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ABSTRACT 

 

During a seismic event, the buildings situated on slopes are more vulnerable than those 

located on flat ground. The foundations placed on the slopes have reduced bearing 

capacity as compared to the flat surface. This reduced bearing capacity when coupled 

with the synergistic effect of a seismic event can lead to a drastic drop in the bearing 

capacity of the foundations. The slopes are themselves made up of a varied geo-

material. Rock-mass being a major geo-material in the slopes, it becomes inevitable to 

model rock-mass in the simulation of slopes for the seismic analysis of foundations. 

In general practice, the shallow foundations serve as an economic and reliable solution 

to support high-rise buildings, bridges and other heavy structures constructed on rock-

mass. in flat as well as slope. The seismic bearing capacity of foundations in case of 

slopes is an important parameter to judge in the overall stability of a structure in the 

case of a seismic event. In various past earthquakes, even before the failure of a 

structural element, the failure of foundation due to sliding and overturning has been 

observed.  

Various codes of the world are silent on this aspect of seismic bearing capacity of 

foundation on rock-slope. Thus a need for the robust guidelines for the seismic bearing 

capacity estimation is required. Past studies have touched upon this aspect but on a 

limited scale. 

The current study aims to carry out a rigorous parametric analysis using a Finite 

Element Limit Analysis FELA with both the Upper Bound (UB) and Lower Bound 

(LB) estimates of the seismic bearing capacity factors for foundations placed on rock 

slopes. 

The objective of the present study is to obtain the seismic bearing capacity factor, Nϕs 

for a strip footing placed on the top of the slope of rock-mass. The seismic force is 

considered as pseudo-static force, in terms of horizontal seismic coefficient, αh , applied 

on the entire rock mass. The earthquake effect on superstructure is considered as 

additional horizontal force on foundation. The factor Nϕs is obtained and investigated for 

the different value of horizontal seismic coefficient, αh, β, G.S.I., D, γ, mi, σci (where, β 

is the slope angle; G.S.I  and D are the in-situ parameters and γ, mi, σci are the laboratory 

parameters required to define the Hoek-Brown failure criteria) 
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 A rigorous analysis has been carried out to study the effect of all the parameters 

defining the rock-mass property and the slope geometry. The aim of the thesis is to 

develop a robust design charts based on the parametric study. 
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CHAPTER 1: INTRODUCTION 

 

1.1 General 

In the present scenario, as described in Raj et al. (2018), with the rapid urbanization, 

infrastructure development, and scarcity of flat land in hilly regions are driving the 

heavy construction on hill slopes. Many times, despite unfavourable conditions for 

construction, foundations of buildings and bridges are forced to be placed on the slope 

face. Compared with foundations on flat land, these foundations are more prone to 

failure due to slope instability. 

 Further, many of the hilly regions in the world, e.g., the Himalayan region in India, are 

also susceptible to seismic activity. In case of an earthquake event, a synergistic effect 

of sloping ground and seismic loading may cause severe stability problems for earth-

retaining structures and foundations due to reduction in bearing capacity. 

 

Figure 1.1 Building location and foundation failure on slope 

 

Most current standards and codes of practice primarily focus on the estimation of static 

bearing capacity of shallow foundations on flat ground. Guidelines for estimating the 

capacity of foundations on slopes, particularly under the effect of seismic actions, are 

mostly lacking. On the other hand, ample literature is available for the estimation of the 

seismic bearing capacity of strip foundations on flat ground. 

Further, the seismic analysis of structures and foundations situated on the slopes are 

majorly restricted to considering the soil as the geo-material existing on the slopes. 

However, it is not the case usually with many structures located on slopes in the 

Himalayan region. The slope usually consists of a layered system. 
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In this layered system of slopes there exist: 

i. A top soil layer of varying depth 

ii. A layer of highly fractured rock. 

iii. A layer of intact rocks with a few pre-defined planes of weakness. 

In case of an earthquake, any of the above three layers may be the governing cause of 

failure of the foundation and the structure resting on it. Thus it is necessary to extend 

the work done on soil slope to the underlying rock layers as many it may be the case 

that the highly fractured rock or the pre-defined plane of weakness may lead to the 

failure of the structure even if the soil strata of the slope is safe. Also, there are cases 

when the soil does not exist at all and the slope is composed of the rock itself. 

As it was understood from the literature review, studies have been done to estimate the 

seismic bearing capacity of the flat rocks. However, a limited work was found in the 

domain of rock slopes and a research gap exist where an extensive work can be done in 

the seismic analysis of the buildings and foundations on the rock slope. Thus all these 

possibilities lead to this study titled “Seismic behaviour of foundations on rock slope.” 

 

1.2 Rock Slopes 

Himalayas being one of the youngest mountain ranges in the world, are also one of the 

most seismically active mountain ranges in the world. Stability of slopes particularly in 

case of a seismic event is one of the major concern for the engineering community 

across the globe. Slope instability can lead to major consequences such as foundation 

failure, overturning of buildings, landslides and avalanches.   

Rock slopes, in particular, behave differently as compared to soil slopes. Unlike soil, if 

the rock is intact, it is quite rigid, behaves elastically and can offer high compressive 

strength. Due to these attributes, it is common to place foundations directly upon intact 

rocks. 

However, the rock slopes usually found in the Himalayan ranges are less likely to be 

found intact on its surface. Rather the rock slopes found in Himalayas are layered 

system, with the upper layer being the highly fractured rock, followed by the intact 

rocks with well-defined planes of weaknesses. 
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In a slope stability analysis, the two major contributors to the instability are the highly 

fractured rocks that may lead to a plastic flow condition under high stresses or the 

planes of weakness that may yield, break apart or may slide in case of high stresses.  

Thus the stability analysis of a rock slope in its natural state is a precursor before any 

engineering analysis on the slope. Particularly in case of a seismic event it is necessary 

to judge the stability of the slope by introducing the seismic forces either pseudo 

statically or dynamically. 

1.3 Buildings and Foundation on Rock Slopes 

When a building-foundation system is placed on a slope in a hilly region, various 

factors such as topographic amplification, slope stability, bearing capacity of 

foundations on slopes, structural irregularity of hill buildings together contribute to 

impose a high risk on our existing infrastructural capacity in case of a seismic event. 

During a seismic event, the ground motions are affected by the topography, stratigraphy 

of the slope. This ground motion imposes a broader risk of the slope failure itself, which 

is even higher when the building load on the slope is high in case of dense urbanisation. 

There are recommendations for the estimation of slope stability in various codes using 

both pseudo-static method as well as displacement-based method. However, the 

complexity due to the presence of building loads has not been addressed. 

Further the synergistic effect of sloping ground and seismic loading may cause severe 

stability problem for foundations and earth retaining structures due to the loss of bearing 

capacity caused due to the seismic load and the lack of confinement near the edge of the 

slope. As per the literature review, it has been observed that a robust guideline for the 

bearing capacity of foundations on rock slope is mostly lacking. 

Lastly, it has been a consistent observation that the hill side buildings have irregular 

structural configuration. Although it has been an evident practice of designing the 

buildings based on the perspective force based design approach and a special 

consideration for such hill buildings is mostly lacking. However, in the past decade, due 

to the development of the performance-based design and seismic fragility development 

opens up the window for the development of framework for coupled rock slope-building 

system to investigate the various engineering demand parameters specific to such 

irregular hill buildings. 
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1.4 Literature Review 

This review incorporates the study of a set of research papers, broadly classified under 

the following cases: 

a) Bearing Capacity of foundation on: 

i. Isotropic Rocks 

ii. Anisotropic Rocks 

b) Seismic Bearing Capacity of foundation on flat Rock  

c) Seismic Bearing Capacity of foundation on Rock Slope 

The following table has been made to enumerate the various researches being done in 

the past related to the above stated cases as following: 

1.4.1 Bearing capacity of foundation on isotropic rocks 

Under the above stated heading the following research papers were considered: 

 

Table 1.1 List of works related to bearing capacity of foundations on isotropic rock. 

S.N. Author 
Foundation 

Type 
Rock Type 

Failure 

Criteria 
Remark 

1 
Merifield 

et 

al.(2006) 

Shallow  strip 

footing 

Isotropic 

 

 

 

 

The 

generalised 

Hoek–Brown 

failure 

criterion 

Ultimate bearing capacity 

are obtained by 

employing finite elements 

in conjunction with the 

upper and lower bound 

limit theorems of 

classical plasticity. 

 

2 Saada et 

al.(2007) 

Surface strip 

footing 
Isotropic 

Modified 

Hoek–Brown 

criterion 

Ultimate bearing capacity 

is obtained within the 

Framework of the 

kinematic approach of 

limit analysis theory. 

3 Yang & 

Yin (2005) 

Surface strip 

footing 
Isotropic 

Modified 

Hoek–Brown 

failure 

criterion 

Ultimate bearing capacity 

is obtained within the 

Framework of the 

kinematic approach of 

limit analysis theory 
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4 Serrano et 

al.(2000) 

Shallow strip 

foundation 

Extremely 

fractured 

isotropic 

Modified 

Hoek Brown 

criterion 

The ultimate bearing 

capacity of 

rock mass is calculated 

using the plasticity theory 

and the 

Characteristic method. 

 

In Merrifield et al. (2006) applies numerical limit analyses to evaluate the ultimate 

bearing capacity of a surface footing resting on a rock mass whose strength can be 

described by the generalized Hoek–Brown failure criterion. Rigorous bounds on the 

ultimate bearing capacity are obtained by employing finite elements in conjunction with 

the upper and lower bound limit theorems of classical plasticity. The bearing capacity of 

shallow foundations resting on a modified Hoek–Brown rock mass has been 

investigated within the framework of the kinematic approach of limit analysis theory. 

In Yang & Yin (2005) the strength envelope of rock masses is considered to follow a 

modified Hoek–Brown failure criterion that is a nonlinear failure criterion. Two 

different kinds of techniques has been used to develop the ultimate bearing capacity in 

the framework of limit analysis in plasticity. 

A consistent theme that can be seen from the above stated papers is that for the rocks 

(which can be grouped under the category of isotropic rocks i.e. the intact rock or 

heavily jointed rock masses that can be considered homogeneous and isotropic) is that 

the strength criteria usually employed is hoek brown failure criteria. In some places the 

hoek brown criteria was also converted into an equivalent mohr - coulomb criteria for 

the analysis. 

The other consistent theme is that the upper (kinematic) or lower bound limit theorems 

of classical plasticity were employed to estimate the ultimate bearing capacity obtained 

from constrained minimization procedure. 

For the analysis in the domain of the limit analysis kinematic approach various 

mechanisms such as generalized prandtl-type failure mechanism, multi wedge 

translational failure mechanism, etc were used to obtain the lowest ultimate bearing 

capacity out of all. 

 

1.4.2 Bearing capacity of foundation on anisotropic rocks 

The following research items has been studied under the above stated heading: 
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Table 1.2 List of works related to bearing capacity of foundation on anisotropic rock 

S. N. Author 
Foundation 

Type 
Rock Type Failure Criteria Remarks 

1 
Singh & 

Rao(2005) 

Shallow Strip 

Foundations 

Anisotropic 

Non-Hoek–

Brown Rock 

Masses 

A simple 

parabolic 

equation is used 

to define the 

strength 

criterion. 

The method uses 

Bell’s approach of 

computing bearing 

capacity, in which 

the ultimate 

bearing capacity is 

determined as the 

major principal 

stress. 

2 
Bindlish et 

al. (2012) 

Shallow 

Foundation 

Jointed 

Rock Mass 

Experimental 

studies were 

carried out to 

assess failure. 

The effect of the 

joint orientation 

and interlocking 

of rock mass on 

the ultimate 

bearing capacity 

of the rock mass 

has been studied 

3 

Serrano & 

Olalla 

(1998) 

Shallow Strip 

Foundation 

Anisotropic 

Discontinuous 

Rock Mass. 

A non-linear 

behaviour 

through the rock 

mass, defined by 

the Hoek and 

Brown model 

and a linear 

strength 

behaviour along 

the planes of 

weakness, 

defined by their 

cohesion and 

angle 

of internal 

friction 

Six different 

mechanisms of 

failure were 

considered under a 

foundation 

depending on the 

boundary 

conditions and the 

orientation of the 

transverse isotropy 

 

Singh and Rao (2005) make use of the mapping of joints in the field and simple 

laboratory tests on intact specimens of rock. 

In bindlish et al. (2012) an experimental study was conducted wherein a rigid footing 

placed on the top surface of the jointed rock mass was loaded up to the failure. The 

effect of the joint orientation and interlocking of rock mass on the ultimate bearing 

capacity of the rock mass has been studied. 

Serrano & Olalla (1998) uses six different mechanisms of failure were considered under 

a foundation depending on the boundary conditions and the orientation of the transverse 

isotropy. A non-linear behavior through the rock mass, defined by the Hoek and Brown 
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model (parameters m, s and the unconfined compressive strength, respectively) and a 

linear strength behavior along the planes of weakness, defined by their cohesion and 

angle of internal friction. 

In the above stated papers the bearing capacity of anisotropic rock mass is considered 

usually by experimental results and mapping of discontinuity. However, if modeled to 

analyze the intact rock mass were analyzed using hoek brown failure criteria whereas 

the discontinuity was analyzed using mohr coulomb criteria. 

 

1.4.3 Seismic bearing capacity of foundations on flat rock 

The following research items has been studied under the above stated heading: 

 

Table 1.3 List of works related to seismic bearing capacity of foundation on flat rock 

S. N. Author 
Foundation 

Type 

Rock 

Type 

Failure 

Criteria 
Remark 

1 
Keshavarz 

et al.(2015) 
Strip footings Isotropic 

Hoek Brown 

failure criterion 

Stress characteristics or 

slip line method was 

used for analysis 

Seismic effects were 

incorporated using 

pseudo static method. 

2 
Zhou et al. 

(2015) 

Shallow strip 

footing 
Isotropic 

non-linear twin 

shear strength 

criterion 

Kinematic Approach to 

Limit Analysis 

Seismic effects were 

incorporated using 

pseudo dynamic method. 

 

In Keshavarz et al. (2015) the bearing capacity of strip footings on rock masses has been 

studied in the seismic case. The stress characteristics or slip line method was used for 

analysis. The seismic effects were applied as the horizontal and vertical pseudo-static 

coefficients. 

Zhou et al. (2015) analyzes the bearing capacity of shallow foundations resting on rock 

masses subjected to seismic loads based on limit analysis theory. The non-linear twin 

shear strength criterion was used to consider the effects of intermediate principal stress 

on the bearing capacity of shallow foundations. The pseudo-dynamic approach was 

applied to account for the effects of seismic loads on the bearing capacity of shallow 

foundations. 
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In the above two papers the rock mass considered is isotropic and seismic effects are 

considered using two basic methods pseudo static and pseudo dynamic seismic 

coefficient methods. 

 

1.4.4 Seismic bearing capacity of foundation on rock slope 

The following research items were studied under the above stated heading: 

 

Table 1.4 List of works related to seismic bearing capacity of foundation on rock slope 

S. 

N. 
Author 

Foundation 

Type 

Rock 

Type 

Failure 

Criteria 
Remark 

1 Yang (2009) 
Strip 

footing 

Isotropic 

rock 

slope 

Hoek–Brown 

failure criterion 

Limit analysis 

framework used. 

Quasi-static 

representation of 

earthquake effects using 

a seismic coefficient is 

adopted 

 

2 Saada et al.(2010) 
Shallow 

strip footing 

Isotropic 

rock 

slope 

generalized 

Hoek–Brown 

criterion 

framework of the 

kinematic approach of 

limit analysis theory 

A pseudo-static 

approach is adopted to 

account for the 

earthquake effects 

 

3 Ausilio&Zimmaro 

(2015) 

shallow 

strip footing 

Isotropic 

rock 

slope 

“Generalized 

tangential” 

technique in 

which the 

Hoek–Brown 

strength is 

replaced by an 

“optimal” 

tangential 

Mohr– 

Coulomb 

domain. 

The framework of the 

kinematic approach of 

limit analysis theory 

was adopted. 

Earthquake-induced 

displacement-based 

analysis was used to 

incorporate seismic 

effect 

 

 

The seismic bearing capacity of shallow foundations resting on a modified Hoek–

Brown rock mass is investigated within the framework of the kinematic approach of 

limit analysis theory. A pseudo-static approach is adopted to account for the earthquake 

effects for the seismic bearing capacity evaluations. 
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1.5 Objectives 

In the present study, the primary focus is to study the behaviour of the foundations 

placed on slopes made of highly fractured, homogenous and isotropic rock. A rigorous 

parametric study has been planned to study the effects of rock properties as well as 

seismic effects so that some robust guidelines for the stability of foundations on rock 

slopes can be established. The objectives are explicitly illustrated as below:  

1. To calibrate a material model in the Finite Element (FE) framework to 

efficiently model the highly fractured homogenous rock. 

2. To study the behaviour of rock slopes and to obtain a set of stable slopes in case 

of a seismic event. 

3. To obtain the seismic bearing capacity factors of the foundations placed on 

slopes.  

1.6 Methodology and Scope of the Research Work 

In order to obtain the seismic bearing capacity factor, Nϕs for strip footings placed on 

rock slopes, 2D plane-strain nonlinear FELA, using the Lower Bound (LB) and Upper 

Bound (UB) element formulation with Second Order Cone Programming (SOCP). The 

adaptive meshing technique using the shear dissipation, as offered by OptumG2 (2018) 

software is used. To simulate the seismic effect, pseudo-static method is used. The 

seismic horizontal force has been applied on the entire slope in terms of αh and a 

horizontal force proportional to the mass is applied on the foundation. The seismic 

bearing capacity factor obtained has been illustrated with the help of charts to depict its 

parametric variation with the rock properties (GSI, mi, σc, γ) slope geometry (β) and 

seismic effect (αh). 

 

1.7 Organization of Dissertation 

The dissertation has been organized in six chapters as follows: 

Chapter 1 presents a brief introduction of the research topic, the various risks 

associated with the seismic event in a hilly region is illustrated. Further the literature 

review, objectives, methodology and scope of the research work, and organization of 

the dissertation is sated. 



10 

Chapter 2 presents the aspects of numerical modelling of rocks illustrating the methods 

of analysis available, sensitivity and convergence study involved, material model 

calibration. 

Chapter 3 presents the parametric study to obtain the seismic bearing capacity factor 

Nσs as a function of the the rock properties (GSI, mi, σc, γ) slope geometry (β) and 

seismic effect (αh). 

Chapter 4 presents the design charts obtained from the numerical results of the 

parametric study conducted to obtain the seismic bearing capacity factor Nσs. 

Chapter 5 presents the discussions and conclusions derived from the study with the key 

emphasis on the limitations of the work and the future scope associated with it. 
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CHAPTER 2: NUMERICAL MODELLING OF ROCKS 

AND ROCK SLOPES 

 

This particular chapter of the dissertation is focused to illustrate the various steps 

undertaken in the modelling and analysis of the rock slopes. The chapter has been 

classified under the following broad categories: 

1. A detailed illustration of the various methods of analysis those are available in 

literature has been presented. Then an argument is also established for the 

selection of the method of analysis chosen for the work.  

2. A detailed illustration of the sensitivity and the convergence study done to 

ascertain the optimum mesh size and model domain has been presented. 

3. A detailed illustration of the efforts made to establish a robust material model to 

effectively simulate the rock has been presented. Also the efforts made in the 

calibration of the material model in the available commercial software and its 

validation is discussed. 

4. A detailed illustration of the methods employed in modeling and analysis of 

seismic bearing capacity of strip footing on flat surface has been presented. 

5. A detailed illustration of the methods employed in modelling and analysis of 

seismic bearing capacity of strip footing on rock slope has also been presented. 

 

2.1 Available Methods of Analysis 

As stated earlier, the estimation of bearing capacity of strip foundations on rocks forms 

an important part of the work. There are various methods available for the estimation of 

the bearing capacity of foundations on rocks. The utility of a method for an analysis is 

based on the judgment of the scale and complexity of the problem to be considered in 

the analysis. Thus a detailed overview of the various available methods is done. The 

scope and limitations of each method is thoroughly studied so that the method that is 

most suitable for this particular work can be determined. 

Assessment of bearing capacity of shallow foundations has been one of the most 

common problem in civil engineering. The methods generally used for its estimation 

mainly fall within one of the four categories. 
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2.1.1 The limit equilibrium method 

It is a method which is being traditionally used to obtain approximate solutions for the 

stability problems related with the geotechnical domains. The method assumes a failure 

surface of simple shapes such as plane, circular, log spiral etc. with this assumption 

each of the be stability or collapse load determination problem is reduced to finding the 

most critical location of the failure surface which leads to the least estimation of the 

collapse load. Further assumptions regarding the stress distribution along the failure 

surface is made such that overall equation of equilibrium is written in terms of stress 

resultants. It is a simple method that can be solved using simple statics. The method 

basically gives no consideration to soil kinematics, and equilibrium conditions are 

satisfied in a limited sense. 

 

2.1.2 The slip-line method 

Stress state can be broadly classified into two states 

i. Small change in body or surface force will not destroy the equilibrium 

ii. Even a small change in body surface forces will cause loss of equilibrium called 

the limiting stress state. It depends directly on the basic mechanical constants 

which characterize the resistance of granular media to shear deformation. 

 

Rankine established the idea that the loss of equilibrium occurs by means of the slip of 

material over certain curvilinear surface. Then after a large part of the research went 

into two broad streams of thoughts 

i. To find the most suitable slip surface to define the loss of equilibrium. 

ii. To find the exact solution of the limiting equilibrium so that it was possible to 

find the complete solution of the various problems and determination of 

corresponding slip line network. Kötter transferred the set of differential 

equations of equilibrium and the condition of limiting equilibrium at each point 

to curvilinear coordinates. Prandtl assumed a weightless granular soil media to 

obtain a closed form solution. 

The slip line method tries to make an effort with the help of numerical methods to solve 

the set of differential equations and the associated limiting failure equilibrium to obtain 

a grid of slip surfaces completely defining the sub surface. 
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Figure 2.1 The stress components within a rock-mass 

 

Under plane strain conditions in the x-z plane, the unknown stress components at any 

point in the rock mass are related to the body/ inertial forces through the given 

equations: 

 
x xz X

x z

  
+ =

   
(2.1) 

   xzz Z
z x

 
+ =

   
(2.2) 

where, X and Z are the body and/or inertia forces in x and z directions respectively.The 

stress components can be estimated from the failure criteria (for e.g. if Mohr-Coulomb 

is used) as follows: 

 cos(2 )x p R = +
 

(2.3) 

 cos(2 )z p R = −
 

(2.4) 

 sin(2 )xz R =
 

(2.5) 

Using the Equations 2.1 and 2.2, the two stress components in characteristic directions 

can be obtained. 
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In the stress characteristics method, each point in the medium is described with four 

parameters: x, z, p and j, where x and z are the coordinates of the point. Writing above 

equations in finite difference form, the unknown information at any point C can be 

found from points A and B, where BC is the positive and AC is the negative stress 

characteristics. The trial and error procedure is used to compute the properties of point 

C. For the first try, the properties of point Care assumed to be equal to those of points B 

and A in the positive and negative directions, respectively. Then the new properties are 

obtained for point C. This procedure is continued until the differences between the 

calculated properties of point C in the last two-steps are small enough. 

 

Figure 2.2The unknowns at point C can be found from points A and B where BC is the 

positive and AC is the negative stress characteristics 

 

2.1.3 The limit analysis method 

As understood from Chen and Liu (1990) it deals directly with the estimation of the 

collapse load bypassing the spreading process of the contained plastic flow. Such a 

direct determination of collapse load by limit analysis is of great help in obtaining a 

better understanding of the development of uncontained plastic flow through the 

contained plastic flow analysis where the FEM solution development becomes difficult. 

Collapse load as calculated in limit analysis on an idealized structure (where, strain 

hardening is not considered) is not equal to the actual plastic collapse load however a 

good approximation is obtained. An upper and lower bound technique of the limit 

analysis theorem provides a bound of values for collapse. 
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Limit load is defined as the plastic collapse load of an idealized body for which the 

plastic deformation can increase without limit under a constant limit load. This is 

established under an assumption: 

i. Perfectly plastic body 

ii. Small deformations 

Any structural stability problem is defined by the satisfaction of three basic states: 

i. Equilibrium equation  

ii. Compatibility equations 

iii. Constitutive stress strain relationship 

In the limit state analysis problem for lower bound solution  

i. Only Equilibrium equations and yield criteria is satisfied. 

ii. Statically admissible stress field should: 

a) Satisfy the equation of equilibrium  

b) Satisfy the stress boundary 

c) Nowhere violates the yield criteria. 

iii. External load determined is not greater than the actual load thus called a lower 

bound 

iv. It also implies that the unconfined plastic flow will not occur at a load lower 

than this. 

In the limit analysis problem for the upper bound solution  

i. Only compatibility equation and flow rule associated with the yield criteria is 

satisfied. 

ii. Kinematically admissible velocity field should 

a) Should satisfy velocity boundary condition. 

b) Should satisfy the strain rate and velocity compatible condition. 

iii. External load determined is greater than the actual load thus upper bound. 

iv. Unconfined plastic flow must have occurred at a load lower than the obtained. 

The implementation of the kinematic approach to limit analysis relies on the following 

fundamental inequality (Saada, 2011) 

 ( ) ( )e mrp U P U
 

(2.6) 
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where U is any virtual, kinematically admissible velocity field,Pe(U)denotes the work 

done by the external forces, andPmr(U) represents the maximum resisting work 

developed in the failure mechanism. Defined by the π function described below: 

     ( ) ( ) ( ); ( )mrp U d x d v x U x d 
 

= +  
 

(2.7) 

Where, d is the strain rate field associated with the velocity field, [U(x)] is the jump in 

U at a point x when crossing a possible velocity discontinuity surface following its 

normal, and the Π-functions are the support functions defined by the duality from the 

strength criteria. 

 

In order to obtain the collapse load various mechanisms are assumed in the analysis of 

rock structure which can be summarized as follows: 

 

Figure 2.3 Generalized Prandtl-type Failure Mechanism (Saada, 2010) 

 

 

Figure 2.4 Multi-Wedge Translation Failure Mechanism (Saada, 2010) 
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Figure 2.5 A typical mechanism in suitability with the boundary condition of rock or 

rock slopes 

 

Out of the various mechanisms incorporated in the study, the corresponding ultimate 

bearing capacity is obtained from the constrained minimization procedure and then 

further compared to get the least out of all. 

 

2.2 The Numerical Methods 

The usage of numerical methods in the domain of bearing capacity determination opens 

up the space for a very robust simulation of the actual physical characteristics of the geo 

material existing below the foundation. The choice of the method to be used for analysis 

depends upon the scale to which the actual characteristics of the geo material are aimed 

to be simulated in the analysis. 

In case of rocks existing as a geo material below the footing there exist a long set of 

features that requires to be simulated in order to rightly estimate the bearing capacity. A 

detailed review of the various numerical methods available to rightly simulate the rock 

characteristic was done with the help of the review of numerical modeling for rock 

mechanics and rock engineering as published by Jing (2003). 
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A rigorous study of the various available numerical methods was done to develop an 

understanding of the scope and shortcomings of each of the methods of numerical 

modeling of rock. The understanding developed after the thorough study of the methods 

is represented here with the help of a chart as shown below: 

 

where, abbreviations are as follows: 

FEM: Finite Element Method 

FDM: Finite Difference Method 

BEM: Boundary Element Method 

FVM: Finite Volume Method 

DEM: Distinct Element Method 

DDA: Discrete Displacement Analysis 

NOTE 1: Continuum method of analysis of numerical analysis has the following 

features: 

i. Contact pattern between the components of the model do not change. 

ii. Stress aligns as per the strain compatibility of the model. 

iii. It is incapable of capturing large scale displacements and openings along & 

across the fractures within the rock mass. 
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NOTE 2: The above stated method has the following features: 

i. A joint element is provided to simulate the fracture in the rocks. 

ii. Stiffness parameters both KN and KS are specified in the model to incorporate the 

stiffness along and across the fracture joint elastically.  

iii. Large scale opening sliding and complete detachment are not permitted. 

iv. Ill condition of the numerical system due to large aspect ratio may occur. 

NOTE 3: The above stated method has the following features:  

i. The global stiffness may lead to the problem of ill conditioning if the number of 

fracture elements to be incorporated is increased. 

NOTE 4: The above stated method incorporates the elasto plastic mohr coulomb 

material model to simulate the fracture within the rock.  

NOTE 5: discrete methods of numerical analysis have the following features: 

i. Contact pattern between the components of model change with time. 

ii. Strain compatibility is updated with time. 

iii. Capable of simulating large displacements and openings along & across the 

fractures within the rock mass. 

NOTE 6: The above stated method has the following features: 

i. The rock mass is considered deformable. 

ii. The explicit solution is obtained with the help of FDM/FVM discretization. 

iii. No need for solving large scale matrix. 

iv. UDEC is the commercial code available for the above method. 

NOTE 7: The above stated method has the following features: 

i. The rock mass is considered deformable. 

ii. The implicit solution is obtained with the help of FEM discretization. 

iii. There is a need for solving large scale matrix. 

 

As of now, a homogenous highly fractured rock mass is considered for the various 

seismic analyses to be done in the work. The scale of complexity of the real physical 

condition to be incorporated in the modeling is thus fixed in this way. 

Owing to the above stated scale of modeling finite element method of the continuum 

branch of the numerical methods will be used. Continuum numerical methods are found 
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to be suitable to analyze the homogenous set of rock masses. The commercial FEM 

Code and software used in the present study is ABAQUS (2016). 

However, if we consider the bearing capacity estimation part of the work, it is evident 

from the literature that Finite Element Limit Analysis Method FELA is not only found 

to be sufficient but also computationally more economical and efficient, particularly in 

the estimation of the bearing capacities. FELA is a powerful technique that combines 

the capabilities of FE discretization for handling complex soil properties, loadings, and 

boundary conditions, with the plastic bound theorems of limit analysis to bracket the 

exact limit load by upper and lower bound solutions. The theorems of the limit analysis 

are applicable to a perfectly plastic material with associated flow rule. 

This aspect of FELA has been very rigorously explored in Raj et al. (2018). Thus for the 

bearing capacity estimation FELA will be used. The commercial FELA code 

OPTUMG2 has been used in the present study. 

 

2.3 Sensitivity and Convergence Study 

2.3.1 Sensitivity analysis 

For the sensitivity analysis, a simple plane strain 2D Model of a footing was developed 

in abaqus with a soil mass beneath it. The elasto plastic mohr-coulomb material model 

was considered. The known material properties of the soil have been assigned to the 

model so that the results of the study can be validated. 

 In order to estimate the optimum domain of the model a large number of analyses were 

run of varying dimensions of soil mass below. The dimension of the footing was fixed 

and the dimensions of the soil mass were represented as the function of the width of the 

footing. 

On observing the various analyses, the domain size in which the failure pattern of the 

soil did not hindered with the boundaries of the model was considered optimum. The 

selected model had a domain width of 15B and depth of 5B. 

 

2.3.2 Convergence Analysis 

For the estimation of optimum mesh size different analyses with different mesh sizes 

were analyzed. The load displacement curves for different models were plotted to obtain 

the bearing capacity of soil and the mesh size beyond which the results did not varied 
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was considered as the optimum mesh size. The results were further validated with the 

available bearing capacity formulations (analytical and numerical). 

The load displacement curve for different mesh sizes are as given below: 

The validation of the model for the estimation of bearing capacity of soil has been done 

with the soil properties shown in Table 2:  

 

Table 2.1Material Properties 

Width of footing, b (m) 2 

Cohesion of soil, c (kPa) 50 

Angle of fiction, Φ (degrees) 36 

Angle of dilation, ψ (degrees) 33 

Density of soil (kN/m3) 18 

 

The results have been validated from the analytical equation given as follows: 

 Qus = cNc+ 0.5γbNγ +γDfNq (2.8) 

Also the results were validated using the numerical formulation for bearing capacity 

determination as provided in Raj et al. (2018). 

 

Table 2.2 Comparison of bearing capacity 

 Present study Raj et al. Analytical 

Qu (kN) 6422.34 6704 6588 

 

2.4 Material Model 

The major part of the work is concentrated in the development of a suitable elasto 

plastic constitutive model to rightly simulate the behavior of rocks. The rock material 

considered for the analysis is highly fractured homogenous rock mass. Owing to the 

above stated feature of the rock mass the material model with hoek brown failure 

criteria was adopted. The various characteristics of the hoek brown failure criteria and 

the methods used to properly calibrate it in commercial soft wares are discussed in the 

following sub parts. 
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2.4.1 Hoek-Brown failure criteria 

The Hoek–Brown failure criterion for rock masses was first described in 1980 and has 

been subsequently updated in 1983, 1988, 1992, 1995, 1997, 2001 and 2002.The latest 

version that is used here can be written as: 

 ( )
'
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' '

1 3
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ci bm s
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
  = + +
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The relationships between mb/mi, s and the geological strength index (GSI) are as 

follows: 
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The GSI was introduced because Bieniawski’s rock mass rating (RMR) system and the 

Q-system were deemed to be unsuitable for poor rock masses. The GSI ranges from 

about 10, for extremely poor rock masses, to 100 for intact rock. The parameter D is a 

factor that depends on the degree of disturbance. The suggested value of the disturbance 

factor D is 0 for undisturbed in situ rock masses and D is 1 for disturbed rock mass 

properties. 

The unconfined strength is obtained as follows: 

 c cis
 =

 
(2.13) 

Tensile strength as: 
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Figure 2.6Applicability of Hoek-Brown failure criterion (Merifield, 2006) 

2.4.1.1 Calibration and validation 

As it has been discussed above that one of the major problem of implementing the hoek 

brown failure criteria is the lack of availability of hoek brown material in the various 

available finite element commercial codes. Thus a large part of the work is focused on 

calibrating the material model into the available software (In this case ABAQUS). The 

various methods available for implementing the model can be broadly classified as 

follows: 

i. Using the equivalent Mohr-Coulomb model 

ii. Using the tangential linearization of the failure criteria 

Using the equivalent Mohr-Coulomb model, under the following section an effort is 

made to numerically simulate the rock slope using the Hoek Brown failure criteria 

which is assumed to satisfactorily represent the rock strength as per the studied 

literature. But a major concern encountered in the process is that the most of the 

geotechnical soft wares are written in terms of the Mohr-Coulomb failure criterion in 

which the rock mass strength is defined by the cohesive strength c’ and the angle of 

friction Φ’. There is no direct correlation between Mohr Coulomb criterion and the non-

linear Hoek-Brown criterion. Consequently, determination of the values of c’ and Φ’ for 

a rock mass that has been evaluated as a Hoek-Brown material is a difficult problem. 

The difficulty in applying this approach in practice is that most of the geotechnical 

software currently available provides for constant rather than effective normal stress 

dependent values of c’ and Φ’. 
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As suggested in Hoek E, et al (2002) it is necessary to determine equivalent angles of 

friction and cohesive strengths for each rock mass and stress range. This is done by 

fitting an average linear relationship of Mohr Coulomb criterion to the curve generated 

by Hoek Brown criterion for a range of minor principal stress values defined by σt< σ3< 

σ3max. 
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The Mohr-Coulomb shear strength τ, for a given normal stress σ, is found by 

substitution of these values of c’ and Φ’ in to the equation: τ=c’+σtanΦ’. The equivalent 

plot, in terms of the major and minor principal stresses, is defined by: 

 

 

(2.19) 

Relationships between major and minor principal stresses for Hoek-Brown and an 

equivalent Mohr-Coulomb criterion are given by the following figure: 
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Figure 2.7 Hoek-Brown and an equivalent Mohr-Coulomb criterion 

 

Callibration analysis has been carried out for various varying parameters of rock input 

properties for Hoek Brown failure criterion (such as GSI, mi) to better understand how 

efficiently the Mohr Coulomb criterion curve is fitted with the Hoek Brown criterion 

using the above stated formula of equivalent c’ and Φ’ as suggested by Hoek et al. 

(2002). The results have been illustrated in the Figure 2.8 to 2.12 for a constant GSI and 

varying mi and in the Figure 2.13 to 2.21 for a constant mi and varying GSI. 

 

It can be observed, from Figure 2.8 to 2.12 that as the mi of the rock, which is indicative 

of the rock type is increasing (i.e. as the rock characteristic improves) the curvature of 

Hoek-Brown failure criterion curve increases and it loses agreement with the linear 

Mohr Coulomb failure criterion curve. 
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5  

Figure 2.8 Failure criteria in principle stress plane for GSI = 10 and mi = 5 

 

 

Figure 2.9 Failure criteria in principle stress plane for GSI = 10 and mi = 10 
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Figure 2.10 Failure criteria in principle stress plane for GSI = 10 and mi = 20 

 

 

Figure 2.11 Failure criteria in principle stress plane for GSI = 10 and mi = 30 
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Figure 2.12 Failure criteria in principle stress plane for GSI = 10 and mi = 35 

 

 

Figure 2.13 Failure criteria in Principle stress plane for mi = 10 and GSI = 10 
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Figure 2.14 Failure criteria in principle stress plane for mi = 10 and GSI = 20 

 

 

Figure 2.15Failure criteria in Principle stress plane for mi = 10 and GSI = 30 
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Figure 2.16 Failure criteria in principle stress plane for mi = 10 and GSI = 40 

 

 

Figure 2.17 Failure criteria in principle stress plane for mi = 10 and GSI = 50 
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Figure 2.18 Failure criteria in principle stress plane for mi = 10 and GSI = 60 

 

 

Figure 2.19 Failure criteria in principle stress plane for mi = 10 and GSI = 70 
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Figure 2.20 Failure criteria in principle stress plane for mi = 10 and GSI = 80 

 

 

Figure 2.21 Failure criteria in principle stress plane for mi = 10 and GSI = 90 
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be seen that with the increasing GSI the tensile strength of the rock also increases. 
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A concerning issue which can be seen from the above graphs is that in the values of σ3 

less than about 5 MPa (which are usually encountered in slope stability analysis, as the 

overburden is comparatively less than as compared to tunnel or underground structure) 

the equivalent Mohr Coulomb criteria overestimates the results by a significant amount. 

When compared to the results obtained from Hoek-Brown failure criterion. Under such 

circumstances, it would be prudent to use values of c’ and Φ’ based on a tangent to the 

shear strength curve in the range of σn where the overestimation is dominant. In this way 

the c’ and Φ’ values will be different in the different ranges of stresses. However, it is 

also a matter of concern as most of the geotechnical FEM software a constant c’ and Φ’ 

is entered and a continuously or discreetly varying c’ and Φ’ input in a geotechnical 

FEM software is a concept still to be explored. 

Further, another concern in using the equivalent mohr-coulomb model is limiting the 

tensile strength of the equivalent model by using the tension cutoff feature in the various 

software it is necessary to consider this as the tensile strength of the rock is limited and 

is given by the equation: 

 σt=-sσci/mb (2.20) 

If such a tension cutoff is not provided, then the results will be surely overestimated. 

The analyses with the provided tension cutoff was done and compared with the analysis 

results without the tension cutoff and it showed that by ensuring the tension cutoff the 

results got reduced. 

Using the tangential linearization of the failure criteria. Under this section, a large part 

of the work has been focused on the methods available in the literature to convert the 

Hoek-Brown failure criteria from the sigma stress plane into the τ σ plane and then 

using the various tangential methods available to represent the failure criteria into a set 

of changing c and Φ value. In order to obtain this set of changing c and Φ the various 

literatures has been studied. Chen and Krakus (2012), Kumar (1998) and Priest (2005) 

were consulted to obtain the set of changing c and Φ parameters. Once this set of 

changing c and Φ is obtained, a computer code is required to be written to implement 

such a material model. Now analysis for the bearing capacity of rocks has been done 

under various models on the available commercial software named ABAQUS & 

OPTUMg2. The results of calibration were validated by the work of Merifield et al. 

(2006) and illustrated in the graph below: 
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Figure 2.22Validation for the material model 
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CHAPTER 3: PARAMETRIC STUDY 

 

3.1 Introduction 

As it has been illustrated previously, the foundations constructed on hill slopes are more 

prone to failure as compared to foundations on flat land. Further, it is also observed that 

many hilly regions are also susceptible to frequent seismic activity.  

Severe stability problems with the foundations arise when the reduced bearing capacity 

due to its position near the slope is coupled with the destabilizing effect of an 

earthquake. This effect has been widely reported in the past literature by Huang and 

Chen (2004); Huang (2005) and Huang and Kang (2008) based on post-earthquake site 

investigation and subsequent stability analysis after Chi-Chi earthquake (1999) in 

Taiwan. Tatsuoka et al. (1998) reported that during Hyogoken-Nambu (1995) 

earthquake, the gravity walls failed due to reduced bearing capacity prior to lateral 

sliding or overturning of the wall.  

Currently, most of the standards and codes of practice (IS6403; EN1997-1 2004; 

NCHRP 2010) are largely silent on the estimation of seismic bearing capacity of 

foundations situated near the rock slopes. Several researchers (Saada et al. 2006; 

Merifield et al. 2006; Serrano and ollala 1994) have proposed the estimation of bearing 

capacity placed on flat rock. Also, there is ample literature for the estimation of bearing 

capacity of strip foundations on flat rock considering the seismic effects () and the 

estimation of bearing capacity of strip foundation on rock slopes () under static 

conditions. However, very limited literature is available for the estimation of bearing 

capacity of strip foundation located on rock slope (). There is no rigorous parametric 

study available, which can help in the development of guidelines for the estimation of 

the bearing capacity of foundation on rock slopes, particularly under the effect of 

seismic actions. 

Most of the earlier studies consider the pseudo-static earthquake body forces within the 

rock-mass and are primarily based on: (1) the limit equilibrium method (2) the limit 

analysis method and (3) the method of stress characteristics. A consistent observation 

from the previous study is that the ultimate bearing capacity decreases quite 

significantly with an increase in horizontal seismic acceleration coefficient (αh)   
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In most of the past studies, considering the foundations on rock slopes, the rock-mass is 

considered highly fractured, homogenous and isotropic in the analysis. Hoek-Brown 

failure criteria is widely used to define the yield in the elasto-plastic domain of the 

analysis. Both the Saada et al. (2010) and Yang (2018) derives the upper bound 

estimates of the seismic bearing capacity near the rock slopes in the limit analysis 

framework. In both these works a predefined geometry of failure mechanism has been 

assumed. Further the range of parameters investigated in these studies are limited. Thus 

it is difficult to establish a guideline for the practical purposes from them.  

To overcome these limitations, the current study utilizes the Lower Bound (LB), Upper 

Bound (UB) formulations in Finite Element Limit Analysis (FELA) with Second Order 

Cone Programming (SOCP) and adaptive meshing technique based on shear dissipation, 

available in OptumG2 (2018) software is used. The results obtained from the numerical 

study are presented in the form of design charts for the practical usage. The variation in 

the failure patterns with the different governing parameters has also been explored in 

this study. 

 

3.2 Problem Statement 

The objective of the present study is to obtain the seismic bearing capacity factor, Nϕs 

for a strip footing placed on the top of the slope of rock-mass. The seismic force is 

considered as pseudo-static force, in terms of horizontal seismic coefficient, αh , applied 

on the entire rock mass. The earthquake effect on superstructure has been considered as 

additional horizontal force on foundation. The factor Nϕs is obtained and investigated for 

the different value of horizontal seismic coefficient, αh, β, G.S.I., D, γ, mi, σci (where, β 

is the slope angle; G.S.I  and D are the in-situ parameters and γ, mi, σci are the laboratory 

parameters required to define the Hoek-Brown failure criteria)  

The schematic representation  of the slope foundation system considered in the present 

study is shown in fig. the magnitude of the collapse load Qusis expressed in terms of a non-

dimensional factor (Saada et al 2006), as given in equation 3.1  

us
us ci s

Q
q N

B
= =                      (3.1) 
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Where, Qus is the magnitude of the vertical load for the foundation in presence of 

pseudo-static horizontal seismic force, Nσsis the seismic bearing capacity factor 

considering the effect of the unconfined compressive strength of the rock-mass.  

The values of the factor Nσs is obtained for the highly fractured, homogenous, and 

isotropic rock-mass with the selected practical range of governing parameters:  = 10 

to 80; GSI= 10 to 90; D=0, 0.5, 1; mi= 7, 10, 15, 17. 25; a dimensionless factor for the 

scale and density factor 
c

B



 = 125, 250, 500, 1000, 2000, 5000, 10000 and  ; h = 0 to 

0.5g, where g is acceleration due to gravity, have been presented here. 

 

3.3 Finite Element Modelling 

In the present study, 2D plane-strain nonlinear Finite Element (FE) model of rock slope 

with a strip foundation placed on its top has been developed. An elasto-plastic 

constitutive model based on Hoek-Brown failure criterion and following associated flow 

rule ( = , where  is the dilation angle) has been used for modelling of rock-mass in 

FELA. In the present study, the rock-mass has been discretized using triangular 

elements with LB and UB formulations. The strip foundation has been modelled using 

‘plate’ element. The two-node elastic plate element in plane-strain domain actually acts 

like a standard Euler-Bernoulli beam element. The strip foundation is considered as a 

rigid elastic material. The interface material between the foundation and the surrounding 

rock-mass is considered same as the rock-mass with zero tension cut-off (to simulate 

gap and uplift) and R’=1 (to simulate rough foundation) has been considered. 

As shown in the fig., at the base of the FE model, the movement in both the directions 

(i.e. both X- and Y- displacements) are restrained, while for the side boundaries, only 

vertical displacement is allowed (i.e. X-displacement is zero). The lateral extent and 

dimensions of the FE model have been considered after carrying out the sensitivity 

analysis in such a way that the effect of boundary conditions on the domain of interest is 

insignificant. The adaptive meshing based on the shear dissipation has been employed. 

Three iterations of adaptive meshing with number of elements increasing from 8000 to 

10000 have been used for all the analysis. 
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Figure 3.1 Finite element Model (in OptumG2 (2018)) 

 

To simulate the seismic effect, a pseudo-static acceleration has been applied on the 

entire rock-mass, fractioned with the horizontal seismic coefficient, h  whereas on the 

foundation an additional horizontal force is applied which is proportional to the vertical 

load supported by the foundation. 

A schematic flowchart of the various parameters to be investigated is shown in fig. 3.2. 

 

 

Figure 3.2 Schematic diagram of the parametric study 
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3.4 Model Validation 

In order to validate the plane strain model being used in the analysis in the light of mesh 

size, type, domain, material constitutive law, etc. a simple model with the footing placed 

on a flat rock mass is considered. The UB and LB Nσ values are compared with the past 

studies and the comparison is illustrated with the help of a fig.3.3. In the current 

analysis both the UB and LB has been estimated and the average of the two is reported 

as the Nσ value.  

 

Figure 3.3 Model validation 

 

3.5 Results and Discussion 

An extensive numerical study has been performed and a large set of numerical results 

were available. Thus the results are broadly classified and illustrated in this section so 

that the effect of the various parameters defining the rock properties (mi, GSI, D) as well 

as the other parameters incorporating the geometry of the slope (slope angle,β) and the 

seismic event (Horizontal seismic coefficient,αh). The results are as follows: 
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3.5.1 Variation of Nσs with the rock type, mi and disturbance factor, D 

 

Figure 3.4 Variation of Nσs with the rock type, mi and disturbance factor, D 

 

It is evident from the above graph that the as the material property for the rock-mass 

increases from being soft rock (e.g. shales, sedimentary rocks), characterised by low 

value of mi (such as 5,7,10) to the harder rocks (e.g. igneous rocks), characterised by 

high value of mi the seismic bearing capacity factor increases.  

This increase in value of the factor can be attributed to the higher collapse load carrying 

capacity of harder rocks. The harder rocks carry higher collapse load because of the 

inherent higher failure capacity of such rocks, contributed by the better microstructural 

arrangement of such rocks. 

It is also evident from the graph that, as the disturbance factor for the rock increases its 

seismic bearing capacity reduces. The disturbance factor is an in-situ parameter for the 

state of rock at the site due to blasting operations carried on the site in history. The 

higher value of D is an indicator of greater disturbance in the rock matrix due to the 

blasting operation on the site. 

This disturbance of the matrix due to the blasting operation leads to loss of interlocking 

strength within the rock-matrix. This leads to a lower failure capacity. thus leading to 

lower collapse load and hence a lower capacity factor. 
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3.5.2 Variation of Nσs with Geological Strength Index GSI 

 

Figure 3.5 Variation of Nσs with Geological Strength Index GSI 

 

It is evident from the graph that, with the increase in the GSI the bearing capacity factor 

increases for all ranges of D. The GSI value is also an in-situ parameter depicting the 

state of rock at the site. The parameter depicts the state of fracture within the rock 

matrix. 

The higher the value of GSI the higher is the fracture within the rock-mass. the state of 

fracture within the rock mass is a major factor defining the strength of the rock-matrix. 

The higher is the fracture within the rock mass the lower is the failure strength criteria. 

Thus the collapse load decreases with the increase in the fracture state of the rock. 

The GSIis different from the disturbance factor in a manner that, it is an indicator of the 

fracture state due to the natural existence of the rock. Whereas the disturbance factor is 

the state of disturbance due to the man-made blasting activities carried out at site during 

tunnelling or road cutting operations. 
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3.5.3 Variation of Nσs with horizontal seismic coefficient αh and scale factor c

B



  

 

Figure 3.6 Variation of Nσs with horizontal seismic coefficient αh and scale factor c

B




 

 

The scaling factor is a factor which accounts for the area of failure surface and mass of 

the geo-material being involved in the failure mechanism. The lower is the value of the 

scale factor the larger is the mass and the area involved in the mechanism.  

This suggests the truncation of the bearing capacity charts for the lower value of the 

scale factor. For lower values since the mass involved in the mechanism is high thus 

under the effect of horizontal seismic action through pseudo static methods, the slope 

itself fails.It then becomes a slope stability issue for such low values of the scale factor 

and thus the bearing capacity calculation in such a case is irrelevant and hence the graph 

is truncated. 

The effect of horizontal seismic coefficient is clearly visible, that by increasing the 

value of αh, the factor reduces. 
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Figure 3.7 Shear dissipation contours 
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CHAPTER 4: DESIGN CHARTS 

 

In this particular chapter, a sample set of design charts for the estimation of bearing 

capacity factors for different slopes is provided: 

 

4.1 For 10 slope 

In the given section, the charts are developed. For different values of disturbance factor 

D (0, 0.5, 1). For different values of rock type mi (7, 10, 15, 17, 25) For different GSI 

(10, 20, 30, 40, 50, 60, 70, 80, 90) are given for the estimation of bearing capacity factor 

for different combinations have been illustrated in the Figure 4.1 to 4.3.  

 

4.2 For 20 slope 

In the given section, the charts are developed. For different values of disturbance factor 

D (0, 0.5, 1). For different values of rock type mi (7, 10, 15, 17, 25) For different GSI 

(10, 20, 30, 40, 50, 60, 70, 80, 90) are given for the estimation of bearing capacity factor 

for different combinations have been illustrated in the Figure 4.4 to 4.6.  

The design charts can be effectively used to estimate the seismic bearing capacity 

factors. It can prove to be an effective tool for the design engineers. 

 

The result interpretation through graphs and design charts lead to a very large set of 

document to be investigated in order to achieve the required engineering judgement 

related with the bearing capacity problem. This can be a cumbersome task and thus to 

minimize this effort, a better data interpretation technique needs to be employed which 

is more concise and easy to use. 

It was an observation that the rock-mass being a complex geo-material is defined by a 

large number of input parameters thus the results of the numerical parametric study 

involving the estimation of seismic bearing capacity factor Nσs is returned with a very 

large set of numerical result data. 
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Figure 4.1 Design charts for 10˚slpoe and D=0, (a) mi=7, (b) mi=10, (c) mi=15, (d) 

mi=17 and (e) mi=25 
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Figure 4.2 Design charts for 10˚slpoe and D=0.5, (a) mi=7, (b) mi=10, (c) mi=15, (d) 

mi=17 and (e) mi=25 

 

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

N


s

h (g)

 GSI=10

 GSI=20

 GSI=30

 GSI=40

 GSI=50

 GSI=60

 GSI=70

 GSI=80

 GSI=90

(a) (b)

N


s

h (g)

(c)

N


s

h (g)

(d)

N


s

h (g)

(e)

N


s

h (g)



48 

 

Figure 4.3 Design charts for 10˚slpoe and D=1, (a) mi=7, (b) mi=10, (c) mi=15, (d) 

mi=17 and (e) mi=25 
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Figure 4.4 Design charts for 20˚slpoe and D=0, (a) mi=7, (b) mi=10, (c) mi=15, (d) 

mi=17 and (e) mi=25 
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Figure 4.5 Design charts for 20˚slpoe and D=0.5, (a) mi=7, (b) mi=10, (c) mi=15, (d) 

mi=17 and (e) mi=25 
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Figure 4.6 Design charts for 20˚slpoe and D=1, (a) mi=7, (b) mi=10, (c) mi=15, (d) 

mi=17 and (e) mi=25 
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CHAPTER 5: CONCLUSIONS AND FUTURE SCOPE 

 

5.1 Conclusions 

The following major conclusions has been drawn from the study reported in earlier 

chapters: 

1. The simulation of rock in any numerical technique scheme requires a much more 

vigilant approach than any other geo-material. To reliably assess the natural state 

of rock to be analysed a plethora of experimental techniques (both in-situ and 

laboratory observations) is required. Depending upon the observed state of rock-

mass an appropriate material model is to be selected such that it effectively 

simulates the actual behaviour of rock. 

2. To simulate the highly fractured, homogenous and isotropic rock-mass an elasto-

plastic material model based on the widely used Hoek-Brown failure criteria has 

been found to give satisfactory results. In case of a low-stress range problem, 

such as bearing capacity problem, the equivalent c-ϕ approach as suggested by 

Hoek, 2002 has been found to overestimate the results when compared with the 

results of actual Hoek-Brown material model. Thus it is suggested that this 

equivalent technique should be restricted to the high stress range problems 

involving high overburden, such as tunnels. 

3. It is an observation that the rock-mass is a complex geo-material defined by a 

large number of input parameters. Thus the results of the numerical parametric 

study involving the estimation of seismic bearing capacity factor Nσs is returned 

with a very large set of numerical result data. Here in this work, an effort has 

been made to illustrate the effects of the characteristic parameters with the help 

of the design charts and graphs and the observations are discussed. For a large 

numerical data a more robust and advanced techniques involving probabilistic as 

well as neural techniques is required. 

4. It can be concluded that the FELA method proves to be a very efficient tool in 

the estimation of a well bracketed collapse load in case of an elasto-plastic 

analysis. It is a quick and robust tool and thus can be effectively employed to 

carry out high volume parametric study such as the one in this study. It has its 

limitation and has been well illustrated in the next section. Further, the of use 

pseudo-static method to incorporate the seismic event is found to work 
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satisfactorily in the case of bearing capacity estimation and the slope stability 

problems. However, its limitation is well illustrated in the next section to follow. 

5. From the parametric study it was concluded the seismic bearing capacity varies 

in the following manner: 

i. Increases with the parameter mi 

ii. Decreases with the increase in the parameter D 

iii. Increases with the increase in GSI 

 

5.2 Limitations of The Work 

In the current work, the limitations associated with the methods of analysis employed 

are well marked and thus opening a clear window for the recommendations for the 

future work. The limitations are illustrated as below: 

Firstly, the result interpretation through graphs and design charts lead to a very large set 

of document to be investigated in order to achieve the required engineering judgement 

related with the bearing capacity problem. This can be a cumbersome task and thus to 

minimize this effort, a better data interpretation technique needs to be employed which 

is more concise and easy to use. 

Secondly, the utility of FELA in the analysis has its own limitations. The FELA has a 

limitation that only an associated flow-rule can be implemented thus it is not possible to 

simulate the dilation features in the rock-mass. Further the FELA is limited to the 

estimation of collapse load only thus the benefits of a conventional displacement-based 

finite element methods cannot be utilised. Thus FELA has a limited scope and in order 

to know the load-displacement curve, carry out the time history analysis, etc. a 

conventional displacement based finite element framework is required. 

Lastly, the pseudo static methods employed to incorporate the seismic effect has its own 

limitation. It is a conservative method and it may be a case that even if the load exceeds 

the seismic bearing capacity in case of an earthquake it may not lead to an absolute 

failure. The case absolute failure or the loss of serviceability is by and large also 

dependant on the displacement caused in the critical case. Thus it is a necessity in the 

performance based design framework that certain engineering demands are investigated 

by carrying out the more robust techniques to incorporate the seismic effect such as time 

history analysis. 
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5.3 Recommendations for Future Work 

Considering the scope and limitations of the present work the following 

recommendations are made for the future work: 

Firstly, the numerical results need to be presented in a more concise and simple to use 

way. This may involve development of a simple spreadsheet based tool. Also there is a 

scope of involving the Artificial Neural Network ANN which can train itself from the 

data available to it to find the meaningful trends in it. Further in case of rocks, as the 

probability of presence a particular natural state is not high enough and is largely 

uncertain. Thus a probabilistic framework can be efficiently employed for predicting the 

input parameters describing the rock property. 

Secondly, since the pseudo-static method is a conservative method and it may be a case 

that even if the load exceeds the seismic bearing capacity in case of an earthquake it 

may not lead to an absolute failure. The case absolute failure or the loss of serviceability 

is by and large also dependant on the displacement caused in the critical case. It is 

recommended that the time history analysis is to be performed so that better and more 

realistic estimates can be established. 

Thirdly, the vulnerability of the existing infrastructural stock is completely estimated 

when the entire slope-foundation-structure system is analyzed. For the above purpose, 

the fragility curve development for the various structural requirements of the structure 

resting on the foundation is recommended. 

Lastly, the risk of the existing infrastructural stock is compounded by the exposure 

conditions thus it also has to be incorporated in the further work. The domino effect in 

case of a seismic event is an important consideration which is recommended to be 

investigated when the total risk is calculated. 
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