
1

GLOBAL MINIMIZATION USING COUPLED LOCAL
MINIMIZERS AND POTENTIAL APPLICATIONS IN

GEOPHYSICAL DATA

A DISSERTATION

submitted towards the partial fulfilment of the

requirements for the award of the degree

of

INTEGRATED MASTER OF TECHNOLOGY

in

GEOPHYSICAL TECHNOLOGY

by

MRIDUL RAZDAN

Enrollment Number: 14410011

DEPARTMENT OF EARTH SCIENCES

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247667 (INDIA)

MAY 2019

2

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE, UTTARAKHAND -247667

3

CANDIDATE’S DECLARATION

I hereby declare that the work which is presented in this dissertation report
titled “Global Minimization using Coupled Local Minimizers and Potential
applications in Geophysical Data” in partial fulfilment of the requirements
for the award of the degree of “Integrated Master of Technology” in
Geophysical Technology, submitted to the Department of Earth Sciences,
Indian Institute of Technology Roorkee is an authentic record of my own work
carried out during the period from July 2018 to May 2019 under the
supervision of Dr P.K. Gupta, Emeritus Fellow and Dr. M. Israil, Professor,
Department of Earth Sciences, Indian Institute of Technology Roorkee.

The matter contained in this thesis has not been submitted by me for award of
any other degree at any institution.

Date: MRIDUL RAZDAN (14410011)

Place: IIT Roorkee 5th Year, IMT Geophysical Technology

 Department of Earth Science, IIT Roorkee

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to
the best of my knowledge and belief.

DR. P.K. GUPTA DR. M. ISRAIL

Supervisor Supervisor

Emeritus Fellow Professor

Department of Earth Sciences, Department of Earth Sciences,

IIT Roorkee IIT Roorkee

4

ACKNOWLEDGEMENT

This dissertation would not have been possible without the guidance and
support of Dr. P. K. Gupta, Emeritus fellow & Dr M. Israil, Professor, Department
of Earth Sciences, IIT Roorkee. I thank them both for mentoring me and guiding
me through all the obstacles. Dr. P.K. Gupta has been a constant source of
inspiration throughout my time here as his student. His thought-provoking
ideas and constant constructive criticism have helped me to refine my work and
develop the skills what I have today.

I would like to thank all the people in Department of Earth Sciences, IIT
Roorkee for their administrative support.

I would also like to sincerely extend my thanks to my batchmates and friends
for their guidance and encouragement throughout my time here. I’d like to
especially thank Omkar, Mandeep, Naveen, Saurav, Rutuj, Gautham, Keshvam,
Nikhil for their constant support and Rimple for his technical help and
expertise.

Finally, I acknowledge the love and support of my family, who have always
stood by my side.

5

TABLE OF CONTENTS

CERTIFICATE .. 2

CANDIDATE’S DECLARATION ... 3

ACKNOWLEDGEMENT ... 4

TABLE OF CONTENTS ... 5

ABSTRACT .. 7

LIST OF FIGURES ... 8

CHAPTER 1: OPTIMIZATION THEORY .. 9

1.1 Introduction ... 9

1.2 Types of Optimization Problems ... 11

1.3 Optimization workflow .. 12

CHAPTER 2: OPTIMIZATION TECHNIQUES – PART 1 ... 14

2.1 Fundamental Strategies to approach convergence .. 14

2.2 Conjugate Gradient Method ... 18

2.3 Quasi Newton Methods .. 19

CHAPTER 3: OPTIMIZATION TECHNIQUES – PART 2 ... 22

3.1 Heuristics and Metaheuristics .. 22

3.2 Simulated Annealing ... 23

3.3 Genetic Algorithm... 26

CHAPTER 4: COUPLED LOCAL MINIMIZERS (CLMs) ... 30

4.1 Introduction .. 30

4.2 The Method ... 30

4.3 Implementation ... 33

4.4 Application .. 34

4.5 Performance ... 36

4.6 Potential Geophysical Applications .. 39

6

CONCLUSION ... 40

5.1 Summary of Results ... 40

5.2 Discussion .. 40

APPENDIX A: CODE SNIPPETS ... 41

REFERENCES ... 46

7

ABSTRACT

Mathematical optimization of a function is usually necessary in every field of
science. Optimization is performed to find the ideal solution to a well-defined
quantitative problem in a variety of disciplines. Fundamentally, an optimization
problem involves maximizing or minimizing a cost/benefit function by
systematically selecting input values from within a permitted set and
calculating the function's value. In Geophysics, we employ optimization
schemes to solve inverse problems, which are the backbone of any geophysical
workflow, to calculate causal parameters from observational data. A lot of
optimization methods, linear and stochastic/probabilistic, are popularly used
today but each have their own set of problems. This dissertation addresses the
latter and focuses on a relatively uncommon but efficient method applicable to
global optimization of functions that may possess multiple local optima
(minima/maxima), by using global approach, co-operative coupling and quick
convergence. The method is then tested to ascertain the quality of its solution.
Potential Geophysical applications are also discussed.

8

LIST OF FIGURES

Figure 1: A graph of a function showing its extrema .. 10

Figure 2: A Flowchart for the optimal design procedure ... 12

Figure 3: The global minimizer of the aforementioned univariate function is

the ideal step length .. 15

Figure 4: Line Search vs Trust Region Approach ... 18

Figure 5: A comparison of CGM and Steepest Descent .. 19

Figure 6: A representation of the metaphors commonly used in GA 26

Figure 7: Flowchart of the GA process .. 27

Figure 8: 3-D Surf Plot of the 2-D test function ... 34

Figure 9: Test function plot as given in Teughels et al (2003) indicating the

global minimum. ... 35

Figure 10: Paths taken by the individual minimizers for Test run #1 36

Figure 11:Function Value vs Iterations for Test run #1 .. 37

Figure 12: Paths taken by the individual minimizers for Test run #2 38

Figure 13: Function Value vs Iterations for Test run #2 ... 38

Figure 14: Objective function based on fundamental mode in Degrande et al

(2008) ... 39

Figure 15: CLM optimization of the function ... 39

Figure 16: Input data initialization: ... 41

Figure 17: Function defined as an object. The greyed out functions were also

tested separately .. 41

Figure 18: Random guess function for search point initialization 42

Figure 19: L2 Norm calculation ... 42

Figure 20: Gradient Calculation ... 43

Figure 21: Hessian Approximator... 44

Figure 22: Augmented Lagrangian function definition ... 45

file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070042
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070043
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070044
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070044
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070051
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070052
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070053
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070054
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070055
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070055
file:///M:/DISK/Padhai/5th%20year/Dissertation/Thesis/Mridul%20Razdan%2014410011%20Dissertation%20Report.docx%23_Toc9070056

9

CHAPTER 1: OPTIMIZATION THEORY

1.1 Introduction

Optimization, in general terms, refers to obtaining the best possible solution to
a posed problem. Mathematical Optimization, also referred to as Mathematical
Programming, is a collection of mathematical principles and methods that are
used to solve problems across several disciplines such as pure sciences,
engineering, economics and business. Optimization is performed to find the
ideal solution (or as close to an ideal solution as possible) to a well-defined
quantitative problem. Fundamentally, an optimization problem involves
maximizing or minimizing a cost/benefit function by systematically selecting
inputs from within a given domain (the set of all feasible solutions) till the
computed value of the function reaches the desired point.

Optimization is a powerful tool in helping us make informed decisions, generate
strategies and analyzing physical systems. Optimization problems are
expressed in terms of variables or unknowns (sometimes referred to as
‘degrees of freedom’), the domain, the function to be optimized (referred to
as the ‘objective’), and occasionally constraints as and when necessary.

10

In mathematical terms, say we have a function 𝑓: 𝑋 → ℝ from some set X to
the real numbers, then for an optimal solution, we seek an element 𝑥0𝜖 𝑋 such
that 𝑓(𝑥0) ≤ 𝑓(𝑥) for all 𝑥 𝜖 𝑋 in case of minimization (or vice versa for
maximization)

Here, 𝑓(𝑥) is our objective, 𝑥 is our variable or unknown. 𝑥0 is our optimal
solution. This is an unconstrained optimization problem since we haven’t
imposed constraints or limits on our variables.

Figure 1: A graph of a function showing its extrema

11

1.2 Types of Optimization Problems

Optimization problems can be classified based on a variety of factors. These
primarily include (but are not limited to):

• Type of constraints

o Constrained optimization problems

o Unconstrained optimization problems

• Nature of the equations involved

o Linear programming problems

o Non-linear programming problems

• Deterministic nature of variables

o Deterministic programming problems

o Probabilistic or stochastic programming problems

• Permissible value of design variables

o Integer programming problems

o Real-valued programming problems

• Number of objective functions

o Single-objective programming problem

o Multi-objective programming problem

Identifying what type of problem we have is imperative since it allows us to
construct an appropriate model. From here on, we shall work on the
assumption that the optimization to be performed is a minimization problem.

12

1.3 Optimization workflow

Constructing a model

The first and quite possibly the most vital step in optimization is to construct
an appropriate model, that accurately reflects the characteristics of our
problem. A better/more suitable model that fits the given problem will provide
a better solution after the optimization process is complete.

Modeling is the process of the identification of the objective, the variables and
the constraints of the given problem and then expressing them in mathematical
terms.

Figure 2: A Flowchart for the optimal design procedure

13

An objective is a quantitative measure of the performance of the system that
we want to optimize. This may include maximization of profits in business or
minimization of error/misfit in sciences.

The variables are the components of the system that we wish to find the
optimal values for in order to obtain the desired response from our system. In
other words, optimization helps us find the best variables for which the value
of the objective function is maximum/minimum. For example, the parameters
in a subsurface model.

The constraints are the functions that describe the relationships and impose
limits on the variables. They help us narrow down the domain of feasible
solutions.

Choosing an optimization algorithm

Several computational algorithms have been formulated to solve optimization
problems. They may range from those that terminate in a finite number of steps,
or those that converge to a solution iteratively, or heuristics and metaheuristics
that may provide approximately optimal solutions but are more robust.

For the sake of concision and brevity, we shall only discuss the optimization
techniques which are relevant to the topic of this dissertation. Optimization
techniques are discussed in the next chapter.

Obtaining the solution

After we have chosen the most appropriate algorithm to suit our problem, the
next step is to solve it. Algorithms that terminate in a finite number of steps
return the solution when their optimality condition is satisfied. Some meta-
heuristics on the other hand can go on until we manually decide when to
terminate them (for example after a certain number of iterations) or impose
additional constraints (for example the improvement in the solution being
below a certain threshold) to re-define an optimality condition.

14

CHAPTER 2: OPTIMIZATION TECHNIQUES – PART 1

2.1 Fundamental Strategies to approach convergence

Unconstrained minimization is the most basic form of minimization problems
and they arise frequently in many direct applications. They can also arise as a
result of reformulating constrained minimization problems by replacing the
constraints with some penalty parameters added to our objective function
which have the effect of making discouraging the optimization procedure to
violate constraints.

Every unconstrained minimization algorithm requires the user to provide a
starting or initiation point 𝑥0. It can be an arbitrarily chosen point or it can be
an educated guess. The latter is more likely when the user possesses good
information about the nature of the objective and the dataset. The starting point
may also be chosen by an algorithm, either randomly or by a systematic
approach.

Beginning at 𝑥0, the algorithm iterates the value of 𝑥 as {𝑥𝑘}𝑘=0
∞ which

terminates upon reaching the optimization criteria. To move from one iterate
to the next, the algorithm uses the information about the function at that point
and sometimes also that of earlier iterates.

There are 2 fundamental strategies for moving from the current point 𝑥𝑘 to the
next 𝑥𝑘+1. The Line search and Trust region approach.

LINE SEARCH

In line search, the algorithm calculates a search direction and subsequently
computes how much distance to move along it. The iteration is formulated as:

𝑥𝑘+1 = 𝑥𝑘+𝛼𝑘𝑝𝑘

Here, 𝛼𝑘 is a scalar and is known as the ‘step length’ and 𝑝𝑘 is the search

direction. An effective line search requires good choices of both 𝛼𝑘 and 𝑝𝑘.

15

Step Direction

The condition to be satisfied is: 𝑝𝑘
𝑇𝛻𝑓𝑘 < 0

to guarantee the reduction along the search direction (now called the descent
direction).

 𝑝𝑘 can have the form: 𝑝𝑘 = −𝐵𝑘
−1𝛻𝑓𝑘

Where 𝐵𝑘 is nonsingular and symmetric. It can be the identity matrix I in the
steepest descent method. On the other hand, in Newton’s method, it is the exact
Hessian 𝛻2𝑓(𝑥𝑘) or the approximate to the Hessian (updated at every step) in
Quasi-Newton methods.

Combining the above, we get: 𝑝𝑘
𝑇𝛻𝑓𝑘 = −𝑓𝑘

𝑇𝐵𝑘
−1𝛻𝑓𝑘 < 0

Step Length

Step length needs to be chosen in such a way that the reduction of f is
substantial but not too computationally expensive. The ideal choice would be
the global minimizer of the function defined by 𝜙(𝛼) = 𝑓(𝑥𝑘+𝛼𝑘), 𝛼 > 0 but it’s
very expensive to identify. Therefore, for practicality, we perform an infline
search to achieve substantial reduction at minimal cost.

Figure 3: The global minimizer of the aforementioned univariate function is the ideal step
length

16

TRUST REGION

Trust-region methods define a region around the current iterate within which
they trust the model to be an appropriate representation of the objective
function, and then choose the step to be the approximate minimizer of the
model in this region. Effectively, they choose the direction and length of the step
simultaneously. If the current step size isn’t appropriate, these methods reduce
the size of the trust region and find a new minimizer. The direction usually
changes when the step size does.

Trust Region

The trust-region is defined as a spherical area of radius in which the trust-
region subproblem lies.

Trust-region subproblem

If we are using the quadratic model to approximate the original objective
function, then our optimization problem is essentially reduced to solving a
sequence of trust-region subproblems

Where is the trust region radius, is the gradient at current point

and is the hessian (or a hessian approximation). It is easy to find the

solution to the trust-region subproblem if is positive definite.

Actual reduction and predicted reduction

The most critical issue underlying the trust-region method is to update the size
of the trust-region at every iteration. If the current iteration makes a
satisfactory reduction, we may exploits our model more in the next iteration by

setting a larger . If we only achieved a limited improvement after the current
iteration, the radius of the trust-region then should not have any increase, or in
the worst cases, we may decrease the size of the trust-region by adjusting the
radius to a smaller value to check the model’s validity.

17

Whether to take a more ambitious step or a more conservative one is depend
on the ratio between the actual reduction gained by true reduction in the
original objective function and the predicted reduction expected in the model
function. Empirical threshold values of the ratio will guide us in determining
the size of the trust-region.

Pseudocode

Set the starting point at , set the iteration number

for

Get the improving step by solving trust-region sub-problem ()

Evaluate from equation()

if

else

if and (full step and model is a good approximation)

else

if

else

(the model is not a good approximation and need to solve another
trust-region subproblem within a smaller trust-region)

end >

18

Figure 4: Line Search vs Trust Region Approach

2.2 Conjugate Gradient Method

The conjugate gradient method is a mathematical technique which is useful for
both linear and non-linear systems optimization. Conjugate Gradient algorithm,
which is generally used as an iterative technique, can also be used as a direct
method, producing a numerical solution. This method is used in very large
systems where solving with a direct method is not practical.

Non-Linear CGM

Say our initial function is

A residual is calculated. The residual is always the negative of the

gradient in the NL case. using the Gram-Schmidt conjugation of
the residuals, we compute the search direction. We subsequently use line
search which is much more difficult in the NL case. We search for a value of is

19

found in order to minimize This is achieved by ensuring the
gradient and the search direction are orthogonal.

To find the value of there are multiple methods. Two of the better equations
are the Fletcher-Reeves (which is used in linear GC) and the Polak-Ribiere
method. The former converges only if initial guess is sufficiently close to the
desired minimum, while the latter can sometimes cycle infinitely but often
converges more quickly.

Fletcher-Reeves:

Polak-Ribiere:

Figure 5: A comparison of CGM and Steepest Descent

2.3 Quasi Newton Methods

Quasi-Newton Methods are a class of optimization methods that are used in
Non-Linear Programming when full Newton’s Methods become either exhibit
slow convergence or difficulty in use. More specifically, these methods are used
to find the global minimum of a function f(x) that is twice-differentiable. There
are distinct advantages to using Quasi-Newton Methods over the full Newton's

20

Method for expansive and complex non-linear problems. Though, these
methods are not exact, and may have some limitations depending on the nature
of Quasi-Newton Method used and the target problem. In spite of this, Quasi-
Newton Methods are generally worth using with the exception of very simple
problems. In this section we are going to specifically discuss about the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm since it has direct
application in this work.

BFGS ALGORITHM

The BFGS algorithm is an iterative algorithm of the line search family used to
solve unconstrained non-linear optimization challenges.

BFGS (similar to other newton-like methods) uses quadratic Taylor
approximation of the objective function in a d-vicinity of x:

f(x + d) ≈ q(d) = f(x) + dTg(x) + ½ dTH(x) d,

where g(x) is the gradient vector and H(x) is the Hessian matrix.

The necessary condition for a local minimum of q(d) with respect to d results
in the linear system:

g(x)+ H(x) d = 0

which, in turn, gives the Newton direction d for line search:

d = - H(x)-1g(x))

The exact Newton direction (which is subject to define in Newton-type
methods) is reliable when

• The Hessian matrix exists and positive definite;

• The difference between the true objective function and its quadratic
approximation is not large.

In Quasi-Newton methods, the idea is to use matrices that approximate the
Hessian matrix and/or its inverse rather than exact Hessian matrix
computation (as in Newton-type methods).The matrices are normally named B
≈ H and D ≈ H -1.

On each iteration, the matrices are adjusted and can be produced in many
different ways, from very simple techniques to highly advanced schemes.

21

The BFGS method uses the BFGS updating formula which converges to H (x*):

where

• sk = xk+1 - xk,

• yk = gk+1 - gk.

As a starting point, B0 can be set to any symmetric positive definite matrix, for
example and very often, the identity matrix.

The BFGS method exposes superlinear convergence; resource-intensivity is
estimated as O(n2) per iteration for n-component argument vector.

22

CHAPTER 3: OPTIMIZATION TECHNIQUES – PART 2

3.1 Heuristics and Metaheuristics

In this chapter, we shall be discussing another method of optimization besides
finitely terminating algorithms and convergent iterative methods. These
methods are known as Heuristics and Metaheuristics

Heuristics are problem dependent techniques i.e. they are adapted to the
problem at hand. They do not have the guarantee of an exact or optimal solution
but give a ‘good’ solution in a ‘reasonable’ amount of time. They work similar to
empirical search methods but may get too greedy and trapped in a local minima

Metaheuristics on the other hand, are a high level, relatively problem
independent implementations that provide a set of guidelines or strategies to
develop heuristic methods suitable for the problem. Since there are no
satisfactory exact general solutions for all global optimization problems, we
therefore employ metaheuristics to formulate a solution to such problems
without having to deeply adapt to each. We shall be discussing some important
metaheuristics that are used to solve global optimization problems.

Metaheuristics are very diverse in that they can be single-solution based or
population based, may be memetic or hybridized with other optimization
approaches. A lot of them are inspired by nature or real-life processes. In
particular, we shall be discussing two of the most influential metaheuristics in
use today.

23

3.2 Simulated Annealing

Simulated Annealing is a probabilistic search technique to approximate the
global minimum for a general function (meaning that it isn’t problem specific
and therefore not optimized to solve a particular class of problems). In a large
search space, the SA technique works as a metaheuristic to find an approximate
optimum in a reasonable amount of time. Therefore, SA is preferable when
finding an exact solution is not a priority but rather, minimizing time and
computational constraints are.

Inspiration

The algorithm is inspired from the real-life metallurgical process of the
eponymous ‘Annealing’. Annealing in metal-working is a thermodynamic
process that involves heating a metal above its recrystallization point and then
controlled cooling to remove internal stresses, increase crystal size and decrease
solid defects. These characteristics of the metal being worked are dependent on
its Thermodynamic Free Energy while the parameter that controls the
process is Temperature.

Interpretation of the analogy

These factors are integrated into the SA algorithm in the following way:

• On cooling quickly, the metal becomes hard but brittle and glassy. This is
analogous to a local minimum.

• On slow and controlled cooling, the metal crystals grow in size and
internal defects reduced. This optimizes the internal structure of the
metal to remove internal stresses. This is analogous to a global minimum.

As the metal cools, its structure becomes more and more fixed allowing it to
retain its newly obtained properties. The process of slow cooling discussed
above is interpreted as a gradual reduction in the probability of acceptance of
worse solutions as the algorithm explores the search space. The idea of
accepting worse solutions is one of the fundamental properties of
metaheuristics since it allows them to more thoroughly explore the search

24

space and have a greater chance of finding the global optimum. This ensures
that they do not get stuck at a local minimum.

Parameters and their implementation

To simulate the annealing process, we implement the notion of cooling via a
temperature variable T. The fitness or worseness of solution is characterized
by the internal energy of the system which represented by E. It is our cost
function or misfit function that has to be minimized. The stable state of any
system is the one with the least internal energy so this analogy makes sense.

Now, we use a Maxwell-Boltzmann distribution for statistical simulation of
probability. This distribution is also followed by gas molecules.

p = e− ΔE/kT

In the distribution model, p the probability that a system with a lower energy
state E will exist. In our SA algorithm, we use it to denote the acceptance
probability of worse solutions.

k is the Boltzmann constant

So, we can see that when T is high, E has a marginal effect (since p is close to 1).
Thus the probability of acceptance of worse solutions is higher.

At low T, E has a significant effect, thus the lowered threshold for misfit and
only good solutions have a chance to be accepted.

Algorithm

1. Generate a random solution. Doesn’t need to be the best guess at optimal
solution.

2. Calculate using its cost using a defined cost function. The cost function
needs to be relatively simple since it gets called at every iteration.

3. Generate a random neighbouring solution.

4. Calculate the cost of new solution.

5. Compare the cost of both solutions and evaluate the acceptance
probability p.

25

6. Compare p to a random number (generate using RNG) to decide whether
to update the model with the new solution or not.

7. Repeat until optimality criteria are fulfilled.

Pseudocode

• Let s = s0

• For k = 0 through kmax (user defined):

o T ← temperature(kmax/(k+1))

o Pick a random neighbour, snew ← neighbour(s)

o If P(E(s), E(snew), T) ≥ random(0, 1):

▪ s ← snew

• Output: the final state s

Important considerations

• The initial value of T chosen can be important to control the acceptance
rate at the start

• Temperature reduction scheduling is important. The algorithm performs
much better when T is reduced after many iterations

• The cost function must be efficient since it gets called at every iteration.

26

3.3 Genetic Algorithm

The genetic algorithm is a search-based optimization technique inspired by the
process of natural selection (survival of the fittest). We use GA to find optimal
or near-optimal solutions that would otherwise take a long time to solve using
exact algorithms.

Herein we define a fitness function as our survival criteria (in this case it may
be the misfit between observed and computed data values, which we need to
minimize)

Our model is represented as a string of genes that represent a solution. This
string of genes is called the chromosome. It contains model parameters and is
a single encoding of the part of the solution space, i.e. one of the possible
solutions to the problem.

A gene is one element position of a chromosome

An allele is the value a gene takes for a particular chromosome

All of the optimization is done over a population, which is a subset of all possible
(encoded) solutions to the given problem

Figure 6: A representation of the metaphors commonly used in GA

27

Process

The basic premise of GA is to mimic biologic evolution. We start with an initial
population which may be generated at random. The fitness of each initial model
is calculated. Out of these some models are selected to act as parent models for
the next generation of solutions. We may implement elitism to choose models
with highest fitness to directly enter the next generation. A few models with
low fitness are also selected to promote diversity. The chosen models
subsequently undergo reproduction wherein we apply crossover and mutation
operators on the parents to generate new offsprings. These replace their parent
population and form the new selection pool of solutions. This process repeats
until the stop criterion is reached.

The process can be depicted as:

Figure 7: Flowchart of the GA process

28

STEPS

Pre-initialization

Before initializing our model population, we need to choose a proper
representation for our solutions. The parameters need to be discretized first so
that we can represent our model as a chromosome. For Example:

MODEL 1 (1P1 , 1P2 , 1P3 , … , 1PN)

MODEL 2 (2P1 , 2P2 , 2P3 , … , 2PN)

After that we need to map the chromosome to our chosen representation.
Binary representation is one of the simplest and most widely used.

MODEL [2, 5, 4, 7] [0010|0101|0100|0111]

Initialization

After choosing a suitable representation, we can initialize our population. It can
either be a random initialization or we may use a known heuristic (normally
only used to seed the population with a few good solutions). Because it is the
diversity of the models that lead us to the optimal solution.

Fitness Function and Elitism

The generated models are characterized by their ‘fitness’ which can be a
function of the system we’re trying to optimize. For example, it can be the misfit
between observed and computed data.

Using the fitness function, a process called elitism is implemented. It basically
involves the selection of the fittest candidates (the elite) from a generation to
be directly copied into the next generation without changes. The fitness
function assigns weightage to the individual models.

An important consideration is that the choice should be probabilistic rather
than deterministic. (to avoid getting trapped into the local minima) because
otherwise the algorithm with sacrifice long term fitness in favour of short-term
success.

29

Reproduction

Reproduction involves:

A. Parent Selection

B. Crossover

Parent selection is done to add selection pressure towards fitter solutions and
yet prevent some extremely fit solutions from taking over the entire population
because diversity is essential for reaching the optimum.

It may be done by:

a) Fitness proportionate selection (via Roulette wheel method)

b) K-way tournament selection

Crossover is analogous to biological crossover. More than one parents are
selected to produce one or more offsprings with similar characteristics (genetic
material) of their parents. It can be applied in different ways

• One-point crossover

• Multipoint crossover

• Uniform crossover

Mutation

Mutations are small tweaks in the existing chromosomes to get new properties.
It is used to introduce and maintain diversity in the population so that the
algorithm doesn’t converge at a local minimum. It is applied with a low
probability since if we introduce mutations at high probabilities, GA gets
reduced to random search.

30

CHAPTER 4: COUPLED LOCAL MINIMIZERS (CLMs)

4.1 Introduction

While the previously discussed optimization schemes work well, they have
their own set of drawbacks. The convergent iterative methods may be fast but
they often get stuck in local minima. On the other hand, metaheuristics like SA
and GA navigate the solution space well but fail to take into account any of the
information provided by the nature of the function (unlike the gradient based
methods). A method known as optimization via coupled local minimizers
(CLM) is a co-operative search mechanism which incorporates the advantages
of both the fast convergence gradient based methods with the global approach,
parallelism and information exchange of popular metaheuristics. This
combination results in an efficient global optimization algorithm.

4.2 The Method

In the CLM method a group of search points is initially set up, ideally spread
over the search space. The search process is guided by the derivative
information at each of these locations. But instead of performing distinct
individual searches (which happens in case of multi-start local optimization),
these local optimizers are coupled throughout the search process via imposed
constraints that compel all these to converge to a single point.

The co-operativeness of this method is enforced by minimizing the average
value of the objective function, which is the value of the function averaged over
all the search points. This causes all the points in the group to search for the for
the minimum value of this average objective function using derivative
information about the function.

The coupling is enforced by subjecting the search points to pairwise
synchronization constraints that force them to end at the same final location.

31

Augmented Lagrangian Method

We use the Augmented Lagrangian method (sometimes called the Method of
Multipliers) which is a method to solve constrained optimization problems.

 We construct an augmented Lagrangian function L A which is defined by the
average objective function of the points along with the pairwise sync
constraints between individual minimizers.

The function is defined as:

Here L A is the augmented Lagrangian function, f(x) is the objective function

hi(x) are the equality constraints where 𝑥 ∈ ℝ𝑛.

 λi are the Lagrange parameter estimates and γ is the penalty parameter.

∑ 𝝀𝒊𝒉𝒊(𝒙)𝒊̇ expresses the hard constraints.

𝜸

𝟐
∑ 𝒉𝒊

𝟐(𝒙)
𝒊

 expresses the soft constraints.

For every iteration (say ’k’), the augmented Lagrangian L A (x, λk) is minimized
w.r.t. ‘x’ to compute xk* , which is the optimum x for that iteration. Next, we
update the values of λk = (λ1, λ2, λ3, … , λk) using xk* to start the next iteration. λ's
are updated using the formula:

(𝜆𝑖)𝑘+1 = (𝜆𝑖)𝑘 + 𝛾ℎ𝑖(𝑥𝑘
∗)

This continues until the the ideal 𝜆
∗ are found.

CLM Method

Now, say we have a population of q local minimizers. For the objective function
f(x), the average cost is defined as:

32

Next, pairwise sync constraints are enforced on the design vectors that
represent our minimizers 𝑥

(𝑖). This results in a constrained minimization
problem.

Subject to the boundary conditions

Thereafter we define the Augmented Lagrangian function:

where:

𝑥(𝑖), 𝛌(𝒊) ∈ ℝ𝑛

||.|| is the Euclidean norm of a vector.

η is the weighting factor for the average objective function.

Now, the main conditions we want to enforce on the design vectors of local
minimizers is to look for the minimum of the average cost of all search points
and to end up at the same final point. When the initial states are located in the
neighbourhood of different minima, there will be a decision regarding which
one to choose. For an appropriately chosen pair of η and γ, the optimal solution
(usually the global minimum) is obtained. The number of search points needed
(q) usually depends on the shape of the function; more specifically the number
of local minima per of volume.

33

4.3 Implementation

In this dissertation, we use the Broyden–Fletcher–Goldfarb–Shanno algorithm,
which belongs to the class of Quasi-Newton methods. We have discussed the
BFGS method in section 3 of chapter 2.

For an objective function fx, from an initial guess x0, and an appropriate Hessian
Matrix B0, we iterate the following procedure to have xk converge to the
solution.

1. Solve 𝐵𝑘𝑝𝑘 = −𝛻𝑓(𝑥𝑘) to obtain the direction 𝒑𝒌

2. Find the step size 𝜶𝒌 (in the direction found above) using a line search
optimization of 𝒇(𝒙𝒌 + 𝜶𝒑𝒌)

3. Set sk = αkpk and update 𝑥𝑘+1 = 𝑠𝑘+ 𝑥𝑘

4. Compute 𝑦𝑘 = 𝛻𝑓(𝑥𝑘+1) − 𝛻𝑓(𝑥𝑘)

5. 𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠𝑘

𝑇𝐵𝑘
𝑇

𝑠𝑘
𝑇𝐵𝑘

 𝑠𝑘
+

𝑦𝑘𝑦𝑘
𝑇

𝑦𝑘
𝑇𝑠𝑘

In this case our function would be the final Augmented Lagrangian with all the
constraints incorporated.

Due to the usage of BFGS, this method converges very fast using derivative
based information.

Tuning Parameters

η and γ are the tuning parameters for this method and are problem specific. A
priori assumptions for these is difficult. η emphasizes the minimization of the
average objective function while γ acts as a penalty parameter. Increasing γ, we
emphasize soft constraints and convergence rate is improved but too high a
value can cause CLM to converge to a local minimum. On the other hand, a low
γ value makes CLM explore the search space more thoroughly but decreases the
speed at which the algorithm converges. η emphasizes the minimization of the
average objective function.

34

4.4 Application

The CLM method has been used to minimize a function to check its
effectiveness. A 2-D Test function from (Teughels, et al., 2003) has been used to
illustrate the difference in the performance of both CLM implementations.

The function is as follows:

There are 4 minima in this function out of which, one is the global minimum
(4.454, 4.454)

Figure 8: 3-D Surf Plot of the 2-D test function

35

Figure 9: Test function plot as given in Teughels et al (2003) indicating the global minimum.

Two different test runs were carried out with parameters

1. q=8 ; η =3 ; γ=0.02

2. q=8 ; η =3 ; γ=2

This was mainly to test the performance of the algorithm in cases where

a) Solution space is explored thoroughly

b) Fast convergence is prioritized

The initial search points are randomly distributed in the search space. And
initial Lagrange parameter estimates are seeded randomly between [-1,1] .

36

4.5 Performance

The complete population of local minimizers ended up in the global minima
regardless of their initial location.

Test Run #1

q=8 ; η =3 ; γ=0.02

The yellow dots
represent the initial
positions of search
points while the red ones
are the final positions.

Since the γ value is quite
low, we can see that the
solution space is
explored well.

Figure 10: Paths taken by the individual minimizers for Test run
#1

37

We can see that a low γ value results in a pretty slow convergence. The number
of iterations is very high even though after a point, there is barely any decrease
in the function value. This reinforces the idea that the tuning parameters must
be adjusted according to the problem at hand.

Figure 11:Function Value vs Iterations for Test run #1

38

Test Run #2

q=8 ; η =3 ; γ=2

The solution space is not
explored as well in this test
and the algorithm moves
quickly towards
convergence.

We see a greatly reduced
number of iterations and
quick convergence towards
the global optimum without
wasting computational
resources. In this case, the
tuning parameters can be
said to have been better
adjusted.

Figure 12: Paths taken by the individual minimizers for Test
run #2

Figure 13: Function Value vs Iterations for Test run #2

39

4.6 Potential Geophysical Applications

Since CLM proves to be an efficient and robust algorithm, it can be a very useful
tool in inverting geophysical data and constructing accurate models.

Degrande et al (2008) have demonstrated this by utilizing CLM based inversion
in Spectral Analysis of Surface Waves (SASW).

The fast convergence
property that CLM gets by
using derivative based
methods for local
optimization are highly
beneficial to geosciences
since it typically contains
huge datasets for example in
Seismic and EM data.

On the other hand the
parallelism can also highly
benefit the speed of
obtaining solutions because
of strong parallel processing
capabilities in today’s
machines.

Figure 14: Objective function based on fundamental mode in
Degrande et al (2008)

Figure 15: CLM optimization of the function

40

CONCLUSION

5.1 Summary of Results

A relatively uncommon but efficient method of global optimization is
investigated. The CLM algorithm, which combines the benefits from derivative
information based fast-convergence methods and the information exchange
and parallelism found in Global Optimization metaheuristics, was successfully
designed and implemented to minimize a 2-dimensional function. The global
convergence to a single point is enforced using Augmented Lagrangian method
and boundary constraints. Instead of Trust Region approach and Newton’s
method for convergence as used in Teughels et al (2003), we used the Line
search based Quasi-Newton method known as Broyden–Fletcher–Goldfarb–
Shanno (BFGS) Algorithm which arguably provides better performance due to
faster convergence and no requirement of computing the exact Hessian Matrix.

The population of minimizers is shown to converge at the global minima
regardless of their initial start positions showing the robustness of the CLM
method. The effect of tuning parameters is also demonstrated.

5.2 Discussion

Despite being relatively old, CLM hasn’t seen many users in an era dominated
by Global Optimization Metaheuristics such as SA and GA. As discussed in
section 4.6 there are possible geophysical applications in every major field and
the specific advantages CLM offers are very well suited to datasets and
inversion models in Earth Sciences. More work needs to be done in finding a
general solution to the problem of fine-tuning parameters and utilize the
parallelism for tangible computational benefits.

41

APPENDIX A: CODE SNIPPETS

In this appendix are included snippets from the code as including complete
code would be too tedious and consume too much space.

Figure 16: Input data initialization:

Figure 17: Function defined as an object. The greyed out functions were also tested separately

42

Figure 18: Random guess function for search point initialization

Figure 19: L2 Norm calculation

43

Figure 20: Gradient Calculation

44

Figure 21: Hessian Approximator

45

Figure 22: Augmented Lagrangian function definition

46

REFERENCES

Degrande Geert [et al.] Application of the Coupled Local Minimizers Method
to the Optimization Problem in the Spectral Analysis of Surface Waves Method
[Journal]. - [s.l.] : JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL
ENGINEERING, 2008.

Kumar D Nagesh Optimization Methods: M1L3. - [s.l.] : IISc Bangalore.

Nocedal Jorge and Wright Stephen J Numerical Optimization [Book]. - [s.l.] :
Springer.

Suykens Johan A.K., Vandewalle Joos and Moor Bart De Intelligence and
Cooperative Search by Coupled Local Minimizers [Journal]. - [s.l.] : Int. J.
Bifurcation and Chaos, 2001.

Teughels Anne, Roeck Guido De and Suykens Johan A. K. Global
optimization by coupled local minimizers and its application to FE model
updating [Journal] // Computers and Structures. - 2003.

University of British Columbia UBC Calculus Online [Book].

University of Wisconsin [Online] // NEOS Guide .

You Fengqi Northwestern University Process Optimization Open Textbook
[Book].

