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ABSTRACT

Classification of different lithofacies is crucial in seismic interpretation because different
rocks have different permeability and fluid saturation for a given porosity. The ideal
sources for lithofacies classification are core samples of rocks extracted from wells.
Nevertheless, core samples cannot always be obtained due to associated costs. The
conventional classification method is based on manually assigning lithofacies by human

interpreters and is a very tedious and time consuming process.

| aimed at automating this classification process through the use of machine learning and
deep learning methods. | selected wells from the region which have the mud log present
with them. Machine learning algorithm, Support vector machines (SVM) was employed to
build an automatic lithofacies classifier. The algorithm was trained on the dataset that has
lithofacies marked from the mud log. The accuracy of the model was validated on a well

with unlabeled lithofacies and accuracy of 0.63 was achieved.

In the next phase, a Deep learning (DL) model based on Convolutional Neural Network
was developed and training was carried out using the labeled dataset (same dataset as
in case of SVM algorithm). It achieved an classification accuracy of 0.71 on blind dataset.
The model performed fairly good at classifying facies which have a larger number of
training examples. Due to the skewed nature of the dataset, the validation accuracy of the
model showed a stark drop when compared with training accuracy. This major drop in
accuracy occurs while classifying those facies which have limited number of training
example.

The accuracy could be further improved by incorporating adjacent lithofacies in

classification task, which was the limitation of the target dataset.
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Chapter 1: Introduction

1.1 Importance of Lithofacies Classification

Facies are used by geologists to group together body of rocks with similar characteristics
in order to facilitate the study of a basin of interest. In the case of Oil & Gas reservoirs,
porosity and permeability are critical properties to determine since they give indications
about the potential volume of fluids that might be stored in a rock-and how they will flow
during production. We can therefore expect that grains size, shape and density as well as
the depositional and compaction history of the rocks will be a dominant factor for the
categorization. While the main source of information for defining those facies comes from
the observation of core samples under visible and x-ray light, we also have a variety of
well log recordings at our disposal. By measuring the acoustic and electrical responses
as well as the nuclear radiations of the drilled medium, we can infer properties about its
rock matrix and fluid content and indirectly relate them to the porosity, permeability or fluid

saturation of the rocks.

1.2 Motivation for automated Lithofacies classification

Facies (i.e., lithofacies) classification consists in assigning a rock kind or class to a
particular sample on the basis of measured features. Classification of different lithofacies
is crucial in seismic interpretation because different rocks have different permeability and
fluid saturation for a given porosity. The ideal sources for lithofacies classification are core
samples of rocks extracted from wells. Nevertheless, core samples cannot always be
obtained due to associated costs. Therefore, a method for classifying facies from indirect
guantification (e.g., wireline logs.) is necessary. The conventional method consists in
manually assigning lithofacies by human interpreters and is a very tedious and time
consuming process. Therefore, several alternative approaches to the issue of facies

classification from well data have been proposed.




1.3 Objectives

This thesis had the following objectives:

1. Study the effectiveness of machine learning Models (SVM) in automated prediction
of prominent lithofacies in a well.

2. Study the effectiveness of deep learning Models (ConvNet) in automated prediction
of prominent lithofacies in a well.

3. Prediction of lithofacies in a well using a classification model trained over the

labeled dataset.

1.4 Thesis Outline

The disposition of the thesis work is as follows:

e The first chapter is the introduction. This chapter deals with the motivation,
objective and outline of the thesis work.

e The second chapter, Background knowledge gives a brief introduction about
various algorithms used during the course of this thesis work.

e The third chapter, Literature review gives an insight about the development of
different statistical, machine and deep learning techniques for classification of
Lithofacies.

e The fourth chapter Materials and methods gives an overlook of the dataset
available. It also covers the implementation of Support Vector Machines (SVM)
and Convoluted Neural Networks (ConvNet) for facies classification.

e The fifth chapter Results deals with the prediction outcome from SVM and
ConvNet. It further describes about the parameter tuning approach used to

further refine the results.

® The six and the final chapter reiterates over the conclusion drawn from this

thesis work and prospects of the future work.




Chapter 2: Background Knowledge

2.1 Support Vector Machines (SVM)

SVM is a form of binary classifier, classifying a set of data into two classes, like malignant
or benign for tumors. In SVM, the aim is to find the line gives the best data separation. In
Figure 2.1, the line can’t be too close to the blue dots or too close to the red dots because
it might overfit on the training data and perform poorly on the actual testing data. In other
words, the objective here is to maximize the margins. The way the algorithm actually

works is by solving a set of equations using a technique called quadratic programming.
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Figure 2.1: Optimal Separating Hyperplane
Source: MIT Edu
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Figure 2.2: Kernel Trick
Source: MIT Edu

The kernel trick is a technique in ML in order to avert some rigorous computation that are

involved in algorithm’s. This trick helps in making few calculation goes from
computationally improbable to probable.

Kernel functions:

Kernel Function Formula Optimization Parameter
Linear K(xn, x;) = (xn, X;) Cand 7y
RBF K(xy,x;) = exp(—’y”xn —x;||2+C) Cand v
Sigmoid K(xy,x;) = tanh(y(xp,x;) +7) C,v,andr
Polynomial K(xn,x;) = (v(xn, xi) + r)d C,v,r,andd

Figure 2.3: Kernel functions commonly used in SVM
Source: Nanda et.al., 2017

e Tuning parameters:

o Regularization parameter (C)

o Gamma

o Margin
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High Gamma

Only nearby points are

"
- B

> considered.

Low Gamma
Far away points are also

e
P

»  considered.

Figure 2.5: Top: High Gamma, Bottom: Low Gamma

{22

i

e

Figure 2.6: Left: Good margin, Right: Bad margin

2.2 Convolutional Neural Networks (ConvNet)

A convolutional neural network works by splitting the input into smaller chunks, or

scanning over it in piecemeal sizes via some rule, and then passes that to the next layer

who does the same thing with other rules.

e Architecture of ConvNet

——
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Figure 2.7: CNN architecture and sequence
Source: R Yamashita et al., 2018

Terminology:

e |Inputimage
Holds the raw pixel values of the image.

e Feature Learning

o Convolution Layer - The Kernel

This layer helps in extracting the high-level feature(s) from the input image.

o Activation Layer

This layer introduces non-linearity in the network. Otherwise, it will act as a

perceptron i.e. output can be predicted using the linear combination of input
variables.

o Padding

Reduces dimensionality and helps in counter the border effect problem while
convolution step.

o Pooling

Down sampling technique to identify the most important feature(s).




e Classification

o Fully connected Layer

Learns about non-learning combinations of high-level feature(s).

Seismic image
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Figure 2.8: ConvNet used in study for salt body delineation
Source: Di et al., 2018

e Hyper-parameters of ConvNet:

o Number of Hidden Layers and units
o Dropout

o Network Weight Initialization

o Activation function




Chapter 3: Literature Review

3.1 Facies

Facies, in geology, is basically a way to differentiate rock bodies into units which are
mappable, in terms of composition, characteristics, formation or several other attributes.
Facies are mostly used by chemical, biological, or physical means to identify distinct units
of rock bodies from adjacent lying units within a contiguous rock body. Facies generates
a succession when compiled together that gives insight into processes and systems that

might have acted within or on the region and rock record.

3.2 Lithofacies

The interpretation done on sedimentary sections are based on lithofacies units. While
differentiating the sequences from each other, we take certain factors into consideration
which include grain size, biogenic and physical sedimentary structure(s), lithologies, as

these are directly related to the environment of deposition.

3.3 Related Work

Several types of conventional techniques including use of mud logs, well logs are essential
in inferring subsurface lithology. Considering the importance of well log data in oil industry,
the borehole data is used to infer the lithological changes taking the well logs as an
accurate source of subsurface lithologies. Any change detected in the well log data is

interpreted to be a geological and lithological change.

A number of quantitative and qualitative methods for lithology interpretation are already

employed that combine various metrics.

Qualitatively, we inefficiently evaluate measurements from logging operations along with
Photo electric (Pe) factor analyses, gamma ray evaluations done for identifying shale
(Gardner and Dumanoir (1980), Serra et al. (1985), Dewan (1986), or using multiple logs.
This proves insufficient as several lithologies pose complexity which requires larger set of

information than just provided through these.




Within time, lithology interpretation has expanded and starts to consider the usage of
guantitative methods, such as Crossplots, statistical analysis, and neural network.

Lithology interpretation has come a long way since, employing the use of methods

quantitatively, including cross plots, statistical and neural networks analysis.

Burke et al. (1969) was the first one to introduce Crossplots based quantitative analysis
which is commonly used over neutron, Pe, density and sonic. It involves simultaneous
plots of two or more log data points. Even Clavier and Rust (1976) studied its application
in quantitative analyses. These methods have a limitation that they require manual human

intervention and cannot be automated for the task.

Statistical Analysis, proven to have applications for lithological identification by Delfiner et
al. (1987), laid way for combining wireline measurement done these days, to generate
automated lithological description. Statistical Classification methods, like linear
regression, kernel estimation, discrimination analysis etc. have greater dependence on
the data characteristics and hence leads to efficient modeling based on interpretation.
Probability based classification methods that returns a probability which predicts the

belonging of member.

Busch et al. (1987) demonstrated lithological prediction was possible using statistical
analysis. It proved the importance of Bayesian rule for probability and discriminant
analysis in lithological classification. But, this method has a limitation in the criteria for the
data to be of normal distribution based (limits the geophysical dataset). Hence, it was

deprecated because of its lack of flexibility in application to non-parametric distributions.

Kernel Density Estimator, which analyses the multimodal nature of the data, is a method
that estimates the probability density function (PDF) for a non-parametric distribution.
Mwenifumbo (1993) demonstrated the usage of the estimator for borehole geophysical
data, by applying it for univariate and bivariate data, thus identifying sulfide mineralization

by analyzing it.




Chapter 4: Material and Methods

4.1 Data Source

The dataset is from Taranaki basin which is situated on the west coast of New Zealand. It

is an onshore-offshore rift basin.

Figure 4.1: Taranaki basin
Source: energy-pedia

4.2 Target Data

The target wells selected for this thesis work were from KAURI region of the Taranaki
basin. The selection criteria were the type of wireline logging data presented in any

particular well. The ideal log for the purpose of lithological classification should be:

e Most affected by rock properties

e Least affected by fluid properties
The available logs in the Kauri regions based on above criteria were:

e Caliper (CALI)
e Gammaray (GR)
e Formation density (DENS)




e Photoelectric absorption (PEF)
e Neutron porosity (NEUT)

e Soniclog (DTC)

e Resistivity log deep (RESD)

4.3 Data Preparation:

e Selection of wells

In the first step, the selection of 8 wells from Kauri region was done out of nearly
600 available wells having appropriate wireline logs and mud log information.

e LAS log files to TXT files

Converting wireline data in LAS file format to text file format using Python. Code

is given in Appendix 1.

Figure 4.2: Wireline log file in .las format
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https://wiki.aapg.org/Basic_open_hole_tools#Compensated_neutron

Figure 4.3: Wireline log file in .txt format

e Parsing the Mud log

Since the resolution of data were not same for wireline and mud logs tagging
corresponding lithology to a depth point was not possible. To accomplish this, we
parsed the mud logs and sampled them at a depth interval of 0.15 meters. Parsing

was done using C++. Code is given in Appendix 2.

File Edit Selection Find View Goto Tools Project Preferences Help

bottom Lithology
claystone

14 claystone
129.08 sandstone
132.31 claystone
133.99 sandstone
137.87 claystone
140 sandstone

144 .22 claystone
146.55 claystone
147.71 sandstone
150.17 claystone
151.46 sandstone
158.82 claystone
160 sandstone

Figure 4.4: MUD log file in .txt format

12
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File Edit Selection Find View CGCoto Tools

4» Pa Mud
DEPTH bottom Lithology
115 115.15 claystone
115.15 115.3 claystone
115.3 115.45 claystone
115.45 115.6 claystone
115.6 115.75 claystone

115.75 115.9 claystone
115.9 116.05 claystone
1] TGO S| SHER claystone
116.2 116.35 claystone
116.35 116.5 claystone
116.5 116.65 claystone
116.65 116.8 claystone
116.8 116.95 claystone
15 .116.95 117.1 claystone

Figure 4.5: Parsed MUD log file in .txt format

e Tagging lithology to corresponding wireline data depth

After parsing the mud logs and sampling them at a depth interval of 0.15 meters,
the wireline data was merged with mud log on the basis of depth values using
Python. Code is given in Appendix 3.

File Edit Selection Find View Goto Tools Project Preferences
4> kauRiAL .

DEPTH  bottom Lithology WELL NAME DENS DRHO GR NEUT \ RESS
119.65 119.8 claystone KAURI Al 5 o .0923 0.005058 E 102.346 0.499399 c 61. 37.3158 -
119.8 119.95 claystone KAURI Al 8 £ .0914 0.007721 9 101.6178 .528165 c 5 37.5455 -
119.95 120.1 claystone KAURI Al 5 2 .0906 0.010385 s 100.8895 .556932 c 3 37.7752 -
120. 120.15 claystone KAURI Al . o .0906 0.010385 L 100.8895 556932 . .4689 37.7752 -
120.15 120. claystone  KAURI Al o . .0876 0.01072 5 99.8931 0.557587 E J 38.0698 -1
120. 120. claystone  KAURL Al 5 J .0832 0.009491 2 98.7167 ©.539377 c .6069 38.4079 -
120. 120.6 claystone  KAURI Al o B .0788 0.008263 N 97.5402 .521167 c g 38.7459 -
120. 120. claystone  KAURI Al s 5 .0833 0.008189 0. 97.2309 .504141 c .6809 38.8303 -
120. 120. claystone  KAURI Al - - .1069 0.010594 764 98.7849 489657 . .4441 38.3697 -
120. 121.0 claystone  KAURI Al 5 5 .1365 0.012999 0. 100.3389 .475173 c a7. 37
1218 121. claystone  KAURI Al B 4. .1527 0.015116 3 101.8378 .461859 c 1 By
i21;. {1520 claystone  KAURI Al 5 ] .1367 0.009697 9454 101.8942 479206 c ] 38
121. 121. claystone  KAURI Al 5 E .1207 0.004277 3 101.9506 496554 C ‘ 38

claystone  KAURI Al 5 5 .1047 -0.001142 - 102.007 .513901 c c 39.37

claystone  KAURI Al - 5 .0986 -0.00267 5 103.2529 0.515944 - E 40

claystone  KAURI Al 5 6 .0956 -0.002941 3 104.8828 .513044

claystone  KAURT Al " - .0925 -0.003212 - 106.5128 .510145

claystone  KAURI Al o 5 .093 -0. ¢ 106.8015 .500886

claystone  KAURI Al o . .0972 -0. 2.5 105.6083 0.48.

claystone  KAURI Al 5 g .1014 - : 104.415 .468315

claystone  KAURI Al . o .1047 -0.001803 B 103.5322 0.453498

KAURL Al 5 . .1043 -0.000786 3 103.9371 444777
claystone  KAURI Al 5 .3488 2.104 0.000231 .342 .436056
claystone  KAURL Al - .1036 0.001248 160. .7469 427335

Figure 4.6: Wireline dataset tagged with lithology information
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4.4 Data Preprocessing:

e Assumptions, Delimitations and Limitations

o

O

Uncertainties in logging measurements.

Most well logs include basic corrections through tool calibrations and
environmental corrections for known systematic errors. Because of the
statistical nature of most measurements and the complexity of the borehole
environment, there will remain some uncertainty, especially as the
corrections applied cannot be quantified to eliminate all the errors
completely.

Problems with acquisition in wireline logging, such as total or partial failure
of tools, bad borehole conditions, and poor choice of logging suites, either
due to the availability of tools or acquisition costs, may affect logging runs

and cause uncertainty in logging data.

e Handling NULL values

O

There are always few null values in any real-world dataset. Whether it's a
regression, classification or any other kind of problem, it doesn't really
matter, no model can handle these NULL or NaN values alone, so a solution
for this need to be applied.

After merging the wireline and mud log dataframe, we discarded the depth
intervals during which tool was not recording i.e. have -999.25 value in the
dataset.

Mostly these NAN value intervals lies at the beginning or towards the end of

log operation.

14
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In [1]: import pandas as pd
import numpy as np

#Loading KAURI Al data into pandas dataframe
df = pd.read_excel ("KAURI Al.xlsx")

#Replacing -999.25 values with NaN
df = df.replace(-999.25, np.nan)

#Dropping rows with NaN values
df.dropna(axis = @)

Out[1]:
DEPTH bottom Lithology :‘quI.‘.IE. BS CALlI DENS DRHO DTC GR NEUT PEF RESD RESS sP TENS
31 11965 11980 claystene KAUAH]! 1750 15.5364 2.0923 0.005058 148.8977 102.3460 0499399 25665 61.2380 37.3158 -105.2814 637.4635
32 11980 11995 claystone KAUE]! 1750 15.6793 2.0914 0.007721 151.3682 101.6178 0528165 2.5499 50.3539 37.5455 -106.0930 639.3636

33 11995 12010 claystone KAU:; 1750 15.8221 2.0906 0.010385 153.8387 100.8895 0.556932 2.5333 57.4689 37.7752 -106.9045 6412638
34 12000 12015 claystone KAUEII 1750 158221 2.0906 0010385 153.8387 100.8895 0.556932 25333 57.4689 37.7752 -106.9045 641.2638
35 12015 . 12030  claystone KAU’E]! 1750 156314 20876 0010720 153.8189 99.8931 0.557587 2.5452 0559238 3B.0698 -108.4325 6416450

Figure 4.7: Handling NULL values in the dataset

e Imputation
Imputation is simply the process of substituting the missing values of our datasets.
It can be achieved either by defining own customized function or simple imputing

technique implementation using the sklearn Imputer class.

In [1]: import pandas as pd
import numpy as np
from sklearn.preprocessing import Imputer

#Loading KAURI Al data into pandas dataframe
df = pd.read excel("KAURI Al.xLlsx")

# Bropping few columns
df = df.drop(columns=['BS', 'RESS', 'SP' , 'TENS', 'DTC', 'CALI', 'NEUT', 'PEF%, 'RESD'])

#Replaging -999:25 values with NaM
df = df.replace(-999.25, np.nan)

imputer = Imputer{missing_values="NaN' ,strategy='mean")

imputer = imputer.fit(df[['GR® , 'DENS' , 'DRHO']])
df[['GR' ,n'DENS' , 'DRHO']] = imputer.transform{df[['GR' , 'DENS' , 'DRHO']1)

#Printing first 5 rows

df.head(5
Out[l1]:

DEPTH bottom Lithology WELL NAME DENS DRHO GR
0 115.00 11515 claystone KAURI A1 2437269 0.028387 85.953147
1 11515 11530 claystone KAURI A1 2437269 0.028387 B85.953147
2 11530 11545 claystone KAURI A1 2437269 0.028387 B85.953147
3 11545 11560 claystone KAURI A1 2437269 0.004723 82.289400
4 11560 1575 claystone KAURI A1 2437269 0.016166 91.634200

Figure 4.8: Applying data Imputation technique to the dataset
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e Standardization

Standardization transform the dataset values in such a way that the mean value
(n) is 0 and the standard deviation(SD) is 1. It can be achieved by calculating the
mean and SD of the values, then subtracting the mean from each data point and
then dividing it by standard deviation. Sklearn library provides a function called
StandardScaler.

out[l]:
DEPTH bottom Lithology WELL NAME DENS DRHO GR

115.00 11515 claystone KAURIAl 2.437269 0.028387 B85.953147
115.15 115.30  claystone KAURIAL 2437269 0.028387 85.953147
11530 11545 claystone KAURI A1 2.437269 0.028387 85.953147
11545 115.60 claystone KAURIAL 2.437269 0004723 82.289400

B oW N e o

115.60 11575 claystone KAURI A1 2.437269 0.016166 91.634200

In [2]: | feature vectors = df.drop(['WELL NAME', 'DEPTH','Lithology','bottom'], axis=1)

In [3]: from sklearn import preprocessing

#The StandardScalar class can be fit to the training set, and later used to standardize any training data.
scaler = preprocessing.StandardScaler().fit(feature vectors)
scaled features = scaler.transform(feature vectors)

In [4]: | #First 5 standardize element
scaled features[1:6]

Out[4]: array([[-2.53564177e-15, 8.26551472e-17,

2.53564177e-15, 8.26551472e-17,

[- .84562827e-16],
[-

[-2.53564177e-15, -5.63758497e-01,

[-

B

1
.B4562827e-16],
.82270706e-01],
2.53564177e-15, -2.91143621e-01, ]
2.53564177e-15, -1.85287456e-02, 1

.13643562e-01],
.2955782%9e-01]1)

'
0O WK~~~

Figure 4.9: Applying data Standardization technique to the dataset

e Normalization

Standardization also often simply called Min-Max scaling essentially shrinks the
data range so that the range is set between 0 and 1 (or -1 to 1 if negative values
are present). It works better than standardization technique for the case where the

distribution isn’t Gaussian or the SD is very small.
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Outf1]:
DEPTH bottom Lithology WELL NAME DENS DRHO GR

115.00 115.15 claystone KAURI A1 2437269 0.028387 85.953147
11515 115.30 claystone KAURI A1 2437269 00028387 85.953147
115.30 11545 claystone KAURI A1 2437269 0.028387 85.953147
11545 115.60 claystone KAURI A1 2437269 0004723 82.259400

BoWw M = O

115.60 115.75 claystone KAURI A1 2437269 0016166 91.634200

In [2]: | from sklearn import preprocessing

#Normalize GR celumn
x_array = np.array(df['GR:])
normalized X = preprocessing.normalize([x array])

In [3]: #First Normalized element
normalized X

Out[3]: array([[0.00568401, 0.80568401, 0.00568401, ..., 0.00568401, 0.00568401,
6.00568401]11)

Figure 4.10: Applying data Normalization technique to the dataset

4.5 Final Dataset

The final dataset has in total 8 wells from the Kauri region of Taranaki Basin. Out of these

8, seven wells were used for training purpose and 1 well was used for validation purpose.

e Training wells: Al, A2, C1, E3, E6, E7, E8
e Testing well: E9

In Figure 4.11 to Figure 4.18, the wireline logs are plotted alongside the lithofacies
associated with them for that particular depth.
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Figure 4.11: Well KAURI Al having wireline and lithology information
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Figure 4.12: Well KAURI A2 having wireline and lithology information
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Figure 4.13: Well KAURI C1 having wireline and lithology information
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Figure 4.14: Well KAURI E3 having wireline and lithology information
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Figure 4.15: Well KAURI E6 having wireline and lithology information




Well: KAURI E7
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Figure 4.16: Well KAURI E7 having wireline and lithology information
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Well: KAURI E8
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Figure 4.17: Well KAURI E8 having wireline and lithology information

24

——
| —




1000

2000

2500 4

3000

Well: KAURI E9

;

o
-
L
15 |
.]:
- |
. |
5 |
|
|
|
|
3
'
|
djn oF 4 e
| |
|
T T T T T T T T T T T T T
10.0 125 50 100 0.25 050 50 75 50 100 100 150 15 20 25 Facies
CALI GR MNEUT PEF RESD oTC DENS

Figure 4.18: Well KAURI E9 having wireline and lithology information
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Chapter 5: Methodology

5.1 Support Vector Machines (SVM)

e Exploring the Dataset
First, Import the python libraries

import pandas as pd

import numpy._as np

import matplotlib as mpl

import matplotlib.pyplot as plt

import matplotlib.celors as colors

from pandas import set option

from mpl toolkits.axes gridl import make axes locatable

#Seaborn library to quickly create a scatter matrix.

import seaborn as sns

#Sklearm's preprocessing module to standardize data.

from sklearn import preprocessing

#Module to randomly split the training data into training and test sets.
from sklearn.cross_validation import train test split

#Importing SVM clasifier

from sklearn import svm

#Confusion matrix to describe the performance of a eclassification model.
from sklearn.metrics import confusion matrix

Figure 5.1: Importing python libraries for SVM classification model

DEPTH FACIES WELL NAME CALI DENS DTC GR NEUT PEF RESD
0 T19.65 2 KAURI AL 15536 2.092 148.898 102346 0499 2.566 61.239
1 119.80 2 KAURI A1 15679 2.091 151.368 101.618 0.528- 2.550 59.354
4 = 119.95 2 KAURI A1 15822 2.091 153.839 100.890 0.557 ¢ 2.533 57.469
3 120,00 2 KAURI A1 15822 2.091 153.839 100890 0557 2.533 57.469
4 12015 2 KAURIAL 15631 2.088 153.819 99.893 0558 2545 55924
& 12030 2 KAURI A1 15217 2.083 152128 .98.717 0539 2576 54.607
6 12045 2 KAURI A1 14802 2.079 .150.437 97540 0521 2607 53.290
T 12060 2 KAURI AL 14489 2083 150.845 97231 0504 2835 51.681
4 120.75 2 KAURI A1 14393 2107 155764 98.785 0490 2.654 49444
9 12080 2 KAURI A1 14297 2130 160.683 100339 0475 2.674 47207

Figure 5.2: Training dataset
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e Predictor variables:
The variables which will be used to define the model. Based on the values of these

predictor variables, SVM assign a class label i.e. facies type to a particular data point.

o Caliper_log (CALI)

o Density_log (DENS)

o Sonic_log (DTC)

o Gamma_ray_log (GR)

o Neutron_log (NEUT)

o Photoelectric_log (PEF)
o Resistivity_log (RESD)

e Facies classes and their label:
Here the dataset has 8 lithofacies type and the label will be assigned to each facies

type in order to use it as a predicted variable.

Facies Label Abbreviation
1 METAMORPHIC MMP
2 CLAYSTONE CST
8 SANDSTONE SST
4 METASEDIMENT Msdt
5 SILTSTONE SIS
6 CONGLOMERATE CONG
7 LIMESTONE LST
8 COAL COAL

Table 5.1: Facies and their corresponding labels
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Figure 5.3 describe the statistical distribution of the training dataset. Here, it can be
visualized that no NAN value is present in the database, maximum and minimum value of

each log, their mean and standard distribution.

DEPTH FACIES CALI DENS DTC GR NEUT PEF RESD

count 92985.000000 92985.000000 92985.000000 92985.000000 92985.000000 92985.000000 92985.000000 92985.000000 92985.000000
mean  1729.431565 2.928881 9.982989 2441132 89.146149 78.698582 0.265660 4.131045 21.191811
std B820.665299 1571015 2.384818 0.186902 25.598179 15.418084 0.090677 0.987963 15.943778
min 119.650000 1.000000 7.028000 1.334000 29.018000 13.772000 0.058000 0.915000 1.245000
25%  1069.100000 2.000000 8.632000 2.277000 66.454000 69.149000 0.194000 3.431000 8.224000
50%  1715.400000 3.000000 8.927000 2.457000 80.808000 78.694000 0.245000 4.037000 18.946000
75%  2409.900000 4.000000 9.873000 2.622000 109.351000 B7.625000 0.328000 4.798000 29.682000
max . 3480.900000 8.000000 23.837000 2.854000 191.186000 147.428000 1.363000 9.802000 223.720000

Figure 5.3: Statistical Distribution of the Training Data

Figure 5.4 shows the distribution of different facies in the training dataset. It can be
easily inferred by visual analysis that the data is skewed and have very few example of
COAL lithology as compared with the other lithofacies.

MMP: 21602 , CST: 21213, SST: 16059 , Msdt: 16892,
SiS: 12689, CONG: 2744, LST: 1628, COAL: 158

Distribution of Training Data by Facies
20000 1
15000
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5000 { |

I] B

o [ ) ul [} = —d

s B B ¥ & 2 § 4

= = g =

Figure 5.4: Distribution of the Training Data by Facies
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Figure 5.5 shows the distribution of different facies in the validation dataset. This dataset
has ZERO example of Metasediment (Msdt) and very large number of Metamorphic
(MMP) facies example. This type of distribution very heavily affects the prediction ability
of the classification model.

MMP: 7771, CST: 1080, SST: 3824 , Msdt: O,
SiS: 2804, CONG: 115, LST: 83, COAL: 15

Distribution of Validation Data by Facies
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7000 4
2000 4
5000 4
4000 4
3000
2000 4
1000 -
o = u = =
s g b A % 5 2

Figure 5.5: Distribution of the Validation Data by Facies

e Crossplots:
Crossplots enable us to visualize variation of two properties with respect to the
facies type. This training dataset has 7 log variables, and by plotting them in the
form of scatter matrix, it become easy to visualization the variation between any

two log values w.r.t. facies.

Figure 5.6 provide the visualization utility to analyze log value variation with

changing lithology.
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Figure 5.6: Crossplots to demonstrate variation in log values with rock type

e Defining and Training the SVM model

In multi-dimensional space, SVM map the feature vectors as points. It helps in clear

distinction of one facies from another. Figure 5.7 shows the definition of a SVM classifier
with default parameters.




#Defining the 5VM classifier
from sklearn import swvm

#Using imbalanced class implementation due to skewed nature of dataset
clf = svm.SVC(kernel="rbf', class weight='balanced', C=1.0, random state=@)

A F e I - N I S o= = - = : . 1
#Training the classifier using the training dataset

Eif.fit{x_train,y_train}

Figure 5.7: Defining SVM model with default parameter

e Model Parameter Selection

o Initially, the classifier was built with the default parameters. However, in
order to get improved classification results, the optimal parameter choices

should be made.

o Now, Considering two parameters C and gamma. The parameter C is a

regularization factor and helps in countering the problem of over-fitting.

o The SVM learning algorithm uses a kernel function to compute the distance
between feature vectors. Many kernel functions exist, but in this case we
are using the radial basis function rbf kernel (the default).

o The gamma parameter describes how far away two vectors in the feature
space need to be to be considered close.

Figure 5.8 describes the technique of parameter tuning. Different combination of C and
gamma are used to describe different classifier. Classifier with good training and testing

accuracy will be considered for making prediction on blind dataset.
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# We will train a series of classifiers with different values for C and gamma.
do model selection = True

if do model selection:
C range = np.array([.01, 1, 5, 18, 28])
gamma_range = np.array([6.0001, 6.601, ©.01, 6.1, 1, 10])

for outer _ind, gamma value in enumerate(gamma_ range}:
cv_errors = np.zeros(C _range.shape)
train_errors = np.zeros(C_range.shape)
for index, c_value in enumerate(C_range):

#Defining classifier with different C and gamma value
clf = svm.SVC(kernel="'rbf', class weight='balanced', C=c_value, gamma=gamma_value)
clf.fit(X train,y train)

train_conf = confusion matrix(y train, clf.predict(X_train))
cv_conf = confusion matrix(y test, clf.predict(X test))

cv_errors[index] = accuracy(cv_conf)
train errors[index] = accuracy(train conf)

Figure 5.8: Defining SVM model with different parameters (Tuning)

e Applying the classification model to the blind data

In figure 5.9, we used the classification model with best training accuracy to predict the
facies on well (KAURI E9).

#(lassification on training dataset with gamma = 1 and C = 10
clf = svm.SVC(kernel="rbf', class weight='balanced', (=10, gamma=1)
clf.fit(X train, y train)

#Classificatdon on blind dataset using the the Same classifier
y pred = clfl.predict(X blind)
blind['Prediction'] = y pred

#Evaluating classifier performance-using confusion matrix
cv_conf =.confusion matrix(y blind, y pred)
print('Facies classification accuracy = %.2f' % accuracy(cv _conf))

Figure 5.9: Classification by SVM model on blind well
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5.2 Convolutional Neural Network (ConvNet)

e Importing Python library

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation,-Flatten, normalization, ConvolutionlD
from keras.callbacks import History

from keras.utils_import np utils

from keras.callbacks import History

from sklearn import metrics

Figure 5.10: Python libraries for ConvNet

e Architecture of ConvNet

#Defined neural network to classify facles
num_filters = 12
dropout prob = 8.6

convnet = Sequential()
convnet.add(ConvolutionlD(num filters, 1, border mode='valid',

input shape=(window width, len(feature list))))
convnet.add(Activation('relu'))
convnet.add(ConvolutionlD(7, 1, border mode='valid'))
convnet.add(Activation('relu'}))
convnet.add(ConvolutionlD(num_filters, 3, border mode='valid'))
convnet.add(Activation('relu'))
convnet.add(Dropout(dropout prob / 2))

convnet.add(Flatten())

convnet.add(Dense(4 * num_filters))
convnet.add(normalization.BatchNormalization())
convnet.add(Activation('sigmoid®))
convnet.add(Dropout(dropout_prob))

convnet.add(Dense(num classes, activation='softmax'))
convnet.compile(loss='categorical crossentropy', optimizer='adadelta', metrics=['accuracy'])
convnet.summary ()

# save Initial weights
initial weights = convnet.get weights()

Figure 5.11: Architecture of CovNet

e We build the Convolutional Neural Network using the Sequential( ) model. We
included 3 Convolutional layer, 3 activation layer. The non-linearity in the model

was introduced by ‘relu’ function.
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e Inthe next step, dropout probability was used before flattening the output. After this
a fully connected layer, “Dense” was used. After normalizing the result, “sigmoid”
function was used for activation.

e Optimizer: adadelta

e Loss: categorical_crossentropy

Figure 5.12 describe different parameters associated with different layer of ConvNet

Layer (type) Output Shape Param #
Znnvld_l_;CUnvlsj ;aone, ;;, 12) Bﬁ==
activation 1 (Activation) (None, 15, 12) ]
convld 2 (ConvlD) {None, 15, 7) 91
activation 2 (Activation) (None, 15, 7} o
convld 3 (ConvlD) (None, 13, 12) 264
activation 3 (Activation) (None, 13, 12) 0
dropout 1 (Dropout) (None, 13, 12) 0
flatten 1 (Flatten) (None, 156) 0
dense_1 (Dense) (None, 48) 7536
batch normalization 1 {Batch (None, 48) 192
activation_4 (Activation) (None, 48) 0
dropout 2 (Dropout) (None, 48) 0
dense_2 (Dense) {None, 8) 392
Total parans: 8,571 =y L
Trainable params: 8,475

Non-trainable params: 96

Figure 5.12: Description of Layers and parameters
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e Training Parameters

o The parameters involved during the training of ConvNet are:
Number of filters (num_filters) , Dropout probability (dropout_prob),
Number of fold (num_fold), Epochs per fold (epochs_per_fold).
o Initially, the model was training was done keeping the values of these
parameters as follows:
num_filters: 12
dropout_prob: 0.6
num_fold: 6
epochs_per_fold: 1500
o To achieve better prediction accuracy, parameter tuning technique was

employed.

# define training parameters and prepare arrays to store| training metrics
epochs per fold = 1560

num fold = 3

roll stride = np.ceil(num_train samples/num_fold).astype(int)

convnet hist = History()

hist = np.zeros((4, num fold, epochs per fold))

flscores = np.zeros(num_ fold)

Y test ohv = np.zeros((num_test samples, num fold, num classes))

#Zushurfle input data

rand_perm = np.random.permutation(num train samples)
X train = X train[rand perm]

¥ train = Y.train[rand perm]

Figure 5.13: Training parameters for ConvNet model
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Chapter 6: Results

6.1 SVM Classification Results

e Hyper parameter tuning

Figure 4.1 shows the result of hyper parameter tuning. The model has trained a series
of classifiers with different values for C and gamma. Two nested loops are used to
train a classifier for every possible combination of values in the ranges specified. The

classification accuracy is recorded for each combination of parameter values.

Classification Accuracy
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Figure 6.1: Hyper Parameter Tuning
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The classifier was evaluated for four different combinations of Gamma and C value. The

training and validation accuracy of all these combinations were reported in Table 6.1.

Table 6.1: Hyper parameter selection table

GAMMA C Training_Accuracy | Validation_Accuracy
1 1 0.89 0.58
1 10 0.81 0.63
10 1 0.89 0.58
10 10 0.89 0.58

The best validation accuracy was achieved using the classifier having parameter values
gamma: 1 and C: 10.

Figure 6.2 shows the result of classification with the model parameters Gamma = 1 and
C = 10. The classifier achieved an accuracy of 0.63 in classifying data from well (KAURI
E9).
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Well: KAURI E9
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Figure 6.2: Facies prediction result from SVM
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e Classification Report:

o Precision and recall probability provide a measure for classifier performance on
individual lithofacies.

o Precision gives the probability of a particular sample to belong to a particular
group.

o Recall measures the accuracy i.e. correct classification probability.

o Support is the frequency of occurrence of a particular type of sample.

from sklearn.metrics import classification report

target names = ['MMP','CST', 'SST', 'Msdt', 'SiS*,'CONG' "y 'L&T', 'COAL']
print(classification report(y blind, y pred, target names=target names))

precision recall fl-score support

MMP 0.98 a.92 .95 7771

CsT 0.14 0.687 68.10 16580

SST 0.50 0.41 0.45 3824

Msdt 0.06 0.00 0.00 (6]

§is 0.36 @.36 0.36 2804

CONG 0.07 0.64 8.12 115

LST 0.04 a.12 0.06 83

COAL 0.00 0.00 .00 15

avg / total Q.68 0.63 08.65 15692

Figure 6.3: Facies prediction result from SVM
Figure 6.3 gives us an idea about the dependency of precision and recall probabilities on

the support. Higher the support of a particular facies, higher the fl-score i.e. higher

probability of classification model to correctly classify it.
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6.2 ConvNet Classification Results

Hyper parameter tuning

Case 1: Drop out: 0.3, Fold: 6, Training_acc: 0.697, Validation_acc: 0.70
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Figure 6.4: Training and Validation 1: Accuracy (top), Loss (bottom)

6-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.3.

By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6
sets of predictions.

The model shows an average F1 score of 0.697 on training dataset.

Using Soft majority voting technique on 6 predictions, model achieves classification

accuracy of 0.70 on the validation dataset.
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Case 2: Drop out: 0.4, Fold: 6, Training_acc: 0.713, Validation_acc: 0.70
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Figure 6.5: Training and Validation 2: Accuracy (top), Loss (bottom)

6-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.4.

By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6
sets of predictions.

The model shows an average F1 score of 0.713 on training dataset.

Using Soft majority voting technique on 6 predictions, model achieves classification

accuracy of 0.70 on the validation dataset.
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Case 3: Drop out: 0.6, Fold: 6, Training_acc: 0.701, Validation_acc: 0.69

070 4

065

T e

060 4 i
05 I
055 I
0.4
050
0.3
0.45 4 — ftrain —== al
0 2000 4000 £000 8000 0 2000 4000 5000 B000
18
14 — frain ! === val
13 16 1 i ,
] 1
] 1
12 14 i i
] ]
11 = :
'Yl i i
10 i i
104 1 1
09
i Bl
e LKKLKL & :‘
0.7 T T T T T T T T T T
0 2000 4000 6000 BOOOD 0 2000 4000 6000 BDOO
Figure 6.6: Training and Validation 3: Accuracy (top), Loss (bottom)
e 6-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.6.
e By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6
sets of predictions.
e The model shows an average F1 score of 0.701 on training dataset.
e Using Soft majority voting technique on 6 predictions, model achieves classification

accuracy of 0.69 on the validation dataset.
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Case 4: Drop out: 0.7, Fold: 3, Training_acc: 0.701, Validation_acc: 0.69
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Figure 6.7: Training and Validation 4: Accuracy (top), Loss (bottom)

e 3-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.7.

e By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3
sets of predictions.

e The model shows an average F1 score of 0.701 on training dataset.

e Using Soft majority voting technique on 3 predictions, model achieves classification

accuracy of 0.69 on the validation dataset.
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Case 5: Drop out: 0.6, Fold: 3, Training_acc: 0.701, Validation_acc: 0.67
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Figure 6.8: Training and Validation 5: Accuracy (top), Loss (bottom)

e 3-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.6.

e By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3
sets of predictions.

e The model shows an average F1 score of 0.701 on training dataset.

e Using Soft majority voting technique on 3 predictions, model achieves classification

accuracy of 0.67 on the validation dataset.
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Case 6: Drop out: 0.5, Fold: 3, Training_acc: 0.723, Validation_acc: 0.67
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Figure 6.9: Training and Validation 6: Accuracy (top), Loss (bottom)

3-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.5.

By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3
sets of predictions.

The model shows an average F1 score of 0.723 on training dataset.

Using Soft majority voting technique on 3 predictions, model achieves classification

accuracy of 0.67 on the validation dataset.
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Case 7: Drop out: 0.4, Fold: 3, Training_acc: 0.712, Validation_acc: 0.70
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Figure 6.10: Training and Validation 7: Accuracy (top), Loss (bottom)

3-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.4.

By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3
sets of predictions.

The model shows an average F1 score of 0.712 on training dataset.

Using Soft majority voting technigue on 3 predictions, model achieves classification

accuracy of 0.70 on the validation dataset.
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Case 8: Drop out: 0.3, Fold: 3, Training_acc: 0.704, Validation_acc: 0.71
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Figure 6.11: Training and Validation 8: Accuracy (top), Loss (bottom)
e 3-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.3.
e By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3
sets of predictions.
e The model shows an average F1 score of 0.704 on training dataset.
e Using Soft majority voting technique on 3 predictions, model achieves classification

accuracy of 0.71 on the validation dataset.
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Figure 6.12: Training and Validation 9: Accuracy (top), Loss (bottom)

e 3-Fold cross-validation was used with each fold having an epoch of 1500 and
dropout rate of 0.0.

e By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3
sets of predictions.

e The model shows an average F1 score of 0.700 on training dataset.

e Using Soft majority voting technique on 3 predictions, model achieves classification

accuracy of 0.68 on the validation dataset.
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e Model with best accuracy: Drop out: 0.3, Fold: 3
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Figure 6.13: Facies prediction result from CNN
The best prediction accuracy of 0.71 was obtained at dropout rate: 0.3 and 3 fold cross-

validation.
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Classification report:

Figure 6.14 shows the high dependency of model on the number of training examples. A

positive correlation is found between the f1-score and support of different facies.

from sklearn.metrics import classification report
target names = ['MMP','CST', 'SST', 'Msdt', 'SiS‘','CONG' , 'LST', 'COAL']
print(classification_report(y blind, y pred, target names=target names)
precision recall fl-score support
MMP 0.97 0.96 0.97 7771
CsT 0.01 0.01 9.01 1080
SST 0.72 0.41 B.52 3824
Msdt 0.00 0.00 0.00 6]
5is 0.43 0.72 0.54 2804
CONG 0.13 0.46 B.20 115
LST 0.20 0.01 9.02 83
COAL 0.00 0.00 0.00 15
avg / total 0.74 8.71 0.70 15692

Figure 6.14: Classification report from ConvNet

50

——
| —



Chapter 7: Conclusion

e From the work carried out in the thesis, it can be concluded that machine learning
and deep learning techniques can be applied to predict the lithofacies of the wells
in the regions where we have only few mud logs available with us.

e Results obtained on a set of seven wells validate the proposed approach, which
highlights the positive impact of the developed feature augmentation strategy.

e The results obtained while validating our model on blind well also give a
confirmation to a good capacity of this model to generalize to new data. Using deep
learning strategies for feature learning and classification (e.g., ConvNets),
improved results were obtained.

e Both methods have limitation in terms of skewed dataset therefore resulted in poor
precision and recall score for those particular facies.

e Both these methods have very high dependency to the support of different
lithofacies in the training samples. Higher the support of a particular facies in the
training dataset, higher is the probability of correctly classifying that particular
facies to its correct class.

e Considering the achieved promising results, future work will be devoted on
validating the possibility of adding geological constraints to drive classification with

the help of apriori information about rock formation.
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Appendix A

File Edit Selection Find View Goto

4p LAS CSV.py

def ¢

fl1 = open(write path,

open{read path,

line lasFile:

line.star
a

fl.close()

_name " main_ ":
convert to csv("LAS file Path")

-reaé éa%h['l

(
\

Tools
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Appendix B

File Edit Selection Find View Goto Tools Project Preferences Help

4r Parsing.cpp
<bits/stdc++.h>
std;
vector<string> splitAt(string line, char delimiter){
vector<string> answer;
size t pos = 0;

((pos = line.find(delimiter)) !'= string::npos) {
answer.push back(line.substr(Q, pos));
line.erase(0, pos + 1)

}

answer.push back(line);

answer;

double getNumber(string input){
atof(input.c str());
}

main(){

double increment_value = 0.15;

char initial data file[] = "name of your input file.txt";
freopen(initial data file, "r", stdin);

char Tinal _data file[] = "name_of your output file.txt";
freopen(final_data file, "w", stdout);

bool skip first line = true;

char character_to _split at =

string line;
(getline(cin, line)){

(skip_first_line){

cout =< line << endl;
skip first line = false;
}
vector<string> splitted string = splitAt(line, character to split at);
= getNumber(splitted string[0]};
getNumber(splitted_string[1]);
uble 1o = 1; lo < r; lo += increment_value){
cout << lo << character_to_split_at << lo + increment_value
<< character_to split at << splitted string[2] << endl;




Appendix C

Edit Selection Find View Goto Tools Project Preferences Help
Litho_Depth.py
pandas pd

df log pd.read _excel("log_File name.xlsx")

df log.round({'DEPTH' : 2});

lith pd. read 1{"mudlog File name.xlsx")

depth_lith pd.merg sof(lith, df log, on 'DEPTH" , di tion ='nearest’)

depth lith.to excel("merged File name.xlsx")

depth _lith.describe()
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