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ABSTRACT 
 

Mathematical optimization of a function is usually necessary in every field of 
science. Optimization is performed to find the ideal solution to a well-defined 
quantitative problem in a variety of disciplines. Fundamentally, an optimization 
problem involves maximizing or minimizing a cost/benefit function by 
systematically selecting input values from within a permitted set and 
calculating the function's value. In Geophysics, we employ optimization 
schemes to solve inverse problems, which are the backbone of any geophysical 
workflow, to calculate causal parameters from observational data. A lot of 
optimization methods, linear and stochastic/probabilistic, are popularly used 
today but each have their own set of problems. This dissertation addresses the 
latter and focuses on a relatively uncommon but efficient method applicable to 
global optimization of functions that may possess multiple local optima 
(minima/maxima), by using global approach, co-operative coupling and quick 
convergence. The method is then tested to ascertain the quality of its solution. 
Potential Geophysical applications are also discussed. 
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CHAPTER 1: OPTIMIZATION THEORY  
 

1.1 Introduction 
 

Optimization, in general terms, refers to obtaining the best possible solution to 
a posed problem. Mathematical Optimization, also referred to as Mathematical 
Programming, is a collection of mathematical principles and methods that are 
used to solve problems across several disciplines such as pure sciences, 
engineering, economics and business. Optimization is performed to find the 
ideal solution (or as close to an ideal solution as possible) to a well-defined 
quantitative problem. Fundamentally, an optimization problem involves 
maximizing or minimizing a cost/benefit function by systematically selecting 
inputs from within a given domain (the set of all feasible solutions) till the 
computed value of the function reaches the desired point. 

 

Optimization is a powerful tool in helping us make informed decisions, generate 
strategies and analyzing physical systems. Optimization problems are 
expressed in terms of variables or unknowns (sometimes referred to as 
‘degrees of freedom’), the domain, the function to be optimized (referred to 
as the ‘objective’), and occasionally constraints as and when necessary.  
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In mathematical terms, say we have a function  𝑓: 𝑋 → ℝ  from some set X to 
the real numbers, then for an optimal solution, we seek an element 𝑥0𝜖 𝑋 such 
that 𝑓(𝑥0) ≤ 𝑓(𝑥) for all 𝑥 𝜖 𝑋 in case of minimization (or vice versa for 
maximization) 

 

Here, 𝑓(𝑥) is our objective, 𝑥 is our variable or unknown. 𝑥0 is our optimal 
solution. This is an unconstrained optimization problem since we haven’t 
imposed constraints or limits on our variables. 

 

  

Figure 1: A graph of a function showing its extrema 
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1.2 Types of Optimization Problems 
 

Optimization problems can be classified based on a variety of factors. These 
primarily include (but are not limited to): 

• Type of constraints 

o Constrained optimization problems 

o Unconstrained optimization problems 

• Nature of the equations involved 

o Linear programming problems 

o Non-linear programming problems 

• Deterministic nature of variables 

o Deterministic programming problems 

o Probabilistic or stochastic programming problems 

• Permissible value of design variables 

o Integer programming problems 

o Real-valued programming problems 

• Number of objective functions 

o Single-objective programming problem 

o Multi-objective programming problem 

 

Identifying what type of problem we have is imperative since it allows us to 
construct an appropriate model. From here on, we shall work on the 
assumption that the optimization to be performed is a minimization problem. 
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1.3 Optimization workflow 

 

Constructing a model 

The first and quite possibly the most vital step in optimization is to construct 
an appropriate model, that accurately reflects the characteristics of our 
problem. A better/more suitable model that fits the given problem will provide 
a better solution after the optimization process is complete. 

Modeling is the process of the identification of the objective, the variables and 
the constraints of the given problem and then expressing them in mathematical 
terms. 

Figure 2: A Flowchart for the optimal design procedure 
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An objective is a quantitative measure of the performance of the system that 
we want to optimize. This may include maximization of profits in business or 
minimization of error/misfit in sciences. 

The variables are the components of the system that we wish to find the 
optimal values for in order to obtain the desired response from our system. In 
other words, optimization helps us find the best variables for which the value 
of the objective function is maximum/minimum. For example, the parameters 
in a subsurface model. 

The constraints are the functions that describe the relationships and impose 
limits on the variables. They help us narrow down the domain of feasible 
solutions.  

 

Choosing an optimization algorithm 

Several computational algorithms have been formulated to solve optimization 
problems. They may range from those that terminate in a finite number of steps, 
or those that converge to a solution iteratively, or heuristics and metaheuristics 
that may provide approximately optimal solutions but are more robust.  

 

For the sake of concision and brevity, we shall only discuss the optimization 
techniques which are relevant to the topic of this dissertation. Optimization 
techniques are discussed in the next chapter. 

 

Obtaining the solution 

After we have chosen the most appropriate algorithm to suit our problem, the 
next step is to solve it. Algorithms that terminate in a finite number of steps 
return the solution when their optimality condition is satisfied. Some meta-
heuristics on the other hand can go on until we manually decide when to 
terminate them (for example after a certain number of iterations) or impose 
additional constraints (for example the improvement in the solution being 
below a certain threshold) to re-define an optimality condition.   
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CHAPTER 2: OPTIMIZATION TECHNIQUES – PART 1 
 

2.1 Fundamental Strategies to approach convergence 
 

Unconstrained minimization is the most basic form of minimization problems 
and they arise frequently in many direct applications. They can also arise as a 
result of reformulating constrained minimization problems by replacing the 
constraints with some penalty parameters added to our objective function 
which have the effect of making discouraging the optimization procedure to 
violate constraints.  

Every unconstrained minimization algorithm requires the user to provide a 
starting or initiation point 𝑥0. It can be an arbitrarily chosen point or it can be 
an educated guess. The latter is more likely when the user possesses good 
information about the nature of the objective and the dataset. The starting point 
may also be chosen by an algorithm, either randomly or by a systematic 
approach. 

Beginning at 𝑥0, the algorithm iterates the value of 𝑥 as {𝑥𝑘}𝑘=0
∞  which 

terminates upon reaching the optimization criteria. To move from one iterate 
to the next, the algorithm uses the information about the function at that point 
and sometimes also that of earlier iterates. 

There are 2 fundamental strategies for moving from the current point 𝑥𝑘  to the 
next 𝑥𝑘+1. The Line search and Trust region approach. 

 

LINE SEARCH 

In line search, the algorithm calculates a search direction and subsequently 
computes how much distance to move along it. The iteration is formulated as: 

  

𝑥𝑘+1 = 𝑥𝑘+𝛼𝑘𝑝𝑘 

 

Here, 𝛼𝑘  is a scalar and is known as the ‘step length’ and 𝑝𝑘  is the search 

direction.  An effective line search requires good choices of both 𝛼𝑘 and 𝑝𝑘. 
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Step Direction 

The condition to be satisfied is:  𝑝𝑘
𝑇𝛻𝑓𝑘 < 0  

to guarantee the reduction along the search direction (now called the descent 
direction). 

 𝑝𝑘  can have the form:   𝑝𝑘 = −𝐵𝑘
−1𝛻𝑓𝑘  

Where 𝐵𝑘 is nonsingular and symmetric. It can be the identity matrix I in the 
steepest descent method. On the other hand, in Newton’s method, it is the exact 
Hessian 𝛻2𝑓(𝑥𝑘)  or the approximate to the Hessian (updated at every step) in 
Quasi-Newton methods. 

Combining the above, we get: 𝑝𝑘
𝑇𝛻𝑓𝑘 =  −𝑓𝑘

𝑇𝐵𝑘
−1𝛻𝑓𝑘 < 0   

Step Length 

Step length needs to be chosen in such a way that the reduction of f is 
substantial but not too computationally expensive. The ideal choice would be 
the global minimizer of the function defined by 𝜙(𝛼) = 𝑓(𝑥𝑘+𝛼𝑘), 𝛼 > 0 but it’s 
very expensive to identify. Therefore, for practicality, we perform an infline 
search to achieve substantial reduction at minimal cost. 

Figure 3: The global minimizer of the aforementioned univariate function is the ideal step 
length 
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TRUST REGION 

Trust-region methods define a region around the current iterate within which 
they trust the model to be an appropriate representation of the objective 
function, and then choose the step to be the approximate minimizer of the 
model in this region. Effectively, they choose the direction and length of the step 
simultaneously. If the current step size isn’t appropriate, these methods reduce 
the size of the trust region and find a new minimizer. The direction usually 
changes when the step size does. 

Trust Region 

The trust-region is defined as a spherical area of radius  in which the trust-
region subproblem lies. 

Trust-region subproblem 

If we are using the quadratic model to approximate the original objective 
function, then our optimization problem is essentially reduced to solving a 
sequence of trust-region subproblems 

 

  

Where  is the trust region radius,  is the gradient at current point 

and  is the hessian (or a hessian approximation). It is easy to find the 

solution to the trust-region subproblem if  is positive definite. 

Actual reduction and predicted reduction 

The most critical issue underlying the trust-region method is to update the size 
of the trust-region at every iteration. If the current iteration makes a 
satisfactory reduction, we may exploits our model more in the next iteration by 

setting a larger . If we only achieved a limited improvement after the current 
iteration, the radius of the trust-region then should not have any increase, or in 
the worst cases, we may decrease the size of the trust-region by adjusting the 
radius to a smaller value to check the model’s validity. 
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Whether to take a more ambitious step or a more conservative one is depend 
on the ratio between the actual reduction gained by true reduction in the 
original objective function and the predicted reduction expected in the model 
function. Empirical threshold values of the ratio  will guide us in determining 
the size of the trust-region. 

Pseudocode 

Set the starting point at , set the iteration number  

for  

Get the improving step by solving trust-region sub-problem () 

Evaluate  from equation() 

if  

 

else 

if  and  (full step and model is a good approximation) 

 

else 

 

if  

 

else 

(the model is not a good approximation and need to solve another 
trust-region subproblem within a smaller trust-region) 

end > 
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Figure 4: Line Search vs Trust Region Approach 

 

2.2 Conjugate Gradient Method 
 

The conjugate gradient method is a mathematical technique which is useful for 
both linear and non-linear systems optimization. Conjugate Gradient algorithm, 
which is generally used as an iterative technique, can also be used as a direct 
method, producing a numerical solution. This method is used in very large 
systems where solving with a direct method is not practical. 

Non-Linear CGM 

Say our initial function is   

A residual is calculated. The residual is always the negative of the 

gradient   in the NL case. using the Gram-Schmidt conjugation of 
the residuals, we compute the search direction. We subsequently use line 
search which is much more difficult in the NL case. We search for a value of  is 
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found in order to minimize   This is achieved by ensuring the 
gradient and the search direction are orthogonal. 

To find the value of  there are multiple methods. Two of the better equations 
are the Fletcher-Reeves (which is used in linear GC) and the Polak-Ribiere 
method. The former converges only if initial guess is sufficiently close to the 
desired minimum, while the latter can sometimes cycle infinitely but often 
converges more quickly. 

Fletcher-Reeves:    

 

Polak-Ribiere:     

 

 

 

Figure 5: A comparison of CGM and Steepest Descent 

 

 

2.3 Quasi Newton Methods 
 

Quasi-Newton Methods are a class of optimization methods that are used in 
Non-Linear Programming when full Newton’s Methods become either exhibit 
slow convergence or difficulty in use. More specifically, these methods are used 
to find the global minimum of a function f(x) that is twice-differentiable. There 
are distinct advantages to using Quasi-Newton Methods over the full Newton's 
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Method for expansive and complex non-linear problems. Though, these 
methods are not exact, and may have some limitations depending on the nature 
of Quasi-Newton Method used and the target problem. In spite of this, Quasi-
Newton Methods are generally worth using with the exception of very simple 
problems. In this section we are going to specifically discuss about the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm since it has direct 
application in this work. 

 

BFGS ALGORITHM 

The BFGS algorithm is an iterative algorithm of the line search family used to 
solve unconstrained non-linear optimization challenges. 

BFGS (similar to other newton-like methods) uses quadratic Taylor 
approximation of the objective function in a d-vicinity of x: 

f(x + d) ≈ q(d) = f(x) + dTg(x) + ½ dTH(x) d, 

where g(x) is the gradient vector and H(x) is the Hessian matrix. 

The necessary condition for a local minimum of q(d) with respect to d results 
in the linear system: 

g(x)+ H(x) d = 0 

which, in turn, gives the Newton direction d for line search: 

d = - H(x)-1g(x)) 

The exact Newton direction (which is subject to define in Newton-type 
methods) is reliable when 

• The Hessian matrix exists and positive definite; 

• The difference between the true objective function and its quadratic 
approximation is not large. 

In Quasi-Newton methods, the idea is to use matrices that approximate the 
Hessian matrix and/or its inverse rather than exact Hessian matrix 
computation (as in Newton-type methods).The matrices are normally named B 
≈ H and D ≈ H -1. 

On each iteration, the matrices are adjusted and can be produced in many 
different ways, from very simple techniques to highly advanced schemes. 
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The BFGS method uses the BFGS updating formula which converges to H (x*): 

 

where 

• sk = xk+1 - xk, 

• yk = gk+1 - gk. 

As a starting point, B0 can be set to any symmetric positive definite matrix, for 
example and very often, the identity matrix. 

The BFGS method exposes superlinear convergence; resource-intensivity is 
estimated as O(n2) per iteration for n-component argument vector. 
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CHAPTER 3: OPTIMIZATION TECHNIQUES – PART 2 
 

3.1 Heuristics and Metaheuristics 
 

In this chapter, we shall be discussing another method of optimization besides 
finitely terminating algorithms and convergent iterative methods. These 
methods are known as Heuristics and Metaheuristics 

Heuristics are problem dependent techniques i.e. they are adapted to the 
problem at hand. They do not have the guarantee of an exact or optimal solution 
but give a ‘good’ solution in a ‘reasonable’ amount of time. They work similar to 
empirical search methods but may get too greedy and trapped in a local minima 

Metaheuristics on the other hand, are a high level, relatively problem 
independent implementations that provide a set of guidelines or strategies to 
develop heuristic methods suitable for the problem. Since there are no 
satisfactory exact general solutions for all global optimization problems, we 
therefore employ metaheuristics to formulate a solution to such problems 
without having to deeply adapt to each. We shall be discussing some important 
metaheuristics that are used to solve global optimization problems. 

Metaheuristics are very diverse in that they can be single-solution based or 
population based, may be memetic or hybridized with other optimization 
approaches. A lot of them are inspired by nature or real-life processes. In 
particular, we shall be discussing two of the most influential metaheuristics in 
use today. 
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3.2 Simulated Annealing 
 

Simulated Annealing is a probabilistic search technique to approximate the 
global minimum for a general function (meaning that it isn’t problem specific 
and therefore not optimized to solve a particular class of problems). In a large 
search space, the SA technique works as a metaheuristic to find an approximate 
optimum in a reasonable amount of time. Therefore, SA is preferable when 
finding an exact solution is not a priority but rather, minimizing time and 
computational constraints are. 

 

Inspiration 

The algorithm is inspired from the real-life metallurgical process of the 
eponymous ‘Annealing’. Annealing in metal-working is a thermodynamic 
process that involves heating a metal above its recrystallization point and then 
controlled cooling to remove internal stresses, increase crystal size and decrease 
solid defects.  These characteristics of the metal being worked are dependent on 
its Thermodynamic Free Energy while the parameter that controls the 
process is Temperature. 

 

Interpretation of the analogy 

These factors are integrated into the SA algorithm in the following way: 

• On cooling quickly, the metal becomes hard but brittle and glassy. This is 
analogous to a local minimum. 

• On slow and controlled cooling, the metal crystals grow in size and 
internal defects reduced. This optimizes the internal structure of the 
metal to remove internal stresses. This is analogous to a global minimum. 

 

As the metal cools, its structure becomes more and more fixed allowing it to 
retain its newly obtained properties. The process of slow cooling discussed 
above is interpreted as a gradual reduction in the probability of acceptance of 
worse solutions as the algorithm explores the search space. The idea of 
accepting worse solutions is one of the fundamental properties of 
metaheuristics since it allows them to more thoroughly explore the search 
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space and have a greater chance of finding the global optimum. This ensures 
that they do not get stuck at a local minimum. 

 

Parameters and their implementation 

To simulate the annealing process, we implement the notion of cooling via a 
temperature variable T. The fitness or worseness of solution is characterized 
by the internal energy of the system which represented by E. It is our cost 
function or misfit function that has to be minimized. The stable state of any 
system is the one with the least internal energy so this analogy makes sense. 

Now, we use a Maxwell-Boltzmann distribution for statistical simulation of 
probability. This distribution is also followed by gas molecules. 

p = e− ΔE/kT 

In the distribution model, p the probability that a system with a lower energy 
state E will exist. In our SA algorithm, we use it to denote the acceptance 
probability of worse solutions. 

k is the Boltzmann constant 

So, we can see that when T is high, E has a marginal effect (since p is close to 1). 
Thus the probability of acceptance of worse solutions is higher.  

At low T, E has a significant effect, thus the lowered threshold for misfit and 
only good solutions have a chance to be accepted. 

 

Algorithm 

1. Generate a random solution. Doesn’t need to be the best guess at optimal 
solution. 

2. Calculate using its cost using a defined cost function. The cost function 
needs to be relatively simple since it gets called at every iteration. 

3. Generate a random neighbouring solution. 

4. Calculate the cost of new solution. 

5. Compare the cost of both solutions and evaluate the acceptance 
probability p. 
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6. Compare p to a random number (generate using RNG) to decide whether 
to update the model with the new solution or not. 

7. Repeat until optimality criteria are fulfilled. 

 

Pseudocode 

• Let s = s0 

• For k = 0 through kmax (user defined): 

o T ← temperature( kmax/(k+1) ) 

o Pick a random neighbour, snew ← neighbour(s) 

o If P(E(s), E(snew), T) ≥ random(0, 1): 

▪ s ← snew 

• Output: the final state s 

 

Important considerations 

 

• The initial value of T chosen can be important to control the acceptance 
rate at the start 

• Temperature reduction scheduling is important. The algorithm performs 
much better when T is reduced after many iterations 

• The cost function must be efficient since it gets called at every iteration. 
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3.3 Genetic Algorithm  
 

The genetic algorithm is a search-based optimization technique inspired by the 
process of natural selection (survival of the fittest). We use GA to find optimal 
or near-optimal solutions that would otherwise take a long time to solve using 
exact algorithms.  

Herein we define a fitness function as our survival criteria (in this case it may 
be the misfit between observed and computed data values, which we need to 
minimize) 

Our model is represented as a string of genes that represent a solution. This 
string of genes is called the chromosome. It contains model parameters and is 
a single encoding of the part of the solution space, i.e. one of the possible 
solutions to the problem.  

A gene is one element position of a chromosome  

An allele is the value a gene takes for a particular chromosome  

All of the optimization is done over a population, which is a subset of all possible 
(encoded) solutions to the given problem 

 

 

Figure 6: A representation of the metaphors commonly used in GA 
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Process 

The basic premise of GA is to mimic biologic evolution. We start with an initial 
population which may be generated at random. The fitness of each initial model 
is calculated. Out of these some models are selected to act as parent models for 
the next generation of solutions. We may implement elitism to choose models 
with highest fitness to directly enter the next generation. A few models with 
low fitness are also selected to promote diversity. The chosen models 
subsequently undergo reproduction wherein we apply crossover and mutation 
operators on the parents to generate new offsprings. These replace their parent 
population and form the new selection pool of solutions. This process repeats 
until the stop criterion is reached. 

The process can be depicted as: 

 

 

Figure 7: Flowchart of the GA process 
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STEPS 

Pre-initialization 

Before initializing our model population, we need to choose a proper 
representation for our solutions. The parameters need to be discretized first so 
that we can represent our model as a chromosome. For Example:  

MODEL 1  (1P1 , 1P2 , 1P3 , … , 1PN)  

MODEL 2  (2P1 , 2P2 , 2P3 , … , 2PN)  

After that we need to map the chromosome to our chosen representation.  
Binary representation is one of the simplest and most widely used. 

MODEL   [2, 5, 4, 7]    [0010|0101|0100|0111] 

 

Initialization 

After choosing a suitable representation, we can initialize our population. It can 
either be a random initialization or we may use a known heuristic (normally 
only used to seed the population with a few good solutions). Because it is the 
diversity of the models that lead us to the optimal solution. 

 

Fitness Function and Elitism 

The generated models are characterized by their ‘fitness’ which can be a 
function of the system we’re trying to optimize. For example, it can be the misfit 
between observed and computed data. 

Using the fitness function, a process called elitism is implemented. It basically 
involves the selection of the fittest candidates (the elite) from a generation to 
be directly copied into the next generation without changes. The fitness 
function assigns weightage to the individual models.  

An important consideration is that the choice should be probabilistic rather 
than deterministic. (to avoid getting trapped into the local minima) because 
otherwise the algorithm with sacrifice long term fitness in favour of short-term 
success.
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Reproduction 

Reproduction involves: 

A. Parent Selection 

B. Crossover 

Parent selection is done to add selection pressure towards fitter solutions and 
yet prevent some extremely fit solutions from taking over the entire population 
because diversity is essential for reaching the optimum. 

It may be done by: 

a) Fitness proportionate selection (via Roulette wheel method) 

b) K-way tournament selection 

 

Crossover is analogous to biological crossover. More than one parents are 
selected to produce one or more offsprings with similar characteristics (genetic 
material) of their parents. It can be applied in different ways 

• One-point crossover 

• Multipoint crossover 

• Uniform crossover 

 

Mutation 

Mutations are small tweaks in the existing chromosomes to get new properties. 
It is used to introduce and maintain diversity in the population so that the 
algorithm doesn’t converge at a local minimum. It is applied with a low 
probability since if we introduce mutations at high probabilities, GA gets 
reduced to random search. 
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CHAPTER 4: COUPLED LOCAL MINIMIZERS (CLMs) 
 

4.1 Introduction 
 

While the previously discussed optimization schemes work well, they have 
their own set of drawbacks. The convergent iterative methods may be fast but 
they often get stuck in local minima. On the other hand, metaheuristics like SA 
and GA navigate the solution space well but fail to take into account any of the 
information provided by the nature of the function (unlike the gradient based 
methods). A method known as optimization via coupled local minimizers 
(CLM) is a co-operative search mechanism which incorporates the advantages 
of both the fast convergence gradient based methods with the global approach, 
parallelism and information exchange of popular metaheuristics. This 
combination results in an efficient global optimization algorithm. 

 

4.2 The Method 
 

In the CLM method a group of search points is initially set up, ideally spread 
over the search space. The search process is guided by the derivative 
information at each of these locations. But instead of performing distinct 
individual searches (which happens in case of multi-start local optimization), 
these local optimizers are coupled throughout the search process via imposed 
constraints that compel all these to converge to a single point.  

The co-operativeness of this method is enforced by minimizing the average 
value of the objective function, which is the value of the function averaged over 
all the search points. This causes all the points in the group to search for the for 
the minimum value of this average objective function using derivative 
information about the function. 

The coupling is enforced by subjecting the search points to pairwise 
synchronization constraints that force them to end at the same final location. 
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Augmented Lagrangian Method 

We use the Augmented Lagrangian method (sometimes called the Method of 
Multipliers) which is a method to solve constrained optimization problems. 

 We construct an augmented Lagrangian function L A which is defined by the 
average objective function of the points along with the pairwise sync 
constraints between individual minimizers. 

The function is defined as: 

 

Here L A is the augmented Lagrangian function, f(x) is the objective function 

hi(x) are the equality constraints where 𝑥 ∈ ℝ𝑛. 

 λi are the Lagrange parameter estimates and γ is the penalty parameter. 

∑ 𝝀𝒊𝒉𝒊(𝒙)𝒊̇  expresses the hard constraints. 

𝜸

𝟐
∑ 𝒉𝒊

𝟐(𝒙)
𝒊

 expresses the soft constraints. 

 

For every iteration (say ’k’), the augmented Lagrangian L A (x, λk) is minimized 
w.r.t. ‘x’ to compute xk* , which is the optimum x for that iteration. Next, we 
update the values of λk  = (λ1, λ2, λ3, … , λk) using xk* to start the next iteration. λ's 
are updated using the formula: 

(𝜆𝑖)𝑘+1 =  (𝜆𝑖)𝑘 + 𝛾ℎ𝑖(𝑥𝑘
∗) 

This continues until the the ideal 𝜆 
∗ are found. 

 

CLM Method 

Now, say we have a population of q local minimizers. For the objective function 
f(x), the average cost is defined as: 
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Next, pairwise sync constraints are enforced on the design vectors that 
represent our minimizers 𝑥 

(𝑖). This results in a constrained minimization 
problem. 

 

Subject to the boundary conditions 

 

Thereafter we define the Augmented Lagrangian function: 

 

 

where:  

 

𝑥(𝑖), 𝛌(𝒊) ∈ ℝ𝑛  

||.|| is the Euclidean norm of a vector. 

η is the weighting factor for the average objective function. 

 

Now, the main conditions we want to enforce on the design vectors of local 
minimizers is to look for the minimum of the average cost of all search points 
and to end up at the same final point. When the initial states are located in the 
neighbourhood of different minima, there will be a decision regarding which 
one to choose. For an appropriately chosen pair of η and γ, the optimal solution 
(usually the global minimum) is obtained. The number of search points needed 
(q) usually depends on the shape of the function; more specifically the number 
of local minima per of volume. 
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4.3 Implementation 
 

In this dissertation, we use the Broyden–Fletcher–Goldfarb–Shanno algorithm, 
which belongs to the class of Quasi-Newton methods. We have discussed the 
BFGS method in section 3 of chapter 2. 

For an objective function fx, from an initial guess x0, and an appropriate Hessian 
Matrix B0, we iterate the following procedure to have xk converge to the 
solution.  

1. Solve 𝐵𝑘𝑝𝑘 = −𝛻𝑓(𝑥𝑘) to obtain the direction 𝒑𝒌 

2. Find the step size 𝜶𝒌 (in the direction found above) using a line search 
optimization of 𝒇(𝒙𝒌 + 𝜶𝒑𝒌) 

3. Set sk = αkpk and update 𝑥𝑘+1 = 𝑠𝑘+ 𝑥𝑘  

4. Compute 𝑦𝑘 = 𝛻𝑓(𝑥𝑘+1)  − 𝛻𝑓(𝑥𝑘) 

5. 𝐵𝑘+1 =  𝐵𝑘 −  
𝐵𝑘𝑠𝑘𝑠𝑘

𝑇𝐵𝑘
𝑇

𝑠𝑘
𝑇𝐵𝑘

 𝑠𝑘
+

𝑦𝑘𝑦𝑘
𝑇

𝑦𝑘
𝑇𝑠𝑘

  

 

In this case our function would be the final Augmented Lagrangian with all the 
constraints incorporated. 

Due to the usage of BFGS, this method converges very fast using derivative 
based information.  

 

Tuning Parameters 

η and γ are the tuning parameters for this method and are problem specific. A 
priori assumptions for these is difficult. η emphasizes the minimization of the 
average objective function while γ acts as a penalty parameter. Increasing γ, we 
emphasize soft constraints and convergence rate is improved but too high a 
value can cause CLM to converge to a local minimum. On the other hand, a low 
γ value makes CLM explore the search space more thoroughly but decreases the 
speed at which the algorithm converges. η emphasizes the minimization of the 
average objective function. 
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4.4 Application 
 

The CLM method has been used to minimize a function to check its 
effectiveness. A 2-D Test function from (Teughels, et al., 2003) has been used to 
illustrate the difference in the performance of both CLM implementations. 

The function is as follows: 

  

There are 4 minima in this function out of which, one is the global minimum 
(4.454, 4.454) 

 

Figure 8: 3-D Surf Plot of the 2-D test function 
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Figure 9: Test function plot as given in Teughels et al (2003) indicating the global minimum. 

 

Two different test runs were carried out with parameters  

1. q=8 ; η =3 ; γ=0.02 

2. q=8 ; η =3 ; γ=2 

This was mainly to test the performance of the algorithm in cases where 

a) Solution space is explored thoroughly 

b) Fast convergence is prioritized 

The initial search points are randomly distributed in the search space. And 
initial Lagrange parameter estimates are seeded randomly between [-1,1] . 
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4.5 Performance 
 

The complete population of local minimizers ended up in the global minima 
regardless of their initial location.  

Test Run #1 

q=8 ; η =3 ; γ=0.02 

 

 

The yellow dots 
represent the initial 
positions of search 
points while the red ones 
are the final positions. 

Since the γ value is quite 
low, we can see that the 
solution space is 
explored well.  

Figure 10: Paths taken by the individual minimizers for Test run 
#1 
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We can see that a low γ value results in a pretty slow convergence. The number 
of iterations is very high even though after a point, there is barely any decrease 
in the function value. This reinforces the idea that the tuning parameters must 
be adjusted according to the problem at hand. 

Figure 11:Function Value vs Iterations for Test run #1 
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Test Run #2 

q=8 ; η =3 ; γ=2 

 

 

The solution space is not 
explored as well in this test 
and the algorithm moves 
quickly towards 
convergence.

 

 

 

 

 

 

 

 

We see a greatly reduced 
number of iterations and 
quick convergence towards 
the global optimum without 
wasting computational 
resources. In this case, the 
tuning parameters can be 
said to have been better 
adjusted. 

  

Figure 12: Paths taken by the individual minimizers for Test 
run #2 

Figure 13: Function Value vs Iterations for Test run #2 
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4.6 Potential Geophysical Applications 
 

Since CLM proves to be an efficient and robust algorithm, it can be a very useful 
tool in inverting geophysical data and constructing accurate models.  

Degrande et al (2008) have demonstrated this by utilizing CLM based inversion 
in Spectral Analysis of Surface Waves (SASW).  

 

The fast convergence 
property that CLM gets by 
using derivative  based 
methods for local 
optimization are highly 
beneficial to geosciences 
since it typically contains 
huge datasets for example in 
Seismic and EM data. 

On the other hand the 
parallelism can also highly 
benefit the speed of 
obtaining solutions because 
of strong parallel processing 
capabilities in today’s 
machines. 

  

Figure 14: Objective function based on fundamental mode in 
Degrande et al (2008) 

Figure 15: CLM optimization of the function 



40 
 

 

CONCLUSION 
 

 

5.1 Summary of Results 
 

A relatively uncommon but efficient method of global optimization is 
investigated. The CLM algorithm, which combines the benefits from derivative 
information based fast-convergence methods and the information exchange 
and parallelism found in Global Optimization metaheuristics, was successfully 
designed and implemented to minimize a 2-dimensional function. The global 
convergence to a single point is enforced using Augmented Lagrangian method 
and boundary constraints. Instead of Trust Region approach and Newton’s 
method for convergence as used in Teughels et al (2003), we used the Line 
search based Quasi-Newton method known as Broyden–Fletcher–Goldfarb–
Shanno (BFGS) Algorithm which arguably provides better performance due to 
faster convergence and no requirement of computing the exact Hessian Matrix. 

The population of minimizers is shown to converge at the global minima 
regardless of their initial start positions showing the robustness of the CLM 
method. The effect of tuning parameters is also demonstrated.  

 

5.2 Discussion 
 

Despite being relatively old, CLM hasn’t seen many users in an era dominated 
by Global Optimization Metaheuristics such as SA and GA. As discussed in 
section 4.6 there are possible geophysical applications in every major field and 
the specific advantages CLM offers are very well suited to datasets and 
inversion models in Earth Sciences. More work needs to be done in finding a 
general solution to the problem of fine-tuning parameters and utilize the 
parallelism for tangible computational benefits. 
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APPENDIX A: CODE SNIPPETS 
 

In this appendix are included snippets from the code as including complete 
code would be too tedious and consume too much space. 

 

 

Figure 16: Input data initialization: 

  

 

Figure 17: Function defined as an object. The greyed out functions were also tested separately 
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Figure 18: Random guess function for search point initialization 

  

 

 

Figure 19: L2 Norm calculation 
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Figure 20: Gradient Calculation 
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Figure 21: Hessian Approximator 
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Figure 22: Augmented Lagrangian function definition 
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