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ABSTRACT

In understanding the dynamic behaviour of many structures where analytical modelling

does not suffice and in the development of the codal provisions, experimental testing has

remain the common thing to rely on. Many experimental testing procedures have been

developed in the past and is still being updated based on the requirement of the testing.

Pseudodynamic testing procedure is one of the many testing methods for large scale testing

which has the simplicity of quasi-static testing and the reliability of the shake table testing

method. Here, various testing methods has been described and then the development of

pseudodynamic testing method is presented. The testing procedure, numerical techniques

and the error in the testing method is discussed further. For the development of this testing

facility in pseudodynamic laboratory at IIT Roorkee, this study is done. For the analytical

simulation of pseudodynamic testing, a code is developed which updates the stiffness of

the non-linear member during dynamic analysis. The code is verified with a solved exam-

ple and then is used for the analytical simulation of a steel cantilever column as a SDOF

system. The simulation is done for three different earthquakes and the results are presented

thereafter.
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Chapter 1

Introduction

Earthquake is a rare phenomenon but whenever an earthquake of high intensity comes

also brings on devastating effects. The principal goal of the designer is to design a structure

so that no loss of life should occour. The energy during a seismic event that a structure

is subjected to, needs to be dissipated in some form. Either we can design our structure

to respond elastically which makes it highly uneconomical or to allow our structure to re-

spond inelastically and hence accounting for economy also. Various performances were

defined according to the usage of the structures immediately after a seismic event. The

structure must correspond to that performance level after going through the inelastic defor-

mations. However inelastic behaviour of the structure is very complex and depends upon

various factors such as material properties, detailing of the reinforcements, workmanship

employed during construction, and also on the seismic characteristics of the event. Under-

standing the inelastic behaviour of the structure is extremely important to keep a check on

the performance of the structure during any seismic event.

To rely on the inelastic deformation of the structure to dissipate the energy coming

on the structures, we need analytical as well as experimental validation. Techniques to

evaluate the structure analytically are available but are based on one or other assumptions

and mathematical idealizations to simplify the analysis. Although design codes have been

developed for dynamic analysis, actual behaviour of the structure during the seismic event

cannot be assesed completely with confidence based only on the analytical evaluation of

the structure. Hence experimental analysis of the structure or a part of it is necessary in

cases where we cannot place confidence on the analytical evaluation. Experimental testing

remains the most reliable means to evaluate the inelastic behaviour of the structural systems

and to devise the structural details to improve structural performance [8]. Various testing

methods are available for the assesment of the structural behaviour and Pseudo-Dynamic

Testing (On-Line testing method or Hybrid method) [9] is a new testing method emerged

in early 1970’s and is reliable for most cases and hence will be discussed in this work.
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1.1 Various Testing Methods

Testing the structure experimentally remains most reliable means to assess the struc-

ture. Various testing methods such as Shake Table test, Forced Vibration tests, Quasi-Static

testing, Pseudo-Dynamic Testing and Real-Time hybrid method are available with their

advantages and disadvantages altogether.

In Shake Table testing, the structural model is prepared and is mounted on the table

where the earthquake records are applied to test the model in real time and hence the

dynamic and rate-dependent behaviour is completely incorporated. Facility available at

E-Defence laboratory in Japan can test full scale structures but is a costly affair hence,

structural model which is placed on the table are usually scaled down for the testing due to

the limitations of the table itself. The model which is to be tested is restricted in size and

weight and installing a new table or increasing the capacity of the existing table is a very

costly option. To drive the actual full scale model requires huge power and cost. Also due

to this scaling down of the structure, material and dynamic similitude problem arises in the

structure. Various size based effects such as crack propogation, shear and bond in RCC

members and buckling in steel members are the issues with shaking table test method. Due

to these limitations various other testing methods were developed.

In Quasi-Static testing, predefined loading histories or displacement histories are ap-

plied to the structure in a quasi static (i.e. slow rate) manner which is easy to conduct in

most of the structural engineering laboratories with the existing hardware infrastructure.

During testing, the structure can be monitored well and the testing can be stopped anytime

to analyse the condition of the structure. The predefined displacement histories that are to

be applied are determined from the analytical computation and then the displacements com-

puted at different nodes are used to control the experiment but again the idealizations make

these displacement histories much more idealistic and hence are not likely to be realistic.

Generally these tests are performed with cyclic displacement histories or loading to assess

the following: (i) assessing the the effect of different structural details on the inelastic be-

haviour of the structures by subjecting different specimens to identical loading histories;

and (ii) studying the basic mechanisms that affect the inelastic behaviour of a particular

structure by varying the amplitude, rate or pattern of the applied deformation histories [8].

Hence for testing the structure in a more rational and reliable manner a Computer-
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Actuator On-Line system was developed in Japan in early 1970’s for the study of the in-

elastic behaviour of the structure. This testing method has the realism of shaking table test

along with the versatality and economy of the quasi-static testing. Here more realistic dis-

placement histories can be applied quasi-statically along with incorporating the dynamic

effects in it and with the available hardwares in most structural engineering laboratories.

This testing method is also called as Pseudo-Dynamic testing method or Hybrid Testing

method. This unique technique combines both the numerical techniques and the experi-

mental testing and hence has the benifits of both.

The pseudodynamic testing method or hybrid method combines both the numerical

technique and the experimental testing for testing the structure. It is a displacement control

method which uses the feedback response from the structure. While in quasi-static testing

the displacement or force histories that were applied to the structures were cyclic in nature,

here in pseudodynamic testing method, the dispalcement to be applied to the structure is

calculated in each step and then a feedback from the system is taken back to the computer

to calculate the next displacmement which is to be applied. This feedback depicts the

stiffness properties of the structure and the dynamic properties are taken into account using

the computer, making this testing method more reliable and rational.

The testing can be done on a full scale model where the mass and damping proper-

ties are modelled analytically and the stiffness comes from the feedback during the testing.

Displacement calculated using predefined inetrial and damping properties and the ground

mortion input is applied to the structure and then a feedback is taken from the load trans-

ducers, which represents the restoring force of the structure, is then used to calculate the

next step displacement using the time integration schemes and the process goes on.
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Chapter 2

Development of Pseudo-Dynamic Testing

Method

The development of the pseudodynamic testing method started with the testing of the

SDOF systems in Japan. Initial series of tests were done on the single story single bay

reinforced concrete and steel frames [9]. Takanashi et al. showed that the results obtained

using the pseudodynamic testing were well corelated with the shaking table test and ana-

lytical test results. In 1980, Okada, T. et. al. preformed the pseudodynamic testing of RC

frames to bi-directional ground motion [6]. Problems associated with the errors in exper-

imental testing, numerical techniques and the structural idealisations were also reported.

EERC in 1980’s published many reports on the development of the pseudodynamic testing

facility [8], error propogation effects in experiments [7], hybrid solution techniques [10]

and the substructuring techniques [3] in pseudodynamic testing method. Modified New-

mark Method was proposed by Shing and Mahin to compensate for the spurious growth of

higher frequency responses due to the errors during experiments in MDOF systems.

The testing of the structure as a whole requires a high capacity equipments and can be

costly too. To test the structure on a reduced scale model again raises an issue of similitude

and the actual behaviour of the local critical elements can not be attained. Moreover, out of

the whole structure only certain members undergoes inelastic deformation whose analytical

formulation requires nonlinear modelling. Hence, a new technique was developed in which

the only a part of the structure is actually tested in the laboratory and the remaining part

of the structure is analytically analysed on the computer. This technique is called substruc-

turing in pseudodynamic testing. In ths technique, the whole structure is divided into two

parts (i) physical substructure and (ii) numerical substructure. The equation of motion of

the combined system is solved on the computer where the restoring force characteristics are

fed back from the experimental substructure. Since the testing of a MDOF system raises

an issue of the stability of the numerical procedure which is bounded by the limit to ω∆t.
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Since for the large scale testing, of MDOF systems, an implicit-explicit integration algo-

rithm was developed, where the physical sybstructure was solved using explicit schemes

and the numerical substructure was solved using implicit schemes [3]. The substructuring

loop is shown in the Figure 2.1 where the numerical substructure command the actuator

to apply the computed displacements and then the feedback is sent back from the physical

substructure to the numerical substructure [11].

Figure 2.1: Schematic of Substuructuring Pseudodynamic Testing Loop [11]

In pseudodynamic testing, since the loading is applied in a quasi-static manner, the

structures with the material sensitive to the rate dependent effects cannot yield reliable

results. As explained in the Section 3.4.1, the pseudodynamic test is not applicable for

structures with such materials. In order to overome this problem, Takanashi and Ohi in

1983 developed an algorithm for fast testing. In pseudodynamic testing, the actuator stops

when the target displacement is achieved but in fast testing the actuator moves continuously

which raises the issue of overshooting [4]. During the feedback and computation of the

next target displacement, the actuator doesnot stops and continues to apply the extrapolated

displacement till the next displacement is calculated. This started the development of the

Real Time Hybrid Testing.
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Chapter 3

The Pseudo-Dynamic Test Method

3.1 Testing Procedure

Pseudodynamic testing is a combination of experimental setup and analytical computa-

tions done together. The foremost assumption here is that the response analysis can be done

upto certain accuracy using discrete parameter system with finite number of degrees of free-

dom. Hence, for analytical computations, the structure is modelled as a discrete parameter

model (lumped mass model) in the computer with finite number of nodes and degrees of

freedom. Damping matrix is formulated using standard models and modal damping prop-

erties. Mass matrix and damping matrix are analytically computed and fed to the computer

model. A physical substructure or a structure as a whole is built, upon which testing is to

be done. Actuators are attached at the nodes where displacement response is to be applied

quasi-statically, according to the degrees of freedom to be provided. A time stepping al-

gorithm fit for the test is used in the computer to calculate the next response which is to

be applied on the physical specimen. This displacement response is computed based on

the previous responses, initially defined mass and damping matrix, and the restoring force

feedback from the physical specimen and again forms the basis of the next displacement

response which is to be applied quasi-statically to the physical specimen. This testing is

done on an extended time scale usually goes upto 100 times the actual earthquake duration.

Figure 3.1 shows a schematic diagram of pseudodynamic testing procedure.

Here, the stiffness property of the physical specimen is measured experimentally and

hence the uncertainities or difficulties associated with the modelling of the material prop-

erties and hysteresis loop are removed. This helps in improving the analytical models

available for modelling the non-linear behaviour of the material and members to represent

more realistic behaviour.
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Figure 3.1: Schematic diagram of pseudodynamic test method [2]

3.2 Discrete Parameter Structural Model

In pseudodynamic testing method, the displacement responses are imposed at certain

nodes on the physical structure. Imposition of the displacement response on the whole con-

tinnum is not possible in this method. For this, the modelling of the structure in computer

is done as a discrete parameter model. The actual structure has mass distributed throughout

and has infinite degrees of freedom. Such system involves the solution of partial differntial

equation which is a difficult task to do. This discretization leads to the simplify the calcu-

lation of the response of the strucure. The mass is assumed to be concentrated at certain

nodes where the displacement response is to be applied. The equation of motion of this

discrerte parameter model is given as follows:

mx2i+1 + cx1i+1 + fs i+1 = pi+1 (3.1)

where m and c are mass and damping respectively. x2i+1 and x1 i+1 are the acceleration

and velocity response quantities respectively at time (i+ 1) ∆t , where ∆t represents the

time step for the integration scheme. The fs i+1 represents the restoring force quantity and

is measured experimentally during the testing. pi+1 = −mag, where ag is the earthquake

ground acceleration, represents the external excitation force ( earthquake) for which the

structure is to be tested. The mass matrix is formed by lumping the mass at certain nodes.

Damping matrix is formed using idealized modal damping properties and can be assumed

to be mass or stiffness proportional daming or both. In lumping the masses at certain
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nodes, the continuum structure is discretized and hence, only those number of modes of

the structure is considered and the higher mode effects are not considered. Since modal

contribution factor is comparitively less for higher mode responses, this discretization is

valid and provides sufficiently accurate results.

3.3 Numerical Integration Scheme

The pseudodynamic method requires the calculation of the displacement response which

is to be applied quasi-statically to the physical specimen. For this response, the equation

of motion for the structure is solved using well established numerical integration schemes

based on previous responses. These integration schemes are broadly classified into two:

(i) implicit and (ii) explicit integration schemes. Schemes which require the information

from previous steps only are called explicit schemes whereas the schemes which requires

information of the previous steps and of the current step are called implicit schemes. Some

of the examples of explicit and implicit schemes are given below:

Explicit Schemes

1. Central difference method

2. Newmark’s explicit method

3. Modified Newmark’s method

Implicit Schemes

1. Newmark’s method

2. α-Operator Splitting method

3. Generalized alpha method

The main requirement of these integration schemes are its accuracy and stability criteria

which forms the criteria for the selection of an integration method . Accuracy refers to the

closeness of the analytical result with the actual result while a method is stable if it doesnot

give abrupt result and grows out of bound for any given initial condition [1]. Stability

criteria plays an important role in selecting the time step for the time integration methods.
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There are some unconditionally stable methods where the method remains stable for any

value of ω∆t conditionally stable methods are those which remains stable for the value of

ω∆t below certain limit. When the value of ω∆t goes beyond a certain range, the solution

becomes unstable. Still, we usually prefer explicit schemes as we have small degrees of

freedom implying to not so big ω value, hence ∆t is not so small.

A family of time-stepping method was proposed by N.M. Newmark in 1959 [5], which

is given as show below:

x1 i+1 = x1 i + [(1− γ) ∆t ] x2 i + (γ∆t) x2 i+1 (3.2)

xi+1 = xi + (∆t) x1 i +
[
(0.5− β) (∆t)2] x2 i +

[
β (∆t)2] x2 i+1 (3.3)

Here, β and γ defines the variation of acceleration in the given time step. For γ = 1/2,

there is no numerical damping observed in the solution, while for γ < 1/2, there is negative

numerical damping which subsequently increases the response of the system while for γ >

1/2, there is positive numerical damping introduced in the system. With proper selection

of β and γ value, we can achieve desired stability and accuracy. With keeping γ = 1/2 and

varying the β value, we can get differernt integration methods. For β = 1/4, we get implicit

and unconditionally stable constant average acceleration method. By putting β = 1/6, we

get implicit and conditionally stable linear acceleration method. For β = 0, the x2 i+1 terms

in the Equation 3.2 and 3.3 vanish off and the method becomes explicit and then is a single

step method, called as Newmark Explicit scheme.

3.3.1 Numerical Accuracy and Stability Analysis

For a linear elastic SDOF system, the accuracy and stability analysis is given. The direct

integration scheme can be represented in a recursive matrix form as shown in Equation 3.4.

x̂i+1 = Ax̂i + Lfi+v (3.4)

where x̂i is a vector of solution quantities at time i. The parameter v can be either 0 or 1

depending upon the type of solution techniques used. The vector L is a load vector and the

matrixA is amplification matrix. x̂i+1 is the solution quantities at time i+1. The scalar fi+v

9



is the external applied force. The numerical analysis is done for free vibration response, we

have

x̂n = Ax̂n−1 = Anx̂0 (3.5)

where x̂0 is the initial solution vector. For stable intergation technique, the above must yield

a bounded solution response for any arbitrary initial solution vector.

For Newmark Explicit method, the inital solution vector is given as:

x̂0 =



x0

x1 0

x2 0


(3.6)

and

A =


1 ∆t

∆t2

2

−ω2∆t

2
1− ω2∆t2

2

∆t

2
− ω2∆t3

4

−ω2 −ω2∆t
−ω2∆t2

2


(3.7)

The matrixA has 3 distinct eigen values λ1, λ2 and λ3, and there exist a diagonal matrix

J such that

Jn = Φ−1AnΦ (3.8)

where Φ = [φ1, φ2, φ3] and J = diag (λ1, λ2, λ3), and the vectors φi are the eigen

vectors of A corresponding to the eigen values λi. Hence by using Equation 3.5 and 3.8,

we can get

xn = c1λ1
n + c2λ2

n + c3λ3
n (3.9)

where xn is the displacement value at step n and is a part of x̂n and c1,c2 and c3 are the

constants based on initial conditions. Out of the three eigen solution of the matrix A, two

eigen solutions λ1,2 should be a complex conjugate and |λ3| < |λ1,2| ≤ 1 . The method will
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be stable if the given conditions are satisfied. λ3 is called the spurious root as it doesnot

represent the realistic numerical solution of free vibration. By solving (A− λI) = 0, for

eigen solutions, we get

λ1,2 = A± ιB = e(−ζ̄±ι)Ω̄ (3.10)

where,

A = 1− ω2∆t2

2
(3.11)

and

B =

√
4− (ω2∆t2 − 2)2

2
(3.12)

For the response to be stable, the condition (A2 +B2) ≤ 1 should be satisfied and B

should be real. The value (A2 +B2) will always be equal to 1 and the B should be real,

hence the stability condition, (
ω2∆t2 − 2

)2 ≤ 4 (3.13)

leads to

0 ≤ ω∆t ≤ 2 (3.14)

For ω∆t = 2, the response will not be accurate but stable.

The eigen solutions can be represented as given in the Equation 3.10 where ζ̄ and Ω̄ is

defined as:

ζ̄ = − ln (A2 +B2)

2Ω̄
(3.15)

Ω̄ = arctan

(
B

A

)
(3.16)

substituting Equation 3.10 in the Equation 3.9, we get

xn = e−ζ̄ω̄∆tn (c1 cos ω̄∆tn+ c2 sin ω̄∆tn) + c3λ3
n (3.17)

where ω̄ = Ω̄/∆t. The reponse of the underdamped free vibration of a SDOF system is

given as

x (t) = e−ζωt (c1 cosωDt+ c2 sinωDt) (3.18)

where ζ is the viscous damping ratio and ωD is the damped natural frequency of the system.

Comparing the Equation 3.17 with the response of a free vibration of a underdamped SDOF

11



system, we can say that ω̄ and ζ̄ are the numerical frequency and damping corresponding

to that of the system respectively. If ζ̄ 6= 0, we get numerically induced damping. Also,

the difference between the numerical frequency ω̄ and the natural frequency of the system

ω gives the distortion in the frequency in the numerical technique.

Putting the value of A and B from the Equation 3.11 and 3.12 in the Equation 3.15,

we get ζ̄ = 0 which shows that the Newmark Explicit method doesnot have numerical

damping. Also, substituting Equation 3.11 and 3.12 in the Equation 3.16, we get

ω̄ =
1

∆t
arctan


√

4−
(
ω2∆t2 − 2

)2

2− ω2∆t2

 (3.19)

The difference in the natural frequency and the numerical frequency will give the amount

of frequency distortion in the system. The plot of percentage of period distortion
(
T − T̄

)
/T

and ∆t/T shows that the we get a reasonably accurate solution when ∆t/T is less than 0.05

and the period distortion vanishes when ∆t goes to zero.

Figure 3.2: Period Shrinkage by Newmark Explicit Method

The stability requirement of this method is ω∆t ≤ 2, which is bounded by the highest

value of ω in case of a MODF system. To ensure the accuracy of this method, the value of
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∆t should be less than or equal to 2/ω .Putting β = 0 and γ = 1/2 in the Equation 3.2 and

3.3, we get the following equation:

x1 i+1 = x1 i + (x2 i + x2 i+1 )
∆t

2
(3.20)

xi+1 = xi + (∆t) x1 i +
∆t2

2
x2 i (3.21)

Using Equation 3.20 and 3.21 in the Equation 3.1, and rearranging the terms for x2 i+1

gives:

x2 i+1 =

[
m+

∆t

2
c

]−1 [
pi+1 − fs i+1 − cx1 i −

∆t

2
cx2 i

]
(3.22)

Using the Equations 3.21, 3.20 and 3.22, algorithm for Newmark Explicit scheme is

shown below in Figure 3.3:

Input excitation pi+1

Calculate displacement response:

xi+1 = xi + ∆tx1 i + ∆t2

2
x2 i

Impose xi+1 on test structure

Measure restoring forces from fs i+1 from the test structure

Calculate:

x2 i+1 =
[
m+ ∆t

2
c
]−1 [

pi+1 − fs i+1 − cx1 i − ∆t
2
cx2 i

]
x1 i+1 = x1 i + ∆t

2
(x2 i + x2 i+1)

set i = i+ 1

Figure 3.3: Newmark Explicit Scheme flowchart
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3.4 Errors in the testing method

Errors are inevitable in experimental testing methods and in this testing method, the

errors can occour from the given three sources and are explained in detail in the subsequent

section.

1. Errors due to the idealisation of structure

2. Errors manifested in numerical techniques

3. Errors due to the measurements in experiment

3.4.1 Errors Due to the Idealisation of Structure

The test model idealised as a discrete parameter model should represent the actual dy-

namic behaviour of the test structure itself. The idealisation of dicrete parameters involves

the formation of analytical mass and damping matrices. The actual structure is a continuous

system which is idealised as a discrete system due to which the higher mode effects are lost

and the lower modes shows the distortion in frequencies. In most of the cases where the

lumped mass is more than 80%, the lumped mass model gives reliable results. For more

number of nodes or degrees of freedom, the frequency error in the higher modes are high

but the mode participation factor for higher modes are insignificant hence, does not impose

a problem while the mode participation for lower modes are high and the frequency error

is low. Hence, the discrete parameter model is relaible if the concentrated mass constitutes

80% or more of the total mass [8].

Various damping mechanisms are present in the actual structure and modelling of all of

the damping properties is not an easy task. The type of damping includes viscous damp-

ing, coulomb damping and hysteretic damping. While coulomb and hysteretic damping

are automatically accounted for in the pseudodynamic testing in measuring the restoring

forces from the physical specimen, hence, the viscous damping is not possible to determine

in a free vibration test. The coulomb damping exists due to the friction between the con-

tact surfaces in the joints and connections in the structure. This damping remains constant

throughout the test and its effect becomes negligible if the amplitude of the displacement

response is comparitively larger [8]. The hysteretic damping is present in the system due

14



to the inelastic behaviour of the material. The energy is dissipated due to the large inelas-

tic deformation of the physical specimen and reflects in the measurement of the restoring

forces which is feeded back in the computer. Hence the coulomb and hysteretic damping is

not needed to be included in the modelling of damping matrix. However the determination

of viscous damping is required which can be found out by the difference in the reponse

of the free-vibration pseudodynamic simulation with the free vibration test response of the

specimen. During the inelastic response, the viscous damping does not have a significant

effect in the response quantities as hysteretic damping dominates in the system. Hence, the

determination of the equivalent viscous damping does not plays much significant role in

the errors in pseudodynamic testing.

In pseudodynamic testing, the physical specimen is loaded quasi-statically. Due to

this the strain rate effects are not included in the response analysis. The rate of loading

influences the yield and ultimate strength of the material. For large strain rate, the material

shows higher strength. Hence, the rate of loading should be controlled in the testing. If the

rate of loading is slow, stress relaxation may occur while if high rate of loading is applied,

the dynamic effects will come in in the feedback from the physical specimen.

3.4.2 Error Manifested in Numerical Techniques

Errors in numerical integration often leads to the distortion in frequency, energy dissipa-

tion and the growth of spurious root as explained in the Section 3.3.1. If implicit integration

schemes are used, then the error due to the calculation of tangent stiffness is also incorpo-

rated in the response analysis other than the the errors due to the numerical schemes itself.

In explicit scheme, the problem associated with the stiffness calculation does not exist. The

error in numerical integration scheme depends on the time step selected. If the time step

is too large, the errors will lead to the instability and inaccuracy of the numerical scheme

and if the time step selected is too small, the computation effort requires for the method

will increase significantly. Hence an appropriate time step should be chosen based on the

stablility and accuracy requirement of the method.
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3.4.3 Errors Due to the Measurements in Experiment

Other than the errors mentioned above, errors are also introduced due to the incorrect

feedback used into the calculation of the response of the system. This leads to the incorrect

displacement calculation which again leads to the measurement of incorrect feedback and

this will result into the cumulative error and the test results will be unreliable. The errors

are generally incorporated due to the inaccuracy of the experimental equipments. The dis-

placment response computed cannot be exactly applied to the physical specimen. This is

due to the sensitivity of the actuator controller system. Again the displacements applied

will render incorrect feedback measurement. This feedback measurement will also be af-

fected by the friction in the actuator connections. Hence, the erroneous force feedback and

displacement will again generate an erroneous response and hence the test results will be

not be reliable.
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Chapter 4

Methodology

For the development of pseudodynamic testing facility, a feedback loop algorithm is

to be build for MOOG actuators available in IIT Roorkee Pseudodynamic Testing Labra-

tory. The pseudodynamic testing requires a feedback of the restoring force value from the

physical specimen which is possible to get only during the experiment. Here, the analytical

simulation of the pseudodynamic testing is done where the restoring force value is updated

from the static pushover curve generated using OpenSees ( Open System for Earthquake

Engineering Simulation). As mentioned earlier in Section 3.3, this simulation is done us-

ing Newmark Explicit scheme, algorithm of which is shown in the figure 3.3. For the

simulation purpose, a program is prepared in MATLAB which takes the pushover curve

of the model as input and performs the nonlinear time history analysis where the restoring

forcce vallue is updated using the current displacement and velocity of the mass of the sys-

tem. This program is given in Appendix A. The code is verified with the example given

in the NPTEL couse on “Introduction to Earthquake Engineering” for non-linear seismic

response of structures with bi-linear force deformation curve.

For an elasto-plastic SDOF system having mass 1 kg, elastic stiffness 39.478 N/m and

damping constant 0.251 N.sec/m, the response of the system under El-Centro, 1940 motion

for yield displacement of 0.05 m and 0.025 m given in the example 7.1 of the couse Intro-

duction to Earthquake Engineering which is solved using β = 1/4 i.e. average acceleration

method is compared with the result for the same input paramters feeded in the pseudody-

namic simulation code given in Appendix A. The results of the comparison between the

results given in the course and using the simulation program is shown below in the Figure

4.1.
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Figure 4.1: Comparison of Displacement response of an elasto-plastic SDOF system be-

tween Newmark’s Explicit method and Average Acceleration method with yield displace-

ment of 0.05 m

The above results verify the code given in Appendix A and hence is valid for the pseu-

dodynamic simulation. The pseudodynamic simulation for a SDOF system subjected to

different earthuake records is done and the results are shown in the Chapter 5.

This code uses the force value from the pushover curve based on the displacement mea-

sured after reloading takes place in the member. No degradation in the stiffness property

and no hardening in the hysteresis curve is assumed. During unloading, the stiffness of the

member remains same as initial displacement and remains constant till the reloading takes

place.
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Chapter 5

Results

The pseudodynamic simulation of a single degree of freedom system is done using

Newmark Explicit Algorithm of a cantilever steel column fixed at the base. First, the force

displacement relationship is generated using OpenSees ( Open System for Earthquake En-

gineering Simulation) and a push-over curve is plotted. This force displcement curve serves

as a basis for the updation of restoring force value in simulation of pseudodynamic testing.

The simulation is done for three different earthquakes. All three ground motion datas se-

lected are of different magnitude and the simulation is done and the output is recorded to

see the variation in each of them. Then the comparison is shown between the responses

using Newmark Explicit method and Linear Acceleration method.

5.1 Simulation of a SDOF system

The system is modelled in OpenSees with Steel01 which is a uniaxial bilinear steel

material object. The material properties are given below:

• Yield Strength Fy = 250 MPa

• Initial Elastic Tangent E0 = 2.1× 105 MPa

• Strain Hardening Ratio b = 0.01
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The stress strain curve for Steel01 material is shown in the Figure 5.1:

Figure 5.1: Stress-Strain curve for Steel01 material

The cantilever column and its section properties are shown in the Figure 5.2. The col-

umn is fixed at node 1 and is free at node 2. The column has a hollow tube section of

300mm × 300mm and having a thickness of 30mm as shown. The actual stiffness of the

section is reduced by 100 times to ensure the non-linear behaviour of the system when

subjected to the different earthquake records. This pushover curve as shown in the Figure

5.3 is generated including the P-∆ effects as the gravity loads were made contant during

the analysis in OpenSees.

The initial input parameters for the analysis is given as under:

• mass m = 2543.4 kg

• initial stiffness kini = 312.559 kN/m

• initial displacement x(0) = 0

• initial velocity x1(0) = 0

• damping ratio z = 0.05

• natural frequency ω =
√

kini

m
= 11.0856 rad/s
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(a) Steel cantilever column

(b) Section (a-a)

Figure 5.2: SDOF system model for pseudo-dynamic simulation

Figure 5.3: Pushover curve for cantilever model
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The three different ground motion used for the analysis are:

1. El-Centro Earthquake:

Record Date: 18/05/1940

Magnitude: 6.9

PGA: 0.32 g

Time step: 0.02 sec

2. Northridge Earthquake:

Record Date: 17/01/1994

Magnitude: 6.8

PGA: 0.57 g

Time step: 0.01 sec

3. Kobe Earthquake:

Record Date: 16/01/1995

Magnitude 6.9

PGA: 0.34 g

Time step: 0.01 sec

The stability criteria for using the Newmark Explicit Scheme, ω∆t is 0.2217 for El-

Centro earthquake and 0.111 for Kobe and Northridge earthquake data which is less than

the upper limit of 2.

5.1.1 Response to El-Centro Earthquake

Figure 5.4, 5.5, 5.6 and 5.7 shows the displacement, velocity, acceleration response and

the force deformation characteristics respectively when the model is subjected to El-Centro

earthquake.
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Figure 5.4: Comparison of Displacement response of a SDOF system with Newmark Ex-

plicit scheme and Linear Acceleration method subjected to El-Centro earthquake

Figure 5.5: Comparison of Velocity response of a SDOF system with Newmark Explicit

scheme and Linear Acceleration method subjected to El-Centro earthquake
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Figure 5.6: Comparison of Acceleration response of a SDOF system with Newmark Ex-

plicit scheme and Linear Acceleration method subjected to El-Centro earthquake

Figure 5.7: Comparison of Force-Deformation response of a SDOF system with Newmark

Explicit scheme and Linear Acceleration method subjected to Kobe earthquake

5.1.2 Response to Northridge Earthquake

Figure 5.8, 5.9, 5.10 and 5.11 shows the displacement, velocity, acceleration response

and the force deformation characteristics respectively when the model is subjected to Northridge

earthquake.
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Figure 5.8: Comparison of Displacement response of a SDOF system with Newmark Ex-

plicit scheme and Linear Acceleration method subjected to Northridge earthquake

Figure 5.9: Comparison of Velocity response of a SDOF system with Newmark Explicit

scheme and Linear Acceleration method subjected to Northridge earthquake
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Figure 5.10: Comparison of Acceleration response of a SDOF system with Newmark Ex-

plicit scheme and Linear Acceleration method subjected to Northridge earthquake

Figure 5.11: Comparison of Force-Deformation response of a SDOF system with Newmark

Explicit scheme and Linear Acceleration method subjected to Kobe earthquake

5.1.3 Response to Kobe Earthquake

Figure 5.12, 5.13, 5.14 and 5.15 shows the displacement, velocity, acceleration response

and the force deformation characteristics respectively when the model is subjected to Kobe

earthquake.
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Figure 5.12: Comparison of Displacement response of a SDOF system with Newmark

Explicit scheme and Linear Acceleration method subjected to Kobe earthquake

Figure 5.13: Comparison of Velocity response of a SDOF system with Newmark Explicit

scheme and Linear Acceleration method subjected to Kobe earthquake
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Figure 5.14: Comparison of Acceleration response of a SDOF system with Newmark Ex-

plicit scheme and Linear Acceleration method subjected to Kobe earthquake

Figure 5.15: Comparison of Force-Deformation response of a SDOF system with Newmark

Explicit scheme and Linear Acceleration method subjected to Kobe earthquake
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Chapter 6

Conclusion

Pseudodynamic testing method is a powerful technique for testing the large scale struc-

tures under dynamic loading. It has the advantage of the conventional methods such as

the realism of shake table testing and the economy and control of quasi-static testing and

hence, has gained the interest of many researchers.

Numerical techniques plays an important role in the reliability of pseudodynamic test-

ing and hence the stability and accuracy analysis is shown and the Newmark Explicit

method is used. Pseudodynamic testing is a hybrid testing method where the numerical

component computes the target displacement and is applied to the structure and a feedback

is obtained which is used to calculate the next target displacement. In this report, the simu-

lation of the pseudodynamic testing is presentes based on the restoring force characteristics

obtained from the pushover curve of the system. A response of a SDOF system is simulated

using a code prepared in MATLAB and is presented in the results and discussions.

The results gives the variation of the displacement, velocity and acceleration of the

structure with time and the force deformation curve is plotted. This simulation is carried

out for three different earthquakes. The Department of Earthquake Engineering, IIT Roor-

kee has developed the pseudodynamic testing facility to test the large structures where the

strong floor and wall and the hardwares for testing are available. This report gives the basis

of the code which is to be written for the MOOG controllers using the software develop-

ment kit of the controller for the actuators.

Newmark Explicit algorithm is used in this report since it is an explicit scheme and

hence the iterations associated with the implicit scheme to predict the tangent stiffness to

calculate the next response is eliminated. Since this scheme is conditionally stable, the

stability requirements are also fulfilled in the case of SDOF system. Other explicit methods

such as Modified Newmark algorithm should be used for the anlaysis of MDOF system

which has a numerical dissipative properties.
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Chapter 7

Future Scope

This work has been carried out for a SDOF system and can be extended to MODF sys-

tem with bi-directional loadings. Here, the Newmark Explicit scheme is used for the simu-

lation of pseudodynamic testing and there are other explicit and implicit methods available

with their advantages and disadvantages. The other integration method can also be explored

and a suitable integration scheme can be used for the software which is required to be de-

veloped for controlling the MOOG actuators in the Pseudodynamic Testing Laboratory at

IIT Roorkee. Also, since the testing of the structure as a whole is not always feasible in the

case where the nonlinearity is concentrated at certain parts of the structure, substructuring

technique can also be developed in the future.For substructuring concept, since the actual

structure will have a large degrees of freedom, to satisfy the stability condition will not be

possible and in such case implicit integration schemes can be used. The strain rate effects

are also predominant in some type of structures, and hence, this pseudodynamic testing will

not render reliable results. The development of Real-Time hybrid test facility for testing

such kind of structures can be developed in the future.

30



Appendix A

Simulation Code

This appendix contains the codes written for doing the pseudodynamic simulation in

MATLAB. It uses Newmark Explicit method for simulating the response. Datas from the

pushover curve is the input to the code.

1 % Pseudodynamic Algorithm for a SDOF system using Newmark Explicit

Method

2

3 clear all

4 clc

5

6 Reaction = load(’RBase.txt’);

7 Displacement = load(’DFree.txt’);

8

9 % Removing gravity load anlysis data

10

11 R = zeros(length(Reaction)-9,1);

12 D = zeros(length(Reaction)-9,1);

13

14 D(2:length(D)) = Displacement(11:length(Reaction), 2);

15 R(2:length(D)) = -Reaction(11:length(Reaction), 2);

16 R = R/50; % Reducing stiffness value

17

18 m = 2543.4; % Mass of the system

19 kini = (R(2)-R(1))/(D(2)-D(1)); %Initial Stiffness

20 z = 0.05; %Damping Ratio

21 w = sqrt(kini/m); %natural frequency of the system

22 c = 2*m*w*z; %Viscous damping coefficient

23 x(1) = 0; x1(1) = 0; %Initial conditions

24 dt= 0.01; %Time step

25 loop = 1; xpivot1 = 0;
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26 kk = 1;

27

28 %Reading the earthquake file

29

30 PP = load(’el_centro.txt’);

31 [row, column] = size(PP);

32 if column == 2 && PP(1, 1) == 0.00

33 pp = -PP(:, 2)*9.81*m;

34 else

35 if column > 2

36 for rr = 1:row

37 for cc = 1:column

38 pp(kk,1) = -m*9.81*PP(rr, cc);

39 kk = kk + 1;

40 end

41 end

42 else

43 pp = -m*9.81*PP(:, 2);

44 end

45 end

46 p = pp;

47

48 % Reducing time step to 0.01 sec

49

50 p = zeros(2*length(pp) - 1, 1);

51 for ii = 1:length(pp)-1

52 p(2*ii) = (pp(ii)+pp(ii+1))*0.5;

53 end

54 for ii = 1:length(pp)-1

55 p(ii*2 - 1) = pp(ii);

56 end

57 t = [0:dt:dt*(length(p)-1)];

58 if p(1) < 0

59 p = -p;

60 end

61

62 %Initial acceleration and restoring force

63

64 x2(1) = (p(1) - c*x1(1) - kini*x(1))/m;
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65 fs(1) = kini*x(1);

66

67

68 %Loop arrangement for calculating the restoring force value

69

70 for i = 1:length(p)-1

71 if loop == 1

72 x(i+1) = x(i) + dt*x1(i) + x2(i)*dt*dt*0.5;

73 xx = x(i+1) - xpivot1;

74 [r] = force(D, R, xx);

75 fs(i+1) = r;

76 x2(i+1) = (p(i+1) - fs(i+1) - c*x1(i) - dt*0.5*c*x2(i))/(m + dt

*0.5*c);

77 x1(i+1) = x1(i) + dt*0.5*(x2(i) + x2(i+1));

78 if x1(i+1) <= 0

79 loop = 2;

80 k = kini;

81 xmax = x(i+1);

82 fmax = fs(i+1);

83 xpivot = xmax - fmax/kini;

84 end

85 elseif loop == 2

86 x(i+1) = x(i) + dt*x1(i) + x2(i)*dt*dt*0.5;

87 r = fmax - kini*(xmax - x(i+1));

88 fs(i+1) = r;

89 x2(i+1) = (p(i+1) - fs(i+1) - c*x1(i) - dt*0.5*c*x2(i))/(m + dt

*0.5*c);

90 x1(i+1) = x1(i) + dt*0.5*(x2(i) + x2(i+1));

91 if x(i+1) <= xpivot && x1(i+1) >= 0

92 loop = 4;

93 xx = xpivot - x(i+1);

94 r = force(D, R, xx);

95 fs(i+1) = -r;

96 xmin = x(i+1);

97 fmin = fs(i+1);

98 k = kini;

99 xpivot1 = xmin - fmin/kini;

100 elseif x(i+1) <= xpivot

101 loop = 3;
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102 xx = xpivot - x(i+1);

103 r = force(D, R, xx);

104 fs(i+1) = -r;

105 elseif x1(i+1) >= 0

106 loop = 5;

107 xp = x(i+1);

108 fp = fs(i+1);

109 end

110 elseif loop == 3

111 x(i+1) = x(i) + dt*x1(i) + x2(i)*dt*dt*0.5;

112 xx = (xpivot - x(i+1));

113 r = force(D, R, xx);

114 fs(i+1) = -r;

115 x2(i+1) = (p(i+1) - fs(i+1) - c*x1(i) - dt*0.5*c*x2(i))/(m + dt

*0.5*c);

116 x1(i+1) = x1(i) + dt*0.5*(x2(i) + x2(i+1));

117 if x1(i+1) >= 0

118 loop = 4;

119 xmin = x(i+1);

120 fmin = fs(i+1);

121 xpivot1 = xmin - fmin/kini;

122 end

123 elseif loop == 4

124 x(i+1) = x(i) + dt*x1(i) + x2(i)*dt*dt*0.5;

125 r = fmin + kini*(x(i+1) - xmin);

126 fs(i+1) = r;

127 x2(i+1) = (p(i+1) - fs(i+1) - c*x1(i) - dt*0.5*c*x2(i))/(m + dt

*0.5*c);

128 x1(i+1) = x1(i) + dt*0.5*(x2(i) + x2(i+1));

129 if x(i+1) >= xpivot1 && x1(i+1) <= 0;

130 loop = 2;

131 xx = x(i+1) - xpivot1;

132 r = force(D, R, xx);

133 fs(i+1) = r;

134 xmax = x(i+1);

135 fmax = fs(i+1);

136 xpivot = xmax - fmax/kini;

137 elseif x(i+1) >= xpivot1

138 loop = 1;
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139 xx = x(i+1) - xpivot1;

140 r = force(D, R, xx);

141 fs(i+1) = r;

142 elseif x1(i+1) <= 0

143 loop = 6;

144 xp1 = x(i+1);

145 fp1 = fs(i+1);

146 end

147 elseif loop == 5

148 x(i+1) = x(i) + dt*x1(i) + x2(i)*dt*dt*0.5;

149 r = fp + kini*(x(i+1) - xp);

150 fs(i+1) = r;

151 x2(i+1) = (p(i+1) - fs(i+1) - c*x1(i) - dt*0.5*c*x2(i))/(m + dt

*0.5*c);

152 x1(i+1) = x1(i) + dt*0.5*(x2(i) + x2(i+1));

153 if x(i+1) >= xmax && x1(i+1) <= 0

154 loop = 2;

155 xx = x(i+1) - xpivot1;

156 r = force(D, R, xx);

157 fs(i+1) = r;

158 xmax = x(i+1);

159 fmax = fs(i+1);

160 xpivot = xmax - fmax/kini;

161 elseif x(i+1) >= xmax

162 loop = 1;

163 xx= x(i+1) - xpivot1;

164 r = force(D, R, xx);

165 fs(i+1) = r;

166 elseif x1(i+1) <= 0

167 loop = 2;

168 end

169 elseif loop == 6

170 x(i+1) = x(i) + dt*x1(i) + x2(i)*dt*dt*0.5;

171 r = fp1 - kini*(xp1 - x(i+1));

172 fs(i+1) = r;

173 x2(i+1) = (p(i+1) - fs(i+1) - c*x1(i) - dt*0.5*c*x2(i))/(m + dt

*0.5*c);

174 x1(i+1) = x1(i) + dt*0.5*(x2(i) + x2(i+1));

175 if x(i+1) <= xmin && x1(i+1) >= 0
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176 loop = 4;

177 xx = xpivot - x(i+1);

178 r = force(D, R, xx);

179 fs(i+1) = -r;

180 xmin = x(i+1);

181 fmin = fs(i+1);

182 xpivot1 = xmin - fmin/kini;

183 elseif x(i+1) <= xmin

184 loop = 3;

185 xx = xpivot - x(i+1);

186 r= -force(D, R, xx);

187 fs(i+1) = r;

188 elseif x1(i+1) >= 0

189 loop = 4;

190 r = fmin + kini*(x(i+1) - xmin);

191 k = kini;

192 xpivot1 = xmin - fmin/kini;

193 end

194 end

195 end

196

197 %Plotting the response curves

198

199 figure(1)

200 plot(t, x2, "linewidth",1.5, ’color’, ’k’)

201 xlim([0 max(t)])

202 title("Acceleration response of a SDOF system subjected to El Centro

earthquake", ’fontsize’,16);

203 xlabel(’Time in ’’seconds’’’, ’fontsize’,16)

204 ylabel(’Acceleration in ’’m/sˆ2’’’, ’fontsize’,16)

205 grid minor;

206

207 figure(2)

208 plot(t, x1, "linewidth",1.5, ’color’, ’k’)

209 xlim([0 max(t)])

210 title("Velocity response of a SDOF system subjected to El Centro

earthquake", ’fontsize’,16);

211 xlabel(’Time in ’’seconds’’’, ’fontsize’,16)

212 ylabel(’Velocity in ’’m/s’’’, ’fontsize’,16)
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213 grid minor;

214

215 figure(3)

216 plot(t, x, "linewidth",1.5, ’color’, ’k’)

217 xlim([0 max(t)])

218 title("Displacement response of a SDOF system subjected to El Centro

earthquake", ’fontsize’,16);

219 xlabel(’Time in ’’seconds’’’, ’fontsize’,16)

220 ylabel(’Displacement in ’’m’’’, ’fontsize’,16)

221 grid minor;

222

223 figure(4)

224 plot(x, fs, "linewidth",1.5, ’color’, ’k’)

225 title("Force Deformation curve of a SDOF system subjected to El Centro

earthquake", ’fontsize’,16);

226 xlabel(’Displacement in ’’m’’’, ’fontsize’,16)

227 ylabel(’Force in ’’N’’’, ’fontsize’,16)

228 grid minor;

229

230 %Function to give the restoring force value using push-over curve

231

232 function [r] = force(D, R, disp)

233 for j = 1:length(R)-1

234 if D(j) <= disp && D(j+1) >= disp

235 r = R(j) + (((disp)-D(j))/((D(j+1) - D(j))))*(R(j+1) - R(j));

236 end

237 end

238 end
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Appendix B

Notations

m = mass matrix

c = viscous damping matrix

fs = nodal restoring force vector

ag = earthquakeground acceleration

p = external force excitation vector

x = nodal displacement vector

x1 = nodal velocity vector

x2 = nodal acceleration vector

ω = angular natural frequency of the structure

∆t = integration time step

ω̄ = numerical frequency

ζ̄ = numerical damping

λ1, λ2, λ3 = eigenvalue of amplification matrix

β, γ = Newmark algorithm parameter
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