEP	0.0	0.0	0.0	C
ОСТ	4.0	0.0	-4.0	0
NOV	511.0	171.6	-339.4	-66.42734344
DEC	1938.0	839.3	-1098.7	-56.69431011
Total	6397.0	2502.3	-3894.7	-60.88280519

COOLING LOAD

	COOLING LOAD (kWh)	COOLING LOAD (kWh))	(kWh)	PERCENTAGE (%)
	199	0	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2955	.6	4131.9	1176.	3 39.
FEB	4180	.6	5491.3	1310.	7 31.
MAR	11046	.7	12187.2	1140.	5 10.
APR	15436	.0	15778.9	342.	8 2.
MAY	26319	.1	26865.4	546.	3 2.
JUN	28366	.1	27610.9	-755.	2 -2.
JUL	27023	.9	25820.5	-1203.	4 -4.
AUG	28002	.0	26799.1	-1202.	9 -4.
SEP	23090	.8	23314.1	223.	3 1.
ост	17034	.5	18155.2	1120.	6 6.
NOV	7892	.8	8255.9	363.	1 4.
DEC	3451	3	4259.2	807.	9 23.
Total	194799	4	198669.5	3870.	1 1.98672832

TOTAL HVAC

0.035 U-VALUE U-SHAPED BASE CASE 2050

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)		(kWh)	PERCENTAGE (%)
	1990	2050		Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	5675.0	5109.8		-565.2	-10.0
FEB	5142.3	5742.6		600.3	11.7
MAR	11309.1	12449.6		1140.5	10.1
APR	15436.0	15778.9		342.8	2.2
MAY	26319.1	26865.4	1.00	546.3	2.1
JUN	28366.1	27610.9		-755.2	-2.7
JUL	27023.9	25820.5		-1203.4	-4.5
AUG	28002.0	26799.1		-1202.9	-4.3
SEP	23090.8	23314.1		223.3	1.0
ост	17038.3	18155.2		1116.9	6.6
NOV	8403.7	8427.4		23.8	0.3
DEC	5388.9	5098.5		-290.4	-5.4
Total	201195.1	201171.9		-23.2	-0.011536577

Table 39 U-Shaped Base Energy consumption at 0.035 U-Value

HEATING LOAD				
0.03 SHGC U-SH	APED BASE CASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2720.0	1876.3	-843.	7 -31.01742132
FEB	962.0	591.7	-370.	3 -38.48917058
MAR	262.0	262.4	0.	4 0.152671756
APR	0.0	0.0	0.	0 0
MAY	0.0	0.0	0.	0
JUN	0.0	0.0	0.	0
JUL	0.0	0.0	0.	0 0
AUG	0.0	0.0	0.	0
SEP	0.0	0.0	0.	0 0
ост	4.0	0.0	-4.	0 (
NOV	511.0	468.9	-42.	-8.236359883
DEC	1938.0	1544.1	-393.	9 -20.32677296
Total	6397.0	4743.4	-1653.	6 -25.84899703

COOLING LOAD

0.03 SHGC U-SHAPED BASE CASE 2050

	COOLING LOAD (kWh)	COOLING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2955.6	2897.8	-57.8	-2.0
FEB	4180.6	6 4211.7	31.1	0.7
MAR	11046.7	10768.1	-278.6	-2.5
APR	15436.0	14837.7	-598.4	-3.9
MAY	26319.3	27471.6	1152.6	4.4
JUN	28366.2	28227.2	-138.9	-0.5
JUL	27023.9	26725.8	-298.1	-1.1
AUG	28002.0	28123.6	121.6	0.4
SEP	23090.8	3 24322.4	1231.6	5.3
ОСТ	17034.5	18093.4	1058.8	6.2
NOV	7892.8	6837.1	-1055.8	-13.4
DEC	3451.3	3022.4	-428.8	-12.4
Total	194799.4	195538.8	739.4	0.379558585

SHGC U-SHAPED BASE CASE 2050			
SHGC U-SHAPED BASE CASE 2050		 	

	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)	(kWh)	PERCENTAGE (%)
	199	0 2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	5675.	0 4774.1	-900.	9 -15.9
FEB	5142.	3 4803.4	-338.	9 -6.6
MAR	11309.	1 11030.5	-278.	6 -2.5
APR	15436.	0 14837.7	-598.	4 -3.9
MAY	26319.	1 27471.6	1152.	6 4.4
JUN	28366.	1 28227.2	-138.	9 -0.5
JUL	27023.	9 26725.8	-298.	1 -1.1
AUG	28002.	0 28123.6	121.	6 0.4
SEP	23090.	8 24322.4	1231.	6 5.3
ОСТ	17038.	3 18093.4	1055.	1 6.2
NOV	8403.	7 7306.0	-1097.	7 -13.1
DEC	5388.	9 4566.5	-822.	4 -15.3
Total	201195.	1 200282.2	-912.	9 -0.453716528

Table 40 U-Shaped Base Energy consumption at 0.03 SHGC

HEATING LOAD				
0.1 U-VALUE (WIN	IDOW) U-SHAPED BASE CASE 2050			
	HEATING LOAD (kWh)	HEATING LOAD (kWh)	(kWh)	PERCENTAGE (%)
	1990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	2720.0	553.0	-2167.0	-79.67092588
FEB	962.0	95.7	-866.3	-90.04684366
MAR	262.0	262.4	0.4	0.152671756
APR	0.0	0.0	0.0	0
MAY	0.0	0.0	0.0	0
JUN	0.0	0.0	0.0	0
JUL	0.0	0.0	0.0	0
AUG	0.0	0.0	0.0	0
SEP	0.0	0.0	0.0	0
ОСТ	4.0	0.0	-4.0	0
NOV	511.0	50.8	-460.2	-90.06144579
DEC	1938.0	447.2	-1490.8	-76.92241073
Total	6397.0	1409.1	-4987.9	-77.97202013

COOLING LOAD

0.1 U-VALUE (WINDOW) U-SHAPED BASE CASE 2050

	COOLING LOAD (kWh)	COOLING LOAI	D (kWh)	(kWh)	PERCENTAGE (%)	
	19	90	2050	Diff. of 2050 to 1990	Diff. of 2050 to	o 1990
JAN	2955	.6	5737.6	2782.1		94.1
FEB	4180	.6	7202.0	3021.4		72.3
MAR	11046	.7	14577.1	3530.3		32.0
APR	15436	.0	18007.8	2571.8		16.7
MAY	26319	.1	30480.0	4160.9		15.8
JUN	28366	.1	31206.7	2840.6		10.0
JUL	27023	.9	29472.0	2448.1		9.1
AUG	28002	.0	30909.0	2907.0		10.4
SEP	23090	.8	26900.7	3809.9		16.5
ОСТ	17034	.5	21443.8	4409.2		25.9
NOV	7892	.8	10357.5	2464.7		31.2
DEC	3451	.3	5803.9	2352.7		68.2
Total	194799	.4	232098.0	37298.6		19.14720111

TOTAL HVAC					Contract of the
0.1 U-VALUE	(WINDOW) U-SHAPED BASE CASE 2050			1 1 10	
	TOTAL HVAC (kWh)	TOTAL HVAC (kWh)		(kWh)	PERCENTAGE (%)
	1	990	2050	Diff. of 2050 to 1990	Diff. of 2050 to 1990
JAN	567	5.0	6290.6	615	.6
FEB	514	2.3	7297.8	2155	.5
MAR	1130	9.1	14839.5	3530	.3
APR	1543	6.0	18007.8	2571	.8
MAY	2631	9.1	30480.0	4160	.9
JUN	2836	6.1	31206.7	2840	.6
JUL	2702	3.9	29472.0	2448	.1
ALIG	2800	2.0	30909 0	2907	0

Total	201195.1	233507.2	32312.1	16.06008012
DEC	5388.9	6251.2	862.3	16.0
NOV	8403.7	10408.3	2004.6	23.9
ост	17038.3	21443.8	4405.5	25.9
SEP	23090.8	26900.7	3809.9	16.5
AUG	28002.0	30909.0	2907.0	10.4
JUL	27023.9	29472.0	2448.1	9.1

Table 41 U-Shaped Base Energy consumption at 0.1 U-Value Window

Source: Author

10.8

41.9

31.2 16.7

15.8

10.0 9.1

RESEARCH FINDINGS

Simulations results analysis explains how different building models are operating and preforming in relationship with each other. This relationship has been explained in terms of percentage.

DA BUILDINGHeating Loads Cooling laods Total HVAC-29.23% -41.97%SQAURE BASEHeating Loads Cooling laods Total HVAC-SQAURE BASEHeating Loads Cooling laods Cooling laods-Total HVAC23.65% 9.96%-35.81% 9.48%Total HVAC-9.96% 8.55%	-35.600% 10.500% 4.500% -29.730% 9.720% 8.760%
Cooling laods-11%10%Total HVAC-4%5%SQAURE BASEHeating Loads23.65%-35.81%Cooling laods-9.96%9.48%	10.500% 4.500% -29.730% 9.720%
Total HVAC-4%5%SQAURE BASEHeating Loads23.65%-35.81%Cooling laods-9.96%9.48%	4.500% -29.730% 9.720%
SQAURE BASEHeating Loads23.65%-35.81%Cooling laods-9.96%9.48%	-29.730% 9.720%
Cooling laods - 9.96% 9.48%	9.720%
Cooling laods - 9.96% 9.48%	9.720%
Total HVAC - 8.97% 8.55%	8.760 %
RECTANGLE BASE Heating Loads22.50% -35.97%	-29.235%
Cooling laods - 9.90% 9.40%	9.650%
Total HVAC - 8.91% 8.43%	8.670%
CURVE BASE Heating Loads24.22% -37.73%	-30.975%
Cooling laods - 10.32% 9.66%	9.990%
Total HVAC - 9.17% 8.58%	8.875%
TRIANGLE BASE Heating Loads - -32.08% -36.63%	-34.355%
Cooling laods - 10% 7.19%	8.595%
Total HVAC - 9.37% 6.78%	8.075%
	100
U-SHAPED BASE Heating Loads32% 37%	-34.500%
Cooling taods - 10% 7%	8.500%
Total HVAC - 9% 7%	8.000%

Table 42 AVERAGE ENERGY CHANGE FOR EACH CASE TYPE (2020, 2050)

Energy simulations for **DA Building** indicates a decrease in heating energy demands by **35.6%** on average, cooling energy demand by **10.5%**, and overall energy demand by **4.5%**.

Energy simulations for Square Base Case indicates a decrease in heating energy demands by 29.73% on average, cooling energy demand by 9.72%, and overall energy demand by 8.76%.

Energy simulations for **Rectangle Base Case** results indicated a decrease in heating energy demands by **29.23%** on average, cooling energy demand by **9.65%**, and overall energy demand by **8.67%**.

Energy simulations for **Curve Base Case** results indicated a decrease in heating energy demands by **30.97%** on average, cooling energy demand by **9.99%**, and overall energy demand by **8.87%**.

Energy simulations for **Triangle Base Case** results indicated a decrease in heating energy demands by **34.35%** on average, cooling energy demand by **8.59%**, and overall energy demand by **8.07%**.

Energy simulations for **U-Shaped Base Case** results indicated a decrease in heating energy demands by **34.5%** on average, cooling energy demand by **8.5%**, and overall energy demand by **8.0%**.

ENERGY CONSUM	PTION IN VARIOUS PRO	FILES		
	1990 (%)	2020 (%)	2050 (%)	
SQUARE	BASE		8.97%	8.55%
RECTANGLE	-1.87	1 1 1 1 1 1	8.91%	8.43%
CURVE	9.73		9.17%	8.58%
TRIANGLE	-9.15	and the second second	9.37%	6.78%
U-SHAPED	0.22	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9%	7%

Table 43 Variations in Energy Consumption in Various Profile

Comparison between the energy consumption between various profiles show a significant difference in the energy consumed in various profiles. In this analysis, to carry out the comparative analysis, energy consumption of square base case has been considered as reference case.

Percentage variation the first column of the above table shows values in terms of percentage. This percentage is the energy consumed by various profiles as compared to Square profile. **Triangle Profile** when show **least energy** consumed among these profiles. Where are **Curve Profile** Layout Consumed **maximum energy** as compared to Square Profile.

CONCLUSIONS

Mitigative strategies used here just to find out that at what value, a single mitigative factor can be able to Limit the energy consumption of future scenario to the present scenario.

Mitigation factors selected for this study are

- 1. U-Value (External Wall)
- 2. SHGC (Window0
- 3. U-Value (Window)

Mitigative Capping Value & Efficiency for DA Building

CASE TYPE	MITIGATION TYPE	CAPPING VALUE	LOADS TYPE	1990 (Base)	2050 (reduced to)	Efficiency
DA BUILDING	U-VALUE (WALL)	ALC: NO.	Heating Loads	and the second	-66.82%	-
		0.14	Cooling laods		12.49%	-
			Total HVAC	-	-0.66%	100.6600%
	SHGC (WINDOW)	100	Heating Loads		-44.28%	
	1. 10 March	0.1	Cooling laods		9.01%	
1.00	3 125 1		Total HVAC		0.17%	99.8300%
1.17	U-VALUE (WINDOW)	Heating Loads		-70.69%	
1.00	10 M I I I	0.1	Cooling laods		20.50%	-
	10 C 10 C 10		Total HVAC		5.37%	94.6300%

Table 44 DA Building Mitigative Capping Values and Efficiency.

For DA Building New Delhi, Simulation suggested a Final U-Value (Wall) of **0.14 with 100%** efficiency. SHGC (Window) at **0.1 with 99.8% efficiency**, & U-Value (window) at **0.1 with 94.63%** efficiency.

Mitigative Capping Value & Efficiency for Square Base Layout.

CASE TYPE	MITIGATION TYPE		LOADS TYPE	1990 (Base)	2050 (reduced to)	Efficiency
SQAURE BASE	U-VALUE (WALL)		Heating Loads		-59.51%	
	No. 1996 No. 1	0.023	Cooling laods		1.50%	
	1 4 1 1		Total HVAC	1. A.	-0.20%	100.2000%
	SHGC (WINDOW)	1. A.	Heating Loads		-30.65%	
	N	0.01	Cooling laods		5.69%	-
	1 6	See.	Total HVAC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.62%	95.3800%
	U-VALUE (WINDOW)	10.00	Heating Loads		-74.60%	-
		0.1	Cooling laods		19.55%	-
			Total HVAC		16.77%	83.2300%

Table 45 Square Case Mitigative Capping Values and Efficiency.

For Square Base layout, Simulation suggested a Final U-Value (Wall) of **0.023 with 100%** efficiency. SHGC (Window) at **0.01 with 95.38% efficiency**, & U-Value (window) at **0.1 with 83.23%** efficiency.

CASE TYPE	MITIGATION TYPE		LOADS TYPE	1990 (Base)	2050 (reduced to)	Efficiency
RECTANGLE BASE	U-VALUE (WALL)		Heating Loads	-	-59.04%	-
		0.028	Cooling laods	-	1.84%	-
			Total HVAC	-	0.01%	99.9930%
	SHGC (WINDOW)		Heating Loads	-	-27.37%	-
		0.028	Cooling laods	-	5.09%	-
			Total HVAC	-	4.11%	95.8900%
	U-VALUE (WINDOW)		Heating Loads		-76.11%	-
		0.1	Cooling laods	-	19.46%	-
		100 C	Total HVAC	100 million (1990)	16.58%	83.4200%

Table 46 Rectangle Case Mitigative Capping Values and Efficiency.

For Rectangle Base layout, Simulation suggested a Final U-Value (Wall) of **0.028 with 99.99%** efficiency. SHGC (Window) at **0.028 with 95.89% efficiency**, & U-Value (window) at **0.1 with 83.42%** efficiency.

Mitigative Capping Value & Efficiency for Curve Base Layout

CASE TYPE	MITIGATION TYPE		LOADS TYPE	1990 (Base)	2050 (reduced to)	Efficiency
CURVE BASE	U-VALUE (WALL)		Heating Loads		-61.04%	100
		0.025	Cooling laods		2.68%	-
	1.14		Total HVAC	0.00	0.57%	99.4300%
	SHGC (WINDOW)		Heating Loads		-34.70%	
		0.01	Cooling laods		8.14%	
the second			Total HVAC		6.72%	93.2800%
	U-VALUE (WINDOW)		Heating Loads		-70.38%	
		0.1	Cooling laods		20.16%	-
			Total HVAC		17.16%	82.8400%

Table 47 Curve Case Mitigative Capping Values and Efficiency.

For Curve Base layout, Simulation suggested a Final U-Value (Wall) of **0.025 with 99.43%** efficiency. SHGC (Window) at **0.01 with 93.28% efficiency**, & U-Value (window) at **0.1 with 82.84%** efficiency.

Mitigative Capping Value & Efficiency for Triangle Base Layout

CASE TYPE	MITIGATION TYPE	Page 1	LOADS TYPE	1990 (Base)	2050 (reduced to)	Efficiency
TRIANGLE BASE	U-VALUE (WALL)	Sect	Heating Loads	1	-61.43%	
		0.027	Cooling laods		1.68%	-
			Total HVAC		-0.29%	100.2900 %
	SHGC (WINDOW)		Heating Loads	-	-28.38%	-
		0.01	Cooling laods	-	4.19%	-
			Total HVAC	-	3.17%	96.83009
	U-VALUE (WINDOW)		Heating Loads	-	-75.39%	-
		0.1	Cooling laods	-	19.36%	-
			Total HVAC	-	16.38%	83.6200%

Table 48 Triangle Base Mitigative Capping Values and Efficiency.

For Triangle Base layout, Simulation suggested a Final U-Value (Wall) of **0.027 with 100%** efficiency. SHGC (Window) at **0.01 with 96.83% efficiency**, & U-Value (window) at **0.1 with 83.62%** efficiency.

CASE TYPE	MITIGATION TYPE		LOADS TYPE	1990 (Base)	2050 (reduced to)	Efficiency
U-SHAPED BASE	U-VALUE (WALL)		Heating Loads	-	-60.88%	-
		0.035	Cooling laods	-	1.98%	-
			Total HVAC		-0.01%	100.0110%
		1. Sec. 1997		and the second sec		
	SHGC (WINDOW)		Heating Loads		-25.84%	-
		0.03	Cooling laods		0.37%	-
	1	1997 Barris	Total HVAC		-0.45%	100.4500%
		100 million (1997)				
	U-VALUE (WINDOW)	25.52.5	Heating Loads		-77.97%	-
		0.1	Cooling laods		19.14%	-
	A	1000	Total HVAC		16.06%	83.9400%

Mitigative Capping Value & Efficiency for Triangle Base Layout

Table 49 U-Shaped Mitigative Capping Values and Efficiency.

For U-Shaped Base layout, Simulation suggested a Final U-Value (Wall) of 0.035 with 100% efficiency. SHGC (Window) at 0.03 with 100% efficiency, & U-Value (window) at 0.1 with 83.94% efficiency.

Concluding Mitigative values:

Final Mitigative Value required for U-Value (External Wall), SHGC & U-Value (Window) have been finalized through various iterative runs in the simulations. A table of these value are shown Below.

Mitigative Strategies	DA Building	Sqaure	Rectangle	Curve	Triangle	U-Shaped
U-Value (Wall)	0.14	0.023	0.028	0.025	0.027	0.035
SHGC	0.1	0.01	0.028	0.01	0.01	0.03
U-Value (Window)	0.1	0.1	0.1	0.1	0.1	0.1

- A

Table 50 Table of Final Mitigative values.

REFERENCES:

- 1. Impact of climate change on heating and cooling energy demand in houses in Brazil. Energy and Buildings, ISSN: 0378-7788, Vol: 130, Page: 20-32. Publication Year: 2016
- Effects of long-term climate change on global building energy expenditures Energy Economics, ISSN: 0140-9883, Vol: 72, Page: 667-677 Publication Year: 2018
- 3. Impact of climate change heating and cooling energy use in buildings in the United States. Wang, H., & Chen, Q. (2014). Energy and Buildings, 82, 428-436.
- EMISSIONS SCENARIOS (Ipcc.ch, 2001) Emissions Scenarios. Available at: http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=500
- Impact of climate change on building heating energy consumption in Tianjin. Xiang, C. & Tian, Z. Front. Energy (2013) 7: 518.
- 6. IPCC, Summary for Policy makers, In: Climate: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
- 7. L. Guan

Implication of global warming on air-conditioned office buildings in Australia Build. Res. Info., 37 (2009), pp. 43-54

- X. Wang, D. Chen, Z. Ren Assessment of climate change impact on residential building heating and cooling energy requirement in Australia.
- K. Wan, D. Li, W. Pan, J. Lam Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications Appl. Energy, 97 (2012), pp. 274-282
- 10. H. Radhi

Evaluating the potential impact of global warming on the UAE residential buildings e a contribution to reduce the CO2 emission Build. Environ., 44 (2009), pp. 2451-2462

11. H. Wang, Q. Chen

Impact of climate change heating and cooling energy use in buildings in the United States Energy Build., 82 (2014), pp. 428-436

12. World weather File generator tool (CCWorldWeatherGen) Manual http://www.energy.soton.ac.uk/files/2013/06/manual_weather_tool.pdf

- Met Office Meteorological Office Weather and Climate Change (2016) http://www.metoffice.gov.uk/news/releases/archive/2016/2015-global-temperature (accessed 28.09.2018).
- 14. I. Andrić; André Pina

The impact of climate change on building heat demand in different climate types Energy and Buildings, ISSN: 0378-7788, Vol: 149, Page: 225-234 Publication Year: 2017

- 15. Beepindia.org. (2012). *Charrette 16: IT building, Noida BEEP*. [online] Available at: https://www.beepindia.org/portfolio/charrette-16-it-building-noida/
- 16. Beepindia.org. (2016). CASE STUDY OF AN ENERGY EFFICIENT COMMERCIAL BUILDING. https://www.beepindia.org/wp-content/uploads/2013/12/2-CASE-STUDY-OF-AN-ENERGY-EFFICIENT-COMMERCIAL-BUILDING.pdf
- 17. Beepindia.org. (2018). *BEEP Case Study Aranya Bhawan* https://www.beepindia.org/wp-content/uploads/2013/12/BEEP_Aranya_Bhawan.pdf
- 18. Beepindia.org. (2018). *BEEP India Case study Smart Ghar (Residential Building)*. https://www.beepindia.org/wp-content/uploads/2013/12/170824_Smart-GHAR_final_0.pdf
- 19. Erba, S. and Armani, R. (2018). The effect of weather datasets on building energy simulation outputs. *Energy Procedia*, 10(7), pp.241-264.
- 20. Oller, P. and Rodriguez, J. (2018). Improving the calibration of building simulation with interpolated weather datasets. *Renewable Energy*, 31(1), pp.69-76.
- 21. Src.lafargeholcim-foundation.org. (2018). *Office building in India*. [online] Available at: <u>https://src.lafargeholcim-foundation.org/dnl/7e006509-87e9-4894-a442-</u> 68f3c256875d/DA_India.pdf
- 22. Toska, S. and Tolika, K. (2017). Evaluation of stochastically generated weather datasets for building energy simulation. *Energy Procedia*, 31(1), pp.69-76.
- 23. Energy Conservation Building Codes 2017, Bureau of Energy Efficiency.
- 24. Trupti J. Dabe, Vinayak S. Adane, The impact of building profiles on the performance of daylight and indoor temperatures in low-rise residential building for the hot climatic zones 2018.
- 25. Arindam Dutta, Akash Samanta, Subhasis Neogi, Influence of orientation and the impact of external window shading on building thermal performance in tropical climate 2016.

- 26. Trupti J. Dabe, Vinayak S. Adane, The impact of building profiles on the performance of daylight and indoor temperatures in low-rise residential building for the hot climatic zones 2018.
- 27. Energy benchmarks for Commercial Buildings, Bureau of Energy Efficiency.
- 28. International Green Construction Code, Public Version 1.0, March 2010, International Code Council, INC.
- 29. C. Marino, A. Nucara, M. Pietrafesa, Does window-to-wall ratio have a significant effect on the energy consumption of buildings? A parametric analysis in Italian climate conditions.

