APPLICATION OF DEEP LEARNING TECHNIQUES FOR LITHOFACIES CLASSIFICATION USING WELL LOG DATA OF TARANAKI BASIN

A DISSERTATION

Submitted in partial fulfillment of the

Requirements for the award of the degree

of

INTEGRATED MASTER OF TECHNOLOGY

in

GEOPHYSICAL TECHNOLOGY

by

MAYANK VERMA

DEPARTMENT OF EARTH SCIENCES

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247667 (INDIA)

MAY, 2019

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2019

ALL RIGHTS RESERVED

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the dissertation entitled "APPLICATION OF DEEP LEARNING TECHNIQUES FOR IDENTIFICATION OF LITHOFACIES CLASSIFICATION USING WELL LOG DATA OF TARANAKI BASIN" in partial fulfilment of the requirements for the award of the Degree of Integrated Master of Technology in Geophysical Technology and submitted in the Department of Earth Sciences of the Indian Institute of Technology Roorkee, Roorkee is an authentic record of my own work carried out during a period from May 2018 to May, 2019 under the supervision of Dr. Ravi Sharma, Asst. Professor, Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee.

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or any other Institution.

(MAYANK VERMA)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

(Dr. Ravi Sharma)

Supervisor

Date

I am indebted to a number of personalities who at various stages have helped me in completing this dissertation work. Firstly, I would like to extend my sincere gratitude, soulful appreciations and a big thanks to my mentor **Dr. Ravi Sharma**, Assistant Professor, Department of Earth Sciences, IIT Roorkee for his valuable guidance, suggestions, immense knowledge, constant encouragement and engagement throughout the whole course of the dissertation work. Without his personal attention and interest, it would have been very difficult for me to work on this dissertation work in an effective manner.

My humble gratitude to **Prof. Sunil Bajpai**, the Head of the Department, Department of Earth Sciences, IIT Roorkee, for providing all the necessary facilities and fast administrative help necessary to complete this work. I would also like to thank professorin-charge, **Dr. Anand Joshi** under whom I got this excellent opportunity.

I feel short of words to express my sentiments towards my loving family for their unduly love and fondle, for their everlasting moral support, for the sacrifices they have made on my behalf. I also would like to thank my friends for all the support at every stage of this dissertation work.

ABSTRACT

Classification of different lithofacies is crucial in seismic interpretation because different rocks have different permeability and fluid saturation for a given porosity. The ideal sources for lithofacies classification are core samples of rocks extracted from wells. Nevertheless, core samples cannot always be obtained due to associated costs. The conventional classification method is based on manually assigning lithofacies by human interpreters and is a very tedious and time consuming process.

I aimed at automating this classification process through the use of machine learning and deep learning methods. I selected wells from the region which have the mud log present with them. Machine learning algorithm, Support vector machines (SVM) was employed to build an automatic lithofacies classifier. The algorithm was trained on the dataset that has lithofacies marked from the mud log. The accuracy of the model was validated on a well with unlabeled lithofacies and accuracy of 0.63 was achieved.

In the next phase, a Deep learning (DL) model based on Convolutional Neural Network was developed and training was carried out using the labeled dataset (same dataset as in case of SVM algorithm). It achieved an classification accuracy of 0.71 on blind dataset. The model performed fairly good at classifying facies which have a larger number of training examples. Due to the skewed nature of the dataset, the validation accuracy of the model showed a stark drop when compared with training accuracy. This major drop in accuracy occurs while classifying those facies which have limited number of training example.

The accuracy could be further improved by incorporating adjacent lithofacies in classification task, which was the limitation of the target dataset.

CONTENTS

Chapter 1: Introduction	1
1.1 Importance of Lithofacies Classification	1
1.2 Motivation for automated Lithofacies classification	1
1.3 Objectives	2
1.4 Thesis Outline	2
Chapter 2: Background Knowledge	3
2.1 Support Vector Machines (SVM)	3
2.2 Convolutional Neural Networks (ConvNet) Chapter 3: Literature Review	5
Chapter 3: Literature Review	8
3.1 Facies	8
3.2 Lithofacies	8
3.3 Related Work	
Chapter 4: Material and Methods	10
4.1 Data Source	
4.2 Target Data	
4.3 Data Preparation:	11
4.4 Data Preprocessing:	14
4.5 Final Dataset	17
Chapter 5: Methodology	26
5.1 Support Vector Machines (SVM)	
5.2 Convolutional Neural Network (ConvNet)	33
Chapter 6: Results	36
6.1 SVM Classification Results	36
6.1 SVM Classification Results 6.2 ConvNet Classification Results	40
Chapter 7: Conclusion	51
Reference	52
Appendix A	53
Appendix B	54
Appendix C	55

LIST OF FIGURES AND TABLES

FIGURES

- Figure 2.1: Optimal Separating Hyperplane
- Figure 2.2 Kernel trick
- Figure 2.3: Kernel functions commonly used in SVM
- Figure 2.4 Left: Low regularization value, Right: High regularization value
- Figure 2.5: Top: High Gamma, Bottom: Low Gamma
- Figure 2.6: Left: Good margin, Right: Bad margin
- Figure 2.7: CNN architecture and sequence
- Figure 2.8: ConvNet used in study for salt body delineation
- Figure 4.1: Taranaki Basin
- Figure 4.2 Wireline log file in .las format
- Figure 4.3: Wireline log file in .txt format
- Figure 4.4: Mud log file in .txt. format
- Figure 4.5: Parsed mud log file in .txt. format
- Figure 4.6: Wireline dataset tagged with lithology information
- Figure 4.7: Handling Null values in the dataset
- Figure 4.8: Applying data imputation technique to the dataset
- Figure 4.9: Applying data standardization technique to the dataset
- Figure 4.10: Applying data normalization technique to the dataset
- Figure 4.11: Well KAURI A1 having wireline and lithology information
- Figure 4.12: Well KAURI A2 having wireline and lithology information
- Figure 4.13: Well KAURI C1 having wireline and lithology information
- Figure 4.14: Well KAURI E3 having wireline and lithology information
- Figure 4.15: Well KAURI E6 having wireline and lithology information
- Figure 4.16: Well KAURI E7 having wireline and lithology information
- Figure 4.17: Well KAURI E8 having wireline and lithology information
- Figure 4.18: Well KAURI E9 having wireline and lithology information
- Figure 5.1: Importing python libraries for SVM classification model

- Figure 5.2: Training dataset
- Figure 5.3: Statistical distribution of training dataset
- Figure 5.4: Distribution of the training data by facies
- Figure 5.5: Distribution of validation data by facies
- Figure 5.6: Crossplots to demonstrate variation in log values with rock type
- Figure 5.7: Defining SVM Model with default parameters
- Figure 5.8: Defining SVM Model with different parameters (tuning)
- Figure 5.9: Classification by SVM Model on blind well
- Figure 5.10: Python libraries for ConvNet
- Figure 5.11: Architecture of ConvNet
- Figure 5.12: Description of layers and parameters
- Figure 5.13: Training parameters for ConvNet model
- Figure 6.1: Hyper parameter tuning (SVM)
- Figure 6.2: Facies prediction result from SVM
- Figure 6.3: Classification report of SVM
- Figure 6.4: Training and validation 1: Accuracy(Top), Loss(Bottom)
- Figure 6.5: Training and validation 2: Accuracy(Top), Loss(Bottom)
- Figure 6.6: Training and validation 3: Accuracy(Top), Loss(Bottom)
- Figure 6.7: Training and validation 4: Accuracy(Top), Loss(Bottom)
- Figure 6.8: Training and validation 5: Accuracy(Top), Loss(Bottom)
- Figure 6.9: Training and validation 6: Accuracy(Top), Loss(Bottom)
- Figure 6.10: Training and validation 7: Accuracy(Top), Loss(Bottom)
- Figure 6.11: Training and validation 8: Accuracy(Top), Loss(Bottom)
- Figure 6.12: Training and validation 9: Accuracy(Top), Loss(Bottom)
- Figure 6.13: Facies prediction results from ConvNet
- Figure 6.14: Classification report of ConvNet

TABLES

- Table 5.1: Facies and their corresponding labels
- Table 6.1: Hyper-parameter selection table

Chapter 1: Introduction

1.1 Importance of Lithofacies Classification

Facies are used by geologists to group together body of rocks with similar characteristics in order to facilitate the study of a basin of interest. In the case of Oil & Gas reservoirs, porosity and permeability are critical properties to determine since they give indications about the potential volume of fluids that might be stored in a rock and how they will flow during production. We can therefore expect that grains size, shape and density as well as the depositional and compaction history of the rocks will be a dominant factor for the categorization. While the main source of information for defining those facies comes from the observation of core samples under visible and x-ray light, we also have a variety of well log recordings at our disposal. By measuring the acoustic and electrical responses as well as the nuclear radiations of the drilled medium, we can infer properties about its rock matrix and fluid content and indirectly relate them to the porosity, permeability or fluid saturation of the rocks.

1.2 Motivation for automated Lithofacies classification

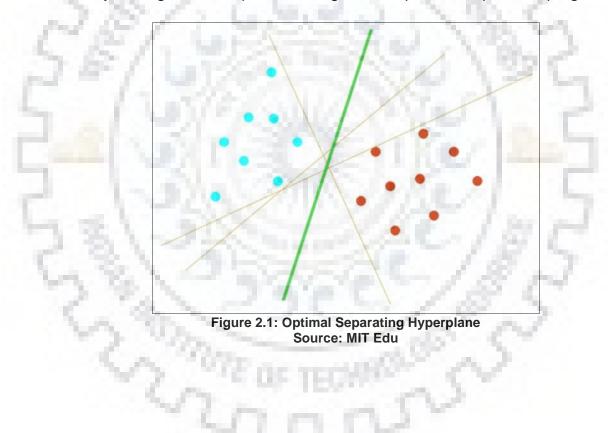
Facies (i.e., lithofacies) classification consists in assigning a rock kind or class to a particular sample on the basis of measured features. Classification of different lithofacies is crucial in seismic interpretation because different rocks have different permeability and fluid saturation for a given porosity. The ideal sources for lithofacies classification are core samples of rocks extracted from wells. Nevertheless, core samples cannot always be obtained due to associated costs. Therefore, a method for classifying facies from indirect quantification (e.g., wireline logs.) is necessary. The conventional method consists in manually assigning lithofacies by human interpreters and is a very tedious and time consuming process. Therefore, several alternative approaches to the issue of facies classification from well data have been proposed.

1.3 Objectives

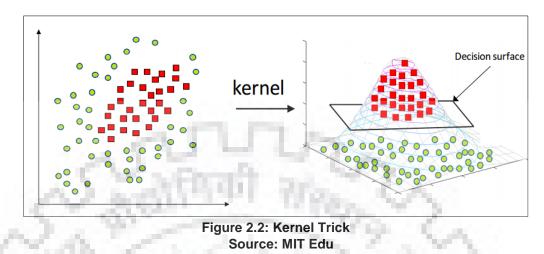
This thesis had the following objectives:

- 1. Study the effectiveness of machine learning Models (SVM) in automated prediction of prominent lithofacies in a well.
- 2. Study the effectiveness of deep learning Models (ConvNet) in automated prediction of prominent lithofacies in a well.
- 3. Prediction of lithofacies in a well using a classification model trained over the labeled dataset.

1.4 Thesis Outline


The disposition of the thesis work is as follows:

- The first chapter is the introduction. This chapter deals with the motivation, objective and outline of the thesis work.
- The second chapter, Background knowledge gives a brief introduction about various algorithms used during the course of this thesis work.
- The third chapter, Literature review gives an insight about the development of different statistical, machine and deep learning techniques for classification of Lithofacies.
- The fourth chapter Materials and methods gives an overlook of the dataset available. It also covers the implementation of Support Vector Machines (SVM) and Convoluted Neural Networks (ConvNet) for facies classification.
- The fifth chapter Results deals with the prediction outcome from SVM and ConvNet. It further describes about the parameter tuning approach used to further refine the results.
- The six and the final chapter reiterates over the conclusion drawn from this thesis work and prospects of the future work.


Chapter 2: Background Knowledge

2.1 Support Vector Machines (SVM)

SVM is a form of binary classifier, classifying a set of data into two classes, like malignant or benign for tumors. In SVM, the aim is to find the line gives the best data separation. In Figure 2.1, the line can't be too close to the blue dots or too close to the red dots because it might overfit on the training data and perform poorly on the actual testing data. In other words, the objective here is to maximize the margins. The way the algorithm actually works is by solving a set of equations using a technique called quadratic programming.

• Kernel Trick:

The kernel trick is a technique in ML in order to avert some rigorous computation that are involved in algorithm's. This trick helps in making few calculation goes from computationally improbable to probable.

Kernel functions:

Formula	Optimization Parameter
$K(x_n, x_i) = (x_n, x_i)$	C and γ
$K(x_n, x_i) = \exp\left(-\gamma \ x_n - x_i\ ^2 + C\right)$	C and γ
$K(x_n, x_i) = \tanh(\gamma(x_n, x_i) + r)$	C, γ , and r
$K(x_n, x_i) = (\gamma(x_n, x_i) + r)^d$	C, γ, r , and d
	$K(x_n, x_i) = (x_n, x_i)$ $K(x_n, x_i) = \exp(-\gamma x_n - x_i ^2 + C)$ $K(x_n, x_i) = \tanh(\gamma(x_n, x_i) + r)$

Source: Nanda et.al., 2017

255

• Tuning parameters:

- Regularization parameter (C)
- Gamma
- Margin

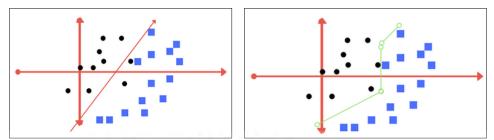
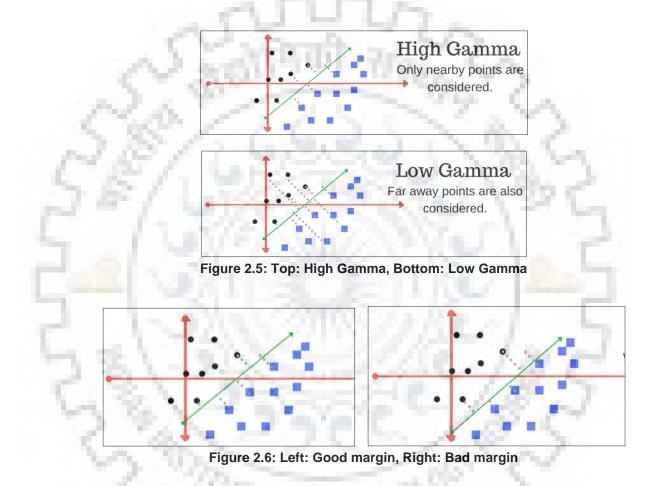



Figure 2.4: Left: low regularization value, right: high regularization value

2.2 Convolutional Neural Networks (ConvNet)

A convolutional neural network works by splitting the input into smaller chunks, or scanning over it in piecemeal sizes via some rule, and then passes that to the next layer who does the same thing with other rules.

Architecture of ConvNet

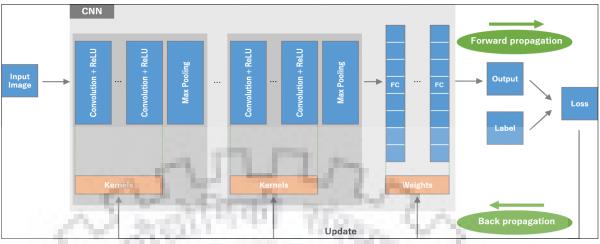


Figure 2.7: CNN architecture and sequence Source: R Yamashita et al., 2018

Terminology:

Input Image

Holds the raw pixel values of the image.

Feature Learning

• Convolution Layer - The Kernel

This layer helps in extracting the high-level feature(s) from the input image.

Activation Layer

This layer introduces non-linearity in the network. Otherwise, it will act as a perceptron i.e. output can be predicted using the linear combination of input variables.

• Padding

Reduces dimensionality and helps in counter the border effect problem while convolution step.

• Pooling

Down sampling technique to identify the most important feature(s).

Classification

• Fully connected Layer

Learns about non-learning combinations of high-level feature(s).

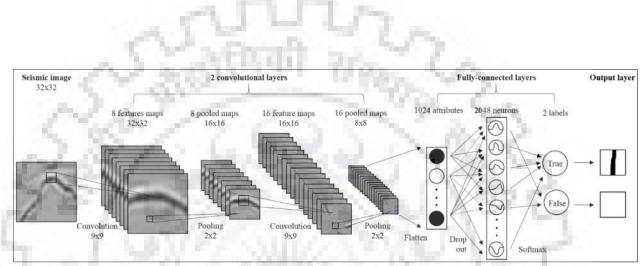


Figure 2.8: ConvNet used in study for salt body delineation Source: Di et al., 2018

Ø.

Hyper-parameters of ConvNet:

- Number of Hidden Layers and units
- Dropout
- Network Weight Initialization
- Activation function

Chapter 3: Literature Review

3.1 Facies

Facies, in geology, is basically a way to differentiate rock bodies into units which are mappable, in terms of composition, characteristics, formation or several other attributes. Facies are mostly used by chemical, biological, or physical means to identify distinct units of rock bodies from adjacent lying units within a contiguous rock body. Facies generates a succession when compiled together that gives insight into processes and systems that might have acted within or on the region and rock record.

3.2 Lithofacies

The interpretation done on sedimentary sections are based on lithofacies units. While differentiating the sequences from each other, we take certain factors into consideration which include grain size, biogenic and physical sedimentary structure(s), lithologies, as these are directly related to the environment of deposition.

3.3 Related Work

Several types of conventional techniques including use of mud logs, well logs are essential in inferring subsurface lithology. Considering the importance of well log data in oil industry, the borehole data is used to infer the lithological changes taking the well logs as an accurate source of subsurface lithologies. Any change detected in the well log data is interpreted to be a geological and lithological change.

A number of quantitative and qualitative methods for lithology interpretation are already employed that combine various metrics.

Qualitatively, we inefficiently evaluate measurements from logging operations along with Photo electric (P_e) factor analyses, gamma ray evaluations done for identifying shale (Gardner and Dumanoir (1980), Serra et al. (1985), Dewan (1986), or using multiple logs. This proves insufficient as several lithologies pose complexity which requires larger set of information than just provided through these.

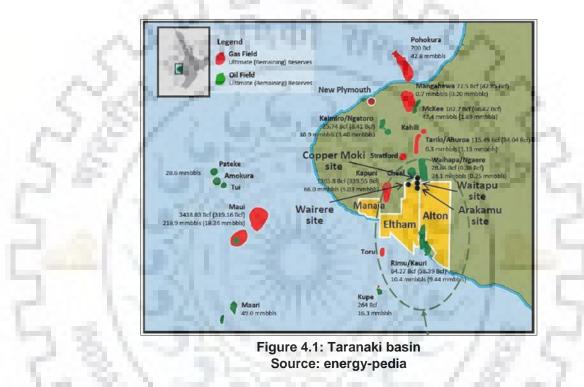
Within time, lithology interpretation has expanded and starts to consider the usage of quantitative methods, such as Crossplots, statistical analysis, and neural network.

Lithology interpretation has come a long way since, employing the use of methods quantitatively, including cross plots, statistical and neural networks analysis.

Burke et al. (1969) was the first one to introduce Crossplots based quantitative analysis which is commonly used over neutron, P_e, density and sonic. It involves simultaneous plots of two or more log data points. Even Clavier and Rust (1976) studied its application in quantitative analyses. These methods have a limitation that they require manual human intervention and cannot be automated for the task.

Statistical Analysis, proven to have applications for lithological identification by Delfiner et al. (1987), laid way for combining wireline measurement done these days, to generate automated lithological description. Statistical Classification methods, like linear regression, kernel estimation, discrimination analysis etc. have greater dependence on the data characteristics and hence leads to efficient modeling based on interpretation. Probability based classification methods that returns a probability which predicts the belonging of member.

Busch et al. (1987) demonstrated lithological prediction was possible using statistical analysis. It proved the importance of Bayesian rule for probability and discriminant analysis in lithological classification. But, this method has a limitation in the criteria for the data to be of normal distribution based (limits the geophysical dataset). Hence, it was deprecated because of its lack of flexibility in application to non-parametric distributions.


Kernel Density Estimator, which analyses the multimodal nature of the data, is a method that estimates the probability density function (PDF) for a non-parametric distribution. Mwenifumbo (1993) demonstrated the usage of the estimator for borehole geophysical data, by applying it for univariate and bivariate data, thus identifying sulfide mineralization by analyzing it.

9

Chapter 4: Material and Methods

4.1 Data Source

The dataset is from Taranaki basin which is situated on the west coast of New Zealand. It is an onshore-offshore rift basin.

4.2 Target Data

The target wells selected for this thesis work were from KAURI region of the Taranaki basin. The selection criteria were the type of wireline logging data presented in any particular well. The ideal log for the purpose of lithological classification should be:

- Most affected by rock properties
- Least affected by fluid properties

The available logs in the Kauri regions based on above criteria were:

- Caliper (CALI)
- Gamma ray (GR)
- Formation density (DENS)

- Photoelectric absorption (PEF)
- Neutron porosity (NEUT)
- Sonic log (DTC)
- Resistivity log deep (RESD)

4.3 Data Preparation:

Selection of wells

In the first step, the selection of 8 wells from Kauri region was done out of nearly 600 available wells having appropriate wireline logs and mud log information.

LAS log files to TXT files

Converting wireline data in LAS file format to text file format using Python. Code is given in Appendix 1.

Tests 1	Filt Falastics Find Minu	Cobs. Tools. Desis		Mala	_			-	_	-	_	_	_	_	_	
File	Edit Selection Find View	Goto Tools Proje	LL Preterence:	neip												-
3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4-	5 NEUT .V/V 7 PEF .B/E 8 RESD .0HPM 9 RESM .0HPM 1 RESS .0HPM 1 SP .NV 1 TEMP .DEGC 3 TEMS .KGF - Parameter Information Blo	: HRDD High Resolut HRLT Borehole Co HRLT Borehole Co HRLT Borehole Co SP Shifted (SP) HTC Temperature Cable Tension (Tr ck	otron Porositý PH (limestone u tion Formation rrected Resisti rrected Resisti (HTEM), (STEM)	(matrix Limestor hits) Photoelectric Fa vity 5 (RLA5) vity 3 (RLA3) vity 1 (RLA1)					i.	ł				C	ł	
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	#HER.NUTT Vial FOR INT SON FOR INT SON PROJECT 46 Not 2001 SET AT NAL MTER FOR DATE SON FOR NOT SON FOR DATE SON FOR NOT SON COLLENSING FOR NOT SON COLLENSING FOR NOT SON COLLENSING FOR NOT SON COLLENSING FOR NOT SON TO DATE COLLENSING TO DATE COLLENSING TO DATE COLLENSING TO DATE COLLENSING TO TOTAL COMPLICATION FOR NOT SON TO DATE COLLENSING TO DATE TOTAL SON TO DATE FOR SON TO TOTAL SON PORTON FOR SON TO TOTAL SON PORTON FOR SON TO SON PORTON FOR SON PORTON TO SON PORTON FOR	Description 4005: Current inf 4005: Current inf 8007: Current inf 807: Current inf 808: Current inf 808: Current inf 808: Current inf <t< th=""><th>on above mean s ent reference ton at TD d level elevat mumber shore/offshore oort number tatus at complete tat depth drill DENS 979.2580 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500</th><th>ea level tion above mean s tion -999.250000 -999.250000 -999.250000 -999.250000 -999.250000 -999.250000 -999.250000 -999.250000</th><th>0TC -909-2580 -999-2580 -999-2580 -999-2580 -999-2580 -999-2580 -999-2580 -999-2580</th><th>1099,2560 -999,2560 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500</th><th>64 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500</th><th>-999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500</th><th>NEUT GORA 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508</th><th>-999,256 -999,250 -999,250 -999,250 -999,250 -999,250 -999,250 -999,250</th><th>-999.2580 -999.2580 -999.250 -999.250 -999.250 -999.250 -999.250 -999.250 -999.250 -999.250</th><th>-099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500</th><th>- 999, 2300 - 990, 200 - 990, 200, 200</th><th>5 p -997, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580</th><th>1649-9 18.7179 18.7169 18.7159 18.7159 18.7159 18.7151 18.7151 18.7065</th><th>1786 141.3669 141.2387 133.5776 133.5778 133.5788 133.5288 135.788</th></t<>	on above mean s ent reference ton at TD d level elevat mumber shore/offshore oort number tatus at complete tat depth drill DENS 979.2580 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500 999.2500	ea level tion above mean s tion -999.250000 -999.250000 -999.250000 -999.250000 -999.250000 -999.250000 -999.250000 -999.250000	0TC -909-2580 -999-2580 -999-2580 -999-2580 -999-2580 -999-2580 -999-2580 -999-2580	1099,2560 -999,2560 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500	64 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500 -999,2500	-999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500 -999 2500	NEUT GORA 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508 999 2508	-999,256 -999,250 -999,250 -999,250 -999,250 -999,250 -999,250 -999,250	-999.2580 -999.2580 -999.250 -999.250 -999.250 -999.250 -999.250 -999.250 -999.250 -999.250	-099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500 -099-2500	- 999, 2300 - 990, 200 - 990, 200, 200	5 p -997, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580 -999, 2580	1649-9 18.7179 18.7169 18.7159 18.7159 18.7159 18.7151 18.7151 18.7065	1786 141.3669 141.2387 133.5776 133.5778 133.5788 133.5288 135.788
77777777777777777777777777777777777777	13.00760 -609.2 5 15.20760 -699.2 5 15.30240 -699.2 13.5444 -690.2 -699.2 13.5444 -690.2 -699.2 13.5444 -690.2 -699.2 13.64709 -699.2 -699.2 14.16.15440 -699.2 -699.2 15.16.91640 -699.2 -699.2 16.15440 -699.2 -699.2 16.15440 -699.2 -699.2 16.15440 -699.2 -77.7 16.1540 -699.2 -77.7 17.01640 -699.2 -77.7 17.01740 -699.2 -77.7 17.7 -77.6640 -699.2 17.7540 -699.2 -77.7	500 -993, 2500 500 -993, 2500 500 -993, 2500 500 -992, 2500	999 (2500) 999 (2500)	-999, 250000 999, 250000	- 999, 2540 999, 2540	-999, 2500 999, 2500	- 999, 2580 999, 2580	-999, 2500 -999, 2500	-999,2500 -990,2500 -990,2	- 999, 2500 999, 2500	- 999, 2500 - 999, 2500	-999, 2300 999, 2300 999, 2300 999, 2500 999, 2500	-999, 2500 -999, 2500	-999, 2840 -999, 2840 -990, 2840 -990, 2840 -990, 2840 -990, 2840 -990, 2840 -990, 2840	18.7623 18.6078 18.6078 18.6068 18.6825 18.6686 18.6772 18.6772 18.67748 18.67748 18.67748 18.6774 18.6774 18.6774 18.6774 18.6669 18.6669 18.6669 18.6669 18.6669 18.6623 18.6623 18.6619 18.6619	142, 3937 144, 8036 144, 7068 144, 7068 146, 3165 146, 3165 146, 3165 146, 3165 146, 7871 139, 6249 139, 6354 148, 4596 139, 6433 139, 6433 136, 6433 136, 6433 136, 6433 136, 6433 137, 5623 137, 5623 137, 6437 137, 6457 137, 6457 137, 64577 137, 645777 137, 645777 137, 645777 137, 64577777 137, 64577777777777777777777777

Figure 4.2: Wireline log file in .las format

	Vireline log.csv x	VIEW GOLD	Tools Project	Freierences	теф	_	_	_	_	_	_	_	_	_	_	_	
	DEPTH	BS	CALI	DENS	DRHO	DTC	DTS	GR	NEUT	NEUT CORR	PEF	RESD	RESM	RESS	SP	TEMP	TENS
	13,56360	-999.2500	-999,2500	-999,2500	-999.250000	-999.2500	-999,2500	-999.2500	-999.2580	-999.2588	-999.2588	-999.2500	-999.2500	-999.2588	-999,2500	18,7179	141,9684
	13.71600	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18,7169	141.2187
	13.86840	-999.2500	-999.2500	-999.2500	999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2588	-999.2500	-999.2580	-999.2500	18.7159	140.4691
	14.02080	-999.2500	999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2588	-999.2580	-999.2580	999.2500	-999.2500	-999.2500	-999.2500	18,7150	139.5763
	14,17320	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	999.2500	-999.2500	-999.2580	-999.2500	18.7138	137.7776
	14.32560	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2568	-999.2500	18,7127	135.9788
	14,47800	-999.2500	-999,2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2560	-999.2500	-999.2500	-999.2500	-999.2580	-999.2588	18,7115	134.1800
	14.63040	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2580	-999,2500	18,7086	136.6228
	14.78280	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2580	-999.2500	-999.2500	-999.2500	-999.2588	18,7055	139.7813
	14.93520	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18.7023	142.9397
	15.08760	-999.2500	-999.2500	-999.2500	-999.250808	-999.2500	-999.2580	-999.2500	-999.2500	-999.2588	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18.6978	144.8036
	15.24000	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2588	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	18.6923	145.7098
	15.39240	-999.2500	-999.2500	-999.2500	-999.250808	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	999.2500	-999.2500	-999.2500	-999.2500	18.6868	146.6161
	15.54480	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2588	-999.2500	-999.2500	18.6825	146.3165
	15.69728	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2580	-999.2500	-999.2588	-999.2500	-999.2588	18.6887	143.1207
	15.84968	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18.6798	139.9249
	16.00200	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2580	-999.2588	18.6772	136.7871
	16.15448	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2588	-999.2500	-999.2500	18.6760	138.0112
	16.30688	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2588	-999.2580	-999.2500	18.6748	139.2354
	16.45920	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2580	-999.2500	-999.2500	-999.2580	-999.2500	18.6736	140.4596
22	16.61160	-999.2500	999.2500	-999.2500	-999.250000	-999.2500	+999.2500	-999.2500	-999.2500	-999.2500	-999.2500	999.2580	+999.2500	-999.2560	-999.2500	18.6724	139.6274
	16.76400	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2588	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2588	18.6712	138.0433
	16.91640	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	18.6700	136.4593
	17.06880	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2580	18.6685	135.8587
	17.22126	-999.2500 -999.2500	-999.2500 -999.2500	-999.2500 -999.2500	-999.250000 -999.250000	-999.2500 -999.2500	-999.2500 -999.2500	-999.2500	-999.2500	-999.2588 -999.2588	-999.2588 -999.2588	-999.2500 -999.2500	-999.2500 -999.2500	-999.2568 -999.2560	-999.2588 -999.2588	18.6669	136.4532 137.0478
	17.52600	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18,6637	137.5623
	17.67840	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2588	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18,6628	137.6877
	17,83080	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18,6619	137,8132
	17.98320	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2588	-999.2500	-999.2500	999.2500	18.6610	137.9387
	18.13560	-999.2508	-999.2500	-999.2500	-999.250808	-999.2566	-999.2500	999.2500	-999.2588	-999.2500	-999.2580	-999.2588	-999.2500	-999.2588	-999.2500	18.6596	138.3140
	18.28800	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	18.6582	138.7202
	18,44040	-999.2500	-999.2500	-999.2500	-999.258860	-999.2500	-999.2500	-999.2500	-999.2500	-999.2560	-999.2580	-999.2500	-999.2500	-999.2568	-999.2500	18.6567	139.1265
	18,59280	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2560	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	18,6549	139.2593
	18.74520	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18.6529	139.2166
	18.89760	-999.2500	-999.2500	-999.2580	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2588	-999.2580	-999.2500	-999.2500	-999.2500	-999.2580	18.6588	139.1739
	19.05000	-999.2500	-999.2500	-999.2500	-999.250800	999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2588	-999.2500	18.6491	138.8925
	19.20248	-999.2500	-999.2500	-999.2500	-999.250000	999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2508	-999.2588	-999.2500	-999.2500	18,6480	138.1223
	19.35488	-999.2500	-999.2500	-999.2500	-999.258888	-999.2500	-999.2500	-999.2500	-999.2500	-999.2588	-999.2588	-999.2588	999.2588	-999.2588	-999.2588	18.6468	137.3522
	19.50720	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18.6457	136.6699
	19.65968	-999.2500	-999.2500	-999.2560	-999.250800	-999.2500	-999.2500	-999.2500	-999.2568	-999.2580	-999.2500	-999.2500	-999.2500	-999.2560	-999.2588	18.6439	137.7596
	19.81200	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-99912580	999.2500	-999.2500	-999.2580	-999.2560	18.6422	138.8494
	19.96440	-999.2500	-999.2500	-999.2500	-999.250000	-999.2500	-999.2500	-999.2500	-999.2500	-999.2560	-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	18.6405	139.9392
		-999.2500	-999.2500	-999.2500	-999.250000	-999.2500		-999.2500		-999.2580	-999.2500	-999.2500	-999.2500	-999.2500	-999.2580		139.7211
	20.26920	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18.6377	139.1044
	20,42160	-999.2500	-999.2500	-990.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500		-999.2500	-999.2500	-999.2500	-999.2500	-999.2500	18.6364	138.4878
	20.57400	-999.2500	-999.2500	-999.2568	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	999.2588	-999.2580	999.2508	-999.2588	-999.2500	-999.2500	18.6351	138.2536
	20.72640	-999.2500	-999.2500	-999.2500	-999.250800	-999.2500	-999.2500	-999.2500	-999.2500	-999-2580	-999.2580	-999.2500	-999.2588	-999.2500	-999.2500	18.6337	138.4246
	20.87880	-999-2500	-999-2500	-999.2500	-999.250000	-999.2500	-999.2580	-999.2500	-999.2500	-999.2500	-999.2580	-999.2500	-999.2500	-999-2580	-999.2580	18.6324	138.5957

Figure 4.3: Wireline log file in .txt format

Parsing the Mud log

Since the resolution of data were not same for wireline and mud logs tagging corresponding lithology to a depth point was not possible. To accomplish this, we parsed the mud logs and sampled them at a depth interval of 0.15 meters. Parsing was done using C++. Code is given in Appendix 2.

File	Edit	Selection	Find Vie	w Goto	Tools	Project	Preferences	Help
	Mu	d_log.txt	×				- E	100
		DEPTH				ology	10.00	
			20 cla					
120		120 1	27.14	clay	/ston	е		
		127.1						
	5	129.0	8 132	.31	clay	stone		
	6	132.3						
123		133.9		.87	clay	stone		
		137.8			ston			
100	9	140.0	6 144	.22	clay	stone		
14	10	144.2	2 146	.55	clay	stone		
	11	146.5	5 147	.71	sand	stone		
	12	147.7	1 150	.17	clay	stone		
		150.1				stone		
	14	151.4	6 158	.82	clay	stone		
	15	158.8	2 160	sand	dston	e		

Figure 4.4: MUD log file in .txt format

<pre>Parsed_Mud_log.txt × 1 DEPTH bottom Lithology 2 115 115.15 claystone</pre>	elp
2 115 115.15 claystone	
3 115.15 115.3 claystone	
4 115.3 115.45 claystone	
5 115.45 115.6 claystone	
6 115.6 115.75 claystone	
7 115.75 115.9 claystone	
8 115.9 116.05 claystone	
9 116.05 116.2 claystone	
10 116.2 116.35 claystone	
11 116.35 116.5 claystone	
12 116.5 116.65 claystone	
13 116.65 116.8 claystone	
14 116.8 116.95 claystone	
15 116.95 117.1 claystone	

Figure 4.5: Parsed MUD log file in .txt format

• Tagging lithology to corresponding wireline data depth

After parsing the mud logs and sampling them at a depth interval of 0.15 meters, the wireline data was merged with mud log on the basis of depth values using Python. Code is given in Appendix 3.

Fi	e Edit	Selection	Find View	/ Goto Tools	Project Prefere	ences Help											
•	► KAU	RI A1.csv	•														
- 10	1	DEPTH	bottom	Lithology	WELL NAME	BS	CALI	DENS	DRH0	DTC	GR	NEUT	PEF	RESD	RESS	SP	TENS
10		119.65	119.8	claystone	KAURI A1	17.5	15.5364	2.0923	0.005058	148.8977	102.346	0.499399	2.5665	61.2389	37.3158	-105.2814	637.4635
		119.8	119.95	claystone	KAURI A1	17.5	15.6793	2.0914	0.007721	151.3682	101.6178	0.528165	2.5499	59.3539	37.5455	-106.093	639.3636
		119.95	120.1	claystone	KAURI A1	17.5	15.8221	2.0906	0.010385	153.8387	100.8895	0.556932	2.5333	57.4689	37.7752	-106.9045	641.2638
- 62		120.0	120.15	claystone	KAURI A1	17.5	15.8221	2.0906	0.010385	153.8387	100.8895	0.556932	2.5333	57.4689	37.7752	-106.9045	641.2638
- 12		120.15	120.3	claystone	KAURI A1	17.5	15.6314	2.0876	0.01072	153.8189	99.8931	0.557587	2.5452	55.9238	38.0698	-108.4325	641.645
		120.3	120.45	claystone	KAURI A1	17.5	15.2169	2.0832	0.009491	152.128	98.7167	0.539377	2.5762	54.6069	38.4079	-110.4411	641.0067
	8	120.45	120.6	claystone	KAURI A1	17.5	14.8023	2.0788	0.008263	150.4371	97.5402	0.521167				-112.4498	640.3685
10		120.6		claystone	KAURI A1	17.5	14.4889	2.0833	0.008189	150.8454	97.2309	0.504141	2.6347	51.6809	38.8303	-114.1391	640.9531
		120.75	120.9	claystone	KAURI A1	17.5	14.3929	2.1069	0.010594	155.7642	98.7849	0.489657	2.6543	49.4441	38.3697	-115.1424	644.165
10				claystone	KAURI A1	17.5	14.2969	2.1305	0.012999	160.683	100.3389	0.475173	2.6739	47.2072	37.909	-116.1456	647.377
				claystone		17.5			0.015116	165.3333	101.8378	0.461859				-117.1247	650.479
	13			claystone	KAURI A1	17.5			0.009697	162.9454	101.8942	0.479206		47.2383			650.6978
				claystone	KAURI A1	17.5	14.4942	2.1207	0.004277	160.5574	101.9506	0.496554				-117.8172	650.9166
				claystone	KAURI A1	17.5			-0.001142	158.1695	102.007	0.513901				-118.1634	651.1353
				claystone	KAURI A1	17.5			-0.00267	158.9496	103.2529	0.515944				-118.5373	655.3004
		121.8		claystone	KAURI A1	17.5	14.9343		-0.002941	160.7527	104.8828	0.513044	2.6936			-118.9202	660.7396
				claystone	KAURI A1	17.5	15.084		-0.003212	162.5557	106.5128	0.510145	2.679			-119.303	666.179
				claystone	KAURI A1	17.5	15.1959		-0.003158	163.2033	106.8015	0.500886	2.6592			-119.5209	665.6046
				claystone	KAURI A1	17.5	15.2659		-0.002745	162.574	105.6083	0.4846	2.6335			-119.5565	658.3854
		122.4		claystone	KAURI A1	17.5			-0.002333	161.9447	104.415	0.468315	2.6078			-119.5921	651.1661
				claystone	KAURI A1	17.5	15.3884		-0.001803	161.3509	103.5322	0.453498	2.5904			-119.7124	644.792
		122.7		claystone	KAURI A1	17.5	15.3686		-0.000786	160.9044	103.9371	0.444777				-120.1839	641.924
				claystone	KAURI A1	17.5	15.3488		0.000231	160.4578	104.342	0.436056				-120.6554	639.0559
	25	123.0	123.15	claystone	KAURI A1	17.5	15.329	2.1036	0.001248	160.0113	104.7469	0.427335	2.6415	56.9895	34.1943	-121.127	636.1879

Figure 4.6: Wireline dataset tagged with lithology information

4.4 Data Preprocessing:

• Assumptions, Delimitations and Limitations

- Uncertainties in logging measurements.
- Most well logs include basic corrections through tool calibrations and environmental corrections for known systematic errors. Because of the statistical nature of most measurements and the complexity of the borehole environment, there will remain some uncertainty, especially as the corrections applied cannot be quantified to eliminate all the errors completely.

Problems with acquisition in wireline logging, such as total or partial failure of tools, bad borehole conditions, and poor choice of logging suites, either due to the availability of tools or acquisition costs, may affect logging runs and cause uncertainty in logging data.

Handling NULL values

- There are always few null values in any real-world dataset. Whether it's a regression, classification or any other kind of problem, it doesn't really matter, no model can handle these NULL or NaN values alone, so a solution for this need to be applied.
- After merging the wireline and mud log dataframe, we discarded the depth intervals during which tool was not recording i.e. have -999.25 value in the dataset.
- Mostly these NAN value intervals lies at the beginning or towards the end of log operation.

In [1]:		panda numpy	saspo asnp	l													
		#Loading KAURI A1 data into pandas dataframe df = pd.read_excel("KAURI A1.xlsx")															
		#Replacing -999.25 values with NaN df = df.replace(-999.25, np.nan)															
			ws with is = 0)	n NaN vai	ues												
Out[1]:		DEPTH	bottom	Lithology	WELL	BS	CALI	DENS	DRHO	DTC	GR	NEUT	PEF	RESD	RESS	SP	TENS
	31	119.65	119.80	claystone	KAURI A1	17.50	15.5364	2.0923	0.005058	148.8977	102.3460	0.499399	2.5665	61.2389	37.3158	-105.2814	637.463
	32	119.80	119 .95	claystone	KAURI A1	17.50	15.6793	2.0914	0.007721	151.3682	101.6178	0.528165	2.5499	59.3539	37.5455	-106.0930	639.363
	33	119.95	120.10	claystone	KAURI A1	17.50	15.8221	2.0906	0.010385	153.8387	100.8895	0.556932	2.5333	57.4689	37.7752	-106.9045	641.263
	34	120.00	120.15	c laystone	KAURI A1	17.50	15.8221	2.0906	0.010385	153.8387	100.8895	0.556932	2.5333	57.4689	37.7752	-106.9045	641.263
	35	120.15	120.30	claystone	KAURI A1	17.50	15 6314	2 0876	0.010720	153 8189	99 8931	0.557587	2 5452	55 9238	38.0698	-108 4325	641.645

Figure 4.7: Handling NULL values in the dataset

Imputation

Imputation is simply the process of substituting the missing values of our datasets. It can be achieved either by defining own customized function or simple imputing technique implementation using the sklearn Imputer class.

In [1]:	imp	ort nu	andas a umpy <mark>as</mark> earn.pr	np	sing impor t	: Impute	r		41.5				
3.3					<i>into panda</i> JRI Al.xls>		rame		18C				
in,				<i>columns</i> lumns=[BS', 'RESS	5', 'SP'	, 'TENS	S', 'DTC'	, 'CALI', 'NEUT', 'PEF', 'RESD'])				
<			-		<i>ues with Na</i> 5, np.nan)	эN		1	19.2				
	imp	outer =	= Imput	er(missi	ing values=	'NaN',	strategy	/='mean')	67 - 67 M				
	<pre>imputer = Imputer(missing_values='NaN' ,strategy='mean') imputer = imputer.fit(df[['GR' , 'DENS' , 'DRHO']]) df[['GR' , 'DENS' , 'DRHO']] = imputer.transform(df[['GR' , 'DENS' , 'DRHO']]) #Printing first 5 rows</pre>												
	df[#Pi	[['GR'	, 'DEN g first	IS', 'DF					', 'DENS', 'DRHO']])				
Out[1]:	df[#Pi df.	[['GR' rinting .head(5	, 'DEN g first 5)	IS', 'DF 5 rows					', 'DENS', 'DRHO']])				
Out[1]:	df[#Pi df.	[['GR' rinting .head(5	, 'DEN g first 5) bottom	IS', 'DF 5 rows	<pre>RHO']] = in WELL NAME</pre>	DENS	ransforr DRHO	n(df[['GR	', 'DENS', 'DRHO']])				
Out[1]:	df[#Pi df.	[['GR' rinting .head(5	, 'DEN g first 5) bottom 115.15	IS', 'DF 5 rows Lithology	<pre>RHO']] = in WELL NAME</pre>	DENS 2.437269	DRHO 0.028387	n(df[['GR GR	', 'DENS', 'DRHO']])				
Out[1]:	df[#P/ df. 0 1	[['GR' rinting head(5 DEPTH 115.00 115.15	, 'DEN g first 5) bottom 115.15 115.30	IS', 'DF 5 rows Lithology claystone	WELL NAME KAURI A1	DENS 2.437269 2.437269	DRHO 0.028387 0.028387	n(df[['GR GR 85.953147	', 'DENS', 'DRHO']])				
Out[1]:	df[#P/ df. 0 1	[['GR' rinting head(5 DEPTH 115.00 115.15 115.30	, 'DEN g first 5) bottom 115.15 115.30 115.45	S', 'DF 5 rows Lithology claystone claystone	WELL NAME KAURI A1 KAURI A1 KAURI A1	DENS 2.437269 2.437269 2.437269	DRHO 0.028387 0.028387 0.028387	GR 85.953147 85.953147	', 'DENS', 'DRHO']])				

Figure 4.8: Applying data Imputation technique to the dataset

• Standardization

Standardization transform the dataset values in such a way that the mean value (μ) is 0 and the standard deviation(SD) is 1. It can be achieved by calculating the mean and SD of the values, then subtracting the mean from each data point and then dividing it by standard deviation. Sklearn library provides a function called **StandardScaler.**

		DEPTH	bottom	Lithology	WELL NAME	DENS	DRHO	GR
	0	115.00	115.15	claystone	KAURI A1	2.437269	0.028387	85.953147
	1	115.15	115.30	claystone	KAURI A1	2.437269	0.028387	85.953147
1.00	2	115.30	115.45	claystone	KAURI A1	2.437269	0.028387	85.953147
100	3	115.45	115.60	claystone	KAURI A1	2.437269	0.004723	82.289400
~	4	115.60	115.75	claystone	KAURI A1	2.437269	0.016166	91.634200
In [2]:	fea	ature_\	ectors/	s = df.dr	op(['WELL	NAME',	'DEPTH',	'Litholo
* [n]	fre	n skle	arn im	ment pro	nracaccine			
In [3]:		JIII SILLO		port pre	processing	,		
in [3]:	#Ti sca	<i>he Stai</i> aler =	ndardSo prepro	calar cla ocessing.	ass can be StandardSo er.transfor	fit to caler().	fit(feat	ture_vect
	#Th sca sca #F.	<i>he Star</i> aler = aled_fe <i>irst 5</i>	ndardSo prepro eatures	calar cla ocessing. = scale ardize el	ass can be StandardSo r.transfor	fit to caler().	fit(feat	ture_vect

Figure 4.9: Applying data Standardization technique to the dataset

Normalization

Standardization also often simply called Min-Max scaling essentially shrinks the data range so that the range is set between 0 and 1 (or -1 to 1 if negative values are present). It works better than standardization technique for the case where the distribution isn't Gaussian or the SD is very small.

Out[1]: DEPTH bottom Lithology WELL NAME DENS DRHO GR 0 115.00 115.15 claystone KAURI A1 2.437269 0.028387 85.953147 115.15 115.30 claystone KAURI A1 2.437269 0.028387 85.953147 1 115.30 115.45 claystone KAURI A1 2.437269 0.028387 85.953147 115.45 115.60 claystone KAURI A1 2.437269 0.004723 82.289400 115.60 115.75 claystone KAURI A1 2.437269 0.016166 91.634200 In [2]: from sklearn import preprocessing # Normalize GR column x_array = np.array(df['GR']) normalized X = preprocessing.normalize([x array]) In [3]: #First Normalized element normalized X Out[3]: array([[0.00568401, 0.00568401, 0.00568401, ..., 0.00568401, 0.00568401, 0.00568401]])

Figure 4.10: Applying data Normalization technique to the dataset

4.5 Final Dataset

The final dataset has in total 8 wells from the Kauri region of Taranaki Basin. Out of these 8, seven wells were used for training purpose and 1 well was used for validation purpose.

Training wells: A1, A2, C1, E3, E6, E7, E8

22

Testing well: E9 •

In Figure 4.11 to Figure 4.18, the wireline logs are plotted alongside the lithofacies associated with them for that particular depth. RE

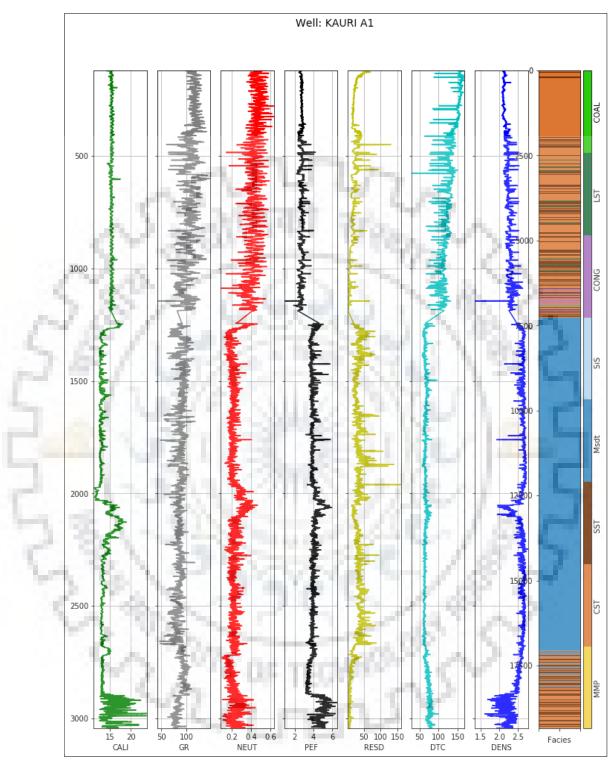


Figure 4.11: Well KAURI A1 having wireline and lithology information

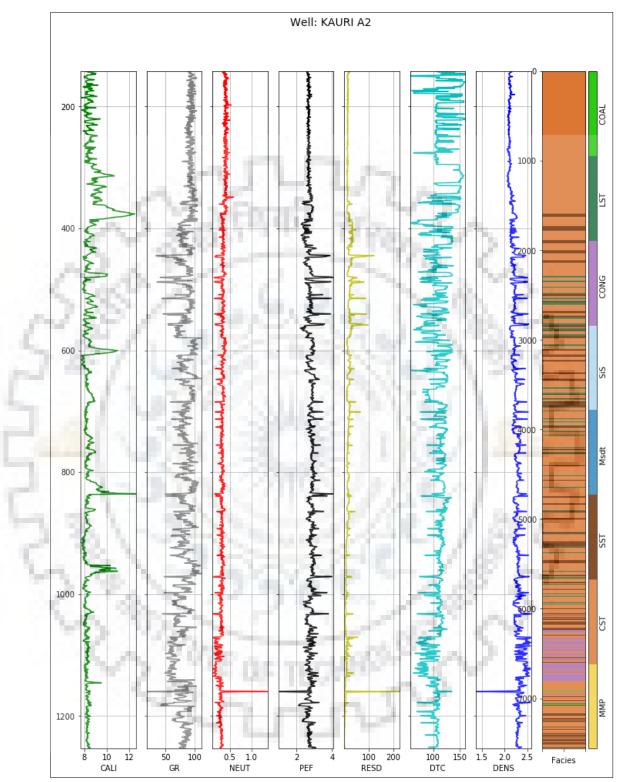


Figure 4.12: Well KAURI A2 having wireline and lithology information

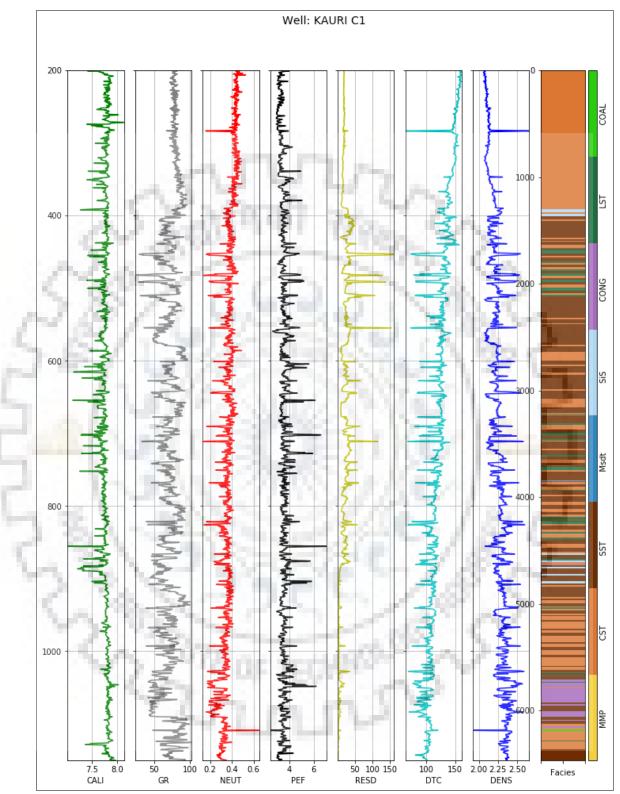


Figure 4.13: Well KAURI C1 having wireline and lithology information

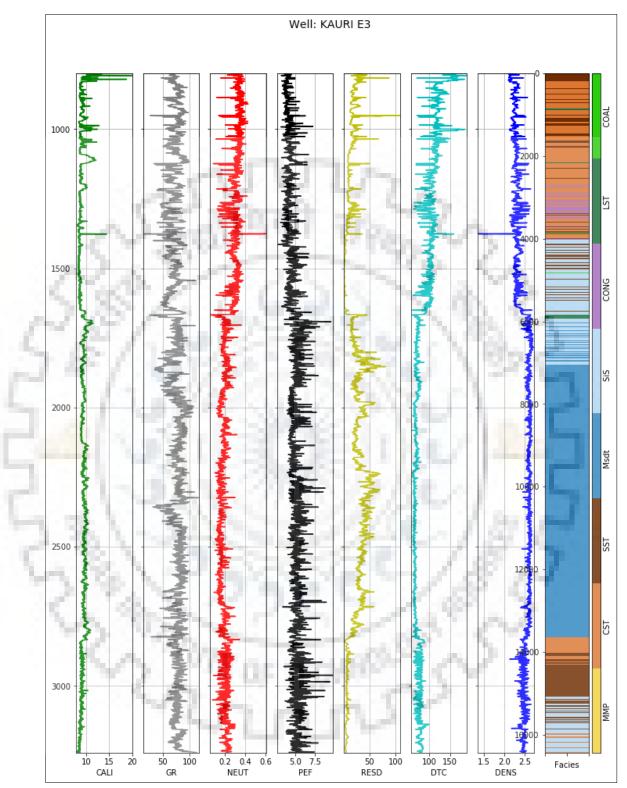


Figure 4.14: Well KAURI E3 having wireline and lithology information

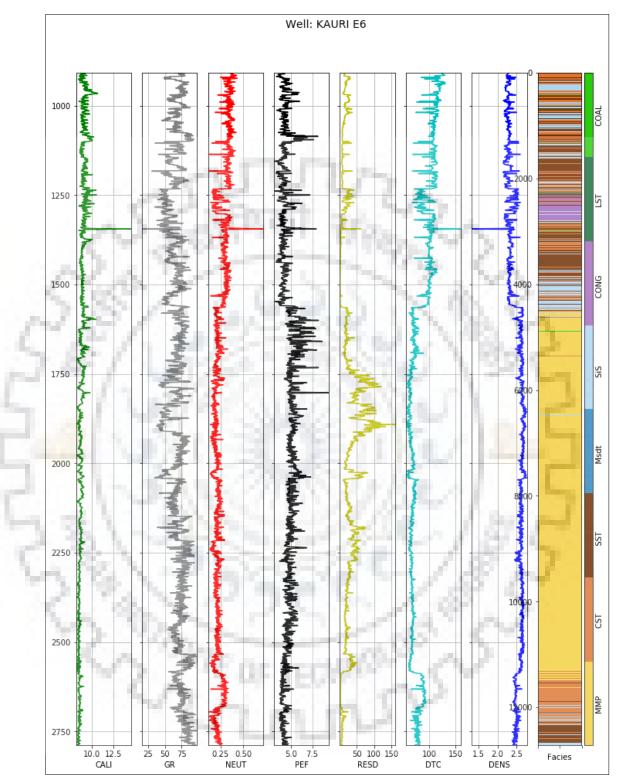


Figure 4.15: Well KAURI E6 having wireline and lithology information

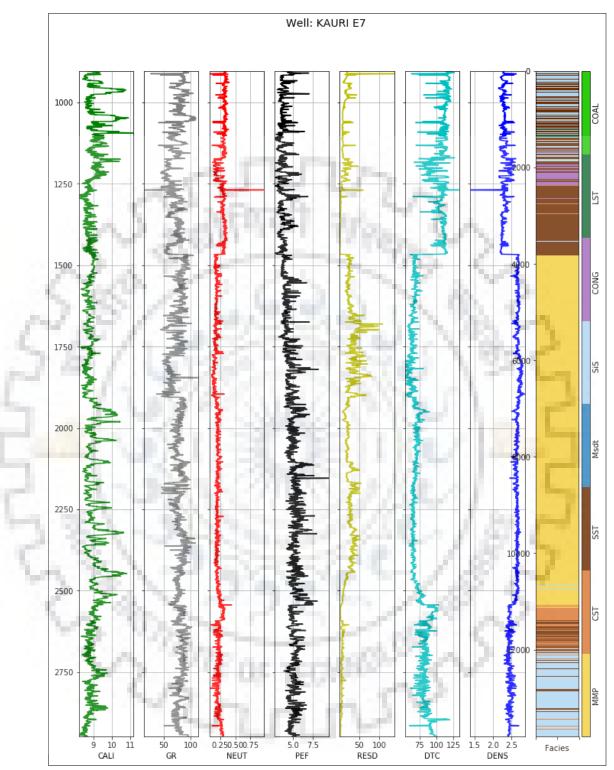


Figure 4.16: Well KAURI E7 having wireline and lithology information

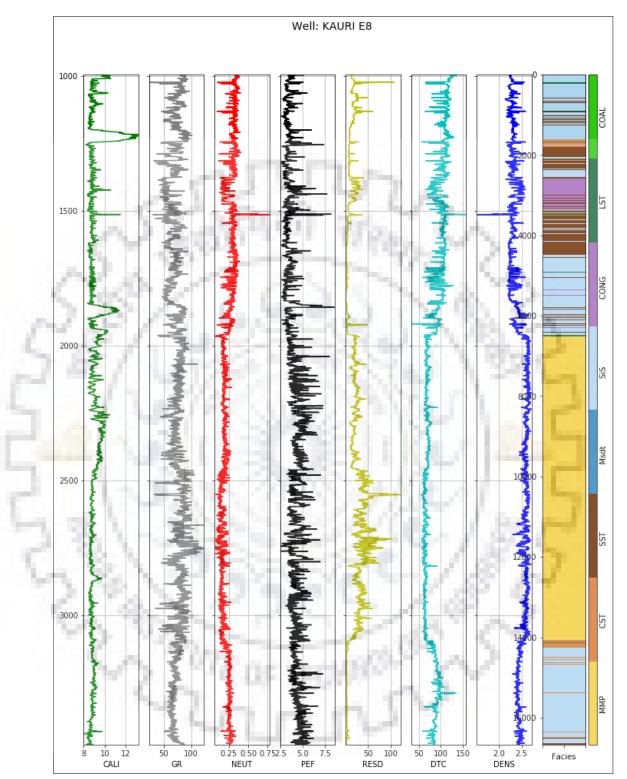


Figure 4.17: Well KAURI E8 having wireline and lithology information

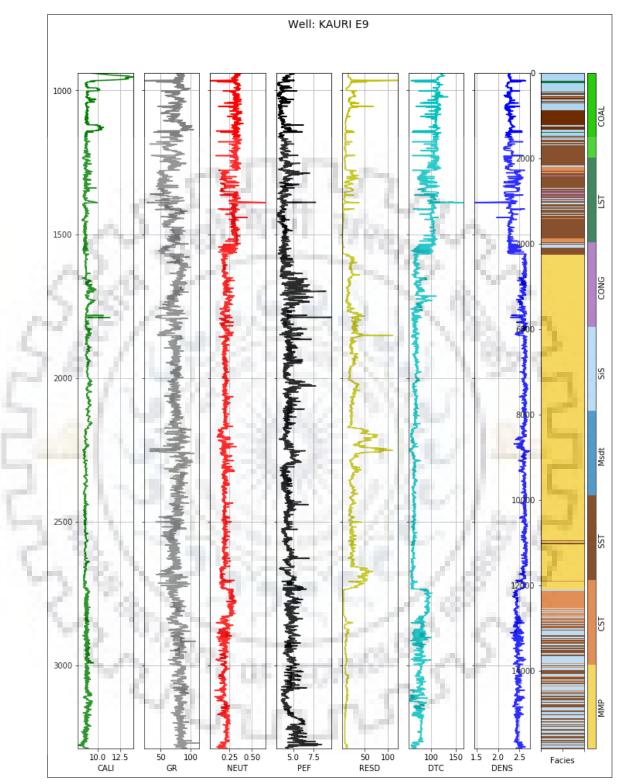


Figure 4.18: Well KAURI E9 having wireline and lithology information

Chapter 5: Methodology

5.1 Support Vector Machines (SVM)

• Exploring the Dataset

First, Import the python libraries

r	
	import pandas as pd
	import numpy as np
	<pre>import matplotlib as mpl</pre>
	<pre>import matplotlib.pyplot as plt</pre>
	<pre>import matplotlib.colors as colors</pre>
	from pandas import set option
	<pre>from mpl toolkits.axes grid1 import make axes locatable</pre>
	#Seaborn library to quickly create a scatter matrix.
	import seaborn as sns
	#Sklearn's preprocessing module to standardize data.
	from sklearn import preprocessing
	#Module to randomly split the training data into training and test sets.
1	<pre>from sklearn.cross validation import train test split</pre>
	#Importing SVM clasifier
	from sklearn import svm
	#Confusion matrix to describe the performance of a classification model.
	<pre>from sklearn.metrics import confusion_matrix</pre>

	DEPTH	FACIES	WELL NAME	CALI	DENS	DTC	GR	NEUT	PEF	RESD
0	119.65	2	KAURI A1	15.536	2.092	148.898	102.346	0.499	2.566	61.239
1	119.80	2	KAURI A1	15.679	2.091	151.368	101.618	0.528	2.550	59.354
2	119.95	2	KAURI A1	15.822	2.091	153.839	100.890	0.557	2.533	57.469
3	120.00	2	KAURI A1	15.822	2.091	153.839	100.890	0.557	2.533	57.469
4	120.15	2	KAURI A1	15.631	2.088	153.819	99.893	0.558	2.545	55.924
5	120.30	2	KAURI A1	15.217	2.083	152.128	98.717	0.539	2.576	54.607
6	120.45	2	KAURI A1	14.802	2.079	150.437	97.540	0.521	2.607	53.290
7	120.60	2	KAURI A1	14.489	2.083	150.845	97.231	0.504	2.635	51.681
8	120.75	2	KAURI A1	14.393	2.107	155.764	98.785	0.490	2.654	49.444
9	120.90	2	KAURI A1	14.297	2.130	160.683	100.339	0.475	2.674	47.207

Figure 5.1: Importing python libraries for SVM classification model

Figure 5.2: Training dataset

• Predictor variables:

The variables which will be used to define the model. Based on the values of these predictor variables, SVM assign a class label i.e. facies type to a particular data point.

- Caliper_log (CALI)
- Density_log (DENS)
- Sonic_log (DTC)
- Gamma_ray_log (GR)
- Neutron_log (NEUT)
- Photoelectric_log (PEF)
- Resistivity_log (RESD)

• Facies classes and their label:

Here the dataset has 8 lithofacies type and the label will be assigned to each facies type in order to use it as a predicted variable.

Facies	Label	Abbreviation		
1	METAMORPHIC	MMP		
2	CLAYSTONE	CST		
3	SANDSTONE	SST		
4	METASEDIMENT	Msdt		
5 000	SILTSTONE	SiS		
6	CONGLOMERATE	CONG		
7	LIMESTONE	LST		
8	COAL	COAL		

Table 5.1: Facies and their corresponding labels

Figure 5.3 describe the statistical distribution of the training dataset. Here, it can be visualized that no NAN value is present in the database, maximum and minimum value of each log, their mean and standard distribution.

	DEPTH	FACIES	CALI	DENS	DTC	GR	NEUT	PEF	RESD
count	92985.000000	92985.000000	92985.000000	92985.000000	92985.000000	92985.000000	92985.000000	92985.000000	92985.000000
mean	1729.431565	2.928881	9.982989	2.441132	89.146149	78.698582	0.265660	4.131045	21.191811
std	820.665299	1.571015	2.384818	0.186902	25.598179	15.418084	0.090677	0.987963	15.943778
min	119.650000	1.000000	7.028000	1.334000	29.018000	13.772000	0.058000	0.915000	1.245000
25%	1069.100000	2.000000	8.632000	2.277000	66.454000	69.149000	0.194000	3.431000	8.224000
50 %	1715.400000	3.000000	8.927000	2.457000	80.808000	78.694000	0.245000	4.037000	18.946000
75%	2409.900000	4.000000	9.873000	2.622000	109.351000	87.625000	0.329000	4.798000	29.682000
max	3480.900000	8.000000	23.837000	2.854000	191.186000	147.428000	1.363000	9.802000	223.720000

Figure 5.3: Statistical Distribution of the Training Data

Figure 5.4 shows the distribution of different facies in the training dataset. It can be easily inferred by visual analysis that the data is skewed and have very few example of COAL lithology as compared with the other lithofacies.

MMP: 21602 , CST: 21213, SST: 16059 , Msdt: 16892, SiS: 12689, CONG: 2744, LST: 1628, COAL: 158

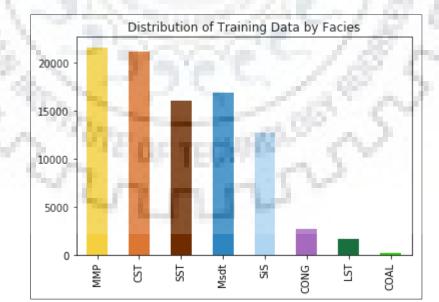


Figure 5.4: Distribution of the Training Data by Facies

Figure 5.5 shows the distribution of different facies in the validation dataset. This dataset has ZERO example of Metasediment (Msdt) and very large number of Metamorphic (MMP) facies example. This type of distribution very heavily affects the prediction ability of the classification model.

MMP: 7771 , CST: 1080, SST: 3824 , Msdt: 0, SiS: 2804, CONG: 115, LST: 83, COAL: 15

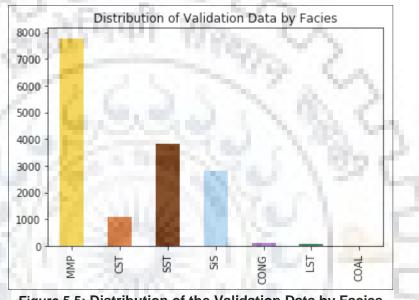


Figure 5.5: Distribution of the Validation Data by Facies

Crossplots:

Crossplots enable us to visualize variation of two properties with respect to the facies type. This training dataset has 7 log variables, and by plotting them in the form of scatter matrix, it become easy to visualization the variation between any two log values w.r.t. facies.

Figure 5.6 provide the visualization utility to analyze log value variation with changing lithology.

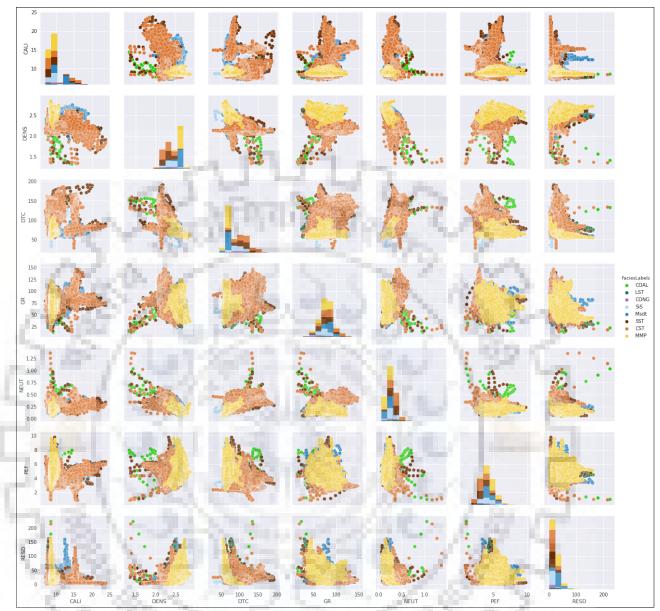


Figure 5.6: Crossplots to demonstrate variation in log values with rock type

• Defining and Training the SVM model

In multi-dimensional space, SVM map the feature vectors as points. It helps in clear distinction of one facies from another. Figure 5.7 shows the definition of a SVM classifier with default parameters.

#Defining the SVM classifier

from sklearn import svm

#Using imbalanced class implementation due to skewed nature of dataset clf = svm.SVC(kernel='rbf', class_weight='balanced', C=1.0, random_state=0)

#Training the classifier using the training dataset
clf.fit(X_train,y_train)

Figure 5.7: Defining SVM model with default parameter

Model Parameter Selection

- Initially, the classifier was built with the default parameters. However, in order to get improved classification results, the optimal parameter choices should be made.
- Now, Considering two parameters C and gamma. The parameter C is a regularization factor and helps in countering the problem of over-fitting.
- The SVM learning algorithm uses a kernel function to compute the distance between feature vectors. Many kernel functions exist, but in this case we are using the radial basis function rbf kernel (the default).
 - The gamma parameter describes how far away two vectors in the feature space need to be to be considered close.

Figure 5.8 describes the technique of parameter tuning. Different combination of C and gamma are used to describe different classifier. Classifier with good training and testing accuracy will be considered for making prediction on blind dataset.

```
# We will train a series of classifiers with different values for C and gamma.
do model selection = True
if do model selection:
   C range = np.array([.01, 1, 5, 10, 20])
   gamma_range = np.array([0.0001, 0.001, 0.01, 0.1, 1, 10])
   for outer ind, gamma value in enumerate(gamma range):
        cv errors = np.zeros(C range.shape)
        train errors = np.zeros(C range.shape)
        for index, c_value in enumerate(C_range):
            #Defining classifier with different C and gamma value
            clf = svm.SVC(kernel='rbf', class_weight='balanced', C=c_value, gamma=gamma_value)
            clf.fit(X_train,y_train)
           train conf = confusion matrix(y train, clf.predict(X train))
            cv conf = confusion matrix(y test, clf.predict(X test))
            cv errors[index] = accuracy(cv conf)
           train errors[index] = accuracy(train conf)
```


Applying the classification model to the blind data

In figure 5.9, we used the classification model with best training accuracy to predict the facies on well (KAURI E9).

```
#Classification on training dataset with gamma = 1 and C = 10
clf = svm.SVC(kernel='rbf', class_weight='balanced', C=10, gamma=1)
clf.fit(X_train, y_train)
```

```
#Classification on blind dataset using the the same classifier
y_pred = clf1.predict(X_blind)
blind['Prediction'] = y_pred
```

```
#Evaluating classifier performance using confusion matrix
cv_conf = confusion_matrix(y_blind, y_pred)
print('Facies classification accuracy = %.2f' % accuracy(cv_conf))
```

Figure 5.9: Classification by SVM model on blind well

5.2 Convolutional Neural Network (ConvNet)

• Importing Python library

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, normalization, Convolution1D
from keras.callbacks import History
from keras.callbacks import np utils
from keras.callbacks import History
from sklearn import metrics
```

Figure 5.10: Python libraries for ConvNet

Architecture of ConvNet

```
#Defined neural network to classify facies
num filters = 12
dropout prob = 0.6
convnet = Sequential()
convnet.add(Convolution1D(num filters, 1, border mode='valid',
                          input shape=(window width, len(feature list))))
convnet.add(Activation('relu'))
convnet.add(Convolution1D(7, 1, border mode='valid'))
convnet.add(Activation('relu'))
convnet.add(Convolution1D(num filters, 3, border mode='valid'))
convnet.add(Activation('relu'))
convnet.add(Dropout(dropout prob / 2))
convnet.add(Flatten())
convnet.add(Dense(4 * num filters))
convnet.add(normalization.BatchNormalization())
convnet.add(Activation('sigmoid'))
convnet.add(Dropout(dropout prob))
convnet.add(Dense(num classes, activation='softmax'))
convnet.compile(loss='categorical crossentropy', optimizer='adadelta', metrics=['accuracy'])
convnet.summary()
# save initial weights
initial weights = convnet.get weights()
```

Figure 5.11: Architecture of CovNet

 We build the Convolutional Neural Network using the Sequential() model. We included 3 Convolutional layer, 3 activation layer. The non-linearity in the model was introduced by 'relu' function.

- In the next step, dropout probability was used before flattening the output. After this
 a fully connected layer, "Dense" was used. After normalizing the result, "sigmoid"
 function was used for activation.
- Optimizer: adadelta
- Loss: categorical_crossentropy

Layer (type)	Output	Shape	Param #
convld_1 (ConvlD)	(None,	15, 12)	96
activation_1 (Activation)	(None,	15, 12)	0
convld_2 (ConvlD)	(None,	15, 7)	91
activation_2 (Activation)	(None,	15, 7)	0
conv1d_3 (Conv1D)	(None,	13, 12)	264
activation_3 (Activation)	(None,	13, 12)	0
dropout_1 (Dropout)	(None,	13, 12)	0
flatten_1 (Flatten)	(None,	156)	0
dense_1 (Dense)	(None,	48)	7536
<pre>batch_normalization_1 (Batch</pre>	(None,	48)	192
activation_4 (Activation)	(None,	48)	0
dropout_2 (Dropout)	(None,	48)	0
dense_2 (Dense)	(None,	8)	392
Total params: 8,571 Trainable params: 8,475 Non-trainable params: 96		N	

Figure 5.12 describe different parameters associated with different layer of ConvNet

Figure 5.12: Description of Layers and parameters

• Training Parameters

- The parameters involved during the training of ConvNet are: Number of filters (num_filters), Dropout probability (dropout_prob), Number of fold (num_fold), Epochs per fold (epochs_per_fold).
- Initially, the model was training was done keeping the values of these parameters as follows:

num_filters: 12

dropout_prob: 0.6

num_fold: 6

epochs_per_fold: 1500

To achieve better prediction accuracy, parameter tuning technique was employed.

```
# define training parameters and prepare arrays to store training metrics
epochs_per_fold = 1500
num_fold = 3
```

```
roll_stride = np.ceil(num_train_samples/num_fold).astype(int)
```

```
convnet_hist = History()
hist = np.zeros((4, num_fold, epochs_per_fold))
flscores = np.zeros(num_fold)
Y_test_ohv = np.zeros((num_test_samples, num_fold, num_classes))
```

shuffle input data
rand_perm = np.random.permutation(num_train_samples)
X_train = X_train[rand_perm]
Y_train = Y_train[rand_perm]

Figure 5.13: Training parameters for ConvNet model

Chapter 6: Results

6.1 SVM Classification Results

• Hyper parameter tuning

Figure 4.1 shows the result of hyper parameter tuning. The model has trained a series of classifiers with different values for C and gamma. Two nested loops are used to train a classifier for every possible combination of values in the ranges specified. The classification accuracy is recorded for each combination of parameter values.

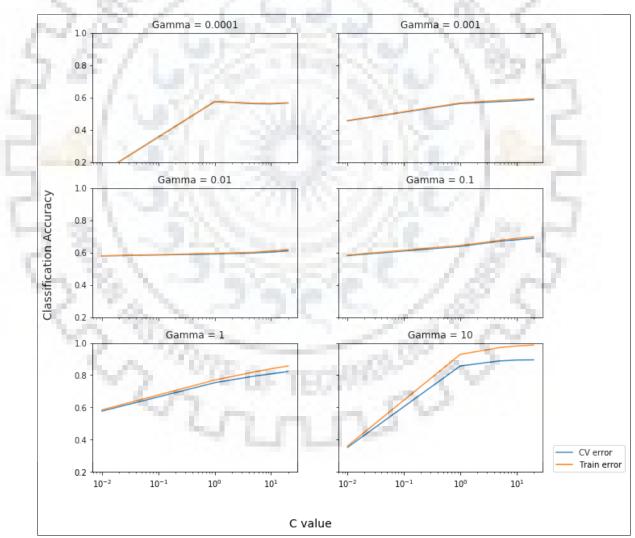


Figure 6.1: Hyper Parameter Tuning

The classifier was evaluated for four different combinations of Gamma and C value. The training and validation accuracy of all these combinations were reported in Table 6.1.

GAMMA	С	Training_Accuracy	Validation_Accuracy	
1	-71	0.89	0.58	
1	10	0.81	0.63	
10	1	0.89	0.58	
10	10	0.89	0.58	

 Table 6.1: Hyper parameter selection table

The best validation accuracy was achieved using the classifier having parameter values gamma: 1 and C: 10.

Figure 6.2 shows the result of classification with the model parameters Gamma = 1 and C = 10. The classifier achieved an accuracy of 0.63 in classifying data from well (KAURI E9).

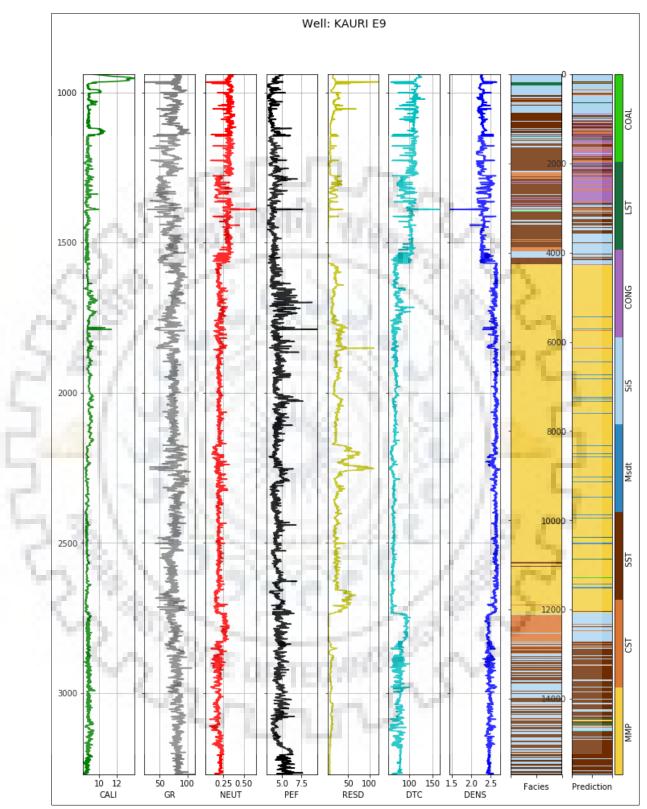


Figure 6.2: Facies prediction result from SVM

• Classification Report:

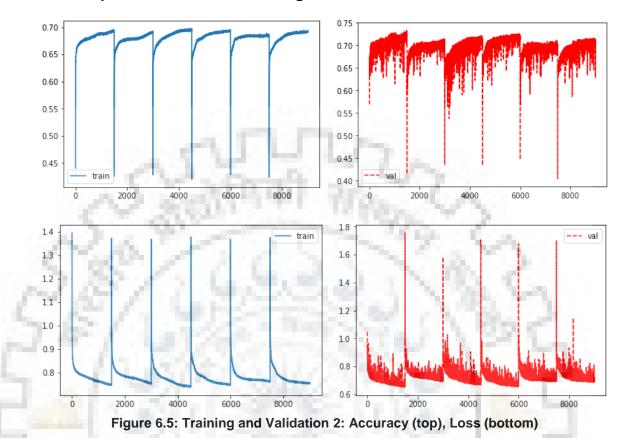
- Precision and recall probability provide a measure for classifier performance on individual lithofacies.
- Precision gives the probability of a particular sample to belong to a particular group.
- Recall measures the accuracy i.e. correct classification probability.
- Support is the frequency of occurrence of a particular type of sample.

print(crassi	Trication_rep	ort(y_bli	.na, y_prea	<pre>target_names=target_n</pre>	ames,
4.82.	precision	recall	fl-score	support	
MMP	0.98	0.92	0.95	7771	
CST	0.14	0.07	0.10	1080	
SST	0.50	0.41	0.45	3824	
Msdt	0.00	0.00	0.00	0	
SiS	0.36	0.36	0.36	2804	
CONG	0.07	0.64	0.12	115	
LST	0.04	0.12	0.06	83	
COAL	0.00	0.00	0.00	15	

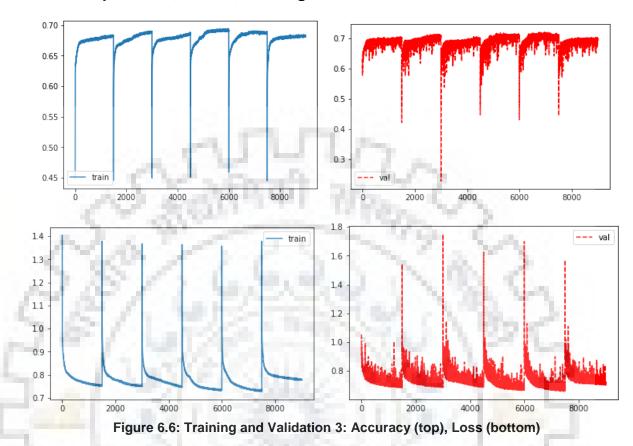
Figure 6.3: Facies prediction result from SVM

Figure 6.3 gives us an idea about the dependency of precision and recall probabilities on the support. Higher the support of a particular facies, higher the f1-score i.e. higher probability of classification model to correctly classify it.

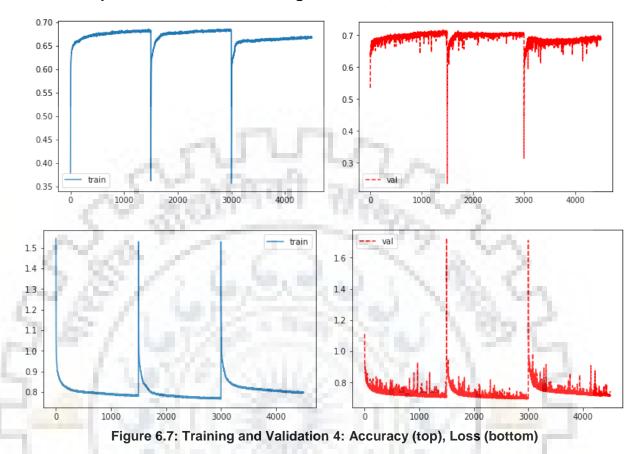
an


6.2 ConvNet Classification Results

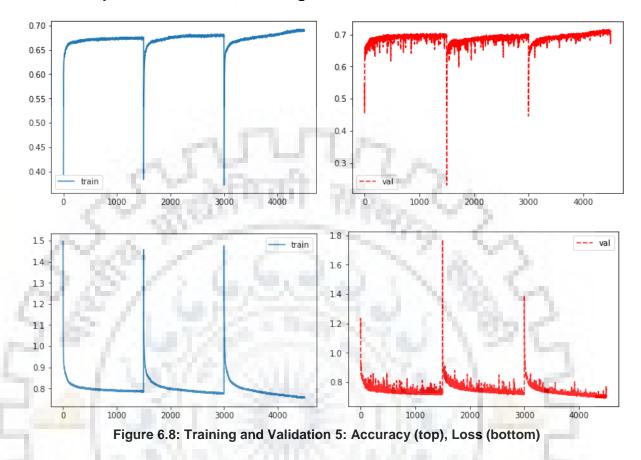
• Hyper parameter tuning


Case 1: Drop out: 0.3, Fold: 6, Training_acc: 0.697, Validation_acc: 0.70

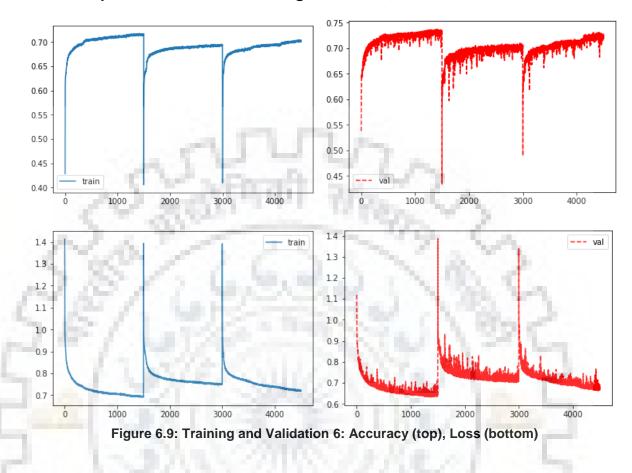
- 6-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.3.
- By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6 sets of predictions.
- The model shows an average F1 score of 0.697 on training dataset.
- Using Soft majority voting technique on 6 predictions, model achieves classification accuracy of 0.70 on the validation dataset.


Case 2: Drop out: 0.4, Fold: 6, Training_acc: 0.713, Validation_acc: 0.70

- 6-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.4.
- By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6 sets of predictions.
- The model shows an average F1 score of 0.713 on training dataset.
- Using Soft majority voting technique on 6 predictions, model achieves classification accuracy of 0.70 on the validation dataset.


Case 3: Drop out: 0.6, Fold: 6, Training_acc: 0.701, Validation_acc: 0.69

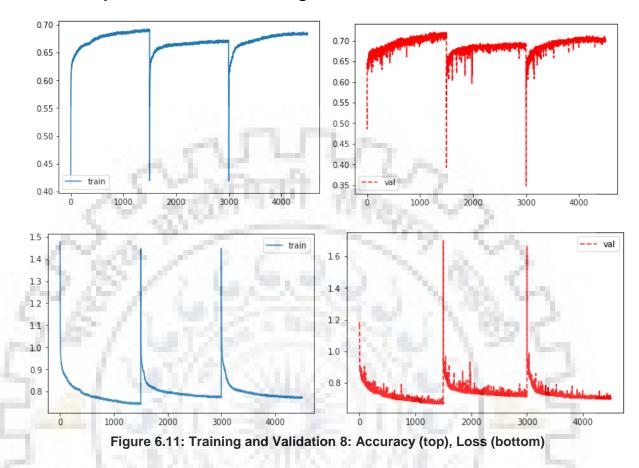
- 6-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.6.
- By using 6-Fold cross-validation, 6 neural networks were trained, ending up with 6 sets of predictions.
- The model shows an average F1 score of 0.701 on training dataset.
- Using Soft majority voting technique on 6 predictions, model achieves classification accuracy of 0.69 on the validation dataset.


Case 4: Drop out: 0.7, Fold: 3, Training_acc: 0.701, Validation_acc: 0.69

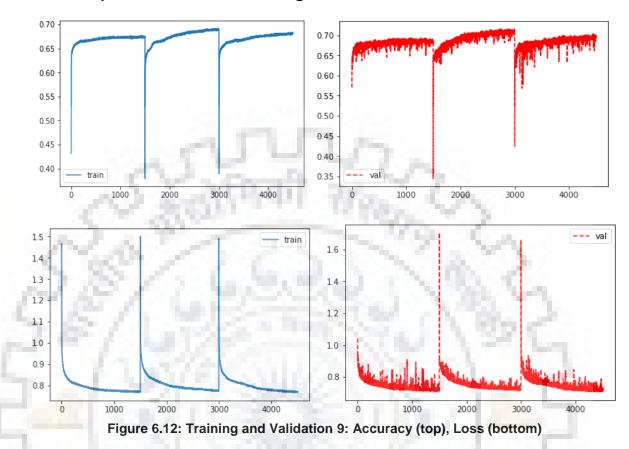
- 3-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.7.
- By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 sets of predictions.
- The model shows an average F1 score of 0.701 on training dataset.
- Using Soft majority voting technique on 3 predictions, model achieves classification accuracy of 0.69 on the validation dataset.

Case 5: Drop out: 0.6, Fold: 3, Training_acc: 0.701, Validation_acc: 0.67

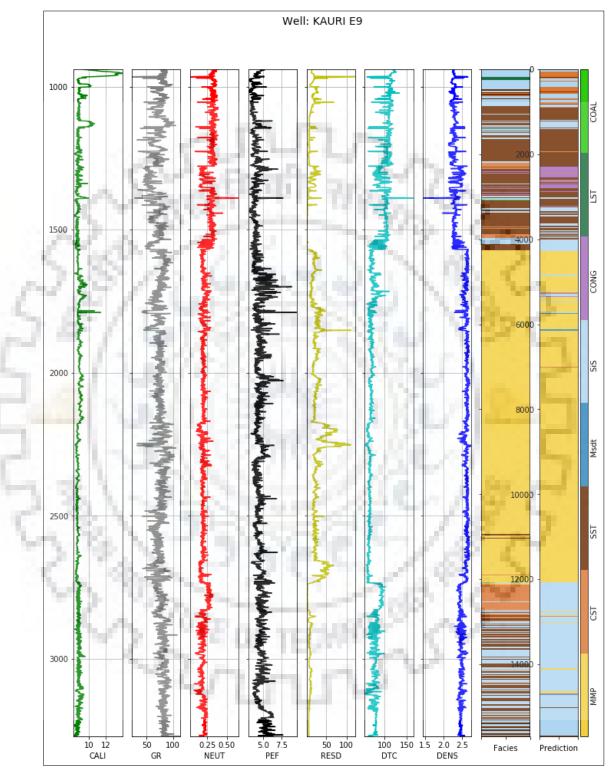
- 3-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.6.
- By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 sets of predictions.
- The model shows an average F1 score of 0.701 on training dataset.
- Using Soft majority voting technique on 3 predictions, model achieves classification accuracy of 0.67 on the validation dataset.


Case 6: Drop out: 0.5, Fold: 3, Training_acc: 0.723, Validation_acc: 0.67

- 3-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.5.
- By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 sets of predictions.
- The model shows an average F1 score of 0.723 on training dataset.
- Using Soft majority voting technique on 3 predictions, model achieves classification accuracy of 0.67 on the validation dataset.


Case 7: Drop out: 0.4, Fold: 3, Training_acc: 0.712, Validation_acc: 0.70

- 3-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.4.
- By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 sets of predictions.
- The model shows an average F1 score of 0.712 on training dataset.
- Using Soft majority voting technique on 3 predictions, model achieves classification accuracy of 0.70 on the validation dataset.


Case 8: Drop out: 0.3, Fold: 3, Training_acc: 0.704, Validation_acc: 0.71

- 3-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.3.
- By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 sets of predictions.
- The model shows an average F1 score of 0.704 on training dataset.
- Using Soft majority voting technique on 3 predictions, model achieves classification accuracy of 0.71 on the validation dataset.

Case 9: Drop out :0.0, Fold: 3, Training_acc: 0.700, Validation_acc: 0.68

- 3-Fold cross-validation was used with each fold having an epoch of 1500 and dropout rate of 0.0.
- By using 3-Fold cross-validation, 3 neural networks were trained, ending up with 3 sets of predictions.
- The model shows an average F1 score of 0.700 on training dataset.
- Using Soft majority voting technique on 3 predictions, model achieves classification accuracy of 0.68 on the validation dataset.

• Model with best accuracy: Drop out: 0.3, Fold: 3

Figure 6.13: Facies prediction result from CNN

The best prediction accuracy of 0.71 was obtained at dropout rate: 0.3 and 3 fold cross-validation.

Classification report:

Figure 6.14 shows the high dependency of model on the number of training examples. A positive correlation is found between the f1-score and support of different facies.

target_names		ST', 'SST',	'Msdt',		<pre>'LST', 'COAL'] target_names))</pre>
	precision	recall f	1-score	support	
MMP	0.97	0.96	0.97	7771	
CST	0.01	0.01	0.01	1080	
SST	0.72	0.41	0.52	3824	
Msdt	0.00	0.00	0.00	0	
SiS	0.43	0.72	0.54	2804	2
CONG	0.13	0.46	0.20	115	
LST	0.20	0.01	0.02	83	2002
COAL	0.00	0.00	0.00	15	0.0
avg / total	0.74	0.71	0.70	15692	

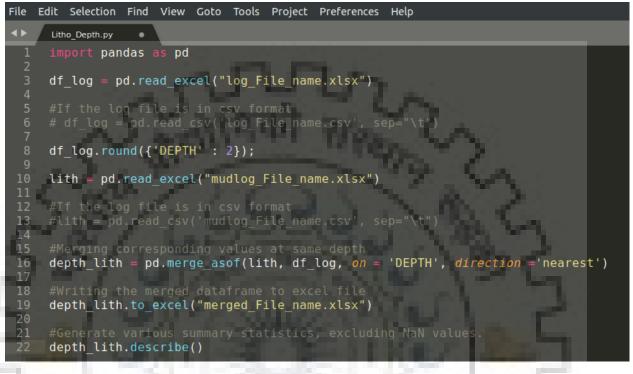
Figure 6.14: Classification report from ConvNet

Chapter 7: Conclusion

anna Sector

- From the work carried out in the thesis, it can be concluded that machine learning and deep learning techniques can be applied to predict the lithofacies of the wells in the regions where we have only few mud logs available with us.
- Results obtained on a set of seven wells validate the proposed approach, which highlights the positive impact of the developed feature augmentation strategy.
- The results obtained while validating our model on blind well also give a confirmation to a good capacity of this model to generalize to new data. Using deep learning strategies for feature learning and classification (e.g., ConvNets), improved results were obtained.
- Both methods have limitation in terms of skewed dataset therefore resulted in poor precision and recall score for those particular facies.
- Both these methods have very high dependency to the support of different lithofacies in the training samples. Higher the support of a particular facies in the training dataset, higher is the probability of correctly classifying that particular facies to its correct class.
- Considering the achieved promising results, future work will be devoted on validating the possibility of adding geological constraints to drive classification with the help of apriori information about rock formation.

- Bohling, G., and M. Dubois, 2003, An integrated application of neural network and markov chain techniques to the pre-diction of lithofacies from well logs.
- Busch, J., W. Fortney, and L. Berry, 1987, Determination of lithology from well logs by statistical analysis: SPE (Society of Petroleum Engineers) Format. Eval.; (United States),2:4
- del Monte, A. A., 2015, Seismic petro physics: Part 1: The Leading Edge, 34, 440– 442.
- Dubois, M. K., G. C. Bohling, and S. Chakrabarti, 2007, Comparison of four approaches to a rock facies classification problem: Comput. Geosci., 33, 599–617.
- Hall, B., 2016, Facies classification using machine learning: The Leading Edge, 35, 906–909.
- LeCun, Y., Y. Bengio, and G. Hinton, 2015, Deep learning: Nature, 521, 436–444.
- Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner, 1998, Gradient-based learning applied to document recognition: Proceedings of the IEEE,86, 2278–2324.
- Pires de Lima, Rafael & Surianam, Fnu & J. Marfurt, Kurt & J. Pranter, Matthew. (2019). CONVOLUTIONAL NEURAL NETWORKS AS AID IN CORE LITHOFACIES CLASSIFICATION. Interpretation. 1-50. 10.1190/int-2018-0245.1.
- Rabaute, A., 1998, Inferring a continuous lithology and mineralogy from multivariate statistical analysis of well-logging data : Examples from some sedimentary structures associated with tectonic plates convergence zones (ocean drilling program leg 134, 156 and 160): Institut des sciences dela terre, de l'eau et de l'espace de Montpellier, Université Montpellier II. Mémoires géosciences-Montpellier.
- Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014, Dropout: a simple way to pre-vent neural networks from overfitting.: Journal of Machine Learning Research, 15, 1929–1958.
- Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, 2015, Going deeper with convolutions: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–9.
- Tschannen, Valentin, Matthias Delescluse, Mathieu Rodriguez and Janis Keuper.
 "Facies classification from well logs using an inception convolutional network." CoRR abs/1706.00613 (2017): n. pag.
- Wang, G., and T. R. Carr, 2012, Methodology of organic-rich shale lithofacies identification and prediction: A case study from marcellus shale in the appalachian basin: Computers&Geosciences,49, 151–163.


Appendix A

Appendix B

```
File Edit Selection Find View Goto Tools Project Preferences Help
       Parsing.cpp
       #include<bits/stdc++.h>
       using namespace std;
       // Splits a given line into different strings at input delimiter
vector<string> splitAt(string line, char delimiter){
            vector<string> answer;
            size_t pos = 0;
            while ((pos = line.find(delimiter)) != string::npos)
                 answer.push_back(line.substr(0, pos));
                 line.erase(\overline{0}, pos + 1);
            answer.push back(line);
            return answer;
      }
      // Extract a number from input which can possibly contain a
double getNumber(string input){
    return atof(input.c_str());
}
 19
 21
22
23
24
25
26
       int main(){
            // this means the gap at which you want to split a range
// ex: for an interval [4,5] and an increment_value of 0.1
// it will create following intervals:
 27
28
 29
            // [4,4.1] [4.1,4.2] [4.2,4.3] ..... [4.8, 4.9] [4.9, 5]
 30
31
            double increment value = 0.15; // 0.15 meter depth interval
 32
33
            char initial_data_file[] = "name_of_your_input_file.txt";
freopen(initial_data_file, "r", stdin);
            char final_data_file[] = "name_of_your_output_file.txt";
freopen(final_data_file, "w", stdout);
 37
38
 39
40
            bool skip_first_line = true; // since the first line in sample file consists
// of wireline logs name
 41
 42
43
            string line;
           while(getline(cin,line)){
                if(skip_first_line){
                                              print the first
                      cout << line << endl;</pre>
                     skip_first_line = false;
55
56
57
                vector<string> splitted_string = splitAt(line, character_to_split_at);
double l = getNumber(splitted_string[0]);
double r = getNumber(splitted_string[1]);
                }
           }
```

Appendix C

