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Abstract

Center of nanotechnology

Master of technology

Comparative study of molecular dynamics and phase field modeling

by Utkarsh Rawat

In this study, molecular dynamics fracture simulation of a brittle single layer graphene
sheet is performed to give us the parameters needed to perform phase field fracture mod-
eling. Molecular dynamics simulation encompasses the physical nature of the fracture
and is discrete while phase field is a continuum phenomenological method of performing
these simulations. By deriving parameters for phase field simulation through atomistic
simulation an attempt has been made to establish a link between different scale mod-
els and to establish a correspondence in predicting crack path. Using the parameters
obtained through molecular dynamics accurate path prediction and branching of cracks
were observed through phase field modeling when compared to physics-based molecular
dynamics. The force at which fracture occurred was found to be comparable, despite stiff-
ness showing some difference between two models. The relation between the two models
can be established where the continuum model retains the essence of atomic details. This
would open up a path for multiscale simulations which are much more accurate and reli-
able.
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Chapter 1

Introduction

1.1 General

Crack imitation and prediction has been gaining traction in term of research in recent
years. One of the main goals of studying fracture mechanics is to be able to improve our
understanding of its underlying process at the atomic scale and to be able to predict its
consequences at the macroscale. Brittle fracture, in particular, has been given the spotlight
as catastrophic failures occurring in the past have been very expansive. A brittle fracture
occurs when atomic bonds are suddenly broken with a relatively small deformation of the
specimen. The cause of sudden breakage is due to stress being shared by a small group
of atoms, ie local strain energy exceeds the energy keeping the bonds together. A wide
variety of methods and techniques has been used to study such failures. These methods
can be classified based on the length and time scale they work most effectively on.

Molecular dynamics simulation have increasingly become an important tool to study var-
ious small scale phenomenon and give important insight which may be difficult to obtain
through experiments. Times scale of these molecular dynamics ranges around picosec-
onds to microseconds, making them appropriate to study such high speed crack propaga-
tion as that in a brittle material. Valuable insights were obtained from these experiments
on crack dynamics, however systematic analysis of mechanical properties at those scales
and link between continuum approaches to study fracture behavior have still not been
established.MD simulations while being efficient and accurate at molecular state are not
practical at larger meso-scales.
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This constrained nature of molecular dynamics can be handled by using continuum me-
chanical methods where the material is treated at a continuous system rather than a dis-
crete system composed of atoms. One such approach is Phase-field modeling (PFM)
which owing to its versatility,has distinguished itself as a new powerful tool for studying
continuum mechanical problems. Phase field modeling is phenomenological in nature
and also have a good accuracy and resource tradeoff.

1.2 Objective of the study

The objective of the study is to study brittle fracture in nanoscale using physics based
molecular dynamics and phenomenological phase field modeling. Thereafter conclusions
are to be made on the possibility of convergence of discrete and continuum approaches
based on the equivalency of the results and the parameters involved. This would thereby
help in the possibility of multiscale modeling.

1.3 Organization of report

1. Chapter 1 Introduction

2. Chapter 2 Literature Review

3. Chapter 3 Fracture mechanics and numerical techniques

4. Chapter 4 Phase Field Modeling

5. Chapter 5 Molecular Dynamics

6. chapter 6 Simulation

7. Chapter 7 Results and Discussion

8. Chapter 8 Conclusion and future prospects
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Chapter 2

Literature Review

2.1 General

Griffith and Irwin in their pioneering works along with the variational formulations of
crack propagation presented by Blaise Bourdin et. al[10] has been the basis of a well-
defined and established framework on energy based brittle fracture. The work done
by them has continued to be developed and added to. Some of these quasi-static brit-
tle fracture models have been successfully been implemented in the works of Bourdin,
Miehe [33], Verhoosel and Borst[42], Ambati[2], Kuhn[28] to name a few. To implement
these variational formulations in robust finite element implantation, the phenomenolog-
ical phase variable is incorporated. This variable replaces the sharp crack topology by
a diffused interface. This idea of diffusive interface is physics based and was used by
ohn W. Cahn and Hilliard[13] to describe a binary alloy system by a partial differential
equation. Graphene has been seen as the next step in material science evolution. It’s ex-
ceptional mechanical, thermal and electoral properties make it a very good candidate for
the next-gen engineering products.

2.2 Literature study

Griffith and Irwin based on their thermodynamic framework for fracture propagation pro-
posed that a crack begins propagation when the elastic strain energy at the crack tip is
greater than or equal to the energy required to create two new crack surfaces. John W.
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Cahn and Hilliard[10] work gave the Griffiths criterion a variational approach and im-
proved upon Griffiths work by adding the ability to predict crack path. Phase field equa-
tion originates from Cahn-Hilliard equation derived from the work of [13]. It originated as
a model to describe spinodal decomposition in a heterogeneous alloy. Two different par-
tial differential equations, one conserved, by Cahn-Hilliard and non-conserved, by Allen
and J. W. Cahn[1] was derived from this. These are the underlying equation of many other
phase field model based on physics such as being used in image in painting Bertozzi[8],
multiphase fluid flow Kim[26], phase separation Elliott and French[18], flow visualization
Garcke et al[20] , the formation of quantum dots Garcke et al[20],pore migration in a tem-
perature gradient L. Zhang et al[45] and tumour growth Cristini et al[16]. A regularised
version of variational formulation of Griffiths formulation was proposed by Blaise Bour-
din, Gilles A Francfort, et al[11] in which the sharp crack interface was approximated by
a diffused interface, which can converge to sharp topology. From G. A. Francfort and J.-J.
Marigo,[19]s work on variational formulation of Griffiths fracture models, a phase field
model for quasi-static brittle fracture emerged. Their work was inspired by the works of
B. Bourdin[9]. This formulation leads to an energy functional which closely relates to the
potential presented by Mumford and Shah,[34] encountered in image segmentation. Am-
brosio and Tortorelli[3] presented a phase field approximation of Mumford-shah potential
which has its basis on the theory of convergence. According to Blaise Bourdin [10] this
approximation facilitated the numerical solution the variational formulation produced by
them. This model has recently been applied in a dynamics setting by Larsen[29] although
no application for engineering structure was considered. An alternate formulation was
presented by Miehe[33] for the quasi-static formulation in their recent works. This phase
field approximation follows from continuum mechanics and has thermodynamic argu-
ments. Miche et al.’s model is applicable to structures encountered in engineering appli-
cation. Molecular dynamics simulation are becoming an important tool for investigating
high speed crack propagation in materials. Molecular dynamic simulations have been
used to study crack propagation Cindy L. Rountree et al[40] for inorganic materials such
as Si3N4 Kalia et al.[24],SiO2 C. L. Rountree et al,[39] and SiC Kikuchi et al[25].

Graphene owing to its exceptional mechanical and physical properties Kikuchi et al[25]
Ando[5] is a promising candidate for the material to be used in next-generation nano-
electronic and nano-composite materials. Graphene exhibits high thermal conductivity,
specific surface area high charge carrier mobility and other important properties. It also
has high hardness and elastic modulus. Fracture strength of graphene plays an important
role in designing materials and structures. Omeltchenko et al[35] performed MD simu-
lations using Tersoff-Benner potential for simulating crack propagation in a two million



2.2. Literature study 5

atom SLGS showing that crack path has a strong dependence on the initial crack orienta-
tion. Jin Jin Jin and Yuan[22] developed a method to calculate the J-integral and studies
stationary cracks in graphene sheets. To validate the application of Griffith criterion for
brittle fracture in graphene sheets Yin et al [44]performed series of MD simulations and
concluded that fracture strength calculated from Griffith criterion remains equal to that
of MD simulation until the crack size is more than 10nm. Below that difference can be as
large as 15 percent. P. Zhang et al[46] performed fracture testing of single layer graphene
sheets and polycrystalline graphene. They performed experimental and molecular dy-
namics simulation and found the results to be comparable. Le and Batra[30] on their
testing of single edge crack found that j-integral depends upon crack length. They also
noted that shorter cracks propagate faster than longer cracks but their propagation starts
at a higher strain.
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Chapter 3

Fracture mechanics and numerical

techniques

3.1 Introduction

In this chapter, fundamental concepts of linear elastic fracture mechanics are described
briefly. Griffith’s criteria and its variational formulation which forms the basis of its phase
field model are also described. Also in this chapter numerical techniques are briefly cov-
ered which are used to solve the phase field fracture equation.

3.2 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics approaches fracture as a continuum problem without
taking into account the atomistic details. Stress, strain and energy the only parameters
describing the problem. The most important postulate of LEFM is that the material prop-
erties are linear throughout the domain.

In fracture mechanics, a crack can be characterized in one of the three primary modes and
many secondary in combinations of those three.

1. MODE I-In this type of crack the force applied is perpendicular to the crack surface.

2. MODE II- In this type of crack the applied forces are parallel to the crack surface
such that there is a sliding motion in the crack



8 Chapter 3. Fracture mechanics and numerical techniques

3. MODE III- In this cracking mode the forces on the crack surfaces are parallel as well
but the surfaces slide out of the plane to each other.

1)MODE I 2)MODE II 3)MODE III

FIGURE 3.1: Modes Of Fracture

3.2.1 Griffith’s criterion

During the 1920’s Griffith analyzed crack growth in terms of energy.His postulates are
considered as the first systematic study of fracture mechanics. He observed that fracture
strength of materials is significantly less then what was theoretically suggested based on
the bond strength calculations. His explanation was that this is due to the microscopic
defects present in the material due to stress concentration.

In developing his theory, Griffith put forward an assumption that energy is dissipated
in the creation of a new crack surface formed through crack Γ propagation. This energy
is known as fracture energy Φs. This energy is equal to the surface area of the new area
created through the crack formation with with proportionality constant depicted as critical
strain energy release rate Gc

Φs =
∫

Γ
GcdΓ (3.1)
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Γ

Ωp

δΩ

FIGURE 3.2: An arbitrary cracked body

Total internal energy Φint can, therefore, be written as the sun of fracture surface energy
Φs required to form new surfaces and elastic energy Φe dissipated through the crack for-
mation

Φint = Φe + Φs (3.2)

Work done is related to external energy as

Φext = −W f (3.3)

Under a constant displacement setting, it is assumed that work done is equal to zero. Also,
if the displacement is performed in a quasi-static way, kinetic energy is neglected and is
equal to zero. According to Griffith, in accordance with energy minimization crack will
only grow if the total energy of the system decreases following crack propagation per unit
length da Which can be written as

G =

∣∣∣∣dΦe

da

∣∣∣∣ > dΦs

da
= Gc (3.4)

where Gc is energy release rate criterion which is also change in strain energy per unit
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increase in crack length as per the equation. The above equation can then predict when
the crack will initiate, however crack path, crack branching, kinking cannot be predicted.

3.2.2 Variational formulation of brittle fracture

Francfort and Margio proposed a variational formulation of brittle fracture to overcome
the deficiencies of Griffith’s criteria. The main shortcomings of Griffiths criteria were

1. It cannot predict the crack initiation

2. It cannot predict the crack path

3. The phenomenon of crack jumping along the crack path cannot be realized.

Francfort and Margio utilised minimization of energy as their primary tool in formulat-
ing the variational approach for crack propagation. One main component in this energy
equation was surface energy defined by a discontinuity Γ as

Φs(Γ) =
∫

Γ
GcdHd−1(Γ) (3.5)

Hd−1 here is Hausdrofff measure. The material behaviour was considered linear and the
displacement loading condition was considered as a linear function of time (u̇t). Elastic
energy, taking these assumptions into account is given by

Φe(Γ, u) =
∫

ΩP

ψ(ε(u))dΩ (3.6)

where ψ is given as

ψe(ε) =
1
2

λ(tr(ε))2 + µε : ε (3.7)

is elastic energy density and is a strain dependent function. As the system under consid-
eration is of quasi-static nature, kinetic energy contribution can be considered to be zero
and neglected. Also, work done on the body under the displacement loading condition
is zero. This implies that the total energy of the body can simply be taken as surface and
elastic energy’s sum given as

Φt = Φe + Φs (3.8)
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For crack evolution and propagation, energy minimization conditions are taken into ac-
count for each quasistatic step and only those sets of displacements (u(x, t)) are allowed
which also maintains an irreversibility condition wherein crack cannot revert back even
if energy is favorable. This condition gives the variational formulation ability to predict
stable cracks, which grows due to incremental changes in the discontinuity and unstable
cracks which are unstable and releases energy rabidly. This way all types of crack be-
havior like crack branching and nucleation can be handled, which is not possible with
Griffiths theory.

3.3 Numerical Technique

Most of the modern fundamental theories of physics and engineering are expressed as
a system of partial differential equations PDEs. Each PDE has its unique characteristics
expressing the underlying phenomenon. Due to this no real unified theory to solve these
PDEs exist as such we rely upon numerical approaches to get approximate solutions.

3.3.1 Basics of numerical technique

Numerical techniques in general use discretization of space to solve PDEs. Let

∂u
∂t

=
∂2u
∂x2 (3.9)

be a PDE,such that u is a vector function of length x , u(x) in a domain Ω. Let

Lu = f , x ∈ Ω (3.10)

with boundary condition
Bu = 0, x ∈ ∂Ω (3.11)

where B and L are linear operations. Generally for solving a PDE using numerical ap-
proach we are actually finding the most appropriate function that can represent the func-
tion u(x) in question by a sum of functions known as trail/basis functions Φn(x). This can
be represented as:

ũ(x) =
N

∑
n=0

anφn(x) (3.12)
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Here ũ(x) approximates the function u(x) with an unknown coefficients to be determined.
A Residue R(error) is introduced here which is the difference between the original func-
tion and the approximated function.

In order to achieve the most accurate solution possible residue is to be minimized. Two of
the most commonly used techniques for solving PDEs studied here.

3.3.2 Finite Difference Method

Finite difference method one of the simpler method for solving PDEs numerically. It is
easier to code and compute using distributed environments. But due to its simplicity, it
can have a lower accuracy as well as we need to define complex boundary conditions. Let
a continuous function u be defined on a 1-D grid having spacing h, then the differential
equations are defined as

The backward difference:
(∆u)−i =

ui − ui−1

h
(3.13)

The forward difference:
(∆u)+i =

ui+1 − ui

h
(3.14)

The centered difference:
(∆u)±i =

ui+1 − ui−1

h
(3.15)

The centered second difference:

(
∆2u

)
i
=

ui+1 − 2ui + ui−1

h2 (3.16)

The centered second difference can be used to approximate the Laplace operator com-
monly used in PDEs. For a 2-D grid with grid points

(
xi, yj

)
, the Laplace operator be-

comes (
∇2u

)
i,j
=
(

∆2
xxu
)

i,j
+
(

∆2
yyu
)

i,j
(3.17)

which is equal to

(
∇2u

)
i,j
=

ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1|

h2
y

(3.18)
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This is an approximation of a Laplace operator and is called a 5-point stencily Higher
point stencils can also be formed accompanied by higher accuracy but it also increases
computation cost. Therefore 5-point stencil is used for spatial discretisation models.

Ui-1,j

Ui,j+1

Ui+1,jUi,j

Ui,j-1

FIGURE 3.3: Five point stencil used in space discretisation

3.3.3 Finite Element Method

The finite element method like finite difference method used space domain discretization
to map complex shapes using smaller, similar and manageable shapes. FEM can, however,
describe complex geometries and boundary domain. In this method, any domain (1-D,2-
D,3-D) is approximated using smaller predefined elements whose definition comes from
basis or shape function. The underlying idea is that these elements individually are much
easier to solve rather than the whole domain.

Elements and nodes

Let us divide the domain Ω in which the f and u are defined into non-overlapping subin-
tervals Ei.In this domain let Ei be an element, having number i.We now introduce a set
of points called Nodes where shape functions have a value of 1. These nodes are given
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numbers to define their positions both within an individual element and within the ob-
ject. These are referred as local and global node number, respectively. In figure 3.4 three

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

E1 E2 E3

X-axis

FIGURE 3.4: Figure representing nodes (blue circles) and elements (blue hor-
izontal lines)

elements are shown with each element having three nodes. A total of seven nodes are
there in the domain. Element E1 extends from 0.1 on the x axis to 0.4 on the x axis. It has
node points on 0.1, 0.25 and 0.4.

Isoparametric Representation

This representation is used to formulate a geometry of an element into simpler nodal
unknowns like displacement. These nodal points or unknowns which combine to form a
simple element. These nodal points have two types of co-ordinates, local and global. ζ

and η localized co-ordinate system varying between -1 to 1 over an element.
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X
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34
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4

567

8

FIGURE 3.5: 1) Three node 2) Four node 3) Eight node Isoparametric repre-
sentation of an element

Shape Functions

Shape functions are certain Langrangian of Legendre polynomial functions that are used
to define the geometry of the element and node values. They have key characteristics as

1. Its value is 1 at node points and 0 every other node of the element

2. Its value is 0 over every element boundary not including ith node.

Nodes within an element are represented with x and y global co-ordinate and their repre-
sentation in local co-ordinate through the use of isoparamertic formulism is

x(ζ, η) =
n

∑
i

Ne
i xe

i (3.19)

y(ζ, η) =
n

∑
i

Ne
i ye

i (3.20)

where n and Ne
i are number of nodes in an element and nodal values of shape function

respectively.X e
i and ye

i are global co-ordinate values. In the figure 3.6 two simple polyno-
mial shape function are shown. As can be seen they have value 1 at the node to which
they belong and 0 on all other nodes.
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FIGURE 3.6: Simple linear shape functions

The displacement δ in any mechanical problem can be obtained from isoparameteic for-
mulation by using shape functions as:

δ =

[
u
v

]
= Nδe =

n

∑
i

Niδi (3.21)

u is a displacement component in x direction and v in y direction in the Cartesian coo-
ordinate system. Ni and δi are shape function and nodal displacement respectively. Strain
can be obtained from the nodal displacement derivatives:

ε =

 εxx

εyy

εxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 (3.22)

Inserting δi values from gg takes form of

ε = Bδe =
n

∑
i=1

Biδi (3.23)
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B here is strain matrix defined as

Bi =


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x

 (3.24)

These derivatives are evaluated using Jacobian Matrix.

Chain rule and Jacobian

To find Cartesian derivative of a function f defined as

f (ζ, η) =
n

∑
i

Ne
i f e

i (3.25)

where f e
i is nodal value of the function then the derivative of the function with respect to

x and y are defined as
∂ f
∂x

=
∂ f
∂ζ
· ∂ζ

∂x
+

∂ f
∂η
· ∂η

∂x
(3.26)

∂ f
∂y

=
∂ f
∂ζ
· ∂ζ

∂y
+

∂ f
∂η
· ∂η

∂y
(3.27)

where ∂ f /∂ζ and ∂ f /∂η are the shape function derivatives with respect to local co-ordinates
and are given as

∂ f
∂ζ

=
n

∑
i

∂Ne
i

∂ζ
· f e

i (3.28)

∂ f
∂η

=
n

∑
i

∂Ne
i

∂η
· f e

i (3.29)

The values ∂ζ/∂x,∂η/∂x,∂ζ/∂y and ∂η/∂y to be used in the chain rule are found by form-
ing a jacobian matrix and then inverting it.

Je =

[
∂x
∂ζ

∂y
∂ζ

∂x
∂η

∂y
∂η

]
=

 ∑n
i

∂Ne
i

∂ζ · x
e
i ∑n

i
∂Ne

i
∂ζ · y

e
i

∑n
i

∂Ne
i

∂η · x
e
i ∑n

i
∂Ne

i
∂η · y

e
i

 (3.30)
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The inverse of this matrix is then

[Je]−1 =
1

det Je

[
∂y
∂η − ∂y

∂ζ

− ∂x
∂η

∂x
∂ζ

]
(3.31)

det Je is the jacobain matrix’s determinant.

FIGURE 3.7: Process of formation of global stiffness matrix from element stiff-
ness matrix
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Chapter 4

Phase Field Modeling

4.1 Introduction

Phase field modelings origin can be traced in the microstructure evolution equation used
to model microstructure or phases. These phases can be regions of different crystal orien-
tations, different magnetic or electric domains. The solutions to these types of problems
are classified as sharp interface approaches. These sets of non-linear problems are ex-
tremely difficult to solve, due to interactions between the interfaces arising from various
complex processes during the phase transformation process. Phase field modeling was
developed to overcome these difficulties by describing the boundary into a diffused re-
gion rather than a sharp one. It describes microstructures with a set of field variables
which are diffused rather than being sharp in the region of the interface

4.2 Cahn Hilliard Equation

The origins of the Cahn-Hilliard model lies in a phase separation model known as spin-
odal decomposition, which is a solid state phase transformation in a binary alloy. Spinodal
decomposition is a mechanism through which a solid solution decomposes into seperate
phases having distinct compositions.. Unlike the nucleation driven mechanism which oc-
curs at discrete location spinodal decomposition takes place throughout the material. The
Cahn-Hilliard equation is given by

∂ci

∂t
= ∇Mij∇

δF
δej(r, t)

(4.1)
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In the equation 4.1 r and t are time and position respectively ,Mij is diffusivity of the
components c1, c2, cn, which are conserved field variables.

(A) Initial composition (B) composition separation

(C) composition separation con-
tinues

(D) composition separates into
distinct phases

FIGURE 4.1: Spinodal decomposition of binary alloy

4.3 Phase Field Derivation

Cahn and Hilliard derived a free energy partial differential expression for an inhomoge-
neous binary system taking the number of components in the equation 4.1 as two. Their
primary assumption was that that total free energy of a very small region in a domain is
equal to not only equal to the energy of its composition but also the composition of the
environment which surrounds the small region. This is because they concluded that the
total energy of the system not only depends on its concentration but also on its surround-
ings as a different spatial configuration having the same volume fraction have different
energies i.e. they are not energetically equivalent.

Initially Cahn-Hilliard performed Taylor series expansion on homogeneous free energy
density function for binary system in terms of the derivatives of the composition to obtain
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approximations of f
(
c,∇c,∇2C, . . .

)
. As concentrations here are binary they obey the rule

c1 + c2 = 1, so only one concentration fraction in independent whichever that may be.
Free energy equation for an isotropic system reduces to an expression containing constants
and even power of ∇c as:

f = f0(c) + κ1∇2c +
1
2

κ2(∇c)2 +
1
2

κ3

(
∇2c

)2
+ κ4∇4c + ... (4.2)

They argued that even powers of the derivative terms should vanish, thus only first and
second order terms remain,

F =
∫

V

[
f (c) +

1
2

κ(∇c)2
]

dv (4.3)

First term here represents chemical or bulk energy and is given by

f (c) = Ac2(1− c)2 (4.4)

which is represented in a chemical energy vs concentration graph would give double wall
potential phenomenon. k is a gradient energy coefficient which discourages formation of
sharp boundary interfaces.

A is an amplitude controlling constant determining the depth of those potential control-
ling the barrier between the two equilibrium phases. Other double wall potential having
similar characteristics exists, which can also be used.

4.3.1 Finite Element Implementation

Rearranging equation 4.1 we get,

∂c
∂t
−∇ ·M

(
∇
(

∂ f
∂c
− κ∇2c

))
= 0 in v (4.5)

M
(
∇
(

∂ f
∂c
− κ∇2c

))
= 0 in ∂v (4.6)

Mκ∇c · n = 0 in ∂v (4.7)

where v , ∂v and n are volume ,boundary and normal vector pointing outward.
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FIGURE 4.2: Double well potential

Due to the presence of the second and fourth-order spatial derivatives to change the equa-
tion into the weak form using test function will result in second-order spatial derivatives
which would require higher-order shape function which will increase computational re-
sources. Therefore the equations are converted into two coupled 2nd order equation
which will become linear after changing to weak form. These are given as

∂c
∂t
−∇ ·M∇µ = 0 (4.8)

µ− ∂ f
∂c

+ κ∇2c = 0 (4.9)

The unknown to be solved now are c and µ. Utilizing the test function η ,ζ for c and µ

respectively yields, ∫
v

∂c
∂t

ηdv +
∫

v
M∇µ · ∇ηdV = 0 (4.10)

∫
v

µζdv−
∫

v

∂ f
∂c

ζdv−
∫

v
κ∇c · ∇ζ = 0 (4.11)
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Now applying implicit Euler time integration scheme discussed in chapter 3 gives

∫
v

cn+1 − cn

dt
ηdv +

∫
v

M∇µn · ∇ηdv = 0 (4.12)

∫
v

µn+1ζdv−
∫

v

∂ f n+1

∂c
ζdv−

∫
v

κ∇cn+1 · ∇ζdv = 0 (4.13)

where dt = tn+1 − tn is time increment.

In this FEM implementation we take c, µ as nodal variables, and with the help of shape
function they can be defined by

c =
n

∑
i

Nici (4.14)

µ =
n

∑
i

Niµi (4.15)

ci , µi are the nodal values expressed using Ni as the shape function to define nodal values
c and µ respectively, where n is the number of elements. Utilizing 4.14,4.15 the residual
vector can be expressed as:

Re
i =

∫
V

 (cn+1 − cn)Ni + dtMµn+1
(

∂Ni
∂x

∂Ni
∂y

)T
·
(

∂Nj
∂x

∂Nj
∂y

)
Nj

µn+1Ni − ∂ f n+1

∂c Ni − κcn+1
(

∂Ni
∂x

∂Ni
∂y

)T
·
(

∂Nj
∂x

∂Nj
∂y

)
Nj

 dV (4.16)

where (∂N/∂x∂N/∂y) is derivative of shape function in Cartesian coordinates. Element
stiffness matrix arising from it is

Ke
ij =

∂Re
i

∂c or ∂µ
=

[
Kcc

ij Kcµ
ij

Kuc
ij Kuµ

ij

]
(4.17)

The individual components given as,

Kcc
ij =

∫
V

[
NT

i · Nj

]
dV (4.18)

Kcµ
ij =

∫
V

[
dtM

(
∂Ni

∂x
∂Ni

∂y

)T
·
(

∂Nj

∂x
∂Nj

∂y

)]
dV (4.19)
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Kµc
ij =

∫
V

[
−∂2 f

∂c2 NT
i Nj − κ

(
∂Ni

∂x
∂Ni

∂y

)
·
(

∂Nj

∂x
∂Nj

∂y

)]
dV (4.20)

Kµµ
ij =

∫
V

[
NT

i Nj

]
dV (4.21)

Having formed the stiffness and residual matrix for an element they are now assembled
to form global stiffness matrix. A matrix containig residue known as RHS is also formed.

[
KG
]
{dδ} =

{
RG
}

(4.22)

dδ is the unknown vector given by

dδ = (dc1, dc2, . . . , dcN, . . . , dµ1, dµ2, . . . , dµN) (4.23)

4.4 Phase Field Model for fracture modeling

Bourdin et. al. put forward a varient of regularized variational formulation in which
the scalar field variable φ is taken as the variable describing the crack geometry. The
scalar field variable is used to approximate the sharp crack between the values 0 and 1
transforming it into a diffused crack topography.

The scalar field variable φ is given as

φ = exp
(
−|x− a|

l0

)
(4.24)

This gives the fracture surface energy as

ψs =
∫

Σp
Gc

[
(φ− 1)2

4`0
+ `0|∇φ|2

]
dΩ (4.25)

where `0 is crack topology parameter, specifically controlling its width. If `0 tends to
zero when this regularised approach will be converge to the variational formulation i.e.
diffusive crack converges to discrete crack. In his formulation he penalised strain energy
density to correct for the loss in material stiffness, which gives the strain energy density
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as
ψe =

∫
Ωp

(
φ2 + η

)
ψedΩ (4.26)

where η is a numerical convenience operator having a very small value. The total energy
therefore is

ψt =
∫

Ωp

(
φ2 + η

)
ψedΩ +

∫
Ωp
Gc

[
(φ− 1)2

4`0
+ `0|∇c|2

]
dΩ (4.27)

To obtain crack evolution displacement field variable u and phase field variable φ are
evolved taking into account the principle of global minimality.

A thermodynamically consistent phase field model was proposed by [33] to address the
inadequacies of Bourdins regularised version. One important feature in his model was to
ensure that crack only occurs when the tension was applied. For that they decomposed
the elastic energy through spectral decomposition into two parts, positive and negative,
corresponding to the direction of the applied stress. Thus he took only the positive part of
the energy to make it certain that crack propagation occurs in tension only.

ψe = ψ+
e + ψ−p (4.28)

where ψ+
e and ψ+

e are given as

ψ+
e =

1
2

λ
(
tr
(
ε+
))2

+ µε+ : ε+ (4.29)

ψ−e =
1
2

λ
(
tr
(
ε−
))2

+ µε− : ε− (4.30)

Unlike Bourdin’s mode which penalized the strain energy density, Miche’s model only
penalises the positive part of the energy density during crack evolution.

ψe =
[
(1− k)φ2 + k

]
ψ+

e + ψ−e (4.31)

k is very small number preventing full degradation of elastic energy. Hence the approxi-
mated total energy if the body for regularized formulation will be given by

Φt =
∫

Ωp

([
(1− k)φ2 + k

]
ψ+

e + ψ−e

)
dΩ +

∫
Ωp
Gc

[
(φ− 1)2

4`0
+ `0|∇φ|2

]
dΩ (4.32)
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The principle of energy balance states that internal and external energy rates should be
equal, therefore Φ̇t = 0

The length scale parameter as discussed above plays an important role in determining
the crack topology, mainly its width. According to Welschinger,[4] length scale parameter
can either be considered as a purely numerical parameter or as one which depends on
material properties. If considered as a numerical factor then the smaller its value the
better for accuracy purposes, although that increases computational resources required.
For stability purposes however

l0
L
<= 0.01 (4.33)
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FIGURE 4.3: Figure representing the effect of length scale of the diffusive na-
ture of the crack topology

As can be seen from the figure 4.3 lowering the value of length scale will cause the diffused
crack geometry to be closer to the discrete geometry.

4.5 Phase Field Fracture FEM model

As stated in equation 4.27 in a body with a crack/damage the total potential energy is:
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Ψ(φ, u) =
∫

V

[
(1− φ)2 + k

]
ψ(ε)dV +

∫
V

Gc

2

[
l0∇φ · ∇φ +

1
l0

φ2
]

dV (4.34)

the first part of the equation represents strain energy change while second part represents
decrease in energy due to formation of new crack surfaces. ψ(e) here represents elastic
strain energy

ψ(ε) =
1
2

εCε (4.35)

where C and ε are elasticity matrix and strain respectively. Let incremental external work
for equation 4.34 is δWext, its weak form is:

δWext =
∫

V
bjδujdV +

∫
∂V

hjδuj∂V (4.36)

bj and hj are body force and boundary traction components respectively. Change in inter-
nal energy is equal to internal work done and is given by

δWint = δΨ =
∂Ψ
∂εij

δεij +
∂Ψ
∂φ

δφ (4.37)

Applying equation 4.37 to 4.34 we get,

δΨ =
∫

V

[
(1− φ)2 + k

]
σijδeijdV +

∫
V
−2(1−φ)δφψ(ε)dV +

∫
V

Gc

(
lo

∂φ

∂xi

∂φ

∂xi
+

1
l0

φδφ

)
dV

(4.38)
where δ is a test function. For finite element formulation we take displacement u and
order parameter φ as nodal variables, u, ∇φ, φ and ε are descritized at elemental level:

u = |
n

∑
i

Niui, ε =
n

∑
i

Bu
i ui (4.39)

φ =
n

∑
i

Niφi,∇φ =
n

∑
i

Bφ
i φi (4.40)

where n denotes node numebers. Bu
i is the strain matrix and Bφ

i is the Cartesian derivative
matrix.
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Bu
i =


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x

 , Bφ
i =

[
∂Ni
∂x

∂Ni
∂y

]
(4.41)

As internal work done is equal to external work done (energy) the residue Ru
e for an ele-

ment takes the form:

Ru
e =

∫ |
V

[
(1− φ)2 + k

]
(Bu

i )
T σdV −

∫
V

NTbdV −
∫

∂V
NTh∂V (4.42)

T stands for transpose. The residual vector for equation 4.38

Rφ
e =

∫
V

Gcl0
(

Bφ
i

)T
∇φ +

(
Gc

l0
+ 2ψ(ε)

)
Nφ− 2Nψ(ε)]dV (4.43)

We form the stillness element matrix for Cahn-Hilliard equation 4.17 , in a similar way a
stiffness matrix for for the residual vectors is formed as

Ke =

[
Kuu

ij Kuφ
ij

Kφu
ij Kφ

ij

]
(4.44)

.

The individual components are given as

Kuu
ij =

∂Ru
e

∂u
=
∫

V

[
(1− φ)2 + k

]
(Bu

i )
T CBu

j dV (4.45)

Kuφ
ij =

∂Ru
e

∂φ
=
∫

V
−2(1− φ) (Bu

i )
T σNjdV (4.46)

Kφu
ij =

∂Rφ
e

∂u
=
∫

V
−2(1− φ)NiσBu

j dV (4.47)

Kφφ
ij =

∂Rφ
e

∂φ
=
∫

V

[
Gcl0

(
Bφ

i

)T
Bφ

j +

(
Gc

l0
+ 2ψ(ε)

)
NiNj

]
(4.48)

Forming the stiffness and residual matrix, global stiffness matrix is formed by assembling
them along with an right hand side vector , which results as

[
KG
]
{δ} =

{
RG
}

(4.49)
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Barrier term

The equations defined here do not explicitly ensure irreversibility condition, ie the fracture
does not heal once the strain is removed (φt+∆t < φt). To overcome this problem the
equations are subjected to an energy barrier condition described below

〈x〉− =

{
−x, x < 0
0, x ≥ 0

}
(4.50)

A barrier function is created from this definition given as

P(φ̇) = η〈φ̇〉− (4.51)

η here represents the numerical value of the barrier preventing crack healing. Its value is
assumed to be two times the elastic modulus of graphene.
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Chapter 5

Molecular Dynamics

5.1 Introduction

Molecular dynamics has emerged as an indispensable tool for studying material science
at the atomic and molecular level. Studying molecules at the atomic level helps us get
valuable insight into material behavior as well as predict new materials. It uses new-
tons second law to calculate the positions and velocities of a system of particles from its
initial conditions.A variety of thermodynamic properties pertaining to the system can be
obtained through it. Molecular Dynamics simulation consists of iterative solution of clas-
sical equations of motion, which for a system of particles can be represented as

mi r̈i = fi fi = −
∂

∂ri
U (5.1)

5.2 Interatomic Interaction

There are various component of total potential energy of a system. The part of poten-
tial energy which represent non bonded interactions (U non-bonded) between atoms is
comprised of 1-body, 2-body and multibody interaction terms:

Unon− boncd

(
rN
)
= ∑

i
u (ri) + ∑

i
∑
j>i

v
(
ri, rj

)
+ . . . (5.2)

The one body interaction term u(r) is the effect of boundaries on the system, it is generally
ignored if the system being simulated is a periodic system. At is also typical to only focus
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on pair potential and ignore higher order interactions.

When talking about pair-wise potential Lennard-Jones potential is the simplest and also
the most commonly used potential. It is of the form

vLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(5.3)

where σ is the distance of neutral force and ε is the potential well depth.
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FIGURE 5.1: Interatomic potential vs interatomic distance

In case of the presence of electric charge a coulomb potential is used which is given by

v Coulomb (r) =
Q1Q2

4πε0r
(5.4)

where Q1 and Q2 are charges on two atoms and ∈0 is the free space permtivity. Lennard-
Jonnes potential is used to model short range potental such as Van-der Waal interaction
between atoms while Coulomb interaction is used for long range interactions. As the
Van-der Waal interactive force between atoms becomes very low at long ranges it is con-
venient to have a cut off after which the interactive force is assumed to be zero. This saves
computational resources albiet at the expance of some accuracy.
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For our simulation, we used AIREBO Stuart et al.[41] style pair potential. It stands for
Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) Potential and com-
putes system a system of carbon and/or hydrogen atoms. The AIREBO potential consists
of 3 terms:
E_REBO is an original stand-alone potential developed by Brenner. This part of the po-
tential describes short-range interactions (r < 2 Angstroms)between C-C, C-H and H-H
atoms. It also gives the model developed, its reactive capabilities. These interactions are
strongly dependent on the number of atoms nearby which is given by a bond order pa-
rameter that depends on the coordination number. thus this potential can be perceived as
a multi-body potential..
E_LJ term simulates the longer ranged Van Der Waals forces ranging from 2 Angstrom to
the specified cutoff. It uses the standard form of Lennard-Jones Potential. The lj term con-
tains switching functions so that the repulsion term in the lj equation does not interfare
with REBO term in the potential.
E_TORSION term is a 4-body potential that describes those dihedral angles which are
preferred in the configuration so that the movement other then the dihedral angles are
restricted.

5.3 Integration algorithm

As potential energy of a system depends on relative position, velocities and accelerations
of all the particles of the system, it is therefore difficult to analytically calculate potential
energy. For this reason numerical techniques and algorithm are needed. Main component
of these algorithm is the approximation of position, velocities and acceleration by Taylor
series expansion.

r(t + δt) = r(t) + v(t)δt +
1
2

a(t)δt2 + . . . (5.5)

v(t + δt) = v(t) + a(t)δt +
1
2

b(t)δt2 + . . . (5.6)

a(t + δt) = a(t) + b(t)δt + . . . (5.7)

The postion ,velocity, acceleration for the next time steps are calculated using the above
apprximations. Some common integration algorithms are Varlet algorithm, Velocity ver-
let, Leap-from algorithm.
The choice of algorithm is based on the following criteria:

1. Energy and momentum is to be conserved
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2. Computational efficincy

3. Time step ahoultd be as long as possible

The Varlet Algorithm

This is the basic algorithm most commonly used for time intergation A very simple idea is
implemented in order to find position of the particle in the next time step. Taylor expan-
sion is carried out for r(t + ∆t) and r(t− ∆t) and added to get the expression for position
at next time increment r(t + ∆t)

r(t + ∆t) = r(t) + v(t)∆t + (1/2)a(t)∆t2 + (1/6)b(t)∆t3 + O
(

∆t4
)

(5.8)

r(t− ∆t) = r(t)− v(t)∆t + (1/2)a(t)∆t2 − (1/6)b(t)∆t3 + O
(

∆t4
)

(5.9)

Adding 5.8 and 5.9 we get

r(t + ∆t) = 2r(t)− r(t− ∆t) + a(t)∆t2 + O
(

∆t4
)

(5.10)

Acceleration is found using the newtons second law as

a(t) = −(1/m)∇V(r(t)) (5.11)

where ∇V is the gradient of potential energy. The trancation error is in the order of ∆t4

. Therefore in time evolving equations it is used very often. One problem with this algo-
rithm is that velocity is not directly found , so we have to compute it through poaitions
using

v(t) =
r(t + ∆t)− r(t− ∆t)

2∆t
(5.12)

but in this case error increses to ∆t2. This causes deviation in predicted trajectories of the
particles creating deviations from actual path of the particles. To overcome this error var-
ious different integrtion algorithm have been proposed amongst whome velocity varlet is
the most commonly used. In our molecular dynamics simulation we have also used the
same algorithm thus it is explained further.
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The Velocity Varlet Algorithm

In this algorithm the position ,velocityand acceleration at time t + ∆t are obtained from
the corrosponding quantities at time t as

r(k̇ + ∆t) = r(t) + v(t)∆t + (1/2)a(t)∆t2 (5.13)

v(t + ∆t/2) = v(t) + (1/2)a(t)∆t (5.14)

a(t + ∆t) = −(1/m)∇V(r(t + ∆t)) (5.15)

v(t + ∆t) = v(t + ∆t/2) + (1/2)a(t + ∆t)∆t (5.16)

5.4 Statistical mechanics

One of the main components of molecular dynamics in statistical mechanics. The infor-
mation generated by molecular dynamics simulations represents atomic positions, veloc-
ities, temperature, etc. This information needs to be interpreted into macro scale proper-
ties for usability point of view which requires statistical mechanics. That is to say that if
one wishes to study macroscopic properties obtain by the simulation one needs to know
through statistical mechanics formulas how these atomic simulations translate to macro-
scopic properties.

It consists of mathematical expressions that relate macroscopic properties such as temper-
ature, pressure, etc to the motion and distribution of atom across the system. It also pro-
vides a means to study both kinetic and thermodynamic properties by evaluating equa-
tions of motion. In order to provide a useful link between macroscopic and microscopic
model, some definitions have to be clarified.

A thermodynamic state of a system is defined by a set of parameters eg temperature T,
pressure P, energy E, and number of particles N. As these parameters can vary there can
be infinite state in which a system can exist. It is possible that macroscopically a system
can have the same state but microscopically they can have a large number of states. Taking
this into account a term ensemble is defined which is a collection of microscopic states
which have the same macroscopic states.
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5.5 Ensemble

Different Kinds of Thermodynamic ensemble exists depending on the macroscopic prop-
erties taken. Some of these properties are made to be constant while others are allowed
to vary as the system is allowed to evolve. Some commonly used ensembles are defined
below:

1. Canonical Ensemble (NVT) This state is characterized by having the number of
atoms N fixed, volume V temperature T fixed.

2. Isobaric-Isothermal Ensemble(NPT) This has a fixed number of atoms N, fixed pressureP
and fixed temperature T.

3. Microcanonical Ensemble(NVE) This is essentially a closed system, in which the en-
ergy E is constant rather than temperature and volume.

5.6 Perodic Boundary Conditions

As the sample size becomes decreases, the percentage of atoms residing at its surface in-
creases. For example, a solid sample of 106 atoms arranged in a simple cubical manner has
around 6% atoms on its surface, but for the sample size of 1000 atoms arranged similarly
the percentage is around 50%. It is also known that the free surface contains energy due
to the unbounded nature of the surface atoms. It is due to this fact that small sample may
show properties that are different than their bulk counterparts. In order to then study
bulk properties in molecular dynamics, the sample is surrounded by replicas or images
of itself. To prevent atoms from interacting with the same atom or its image twice we use
minimum image convention, i.e the interaction happens only between nearest atom or im-
age. As seen in figure 5.2, if an atom leaves the simulation box then the atom which was
interacting with it will now be interacting with its image entering the simulation box. For
long range potential this might cause a problem as atoms might interact with an infinite
number of image, so careful considerations has to be made.

5.7 Molecular Dynamics simulation algorithm

Each step in molecular dynamics simulation follows a particular algorithm from the start
of the timestep to its end. A time step is the distance between two points in time where
position, acceleration, velocities and other quantities are calculated. The smaller the time
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FIGURE 5.2: Figure representing periodic boundary with main simulation cell
in centre and its image surrounding it. When an atom leaves the periodic

boundary its image enters the simulation cell from other side.

step the more accurate the simulation trajectory is. However smaller timesteps may cause
a significant increase in the time it takes for a simulation to be performed. As a general
rule of thumb, the time step should be smaller than the frequency of the fastest bond in
the molecule. Here is a flowchart depicting the algorithm.
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Initialize model

Set position and velocity at t = 0

Predict position and velocity of the atoms
at t = ∆t using velocity varlet algorithm

Get forces on the atoms and
from them obtain acceleration

Apply the boundary condition, con-
straints and then assemble constants

Calculation of the properties related to
the specific simulation process is obtained

t = t + ∆t

is this the
last time

step?

update model

Stop

yes

no

FIGURE 5.3: Molecular dynamics algorithm
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Chapter 6

Simulation

6.1 General

In this chapter, molecular dynamics simulation of fracture in a single layer graphene sheet
is performed. Mechanical properties are obtained through a number of these simulations
which are then used to performing phase field fracture given in chapter 7 from the model
presented in chapter 4. The two results are then compared and similarities are pointed
out.

6.2 Molecular Dynamics

Single layer graphene sheet was selected as the material to be used in the fracture simu-
lation. SGLS is a two dimensional material due to which a relatively large dimension can
be simulated with limited computational resources. Secondly, SGLS is brittle in nature
making it the perfect candidate for the selection. The graphene sheet was constructed us-
ing a crystallographic information file (CIF) in enCIFer topography software. A sheet of
graphene was then generated using VMD with dimensions of 20nm x 10nm containing
8000 carbon atoms. The simulation was run in by Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS). The interatomic potential used in an AIREBO dis-
cussed in section 5.2 with a cut-off for LJ part being 10.3 nm. The cut off for the REBO
part of the potential for carbon-carbon bonds were changed from 1.7 to 1.92 to eliminate
non-physical behavior [7] of c-c bonds when subjected to high strain as in the case with
fracture, as suggested by the studies.[37].
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120o

0.142 nm

FIGURE 6.1: Graphene structure

Before running fracture simulations the graphene sheet is minimized and equilibrated in
an NPT ensemble at 300 k for 15000-time steps with each time step being 0.5 femtosec-
onds for added accuracy. No change in structure was observed and the fluctuations in
temperature and energy were quickly stabilized as shown in figure 6.3 and 6.4 establish-
ing a stable structure. The final frame of the simulation was used as the final model for
this simulation.

Two simulations were performed to gather all the parameters needed for the phase field
simulations. In the first simulation, the ultimate fracture strength was the parameter to be
found. A crack geometry was introduced in the graphene sheet using delete atom func-
tionality of LAMMPS, which deletes a group of atom defined by the user. A simulation
cell boundary was introduced which were periodic in X and Y direction but shrink-wrap
in Z direction to compensate for the folding and wrinkling phenomenon observed during
the deformation process. A 2-angstrom gap between graphene layer x directions and the
cell boundary were given so that surface effects can take place. To perform the fracture
stimulation the graphene sheets layer was fixed at the edges to the simulation cell which
was then expanded at a constant strain rate of 10 nm ns−1. This would be equivalent to a
MODE I fracture in which the load applied is perpendicular to the crack path. The load
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FIGURE 6.2: Graphene sheet

here is applied in the X axis while the crack is free to move in y direction.

In accordance with the goal to capture the fracture strength of the SGLS a stress-strain
graph was to be formed. Stress was calculated by multiplying the summed stress output
by corrected volume in which the thickness of the sheet was taken as 0.34 nanometre. The
strain is given by simply multiplying the strain rate with the number of time steps.

The second simulation was run to obtain the elastic constant also known as Young’s mod-
ulus and Poisson’s ratio. The sample model of 5nmx5nm, 10nmx10nm and 20nmx20nm
were created with periodic boundary conditions in two dimensions. These simulations
were run for 50000 time steps with the same strain rate as the previous run. This gives
relatively linear and smooth elastic characteristics which makes it easier to obtain those
properties. The elastic modulus is obtained from the stress-strain graph while Poisson’s
ratio is obtained as

ν = − εx

εy
(6.1)

where εy is strain in y direction while εx is strain in x-direction.

6.3 Phase field simulation

Following the FEM implementation of the phase-field fracture the model is implemented
as code in MATLAB software because of its ease of coding and excellent vector, matrix
function library. As can be seen in figure 6.7 FEM mesh was generated with 4141 nodes
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(A) 5nm graphene sheet (B) 10nm graphene sheet

FIGURE 6.6: 20nm graphene sheet
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20nm

10nm

FIGURE 6.7: Finite element mesh

and 4000, four-node isoparametric elements with the dimensions of 50nm x 100nm. The
crack was introduced manually with a crack array.
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Chapter 7

Results and Discussion

7.1 General

In this chapter results from the simulation performed in the previous are reported and
discussed as to what they suggest. They will be further analyzed and compared to each
other and report any correlation in the phase field parameter and physical nature.

7.2 Molecular Dynamics

In the first simulation, each graphene sheet with different sizes was run until small defor-
mation was observed. The deformations were small and were within the elastic region.

Simulation results

The following results were obtained for different size sheets. For calculating Poisson’s

Sheet Size Initial length Lo Length at 2% strain L Initial width Xo Final width X
5nm x 5 nm 5.077931 5.1794928 5.0298703 5.0078424

10nm x 10 nm 10.168647 10.37202 10.06383 10.013558
20nm x 20 nm 20.097614 20.499566 20.125827 20.029058

TABLE 7.1: Change in dimensions in the graphene sheets under uniaxial ten-
sion

ratio and elastic modulus using we use the formulas

ν = − εx

εy
= −X− X0

L− L0
(7.1)



46 Chapter 7. Results and Discussion

where εy is strain in y direction while εx is strain in x direction. Similarly elastic modulus
is given by

E =
Stress
strain

=
σ

ε
(7.2)

Using the data given in the table 7.1 and using equations 7.1 and 7.2 we get the Poisson’s
ration and Young’s modulus as

Sheet size Stress at 2% strain Lateral strain Poisson’s ratio Young’s modulus
5nm x 5nm 16.966384 0.004379 0.2169 848 GPa

10nm x 10nm 18.117726 0.004995 0.24721 906 GPa
20 nm x20 nm 18.224222 0.004808 0.2398 911 GPa

TABLE 7.2: Mechanical properties derived from the results

Reference Simulation method Elastic Modulus (GPa) Poisson’s ratio
Liu et al.[31] DFT 1050 0.186

Kudin et al[27] DFT 1029 0.149
Sanchez-Portal[6] DFT 1070 0.14-0.19

Gupta[21] MD (Brenner potential) 1272 0.147
Chang[15] MM (Morse potential) 1060 0.16
Zhao[23] MD (AIREBO) 1010 ± 30 0.21 ± 0.01

Lu[32] MD (REBO) 725 0.398
Wei[43] DFT 1039 0.169
Pei[36] MD (AIREBO) 893 -

Cadelano[12] TB 931 0.31
Reddy[38] MM (Tersoff–Brenner) 669 0.416

TABLE 7.3: Mechanical properties of graphene derived in available literature

As can be seen from table 7.3 the results obtained are in line with the previous studies.
The results vary from 1272 to 725 GPa for elastic modulus while 0.14 to 0.416 for Poisson’s
ratio, making our results sit right in between the range of results. However, for molecular
dynamics simulation studies using AIREBO potential, the elastic modulus and poisons
are very close to the previous studies from Zhao and Pei as can be seen from the table 7.3.
The averages of these are taken as 888.88 GPa for Elastic modulus and 0.234 as Poisson’s
ratio.

A second simulation in which a constant strain rate uniaxial tensile test was performed
on the graphene sheet of dimension 20nm x 10nm. As stated before the purpose of this
simulation is to obtain critical energy release rate Gc which is an important component for
our phase field simulation.
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According to the Griffith’s criterion of fracture of brittle material as discussed in 3.2 is
given by

σf =
1
α

[
2Eγ

πa

]1/2

(7.3)

where σf is the stress at fracture , γ and a are surface energy and one-half notch depth
respectively. α is a geometry correction factor and for a single edge crack in a thin sheet
and is equal to 1.12. Using this equation Gc can be calculated as being equal to twice of
γ. Gc can also be calculated by integrating the stress strain curve with respect to strain E
given by

G = l
∫

σ(ε)dε (7.4)

where l is the model length. However for the purpose of this simulations we will use the
former method.

Visualization software OVITO was used to view snapshots of the simulation. As can be
observed in figure 7.1, folds appear in the graphene sheet under tension, which is typical
in a pre-cracked graphene sheet under stress.

FIGURE 7.1: Folds appear on the graphene sheet under strain

Figure 7.2 show the snapshots at different time steps of graphene sheet under strain frac-
ture in a strain controlled loading. The model was loaded for about 0.038 ns until the first
void appeared behind the crack front. These voids are nucleation points at which stress
concentrates and the crack propagates through [14]. As can be seen from the zoomed
snapshot 7.3 with virial stress y direction component per atom, the stress is higher than its
surrounding near the void region. After the void appeared and crack stated the fracture
occurred suddenly in about 0.0025 ns.
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(A) Crack at 0.015 ns (B) Crack at 0.0383 ns

(C) Crack at 0.04 ns (D) Crack at 0.0408 ns

FIGURE 7.2: Snapshots of SLGS undergoing fracture at different time-steps

The stress-strain graph 7.4 obtained through fracture simulation show a typical brittle
fracture behavior. The rupture strength obtained by this method was around observed to
21.78 GPa which is very close to 21.1 GPa reported by P. Zhang et al[46] while the strain
at which the fracture occurs was also very close at 0.0383 vs 0.026 obtained by them.

From the fracture strength, we can now calculate the surface energy as well as the critical
energy release rate. Rearranging 7.3 and putting the σf equal to 21.78 GPa ,a as 10nm,
E equal to 888.88 GPa as obtained in previous simulations and α as 1.12, we obtain the
critical energy release Gc as 20.8 jm−2. In the literature the values for Gc is given any
wherefrom 10.4 jm−2 [17] to 15.9 jm−2 [44] which varies with the result obtained . How-
ever, the difference is small and can be neglected for the purpose of this thesis.

7.3 Phase Field Modeling

The values obtained and verified through molecular dynamics are will now be used to
model the phase field model as discussed in chapter 4 for the graphene sheet. The phase
field graphene sheet will be of the same dimension 20nm x 10nm as the molecular dynam-
ics sheet to corroborate results.
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The codes for phase field modeling were written in MATLAB owing to its vector and
matrix function library. A finite element mesh was generated from a freely available mesh
generation code consisting of 4141 nodes which make up 4000 elements. These elements
were 4 node isoparametric elements. The crack was introduced manually through a crack
array. Mesh was refined in the area of the expected crack path. Similar to molecular
dynamics simulation the load is applied in a displacement controlled manner in which
the displacement was applied at nodes at the top edge with an increment of 0.0035 nm
per time step.

The parameters to be used for the phase field simulation are stated below

Gc(j/m−2) E(GPa) ν l0(nm) k η(GPa)
20.8 888.88 0.234 0.125 1.0x10−6 2x888.88

As shown in figure 7.6 the phase field crack model can be seen evolving in time under
constant strain rate. The phase field parameter φ which here represents the cracked or
intact region can be observed as being regions where the value of φ is 1 and 0 respectively.
At the 0th time step 7.6a the pre-cracked phase field model can be seen which is similar
to the molecular dynamics model in all dimensions. However, in this model, the plate is
considered truly 2-D therefore the question of stress is out of the question. Therefore it is
much more convenient and resource efficient to obtain a force-displacement graph in this
case.

As the strain increases the strain energy accumulates near the crack tip. It takes some time
before the strain energy becomes equal to the critical energy release rate Gc when the crack
propagation happens. This is in accordance with Griffith’s criterion as discussed in 3.2.1.
As can be seen from figure 7.6b the stress concentration changes the crack morphology

At time step 2075 7.6c the strain energy becomes greater than critical energy release rate
and the energy is released in the form of crack propagation. The crack is sudden until it
branches at time step 2350 7.6d which also decreases crack velocity just before the sheet
fractures completely.

The force-displacement graph showing brittle behavior is shown in figure 7.5. The graph
shows a typical load-displacement behavior of brittle material. The curve peaks at 76.16
nanonewton corresponding to the displacement of 0.4746 nanometres. The transition zone
between the cracked and intact surface can be observed.
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FIGURE 7.5: Load-displacement graph of phase field model

7.4 Discussion

The results of the two different modelings and simulation technique of the materials of
the same dimensions and crack length results varies from being very agreeable to being
significantly different. The crack path predicted by both the simulation techniques is in
agreement with each other. The point at which the crack branching occurs is also very
similar. Crack path and branching prediction is an important part of the variation formu-
lation of fracture criterion of which phase field model is a regularized version of.

The force-displacement also appears to show similarity in terms of the load at which the
fracture occurs. The phase field fracture force was calculated to be 76.16 nanonewton
while molecular dynamics fracture was calculated to be 72.92 nanonewton. This can be
regarded as nearly identical results. The error between the two fracture force can be cal-
culated as

error(%) =
76.16− 72.92

72.92
= 0.044 (7.5)

which is equal to 4.4 percent.

However few differences also arise between the phase field and molecular dynamics sim-
ulations results. As can be seen in the combined force-displacement graphs of the two
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(A) Crack at 0 time-step (B) Crack at 1975 time-step

(C) Crack at 2075 time-step (D) Crack at 2350 time-step

FIGURE 7.6: Snapshots phase field model undergoing fracture at different
time-steps

simulations the displacement at which the fracture occurs is different. Although in ab-
solute term the difference is not much, in relative terms the difference is significant. The
fracture strain for phase field model is 0.4736 nm while in the molecular dynamics model
it was 0.78297 nm. From the data given above we can calculate the simplified stiffness
predicted by the two models as

Sti f f ness =
Force

Displacement
(7.6)

for molecular dynamics model the stiffness was calculated as 93.13255 nm−1 while, phase
field model’s stiffness was calculated being equal to 160.81nm−1. the percentage error
between the two being 72.7 percent.

The discrepancy between the results may be due to the face that MD simulation allows
for model deformation in the form of body translation and rotation which is not the case
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(A) MD crack branching

(B) PF crack branching

FIGURE 7.7: Similarity between the crack branching prediction between MD
and PFM

with phase field model. In the continuum model, this is constrained by fixing vertical
displacement between two nodes. As a result of this fixing, it may cause the model to have
asymmetry despite deformation causing it to appear artificially stiffened, which may then
cause of the difference in the displacement results given that displacement of phase field
model is relatively small.

Another reason for the differences in results could be due to the fact that graphene has a
strain-dependent elastic modulus. Atomic simulations can capture this non-linear behav-
ior very naturally while this is not the case with the phase field model. It is possible to
create a phase field model in which the elastic modulus can be modeled as a function of
strain eliminating or confirming this as the source of error.
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FIGURE 7.8: Combined load-displacement graphs of MD and PF models.
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Chapter 8

Conclusion and future prospects

8.1 Conclusion

Continuum mechanics can tackle a variety of problems pertaining to the engineering as-
pect of problem-solving. Different levels of simplifications are applied to the problems
which cannot be solved by molecular dynamics in a practical way. Molecular dynam-
ics, on the other hand, goes deeper into the details and have much fewer simplifications,
however for finite resources there is a trade-off between scale and details of the simula-
tion. Despite these conceptual differences between the two modeling schemes concept
of combining the two simulations is promising. The parameters required for the contin-
uum model can be obtained from physics based molecular dynamics modeling making
the overall approach closer to physics and reducing the dependence of empiricism. The
efficiency of continuum mechanics allows for the inference of the properties at the molec-
ular scale to be implemented at bigger scales helping us understand the dependence of
atomic scale properties on its macro properties.

Continuum models are generally less resource intensive compared to atomistic models. In
my testing atomic simulation tool 3 to 4 times longer to be performed despite using 4 CPU-
cores compared to 1 for phase field model. Thus a combined continuum and atomistic
approach can also help draw conclusions faster retaining atomistic information.

In this study atomic description of fracture of graphene sheet under uniaxial tension at
the nanoscale is provided. The mechanical properties obtained through it are in good
agreement with previous literature on both molecular dynamics simulation and experi-
mental studies. The ability of phase field model to describe a fracture with the help of
MD properties was confirmed. Obtaining key parameters from MD simulation, it shows
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convergence between the results in two key areas as reported in the literature. Key con-
clusions are stated below.

• Continuum phase field model can be used to study fracture problems with properties
obtained from molecular dynamics.

• The phase field model could predict the path of the crack along with crack branching
under uniaxial tensile stress. This is the main component of the regulrized version
of variational approach for fracture.

• Force at which the material fractures were similar for both the modeling techniques and
were within 4.4% of each other.

• Stiffness calculated from the force displacement graphs show significant variation of
72 % between the two simulation techniques. The possible reason for this has been
discussed in chapter 7.

8.2 Future work

In this study, some deviation between the results was also noted, along with probable
causes of its occurrence. As this is a novel approach much work and studies remain to
be done in improving the existing results and also in furthering the scope of this mode of
modeling.

For improving the existing results to better match the results obtained through atomistic
simulation of material which have a nonlinear response to strain implementation of strain-
dependent phase field model is to be on the lookout. Fracture model which incorporate
other modes of fracture under different setups (shear, different geometry, etc.) is to be
modeled.

Phase field modeling has been used to study qualitatively a variety of time evolution
problem outside the scope of mechanics. For example, PF has been used in the study of
phase transformation and fluid dynamics. Phase field models in these domains can also
be developed which obtains relevant parameters through atomistic simulations.
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