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ABSTRACT 

Surface water as a source of drinking water requires costly treatment to make it free 

from physical, chemical, and bacteriological contamination. Therefore, the managers of 

various water utilities are exploring the other sources, wherein, the cost of treatment is low. 

Groundwater is considered as a sustainable source of drinking water in many parts of the 

world as it requires minimal treatment. Most of the urban areas are located on the banks of 

the river which are generally contaminated due to various anthropogenic activities. Rivers are 

the main source of water supply to various cities especially in the Indo-Gangetic plain. In 

such cases, as the rivers are mostly polluted, it results in heavy treatment cost. Therefore, in 

such situations, water collected through a collector pipe laid under a riverbed or through a 

radial well constructed adjacent to the river is a better choice. The flow through collector 

pipes in such cases shall be free from suspended particles as well as from bacterial 

contamination as the riverbed/ riverbank filtration work as slow sand filter. 

Riverbank filtration (RBF) is a process during which surface water is subjected to 

subsurface flow prior to extraction from the wells. In RBF process, surface water is subject to 

a combination of physical, chemical, and biological processes such as filtration, dilution, 

sorption, and biodegradation that significantly improve the raw water quality. RBF is widely 

used for drinking water purposes as the water utilities strive to meet increasingly stringent 

drinking water regulations, especially with respect to the provisions of multiple barriers for 

protection against microbial pathogens and tighter regulations related to Disinfestation By 

Products (DBPs). 

It has been noticed that only a few studies have been carried out to model such 

systems mathematically which resulted in analytical solutions. In this study, an attempt has 

been made to analyse the system of riverbed and riverbank filtration mathematically and to 

derive the analytical solutions corresponding to various flow characteristics under steady flow 

condition through such a system. 



A radial collector well, commonly known as "Ranney Well", collects water from 

underground aquifer through slotted radial pipes extended horizontally outward from a 

caisson. Like infiltration galleries, they are located in or close to rivers and other surface-

water bodies. A collector pipe is the primary component of a radial collector well constructed 

either for riverbed or riverbank filtration. Assuming the collector pipe as a line sink and 

applying the conformal mapping technique, Aravin and Numerov (1965) have derived an 

analytical solution for computing potential and flow to the collector pipe laid under riverbed 

under steady state flow condition. They have considered the origin of the physical domain at 

the centre of the collector pipe, which restricts the convenience of analysis. In this study, the 

origin of the physical flow domain is considered at the lower impervious base of the aquifer, 

which makes the analysis easier as compared to Aravin and Numerov (1965). Analytical 

expressions have been derived for 

the potential at different location in the flow domain, 

quantity of flow to the collector pipe, 

entrance velocity, and 

travel time of a parcel of water from the riverbed to the collector pipe along the 

shortest path. 

Further, using the travel time and the logistic function approach, the number of log 

cycle reduction in bacterial concentration has been found out. It has been noticed that this 

expression is non-linear in nature which depends on the reproduction and decay rate of micro-

organisms. Based on the dimensionless parameters obtained and the analysis related to flow 

characteristics, following conclusions are drawn: 

Yield of a collector pipe is linearly proportional to 

hydraulic conductivity of the riverbed material, 

drawdown in the well caisson, 

length of the collector pipe, and 



Nonlinearly dependent on 

the diameter of the collector pipe, 

thickness of the aquifer, 

height above the impervious base at which the collector pipe laid. 

Further, the present study has been extended to two more cases, i.e., 

assuming the collector pipe as a line slit, and 

collector pipe with a square cross-section having constant finite head boundary 

condition at their periphery. 

In both the cases, collector pipe is laid under fully penetrating riverbed. 

It is found that whether the collector pipe is assumed as a line sink with infinite head 

boundary or as a line slit or as a collector pipe with square cross-section with finite head 

boundary; there is no appreciable difference in the estimated flow to the collector pipe. 

In case of riverbank filtration, Zhan and Cao (2000) have put forward the philosophy 

that during late pumping stage, horizontal pseudo-radial flow takes place towards a horizontal 

collector pipe. This postulation supports the assumption of sheet flow condition in a thin 

aquifer system with horizontal collector pipe(s). In the present study, using this philosophy 

for applying Schwartz-Christoffel conformal mapping technique, radial collector well 

systems having several coplanar laterals located near a straight river reach have been 

analyzed. The collector well systems with different lengths of laterals, orientation of laterals 

and distance of the collector well from the river, etc, have been analyzed for safe yield. 

In case of a collector well with 4 laterals of equal length, it has been found that the 

- maximum flow occurs when angle between the laterals oriented towards the river is and 

it for <5 (see Fig. 5.2 (a)). For > 5 , flow to the collector well is maximum for y = 0.5. 

A radial collector well with 3 radials is a particular case of 4 laterals in which one of the 

collectors (13) (which is perpendicular to the river axis but away from river) is zero. The flow 

It 



in such well system is maximum, if the other two laterals are oriented at an angle y = 0.5 for 

R1 2  <5. For - > 5, the flow to the collector well is maximum if y 
= %'. In case of a 

collector well with three radials of equal length in which one of them orient away from the 

river, the other two should be oriented at an angle 0.2 :!~ y :5 
X  for < 5 to obtain near 

12  

maximum yield. For 
R 

 > 5, their orientation should be
12  , :5 ' :!~ 

In order to validate the results using the concept of sheet flow, an exact solution of 

flow computation to a line sink in a confined aquifer with collector pipe laid parallel to the 

river is suggested. In the study, using the conformal mapping technique, an exact analytical 

solution for two-dimensional flow in vertical plane normal to a collector pipe laid parallel to a 

fully penetrating river in the middle of a confined aquifer is obtained. While estimating flow 

to a radial collector well with sheet flow condition, the thickness of aquifer and diameter of 

the collector pipe are not considered. Therefore, in order to account for thickness of the 

aquifer, it is suggested to multiply the estimated flow by the thickness of aquifer. As the flow 

does not increase linearly with thickness of the aquifer, a correction factor needs to be 

applied. It has been found that the correction factor increases marginally as the thickness of 

the aquifer decreases. It decreases as the distance of the collector pipe from the riverbank 

increases. It has been noticed that as the correction factor is very much less than 1, Broom's 

postulation 0 =-kD(~Iy_ + + C of flow estimation using sheet flow concept 

overestimates the collector pipe yield, and hence need a correction factor. It may be noticed 

that the derived correction factors may be applied to estimate the collector well yield with 

more than 2 collector pipes. Further, yield of collector well increases as it is located nearer to 

the water body but will decrease the travel time and hence the number of log cycle reduction. 

It also increases with increase in length and diameter of the collector pipe. 

iv 
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NOTATIONS 

C = concentration of a bacteria; 

Co initial concentration of a bacteria att = 0; 

Cj = correction factor; 

Cr = bacteria concentration in river water; 

d = median diameter of particle; 

D = thickness of aquifer; 

d1  = depth of collector pipe from impervious base; 

d = diameter of horizontal collector pipe or lateral; 

scour depth; 

d = side of square collector pipe; 

D1 = hR-h =drawdown in caisson; 

fa = fraction of opening area; 

fL = Lacey's silt factor; 

= piezometric head in the collector pipe; 

hR = water level in river; 

= water level in well caisson; 

= imaginary number ± 

k = hydraulic conductivity; 

/ = length of lateral; 

11, 12, /3 = length of laterals 1, 2 and 4, and 3 respectively; 

M = conformal mapping constant in z-plane; 

= conformal mapping constant in w-plane; 

N = conformal mapping constant in z-plane; 

n = number of log cycle reduction in bacterial concentration; 

N1  = conformal mapping constant in w-plane; 
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p = water pressure; 

Q design flood discharge; 

q = flow per unit length from one side of the flow domain; 

r = reproduction rate of bacteria; 

t = time parameter; 

tr = travel time of a parcel of water; 

t,r dimensionless time factor; 

u = velocity component in x-direction; 

v = velocity component my-direction; 

w = complex potential w(= 0 + i çt'); 

y = elevation head; 

= arbitrary conformal mapping constant; 

= average entrance velocity; 

= decay rate of bacteria; 

Vef = dimensionless average entrance velocity factor; 

a,fi,y interior angles of the polygon in z-p!ane; 

if = pai=3.14159265 ... ; 

= porosity of aquifer materials; 

2"  = pressure head; 

= stream function; 

Y. = unit weight ofwater=9810A/ 3 ; 

0 = velocity potential function; 

Other notations are locally defined wherever these appear 
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Chapter 1 

INTRODUCTION 

Continued population growth and uneven distribution of water resources have forced 

the water resources agencies to search for innovative and sustainable sources of water for 

domestic, industrial, and irrigation purposes. As the surface water sources are becoming more 

and more inadequate and unsafe due to contamination, the decision makers are looking towards 

ground water as a sustainable source of drinking water in many parts of India and in other 

countries, Ray et al. (2002). 

The oldest method of ground water tapping is digging hole into the earth to a certain 

depth below the water table but a little can be abstracted in this way. When a large quantity of 

water is required, the area of contact with the aquifer must be increased. This is carried out by 

increasing the horizontal or vertical dimension or both depending upon the local conditions; i.e. 

mainly the thickness of the aquifer and depth of the water table below the ground surface. The 

horizontal means of groundwater recovery are called infiltration galleries or in case there exits 

only one or two co-linear collector pipes, the arrangement is termed as an infiltration or 

drainage gallery and the vertical means of ground water recovery are called wells. In wells, 

water is admitted from the sides as well as from the bottom of the wells; the velocity of inflow 

is kept low. In order to increase the flow, these wells are generally connected to each other by 

means of porous pipes. In some groundwater basins, the alluvial deposit in the vicinity of a 

river may contain boulders. Pushing horizontal collector pipes into such deposits is very 

difficult. In such aquifers, infiltration galleries are laid at a shallow depth after making an open 

excavation and top covered by rubble. A gallery may be laid under the riverbed or in the 

vicinity of the riverbank. A significant quantity of water can be pumped from an infiltration 

gallery because the hydraulic conductivity of the natural material and the filter pack 

surrounding the screens is so high that recharge is sufficient to meet required pumping rate with 

permissible drawdown. A gallery laid under a riverbed is oriented perpendicular to the river 

- flow direction whereas a gallery installed near the riverbank is placed parallel to the river i.e. 

perpendicular to the groundwater flow direction. The galleries located adjacent to a water body 

usually receive water that has lower turbidity and fewer bacteria than bed-mounted galleries, 

because the water gets filtered more extensively, Ray et al. (2002). 
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A collector pipe is the primary component of a radial collector well constructed either 

for riverbed or riverbank filtration (RBF). In riverbed filtration a collector pipe is laid as per 

requirement from consideration of scour depth and minimum filtration depth. A collector pipe 

is a part of a riverbed or bank filtration technique. Riverbed or bank filtration is cost effective, 

well established technique that is used as an important component of water treatment system. 

Underground water passage provides several benefits for drinking water treatment. The 

underground aquifers act as natural slow sand filters. Underground water passage results in 

suspended particle, organic and inorganic chemical, and pathogen removal as well as 

temperature equalization and reduction in disinfection by-products (DBPs) formation and 

production of more biologically stable water. However, persistent organic substances are not 

often completely removed during underground passage. Elimination of these substances 

depends on the residence or travel time and the subsoil passage. The cities which are situated 

along the banks of rivers have taken advantages of RBF. It may contribute to a more suitable 

water cycle by recharging stressed groundwater bodies with filtered surface water. RBF 

technique comes into picture when the water quality in the river is not matching the drinking 

water quality standards due to intermittent or chronic pollution. The riverbed deposits and 

aquifer ingredients provide 'slow-rate filtration' and the improved water is of higher and more 

consistent water quality than water drawn directly from the river. RBF produces water that is 

relatively consistent in water quality and easier to treat to higher levels of finished quality. 

Riverbed filtration I RBF are suitable as a water purification tool in developing countries. 

In case the surface water is contaminated, water should not be directly taken from the 

surface water source. In such situation, a collector well or a drainage gallery is constructed in 

the vicinity of the surface water body to take the advantage of RBF. If the collector well or the 

drainage gallery is place very near to the water body, the bacteria present in the water body 

would enter the collector well or infiltration gallery, thereby making the water unsafe for 

drinking and leading to high water treatment cost. There is a safe distance from the water body 

within which the concentration of bacteria will get reduced by several times and ground water 

extracted beyond this distance from the water body will satisfy the water quality standard. 

Moreover a gallery placed under a riverbed is to be safeguarded against scour problem. Because 

of greater depth, the galleries cannot be used and because of small saturated thickness of water 

bearing stratum the vertical well cannot be proved a feasible solution. 

However, riverbed/riverbank filtration has its potential disadvantages. Enhanced clogging of 

the infiltration zone is likely to be observed with high levels of suspended solids (especially in 

equatorial countries) that may render bank filtration unsustainable, Huelshoff et al. (2009). 
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High organic pollution and higher mean temperatures (often found in developing countries) 

both promote microbial growth and may lead to oxygen depletion, thereby lowering the 

removal efficiency of RBF systems, Huelshoff et al. (2009). The presence of dissolved heavy 

metals (e.g. arsenic) may severely impair bank filtration quality, Huelshoff et al. (2009). Polar, 

persistent organic substances are often not completely removed during underground passage 

(dependent on residence time, length of subsoil passage, redox status), Schmidt et al. (2003). 

Other post-treatment methods are necessary such as oxidation and adsorption to reach drinking 

water quality. 

A collector pipe is a component of a radial collector well system. A collector pipe is a 

perforated conduit laid in an aquifer layer to intercept or collect filtered water. Generally, a 

number of such collector pipes are connected to a circular vertical caisson plugged at the 

bottom. This water collection system is known as a radial collector well. While installing the 

collector pipe one should keep in mind that the collector pipe should be located at a total depth 

of scour plus the minimum filtration depth required for natural filtration. The scour depth is 

related to the silt factor, which depends on the particle size and type of riverbed materials. 

Accordingly, the collector pipe is designed. 

1.2 TECHNICAL BACKGROUND AND RESEARCH GAP 

The ground water flow problem near a horizontal or radial collector well can be 

described as a three-dimensional flow problem. The safe yield of a radial collector well can be 

estimated by solving Boussinesq's equation for 3-D flow with appropriate initial and boundary 

conditions. The flow to the radial collector well can be estimated using a numerical modelling 

approach by assuming the hydraulic head along the laterals as the same as that in the caisson. 

Though, the numerical methods are versatile for analyzing both steady and unsteady flow in 

non-homogeneous flow domain, they need more effort to discretize the flow domain for any 

parametric study. For example, a study on flow to radial collector well with several laterals 

would require fine grid size to compute the hydraulic gradient near the laterals with precision. 

Further, numerical models have their own limitations due to truncation error, convergence and 

stability problems. 

Alternately, the flow characteristics in collector pipe can be based on steady state flow 

condition satisfying Laplace equation and the pertinent boundary condition, Harr (1962). In 

order to restrict the movement of fine particles in the collector pipe, depending upon the type of 

aquifer medium, the entrance velocity to the collector should be restricted below a particular 

value. Such entrance velocity to the collector pipe is linearly proportional to the drawdown in 
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the well caisson and the hydraulic conductivity of the aquifer medium, and inversely 

proportional to the open area fraction in the collector pipe. Blair A. H. (1970) has suggested the 

maximum entrance velocity of 3cmls and Huismann (1972) has recommended the maximum 

entrance velocity as 4cmls. Larger available length of collector pipe lowers the entrance 

velocity of the groundwater through the collector pipe reducing the rate of clogging and 

minimizing the head loss between the aquifer and the collector pipe, Hunt et al. (2003). Further, 

the axial velocity inside the screen should be less than 0.9mlsec, Ray et al. (2002) and Driscoll 

(1986). The advantage of homogeneity is taken for solving the flow characteristics to the 

collector pipe analytically. If the objective is to estimate the flow to a collector pipe, flow field 

can be considered as two-dimensional (x-y horizontal plane) neglecting the resistance to vertical 

flow. If the well is located near to a surface water body, the flow to the well could be treated as 

steady state flow during the later stage of long pumping. Thus, the flow can be estimated by 

solving well-known Laplace equation for 2D flow field (d20/dx2  +d2qi/dy2)under steady state 

conditions and, thereafter, a correction factor can be applied on account of resistance to vertical 

flow. 

Hantush and Papadopulos (1962) have derived analytical solutions for drawdown 

distribution around a collector well with several horizontally laid collectors in confined and 

unconfined aquifer located near or under a stream channel satisfying uniform-flux boundary 

condition along the collector pipes. Milojevic (1963) had carried out an experimental study 

using electro-dynamic analog model to investigate the yield of a radial collector well for the 

constant head boundary condition along the pipes. 

Hantush (1964) had suggested that instead of assuming each of the collector pipes to be 

the line sink of uniform strength, Dirichelt type of boundary condition (uniform head condition) 

needs to be imposed along the collector pipes. Also, Hantush (1964) has analysed the unsteady 

three dimensional flows to a collector well system located under a streambed for prescribed 

drawdown at the well face using a finite difference numerical method. 

Aravin and Numerov (1965) have derived an analytical solution for computing potential 

and flow to the collector pipe is treating as a line sink under steady state flow condition. In 

order to determine the potential and flow to the collector pipe, they have chosen the center of 

the collector pipe as the origin and it is laid under riverbed. 

Debrine (1970) had conducted an experiment on electrolytic model to check the 

validity of the condition if the flux or the head should be uniform along the collector pipe. The 

results of his model study agreed with the solutions of Hantush and Papadopulos (1962) with 

relative deviation of about 2.2%. He concluded that the flow to a collector well could be 
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estimated using the assumptions of either uniform flux or uniform head along the collector 

pipes. 

Zhan and Cao (2000) put forward that at late pumping stage, horizontal pseudo-radial 

flow takes place towards a horizontal collector pipe. This postulate supports the assumption of 

sheet flow condition in a thin aquifer and horizontal collector well system. 

Zhan and Park (2003) have assumed uniform flux distribution along the lateral axis for 

solving unsteady flow to the well under various aquifer conditions. Bakker et at. (2005) have 

applied multi-layer analytic element modelling to estimate the flow to a two-tier radial collector 

well with several collector pipes under steady state conditions. 

Mishra and Kansal (2005) have studied the specific capacity of a radial collector well 

having 2-tier of 12 numbers of collector pipes in each tier. Mohammed and Rushton (2006) 

have carried out field experiment and numerical model to analyze the flow in a shallow aquifer 

before entering into a horizontal well, the flow from the aquifer into the horizontal well and 

flow inside the horizontal well. They conclude that the hydraulic losses are significant for the 

longer horizontal collector pipe. 

Fahimuddin (2007) applying Schwartz-Christoffel conformal mapping had analysed 

steady flow to an infiltration galleries and laterals of radial collector well near straight and 

meandering river reach. 

Patel et at. (2010) have performed a steady state simulation model based on analytic 

element method. The model was used to study the effects of different lateral configurations, 

hydraulic conductivity of river-bed aquifer, radius of influence and conductance of laterals on 

the well-discharge, and consequent drawdown. Further based on the results of simulation (using 

the analytic element method), an approximate empirical equation was developed to obtain the 

discharge of radial collector well for design purpose. 

In order to estimation of flow to a radial collector well assuming sheet flow concept to 

account for the thickness of the aquifer, one has to multiply the flow to a collector pipe by the 

thickness of the aquifer. Broom's postulation çb = —kD(pIy, + y)+ C for computation of flow 

characteristics estimated using sheet flow concept overestimates the yield of collector pipe and 

needs a correction factor (Broom, 1968). As the flow does not increase linearly with thickness 

of the aquifer, a correction factor needs to be applied. 

Yield of a collector well is influenced by length, orientation, number and diameter of 

collectors, etc. and can be studied through analytical technique such as the conformal mapping 

technique. Conformal mapping technique is one of the classical methods available to solve the 

2-dimensional groundwater flow. Hunt (1983), applying Schwarz Christoffel conformal 
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mapping, has analyzed steady flow to the collector pipe either laid under riverbed or placed 

adjacent to riverbank, for different orientation of the collector pipe implementing constant head 

boundary condition along the pipe. Assumption of two-dimensional flow in a horizontal plane 

implies that the lateral as well as the river penetrates the entire thickness of aquifer. 

Applications of the classical Schwartz Christoffel conformal mapping technique in solving two-

dimensional saturated steady flow in homogeneous flow domain are well documented in 

several text books (Polubarinova-Kochina, 1962; Harr, 1962; Bear, 1972; Halek and Svec, 

1979; Hunt, 1983; Raghunath, 2007). 

The Schwarz-Christoffel conformal mapping technique is applicable to a simply 

connected polygon with straight-line boundaries having a finite number of vertices one or more 

of which may be at infinity and the vertex that is taken to infinity does not take part in the 

transformation there by the complexity of transformation is reduced. Use of conformal mapping 

technique generally results in multivariable non-linear equations. The non-linear equations are 

proposed to be solved by Newton-Raphson technique. 

The quality of water produced by the well in terms of presence of pathogenic bacteria 

needs to be assessed. Hence, it is important to estimate the travel time for a parcel of water 

from river to the collector pipe so that it is more than the survival life of the bacteria. Gerba et 

al. (1975) have presented the survival lives of pathogenic bacteria in porous medium in 

different conditions. Lesser bacterial concentration in produced water will require lesser 

amount of chlorination and hence lesser quantity of Disinfection-by-Products (DBPs) 

production in the treated water and lesser risk of carcinogenic disease. 

The minimum travel time would be the time taken by a parcel of water particle to reach 

the nearest part of the collector pipe along stream line. It should be more than the survival time 

of particular pathogenic bacteria in concern. 

Overall, the technical background shows that efforts have been made to understand the 

flow characteristics to collector pipe, particularly for flow estimation. However, no analytical 

expressions exist for entrance velocity, travel time for a parcel of water, and number of log 

cycle reduction in bacterial concentration for various shapes likes line sink, vertical slit, and 

square cross-section pipe for riverbed filtration. Further, it has been assumed that the flow to 

collector pipe can be considered as sheet flow but no analysis has been carried out for 

estimating the correction factor for such assumption. There is no relationship between the 

number of the log cycle reduction in bacteria concentration and the travel time for a parcel of 

water. 



1.3 OBJECTIVES OF THE PRESENT STUDY 

In light of the above-indicated research gaps in the area of riverbed and riverbank 

filtration, the present research has been carried out with the following objectives: 

To derive expressions for flow estimation through a collector pipe with different 

boundary conditions. 

To determine mathematically the entrance velocity to a collector pipe placed under 

riverbed and adjacent to fully penetrating river. 

To determine mathematically the travel time of a parcel of water through the shortest 

path for a collector pipe laid under the riverbed as well as the riverbank system. 

To find the number of log cycle reduction in bacterial concentration using the logistic 

function. 

1.4 ORGANIZATION OF THE THESIS 

The presentation of the work in the thesis has been organized as follows: 

Chapter 1 introduces the importance of riverbed and riverbank filtration processes. It highlights 

the basic flow characteristics (flow, entrance velocity, travel time of a parcel of water and 

number of log cycle reduction in bacteria concentration) in a collector pipe placed either under 

or adjacent to fully penetrating river. It further highlights the technical background of the 

subject matter and describes the research gaps. On the basis of research gaps, objectives of the 

present study are fixed and the organization of thesis has been presented. 

Chapter 2 highlights the various important studies carried out in the area of riverbed filtration, 

design of radial collector well, riverbank filtration, number of log cycle reduction, entrance 

velocity, travel time of a parcel of water that travels from riverbed to collector pipe and natural 

attenuation of contaminant in the porous medium. 

Chapter 3 describes the estimation of flow to a collector pipe by applying Schwartz-Christoffel 

transformation conformal mapping technique. Flow has been estimated for (i) The collector 

pipe laid under riverbed and treating it as a line sink, and (ii) The collector pipe placed under 

riverbed and considering the collector pipe is a vertical slit. Definition of line sink has been 

introduced. In this chapter, the concept of scour depth and suitable place of its placement has 

been described. Further, for both cases, dimensionless factors for the entrance velocity, travel 

time and number log cycle reduction in bacteria concentration have also been estimated. 
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Chapter 4 discusses the flow characteristics through a square cross-sectional collector pipe 

installed under the riverbed at different vertical positions in the aquifer. The chapter also 

explores the application of Newton-Raphson and Gaussian-Quadrature numerical techniques 

for solution of non-linear equations. These equations are explicit in nature, and the solution of 

these equations is useful in determining the conformal mapping parameters. Further, a 

computer program has been written to solve the Jacobian matrix. The dimensionless entrance 

velocity factor and minimum travel time along shortest path of a parcel of water taken to reach 

from riverbed to collector pipe have been carried out. In this case, the corner points of square 

cross-section are called singular point. The singularities are removed by using Gaussian-

quadrature numerical technique considering 96 weights. 

Chapter 5 describes the assessment of the flow characteristics for a multi collector pipes with 

different orientation placed adjacent to a fully penetrating river. In this chapter the concept of 

sheet flow has been described. Best orientation angles for three and four equal length collector 

pipes placed parallel to fully penetrating river have been presented. Besides this, the yield of 

two collector pipes of equal lengths running parallel to the river has also been presented. 

Chapter 6 describes the exact analytical solution for computing flow to a line sink in a confined 

aquifer laid parallel to the river. Also, need of a correction factor has been highlighted and the 

same is estimated using the estimated flow analytically and the same estimated with sheet flow 

assumption as carried out in chapter 5. 

Chapter 7 describes the summary and conclusions of the work. It also highlights the limitations 

and the scope for future work. 

Finally, a list of the important references has been provided. 

The thesis also includes four appendices at the end. 

Appendix A mentions the Lacey's scour depth formula and the silt factors for various types of 

soils. 

Appendix B describes the derivation of expression for the number of log cycle reduction in 

bacterial concentration. 

Appendix C describes the Scwartz-Cristoffel transformation used in the thesis. 

Appendix D describes the Newton-Rapshon iterative method used in the thesis. 

Symbols and notations are defined wherever these are first used. Lists of notations, figures and 

tables have been provided before the first chapter. 
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Chapter 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Ground water is used as a potential source of drinking water supply. In comparison to 

surface water, ground water is well protected against microbial type of pollution and relatively 

is of good quality. However, exploitable ground water sources are limited as regard to quantity. 

Inadequate treatment and prohibitive cost of treatment of contaminated surface water have led 

planners and decision makers to innovate techniques for sustainable and continuous water 

supply. In regions where rivers are not perennial or have low flows during most part of the 

year, collector pipes are placed below the riverbed to obtain un-interrupted supply of water 

naturally filtered through highly permeable saturated riverbed sediments. If a river, which has 

scarce surface water, underlies alluvial deposits, the exploitation of saturated riverbed aquifer 

becomes necessary. Under these circumstances, a collector pipe installed under riverbed at 

suitable depth is a solution of drinking water supply problem. In comparison to most ground 

water sources, alluvial aquifers that are hydraulically connected to rivers are typically easier to 

exploit and more highly productive for drinking water supplies, Doussan et al. (1997). 

A collector pipe is a special type of water abstraction structure and it is an integral part 

of radial collector well. A radial collector wells with several horizontal radial infiltration pipes 

emanating from a central caisson and under favorable hydro-geo logical conditions are a 

convenient means for groundwater recovery. Estimation of flow characteristics (flow, entrance 

velocity, travel time, and number of log cycle reduction etc.) in a collector pipe is a complex 

problem as compare to vertical well or other means of ground water extraction, which is based 

on the theory of flow characteristics in a horizontal collector pipe. The theory of flow 

characteristics of collector pipe are expressed by (i) analytical studies, (ii) experimental studies, 

and (iii) empirical field studies. Various researchers suggested theories based on these 

characteristics. 

Hantush and Papadopulos (1962) have derived analytical solution for drawdown 

distribution around a collector well. They analyzed several horizontally laid collectors in 

confined and unconfined aquifer located near or under a stream channel satisfying uniform-flux 

boundary condition along the collector pipe. The flow estimation to a collector pipe is based on 

the solution of Boussinesq's equation for three-dimensional flow satisfying the existing initial 



and boundary conditions. Alternately, Harr (1962) suggested the flow through collector pipe 

may be estimated based on steady state flow condition satisfying Laplace equation and 

pertinent boundary condition. 

An experimental study using electro-dynamic analog model to investigate the yield of a 

radial collector well for the constant head boundary condition along the collector pipes is 

carried out by Milojevic (1963). Hantush (1964) has suggested that instead of assuming each of 

the collector pipes to be line sink of uniform strength, first kind (Dirichelt type) of boundary 

condition needs to be imposed along the collector pipes. 

Based on concept of line sink under steady state flow condition, Aravin and Numerov 

(1965) have derived an analytical solution for computing potential and flow to the collector 

pipe. In order to determine the potential and flow to the collector pipe, they have chosen the 

center of the collector pipe as the origin and collector pipe is laid under riverbed. 

In an experimental model using an electrolyte, to check the validity of the condition if 

the flux or the head should be uniform along the collector pipe or not, Debrine (1970) 

conducted a study. The results of his model agreed with the solutions of Hantush and 

Papadopulos (1962) having relative deviation of about 2.2%. He also concluded that the flow 

to a collector well could be estimated using the assumptions of either uniform flux or uniform 

head along the collector pipes. 

In a review work Hunt (2003) elaborated the advantages of the horizontal collector pipe 

like (i) its installation depth allows large permissible drawdown as a collector pipe can be 

installed at a lower elevation in the aquifer (ii) complete length of the collector pipe screen in 

an aquifer contributes to groundwater production (iii) they suggested that available collector 

pipe length should be larger in order to lower the entrance velocity of the groundwater through 

the collector pipe. It also helps in reducing the rate of clogging and minimizing the head loss 

between the aquifer and the collector pipe. 

Zhan and Cao (2000) put forward that at late pumping stage, horizontal pseudo-radial 

flow takes place towards a horizontal collector pipe. This postulate supports the assumption of 

sheet flow condition in a thin aquifer and horizontal system. Based on the assumption of 

uniform flux distribution along the lateral axis for solving unsteady flow to the collector well, 

Zhan and Park (2003) have carried out experimentation under various aquifer conditions. 

In another study based on multi-layer analytic element modeling Bakker et al. (2005) 

have estimated flow for a two-tier radial collector well with several collector pipes under steady 

state conditions. In their study they took in consideration the three natures of flow and non- 
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homogeneous properties of aquifer. They computed the horizontal flow inside a layer 

analytically and the vertical flow is approximated with a standard finite-difference scheme. 

Mishra and Kansal (2005) and Kansal et al. (2012) have studied the specific capacity of 

a radial collector well having 2-tier of 12 numbers of collector pipes in each tier and also 

correction factor is derived using sheet flow concept. 

Mohammed and Rushton (2006) have carried out field experiment and numerical model 

to analyse the flow in a shallow aquifer before entering into a horizontal well, the flow from the 

aquifer into the horizontal well and flow inside the horizontal well. They conclude that the 

hydraulic losses are significant for the longer horizontal well. 

Fahimuddin (2007), applying Schwartz-Christoffel conformal mapping, has analysed 

steady flow to an infiltration galleries and laterals of radial collector well near river (straight 

and meandering reach). 

Patel et al. (2010) performed a steady state simulation model based on analytic element 

method. The model was used to study the effects of different lateral configurations, hydraulic 

conductivity of river-bed aquifer, radius of influence and conductance of laterals on the well-

discharge, and consequent drawdown. Further based on the results of simulation (using the 

analytic element method), an approximate empirical equation was developed to obtain the 

discharge of radial collector well for design purpose. 

Petroleum engineers have also done extensive work on horizontal well problems. Joshi 

(1991) has presented a comprehensive detail on the flow to horizontal well from the petroleum 

literature. Kawecki (2000) presented a study to correlate the equations that relate the transient 

head in a horizontal well to a constant well discharge obtained from the petroleum literature to 

groundwater hydrology. 

Several investigators have carried out mathematical studies to analyze the flow to a 

horizontal well with their different objectives and under different hydro-geologic conditions. 

Some recent studies are cited (Zhan, 1999; Zhan et al., 2001; Steward and Jin, 2001; Park and 

Zhan, 2002; Zhan and Zlotnik, 2002; Park and Zhan, 2003; Hunt, 2005; Kompani-Zare et al., 

2005; Sun and Zhan, 2006, etc). 

In case of riverbed filtration the collector pipe should be installed beyond the minimum 

filter thickness plus scour depth. The scour depth is the function of peak flood discharge and 

silt factor of various types of soils. When the collector pipe is installed above the scour depth, it 



is dislodged and gets turbid water. The riverbank filtration (RBF) technique takes advantage of 

existing geological formation adjacent to water bodies to filter drinking water. Wells are dug in 

fine, sandy sediments next to water bodies and water is extracted from these wells. Water in the 

water bodies filters through the sediment removing contaminants. The water obtained is often 

of much higher water quality than the raw surface water. The performance of riverbank 

filtration system using vertical production and radial collector wells in terms of reduction of 

contaminants (microorganism, organic) that occur during passage of water through porous 

medium between the productions well and the river. Removal of dissolved organic carbon 

(DOC) in RBF water utilities with different retention is found in bank filtration by Sontheimer 

(1980). 

The portion of riverbank filtration in the pumped raw water would depend on source 

water quality, geo-hydrologic conditions of the aquifer, river-aquifer interface, hydraulic 

gradient, infiltration rates, hydraulic conductivity and distance between the riverbank and the 

pumping wells. Reduction of contaminant levels in riverbank filtrate is attained by physical 

filtering, microbial degradation, ion exchange, precipitation and sorption, Gerritse (1998). - 

During RBF process, which has many similarities to slow-sand filtration, river water 

contaminants are attenuated from a combination of processes such as filtration, microbial 

degradation, sorption to sediments and aquifer sand, and dilution with background groundwater 

(Hiscock and Grischek, 2002; Ray et al., 2002, Ray and Shamrukh, 2010) 

The effectiveness of RBF for water quality improvement depends on a number of 

variables such as the characteristic and composition of the alluvial aquifer materials, river water 

quality, groundwater dilution, filtration velocity and the distance of the well from the river, 

temperature of river water, pumping rate, and sediment characteristic at the river-aquifer 

interface (Ray et al., 2003; Ray et al., 2008). 

Riverbank filtration wells can either be horizontal or vertical well depending upon 

hydro-geologic setting, require production rate and utility's preference. Shallow alluvial 

deposits and a higher rate of pumping from a given location often favour horizontal wells called 

drainage galleries. The collector pipes of the collector wells can all be directed towards the 

river or distributed in all direction (Mishra, 2005; Grischek et al., 2003; Grischek et al., 2005). 

In addition, dispersion of surface water chemicals in aquifers and further dilution of 

chemicals with groundwater help to reduce the contaminant concentration in the pumped water. 
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Water turbidity is often used as an indicator of suspended matter, which in turn is used as an 

indicator of microbial contamination. Particle removal can be considered a combined effect of 

straining, adsorption and biodegradation. In riverbank filtration, all three processes can occur 

Knappett (2006) and Knappett et al. (2008). 

Geographic conditions impact the effectiveness of riverbank filtration. The permeability 

of the sediment affect the seepage velocity and often internal clogging is associated with 

sediments having low hydraulic permeability and small hydraulic gradients. Sediments that 

have excessively high conductivity will not be efficient in removing contaminants. Microbial 

activity may decrease the permeability at the surface water - groundwater interface as a result 

of biofilm formation. The accumulation of biofilm extra cellular polymeric substances as well 

as bacterial cells and their gaseous degradation products, can reduce the hydraulic conductivity 

of sediment layers. The retention of the fine particles (<2mm) in hyporheic interstices is 

another major contributor to the clogging of riverbank sediments. Under low flow condition, 

the setting of the fine particles can cause external clogging of riverbed. Although clogged 

riverbank sediments may increase the efficiency of natural filtration, the loss in conductivity 

can significantly reduce the productivity of well fields Goldschneider et al. (2007). 

2.3 TRANSPORT OF MICROBIAL CONTAMINATIONS 

Transport of microbial contaminations in a variety of RBF systems with different 

characteristics such as travel time, aquifer material, climate, water chemistry and river flow 

conditions are important from water quality aspects. Some of researchers have described the 

attenuation and travel of micro-organisms. Berger (2002) has discussed about the various 

aspects and hydro- geological parameters on which the microorganism removal capacity of a 

riverbank filtration system depends. The removal process performs most efficiently when 

groundwater velocity is slow or retention time, i.e., travel time is more. In the granular porous 

aquifers, the flow path is tortuous and hence organism gets more chances to come in contact 

with and attached to a grain surface. Detachment also occurs with very slow rates when the 

water velocity is very slow and organism remains attached for long time and become 

inactivated or died before reaching the producing well. The efficiency of riverbank filtration to 

remove microorganism from the infiltrating surface water depends on (1) attachment of the 

microorganism to the soil or sand and inactivation, (2) the climate and hydrological conditions 

(temperatures, heterogeneity, flood), (3) the geometry of production well (horizontal well or 

vertical well) and surface water body (lake, river, island), (4) the character of the bank materials 
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and streambed, and (5) groundwater flow field. Aquifer materials with significant fracturing are 

capable of transmitting groundwater at high velocity in a direct flow path with less travel time, 

i.e., less opportunity for inactivation or removal of microbial pathogens. 

Several researcher caries out simulation work on MODFLOW for flow and transport 

modeling in various flow conditions ((Kelson, 2012, Patel et al. 1998). Dillon et al. (2002) have 

considered two basic factors which are most important for the assessment of quality of 

recovered water from a well pumping nearby a river as a part of RBF for drinking water 

supplies from brackish aquifers. These two factors are (i) minimum travel time from the river to 

the well, tmjfl, and (ii) the proportion of the recovered water which is derived from the river 

(qi/Qi), where qi is the rate of induced infiltration from the river and Qi  is the discharge rate of 

the pumping well. The first factor allows an estimate of contamination attenuation through 

adsorption and biodegradation and the second factor contribute to the further reduction in 

contaminant concentration through dilution. For well close to the river, tmifl is small and qi/Qi  is 

large, and with increasing distance from the river tmjfl increase and q/Q may decline. They have 

considered only vertical well for the study and used MODFLOW for simulation. There results 

show that a well located 50m from the bank would pump 94% water from the closest reach at 

steady state and will have a tmifl of about 84 days for initially horizontal water table taking 

adsorption and biodegradation into consideration. Further, to minimize the risk of bacterial 

contamination of produced water, the tmjfl should be more than the survival time of pathogenic 

bacteria in concern. 

Several researcher (Schubert (2002); Schmidt et al., 2003; Schubert, 2003; Schmidt et 

al., 2004) are reported the field studies conducted in the lower Rhine region to know the flow 

and transport phenomena of riverbank filtration and to develop numerical models for dynamic 

simulation of flow and transport. In this study, the important finding was about the age 

stratification of the bank filtrate between the river and the wells. Age stratification means that 

water enters a well near a river at widely different times. This difference in time is the reason 

for equalization of the fluctuating concentrations between the river and the wells. From 3D 

modeling under steady state condition, results of the flow path, flow time and mean flow 

velocity were reported and are reproduced as: 
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Table 2.1 Flow Path, Flow Time and Mean Flow Velocity 

Flow path (rn) Flow time 
(days)  

Mean flow velocity (rn/day) 

290 157 0.25 
162 120 1.35 
108 33 3.27 

68 20 3.4 

Several researchers try to provide effective solutions for river bed filtrations. There is 

several work carried out for monitoring and management of the pathogens, contaminants, 

dissolved organic and in organic contaminants, carbon content, turbidity, pesticides and 

Disinfection Byproduct (DBP) Precursors etc. (Kuehn and Mueller, 2000; Hiscock and 

Grischek, 2002; Ray, 2002; Ray et al., 2002; Verstraeten et al., 2002; Weiss et al., 2003; Weiss 

et al., 2003a; Weiss et al., 2003b; Ray et al., 2003; Ray, 2004; Weiss et al., 2005; Ray, 2008). 

Other notable work on RBF technique provides inside for flow and contaminants contro! 

(lrmscher and Teermann, 2002; Tufenkji et al., 2002; Weiss et al., 2003a; Go!lnitz et al., 2003; 

Schijven et al., 2003). 

Weiss et al., (2004) discussed the significance of RBF in removing natural organic 

matter (NOM) present in surface water. NOM present in water reacts with ch!orine used for 

disinfection and ha!ogenated DBPs such as trihalomethanes (THMs) and ha!oacetic acid 

(HAAs) are formed, many of which are suspected or known human carcinogens (Singer, 1999). 

Possible approaches for controlling DBPs formation include (1) use of a!ternative disinfectants, 

such as u!traviolet radiation or mono-chloramines which do not react readily with NOM, (2) 

removal of DBPs from finished water through such process as granular activated carbon 

adsorption or stripping, and (3) better control of source water qua!ity through removal of 

precursor NOM to prevent DBP formation. RBF's value for controlling DBPs lies in its ability 

to achieve this last benefit, namely removal of NOM through ground passage. 

2.4 ENTRANCE VELOCITY AND TRAVEL TIME OF A PARCEL OF WATER 

ALONG A STREAM LINE 

The range of an entrance velocity to the collector pipes is a conflicting issue among the 

researchers; Blair (1970) has suggested the maximum entrance velocity to 3 cm/s and Huisman 

(1972) has recommended the maximum entrance velocity to be 4 cm/s. While installing a 

collector pipe, one has to check the entrance velocity. Further, the axial velocity inside the 

screen should be less than 0.9 rn/sec Driscoll (1986), Ray (2002). Larger available length of 
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collector pipe lowers the entrance velocity of the groundwater through the collector pipe 

reducing the rate of clogging and minimizing the head loss between the aquifer and the 

collector pipe Hunt (2003). The critical axial velocity was determined to be lmls Kim et al. 

(2008) and the concept of entrance and axial velocity also elaborated by Mishra and 

Fahimuddin (2005). The theory behind this criterion is that at such low velocities flow is 

entirely laminar, thus turbulence will not contribute to well loss. However, the average entrance 

velocity concept may be misleading. In screened well, part of the entrance area is blocked by 

the screen and aquifer material or gravel pack. Soliman(1965) and Li(1954) analyzed flow to a 

well and they showed that the entrance velocity in the upper 10% of screen was about 70 times 

that of the lower 10% in an ideal aquifer. In every screened well, part of the entrance area is 

blocked by the screen and gravel pack. Depending upon the type of soil an aquifer medium is 

comprised of, the entrance velocity to a collector pipe laid in the aquifer is to be maintained in 

order to restrict the movement of fine sediments to the collector pipe. The entrance velocity to a 

collector pipe is linearly proportional to the drawdown in the well caisson, and hydraulic 

conductivity of the aquifer medium and inversely proportional to the open area fraction in the 

collector pipe. 

Using concept of unsteady flow condition based on hydrodynamic equation, Sende S. 

(2008) had derived an analytical expression for safe distance of abstraction point from the river. 

He also derived the expression for travel time of a parcel of water to a drainage gallery under. 

The collector pipe is installed below the scour depth (Kothyari et at, 1992, Kothyari, 2007) and 

minimum filtration thickness. The scour depth the function of silt factor is given by lacey 

(Lacey, 1946, (Lacey, 1929). The value of silt factors for different size of particles is given in 

appendix A (IS: 3955, 1967). 

2.5 CONCLUDING REMARKS 

From the literature review on the work carried out by various researchers, it is observed 

that very little analytical works have been carried out on the flow characteristics of collector 

pipe in both cases of the riverbed or riverbank filtration. From the technical background 

reported earlier one can conclude that though efforts have been made to assess the flow through 

a collector pipe under steady state condition, still analytical studies are required to understand 

the other flow characteristics through the collector pipe laid under riverbed and in case of 

riverbank filtration. Further, it has been assumed that the flow to collector pipe can be 

considered as sheet flow but no analysis has been carried out for estimating the correction 

factor for such assumption. 
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considered as sheet flow but no analysis has been carried out for estimating the correction 

factor for such assumption. 

Furthermore, the numerical modeling of collector pipe reported by researchers is quite 

cumbersome and has its own limitations. There is no relationship between the number of the 

log cycle reduction in bacteria concentration and the travel time for a parcel of water. In view 

of the existing gaps in the literature, the present research work has been undertaken. Attempt 

has been made to derive analytical expressions for various flow characteristics such as yield, 

entrance velocity, travel time and number of log cycle reduction for collector pipe of various 

shapes located at various locations in the aquifer system. Further, flow characteristics for multi-

lateral collector system installed adjacent to the river under steady state condition have been 

studied. 
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Chapter 3 

ESTIMATION OF FLOW TO A COLLECTOR PIPE 

PLACED BELOW THE RIVERBED 

3.1 INTRODUCTION 

Water supplies for drinking, irrigation and industrial purposes have been traditionally 

drawn from different surface and sub-surface sources like rivers, streams, ponds, lakes and 

aquifers. However, surface water sources are becoming more and more inadequate and unsafe 

due to contamination. The contamination problem arises due to sewage effluent discharged into 

the surface water sources besides due to discharge of effluents from slum dwelling on the river 

banks. Drinking water supplies from surface water sources require costly water treatment to 

make it safe for consumption. Ground water is used as a potential source of drinking water 

supply. In comparison to surface water, ground water is well protected against microbial type of 

pollution and relatively is of good quality. However, exploitable ground water sources are 

- limited as regard to quantity. Inadequate treatment and prohibitive cost of treatment of 

contaminated surface water have led planners and decision makers to innovate techniques for 

sustainable and continuous water supply. In regions where rivers are not perennial or have low 

flows during most part of the year, collector pipes are placed below the riverbed to obtain un-

interrupted supply of water naturally filtered through highly permeable saturated riverbed 

sediments. 

The flow estimation to a collector pipe is based on the solution of Boussinesq's equation 

for three-dimensional flow satisfying the existing initial and boundary conditions. Alternately, 

the flow through collector pipe can be based on steady state flow condition satisfying Laplace 

equation and pertinent boundary condition Harr (1962). 

A collector pipe is the primary component of a radial collector well constructed either 

for river bed or river bank filtration. In river bed filtration a collector pipe is laid as per 

requirement from consideration of scour depth and minimum filtration depth. Assuming the 

collector pipe as a line sink and applying conformal mapping technique. Aravin and Numerov 

(1965) have derived an analytical solution for computing potential and flow to the collector 

pipe under steady state flow condition. The collector pipe is laid below the river bed 

perpendicular to the river axis shown in Fig. 3.2 (a) and (b).Such a layout is appropriate if the 
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well caisson is constructed on the river bank. To derive the flow characteristics, Aravin and 

Numerov (1965) have chosen the centre of the collector pipe as the origin. In conformal 

mapping technique, there is no restriction in selecting the location of origin in the physical flow 

domain. Choosing conveniently the origin at the impervious base below the collector axis, 

alternate analytical expressions to determine i) the potential at different location in the flow 

domain, ii) quantity of flow to the collector pipe, iii) entrance velocity, iv) and the travel time 

of a parcel of water from the river bed to the collector pipe along the shortest path have been 

derived in this section. Using the travel time, the log cycle reduction in bacteria concentration 

has been found using logistic function. 

3.2 STATEMENT OF THE PROBLEM FOR A LINE SINK 

A section of the flow domain in a vertical plane normal to the axis of the lengthy collector 

pipe is shown in Fig. 3.2 (a) and (b). It is required to estimate the flow characteristics, such as 

yield, entrance velocity, travel time, and number of log cycle reduction of bacterial 

concentration through this collector pipe. In order to solve this problem, following assumptions 

are made: 

The flow is considered to be steady and two-dimensional. 

The aquifer is homogeneous and isotropic. 

The aquifer thickness is finite. 

The head loss along the collector pipe is negligible. 

In order to derive the solution, conformal mapping technique is suggested in this study. 

It can be used to solve the Laplace equation provided the flow boundaries are straight. The plan 

and section of collector pipe are shown in Fig. 3.1. 

Go 

C son 
. River 

_ 
rB 

rated collector pipe 

cc 

Fig. 3.1: (a) Plan and (b) Section at B-B of a typical collector pipe (not to scale) 
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The flow is assumed as two dimensional in a vertical plane perpendicular to the 

collector pipe axis. Further, solutions have been derived assuming the circular section as the 

followings: 

I) As a line sink as shown in Fig. 3.2 (a) 

ii) As a narrow vertical slit of length 6 d' equal to the diameter of the collector pipe as 

shown in Fig. 3.2 (b). 

I 

1b
.  

Rye, bed 

hLB. •.. .• -. A. 

D

A. 

- . -.... 

Id .i-tp=q. 

lE1. 

1prvinhly c.up-r 

R 

- 

A 

D 

d1  v=q 
E 

Fig. 3.2 Physical flow domain of (a) line sink and (b) Vertical narrow slit 

Fig. 3.3 Auxiliary , (= ,- + .-) plane of Fig. 3.2 (a) 

AB is the river bed and AE is the horizontal impervious base of the long river reach. D 

is the thickness of aquifer medium below the river bed. The flow is two dimensional in the 

vertical plane normal to the collector axis. We take into account the symmetry of the flow 

domain about y axis and consider half the flow domain for mapping to evaluate the flow 

characteristics. 
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3.3 COMPLEX POTENTIAL 

The velocity potential functionØ is defined as: 

(3.1) 
7w } 

where, k is the saturated hydraulic conductivity of the sediments deposit p=water 

pressure: =Uflit weight of water; yelevation head; C' =a constant conveniently chosen for 

vertical narrow slit as C'= k(h1  +d1), where h1  is piezometric head in the collector pipe and d 1  is 

the elevation head at the collector pipe axis. The velocity potential functionØis such 

0 
that_r=u. and— =v, where, u and v are the velocity components in x and y direction 

öx 

respectively. The velocity potential functionØsatisfies the Laplace equation -+----=O.The 
ax- a - 

stream function yl also satisfies Laplace equation. The velocity potential functionØ and stream 

function çu satisfy Cauchy-Riemann condition that is ----and-- = 
axa ax 

3.4 CONFORMAL MAPPING ANALYSIS FOR A LINE SINK 

Mapping of/he  z-plane onto i-plane qia line sink 

The vertices A, B. E. and A of the flow domain have been mapped onto - .- I. I. on 

the real axis of the auxiliary t plane and plane is shown in Fig. 3.3. Accordingly. the Schwarz-

Christoffel conformal mapping of the flow domain (Harr. 1962) in z(=x+iv) plane onto upper 

half of the auxilliary i(=+is ) plane is given by: 

(3.2) 
di l(i +tXi-i) 

Integrating, equation (3.2) reduces to 

= = Msin' / +N (3.3) 

where. Al and N are complex constants, which depend upon the geometry of f low domain. For 

vertex E, t= I. and z = 0: hence, 

o =Msin'(l)+ N= M+N 
2 

(3.4) 

22 



For vertex B, t = -1 , and z = ID. Therefore, 

iD=Msin'(_l)+N---M+N (3.5) 

Equations (3.4) and (3.5) yield, N 
= iD and M = - 

 iD 

2 

The transformation of :-plane onto the auxiliary t-plane is thus given by: 

-zD. iD 
z=—sm i (t )+— (3.6) 

iv 2 

or t = cos(i— ) I (3.7) 
D 

At point C,C2, t = C and z = i'd 1  . Applying this correspondence in (3.7) 

( ird' ~ ,rd1\
c=cosl— 

 
cos— ----I (3.8) 

D) D) 

Mapping of the complex potential w (= 0 + iii)plane onto t-plane for a line sink. 

- The complex potential plane pertaining to the flow domain is shown in Fig. 3.4. The 

w-plane has been constructed assuming the constant C, which appears in velocity potential 

function 0 = —k(p / yw + y)+ C, is equal to k(hR + D). 

(/, 

A E 

q . . 

/ . 
q
çc B 

Fig. 3.4 Complex potential iv (= qs + iyi )plane of Fig. 3.2 (a) 

The mapping of the complex potential plane onto the upper half of the auxiliary plane is given 
by 

ChV  - M 1  
dt - (c-t)I(i7) 

(3.9) 
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Integrating, equation (3.9) reduces to 

w-- MIJ
d:  

(c—t)T) " 
(3.10) 

Expressing,t+1=v2 , and di = 2vdv and integrating 

w  MIS_
2vdv 

j._
dv 

- 
iw  

= +N1  =2M +N1 ln H-N1 (3.11) 
(c+1_ v2 ) (c+i_v2 ) 

- 
/11i iii - v) 

Replacing back v by .j + 

M 1 ' Th+N (3.12) w=InL J 1 

and N1  complex constants to be determined from the complex potential plane. At vertex B, 

t = —1 and w = 0, therefore, the constant N1  = 0 .At vertex A, t = 00 and w = iq. Applying this 

condition in (3.12): 

iq = 
M1 

' 111C_71 
+ iii 

-] 
- 

M1 
in[—i]= 

 M1 1n(er)=  Air1 
iT 

 

Hence, M1 Finally, w-trelation is given by: 

w=—InI I 
if 

(3.13) 

Substituting t and c in (3.13) by equations (3.7) and (3.8) respectively, the relation between w 

and z is obtained as: 

1 'cos(L'+1 
+cos 

+1 
irz 

1— 
' 

w=ln 
D) D) 

1— 1+1 
LFCOS '+I _co( (

irz 

D) D) 

(2/i •' (,rz 
co I+co i— 

q 1  2D) 2D 
if i z . 

co 
~2D)_ 

co 1 
 2D 

At location,z=0, the complex potential is 

[ FOS irz'
1+1+

rco~(i 
— 1

ln
2D) 2D) I 

cos2  
cos 2 l —1-1+1 - I j—__ 1-1+1 I 

2D) D) 

(3.14) 

-e 
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+ cos(0)1 r051L') + 11 

w(0)=ln l2D) In 2D) 

cos1'L") - cos(o) I LE!L —1 
2DJ ] Lco2D j 

=-inI--cot-"1=--in[e 
I"  

cot2I_LII 

=InJc

L 4DJ] [ 4D)] 

ot2t"u1l  
I 4D) 

Thus atz=O, Ø(O,O)=u1ncot( ik and ti(o,o)=q. 
r L 4D)J 

q I 2( me +Incotl  — 
if L 4D 

Further, separated the complex potential w(z) into real and imaginary parts as described below 

and derive(x,y),(x,y). Substituting z=x+iy in equation (3.14) 

2TX ry'l 
I  co I+cosI i— 
I ___2D) 2D 2D 

(x,y)+içt'(x,y)=11n 
I if (ifd1 '\ \I 
Co 1-cosi i 

ifX  ify
___ 

I2D) l 2D 2D 

(ni (.ifx (ify . (.irx . (r y 
co +co i— ico i+sini :— ismi 

—±?-in 2D) L 2D) L2D)  t 2D) 2D 

if ( (Ir x (ify . . ( y co I—co I— CoI 1—sinl 1— IsinI 
2D)j  L2D) 2D) 2D) 2D) 

cosi 
( 

I + coshi 
(x ( 

I cosi 
y ( x 

i + i sinhi 
( y 

I sini 
12D) 2D) 2D) t,2D) 2D 

cosi 

( 
gx 

I -cosh 
(2D) 

cost 
(if y if 

I —, sinh 
..

(2D ) 

. 

sini 
(y 

12D) 2D)  2D 

2(1 2(x
2D 

2( v 2(ifx 2 (ify ( (x ( y cos I i—cosh I Icos I i—sinh I Isin I I+i2cosl Isinhi Isifli 
q t2D) ) 12D) 2D) 2D) 2D) l2D) 2D 

= - In 
if ~

Cos
ifx l ( 2 ( Yi I — coshi cosi

(ify 
I

2 2 
+ sinh  sin I 

 12D) 2D) 2D)J 2D) 2D 

k

2 d 2

( 2D) 
ifx (ify •(y12I 2(ifd

cos cosh cos i I — sinh 1isin I> + 4cos I isrnh 'sin
q 2D) 2D) 2D) 2D)J I 2D) 2D) 2D 

=—In e 

~Cos('W 
d (ifx (ify11 2(ffy 

icosh Iicosi —. i +sinh sin I
) 2D) 2D)J 2D) ¼2D 

2 

(;M~  sinh ' 2 

I 

11/2 1 
2"l" 21'ifif'\ 2(ify'\ /,ry 

I 1—cosh I - Icos I - I — sinh I Isin I 
q 
 In 

[~
Cos 7d  H—Isin 2D) 2D) 2D1 2D) 2D)} 

~{4c0 
2DJ 2D) (2DJj 

I+i - O (31 

~'00-004'")C45-Y-)l 
2 21' y 

co — +sinh
ifX

)
sin

2(if

)2D 2D 2D 

 
 

I 

j 



where, 

( _ird j . (ifx' . (ry
2 cosisinhi - isini 

-1 2D) 2D) 2D 

j

L

5d1 2 ir 
 

(y 
  

2(
I

2

r 

 D

x

) 

 

  
s
. 
n - Icos cosh 

)
cos s

.
rnh 

2D 

(

2D 2D) 2D 

hence, 

-1/2 

cosi icoI - I—sinh Isin I - -sinh - Isin I 
- 

(ifx" iry . 2'2YJ}+{4coi7il' . 2I'irx' 2",r"1

x,y)-/-in 
[~Co

s~
21) 2D) 2D) 2Di 12D 2D) 2D) 2DiJj 

[ 

  (  
(3.16) 

 s

(,rx

1c

(,ry 
 2

1iry 
co  - o +sit

2)TX

1
sin 

2D 2D 2D 2D 2D

"
{co — 

 

and 

i-

2co  

 

si nh i
x  

)
si n 

 

(  y 

1f (x,y)=—tan-i  

(

2D) 

(

2D 2D 

- 

   
(3.17) 

if 
cos

2(1
cosh 

(ffx
icos 

2(y 
sinh rx)s.

m2(Y 
L2D) 2D) 2D)

— (
2D 

 

2D 

Alongy=O, i.e. line EA, x,O)=.1tan'(o)=1r=q. It is to be noted thattan '(o) has 

multiple values; tan( 0) as well as tan ()r) is equal to Oand; we have considered the latter value. 

AlongBc1 ,x = 0; (01y>(di+0.5dp))Stan_1(0)100. 

Along y = D, the velocity potential is: 

)1

11 

Icos2I'1_ sinh2
(2D 

+ f4COS2(L'lSiflh21-'1SIfl 21
Ir 
 

X 

1) =--in 
J I2D)J L I2D) L2D) I2D 

if . -, if))  

C05f~

l )  +Stflh sin - 
2D (2D)  2D 

cos (jd[ +sinh(
2D  

sin I

-

2D) ) 12D —o 

if 2(i 2(Y - cos I - i+sinh (
2D ) 

isin I 
12D) 2D 

At x0, and y = 

/2 
i 2('rd 2(if 

)j 

d1'\12 

{4 

2 (ifd1  )J] l 
I<cos - I—cos I I + cos 

1 LL 2D) 2D 

cosl __L I - cos

~
'T 

 if I (ifd d12  

2D) 

At location x0, and y=O, 
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I cos —1l i ~~j  
rr 

211 / 2 
- 2[If

1l  

I 2D1 Jj 
2( i11  

L 
2 IflI 2 

2D)J I 
cos I I~ I 

zd I 2  
iln 

cosI—I I cosi 
{ ( J} 

{icos(J} 
[11  . 2D 2D 2D 

Making use of equations (3.16) and (3.17), velocity potential(x,y)and stream 

functiony,(x,y) can be computed at locations on a rectangular grid pattern in the flow domain 

and a flow net can be drawn. 

Determination of q: 

Let at z = i[di 
+ 
 dp 

 ], 
the piezometric head be equal to p 

Hence, 0.  =—k(p/y +dl+dP/2)+k(hR  +D)kD and ' = 0. 

Incorporating these in equation (3.14): 

Iff 2 

2D 2D 

)}1 [ ' 
I1 { 

co I+cos(d1  +0.5d I I c+cos (d1  +0.5d )) L 2Dj 2D 
kD =--1n = in 

o
(zd

I 

co I_cos(di  +0.5d 
)}

I I +0,5d )}j 
I Jr  

2D) L2D ] 
[ L2D {2D 

(3.18) 

Solving for q 

q = 
ir 

[cosi I+cos 
f
1 —(d1  +0.5d) 

2D) {2D 
In 

(,rd1 ' 

{2D 
I - + 0.5d

2D  9 P)f 

The dimensionless total flow from both sides, QI(kD), to the collector pipe is 

(3.19) 

Q/(kD1 ,) = 
2ir 

1r  i 
cosl +cos —d +0.5d 

2D) L2D 
In 

cos 
1 

I—cos--- 
z- 

(d1+0.5d 
k2D) 2D 

(3.20) 

Entrance velocity 

Depending upon the type of soil an aquifer medium is comprised of, the entrance 

velocity to a collector pipe laid in the aquifer is to be maintained so as to restrict the movement 
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of fine particles into the collector pipe. The entrance velocity to a collector pipe is linearly 

proportional to the drawdown D in the well caisson, and hydraulic conductivity of the aquifer 

medium and inversely proportional to the open area fraction in the collector pipe. The 

expression for entrance velocity is derived as follows: 

An average entrance velocity is determined with ease using the expression for flow to 

the collector pipe. Magnitude of average Darcy velocity at the periphery of the collector pipe is 

equal to 2q /(,d ). The average entrance velocity is given by: 

2 kD 
v=2q/(rrJ p fa ) (3.21)= 

co{J+cos (d1  +0.5d)} 

dpfalfl (2?z11 ] {ir 
( co -cos __d1 +O.5d)} 

Dimensionless an average entrance velocity factor T,  f  is defined as: 

- e 1pfa 2 (3.22) 

+ 

Vej 
= kD, = r 

+0.5d)} 
I t2D) L2D 

ml 
I 

cosi 
 (d 

cos (d1+o.5d )}] I I- 
2D) {2D 

The maximum and the minimum entrance velocities 

The streamline BC1  is the shortest flow path from the river bed to the collector pipe and 

the streamline AEC, is the longest flow path. Therefore, magnitude of the entrance velocity at 

point Ci is the maximum, and the entrance velocity at location C2  is the minimum. We derive 

expressions of the maximum and the minimum entrance velocities as follows: 

Incorporating constant M in equation (3.2), 

di 
- 

ir 
- 

hr 
' Xi-t) -_----t+ iXit) =—( t + 1 

dz -ED D 

Incorporating constant M1  in equation (3.9) 

(3.23) 

=iii 1 

dt ,z• (c-t)Ti) 
(3.24) 

Multiplying 
dw 
—with 

di 
— 

di dz 
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dwdt_dw =  iq  -- T 
 VF 

(3.25) 
(c - t) 

Incorporating the relation between t and z as given in equation (3.7) in equation (3.25) 

IF  
• 0( J] div . iq  

- = U - lv = - Jc + 1 (3.26) 
d D 

I 

s 
(1 

c - co i— 
D ) ] 

(d,

d'\
The Darcy flow velocity at zzri +-Jis given by 

I 1-cos1d1  +  dp  
2 

U - iv 
= D 

+C[ (3.27) 

4~-' 

" Iir (
cI-cos-I d1  + 

d

D) LD 2 

Equating the real parts on either sides of equation (3.27), we obtain u = 0. equating the 

imaginary parts and replacing q by equation (3.19), we obtain the Darcy velocity at 

- d 
z=O,i d1+_E 

'\ 
 as 

2 

________________ 

[1COsJ(dI + 

___________ 

2)j 
V 

= r kD (3.28) 

I I-cos - 

 

- cos' I+cos 
[ (d1 I 

2D) {2D [ D) 
(d,J}l 

2D[ {2D 
l I 

Dln[ 

cos cos
P)l 

The negative sign indicates that the velocity at z=0i[di 
 +
LP 

] 
is in the opposite 

direction ofy.  The absolute value of v is the maximum on the periphery of the collector pipe. 

Performing a mass balance considering an elemental area 0.5dde on the periphery of the 

d 
collector pipe at z=0,i 

(
d1 +_ -

2) 

05d d9 f v t,, = 0.5d dO lvi (3.29) 

where, v is the maximum entrance velocity; fa = fraction of the peripheral area of the 

collector pipe perforated in unit length of collector pipe. The maximum entrance velocity is 

obtained as 
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Vem 

= f. 

(3,30) 

The maximum entrance velocity factor is defined as 

Vi lDfa 
IIcos{1d +l1 dp  

D2)J] 
Ve,nf 

= kD1 = E 
~o.5d CO s1 ) +cos 

r ,cd1 1g ( d 

ml 1 
I 2D 12D 

[ D) LD 2 J 
I  

co ---(d1 +o.5d IsI—I cos 
2D) {2D 

( 
The Darcy velocity at z = i 1\dl 

- 

d  

---) 
is given by 

[lcOS
1

L1d dp 
D 2 

11 

____________ 

)fj 
V2= kD 

} [ (,td1 h d p  
) i Cos COsi - l+cos r 

2D){2D 
[ D) hD[dI2}] 

2D) {2D 

DIn co [ 
f'ird1 

----(d1+o.5d ) sl I cos 

(3.31) 

(3.32) 

Following similar procedure as above, the dimensionless minimum entrance velocity 

factor is derived as: 

I11 
I cos

ff 
 (d,  

d 

V2Dfa 
 ________ 

L 2J] 
V2j 

= kD,1, = [ 
(3.33) 

co +cos 
_ 
+O,5d ) i I— 

} F 1 r I sI cos (d, fl 2D)12D _ L D) [D In  

cos (d1 +o.5d cos )} I i I 
2DT {2D 

The minimum travel time of a parcel of water from the stream bed to the collector pipe 

Computation of the minimum travel time of a parcel of water from the stream to the 

collector pipe is of use to predict the log cycle reduction in bacteria concentration while a 

parcel of water moves from a stream to a collector pipe. For the present case, along y-

axis z = i y , and u = 0. From equation (3.26), the Darcy velocity along y-axis is 

= - iii'— - cos(J] /[ - co{)] (3.34) 

The travel time tr Of a parcel of water from stream bed to the collector pipe is given by: 
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MD C— COSt— 

t r  = 
V(Y 

OTD 
d1 +O.5d 

1) 1cosi!)+c1 
_ 

D) D 

j 
= 

q 
(d+0.5d) [i_cosJ] 

D 1) 

(d1 i5d) 

c-I 
__ 

1-co {)] 
q (,+i5d)[ 

CO(]dY (3.35) 

where,q is the volumetric porosity of the aquifer medium. Substituting,Y, dy=2dY in 

(3.35) and simplifying 

D2(1-c) f dY D2 
fV,_co Y) I1Y (3.36) tr - 17 

J[I-coY)] 
—17 

-(d1+o5a) 

= 'l '2 

Substituting cos Y = 1- 2 sin 2
(Y)  

p2(c) dY 

f 
12- 

Further substituting Y / 2= dY = 2d 

1 D 2 (1-c) 
/2 

D 2 (1_c) i (fl
;r 

2  
f
cos ec(fl tan 

5 ) 
2 1) 2D 

D2(I_C)lf tan 2r (d +0.5d )} ,q.JjT I. 4D 

,7D 2 {/i_o(Y)}iY = 
71D 2 f V1 Sifl 

rq 
'2 

= 
I (d +05d) - Ido5d) 

= 2 1 
2

cos_-(d1  +O.5d) 
2D 

Incorporating Ijand I2in (3.36) 

t r tan 
+O.5dp)}-2 

17D 2 ( 
cos—I d1  + 

fii L 4D 2DL 2J 
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D 2 
 - { t .(d l+ L(d~ll (3.37) c)ln 

4D 2 
)~+2CO4

2 2 11] 

For givend1  ID, d ID , we define a dimensionless travel time factor trf  as 

- 
tr kD v  

- 

(3.38) 

Knowing the travel time of a parcel of river water to the collector pipe, the log cycle 

reduction in bacteria concentration in the parcel of water is computed using logistic function. 

The derivation of log cycle reduction in bacteria concentration using known travel time is given 

in Appendix B. 

3.5 STATEMENT OF THE PROBLEM FOR VERTICAL SLIT 

Plan and section of a typical collector pipe are shown in Fig.3.1 (a) and (b).The 

collector pipe is laid horizontally and is connected to a reinforced concrete caisson, which has 

been constructed on the river bank. The collector pipe runs perpendicular to the river axis in an 

aquifer of finite thickness. It is required to estimate the flow characteristics, such as yield, 

entrance velocity, travel time, and number of log cycle reduction of bacterial concentration 

through this collector pipe. 

The difference in water level in the caisson and piezometric level in the collector pipe is 

The collector pipe is laid at a depth D below the river bed. The depth D needs to be more 

than the scour depth. The scour depth is estimated by using the expression as suggested by 

Lacey (1929). The collector pipe should be below the scour depth accounting the minimum 

filter thickness above the collector pipe required for natural filtration through the layer above 

the pipe. For rapid sand filter, the minimum filtration thickness is taken as 0.8 in (IS: 3955-

1967). The detailed analysis of scour depth is shown in Appendix - A. 

3.6 SOLUTION METHODOLOGY FOR VERTICAL SLIT 

Schwartz-Cristoffel conformal mapping technique, explained in Appendix B, is applied 

to the idealized flow domain shown in Fig. 3.2 (b).Accordingly yt values are assigned as shown 

in Fig. 3.2 (b) and the complex potential w(= q$+iyt) for vertical slit is shown in Fig. (3.5). 

The complex potential w(= 0 + içt') pertaining to the flow domain for each case is shown in Fig. 
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Fig. (3.5) Complex Potential w(=q5+iyi) Plane of Fig. 3.2 (B) 

Mapping ofphysicalflow domain to upper half auxiliary t-plane 

The vertices A,B,C,,C2,E, and A of the flow domain for vertical narrow slit are mapped 

onto - ,-1,b,a,l and o respectively on the real axis of the auxiliary t (=r+is) plane as shown 

in Fig. (3.6).The flow domain is mapped onto the upper half of auxiliary plane. 

b 1 1 
r 

A B (i Cz E A 

Fig. 3.6 Auxiliary t(r+iS) Plane of Fig. 3.2 (B) 

Accordingly, the conformal mapping of the flow domain in plane onto upper half 

of the auxilliary t(r+iS)  plane is given by: 

dz M 

dtj(l+tXl—t) 

Integrating equation (139) 

z=MJ 
dt 

+N (3.40) 
J(i+t)(i—t) 

=Msiff't+N (3.41) 

where, M and N are complex constants, which depend upon the geometry of flow domain. 

For vertex E, t= 1, and z = 0. Hence, 
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o Msin 1 (i)+ N (3 .42a) 

or 

O=M!+N (3.42b) 

For vertex B, t = —1 , and z = iD. Therefore, 

0=Msin(-1)+N (3.43a) 

or 

iD=_M?i+N (3.43b) 

Solving M and N from equations (3.42b) and (3.43b), N = and M = - .The 
2 

transformation of z-plane onto the auxiliary t-plane is given by: 

iD1 0
z ---sin t+— (3.44) 

For point C2, t= a and z = i d i  - hence, 

lid --'1= -p-sin a+ - (3.45) 
2 Ir 2 

Simplifying 

(3.46) 
2D DJ 

For point Cj, t = b , and z = id1  + therefore, 
2) 

id'  

 dp 0 -1 iD 
+—I=--sin b+— (3.47) 

2) ,r 2 

Simplifying 

(d icd1  
(3.48) 

2D D) 

The parameters a and b are dimensionless conformal mapping parameters, which depend upon 

the dimensions d, d1  and D of the physical flow domain. 
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3.7 MAPPING OF THE w - PLANE ONTO THE UPPER HALF AUXILIARY t-

PLANE 

A, B, C1, C2  are the vertices in the complex potential plane. The complex potential plane 

is opened at vertex A, which has been mapped ontoco. The relationship between w and t plane 

is given by: 

dw M 
-= (3.49a) 
dt ..j(a—t)(b—t)(—l—t) 

or 

w(t) M1J 
dt 

= ____________ 

...J(a—t)(b—t)(—l—t) 
(3 .49b) 

The constant Ni  is governed by the lower limit of integration. Assuming the lower limit of 

integration to be- , for which, w=—kE? +iq, we obtain 

t 
di' 

W(t)=M I J
\/

()  kD, +iq (3.50) 

-00 

For - co <t <-1, performing the integration in equation (3.50) (Byrd and Friedman, 1954, p.72) 

ra— Fa 
sin —kD+iq (3,51) 

where, F(ço,k*)  is incomplete elliptic integral of first kind with amplitude çoand modulus 

2 
kg= 

a+1 

For t = —1, w=—kE. Applying this in equation (3.51) 

—kD,= 
2 ,r 

F)— 
_kDw +i. (3.52a) 

[011 

:q= 
—2M1  iv 

Fa+ 
(3.52b) 

For—I <t <b 

t 
dt 

w(t)=MlL(a_t)(b_t)(_l_t) 
kD (3.53a) 
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M 1 dt 
—kD (3.53b) 

Performing the integration (Byrd and Friedman, 1954, p.72) 

't+l kD. 
(3.54) 

For I = b and w = 0. Applying this relation in equation (3.54) 

MI 2 
F, LitJJ_kD (3.55a) 

2a+1 

Considering 1=-i, and solving for constant  MI 

= -1 

T—b+ 

__ (3.55b) 
2 F 1' 

Substituting the constantM1  in equation (3.52b) and solving for q 

I F(, 
q=kDJ 2Fa1 (3.56) 

The total flow, Q, to the collector pipe per unit length is 2q. Thus total flow is: 

r F
a - 

F(

Q=2kD 

ijr
(3.57a) 

2'a+1) 

or 

2 2 Fa+ 
 

- ________ (3.57b) 

2'tla+l) 

Entrance velocity 

The entrance velocity to the collector pipe is computed from Darcy velocity at the 

periphery of the collector pipe applying the principle of mass balance. From equations (3.49a) 

and (3.55b) 
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dw •sJTT kD 1 
dt '  2 

F[ 
(a-t)(b-t)(-1-t) 

(3.58) 

2 a+1 

From equation (3.39) 

-ID 
dt 

- 
j(i + ti —t) 

(3.59) 

dw 
- 

thy dt 
- 

.1/TT kD 1 zJ(1+tX1-t) (3.60a) - -- —1 
dz - dt dz - 2 IT F1  , 

f T J-t)-t)-i-t) -ID 

2 a+1) 

Simplifying 

thy 
= U - IV 

fi 
(3 .60b) = 

dz /ii D 2 fT') iJa- t)b-t) 

L 2  a+iJ 

Considering, .[1 = -i 

dw 
= U - 

r ,J1i 
____ _ (3.60c) lv = 1 ____ 

c/z D 2(,. /b+1 .J(a — t)(b — t) 
2 a+iJ 

Thus, fort<b,u=O and 

V 
kD, jz• 1:i-:- (3.60i) = 

D 2 
F 

i . 2'\!a+I) 

Fort =b, at vertex C1 , v=-cc andforb<t<a,v=O and 

(3.60e) 
D 2 .J(a-t)(b-t) F
(-2 a+iJ 

Thus, the flow velocity at points Ci(t = b) and C2 (t = a)are infinite. In reality, the flow 

velocity to a circular collector pipe is finite. This limitation is arising due to the idealizing the 

circular pipe as a slit. 

At the middle of the pipe, z = Id1 . From equation (3.44), t = cos
4 

LJ = td (say) 

Therefore, the horizontal flow velocity at the center of slit is: 

kD 7c ___________________ 

a+1) (3.60j) 
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The entrance velocity is computed considering the actual flow area that is the slot area of a 

collector pipe. Mass balance is applied at the periphery of the collector i.e. 

vr x2rdp =ve(I;xirdp) (3.61a) 

or 

Ve = V r 'fa (3.61b) 

here, j is equal to the ratio of area of opening to the peripheral area of the collector pipe per 

unit length of the collector pipe. 

Darcy radial velocity is taken approximately to be 

- Q 
2kD F(/---) 

Vr_ lr d 
- id 

FI1, /iII 
2 Va+1 

The entrance velocity is given by: 

F(r Fa + V r  2kD '2' 

F, /F 
2 Va+1 

Travel time of a parcel of water 

(3.62) 

(3.63) 

The minimum travel time for a parcel of water is the time taken by it to reach from 

riverbed to collector pipe. The minimum travel time of a parcel of water is computed as 

follows: 

Referring to equation (3.60c) 

dw W. ,z• 

 _________ 
 

- = u - iv = i--- ____ 

dz D 2 F1., jb+l')hI(a_tXb_t) 
(3.64) 

2 a+l 

Along the streamline BC1 , u = 0. Hence, 

kD,,r 

~(a—tXb—t) 
V = 

-----F( ;T ,
~a+l) 

+l 
(3.65) 

Referring to equation (3.44) the relation between z and t-planes is: 

( iz"1 
t=cosl r— I (3.66) 

D) 
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Along the streamline BC1, z = iy. Hence, 

t=cosarJ (3.67) 

Incorporating equation (3.67) in equation (3.65) 

hI_cosrZ
EDW (   DJ 

i'  

IE 

_ 
D 2 

a—coi2rbcos(',rZ 

(3.68) 

2 a+lJ D)) D)) 

when the parcel of water is aty it will travel distance dy in duration dt which is given by: 

dt=11_ (3.69) 

in which, ?/is the volumetric effective porosity of the bed material. 

Incorporating v (y) in equation (3.69) 

F 
a+1
FL (

I 

Jb - cos

iD2 2 
Jdy (3.70) dt=—.

Ii

cc  
s z Y)) 

Integrating, the travel time t ,  of the parcel of water along the stream line BC1  is given by 

D [La - cos - cos

2qD 2 a+1 D D) (3.7l) 
kD $ 

 [

dy 

d1 +_LI 
2 

DJ)
J  

The integration is carried out numerically applying Gauss-quadrature and adopting change of 

variableY={[D_di  __L}+[D+di +]} ; cy =!(D_d
2 2

1  _J_)d 

= D ID-d ___ __ 

a_cos[
7ry

llb_cos (3.72) 
la  + (;r  ~D  

r 2) Tj ( ( —1 
D))  

il( d") ( 
where, yt =..lLD_dI __-J4+D+di + 

d 
-- 
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Knowing the travel time, t1, the number of log cycles of the bacteria concentration in a 

parcel of river water by the time the parcel travels from the riverbed to the collector pipe using 

logistic equation. 

3.8 RESULTS AND DISCUSSIONS 

Dimensionless flow parameter per unit length of collector pipe Q/(kD,), dimensionless 

- ( d 
average entrance velocity factor Ve j 

ep f a 

, 

the maximum entrance velocity 
 kD,, )  

factorvemj[ 

IVlPta ( tkD 

= kD J, 

and travel time factor 
i7D

2 
J 

are shown in Table -3.l through Table 

3.3 for specific values of D, d / D and d 1  / D . Using the dimensionless factors given in these 

tables, Q ,i.  lvii and trfor any known values of D,  k, f, q for the specified values of D, 

dID, and d 1 /D have been computed. 

e  
Table 3.1 Dimensionless Flow Q/(kDw) , Entrance Velocity Factors v,f 

( d fa 
 

ve,q and Travel Time Factor trf = ,Travel Time I r  (day), and Number of 

Log Cycle Reduction ,n ford = lm 9 d1 /D=(O.25.0.5,0.75}, D,,  =4m,k=0.864(m/day),i=0.3 

D(m) d / D d 1  / D (W., Ve
f Vemf I rf t,. 

0.25 1.954 0.622 3.726 0.471 10.2158 0.8016 
5 0.2 0.5 2.635 0.839 4.878 0.171 3.7168 0.3712 

0.75 4.431 1.411 8.966 0.023 0.4961 0.0617 
0.25 1.566 0.499 5.506 0.600 52.0895 2.7378 

10 0.1 0.5 1.990 0,633 6.838 0.237 20.6056 1.3335 
2.805 0.893 10.019 0.043 3.7413 0.3731 

0.25 1.411 0.449 7.217 0.669 130.6291 6.1503 
15 0.067 0.5 1.75 0.557 8.798 0.272 53.1607 2.7844 

0.75 2.34 0.745 12.052 0.053 10.4229 0.8134 
0.25 1.321 0.420 8.860 0.716 248.5443 11.2713 

20 0.05 0.5 1 1.615 0.514 10.687 0.296 102.7423 4.9392 
0.75 1 2.1 0.668 14.145 0.06 20.8859 1.3468 
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- ( e  d p f 
Table 3.2 Dimensionless Flow Q/(kDw) , Entrance Velocity Factors Ve f 

kD ,,. ) 

V
eh 

( ' 

kD1, 
and Travel Time Factor t,j  = 

i,.kL
2, Travel Time t, (day),and Number of 

qD 

 Log Cycle Reduction ii ford = Om , d, / D = 0.25.0.5.0.751. D,,  = 4m , k = 0864(,n/ day), ii = 0.3 

I)(m) ci,, i t d / I) Q i(i) ) , 11 

5 0.1 0.25 1.566 0.997 5.506 0,6 13.0224 0.9558 

0.5 1.99 1.267 6.838 0.237 5.1514 0.4802 

0.75 2.805 1.786 10.019 0.043 0.9353 0.112 

10 0.05 0.25 1.321 0.841 8.86 0.716 62.1361 3.1751 

0.5 1.615 1.028 10.687 0.296 25.6856 1.5699 

0.75 2.1 1.337 14.145 0.06 5.2215 0.4853 

15 0.033 0.25 1.213 0.772 12.001 0.78 152.4193 7.0966 

0.5 1.458 0.928 14.288 0.328 64.1518 3.2627 

0.75 1.839 1.171 18.229 0.069 13.5262 0.9824 

20 0.025 0.25 1.147 0.73 15.004 0.825 286.6011 12.924 I 

0.5 1.365 0.869 17.719 0.351 1 121.9295 5.7724 

0.75 1.692 1.077  1 22.151 0.075  1 26.2138 1.594 

- ( edp.fi  
Table 3.3 Dimensionless Flow Q/(kDw) , Entrance Velocity  Factors v1 

[' kD, 

( kE. ' 
I. and Travel Time Factor /, 

= t,. 

D ) 
, Travel Time 'r (day),and Number of 

= kD )  

Log Cycle Reduction ,n ford,, = 0.3m ,d, ID = {0.25.0.5.0.75}. D = 4m ,k = 0.864(rn/ clay), 71 = 0.3 

I, / L) C) / (kD , ) V, 
ent/ ',i I 

0.25 1.377 1.461 7.771 0.686 14.8908 1.053 

5 0.06 0.5 1.698 1.801 9.435 0.281 6.0969 0.5465 
0.75 2.245 2.382 12.751 0.056 1.2129 0.142 
0.25 1.188 1.260 13.015 0.797 69.1787 3.4812 

10 0.03 0.5 1.422 1.509 15.448 0.337 29.2362 1 .73 I 
0.75 1.782 1.891 19.554 0.072 6.2115 0.5543 
0.25 1.101 1.168 17.909 0.860 167.9723 7.7721 

15 0.02 0.5 1.301 1.380 21.026 0.369 71.9943 3.6036 
0.75 1.594 1.691 25.935 0.080 15.6748 1.0928 
0.25 1.047 1.111 22.592 0.904 314.0047 14.1142 

20 0.015 0.5 1.227 1.301 26.336 0.391 135.7542 6.3729 
0.75 1.483 1.574 32.006 0.086 29.9708 1.764 
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As seen from these tables, less the thickness of the porous medium below the riverbed 

more the flow to the collector pipe as the pipe is nearer to the riverbed. There is marginal 

increase in the yield of the collector pipe with larger value of collector pipe diameter. 

The complete elliptic integral of the first kind ,k*Jis computed using the following 

polynomial approximation (Abramowitz and Stegun, 1964, p591): 

F

(2
,k*=[ao +a1  in1  + a1rn1 2  +a3rn1 3  + a4inl]+E) +n +m1 2  +1ni3 

+b4mi4]l1
71 )+- 

dn~ ~2x]O' , where,rnl=(1_k*2).  and in = k 2  .The coefficients a,, and b1are: 

a,, =1.3862943611. a = 0.0966634425 1 a2 =0.0359009238,a =0.0374256371 =0.0145119621 

= 0.5 * = 0.1249859359 , = 0.0688024857 , = 0.0332835534 , = 0.0044178701 

Flow to the collector pipe/or verlical slit: 

Variations of Q/ (kD,,.) with d1/D for various values of d,/D are presented in Fig. (3.7), through 

(3.11) for dimensionless pipe diameter =0.001. 0.01, 0.1, 0.2. 0.3 respectively. The lower limit 

d d, d d 
of J_=0.5_L and  the upper limit is less than I-0.5--- . For_L=i_o.5_L, the flow to the 

D D D D D 

collector pipe. 0/ k D,,), tends to infinite. Accordingly, variations of 0/ k D,) with d1/D are 

presented in these Figures. 

1.8 
II 1 i i J I l.I I. 

-1 d /D-0.00I 
1.64 . .. /' - 

1.4 

1.2 

c 1.0  

08 

06 

Aravin and Numerov soli,tio 

Present study 

0.4  

0.2 

00 
00.0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 10 

0.0005 d1  / D 

Fig. (3.7) Variation of Q/(kD) with d1 /D for d/D=0.0010.0005L <0.9995 
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2.4 

2.0 

16 
a 

12 

0.8 

Aravin and Nunierov solutioa 

Present study 

-- 

I I • • I • I • I 

U.UU5 d1 /D 

Fig. (3.8) Variation of Q/(kD,,) with d1 /D for d/D=0.01 0005.L 

1.6 

1.2 

0.8 

0.4 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.05 d1 /D 

Fig. (3.9) Variation of Q/(kD) with d1/D for d,/D=O.1 0.05 !~ <0.95 
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Fig. (3.10) Variation of Q/(AU, with d,/D for d,/D=0.2 0.1 :~; <0.9 

.....
I  

d /D=0.3 
p 

Aravin and Numerov solution / 

Present  solution 

0.0 01 0'2 0'3 U's . U U'R 

0.15 d1  ID 

Fig. (3.11) Variation of Q/(kD) with d1/D for d/D=0.3 0.15 :!~ <0.85 

As seen from these Figures, the flow to the collector pipe increases as the collector pipe 

is laid nearer to the riverbed. For ±. = - ±. , the flow to the collector pipe is infinite. 
D D 

For [o.5L.J meaning thereby, the collector pipe is laid on the boflom impervious 

boundary, the flow to collector pipe is the minimum. The collector pipe is to be laid at a depth 
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such thatlD_d - ---L D ,where, D, is scour depth minus depth of flow during the high flood 
2) 

for which the scour depth is computed. For different type of soils, silt factor and procedure for 

calculation of scour depth are presented in appendix A. 

d 
The flow to the collector pipe increases with increase in pipe diameter-s- ratio. The diameter 

of 4, of the collector varies from 0.2 to 0.3m, 1-luisman and and Olsthoorn (1983). 

Entrance velocity: 

The entrance velocity to the collector pipe depends on 

Area of slot openings of the collector pipe, 

The hydraulic conductivity (k) of the bed materials, 

Drawdown (D) in the caisson, 

Diameter (4,) of the collector pipe, 

Depth to impervious bottom layer (d1) below the collector pipe, and 

Thickness (D) of the riverbed materials. 

While installing a collector pipe, one has to check the entrance velocity. The maximum 

entrance velocity is 3cm/s Blair(1970). Huisman(1972) has recommended the maximum 

entrance velocity to be 4 cm/s. The dimensionless Darcy velocities, obtained using equation 

(3.25) are presented in tables 3.4 through 3.8. Using the tabulated values and known fa,  the 

entrance velocity can be computed. 

Table 3.4 Radial Flow VelocitY[= 
kJ 

for various d1/D For d 1D=O.001and D=1m 

d1  

D 
Q 

kD 

(Conformal 
mapping) 

Q 
kD 

(Aravin) 
Vr Q 

kirdk 

(Conformal 
 mapping) 

= Qi 
k 7rdk 

(Aravin) 
 

0.0005 0.40096 0.43076 -0.14713 0.12763 0.13711 

0.0255 0,53462 0.56863 -0.17021 0.17017 0.18100 

0.0505 0.56771 0.60592 -0.18072 0.18071 0.19287 

0.0755 0.58926 0.63043 -0.18756 0.18757 0.20067 

0.1005 0.60571 0.64925 -0.19280 0.19280 0.20666 

0.1255 0.61926 0.66480 -0.19711 0.19712 0.21161 

0.1505 0.63091 0.67823 -0.20083 0.20083 0.21589 

0.1755 0.64125 0.69018 -0.20412 0.20412 0.21969 

0.2005 0.65062 0.70104 -0.20710 0.20710 0.22315 

0.2255 0.65928 0.71109 -0.20986 0.20986 0.22635 
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d1  
D 

Q 
kD 

(Conformal 
mapping) 

Q 
kD 

(Aravin) 
VP Q 
kirdk 

(Conformal 
 mapping)  

v,_Q 
k irdk 

(Aravin) 

0.2505 0.66738 0.72051 -0.21244 0.21243 0.22934 
0.2755 0.67504 0.72944 -0.21487 0.21487 0.23219 
0.3005 0.68236 0.73800 -0.21721 0.21720 0.23491 
0,3255 0.68943 0.74627 -0.21945 0.21945 0.23754 
0.3505 0.69631 0.75433 -0.22164 0.22164 0.24011 
0.3755 0.70305 0.76223 -0.22379 0.22379 0.24263 
0.4005 0.70969 0.77005 -0.22590 0.22590 0.24511 
0.4255 0.71629 0.77783 -0.22800 0.22800 0.24759 
0.4505 0.72289 0.78561 -0.23010 0.23010 0.25007 
0.4755 0.72953 0.79346 -0.23222 0.23222 0.25257 
0.5005 0.73625 0.80142 -0.23436 0.23436 0.2551 
0.5255 0.74310 0.80953 -0.23654 0.23653 0.25768 
0.5505 0.75012 0.81787 -0.23877 0.23877 0.26034 
0.5755 0.75736 0.82649 -0.24 108 0.24108 0.26308 
0.6005 0.76489 0.83547 -0.24347 0.24347 0.26594 
0.6255 0.77277 0.84489 -0.24598 0.24598 0.26894 
0.6505 0.78109 0.85484 -0.24863 0.24863 0.27210 
0.6755 0.78994 0.86546 -0.25144 0.25145 0.27548 
0.7005 0.79945 0.87689 -0.25447 0.25447 0.27912 
0.7255 0.80977 0.88934 -0.25776 0.25776 0.28308 
0.7505 0.82112 0.90305 -0.26137 0.26137 0.28745 
0.7755 0.83375 0.91837 -0.26540 0.26539 0.29233 
0.8005 0.84808 0.9358 -0.26994 0.26995 0.29787 
0.8255 0.86463 0.95602 -0.27523 0.27522 0.30431 

Table 3.5 Radial Flow VelocitY[= 
ak] 

 for various d1/D for d/D0.ol and D1m 

c1 I  
D 

Q 
kD 

mapping) 

Q 
kD 

(Aravin) 
Ud 

Conformal  

YL = Q 
k ,rdk 

(Conformal  
mapping) 

x= Qi 
k 

(Aravin) 

0.005 0.56709 0.62951 -0.20843 0.18051 0.20038 
0.03 0.67654 0.73799 -0.21610 0.21535 0.23491 
0.055 0.72392 0.79118 -0.23067 0.23043 0.25184 
0.08 0.75684 0.82918 -0.24103 0.24091 0.26393 
0.105 0.78284 0.85965 -0.24925 0.24919 0.27364 
0.13 0.80475 0.88559 -0.25621 0.25616 0.28189 
0.155 0.82395 0.90851 -0.26230 0.26227 0.28919 
0.18 0.84123 0.92928 -0.26779 0.26777 0.29580 

0.205 0.85710 1 0.94846 -0.27284 0.27282 0.30191 
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c1 
13 

Q 
kD 

mapping) 

Q 
kD 

(Aravin) 

Conformal 
 

k tcdk 

(Conformal  
 mapping) 

k irdpk 

(Aravin) 

0.23 0.87191 0.96646 -0.27755 0.27754 0.30763 
0.255 0.88591 0.98354 -0.28200 0.28199 0.31307 
0.28 0.89929 0.99994 -0.28626 0.28625 0.31829 

0.305 0.91220 1.01583 -0.29037 0.29036 0.32335 
0.33 0.92475 1.03135 -0.29436 0.29436 0.32829 

0.355 0.93707 1.04662 -0.29828 0.29828 0.33315 
0.38 1  0.94923 1.06176 -0.30215 0.30215 0.33797 

0.405 0.96132 1.07687 -0.30600 0.30600 0.34278 
0.43 0.97343 1.09206 -0.30985 0.30985 0.34761 

0.455 0.98562 1.10740 -0.31373 0.31373 0.35250 
0.48 0.99799 1.12302 -0.31767 0.31767 0.35747 

0.505 1.01060 1.13902 -0.32168 0.32168 0.36256 
0.53 1.02355 1.15551 -0.32580 0.32581 0.36781 

0.555 1 1.03694 1.17262 -0.33007 0.33007 0.37326 
0.58 1.05088 1.19051 -0.33450 0.33451 0.37895 
0.605 1.06550 1.20934 -0.33915 0.33916 0.38495 
0.63 1.08094 1.22933 -0.34407 0.34407 0.39131 
0.655 1.09739 1.25074 -0.34930 0.34931 0.39812 
0.68 1.11509 1.27389 -0.35493 0.35495 0.40549 
0.705 1.13432 1.29919 -0.36105 0.36107 0.41355 
0.73 1.15547 1.32718 -0.36778 0.36780 0.42246 
0.755 1.17902 1.35859 -0.37528 0.37529 0.43245 
0.78 1.20568 1.39443 -0.38376 0.38378 0.44386 
0.805 1.23644 1.43617 -0.39354 0.39357 0.45715 
0.83 1 1.27277 1.48604 -0.40509 0.40514 0.47302 
0.855 1.31701 1.54760 -0.41916 0.41922 0.49262 
0.88 1.37312 1.62710 -0.43698 0.43708 0.51792 

0.905 1,44857 1.73665 -0.46094 0.46110 0.55279 
0.93 1.55984 1.90423 -0.49619 0.49651 0.60614 

0.955 1 1.75406 2.21652 1 -0.55747 0.55833 0.70554 
0.98 1 2.27908 3.22847 1 -0.71954 0.72545 1.02765 

Table 3.6 Radial flow velocity 
[= 

for various d1/D for d/DO.1 and D] 

Q Q  QI 

D kD 
(Aravin) 

kD k 
k rdk k 2rdk 

(Conformal 
(Conformal  mapping) (Aravin) 
mapping) 

0.05 0.97106 1.16987 -0.35654 0.30910 0.37238 
0.075 1.03642 1.23697 -0.34955 0.32990 0.39374 

0.1 1.08874 1.29506 -0.35755 0.34656 0.41223 
0.125 1.13349 1.34729 -0.36785 j 0.36081 j 0.42886 
0.15 1.17331 1.39548 -0.37837 1 0.37348 1 0.44419 
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D 
Q 

kD 

(Conformal 
mapping) 

Q 
kD 

(Aravin) 
U 
- 

x-= Q 

(Conformal 
mapping) 

x= Qi 
Ic dpk 

(Aravin) 

0,175 1.20971 1.44078 -0.38863 0.38506 0.45861 
0.2 1.24361 1.4841 -0.39854 0.39585 0.47237 

0.225 1.27568 1.52573 -0.40813 0.40606 0.48565 
0.25 1.30641 1.56644 -0.41746 0.41584 0.49861 

0.275 1.33617 1.60652 -0.42658 0.42531 0.51137 
0.3 1.36524 1.64631 -0.43555 0.43457 0.52403 

0.325 1.39389 1.68608 -0.44445 0.44369 0.53671 
0.35 1.42233 1.72616 -0.45331 0.45274 0.54945 
0.375 1.45078 1.76681 -0.46221 0.46182 0.56239 
0.4 1.47943 1.80831 -0.47117 0.47092 0.57561 

0.425 1.50848 1.85098 -0.48028 0.48016 0.58919 
0.45 1.53812 1.89515 -0.48959 0.48961 0.60324 

0.475 1.56857 1.94118 -0.49915 0.49929 0.6179 
0.5 1.60006 1.98951 -0.50905 0.50932 0.63328 

0.525 1.63287 2.04062 -0.51936 0.51976 0.64955 
0.55 1.66728 2.09513 -0.53017 0.53071 0.66691 

0.575 1.70366 2.15375 -0.54159 0.54229 0.68556 
0.6 1.74244 2.21741 -0.55375 0.55463 0.70582 

0.625 1.78414 2.28723 -0.56681 0.56791 0.72805 
0.65 1.82942 2.36476 -0.58097 0.58232 0.75273 

0.675 1.87915 2.45197 -0.59649 0.59815 0.78049 
0.7 1.93443 2.55161 -0.61368 0.61575 0.81221 

0.725 1.99677 2.66756 -0.63321 0.63559 0.84911 
0.75 2.06831 2.80549 -0.65505 0.65836 0.89301 

0.775 2.15206 2.97414 -0.68071 0.68502 0.94671 
0.8 2.25271 3.18775 -0.71125 0.71706 1.01469 

0.825 2.37772 3.47138 -0.74871 0.75685 1.10497 
0.85 2.54022 3.87398 -0.79645 0.80858 1.23313 

0.875 2.76596 4.50713 -0.86067 0.88043 1.43466 
0.9 3.11566 5.69777 -0.95441 0.99174 1.81366 

0.925 3.79330 9.04447 -1.11157 1.20744 2.87894 

Table 3.7 Radial Flow VelocitY 
[= 

for various d1/'D for d/Do.2 and D=] 

d i  
D 

Q 
kD 

(Conformal mapping) 

Q 
kD 

(Aravin) 

Ud 
- k irdk 

(Conformal mapping) (Aravin) 
  

k 

0.125 1.29721 1.65007 -0.44861 0.41291 0.52523 
0.15 1.34964 1.71378 -0.45370 0.42961 0.54551 

0.175 1.39804 1.77528 -0.46233 0.44501 0.56509 
0.2 1.44357 1.83533 -0.47245 0.45950 0.58420 
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d 1  
D 

Q 
kD 

(Conformal mapping) 

Q 
W.  

(Aravin) 
W 

= 

k irdk 

(Conformal mapping) 

V, ___ 

k 

(Aravin) 

0.225 1.48702 1.89456 -0.48326 0.47333 0.60306 
0.25 1.52901 1.95351 -0.49442 0.48671 0.62182 
0.275 1.57120 2.01264 -0.50579 0.49975 0.64064 
0.3 1.61038 2.07242 -0.51731 0.51261 0.65967 

0.325 1.65051 2.13330 -0.5290 0.52537 0.67905 
0.35 1.69068 2.19573 -0.54087 0.53816 0.69892 

0.375 1.73119 2.26020 -0.55296 0.55105 0.71944 
0.4 1.77233 2.32726 -0.56534 0.56415 0.74079 

0.425 1.81441 2.39751 -0.57807 0.57755 0.76315 
0.45 1.85775 2.47166 -0.59123 0.59134 0.78675 

0.475 1.90271 2.55054 -0.60491 0.60565 0.81186 
0.5 1.94967 2.63517 -0.61922 0.62060 0.83880 

0.525 1.99912 2.72677 -0.63428 0.63634 0.86796 
0.55 2.05160 2.82691 -0.65024 0.65305 0.89983 

0.575 2.10779 2.93759 -0.66729 0.67093 0.93506 
0.6 2.16852 3.06142 -0.68566 0.69026 0.97448 

0.625 2.23486 3.20192 -0.70562 0.71138 1.01921 

0.65 2.30818 3.36392 -0.72753 0.73472 1.07077 
0.675 2.39034 3.55435 -0.75188 0.76087 1.13138 
0.7 2.48388 3.78342 -0.77929 0.79064 1.20431 

0.725 2.59245 4.06701 -0.81064 0.82521 1.29457 

0.75 2.72150 4.43129 -0.84717 0.86628 1.41052 

0.775 2.87970 4.92279 -0.89073 0.91664 1.56697 

0.8 3.08189 5.63361 -0.94421 0.98099 1.79323 

0.825 3.35655 6.77651 -1.01246 1.06842 2.15703 

0.85 3.76908 8.98415 -1.10438 1.19974 2.85974 

0.875 4.53226 15.39803 -1.23867 1.44266 4.90134 

Table 3.8 Radial Flow VeIocity-= 
k] 

 for various d1/D for d/D0.3 and D1m 

D 
Q (Conformal 

kD 

mapping) 

Q (Aravin) 
kD 

Ud 
- 

k 

= 

k 7rd pk 

(Conformal 
 mapping) 

x-= Qi 

k )rdk 

(Aravin) 
0.15 1.48222 2.00663 -0.53944 0.4718 0.63873 

0.175 1,54087 2.08369 -0.53744 0.49048 0.66326 

0.2 1.59645 2.16037 -0.54259 0.50816 0.68767 

0.225 1.64987 2.23735 -0.55125 0.52517 0.71217 

0.25 1.70185 2.31526 -0.56184 0.54172 0.73697 

0.275 1.75295 2.39473 -0.57364 0.55798 0.76227 

0.3 1.80365 2.47638 -0.58628 0.57412 0.78826 

0.325 1.85438 2.56091 -0.59958 0.59027 0.81516 
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d 1  

- 

Q 
kD 

(Conformal 

mapping) 

Q 
kD 

(Aravin) 
Ud 

k 

Vr _ Q 
dk 

(Conformal 
mapping) 

V r Qi 

k Tdpk 

(Aravin) 
0.35 1 1.90553 2.64904 -0.61347 0.60655 0.84322 

0.375 1.95751 2.74163 -0.62793 0.62310 0.87269 
0.4 2.01072 2.83965 -0.64299 0.64003 0.90389 

0.425 2.06561 2.94426 -0.65871 0.65750 0.93719 
0.45 2.12261 3.05688 -0.67517 0.67565 0.97304 

0.475 2.18232 3.17925 -0.69248 0.69465 1.01199 
0.5 2.24534 3.31355 -0.71078 0.71471 1.05473 

0.525 2.31245 3.4626 -0.73026 0.73607 1.10218 
0.55 2.38457 3.63013 -0.75112 0.75903 1.15551 

0.575 2.46289 3.82113 -0.77364 0.78396 1.21632 
0.6 2.54893 4.04252 -0.79817 0.81135 1.28678 

0.625 2.64469 4.30424 -0.82515 0.84183 1.37008 
0,65 2.75293 4.62101 -0.85515 0.87629 1.47091 

0.675 2.87756 5.01583 -0.88896 0.91596 1.59659 
0.7 3.02436 5.52676 -0.92766 0.96268 1.75922 

0.725 3.20245 6.22182 -0.97278 1.01937 1.98046 
0.75 3.42728 7.23620 -1.02661 1.09094 2.30335 

A comparison between the velocities= obtained for a line slit and for a line 
k 7rdk ( ) 

sink given by Aravin and Numerov (1965) is also presented in Tables 3.4 through 3.8.The 

dimensionless velocities have been computed assuming drawdown D, in the well caisson as 

one meter. The entrance velocity is linearly proportional to the drawdown in the caisson. 

Therefore, by multiplying the actual drawdown to the present entrance velocity value, the actual 

entrance velocity can be computed. 

Ud 
The exact horizontal velocity , - -, at midpoint of the line slit is very close to the 

average velocity ,- for values of- >0.1005 .Therefore, entrance velocity computed using 

Aravin and Numerov (1965)solution can be used to assess the entrance velocity that prevails 

around a collector pipe. 

The minimum travel time of a parcel of water from riverbed to collector pipe: 

The travel time of a parcel of water from river bed to the collector pipe for different position of 

the pipe obtained using conformal mapping technique for various type of the river bed material 
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are presented in tables 3.9 through 3.11. The number of log cycles computed using logistic 

equation for the corresponding soils and collector pipe positions are also presented in the tables. 

Table 3.9 Position of Collector pipe below the Riverbed and Number of Log Cycle 

Reduction for Fine Sand, k=0.35m/day, q  =30% 

Depth below riverbed 
(D-d1 )_(m)  

Travel time (Days) Number of Log cycle reduction (n) 

1 0.268 <1 
2 2.520 <1 
3 7.243 <1 
4 14.550 1.0 
5 24.470 1.0 

Table 3.10 Position of Collector Pipe below the Riverbed and Number of Log Cycle 

Reduction for silty sand, k0.0864 rn/day, 1730% 

Depth below riverbed 
(D-di)_(m)  

Travel time (days) Number of log cycle reduction 

1 1.086 <1 

2 10.207 <1 

3 29.34 1.75 

4 58.96 3.0 

5 99.15 4.78 

Table 3.11 Position of Collector Pipe below the Riverbed and Number of Log Cycle 

Reduction For silt, k=0.00864m/day, 17=30% 

Depth below riverbed 
(D-d1 ) (m)  

Travel time (Days) Number of log cycle reduction 

1 10,86 <1 
2 102.07 5 
3 293.40 13 
4 1 589.577 1 26 
5 1 991.51 1 44 

An example for a line sink 

A collector pipe is to be installed under the bed of a straight stream reach. The thickness 

of the aquifer under the stream bed is lOm. The hydraulic conductivity of the sandy silt deposit 

is 0.0864m1day, and porosity is 30%. The pipe is to be laid 5m below stream bed. The collector 

pipe has 16% opening area and its diameter is 0.5m. The allowable entrance velocity is 3cmls. 
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If a drawdown of 4m is maintained in the well caisson compute the yield of a collector well 

having 25m collector length. Compute the entrance velocity. 

Steps of computation. 

Corresponding to d, ID = 0.5. d / D = 0.05 , from Table 3.2, the dimensionless flow 

Q/(kD)=1.615. Substituting k=0.0864m1day, D,, = 4m, the yield of the collector well having 

25m length of collector is 1.615x0.0864x4x25=13,95 m3  Iday. In order to have respectable 

yield, several parallel collector pipes are to be laid and connected to the well caisson. From 

table 3.2, the maximum entrance velocity factor V,?JDIQ 
= 10.687 .The maximum entrance velocity 

Vm = (10,687 x 0.0864 x 4)/(10 x 0.I6)mlday=0.002672cm1sec. The average entrance velocity factor 

(vdf 
vef 

kD 
I 

p a 
= 1.028. The average entrance velocity 

) 

= (1.028 x 0.0864 x 4)1(0.5 x 0.16)ni I day = 0.00257cm / s. Magnitude of the average 

entrance velocity is marginally less than the maximum entrance velocity. The dimensionless 

time factort[=!4! rf J=0.296the travel timetr corresponding to i=0.3 is 

ç = 0.296 >< 0.3 x 102/(0.0864 x 4)= 25 .7 days the log cycle reduction n is about 1.57 (13.7). 

This means the initial bacterial concentration in river water (C0) will reduce to C0*10i57  during 

water travel from river bed to the collector pipe. 

In case the aquifer material has a hydraulic conductivity of l.Omlday, all other 

parameters remaining same as above, the well caisson will receive 161 .5m3/day of filtered 

water having a collector length of 25m. The travel time would be 2.22 days and log cycle 

reduction would be 0.242. The maximum entrance velocity will be 0.0309cm1sec. It is to be 

understood that irrespective of hydraulic conductivity, drawdown, fraction of opening of 

peripheral area of collector pipe and porosity i, the dimensionless factors remain 

unchanged for given values of d1  / D and d / D. 
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An illustrative example for vertical line slit 

Fig. 3.12 Example of Collector Pipe Installed Under Riverbed 

A collector pipe is to be installed below a riverbed at a site. The maximum flood 

discharge at the site is 1100 m3/s. The mean grain size of the bed material at the proposed 

collector well site is 0.149 mm, the bed material is considered as fine sand (Lancellotta, 

(2008)). Corresponding to the mean grain size of the bed material, the silt factor of riverbed 

material at the collector well site fL is about 0.6 (Vellaisamy, (2007)). The thickness of the 

sediment layer at the section during lean flow period is lOm,The depth of water during lean 

flow period is 1 m. The d10  particle size is 0.02 mm. Corresponding to d10=0.02 mm, applying 

Hazen's formula assuming C to be equal to 100(cm.$)', (Fitts (2002)) the hydraulic 

conductivity of the sediments is 0.35 mlday. A minimum depth of 0.8 m sand medium is to be 

maintained above the collector pipe during passage of the maximum flood as per filtration 

requirement. Diameter of the collector pipe, d, is 1.0 m. Compute the specific capacity during 

lean flow period as well as during passage of the maximum flood. 
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Steps of computation: 

During flood period: 

Calculation of scour depth 

Using equation (A.l) the scour depth is found to be 5.75m. We have assumed the scour 

depth to be equal to 6.0m. The rise of water level during maximum flood is 2m above the water 

level prevailing during lean flow period. Therefore, the thickness of the bed material during 

high flood period is 7m.Considering a minimum filter thickness 0.8m to be required above the 

collector pipe and radius of collector to be 0.5m. the depth of placement of the collector pipe 

above the impervious base is found to be 5.7m.Accordingly, = 0.143 and = 0.8143. 

Calculation of yield of the collector pipe using conformal mapping for D=5m. Corresponding 

to ±E=0.143  and  ±-=0.8143, from equation (3.57b) the dimensionless flow 

2.697636 .During high flood period a drawdown less than 6m can be maintained at the 

well caisson. Assuming that a drawdown of Sm is maintained, length of the collector pipe is 

50m, and hydraulic conductivity k=0.35 rn/day, the yield of the collector pipe is estimated as 

236.0 m3/day. 

Calculation of entrance velocity: 
The entrance velocity is calculated considering f = 0.3 and D%  = 5 m .The dimensionless 

Ud D 
Darcy velocity at middle of the slit, 

kD 
 is obtained from conformal mapping using equation 
1   

(3.60J) is -5.8876. The negative sign indicates that the flow is in the opposite direction of 

abscissa that is the flow is entering to the collector pipe. The entrance velocity is found to be - 

4.906408 rn/day 0.0057 cm/s which is <4.0cm/s. The average entrance velocity calculated 

using equation (3.26) is found to be 5.0089 rn/day (0.005 8 cmls<4cm/s). 

During lean flow period: 

Calculation ofyield of the collector pipe using conformal mapping for D,, =lm 

The thickness of the bed material during lean flow period D=10.0m. Corresponding 

to-=O.iand-=0.57. from equation (3.20b) the dimensionless flow-2—= 1.696207 . Assuming 
D D kD14 , 
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Calculation of entrance velocity: 

The entrance velocity is calculated considering f = 0.3 and D, = 1 rn .The dimensionless 

Darcy velocity at middle of the slit obtained from conformal mapping using equation 

(3.60f) is -5.392504. The negative sign indicates that the flow is in the opposite direction of 

abscissa that is the flow is entering to the collector pipe. The entrance velocity computed using 

conformal mapping is found to be -0.629 12 mlday (=0.0007cm/s<4.0cm!s). The average 

entrance velocity calculated using equation (3.26) is found to be 0.6299 mlday (=0.00073 

cm/sec<4cm/s). 

Travel time and number of log cycles reduction: 

The Darcy velocity along the streamline BC1  from riverbed to a near point of the 

collector pipe, assumed as a line slit, is shown in Fig. (3.12) corresponding to D3  =5mand 

k=0.35 rn/day during flood period. The velocity (true velocity) of the parcel of water will be 

Darcy velocity divided by effective porosity. The effective porosity of the river bed material is 

assumed to be 30%.During flood period the travel time of parcel of water from riverbed to 

collector pipe is found to be 0.139 days corresponding to D=5m and number of log cycle 

reduction is found to be less than one. The reduction in number of log cycles in bacterial 

concentration in the parcel of water has been calculated assuming the parameters r =0.2 day 1  as 

reproduction rate and ,, =0.3 day 1  as the decay rate. 

The Darcy velocity distribution during the lean flow period corresponding to Dlm 

shown in Fig. (3.13). Travel time of a parcel of water from riverbed to the collector pipe is 

found to be 17.26 day and the number of log cycle reduction is found to be one. 
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Fig. 3.13 Darcy Velocities along Streamline BC1  during Flood Period, 

D=5m, d j=5.7m, and D=7.Om 
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Fig. 3.14 Darcy Velocities along Stream Line BC1  during Lean Flow Period 

D=1m, d,5.7m, and D=10.Om 

3.9 CONCLUSIONS 

Based on the derivation of flow characteristics and dimensionless factors in riverbed 

filtration study, the following conclusions are drawn: Yield of a collector pipe is linearly 

proportional to (I) hydraulic conductivity of the river bed material, (ii) drawdown in the well 

caisson, (iii) length of the collector pipe, and nonlinearly dependent on (i) the diameter of the 

collector, (ii) thickness of the riverbed, (iii) height above the impervious base at which the 

collector pipe laid. A collector pipe of 25 m length and 0.5m diameter placed at a height of 5m 
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above the impervious base in a riverbed of lOm thick yields 40m3/day filtered water 

corresponding to Im drawdown in well caisson, and 1.0 rn/day hydraulic conductivity of 

riverbed material. For sandy silt soil riverbed material that has hydraulic conductivity of 0.1 

rn/day, the yield would be 4m3/day. Therefore, in such medium, several parallel collector pipes 

are to be laid and to be connected to a well caisson to provide good quality and quantity of 

water. If the soil medium below the river bed is comprised of soil with hydraulic conductivity 

Im/day, a single pipe of 25m length can supply 160 m3  / day filtered water for a drawdown of 

4m in well caisson. 

The entrance velocity is linearly proportional to (i) hydraulic conductivity of the 

riverbed material, (ii) drawdown in the well caisson, and nonlinearly dependent on (i) the 

diameter of the collector, (ii) thickness of the riverbed, (iii) height above the impervious base at 

which the collector pipe laid, and inversely proportional to the fraction of peripheral area 

perforated. For both aquifer materials with high and low hydraulic conductivity, the maximum 

entrance velocity is much within safe limit. 

The minimum travel time is directly proportional to porosity of the bed material, square 

of the riverbed thickness and inversely proportional to hydraulic conductivity of the porous 

medium in the riverbed and drawdown in the well caisson. Therefore, achieving respectable 

quantity of filtered water with improved quality simultaneously is a conflicting issue as quality 

and quantity depend mainly on the aquifer material, and allowable drawdown in the well 

caisson. 

Aravin and Numerov have idealized the collector pipe as a line sink. In this chapter, the 

collector pipe has been idealized as a line slit with constant head boundary. Comparing the 

results for the dimensionless flow to collector pipe in both the cases, it is found that the Arvin 

and Numerov (1965) solution overestimates the flow to collector pipe. The entrance velocities 

computed by both the methods are found to be nearly equal. The scour depth is the main 

consideration while deciding the placement of the collector pipe. As indicated by an example, 

the entrance velocity is much less than the allowable entrance velocity. The utility of the study 

has been shown through an example. The bacteria concentration in the river water gets reduced 

- 
by about 1.22 log cycle calculated through equation (B.7) during lean flow period. Thus the 

position of the collector pipe (4.3 m from the riverbed) is not sufficient to reduce the bacterial 

concentration. 
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Chapter 4 

FLOW TO A COLLECTOR PIPE WITH SQUARE CROSS 

SECTION LAID UNDER A RIVERBED 

4.1 INTRODUCTION 

Generally, a collector pipe with circular section is used in practice. Flow to a collector pipe 

laid below a riverbed has been determined analytically by Aravin and Numerov (1965) treating 

the collector pipe as a line sink. The velocity potential function at a line sink is infinite. In 

reality the velocity potential function in a collector pipe is finite. One has to determine the flow 

to a collector pipe assuming the pipe has square cross-section having finite velocity potential 

along its boundary. Conformal mapping is applicable to flow domain with straight line 

boundary. In order to apply conformal mapping, the circular section is replaced with an 

equivalent square cross-section. 

4.2 STATEMENT OF THE PROBLEM 

A collector pipe with side d  is laid beneath riverbed at a depth d1  as shown in Fig. 4.1. For 

a circular pipe with diameter d the side, d of the equivalent square cross-section is equal 

to 
zd p 

. 

4 

y 

Fig.4.1 Physical Flow Domain or z(= x+iy)Plane 
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It is aimed to determine (1) flow to the square collector pipe (ii) average entrance 

velocity and (iii) the minimum travel time of a parcel of water from the riverbed to the collector 

pipe. Equivalent square section is shown in Fig.4. 1. Taking the advantage of symmetry, half of 

the flow domain is considered to apply the conformal mapping technique to find the flow 

characteristics. 

Fig. 4.2 Upper Half of Auxiliary t (= r + s) Plane 

4.3 MAPPING OF THE z-PLANE ONTO THE UPPER HALF OF AUXILIARY t-

PLANE 

The vertices A, B, C, D, E, F, G, and A being mapped onto - co, -1, -c, -d, e,f, 1, and co 

respectively in the t-plane, the conformal mapping of the physical flow domain in z-plane onto 

the upper half of the auxiliary t-plane is given by (Han 1965): 

dz (t+d))'(t-e))' 
= Al 

dt (t+i)X(t+c) (t-f)(t-1) 
(4.1) 

Integrating equation (4.1) 

(t+d))4 
dt+N z=AIJ 

(t-e)i
/y 

(t-f)(t-1)) (4.2) 

where, M and N are complex constants to be determined. The constants and all the mapping 

parameters, c, d, e, andf are determined from the geometry of the flow domain. 
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Estimation of constant M. 

Substituting, r = Re'° ; dr = R e"ido and applying the condition that when, one transverses in t-

plane along a semi-circle of radius R, R —> c.o from9 = 0 to 9 = r, the jump in z-plane isiD, 

the constant M is found as follows: 

(Re'+d)'(Re'° _e) 
Re'°id8 

D=M(Re1e+ly(RetG+cy (Re10 _f(Ret9 _I) 
=MJide=Mi 

Hence, 

M= (4.3) 

Estimation of mapping parameters 

Integration between vertices B and C(- I :!~ t :!~ -c): 

At vertex B,t = -1, andz = iD; and at vertex C, t = -c, and z=i(d1  +O.5d). Applying 

these conditions in equation (4.2), we obtain 

D 
-C (_1)h12(_I)h/2(_1)1f2(_t_d), (—t+e)' 

dt+iD (4.4) e(d1  +O.5d)= 
-I '_i) 2( 1)1f2(t+1) (— t — c) (—t+f) (—:+i), 

± 
1/71=±. In the interval (-1~1~—c), — =--idy.In order to satisf' this, we select 4T=-1. 

dt 

Hence, 

(-t-d}(-t+e) 
dt+iD (4.5) 

(di+O.5dc)=J (t+l)(-t-c) (-t+f 4 (-t+l 4  

['Ii 

D C (—d—t))(e—t)' 
dt+i(D—d1  —O.5d5) (4.6) 

(f—t))(1—t) 

or 

(-d-t))'(e-t)/ 

(—  c — t) (f — t) (i - t) 
dt= I (4.7) 

D D ) 

Hence, 

Fj(c,d,e,f)=1—--0.5------ (4.8) 
D D ir 
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If all parameters are chosen correctly, then, F (c, d, e, f) = 0, otherwise not. 

Integration between vertices C and D*: ( c :!~ t :!~ -d) 

At point C, t = -c, andz=i(d1  +0.5d); and at point D*,t = -d, 

z=0.5d +i(d1 +0.5d) 

Applying these conditions 

0.5d + i(d1  + 0.5d) = 
Df (_ i) 

1/2  (_ 1)hI2(_d_t)  ( -t))' dt+ i(d1  +0.5d) (4.9) 
(1)112 (-1)"2(t + ))' (t + ))' (f - t)' (1 - -c 

and r 

or 

D d (-d-t))'(e-t) 
0.5d 

(t+1}(t+c} (f-t(1-t) 
dt 

-c 

or 

-d 
(-d-t)~(e-t)) d 

' O.5= 
$ 2 

(1+i)(I+c)) f-t))(i-t)) 
di = D 

-c 

Integration between vertices D * and E: (- d :~ t e) 

At point D*,t 
= -d, and z = 0.5d +i(d1  +0.5d); 

z = 0.5d5  +i(d, -0.5d5 ) 

Applying these conditions 

(4.10) 

(4.11) 

and at point E, t = e, and 

e (_1)U2(_1)h/2(t+d) (e-t) O.5d+i(d1 -0.5d)=M 
_d(_1)(t+1 (t+ f-t(l-t) 

dt+0.5 +i( +o.) (4.12) 
J 

 

In the interval(-d :!~-t :5e), 
-= 

-idy. This is satisfied when one selectfii= -i . Incorporating 
di 

this and simplifying 

e 
(i+d)(e-i)' d 

_d(t+1)(1+c) 
dz=13 (4.13) 

D 

Making use of equation (4.11) and (4.13), one can write the function 

F2(c,d,e,f)= 12 -0.5 1 (4.14) 
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Integration between vertices E and F: (e :!~ t :!~ f) 

At vertex E,t = e, and z =0.5d +i(d1  -0.5d); and at vertex F,t = f, and z=i(d1  -0.5d) 

Applying these conditions 

D (_1)h/2 (_l) 2(t+d))(t_ e) 

(f - tY2 (I - tY2 
dt+0.5d+i(d1 -0.5d5 ) (4.15) 

e 

Simplifying 

(t+d))(t-e)) 
O.5d ç 

(t+1)(t+c) (f-t)(1-t) 
dt (4.16) 

or 

(t~d))(t-e)) 
dt=I4 (4.17) 

2D .' 

e (t+i)X (t+c))' (f- 02 (1-t)) 

Making use of equation (4.11) and equation (4.17), one can write the function 

(4.18) 
It It 

Integration between vertices F and G: (f :!~ t !~ 1) 

At point F, t = f, and z = i(d1  -O.5d5 ); and at point G, t = 1, and z = 0. Applying these conditions 

0D} (_1)h/ 2 (t +d)3(t_e) 
dt+i(d1 -0.5d) (4.19) 

)T f(t+l)/(t+C}4  (t-f))(1-t) 

Considering 111 = i, to satisfy within intervalf :~ r :~ I , = -idy, one obtains after simplification 
dt 

1 (t+d)Y2(t-e) 
(d1 -O.5d)=J dt= 5 (4.20) 

(t+c)Y (t-f) (1-t) 
I  

One can formulate the function F4(c,d,e,f) as 

F4(c,d,e,f)= (d
1  -0.5d3)I5 (4.21) 

D ir 

If all parameters are chosen correctly, then, F4  (c, d, e, f) = 0, otherwise not. 

d1 d 
The parameters c,d, e andf are to be found for known values of -, and --, from the four 

non-linear equations 4.8,4.14,4.18, and 4.21 
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The mapping steps result in a set of non-linear equations, which require a suitable 

technique to compute the unknown parameters. The implicit nature of the non-linear equations 

restricts the range of its applicability. So such non-linear equations are solved by iterative 

method given by Newton Rapshon. Newton Rapshon technique has been used to find the 

solution. Using corresponding Jacobian matrix these nonlinear equations containing the four 

unknowns' c, d, e andf are expressed as: 

aE1  aF1  aF1  3F 
ac ad a af 
aF2  ap, aF, 3F2  
ac ad 3e af 

aF3  aF3  aF3  aF3  
ac ad ae 8f 

aF4  aF4  aF4  aF4  
ac ad 5e f 

Vc1 [Fi(c*,d* e 

Vd F2(c,d e 
Ve F,(c,d e f*) 

Vf] LF4c,d*e*fij 

(4.22) 

In which c*,d*,e*  and f' are initial guess of the parameters. Following matrix inversion 

method 

rvci 
Vd 

ac 

I aF,- 
ac 

ad 
5F2  
ad 

ae 

ae 

af 

af 

e i)1 
F,(c,def') 

[
Vej a'3  aF3  aF3  aF3  

(4.23) 
F,

(c,de* f *) 
vf ac ad ae af [F4(c,def')] 

aF4  

- 

aF4  aF4  

L

aF4 
ac ad ae Of 

The improved values of c,d,e,f are: crrc*+Vc,d=d*+Vd,e=c*+Ve,f=f*+Vf 
. The process 

is repeated till the desired accuracy is achieved. The success of iteration depends on the initial 

guess of the parametersc*, d*, e*, f * 

4.4 Complex potential w(=Ø-t-iii) 

The velocity potential function q is defined as: 

Ø= —k(p/r +y)+C (4.24) 

where, k is the saturated hydraulic conductivity of the sediments deposit; p = water pressure; 

7'=unit weight of water; y=elevation head; C =a constant conveniently chosen for square 



section as C = + d1 ), where h is piezometric head above the collector pipe and d1  is the 

depth above the lower impervious layer to center of a collector pipe. The complex potential 

plane is shown in Fig. 4.3. The vertices A, B, C, F having been mapped onto - co, -1, -c, f and 

oo respectively in the t-plane, the conformal mapping of the complex potential plane onto the 

upper half auxiliary t-plane is given by Harr (1962): 

q 

iq 
W.  

Fig. 4.3 Complex Potential w-Plane 

4.5 MAPPING OF THE w-PLANE ONTO THE UPPER HALF AUXILIARY t-

PLANE 

dw MI - 
_ (4.25) 

dt J(-1—tX—c—tXf—t) 

Integrating equation (4.25) 

dw 
=M1 dt+N1 (4.26) — 

dt U(-1—tX—c—tXf—t) 

Where, M1  and N1 are complex constants which are to be determined. The constant N1  is 

governed by the lower limit of integration. Hence, 

tl 

w = 
- - 

dt - kD + iq (4.27) 
txf 

 Fort'=-1, w= -kD, hence, 

-kD _M l f
()

dtkDW +: (4.28) 

-00 

Performing the integration (Byrd and Fried man, 1954) and simplifying 

-iq=M1 
2 
 FIT, i(f+c) (4.29) 

(i+f) 2 ('+f)) 
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At vertex B, w = -kD, and at vertex C, w =0. Integrating between vertices B and C, 

considering J1i = -i and simplifying 

kD(-i)=M1 
2 t(l -c) (4.30) 

(i+f) 2 (1+f)J 

Dividing equation (4.29) by equation (4.30) 

F1, 1(1 +c) 

=
2 (1+f)J 

(4.31) 

kD F[ff 
I(l—c)"l 

In which, F[ 1+ J and 'Jare complete elliptical integrals of the first kind 

i(f+c) 1(1—c) 
with moduli and j respectively. 

\'(l+f) 

The total flow to a collector pipe that intercepts from an aquifer of unit thickness is 2q. The 

dimensionless flow to the collector pipe per unit length is expressed as: 

(ir J(f+c) 

Q - 2q 
—2 

('+f)) 
(4.32) 

F 
~(I+f)) 

(i—c) 

2'  

Entrance velocity 

Depending upon the type of soil an aquifer medium is comprised of, the entrance 

velocity to a collector pipe laid in the aquifer is to be maintained in order to restrict the 

movement of fine sediments to the collector pipe. The entrance velocity to a collector pipe is 

linearly proportional to the drawdown D, in the well caisson, and hydraulic conductivity of the 

aquifer medium and inversely proportional to the open area fraction in the collector pipe. While 

designing a collector well, the magnitude of the entrance velocity is examined. 

Average entrance velocity 

An average entrance velocity is determined with ease using the expression for flow to 

the collector pipe. Magnitude of average Darcy velocity at the periphery of the collector pipe is 

equal to2q/(4d5 ). The average entrance velocity is given by: 



F1, Pf+

= 2q /(4dj ) =
2kD3 2 J 

= Q /(4dja) = (4.33) 
4dj' ( 

F', 
 

2 (i+f)J 

The dimensionless average entrance velocity factor v f.  can be written as: 

!(f+c) 
F1-, 

efa 2 O+f
Te 

)J 
=  kD 

- 

- 

0.5 
j(i-c) 
_____ (4.34) 

F1 

The entrance velocity at point C. 

For -1:5t:5-c 

dw (i+r)  
____ =  kD 

(4.35) 

dt 
2F 1(1-c) J (-I-tX-c-rXf-t) 2F ) J(1~tX-c-tXf-t) 

[2(I+f) (2 

dw 
- 

dw at 
(4,36) 

dz dtdz 

 (I+t)(_t_c)y,  (-t+f)) (-t+I (4.37) 
=kD 

I(1 c ) J 

D(i) (-t-d)(-t+e) 2F c 
- 
tf - t) 

D (i (-  t+Q =1kr j +f) — =u — iv 
2D (-t-d)'(-t+e) 

(4.38) 

F L(1 j)J 

Equating the imaginary parts  

v (z) = -k D 
irj7i 

[ 

(i - t) 
(4.39) 

D ('r  _d_t)(e_t) 
2F 

2
rf- 

] 

The real part is zero as u along y-axis is equal to zero. At point C, t = -c . Substituting the 

value of c in equation (4.39), the entrance velocity at y = d1  +0.d is 

= 
~~c-d)

cj  
(4.40) 

D 
k D1, 1

_
+
__ 

 

) 

2 

 

2F 
L

f  

Substituting t = -i in equation (4.39), velocity at point B is obtained as 

vB= -k- - (4.41) 
D (.,r c) 

The negative sign appears as the direction of velocity is in the negative direction of y-axis. 
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The travel time of a parcel of water along streamline BC: 

Computation of the minimum travel time of a parcel of water from the riverbed to the 

collector pipe is of use to predict the log cycle reduction in bacteria concentration while a 

parcel of water moves from a river to a collector pipe. 

Darcy velocities have been computed at several points between vertices B and C, at 

least at 10 intermediate points and find an average arithmetic mean Darcy velocity v and 

compute an approximate travel time dividing (D-d1  -O.5d) by viii. Alternately one can 

compute the values of±, and average velocity along each ±. The travel time for each d is 

obtained dividing ± by the corresponding average true velocity. The total travel time is 

obtained by adding the travel time between two successive points. 

Thus, the travel time tr of a parcel of water to move from riverbed to collector along 

stream line BC is given by: 

D-d1  -O.5d 
t r - 

viii 
(4.42) 

where, , is volumetric porosity of the aquifer medium. For givend1  ID, d ID, one can define a 

dimensionless travel time factor t as: 

t
rf 

 
t r kD,v  

i7D 2  
(4.43) 

Knowing the travel time of a parcel of river water to the collector pipe, the log cycle 

reduction n in bacteria concentration in the parcel of water is computed using logistic function. 

- 
t I - e__2L )r 

n-log10 
(riAL)-I 

(4.44) 

4.6 RESULTS AND DISCUSSIONS 

Evaluation of the Integrals 

The integrals I,  ,  12  , 13  , 14  appearing in equations (4.8), (4.14), (4.18), and (4.21) 

are improper integrals. Method of substitution and then Gaussian-quadrature have been used to 

evaluate the integrals. One can describe evaluation of the improper integrals below. 

—c 
(—d—t))4 (e—t) 

dt (4.45) 
(f-t(l-t))  

-(1+c)/2 
= 
 j

(-d_t)Y(e-t)' 
dt+ -c 

(-d-t)) (e—t)/2  

(t+i)/2 (—c —t)/2  —t)/2  (i—t)/2 (t+i) (—c—t)/2  —t)Y2 (i-t)/2 
dt I + '12 (4.46) 

-(1+c)12 

68 



The integral is improper because at the lower limit its integrand is infinite. For 

evaluation of the improper integral I '  singularity can be removed by substituting, 

t + I = v'; dt = 2vdv where v is a dummy variable. After substitution and 

simplification I reduces to: 

112( 2 )1f2 

111 J 2 
(1_d_ V 2 ) 1+e-v 

=  
(i_c_v 2 )1 /21 

1+f-v
2  )2(2 _ 2)2dv (4.47) 

Further making a substitution v = 0.5 .l(i - c)i 2 (i + x), dv = 0.5 '(i- c)/2 dx, i, reduces to 

/2/ 2/2 

I  

________________________________ ______________________________________________________

j

C)/2

(1 _d _v2)' i+e-v) 
;v=0.5(i-c)/2(i+x) (4.48) 

2/,\I/2
-1

[(1_C_12(l+f_1_ 2-v)___  

Gauss quadrature is applied to evaluate the integral Ji. 

The integral 112  is improper, because at the upper limit, its integrand is infinite. For 

evaluation of the improper integral 112' singularity can be removed by 

substituting -c -t = v 2 ; dt = -2vdv. After substitution and simplification 112  reduces to 

-c (-d-t}(e-t)4  
dt (4.49) 

'12 $ 
_(l+)/2(t(_c_t> (f-t)/(l-t 

JØ-c)I2 

J 2_
(_d+c+v2(e+c+v2 

dv (4.50) 

0 
(1_ c _ v2  (f+c +v2 )(1+c +v2 ) 

Further making a substitution v = 0.5 .,J(I- c)i 2 (i + X); dv = 0.5 .(i- c)/2 dx, 112  reduces to 

I
__________________ 

'12 = J (1_c)I2 r (_d+c+v 2 (e+c+v 2 
dX ;v=0.5(1-c)/2 (i+x) 

-1 [(I__ 2 +c+v 2 (l+c+v 2 ] 

Gauss quadrature is applied to evaluate the integral 'I2•  The integral 12  is improper 

because of its integrand is infinite at the lower limit. The integral is evaluated after removing its 

singularity by substituting (t + c) = v2  , dt = 2vdv .Thus 

jd/2 
-d

(-d-t)(e-t) 
(c-a) 2(c_d_v2)(c+e_v2) 

dv dt= (4.51) 

(l  -c -c+v &+c-v(i+c-v 

I (c_d)h12(c_d_v2}(c+e_v2 
dX; v=0.5(c-d)1' 2(l+X) (4.52) 

-1 
(I_ c+v2 ) (f+c_v2)(l+c_v2} 



The integral 13  is a proper integral. To apply Gauss quadrature, the lower and upper 

limits of the integral 13 are changed to -I and 1 by 

substituting t = 0.5(e-d)+0.5(e+d)X ; di = 0.5(e+d)cLV . Therefore, 

e 
(t+d)(e—t) 

dt ' 
(t+l(t+c (f—t 4 (l—t) 

—d 

(4.53) 

1 

= J O.5(d+e) 
(t+d) (e_t~ 

dX; t=0.5(e—d)+0.5(e+d)X (4.54) 
—1 (t+l)(t+c> (f—t)(l—t))  

The integral 14  is an improper integral as its integrand is infinite at its upper limit. Substituting 

f-t = v 2  ;dt = -2vdv one can remove the singularity. Thus 

(t+d)Y2(t e 
(f_e)U2  

i4 _f — 
(t+1(t+c 2  -t)(i-t 

dt= 

e 0 

2(d+f_v(f_e_v2) 
dv 

(1+f—Vq2  (c+f_V2Y2  (1-f+Vq2  
(4.55) 

Further making a substitution v = 0.5 (f - e) 2  (i+ x); dv = 0.5 (f - e)" 2  dx. 14  reduces to 

I "1/2 14 
= $ 

(f_e)U2  (d+f_v2 (f_e_v2  
dx; v=0.5(f—e) (i+x) 

1(1+f_v2(c+f_v2 (i_j +V 

(4.56) 

The integral 1 is an improper integral as its integrand is infinite at its lower as well as 

upper limit. Method of substitution has been adopted to remove the singularities. Dividing the 

range f:5t:5I into two parts 

15 
= 

(t+d)(t—e)' 
dt $ 

f (t+l)(t+C) (t—f)(l—t))  

(l+f)/2 
(t + dY2  (t  —  eY2 

dt+ 
(t+d)(r_e 2  

dt  
= 

(t+l 2(t+c 2  (t_fl2(l_t)/2 
(1+f)I2 (t+l) 2(t+c) (t—f(1—t 

= 151 + 52 

(4.57) 

(4.58) 

(4.59) 

The singularity in 1,, is removed substituting (t 
- f)= v 2  ; dt = 2vdv. Accordingly '51  reduces to 

(l —f)/2 
2(f+ d + v2 )(f_e+v2

dv (4.60) 15 
= (l+f+v2 (f+c+v2 (l_f_v2 ) 

0 

Further making a substitution v = 0.5 j(i - f)/2 (i + x), dv = 0.5 J(i -f)/2 ctv. 1,, reduces to 
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I (f+d+v 2 )(f_ e + v 2 
;v=0.5 0.5(I- f)(1+X) (4.6D 

'51 = .1 V('-f) 
-1 

(1+f+v2 )(f+c+v2 ) (1-f-v2 ) 

The singularity in 152  is removed substituting (1-t)= v2  ; dt = -2vth'. Accordingly '52  reduces to 

0.5(l-f) (1+d_ v2 )(1_e _ v2  
' 

2 

dv (4.62) 52 = (2_v2)(1+c_v2) (i_f _v2) 
0 

Further making a substitution v = 0.5 j(i - f)/2 (1 + x), dv = 0.5 ..J(i - f)/2 dK, '52  reduces 

to 

I 
f) 

(1+d_v2)(I_e_v2) 
dX ; v=0.5.I0.5(1-f)(l+X) (4.63) 152 J J0.5(l- 

-1 
(2_v2)(1+c_v2) (i_j _v2) 

4.7 THE DIMENSIONLESS FLOW CHARACTERISTICS 

Dimensionless flow to the collector pipe per unit length of the collector pipe Q/(kD), 

- epa dimensionless average entrance velocity factor Vej (

= 
and the dimensionless travel 

wi 

time factor t = 
tr  kD5 have been presented in tables 4.1 (b), 4.2 (b), and 4.3(b). Besides this, 
aD 

average entrance velocity, , travel time of a parcel of water from the river bed to the collector 

pipe along the shortest path and the corresponding log cycle reduction in log cycle 

concentration of the bacteria has been presented in Table 4.1 through Table 4.3 for various 

conditions of hydraulic conductivity (k = 0.0864m I day), porosity (z =30%) of the aquifer 

medium, drawdown D, = 4.0m, pipe diameter d = 10.3 , 0.5 , 1.0 }rn and area fraction opening 

Ia = 0.16 in the collector pipe, d1 ID= {o.25, 0.5, 0.751, D={5,10,I5,20}m. Using the 

dimensionless factors given in these tables, one can compute Q e' and t for any known values 

ofD, k, fa ,and is for the specified values of D, d/D,and d1 /D. 

Table 4.1(a) Mapping Parameters for d1 m 

d1/D c d e 
0.25 -0.5952 -0.6289 0.7742 0.8004 
0.5 0.1448 0.1026 0.1026 0.1448 
0.75 0.8004 0.7742 -0.6289 -0.5952 
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Table 4.1(b) Dimensionless Flow entrance velocity factors v 

(= J 
and 

Travel Time Factor t= 
tkDw] 

,Corresponding to D, =4m ,k = 0.0864 day  

fa =0.16, 7=30%, d1 /D={0.25,0.5,0.75},and d =lm 

d1., / D d1  / D Q/(kD) Vef t rf t r  

0.25 1.8159 0.454 0.4477 10.9613 0.8437 
0.2 0.5 2.4177 0.6044 0.2207 4.0933 0.401 

0.75 3.7058 0.9265 0.0504 0.6378 0.0783 
0.25 1.5018 0.3754 0.3268 53.8767 2.8156 

0.1 0.5 1.8995 0.4749 0.1741 21.5557 1.3784 
0.75 2.5952 0.6488 0.0545 4.1031 0.4017 

0.067 
0.25 1.3673 0.3418 0.2569 133.0358 6.2548 
0.5 1.6908 0.4227 0.1402 54.7997 2.8558 

0.75 2.2183 0.5546 0.0484 11.032 0.8477 
0.25 1.2862 0.3216 0.2127 250.8874 11.373 

0.05 0.5 1.5689 0.3922 0.1175 105.1592 5.0441 
0.75 2.0124 0.5031 0.0426 21.772 1.3885 

Table 4.2(a) Mapping Parameters for dO. 5m 

d1/D c d e f 

0.25 -0,6533 -0.6693 0.7421 0.7562 

0.5 0.0727 0.0514 0.0514 0.0727 

0.75 0.7562 0.7421 -0.6693 -0.6533 

Table 4.2 (b) Dimensionless flow entrance velocity factors 1= "''') and travel 
kD kD ) 

Time factor t1= 
trkDW ,Corresponding to R=4m,k=0.0864 day  fa  0.16, 77 = 30%, 
qD 2 ) 

d 1  / D = {0.25,0.5,0.75}, and d = 0.5m 

d / D d1  / D Q/(kD) TO trf  

0.25 1.5018 0.3754 0.3268 13.4692 0.9794 
0.1 0.50 1.8995 0,4749 0.1741 5.3889 0.4973 

0.75 2.5952 0.6488 0.0545 1.0258 0.1219 
0.25 1.2862 0.3216 0.2127 62.7219 3.2006 

0.05 0.50 1.5689 0.3922 0.1175 26.2898 1.5975 
0.75 2.0124 0.5031 0.0426 5.4430 0.5011 
0.25 1.1873 0.2968 0.1597 152.3182 7.0922 

0.033 0.50 1.4244 0.3561 0.0895 65.1946 3.3081 
0.75 1.7804 0.4451 0.0341 13.906 1.0022 
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d/D d1 /D Q/(kD) n 

0.25 1.126 0.2815 0.1288 284.7857 12.8452 
0.025 0.5 1.3371 0.3343 0.0728 123.4577 5.8388 

0.75 1.646 0.4115 0.0285 26.7737 1.6195 

Table 4.3 (a) Mapping Parameters for d=O. 3m 

d1/D c d e 
0.25 -0.6754 -0.6848 0.7284 0.7371 
0.5 0.0437 0.0309 0.0309 0.0437 

0.75 0.7371 0.7284 -0.6848 -0.6754 

Table 4.3 (b) Dimensionless flow entrance velocity factors Vef 
[ 

l'1sfa 

 J 

and travel 
kDIF  

time factor t I= corresponding toD =4rn ,k = 0.0864 rn/day, fa =0.16, ij =30%, 
i .  iD j 

d1  / D = {o.25,0.5,0.75}, and d = 0.3m 

d / D d1  / D Q/(kD) V ef t,f  t r  fl 

0.25 1.3364 0.3341 0.2401 15.1131 1.0644 
0.06 0.5 1.644 0.411 0.1316 6.2669 0.558 

0.75 2.1381 0.5345 0.0463 1.2757 0.1487 

0.03 
0.25 1.1641 0.291 0.1478 68.9804 3.4726 

0.5 1.3911 0.3478 0.0831 29.6683 1.7504 

0.75 1.7287 0.4322 0.032 6.3691 0.5649 

0.25 1.0827 0.2707 0.1085 166.2861 7.6988 
0.02 0.5 1.2765 0.3191 0.0617 72.7302 3.6356 

0.75 1.555 0.3887 0.0246 15.9474 1.1066 

0.25 1.0315 0.2579 0.0865 309.5876 13.9223 
0.015 0.5 1.206 0.3015 0.0495 136.8127 6.4188 

0.75 1.4516 0.3629 0.0201 30.3728 1.7821 

Flow to a pipe with square cross-section having a finite potential at its periphery with 

that of the flow for a circular pipe treated as a line sink has been compared. For I / D = 0.5 

dp = 1.0 rn, d / D = 0.1 from table 4,1(b), Q/(kD) = 1.8995. From table 3.1, Q/(kD ) = 1.9990. 

- For d =0.3rn and dL /D=0.25 d/D=0.06 from table 4.3 (b) QI(kD)=1.3364. From table 3.3 

Q/(kD) = 1.3771. Thus, when the pipe is treated as a line sink, as the potential at a line sink is 

+, the flow to the collector pipe is more the flow to a pipe with an equivalent square section 

having finite potential at its boundary. 
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In case of a pipe with square cross section, the entrance velocity factor is defined as 

ef 
(= 

"e'sfa 

 ) 
. In case of a pipe with circular cross section, the entrance velocity factor is 

defined as ef 
[ 

'e(1Pfa] 
. For d / D = 0.05, d1  / D = 0.5, and ID=lOm entrance velocity factor for 

a square cross section = 0.3922. For a circular pipe the corresponding value is f  = 0.5140. 
ef 

So the entrance velocity factor in case of circular pipe is more as it is treated as a line sink as 

well as the diameter d is more than the side of the equivalent square section with same 

perimeter. 

It is seen from Tables 3.1 and 4.1(b) that, the travel time in case of a pipe with square 

cross section having perimeter equal to that of the circular pipe is more as the velocity of a 

parcel of water from the river bed to the collector is less and the travel path from the river bed 

to the collector pipe is more. In case of circular pipe as the distance is less and the velocity is 

more, because of the effect of line sink, the travel time is less. 

When the pipe is treated as a line sink the solution is easy as compared to the solution 

for a pipe with square cross section. The results of flow characteristics obtained from this study 

with square cross section match with the solution obtained using the Aravin and Numerov 

(1965) line sink concept. 

4.8 CONCLUSIONS 

Based on the study, the following conclusions are drawn: 

Solution for a square pipe is complex and involves solution of four implicit non-linear 

equations. The solution involves evaluation of improper integrals. The solution for a circular 

pipe when it is treated as a line sink is much more simple and tractable. However, there is no 

much difference between the flows and entrance velocity factors obtained weather the pipe is 

treated as a line sink or it is treated as a square pipe with finite potential boundary. Therefore, 

Aravin and Numerov (1965) line sink concept can be used conveniently to evaluate the flow 

characteristics for a collector with circular cross section. 
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Chapter 5 

FLOW CHARACTERISTICS OF MULTI-COLLECTOR 

PIPES PLACED ADJACENT TO THE RIVER 

5.1 INTRODUCTION 

Riverbank Filtration is a process of attenuating the contaminants in the soil medium 

through percolating water and equilibrating the temperature of water. It acts as a cost effective 

and efficient alternative slow sand filter for water treatment processes. The filtrated water is 

provided for consumption with marginal treatment. A radial collector well is a part of riverbank 

flltration. 

In some sedimentary ground water basin, aquifer thickness may not be sufficient to supply 

the required volume of water to a vertical well, even though the aquifer is hydraulically 

connected to a nearby surface-water body. The hydraulic conductivity of the sediments may be 

excellent, but the transmissivity is severely limited because the deposits are thin. A typical 

example occurs in a river valley where thin alluvial deposits overlie bedrock. In such hydro-

geologic condition, a collector system, called a radial collector, which uses multiple screens 

extended horizontally outward from a caisson, can supply water at the desired rate. A radial 

collector is more commonly called as Ranney Well". The radial collector wells are often set 

near streams, where aquifer storage is supplemented by an induced recharge of river water 

through the banks. The sustained capacity of the radial collector well is of the order of 0.2 to 

0.4 m3/ sec (1728 to 3456 m3/day). Huisman, et. at. (1983). Driscoll (1987). 

Plan and elevation of a typical radial collector well are shown in Fig.5.1. The caisson is 

made of reinforced concrete and is sunk vertically to the desired depth by excavating the earth 

material within. The bottom is subsequently sealed by a concrete plug. A typical caisson is 

about 4 m in diameter and 25 to 40m deep. It may be extended up to the shallow bed rock or 

clay layer. Portholes are provided about I iii above the bottom of the caisson to accommodate 

radial collector pipes. A part of the radial near the caisson is kept blind as in case of a several 

radial collector system, the zone near the caisson happens to be a dead flow zone due to 

interference of flow to the radials. Depending upon the local conditions, the number of laterals 

varies from 4 to 20, their diameter between 0.15 and 0.5m and the individual length between 

15 and 60m. 
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Fig.5.1 Plan and Elevation of a typical Two-Tier Radial Collector Well 

Screen slot size is predicated based on the grain-size distribution of the filter pack: and 

should always retain 100 per cent of the filter pack. The yield of a collector well can be 

determined solving Boussinesq's equation for three-dimensional flow satisf'ing the existing 

initial and boundary conditions applying numerical method. For a given layout of radials and 

for a prescribed drawdown in the well caisson, the entrance velocity to the radials is computed 

and compared with the limiting entrance velocity (3crn/s). Varying the drawdown and 

simultaneously computing the entrance velocity and comparing with the permissible axial and 

entrance velocities, the maximum flow rate for a given layout and length of radials is 

determined, which is the capacity supply rate of the collector well. The base of the well-caisson 

is designed to counterbalance the uplift pressure. Alternately, the design of the collector well 

can be based on solution of Laplace equation for steady state flow condition satisfying the 

pertinent boundary conditions. Lhan and Cao (2000) put forward that at late pumping stage. 
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horizontal pseudo-radial flow takes place towards a horizontal collector pipe. This postulation 

supports the assumption of sheet flow condition in a thin aquifer and horizontal collector well 

system. Bruce Hunt (1983) has defined the potential 0  at a collector gallery as the product of 

hydraulic conductivity, thickness of aquifer and head difference between the river and the 

gallery. This alternate definition of 0  implies that flow to a collector pipe is linearly 

proportional to thickness of aquifer. Accuracy of this postulation remains yet to be verified. 

Idealizing the flow domain, and assuming condition of sheet flow for applying Schwartz-

Christoffel conformal mapping technique, specific capacity of a radial collector well having 

several coplanar laterals in a thin aquifer located near a river reach has been quantified for 

different lengths of laterals, orientation of laterals and distance of the collector well from the 

river. In this chapter, one has to solve the case; the multi-collector pipes are located near a fully 

penetrating straight river reach. A correction factor to the flow, computed assuming sheet flow, 

has been derived to account for thickness of aquifer in which the collector pipes are laid. 

5.2 STATEMENT OF THE PROBLEM 

A radial collector well has four co-linear laterals located near a straight river reach. The 

lengths of the first, second, and third laterals are 11 ,12 ,13  respectively. The length of the fourth 

lateral is 12.  Such assumption has been made to take advantage of symmetry and obtain 

tractable solution. The caisson of the collector well is located at a distance R from the river 

reach. The thickness (D) of the aquifer is small and the flow domain is conceptualized as a 

sheet flow domain. 

Fig.5.2 (a) Idealized Flow Domain or x + y) Plane 
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Thus, the flow is occurring in a horizontal x-y plane. Layout plan of the laterals is 

shown in Fig.5.2 (a). It is required to solve Laplace equation in the horizontal x-y plane. The 

flow domain is symmetrical about the x-axis. Therefore, half of the flow domain is considered 

for solving Laplace equation. It is required to find the flow characteristics of multi-collector 

pipes placed adjacent to the river and river is only in one side. 

5.3 CONFORMAL MAPPING OF z-PLANE ONTO AUXILIARY LOWER HALF t- 

PLANE 

The vertices A, C, D, E, G, A in z plane are mapped onto - o,O, d, 1, g, oo on real axis 

of an auxiliary t(=r+is) plane shown in Fig. 5.2(b). 

A A -b 0 d 1 f g 
+co 

- 

B C D :: E :::::F ::G 

Fig.5.2 (b) Lower Half Auxuliary t (=r+is) Plane 

According to Schwarz-Christoffel transformation, the conformal mapping of the flow 

domain to the lower half of the auxiliary tplane is given by (Harr, 1962): 

(d-t) 
z=MJ dt+N (5.1a) 

t(1—t)"(g—t)112  

/ t'dt 
= MdS 

dt 
- Mf 

(i - t)'(g - t)"2 + N 
(5.1b) 

0 

M and N are constants. The constant N is governed by the lower limit of integration. 

Corresponding to vertex C, I = 0 and z = 0; hence, the constant N0. For point E, z = 0 and 

I = 1; therefore, 
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t'dt 
i-1)'(g-t)12 Il d= = (5.2) 

dt '2 

1 
Substituting t=1-v'', dt---v

'
dv in the integrand appearing in i, we convert the 

7 

improper integral '1  to a proper one and obtain 

t'dt I ") 
dv 

f
o (1-t)'(g-t) 2 (g_1+v1)hI2  

Integrating from limits 0 to Y2 and V2 to 1, the integral 12  is split into two parts and expressed 

as: 

12 

1 
dt 

1/2 1 
dt 

+ f dt 
1/2 

13+I4 = 

o 
t 7(1 r)(gt)V 2 tr(I_t)l-r(g_t)h' 2 t(1-t)'(g-t) 1/2 

The improper integrals I3  and 14  are converted to proper integrals through substitutions 

as described below. Substituting t = v' dt = ---- V T dv 
1-y 

1/2 (II2)' 

13 
= J j 

0 (1 
- 

i,l/(l-r) \ ) 
1-y 1 

kg-v 

Substituting 1-i' = v', dt = ---v' 
7 

I  

J dt 1 
l/2 

dv 
14 

t(1-t)(g-t)112  7 (i_vh1v(g_i+vUr)/2 
1/2 

The parameter d is given by: 

1 (i_r)IT  

7(g_1+v1h7)U2 
dv 

(1/2)' (i/2)r 
dv I dv 

17 $ J (' 
- 
v1_)7(g 1/(1_ Y))h/ 2  +— 7 0 (i_v 

Vily 
-v  

(5.3) 
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Corresponding to vertex D, t'= d and z=z0 =12e(2_. Applying this condition in (5.1a), the 

constant M is found to be 

M = 12 (i - 

d-v 
110-1) 

I 
Jv 

(5.4) 
( 

(i_v'') (9 
_ v11_7))1I2  

For vertex G, t = g, z = ZG = R. Applying this condition, from equation (5.la) we obtain 

g 

- di R_MJ 
(cl-i) 

=M 
(d - t) 

g 

L i(1-t)'(g-t)"2 
(5.5) 

(l+g)/2 

Substituting t =1+ v1"r  for converting the improper integral 15  and g - t = v 2  for integrating 16  and 

simplifying we obtain 

(g-i)/ 2) 

L 
+ v1' -dd 

+2 
((g-I)/ 2) 12  

-v2  
R = -Me ' 

f 

[ 

g 
 - 
 dJv 

o 
(i +vh1r(g _i_ vur J2 

(g _ v2)(g __' - 

 
_
) _Y 
 ] 

 

Incorporating the constant M in equation (5.6) we obtain 

(g-I)/ 2) / 

(i 
1 

S _
v' - dJv 

((g-I)/2)'12  

0 (i+vh17(g_i 
'/7)1/2 

+2 
f 

(g _d_ v 2 v 1 
2 7' 2 -v o (g-v_ )_ kg-v_ _i)'-7 ] 

RI!2  = 
d''1  

(ci - iv 

(I_ vhl(1_r))I _7 (g _ vhl1_7)112  

For an assumed value of parameter g, parameter d is obtained from (5.3). Required 

value of g for known value of RI12  is obtained through an iteration making use of equation 

(5.7). 

Corresponding to point F, t = f and z =11  using this relation we obtain 

/ 
(d - t) 

11 =M t y (l _ t)1y (g _ t)1/2 dt (5.8) 

Substituting t = 1+ v 1"Y for converting the improper integral into proper one 

(f -I),  (1+ v'' 7  - d)dv 
= Me 

y 0 (i +v''(g 1 v1 / 7 )112  

80 

(5.6) 

(5.7) 



Incorporating the constant M 

U j (1+v 11"-d)dv 

I "2
1-7  (1+v7(g_1_v')h/2 

y (d_ v 11( 1 1Jv  

(1_v (1_r)Y7(g_vl/(I_r))1/2 

For known 11  "2' corresponding parameter f is found using Newton-Raphson technique. 

Let a function F1  (f) be defined as: 

(1+v"-d)dv 

&)- (1+vhh7(g_1_vhh1)h/2 
'I H2 (5.10) 

(i- V I  
- 

)1-y (
g-v 

E/(l_7))h/2 

Let f t  be very near to the zero of the function F1 (f). Applying Taylor series expansion to F(f) 

nearf = f t , neglecting higher order terms we obtain 

F, (f Fjv)+~ql Af = 0 (5.11a) 

41 =F1*(f*)/ dF, (5.11b) 
df 

Applying Leibniz rule and simplifying the derivative 

dF1f) 
-J 

1 f* -d 
(5.12) 

df 
if_ 1 

d_v11 v [fg-f  
- * 

)l /2 

(1_vl/(1_7)t_r(g_v1_7)U2 j 0 

The value of f is improved by 

f=f+41 (5.13) 

The procedure is repeated till iSf is negligible. 

Corresponding to location B,z=z B  =13 , and t = -b . Applying this relation in equation 5.1(a), 

we obtain 

- 
-b 

_13 =M$ 
(d-t) 

___ _ 

tT(1 _t)(g_t)"2 
dt = M(-1 S1_

(d-t) 

U c 
l_t)1 (g _t)h/ 2 

(5.14) 

Substituting t = di = - -- —vdv in (5.14) 
1-7 
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(d+ v"  )dv M(-1 
_ 13 

= (i-7) (1+ v11 )1 7(g + v11 )h/ 2 
(5.15) 

Incorporating the constant M in equation (5.15), we obtain 

(d+v"t )dv 

(1+ v1 _4)t_Y(g + v h/(1_)h/ 2  
13  /12 = d( -r) 

(d_V 1 / 1 _1 

(5.16) 

(i - 
)l_ (g 

- l/lr )I/2 

For known 13 I '2, corresponding parameter b is found using Newton-Raphson technique. 

Let a function F2 (1) be defined as: 

(d+ v ''  )dv 

1 (1+v11(1_7))l_7(g + vh/(1))1/2 

F2(b)- _
0 

'3"2 (5.17) 
- 

(d - 

I (1 _ v1_)1 _T(g _ v1_7))h/2  
0 

Let b*  be very near to the zero of the function F2 (b). Applying Taylor series expansion to 

F2  (b) nearb = b*, neglecting higher order terms we obtain 

F2 (b)F2* (b * )+±fHAb = O (5.18a) 

(5.18b) 
db b 

Applying Leibniz rule and simplif'ing the derivative 

- f I d+ b 

IfL 

r}
db b a 1

_____ )i-y(

I 
(d_v 1 v (1+b' g+b)2 b 

(5.19) 

(I_vhfl_r)1_7(g_v111_7)1/2 
j 

The value of b is improved by 

b=b +t\b (5.20) 

The procedure is repeated till Ab is negligible. 

All the proper integrals appearing above are computed using Gauss Quadrature. We adopt the 

following procedure before applying the Gauss Quadrature: 

S
f(vv=B* If(xv; v=A*+B*X;dv=B*;A=(L(J+LL)/2; B'=(LU -L L )I2 - 
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5.4 MAPPING OF w-PLANE ONTO i-PLANE 

The complex potential w = + i, for half of the flow domain is shown in Fig.5.2(c). 

= stream function and q = velocity potential function defined as: 

Ø=—k(p/y +y)+C 
(5.21) 

k =hydraulic conductivity; p=water pressure at a point (x,y) ; r = unit weight of water; y 

elevation head which is equal to zero anywhere in the x-y plane; and C = a constant assumed 

to be equal to 0. The v values assumed are consistent with Cauchy-Riemann conditions. It is 

assumed that the axial flow in the laterals is not subjected to friction loss. 

Fig.5 .2 (c) Complex Potential w-Plane 

The conformal mapping of the complex potential plane shown in Fig.5.2 (c) onto the 

lower half of the 't' plane, the vertices A,B,F,G having been mapped onto —co,—b,f,g 

respectively, for -oo  <t <—b is given by: 

w=M1 J 
dt 

—kh,.+iq (5.21a) 

Integrating (Gradshteyn and Ryzhik, 1965) 

2 F(sin (g+b)/(g_t'),(g_f)/(g+b))_khr  +iq (5,21b) 

For point B, I = —b, and iv = —kh, +iq; hence, constant A'1 is 

k(hr hy) (5.22) 
2F(ir/2,j(g—f)/(g+b)) 

where, F(/2,I(g_f)/(g+b)) is complete elliptic integral of the first kind with modulus 

(g—f)I(g+b). 
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For —b !~ t !~ f, the relation between w and t plane is given by: 

M1 ' dt 
W=

(b+t)If2(f_t)1/2(g_t)1/2 
 —kh +iq (5.23) 

Integrating (Gradshteyn and Ryzhik, 1965) and incorporating the constant Az!1  

pj1 (i'+b)/(f + b),(f + b)/(g + b)}k(h 
 - h)— kh 14, +iq; —b s~ t' :!~ f (5.24) 

F(/2,(g—f)I(g+b)) 

For point F, t' = f, and w(t')= —kh19 . Applying this condition in equation (5.24), q is found to be 

FirI2,(f+b)I(g+b)} 
q=k 

F( /2,(g _f)/(g+b)) 
- h) 

The total flow to the collector system is equal to 2q. 

(5.25) 

Using equation (5.24), one can find flow to individual laterals. The vertex C has been 

mapped Onto t'=O. One half of the flow intercepted by the lateral BC,q3 , is given by: 

w(— b)— w(o) 
- 

Fin1 (b)/+ b),(f + b)I(g + b)} 
q3  =(—b)—i(o)= 

- (,r/2,./(g_j')/(g+b)) 
k (hr ') (5.26) 

F 

The flowq2  intercepted by lateral CDE is given by 

q 2  =yi(0)—yi(1)= 

Fin' (i +b)/(f+ b),(f +b)I(g +b)) Fin (b)/(f+ b), (f+b)/(g +b)} k (h h) (5.27) 
F(ffI2,(g - + b)) F(r /2,(g— f)/(g + b)) 

One half of the flow intercepted by the lateral EF, q1 , is given by: 

q1  =(I)—(f)= 
w(1) — w(f) 

- [ F/ 2.(f +b)I(g+b)} 
- 

Fin' J1)/(f +b+b), V (f +b)/(g+b)}] (h
r  —h) (5.28) 

[F(ir/2,(g—f)/(g+b)) F(rI2,J(g—f)/(g+b)) 

From equation (5.24) 

Fin1 b/(f+b)(f+b)/(g+b)} 
k(hr  —h) (5.29) (0)=q— 

F(/2,(g—f)/(g+b)) 

yi(d)=q— 
Fin (d+ b)/(f +b),(f + b)/(g+b)} 

- (5.30) 
F( /2, (g - f) /(g + b)) 
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The flow q21 , entering to the second lateral through side CD is given by: 

q2, - - w(o)_w(d),(o)Y,(d) 

[Fin f(d+b)I(f+b),(f+b)/(g+b)} Fin1  j b/(f +b), f (f +b)I(g+b)}1 
(hr  -h) (5.31) 

ff/Z(g-DI+b))  

The flow q2r,  entering to the second lateral through side ED, is given by: 

q - 
w(d)- w(1) 

= (d) - (i) 2  -  

- 

[Firi1  (1+b)/(f +b),(f +b)I(g+b)} 
- 

Fsin' sJ(d+b)/(f+b)ij(f+b)/(g+b)}] 
-h) (5.32) 

[ F(.ir/2,j(g_J)/(g+b)) F(2r/2(g_J')/(g+b)) 

5.5 RESULTS AND DISCUSSIONS 

Dimensionless flow per unit thickness of aquifer, 2q1  /{k(hr  - h,, )}, q2  I(k(hr  - h,)}, 

2q3  /{k(hr  - h )} and (2q1  + q2  + 2q3  + q4  )I{k(hr  - h)V  )} for different values of RI 12  and 

forl1 /12  =/3 "2=1  are presented below. The flow q4  =q2  

Table 5.1 Yield of a Collector with Four Radials of Equal Lengths 

R / 12 7 2q1  /{k(h,. - h)} q2  /{k(hr  -h)} 2q3  I{k(hr  - h)} (2q1  +q2  + 2q3  + q4 )I{k(h - 

0.1667 0.6091 0.9964 1.0709 3.6728 

0.2 0.6954 0.9979 1.0274 3.7186 

0.25 0.8157 0.9916 0.9625 3.7616 

2 
0.3333 0.9929 0.9654 0.8565 3.7802 

0.5 1.2754 0.8854 0.656 3.7022 

0.6667 1.491 0.7972 0.4697 3.5551 

0.75 1.5823 0.7538 0.3789 3.4680 

0.1667 0.4155 0.7569 0.9456 2.8748 

0.2 0.4741 0.7621 0.9093 2.9076 

0.25 0.5581 0.7653 0.8552 2.9439 
0.3333 0.6882 0.7606 0.7660 2.9754 

0.5 0.9133 0.7262 0.5930 2.9587 

0.6667 1.0997 0.6747 0.4271 2.8761 

0.75 1.1821 0.6458 0.3449 2.8185 
0.1667 0.3421 0.6507 0,8699 2.5135 

0.2 0.3896 0.6561 0.8373 2.5392 
0.25 0.4583 0.6611 0.7888 2.5693 

0.3333 0.5665 0.662 0.7086 2.5991 

0.5 0.7607 0.6431 0.5517 2.5986 

0.6667 0.9287 0.6068 0.3987 2.5410 

0.75 1.005 0.5846 0.3222 2.4965 
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RI 12 1 2q1  I{k(hr  - h )} q2  I{k(hr  - h)} 2q3  I{k(hr - h)} (2q1  + q2  + 2q3  + q4 - h, )} 
0.1667 0.302 0.5882 0.8174 2.2959 

0.2 0.3435 0.5934 0.7872 2.3176 

0.25 0.4037 0.5988 0.7422 2.3435 

0.3333 0.4992 0.6019 0.6679 2.3709 

0.5 0.6741 0.5903 0.5217 2.3763 

0.6667 0.8294 0.5622 0.3780 2.3318 

0.75 0.9013 0.5439 0.3057 2.2947 

0.1667 0.2243 0.4562 0.6831 1.8198 

0.2 0.2544 0.4604 0.6582 1.8335 

0.25 0.2981 0.4655 0.6214 1.8505 

10 
0.3333 1 0.3682 0.4706 0.5608 1.8701 

0.5 0.5009 0.4694 0.4409 1.8806 

0.6667 0.6254 0.4556 0.3212 1.8578 

0.75 0.6855 0.4446 0.2602 1.8351 

0.1667 0.1963 0.4045 0.6206 1.6259 

0.2 0.2223 0,4082 0.598 1.6368 

0.25 0.2601 0.4128 0.5646 1.6505 
15 

0.3333 0.321 0.4179 0.5099 1.6667 

0.5 0.4373 0.4189 0.4017 1.6768 

0.6667 0.5486 0.4092 0.2932 1.6601 

0.75 0.6031 0.4007 0.2378 1.6422 

0.1667 0.1807 0.3747 0.5820 1.5121 

0.2 0.2045 0.3782 0.5607 1.5216 

0.25 0.2391 0.3825 0.5294 1.5334 

20 
0.3333 0.2948 0.3873 0.4782 1.5476 

0.5 0.4018 0.3891 0.377 1.5571 

0.6667 0.5052 0.3813 0.2756 1.5434 

0.75 0.5564 0.3741 0.2236 1.5281 

The analysis of flow to a collector well with four radials of equal length is valid for 

RI!2 >!. Therefore, results are presented for P112>1. As seen from table 5.1, with increasing 

distance of the collector well from the river i.e., with increasing value of RI12, the flow to any 

radial of the collector well deceases. For lower value of7, flow to the radial number I, i.e., 

2q1 I{k(h -h1 )}is less than q 2  /{k(h,. -h)} because of interference of the second and fourth 

laterals. In case of a collector well with 4 laterals of equal length, the maximum flow occurs 

when angle between the laterals oriented towards the river is,ir/3 for R112< 5. For R/1~:5, flow 

to the collector well is the maximum fory=0.5, 

Yield of collector wells having three laterals of equal length, and 13  =0 is a particular 

case and is obtained from equation (5.25) by substitutingb = 0 and is given by: 
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q=k_ (h
F/2,f/g} ' 

____________ - h) 
F(irI2,J(g_f)/g) 

(5.33) 

2q1 /{k(hr  -h)},q2  /{k(hr  -h)}and (2q1  +q2  +q4 )I{k(h -h1 )} for different values of Rh 2  and y 

for!1  /12 = 1 are presented below. The flow q4  = q2  

Table 5.2(a) Yield of a Collector with Three Radials of Equal Lengths, 13  = 0 

Rh 2   2q1  /{k(hr  - h)} q2  /{k(h, -h)} (2q1  +q2  +q4 )/{k(h -h)} 

0.1667 0.6171 1.3251 3.2672 
0.20 0.7035 1.3195 3.3425 

0.25 0.8238 1.3020 3.4279 
0.3333 1.0011 1.2552 3.5116 

2 0.50 1.2837 1.1283 3.5402 
0.6667 1.4983 0.9860 3.4704 

0.75 1.5886 0.9123 3.4133 
0.1667 0.4291 1.0613 2.5518 
0.20 0.4878 1.0597 2.6071 
0.25 0.5717 1.0521 2.6759 

0.3333 0.7015 1.0281 2.7576 

0.50 0.9253 0.9500 2.8253 
0.6667 1.1092 0.8483 2.8058 

0.75 1.19 0.7912 2.7724 
0.1667 0.3585 0.9391 2.2366 

0.20 0.4062 0.9376 2.2815 
0,25 0.4749 0.9320 2.3390 

0.3333 0.5826 0.9143 2.4113 
0.50 0.7747 0.8539 2.4826 

0.6667 0.9394 0.7701 2.4796 
0.75 1.0136 0.7212 2.4561 

0.1667 0.3201 0.8647 2.0493 
0.20 0.3618 0.8631 2.0880 
0.25 0.4221 0.8581 2.1382 

0.3333 0.5171 0.8431 2.2031 
0.50 0.6893 0.7915 2.2723 

0.6667 0.8408 0.7178 2.2765 
0.75 0.9103 0.6740 2.2583 

0.1667 0.2447 0.6996 1.6438 
0.20 0.2752 0.6972 1.6697 

0.25 0.3191 0.6925 1.7040 

0.3333 0.3886 0.6807 1.7501 
10 

0.50 0.5182 0.6437 1.8056 

0.6667 0.638 0.5898 1.8177 

0.75 0.6953 0.5567 1.8086 

0.1667 0.2171 0.6311 1.4792 

0.20 0.2435 0.6284 1.5004 
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Rh 2  I 2q 1  I{k(hr  -h)} q2  I{k(hr  -h% j} (2q1  +q 2  +q 4 )/{k(h -h)} 

0.25 0.2816 0.6235 1.5285 
15 0.3333 0.3419 0.6124 1.5668 

0.50 0.4549 0.5797 1.6143 
0.6667 0.5612 0.5327 1.6266 

0.75 0.6129 0.5036 1.6202 
0.1667 0.2014 0.5905 1.3824 

0.20 0.2257 0.5876 1.4009 
0.25 0.2606 0.5826 1.4257 

0.3333 0.3157 0.5718 1.4594 
20 

0.50 0.4195 0.5412 1.5019 
0.6667 0.5178 0.498 1.5138 

0.75 0.5661 0.4712 1.5086 

As seen from Table 5.2 (a), for the case of a radial collector well with three radials in 

which one of the collectors orients perpendicularly towards the river and 13  =0, the flow to the 

collector well is maximum, if the other two radials are oriented at an angle y = 0.5 for RI!2  <5; 

for RI12  ~:5 , the flow to the collector well is maximum if y = 2/3. 

Yield of collector wells having three laterals of equal length, and 1 = 0 is also a particular case 

and is obtained from equation (5.25) by substitutingf = I and is given by: 

Fr /2, I(l + b)/(g + b)I (h 
- h ,) q=k 

________ F(ir/2,j(g-l)/(g+b)) 
(5.34) 

q2  /{k(hr  -h,)},2q3  /{k(h, -hj} and (q2  +2q3  +q4 )/{k(h -h)} for different values of RI12  and y 

for!3  //2 = land!4 "2 = 1 are presented in Table 5.2 (b). The flow q4  = q2  

Table 5.2 (b) Yield of a Collector with Three Radials of Equal Lengths, 1 = 0 

R/12 1 q 2  /{k(h - h, )} 2q3  /{k(hr  - h4. )} (q2  + 2q3  + q4 )/{k(hr - h )} 
0.1667 1.2281 1.0761 3.5323 
0.20 1.2521 1.0334 3.5374 
0.25 1.2733 0.9697 3.5164 

2 0.3333 1.2807 0.8656 3.4269 
0.50 1.2395 0.6692 3.1482 

0,6667 1.1714 0.4867 2.8296 
0.75 1.1348 0.3972 2.6669 

0.1667 0.9279 0.9525 2.8082 
0.2 0.9521 0.9173 2.8213 

0.25 0.9802 0.8648 2.8253 
0.3333 1.0098 0.7782 2.7978 

0.50 1.0229 0.6099 2.6558 
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RI12 y q 2  /{k(hr  -h)} 2q3  /{k(hr  -h)} (q2  +2q3  +q4 )/{k(hr  -h)) 

0.6667 1.0014 0.4476 2.4504 
0.75 0.9837 0.3662 2.3337 

0.1667 0.7954 0.8772 2.468 
0.20 0.8173 0.8459 2.4805 
0.25 0.8446 0.7992 2.4885 

0.3333 0.8775 0.7219 2.4770 

0.50 0.9068 0.57 2.3835 

0.6667 0.9039 0.4206 2.2284 
0.75 0.8949 0.3448 2.1347 

0.1667 0.7177 0.8249 2.2604 
0.20 0.7379 0.796 2.2718 
0.25 0.7638 0.753 2.2806 

0.3333 0,7968 0.6817 2.2754 

0.50 0.8324 0.5407 2.2055 
0.6667 0.839 0.4005 2.0785 

0.75 0.8349 0.3288 1.9986 

0.1667 0.5548 0.6905 1.8001 

0.20 0.5706 0.667 1.8082 
10 0.25 0.5918 0.6322 1.8159 

0.3333 0.6214 0.5748 1.8176 

0.50 0.662 0.4603 1.7843 

0.6667 0.6827 0.3441 1.7095 

0.75 0.6872 0.2837 1.658 

0.1667 0.4915 0.6277 1.6108 

0.20 0.5055 0.6065 1.6175 

0.25 0.5244 0.5751 1.624 
15 

0.3333 0.5515 0.5235 1.6266 

0.50 0.5911 0.4207 1.6029 

0.6667 0.6146 0.3157 1.5448 

0.75 0.6214 0.2608 1.5036 

0.1667 0.4552 0.5889 1.4994 

0.20 0.4681 0.569 1.5052 

0.25 0.4857 0.5397 1.5111 

20 
0.3333 0.5111 0.4915 1.5137 

0.50 0.5494 0.3957 1.4945 

0.6667 0.5737 0.2977 1.4451 

0.75 0.5815 0.2462 1.4093 

As seen from above table 5.2(b), in case of a collector well with three radials of equal 

length in which one of them oriented away from the river, the other two should be oriented at 
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an angle 0.2 :c~ !~ i / 3 for R /12  :~ 5 to obtain near maximum yield. For RI12  > 5 their orientation 

should bel/3 :~ y ~ 1/2. 

Yield of collector well having two laterals of equal length running parallel to a fully 

penetrating stream is also a particular case and is obtained from equation (5.25) by substituting 

b = 0, and f = I and given by: 

q=k_
F(/2,} 

 (h -h%1.)=q2 (5.35) 
F(,r/2,(g-1)/g) 

For such case, there is no restriction on length of the radials. In Table 5.3, total flow to 

each collector and ratio of the components of flow entering from the right and left side are 

presented. It is to be noted that both the components of flow are river water only. 

Table 5.3 Yield of a Collector with Two Radials of Equal Lengths, running parallel to a 

Stream, 1 1  = 13  = 01  12  = 14  

RI!2  q 2  I{k(h -h1 )) 2q2  I(k(hr h%r )} q 21  Iq2  

0.5 3.2634 6.5268 0.3973 
1 2.1158 4.2315 0.5713 

1.5 1.7065 3.4129 0.6722 
2 1.4899 2.9798 0.7365 

2.5 1.3532 2.7063 0.7803 
3 1.2575 2.5149 0.812 
4 1.13 2.2599 0.8543 
5 1.047 2.0939 0.8812 
6 0.9875 1.9749 0.8998 
7 0.9421 1.8842 0.9134 
8 0.906 1.8119 0.9237 
9 0.8763 1.7526 0.9318 
10 0.8513 1.7027 0.9384 
15 0.7672 1.5344 0.9585 
20 0.7169 1.4338 0.9687 

As seen from table 5.3, water entering to the collector pipe from right hand side is more 

than that from left side as the river is on the right hand side. Therefore, q 2  >q 21  and the 

ratio q 21  Iq 2  <1. 

5.6 CONCLUSIONS 

Based on the study of this chapter the following conclusions are drawn: 

I. The yield of collector well increases as it is located nearer to the water body; it also 

increases with increase in length and diameter of the collector pipe. 



A collector well having two collinear laterals each of 25m length running parallel to the 

river axis in a confined aquifer of lOm thickness comprising of silt sand can yield 

17.3 1m3  /day while located at a distance of 250m. In such geological situation, several 

parallel pipes are required to be installed to a common caisson to get desired quantity of 

filtered water. 

The yield of collector well increases with increase diameters and numbers of collector 

pipes. 

The yield from the laterals dependent upon the orientations of collector pipes. 

In case of a collector well with 4 laterals of equal length, the maximum flow occurs when angle 

between the laterals oriented towards the river is ,r13 for R112< 5. For Rh ~! 5, flow to the collector 

well is the maximum fory=O.5. 

For the case of a radial collector well with three radials in which one of the collectors orients 

perpendicularly towards the river and /3 = 0, the flow to the collector well is maximum, if the other 

two radials are oriented at an angle y = 0.5 forRh/2  <5; for RI!2  ~:5 ,the flow to the collector well 

is maximum if y = 2/3. 

- 7. The water entering to the collector pipe from river side is more than that from left side as the river is 

on the right hand side. In steady state condition the water comes to the collector pipes only from 

river. 
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Chapter 6 

FLOW CHARACTERISTICS OF A COLLECTOR PIPE USING 

SHEET FLOW CONCEPT LAID ADJACENT TO THE RIVER 

6.1 INTRODUCTION 

In order to check the degree of accuracy in the concept of sheet flow, an exact analytical 

solution for computing flow to a line sink in a confined aquifer laid parallel to a river 

considering the thickness of the aquifer needs to be solved. Applying conformal mapping 

technique, an exact analytical solution for two-dimensional flow in a vertical plane normal to a 

collector pipe laid parallel to a fully penetrating river in the middle of a confined aquifer is 

presented below. 

6.2 STATEMENT OF THE PROBLEM 

Two collector pipes each of diameterdf) and length 1 are laid in the middle of a 

confined homogeneous aquifer parallel to a fully penetrating river one each on either side of a 

well caisson. Each collector pipe has long length more than twice the thickness of aquifer. 

Objective is to find the flow characteristics of the line sink placed in the middle of the confined 

aquifer adjacent to the river and suggest correction factor for the assumption of sheet flow, if 

any. The flow can be assumed as two dimensional in any vertical plane perpendicular to the 

collectors' axis in the middle parts of the collector pipes. 

Aravin and Numerov (1965) have analysed steady flow to a collector pipe laid under a 

river bed treating the collector pipe as a line sink and considering half of the flow domain on 

one side of the axis of symmetry. Approach suggested by Aravin and Numerov (1965) is 

followed in this study for solving this problem. Under unsteady flow condition, water enters to 

the collector pipes from aquifer storage as well as from the river. When the flow attains steady 

state condition, water enter to the collector pipes from the left side as well as from right side is 

supplied by the river only. For steady flow condition, conformal mapping can be applied 

conveniently to solve the Laplace equation. The idealised flow domain is shown in figure 6.1 

(a). The lines ABL  and ('BR are lines of symmetry and are therefore stream lines. Considering 

the lines of symmetry, one can consider the lower half flow domain ACD*A. 
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Fig. 6.1(a) Idealized Flow Domain 

6.3 METHODOLOGY FOR ESTIMATION OF FLOW CHARACTERISTICS 

The vertices A, C, Dt, A have been mapped onto -.--I.I.xon the real axis of an 

auxiliary i(=i+is) plane as shown in Figure 6.1(h). 
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Fig. 6.1(b) Upper Half of the Auxiliary 1-Plane 

Mapping of the :(=x+iv)planeto the upper half of the auxiliary i plane is given by: 

d:_ M 

r 

(6.1) 
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Integrating 

z=M$
cit 

(6.2) 
(1+t)(i—t) 

Substituting t = sin8 , dt = cos & dO and integrating 

z — M&+N (6.3) 

or 
z=Msint+N (6.4) 

Att=o,z=0; hence, N=0. At t=1, z-0/4, Applying this condition, the other constant is 

iD found to be M = -. Finally 
2,r 

(6.5) 

or 

= (6.6) 
( 0 

Let the line sink be located att = b. Substitutingt = b, and = _R+!P_ in (6.6), 

b = sin 
2;r 

 (— R + 0 (6.7) 

Simplifying 

b=coshi 2R I (6.8) ( 
I D) 

Let the point BR  at a radial distance d P  / 2 from the line sink on the right side be located at bR  

on the t—plane. Substituting and t=bR in (6.6) and simplifying 

dp  bR =cosh{
2 

 D  ( 
_R__]} (6.9) 

Let the point BL  at a radial distance d / 2 from the line sink on the left side be located at bL  on 

the t—plane. Substituting z = —R—-+ and 1= b L  in (6.6) and simplifying 

bL =cosh4. _[R+_J} (6.10) 

Mapping of the w(= 0 + i ç) plane to the upper half auxiliary t (= r + is) plane 

Considering the lines of symmetry, the complex potential corresponding to lower half of 

the flow domain is shown in figure 6.1(c). The velocity potential function has been defined as: 

0=—k(p1y +y)+c; the constant c has been assumed to be equal to 0. The velocity potential 5 

at the line sink is co, 
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Fig. 6.1(c) Complex Potential Plane w(= 0 + iv) 
The mapping of the complex potential w plane to the upper half of the auxiliary t plane 

is given by: 

div  

di (b—t)(1—t)(I+t) 
(6.11) 

di' 
for —1:!~t:!~1 (6.12) 

Substituting t = sin 9, dt = cos 9 dO and integrating we obtain 

w 
MIJ 

dO 
(6.13) 

= (b—s1n8) 
 

Integrating (Abramowitz and Stegun, 1962, p78) 

btan 0 
1 (sin i 

IV 
 

Ibtani I-1 
2M1 

_____________ _________ __________________ = tan I - 1+ 1  = _____ tan _____ + N (6.14) 
______ 

2M 1 
_I J[ 

2 ) 
l(b 2 _1) /(—i) 

j 

(b 2 _1) (b 2 _1) 

At, t =1, w = _k(hr 
+ J. 

Applying this condition in (6.14) 

I (sin'(i) 11 I btanl 

k [hr  + 

2M1 —1 j 2 ) 2M1 
tan 

+ 
N, 

C 

- - = _____ tan s = __ 
J(b 2  _i) 

[ 

—i) 

j 

J(b2 1) 

At t —1, w=—khr  +)+iq .Applying this condition in (6.14) 

I_2 _II 2M1 
tanH1  _ _k(hr +_J+l=

y( 

) 
(b2_1) 

j 



--
2M1  tan hIJ+N1 (6.16) 

- (b 2 1) 

Subtracting (6.15) from (6.16) 

• 
-

-2!vI 
tan 1Fb+1fl+tan ' FT71 (6.17) 

' (b 2 1)l J b+1)J 

Applying the relationship (tan' A + tan B)= tan
(1-AB) 

(Abramowitz and Stegun, 1970, p.  80) 

and simplifying 

1'(b2 _L)i q 
(6.18) M1 =  -________ 

Incorporating vi in (6.15) and solving for N1  

N 1  = tan_1[ iJ11i]_k(hr  + 
D

J 
(6.19) 

For —1 :!~ t 1, referring equation(6. 14), and incorporating constants M1  and N1, one can obtain 

btan -1 
2 (  2 J +LtanIij '1_kIh +2' (6.20) 

(b 2 _1) b+1) r 
 4) 

Derivation offlow per unit length (q) of the collector pipe 

For 1:!~t<b 

thy • (b 2 _1)q 1 (6.2 1 ) = -1 
dt ' 

is positive in the range! :~ t <b. We therefore consider VT = -i and obtain 
dt 

dw \l(b 2  _i)q 1 (6.22) 
- dt Ir (b_ t)(t _1)(z+1)h/ 2  

Integrating 

________ 
dt (b 2  -1)q 

(b_t)(t_1)(t+l)h/2 
k(hr  +D/4) (6.23) w= 

At t=bR  ,w=-k(h,+D/4).HeflCe, 

97 



b 

-k(h +D14)= 
2 -1,q 

j 
di 

k(h +D/4) (6.24) 
1 (b_t)(t_1))v(t+1)1/2 

hR 
_________ 

di 
k(hr  -h)= 

(b_ f )(t _1)(t+1) 2 
(6.25) 

Substituting: = cosh 0, di = sinh 0 dO, and integrating (Gradshteyn and Ryzhik, 1965) the integral 

(cosh_i bR  

dt dO 
coshhR b_1+.J(b 2  -1)tanh 

1 2 J 
(b_:)(t _l)(i + I) 2  = (b-cosh o) = (b2 

In 
b_1_(b 2  _l) tanh[C01 bR 

2 J 

I b-1+.Jb -1tanh(8/2) 
Differentiating In we verify 

..j(b 2  _i)  b_1_jb2  1 tanh(0/2) 

that--- 1_1 
In 

b_14b2_ltanh(8/2) 1 
dOlJ(b 2  _i) b_1_ a 2  -b 2  tanh(9/2)1 (b_coshG) 

lncorporatingl1  in (6.25), and 

simplifying, the dimensionless total flow 
k(hrhw) 

 entering to the collector pipe both from top 

and bottom sides through unit length of the pipe is given by: 

2q 
- 

2,r 
- 

k(hr _hw )V(b2 1)I - 

2.'r 

b-  1+!(b  -1)2 'tanhl (cosh 
2 
 'bR 

I 
) 

In 

b (b 
(i 

- i - 2 _I)tanhl cosh RJ 

2 
b 

 

(6.26) 

The inverse cosh bR  is computed using the logarithmic relation (Abramowitz and Stegun, 

1970, p 87): cosh hR  = ln{bl?  +b _i)2 lbR R 

Let us designate dimensionless flow per unit length of the collector pipe 2q

k(h7 - k) 

byQd. The total flow to a collector pipe of length 12  will be Qd12 

Estimation of an entrance velocity 

One has to check the entrance velocity at the periphery of the collector pipe while 

designing a collector well. An average entrance velocity factor, vef, for the present case is given 

by 



=2qI()rd p fa )= 
2k(hr hw ) 

cosh b 
b—I+(b2 —1)nhl ta R 

2 
dpfa in 

b_I_(b2 _ l)tm[c0sn1  bR ] 

2 

(6.27a) 

in which fa  is the fraction of the peripheral area of the collector pipe perforated. A 

dimensionless average entrance velocity factor is given by: 

ef = efa d / k(hr  - h3 ) = 

In 

2 

b _1+y(b2 - l)tanh[C0Sh bR 

2 

b_1_(b2 _ I)
tanh

[cosh t  bR  

2 

(6.27b) 

It is also needed to check the maximum entrance velocity. Maximum entrance velocity 

is obtained as follows. 

Dividing equation (6.11) by equation (6.1) and substituting the constants M and M1  one 

can obtain 

dw,dzdw dt dw_ib2_1iq  1 
& 

7r
(0)  

- ---X-- 
{b—t} 

Replacing the parameter t = sin 
iD ) 

(6.2 8a) 

given in equation (6.6), and substituting 

z = x + iD/ 4 for i :!~ t < b and further simplifying we obtain 

dw 
J 

2 1 
—=u—iv=—b —1—q 
dz D I 2,rx 

b—coshI R 
D )j 

(6.28b) 

Along the horizontal stream line CBR, the vertical component of velocity v = 0. Therefore, 

the horizontal Darcy velocity along the stream line CBR is given by 

u Ib2 2 i 
—1—q 

D ,r I 2 x 
b—coshI R 

D )j 

(6.29) 



The negative sign indicates that direction of the velocity vector u is in the opposite 

direction of x ordinate. The modulus of entrance velocity atx=-(R-d/2), which is the 

maximum entrance velocity, is 

2q Jb 2 _I 
- 

2 q Jb 2 _1 
IUmax= 

2(R_d/2)11 
_________ 
I2r (R-d,, /2)11 

f, D lb — cosh  f a D[b_C0Sh{_ 
D D 

2 iJb2  —1 
I2ir(R — d., /2 

= fa D[b_C0Sh1 
D 

it k(hr  —h) 

b I~(b2 coshb 
- _1)tanhl RJ 

un 
2 

cosh b 
b — '— (b 2— I)tanhI 

R] 

2 

(6.30) 

Maximum dimensionless entrance velocity factor is defined as: 

U myjDf a 2b2 _1 
ej 

12r(R-d /2) 
U,= = 

[b_cosh 
D }] 

(cosh_1 b 
b -l+V(b2- l)tanhl  2 

In 
( 

b-1-J(b2-1)tanhI 
cosh_L b 

 2 

(6.31) 

Estimation of a travel time of a parcel of water 

Having derived an expression for velocity, we derive next the minimum travel time of a 

parcel of water that moves along the shortest stream line CBR. Using this travel time, the reduction 

in bacteria concentration of a parcel of water while it moves from the river to the collector well, can 

be ascertained with ease using production function. The true velocity is given by u/i, in which q 

is the porosity of the aquifer medium. The travel time dt to move along an elemental length thc 

is given by 

b-cosh---- I 
[ 

2,rx' 

___ dt=q dT  —=i7 ____ 
D ) dx 

U _b2  2 q 
D 

(6.32) 

Integrating the travel time for a parcel of water from the river to the collector pipe is: 
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(-1R- 2 2) 

r = d t = 
—17 

$ 
( 2,rx —17 fbcix_ 

-2 
___ b—cosh---- 

b 2 _1 q D ) b2_1 2 
0 0 

D 

r 2,rx 
I cosh—cfr 

D 
0 

- 
17 

- _b1'R_L" D +—sinh 
12'J R di11 
— 

- b 2  - 2q [ 2 J 2 D 2)J 

- .[b1_O.5_ISIflh 12ff(_o5 
d  

- 

2q [ D D) 2)r D D )~]  

Incorporating q in (6.33), we derive the dimensionless time factor astas 

(6.33) 

(cosh_1  b b_l+(b2_l)tan  

tr k(hr hw ) 1 [ (.
7
R_±P- 1.

2
Rd 2  

In 
_ cosh' b, 

t n 2 2b2  —1 2D) 2 
b_l—

___

1l)tan 
2 

(6.34) 

Corresponding to the travel time tr , the number of log cycle reduction is 

r / - (6.35) n=1og10 
(r/2L)-1 

6.4 NEED OF A CORRECTION FACTOR 

While deriving flow to a radial collector well assuming sheet flow, the thickness of 

aquifer, and diameter of the collector pipe are not considered. To account for the thickness of 

the aquifer, we multiply the flow to a collector pipe by D, the thickness of the aquifer. As the 

flow does not increase linearly with thickness of the aquifer, a correction factor needs to be 

applied. A correction factor for the specific case of two laterals, each of equal length 12, running 

parallel to the river has been derived. 

Let the thickness of aquifer be lm; let us designate the flow to the collector pipe of 

length 12  ,q2  /{kQi —hj}, presented in Table 6.3 as Q. 

Correction factor C f  

For deriving the correction factor Cf , considering we multiply the dimensionless flow to 

one of the collector pipes of length 12,  Q, by the thickness of the aquifer D and a correction 

factor Cf  and equate it to the dimensionless flow Qd  multiplied by length 12 

Q DCJ = Qa'2 (6.36) 
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The correction factor is 

C _Qd12_Qdl2R 

Qç D QS RD 
(6.37) 

For given -. , Q3  values are derived. Further, for given R d 
—and--, Qd  is obtained. 

12 D D 

Using these, the value of correction factor C f  is obtained. 

6.5 RESULTS AND DISCUSSIONS 

For obtaining result, the programme needs to adopt double precision. The parameter b is 

a function of RID and bR  is a function of RID and d / D . One has to present the flow 

characteristics for D10m, and d=1m in Table 6.1. It is found that forR/D>5.5, b>5.09x1014  

and bR  >3.72x 1014. For very large value ofbl? , the term tanh[C0 hi?] appearing in equation 

(6.26) becomes very nearly equals to 1 and the term b_1_V(b2 _ l)
tanh

[c0
2

1  bR] becomes a 

negative quantity, thereby making the logarithmic term an imaginary number. In this study, a 

cosh' h5  

numerical method for evaluating the integral dO 
and Gauss Quadrature 

(b-cosh9) 
0 

technique are adopted. In Gauss Quadrature, since the integration is not carried up to the upper 

limit of integration exactly, it becomes feasible for evaluation of the integral for comparatively 

higher value of RID. 

The following procedure is adopted for evaluating i. Since cosh bR > I 

cosh'hR I cosh'hR 

S 
dO 

________ ________ 

_________ 

dO 
_________ 

_________ _________ 

dO 

(b—coshO) J(b_COShG) + S (b—coshe)' 
0 0 I 

cosh'b5 1 
dO  dço 

fI (b — cosh 0)  2(b—cosh(1/)) 
l/cosh'hR  

l/cosh'bfi -I-O..I 

= 5 
dcv 

+ 

1/cosh 1  bR 
cv (b - cosh(I '(,o)) 

l/cosh'bR+0.2 

j 
dcv 

2 (b —cosh(I/i)) 
l/cosh'bR4-0.1 cv 

1/cosh' bR+0.3 

+ J 
dcv 

+ 

I/cosh' bR+O  2 
ç2  (b - cosh(1/ (p)) 

i/cash' b+O.4 
dcv 

+ f
[/cosh b 

1/cosh' 

5 
b5-i-0.5 

- (b - cosh(1 / cv)) I/cosh' Is+O.4 
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+ 

dço 

fh, cosh(1/)) 
1/cosh +O.5 

Gauss Quadrature considering 96 weights for evaluating each integral after changing the 

lower and upper limits of each integral to -1 to 1 has been adopted in this study. 

Table 6.1 Comparison of Analytical and Numerical Methods for evaluation of!, and 

Dimensionless Flow Characteristics computed for D10m and d=1m 

RI1 2  RID B bR QD Q s i,. U,, eí t rf Cf  Method 

0.4 1 2.68E+02 1.96E+02 0.8631 3.8157 1.7171 3.2014 0.966 0.5655 A 
0.8631 3.8157 1.7171 3.2014 0.966 0.5655 N* 

0.8 2 1.43E+05 1.05E+05 0.4633 2.4108 0.9216 1.7183 3.9584 0.4804 A 
0.4633 2.4108 0.9216 1.7183 3.9584 0.4804 N 

1.2 3 7.68E+07 5.61E+07 0.3166 1.914 0.6298 1.1743 8.9508 0.4135 A 
0.3166 1.914 0.6298 1.1743 8.9508 0.4135 N 

1.6 4 4.11E+10 3.00E+10 0.2405 1.6533 0.4784 0.8919 15.9431 0.3636 A 
0.2405 1.6533 0.4784 0.8919 15.9431 0.3636 N 

2 5 2.20E+13 1.61E+13 0.1938 1.4899 0.3856 0.7189 24.9395 0.3252 A 
0.1939 1.4899 0.3857 0.719 24.9355 0.3253 N 

2.2 5.5 5.09E+14 3.72E+14 0.1768 1.4286 0.3517 0.6558 30.1683 0.3094 A 
0.1767 1.4286 0.3516 0.6555 30,1817 0.3093 N 

2.4 6 1.18E+16 8.61E+15 
A 

0,124 1.3765 0.3230 0.6023 35.9279 0.2949 
N 

A *=Analytical method;  N*=Numerical  method 

Table 6.2 Dimensionless Flow Characteristics computed for D=lOm and d1m adopting 

Numerical Method for Integration 

RI!, RID QD Q s ef U PIef  t n 
 Cf 

2.5 0.3761 2.1158 0.7483 1.3952 6.2046 0.4444 

2 5 0.1939 1.4899 0.3857 0.719 24.9355 0.3253 
3 7.5 0.1306 1.2575 0.2598 0.4843 56.1664 0.2596 
4 10 0.0984 1.13 0.1958 0.3651 99.8974 0.2178 
5 12.5 0.079 1.047 0.1572 0.293 156.1283 0.1886 

6 15 0.066 0.9875 0.1312 0.2447 224.8594 0.167 

7 17.5 0.0571 0.9421 0.1137 0.2119 303.3813 0.1516 

8 20 0.05 0.906 0.0995 0.1854 396.7145 0.138 
9 22.5 0.0444 0.8763 0.0884 0.1648 502.5476 0.1268 

10 25 0.04 0.8514 0.0796 0.1484 620.8806 0.1175 

11 27.5 0.0364 0.83 0.0723 0.1349 751.7135 0.1095 
12 30 0.0333 0.8113 0.0663 0.1236 895.0467 0.1027 

13 32.5 0.0308 0.7949 0.0612 0.1141 1050.879 0.0968 

14 35 0.0286 0.7803 0.0568 0.106 1219.212 0.0915 
15 1 37.5 0.0267 0.7672 0.0531 0.0989 1400.043 0.0869 
16 40 0.025 0.7553 0.0497 0.0927 1593.372 0.0827 

17 42.5 0.0235 0.7445 0.0468 0.0873 1799.201 0.079 
18 45 0.0222 0.7345 0.0442 0.0824 2017.526 0.0756 
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R/1 2  RID QD Q s 
lf 

u, f  t
rf  C1  

19 47.5 0.0211 0.7254 0.0419 0.0781 2248.348 0.0726 
20 50 0.02 0.7169 0.0398 0.0742 2491.666 0.0697 

Table 6.3 Dimensionless Flow Characteristics computed for D=5m and d=1m adopting 
Numerical Method for Integration 

Rh 7  RID QD Q s Ve f U  C,,- 

1 5 0.1991 2.1158 0.3962 0.4269 24.1783 0.4706 
2 10 0.0998 1.4899 0.1985 0.2139 98.3605 0.3349 
3 15 0.0666 1.2575 0.1324 0.1427 222.5428 0.2647 
4 20 0.0503 1.13 0.1001 0.1079 393.6213 0.2228 
5 25 0.0402 1.047 0.08 0.0862 617.0079 0.1921 
6 30 0.0335 0.9875 0.0666 0.0718 890.3945 0.1696 
7 35 0.0287 0.9421 0.0571 0.0615 1213.781 0.1522 
8 40 0.0251 0.906 0.0499 0.0538 1587.167 0.1384 
9 45 0.0223 0.8763 0.0443 0.0478 2010.553 0.1272 

10 50 0.0201 0.8514 0.0399 0.043 2483.937 0.1178 

Table 6.4 Dimensionless Flow Characteristics computed for D10m and d=0.5m adopting 
Numerical Method for Integration 

R1 2  RID Qi,  Q s i~f  
Umej  C,.- 

1 2.5 0.3595 2.1158 1.4303 2.4728 6.5069 0.4247 
2 5 0.1893 1.4899 0.7533 1.3024 25.5592 0.3177 
3 7.5 0.1285 1.2575 0.5113 0.884 57.1114 0.2555 
4 10 0.0973 1.13 0.387 0.6691 101.1637 0.2152 
5 12.5 0.0782 1.047 0.3113 0.5382 157.716 0.1868 
6 15 0.0654 0.9875 0.2604 0.4502 226.7684 0.1657 
7 17.5 0.0567 0.9421 0.2257 0.3903 305.6109 0.1506 
8 20 0.0497 0.906 0.1977 0.3418 399.265 0.1371 
9 22.5 0.0442 0.8763 0.1759 0.3041 505.4194 0.1261 
10 25 0.0398 0.8514 0.1584 0.2738 624.073 0.1169 
11 27.5 0.0362 0.83 0.144 0.249 755.2249 0.109 
12 30 0.0332 0.8113 0.1321 0.2284 898.875 0.1023 
13 32.5 0.0307 0.7949 0.122 0.2109 1055.021 0.0964 
14 35 0.0285 0.7803 0.1133 0.1959 1223.662 0.0912 
15 
16 

37.5 
40 

0.0266 
0.0249 

0.7672 
0.7553 

0.1058 
0.0992 

0.1828 
0.1715 

1404.795 
1598.42 

0.0866 
0.0825 

17 42.5 0.0235 0.7445 0.0934 0.1614 1804.532 0.0788 
18 45 0.0222 0.7345 0.0882 0.1525 2023.13 0.0754 
19 47.5 0.021 0.7254 0.0836 0.1445 2254.215 0.0724 
20 1  50 0.02 0.7169 0.0794 0.1373 1 2497.78 0.0696 
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Table 6.5 Dimensionless Flow Characteristics computed for D=5m and d=0.5m 

Adopting Numerical Method for Integration 

R/1 2  R/D 
- 

QD Q s Vef Umef t f  C1  

1 5 0.1939 2.1158 0.7713 0.719 24.9355 0.4581 

2 10 0.0984 1.4899 0.3917 0.3651 99.8974 0.3303 

3 15 0.066 1.2575 0.2625 0.2447 224.8594 1 0.2623 

4 20 0.05 1.13 0.1989 0.1854 396.7145 0.2212 

5 25 0.04 1.047 0.1591 0.1484 620,8806 0.191 

6 30 0.0333 0.9875 0.1326 0.1236 895.0467 0.1688 

7 35 0.0286 0.9421 0.1137 0.106 1219.212 0.1516 

8 40 0.025 0.906 0.0995 0.0927 1593.372 0.138 

9 45 0.0222 0.8763 0.0884 0.0824 2017.526 0.1268 

10 50 0.02 0.8514 0.0796 0.0742 2491.666 0.1175 

Table 6.6 Dimensionless Flow Characteristics computed for D=lOm and d=0.3m 

adopting Numerical Method for Integration 

R/1 2  RID QD Q s 
Vef U  C1  

1 2.5 0.3486 2.1158 2.312 3.8762 6.7124 0.4119 

2 5 0.1863 1.4899 1.2353 2.0711 25.9836 0.3126 

3 7.5 0.1271 1.2575 0.8428 1.413 57.7549 0.2527 

4 10 0.0964 1.13 0.6396 1.0723 102.0261 0.2134 

5 12.5 0.0777 1.047 0.5153 0.864 158.7973 0.1856 

6 15 0.0651 0.9875 0.4315 0.7234 228.0688 0.1647 
7 17.5 0.0565 0.9421 0.3744 0.6277 307.1295 0.1498 
8 20 0.0495 0.906 0.3281 0.5501 401.0016 0.1365 

9 22.5 0.044 0.8763 0.292 0.4895 507.372 0.1256 
10 25 0.0397 0.8514 0.263 0.441 626.2386 0.1165 
11 27.5 0.0361 0.83 0.2393 0.4012 757.5982 0.1087 
12 30 0.0331 0.8113 0.2195 0.368 

- 
901.447 0.102 

13 32.5 0.0306 0.7949 0.2027 0.3399 1057.783 0.0962 
14 35 0.0284 0.7803 0.1884 0.3158 1226.602 0.091 
15 37.5 0.0265 0.7672 0.1759 0.2949 1407.9 0.0864 
16 40 0.0249 0.7553 0.165 0.2766 1601.676 0.0823 
17 42.5 0.0234 0.7445 0.1553 0.2604 1807.927 0.0786 
18 45 0.0221 0.7345 0.1467 0.246 2026.648 0.0753 
19 47.5 0.021 0.7254 0.139 0.2331 2257.842 0.0723 
20 50 0.0199 0.7169 0.1321 0.2215 2501.505 0.0695 
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Table 6.7 Dimensionless Flow Characteristics computed for D=5m and d=0.3n adopting 
Numerical Method for Integration 

RI!, RID QD Qs  U mej t n  C1  
1 5 0.1905 2.1158 1.2631 1.1087 25.4021 0.4501 
2 10 0.0976 1.4899 0.6469 0.5679 100.8448 0.3274 
3 15 0.0656 1.2575 0.4348 0.3817 226.2875 0.2607 
4 20 0.0498 1.13 0.33 0.2897 398.6226 0.2202 
5 _25 0.0399 1.047 0.2643 0.232 623.2695 0.1903 
6 30 0.0332 0.9875 0.2204 0.1934 897.9133 0.1683 
7 35 0.0285 0.9421 0.189 0.1659 1222.548 0.1512 
8 40 0.0249 0.906 0.1654 0.1452 1597.164 0.1377 
9 45 0.0222 0.8763 0.1471 0.1291 2021.75 0.1265 

10 50 0.02 0.8514 0.1324 0.1162 I 2496.291 0.1173 

The dimensionless flow per unit length of collector, Q1,  is a function of d / D, R / D and 

the dimensionless flowQ is only a function of RI!2 . The dimensionless flowQD , andQ,and 

other flow characteristics are presented in Tables 6.2 to 6.7 for various values of R / D and R / 12  

for d = {i, 0.5, 0.3} m and D = {io,s} m. As expected, flow to the collector pipe for given d1, / D 

decreases as the distance between river and the pipe laid parallel to the river increases. For a 

large value of R, the hydraulic gradient approaches (h - h )i R; hence, the dimensionless 

flowQD  -*(D/R). For R/D=50, di!, =O.3rn,QD =0.0199 (D/R). For other values ofd, 

for R / D = 50, QD = 0.02. We, therefore, confirm that the solution presented is correct. 

The correction factor increases marginally as the thickness of aquifer decreases. It 

decreases as the distance of the collector from the riverbank increases. As the correction factor 

is very much less than I. Broom's postulation 0 = -kD(pIy +y)+C for computation of flow 

characteristics estimated using sheet flow concept overestimates the yield of collector pipe and 

needs a correction factor. The derived correction factors may be applied to the yield of collector 

wells with collector pipes more than 2, those are obtained using sheet flow concept. 

An illustrative example: 

Compute yield of a collector well having two radials each of 25m length running 

parallel to the river axis at a distance of 250m from the river bank? The diameter of the 

collector pipes is lrn, and the pipes are laid in the middle of the aquifer. The thickness of the 

aquifer is 10rn.The hydraulic conductivity of the aquifer material comprising of silt sand is 1.73 

rn/day, Harr (1962). The effective porosity of the aquifer medium is 0.3. A drawdown of Sm is 
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maintained in the well caisson. Compute the yield of the collector well and the maximum 

entrance velocity. The collector pipe has 16% opening area. Also find the log cycle reduction in 

Bacteria concentration by the time a parcel of water moves from the river to the collector pipe. 

Step of computation 

Corresponding to RI! 2  =10,R/D=25 from Table 6.2, the dimensionless flow to the 

collector of 25m length, Q =q2  I{k(hr  -h)}=0.85l4, and the correction factorC1  = 0.1175. The 

total flow, Q,  to both collectors is given by: 

Q=2QDCj k(hr  -h) =2x0.8514x10x0.1175x1.73x5=17.31 (m Iday) 

For getting requisite quantity, several parallel collectors perpendicular to the river axis which 

can be connected to a common caisson on the river bank can be installed. 

The maximum entrance velocity V ein  is computed as follows: From Table 6.2 

IUmaxIDfa It rnefk(hlr  - h) 
for R 112  = 10, RID = 25, Umef 

= - h,) 
= 0.1484. Hence, IUmaxI 

= Dfa 

- = 0.1484x 1.73x5 I(10x0.I6) = 8.01 (ml day)= 0.01cml sec <3cm1sec. The maximum entrance velocity is 

within safe limit. 

) 
= The dimensionless travel time trf  

- 

trk(hr 

2 

 hw 
620.88; 

)iD  

hence, t,. = 620.88x0.3x102  I(1.73x5)= 2153.34days. Corresponding to the travel time the number 

of log cycle reduction is 94. This indicates that the water will be free from pathogenic bacteria 

when the collector pipe is laid 250m away from river bank. 

6.6 CONCLUSIONS 

Based on the study the following conclusions are drawn: 

The yield of collector well increases as it is located nearer to the water body, it also 

increases with increase in length and diameter of the collector pipe. 

A collector well having two collinear laterals each of 25 m length running parallel to the 

river axis in a confined aquifer of lOm thickness comprising of silt sand can yield 17.3 1 m 3 

/day while located at a distance of 250 m. In such geological situation, several parallel pipes 

are required to be installed to a common caisson to get desired quantity of filtered water. 

The correction factor has been determined exactly. 

For RI!2  = 10, RID = 25, D = lOm, d1  =lm, the correction factorCf  = 0.1175 .For 

RI!2  = 5, RID = 25. D = 5m, d p  =lm, C = 0.1921. As the correction factorC1  is very 
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much less than 1, Broom's postulation 0 = —kD(pIy +y)+C overestimates flow to 

the collector system in case the flow is computed based on sheet flow concept. 

4. In lieu of correction factor for collector with multiple radials, the present correction 

factor can be applied. 
I 
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Chapter 7 

CONCUSIONS AND SCOPE FOR FUTURE WORK 

7.1 CONCLUSIONS 

Providing safe and adequate drinking water to the masses has been an important activity 

for any water utility. Riverbed and riverbank filtration are gaining importance as most of the 

cities in various parts of the world are expanding on the banks of rivers which are getting 

polluted due to various anthropogenic activities. However, not much work has been reported in 

literature for analyzing the problems of riverbed and riverbank filtration mathematically. 

Aravin and Numerov (1965) have done pioneering work in this direction and have suggested an 

analytical solution for computing velocity potential and flow to a collector pipe which is placed 

under a riverbed in homogeneous medium of infinite areal extent. They have identified a 

relationship between the yield (Q) and various aquifer and physical parameters such as 

hydraulic conductivity (k), porosity ()i), drawdown in the well caisson (D), thickness of river 

bed (D), height above the impervious base at which the collector pipe is laid (di), and the length 

of lateral (1). Mishra and Kansal (2005) have suggested an analytical solution for computing the 

yield and entrance velocity to a collector pipe placed adjacent to a fully penetrating straight and 

meandering river reach. 

In the present study, applying conformal mapping, the flow characteristics in respect of 

collector pipes having various cross-sections, have been analyzed. The collector pipe has been 

treated as a line sink for a circular pipe. The collector which is assumed to be a vertical slit and 

the collector with square cross section are assumed to have finite potential boundary. The travel 

time along the shortest path from the river bed to the collector pipe has been analytically 

determined in the present study. The log cycle reduction in bacteria concentration during travel 

time has been obtained using Logistic function. The present study, identifies analytical 

solution based on the Schwartz-Christoffel conformal transformation for computing flow 

characteristics such as flow, entrance velocity, travel time, and number of log cycle reduction in 

bacteria concentration under steady state condition in respect of a collector pipe laid under a 

riverbed. Further, analytical solution has also been suggested for multi-collector pipes with 

different orientations placed adjacent to fully penetrating straight river reach. The suggested 

philosophy is illustrated with the help of various examples. 
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For example, in sandy silt riverbed material having hydraulic conductivity of 

0.0864m/day and porosity is 30%, when a line sink collector pipe of 25m length and 0.5m 

diameter placed at a height of 5m above the impervious base in a riverbed of 10m thickness and 

the collector pipe has 16% opening area, if a drawdown of 4m is maintained in the well caisson, 

then, using Aravin and Numerov (1965) method it will yield about 13.95m3/day. The same 

example is solved for collector pipes having finite potential boundary. The yield comes out to 

be exactly the same. In addition to the yield, the present study also computes the entrance 

velocity, travel time, and the number of log cycle reduction in bacterial concentration. For 

example, for this illustrative example, the maximum entrance velocity is 0.00267cm/s and the 

average entrance velocity is 0.00257cm/s. Magnitude of the average entrance velocity is well 

below the maximum entrance velocity of 4cm/s. The travel time corresponding to 77 = 0.3 is 

25.7days. The log cycle reduction n using equation (B.7) is about 1.57. This means the initial 

bacterial concentration in river water (C0) will reduce to C0' l0' during water travel from 

riverbed to the collector pipe. 

While carrying out the analysis, one of the challenging stages was to handle the 
- 

mathematical expressions, which involve elliptic integrals. Further, analytical solution for 

finding the conformal mapping parameters involve a set of implicit non-linear equations and 

cannot be easily obtained. The Newton Raphson iterative method has been used to obtain the 

solution of the non-linear equations for various conformal mapping parameters. The Gaussian-

Quadrature method is used to evaluate the improper integrals after applying method of 

substitution. Based on the derivation of flow characteristics and dimensionless factors in this 

study, the following inferences are drawn: 

Yield of a collector pipe is linearly proportional to 

hydraulic conductivity of the river bed material, 

drawdown in the well caisson, 

(iii)length of the collector pipe, and 

non-linearly dependent on 

the diameter of the collector 

thickness of the riverbed, 

height above the impervious base at which the collector pipe is laid. 

The entrance velocity is linearly proportional to 

hydraulic conductivity of the riverbed material, 

drawdown in the well caisson, and 
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non-linearly dependent on: 

the diameter of the collector, 

thickness of the riverbed, 

height above the impervious base at which the collector pipe is laid, and inversely 

proportional to the fraction of peripheral area perforated. 

It has been noticed that for wide range of hydraulic conductivity of the aquifer material, 

the maximum entrance velocity is less than 4cm/s. 

The minimum travel time is directly proportional to porosity of the bed material, square 

of the riverbed thickness and inversely proportional to hydraulic conductivity of the porous 

medium in the riverbed and drawdown in the well caisson. 

The flow to a multi-collector pipes dependent upon the orientations of collector pipes. 

In case of a radial collector well with 4 laterals of equal length, the maximum flow occurs when 

r R R 
i angle between the collector pipes oriented towards the river s - for— < 5. For - >_ 5, flow to 

3 12 12  

the collector well is the maximum for y = 0.5. For the case of a radial collector well with three 

radials in which one of the collectors orients perpendicularly towards the river and 13 , the flow 

to the collector well is maximum, if the other two collector pipes are oriented at an angle 

y=O.5 for f<5; for f~5 , the flow to the collector well is maximum ifr=3'. 

It is obvious that the water entering to the collector pipe from the river side is more than 

that from left side of the collector pipe. However, it may be noticed that under steady state 

condition, the water comes to the collector pipes only from the river side. The present study 

identifies the analytical solution based on the Schwartz-Christoffel conformal transformation 

for computing yield of a collector well having two radials each of 25m length running parallel 

to the river axis at distance of 250m from the riverbank. The correction factor has been 

determined exactly. As the correction factorC is very much less than 1, it may be concluded 

that the Broom's postulation 0 = -kD(p/y +y)+C overestimates flow to the collector system. 

7.2 LIMITATIONS AND SCOPE FOR FUTURE WORK 

The present study has been carried out under certain assumptions and therefore has 

following limitations: 
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Flow is considered as steady state. However, in actual practice the flow may be 

under unsteady condition. 

Aquifer material is assumed as homogeneous and isotropic, whereas, in practice 

it can be non-homogenous and anisotropic. 

Flow is considered two dimensional only and satisfies the Laplace equation. 

However, flow can be three dimensional. 

The head loss in collector pipe is neglected. 

Therefore, one can carry out further research while addressing the above assumptions I 

limitations, Also, one can carry out the following works to strengthen the suggested 

philosophy: 

I. One can carry out the numerical modelling for the riverbed and riverbank filtration 

process and check the results with the actual values observed in the field for a real time 

case study. 

One can carry out the analysis for estimating the safe distance of collector pipe from the 

river considering dispersion, adsorption and decay of pollutants. 

One can consider the various flow regimes like laminar, turbulent and transitional in the 

collector pipe. 

One can consider the coupled well-pipe-aquifer hydraulics problem in homogeneous/ 

non-homogenous porous media. 
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APPENDIX A 

LACEY'S SCOUR DEPTH AND SILT FACTOR 
I 

A.1 GENERAL 

During lean flow season (non-monsoon period), the flow in the river attains the minimum and 

the depth of water in the river is minimum. The thickness of the deposited sediments is the 

maximum. During the flood period, scouring occurs and the thicknesses of sediments get 

reduced. The scour depth is estimated using following Lacey (1929) theory 

(X 
Dç=O47I 

Q 
I (A.l) 

fI.) 

where, D5  is the normal scour depth in m below the design flood level, Q the design flood 

discharge in , f, is the Lacey's silt factor related to the median size of bed material d 

(mm). fL  Values are given in table A. 1. 

Table A.1.Values of Lacey's Silt Factor Source (IS: 3955-1967) 

S. No. Type of bed soil Size of particles (mm) Silt factor (f) 
I Coarse silt 0.04 0.35 

0.08 0.50 
2 Fine sand 0.15 0,68 

0.3 0.96 
3 Medium sand 0.5 1.24 

0.7 1.47 
4 Coarse sand 1.0 1.76 

2.0 2.49 
5.0 3.89 

5 Gravel 10.0 5.56 
20.0 7.88 
50 12.3 

6 Boulders 75 15.2 
190 1 24.3 

The collector pipe should be laid below the scour depth accounting the minimum tiiter 

thickness above the collector pipe required for natural filtration through the layer above the 

pipe. For rapid sand filter, the minimum filtration thickness is taken as 0.8 m. 
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APPENDIX B 

EXPRESSION FOR NUMBER OF LOG CYCLE REDUCTION IN 

BACTERIAL CONCENTRATION 

B.1 GENERAL 

Population growth of bacteria during the time a parcel of water moves from the river to the 

collector pipe is modeled adopting the modeling of tumor growth; the population growth of 

bacteria, in a parcel of water which is excluded from the surrounding is expressed as: 

dC ( C 
—=rl 1- C-, =rC-2LC- 
dt ) CO 

L 

Where, C is the concentration of a bacteria (number in unit volume of water), t is the time 

parameter, Co is the initial concentration at time t0, r is reproduction rate, 2L  is the decay rate. 

Rewriting equation (B. 1) 

dC =  d 

rC-ALC- rC2 --- 
Co  

(13.2) Integrating (Abramowitz, and Stegun, 1970, p.12) and simplifying 

1 r(-1 I 

F c) 
' I= 

(r-2 
I In 

L ) 
t+A

—  I 
c) 

r 
 

(B.3) 

Where, A is integration constant. Applying the initial condition i.e. when the parcel of water 

enters the aquifer medium at t=O, C = CO 3 the constant 

A =__ [ri In1  - 
(r -2L) L2LJ 

(B.4) 

Incorporating (13.4) in (13.3) 

r r (c(z) 1 1 
1 I 1 Co r (B.5) 

(r_2j)[ 

I i' t co  

V 

a. 

(B.!) 
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During the travel time t r  of a parcel of water moving from the stream to the collector pipe, the 

concentration attains a value C(tr ). Accordingly from equation (B.5), we obtain 

1 1 
cJ I 

IrAL J 
I 1n—tr 

= r— L )
liF

CW 

J

i 
I IrI—I+2L _rl 
L Lo) I 

 

Let be equal to 10'. The variable n is unknown. Incorporating cL) = lO in (B.6)
CO  

I ln  t r — I = 
[In~ I

1 1 r1O 
- n} I r ii 11

(r-2L )[ IrI0+L — r I2LJ] (r_21) r10+2L—rjj 

1 i 11 =   
= (r_i)[

In
l r / ZL  +(1—rIAL)1O 1] ( 

1
—r) 

+(1—rI2f )iO}] 

or 

(L 1 ' r =Lli+/ 2L +(1—r/2L )10}j 

r / 2 - e -(r-2, )t 

iO = 
(r/21 )-1 

r/2L _eL)' 
n— - log10 

(r/AL)-1 
 

The variable n is the number of log cycle reduction in bacteria concentration during the travel 

timetr . 

I 
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APPENDIX C 

SCHWARZ-CHRISTOFFEL TRANSFORMATION 

C.1 GENERAL 

The Schwarz-Christoffel transformation is a method of mapping a polygon consisting of 

straight-line boundaries from one plane onto the upper/lower half of another plane. The 

mapping is conformal implying that the angle of intersection between two curves in the original 

plane is maintained in magnitude and sense when transformed to the other plane. The technique 

is applied for solving Laplace equation governing two dimensional steady groundwater flows. 

The confined flow domain is required to be homogeneous and isotropic for applying the 

conformal mapping technique. This transformation can be considered as the mapping of a 

polygon from one plane onto a similar polygon in another plane in such a manner that the sides 

of the polygon in one plane extend through the real axis of the other plane. This is 

accomplished by opening the polygon at some convenient point preferably at one of the 

vertices. The vertex that is taken to infinity does not take part in the transformation there by the 

complexity of transformation is reduced. Thus the transformation maps conformally the region 

interior to the polygon into the entire upper/lower half of auxiliary plane. The mapping is 

applicable for closed as shown in Fig. (C.l) as well as for open polygon as shown in Fig. (C.2). 

If a polygon is located in z(= x + i)i) plane, the transformation that maps it conformally onto 

upper half of the auxiliary t(=r+is) plane is: 

t 
Z(t) = MJ 

1—a 
d 

(C. 1) 
0(ç—a) (—b)1 — 16 (—c)'... 

Applying Leibniz rule for differentiation of an integral (Abramowitz and Stegun, 1970) that is 

value of the integrand at the upper limit multiplied by differential of the upper limit with 

respect to the independent variable 

dz 
 = M(t -a) (t —b) (t -c)

dt 
,.. (C.2) 

a,b,c...... are mapping parameters; only two of them can be assigned values on the real axis of 

the i-plane. The complex constant N depends on the lower limit of integration. The complex 

constant M and other parameters are determined from geometry of polygon in z-plane. 

125 



y. 

[S 

Fig. (C.!) Closed polygon in z-plane 

. . . . . . . 

.... 

I a 
D c B A D 

Fig. (C.2) Upper half auxiliary t-plane 
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Fig. (C.3) Open polygon in z-plane 

41 

L r 
 

Fig. (C.4) Upper half auxiliary 1-plane 

If an open polygon is located in the z plane as shown in Fig. (C.3) and if vertex C is taken to 

infinity, then the transformation that maps it conformally onto upper half of the auxiliary t- 

plane is 

1+a 
(C.3) 

and 

d \-(a+I) 
-- i - a) (t-b)°  (:-d)'... (C.4) 
dt - 
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Where, ç  =dummy variable; a , , are the interior angles (fractions of ir) of the polygon 

in the z plane, and a, b ,c (—cc <a <b <c <... <co) are the points on the real axis of the of the 

t-plane corresponding to the respective vertices. 

4 
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APPENDIX-D 

NEWTON-RAPSHON ITERATIVE METHOD 

D.1 GENERAL 

Since, the mapping steps result in a set of non-linear equations, which require a suitable 

technique to compute the unknown parameters. The implicit nature of the non-linear equations 

restricts the range of its applicability. So such non-linear equations are solved by iterative 

method given by Newton-Rapshon. 

The set of non-linear equations are derived in chapter 4. All the sets are represented by: 

F,  (x1  , 
, ...  ...  ......  x,,) = 0 , where i = 1,2,,............ n constitute the 

variablesX1 ,X ..... ......... X,,. Let 'X' and 'F' denote entire values of vectorXj  and functions 

F1  , then in the neighborhood of X, e.g. of the functions Fj can be expanded in Taylor series. 

1 &+08x2 (D.l) 

j=1 J 

In matrix notation, the above equation can be written as: 

i,(x+&)= J(X)+J.Ax 1  +0.8x2 (D.2) 

Neglecting the term of the order &2  and higher and setting i (x + = 0. 

We have J.Ax = F(X) is an equation of matrix of set of non-linear equations. This matrix 

equation can be solved by LU decomposition and correction is then added to the solution vector 

as: X,,, = Ax 

Where J is known as the Jacobian matrix and represented as: 

8F, aF,  ai 

LTX1 aX2  oX3 
 

ax
il 

OF2  OF2  OF2  OF, 

OX1  OX2  OX3  OX,)  

OF, OF,, 

OX1 C9X2  OX 3  aX fl.  

where, 
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J=I 



3F 
- 

FE  (x1,x2,x3, .+ ,x )—Fi(x1,x2,x3, . ,x) 
(D 3) 

ax1 Ah 

and Ax =—F[J] 

or X. = X. + A x , X, are the variables in the non-linear equations. 
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