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CHAPTER 1 - INTRODUCTION 
 

 

One of the most fundamental parameters that determine the efficiency of a structural design is 

the form of the structure. Absence of the best geometry, interconnectivity, and disposition of the 

members to resist the loads, is crippling to any improvement that can be otherwise made in the 

structural design. The ideal form to carry the imposed loads enables the most economical design, 

in the sense that material weight, or volume, is minimum, as the size of every member is just 

enough to develop the allowable stress, and the process of finding the ideal form leads to, and 

remarkably, is also led by, clarity and deeper insights into the behavior of the structure. 

Emphasis had been paid on the importance of the ideal form since the time of Maxwell and 

Cremona, who harnessed the lucidity of geometry to study the problems of static equilibrium, 

through which developed the tools that helped the structural engineers in the coming times to 

build a variety of bridges, domes and towers – all without the help of computers. With the 

availability of immense computational resources at present, the problem of finding the optimum 

structural parameters for design – like, stiffness, weight or volume – has began to gain attention 

steadily.  

In case of bridges, the suitability of form assumes an ever-important role because the correct 

form makes the structure lighter, more economical, and stiffer, i.e. the resulting deflections are 

also less. Also, in case of long span bridges, the dead load of the structure is the dominant load 

which the bridge form has to carry, so reducing the weight of the structure also means that longer 

spans can be achieved. For this, one could go for the choice of lighter materials like carbon fiber 

composites. However, the problem of ductility, fatigue behavior, relative cost and availability of 

materials suggests that steel and concrete are going to be the dominant materials for construction 

for a good time to come. Hence, the most relevant parameter that remains at hand for optimizing 

the weight of the structure is the structural form. 

The results that follow the optimization of the layout of the structure are often counterintuitive. 

For example, common knowledge prevailed that a parabolic arch is the most optimum form to 

distribute a uniformly distributed load between two hinged supports. However, layout 

optimization has showed that it is not the case – rather, the most efficient form consists of a 
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parabolic section near the central part of the span, and a network of mutually perpendicular 

compressive and tensile elements near the supports – a form of structure which came to be 

known as Hemp’s arch[1]. Hence, a reasonable question rises to the fore: are the traditional bridge 

forms the most efficient for bearing the loads they are principally subjected to? In case of arch 

bridges, is the conventional form with arch supplemented with vertical suspenders the most 

efficient? Is there a better form to carry the loads for longer spans than the conventional cable 

stayed and suspension bridge systems? If yes, how can those bridge forms be obtained? What 

structural parameters should be optimized, and what should be the proper choice of constraints? 

Finally, once the optimized bridge forms are obtained, can these forms be rationalized through 

the fundamental aspects of structural mechanics instead of relying on mathematical or numerical 

results alone?  

In this study, we address the structural optimization problem in context to the structures and 

loadings that correspond to that of typical bridge systems. We discuss the different approaches 

towards the choice of the objective that determines the optimization problem, and explore them 

to see if they provide with the same solution in regards to the resulting forms. It will be observed 

that most of the weight minimization problems employ stresses as constraints. Furthermore, they 

are mostly based on the ground structure approach as shall be seen. Will the same form remain 

optimal for compliance minimization as an objective, over a continuous domain? We shall 

examine these aspects of the bridge forms developed from the compliance minimization 

problem. Thereafter, we review those forms in the light of fundamental aspects of statics to get a 

deeper insight into their behavior, so as to get a rationale if they indeed, from the standpoint of 

statics alone and not computation, show the features of the most ideal form which is required of 

them by statics.  

In order to minimize compliance, the formulation conventionally used, which will be used here, 

minimizes strain energy – naturally, more is the flexibility or compliance, more is the strain 

energy. A minimum compliance or strain energy structure is also a maximum stiffness structure. 

Hence, in reference to the optimization objective, minimizing strain energy or compliance and 

maximizing stiffness refer to the same goal. 
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CHAPTER 2 – LITERATURE REVIEW  

 

2.1 Layout Optimization 

2.1.1 Components of the Optimization Problem 

The layout of structure is said to be optimum when the following features of the structures are 

optimized simultaneously: 

• The topology of the structure, i.e. the mutual arrangement of the different members and 

joints in the design domain.  

• Geometry of the structure, i.e. the overall outline of the structural form which is governed 

by the position of the joints.  

• Size, or the cross-sectional dimensions of the various structural members. 

Usually, the goal of the optimization is formulated in the form of an objective function which 

is sought to be minimized, with suitable constraints. The objective function may be the 

weight, volume or the compliance of the structure, and the constraints may be the geometry 

of the structure (any prescribed minimum size of the members), final volume of the structure 

(or, the minimum volume from the design domain that must be retained in the final 

structure), or one of the structural behaviors such as stresses and displacements. The choice 

of objective functions and constraints are concomitant, and as will further be outlined, such 

choices result in two major approaches towards structural optimization: one that deals with 

minimizing the compliance with a weight (volume) constraint, and the other that deals with 

minimizing the weight (volume) with stress constraints.  

Broadly, there are two approaches to solve the optimization problem for a given structure: 

exact formulation which is an analytical method that gives exact and closed-form solutions, 

and the approximate formulation, which depends on the discretization of the design domain 

or the material properties to obtain iterative, numerical solutions. While exact formulations 

have been used to establish the ground work in the discipline of structural optimization, it is 

the approximate formulations that are mostly used for more complex structures to harness the 

benefit of computational power.  
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2.1.2 Exact Formulation[2] 

The theory of exact optimal layout involves the following concepts:  

• Design Domain: It is superset of configurations of which the optimal structure is a subset. 

Also known as structure universe, it comprises of members running in all possible 

directions, present at all available points in the space.  

• Continuum type Optimality Criteria: The optimality criteria are the necessary and often 

sufficient conditions for optimization. They can be seen as a mechanical interpretation of 

Kahn-Tucker conditions that mathematically govern the optimality of the solution to an 

optimization problem.  

• Adjoint Structure: It is fictitious structure to exhibit the mechanical analogy to interpret 

certain aspects of the optimality criteria. 

• Layout Criterion Function: The optimality criteria are used to derive the layout criterion 

function φe, which decides in which directions shall the members be oriented by taking 

such a form where  

                                     φe = 1 (for Ae ≠ 0); φe ≤ 1 (for Ae = 0), 

            where Ae is the cross section of the member ‘e’. 

Both the real and adjoint strain fields are defined at every point in the design domain, and 

should both be kinematically admissible for both the boundary conditions at the supports and 

compatibility conditions in the interior of the design domain. The layout criterion function 

should assume a unit value in at least one direction at every point of the design domain, and 

members should be laid out only in these directions, such that the resulting structure can be 

stable to transmit the loads.  

Exact formulation reveals the basic structural essence of the optimal systems. In the least, 

they are important because they serve as standard yardsticks around which the validity, 

global optimality and convergence of solutions based on numerical methods are evaluated. In 

case of the presence of more than one optimal form, analytical approach reveals all such 

forms, while a program based on a numerical approach, usually is random in selecting one of 

such forms.  
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❖ Michell’s Optimality Criteria[2] 

A. G. M. Michelle in his seminal work showed that for a structure with member having equal 

limiting stresses in both tension and compression to have minimum weight, every member 

should be aligned in the direction of principal strains. Solutions obtained, hence, consist of 

members running in mutually perpendicular directions, with each developing the prescribed 

limiting stress, either in tension or in compression. The resulting displacement field should 

also be consistent with the required kinematic and compatibility conditions.  

Michell’s Optimality Criteria can be satisfied in the following number of ways, implying that 

a domain containing an optimal structure consists of one or more of the following regions, 

defined by the member forces and corresponding principal strains, such as  

R+ :  f1 > 0,  f2 = 0, ε1 = 1, |ε2| ≤ 1 

R- :  f1 < 0,  f2 = 0, ε1 = -1, |ε2| ≤ 1 

S+:  f1 > 0,  f2 > 0, ε1 = 1, ε2 = 1 

S-:  f1 < 0,  f2 < 0, ε1 = -1, ε2 = -1 

T: f1 > 0,  f2 < 0, ε1 = 1, ε2 = -1 

 

      

  

 

These criteria have been applied to many cases of loads 

and boundary conditions get a number of structural forms, 

some of which are shown in Fig 2.2.  

 

Fig 2.1: Different regions satisfying Michell’s optimality 

criteria (Rozvany et al., 1995) 

Fig 2.2: Michell forms for: (a) cantilever loaded at the tip and supported at two points; (b) optimal 

support structure for a centrally loaded simply supported beam; (c) half of a middle-loaded beam 

                    (Rozvany et al.,1995)   
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Fig 2.3: Mitchell’s half-wheel for transmitting 

a uniformly distributed load to a centrally 

pinned line segment. (Pichugin et al.,2015) 

Fig 2.4: Parameter X being used to divide 

the domain into regions for adhering to 

kinematic admissibility. (Pichugin et 

al.,2015) 

❖ Bridge Forms identified using Michell’s Criteria[3] 

The problem of an infinite line supported by pins at equal intervals, and loaded by a 

uniformly distributed load was considered by Pichugin et al[3].  The considered domain was a 

double segment of length 2L supported at the center with the prescribed loading, and the 

resulting structure was a Michell’s half wheel as shown in Fig 2.3.  

Furthermore, the design domain was divided into two different kinds of optimal regions, T 

and R+ as indicated in Fig 2.4. The indicated parameter X showing the line of transition of 

domains, determines the geometry of the structure. Such form of Michell structures were 

shown to be more optimum in weight than the original half wheel Michell structure.  

 

 

 

 

 

 

 

The parameter X is determined to be X = σC.L/( σC + σT ). Upon varying the ratio of the 

limiting compressive to tensile stresses, a family of bridge forms is obtained as shown in Fig 

2.5. On making the design tension dominant, the spokes coalesce together near the vertical 

and the form is very similar to that of a cable stayed bridge, on the other hand, if the design is 

compression dominant, the fans shrink in size and the form resembles that of a Hemp’s arch 

with vertical suspenders.  

Thus, it was shown that cable stayed bridges and arch bridges lie at the opposite boundaries 

of the family of optimum bridge forms.  
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Fig 2.5: Different structural forms obtained by varying the ratios of limiting compressive to tensile 

strengths. (Pichugin et al.,2015) 
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Fig 2.6: (a) Ground structure; (b) exact optimal 

layout; approximate discretized solutions from (c) – 

(e) (Rozvany et al., 1995) 

2.1.3 Approximate Formulation 

Exact analysis suffers from a handicap that it is applicable almost exclusively to certain ideal 

structural conditions; closed form solutions are very difficult to obtain for complicated 

geometry and loading. Apart from that, the solutions may be too complicated in geometry to 

be practical. That is where the emphasis is taken over by the approximate formulations, 

results from which have shown that even if a ‘simplified’ structure is considered, which has 

some finite number of members formed by joining with straight lines a finite number of 

joints from the optimal structure, it is still close to the optimal values in weight.  

Rozvany et. al have demonstrated this 

through an example shown in Fig 2.6. The 

exact optimal layout has a weight of 4.5, 

while the approximate discretized solutions 

shown in (c), (d) and (e) have weights 4.59, 

4.69 and 5, respectively, showing that the 

discretized layouts are only insignificantly 

heavier than the exact layout[2].  

 

 

In approximate formulation, the ground structure is constructed by considering a finite 

number of points in a domain of desired size and boundary conditions, and linking them 

together in all combinations with straight members. The design variable for the problem may 

be the cross-sectional areas of the members, or the position of joints. The objective function 

is to minimize the weight or volume, and constraints may be placed upon the stress levels in 

the members.  

If both the objective function and constraints are a linear function of the design variable, then 

the problem can be solved using linear programming methods. In addition to it, if the feasible 

set is convex, then it is ensured that a local minimum obtained is also a global one.  
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To make the problem more amenable to automated solution, the structure is simplified, like, 

for example, only pin joints are considered, which makes the structure only axially loaded 

and as a matter of fact, also more optimum a-priori. 

❖ Linear Programming Formulation[2] 

The objective function to be minimized is the volume (in other words, weight) of the 

structure. If L is the member length vector and X is the variable set of cross sectional areas, 

then volume is given by                                 

     V = LTX 

The redundant forces R are provided by the compatibility equation,.  

                                                      DR = δ 

where, D is the flexibility matrix, δ the displacement vector in the direction of  R due to the 

loading on the primary structure.  

 

The forces F and the displacements U are given explicitly in terms of X, R by 

                                                  F = FP + FRR,   

                                                  U= UP + URR 

where, FP, UP are vectors of forces and displacements respectively due to the loading on the 

primary structure, and FR, UR are matrices of forces and displacements, respectively due to 

unit redundant forces in the primary structure. FP and FR are independent of the cross 

section, hence they don’t change during the iterations. 

Constraints are placed on the member forces by placing a bound on the permissible stresses 

(σd
L, σd

U). Displacements may also be used as constraints by placing a lower and upper 

bound (UL, UU) on them, such that:  

 σd
L.X ≤ F ≤ σd

U.X 

  UL ≤ U ≤ UU 

And, if the load vector is given by P and the matrix of direction cosines by B, equilibrium 

condition can be enforced by  

 BF = P 
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Fig 2.7: Optimized bridge forms obtained for spans of 1km, 2.5 km and 5 km, respectively, 

exhibiting hybrid Michell half-wheel forms. (Gilbert et al., 2018) 

 

❖ Optimum Bridge Forms by Ground Structure Approach 

Gilbert et al[4]. used an equivalent layout scheme based on the (plastic) lower bound theorem 

with the member forces q as the design variables, with an objective of minimizing the 

volume (weight) with two constraints: the system should be in equilibrium, the members 

should develop permissible stresses (equal in tension and compression everywhere).  

 

Elements of catenaries of equal strength were used to link the nodes in the structural domain 

(Fig -. It was found that, when steel on density 80 kN/m3 was used with a limiting stress of 

500 MPa, spans up to 5 km could be achieved, and the bridge form was same as that of 

hybrid Michell half-wheel with two optimality regions (Fig 2.7). These bridges were lighter 

than other conventional forms for the same span, for example, as much as 73% lighter than a 

suspension bridge[4]. 

 

It is noteworthy that while the stresses developed and weight of the structure will definitely 

vary as the span is changed, the ideal form remains the same. It also adds to the insight 

developed from the exact analysis, that form is dependent on the loading and boundary 

conditions alone, not the spans involved.  

 It should also be noted that the objective function so far, has been the minimization of 

volume. All these structures have been obtained as a result of volume minimization, subject 

to stress constraints. Compliance as an objective function has not been incorporated into 

optimization studies with the ground structure approach.  

 

 

 

 

 

     



11 
 

❖ Solid Isotropic Material with Penalization (SIMP) Approach 

Instead of a discrete design domain consisting of a finite number of joints linked with a finite 

number of members, the design domain can also be chosen to be a continuum of material. 

The optimization can be performed on this domain using a variety of methods that are 

available today, the foremost of which is the SIMP approach. 

In this approach, the density of the material is taken as the design variable. The goal of the 

optimization is usually to find the minimum compliance of the structure, subject to 

conditions of equilibrium volume available (as a fraction of the total volume of the design 

domain, typically). Often the objective is also formulated as strain energy instead of 

compliance for structures with complicated loadings, because of the knowledge that a 

minimum compliance results in maximum stiffness, and hence also the minimum strain 

energy.  

The optimization procedure works by distributing the material in the design domain in such a 

way that the objective function (compliance or strain energy) is minimized. By default, an 

entire range of densities will be available between 0 and 1, which is not desirable in the 

physical sense of interpretation, hence what is required is a solid-empty scheme where the 

regions either voids (density = 0) or solids (density = 1). This is achieved by a penalization 

scheme on the intermediate densities, which is incorporated in the stiffness of every element 

such that[5] 

𝐸(𝑥) = 𝜌(𝑥)𝑝𝐸0 ; 𝑝 > 1 

∫ 𝜌(𝑥) ⅆ𝛺

𝛺

≤ 𝑉;  0 ≤ 𝜌(𝑥) ≤ 1  

where 𝐸(𝑥) is the young’s modulus of an element with density ρ(x), and ‘p’ is a penalization 

parameter, which suppresses the intermediate densities, in the sense that if the intermediate 

densities are included, then the stiffness gained will be much lesser than that with higher 

densities towards unity – thus making the intermediate densities unfavorable. The second 

equation expresses the constraint of volume on the problem on the design domain Ω.  
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The stiffness matrix K of the entire structure is the sum of the stiffnesses Ke of every element, 

which in turn is a function of the Young’s Modulus, which has been linked to the design 

variable (density) as described above. Hence, the formulation is now made as[6]:  

min 𝐶(𝜌, 𝑢) = 𝑼𝑻𝑲𝑼 

𝑉

𝑉0
= 𝑓 

𝑲𝑼 = 𝑭 

Here, U is the global displacement matrix, F is the load vector, and f is the volume fraction 

of the original volume of the design domain 𝑉0 which has be retained, as a constraint, as 

discussed earlier.  

To avoid singularity in the stiffness matrix K, a lower positive non-zero bound is placed on 

the design variable (density) ρ, such that 0 <  𝜌𝑚𝑖𝑛 ≤ ρ ≤ 1.  

The solution is obtained in an iterative process, where, first the initial design is made by 

homogeneous distribution of material. The entire domain is meshed into finite elements, and 

the resulting displacements and stiffness are calculated. Then, for each cycle, the design 

variable is updated (using a gradient based approach, optimality criteria method, etc.) and the 

calculations are repeated until the compliance obtained in successive cycles converge to a 

particular value.  
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2.2 Graphic Statics 

2.2.1 Overview of Principles and Methods 

Graphic statics is a method perhaps as old as structural engineering itself. Based on the 

founding works of Maxwell, Cremona and Culmann, it elegantly uses the laws of statics to 

graphically evaluate the forces in the structural members that are necessary for equilibrium. It 

follows from the principle of statics that if a set of forces are in equilibrium, their vectors 

must form a closed polygon. 

From the form diagram i.e. the representation of the structure, a force diagram is constructed.  

Drawing to a particular scale, the loads are represented by lines parallel to the loads in the 

form diagram, and the members by similar lines parallel to themselves. Since these are in 

equilibrium, all these line segments must form a closed polygon.  

Bow’s notation[7] is most commonly used to identify joints, members, loads and force 

directions. In the form of the structure, the space between every two load vectors is identified 

in a clockwise manner by capital letters, and the space in every closed polygon is identified 

with a numeral. Thus, the members can be identified by reading the letters across them.  

The force diagram is then drawn by choosing a scale, and plotting every load and reaction by 

drawing a line segment with length equal to their magnitudes (after converting them from 

forces to lengths through the scale); the loads and reactions must come to be in balance if the 

system is in equilibrium. Then, each member is plotted one by one, by making lines parallel 

to them, and identifying regions through their points of intersection.  

For example, the truss shown in Fig 2.8 has spaces between loads and reactions identified as 

A, B and C, while the space inside the closed polygon of the truss is identified as 1. The form 

diagram is then drawn by drawing loads as shown on the line a-c-b. To identify member A1, 

a line parallel to this member from the point a on the force diagram is drawn. A similar line 

is drawn for B1, and point 1 is located as the point of intersection of these lines. Similarly, 

C1 is plotted too. The lengths of these line segments give the forces in the corresponding 

members.  
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Fig 2.8: A simple truss used to show the procedure of drawing force diagrams 

 

To know the direction of the force in a member, a joint to which the member is connected, is 

chosen. The name of this member is read in the same order in the force diagram, as the order 

it appears when read clockwise around the joint. This direction, depending on whether it is 

coming towards the joint or away from the joint, indicates whether it is in compression or 

tension, respectively.  

In the same example in Fig 2.8, to know the direction of force in the member A1, the 

leftmost node is chosen and going in a clockwise manner, the concerned member is read as 

A-1. Reading from a to 1 in the form diagram, the direction points towards the node, 

indicating that the member is in compression. In the same way, member B1 is also in 

compression, while C1 is in tension.  

The force diagram is linked to the form in the sense that any manipulation or change in the 

force diagram brings a corresponding change in the form (and vice-versa). This is very 

helpful in designing structures, because the designer can directly cater to the geometry of 

forces and tune them to his purpose to obtain the corresponding form of the structure to fulfill 

conditions. For examples, arch bridges can be (and have been) designed by this approach[7]. 
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2.2.2 Maxwell’s Load Path Theorem 

Before this theorem is discussed, it will be pertinent to shed some information on the 

terminology involved in the statement. Assumption is that the structures being dealt with are 

pin jointed, i.e., they are made up of members carrying only axial forces. If we multiply the 

length of a member with the magnitude of force carried by it, we get the magnitude of the 

load path for the member.  Maxwell’s Load Path Theorem says that the difference between 

the total load path in tension and that in compression is equal to the dot product of all the 

external forces (with reactions) about any arbitrary point[8]: 

∑𝐹𝑇𝐿𝑇 − ∑𝐹𝑐𝐿𝑐 = ∑�̅� ⋅ �̅� 

Here, 𝐹𝑇 , 𝐹𝑐  are forces in the members in tension and compression, while 𝐿𝑇 , 𝐿𝑐are their 

respective lengths. The right hand side refers to the summation of the dot product of all the 

external forces �̅� , the position vector of which from an arbitrary point (same for all the 

external forces) is �̅�. This theorem can be directly verified from the Principle of Virtual Work 

– if a virtual displacement is given by expanding the structure about a point such that all the 

joints move to positions twice as far as they were originally from that point, then left hand 

side of the equation refers to the internal virtual work and the right hand side to the external 

virtual work, hence they both shall be equal[8].  

Dividing the load path by the permissible stress 𝜎 gives the minimum volume of the member, 

hence this minimum total volume (for the permissible stress level) can be calculated by  

𝑉 =  
1

𝜎
∑𝐹𝑇𝐿𝑇 +

1

𝜎
∑𝐹𝑐𝐿𝑐 

Dividing the former by 𝜎 and adding it to the latter, we get  

𝑉 =  
1

𝜎
(2∑𝐹𝑇𝐿𝑇 − ∑�̅� ⋅ �̅� ) 

Maxwell’s Load Path Theorem can thus be directly used to determine the minimum volume 

of a structure for a given stress level by computing only the external force dot product and 

the tensile (or compressive) load path, depending upon the convenience of the designer.  
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CHAPTER 3 – OBJECTIVES 
 

                                                                             

Following are the objectives of this study:  

1. To investigate the outcome of optimum bridge forms for a uniformly distributed load 

condition, from a Minimum Compliance with Weight Constraint (MCWC) approach, and 

compare the results with those obtained from Minimum Weight with Stress Constraint 

(MWSC) approaches.  

 

2. To investigate the forms of arch bridges obtained under compliance minimization with a 

constraint over the total volume available for the final form, and to observe the effects 

under different rise to span ratios.  

 

3. To investigate the bridge forms obtained under the same objective and constraint, over a 

continuous domain with boundary conditions analogous to that of bridges with long 

spans, and to validate the results with those obtained by applying a weight minimization 

objective over a discrete domain.  

 

4. To study the obtained bridge forms using Graphic Statics to get an insight into their 

behavior and peculiarities.  
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CHAPTER 4 – METHODOLOGY 
 

In this study, a continuous design domain is used, which is provided with boundary conditions 

similar to those in bridges. A uniformly distributed load is applied on the structure to simulate 

the dead load. Live loads, which may also be asymmetric, are not included, because the dead 

loads which are always present have a more decisive effect on the overall form of the structure; 

and in addition, live loads are insignificant compared to dead load especially in long span 

bridges. The objective of the optimization is to minimize the strain energy of the structure, when 

a constraint over the volume available for the final structure is placed on it. The SIMP approach 

is adopted for the optimization process.  

4.1 Optimization of Arch Forms on Tosca/Abaqus 2019  

A study of the optimization of arch forms is made on the structural optimization module Tosca 

that comes in conjunction with Abaqus 2019 software package.  

Arch bridges conventionally are used for low to medium spans. Keeping that in mind, a 

rectangular design domain (Fig 4.1) 50 m in length is chosen. The height of this domain is varied 

in accordance to rise to span ratios ranging from 0.1 to 1, in equal intervals of 0.1. The design 

domain is considered to be in plane stress with a thickness of 0.2 m. A uniformly distributed load 

of 40 kN/m is applied to the bottom of the design domain. One of the ends is kept hinged, while 

the other is kept on roller supports. 4-Noded Bilinear elements are used with mesh size = 0.25 m. 

Steel with E = 2 × 105 MPa, density = 7850 kg/m3 and poisson’s ratio = 0.3 is used as material. 

Plasticity is not taken into account because strain energy ceases to be a relevant parameter once 

plastic flow begins – energy dissipation begins to occur and external work is no longer converted 

into strain energy.  

In the optimization module, strain energy is set to be the objective function, and constraint is set 

on the final desired volume of the structure by setting a volume fraction which is the ratio of the 

desired final volume to the original volume of the design domain. In the process of optimization, 

the minimum value of design variable (which is the normalized density of an element) is taken as 

0.001 and the penalization power is taken to be 3, for the validity of the model as material 

behavior.  
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Fig 4.1: Design domain with dimensions (mm), loading type and boundary conditions. 

Model corresponds to a rise : span of 0.4.  

 

For each rise to span ratio (from 0.1 to 1), the volume fraction is ranged from 0.1 to 0.5 in 

intervals of 0.1. Thus, a total of 50 models are prepared, and the resulting optimized arch forms 

from each are obtained and studied further.  

 

 

4.2 Optimization for Long Span Bridge Forms in Tosca/Abaqus 2019 

Long span bridges have, typically, a main, longer central span(s) and smaller side spans. For 

reasons of symmetry and intuition from literature survey about Michell’s ideal forms, the model 

is made with a central span of 3 km and two side spans of lengths equal to half the main span, i.e. 

1.5 km each. This is similar to problem of finding the optimum (weight) structure to support a 

horizontal beam running infinitely, supported over equally spaced pin joints. However, in this 

case the objective is to minimize the strain energy of the system.  

A rectangular design domain (Fig 4.2) 6 km in length is chosen, with two pin supports spaced 

symmetrically at 1.5 km from either ends, such that a central main span of 3 km and two side 

spans of 1.5 km are achieved. The design domain is given horizontal supports at the both the 

bottom ends - this is because the model will be a perfect idealization of the infinite horizontal 

problem as the loads will be supported throughout by the superstructure alone; and moreover, the 

end anchorages give approximately a horizontal reaction only for many bridges, including the 

Akashi Kaikyo Bridge[4].  The height of the design domain is kept to be 1600 m, to let any 

resulting optimum form develop fully, unrestricted by height of domain. The design domain is 
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Fig 4.2: Design space for long span bridge with dimensions (m), loading type and boundary 

conditions.  

 

considered to be in plane stress with a thickness of 1m. A uniformly distributed load of 400 

kN/m is applied on the bottom of the design domain. 4-noded bilinear quadrilateral elements are 

used. Initially, a mesh size of 1 m is used.  

The material of the model and optimization objective are same as in the previous case of arch 

bridge forms. A volume fraction of 0.13, deliberately kept low for better visualization of results, 

is selected after some trials and observations.  

Since the span is very long, a non-linear analysis is also done and results are compared with 

those of linear analysis made under similar conditions. The results of the bridge forms obtained 

are studied further.  

 

 

4.3 Changing Limiting Compressive to Tensile Stress Ratio in Rhino 3D 

Unsurprisingly, the optimization process in Tosca is not suitable for constraints on stress because 

of the numerous difficulties that occur in topology optimization using stress constraints. This is 

because the concerned optimum points often lie in a degenerate subset of the feasible region 

which cannot always be located by gradient-based optimization algorithms. In addition to it, the 

number of variables is as same as the number of responses because stress is a response at a local 

point or element and is hence defined for every element, while responses like volume and strain 
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Fig 4.3: Dimensions of the design space in Rhino 3D. The 2 mm thick 

rectangles are frozen as solids, and the adjoining ones as voids.  

 

energy are global, hence computationally much more feasible to be dealt with in topology 

optimization.  

Grasshopper is a visual programming environment that runs on Rhinoceros 3D - a computer 

aided design software which allows to create models. A circuital flowchart type methodology is 

followed by Grasshopper, where items are assigned to entities which are then assembled on the 

canvas as per logic of the operation. An experimental topology optimization plugin, TopOpt, 

runs in grasshopper that allows the user to change the ratio of allowable compressive to tensile 

stresses. However, the outputs obtained for large dimensions of design space are unremarkable in 

visual clarity due to the limitations of filter size. Noting that topology optimization is dependent 

on the loading type, boundary conditions and geometric similarity of the design domain (and not 

on any magnitudes of these), a small-scale model emulating the same kind of long span bridges 

as discussed earlier, is made.  

The design domain (Fig 4.3) 

is taken to be a rectangle, 60 

mm in length, 30 mm in 

height and 1 mm in thickness 

(for plane stress conditions). 

The value of Young’s 

Modulus is taken to be 1, and 

the mesh size as 1 mm 

without a loss of generality, 

as the effect is only to have 

the numerical results scaled 

without any effect on the topology. It is supported symmetrically by two pin line supports of 

2mm each at quarter and three-quarters length, with regions frozen as voids and solids as shown 

in Fig 4.3. The layout of the visual flowchart of operations as made in Grasshopper is shown in 

Fig 4.4.  

The volume fraction is kept at 0.15 for obtaining the best clarity of form, and the filter radius is 

set at 1.5 – below that, the output displays checkerboard solutions, and greater filter radii tend to 

give solutions with ‘smeared’ densities. The parameter ratio, which signifies the ratio of 
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Fig 4.4: Grasshopper canvas with parameters assigned to components that are arranged in a 

circuital flow chart.  

 

allowable compressive to tensile stress, is changed and the resulting optimized bridge form 

obtained for every chosen instance of ratio is noted.  

 

4.4 Interpretation using Graphic Statics  

Principles of Graphic Statics, like the relationship between the form and force diagram, 

peculiarities in the force diagram when the structure is biased towards a certain behavior, and 

Maxwell’s Load Path Theorem are used to analyze and interpret the various bridge forms that are 

obtained as a result of the optimization process.  
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5.1 Optimization of Arch Forms on Tosca/Abaqus 2019 

5.1.1 Bridge Forms Obtained: Observations 

As described in the previous section, optimization for minimum strain energy is performed 

over the defined design domain with volume constraints formulated as volume fractions. To 

volume fractions (denoted by vfrac in the following figures and tables) are chosen as 0.1, 0.2, 

0.3, 0.4 and 0.5 for every rise to span ratios in the geometry, which are chosen ten in number, 

starting from 0.1 till 1.0.  

The strain energy at the end of every optimization procedure is noted which is presented in Fig 

5.1. The horizontal axis has the rise to span ratios, while the vertical axis has strain energy of 

the optimized structure. Table A-1 has been used to construct the graph which is provided in 

Annexure – A.  
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Fig 5.1: Effect on strain energy by changing rise to span ratios for various volume fractions.  

 

CHAPTER 5 – RESULTS AND INTERPRETATION 
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Following observations can be made from the graph and obtained output of the forms: 

• For small volume fractions, strain energies of the optimized arches are comparatively very 

high when rise to span ratio is small. 

This is because on one hand, the small rise to span ratio restricts the arch action from 

developing fully, and on the other, the small amount of available volume is not sufficient 

for attaining other forms (like that of a truss). Hence, a shallow, flat arch is generated which 

has low stiffness and hence high strain energy.  

The form shown in Fig 5.2-(a) has a strain energy of 1400 N.m, while the one in Fig 5.2- 

(b) has a strain energy of 1010 N.m. In the latter, the structure is shown changing its form 

from an arch type to a truss type.  

• If the rise to span ratio is less than 0.2 – 0.25, then for a particular value of this ratio, 

increasing the volume fraction rapidly decreases the strain energy. It means that for shallow 

domains, adding more volume rapidly increases the stiffness of the structure. 

For example, in Fig 5.3, (a), (b) and (c) have strain energies of 1400 N.m, 508.7 N.m and 

303 N.m, respectively.  The huge drop in strain energies from (a) to (b) can be attributed 

to change in form from that of a shallow arch to a truss. 

 

 

(a) 

(b) 

Fig 5.2: Two forms, corresponding to volume fraction of 0.1 for a rise : span of  (a)  0.1; (b) 0.2  
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• After the rise to span ratio has crossed that range, then for a particular value of this ratio, 

increasing the volume fraction has very low effect on decreasing the strain energy. It means 

that once a sufficient depth of the domain has been reached, adding more material adds 

little to the improvement in the stiffness of the structure. The form is already found and the 

extra material is just deposited over this form (Fig 5.5 – 5.7). 

 

• If the volume of the final structure is kept constant and it is allowed to be distributed for 

different rise to span ratios, it 

is found that the structure 

formed goes from truss form 

to arch form once the rise to 

span ratio of 0.2 – 0.25 is 

crossed. The strain energy 

falls rapidly with rise to span 

ratio (till 0.2-0.25), and then 

the drop is negligible (Fig 5.4, 

Fig 5.8 – 5.10). 

 

Fig 5.3: Three forms, corresponding to rise : span of 0.1, for volume fraction (a) 0.1; (b) 

0.3; (c) 0.5. These forms have highest strain energies for their respective volume fractions.  
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constant volume (35 m3). Refer Table A-2 in Annexure – A.  
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(c) 

(b) 

(a) 

Fig 5.5: Forms obtained for a rise : span ratio of 0.5 for volume fractions (a) 0.3; (b) 

0.4; (c) 0.5. 
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(a) 

(b) 

(c) 

Fig 5.6: Forms obtained for a rise : span ratio of 0.7 for volume fractions (a) 0.3; (b) 

0.4; (c) 0.5. 
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Fig 5.7: Forms obtained for a rise : span ratio of 1 for volume fractions (a) 0.1; (b) 

0.2; (c) 0.3. 

(a) 

(b) 

(c) 
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Fig 5.8: Forms obtained for a rise : span ratio of (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4 for 

a constant volume (35m3) 

(b) 

(a) 

(c) 

(d) 
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Fig 5.9: Forms obtained for a rise : span ratio of (a) 0.5; (b) 0.6; (c) 0.7 for a 

constant volume (35 m3) 

(a) 

(b) 

(c) 
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(b) 

(c) 

(a) 

Fig 5.10: Forms obtained for a rise : span ratio of (a) 0.8; (b) 0.9; (c) 1.0  for a 

constant volume (35 m3) 
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5.1.2 Interpretation of Results 

All the arch forms obtained have a common characteristic – they are uniformly stressed in the 

arch rib which remains constant in depth in every form obtained, while the hangers are having 

negligible stress compared to the arch ribs. Thus, the design obtained corresponds to the design 

for an arch (bowstring) bridge with constant force in the arch segments, and the load transfer 

takes chiefly through the arch. The form and force diagram are shown below in Fig 5.11. 

Increasing volume fraction has very low effect on diminishing the strain energy, once a 

particular range of rise to span ratio is crossed. This can be interpreted in the following manner. 

For very shallow bridge heights, the arch action is not developed fully, so while an arch is 

formed for very low volume fraction (0.1), it is not the most efficient in stiffness. Hence, when 

more volume is supplied to such shallow heighted domains, it gets redistributed to form the 

truss type form with the top member running along the top of the domain, and the stiffness 

increases, decreasing the strain energy.  

 

As the height of the domain is increased, the arch action develops further till it is completely 

developed around the rise to span ratio of 0.2 – 0.25. Thereafter, the supplying more volume 

doesn’t result in any better arch action, hence the improvement in stiffness is unremarkable. 

Further supplied volume is simply deposited on the already acquired form, making the 

members thicker and diminishing the stresses. 

 

Fig 5.11: Form and force diagram for an arch bridge with constant force in the arch segments. 
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When a constant volume is distributed across domains with different rise to span ratios, the 

material is forced into a truss form when the depth is shallow, and as the depth increases it 

assumes the form of an arch with constant force. The hangers are negligibly stressed, and the 

load is chiefly carried through the arch and tie action. 

 

The magnitude of load has little effect on the form of an arch bridge which carries constant 

force in it’s arch segments. It can be demonstrated 

through form and force diagram shown in Fig 

5.12. In this figure, the loads acting on the arch 

bridge shown in Fig 5.11 have been doubled. It is 

shown that the orientation of the members 

remains the same, only that the forces in them get 

magnified. It can be noted from the force diagram 

that the hangers are carrying quite less forces as 

compared to the arch segments, which explains 

them being low in stresses as obtained in the 

results. 

 

 

 

5.2 Optimization of Long Span Bridge Forms on Tosca/Abaqus 2019 

The details of the model have been provided in Chapter -4. Objective function remains to minimize 

the strain energy of the structure. 

For a volume fraction of 0.13 (chosen to get the best clarity in form) and mesh size of 1 m, the 

following bridge form is obtained (Fig 5.13).  

 

Fig 5.12: Force diagram for constant force in 

the arch segments when loading is doubled; 

concentric circles are arch force envelops. 

 

Fig 5.13: Bridge form obtained for volume fraction of 0.13.   
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The strain energy for this structure is 1.72 × 108 N.m, and the central deflection is 1.42 m. 

 

When the mesh size is changed to 5m, the strain energy of the structure is obtained as 2.24 × 108 

N.m and the central deflection is 1.04 m. Since the deflections are large, geometric non-linearity 

is incorporated in analysis and the resulting form has a strain energy of 2.17 × 108 N.m, deflecting 

2.38 m at center. Bridge form obtained is the same in both the cases, shown in Fig 5.14.  

 

 

 

 

 

 

 

These bridge forms can be seen to have two kinds of optimal regions, an inner region in which 

tensile and compressive members cross orthogonally, and an outer region that contains only tensile 

members.  

 

These forms match with those obtained by Pichugin et al. in <Fig> and Gilbert et al in <Fig> which 

they have obtained by optimizing a discrete design domain under stress constraints. Thus, it can 

be seen that forms optimum for least weight under stress constraints are also optimum for 

maximum stiffness, or minimum strain energy for particular volume constraints. In a way, the 

validity of SIMP as a material model is also established, because it replicates the results that are 

obtained by the ground structure approach.  

 

 

 

 

 

Fig 5.14: Bridge form obtained for volume fraction of 0.13 with a mesh size of 5 m. 

Same form is obtained for a non-linear analysis. 
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5.3 Changing Limiting Compressive to Tensile Stress Ratio in Rhino 3D 

The ratio of limiting compressive to tensile stress is changed and optimization is performed for 

minimum strain energy keeping the constraint of volume fraction fixed to be 0.15. This value of 

volume fraction is chosen so that the best resolution for the visual output can be obtained. If the 

mentioned ratio is greater than unity, then the design is compression dominant; on the other hand, 

keeping the ratio less than unity makes the design dominant towards tension.  

Following is the variation of the strain energy with varying ratios of limiting compressive to tensile 

stress (mentioned in the graph as ratio). Table A-3 for the data sets can be found in Annexure A.  

 

It is observed that the strain energy keeps monotonically decreasing as the design is made dominant 

towards tension by decreasing the ratio. Tension dominant structures, for the same amount of 

volume, are stiffer than compression dominant structures when optimized for minimum strain 

energy. Prima-facie, this appears to be an anomaly.  

On the following page, the shapes revealed for some typical ratios are depicted in Fig 5.16, and 

they are validated with the forms available in the literature obtained through weight minimization 

with stress constraints, using the discrete ground structure approach. 
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It can be observed that as the ratio is decreased below 1, the spokes of the wheel shrink together 

to form pylon-like structures and come closer as the ratio is further decreased, to resemble cable 

stayed forms. When the ratio is increased above ten, the structure degenerates into arch forms with 

spurs radiating from supports to the arch rib, and when the ratio is sufficiently high, it  forms an 

arch with vertical suspenders. This is in consistence with the findings of Pichugin et al. who 

employed weight minimization on a discrete ground structure with stress constraints.  

Fig 5.16: Bridge forms obtained for volume fraction = 0.15, and ratio (a) 0.1; (b) 0.5; (c) 1.0; 

(d) 5; (e) 8; (f)10 
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A suspension bridge can also be obtained as an optimum form by changing the boundary 

conditions – pinned line supports provided at the top of the design domain, exactly at the ordinate 

and of the same length as the intermediate pinned line supports, simulate the presence of a upwards 

prop <Fig>.  

However, the strain energy of the resulting suspension form (Fig 5.17) is much greater than the 

Mitchell’s form. For example, for a volume fraction of 0.3, Michell’s form comes to have a strain 

energy of 8.71 × 103 while the suspension form has a strain energy of 4.053 × 107 N.m.  

 

 

 

 

 

 

This was the best resolution that could be 

obtained with the filter radius of 1.5 

recommended in the SIMP procedure. Using a 

lower filter than this gives checkerboard problem 

where there are alternate stiff and soft regions 

giving a spurious stiffness (Fig 5.18), and using 

a higher filter radius gives a ‘smeared’ output 

difficult to visually interpret.  

The form obtained for ratio of 0.13 for weight 

minimization using stress constraints by Baker 

et al[8]. is shown in Fig 5.19. It can be readily 

seen to be similar to the form obtained by the 

present analysis, shown in Fig 5.16 (a).  

 

 

Fig 5.17: Suspension bridge form obtained for volume fraction = 0.30, by changing the 

boundary conditions on the design domain 

 

Fig 5.18: Checkerboard pattern observed in the 

form output for filter radius = 1 

Fig 5.19: Form for ratio = 0.13 by Baker et al. 

(2015) 
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❖ On the width of optimal region – T in Michell’s hybrid structure 

As was observed, Michell’s hybrid structure consists of two kinds of optimal regions, R+ and T, 

marked by a vertical transition line. Members in the R+ region are straight and they shoot off as 

tangents to the arcs in the T region. 

The width of the T region can be 

calculated using Maxwell’s 

Theorem. Let the span be of length 

2L. A single element of the hybrid 

structure is considered of radius r, 

with it’s transition defined by the 

point (xr , yr). Distance of the point 

where this member meets the 

horizontal at angle α is denoted by 

Lr. The loads at the ends of the 

members is F and hence the total 

vertical reaction is 2F at O (Fig 6.1)  

The circular arc at the top, the tangential member and the horizontal link are in tension. They are 

summarized as below. 

Member Length (LT) Force (FT)  LT × FT 

Arc (1 in number) 2𝛼𝑟 =  2𝛼𝐿𝑟 sin 𝛼 𝐹

sin 𝛼
 

2𝐹𝛼𝐿𝑟 

Tangent (2 in number)  𝐿𝑟 cos 𝛼 𝐹

sin 𝛼
 

𝐹𝐿𝑟

tan 𝛼
 

Link (2 in number)  𝐿 −  𝐿𝑟 𝐹

tan 𝛼
 

𝐹 (𝐿 − 𝐿𝑟)

tan 𝛼
 

CHAPTER 6– DISCUSSION 

Fig 6.1: Geometry and loading on an element taken from 

the Michell’s hybrid structure 

 

Table 6.1: Lengths and forces of tension members in the element  

 



38 
 

Dot Product of forces ∑�̅� ⋅ �̅� can be found by choosing the origin O as the reference point. Only 

the horizontal pull H has a non zero dot product. This comes out to be  

∑�̅� ⋅ �̅� =  
2𝐹𝐿

tan 𝛼
 

For allowable stress σ, total volume, thus by Maxwell’s Law is given by  

1

𝜎
(2∑𝐹𝑇𝐿𝑇 − ∑�̅� ⋅ �̅� ) =  

2

𝜎
(2𝐹𝛼𝐿𝑟 +  

𝐹𝐿

tan 𝛼
) 

Differentiating with respect to α, we get  

𝐿𝑟 =  
𝐿 𝑐𝑜𝑠𝑒𝑐2𝛼

2
 

Noting that 𝑥𝑟 = 𝐿𝑟𝑠𝑖𝑛2𝛼, we get  

𝑥𝑟 =  
𝐿

2
 

In other words, the T region has a width half of the span. As given by Pichugin et. al, this distance 

is given by[3]  

𝐿𝑟 =  
𝜎𝑐 𝐿

𝜎𝑐 + 𝜎𝑇
 

When the permissible stress is same both in tension and compression, the same result is obtained 

as through Maxwell’s law.  
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Following have been the salient observations made in this study: 

• Structures optimized for weight under stress constraints are similar to those optimized for 

compliance (or strain energy) under volume constraints, if the material is in elastic range. 

This is corroborated by the validation of the forms for long spans obtained in this study 

through compliance minimization, with the forms optimum for weight under stress 

constraints presented in literature.  

 

• Arch forms are more efficient in stiffness than truss forms for same volume of material 

used. For arch action to be fully developed, a certain amount of depth has to be available, 

or the material is constrained to form into a truss system. A rise to span ratio of 0.2 – 0.25 

appears to be the value around which it develops fully.  

 

• Optimum arch bridges use arch and tie action for load transfer. The arch (and tie) are under 

constant force (stress) while the suspenders carry relatively little load. 

 

• For sufficiently deep arches, adding material makes insignificant changes to the stiffness 

and the optimum form. 

 

• Hybrid Michell form is best suited for the configuration of long span bridges, although it 

may be difficult to construct owing to complex geometry. 

 

• Changing the ratio of allowable compressive to tensile stresses gives a family of bridge 

forms even for compliance minimization under volume constraints. At the end of 

compression dominance lie arch forms, while cable stayed forms lie at the end of tension 

dominance. However, the tension dominant forms show to be stiffer than the compression 

dominant forms.  
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rise : span Strain Energy (N.m) 

vfrac = 0.1 vfrac =0.2 vfrac =0.3 vfrac =0.4 vfrac = 0.5 

0.1 1400 1010 508.7 367 303 

0.2 1029 140 83.7 66.3 56.4 

0.3 196.8 64.1 42.8 34.7 30.3 

0.4 131.1 44.1 31.9 26.7 23.9 

0.5 81.1 36.8 28 24 21.7 

0.6 68.4 32.1 25.2 22.1 20.4 

0.7 60.9 28.9 23.3 20.8 19.6 

0.8 46.6 27 22.1 20 19 

0.9 41 25.2 21.2 19.5 18.7 

1.0 37.5 23.9 20.5 19.2 18.3 

rise : span  Strain Energy 

(N.m) 

0.1 1227 

0.2 373 

0.3 265 

0.4 258 

0.5 262 

0.6 264 

0.7 265 

0.8 269 

0.9 263 

1.0 263 

ANNEXURE - A 

Table A-1: Data points for Fig 5.1 

 

Table A-2: Data points for Fig 5.4; volume 

taken is 35 m3. 

 

 

Ratio Strain Energy 

(units) 

0.1 7367 

0.2 9810 

0.3 10380 

0.5 13770 

0.6 14580 

0.8 16880 

1.0 18910 

5.0 35660 

7.0 42680 

10.0 47000 
 

Table A-3: Data points for Fig 5.15 

 


