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ABSTRACT 

Classification of different lithofacies is crucial in seismic interpretation because different 

rocks have different permeability and fluid saturation for a given porosity. The ideal 

sources for lithofacies classification are core samples of rocks extracted from wells. 

Nevertheless, core samples cannot always be obtained due to associated costs. The 

conventional classification method is based on manually assigning lithofacies by human 

interpreters and is a very tedious and time consuming process. 

 

I aimed at automating this classification process through the use of machine learning and 

deep learning methods. I selected wells from the region which have the mud log present 

with them. Machine learning algorithm, Support vector machines (SVM) was employed to 

build an automatic lithofacies classifier. The algorithm was trained on the dataset that has 

lithofacies marked from the mud log. The accuracy of the model was validated on a well 

with unlabeled lithofacies and accuracy of 0.63 was achieved. 

 

In the next phase, a Deep learning (DL) model based on Convolutional Neural Network 

was developed and training was carried out using the labeled dataset (same dataset as 

in case of SVM algorithm). It achieved an classification accuracy of 0.71 on blind dataset. 

The model performed fairly good at classifying facies which have a larger number of 

training examples. Due to the skewed nature of the dataset, the validation accuracy of the 

model showed a stark drop when compared with training accuracy. This major drop in 

accuracy occurs while classifying those facies which have limited number of training 

example.  

The accuracy could be further improved by incorporating adjacent lithofacies in 

classification task, which was the limitation of the target dataset. 
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Chapter 1:  Introduction 

1.1 Importance of Lithofacies Classification 

Facies are used by geologists to group together body of rocks with similar characteristics 

in order to facilitate the study of a basin of interest. In the case of Oil & Gas reservoirs, 

porosity and permeability are critical properties to determine since they give indications 

about the potential volume of fluids that might be stored in a rock and how they will flow 

during production. We can therefore expect that grains size, shape and density as well as 

the depositional and compaction history of the rocks will be a dominant factor for the 

categorization. While the main source of information for defining those facies comes from 

the observation of core samples under visible and x-ray light, we also have a variety of 

well log recordings at our disposal. By measuring the acoustic and electrical responses 

as well as the nuclear radiations of the drilled medium, we can infer properties about its 

rock matrix and fluid content and indirectly relate them to the porosity, permeability or fluid 

saturation of the rocks. 

1.2 Motivation for automated Lithofacies classification 

Facies (i.e., lithofacies) classification consists in assigning a rock kind or class to a 

particular sample on the basis of measured features. Classification of different lithofacies 

is crucial in seismic interpretation because different rocks have different permeability and 

fluid saturation for a given porosity. The ideal sources for lithofacies classification are core 

samples of rocks extracted from wells. Nevertheless, core samples cannot always be 

obtained due to associated costs. Therefore, a method for classifying facies from indirect 

quantification (e.g., wireline logs.) is necessary. The conventional method consists in 

manually assigning lithofacies by human interpreters and is a very tedious and time 

consuming process. Therefore, several alternative approaches to the issue of facies 

classification from well data have been proposed. 
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1.3 Objectives 

This thesis had the following objectives: 

1. Study the effectiveness of machine learning Models (SVM) in automated prediction 

of prominent lithofacies in a well.  

2. Study the effectiveness of deep learning Models (ConvNet) in automated prediction 

of prominent lithofacies in a well.  

3. Prediction of lithofacies in a well using a classification model trained over the 

labeled dataset. 

 

1.4 Thesis Outline 

The disposition of the thesis work is as follows: 

 The first chapter is the introduction. This chapter deals with the motivation, 

objective and outline of the thesis work.  

 The second chapter, Background knowledge gives a brief introduction about 

various algorithms used during the course of this thesis work. 

 The third chapter, Literature review gives an insight about the development of 

different statistical, machine and deep learning techniques for classification of 

Lithofacies. 

 The fourth chapter Materials and methods gives an overlook of the dataset 

available. It also covers the implementation of Support Vector Machines (SVM) 

and Convoluted Neural Networks (ConvNet) for facies classification.   

 The fifth chapter Results deals with the prediction outcome from SVM and 

ConvNet. It further describes about the parameter tuning approach used to 

further refine the results. 

 The six and the final chapter reiterates over the conclusion drawn from this 

thesis work and prospects of the future work.   
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Chapter 2: Background Knowledge  

2.1 Support Vector Machines (SVM) 

SVM is a form of binary classifier, classifying a set of data into two classes, like malignant 

or benign for tumors. In SVM, the aim is to find the line gives the best data separation. In 

Figure 2.1, the line can’t be too close to the blue dots or too close to the red dots because 

it might overfit on the training data and perform poorly on the actual testing data. In other 

words, the objective here is to maximize the margins. The way the algorithm actually 

works is by solving a set of equations using a technique called quadratic programming. 

 
Figure 2.1: Optimal Separating Hyperplane 

Source: MIT Edu 
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● Kernel Trick: 

 
Figure 2.2: Kernel Trick 

   Source: MIT Edu 

The kernel trick is a technique in ML in order to avert some rigorous computation that are 

involved in algorithm’s. This trick helps in making few calculation goes from 

computationally improbable to probable. 

Kernel functions: 

 
Figure 2.3: Kernel functions commonly used in SVM 

   Source: Nanda et.al., 2017 

 

● Tuning parameters: 

○ Regularization parameter (C) 

○ Gamma 

○ Margin 
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Figure 2.4: Left: low regularization value, right: high regularization value 

 

 

 
Figure 2.5: Top: High Gamma, Bottom: Low Gamma 

 

   
Figure 2.6: Left: Good margin, Right: Bad margin 

 

2.2 Convolutional Neural Networks (ConvNet) 

A convolutional neural network works by splitting the input into smaller chunks, or 

scanning over it in piecemeal sizes via some rule, and then passes that to the next layer 

who does the same thing with other rules. 

● Architecture of ConvNet 
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Figure 2.7: CNN architecture and sequence  

Source: R Yamashita et al., 2018  

 

Terminology: 

 

● Input Image  

Holds the raw pixel values of the image. 

● Feature Learning 

○ Convolution Layer - The Kernel 

This layer helps in extracting the high-level feature(s) from the input image. 

○ Activation Layer 

This layer introduces non-linearity in the network. Otherwise, it will act as a 

perceptron i.e. output can be predicted using the linear combination of input 

variables. 

○ Padding 

Reduces dimensionality and helps in counter the border effect problem while 

convolution step. 

○ Pooling 

Down sampling technique to identify the most important feature(s). 

 



 

7 

● Classification  

 

○ Fully connected Layer 

Learns about non-learning combinations of high-level feature(s). 

 

 

 
Figure 2.8: ConvNet used in study for salt body delineation 

Source: Di et al., 2018 

 

● Hyper-parameters of ConvNet: 

○ Number of Hidden Layers and units 

○ Dropout 

○ Network Weight Initialization 

○ Activation function 
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Chapter 3: Literature Review 

3.1 Facies 
Facies, in geology, is basically a way to differentiate rock bodies into units which are 

mappable, in terms of composition, characteristics, formation or several other attributes. 

Facies are mostly used by chemical, biological, or physical means to identify distinct units 

of rock bodies from adjacent lying units within a contiguous rock body. Facies generates 

a succession when compiled together that gives insight into processes and systems that 

might have acted within or on the region and rock record. 

3.2 Lithofacies 
The interpretation done on sedimentary sections are based on lithofacies units. While 

differentiating the sequences from each other, we take certain factors into consideration 

which include grain size, biogenic and physical sedimentary structure(s), lithologies, as 

these are directly related to the environment of deposition. 

3.3 Related Work 
Several types of conventional techniques including use of mud logs, well logs are essential 

in inferring subsurface lithology. Considering the importance of well log data in oil industry, 

the borehole data is used to infer the lithological changes taking the well logs as an 

accurate source of subsurface lithologies. Any change detected in the well log data is 

interpreted to be a geological and lithological change. 

A number of quantitative and qualitative methods for lithology interpretation are already 

employed that combine various metrics.  

Qualitatively, we inefficiently evaluate measurements from logging operations along with 

Photo electric (Pe) factor analyses, gamma ray evaluations done for identifying shale 

(Gardner and Dumanoir (1980), Serra et al. (1985), Dewan (1986), or using multiple logs. 

This proves insufficient as several lithologies pose complexity which requires larger set of 

information than just provided through these. 
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Within time, lithology interpretation has expanded and starts to consider the usage of 

quantitative methods, such as Crossplots, statistical analysis, and neural network.  

Lithology interpretation has come a long way since, employing the use of methods 

quantitatively, including cross plots, statistical and neural networks analysis. 

Burke et al. (1969) was the first one to introduce Crossplots based quantitative analysis 

which is commonly used over neutron, Pe, density and sonic. It involves simultaneous 

plots of two or more log data points. Even Clavier and Rust (1976) studied its application 

in quantitative analyses. These methods have a limitation that they require manual human 

intervention and cannot be automated for the task.  

Statistical Analysis, proven to have applications for lithological identification by Delfiner et 

al. (1987), laid way for combining wireline measurement done these days, to generate 

automated lithological description. Statistical Classification methods, like linear 

regression, kernel estimation, discrimination analysis etc. have greater dependence on 

the data characteristics and hence leads to efficient modeling based on interpretation. 

Probability based classification methods that returns a probability which predicts the 

belonging of member.  

Busch et al. (1987) demonstrated lithological prediction was possible using statistical 

analysis. It proved the importance of Bayesian rule for probability and discriminant 

analysis in lithological classification. But, this method has a limitation in the criteria for the 

data to be of normal distribution based (limits the geophysical dataset). Hence, it was 

deprecated because of its lack of flexibility in application to non-parametric distributions.   

Kernel Density Estimator, which analyses the multimodal nature of the data, is a method 

that estimates the probability density function (PDF) for a non-parametric distribution. 

Mwenifumbo (1993) demonstrated the usage of the estimator for borehole geophysical 

data, by applying it for univariate and bivariate data, thus identifying sulfide mineralization 

by analyzing it. 
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Chapter 4: Material and Methods 

4.1 Data Source 

The dataset is from Taranaki basin which is situated on the west coast of New Zealand. It 

is an onshore-offshore rift basin. 

 
Figure 4.1: Taranaki basin 

Source: energy-pedia 

4.2 Target Data 

The target wells selected for this thesis work were from KAURI region of the Taranaki 

basin. The selection criteria were the type of wireline logging data presented in any 

particular well. The ideal log for the purpose of lithological classification should be: 

● Most affected by rock properties 

● Least affected by fluid properties 

The available logs in the Kauri regions based on above criteria were: 

● Caliper (CALI) 

● Gamma ray (GR) 

● Formation density (DENS) 
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● Photoelectric absorption (PEF) 

● Neutron porosity (NEUT) 

● Sonic log (DTC) 

● Resistivity log deep (RESD) 

4.3 Data Preparation: 

● Selection of wells 

In the first step, the selection of 8 wells from Kauri region was done out of nearly 

600 available wells having appropriate wireline logs and mud log information. 

● LAS log files to TXT files 

Converting wireline data in LAS file format to text file format using Python. Code 

is given in Appendix 1.   

 
Figure 4.2: Wireline log file in .las format 

 

https://wiki.aapg.org/Basic_open_hole_tools#Compensated_neutron


 

12 

 
Figure 4.3: Wireline log file in .txt format 

 

● Parsing the Mud log 

Since the resolution of data were not same for wireline and mud logs tagging 

corresponding lithology to a depth point was not possible. To accomplish this, we 

parsed the mud logs and sampled them at a depth interval of 0.15 meters. Parsing 

was done using C++. Code is given in Appendix 2. 

 

 
Figure 4.4: MUD log file in .txt format 
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Figure 4.5: Parsed MUD log file in .txt format 

 

● Tagging lithology to corresponding wireline data depth  

After parsing the mud logs and sampling them at a depth interval of 0.15 meters, 

the wireline data was merged with mud log on the basis of depth values using 

Python.  Code is given in Appendix 3. 

 
Figure 4.6: Wireline dataset tagged with lithology information 
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4.4 Data Preprocessing: 

● Assumptions, Delimitations and Limitations 

○ Uncertainties in logging measurements. 

○ Most well logs include basic corrections through tool calibrations and 

environmental corrections for known systematic errors. Because of the 

statistical nature of most measurements and the complexity of the borehole 

environment, there will remain some uncertainty, especially as the 

corrections applied cannot be quantified to eliminate all the errors 

completely.  

○ Problems with acquisition in wireline logging, such as total or partial failure 

of tools, bad borehole conditions, and poor choice of logging suites, either 

due to the availability of tools or acquisition costs, may affect logging runs 

and cause uncertainty in logging data. 

 

● Handling NULL values 

○ There are always few null values in any real-world dataset. Whether it's a 

regression, classification or any other kind of problem, it doesn't really 

matter, no model can handle these NULL or NaN values alone, so a solution 

for this need to be applied. 

○ After merging the wireline and mud log dataframe, we discarded the depth 

intervals during which tool was not recording i.e. have -999.25 value in the 

dataset. 

○ Mostly these NAN value intervals lies at the beginning or towards the end of 

log operation.  
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Figure 4.7: Handling NULL values in the dataset 

● Imputation 

Imputation is simply the process of substituting the missing values of our datasets. 

It can be achieved either by defining own customized function or simple imputing 

technique implementation using the sklearn Imputer class. 

 
Figure 4.8: Applying data Imputation technique to the dataset 
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● Standardization 

Standardization transform the dataset values in such a way that the mean value 

(µ) is 0 and the standard deviation(SD) is 1. It can be achieved by calculating the 

mean and SD of the values, then subtracting the mean from each data point and 

then dividing it by standard deviation. Sklearn library provides a function called 

StandardScaler. 

 
Figure 4.9: Applying data Standardization technique to the dataset 

 

● Normalization 

Standardization also often simply called Min-Max scaling essentially shrinks the 

data range so that the range is set between 0 and 1 (or -1 to 1 if negative values 

are present). It works better than standardization technique for the case where the 

distribution isn’t Gaussian or the SD is very small. 
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Figure 4.10: Applying data Normalization technique to the dataset 

 

4.5 Final Dataset 

The final dataset has in total 8 wells from the Kauri region of Taranaki Basin. Out of these 

8, seven wells were used for training purpose and 1 well was used for validation purpose.  

● Training wells: A1, A2, C1, E3, E6, E7, E8 

● Testing well: E9 

In Figure 4.11 to Figure 4.18, the wireline logs are plotted alongside the lithofacies 

associated with them for that particular depth. 
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Figure 4.11: Well KAURI A1 having wireline and lithology information 
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Figure 4.12: Well KAURI A2 having wireline and lithology information  
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Figure 4.13: Well KAURI C1 having wireline and lithology information 
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Figure 4.14: Well KAURI E3 having wireline and lithology information  
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Figure 4.15: Well KAURI E6 having wireline and lithology information  
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Figure 4.16: Well KAURI E7 having wireline and lithology information 
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Figure 4.17: Well KAURI E8 having wireline and lithology information 
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Figure 4.18: Well KAURI E9 having wireline and lithology information  
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Chapter 5: Methodology 

5.1 Support Vector Machines (SVM) 

● Exploring the Dataset 

First, Import the python libraries  

 

 
Figure 5.1: Importing python libraries for SVM classification model 

 
Figure 5.2: Training dataset 
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● Predictor variables:  

The variables which will be used to define the model. Based on the values of these 

predictor variables, SVM assign a class label i.e. facies type to a particular data point. 

○ Caliper_log (CALI) 

○ Density_log (DENS) 

○ Sonic_log (DTC) 

○ Gamma_ray_log (GR) 

○ Neutron_log (NEUT) 

○ Photoelectric_log (PEF) 

○ Resistivity_log (RESD) 

 

 

● Facies classes and their label: 

Here the dataset has 8 lithofacies type and the label will be assigned to each facies 

type in order to use it as a predicted variable. 

Facies Label Abbreviation 

1 METAMORPHIC MMP      

2 CLAYSTONE CST   

3 SANDSTONE SST 

4 METASEDIMENT Msdt  

5 SILTSTONE SiS 

6 CONGLOMERATE CONG 

7 LIMESTONE LST 

8 COAL COAL 

Table 5.1: Facies and their corresponding labels 
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Figure 5.3 describe the statistical distribution of the training dataset. Here, it can be 

visualized that no NAN value is present in the database, maximum and minimum value of 

each log, their mean and standard distribution. 

 
Figure 5.3: Statistical Distribution of the Training Data 

 

Figure 5.4 shows the distribution of different facies in the training dataset. It can be 

easily inferred by visual analysis that the data is skewed and have very few example of 

COAL lithology as compared with the other lithofacies. 

MMP: 21602 , CST: 21213,  SST: 16059 , Msdt: 16892, 

SiS: 12689, CONG: 2744, LST: 1628, COAL: 158 

 

 
Figure 5.4: Distribution of the Training Data by Facies 
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Figure 5.5 shows the distribution of different facies in the validation dataset. This dataset 

has ZERO example of Metasediment (Msdt) and very large number of Metamorphic 

(MMP) facies example. This type of distribution very heavily affects the prediction ability 

of the classification model. 

MMP: 7771 , CST: 1080,  SST: 3824 , Msdt: 0, 

SiS: 2804, CONG: 115, LST: 83, COAL: 15 

 
Figure 5.5: Distribution of the Validation Data by Facies 

 

● Crossplots: 

Crossplots enable us to visualize variation of two properties with respect to the 

facies type. This training dataset has 7 log variables, and by plotting them in the 

form of scatter matrix, it become easy to visualization the variation between any 

two log values w.r.t. facies.  

Figure 5.6 provide the visualization utility to analyze log value variation with 

changing lithology. 
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Figure 5.6: Crossplots to demonstrate variation in log values with rock type 

 

● Defining and Training the SVM model 

In multi-dimensional space, SVM map the feature vectors as points. It helps in clear 

distinction of one facies from another. Figure 5.7 shows the definition of a SVM classifier 

with default parameters. 
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Figure 5.7: Defining SVM model with default parameter 

 

● Model Parameter Selection  

○ Initially, the classifier was built with the default parameters. However, in 

order to get improved classification results, the optimal parameter choices 

should be made. 

○ Now, Considering two parameters C and gamma. The parameter C is a 

regularization factor and helps in countering the problem of over-fitting. 

○ The SVM learning algorithm uses a kernel function to compute the distance 

between feature vectors. Many kernel functions exist, but in this case we 

are using the radial basis function rbf kernel (the default). 

○ The gamma parameter describes how far away two vectors in the feature 

space need to be to be considered close. 

Figure 5.8 describes the technique of parameter tuning. Different combination of C and 

gamma are used to describe different classifier. Classifier with good training and testing 

accuracy will be considered for making prediction on blind dataset. 
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Figure 5.8: Defining SVM model with different parameters (Tuning) 

 

● Applying the classification model to the blind data 

In figure 5.9, we used the classification model with best training accuracy to predict the 
facies on well (KAURI E9). 

 
Figure 5.9: Classification by SVM model on blind well 
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5.2 Convolutional Neural Network (ConvNet) 
 

● Importing Python library 

 
Figure 5.10: Python libraries for ConvNet 

 

● Architecture of ConvNet 

 
Figure 5.11: Architecture of CovNet 

 

● We build the Convolutional Neural Network using the Sequential( ) model. We 

included 3 Convolutional layer, 3 activation layer. The non-linearity in the model 

was introduced by ‘relu’ function. 
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● In the next step, dropout probability was used before flattening the output. After this 

a fully connected layer, “Dense” was used. After normalizing the result, “sigmoid” 

function was used for activation. 

● Optimizer: adadelta 

● Loss: categorical_crossentropy 

 

 

Figure 5.12 describe different parameters associated with different layer of ConvNet 

 
Figure 5.12: Description of Layers and parameters  
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● Training Parameters 

 

○ The parameters involved during the training of ConvNet are: 

Number of filters (num_filters) , Dropout probability (dropout_prob), 

Number of fold (num_fold), Epochs per fold (epochs_per_fold). 

○ Initially, the model was training was done keeping the values of these 

parameters as follows: 

num_filters: 12 

dropout_prob: 0.6 

num_fold: 6 

epochs_per_fold: 1500 

○ To achieve better prediction accuracy, parameter tuning technique was 

employed. 

 

 
Figure 5.13: Training parameters for ConvNet model 
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Chapter 6: Results 

6.1 SVM Classification Results 

 

● Hyper parameter tuning 

Figure 4.1 shows the result of hyper parameter tuning. The model has trained a series 

of classifiers with different values for C and gamma. Two nested loops are used to 

train a classifier for every possible combination of values in the ranges specified. The 

classification accuracy is recorded for each combination of parameter values. 

 

 
Figure 6.1: Hyper Parameter Tuning 

 



 

37 

The classifier was evaluated for four different combinations of Gamma and C value. The 

training and validation accuracy of all these combinations were reported in Table 6.1. 

Table 6.1: Hyper parameter selection table 

GAMMA C Training_Accuracy Validation_Accuracy 

1 1 0.89 0.58 

1 10 0.81 0.63 

10 1 0.89 0.58 

10 10 0.89 0.58 

 

The best validation accuracy was achieved using the classifier having parameter values 

gamma: 1 and C: 10. 

 

Figure 6.2 shows the result of classification with the model parameters Gamma = 1 and 

C = 10. The classifier achieved an accuracy of 0.63 in classifying data from well (KAURI 

E9). 
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Figure 6.2: Facies prediction result from SVM 
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● Classification Report: 

 

○ Precision and recall probability provide a measure for classifier performance on 

individual lithofacies. 

○ Precision gives the probability of a particular sample to belong to a particular 

group. 

○ Recall measures the accuracy i.e. correct classification probability. 

○ Support is the frequency of occurrence of a particular type of sample. 

 

 
Figure 6.3: Facies prediction result from SVM 

 

Figure 6.3 gives us an idea about the dependency of precision and recall probabilities on 

the support. Higher the support of a particular facies, higher the f1-score i.e. higher 

probability of classification model to correctly classify it.  
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6.2 ConvNet Classification Results 

 

● Hyper parameter tuning 

 

Case 1: Drop out: 0.3, Fold: 6, Training_acc: 0.697, Validation_acc: 0.70 

   

 
Figure 6.4: Training and Validation 1: Accuracy (top), Loss (bottom)  

 

● 6-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.3. 

● By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6 

sets of predictions. 

● The model shows an average F1 score of 0.697 on training dataset. 

● Using Soft majority voting technique on 6 predictions, model achieves classification 

accuracy of 0.70 on the validation dataset. 
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Case 2: Drop out: 0.4, Fold: 6, Training_acc: 0.713, Validation_acc: 0.70 

  

  
Figure 6.5: Training and Validation 2: Accuracy (top), Loss (bottom)  

 

● 6-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.4. 

● By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6 

sets of predictions. 

● The model shows an average F1 score of 0.713 on training dataset. 

● Using Soft majority voting technique on 6 predictions, model achieves classification 

accuracy of 0.70 on the validation dataset.  
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Case 3: Drop out: 0.6, Fold: 6, Training_acc: 0.701,  Validation_acc: 0.69 

  

  
Figure 6.6: Training and Validation 3: Accuracy (top), Loss (bottom)  

 

● 6-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.6. 

● By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6 

sets of predictions. 

● The model shows an average F1 score of 0.701 on training dataset. 

● Using Soft majority voting technique on 6 predictions, model achieves classification 

accuracy of 0.69 on the validation dataset.  
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Case 4: Drop out: 0.7, Fold: 3, Training_acc: 0.701, Validation_acc: 0.69 

  

  
Figure 6.7: Training and Validation 4: Accuracy (top), Loss (bottom)  

 

● 3-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.7. 

● By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 

sets of predictions. 

● The model shows an average F1 score of 0.701 on training dataset. 

● Using Soft majority voting technique on 3 predictions, model achieves classification 

accuracy of 0.69 on the validation dataset.  
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Case 5: Drop out: 0.6, Fold: 3, Training_acc: 0.701, Validation_acc: 0.67 

  

 
Figure 6.8: Training and Validation 5: Accuracy (top), Loss (bottom)  

 

 

● 3-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.6. 

● By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 

sets of predictions. 

● The model shows an average F1 score of 0.701 on training dataset. 

● Using Soft majority voting technique on 3 predictions, model achieves classification 

accuracy of 0.67 on the validation dataset. 
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Case 6: Drop out: 0.5, Fold: 3, Training_acc: 0.723, Validation_acc: 0.67 

 

 
Figure 6.9: Training and Validation 6: Accuracy (top), Loss (bottom)  

 

 

● 3-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.5. 

● By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 

sets of predictions. 

● The model shows an average F1 score of 0.723 on training dataset. 

● Using Soft majority voting technique on 3 predictions, model achieves classification 

accuracy of 0.67 on the validation dataset. 
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Case 7: Drop out: 0.4, Fold: 3, Training_acc: 0.712, Validation_acc: 0.70 

 

  
Figure 6.10: Training and Validation 7: Accuracy (top), Loss (bottom)  

 

 

● 3-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.4. 

● By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 

sets of predictions. 

● The model shows an average F1 score of 0.712 on training dataset. 

● Using Soft majority voting technique on 3 predictions, model achieves classification 

accuracy of 0.70 on the validation dataset. 
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Case 8: Drop out: 0.3, Fold: 3, Training_acc: 0.704, Validation_acc: 0.71 

 

 
Figure 6.11: Training and Validation 8: Accuracy (top), Loss (bottom)  

 

 

● 3-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.3. 

● By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 

sets of predictions. 

● The model shows an average F1 score of 0.704 on training dataset. 

● Using Soft majority voting technique on 3 predictions, model achieves classification 

accuracy of 0.71 on the validation dataset. 
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Case 9: Drop out :0.0, Fold: 3, Training_acc: 0.700, Validation_acc: 0.68 

 

  
Figure 6.12: Training and Validation 9: Accuracy (top), Loss (bottom)  

 

 

● 3-Fold cross-validation was used with each fold having an epoch of 1500 and 

dropout rate of 0.0. 

● By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 

sets of predictions. 

● The model shows an average F1 score of 0.700 on training dataset. 

● Using Soft majority voting technique on 3 predictions, model achieves classification 

accuracy of 0.68 on the validation dataset. 
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 Model with best accuracy: Drop out: 0.3, Fold: 3 

 
Figure 6.13: Facies prediction result from CNN 

The best prediction accuracy of 0.71 was obtained at dropout rate: 0.3 and 3 fold cross-

validation. 
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Classification report: 

Figure 6.14 shows the high dependency of model on the number of training examples. A 

positive correlation is found between the f1-score and support of different facies. 

  
Figure 6.14: Classification report from ConvNet 
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Chapter 7: Conclusion 
 

● From the work carried out in the thesis, it can be concluded that machine learning 

and deep learning techniques can be applied to predict the lithofacies of the wells 

in the regions where we have only few mud logs available with us.  

● Results obtained on a set of seven wells validate the proposed approach, which 

highlights the positive impact of the developed feature augmentation strategy. 

● The results obtained while validating our model on blind well also give a 

confirmation to a good capacity of this model to generalize to new data. Using deep 

learning strategies for feature learning and classification (e.g., ConvNets), 

improved results were obtained.  

● Both methods have limitation in terms of skewed dataset therefore resulted in poor 

precision and recall score for those particular facies. 

● Both these methods have very high dependency to the support of different 

lithofacies in the training samples. Higher the support of a particular facies in the 

training dataset, higher is the probability of correctly classifying that particular 

facies to its correct class. 

● Considering the achieved promising results, future work will be devoted on 

validating the possibility of adding geological constraints to drive classification with 

the help of apriori information about rock formation. 
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