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                                                   Abstract 

In this thesis, I investigate the rupture dynamics of a generic model polymer system involving 

interconnecting catch bonds (rather than a slip bond) between a rigid and a flexible transducer, 

where a constant force is applied to the latter. The aim is to study microscopic mechanism due 

to relative movement of (soft) surfaces at single polymer level with these new catch bonds 

which are allowed to rupture only, stochastically. I simulate the coupled equations of motion 

for bead and bond dynamics and develop a mean field formalism to gain further analytical 

insights. I provide my initial attempt to solve these analytical coupled mean-field equations 

under specific approximations. 
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                                              Chapter: 1 

Introduction  

Extensive studies had been performed over the years in underpinning the molecular mechanism 

underlying the phenomena involving relative motion between surfaces, in processes spanning 

over various disciplines in biology, for instance cellular processes, soft condensed mater 

physics, for example bio composites, complex fluids, and tribology like friction, to name a few. 

The models used to address these are generic and often raises questions about the general 

application of associated mechanism at molecular level. However the tractability (both 

analytical (mainly) and also numerical, and agreement of the resulting treatment with 

experimental observations are remarkable. Similar questions are addressed with a generic model 

polymer system. 

       Numerous attempts have been made in understanding the origin of different physical 

phenomenon at microscopic level that involves relative motion between shearing surfaces [1-

2]. Examples of such phenomenon are frictional forces, hierarchical structures in bio composites 

having relative motion at each level of hierarchy, adhesive bonds between ligands and 

biological receptors [3]. 

       Frictional force is a physical phenomenon of extreme practical importance, which involves 

relative motion between surfaces [4]. New experimental procedures have been reported that 

help in understanding relation between frictional forces and the microscopic properties of 

systems, so that friction at nanometer length scale can be investigated in detail. A range of such 

processes involving friction at microscopic level comes under the branch of nanotribology [5]. 

Recent studies that showed interest in friction have unveiled a broad spectrum of phenomenon 

and their new behavior few of them are static and kinetic friction forces, frictional aging, 

transition to sliding but it has only revived old concepts and still a lot needs to be done to gain 

insights at microscopic level. Experimental observations in nanoscale molecular systems 

provides intriguing structural as well as dynamical features of systems confined to two 

atomically smooth solid surfaces which motivated efforts in theoretical perspective either 

numerically or analytically. 
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       In field of microscopic mechanism for frictional phenomena pioneering contribution is 

made by Schallamach [6] through his research on friction between rubber and the track 

assuming dynamic friction arise from the shearing and consequent breaking of different bonds 

between the rubbing members, and eventually a general equation was derived for the frictional 

force involving average life and the number of the bonds along with the average time lag 

between breaking and again remaking of a bond at a particular location. In a particular case of 

a perfectly smooth substrate, the friction accounts due to local stick slip happening at the sliding 

interface. Hence a molecular mechanism was proposed for the local stick slip phenomena, in 

which surface of a rubber polymer chain sticks to the interface of the moving surface, expands, 

detaches, relaxes and then again reattaches to repeat the cycle. In each cycle, stored energy 

during expansion in the polymer chain gets dissipated during the detachment and relaxation 

period in the form of heat and this is marked to be the origin of friction at macroscopic level. 

This spearheading work prompted various theorists working on different distinctions of the toy 

rupture model to understand the microscopic origin of the mechanism of friction. A remarkable 

work on this phenomena is done by Filippov and coworkers [1], they put forward a microscopic 

model that exhibits a relationship between the dynamics of rupture and formation of particular 

bond and macroscopic phenomena of friction. Here they include strongly nonlinear rupture 

effects that contributed mainly to energy dissipation which is beyond the elastic phase of the 

given system. Their model comprises two rigid plates attached by bonds that break 

spontaneously and then reform as they come in contact [7].  

       Many models exist resembling same features as pioneering Burridge Knopoff spring and 

box model and its modification in earthquake dynamics, it consists of an array of blocks in one 

dimension coupled by horizontal springs moving on a frictional surface [37]. This one 

dimensional setup is attached by other set of springs (analogous to interconnecting bonds) to a 

driving bar moving side by side horizontally parallel at a constant velocity. Perrson et. al. [8] 

did calculations using these models to understand block substrate friction at microscopic level, 

but the microscopy in detail, its relationship to macroscopic motion of plate and the conclusions 

are all different. 

       Biomaterials like bone, lobster cuticle, wood, glass sponge, nacre are few hierarchical 

composite structures of proteins and minerals [9]. Complex hierarchical structure is found in 
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wood in terms of length scales it can be seen as a fiber composite, a functionally graded material 

or a honeycomb [10]. At the macroscopic level, it can be contemplated as a cellular solid, 

composed mainly of parallel hollow tubes that are wood cells. Cell wall is a composite of fiber 

made of cellulose microfibrils inserted into a matrix of lignin and hemicelluloses. The cellulose 

microfibrils present around the wood cells at an angle called micro fibril angle. Through the 

adjustment of the micro fibril angle it is possible to change the mechanical properties, ranging 

from high stiffness to more flexibility as angle increases, experiments based on deformation 

were performed by Keckes et al. During tensile loading mechanical properties unravel a stick 

slip mechanism at both cellular and tissue level [11]. Using experimental model the results of 

the irreversible distortion process are explained, in this process a soft resilient matrix transfer 

shear stresses among cellulose fibrils. Bone is also a hierarchical biomaterial which consists of 

hydroxyapatite, collagen, water and some non-collagenous proteins [12]. At microscopic level 

mineral platelets and collagen molecule combine forming mineralized collagen fibrils 

represented on a nanometer scale. On micrometer scale these fibrils gather to form fiber 

bundles, then these bundles arranged in lamellae of almost constant content of mineral in the 

trabeculae and osteons which makeup an organ (represented on centimeter scale). Osteons have 

cylindrical structures present in compact bones [13]. Improvements in manipulation techniques 

of single molecule has led to various studies on molecular structure as a basis for bone 

toughness, among them is Thompson et al. [14] who performed tests on bone indentation and 

on collagen fibers and inferred that sacrificial bonds are present in polymer of bones which 

protect the polymer backbone by dissipating energy, and the required time for reformation of 

these bonds corresponds to the bone recovery time in the indentation test suggests that may be 

these sacrificial bonds are responsible for toughness of bone [13]. Literatures contain 

phenomenological tension shear chain model to explain the mechanical characteristics of bone 

like bio-composites [15].   

       In force spectroscopy of ligand receptor bonds, study of cooperative transport by molecular 

motors and cell adhesion, major role is played by the subject that involves theoretical 

description of the dynamics of cooperative molecular bonds under load [16]. An important role 

is played by cell adhesion in their pathological and physiological functions such as growth, 

differentiation, migration and other multiple cell events [17]. Many complex structures with 

fixed ligand molecules are formed by receptors present on the surface of cell membranes that 
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enable the cell to sense mechanical environment outside the cell. These multi-receptor ligand 

bonds are known as adhesion cluster. The function of receptor ligand binding is to mechanically 

link the extracellular environments with cytoskeleton. These bindings are affected by 

cytoskeleton contraction, mechanical loading of blood flow and some other factors. With the 

help of these linkers, cells are capable of sensing and responding to their environment actively 

and passively as well. Hence, the effect of mechanical loading on biomechanical response of 

receptor ligand interactions is extensively explored. Although statistical description of each 

receptor ligand bond individually is well understood by now but the collective response of 

multiple molecular bonds can turn out to be complex. In experiments though ruptured single 

molecule bond normally cannot rebind but it can in case of bond clusters till all other bonds are 

intact. 

       During the past two decades various experiments have been conducted to investigate the 

forced dissociation event of single receptor ligand bonds, whose measurements are taken by 

means of optical and magnetic tweezers, bio-membrane force probes and atomic force 

microscopy [18]. This experimental advancement encouraged theoretical studies of the rupture 

of bond pairs under load variation. Kramer’s time dependent description of rupture process 

indicate that the rupture strength depends on rate of loading [19]. Recent analytical formulations 

on dynamic stability of adhesion under dynamic loading are underway [20]. 

1.1 Catch-Bond Discovery 

Binding of natural macromolecules via weak, noncovalent collaboration is basic for living 

organisms. Catch binding shows one of many interesting and irrational phenomena that emerge 

in complex biological frameworks. As usually occurs in science, the essential hypothesis was 

proposed first, and experimental evidence came a lot later. Catch bond was characterized as a 

bond whose lifetime expanded when it was extended by a mechanical force. Interestingly, life- 

times of common slip bonds decline during extending. It was commonly expected that most of 

the natural receptor-ligand interactions are slip bonds [21]. Although, catch bonds have been 

demonstrated recently. Stream chamber experiments revealed force-improved cell bond in 

2002, which could be excused by catch binding between mannose ligands and protein FimH 

[22]. In 2003 the main complete demonstration with atomic force microscope (AFM) 

investigates the P-selectin protein, communicated on endothelial cells and platelets, interfacing 
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with the PSGL-1 ligand communicated on leukocytes. The atomic force microscopy (AFM) 

experiments demonstrated that beyond a critical value of force, catch bonds carried on as usually 

slip bonds. The bond lifetime initially increased but finally decreased with developing force 

[23]. The development and resulting decrease of the binding capacity was likewise seen in 

stream-chamber that investigates protein FimH mediated  connection of microscopic organisms 

to have cells and beads to surfaces [22]. More as of late, catch-slip behaviour was set up in the 

actin/myosin complex [24 Functioning of the response of catch bonds evolved in biological 

conditions. For example, bonds including selectins work in blood flows [21]. Catch binding 

may stop unconstrained accumulation of streaming leukocytes in fine vessels and postcapillary 

venules, where forces acting on the bonds are very less [24]. 

            

 

                           

Figure 1.1: Impact of force applied on interaction of ligand-receptor with potential barrier ∆𝐸0. 

Force free potential is showed by red lines. Barrier’s lowered by force in case of slip binding 

and favours dissociation of bond. Catch binding happens when force coordinated from barrier 

in the direction of the minimum raises the barrier. 
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1.2 Catch and Slip Bonds 

For the understanding of force involvement in catch binding at intermolecular level, 

consideration of interaction energy of receptor-ligand binding is required. Value of barrier 

height ∆𝐸0 shows the difference between bound state to unbound state. If the value of ∆𝐸0 is 

higher, then bond lifetime will be long. Connected forces f initiates straight line changes in the 

height of barrier ∆𝐸0 [24]. This circumstances was initially concerned by Bell [25]. 

The previous circumstances portray slip bonds, since force advances breaking of bonds. In 

case the free-energy scene of receptor-ligand interaction is like that force pushes the 

ligand more profound into the receptor, the complex carries on as a catch bond [26]. 

Eventually, most of the known catch bonds move to slip bonds given adequate force. Large 

number of clarifications of the catch-slip move have been given in Ref. [26]. 

A basic depiction is given by two-pathway model [27], which provides both slip and catch 

mode bond separation. The catch mode contains low energy barrier. 

By expanding the catch barrier and diminishing the slip barrier, switching from the catch to slip 

mode are compelled by force. When force are equivalent to the barrier height, bond lifetime has 

been maximized. Critical exploratory truths can be clarified with a potential involving two 

bound states and two separation pathways [27]. An elective two-pathway thought is given by 

the bond separation model [28]. It contends that by changing structure of bond force brings 

down the potential energy least. Catch binding has been credited to higher-

order variance effects that amplify past the Bell mechanism [21]. More complications 

are given by the force-history reliance of rupture of bond [29]. 

 

1.3 Theoretical models  

Due to complexity of the problems discussed so far having rupture occurring in real three 

dimension between many bodies, the system becomes intractable computationally and 

analytically without making any assumptions. Hence minimalistic models which are simple do 

not require complex structures and can be used to draw meaningful insights into the basic 

mechanisms such as physical quantities, scaling behavior, at microscopic level. Mechanical 
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response of hierarchical systems, cell adhesion and the basic features of friction between two 

shearing surfaces discussed till now is based on rupture or failure mechanism, caused when an 

external applied load creates sliding motion between two surfaces. To know the physical 

behavior of these systems, one dimensional rupture model is used for system modelling [33]. 

The models usually used for these problems involves two parallel transducers with interlinking 

bonds which can either rupture or bind uncertainly. Different approaches are adopted to model 

the influence of mechanical load variation under physiological conditions by applying force on 

the interconnecting bonds which is distinct for each system under study. 

       There is possibility of reformation of bonds which is an inherent part of the rupture models. 

Several attempts had been made in the past to observe microscopic structure physical 

phenomena using models having rebinding with break of interlinked bonds between force 

sensors. Friction is the dissipative energy produced due to roughness between sliding contacts 

having coefficient of friction. The need for friction research arose from the plastic deformation 

of the sliding bodies and from their surface adhesion [2]. This distinction became the foundation 

of successful scientific examination into frictional phenomena as shown in studies of Bowden 

and Tabors on adhesion and plasticity in contacts of metallic surfaces by group of molecular 

bonds [31]. Pioneering studies made on molecular mechanism of friction by Schallamach led 

to derivation of a general equation for the frictional force involving average life and the number 

of the bonds along with the average time lag between breaking and again remaking of a bond 

at a particular location with the presumption that dynamic friction appear from shearing and 

then breaking of different bonds between the sliding surfaces. In case of contact between a 

smooth hard surface and rubber, the bonds are subjected to local molecular adhesion [6]. 

Recently a model introduced by Filippov et al. is based on relationship between dynamics of 

rupture and formation of specific bonds and phenomena of macroscopic friction [1]. This model 

for friction incorporate two rigid plates coupled by bonds which can break spontaneously and 

then rebind as soon as contact is made under external force. A generalized of this model, by 

incorporating polymeric flexible transducer that includes rebinding with rupture and where 

rebinding is governed by the displacement of transducer from its position of equilibrium. As 

the steady state for displacement of bead is reached problem becomes interesting 

mathematically. Adhesion phenomena specifically cell adhesion involves rupture and rebinding 

models. Problem in cell adhesion is multiscale as the molecular activities at the cell material 
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interface are amplified dramatically on the cell scale [17]. Recent investigations are made on 

the behavior of distinct adhesion bonds by dynamic force spectroscopy at single molecular level 

and it is found to be mainly applicable to single bonds, but generally adhesion receptors work 

cooperatively within clusters [19]. Gaub and coworkers pioneered this field by AFM and later 

Evans and Ritchie, put forward theoretical approach [32]. Hence, descriptive physical features 

of forced single adhesion bond have to be expanded to forced cluster adhesion bonds [21]. 

Rebinding of broken bonds of cluster is also a possibility and to achieve physiological lifetime 

is critical for adhesion clusters. In case of single bonds, after rupture there is elastic recoil of 

the force transducer which makes it harder to study rebinding whereas in adhesion clusters 

broken bonds can rebind till all other bonds remain closed, thus maintaining the closeness 

required for rebinding. When all the bonds break rebinding becomes impossible as the closeness 

disappears and the cluster completely disintegrates [30].  
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Chapter: 2 

Model 

We develop a rupture model that accounts for relative motion at the single polymer level. In 

this model system, a one dimensional flexible polymeric transducer is aligned parallel and fixed 

to an immovable rigid planar substrate by a predefined number of N equidistant interlinked 

bonds. The substrate is rigid and fixed and a persistent force FT parallel to the transducer is 

applied, which produces a transducing force on the bonds and therefore called the transducer. 

There is no role of planar substrate in the rupture dynamics of interlinking bonds. There is 

vanishingly small distance between the substrate and polymer and so is neglected thus, the 

model system becomes one dimensional. When the force is applied, the sliding motion of the 

polymeric transducer begins in x-direction which is parallel to its orientation. The beginning of 

the sliding motion commences the rupture of the interconnecting bonds between the planar 

substrate and the transducer, where the process of bond rupture is stochastic. 

                                                                                                                                                            

Figure 2.1: A sketch of bead-spring model system 

       The polymeric transducer is modelled as a bead spring polymer which is defined as a chain 

of N beads connected to each other by harmonic springs having stiffness 𝑘𝑇 and bond length at 

equilibrium is 𝑎. All the bonds are modelled as harmonic springs with same equilibrium length 

𝑎. Discretization of elastic transducer is done such that one bond is connected at each bead and 

when beads displaces from their equilibrium position 𝑥𝑛,0 their position is represented by 𝑥𝑛(𝑡) 

where 𝑛 =  0, 1, . … . , 𝑁 − 1. This n is the same index as used for the bonds. The bead at 𝑛 =
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 𝑁 − 1 is acted upon by an external force 𝐹𝑇. The equilibrium position (at time 𝑡 =  0) of initial 

or zeroth bead at 𝑛 = 0 is 𝑥0,0(0) = 0 and that of 𝑛 −th bead is 𝑥𝑛,0  = 𝑛𝑎. State of a bond is 

described by a discrete variable 𝑞𝑛, which can assume only two values 0 for open bond or 1 for 

a closed bond. Rebinding is not taken into account. At time 𝑡 =  0, all bonds are considered 

closed and displacements of beads from equilibrium positions are zero. Hence, the initial 

conditions at 𝑡 =  0 are 𝑞𝑛 = 1 and 𝑥𝑛(0) = 0. Over time, the transducer starts sliding in the 

direction of applied force 𝐹𝑇 and on each unbroken bond a restoring force 𝑓𝑛 = 𝑘𝑏𝑥𝑛 develops 

opposite to the direction of applied force 𝐹𝑇. On ruptured bond no force develops.  The 

overdamped equation of motion of the beads can be expressed as [33] 

 𝛾𝜕𝑡𝑥𝑛 =  𝑘𝑇 ( 𝑥𝑛+1  − 2𝑥𝑛  +  𝑥𝑛−1 )  −  𝑞𝑛𝑘𝑏𝑥𝑛  + 𝛿𝑛,𝑁−1𝐹𝑇  + 𝜁𝑛(𝑡)                            (2.1) 

where γ is coefficient of friction for each bead with thermal noise 〈𝜁𝑛〉 = 0 following statistics 

of white noise. 〈𝜁𝑚(𝑡)𝜁𝑛(𝑡′)〉 = 2 𝑘𝐵Tγ𝛿𝑚,𝑛𝛿(𝑡 –  𝑡′) force applied on the n-th close bond is 

given as  𝑓𝑛 = 𝑘𝑏𝑥𝑛. External force 𝐹𝑇 is applied only on the bead 𝑛 =  0 which becomes the 

origin of δ-term. Boundary conditions for free ends can be written as: 

 

(𝑥−1  − 𝑥0  =  0)  and  (𝑥𝑁−1  −  𝑥𝑁  =  0) .                                      (2.2) 

 

Rupture of a bond is modelled, from Kramers theory, as a thermally activated escape over a 

transition state barrier [21]. Bond dissociation rate which depends on n (per unit time probability 

of transition from closed bond 𝑞𝑛 = 1 to open bond 𝑞𝑛  =  0) for slip bond is given by the Bell 

equation 

𝑘−,𝒏 = 𝑘0 exp [
𝑘𝑏𝑥𝑛

𝑓𝑏
]                                                           (2.3) 

and that for catch bonds is 

𝑘−,𝒏(𝑓) = 𝑘0 exp [−
∆𝐸𝑑(𝑓)  − 𝑥12𝑓

𝑘𝐵𝑇
]                                 (2.4) 

where, ∆𝐸𝑑(f) = α [1 − exp (
−𝑓

𝑓0
)] is the potential barrier with 𝛼 being the deformation energy, 

𝑓 = 𝑘𝑏𝑥𝑛 is bond force, and 𝑓0 is saturation force. 𝑥12 is the barrier width (𝑥𝑏) and 𝑘𝑜is the 

force free rate constant. On substituting the value of ∆𝐸𝑑(f) as defined in the expression (2.4) 

and replace 𝑥12 by 𝑥𝑏, replace 𝑓 by 𝑘𝑏𝑥𝑛 , and then replacing 
𝑘𝐵𝑇

𝑥𝑏
  by 𝑓𝑏 (the force scale 
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according to our model ) , and taking   
𝛼

𝑘𝐵𝑇
  = 𝛼 ( new constant ). Then final expression of 

rupture rate constant looks like as follow: 

𝑘−,𝒏(𝑓) = 𝑘0 exp [
𝑘𝑏𝑥𝑛

𝑓𝑏
− 𝛼 {1 − exp (−

𝑘𝑏𝑥𝑛

𝑓0
)}]                                 (2.5) 

Modelling bond rupture process as stochastic process, the equation of motion for dynamics of 

bond is given by  

𝑞𝑛(𝑡 +  ∆𝑡) =  𝑞𝑛(𝑡) − 𝑞𝑛(𝑡)𝜃 (𝛼𝑛  −  ∆𝑡 𝑘−,𝑛)                                (2.6)     

where ∆t is a time step, 𝛼𝑛 is a random variable belongs (0,1) and 𝜃 is the Heaviside step 

function. The dynamics of bead and bond in above equation of motion totally characterize 

stochastic model and simulated by standard numerical techniques. We formulate an analytical 

approach involving mean-field equations (Sec. 2.2).  

 

2.1. Characteristics of Catch Bond 

We discuss some readily ascertained characteristics of catch bond. On differentiating Eq. (2.5) 

with respect to 𝑥𝑛 , 

                    

𝑑𝑘−,𝑛

𝑑𝑥𝑛
= 𝑘0 exp [

𝑘𝑏𝑥𝑛

𝑓𝑏
− 𝛼 {1 − 𝑒𝑥𝑝 (−

𝑘𝑏𝑥𝑛

𝑓0
)}]   (

𝑘𝑏

𝑓𝑏
+  𝛼 exp (−

𝑘𝑏𝑥𝑛

𝑓0
) (−

𝑘𝑏

𝑓0
))        (2.7) 

 

For extrema, the following should be satisfied: 

                                     

𝑑𝑘−,𝑛

𝑑𝑥𝑛
 =  0, 

which gives                           

(
𝑘𝑏

𝑓𝑏
+  𝛼 𝑒𝑥𝑝 (−

𝑘𝑏𝑥𝑛

𝑓0
) (−

𝑘𝑏

𝑓0
)) = 0 

and hence 

                                                      exp (−
𝑘𝑏𝑥𝑛

𝑓0
) =  

𝑓0

𝛼 𝑓𝑏
   



  

12 
 

For positive value of minima,                                                        

                                                                 
𝑓0

𝛼 𝑓𝑏
   <  1.                                                                             (2.8)   

2.2 Mean Field (MF) Formalism 

The equations of motion describing the dynamics of bead and rupture are dependent on the 

variables {𝑥𝑛} and {𝑞𝑛} denoting distributions of bead positions and bond respectively. The 

distribution is represented by one single equation as [37] 

                             𝜕𝑡𝑝({𝑞𝑛}, 𝑡)  =  ∑ (𝔼𝑛 − 1)𝑛 𝑟𝑛𝑝 +  ∑ (𝔼𝑛
−1 − 1)𝑛 𝑔𝑛                                 (2.9) 

where 𝔼 is defined by its effect on an arbitrary function as 

                             𝔼 𝑓(𝑛)  =  𝑓 ( 𝑛 + 1 )    and   𝔼−1 𝑓 (𝑛)  =  𝑓 ( 𝑛 –  1 )                        (2.10) 

The transition rates for no rebinding case are for slip bonds is 

                      𝑟𝑛  =   𝑟(𝑞𝑛)  =   𝑞𝑛𝑘0 𝑒𝑥𝑝 [
𝑘𝑏𝑥𝑛

𝑓𝑏
]                                            (2.11) 

and for catch bonds is 

                   𝑟𝑛  =   𝑟(𝑞𝑛) =   𝑞𝑛 𝑘0 exp[(𝑘𝑏𝑥𝑛)/𝑓𝑏  − 𝛼{1 − exp(−(𝑘𝑏 𝑥𝑛)/𝑓0 )}]        (2.12) 

To account for the stochastic dynamics of polymeric transducer, we need to consider the joint 

probability 𝑃({𝑥𝑛}{𝑞𝑛}, 𝑡) of finding {𝑥𝑛} and {𝑞𝑛} distributions of bead positions and bond 

variables at time t. Fokker Plank equation gives the evolution of this joint probability, which is 

written as 

 𝜕𝑡𝑃({𝑥𝑛}{𝑞𝑛}, 𝑡)  =  ∑ (𝔼𝑛 − 1)𝑛 𝑟𝑛𝑃 +  ∑ (𝔼𝑛
−1 − 1)𝑛 𝑔𝑛𝑃 − ∑ [𝜕𝑥𝑛𝑛 {𝜕𝑡𝑥𝑛𝑃} − 𝐷𝜕𝑥𝑛

2 𝑃]      

(2.10) 

In the absence of thermal noise 𝐷 = 0, which we assume here, and upon substitution in the 

above we obtain the full Fokker Plank equation, whose result on solving represent the complete 

solution of stochastic dynamics. 

       Mean field approach gives an approximate pathway which leads to deterministic 

differential equations for the mean values, instead of solving the whole problem as  
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                       〈𝑥𝑛〉 ( 𝑡 )  =  ∑ ∫ 𝑑{𝑥𝑛}{𝑞𝑛} 𝑥𝑛𝑃({𝑞𝑛}, {𝑥𝑛}, 𝑡)                                 (2.14)                                            

                          〈𝑞𝑛〉 ( 𝑡 )  =  ∑ ∫ 𝑑{𝑥𝑛}{𝑞𝑛} 𝑞𝑛𝑃({𝑞𝑛}, {𝑥𝑛}, 𝑡)                             (2.15)                                 

Thus from above, the equations of motion Eq. (2.1) but with force 𝐹𝑇 now applied at 𝑛 = 0, 

within mean-field formalism can be written as 

 𝛾𝜕𝑡〈𝑥𝑛〉   =   𝑘𝑇(〈𝑥𝑛+1〉 − 2〈𝑥𝑛〉 + 〈𝑥𝑛−1〉) −  𝑘𝑏〈𝑞𝑛𝑥𝑛〉  +  𝛿𝑛,0𝐹𝑇                        (2.13) 

Eq. (2.6) for slip bonds is written as 

 𝜕𝑡〈𝑞𝑛〉  =  〈𝑟𝑛〉    =   − 𝑘0  〈𝑞𝑛 𝑒𝑥𝑝 [
𝑘𝑏𝑥𝑛

𝑓𝑏
]〉                                          (2.14) 

and for catch bond            

𝜕𝑡  〈𝑞𝑛 〉   =  〈𝑟𝑛 〉    =  − 𝑘0 〈𝑞𝑛  exp [
𝑘𝑏 𝑥𝑛

𝑓𝑏
− 𝛼 {1 − exp (−

𝑘𝑏 𝑥𝑛

𝑓0
)}] 〉         (2.15) 

After neglecting all variable correlations using mean-field approach right hand side of Eqs. 

(2.13—2.15), we arrive at the following 

𝛾𝜕𝑡 〈𝑥𝑛〉    =   𝑘𝑇(〈𝑥𝑛+1〉 − 2〈𝑥𝑛〉 + 〈𝑥𝑛−1〉) − 𝑘𝑏〈𝑞𝑛〉〈𝑥𝑛〉   +  𝛿𝑛,0 𝐹𝑇                     (2.16) 

=   𝑘𝑇 𝜕𝑛
2 〈𝑥𝑛〉 −  𝑘𝑏〈𝑞𝑛 〉〈𝑥𝑛〉  +  𝛿(𝑛)𝐹𝑇                                                    (2.17) 

for slip bond  

                    𝜕𝑡 〈𝑞𝑛〉  =  〈𝑟𝑛〉   =  −𝑘0〈𝑞𝑛〉 exp[(𝑘𝑏 〈𝑥𝑛〉)/𝑓𝑏 ]                                    (2.18) 

and for catch bond 

𝜕𝑡〈𝑞𝑛〉  =  〈𝑟𝑛〉   =  − 𝑘0 〈𝑞𝑛〉 𝑒𝑥𝑝 [
𝑘𝑏〈𝑥𝑛〉

𝑓𝑏
− 𝛼 {1 − 𝑒𝑥𝑝 (−

𝑘𝑏〈𝑥𝑛〉

𝑓0
)}]         (2.19) 

Eq. (2.17) is written in the continuum chain limit (assuming bead index n as continuous variable. 

In this limit the boundary condition at free ends becomes  

                                   𝜕𝑛 〈𝑥𝑛〉 ∣𝑛=0 =  0 and  𝜕𝑛 〈𝑥𝑛〉 ∣𝑛=𝑁 = 0.                                   (2.20)               

The above two equations are partial differential equations with coupling and Eq. (2.19) is the 

Neumann boundary condition for 〈𝑥𝑛〉. The exact solution of the above coupled partial 

differential equations Eqs. (2.16—2.20) are not possible. So these equations are solved 

numerically by standard techniques. 
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2.3 Numerical methods 

In order to find the solutions of partial differential equations with their boundary conditions 

(Eqs. (2.16—2.20)), numerical integration method is used. As an initial step, these equations 

are first solved by Euler’s method keeping time step fixed, but it gave time-step dependent 

results. To avoid any fixed timestep bias, and to find better solution, adaptive size algorithm is 

merged with Runge-Kutta second and fourth order methods. Calculations of only fourth order 

Runge-Kutta are performed and the corresponding results are reported. The adaptive step size 

is found out to be of O(10-4) whose value of tolerance is fixed at 0.0001 or 0.00001. All the 

calculations are done taking tolerance value to be 0.00001, as it is observed that the results do 

not significantly improve upon lowering the tolerance value. Modification of step sizes is done 

with the help of a formula that requires minimal computational time  ℎ0 = ℎ1 √|∆0 ∆1⁄ |  where 

∆0 is the anticipated accuracy (in terms of tolerance value) and  ℎ1 is the present value of 

error. ℎ0 is the assessed step size from the recent step size h1 for achieving anticipated accuracy. 

Higher accuracy can be obtained using the formulas that exist in literatures, but by that the 

adaptive step size gets reduced by one order lacking any considerable change in the results. 

       I attempted few analytical techniques already stated in Ref. [7], and another standard 

technique based on Laplace transforms to solve ordinary partial differential equations. It’s  still 

in very preliminary stage and hence in relegated to the Appendix. 
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                                                Chapter: 3               

        Results and Discussion 
In this thesis all parameter units are simulation units in our results. According to physical 

conditions of experiments, suitable dimensionless parameters combination can often be 

ascertained [7]. Experimental set up, specifically tailored to measure the quantities that turn out 

interesting like rupture fronts (not discussed) are required, which arise from the analysis 

discussed in this thesis. Before we start discussing stochastic simulation results in detail, its 

informative to look into the characteristics of catch bond compared to slip bonds. 

       Fig. 3.1 shows the rupture functions (𝑘−,𝑛) for slip bond (Eq. (2.3)) as a function of 𝑥𝑛 at 

fixed values of 𝑘𝑏 , 𝑘0, and 𝑓𝑏 .  The characteristics is as expected for an exponential function. 

              

 

Figure 3.1: Rupture function 𝑘−,𝑛 representative of slip bond (Eq. (2.3)) as function of 𝑥𝑛 for 

at fixed values of parameters 𝑘𝑏 = 1.0, 𝑘0 = 0.002, 𝑓𝑏 = 1.0. 
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       Fig. (3.2) shows  𝑘−,𝑛 for catch bonds in Eq. (2.5) as a function of 𝑥𝑛 at fixed values of 

𝑘𝑏 , 𝑘0, 𝛼, 𝑓𝑏, and 𝑓0. There is additional two parameters on which the rupture function depends 

on, and thus extra terms compared to slip bonds. As noted already in Chapter 2, section 2.1.1, 

this leads to a extrema condition (Eq. (2.8)), which is a minima and this results due to the fact 

that catch bonds resist to rupture on applied force and beyond this condition (Eq. (2.8)), it 

behaves as a slip bond. This characteristic feature of catch bond delays the rupture process as 

will be shown in stochastic simulation results (next section). 

                    

 

Figure 3.2: Rupture function 𝑘−,𝑛 representative of catch bond (Eq. (2.5)) as function of 𝑥𝑛 

for at fixed values of parameters 𝑘𝑏 = 1.0, 𝑘0 = 0.002, 𝑓𝑏 = 1.0, α = 3.0 and 𝑓0 = 2.5. 

 

3.1 Stochastic Simulation Results 

Polymeric model system is simulated as a function of size of polymer N, stiffness of polymeric 

transducer 𝑘𝑇 , rupture rate of zero force 𝑘0 , critical force 𝑓𝑏 , saturation force 𝑓0 , constant 

related to deformation energy α , interconnecting bond stiffness 𝑘𝑏 , coefficient of friction γ ,  
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Figure 3.3: (a)  ⟨𝑥𝑛⟩ and (b) ⟨𝑞𝑛⟩ as a function of time, from stochastic simulations, at fixed N 

= 100, 𝑘𝑇 = 10.0, 𝑘𝑏 = 1.0, 𝐹𝑇 = 30.0, γ = 0.005, 𝑘0 = 0.002, 𝑓𝑏 = 1.0, α = 3.0, and 𝑓0 = 2.5, for 

different values of n (= 10, 30, 50, 70, and 90). 

(a) 

(b) 
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number of bead  n , constant force applied on the (N−1) −th bond 𝐹𝑇 and time t. Stochastic 

simulation results are averaged over many runs. By using adaptive step size algorithm with 

Runge-Kutta fourth order, integration has been done, so that bias fixed ∆t could be removed as 

seen within the Euler method. 

        In Figure (3.3a), 〈𝑥𝑛〉 from stochastic simulations is shown as a function of time for 

different bead index n values at constant force 𝐹𝑇=30. Higher n indicates bead position in close 

proximity from (𝑁 − 1) −th bead where 𝐹𝑇 is applied.  Hence as expected interconnecting 

bonds nearer to the (N−1)−th bead ruptures first than the furthest ones. The corresponding 〈𝑞𝑛〉 

profiles are shown in Fig. (3.3b) and can be explained as for 〈𝑥𝑛〉. Similar results can be seen 

for different bead index on applying different external forces. Result for different applied 

external forces on bead index has been shown in Figures 3.4 to 3.7. From these figures it can 

also be seen that on a same bead index, for higher values of 𝐹𝑇, bond dissociate earlier in time 

compared to smaller values of 𝐹𝑇. 

 

Figure 3.4: ⟨𝑥𝑛⟩ as a function of time, from stochastic simulations, at fixed N = 100, 𝑘𝑇 = 

10.0, 𝑘𝑏 = 1.0, 𝐹𝑇 = 40.0, γ = 0.005, 𝑘0 = 0.002, 𝑓𝑏 = 1.0, α = 3.0, and 𝑓0 = 2.5, for different 

values of n (= 10, 30, 50, 70, and 90). 
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Figure 3.5: ⟨𝑥𝑛⟩ as a function of time, from stochastic simulations, at fixed N = 100, 𝑘𝑇 = 

10.0, 𝑘𝑏 = 1.0, 𝐹𝑇 = 50.0, γ = 0.005, 𝑘0 = 0.002, 𝑓𝑏 = 1.0, α = 3.0, and 𝑓0 = 2.5, for different 

values of n (= 10, 30, 50, 70, and 90). 
 

 

Figure 3.6: ⟨𝑥𝑛⟩ as a function of time, from stochastic simulations, at fixed N = 100, 𝑘𝑇 = 

10.0, 𝑘𝑏 = 1.0, 𝐹𝑇 = 60.0, γ = 0.005, 𝑘0 = 0.002, 𝑓𝑏 = 1.0, α = 3.0, and 𝑓0 = 2.5, for different 

values of n (= 10, 30, 50, 70, and 90). 
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Figure 3.7: ⟨𝑥𝑛⟩ as a function of time, from stochastic simulations, at fixed N = 100, 𝑘𝑇 = 

10.0, 𝑘𝑏 = 1.0, 𝐹𝑇 = 70.0, γ = 0.005, 𝑘0 = 0.002, 𝑓𝑏 = 1.0, α = 3.0, and 𝑓0 = 2.5, for different 

values of n (= 10, 30, 50, 70, and 90). 

 

                
Figure 3.8:  Comparison of  ⟨𝑥𝑛⟩ and ⟨𝑞𝑛⟩ (inset) for catch and slip bonds as a function of 

time, from stochastic simulations at fixed N = 100, n = 10, 𝑘𝑇 = 10.0, 𝑘𝑏 = 1.0, 𝐹𝑇 = 30.0, γ = 

0.005, 𝑘0 = 0.002, 𝑓𝑏 = 1.0, α = 3.0, and 𝑓0 = 2.5. 
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       Figure 3.8 shows the comparison of  〈𝑥𝑛〉 and 〈𝑞𝑛〉 for catch and slip bond for the same 

parameters. As the property of catch bond, bond initially resist the breaking that is why bond 

dissociates later as compare to slip bond (see also above) which can be seen in both 〈𝑥𝑛〉 and 

〈𝑞𝑛〉 profiles. Slip bond dissociates before t = 30 and catch bond dissociates after t = 120.  

       In Figure 3.9 effect of force 𝐹𝑇  on the mean displacement  〈𝑥𝑛〉 has been shown. For 

different value of 𝐹𝑇 like 30, 40, 50, 60 and 70. For higher values of 𝐹𝑇 bond dissociates early 

in comparison to low values. Inset curves show the corresponding 〈𝑞𝑛〉 from stochastic 

simulations. 

 
Figure 3.9: ⟨𝑥𝑛⟩ and ⟨𝑞𝑛⟩ (inset) as a function of time, from stochastic simulations, at different 

values of 𝐹𝑇, for fixed values of N = 100, n = 10, 𝑘𝑇 = 10.0, 𝑘𝑏 = 1.0, γ = 0.005, 𝑘0 = 0.002 , 

𝑓𝑏 = 1.0, α = 3.0, and 𝑓0 = 2.5.  
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Figure 3.10: (a) 〈𝑥𝑛〉  and (b) 〈𝑞𝑛〉  as a function of time, from stochastic simulation, at different 

values of α & 𝑓0 for fixed values of  N = 100, n = 10, 𝑘𝑇 = 10.0, 𝑘𝑏 = 1.0, γ = 0.005, 𝐹𝑇 = 30.0,
𝑘0 = 0.002 and 𝑓𝑏 = 1.0. 
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Figure 3.11: 〈𝑥𝑛〉  and (b) 〈𝑞𝑛〉  as a function of time, from stochastic simulation, at different 

values of 𝑘𝑇 for fixed values of  N = 100, n = 10, 𝑘𝑏 = 1.0, γ = 0.005, 𝐹𝑇 = 30.0, 𝑘0 = 0.002, 

𝑓𝑏 = 1.0, α = 3.0 and 𝑓0 = 2.5.  
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       Figure. 3.10 (a and b) show the effect of deformation energy term α and saturation force 𝑓0 

on 〈𝑥𝑛〉  and (b) 〈𝑞𝑛〉, as a function of time, respectively, from stochastic simulation results. 

Deformation energy is defined as the minimum energy required to break the bond and saturation 

force is defined as the force after which the bond will surely break. As the value of α and 𝑓0 

increases simultaneously, bond dissociates later in time as shown in these figures or in other 

words, the  bond rupture time or bond lifetime is higher for higher values of α and 𝑓0. 

       In Figure. 3.11 we have shown the effect of polymeric transducer stiffness 𝑘𝑇 on (a) bead 

displacement 〈𝑥𝑛〉 and (b) 〈𝑞𝑛〉, as a function of time. As the value of 𝑘𝑇 increases, individual 

bond rupture time increases. 
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                                             Chapter: 4 

       Summary and Conclusion 
In summary, we investigated ways to evaluate the coupled partial differential equation of bead 

and bond dynamics appeared in rupture model framework, both analytically and numerically. 

In stochastic simulation, our focus was on the new features that arise due to the involvement of 

catch bonds. To obtain analytic knowhow about the underlying mechanism, mean-field 

approximations were formulated. Because of coupled dynamics of bead and bond, an exact 

solution of the mean-field equations is not obtained. Numerical results from stochastic 

simulations show steady states (sometimes many intermittent ones, see Figure (3.8, 3.10a and 

3.11a) for 〈𝑥𝑛〉 and same more transient ones can be concluded for 〈𝑞𝑛〉 also, which appears not 

so explicit at the time scale of the corresponding subfigures in (b). A confirmation of such 

transient steady states requires further investigation, a future scope of this thesis. This steady 

states are very interesting mathematically, and in physical perspective, they prevent the 

detachment of two interconnected plates and thus a study may provide useful insights into the 

modelled system stability. In this thesis, preliminary analytical results, and numerical results 

which requires further investigation, has been presented. The formalism created may 

be extended to an array of transducers at a controllable level of tractability (analytical and 

numerical). Such type of generalization would address deformation response at microscopic 

level from biological structures and usually from flexible material under loading. 
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Appendix 

Analytical Methods 

Exact solution of coupled partial differential equation with Neumann boundary condition are 

not possible. However, the equations can be made analytically tractable under certain conditions 

as we discuss in the following methods. 

A.I. Method based on Laplace Transforms 

We attempt to solve this partial differential equations Eqs. (2.17—2.20) under limiting 

conditions. We look first into the stationary solution for bead displacement when 𝑞𝑛 = 1, these 

are timescales when bead and bond coupling is yet to set up, then partial differential equation 

for bead displacement becomes: 

𝛾
𝜕〈𝑥𝑛〉

𝜕𝑡
=  𝑘𝑇

𝜕2〈𝑥𝑛〉

𝜕𝑛2
− 𝑘𝑏〈𝑥𝑛〉 + 𝛿(𝑛)𝐹𝑇                                           (𝐴. 1) 

 for simplification we define new set of variables x, a, b, d and y 

   〈𝑥𝑛〉 ≡ 𝑥,
𝑘𝑇

𝛾
≡ 𝑎,

𝑘𝑏

𝛾
≡ 𝑏,

𝐹𝑇

𝛾
≡ 𝑑, 𝑛 ≡ 𝑦                                           (𝐴. 2) 

then Eq. (3.1) becomes 

𝜕𝑥

𝜕𝑡
= 𝑎

𝜕2𝑥

𝜕𝑦2
− 𝑏𝑥 + 𝑑𝛿(𝑦)                                                          (𝐴. 3) 

here 𝑥 is function of t and 𝑦 both: 𝑥(𝑡, 𝑦) with boundary conditions  

𝑥(0, 𝑦) =  0,
𝜕𝑥

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 0,

𝜕𝑥

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 𝑁                            (𝐴. 4) 

After taking Laplace transformation of equation 

𝑑𝑋

𝑑𝑡
(𝑡, 𝑠) = 𝑎𝑠2𝑋(𝑡, 𝑠) − 𝑠𝑥(𝑡, 0) − 𝑥𝑦(𝑡, 0) − 𝑏𝑋(𝑡, 𝑠) + 𝑑                              (𝐴. 5) 

and on applying boundary conditions, the above equation becomes 
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𝑑𝑋

𝑑𝑡
(𝑡, 𝑠) − (𝑎𝑠2 − 𝑏)𝑋(𝑡, 𝑠) = 𝑑                                                (𝐴. 6) 

Eq. (A.6) is a constant coefficient first order linear ordinary differential equation. We solve it 

by finding integration factor (I.F) 

𝐼. 𝐹. =  𝑒− ∫(𝑎𝑠2−𝑏)𝑑𝑡 =  𝑒−(𝑎𝑠2−𝑏)𝑡 

Thus, we have 

𝑑

𝑑𝑡
[𝑒−(𝑎𝑠2−𝑏)𝑡𝑋(𝑡, 𝑠)] = 𝑒−(𝑎𝑠2−𝑏)𝑡. 𝑑                                  (𝐴. 7) 

On integrating both sides  

𝑋(𝑡, 𝑠) = 𝑒(𝑎𝑠2−𝑏)𝑡(∫ 𝑒−(𝑎𝑠2−𝑏)𝑡 . 𝑑𝑑𝑟) + 𝐶. 𝑒(𝑎𝑠2−𝑏)𝑡
𝑡

0

                           (𝐴. 8) 

where, C is a constant 

On integration by parts Eq. (A.8) becomes 

𝑋(𝑡, 𝑠) =
−𝑑

(𝑎𝑠2 − 𝑏)
+ 𝐶. 𝑒(𝑎𝑠2−𝑏)𝑡                                           (𝐴. 9) 

 

By using boundary conditions 𝑋(0, 𝑠) = 0, the constant C is obtained as  

𝐶 =  
𝑑

(𝑎𝑠2 − 𝑏)
                                                          (𝐴. 10) 

Thus, we have 

𝑋(𝑡, 𝑠) =  
𝑑𝑒(𝑎𝑠2−𝑏)𝑡

(𝑎𝑠2 − 𝑏)
−  

𝑑

(𝑎𝑠2 − 𝑏)
                                              (𝐴. 11) 

Taking the inverse Laplace transformation of Eq. A.11 we have 

𝑥(𝑡, 𝑦) =  
𝑑

√𝑎𝑏
[𝐻(𝑦 − 𝑡)𝑠𝑖𝑛ℎ√

𝑏

𝑎
(𝑦 − 𝑡) − 𝑠𝑖𝑛ℎ√

𝑏

𝑎
𝑦]                              (𝐴. 12) 

where H is a Heaviside function. 
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On replacing the original variables as Eqs. (2.16—20), from Eq. (A.2), the solution is 

                          

〈𝑥𝑛〉  =  
𝐹𝑇

√𝑘𝑇𝑘𝑏

[𝐻(𝑛 − 𝑡)𝑠𝑖𝑛ℎ√
𝑘𝑏

𝑘𝑇

(𝑛 − 𝑡) − 𝑠𝑖𝑛ℎ√
𝑘𝑏

𝑘𝑇
𝑛]                             (𝐴. 13) 

The result in Eq. (A.13), has to be rigorously tested for its applicability.  

A.II Steady state solution using Green’s function method 

At steady state, at 𝑞𝑛 = 1, Eq. (2.17) can be written as: 

                                    𝑘𝑇𝜕𝑛
2〈𝑥𝑛〉  −  𝑘𝑏〈𝑥𝑛〉  +  𝛿(𝑛)𝐹𝑇  =  0                                       (𝐴. 14) 

with boundary conditions   𝜕𝑛〈𝑥𝑛〉 ∣𝑛=0 = 0   and  𝜕𝑛〈𝑥𝑛〉 ∣𝑛=𝑁 = 0. 

Let   𝑘 =  √
𝑘𝑏

𝑘𝑇
  and on substituting it in Eq. (A.14), one obtains   

                                                −(𝜕𝑛
2  − 𝑘2) 〈𝑥𝑛〉  =  

𝛿(𝑛)𝐹𝑇

𝑘𝑇
                                         (𝐴. 15) 

In terms of eigenfunctions of  −𝛻2 subjected to the same homogeneous boundary conditions 

(−𝛻2𝛷𝑝 = 𝑘𝑝
2 𝛷𝑝). By using green function method the solution of above equation will be  

                                         −(𝜕𝑛
2  − 𝑘2) 𝐺𝑘( 𝑛 ∣ 𝑛’)  =  𝛿 ( 𝑛 –  𝑛’)                                        (𝐴. 16)                                                   

   𝐺𝑘( 𝑛 ∣ 𝑛’)  =    ∑
𝛷𝑝

∗ (𝑛′)𝛷𝑝(𝑛)

𝑘2+𝑘𝑝
2𝑝                               (𝐴. 17)  

On applying Neumann boundary conditions, 

 𝛷’(0) =  0 =  𝛷’(𝑁), 𝛷𝑝  =  (
1

𝑁
)

1
2⁄

 𝑖𝑓  𝑝 =  0 , 𝛷𝑝  =   (
2

𝑁
)

1
2⁄

𝑐𝑜𝑠 (
𝑝𝜋𝑛

𝑁
)  for 𝑝 = 1,2,3, … .. 

 

                           𝐺𝑘( 𝑛 ∣ 𝑛’)  =   

1
𝑁 {1 + 2 ∑ 𝑐𝑜𝑠

𝑝𝜋𝑛′
𝑁

∞
𝑝=1 𝑐𝑜𝑠

𝑝𝜋𝑛
𝑁 }

𝑘2 + 𝑘𝑝
2

 

Which on further rearrangement is written as  
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𝐺𝑘(  𝑛 ∣ 𝑛’ ) =  
2

𝑁
[

1

2𝑘2
+  ∑

𝑐𝑜𝑠
𝑝𝜋𝑛′

𝑁 𝑐𝑜𝑠
𝑝𝜋𝑛

𝑁
𝑘2 + 𝑘𝑝

2

∞

𝑝=1

]                               (𝐴. 18) 

By applying magic rule, 

                                    〈𝑥𝑛〉   =  
2𝐹𝑇

𝑁𝑘𝑇
 [

1

2𝑘2
+  ∑

𝑐𝑜𝑠
𝑝𝜋𝑛

𝑁

𝑘2 +  (
𝑝𝜋
𝑁 )

2

∞

𝑝=1

]                                (𝐴. 19) 

 

A.III Steady state solution using Laplace transformation 

In the limit 𝑞𝑛 → 1,  the bead displacement equation Eq. (2.17) is same as Eq. (A.14). At 

steady state, solutions are obtained by applying 
𝜕〈𝑥𝑛〉

𝜕𝑡
= 0 to Eq. (A.14), which becomes 

𝑘𝑇  
𝜕2〈𝑥𝑛〉

𝜕𝑛2
− 𝑘𝑏〈𝑥𝑛〉 + 𝛿(𝑛)𝐹𝑇 = 0 

 
𝜕2〈𝑥𝑛〉

𝜕𝑛2
−

𝑘𝑏

𝑘𝑇

〈𝑥𝑛〉 + 𝛿(𝑛)
𝐹𝑇

𝑘𝑇
= 0                                        (𝐴. 20) 

As before, for simplification we define new variables as 

𝑘𝑏

𝑘𝑇
≡ 𝑏,

𝐹𝑇

𝑘𝑇
≡ 𝑑 , 〈𝑥𝑛〉 ≡ 𝑥, 𝑛 ≡ 𝑦                                     (𝐴. 21) 

On substituting Eq. (A.21) in Eq. (A.20) we have 

 
𝜕2𝑥

𝜕𝑦2
− 𝑏𝑥 + 𝑑𝛿(𝑦) = 0                                                 (𝐴. 22) 

Applying Laplace transformation to the both sides of Eq. (A.22) one obtains 

𝑠2𝑋(𝑠) − 𝑠𝑥(0) − 𝑥𝑦(0) − 𝑏𝑋(𝑠) + 𝑑 = 0                                        (𝐴. 23) 

Further applying boundary conditions in Eq. (A.14) one obtains 

𝑠2𝑋(𝑠) − 𝑏𝑋(𝑠) + 𝑑 = 0 

𝑋(𝑠) =  
−𝑑

𝑠2 − 𝑏
                                                          (𝐴. 24) 
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On rearranging Eq. (A.24) as following 

𝑋(𝑠) = − (
√𝑏

𝑠2 − (√𝑏)
2)

𝑑

√𝑏
                                           (𝐴. 25) 

and taking inverse Laplace transformation of Eq. (A.25) one obtains 

𝑥 =  −
𝑑

√𝑏
 sinh √𝑏𝑦                                                       (𝐴. 26) 

Finally substituting, the origin values of x, d, b and y as in Eq. (A.21), solution in Eq. (A.26) 

is obtained to be                                      

〈𝑥𝑛〉  =  − 
𝐹𝑇

√𝑘𝑏𝑘𝑇

 sinh √
𝑘𝑏

𝑘𝑇
𝑛                                              (𝐴. 27) 

The result in Eq. (A.27), has to be rigorously tested for its applicability. 

 

Table A.1: Steady state result of 〈𝒙𝒏〉 as calculated using Laplace transformation 

𝐹𝑇 𝒏 = 𝟏𝟎 𝒏 = 𝟐𝟎 𝒏 = 𝟑𝟎 𝒏 = 𝟒𝟎 𝒏 = 𝟓𝟎 

     30 111.8517 2646.973 62528.34 1477076.360 34892248.61739 

     70 260.990 6176.289 145899.911 344652.8872 81415491.96733 

 

 

A.IV Travelling-wave solution 

 By using formalism of travelling-wave, we get propagating solution, for our coupled partial    

differential equations are  

                                    𝛾
𝜕〈𝑥𝑛〉

𝜕𝑡
= 𝑘𝑇  

𝜕2〈𝑥𝑛〉

𝜕𝑛2 − 𝑘𝑏〈𝑥𝑛〉 + 𝛿(𝑛)𝐹𝑇                                          (𝐴. 28)                                                     

                                    
𝜕〈𝑞𝑛〉

𝜕𝑡
 =  −𝑘0〈𝑞𝑛〉𝑒

{
𝑘𝑏〈𝑥𝑛〉

𝑓𝑏
−𝛼{1−𝑒

(−
𝑘𝑏〈𝑥𝑛〉

𝑓0
)

}}

                                    (𝐴. 29)                                       

On substituting,                         〈𝑥𝑛〉  = 𝑋(𝑐(𝑛 − 𝑣𝑡)) = 𝑋(𝜉) 
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〈𝑞𝑛〉  = 𝑄(𝑐(𝑛 − 𝑣𝑡)) = 𝑄(𝜉) 

                                                    𝜉 = 𝑐(𝑛 − 𝑣𝑡)                                                                   (𝐴. 30) 

we get 

𝜕〈𝑥𝑛〉

𝜕𝑡
=  

𝜕 (𝑋(𝜉))

𝜕𝑡
=  

𝜕 𝑋(𝜉) 

𝜕𝜉
.
𝜕𝜉 

𝜕𝑡
=

𝜕 𝑋(𝜉) 

𝜕𝜉
. (−𝑐𝑣)  

𝜕〈𝑥𝑛〉

𝜕𝑛
=  

𝜕 (𝑋(𝜉))

𝜕𝑛
=  

𝜕 𝑋(𝜉) 

𝜕𝜉
.
𝜕𝜉 

𝜕𝑛
=

𝜕 𝑋(𝜉) 

𝜕𝜉
. 𝑛 

𝜕2〈𝑥𝑛〉

𝜕𝑛2
=   

𝜕2 𝑋(𝜉) 

𝜕𝜉2
. 𝑐2 

𝜕〈𝑞𝑛〉

𝜕𝑡
=  

𝜕 (𝑄(𝜉))

𝜕𝑡
=  

𝜕 𝑄(𝜉) 

𝜕𝜉
.
𝜕𝜉 

𝜕𝑡
=

𝜕 𝑄(𝜉) 

𝜕𝜉
. (−𝑐𝑣) 

                 

        −𝛾𝑐𝑣
𝑑𝑋    (𝜉)

𝑑𝜉
= 𝑘𝑇𝑐2  

𝑑2𝑋(𝜉)

𝑑𝜉2
− 𝑘𝑏𝑄(𝜉)𝑋(𝜉) + 𝑐𝛿(𝜉 + 𝑐𝑣𝑡)𝐹𝑇                  (𝐴. 31) 

                                       −𝑐𝑣
𝑑𝑄(𝜉)

𝜕𝜉
 =  −𝑘0𝑄(𝜉)𝑒

{
𝑘𝑏𝑋(𝜉)

𝑓𝑏
−𝛼{1−𝑒

(−
𝑘𝑏𝑋(𝜉)

𝑓0
)

}}

                          (𝐴. 32)                                    

Introducing 𝑌 =  𝑡𝑎𝑛ℎ(𝜉), then 

𝑋(𝜉) = 𝑋(𝑌) , 𝑄(𝜉) = 𝑄(𝑌) 

𝜕

𝜕𝑛
= 𝑐(1 − 𝑌2)

𝑑

𝑑𝑌
 

𝜕

𝜕𝑡
= −𝑐𝑣(1 − 𝑌2)

𝑑

𝑑𝑌
                                               (𝐴. 33) 

After expanding the delta function, 

                         −𝛾𝑐𝑣(1 − 𝑌2)
𝑑𝑋(𝑌)

𝑑𝑌
= 𝑐2𝑘𝑇(1 − 𝑌2)

𝑑

𝑑𝑌
[(1 − 𝑌2)

𝑑𝑋(𝑌)

𝑑𝑌
] − 𝑘𝑏𝑄(𝑌)𝑋(𝑌) +

                                                                   𝑐𝐹𝑇 ∑
𝑚

√𝜋𝑚→∞ exp[−(𝑡𝑎𝑛ℎ−1𝑌 + 𝑐𝑣𝑡)2𝑚2]           (𝐴. 34)  
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−𝛾𝑐𝑣(1 − 𝑌2)
𝑑𝑋(𝑌)

𝑑𝑌

= 𝑐2𝐾𝑇(1 − 𝑌2)
𝑑

𝑑𝑌
[(1 − 𝑌2)

𝑑𝑋(𝑌)

𝑑𝑌
] − 𝑘𝑏𝑄(𝑌)𝑋(𝑌) + 𝑐𝐹𝑇 ∑

𝑚

√𝜋
𝑚→∞

[1

− 𝑚2(
2

3
𝑐𝑣𝑡𝑌3 + 𝑌2 + 2𝑐𝑣𝑡𝑌 + 𝑐2𝑣2𝑡2)] 

−𝑣𝑐(1 − 𝑌2)
𝑑𝑄(𝑌)

𝑑𝑌
=  −𝑘0𝑄(𝑌)𝑒

{
𝑘𝑏𝑋(𝑌)

𝑓𝑏
−𝛼{1−𝑒

(−
𝑘𝑏𝑋(𝑌)

𝑓0
)

}}

                            (𝐴. 35) 

  using approximations, 

𝑋(𝜉) → ∞ , 𝑄(𝜉) → 1 𝑓𝑜𝑟 𝜉 → +∞  𝑜𝑟  𝑌 →  +1 𝑓𝑜𝑟 𝑁 → ∞ 

𝑄(𝜉) → 0, 𝑓𝑜𝑟 𝜉 → −∞  𝑜𝑟 𝑌 →  −1.                                           (𝐴. 36) 

Next travelling wave solutions for 〈𝑥𝑛〉 and 〈𝑞𝑛〉 are to be obtained in the travelling wave 

formalism as 𝑋(𝜉) and 𝑄(𝜉), respectively. 
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