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Abstract

Department of Civil Engineering

Master of Technology

Free Vibration Isogeometric Analysis of Framed Structures

by Prashoon Gupta

Isogeometric analysis (IGA) represents a recently developed technology in computa-
tional mechanics that offers the possibility of integrating methods for analysis and
Computer Aided Design (CAD) into a single, unified process. The implications to
practical engineering design scenarios are profound, since the time taken from design
to analysis is greatly reduced, leading to dramatic gains in efficiency. In this study
an introduction to Isogeometric finite element analysis on linear elasticity problems in
2D has been given using non uniform rational B-splines (NURBS) as basis functions.
Theory of B-Splines and FEM have been studied and derived the equations needed
to perform linear elasticity analysis. An Isogeometric finite element solver has been
programmed in Python.

The IGA solver was used to compute the free vibration frequencies of bar and beam
element. Both the elements formulated are 1D elements with beam element based
on Euler-Bernoulli beam theory. The free vibration frequencies of both the elements
were computed in the framework of NURBS based IGA and compared with analytical
frequencies. The numerical frequency matched with analytical frequency for first 40
modes for both the elements. Since the higher modes frequencies are irrelevant in con-
text of structural engineering, the results obtained can be termed as sufficiently good
for further analysis.

The IGA solver was then used to analyse plate element based on Reissner-Mindlin the-
ory of plates. Reissner-Mindlin theory was preferred instead of Kirchhoff-Love theory



to account for transverse shear deformations which are necessary to be considered for
analysis of thick plates. The plate element was analysed for different boundary condi-
tions: All sides simply supported and all sides clamped, and mesh sizes: 25, 36, 49, 64,
81, 100, 121, 256, 441. The good behaviour of the method was verified and compared
with analytical results. Plot of relative error percentage and the high rate of conver-
gence in every case considered can be seen in the results. The relative percentage error
reduced to 0.00896% from an initial error of 11.3% with mesh refinement for simply
supported plate subjected to UDL. This reduction in error was even more drastic in
case of Clamped plate subjected to UDL with error reducing from 92.12% to 1.18% for
same amount of mesh refinement. The simply supported plate produced convergent
solutions in fewer mesh density and without the need for selective integration.

A good solver must be capable of automatically meshing the problem domain without
consuming much computation power. Hence another IGA framework was prepared
based on Polynomial over Hierarchical T-splines (PHT-splines) which is capable of be-
ing locally refined. NURBS based IGA is not suited for local refinement because of its
global tensor product structure. A quad tree structure was used to construct PHT-spline
elements since they are better suited to track connectivity between elements across dif-
ferent refinement levels. For adaptivity, Zienkiewicz-Zhu error estimator was formu-
lated which is a recovery based a-posteriori error estimator. Dörfler marking scheme
was used to mark the elements to be refined after computing the error for each ele-
ment at the current refinement level. To exploit the good nature of automatic adaptive
refinement, a cantilever beam was analysed, because of the presence of re-entrant cor-
ners and stress concentrations. The cantilever beam is based on Euler-Bernoulli beam
theory. The promised results were obtained with the convergence plot showing good
convergence. A total of 12 refinement steps were needed to reduce the error in problem
domain within the prescribed limits. The mesh structure as well as the contour plots
of stresses are shown in the results. A cluster of elements can be seen at the re-entrant
corners as expected, increasing at each refinement level until the error reduced below
the limit prescribed.
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Chapter 1

Introduction

Isogeometric Analysis(IGA) has been introduced by T.J.R Hughes [12] in the field of
structural and fluid analysis. The requirement and objectives of this study is discussed
in this chapter. A brief overview is given of the current problems in the Computer
Aided Engineering (CAE) industry and how it can be overcome by replacing the tradi-
tional method of analysis which is finite element method (FEM) by IGA.

1.1 Need for study

Usually partial differential equations(PDEs) are used to represent the space and time
dependent problems. FEM, a numerical method, finds an approximate solution of these
PDEs because a vast majority of these problems cannot be solved by analytical meth-
ods. Despite the fact that geometry is the foundation for an analysis, computer aided
design (CAD), as is known today had its origin later than development of FEM. This
is perhaps the explanation why the geometry representation in CAD and FEM differs
so much. CAD files generated by designers must be translated into analysis-suitable
geometries which is then meshed and becomes a suitable input to large-scale finite el-
ement analysis (FEA) codes. This task however is far from being straightforward and
for engineering designs of current time, which are becoming complex in nature day by
day, takes over 80% of the overall time of analysis figure 1.1. It should be noted that the
CAD geometry is viewed as "exact" and a finite element mesh is only an approximation
of it. Note that with “exact” it is meant “as exact the CAD modeling can be”. This ap-
proximation create errors in analytical results which is termed as discretization error.
FEA technique works best when the mesh is of high quality i.e. the elements are of uni-
form size and shape. Now this requirement can be easily satisfied for small analysis but
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Increasing
Complexity

Manufacturing time

14,000 PARTS
65 TONS

3000 PARTS
1.9 TONS

5000 PARTS
1.6 TONS

103,000 PARTS
254 TONS

950,000 PARTS
6,900 TONS

30,000 PARTS
10 TONS

Auto-
mobiles

Land
Vehicle

Missile

Military Aircraft

SSN

Boeing 737

FIGURE 1.1: Engineering designs are becoming increasingly complex,
making analysis a time consuming and expensive endeavour.

for complex simulations like automotive crash, this can take months of manual effort to
generate a simple mesh. A way to solve this problem of such vast magnitude, ironically
simple in concept, is to focus on one and only one geometry description of problem in
modeling as well as analysis. IGA is an attempt by [12] which bridges the gap between
CAE and CAD. The basic concept of IGA is to use the same functions between the so-
lution space and the geometric modeling. The term (“isogeometric”) comes from the
fact that the use of Non-Uniform Rational B-Splines(NURBS) leads to exact geometric
description of the domain, while in standard FEA it is necessary to approximate it by
means of a mesh. IGA completely reduces the need for meshing because the geometry
description is now same in analysis domain and hence the geometry can simply be im-
ported instead of meshing it again. Since the geometry can now be imported as such,
the model in analysis domain is now exactly geometrically similar which improves the
results and reduces the computation time. The choice of NURBS to be used is based
on the fact that it is currently the most used technique to represent geometry in CAD
industry.

1.2 Objectives of the study

The study serves to be an introduction to the IGA on linear elasticity problems. The de-
velopment of IGA model for bar, beam and plate element for static and spectrum anal-
ysis was initiated with the intent to investigate the advantages of the study with respect
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to the traditional finite element method used widely: these include the requirement of
coarse mesh size, ability to use higher order elements, ability to represent geometry as
exact and not approximate, smoother basis function, better refinement techniques and
wider scope to improve the method.

The main objectives of the study can be listed as below

1. Understanding FEM which is a numerical method for solving problems of engi-
neering.

2. Understanding mathematical method used to represent geometry such as NURBS,
T-Splines etc.

3. Understanding the new analysis framework which is known as IGA.

4. Applying IGA framework to various elements and understanding the problems
underlying them.

5. Exploring the domain of automatic adaptive local refinement using the frame-
work of PHT based IGA.

6. Applying the PHT based IGA framework to a problem with stress concentration.

1.3 Scope of the study

In this study IGA framework (based on NURBS) prepared in Python was first used in
the domain of frequency analysis. The responses of basic elements like bar and beam,
which makes up a structure, to free vibration has been found using IGA. A comparison
of these results with results of existing methods is made to demonstrate the effective-
ness of this method. After obtaining valid results the framework was extended for
the analysis of plate element. The plate element used was based on Reissner-Mindlin
plate theory, which is an extension of Kirchhoff-Love plate theory, that takes into ac-
count the shear deformations throughout the thickness of a plate. Different boundary
conditions for the plate element was used: all four sides simply supported or all four
sides clamped. Effect of mesh size and boundary conditions on the analysis results of a
4-noded plate element by taking elastic properties and subjecting to point load is pre-
sented, and finally a comparative study of these results with analytical results [20] and
FEM analysis results is presented.
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NURBS based IGA is based on tensor product on basis functions because of which it is
not viable to do local refinement in its framework. Lack of adaptive local refinement ca-
pability doesn’t make NURBS based IGA a worthy contender to traditional FEA based
softwares. Hence, PHT-Splines(Polynomial over Hierarchical T-Splines) based IGA is
developed which is capable of doing local refinement in the problem domain. This
framework coupled with Zienkiewicz-Zhu error estimator [23] makes the analysis pro-
cedure adaptive. The framework is applied to the problem of cantilever beam in which
re-entrant corners required local refinement.

1.4 Organization of dissertation

This dissertation is divided into one introductory chapter, one chapter on review of ex-
isting work done on the topic, seven chapters detailing the concepts used in the work
done and one concluding chapter. Chapter 2 after introduction covers a brief review of
the work done already in field of IGA. Chapter 3 describes the basics underlying the
whole analysis procedure. Concepts related to 2D elasticity are discussed in this chap-
ter with various beam and plate theories relevant to the work done. Chapter 4 serves
as an introduction to the FEM process with definition of the terms mentioned in the
chapter showing results. Since IGA is based on similar concepts as isoparametric for-
mulation, brief literature related to the concept is discussed. Concepts of jacobian and
its formulation for first and second order derivatives are mentioned also. First order
jacobian is required for free vibration analysis of bar element and bending analysis of
plate element, whereas second order jacobian is required for the free vibration analysis
of beam element. This chapter serves as a reference to the topics regularly mentioned
throughout the dissertation.

Chapter 5 introduces the concepts of B-splines and NURBS detailing the procedure of
formation of basis and curves and surfaces. The chapter starts with description of basis
functions of B-splines and then proceeds to the procedure of forming B-spline curves
and surfaces with knot refinement. Later, NURBS basis is derived using B-spline basis
and its properties are discussed. It is the NURBS basis functions which will replace the
shape functions used in FEM to form an IGA framework. The sixth chapter introduces
the concepts of different spaces in the framework of IGA and how numerical integra-
tion is carried out in the framework of IGA. Chapter 6 marks the end of the introduction
to NURBS based IGA. After this adaptive refinement is discussed in the next chapter.
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Chapter 7 details the concepts and procedure underlying the PHT-splines based adap-
tive framework. The description of basis functions used and their representation us-
ing Bezier coordinates is explained first. After this the process of refinement is ex-
plained in which the procedure to form new basis functions and updating the quad
tree data structure is given. Recovery based error estimator is explained which is based
on Zienkiewicz-Zhu error estimator. Then the suitable marking scheme is explained
which will serve the purpose of marking the elements to be refined at the next refine-
ment step.

Chapter 8 describes the formulation of elements used in this study. Chapter starts with
the formulation of bar element detailing its geometrical properties and its description
in physical as well in parametric space used in NURBS based IGA. The procedure is
mentioned in the form of steps, the first being its description in physical space and
last being the formation of matrices using which numerical integration is carried to
out to compute the result. Same is discussed for beam element and plate element as
well. Apart from differences in the underlying theories, the elements also differs from
the description in parametric space. For example, the plate element is a 2D element
and is therefore formed using a tensor product structure of two knot vectors defined as
perpendicular to each other. Bar and beam element are 1D element and therefore only
one knot vector is required to discretize the physical element.

Chapter 9 includes results of all the work done. First the results of free vibration analy-
sis is shown of bar and beam element. Numerically computed frequencies are com-
pared with analytically computed frequencies. After this bending analysis of plate
element is shown for different boundary conditions and loading conditions. Central
deflection for each of these cases is compared with analytically computed deflections
and the error computed is shown in the form of graph and tables. Convergence studies
is done for different mesh density and the results obtained exemplify the good nature
of the proposed method. Adaptive refinement framework prepared using PHT-splines
is applied to the problem of cantilever beam. The results in the form of convergence
plot, meshes and stresses at different refinement levels shows good convergence while
using lesser number of elements.

The dissertation ends with conclusions and suggestions for future work.
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Chapter 2

Literature Review

2.1 General

IGA is integration of FEM and CAD to solve the problems underlying CAE industry.
The basic concept behind IGA is to use the basis functions, used to represent geometry
in CAD, to replace the shape functions used in FEM for analysis. NURBS is used in
CAD to model geometries. It is the B-Spline basis functions which replaces the stan-
dard FEM Lagrange basis functions. However, replacing them is not straightforward
because of their different characteristics. The first successful integration was achieved
by Hughes, Cottrell, and Bazilevs [12]. Later on the research in the field of IGA in-
creased tremendously with an aim to replace the FEA used in industries today with
IGA.

A brief review of some of the previous studies is presented in this section with an aim
to highlight the beginning and direction of progress of the research.

2.2 Literature Study

Work on IGA began in 2003 after Tom Hughes came privy to a conversation concern-
ing the creation of finite element models from CAD representations. The first paper
on this topic was first published in 2005 by Hughes, Cottrell, and Bazilevs [12]. In this
study analysis framework based on NURBS was applied to linear structural and fluid
problems with investigations on h-, p-, k-refinement techniques. k-refinement is only
possible in IGA because of the nature of basis functions used. It also presented the
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results of shell analysis with three-dimensional solid elements with convergence occur-
ring in all the cases. The wide array of scope of work was presented which served as a
pivot for all the research work that followed.

Cottrell et al. [7] were the first to successfully apply the IGA to the problem of structural
vibrations. A number of elementary model problems were solved numerically and, in
some cases analytically. The model consisted of rods, beams, membranes, plates, and
three-dimensional solids. Rotation-less bending elements were also presented. The
study found out that k-refinement provides more robust and accurate frequency spectra
than typical higher order finite elements (i.e., the p-refinement technique). The study
also found out that “optical” branches of frequency spectra can be eliminated through
the use of nonlinear parameterizations of the geometrical mapping (Optical branches
has been identified as the cause of severe degradation in accuracy in higher modes and
Gibbs phenomenon in wave propagation).

Kiendl et al. [13] were the first to develop a shell element in IGA framework bases on
Kirchhoff-Love theory. They found out that by using IGA the necessary continuities
between elements was easily achieved. The element was formulated geometrically
non-linear and discretized by displacement degree of freedoms only. Even the rota-
tional dofs were formulated in terms of displacement dofs. Rhino (NURBS based CAD
program) was used as a pre-processor for IGA. Since the shell element was defined on
the shell’s middle surface only, the CAD model was directly used as a model for the
analysis. The daunting task of building a 3D model from a 2D model was omitted.

Traditional IGA is based on NURBS which has a tensor product structure. Thus any
attempt to refine the mesh in NURBS based IGA results in global refinement with over-
load of control points and dofs. One way to do local refinement is to use multiple
patches which poses problems with patch continuity and patch conformance. Another
way is to use suitable adaptive splines which allows for local refinement. T-Spline was
a step towards this direction and was introduced by Sederberg et al. [19] in 2003. T-
Spline is a generalization of B-Spline and is capable of permitting a T-junction in its
control grid. Having a T-junction implies that the lines of control points need not cross
the entire control grid. It breaks the rigid tensor-product structure of NURBS by insert-
ing extra vertices into the tensor product structure. Hence, T-splines was capable of
creating a single patch geometry which was water-tight and can be locally refined or
coarsened.

T-Splines based IGA was first developed by Bazilevs et al. [2]. Use of T-splines made
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local refinement possible. The study used the IGA using T-splines on some Fluid and
structural problem. The structural problems involved numerical solutions for thin
shells. But the shells were modelled as 3D solid and no shell assumptions were em-
ployed. The results obtained successfully showed the viability of T-Splines in IGA
framework. Additional advantages such as local refinement and water-tight geome-
try was also discussed.

Borden et al. [4] presented the Bezier extraction operator and isogeometric Bezier ele-
ments for NURBS based IGA. The extraction operator allowed for numerical integra-
tion of smooth functions to be performed on C0 Bezier elements. The Bezier extraction
operator and Bezier elements provided an element structure for IGA which can be eas-
ily used into finite element codes without any changes to element form and assembly
algorithms, and standard data processing array. Bezier extraction operator also enabled
for global basis information to be defined locally, a technique which is used in construc-
tion of PHT-spline basis. Another advantage of this is also the description of continuity
between multiple patches without the need for additional arrays.

The first major implementation of the use of Bézier extraction operator was done by
Lai et al. [15] by proposing the first implementation of IGA in a commercial software
package, Abaqus. Although not all the modules were utilised but this marked the
beginning of the implementation of CAD and a commercial analysis software which
was the main aim behind the research of IGA.

After the successful implementation of T-Splines several other adaptive spline technol-
ogy was developed such as Bézier extraction based T-Splines, polynomial splines over
hierarchical T-meshes (PHT-splines), truncated hierarchical B-splines(THB) and locally
refined (LR) B-splines. PHT-splines by [8] was a generalization of B-splines over hier-
archical T-meshes. The study revealed the advantage of highly reduced requirement
of control points when NURBS surface was represented by PHT-spline. Since PHT-
splines are polynomial rather than rational, cross-insertion and removal of PHT-Spline
was shown to be local and simple. This proved to be an additional advantage over
T-Splines [19].

PHT-Splines in framework of IGA was first applied by Wang et al. [21] in 2011. The
study showcased the local refinement property of PHT-splines. Residual-based poste-
riori error estimator was used to drive adaptivity.

Study by Anitescu, Hossain, and Rabczuk [1] developed a higher-order adaptive method
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using PHT-splines. The study improved upon the existing PHT based IGA by reduc-
ing the number of control points (by truncating out Bézier coordinates) and using more
efficient algorithm. The study also introduced an efficient recovery-based error esti-
mator. The “recovered solution” produced by error estimator was shown to be a more
accurate approximation than the computed numerical solution. The study was applied
to various 2D and 3D problems which concluded significantly improved accuracy per
dof obtained by adaptivity.

Gondegaon and Voruganti [11] presented static structural and modal analysis of basic
elements: bar, beam and plate, and compared the results with that of FEM. The results
verified the advantages of IGA like better solution per degree of freedom.

Study of advantages of local adaptivity in the domain of frequency analysis was done
by Yu et al. [22]. The study used Geometry Independent Field approximaTion (GIFT)
framework to describe the geometry. Within GIFT, NURBS was used to describe the
exact geometry. On the other hand, PHT-spline was used to approximate the solution
field. Thus solution field was described using more control points and geometry using
lesser. A posteriori error estimator was used to drive adaptivity. The study achieved
significantly faster convergence rates than a uniform h-refinement.

Conventionally, rotational dofs are used to represent the motion of fibers in the Reissner-
Mindlin shear deformable shell theory, which results in an element with five or six
dofs per node which is computationally expensive. These additional dofs becomes the
source of convergence difficulties in structural analyses. Therefore, formulations based
on only translational dofs are a better choice. A Ck – continuous, NURBS based IGA for
shell for large deformations was presented by Benson et al. [3].

2.3 Summary

In spite of an extensive number of previous studies on the IGA of structural vibrations
and plate element, only some conclusions of general applicability have been arrived
at. The problem of local refinement is a case in point. Only a few papers have pro-
posed a solution to these problems. An example of this being the use of PHT-splines,
an adaptive refinement technique. Assessing exactly the number of aspects of behavior
and their contribution in the study becomes impractical. Computational cost consider-
ation can be termed as the main motivating factor behind the varying level of proposed
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methods, but an experienced and skilled analyst is the most important aspect of the
study besides the selection of an appropriate element to solve the problem.
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Chapter 3

2D Linear Elasticity

Most of the real life problems in the domain of structural analysis consists of materi-
als which undergo small deformations. It is assumed that a linear relationship exists
between stress and strain with material not reaching the yield point. The assumptions
specified are feasible for numerous design situations, which is why using theory of lin-
ear elasticity is very practical collectively with FEM. This chapter describes with the
most basic of terminology seen in the context of linear elasticity. It starts by defining
quantities like stress, strain, and traction and then proceeds to discuss basic analysis
theories related to beam and plate. After that, some basics about Eigenfrequency anal-
ysis is discussed.

3.1 Strain

Strain describes the relative amount of deformation the body has when subjected to
load. It is a dimensionless quantity and is termed as fundamental quantity since it
can be measured and used to derive other quantities such as stress, moments, etc..
It measures the relative displacement between particles of the material neglecting the
component of displacement due to rigid body motion. The strain is derived from dis-
placement and a displacement vector is written as

u =

[
ux

uy

]
(3.1)
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Strain is defined as the amount of deformation divided by the original length. Engi-
neering strains are therefore given by

εxx = lim∆x→0
ux(x + ∆x, y)− ux(x, y)

∆x = ∂ux
∂x (3.2)

εyy = lim∆y→0
uy(x, y + ∆y)− uy(x, y)

∆y =
∂uy
∂y (3.3)

whereas shear strain, γxy, is given by

γxy =
∂uy
∂x + ∂ux

∂y = α1 + α2 (3.4)

Shear strain is defined as the change in angle in deformed body between unit vectors

α₁

α2

u(x,y)

u(x+∆x,y)

u(x+∆x,y+∆y)u(x,y+∆y)

y

x

FIGURE 3.1: Deformation of a control volume

in x- and y-directions figure 3.1. The total strain is expressed as

ε =

 εxx

εyy

γxy

 =


∂

∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


[

ux

uy

]
(3.5)



Chapter 3. 2D Linear Elasticity 13

Note that these equations are linearized and are only valid for small deformations
where higher order terms can be ignored.

3.2 Stress

Stress is a quantity which measures force across a boundary per unit area of that bound-
ary. Stresses in two dimensions can be specified to forces per unit area acting on the
planes normal to the x-axis and y-axis. Stress can be expressed in vector form as

σ =

 σxx

σyy

σxy

 (3.6)

where the first subscript denotes the boundary across which stress is being measured
which is direction of the normal to the plane and the second subscript denotes the
direction of the force, see figure 3.2. Note that σxy = σyx.

y

x

σₓₓ

σₓσₓy
σ y

yy

x
→

σ→x

σσ →

yσ→

FIGURE 3.2: Stress Components

3.3 Traction

Traction is similar to stress and is defined as a quantity measured in force per unit area.
However traction is only associated with a specific surface, such as the outer boundary
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FIGURE 3.3: Relationship between stress and traction

of a domain. Traction at any point can be obtained using stress vectors at that particular
point on the surface.

Relationship between traction and stress is shown in figure 3.3. In order for the forces
in figure 3.3 to be in equilibrium

tdΓ− σxdy− σydx = 0 (3.7)

Using that dy = nxdΓ, dx = nydΓ, dividing by dΓ and multiplying it by unit vectors
gives the expressions

tx = σxxnx + σxyny = σxn

ty = σxynx + σyyny = σyn
(3.8)

Above equations represent the stress boundary conditions that are given by traction
condition for all points which lie on the part of boundary denoted by Γ.
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3.4 Hooke’s law for plane stress

Stress and strain are proportional when they are small enough quantities. The linear
relationship between them is called Hooke’s law and is expressed as

Stress
Strain

= Elastic Modulus.

For problems of linear elasticity, Hooke’s law is given as

σ = Dε (3.9)

In two dimensions D will be a 3 × 3 matrix, defined differently for plane strain and
plane stress condition. Plane stress assumes the body to be thin compared to its dimen-
sion in the xy−plane. In other words, σzz can be neglected. For this dissertation plane
stress condition and isotropic material is assumed using the following expression for
D:

D = E
1− ν2

 1 ν 0
ν 1 0
0 0 (1− 2ν)/2

 (3.10)

where E and ν are Young’s modulus and Poisson’s ratio respectively. Young’s modulus
and Poisson’s ratio are constants depending on the properties of material. Note that D
is symmetric positive definite. When v 6= 0 D will couple the different directions.

3.5 Beam Theory

Before the introduction of numerical techniques for computation, simplified theories
were used to analyze some structures or components of structures. In these theories,
assumptions are made about the strain and stress variation in the cross-section and thus
making it possible to perform necessary approximations to the general equations. For
analyzing beam two main theories exist depending on the consideration of the effects of
shear deformation. Brief description about these theories in the following subsection.
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3.5.1 Euler-Bernoulli beam

Plane perpendicular to the axis of beam before deformation is assumed to remain per-
pendicular after deformation. Implication of this being the rotation of cross-section of
beam to be equal to the slope of the axis of beam. As explained in figure 3.4 this assump-
tion leads to the well-recognized governing differential equation of bending of beam in
which transversal displacement v is only variable. Therefore for ensuring continuity
between two connected elements at point O, v and dv

dx must be continuous. Point O
is resting on the beam axis. From figure 3.4, during the deformation of the beam, the
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FIGURE 3.4: Conceptual kinematic of a Euler-Bernoulli beam element

displaced position and rotation of an arbitrary point P is given by:

up = uo − 2y tan
(

θ
2

)
cos(θ) ≈ uo − 2y θ

21 ≈ uo − yθ

vp = vo + y− y− 2y tan
(

θ
2

)
sin(θ) ≈ vo − 2y θ

2θ ≈ vo
(3.11)

where up and uo are the horizontal displacement components of points P and O, vp and
vo are the transversal displacement components, x and y are the coordinates before the
deformation of point P, and θ is the rotation of the plane perpendicular to the axis of
beam which in turn is equal to slope of the beam axis after deformation at point O.

3.5.2 Timoshenko beam

Unlike Euler-Bernoulli beam theory, the plane of cross section after deformation is not
assumed to remain perpendicular to the axis of the beam. Hence, the slope of beam
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axis is no longer the same as the rotation of cross-section. This assumption leads to
another beam theory which is known as Timoshenko beam theory. Shear deformation
is considered as a mechanism to relieve shear of the deformed cross-section. A physical
interpretation of shear deformation can be considered as the resistance of the cross-
section towards bending, i.e, tendency of cross-section to rotate itself back from the
perpendicular to beam axis.

Continuity between two connected elements at point O can be ensured by making v
and θ to be continuous (figure 3.5d).
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FIGURE 3.5: Conceptual kinematic of a Timoshenko beam element

From figure 3.5c, during the deformation of the beam, the displaced position and rota-
tion of an arbitrary point P is given by:

up = uo − 2y tan
(

θ
2

)
cos(θ) ≈ uo − 2y θ

21 ≈ u0 − yθ

vp = vo + y− y− 2y tan
(

θ
2

)
sin(θ) ≈ vo − 2y θ

2θ ≈ v0

θ = dvo
dx − γ

(3.12)

where up and uo are the horizontal displacement components of points P and O, vp

and vo are the transversal displacement components, x and y are the coordinates before
the deformation of point P, and θ is the rotation of the cross section which is no longer
equal to slope of the beam and γ is the shear deformation.
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3.6 Plate theory

For better understanding of finite element formulation, a brief review is made of the
two most widely accepted and used theory of plates

1. Kirchhoff – Love theory (classical plate theory)

2. Reissner-Mindlin theory (first-order shear plate theory)

From the perspective of FEA, for Reissner-Mindlin theory, the elements with only C0

continuity are required whereas the Kirchhoff plate formulation requires elements with
at least C1 continuity. Reissner-Mindlin theory is easier to implement by standard poly-
nomial basis functions but suffers from shear locking effects, whereas Kirchhoff theory
needs higher order elements. In this study Reissner-Mindlin theory is used. The for-
mulation of Kirchhoff elements in IGA can be simplified by using k-refinement tech-
nique in IGA, which result in higher order NURBS basis functions with increased inter-
element continuity. This can be done in the later stages.

3.6.1 Kirchhoff-Love theory

Kirchhoff’s theory, also known as classical thin plate theory, is similar to beam theory
by Bernoulli because of the assumptions which were then applied to plates and shells
by Love and Kirchhoff. The assumptions are as follows:

1. The line initially straight and normal to the neutral axis before bending remains
straight and normal after bending.

2. The normal stress in thickness direction is neglected. i.e., σz = 0. This assumption
converts the 3D problem into a 2D problem.

3. The transverse shear strains are assumed to be zero. i.e., shear strains γxz and γyz

will be zero. Thus, thickness of the plate does not change during bending. The
stresses normal to the plate can be neglected.

Even though Kirchhoff theory provides simple analytical solution but it has its own
flaws. The incapability of plate element to rotate independently of its position of mid
surface being one. This poses a problem for analysis of thick plates, for which at
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boundaries transverse shear stresses are required. As higher order terms of strain-
displacement relationship are necessary to be considered for problems with large de-
formations, the Kirchhoff theory can only be applied for problems with small deforma-
tions. Further, transverse stiffness changes as the plate deflect. Hence, the transverse
stiffness can be assumed to be constant only for small deformation.

3.6.2 Reissner-Mindlin theory

Reissner–Mindlin plate theory is applied for analysis of thick plates (but can be ap-
plied to thin plates also), where the shear deformations are considered. By considering
shear deformations it is possible to decouple rotation and lateral deflections (figure 3.6).
Cross section no longer remains perpendicular to the mid surface of plate element. Fol-
lowing assumptions are made,

1. Plate deflections are assumed to be small.

2. Straight line normal to the plate mid-surface before deformation remains straight
but not necessarily normal after deformation.

3. Stresses normal to the mid-surface are negligible.

Thus the deformation in the plane of undeformed mid surface, u and v, at a distance z
from the centroidal axis are expressed by

u=zθy (3.13)

v=− zθx (3.14)

where θy and θx are the respective rotations of the cross-section to the neutral axis of the
plate with respect to the y and x axes after deformation. The curvatures are expressed
by

χx =
∂θy
∂x

χy = −∂θx
∂y

(3.15)
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Further, the transverse shear strains are determined as

γxz = θy +
∂w
∂x

γyz = −θx +
∂w
∂y

(3.16)

The constitutive relation between stresses and strain obtained [14]:



Mx

My

Mxy

Qx

Qy


=


Et3

12(1− ν2)

 1 ν 0
ν 1 0

0 0 1− ν
2

 0 0
0 0
0 0

0 0 0
0 0 0

Et
2(1 + ν)

[
α 0
0 α

]


{
−∂θy

∂x −∂θx
∂y

∂θy
∂y −

∂θx
∂x θy +

∂w
∂x −θx +

∂w
∂y

}T

(3.17)

The above relation is similar to the stress-strain relationship. Thus, the stress resultants
becomes similar to stresses and the curvature and shear deformations become similar
to strain.

dw
dy

�

z(w) z(w)vertical line

Mid surface

Normal position of the vertical

Assumed average deformation
configuration of vertical line
element

Tangent to mid surface

Tangent to
mid surface

Inclined position
of the vertical

vertical line

y x

x��

yz� xz�
dw
dx

�

y�

FIGURE 3.6: Rotation of the normals about x and y axes considering aver-
age shear deformation.
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The strain displacement relation can be obtained as:

{ε}p =



χx

χy

χxy

γxz
γyz


=



0 0 ∂Ni
∂x

0 −∂Ni
∂y 0

0 −∂Ni
∂x

∂Ni
∂y

∂Ni
∂x 0 Ni

∂Ni
∂y −Ni 0


{d}i (3.18)

Here "α" characterizes the restraint of cross section against warping. If section com-
pletely restraints against warping then it means that there is no warping and value of
α = 1. If there is no restraint by cross section then α = 2/3. Here it is assumed for the
cross section to restrain the warping partially and hence α = 5/6.

3.7 Natural vibration frequencies and modes

The aim of this section is to concisely revive the main equations for structural vi-
brations. Through Newton’s second law of motion, the combination of inertia with
elasticity gives rise to differential equations with time derivatives of second order.
These equations possess typically wave type solutions. The resulting equation system
presents an eigenvalue problem when suitable boundary condition and a harmonic so-
lution is assumed. Solving the eigenvalue problem gives a set of eigenvalues called
Eigen frequencies or natural frequencies which are the frequencies at which an elastic
structure tends to vibrate. For each Eigen frequencies, the corresponding deformation
pattern is called Eigen-mode. Given a mdof linear structural system, the undamped,
unforced, equations of motion is:

Mü + Ku = 0 (3.19)

where K and M represents the global stiffness and mass matrix respectively. u = u(x, t)

is the displacement vector and ü = d2u
dt2 is the acceleration vector. The free vibrations

of the system in its nth natural mode can be described by:

u(x, t) = φn(x)qn(t) (3.20)
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where, depending on the nth natural frequency ωn, qn(t) is a harmonic function and φn

is the nth natural mode vector. qn(t) is of the form:

qn(t) = An cos (ωnt) + Bn sin (ωnt) (3.21)

Combining equations (3.20) and (3.21) gives:

u(x, t) = φn(x) (An cos (ωnt) + Bn sin (ωnt)) (3.22)

which yields:

ü = −ω2
nu (3.23)

Substituting equation (3.23) into the equations of motion equation (3.19) gives the fol-
lowing linear system:

(
K−ω2

nM
)

φnqn = 0 (3.24)

Asking for nontrivial solutions of this linear system gives rise to the generalized eigen-
value problem:

det
(

K−ω2
nM
)
= 0 (3.25)

Solving equation (3.25) yields the natural frequencies ωn where n = 1, . . . , N, N being
the number of dofs of the system, associated to the natural modes φn. After finding out
a natural frequency ωn, the corresponding natural mode is found out by solving the
following linear system for φn:

(
K−ω2

nM
)

φn = 0 (3.26)

In conclusion, in order to apply the concepts of IGA to solve problems of structural
vibrations, the following steps are needed to perform:

1. Assembling K as proposed;

2. Assembling M in a similar manner;
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3. Solving the eigenvalue problem.

A more detailed description of the above steps in context of IGA can be found in sec-
tion 8.1.



24

Chapter 4

Finite Element Method

The chapter starts with basic theory behind the displacement based version of FEM, in
which the primary unknown is the displacement. In the first section some definitions
are reviewed that are essential to the process of FEA. In the next section technique to
convert a strong form to weak form is discussed. Then basic concept of Isoparametric
element, Jacobian and Quadrature are discussed which is essential to the process of
numerical integration in FEM. At last a basic summary of the whole process of FEM is
presented.

4.1 Some definitions

Strong form of equation: A governing differential equation in its original form together
with boundary conditions state the problem in strong form. Strong form states that the
conditions must be satisfied at every point in the problem domain. There may exist
a solution which satisfies the requirement of sufficiently smooth problem domain in
addition to restrictions to boundary conditions, but getting an analytical expression for
such a solution is impossible. Hence it is preferred to convert strong form to weak
form by a class of techniques known as numerical methods. One of such technique is
discussed in detail in section 4.3.

Weak form of equation: Weak form of a problem is an integral expression that implicitly
contains the governing differential equation. Instead of satisfying condition at every
point, weak form requires the solution to satisfy the problem only in an average or
integral sense. Solving the weak form of problem gives an approximate solution and is
the preferred way in context of FEM.



Chapter 4. Finite Element Method 25

Boundary conditions: To complete the formulation of the problem, appropriate boundary
conditions must be applied. These are:

1. Dirichlet Condition – It is also known as essential boundary condition. Essential
boundary conditions are prescribed values of nodal dofs. In context of a solid
mechanics problem, displacements are usually the field variable on which Dirich-
let conditions are imposed. If Dirichlet boundary conditions are required to be
imposed at any point other than end points/curves of the domain, special tech-
niques are required which are penalty method, Lagrange multiplier method and
least squares minimization.

2. Neumann Condition – It is also known as non-essential (or natural) boundary
condition. Non-essential boundary conditions are prescribed values of higher
derivatives of field quantity.They are called natural because they automatically
arise in the variational statement of a problem. In context of solid mechanics,
conditions are imposed on values of forces or stress.

For example, for a pipe fixed at both ends with an internal pressure acting on it, the
fixed displacements and rotations at both ends will be Dirichlet condition and internal
pressure will be Neumann condition.

4.2 Galerkin method

The approach to solving a problem with FEM is based on writing it in weak or varia-
tional form. There are two ways by which a strong form of problem can be converted
to a weak form. One is using applying virtual work or variational arguments to func-
tional such as potential energy. Second is using weighted residual methods, of which
Galerkin method is discussed here. Similar to a variational statement of a problem, a
Galerkin statement also incorporates governing differential equation in its weak form,
which means they are satisfied over a domain in an average or integral sense. For ease,
the following notation is adopted to explain Galerkin method [5].

x
u = u (x)
ũ = ũ (x)

f
D

independent variables, for example, coordinates of a material point
dependent variables, for example, displacements of a material point
an approximate solution
a function of x
a differential operator
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The mathematical statement of a physical problem is

In domain V : Du− f = 0 (4.1)

Equation (4.1) states the problem in strong form. In general an approximating function
ũ does not satisfy equation equation (4.1) at every point. Thus a residual R = R (x)
remains:

Residual in domain V : R = Dũ− f (4.2)

ũ is taken as a linear combination of basis functions, that is, ũ = ∑n
i=1 Niũi, where Ni

is the ith basis function on an element and ũi is the nodal dof. According to weighted
residual method, values of Ni that are best satisfy the following expression of governing
equations in their weak form.

∫
WiRdV = 0 for i = 1, 2, ..., n (4.3)

where each Wi = Wi(x) is a weight function. In the Galerkin weighted residual ,method
each Wi is same as Ni. Equation (4.3) is then integrated by parts which serves the pur-
pose of reducing the order of differentiation as well as introducing natural or Neumann
boundary condition in the formulation.

4.3 Isoparametric concept

As already discussed FEA starts with approximating solution as a polynomial but be-
ing approximated as a polynomial has its disadvantages. Hence shape functions are
then used to interpolate nodal values of dofs at any point in the problem. These shape
functions can be defined in the original coordinate itself, that is, physical space or it
can be defined using parameters which is parametric space. Defining shape functions
using parameters enables to use elements which are curved, thus better approximating
geometry. The analysis is called Isoparametric when same shape functions are used
to approximate solution as well as geometry in the analysis domain. If more nodes are
used to define variation of field quantity than geometry, then it is called sub-parametric
and if more nodes are used to approximate geometry than it is called super-parametric.
The use of parametric space to define space functions leads to another step in the nu-
merical integration process which is called Jacobian. Jacobian is discussed in more
detail in the next section.
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(a) (b)

(c)

FIGURE 4.1: Various element specifications: Circle represents the point at
which coordinate is specified; Square represents the point at which field
quantity is specified. (a) Isoparametric, (b) superparametric, (c) subpara-

metric.

4.4 Jacobian

FEA involves two spaces. One is physical space (also called global space) where the
actual approximated geometry is defined in, let’s say, Cartesian coordinates. Second is
parametric space (also called local space) where the parameters which are used to de-
fine shape functions are defined. In elasticity problems shape functions as well as their
derivatives are needed to find the solution. In general, two transformations are needed.
In the first place, as shape functions are defined in terms of local (parametric) coordi-
nates, it is necessary to devise some means of expressing global derivatives in terms of
local derivatives. In the second place the element of volume (or surface) over which in-
tegration has to be carried out needs to be expressed in terms of local coordinates with
an appropriate change of limits of integration. The process of this conversion is called
Jacobian. Jacobian gives a relation between how space changes around a point defined
in different coordinate system. Finding this relation is essential because the problem
being solved is a partial differential equation.

First order Jacobian

Consider, for instance, the set of parametric coordinates ξ, η, ζ and a corresponding
set of physical coordinates x, y, z. By using partial differentiation the ξ derivative can
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be written as

∂Ni

dξ
=

∂Ni

dx
∂x
dξ

+
∂Ni

dy
∂y
dξ

+
∂Ni

dz
∂z
dξ

(4.4)

Performing the partial differentiation with respect to the other two parametric coordi-
nates gives



∂Ni
dξ

∂Ni
dη
∂Ni
dζ


=


∂x
∂ξ

, ∂y
∂ξ

, ∂z
∂ξ

∂x
∂η

, ∂y
∂η

, ∂z
∂η

∂x
∂ζ

, ∂y
∂ζ

, ∂z
∂ζ





∂Ni
dx
∂Ni
dy

∂Ni
dz


= J



∂Ni
dx
∂Ni
dy

∂Ni
dz


(4.5)

In the above, the left hand side equation is possible to directly evaluate because the
functions Ni are specified in parametric coordinates. Further, as a explicit relationship
exists between x, y, z and the parametric coordinates, the matrix J can be found explic-
itly in terms of parametric coordinates. This matrix is known as the Jacobian matrix.
It can also be regarded as a scale factor that multiplies to the infinitesimal element in
parametric space, dξdη to produce physical area increment in physical space, dxdy.

To find the derivatives in physical space J is inverted and written as

∂Ni
dx
∂Ni
dy

∂Ni
dz


= J−1



∂Ni
dξ

∂Ni
dη
∂Ni
dζ


(4.6)

To transform the variables and the space with respect to which the integration is made,
determinant of jacobian needs to be found out. Hence to convert a infinitesimal volume
element in parametric space to a volume element in physical space, determinant of
jacobian is multiplied. Thus a volume element becomes

dxdydz = det (J) dξdηdς (4.7)

This type of transformation is valid irrespective of the number of coordinates used.
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Second order Jacobian

Consider the set of parametric coordinates ξ, η and a corresponding set of physical co-
ordinates x, y. By the usual rules of partial differentiation the second order derivative
of a function f can be written as



∂2 f
∂x2

∂2 f
∂y2

∂2 f
∂x∂y


=


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∂x
∂ξ

)2 (
∂y
∂ξ

)2

2∂x
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∂ξ(
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∂η

)2 (
∂y
∂η

)2

2∂x
∂η

∂y
∂η

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂x
∂η

∂y
∂ξ

+
∂y
∂η

∂x
∂ξ



−1





∂2 f
∂ξ2

∂2 f
∂η2

∂2 f
∂ξ∂η


−


∂2x
∂ξ2

∂2y
∂ξ2
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∂η2

∂2x
∂ξ∂η

∂2y
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∂ f
∂x
∂ f
∂y





(4.8)

If differentiation has to be carried out only in 1 direction then the above equation can
be simplified to

{
∂2 f
∂x2

}
=

[(
∂x
∂ξ

)2
]−1 ([

∂2 f
∂ξ2

]
−
[

∂2x
∂ξ2

]{
∂ f
∂x

})
(4.9)

4.5 Quadrature

Integrations are needed to compute and assemble the stiffness and mass matrix and
the technique to integrate numerically is called quadrature. There are many types
of quadrature techniques but the most accurate for polynomial expressions is Guass-
Legendre quadrature. Guass quadrature tables are tabulated over the range of −1 ≤
ξ ≤ 1 (hence the reason why many shape functions are chosen in this interval).

Guassian quadrature integrates a function as

1∫
−1

1∫
−1

1∫
−1

f (ξ, η, ς)dξdηdς =
n

∑
j=1

n

∑
k=1

n

∑
l=1

f (ξ j, ηk, ςl)wjwkwl (4.10)
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which comes as exact if polynomials being integrated are less than order 2n. Table 4.1
lists the location of sampling points and weights.

TABLE 4.1: Sampling point locations and weight factors for Guass quadra-
ture

Order Sampling point locations Weight factors

n ξ j wj

1 0 2

2 ±1/
√

3 1

3
±
√

0.6 5/9

0 8/9

4
±
√

3/7 + (2/7)
√

6/5 (18−
√

30)/36

±
√

3/7− (2/7)
√

6/5 (18 +
√

30)/36

As a general rule, a polynomial of degree 2n− 1 is exactly integrated by n point guass
quadrature in FEM. In IGA n degree polynomial is exactly integrated by n + 1 point
guass quadrature [6].

4.6 Summary of FEM process

The fundamental concept of FEM, as the name suggests, is that a structure may be bro-
ken into smaller elements of finite dimensions called ‘finite elements’. Each of these
finite elements is assumed to be connected at a finite number of points called ’Nodes’
(or nodal points). The structure is considered an assemble of these finite elements con-
nected together at nodes. This step discretizes the orginal domain and becomes the
source of error in numerical computation.

To obtain a solution for the whole domain, which earlier was not possible, the prop-
erties of finite elements are defined and computed. These formulations are linked to-
gether to obtain a formulation for the whole structure. Hence formulating property for
an elements becomes an essential task. Properties of elements are defined at nodes.
To approximate these properties throughout the element domain, ’shape functions’ are
required. For example, displacement within an element is approximated in terms of
displacement value assumed at nodes. Nodal displacements then can be used to find



Chapter 4. Finite Element Method 31

out the values of strains and stresses within an element. Then the principle of mini-
mum potential energy or method of weighted residuals is used to derive the equations
of equilibrium for the element in which displacements at nodes will be the unknowns.

To obtain the equation of equilibrium for the entire structure the equilibrium equation
defined for the finite elements are combined in a sense that a certain continuity of field
variable is maintained at the inter-element boundary. The amount of continuity de-
pends on the problem being solved and the theory being used to solve the problem.
The necessary Dirichlet and Neumann boundary conditions are imposed and the equa-
tions of equilibrium are solved for nodal displacements. Having obtained the values of
nodal displacements for each element, the strains and stresses can be evaluated.

Thus, rather than solving the problem for the entire structure in one operation, interest
is mainly devoted to the formulation of properties of the constituent elements. The
steps to combine the elements, solve the global equilibrium equation, and evaluate the
strains and stresses are the same for all types of structural systems. Hence FEM makes
it possible to form a general purpose analysis program which consists of various types
of elements and analysis procedures to incorporate the elements defined, to solve any
problem.
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Chapter 5

B-Splines and NURBS

In CAD, NURBS are generally used to draw geometries, and in CAE, the classical FEM
is commonly used as the analysis tool. The main idea in IGA is to use NURBS as basis
functions in both design and in the FEM. NURBS are, as the name indicates, built from
B-splines. To get a better understanding of NURBS the chapter starts with B-Splines
and its definition. Toward the end of this chapter, NURBS will be discussed which is the
technique to be used in the IGA framework. The degree and the order of a polynomial
are referred to as the same quantity, that is, a quadratic polynomial is of both order and
degree two.

5.1 B-Splines

B-splines are created from piece-wise polynomial functions which are defined on differ-
ent connected intervals which are non-overlapping. B-splines are smooth, continuous
and differentiable functions within each subinterval. But on the other hand, across
connected subintervals, they are continuous to a certain extent but may not be differ-
entiable.

5.1.1 Knot Vectors

A B-spline is made up using n piece-wise polynomial basis functions of degree p. Knot
vector is used to define the piece-wise polynomial basis function. A knot vector, Ξ, is
made up of knots, which represents the sub-intervals connected using knots. The knots
represents the boundaries of these sub-intervals. A knot vector is a 1D set of knots,
non-decreasing in nature, Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
, where ξi ∈ R is the ith knot, i is the
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knot index, i = 1, 2, . . . , n + p + 1, p is the polynomial order and n is the number of
basis function [6].

The knot-spans marks the boundaries of elements inside which the basis functions con-
structed for that and supporting knot interval are smooth, that is, C∞. Across knots or
element boundaries, however the basis functions are Cp−m, where p is the degree of the
polynomial and m is the times that particular knot is repeated. Repeating a knot leads
to reduction in continuity at that particular knot value, and if sufficient times the knot
is repeated the curve can be split into two at that knot. This property is frequently used
in CAD. An open knot vector is a knot vector in which the first and last knot is repeated
p + 1 times. An open knot vector forces the basis functions to interpolate at the ends of
intervals. In general, the basis functions do not interpolate the knots on interior.

5.1.2 Basis Functions

The B-spline basis functions are defined in a recursive fashion [16] by

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (5.1)

forp = 1, 2, 3, . . .. For p = 0

Ni,0(ξ) =

 1 if ξi ≤ ξ < ξi+1

0 otherwise

with the condition that

ξ − ξi

ξi+p − ξi
≡ 0 i f ξi+p − ξi = 0, (5.2)

ξi+p+1 − ξ

ξi+p+1 − ξi+1
≡ 0 i f ξi+p+1 − ξi+1 = 0. (5.3)

The above formula is also known as the Cox-de Boor recursion formula.

ith basis function of order p is represented by Ni,p, where i ∈ [1, n]. n + p + 1 knots
results in n number of basis functions. The number of basis functions can be increased
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FIGURE 5.1: Basis functions for knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of de-
gree 2

by increasing the number of knots. The basis functions formed are non-negative in
magnitude and form a partition of unity, i.e. Ni,p(ξ) ≥ 0∀ξ, which is a requirement to
be applicable as a FEM shape function. Partition of unity states that

n

∑
i=1

Ni,p(ξ) = 1 (5.4)

These basis functions also have local support and local knots. Ni
p (ξ) = 0, for knot

vector Ξ =
{

ξ1, ξ2, . . . , ξn+p+1
}

, if ξ is outside the interval
[
ξi, ξi+p+1

)
. Thus, the ith

B-spline Ni
p(ξ) depends only on the knots

[
ξi, ξi+p+1

)
.

An Example

Let the knot vector of degree p = 2 be Ξ = {0, 0, 0, 0.5, 1, 1, 1}. With number of knots
equal to 7 and polynomial degree of 2, n = 7− 2− 1 = 4 basis functions will be required
to make the curve. The knot vector being open, forces the basis functions to interpolate
the boundary knots of the domain. Basis functions will be Cp−m = C1-continuous
across the knot of 0.5 in the interior since it is not repeated. The basis functions are
shown in figure 5.1.

If the multiplicity of knots is increased by inserting another knot at 0.5, resulting in
the knot vector Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1}, there will be a change in continuity. The
n = 8− 2− 1 = 5 basis functions will now be be Cp−m = C0-continuous across knot
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FIGURE 5.2: Basis functions for knot vector Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1} of
degree 2

of 0.5 in the interior of the domain. The corresponding basis functions can be seen in
figure 5.2.

5.1.3 B-Spline curves

B-spline curves in Rd are made by linear combining the B-spline basis function. The
coefficients that are multiplied to the basis functions prior to adding are called control
points. The resulting B-spline curve does not need to interpolate the control points.
However, curve can be forced to do so by using a knot vector with sufficient multiplicity
to ensure that the basis functions as well as the B-spline curve will be Cp−m = C0-
continuous across that particular knot. For instance, the open knot vector of degree 2,
Ξ = {0, 0, 0, 0.5, 1, 1, 1} will force the B-spline curve to interpolate the first and the last
control point. Whereas the knot vector Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1} of degree p = 2 the
B-spline curve will interpolate the control point belonging to Ξ = 0.5 too.

For n basis functions Ni,p(ξ), i = 1, 2, . . . , n, with control points Bi ∈ Rd. The corre-
sponding B-spline curve is then given by

C(ξ) = ∑n
i=1 Ni,p(ξ)Bi (5.5)

This expression is equivalent to a mapping from a parameter space which is spanned
by the knot vector to a physical space which is defined by the control points.
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FIGURE 5.3: B-spline curve in R1 for control points B = [0,−1, 1, 0] and
knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree 2.

For knot vector Ξ = {0, 0, 0, 0.5, 1, 1} of degree 2 and control points B = [0,−1, 1, 0] in
R1 the curve in figure 5.3 is obtained. Using the same knot vector but with different
control points Bx = [0, 3, 2, 1] and By = [0, 5, 0, 5] in R2 gives the curve which is shown
in figure 5.4. The control points are indicated by red squares.

As the basis functions have local support only a particular and small part of the curve
changes if the control point is changed. Figure 5.5 illustrates this change. Here the x-
coordinate of first control point is changed from 2 to 0. As can be seen, only the part
of the curve which is closest to the moved control point has changed. This is why B-
splines technique is used predominantly in CAD programs; due to its local support of
basis functions it is easy to manipulate curves by dragging the control points.

5.1.4 B-Spline Surface

A B-spline surface is formed using the tensor product of basis functions in each di-
rection. Knot vector Ξ has been defined earlier and knot vector in another orthogonal
direction H =

{
η1, η2, . . . , ηm+q+1

}
, where ηj ∈ R is the jth knot, m is the polynomial

order and q is the number of basis function. In order to create a surface, a tensor prod-
uct of the basis functions Ni,p(ξ), i = 1, 2, . . . , n and Mj,q(η), j = 1, 2, . . . , m is taken.
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FIGURE 5.4: B-spline curve corresponding to knot vector Ξ =
{0, 0, 0, 0.5, 1, 1, 1} of degree 2 and the control points Bx = [0, 3, 2, 1] and

By = [0, 5, 0, 5].
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FIGURE 5.5: B-spline curve corresponding to knot vector Ξ =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} of degree 2 and the control points indicated

by red squares.
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Together with the control net Bij ∈ Rd the B-spline surface is given by

S(ξ, η) = ∑n
i=1 ∑m

j=1 Ni,p(ξ)Mj,q(η)Bij (5.6)

The tensor product will form a partition of unity; ∀(ξ, η) ∈
[
ξ1, ξn+p+1

]
×
[
η1, ηm+q+1

]
n

∑
i=1

m

∑
j=1

Ni,p(ξ)Mj,q(η) =

(
n

∑
i=1

Ni,p(ξ)

)(
m

∑
j=1

Mj,q(η)

)
= 1

An Example

For knot vector H = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} of degree p = 2 the corresponding
basis functions are shown in figure 5.6. These basis functions with the basis functions
made by the knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree q = 2 (figure 5.1) create
a B-spline surface using the equation (5.6) for the control net given in table 5.1. The
corresponding surface is shown in figure 5.7.

TABLE 5.1: Control net Bi,j

(i,j) 1 2 3 4 5 6

1 (3,0) (3.5,1) (3,2) (3,3) (3.5,4) (3,5)

2 (2,1) (2.5,2) (2,3) (2,4) (2.5,5) (2,6)

3 (1,0) (1.5,1) (1,2) (0.5,3) (1,4) (1,5)

4 (0,1) (0.5,2) (0,3) (0.4,4) (0,5) (0.2,6)

5.1.5 Derivatives of B-Spline Functions

Analysis using B-splines expression will require it derivatives. First and kth order
derivatives is given below:

d
dξ

Ni,p(ξ) =
p

ξi+p − ξi
Ni,p−1(ξ)−

p
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (5.7)
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FIGURE 5.6: Basis functions corresponding to knot vector H =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} of degree 2.
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FIGURE 5.7: B-spline surface for the control net Bi,j given in table 5.1 and
knot vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}

of degree 2.
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By differentiating equation (5.7) k times

dk

dkξ
Ni,p(ξ) =

p
ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)

− p
ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

) (5.8)

Using equation (5.7) the right side of equation (5.8) can be expressed by lower order
basis functions. A generalized expression for higher derivatives of B-splines is thus
given by

dk

dkξ
Ni,p(ξ) =

p!
(p− k)! ∑k

j=0 αk,jNi+j,p−k(ξ) (5.9)

where
α0,0 = 1

αk,0 =
αk−1,0

ξi+p−k+1 − ξi

αk,j =
αk−1,j − αk−1,j−1

ξi+p+j−k+1 − ξi+j
j = 1, . . . , k− 1

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k

5.1.6 Refinement; Knot insertion

Refining a B-spline curve means increasing the smoothness of the curve. Refinement
can be done by either inserting additional knots, increasing the order of basis functions
or both. The method of inserting additional knots is called h-refinement and increasing
the order of basis functions is referred to as p-refinement. The method in which the
order as well knots are increased is known as k-refinement. In this dissertation only
knot insertion is considered. [6] contains in more detail the 3 types of refinement.

It is possible to improve the basis function without changing the geometry of the curve.
This is done using the technique of knot insertion. Let the starting knot vector is
Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
with n respective basis function and the control points B =

{B1, B2, . . . , Bn}. By inserting more knots, Ξ can be extended to a knot vector Ξ̃ ={
ξ̃1 = ξ1, ξ̃2, . . . , ξ̃n+m+p+1 = ξn+p+1} . The set of basis functions will now be extended

to consist of n + m basis functions. B also needs to be extended to contain n + m control
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FIGURE 5.8: Knot refinement from Ξ = {0, 0, 0, 0.5, 1, 1, 1} to Ξ̃ =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. Notice that the curve remains unchanged.

points. The new control points B̃ =
{

B̃1, B̃2, . . . , B̃n+m
}

are created by a linear com-
bination of the previous control points, B. The new control points B̃ will be given by

B̃ = TpB (5.10)

where

Tq+1
i,j =

ξ̃i+q − ξ j

ξ j+q − ξ j
Tq

i,j +
ξ j+q+1 − ξ̃i+q

ξ j+q+1 − ξ j+1
Tq

i,j+1

for q = 0, 1, 2, . . . , p− 1 and

T0
i,j =

 1 ξ̃i ∈
[
ξ j, ξ j+1

)
0 otherwise

Knot insertion is also used to create repeated knots. The continuity of the basis will
therefore be reduced while the curve remains the same. In figure 5.8 knot insertion is
exploited, increasing the knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of order 2 to an extended
knot vector Ξ̃ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. Observe that the B-spline curve is similar
before and after additional knots were inserted.

5.2 NURBS

NURBS, non-uniform rational B-splines, are piece wise rational polynomials which is
built from B-splines. The term nonuni f orm refers to using non uniform knot vectors.
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The term rational refers to the fact that the NURBS basis functions are represented as
rational. That is they are a combination of B-splines basis functions which is multiplied
by a weight, and divided by the sum of the same B-spline basis functions multiplied by
the same weights. If all the weights are equal to one, NURBS and B-splines are same.

5.2.1 Geometric perspective

NURBS are regular B-spline curves which are projected to a space of one dimension
smaller. NURBS in Rd are made by projecting a transformation of B-spline curves in
Rd+1. Conic sections like circles or ellipses are made by projecting quadratic B-spline
curves from the (x, y, z)-plane to the (x, y, z = 1)-plane.

Assume that the B-spline curve is Cw(ξ) with control points Bw
i ∈ Rd+1. The projected

NURBS control points Bi are therefore given from the control points of B-spline by

(Bi)j =
(Bw

i )j

wi
j = 1, . . . , d

wi = (Bi)d+1

(5.11)

Here (Bi)j is the jth component of the vector Bi and wi is the ith weight. In R3, the
weights resemble the z-coordinates of the B-spline curve. Dividing the NURBS control
points by the weight are thus the equivalent to applying a projective transformation on
the control points. The same transformations are needed to be exploited on every point
on the curve. With B-spline curves in R3 that implies dividing all points by its height,
see figure 5.9. To do the same transformation on all points we divide all points by

W(ξ) = ∑n
i=1 Ni,p(ξ)wi (5.12)

where Ni,p(ξ) are the B-spline basis functions. The NURBS curve, C(ξ), can now be
defined as

(C(ξ))j =
(Cw(ξ))j

W(ξ)
j = 1, . . . , d (5.13)

where C(ξ)w = ∑n
i=1 Ni,p(ξ)Bw

i = ∑n
i=1 Ni,p(ξ)Biwi.
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FIGURE 5.9: Projective transformation from a quadratic B-spline in R3 to a
circle in R2. The figure is reconstructed from Figure 2.28 in [6].

5.2.2 Basis functions

With the geometric point of view established NURBS basis functions can be defined as

Rp
i (ξ) =

Ni,p(ξ)wi
W(ξ)

(5.14)

where

W(ξ) =
n

∑
i=1

Ni,p(ξ)wi

as before. NURBS curve are then given by

C(ξ) = ∑n
i=1 Rp

i (ξ)Bi (5.15)

This is the mapping from the parameter space to the physical space, as we will discuss
in section 6.1.

In 2D the basis function is given as a tensor product by

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j
W(ξ, η)

(5.16)

with

W(ξ, η) = ∑n
i=1 ∑m

j=1 Ni,p(ξ)Mj,q(ξ)wi,j (5.17)
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Surfaces are given by

S(ξ, η) = ∑n
i=1 ∑m

j=1 Rp,q
i,j (ξ, η)Bi,j (5.18)

Extension to three dimensions are done analogously. Notice that if all weights are equal
to one, NURBS and B-spline are the same.

5.2.3 Derivatives of basis functions

Derivatives of basis functions is vital to the process of numerical integration if NURBS
is used in analysis. First derivative is obtained by differentiating equation (5.14) with
respect to ξ using the quotient rule.

d
dξ

Rp
i (ξ) = wi

Ni,p(ξ)
′W(ξ)− Ni,p(ξ)W(ξ)′

(W(ξ))2 (5.19)

where

W(ξ)′ =
n

∑
i=1

Ni,p(ξ)
′wi

Generalizing to higher order terms results in

dk

dkξ
Rp

i (ξ) =

wi
dk

dkξ
Ni,p(ξ)−

k

∑
j=1

k!
j!(k− j)!

W(j)(ξ)
dk−1

dk−1ξ
Rp

i (ξ)

W(ξ)
(5.20)

In 2d, differentiating equation (5.16) with respect to ξ yields

d
dξ

Rp,q
i,j (ξ, η) = wi,j

(
d

dξ
Ni,p(ξ)

)
Mj,q(η)W(ξ, η)− Ni,p(ξ)Mj,q(η)

(
d

dξ
W(ξ, η)

)
(W(ξ, η))2

and with respect to η yields

d
dη

Rp,q
i,j (ξ, η) = wi,j

Ni,p(ξ)

(
d

dη
Mj,q(η)

)
W(ξ, η)− Ni,p(ξ)Mj,q(η)

(
d

dη
W(ξ, η)

)
(W(ξ, η))2
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Here
d

dξ
W(ξ, η) =

n

∑
i=1

m

∑
j=1

(
d

dξ
Ni,p(ξ)

)
Mj,q(η)wi,j

and
d

dη
W(ξ, η) =

n

∑
i=1

m

∑
j=1

Ni,p(ξ)

(
d

dη
Mj,q(η)

)
wi,j

.
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Chapter 6

Isogeometric Analysis

Isoparametric concept involves using the same basis functions to represent geometry
as well as design in the domain of analysis, whereas IGA also implies letting to do
the same but in the analysis of domain as well as design. The main idea in IGA is to
use NURBS as basis functions in both design and in the FEM. B-Spline and NURBS
basis function and their derivatives are already discussed in chapter 5. The chapter
starts with the concept of different spaces in the context of FEM as well as IGA. Finally,
differences between IGA and FEM are discussed with basic methodology.

6.1 Spaces and Mappings

In classical FEA there is a concept of different spaces when doing numerical computa-
tion; that is, physical mesh, the physical elements, and the parent domain. During the
analysis procedure, parameters are regularly transformed from one space to another for
convenience and because of the way the various parameters are defined. The physical
mesh is where the geometry is represented with help from nodes. The physical mesh
is the space where the original geometry is discretized into non-overlapping physical
elements. Each of these physical elements is linked to one parent element in the parent
space where numerical integration is performed by using Gaussian quadrature. Af-
ter performing the integration, inverse mapping can be used to go back to physical
space. The physical elements are defined using nodal coordinates, and the dofs are
the values of the basis function at the nodes. The local basis functions have support
only on neighboring elements, due to compact support. The basis functions interpolate
the nodes and are also called shape functions. Generally basis functions are defined in
parametric space and Guass quadrature can only be performed in parent space.
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Different domains exist in IGA too; physical mesh, the control mesh, the parameter
space, the index space and the parent element, all shown in figure 6.1.

6.1.1 The physical space

The physical space is where the actual geometry lies which is formed by linearly com-
bining the basis functions defined in parametric space and the control points which
lie in physical space. The basis functions usually do not interpolate the control points.
The physical mesh is a decomposition of the geometry and can be discretized in two
different ways; either by patches or by knot spans.

Sometimes it may not be possible to discretize a domain by only using elements. Patches
are used to discretize complex domains or problems with discontinuous solutions.
They can be thought of as subdomains which themselves are discretized using ele-
ments. Hence a patch can be a curve in 1D or a surface in 2D. To discretize a patch,
each of them is divided by knot spans. Knot spans are defined by knots that define
element domains. The basis functions are smooth at a particular knot, that is inside an
element, but at the boundary, that is, across knots, are Cp−m continuous. m is times a
particular knot is repeated. Knot spans are the lowest level and cannot be discretized
further. In the parent domain if knots represent points in 1D, lines in 2D and planes in
3D, in the physical space they represent points in 1D, curves in 2D and surfaces in 3D.

6.1.2 The control mesh

The control mesh consists of details of control points. Think of control mesh as an
overlay over the physical mesh which uses basis functions from parametric space to
construct geometry. It may not coincide with the physical mesh even though it controls
the geometry which lies in the physical mesh. An example of a control mesh in 2D is
a bilinear quadrilateral defined by four control points [6]. The control variables, which
are dof, are located at the control points. Control meshes can be severely distorted
while physical geometry still remaining well defined.

6.1.3 The parameter space

The parameter space consists of definitions of the NURBS basis functions Rp,q
i,j and the

knot vector. The knot vector is termed as uniform if all the knots are equally spaced.
Each parameter space is local to patches. Therefore one has to loop over all the patches
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FIGURE 6.1: Different spaces in the context of IGA. A surface is shown
in physical space with red dots representing control points. The red line
in the physical space marks the element boundary in the physical space
which is well defined in the parameter space. The two elements are shown
in different colors in parametric space with the support of each element is

shown in the respective color in the index space.
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while lopping over all the elements in the current patch. Each element in parametric
space is mapped to an element in physical space and hence it can be said that each
element in the physical space, therefore, replicates the corresponding element in the
parameter space. The mapping from the parametric space to the physical space for
surfaces is given by

S(ξ, η) =
n

∑
i=1

m

∑
j=1

Rp,q
i,j (ξ, η)Bi,j

a mapping that is global to whole patch.

6.1.4 The index space

Index space of a patch consists of knot values in a knot vector defined for that patch.
Hence elements can be identified depending on knot values as well as continuity across
elements. The index space is, for a 2D case, spanned by the area [1, n + p + 1] in the
i-direction and [1, m + q + 1] in the j-direction.

6.1.5 The parent element

The parent element is global to all the patches and is of area [−1, 1]× [−1, 1]. It is the
parent element where the integration is performed. ξ and η in the parameter space
are mapped to ξ̂ and η̂ in the parent element to do Gaussian quadrature for numerical
integration. The mapping from the parent element to the parameter space is given by

ξ(ξ̂) =
(ξi+1 − ξi) ξ̂ + (ξi+1 + ξi)

2

η(η̂) =
(ηi+1 − ηi) η̂ + (ηi+1 + ηi)

2

(6.1)

6.2 Isogeometric Analysis Vs Finite Element Method

In this section the differences and similarities between IGA and standard FEA are men-
tioned. The concept of IGA is that the shape functions that are used to model the exact
geometry are used to approximate the solution field. In FEA ,on the other hand, the
basis functions chosen to approximate the solution field is used to approximate the
known geometry. NURBS based Galerkin FEM is similar to classical FEA but with dif-
ferent basis functions being used.
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allocate global arrays
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tions and derivatives
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Assemble Ke → K
and Fe → F

Solve Kd = F

Write output data,
visualization

Post-processor

FIGURE 6.2: Flow chart for one patch IGA. The routines in blue differ from
those in classical FEA.
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TABLE 6.1: Comparison of IGA and FEM summarising differences and
similarities between them. Taken from [12]

IGA FEM

Control points Nodal points

Control variables Nodal variables

Knots Mesh

Knot Span Element

Exact geometry Approximated geometry

NURBS basis functions Lagrange basis functions

Basis not interpolating control points Basis interpolating nodes

Patches Subdomains

Compact support

Partition of unity

Isoparametric concept

Affine covariance

Patch tests satisfied

The code architecture of IGA is shown in figure 6.2. The routines displayed in blue
differ from the ones used in classical FEA. A different input is needed to convert a
FEA code to an IGA one. FE mesh and nodal points are no longer serves as an input
to describe the geometry, but rather knot vectors (which defines the basis functions)
and control points (which in combination with basis functions construct geometry).
Connectivity array, which links the local entities to global entities, changes. In IGA, the
connectivity array is calculated using the input given to the code. Changing the input
to code changes the nature and definition of basis functions which in turn changes the
connectivites between elements and size of the element property matrices. Hence the
global stiffness and mass matrix are no longer the same as that in FEA. In FEA the
initial geometry is discretized using an approximate geometry whereas, in IGA, exact
geometry is used at every level of discretization. This enables to have greater accuracy
in solution as well as geometry description independent refinement procedure in IGA.
In both FEA and IGA, the weak form’s solution is a linear combination of the basis
functions. In FEA, the coefficients used for linear combination with basis functions are
the nodal variables, while in IGA they are the control variables. Both methods are based
on isoparametric implementations of the Galerkin method. Both methods also utilize
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an element approach with basis functions having compact support. In both approaches,
the bases being used form a partition of unity. In FEA, the basis function can be both
positive or negative, while NURBS basis functions cannot be negative. In FEA, the dofs
are positioned at the nodes, while in IGA they are positioned at the control points. In
FEA the continuity of the basis functions is fixed at the times of definition, while in IGA
continuity can be easily changed as desired. Table 6.1 lists up some of the differences
and similarities.
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Chapter 7

Adaptive IGA

In the previous chapters the basics of NURBS based IGA has been discussed. Ideally,
IGA should pair exact geometry representation capability with automatic adaptive lo-
cal refinement to provide truly local h-refinement. NURBS based IGA is based on ten-
sor product structure of basis functions and is thus incapable of doing local refine-
ment. For this purpose T-splines was introduced in 2003 which has local refinement
properties. Since then many spline technology has been introduced which has made
local refinement possible in framework of IGA. Adaptive hierarchical refinement has
recently gained considerable attention. PHT-Spline based adaptive hierarchical refine-
ment is discussed in this chapter. The chapter starts with definition of T-meshes and
then proceeds to procedure of evaluating basis functions over PHT-meshes. After that
the procedure of cross insertion and removal is discussed. Chapter ends with the de-
scription of error estimator being used and the marking scheme to mark the elements
to be refined.

7.1 Introduction

Finite element mesh is directly responsible for the accuracy of the solution being ob-
tained using that mesh. Higher the number of elements in a mesh, lower is the error.
This is a fundamental property of the FEM. Of course, more computational resources,
both time and hardware, are required to solve finer meshes. However, resources can
be used efficiently if mesh is made fine only in the region where error is high. Mesh
refinement is the technique of making the mesh finer, i.e., increasing the solution accu-
racy across the mesh. The mesh is refined by comparing the solution domain with that
of true value. This comparison can be done by either comparing the field quantity at
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FIGURE 7.1: A cantilever beam and meshes: (a) a cantilever beam with
parameters; (b) a uniformly coarse initial mesh used for both NURBS and
PHT-splines based IGA; Mesh after one refinement: (c) NURBS and (d)
PHT-splines; Mesh after two refinement: (e) NURBS and (f) PHT-splines

one or more points in the model or by evaluating the integral of field quantity over the
problem domain.

Convergency studies requires choosing an approximate mesh refinement metric. This
metric can be either global or local depending on the definition of metric. If the metric
is defined as an integral over the entire model domain, integral of strain energy density,
then the metric is called global. If the metric is defined at one location, like displace-
ment or stress at a point, then it is called local. Different convergence rate is expected
for different metrics. Refinement can be done by either increasing the approximating
polynomial order, p-refinement, or by increasing the number of elements, h-refinement.
IGA has one more type of refinement, k-refinement, which increases inter-element con-
tinuity as opposed to standard C0 continuity of conventional FEM. Increasing the order
of element suffers from the drawback of requiring more computational resources than
its counterparts. An example of comparison to global refinement to local refinement
is shown in figure 7.1. The stark difference in the number of element being used with
each refinement, while converging to the actual solution, is clearly visible in the figure.

Adaptivity in FEA requires three components. Firstly, an algorithm for refining or en-
riching the solution in a particular domain of solution is required. This is generally
achieved by increasing the mesh size in particular part of model. However T- splines
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[19] were originally developed for the purpose of local refinement but it suffers with
the problem of inefficient T-junction insertion. Hence, in this study, PHT-splines are
used as they are better known to handle adaptive local refinement. Secondly, to locate
the area where refinement is needed, an error estimator is required which indicates the
elements responsible for large contribution to error. In this study, a posteriori error es-
timator based on work by [23] is used for calculating the elements which needs to be
refined. Third is a remeshing criterion which translates the output of error analysis and
marking scheme to execute the local refinement procedure.

7.2 Mesh structure

7.2.1 T-meshes

A T-mesh is a mesh which allows T-junctions in a rectangular mesh [19]. The mesh can
be said to be made up of grid lines. It is required that the ends of each grid lines lie on
other grid lines. These grid lines forms a quadrilateral which is similar to an element.
Figure 7.2 illustrates a typical T-mesh. The intersection of grid lines is called vertex and
is classified on the basis of its location. If a vertex lies on the boundary of the domain
then it is called a boundary vertex. Similarly if it happens to lie anywhere inside the
domain, it is called interior vertex.

7.2.2 Hierarchical T-mesh

Instead of considering general T-meshes, hierarchical T-meshes are considered, since
general T-meshes lack properties required for adaptivity.

A hierarchical T-mesh has a natural level structure. The structure are defined recursively.
The lowest level in the mesh is level 0. From level k to level k + 1, subdividing an el-
ement(called cross-insertion) at level k results into four sub-elements, called children
elements of the parent element. These children elements are at level k + 1. For simplic-
ity, each element is subdivided equally simply by dividing it into four equal rectangular
parts. Figure 7.3 illustrates the natural level structure at different refinement levels.
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FIGURE 7.2: An example of T-mesh; B1 to B10 are boundary vertices; V1 to
V4 are T-junctions; C1 is a crossing vertex

a. Level 0 b. Level 1 c. Level 2

FIGURE 7.3: A hierarchical T-mesh
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Mesh in parameter space Connected neighbors by pointers

Tree node: Refined (inactive) elements
Tree node: Unrefined (active) elements

FIGURE 7.4: Quadtree structure illustrating the hierarchical data organiza-
tion of an adaptive mesh. Pointers represents the neighbouring relations

of element (in red colour) at a particular hierarchical level.

7.2.3 Tree structure

Efficient and straightforward implementation of hierarchical refinement is possible by
using quadtree and octree structure [17]. In this study quadtree structure has been used
to construct PHT-spline elements. Tree structure is better suited for tracking connectiv-
ities between the elements at different levels of refinement. Figure 7.4 illustrates the
analogy between a tree structure and an adaptive hierarchical mesh. Each leaf of the
tree contains information of the placement of elements in the parametric space, their
associated local basis functions, and element to node connectivities [18]. Each leaf also
stores information regarding the neighboring elements so that they can be placed with
little computational effort.

7.3 Basis function of PHT-splines

7.3.1 Definition of knot vectors

Knot vector with multiplicity of two can be defined as

Ξ = {ξ0, ξ0, ξ1, ξ1, ξ2, ξ2, ξ3, ξ3, . . . , ξm−2, ξm−2, ξm−1, ξm−1, ξm, ξm, ξm} (7.1)
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FIGURE 7.5: Cubic B-spline basis functions with multiplic-
ity of two of interior knots, that is, only C1 continuity: Ξ =

{0, 0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1, 1}

such that ξi < ξi+1, 1 6 i 6 m− 2, and ξm−1 = ξm. Equation (7.1) can be rearranged as:

Ξ =

ξ0, ξ0, ξ1, ξ1︸ ︷︷ ︸
p+1

, ξ2, ξ2︸ ︷︷ ︸
k=2

, . . . , ξm−2, ξm−2, ξm−1, ξm−1, ξm−1, ξm, ξm︸ ︷︷ ︸
p+1

 (7.2)

As already mentioned in [8], the construction of PHT-spline basis functions is initiated
from C1 continuous cubic B-splines. Equation (7.2) implies that cubic B-splines (p = 3)
are Cp−k = C1-continuous at every interior knots (figure 7.5). It is seen that, for the line
case, only two B-spline basis functions in [ξi−1, ξi+1] are nonzero at each interior knot
ξi. These two basis functions are incorporated with knot vectors [ξi−1, ξi−1, ξi, ξi, ξi+1]

and [ξi−1, ξi, ξi, ξi+1, ξi+1], respectively. Also, two remaining B-spline basis functions
vanish at ξi, see figure 7.5. This property also is satisfied by any B-spline basis function
of degree p > 3. In addition, every interior knot is of multiplicity two, the derivatives
of the basis functions also vanish at ξi. Extending further this fact to the surface case,
there are four B-spline basis functions in [ξi−1, ξi+1] × [ηi−1, ηi+1] that are nonzero at
each interior vertex (ξi, ηi).
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7.3.2 The Bernstein basis

The Bernstein polynomials for the basis for the Bézier elements. The Bernstein polyno-
mials are usually defined over the unit interval [0, 1], but in FEA the bi-unit interval,
[−1, 1], is preferred to take advantage of the Guass quadrature. The Bernstein basis are
defined over the interval [−1, 1] as

Bk
i,p
(
ξ̃k) = 1

2p

 p

i− 1

(1− ξ̃k)p−(i−1) (
1 + ξ̃k)i−1

(7.3)

where the binomial coefficient p

i− 1

 =
p!

(i− 1)!(p + 1− i)!
, 1 6 i 6 p + 1

7.3.3 Bézier extraction for T-splines

The PHT-spline element construction can be simplified by the use of Bézier extraction
[4], [18]. For each PHT-spline element e, Bézier extraction determines the exact repre-
sentation of PHT-spline basis in terms of a set of Bernstein polynomials, B(ξ̃). Every
localised PHT-spline basis function, Ne(ξ̃), can be written as a linear combination of
these Bernstein polynomials. In other words,

Ne(ξ̃) = ∑
(p+1)d

b=1 ce
bBb(ξ̃) (7.4)

In matrix-vector form equation (7.4) is written as

Ne(ξ̃) = CeB(ξ̃) (7.5)

where Ce is the element extraction operator. The element defined by Bernstein polyno-
mials is called Bézier element.

Note that, in contrast with the T-spline basis functions Ne, same number of Bernstein
basis functions exists for all the elements. That is, each Bézier element is defined in
terms of the exact same set of Bernstein basis functions. Hence only the extraction
operator differs for each element which needs to be calculated to construct the PHT-
spline basis functions. More
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7.3.4 Modification of the basis functions at level k

Basis functions needs to be modified if an element at level k, Tk,e, is refined to 4 children
elements at level k+ 1, Tk+1,e1 , Tk+1,e2 , Tk+1,e3 , Tk+1,e4 , (This procedure of refinement will
be referred as "cross insertion"). Basis functions are formed using Bézier representation
and hence Bézier coefficients Cij needs to be calculated again for the new mesh. The
procedure for calculating the coefficients are described below.

Blossoming with De Castlejau’s algorithm

The first step is to calculate the Bézier coefficients of the original basis functions on the
elements Tk+1,e1 , Tk+1,e2 , Tk+1,e3 , Tk+1,e4 . This subdivision is realized using De Castle-
jau’s algorithm [10]. In one dimension, the algorithm (see ) takes input as p + 1 Bézier
coefficients c(0)1 , c(0)2 , . . . , c(0)p+1 and computes the following coefficients, c(0)1 , c(1)1 , . . . , c(p)

1

and c(p)
1 , c(p−1)

2 , . . . , c(0)p+1, according to recurrence relation:

c(j)
i :=

(c(j−1)
i + c(j−1)

i+1 )

2
, i = 1, . . . , p + 1− j, j = 1, . . . , p

These two sets of coefficients,c(0)1 , c(1)1 , . . . , c(p)
1 and c(p)

1 , c(p−1)
2 , . . . , c(0)p+1, serves the pur-

pose of splitting the original Bézier polynomial defined on the segment [uk, uk+1] into
two segments [ξk, (ξk + ξk+1)/2] and [ξk, ξk+1]. In two dimensions (p + 1)2 coefficients
C(E)

ij corresponding to a single basis function N are arranged in a (p+ 1)× (p+ 1) array
and compute the (2p+ 2)× (2p+ 2) array that holds the Bézier coefficients correspond-
ing to the 4 child elements. This is accomplished by applying Algorithm 1 3p + 3 times:
first p + 1 times to each row of the C(E)

ij array, and then 2p + 2 times to each column
of the resulting (p + 1) × (2p + 2) array. After this procedure, a (2p + 2) × (2p + 2)
array is obtained which is split into 4 subcells of size (p + 1)× (p + 1), each containing
the Bézier representation of the basis function N on the 4 child elements. Do note that
only Bézier ordinates are changed after its subdivision into four sub-elements while the
function Nk

i (ξ, η) has not changed, but is now defined over the refined mesh.

Truncation by zeroing out Bézier coefficients

A truncation procedure is employed for basis functions on the elements being refined to
ensure linear independence of basis and better sparsity in the resulting linear system. It
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Algorithm 1 De Casteljau Algorithm in 1D

Input: Bézier coefficients c(0)1 , c(0)2 , . . . , c(0)p+1

Output: Bézier coefficients c(0)1 , c(1)1 , . . . , c(p)
1 and c(p)

1 , c(p−1)
2 , . . . , c(0)p+1

1: for j = 1, . . . , p do
2: for i = 1, . . . , p + 1− j do
3: Compute bj

i =
(

b(j−1)
i + b(j−1)

i+1

)
/2

4: end for
5: end for

corner edge

center

edge

edgep+1 edge

cornercorner

cornercorner

p+1

α+1

α+1

α+1α+1

FIGURE 7.6: The 9 regions into which each child element is subdivided.
The axis labels show the number of Bézier coefficients in each direction.

is assumed that the basis functions of polynomial degree p have Cα,α continuity, where
2α + 1 ≤ p.

For the truncation procedure, each of the 4 child elements are split into 9 regions, as
shown in figure 7.6. Then, the Bézier coefficients in the corner regions, as well as the
two edge and center regions closest to the new basis vertex in each element are zeroed
out. The aim of this step is to reduce the support of basis functions, which results in less
overlap and sparser linear system. Since all Bézier ordinates are set to zeros, any basis
function which could result in a linear dependency with refined basis are deactivated.
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7.3.5 Insertion of new basis functions

Cross insertion involves calculation of new basis functions for the element which is
to be refined into four new elements. The refinement procedure is completed when
these new basis functions are inserted in the tree data structure defined which contains
information about the hierarchical mesh. For removal of T-junction, the new basis func-
tions are inserted in the neighbor elements in a way that they have support on both the
refined element as well as its neighbor.

7.4 Recovery based error estimation

Error estimator manages the evolution of a FEA mesh in an adaptive refinement ap-
proach. In most cases, error is calculated with respect to exact solution. In recovery
based error estimation, error is calculated with respect to a recovered solution instead
of exact solution, which has shown convergence towards true error under certain as-
sumptions [23] [24]. This type of error estimator based on superconvergent patch recov-
ery was first proposed by [23] and is called Zienkiewicz-Zhu error estimator or Z2 error
estimator. It was shown that if the recovered derivatives (in this case stresses which are
derivatives of displacement) are superconvergent, the Z2 error estimator will always
be asymptotically exact in the energy norm. Hence the accuracy of the procedure is
dependent on the accuracy of the recovered solution.

To calculate derivatives from the finite element approximation, obvious technique is to
directly differentiate the resulting solution at points of interests. For example, stresses
are obtained by differentiating displacement solution and using appropriate constitu-
tive relations. This direct calculation however suffers from inferior accuracy because
the derivatives obtained are discontinuous at boundaries of elements and at inter-
element nodes where accurate values of stresses may be desired. To overcome this,
the original procedure, the Z2 error estimator, computed more accurate solution at care-
fully chosen points (called superconvergent points) that are capable of generating better
approximation of desired quantity. At those points a single and continuous polynomial
expansion of the function describing the derivatives on an element patch surrounding
the nodes at which recovery is desired is made to fit locally in a least square manner.
Table 7.1 shows the super-convergent points on an interval [−1, 1] for several values of
spline degree p and continuity order α. As the process is local the computation cost is
negligible.
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The solution is recovered at each refinement level since the error needs to be calculated
at each refinement level. The mesh at refinement level k, Tk, is divided into a set of non-
overlapping domains , where each subdomain consists of four elements because of the
way the elements are refined. Let Ωm, m = 1, . . . , Ndomain be a set of n non-overlapping
patches such that together they form Tk. These domains are chosen such that the ele-
ments inside share same parent element. Recovered stress is superapproximate if cer-
tain properties such as consistency, locality, boundedness and linearity are satisfied.
In each of these subdomains the stresses are calculated again, σm

∗ where star* denotes
enhanced solution, at superconvergent points using locally defined PHT-splines. The
exact error in energy norm for entire patch domain is given by

‖e∗‖E(Ω) =
√

∑Ndomain
m=1

∫
Ωm

(
σm
∗ − σm

h

)T
(Dm)−1 (σm

∗ − σm
h

)
dΩ (7.6)

TABLE 7.1: Super-convergent points for splines of degree p and continuity
Cα on interval [−1, 1].

p α Super-convergent points

3 1 ±1, 0

4 1 ±
√
(3/7)± (2/7)

√
6/5

5 2 ±1,±
√

1/3, 0

6 2 ±0.790208564,±0.2800702925

To obtain error across multiple patches after obtaining error at each patch individually,
the following equation can be used

‖e∗‖E(Tk)
=

(
∑

Npatch
n=1

(
‖e∗‖E(Ωn)

)2
)1

2
(7.7)

7.5 Marking algorithm

After calculating error for each subdomain for the whole mesh, the errors are arranged
in the descending order of their magnitude for each subdomain. Remember each sub-
domain consist of four elements. The simplest refinement strategy is to compare these
errors with a particular threshold and mark those elements whose error exceeds the
threshold. This is called as "absolute threshold" marking strategy. However this method
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does not take into account overall distribution of error and hence in this study, "Dörfler
marking" strategy [9] is used. In this strategy, the elements with largest contribution to
the total estimated error (in terms of percentage ρ) are selected. The parameter ρ = 1
results in uniform refinement, ρ � 1 results in smaller refinement steps. The whole
refinement procedure is illustrated in figure 7.7. The initial mesh is refined uniformly
for the purpose of error estimation. The calculated error is used to mark the elements
(shown in blue) to be refined. Then the marked elements are refined where new basis
functions, connectivity between elements, element properties are calculated again for
the whole mesh. The same procedure keeps repeating until the error drops below the
threshold value specified.



Chapter 7. Adaptive IGA 65

Level 1

Coarse mesh

Refined mesh for
error estimation

Level 2

Mark elements

Level 3

Level 4

Level n

FIGURE 7.7: Illustration of error estimation, marking and refinement pro-
cedure for adaptive PHT element.
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Chapter 8

Isogeometric Elements

After studying the theoretical background of IGA and linear elasticity, formulation of
some IGA elements are given in this chapter. Same description of elements are used in
the IGA framework, developed in Python, to compute the results mentioned in chap-
ter 9. Three basic types of elements are discussed which comprises almost whole struc-
tural analysis domain. The chapter starts with description of bar element, beam ele-
ment (based on Euler theory), and ends with plate element (based on Reissner-Mindlin
theory). For the sake of simplicity, process of IGA has been described for bar element
only.

8.1 Bar Element

Bars are members are that are subjected to axial force only. These members have length
considerably large compared to their cross-sectional dimension. Typical member con-
sidered for explaining the procedure is shown in figure 8.1.

Rp
i (ξ) =

Ni,p(ξ)wi
W(ξ)

(8.1)

Step 1: Selecting suitable field variable

In stress analysis or free vibration analysis, displacements are selected as field vari-
able. In a bar there is only one component of displacement to be considered which
is displacement along its axis, i.e, x direction. NURBS curve is used to represent the
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FIGURE 8.1: Straight bar element

coordinates of the geometry of the bar (section 5.2) by:

C(ξ) = ∑n
i=1 Rp

i (ξ)Bi (8.2)

where Rp
i (ξ) is given by equation (5.14)

Step 2: Discretizing the element

In IGA the element is discretized by knot insertion (p-refinement). Increasing the num-
ber of knot spans increases the number of elements. Hence the initial knot vector dis-
cretizes the element as well as forms shape functions defined for the element. The
procedure of forming the shaping functions as well as their support at control points is
mentioned in chapter 5. For example, if the initial knot vector is Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}
then 5 control points are needed to make a NURBS curve of degree 2 as shown in fig-
ure 8.2. The support of control points for each element can be seen in the figure.

CP1

u₁ u₃u₂

CP2 CP3 CP4 CP5

ξ

0 ≤ ξ ≤ 1

u₄ u₅

Element 1
Element 2

Element 3

FIGURE 8.2: Bar element in parametric space
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Since the number of knot spans in Ξ is 3, the number of elements is equal to 3. Nodal
displacement vector for an element is given as:

{δ} =

u1

u2

 (8.3)

There is one degree of freedom at each control point. Hence total dof in the problem is
5× 1 = 5. Hence nodal displacement vector for the problem is {δT} =

{
u1 u2 u3 u4 u5

}
Step 3: Selecting interpolation functions The basis functions needed to interpolate the
geometry as well as solution space is shown in figure 8.3

0 0.3333 0.6667 1
0

0.2

0.4

0.6

0.8

1
Element 1 Element 2 Element 3

FIGURE 8.3: Support of basis functions for knot vector Ξ =
{0, 0, 0, 1/3, 2/3, 1, 1, 1} of degree 2

Hence generalised displacement for the element is

{u} = [N]{δ}e (8.4)

where [N]T =
[

N1 N2 N3 N4 N5

]
which are shown in figure 8.3.

Step 4: Element properties

In this step element stiffness matrix and mass matrix is assembled for the element.
Since in this study bar element is used for finding out free vibration frequencies of the
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element the governing PDE is given by

ρA(x)∂2u
∂t2 −

∂
∂x

(
EA(x)∂u

∂x

)
= 0 (8.5)

where A(x) is the cross section area, E is the Young’s modulus, ρ is the specific mass and
t is the time. The problem of free vibration consists of finding the axial displacement
u = u(x, t)which must satisfy boundary and initial conditions defined in the problem.

Equation (8.5) is converted to weak form using Galerkin method (section 4.2). The
resulting matrix form of equation in terms of stiffness and mass is given by (section 3.7)

det
(

K−ω2
nM
)
= 0 (8.6)

where ωn is the natural frequency, and K, global stiffness matrix, is formed by assem-
bling Ke, element stiffness matrix, for each element which itself is given as

Ke =
∫ L

0 EA∂N1
∂x

∂N2
∂x dx (8.7)

and M is the global mass matrix formed by assembling individual element mass matri-
ces given as

Me =
∫ L

0 ρAN1N2dx (8.8)

Since the description of basis functions is in parametric space while integration is be-
ing carried out in physical space, Jacobian (section 4.4) has to be used. To find out the
derivatives of shape function in equations (4.6) and (8.7) is used. To transform the in-
finitesimal length element in physical space to parametric space equation (4.7) is used.
By use of Jacobian the integration which was supposed to be carried out in physical
space is now being carried out in parametric space. Further, integration is carried out
by the use of Guass quadrature (section 4.5). Since the order of NURBS curve chosen is
2, the number of Guass points used are 3. Guass points weight and locations are given
in table 4.1.

Step 5: Global properties

After computing stiffness matrix of an element, global stiffness matrix is assembled
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in which each element stiffness matrix has its contributions corresponding to the dof.
In the assumed case, for element 2 (figure 8.2) with dof 2, 3 and 4 the entries of the
element stiffness matrix will be reflected at row and column location 2nd, 3rd and 4th
of the global stiffness matrix. In the same way mass matrix is computed.

Step 6: Boundary conditions

Boundary condition is applied at control points (in this case at the ends of bars) by
deleting the respective row and column from the global stiffness and global mass ma-
trix.

Step 7: Solution of simultaneous equations

After imposing the boundary conditions, equation (8.6) is solved. If the problem to be
solved is of static nature, like finding deflections under loading, then equation to be
solved is as follows:

KU = F (8.9)

U = K−1F (8.10)

where K is the global stiffness matrix, U is the displacement vector to be found and F
is the force vector consisting of forces applied to the body. Then the computed result is
compared with theoretical results to judge the accuracy and efficiency of the proposed
method.

8.2 Beam Element

Bending problems of thin beams and shells does not require independent rotation
fields. Note that by being ’thin’, transverse shear deformations are being neglected.
Since slope dofs are necessary in order to satisfy continuity requirements, classical FEA
approach does not consider the rotation free formulation.

In IGA however the model is represented using control points and each control point
has one dof for 1D cases. Hence slope as a dof cannot be captured separately in IGA
formulation of beam. Therefore in IGA, beam analysis is carried out with a rotation-free
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element [7]. Hence in this study a rotation-free beam element based on Euler-Bernoulli
beam (section 3.5.1) is formulated. Typical member considered is shown in figure 8.4.

1 2 x
ξ = -1 ξ

v₁
v₂

x = 0

x
ξ = 1
x = L

y

FIGURE 8.4: Straight beam element.

Element displacement vector

There is one dof at each node which is the transverse deflection of beam. Hence the
displacement vector for element is

{δ} =

v1

v2

 (8.11)

Element properties

Beam element is used for finding out free vibration frequencies of the element the gov-
erning PDE is given by

EI(x)∂4v
∂x4 + ρA(x)∂2v

∂t2 = 0 (8.12)

where A(x) is the cross section area, E is the Young’s modulus, ρ is the specific mass
and t is the time. The problem of free vibration consists of finding the transverse dis-
placement v = v(x, t) which must satisfy boundary and initial conditions defined in
the problem. The terms of stiffness and mass, equation is given by

det
(

K−ω2
nM
)
= 0 (8.13)
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where ωn is the natural frequency, and K, global stiffness matrix, is formed by assem-
bling Ke, element stiffness matrix, for each element which itself is given as

Ke =
∫ L

0 EI ∂2N1
∂x2

∂2N2
∂x2 dx (8.14)

and M is the global mass matrix formed by assembling individual element mass matri-
ces given as

Me =
∫ L

0 ρAN1N2dx (8.15)

Since in this case 2nd order derivatives of basis function is required , use of 2nd order
jacobian is essential. Hence the second order derivative of basis functions in physical
space is given by equation (4.9) which is shown below:

{
∂2 f
∂x2

}
=

[(
∂x
∂ξ

)2
]−1 ([

∂2 f
∂ξ2

]
−
[

∂2x
∂ξ2

]{
∂ f
∂x

})
(8.16)

8.3 Plate Element

Plates and shells are a particular form of 3D solids having thickness very small com-
pared to its other dimensions. A plate element only carries transversal loads which
produces deflection and rotation of the normals of the middle plane which can be de-
duced as bending deformation. Theory of plates (section 3.6) is used to derive the strain
matrix for the formulation of plate element. Plate element formulated (see figure 8.5) is
a 2D 4 noded bending element with 3 dof at each node.

Element displacement vector

There are 3 dof at each node which in matrix form can be represented as:

{δ} =


w

θx

θy

 (8.17)

Element properties
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FIGURE 8.5: 4-Noded plate bending element with 3 dof at each node

In this study plate element is formulated for the purpose of finding static displacements
under various conditions of load and support conditions. The governing PDE is given
as:

∂4w
∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w
∂y4 =

q
D (8.18)

where w is the displacement in z direction, q is the transverse loading, D is the flexural
rigidity given by D = Et3/

[
12
(
1− ν2)] in which h is the thickness of the plate and E

is Young’s modulus.

Although in this study the governing equations are derived using minimization of po-
tential energy and constitutive matrix is found by writing moment curvature relation-
ship (equation (3.17)). Thus for finding the deflection of plate under a certain loading
condition following equation is solved

KU = F (8.19)

where K is the global stiffness matrix, U is the displacement vector to be found and F
is the force vector consisting of forces applied to the body.

K is given as

[K] =
∫∫

A
[B]T[D][B]dxdy

The above expression in local coordinates is written as

[K] =
∫∫

A[B]
T[D][B]|J|dξdη (8.20)
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where D is given by

[D] =



Et3

12(1− ν2)


1 ν 0

ν 1 0

0 0 1− ν
2


0 0

0 0

0 0

0 0 0

0 0 0

Et
2(1 + ν)

 α 0

0 α




(8.21)

B matrix is given by curvature-displacement relationship (equation (3.18)).

[Bi] =



0 0 ∂Ni
∂x

0 −∂Ni
∂y 0

0 −∂Ni
∂x

∂Ni
∂y

∂Ni
∂x 0 Ni

∂Ni
∂y −Ni 0


(8.22)
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Chapter 9

Numerical Results

As stated in the previous chapters the initial concept of IGA has been extended and
generalized in many ways. In this section the deflection of plate element subjected to
static loading using the framework of IGA is discussed. After that spectrum analysis
is done for bar and beam element. The physical domain is described by NURBS and
also discretized by NURBS. Multipatch cantilever beam is solved in framework of PHT-
splines to demonstrate adaptive refinement advantages of IGA.

9.1 Bar element free vibration

Spectrum Analysis is the comparison between computed natural frequencies, ωh
n, with

the analytically computed natural frequencies, ωn. To start with spectrum analysis
simplest vibrational model is considered, longitudinal vibrations of an elastic rod. To
model an elastic bar is not a problem of geometrical accuracy. Both, FEA and NURBS
based IGA, are equally capable of representing the problem domain exactly. Hence, the
difference in results will be from the approximating properties of the basis functions
used.

9.1.1 Problem definition

Bar element formulated is a 1D element with single dof at each node. The axial dis-
placement is selected as the field variable. The bar is fixed at both ends. Material and
geometrical properties of the element is given in tables 9.1 and 9.2 respectively. Sec-
tion 8.1 describes in more detail the process of formation of bar element.
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FIGURE 9.1: Straight bar element in physical space with L = 1.

TABLE 9.1: Bar material properties

Young’s Modulus E 1

Density ρ 1

Length L 1

Area A 1

TABLE 9.2: Bar geometrical properties

NURBS basis order p 2

Knot vector ξ {0,0,0,1/3,2/3,1,1,1}

Guass point ngp 3

9.1.2 Solution

Solving equation (3.25) using NURBS based IGA yields natural frequencies ωh
n. ωh

n are
normalized with respect to exact solution and plotted versus the corresponding modes
n, normalized with respect to the total number of dofs N. To produce the figure 9.2 a
number of dof N = 100 is employed to produce a smooth curve. The exact solution for
free vibration of bar is given by

ωn = (nπ), with n = 1, 2, 3 . . . (9.1)

(ωh
n/ωn) = 1 means that the numerical frequency and the analytical frequency are the

same. In practice, the frequencies will always obey the relationship

ωn ≤ ωh
n for n = 1, . . . , neq (9.2)
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and so it is expected for (ωh
n/ωn) to be greater than 1, with larger values indicating

decreased accuracy.
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FIGURE 9.2: Fixed-fixed rod problem: normalized discrete spectra using
NURBS.

As can be seen in figure 9.2, ωh
n/ωn = 1, implying that numerical frequency is identical

to analytical frequency, for first 40 modes. Considering how insignificant higher mode
frequencies are in context of structural dynamics of structures the results can be termed
as good enough for further studies and modifications.

9.2 Beam element free vibration

9.2.1 Problem definition

Another attractive 1D problem is the natural transversal vibrations of an Euler-Bernoulli
beam. Beam element formulated is a 1D element with single dof and is rotation free.
Since no boundary condition is being applied to rotations at the ends, beam is sim-
ply supported at ends. Material and geometrical properties of the element is given
in tables 9.3 and 9.4 respectively. Section 8.2 describes in more detail the process of
formation of bar element.
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FIGURE 9.3: Straight beam element in physical space with L = 1.

TABLE 9.3: Beam material properties

Young’s Modulus E 1

Density ρ 1

Length L 1

Area A 1

TABLE 9.4: Beam geometrical properties

NURBS basis order p 3

Knot vector ξ {0,0,0,0,1/3,2/3,1,1,1,1}

Guass point ngp 4
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9.2.2 Solution

Solving equation (3.25) using NURBS based IGA yields natural frequencies ωh
n. ωh

n are
normalized with respect to exact solution and plotted versus the corresponding modes
n, normalized with respect to the total number of dofs N. To produce the spectra of
figure 9.2 a number of dof N = 100 is employed to produce a smooth curve. The exact
solution for free vibration of bar is given by

ωn = (nπ)2, with n = 1, 2, 3 . . . (9.3)

(ωh
n/ωn) = 1 means that the numerical frequency and the analytical frequency are the

same. In practice, the frequencies will always obey the relationship

ωn ≤ ωh
n for n = 1, . . . , neq (9.4)

and so it is expected for (ωh
n/ωn) to be greater than 1, with larger values indicating

decreased accuracy. As can be seen in figure 9.4, ωh
n/ωn = 1, implying that numerical
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FIGURE 9.4: Fixed-fixed beam problem: normalized discrete spectra using
NURBS.

frequency is identical to analytical frequency, for first 40 modes. Considering how in-
significant higher mode frequencies are in context of structural dynamics of structures
the results can be termed as good enough for further studies and modifications.
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9.3 Plate element

9.3.1 Problem definition

A four noded rectangular plate element shown in figure 9.5 is formulated for the bend-
ing analysis purpose. The element is based on Reissner-Mindlin theory and its formu-
lation has been discussed in sections 3.6 and 8.3. Material and geometrical properties
of the element is given in tables 9.5 and 9.6 respectively.
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FIGURE 9.5: Basic flat rectangular plate element with 3 dof at a node

a

q

b

a

q

b

a

q

b

a

q

b

(a) (b)(b) (c) (d)

FIGURE 9.6: Various loading and support conditions on plate element: (a)
Simply supported on all sides with uniformly distributed load; (b) Sim-
ply supported on all sides with uniformly varying load; (c) Clamped on
all sides with uniformly distributed load; (d) Clamped on all sides with

uniformly varying load

To validate the objective, several numerical examples of rectangular plate with different
aspect ratio, different boundary conditions and different loading conditions are solved
and the results are compared with available analytical or other numerical solution.
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TABLE 9.5: Beam geometrical properties

NURBS basis order p 2

Knot vector ξ {0,0,0,1,1,1}

Knot vector η {0,0,0,1,1,1}

Guass point ngp 3

TABLE 9.6: Beam material properties

Young’s Modulus E 10.92× 106

Poisson’s ratio ν 0.3

Convergence studies were carried out for both simply supported (SSSS) and clamped
plate (CCCC) which were subjected to uniformly distributed load and uniformly vary-
ing load. This problem has been computed with different mesh refinements (25, 36, 49,
64, 81, 100, 121, 256, 441).

9.3.2 Solution

The solution for different boundary conditions and loading conditions are as follows:

Simply supported on all sides subjected to uniformly distributed loading

Table 9.7 shows the results of dimensionless central deflections for different mesh den-
sity, obtained by NURBS based IGA. These results are compared with analytical solu-
tion for the same boundary and loading conditions obtained from [20]. Relative error
is calculated for different mesh density between numerical and analytical solution and
plotted in figure 9.7.

Simply supported on all sides subjected to uniformly varying loading

Table 9.8 shows the results of dimensionless central deflections for different mesh den-
sity, obtained by NURBS based IGA. These results are compared with analytical solu-
tion for the same boundary and loading conditions obtained from [20]. Relative error
is calculated for different mesh density between numerical and analytical solution and
plotted in figure 9.8.

Clamped on all sides subjected to uniformly distributed loading
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FIGURE 9.7: The relative error for central deflection of simply supported
rectangular plate under uniformly distributed loading
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FIGURE 9.8: The relative error for central deflection of simply supported
rectangular plate under uniformly varying loading
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Table 9.9 shows the results of dimensionless central deflections for different mesh den-
sity, obtained by NURBS based IGA. These results are compared with analytical solu-
tion for the same boundary and loading conditions obtained from [20]. Relative error
is calculated for different mesh density between numerical and analytical solution and
plotted in figure 9.9.
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FIGURE 9.9: The relative error for central deflection of clamped rectangular
plate under uniformly distributed loading

Clamped on all sides subjected to uniformly varying loading

Table 9.10 shows the results of dimensionless central deflections for different mesh den-
sity, obtained by NURBS based IGA. These results are compared with analytical solu-
tion for the same boundary and loading conditions obtained from [20]. Relative error
is calculated for different mesh density between numerical and analytical solution and
plotted in figure 9.10.

Do note that the percentage relative error given in the tables are only for the last mesh
size i.e. 21 by 21. As can be seen in the graphs, the solution converges rapidly for
all support and loading conditions with increasing mesh size and almost approaches
zero for the mesh size of 21 by 21. Having successfully applied NURBS based IGA
to the static problem the next problem is of adaptive refinement in the framework of
PHT-splines based IGA.
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TABLE 9.9: Central deflection for all clamped rectangular plate with UDL

Aspect ratio (b/a)

Mesh 1 1.2 1.4 1.6 1.8 2

4 0.000124 0.000148 0.000167 0.000182 0.000193 0.000202

5 0.000299 0.000364 0.000414 0.000453 0.000483 0.000505

6 0.000518 0.000647 0.000746 0.000820 0.000876 0.000919

7 0.000736 0.000943 0.001101 0.001218 0.001305 0.001370

8 0.000902 0.001178 0.001390 0.001547 0.001661 0.001744

9 0.001018 0.001350 0.001605 0.001791 0.001925 0.002020

10 0.001093 0.001462 0.001746 0.001952 0.002098 0.002200

15 0.001225 0.001663 0.001994 0.002223 0.002374 0.002469

20 0.001253 0.001705 0.002044 0.002275 0.002422 0.002511

Analytical Result 0.001260 0.001720 0.002070 0.002300 0.002450 0.002540

% Relative Error 0.549823 0.857703 1.251639 1.095300 1.133454 1.134758
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FIGURE 9.10: The relative error for central deflection of clamped rectangu-
lar plate under uniformly varying loading



Chapter 9. Numerical Results 87

TABLE 9.10: Central deflection for all clamped rectangular plate with UVL

Aspect ratio (b/a)

Mesh 0.5 0.67 1 1.5

4 0.000021 0.000036 0.000062 0.000087

5 0.000041 0.000080 0.000150 0.000218

6 0.000058 0.000124 0.000259 0.000393

7 0.000068 0.000160 0.000368 0.000582

8 0.000074 0.000183 0.000451 0.000737

9 0.000076 0.000197 0.000509 0.000853

10 0.000077 0.000205 0.000546 0.000929

15 0.000079 0.000217 0.000613 0.001060

20 0.000079 0.000220 0.000627 0.001086

Analytical Result 0.000080 0.000217 0.000630 0.001100

% Relative Error 0.766258 -1.308450 0.549823 1.293441

9.4 Adaptive IGA

Numerical analysis is no better if it lacks the capability of automatic adaptive mesh
refinement. NURBS based IGA is incapable of such because of its tensor product struc-
ture in meshes (see figure 7.1). Hence in this study PHT-splines based IGA framework
is prepared to exploit the automatic adaptive refinement capabilities and see if it is any
better. Adaptive isogeometric method is usually based on the following loop

SOLVE −→ ESTIMATE −→ MARK → REFINE

9.4.1 Problem definition

A benchmark problem in the domain of adaptive refinement is that which has a singu-
larity at the re-entrant corner in the domain. That problem in this study is of a cantilever
beam. A cantilever beam based on Euler-Bernoulli beam theory (section 3.5.1) is ana-
lyzed in the framework of PHT spline. The geometry description is given in figure 9.11
and table 9.11.
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The domain is discretized using 4 PHT patches as can be seen in figure 9.14. The patches
are made to conform at their boundaries. The beam is analyzed with cubic basis func-
tions, the initial mesh for which is shown in figure 9.14(A). The problem is computed
and adaptively refined with the error estimator outlined in section 7.4. For marking
which elements to refine at each consecutive steps, a Dörfler marking scheme was used
with parameter ρ = 0.5 which implies that each step the elements contributing at least
50% of the error are refined. Hence, lower the θ, more refinement steps needed to solve
the problem. Stresses (and strains) are evaluated and plotted for refinement steps of
1st, 6thand 12th. The stresses follows the sign convention of figure 9.12.
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FIGURE 9.11: Geometry description of the cantilever beam problem
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FIGURE 9.12: Components of stresses in three dimensions.

9.4.2 Solution

The problem statement described in the preceding section is solved in the framework
of PHT-splines and results obtained show good nature. The problem takes 12 refine-
ments to reduce the estimated relative error to 10−2. The refined meshes for initial
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TABLE 9.11: Cantilever beam material properties

Young’s Modulus E 1000
Poisson’s ratio ν 0.3
Length L 8
Width W 2

mesh, mesh at 6th and last, 12th, are shown in figure 9.14(A), (B) and (C) respectively.
Convergence plot is shown in figure 9.13. As there are two locations with a stress con-
centration or singularities, a clustering of elements is expected and can be seen as well
in figure 9.14(C). Contour plots of stresses for the different refinement levels is shown
in figures 9.15 to 9.17. It can be observed that elements with large error contribution are
successfully marked and refined by adaptivity procedure until the error reduces below
a threshold value.
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FIGURE 9.13: Relative error in energy norm vs. the degree of freedom
using adaptive refinement for cantilever beam
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FIGURE 9.14: Mesh of cantilever beam at refinement level of (A) 1st, (B)
6th; (C) 12th. Different color indicates different patches used in the model.
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FIGURE 9.15: Contour plots of σ11 stress components of a deflected can-
tilever beam. (A) is the contour at 1st refinement; (B) is the contour at 6th

refinement; (C) is the contour at 12th refinement.
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(A) (B)

(C)

FIGURE 9.16: Contour plots of σ12 stress components of a deflected can-
tilever beam. (A) is the contour at 1st refinement; (B) is the contour at 6th

refinement; (C) is the contour at 12th refinement.

(A) (B)

(C)

FIGURE 9.17: Contour plots of σ22 stress components of a deflected can-
tilever beam. (A) is the contour at 1st refinement; (B) is the contour at 6th

refinement; (C) is the contour at 12th refinement.
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Chapter 10

Conclusion and Recommendation

10.1 General

NURBS based IGA was developed with the purpose of reducing the analysis time
by using the same geometrical description in modeling and analysis domain. How-
ever, with increasing research NURBS based IGA proved to be better than FEM. The
method promised not only reduced analysis time but better results using less compu-
tation power. In this study the advantages that the NURBS based IGA offered were
studied in the static and dynamic domains. Adaptive refinement technique in context
of IGA gave promising results. The conclusions drawn and scope of future work that
can be done are mentioned below.

10.2 Conclusion

In this study, the NURBS based IGA is successfully applied to solve Reissner-Mindlin
static plate problems and free vibration frequency of bar and beam element. Thin plates
with various shapes and boundary conditions are numerically simulated and presented
to validate the proposed approach. The numerical examples are compared with avail-
able analytical methods. The free vibration frequencies of various modes of bar and
beam element are compared with analytical frequencies. IGA based on PHT-splines
is developed to explore the domain of adaptive local refinement. IGA based on PHT-
splines is applied to a cantilever beam problem. The results demonstrate the robustness
and efficiency of IGA for these problems and its high accuracy and fast convergence
rate.
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Following conclusions are drawn from the work:

• The relative percentage error of deflection of plate with aspect ratio of 1 for simply
supported condition and uniformly distributed loading and mesh density of 5 by
5 is 11.3% which rapidly converges to 3.2% for a finer mesh of 21*21.

• The relative percentage error of deflection of plate with aspect ratio of 5 for simply
supported condition and uniformly varying loading and mesh density of 5 by 5
is 4.86% which rapidly converges to 0.308 % for a mesh density of only 9*9.

• In this problem, the simply supported plate with higher aspect ratio produces
convergent solutions in a much coarser mesh of 9 by 9 and that too without the
need for selective integration.

• The relative percentage error of deflection of plate clamped on all sides and sub-
jected to UDL is around 90% for all aspect ratio and mesh density of 5 by 5 which
converges even rapidly than simply supported plate to error of around 1% for a
mesh density of 21 by 21.

• The initial relative percentage error for clamped condition is much higher than
that for simply supported condition. This is expected, as the plate is clamped it
locks the boundary elements. This locking is propagated to inside elements as
well. For a initial coarse mesh almost all elements are locked which results in
an overall stiffer element and large initial relative error. As per Cook et al. [5]
the effect of boundary constraints on internal elements becomes negligible after a
mesh size of 12 which is verified by the results for clamped plate.

• The results of plate bending demonstrate the robustness and efficiency of IGA for
plate problems and its high accuracy and fast convergence rate.

• Even though Guass-quadrature is not optimal in context of IGA but with mesh
refinement the solution converges as expected.

• For bar element the numerically computed free vibration frequencies matched
with analytical frequencies for almost first 40 modes.

• For beam element the numerically computed free vibration frequencies matched
with analytical frequencies also for almost first 40 modes.

• Considering how insignificant the contribution of higher modes is in deformation
of a solid, the results of free vibration analysis are termed as acceptable.
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• PHT-spline formulation aids in adaptive refinement which is cumbersome if NURBS
based IGA formulation is used.

• Cantilever beam problem solved in the PHT-spline based IGA framework yielded
promising results. Elements were refined automatically at re-entrant corners and
areas of stress concentrations. Contours of stresses shown clearly demonstrate
the reduction in stress concentration with increasing refinement levels. A total of
12 refinement steps were needed to reduce the error below the threshold limit.

• The following inferences are made about the variation of σ11:

1. It is known that the variation of axial stress in x direction should be zero
at the free end throughout the section and should gradually increase as one
goes from the free end to the fixed end, also at any particular section it should
be zero at the neutral axis, which is at the middle for a rectangular cross sec-
tion and should gradually increase to maximum at the top and the bottom.

2. The stress at the top would be tensile and that at the bottom would be com-
pressive. The points having maximum stress would be near the re-entrant
corners, at the top and bottom of the beam, the stress at the top and bottom
fibre would reduce as one moves away from the fixed end towards the free
end. Along the mid- section the axial stress would be zero throughout.

3. Hence, the compressive and tensile axial stress contour in the x direction as
observed in the obtained contour plots are as per expectations.

• The following inferences are made about the variation of σ12:

1. For the given loading, shear force remains constant from the free end up to
the fixed end. The variation of shear force along a section is parabolic with
zero value at the extreme fibres and maximum value at the neutral axis.

2. Hence, the shear force σ12, should be maximum along the central line of the
beam and gradually decreasing towards the top and bottom faces.

3. The variation of shear forces hence obtained in the contour plots, is in accor-
dance with expectations.

• The following inferences are made about the variation of σ22:

1. Speaking in a strict theoretical sense, as per stress calculation procedures, no
axial stress in the y direction should be obtained for this loading. But, axial
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stresses in y direction are expected at points where load is getting transferred
from one part of the beam to another. For example, at points just beneath the
point load, the load is getting distributed in the beam through vertical load
transfer and this entails an axial stress in y directions at those points.

2. At the fixed end, there is some vertical load transfer expected at the bottom
re-entrant corner and this entails an axial stress in y direction at those points.
Similarly, some tension as an axial stress in y direction is expected at the top
re-entrant corner.

3. Hence, the compressive and tensile axial stress contour in the y direction as
observed in the obtained contour plots are as per expectation.

• IGA is computationally cheap because the size of element matrices is smaller than
that for FEM.

• For 1D problem any reduction in size of element matrices is nullified by the
lengthy procedure of computing shape functions and transforming variables in
different spaces. Hence the procedure becomes expensive for a simple 1D prob-
lem.

• IGA is capable of directly interacting with CAD system.

• Nodes in FEM are interpolatory whereas control points in IGA are not.

• Applying Dirichlet boundary condition inside a domain is not a direct technique
in IGA.

10.3 Recommendations for further work

IGA is a promising new approach which can successfully replace the traditional FEM
used in industry. In order for it to be the standard technique in the industry it has to be
robust efficient. IGA needs to be enhanced by continuous research, development, and
testing.

Following work is suggested for the future:

• The work presented in this dissertation can be extended to 3D problems.

• Beam element formulated in this study was rotation free and simply supported.
To further enhance the results, boundary condition may be applied to rotations at
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the ends of the beam by using either penalty method or the Lagrangian multipli-
cation method.

• For vibrational analysis, a parametric study can be performed with different or-
der of NURBS basis functions and the results can be compared with the results
obtained using FEM.

• Isogeometric vibration analysis of plates based on Reissner-Mindlin plate element
can be done to investigate the advantages of smoothness of NURBS basis func-
tions in two dimensions.

• Formulating shell element in IGA will help in investigating the exact geometry
description property of IGA.

• PHT-spline based IGA can be extended to problems of larger deformation, frac-
ture mechanics and non-linear analyses.

• Guassian quadrature is not optimal for IGA because it fits a polynomial through
the results of shape functions evaluations at Guass points. Whereas in NURBS
based IGA these shape functions are rational which cannot be exactly reproduced
with the help of fitted polynomial. Hence using optimal quadrature rule in con-
text of IGA can be done as well.
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