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Abstract 

Power System cascading outages can result in major system loss and the other indirect 

losses. These outages are unpredictable in nature and hence their modeling is a fairly 

complicated task. The modeling of these outages is based on statistical inferences. 

These outages can start from very simple outages and can grow into a big outage if 

some chaotic parameter is touched. They can also start from inter tie oscillations and 

can grow into big outages. The health of the power system is represented by frequency 

and whenever there are some oscillations which are small in frequency then that means 

some dynamic is there. If these don’t get damped out, then there is a chance that they 

will grow and that will definitely cause system wide cascade if some critical equipment 

failure occurs. In this report a small part of a big problem of preventing cascading 

outage is discussed. Under this, the fault location needs to be found for real time 

topology update of the system network. This ensures that if some critical state is 

present, it can be sensed with the help of generator coherency information. The method 

uses the electromechanical wave velocity concept and the concept of multilateration to 

determine the fault location. The system on which this approach is tested is IEEE- 9 

bus system. The method to detect the fault location does require the use of PMU and 

IED which can be used for measurement of signals. With very less amount of data and 

less number of PMUs, but sufficient enough to make the overall power system 

observable, fault location can be calculated. The report only focuses on the fault 

locations at the buses, but in actual system fault could also occur between the buses and 

the method can be modified to include line faults. Also after determining the location 

of fault, system data can be modified with new calculations. This modified data can be 

used further to estimate the state of the system. The problem of state estimation has not 

been dealt with in this work. It is assumed already that the system is in vulnerable state 

or in emergency state and different areas can lose synchronism with each other which 

will result in different generators falling apart. In order to save the system, different 

buses and generators which are coherent need to be grouped. This is done by studying 

the coherency information of the system and finally the system is studied for optimum 

isolation under such condition (optimum in terms of minimum power flow disruptions).  
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1. CHAPTER 

1.1 INTRODUCTION 

Cascading-is a term used in literature to show the occurrence of objects or some 

phenomena or events one after the other. A cascading outage is a sequence of events in 

which initial disturbance, or set of disturbances, triggers a sequence of one or more 

dependent component outages. 

Although outages generally occur in the system due to one or other reason such as 

equipment failure and malfunctions of protection equipment but most of them do not 

develop into a cascade. It is only when some important or vulnerable component in the 

power system gets into trouble, cascading chances become high and even then one can’t 

say with surety that it will become cascade. But the reverse seems and found to be true 

by observing actual events in the sense that, whenever the cascade event occurred, it 

did due to some important component getting out of service for one reason or the other. 

Usually the first initial event is found to be random, but the subsequent events can be 

connected by a causal link and can be explained. Researches first find some vulnerable 

elements that will develop into some cascade of events [25], [26]. Therefore, cascading 

outages are influenced by the details of the system state, such as components out for 

maintenance and the patterns of power transfers, and the automatic and manual system 

procedures. Subsequent events can include transmission line outages, frequency 

oscillations leading to instability, overloads and malfunctions of protective relays. 

The initiating events for a cascading outage can include a wide variety of disturbances 

such as high winds, overloads, lightning, natural disasters, contact between conductors 

and vegetation or human error [26]. The subsequent events are dependent events and 

they form a chain which seems to be numerous before actually they occur. The Risk is 

considered to be a combination of probability and the cost it causes if it occurs. Hence 

characterization of all the uncertainties and their cost is studied under risk assessment 

of power system. 

To prevent cascading outages controlled islanding is done which determines best 

possible cut in the network. The real time information is obtained to determine if any 

fault is occurring in the network. The fault location is determined and topology 

information is updated to include the fault. Then coherency detection helps in finding 

the optimal cut to determine the lines that needs to be cut to separate the differently 

coherent areas and hence prevent the system from losing towards instability. In this 

report, the problem of determining fault location is dealt with. Hence, this problem can 

be divided into three parts-  

1) Determination of location of fault, 

2) Determine possible islands combinations, these can be more than one, 

3) Find the optimal cut that can reduce power disruption between different areas. 

The report is organized to explain each part one by one. A brief introduction of 

continuum modelling of electromechanical waves is presented in next section. The 
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explanation of all the methods is given in chapter 3 and finally the test results are given 

in chapter 4. 

1.2 Electromechanical Waves-  

Since any cause and effect are separated by some time gap which is necessary 

(considering the causal behavior of the system) and important according to modern 

theories of physics. The affects which are produced by some cause in material world 

travel with some speed which depends on the properties of the material. The travelling 

of this disturbance is called wave propagation. Some waves are transient in nature. 

However, if some energy storage elements are presents together in the system then it 

causes harmonic travel of energy between different point of energy storages. These 

waves are sustaining and move in the system. In power system as the grids got 

interconnected sufficient amount of generation and load gets distributed throughout the 

system. It now seems as though the inertia of generators and the sinks of electricity are 

distributed throughout the system. Hence, in terms of parameters, rotor angle δ and 

loads PL are distributed in space. When these energy interchanging quantities are 

distributed in space, then surely the disturbance travels in the form of waves. This was 

recognized by electrical engineers earlier and they even thought that the waves of 

disturbance travel with same speed but it has been possible to measure them now and 

verify the prevalence of speed all over the network with the help of wide area 

measurement systems. 

Model for Electromechanical waves-  

Although this model assumes the continuity to be embedded in alternators and load 

positions which is far from the reality [4], it does give good estimate of the speed of the 

disturbances that has been measured at different buses in the power system. It makes 

inertia, damping coefficient, mechanical power and impedance as dependent on the 

spatial coordinates as shown below-  

 

  Fig. 1. 1 Model for explaining electromechanical waves 

This modeling gives  
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      I(x, y) =  −
∆2

Z
(
∂2V

∂x2
+
∂2V

∂y2
) + (∆)YV                                                                  (1.1) 

 

, which gives   Pe = Re(VI*) and substituting this equation in dynamic equation of 

alternator gives, 

 

2h

ω

∂2δ

∂t2
+ ωd

∂δ

∂t
= P − Pe                                                                             (1.2) 

 

2h

ω

∂2δ

∂t2
+ωd

∂δ

∂t
−
V2

Z
(sin(θ) (

∂2V

∂x2
+
∂2V

∂y2
) − cos(θ) ((

∂V

∂x
)
2

+ (
∂V

∂y
)
2

)) = p − GV2 (1.3) 

 

This equation, although does not model the entire disturbance phenomena for discrete 

system, like our power system generally is, but it gives the value of the wave velocity 

as the coefficient of the double derivative of V with respect to spatial coordinates x and 

y. This velocity is given in equation (1.5) 

∂2δ

∂t2
+ μ

∂δ

∂t
− (v2∇2δ − u2(∇δ)2) = P                                             (1.4) 

The value of v, described in (1.4) is given in (1.5). 

v2 = 
ωV2sin (θ)

2h|z|
                                                                  (1.5)  
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2.  LITERATURE REVIEW-  

 

Urban Rudez, Rafael Mihalic,[1] uses electromechanical wave propagation to 

determine the fault location. The author proposes the use of critical points on the 

elctromechanical angle wave and gives a formula determined by simulation to calculate 

the time of arrival of disturbance wave at a particular bus. Thus this method makes the 

time of arrival determination independent of amplitude and frequency. Also the effect 

of inertia and line reactance on electromechanical wave propagation is examined. To 

produce the simulation results homogenous system is assumed. The author gives reason 

of why approach of constant threshold is wrong and it can give wrong results due to 

noise measurements. The proposed critical points on the elctromechanical wave are 

maximum point, maximum speed point and bifurcation point on the wave. Time of 

arrival of an electromechanical wave shouldn’t depend on its own waveshape but on 

the waveshapes of other localized generator form where the wave is coming. But in 

constant threshold approach, one measures the time of arrival from the intersection of 

constant threshold with its own wave shape which make arrival time dependent on the 

waveshape[2]. 

J.S.Thorp, C.E. Seyler, A.G.Phadke, [5] developed the model of electromechanical 

waves using the concept of continuum systems. Although a bit unrealistic, this model 

idealizes the discrete nature of the power system and makes it continuous in order to 

get explicit insight into the phenomena. The power system loads are assumed to be 

continuous with zero spacing between them. The line impedance is assumed to be 

distributed all throughout the network and both unidimensional and two- dimensional 

distribution cases are considered for developing the differential equations representing 

the phenomena. The equation closely resembles the equation of wave when some 

reductions are performed and it confirms the fact that disturbance travels with some 

velocity like a wave along the electrical network spanned by the power system. The 

quantitative result of speed is obtained through the modelling. Author further 

investigates the propagation characteristics of wave, equilibrium solutions of the wave 

are calculated using analytical methods and stability of resulting equations. It also 

provides asserts to the observed fact that the waves could grow in certain directions, 

depending upon the rotor position in steady state with respect to their stator(stiff stator 

rotor coupling causes resistance to the propagation of the wave) on the network and 

other parameters 

Manu Parashar, J.S. Thorp,[3] developed the continuum model for real power 

systems. Since the power system is having discreteness related to the presence of 

generation and load as well as inertia and impedance of transmission lines, it is highly 

irregular and anisotropic (system whose parameters are not regular with respect to 

geometry). Previous models are based on the assumption that power system is a 

continuous sheet of impedance distributed all over the world with electrical and 

mechanical inertia along with loads, but it doesn’t really model the actual system. In 
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this paper the author used a continuum model which on the large seems to be continuous 

but has finite discreteness embedded in it. The differential equations thus obtained 

contains spatial real information in its coefficients. A pair of non- linear partial 

differential equation is obtained which can be numerically analyzed. “The first PDE is 

the continuum equivalent of the load flow equations of the power system and is a 

boundary value problem. The second equation is the continuum equivalent of the swing 

equations of the power system. The parameters of these equations are functions of 

spatial coordinates and the network topology is embedded in them.” The model also 

shows that there can be phenomena just like an electromagnetic wave can have. 

Dispersion can be quantitatively modelled in these continuum model equations and it 

reveals the fact that the disturbances propagate in the phase angles and with constant 

finite velocity which is much less than the speed of light. 

 

H. Song, M. Kezunovic, [18] “used the vulnerability index and margin index to 

evaluate the vulnerability of the system parts as well as the whole system during the 

operation of the system. It identifies the vulnerable parts of the system using the 

topology processing and operation indexing method. In the paper power flow is used to 

evaluate the vulnerability and security of the system, identifies the vulnerable part, find 

the transmission line and bus voltage problems and predicts the possible successive 

events.” 

 

L. Mili, Q. Qiu, A. Phadke, [19] “used another vulnerability based analysis which 

determines the condition of power system based on short circuit calculations and 

reserves of power being low due to fault or successive outages caused in the system. 

The cause of failure is taken to be the removal or lessening of reserves of power due to 

successive outages leading to voltage collapse. The algorithm aims at finding weak 

links in the power network. In this paper, the author proposes a methodology for a 

steady-state-risk assessment of multiple contingencies in large- scale power systems. 

The author also presents the statistical method for estimating the probabilities of hidden 

failures from historical data. The vulnerable link or line is described as the one whose 

disconnection can cause a large loss in load with highest conditional probability.” 

 

K. Sun, D. Zheng, and Q. Lu, [23] proposed a method to determine splitting points in 

the system to avoid any load generation imbalance in the subsystems resulting after 

islanding. The time based layer structure of problem solving is introduced in this work.   

Author focussed on the use of ordered binary decision diagrams(OBDD) for the 

splitting of 3-phase power systems. The author first reduced the graph of power system 

by removing irrelevant nodes and edges, merging of two nodes and removal of 

redundant edges in a cut-set. In phase-2 the balanced partition(BP) problem is solved 

on the reduced graph to find the partition, satisfying in addition, the PBC and SSC 

constraints. If no solution is found in phase 2, phase 1 is executed again by relaxing 

some constraints and changing parameters to change the reduced network. In the third 

phase the author checks the power flow results and find the proper Splitting strategies. 

Then a threshold limit is chosen for power flow in transmission lines and only those SS 

are considered feasible for which the power flow in transmission line in every island is 

within permissible or chosen threshold limits. 
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X. Wang, B. Qian, I. Davidson, [14] explained how traditional spectral clustering can 

be used to satisfy some constraints in order to cluster graph according to some 

properties different from geometrical patterns. The use of constrained spectral 

clustering is provided on various elementary example as well as on big applications 

such as image segmentation. The method is presented in two forms one weighted and 

other direct method. Weighted method weights the lagrangian according to the value of 

the found eigenvectors and then applies clustering on it. Author also presented the 

geometrical interpretation example of this method. The mathematical proof is included 

along with applications. 

 

A Peiravi, R Ildarabadi [24] proposed multilevel kernel k- means method to perform 

intentional islanding and compared it with the spectral method developed earlier. The 

proposed method is fast and the time saved increases as the system size increases. The 

author proposes three phases of the method in which first is graph aggregation, then 

spectral partition is performed then merging or retrieval algorithm is applied on the 

graphs. 

 

G.N. Ramaswamy, G.C. Verghese, L. Rouco, C. Vialas, C.L. DeMarco, [27] In this 

paper the author made the aggregate model of  system base on inter area modes. The 

concept of synchrony is explored and approximate synchrony is found using clustering 

algorithm.”Using for illustration a 23-generator power system model with 325 state 

variables, the paper demonstrates the effectiveness of a synchrony-based approach to 

decomposing the eigenvector analysis of the electromechanical modes, separating the 

computation of inter-area and intra-area modes in the style of multi-area Selective 

Modal Analysis.” 

 

N.Senroy, [28] In this paper the author applied Huang’s empirical mode decomposition 

in order to extract dominant oscillatory modes from inter area oscillations from swing 

cuves or instantaneous phase angle curves. Hilbert transform on the modes extracted 

provides their instantaneous phases. The phase angles are used here for the analysis of 

inter and intra area modes. The analysis presented in the paper points to the fact that 

generator coherency can be extracted from insstantaneous phase difference between 

dominant modes of oscillations. The analysis of wide-area measurements demonstrate 

that it is possible to extract coherency between different areas, using distributed 

frequency measurements. 

 

 

H. A. Alsafih, R. Dunn, [29] In this paper the author presented a method which uses a 

hierarchical clustering technique to classify the synchronous generators in power 

system into a number of coherent groups irrespective of the number of synchronous 

generators. The author also discusses the effect of type of disturbance on the clustering. 

Response of generators motion due to some disturbance is recorded and used to 

generate coherency information. The indexes which are used to evaluate the degree of 

coherency between any pair of generators are utilized in this method. Thereafter, the 

clustering algorithm is used to cluster these coherent generators into coherent groups. 
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K. L. Lo, Z. Z. Qi and D. Xiao, [30] “The author presented a method of identifying 

the coherency of a group of generators using spectrum analysis technique. First, the 

rotor angles of generators in the early part of the transients are predicted by the Taylor 

series expansion of the power system model. The values obtained are taken as sample 

data for the spectrum analysis with an FFT algorithm. The author uses the coherency 

criteria from the spectrum found and the coherent groups of generators is found through 

the spectra.” 

 

K. K. Anaparthi, B. Chaudhuri, N. F. Thornhill and B. C. Pal, [32] “The author 

used a technique of spectral analysis to identify coherent generators in large 

interconnected power system using measurements of generator speed and bus angle 

data. Based on the application of principal component analysis (PCA) to measurements 

obtained from simulation studies that represent examples of inter area events this 

method is used separately on bus angle and speed data. The approach of PCA was able 

to highlight clusters of generators showing common features when compared with the 

conventional modal analysis.” 

 

M. Jonsson, M. Begovic, J. Daalder, [31] Author proposed a method of using 

generator speed measurements combined with Fourier analysis technique. The author 

test the spectrum analysis method on three test cases where it is compared to 

conventional methods based on the generator speed, modal analysis, and phasor angle 

measurement. 

 

H. You, V. Vittal, and X. Wang,[20] “In this paper author used the analytical basis 

for an application of slow coherency theory to the design of an islanding scheme, which 

is employed as an important part of a corrective control strategy to deal with large 

disturbances. Various networking conditions and different types of loading are used to 

test this method. The results indicate that the slow coherency based grouping is almost 

insensitive to locations and severity of the initial faults. However, because of the loosely 

coherent generators and physical constraints the islands formed change slightly based 

on location and severity of the disturbance, and loading conditions. The description of 

the procedure to determine the groups using the slow coherency is also given in the 

paper. The verification of the islanding scheme is proven with simulations on large bus 

systems.”  

 

C Juarez, A. R. Messina, R Castellanos and G Espinosa-Pérez, [22] “In this paper, 

an online hierarchical clustering method based on pattern recognition techniques is 

proposed for the automated clustering of system motion trajectories. Using the concept 

of minimum average distance between machine oscillations exhibiting a common 

behavior, a hierarchical clustered structure of the system that can be used for online 

determination of multi machine dynamic equivalents is suggested. This method 

accounts for complex inter machine oscillations and is suitable for a wide range of 

problems such as wide-area stability analysis and online dynamic security assessment 

and control. The method is used on Mexican power system. The clustering procedure 
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is applied to identify the coherent motion of system machines following critical 

contingencies. The temporal modal behavior is separated using clustering technique. 

The method presented correctly identifies system dynamic behavior and hence can be 

used for grouping power system into different buses. The method is currently being 

extended to perform model reduction, directly in time-domain using a multimachine 

representation.” 

 

Ahad Esmaeilean, and M. Kezunovic,[4] used the synchrophasor measurements and 

concept of electromechanical wave to determine the fault locations. By calculating the 

time of arrival of electro mechanical wave to reach at a particular bus locations and 

taking the topology of the network into account, the method is proposed to detect the 

faulty line. The system is provided with optimal PMU locations in the power system. 

This paper proposes to use neural network for time of arrival detection and simulation 

is done in MATLAB on 118 bus system. The author also used the statistical techniques 

to remove bad data measurements. In another paper author proposed the optimization 

problem in which constrained spectral clustering is employed to optimize the amount 

of power disruption (minimize) and determining such cuts which isolates different areas 

of power systems while having minimum disruption in power.  

Ahad Esmaeilean, and M. Kezunovic, [15] used the spectral clustering algorithm to 

determine the preliminary clusters using dynamic stability considerations. The method 

uses stiffness coefficients as the weights of the graph connections. The method divides 

the system first into two islands and then uses recursive bisection to separate each island 

into further two groups until the required number of groups are found. The use of 

dynamic stability constants helps in deciding the value of preliminary clusters which 

can be used to form constraint matrix for its further application in constrained spectral 

k- embedded clustering to find optimal solutions. 

Ahad Esmaeilean, and M. Kezunovic[7] used synchrophasor measurements to utilize 

the coherency of the generators in the power system to find the cuts which will lead to 

minimum disruption in power. “A method to predict cascade event outage at early stage 

and mitigate it with proper control strategy is developed. In the first step, methodology 

employs sparsely located phasor measurement units to detect disturbances using 

electromechanical oscillation propagation phenomena. The obtained information is 

used to update system topology and power flow. Next, a constrained spectral k-

embedded clustering method is defined to determine possible cascade event scenarios. 

 

”  
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3. METHODOLOGY 

3.1 Part 1- Determination of fault location-  

 Fault location-  
The topology of electrical network at which the fault occurs is as shown in the fig. 1. 

The shown network is standard IEEE 9 bus system. All the buses are assumed to be 

either generator buses or load buses. No ZIB is considered in order to make PMU 

placement algorithm simple. Also, the line or links connecting the buses are assumed 

to be purely without bypass losses i.e., their shunt conductance is assumed to be zero. 

The buses can undergo any type of fault out of three phase, single line to ground or 

faults involving double lines. 

 

Fig. 3. 1 IEEE 09 bus test system with fault at bus 5 

Now, if a fault occurs at any bus k, then there may be possibility that lines connecting 

bus k(k = 5) to the buses originally connected may get overloaded. The lines if 

overloaded will be tripped by the connected relay signals which are seeing the fault area 

as their nearest zones. Due to this some other lines which are originally carrying the 

large amount of current may get overloaded, which will cause ultimately another 

tripping if the issue of fault is not taken care of by now. This can continue going on 

involving not only lines but other electrical equipment such as transformer, generator 

(in the way that it might lose synchronism and hence need to be isolated first) etc. So 

our methodology is applied in the interval that begins after several outages and before 

the next outage can occur in the system. Now we can see that in order to separate the 
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bus from the rest of the system, one can’t just disconnect the bus from the system by 

tripping all the lines connected to the bus. To remove the bus and prevent outages from 

cascading into the system, proper islanding of different coherent areas of the power 

system can be a solution. 

Now, at first the location of PMUs can be selected such that the power system is 

completely observable and we have to apply minimum number of PMUs, by solving a 

simple optimization problem which is related to the Integer Linear Programming. 

After the PMU locations are known one can determine the steady state condition of a 

power system. Steady state algebraic equations can be written in order to find the 

different variables in the power system. Now if a fault occurs at a bus no. k, it causes 

electromechanical disturbance in the power system which propagates in the system with 

some speed. Hence if the fault bus voltage, current or load angle changes according to 

a function vk(t), ik(t), 𝛿k(t) then one can find the similar changes at some other bus m 

superimposed over their steady  state values at some later time. Hence all signals of 

changes look similar but seems shifted in time with respect to each other. 

The time delay between different buses can be calculated using electromechanical wave 

velocity but it requires the determination of distance between bus k and bus m. But 

there can be many paths in the power system to reach bus m by starting at bus k. Hence, 

the simplest assumption that can be made here is that electromechanical disturbance 

wave travels in the power system along the shortest path that is available and the time 

the first disturbance in frequency or phase angle analogous to some other bus is found, 

it will be due to electromechanical wave travelling along this shortest path. This can be 

used to calculate the time delay between different buses in power system. Also, 

measurement of the bus signal information of the observable buses in the system is 

available through PMUs placed at bus locations. It is assumed that there is no 

limitations to channel availability in the PMUs and one can find as many channels as 

are required according to the application. Usually, we want at least the bus voltage and 

the line currents of all the lines connected to bus k, because in such way more 

measurements are providing more observability into the system. 

This time delay calculated form the velocity is the theoretical time delay for a 

disturbance to travel in the circuit from bus k to bus m in the network. Also the 

measurements can provide the information about the time at which the fault arrives at 

the bus m. Note, here is one important point that one can’t calculate absolute time of 

the arrival of fault at the bus and only time delay for the disturbance to arrive at the 

concerned bus from the fault bus, because the bus at which the fault occured is not 

known. But we can calculate the time difference of arrival time of the PMUs[4]. Now 

if the procedure of calculating the time of arrival of the PMUs with respect to the time 

of arrival of the observable bus where disturbance reaches first (bus with minimum time 

of arrival) is done, then we will be having the data points of the difference of time of 

arrival. This difference data set is calculated by assuming the faults at different buses. 

So, we have the data set of difference in arrival times for every bus in the system. This 
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will be obtained by using the shortest path database made for the network. Now if the 

assumed theoretical fault is the actual fault i.e., if the fault assumed to calculate the 

delay at bus k is actually the fault happening in real- time in the system, then the 

difference of measured data set and the calculated data set must be zero, or in statistical 

sense, it must be minimum. 

This is the reason we check for all the buses by assuming fault at every bus and 

calculating the difference for each bus, the minimum of which will give indication 

about the bus nearest to the fault.  
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Flowchart 3.1- Fault location Algorithm-  
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 Measurement of PMU variables-  
A PMU can be placed at a bus and it can measure voltage, current and even power flow 

in the lines connected to the corresponding bus. Theses PMUs have output channels 

which can be employed according to the need. The data is collected in the Phasor Data 

Concentrators (PDCs) Units and then computation is done on the data for different 

purposes. 

To have complete observability of the system network in limited resources, optimal 

PMU placement algorithm is run on the IEEE test bus system. The PMU locations turn 

out to be bus 2, bus 4 and bus 9 for standard IEEE 9 bus system. These bus locations 

are found without any consideration of Zero Injection Buses (ZIBs) The ZIBs if 

included in algorithm will further reduce the PMUs found from the original optimal 

PMU problem. ZIBs are those buses at which neither the load nor the generation is 

connected. 

Rules for Optimal PMU placement[6]-  

a) A bus installed with a PMU measures the voltage of the bus and all of the line 

currents injected to the Bus. 

b) If the voltage at one bus terminal of a line is known and the current through the 

line is also known, then the voltage at the other end of the line can be determined 

form KVL on steady-state phasors. 

c) If the voltage phasors at the two ends of the line are also known, then one can 

determine the current phasor of the line. 

Based on these it can be concluded that if any node of the power system is connected 

to other different nodes then one can determine the voltages of all the other nodes if a 

PMU is placed at the location of the former node. 

Now the connectivity vector can be obtained from the adjacency matrix, e.g., for node 

5 , the adjacency matrix row is, 

 𝐴5 = (0 0 0 1 1 0 1 0 0)  (3.1) 

Now if at any of the bus 5 one PMU is located then all other nodes connected to bus 5 

are observable. 

To formulate the problem one can find the adjacency matrix of the system, denoted by 

A.  

Also, let us introduce n binary variable matrix, where n is the number of nodes in the 

system. These variables’ Boolean value denotes the presence of PMU at the particular 

node. The below matrix is for IEEE 9 bus standard test system. 
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𝐴 =  

(

 
 
 
 
 
 

1 0 0
0 1 0
0 0 1

1 0 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 1

1 0 0
0 0 0
0 0 0

1 1 1
1 1 0
1 0 1

0 0 0
1 0 0
0 0 1

0 1 0
0 0 0
0 0 1

0 1 0
0 0 0
0 0 1

1 1 0
1 1 1
0 1 1)

 
 
 
 
 
 

,      𝑋 =  

(

 
 
 
 
 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9)

 
 
 
 
 
 

  (3.2) 

 

Then optimal PMU problem becomes, 

 min (∑𝑥𝑘)  (3.3) 

, subjected to the constraints 

 𝐴𝑋 ≥ 𝑏,    𝑤ℎ𝑒𝑟𝑒  𝑥𝑘 ∈ {0 , 1}  (3.4) 

, and 𝑏 =  (1 1 1 1 1 1 1 1 1)𝑇  (3.5) 

After solving in MATLAB with linear programming problem, one gets optimal bus 

locations as bus 2, bus 4 and bus 9. 

Hence, with these we know E2, E4, E9 and line currents I54, I14, I64, I72, I89, I39. 

After obtaining these variables one can find the other node voltages and line currents 

as 

 𝐸5 = 𝐸4 + 𝐼(54) ∗ (−𝑌𝑏𝑢𝑠(5,4)−1) 

𝐸1 = 𝐸4 + 𝐼(14) ∗ (−𝑌𝑏𝑢𝑠(1,4)−1) 

𝐸7 = 𝐸2 + 𝐼(72) ∗ (−𝑌𝑏𝑢𝑠(7,2)−1) 

𝐸8 = 𝐸9 + 𝐼(89) ∗ (−𝑌𝑏𝑢𝑠(8,9)−1) 

𝐸7 = 𝐸2 + 𝐼(72) ∗ (−𝑌𝑏𝑢𝑠(7,2)−1) 

𝐸8 = 𝐸9 + 𝐼(89) ∗ (−𝑌𝑏𝑢𝑠(8,9)−1) 

𝐸3 = 𝐸9 + 𝐼(39) ∗ (−𝑌𝑏𝑢𝑠(3,9)−1) 

𝐸6 = 𝐸4 + 𝐼(64) ∗ (−𝑌𝑏𝑢𝑠(6,4)−1) 

 

…(3.6) 
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 𝐼(57) = (𝐸5 − 𝐸7) ∗ (−𝑌𝑏𝑢𝑠(1,4)) 

𝐼(69) = (𝐸6 − 𝐸9) ∗ (−𝑌𝑏𝑢𝑠(6,9)) 

𝐼(87) = (𝐸8 − 𝐸7) ∗ (−𝑌𝑏𝑢𝑠(8,7)) 

…(3.7) 

If ZIBs are included then the rules which help in optimization are as follows[6]- 

a) If a ZIB is connected to a PMU and it is connected to other buses which are 

observed by PMUs except one, then the bus which is not measured by any PMU 

can be made observable by applying KCL at the Zero Injection bus and finding 

the current in the line connecting the ZIB to the unobserved bus. Then KVL will 

provide the voltage of the previously unobserved bus. 

b) If a ZIB is surrounded by the buses which are all observed by some PMU then 

the ZIB can also be made observable by applying KCL at the ZIB or by using 

Millman’s Theorem at the ZIB.                                                                                          

                       

           Fig. 3. 2 ZIB rule (b)          

  

 

Fig. 3. 3 ZIB rule (c) 
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𝑉𝑛 = 

𝑉1

𝑍1
+

𝑉2

𝑍2
+

𝑉3

𝑍3
+

𝑉4

𝑍4
1

𝑍1
+

1

𝑍2
+

1

𝑍3
+

1

𝑍4

 
 (3.8) 

c) If there are two or more ZIBs connected to each other and are not measured by 

any PMUs and they all are surrounded by neighbor buses that are observable, 

then they can be made visible by applying KCL at all the ZIBs connected 

together. 

 

𝑉𝑖 = 

𝑉1

𝑍1
+

𝑉𝑗

𝑍𝑖𝑗
+

𝑉4

𝑍4

1

𝑍1
+

1

𝑍𝑖𝑗
+

1

𝑍4

 
 (3.9) 

 

 

𝑉𝑗 = 

𝑉2

𝑍2
+

𝑉3

𝑍3
+

𝑉𝑖

𝑍𝑖𝑗

1

𝑍2
+

1

𝑍3
+

1

𝑍𝑖𝑗

 
 

(3.10) 

Since eqn. (8) and (9) are two linear equations in two unknown variables Vi and 

Vj, the solutions can be obtained easily. What ZIB is doing is that it tries to 

remove the overlapping area of individual PMU observations. That means one 

PMU gives measurement of all unknown variables whose values can’t be 

obtained from the measurement of any of the other PMUs. 

 Calculation of Bus Angle Variations-  
After the data of the PMU variables is imported to the MATLAB, bus voltage angles 

need to be calculated in order to observe the swing caused by the fault or disturbance. 

There can be two thought processes to calculate the bus voltage angles variation with 

time.  

3.1.3.1 Using Discrete Fourier Transform-  

The Discrete Fourier Transform is the signal with period 2π, with respect to ꞷ, whose 

Fourier Series representation is the original discrete time signal. If our discrete signal 

would have been a continuous time periodic signal, then its coefficients in the 

Trigonometric Fourier Series representation of itself is the discrete Fourier transform. 

In mathematical terms,  

 
𝑓(𝑡) =  𝑎0 +∑𝑎𝑛 cos (

2𝜋𝑛𝑡

𝑇
) + 𝑏𝑛 sin (

2𝜋𝑛𝑡

𝑇
)

∞

𝑛=1

,      

 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑡 + 𝑇) =  𝑓(𝑡) 

 

(3.11) 
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𝑎0 = 

1

𝑇
∫ 𝑓(𝑡) 𝑑𝑡
(𝑇)

 (3.12) 

 
𝑎𝑛 = 

1

𝑇
∫ 𝑓(𝑡) cos (

2𝜋𝑛𝑡

𝑇
) 𝑑𝑡

(𝑇)

     (3.13) 

 

 
𝑏𝑛 = 

1

𝑇
∫ 𝑓(𝑡) sin (

2𝜋𝑛𝑡

𝑇
) 𝑑𝑡

(𝑇)

     (3.14) 

If this signal f(t) is sampled at M samples per cycle then, 

 
𝑇𝑠 = ℎ =

𝑇

𝑀
     (3.15) 

, where Ts is the sampling time. 

 

 

Now, at kth sample time t = kh and denoting f(kh) by fk,  

 
𝑎𝑛 = 

1

𝑀ℎ
∫ →∑𝑓(𝑘ℎ) cos (

2𝜋𝑛𝑘ℎ

𝑀ℎ
)  ℎ

(𝑇)

=
1

𝑀
∑𝑓(𝑘ℎ) cos (

2𝜋𝑛𝑘

𝑀
)

𝑀

𝑘=0

 

    (3.16) 

 

 
𝑏𝑛 =  

1

𝑀ℎ
∫ →∑𝑓(𝑘ℎ) sin (

2𝜋𝑛𝑘ℎ

𝑀ℎ
)  ℎ

(𝑇)

= 
1

𝑀
∑𝑓(𝑘ℎ) sin (

2𝜋𝑛𝑘

𝑀
)

𝑀

𝑘=0

 

    (3.17) 

 

If only fundamental component needs to be seen, 

 
𝑎1 = 

1

𝑀
∑𝑓(𝑘) cos (

2𝜋𝑘

𝑀
)

𝑀

𝑘=0

 
    (3.18) 

 
𝑏1 = 

1

𝑀
∑𝑓(𝑘) sin (

2𝜋𝑘

𝑀
)

𝑀

𝑘=0

 
    (3.19) 

Then ,  
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 𝑓(𝑡) =  𝑎1 cos(𝜔0𝑡) + 𝑏1 sin(𝜔0𝑡) =  𝐴 sin (𝜔0𝑡 +  𝜑)     (3.20) 

where,  

 
𝐴 =  √𝑎12  + 𝑏1

2
and 𝜑 =  𝑡𝑎𝑛−1 (

𝑎1

𝑏1
)     (3.21) 

Hence, we can see that if 𝜑 is constant we can have actual amplitude and phase angle 

of fundamental component of any signal using DFT. 

This can be seen in reverse too. Let 𝑣(𝑡) =  𝐴 sin (𝜔0𝑡 +  𝜑), then 

 
           =  ∑(sin(2𝜔0𝑘ℎ + 𝜑) + sin(𝜑))

𝑀

𝑘=0

 

= 𝑀 sin(𝜑) + 
1

2 sin(𝜔0ℎ)
∑2 sin(2𝜔0𝑘ℎ + 𝜑) sin(𝜔0ℎ)

𝑀

𝑘=0

 

    (3.22) 

 = 𝑀 sin(𝜑) + 
1

2 sin(𝜔0ℎ)
{2sin(𝜑) sin(𝜔0ℎ)

+ cos(𝜔0𝑘ℎ + 𝜑) − cos(3𝜔0𝑘ℎ + 𝜑) + cos(3𝜔0𝑘ℎ + 𝜑)

− cos(5𝜔0𝑘ℎ + 𝜑) + … .+ cos ((2M − 1)𝜔0ℎ + 𝜑 ))

−  cos ((2M + 1)𝜔0ℎ +  𝜑)}   

    (3.23) 

 = 2𝑀 sin(𝜑) + 
1

2 sin(𝜔0ℎ)
(𝑐𝑜𝑠(𝜔0𝑘ℎ + 𝜑) – cos((2M + 1)𝜔0ℎ +  𝜑)))     (3.24) 

 =  2𝑀 sin(𝜑) + 
1

2 sin(𝜔0ℎ)
{2 sin (M𝜔0ℎ)sin ((𝑀 + 1)𝜔0ℎ +  𝜑))}     (3.25) 

Also, sin (M𝜔0ℎ) = sin(2𝜋) = 0 

Hence ,  

 2𝑀

𝐴
𝑎1 = 2𝑀 sin(𝜑)   ⇒   𝑎1  =   𝐴 𝑠𝑖𝑛(𝜑)     (3.26) 

Similarly, 𝑏1  =   𝐴 𝑐𝑜𝑠(𝜑) 

Hence  

 
𝐴 = √𝑎12  +  𝑏1

2
 

𝜑 =  𝑡𝑎𝑛−1 (
𝑎1
𝑏1
) 

    (3.27) 

Hence, if signal have constant phase then it is easier to determine the voltage magnitude 

and phase angle from discrete Fourier Transform. 



 

19 
 

But when signal phase angle is changing it cannot produce good results as integral could 

not be solved elementarily and the period of integration is large during which 𝜑 cannot 

remain constant. Fig.4 shows a plot of signal 𝑣(𝑡) =   sin (100𝜋𝑡 + 
𝜋

6
) that shows the 

angle is constant and accurately calculated by DFT. 

 

           Fig. 3. 4 DFT calculated phase angle when phase angle = pi/6 radians 

Fig.3.5 shows how wrong the results are when phase angle is varying with half the 

frequency, 

 

 Fig. 3. 5Varying DFT angle when actual angle is varying at half the power frequency 
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Similarly, Fig. 3.6 shows the difference between DFT calculation and the actual time 

varying phase angle when the phase angle was varying with one fifth of power 

frequency. 

 

Fig. 3. 6DFT angle when actual phase angle is varying at one fifth of power frequency

 

3.1.3.2 Calculation Through Hilbert Transform-  

Hilbert transform can give more accurate results when the phase angle of sinusoidal 

signal is varying in time. It is used in communication signal phase demodulation. 

Hilbert transform is based on conjugate analytic function. The fact that a function and 

its Hilbert transform form an analytic function conjugate pair is used to extract phase 

angle variations from the signal. 

Hilbert transform of a signal 𝑓(𝑡) is given by  

 
𝐻(𝑥, 𝑦) =

1

𝜋
∫

𝑓(𝑡)(𝑥 − 𝑡)

(𝑥 − 𝑡)2 + 𝑦2
𝑑𝑡

∞

−∞

     (3.28) 

It can be seen that the 𝐻(𝑥, 𝑦) is the convolution of 𝑓(𝑡) with 
𝑖

𝜋𝑧
. Hence, 

 
𝐻(𝑥, 𝑦) =  𝑓(𝑥) ∗ (𝐼𝑚 (

𝑖

𝜋𝑧
))     (3.29) 

Hilbert transform for signals can be derived form the above definition, 

 𝐻(𝑥) =  lim
𝑦→0

𝐻(𝑥, 𝑦) 
    (3.30) 
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Now the point is, 𝐹(𝑡) = 𝑓(𝑡) +  𝑗𝐻(𝑡) is analytic and its angle gives us the phase 

variation of a sinusoidal signal. 

i.e., if 𝑓(𝑡) =  𝐴 sin(𝑔(𝑡)), then 𝑔1(𝑡) =  tan−1𝐻(𝑡)/𝑓(𝑡), g1(t) represents the 

variation of g(t). For a simple sinusoidal signal, one can mathematically prove it. 

Now if we consider the signal 𝑣(𝑡) =  sin (𝜔0𝑡) then mathematically, 

 
𝐻(𝑥, 𝑦) =  

1

𝜋
∫ sin𝜔0𝑡

(𝑥 − 𝑡)

(𝑥 − 𝑡)2  +  𝑦2
dt 

∞

−∞

 

                =  
1

𝜋
∫ sin𝜔0(𝑥 − 𝑡)

𝑡

𝑡2  +  𝑦2
dt 

∞

−∞

 

    (3.31) 

 
𝐻(𝑥, 𝑦) =  

1

𝜋
∫ sin𝜔0(𝑥 − 𝑡)

𝑡

𝑡2  + 𝑦2
dt 

∞

−∞

 

               =  
1

𝜋
∫ sin𝜔0(𝑥 + 𝑡)

−𝑡

𝑡2  +  𝑦2
dt 

∞

−∞

 

    (3.32) 

 
𝐻(𝑥, 𝑦) =

1

𝜋
∫ cos𝜔0𝑥 sin𝜔0𝑡

𝑡

𝑡2  +  𝑦2
dt 

∞

−∞

 

               =
1

𝜋
cos𝜔0𝑥 ∫ sin𝜔0𝑡

𝑡

𝑡2  + 𝑦2
dt 

∞

−∞

 

    (3.33) 

Now consider the integral 

 
𝐼1 =  ∫ sin𝜔0𝑡

𝑡

𝑡2  +  𝑦2
dt 

∞

−∞

 

⇒ 𝐻(𝑥, 𝑦) =   
1

𝜋
cos(𝜔0𝑥) 𝐼1(𝑦, 𝜔0) 

    (3.34) 

 
𝐼1(𝑦, 𝜔0) =  ∫ sin𝜔0𝑡

𝑡

𝑡2  + 𝑦2

∞

−∞

 𝑑𝑡 

⇒ 𝐼1(𝑦, 𝜔0) = 2 ∫ sin𝜔0𝑡
𝑡

𝑡2  +  𝑦2

∞

0

 𝑑𝑡 

    (3.35) 

Taking Laplace Transform on both the sides with respect to 𝜔0, we get 

 
𝐿(𝐼1)(𝑠) = 𝐿1(𝑠) =  2∫

𝑡

𝑡2  +  𝑦2
𝐿(sin (𝑡𝜔0))

1

∞

0

 𝑑𝑡 

                          =  2∫
𝑡

𝑡2  + 𝑦2
𝑡

𝑠2  + 𝑡2

∞

0

 𝑑𝑡 

    (3.36) 
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                     𝐿1 =  2∫

𝑡2

(𝑡2  + 𝑦2)(𝑡2  +  𝑠2)

∞

0

𝑑𝑡 

= 2
−𝑦2

𝑠2 − 𝑦2
∫

1

(𝑡2  +  𝑦2)

∞

0

𝑑𝑡 +  2
𝑠2

𝑠2 − 𝑦2
∫

1

(𝑡2  +  𝑠2)

∞

0

𝑑𝑡 

    (3.37) 

 
𝐿1(𝑠) =  2

−𝑦2

𝑠2 − 𝑦2
(
1

𝑦
tan−1

𝑡

𝑦
0

∞

) +   2
𝑠2

𝑠2 − 𝑦2
(
1

𝑠
tan−1

𝑡

𝑠0

∞

) 

               = 2
−𝑦

𝑠2 − 𝑦2
(
𝜋

2
) +   2

𝑠

𝑠2 − 𝑦2
(
𝜋

2
) =  𝜋

𝑠 − 𝑦

𝑠2 − 𝑦2

= 
𝜋

𝑠 + 𝑦
 

    (3.38) 

 ⇒ 𝐿1(𝑠) =
𝜋

𝑠 + 𝑦
     (3.39) 

Since L1 is the Laplace transform of I1 with respect to 𝜔0, hence    

 𝐼1(𝑦, 𝜔0) =  𝐿
−1(𝐿1(𝑠)) =  𝐿−1 (

𝜋

𝑠 + 𝑦
) =  𝜋𝑒−𝑦𝜔0     (3.40) 

Here, we assumed 𝜔0> 0 , while for 𝜔0< 0 , 

 
𝐿(sin(𝜔0𝑡) =  ∫ 𝑒𝑠𝜔0

0

−∞

sin(𝜔0𝑡)  𝑑𝜔0  =  −
𝑡

𝑠2  +  𝑡2
     (3.41) 

Hence, the result will be negative, 

 𝐼1(𝑦, 𝜔0) =  −𝜋𝑒
−𝑦𝜔0     (3.42) 

 Now, our original integral H(x, y) is 

 
𝐻(𝑥, 𝑦) =

1

𝜋
cos(𝜔0𝑥) ( 𝐼1(𝑦, 𝜔0)) 

                                 =  cos(𝜔0𝑥) 𝑒
−𝑦𝜔0    , 𝑤ℎ𝑒𝑟𝑒 𝜔0 >  0 

    (3.43) 

Hence the Hilbert transform = 𝐻(𝑥) =  lim
𝑦→0

𝐻(𝑥, 𝑦) =  cos(𝜔0𝑥) 

Hence, to find phase we see F(t) = f(t) + j H(t) 

⇒ F(t) =  sin𝜔0𝑡 + 𝑗 cos(𝜔0𝑡) =  𝑒
𝑗(−𝜔0𝑡+ 

𝜋

2
)
 

 arg(𝐹(𝑡)) = (−𝜔0𝑡 + 
𝜋

2
)     (3.44) 

 

, which determines the variation in the angle except for some finite shift. 
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The transform can be used on varying phase as can be shown by fig.7, fig.8 and fig.9 

for the same signals on which DFT was applied, 

 

Fig. 3. 7 Angle calculation through Hilbert when angle phi is constant = pi/6 

Fig. 3.7 shows phase extraction through Hilbert transform of constant phase angle. 

When 𝜑(𝑡) =  0.05 sin(50𝜋𝑡), fig. 3.8 shows the variation of angle calculated through 

Hilbert transform,  

 

 

Fig. 3. 8 Phase angle variation calculated through Hilbert Transform for half  

frequency  
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Similarly, Fig. 3.9 shows Hilbert calculated values of Phase angle varying with one- 

fifth frequency. 

 

Fig. 3. 9 Phase Angle varying with one fifth frequency extracted through Hilbert 

Transform 

 

 Formation of Shortest Path Database-  
It is assumed that a wave when originated travels along the shortest path from source 

to any destination point under observation. For this Shortest path algorithm is employed 

to find the path in the network from bus i to bus j. One such algorithm is the Dijkstra 

Algorithm[2]. Dijkstra algorithm is a greedy search algorithm based on the fact that it 

searches the optimal solution by taking optimal smaller solutions into account. The 

principle behind is, the steps taken towards optimal solutions must also be optimal.  

3.1.4.1 Dijkstra Shortest Path Algorithm-  

This Dijkstra Path is applied on a graph of weighted branches having only positive 

weights. Each node of the graph is given a initial value of infinity except the starting 

node which is initialized to zero. To find the shortest distance path you move from one 

node to the next. The node at which one is present is called the current node. The node 

which is selected for next position is called next node. Hence, every time one moves 

form present node to next node. The present node left behind is called visited node and 

will form a part of the shortest path obtained at the end of the iteration [33]. The 

procedure to find the next node is as follows-  

One proceeds by counting the next possible shortest distance to every neighbor node 

connected to the current node. The distance to a neighbor node is calculated by adding 

the value of current node and the weight of the link or branch connecting the current 

node to the observed neighbor node. Observed neighbor node is the node for which you 
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are calculating the distance value. If the value of the distance to the neighbor node is 

less than the already allotted value of the node, then the node value is replaced by the 

calculated distance value, otherwise, the node value is left unchanged. After every 

neighbor node of the present node is updated for its distance (changed or unchanged), 

the graph is analyzed. Now the search is carried out for the next node in the graph by 

finding the node whose present value is minimum. When the next node is searched, 

already visited nodes are removed from consideration, i.e., finding the minimum value 

of only those nodes is carried out which are not visited yet. After leaving the current 

node, the current node also becomes visited. This process is carried out until one 

reaches the destination node. 

To find neighbor nodes of the present node, the adjacency matrix is formed from the 

topology data matrix top_data. The topology matrix gives the data of nodes for every 

branch in the network graph. The diagonal elements of the adjacency matrix are set to 

zero. 
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Flowchart 3.2- The Algorithm in the flowchart is as shown- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Form adjacency matrix A 

Start node i. Set sd(j!=i) = infinity, and sd(i) = 0. 

Set c_n = i(current node) 

Node j = 1 and j! = c_n 

Is A(I,j) == 1? 

 Is j unvisited? 

Calculate dnew(j) = sd(c_n) + w(c_n,j) 

Is dnew(j) <= dold(j)? 

Is dnew(j) = dold(j) 

All j’s accounted? 

j= j+1 

Next node n_n = m_n 

Is next node n_n = destination node d_n? 

end 

Is n_n last node? 
no 

c_n = n_n 

Node j = 1. m_n = 1 

Is j unvisited? 

Is d(j)<d(j+1)? 

Min node  = m_n = j 

j= j+1 

All j’s accounted? 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

yes 

no 

yes 

yes 

no 

yes 
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The adjacency matrix definition is given here, 

 

𝐴(𝑖, 𝑗) =  {

1   , 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
    0, 𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0,                                                   𝑖𝑓 𝑖 = 𝑗

 
    (3.45) 

Now related to every graph there is a tree called shortest path tree for every starting 

node, i.e., if a starting node is selected then a tree which gives the shortest path from 

starting node to any other node can be deduced. 

In this tree every node has a characteristic shortest distance assigned to it after running 

the algorithm. In case, start and destination is not given and algorithm is run until all 

nodes are spanned by the algorithm. After running the algorithm, each node is assigned 

a previous node to it, which tells about the node which will fall just before the node 

under observation in the shortest path. Suppose if the shortest path tree for starting node 

j is obtained after running the algorithm, and suppose node p is assigned the node q as 

the previous node in the shortest path tree. Then that means p is arrived at via q when 

one moves on the shortest path from node j to node p. Now suppose q is assigned a 

node r, then that means q is arrived at via r when shortest path from node j to node q is 

followed. Hence, in this way one can back trace the shortest path for any node pair if 

shortest path tree for every starting node of the graph is known. 

This can be understood from the example graph shown in fig 3.10-  

                 

Fig. 3. 10 A weighted graph for Dijkstra Algorithm 
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Table 3. 1- Shortest Path Tree for node A 

Nodes  Pre_nodes S. dist. 

A  0 

B D 3 

C E 7 

D A 1 

E D 2 

 

Now, the above table Table. 3.1 shows the shortest path tree span for bus A(starting 

node). By viewing this table one can determine the shortest path from A to any node 

and also the shortest distance from A  to any other node can be obtained. If the shortest 

path from Node A to Node C needs to be found. Then using the table, C can be arrived 

at via E, E can be arrived at via D, D can be arrived at via A. Hence the shortest path is 

ADEC and the shortest distance is 7. 

 Calculation of Time of Arrival-  
The time at which a disturbance starts rising at a particular bus is called the time of 

arrival of the disturbance at a particular bus. Since the disturbance is assumed to travel 

with some velocity, it will reach different buses at a different time. This time of arrival 

can be determined from the first swing of the bus angle variation. There are 3 critical 

points on the bus angle curve that determines the time of arrival of the wave at a 

particular bus[1]. These are the maximum point, the max velocity point or the max rate 

of change point, or the bifurcation point. 

These points are denoted as-  

a) point T1 – peak point (the maximum value of bus angles during the first swing 

of the curve), 

b) point T2- maximum rate of change point or the point at which the rate of change 

of the phase angle is maximum, 

c) point T3- maximum bifurcation point or maximum acceleration point or max 

double derivative point, 

Earlier the same time of arrival is determined using maximum point, bifurcation point 

and the point of crossing a constant threshold. This approach is described as erroneous 

as the time of arrival becomes dependent of the value of threshold. So the less was the 

threshold, the more accurate Time of arrival is obtained[3]. 

Fig.3.11 shows the three points on the curve of delta variation- 
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Fig. 3. 11 Variation of load angle and critical  points on the curve 

After obtaining these three points, we get the time of arrival using an experimental 

fomula[1].  

 
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 =  𝑡𝑇3 − ∆𝑇23 −

∆𝑇12
2

     (3.46) 

The author arrived at this formula after the results of careful simulations. Now after 

obtaining measured time of arrival, the bus at which the time of arrival is minimum is 

found and the time of arrival of all the other PMU buses are represented with respect to 

this minimum arrival time bus. This is discussed in the next section in Multilateration 

approach to find the bus at which fault occurs.

 

 Multilateration based approach to determine the fault location-  
This technique is based on the assumption of a constant velocity of disturbance wave 

propagating in the power system[4][7]. Let the fault occurred at a bus k = 5 in the power 

system. Then PMU locations will provide the data and one can calculate the measured 

time of arrival of the disturbance at all the buses from eq. 3.46. Suppose the fault 

initiation time is tk. Time delay for bus 2, 4 and 9 and 3 are- 

𝑇2𝑘 = 𝑡2 − 𝑡𝑘 ;  𝑇4𝑘 = 𝑡4 − 𝑡𝑘 ; 𝑇9𝑘 = 𝑡9 − 𝑡𝑘 ; 𝑇3𝑘 = 𝑡3 − 𝑡𝑘 

But since the time of inception of fault is not known, hence tk is unknown. Let the value 

of t2 is minimum. Then the time of arrival of a disturbance at a particular bus with 

respect to the the time of arrival of the disturbance at bus 2 is calculated. This is also 

equal to the time delay at the rest of the buses with respect to the time delay of bus 2. 

𝑇32 = 𝑇3𝑘 − 𝑇2𝑘;  𝑇42 = 𝑇4𝑘 − 𝑇2𝑘;   𝑇92 = 𝑇9𝑘 − 𝑇2𝑘 

Hence, 

 𝑇32 = 𝑡3 − 𝑡2 

𝑇42 = 𝑡4 − 𝑡2 

𝑇92 = 𝑡9 − 𝑡2 

    (3.47) 
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Hence, a vector for these relative time of arrivals can be calculated, 

 
𝑇𝑀 = [

𝑇32
𝑇42
𝑇92

]     (3.48) 

Now, the same matrix will be evaluated through theoretical consideration and then these 

matrices will be compared. 

The electromechanical wave velocity is given by[3], 

𝑣 =  √
𝜔𝑉2 sin 𝜃

2ℎ|𝑧|
 

𝜔 is the angular power frequency or nominal system frequency, 

ℎ is the inertia constant of the generator per unit length, 

𝑧 is the impedance of the line per unit length, 

𝜃 is the line impedance angle, 

V is the rated system voltage in pu(= 1pu). 

Hence, it can be seen that the electromechanical wave velocity varies with line 

impedance and if a path contains more than one line then the velocity must be calculated 

accordingly by taking different line impedances in consideration. 

In order to find out the faulty bus, theoretical time delays are calculated. These time 

delays are calculated from every bus of the power system network to all the PMU 

locations. Another way of saying it is that the fault is assumed to happen at a particular 

bus location ‘p’ and the time delays for this assumed fault is calculated for all the PMU 

locations. For this, the shortest path database is used to determine the shortest path from 

bus assumed as the faulty bus to all the PMU locations. 

Hence if bus ‘p’ is assumed to be faulty, then one needs to find the shortest path from 

bus p to all the PMU buses. For our IEEE 9 bus system, let the 5th bus is assumed to be 

faulty. Then shortest path P1, P2, and P3 needs to be calculated using the shortest path 

database, where, 

P1 = shortest path from bus 5 to bus 2, 

P2 = shortest path from bus 5 to bus 4, 

P3 = shortest path from bus 5 to bus 9, 
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From the Dijkstra algorithm, a previous node matrix is generated for finding the shortest 

path tree from all the nodes, which gives, 

P1 = 5, 7, 2 (to 2) 

P2 = 5, 4 (to 4) 

P3 = 5 ,7, 8, 9 (to 9) 

P4 = 5, 7, 8, 9, 3 (to 3) 

This can be found easily from the previous node matrix generated after the shortest path 

algorithm is applied to the network. In this matrix, each row represents the previous 

nodes table for different starting nodes. 

𝑝𝑟𝑒𝑣 𝑛𝑜𝑑𝑒 =  

[
 
 
 
 
 
 
 
 
1 7 9
4 2 9
4 7 3

1 4 4
5 7 4
6 7 9

5 7 6
2 7 8
8 9 3

4 7 9
4 7 9
4 7 9

4 4 4
5 5 4
6 4 6

5 7 6
5 7 8
5 9 6

4 7 9
4 7 9
4 7 9

5 7 4
5 7 9
6 7 9

7 7 8
8 8 8
9 9 9]

 
 
 
 
 
 
 
 

 

In order to find out the shortest path from node 5 to node 9, the following procedure is 

followed-  

 

1) The destination node is 9 and source node is 5, hence start at the 9th column and 

5th row to find the node by looking at element (5,9), which is equal to 8, hence 

the previous node to 9 in the shortest path is 8. 

2) Now 8th column and 5th row are analyzed and the element to be focused on is 

(5,8) which is 7, hence the second previous node along the shortest path is 7. 

3) Move to the 7th column and find the element (5,7), which is 5, hence the starting 

node is arrived at and the process is stopped once the source node is obtained. 

4) Hence, the path became 5,7, 8, 9. 

Once the shortest path is obtained, the theoretical time delay from the source node to 

the destination node is obtained as follows- 

a) First, the matrix of the path from all the nodes to the PMU nodes must be 

calculated in which rows represent the nodes and column contains the 

information of path to be followed. The number of such matrices is equal to the 

number of PMU locations. For every location, one matrix is generated. Hence 

path matrix is generated for node 2, 4, 3 and 9 in the above discussed 9 bus 

system. Let these be path2, path3, path4, and path9. 
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b) Then the velocity along the links that are in the shortest path is calculated. 

Hence, for path P1 v57, v72 needs to be calculated. Then the time delay along P1 

= 
𝑙57

𝑣57
+ 

𝑙72

𝑣72
. This is calculated for every row in path4, path9, and path2 matrix. 

After this operation three vector matrices is obtained that gives the time delay 

from all the nodes to the respective node, i.e. tp4 provides time delay from every 

node to node 4. Similarly, for other nodes 2, 3 and 9 tp2, tp3 and tp9 are 

obtained. 

Now, assuming the fault occurred on bus k, then time delays to the PMU locations can 

be obtained through the kth row of tp4, tp2, tp3 and tp9, which are t4k
th, t2k

th, t3k
th t9k

th. 

The time delay of PMU nodes with respect to the min. delay node is found. Let it be 

node 2. Then 

𝑇𝑡ℎ32 = 𝑡3𝑘
𝑡ℎ −  𝑡2𝑘

𝑡ℎ  

𝑇𝑡ℎ42 = 𝑡4𝑘
𝑡ℎ −  𝑡2𝑘

𝑡ℎ  

𝑇𝑡ℎ92 = 𝑡9𝑘
𝑡ℎ −  𝑡2𝑘

𝑡ℎ  

 
                    𝑇𝑡ℎ𝑘 = [

𝑇𝑡ℎ32
𝑇𝑡ℎ42
𝑇𝑡ℎ92

] 
    (3.49) 

The difference in theoretical time and measured time is, 

∆𝑇𝑘 = 𝑇𝑡ℎ𝑘 − 𝑇𝑀 

 ∆𝑘= ‖∆𝑇𝑘‖ =  ‖𝑇𝑡ℎ𝑘 − 𝑇𝑀‖     (3.50) 

This ∆𝑘 is calculated for every bus k and if bus k is the actual fault bus, ∆𝑘 must be 

minimum. Hence, by finding the minimum value of ∆𝑘 fault bus k can be determined.



 

33 
 

3.2 Part 2- Finding Coherent Groups-  

 

 Method to Determine the Coherent areas- 

 
The information about the coherency of the areas can be obtained by obtaining 

information about major inter-area modes. These are slow oscillations that can cause 

an area to fall out of synchronism from the other area easily during a fault or an 

emergency state. The presence of oscillation between two areas signifies that they are 

weakly electromechanically coupled. There can be three forms of intra-mode oscillation 

that can arise in the power system- 

 

a) Decaying Oscillation – In cases where the oscillation is decaying with time. 

Every Inter oscillation needs to be decayed as fast as possible in the system. 

Generally, it happens always with an electromechanical wave that it loses some 

of its energy on encountering a large capacity or inertia generator. In such cases, 

the oscillation is decaying. 

b) Sustained Oscillation- Such oscillation remains for a large period of time in 

the system and signify that there may be a fault or disturbance prevailing in the 

system which needs to be checked. They can start well before a major fault or 

outage is to occur. 

c) Growing oscillation- This oscillation grows in amplitude and causes the system 

to become unstable. 

 
The effect of inter oscillations present in the system can be seen on different signals of 

the power system that are obtained from the PMU measurement. But the change in rotor 

angle position contains only these oscillations. Because a system fault can also cause 

electromagnetic transients which are having a very small time constant, the rotor can’t 

follow these oscillations and hence only electromechanical oscillation are followed by 

the rotor. Hence rotor angle can be used to study the inter modes or can be used to 

extract the coherency information of the power system. Also as the rotor is subjected to 

these oscillations, its velocity increases and decreases about the steady velocity. Hence 

velocity signals of the alternators can be used to know about inter harmonic frequency 

range. This band can be obtained by performing the spectrum analysis of the velocity 

signals of all the generators. Also, the total Kinetic energy for the overall system also 

provides information about the frequency band of inter-area harmonics. 

 
The methodology used here is to obtain preliminary information about the coherency 

of the system and the number of coherent groups through the use of alternator velocity 

and the use of load angles of the buses. The information about the coherency of the 

generator buses can be obtained through the velocity signals and kinetic energy signals 

which can be used to build the total kinetic energy of the system. The generators are 

grouped with above information signals and then the load buses are assigned to one of 

these groups based on their coherency with the areas. The coherency with the areas is 

extracted by studying the spectral coefficients of load angles of these buses.
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3.2.1.1 Coherency Determination of Generator Buses-  

The velocity of signals is denoted by w1, w2, ...., wn for n generator system. 

Then the information of frequency band of low-frequency modes can be obtained 

through the use of discrete Fourier transform of the velocity signals[7]. 

 
𝑤𝑘(𝑓) =  ∑ 𝐻 ∗ 𝑤𝑘(𝑖) ∗ 𝑒

−𝑗
2𝜋𝑓

𝑁
𝑖

𝑁−1

𝑖=0

,              0 ≤  𝑓 ≤ 𝑁 − 1 
    (3.51) 

, where k represents for the index of generator bus, 

H is the window function, 

N is the total number of samples in the window, 

f is the Sampling frequency of the signal. 

 

Plotting ꞷ𝑘(f) as a function of frequency gives information about the oscillation that is 

in low frequency range. Individually, there can be many low frequency modes in the 

frequency spectrum but only that mode is significant which is present in all the speeds.  

The total kinetic energy can be obtained for every mode from the ꞷ𝑘(f), 

Kinetic energy for mode f in the speed of generator k is, 

 
𝐾𝐸𝑘(𝑓) =  

1

2
∗ 𝐽𝑘 ∗ 𝑤𝑘

2     (3.52) 

The total Kinetic Energy of the overall system is, 

 
𝐾𝐸(𝑓) =  ∑𝐾𝐸𝑘

𝑛

𝑘=1

 
    (3.53) 

The individual kinetic energy is plotted for viewing the overlapping low frequency 

mode. Also in the same mode, the total kinetic energy must be maximum as all the 

magnitude are present at the same frequency location in individual kinetic energy, so 

they all add up to produce a higher magnitude. However, there can be dominant modes  

present in a speed spectrum that may be less dominant in another speed spectrum. These 

modes can’t add up and hence they produce a magnitude which is less. Hence, total 

kinetic energy can be used to verify for the major dominant low frequencies inter-area 

modes that are affecting all of the generators. This mode can be said to be major 

electromechanical mode. The number of samples that a window contains must be 

greater so as incorporate even the lowest frequency inter-area mode[9]. Hence a higher 

number of samples in the window means finer will be the frequency spectrum with 

respect to frequency, or, in other words, the frequency resolution is higher. In the 

application, we can take the entire time sequence of the speed-time waveform and then 

find its Discrete Fourier Transform. 

 

For e.g., if the total number of samples of the speed- time signal is Ns =  403000 and 

the window function takes over the entire speed-time sample signal, 

and let the sampling period be Ts = 5us, then the frequency resolution is 

 
𝑓𝑟𝑒𝑠 = 

𝑓𝑠
𝑁𝑠 − 1

=  
1

𝑁𝑠 − 1
×
1

𝑇𝑠
 

 

    (3.54) 
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Here, it will be equal to fres = 0.4963Hz, which can easily incorporate the frequency 

band of low frequency inter-area modes (0.1-5Hz). 

After the band of inter harmonic frequency is found the velocity signals can be checked 

for correlation with each other [7]. One of the ways to determine the correlation 

between two functions or sequences is to measure it with the correlation coefficient. 

The more the signals are related, the more is the value of correlation coefficient, the 

more the signals are the same with each other in terms of shape, spectra, phase, etc. 

Unity value of this coefficient means that the two sequences or signals fed to the 

operation are identical. 

Mathematically, the correlation coefficient of two sequences x[n] and y[n] is equal to, 

 
𝑟𝑥𝑦[𝑛] =  

𝐶𝑜𝑣(𝑥, 𝑦)

√𝑣𝑎𝑟(𝑥) ∗ 𝑣𝑎𝑟(𝑦)
     (3.55) 

where,  

 
𝐶𝑜𝑣(𝑥, 𝑦) =  

∑ (𝑥[𝑘] − 𝐸𝑋)(𝑦[𝑘] − 𝐸𝑌)
𝑁
𝑘=1

𝑁
     (3.56) 

 
𝑣𝑎𝑟(𝑥) =  

∑ (𝑥[𝑘] − 𝐸𝑋)
2𝑁

𝑘=1

𝑁
     (3.57) 

From Cauchy Schwarz Inequality, 

 (𝑥, 𝑦) ≤ (𝑥, 𝑥). (𝑦, 𝑦)     (3.58) 

𝑥 → 𝑥 − 𝐸𝑋 ,   𝑦 → 𝑦 − 𝐸𝑌 

 ⇒ (𝑥 − 𝐸𝑋 , 𝑦 − 𝐸𝑌) ≤ (𝑥 − 𝐸𝑋 , 𝑥 − 𝐸𝑋). (𝑦 − 𝐸𝑌, 𝑦 − 𝐸𝑌)     (3.59) 

 
⇒

(𝑥 − 𝐸𝑋 , 𝑦 − 𝐸𝑌)

(𝑥 − 𝐸𝑋 , 𝑥 − 𝐸𝑋). (𝑦 − 𝐸𝑌, 𝑦 − 𝐸𝑌)
≤ 1     (3.60) 

 𝐶𝑜𝑣(𝑥, 𝑦) ≤ 1     (3.61) 

Hence, the covariance of the two signals is always less than 1. 

Now, the correlation coefficient is calculated for every pair of generators from their 

speed signals[9],  

 
𝑟𝑖𝑗[𝑛] =  

∑ (𝜔𝑖[𝑘] −𝑊𝑖)(𝜔𝑗[𝑘] −𝑊𝑗)
𝑁
𝑘=1

√∑ (𝜔𝑖[𝑘] −𝑊𝑖)2
𝑁
𝑘=1 ∗ ∑ (𝜔𝑗[𝑘] −𝑊𝑗)

2𝑁
𝑘=1

 

; 1 ≤  𝑖, 𝑗 ≤ 𝑛 

    (3.62) 
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These coefficients provide the information of how well they are correlated by providing 

an index for every pair of generator, which can decide how many areas are present on. 

The finer boundary still is not clear as it doesn’t provide the information about which 

coefficients are considered to be as a group and that means the range of these 

coefficients to be called in one group is not very clear and hence only provide fuzzy 

information about coherent generators. 

To obtain further information so that a solid grouping can be decided coherence 

functions needs to be found. The Coherence function can be calculated through the use 

of power spectral density functions[9].

 

3.2.1.2 Cross-Correlation and Auto-Correlation Functions-  

The Cross-Correlation function between two signals provides the information about the 

periodicity in the signals and it also gives a visual approach to compare for the signals 

about how much the signals are identical. Also, the value of cross-correlation at zero 

provides a way of measure of similarity between the signals. If the signals are same 

then the cross-correlation is known as auto-correlation. Auto-correlation function is an 

even function and its value for only positive values suffice to give the information for 

the overall sequence. 

Mathematically,  

 
𝑅𝑥𝑦[𝑛] =  ∑𝑥[𝑘]. 𝑦[𝑘 − 𝑛]

𝑁

𝑘=1

= ∑𝑥[𝑘 + 𝑛]. 𝑦[𝑘]

𝑁

𝑘=1

 

                                                                                    ; −𝑁 ≤  𝑛 ≤ 𝑁 

 

    (3.63) 

The Cross-Correlation function is near to zero or very small if the signals are not related 

in any way. Also if the signal is containing harmonics or periodic components then the 

cross-correlation or auto-correlation sequences will have maxima and minima at regular 

intervals which can be used to estimate the frequency of dominant harmonics. The 

maxima and minima are usually of decreasing amplitude because of the finite length of 

sequences. 

Also if the two signals are shifted from each other which otherwise are identical, then 

the global maxima of the whole Cross-Correlation will not be at zero instant. The global 

maxima get shifted by the same phase as is the original signals phase difference. Also, 

if a dominant frequency is present in the signal, the autocorrelation sequence of the 

signal has periodic maxima and minima although not equal in magnitude, but their 

occurrence repeats after same time as the period of dominant harmonic in the signal 

(Fig.3.12). 
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Fig. 3. 12 Correlation between sin(100*pi*t) and sin(100*pi*t + pi/2)  

 

 

 

Fig. 3. 13 Autocorrelation function determines the most weighted frequency or   

period in signal 
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In the system, the auto-correlation and cross-correlation of the speed signal of each 

generator speed is calculated after low pass filtering of the speed signals. Thus if i and 

j denote the indexes of the generators and 𝜔𝑖 and 𝜔𝑗 denote the speed signals of the 

generators i and j respectively, then 

 𝜔𝑓𝑖[𝑛] =  ℱ
−1(𝐻𝑏𝑢𝑤(𝑓, 𝑓0, 𝑟) ∗ 𝜔𝑖(𝑓))     (3.64) 

, where 𝜔𝑓𝑖 is the filtered velocity signal of the generator i, 

𝐻𝑏𝑢𝑤(𝑓, 𝑓0, 𝑟) is the transfer function of the filter (Butterworth) with order 𝑟 and cutoff 

frequency 𝑓0, 

𝜔𝑖(𝑓) is the discrete Fourier transform of the signal velocity 𝜔𝑖[𝑛]. 

Then correlation sequences of these filtered signal are found using, 

 
𝑅𝑖𝑗[𝑛] =  ∑ 𝜔𝑓𝑖[𝑘]. 𝜔𝑓𝑗[𝑘 − 𝑛]

𝑁−𝑛−1

𝑘=0

 

 ; 1 ≤  𝑖, 𝑗 ≤ 𝑁𝑔;    −(𝑁 − 1) ≤ 𝑛 ≤ 0 

    (3.65) 

 
𝑅𝑖𝑗[𝑛] =  ∑ 𝜔𝑓𝑖[𝑘]. 𝜔𝑓𝑗[𝑘 − 𝑛]

𝑁−1

𝑘=𝑛

 

                                       ; 1 ≤  𝑖, 𝑗 ≤ 𝑁𝑔;    0 < 𝑛 ≤ 𝑁 − 1 

    (3.66) 

, where, Ng = number of generators, 

N = total number of samples in the sequence of speed signals wi or wj, 

After this, the Discrete Fourier Transform of the Correlation sequences is calculated 

which will provide the information about the frequencies in the correlation sequences. 

This is because if two signals have that common frequency component then its periodic 

trend will definitely come in Cross-Correlation Sequences of the two signals and 

Discrete Fourier Transform explores the presence of frequency component in the 

signals. So the Discrete Fourier Transform of the correlation sequence will also contain 

the component frequencies present in the correlation sequence signals and because the 

cross-correlation sequence signals contain the modes which are common to both the 

signals of which the cross-correlation is found, it will lead to the revelation of largely 

those component frequencies common to both the signals (fig. 3.14). Now if the signals 

are near to each other they will lead to the same Discrete Fourier Transform sequences. 

Again the Discrete Fourier Transform sequence is calculated with all the samples 

present in the cross-correlation sequence or auto-correlation sequence. Also, only 

positive part of the cross and auto-correlation sequence is analyzed. 
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Fig. 3. 14Cross correlation of 2sin(100pi.t)+0.7sin(200*pi*t) and 3sin(300*pi*t)+1.5 

sin(200pi.t) 

The Discrete Fourier Transform of cross-correlation sequence and auto- correlation 

sequences of the two signals are called Cross- Spectral Density and Power Spectral 

Density of the signals respectively. 

Hence,  

 
𝑃𝑥𝑦(𝑓) =  ∑ 𝐻 𝑅𝑥𝑦 [𝑛] 𝑒

−𝑗
2𝜋𝑓
𝑁

𝑛

𝑁−1

𝑛=0

,          0 ≤ 𝑓 ≤ (𝑁 − 1); 𝑓 ∈  ℤ     (3.67) 

 
𝑃𝑥𝑥(𝑓) =  ∑ 𝐻 𝑅𝑥𝑥 [𝑛] 𝑒

−𝑗2𝜋𝑓
𝑁
𝑛

𝑁−1

𝑛=0

,          0 ≤ 𝑓 ≤ (𝑁 − 1);  𝑓 ∈  ℤ     (3.68) 

It is to be noted that the cross-correlation function has values on the negative arguments 

also but only causal sequences are considered here and hence its value is taken to be 

zero before n<0. 

Now, these spectral density functions tell about the density of modes in the spectrum 

of signals. For every pair of signals, the corresponding spectral density functions, 

whether cross or power, specifies the strength of a particular frequency in the signal 

spectrum. More values of it at a particular frequency indicates the prevalence of the 

frequency components to both the signals in case of cross-spectral density or in the 

same signal in case of power spectral density function. 

 



 

40 
 

 

Fig. 3. 15 Cross and Power Spectral Density functions 

Fig. 3.15 shows the Cross and Power- Spectral Density functions of the signals 

 𝑥(𝑡) =  3 sin(100𝜋𝑡) +  1.5sin (200𝜋𝑡) 

𝑦(𝑡) =  2 sin(300𝜋𝑡) +  0.7sin (200𝜋𝑡) 
    (3.69) 

It can be seen from Power and Cross-Spectral Density functions that the cross-spectral 

density contains the largest magnitude for 100Hz which is common to both the x(t) and 

y(t) and have small magnitudes for other two frequencies 150Hz and 50Hz as they are 

not common to both the signals and hence had not appeared dominantly in the cross-

correlation function which ultimately led to diminished magnitude of these frequencies 

in the Cross-Spectral Density functions. 

Also, the power spectral density functions contain the component frequencies of 

respective signals having magnitude according to their dominance in the corresponding 

signal. Hence, Power Spectral Density of x contains 50Hz as the dominant frequency 

and 100 Hz as a low magnitude frequency. Similarly, the Power Spectral Density 

function of y shows 150Hz as the dominant frequency and 100Hz as the less 

contributing frequency. This contribution is said to be with respect to the power of the 

signal. It is to be noted here that the Power and Cross-Spectral density functions are 

shown above in Fig. are normalized by their magnitude. Even with these individually 

dominant frequencies, cross-spectral density function has only one dominant frequency 

which is common to both the signals. Also individually the frequency 100Hz is not 

contributing largely to the signals when compared to other frequencies in the respective 

signals which makes clear, a fact that it is not necessary that the common frequencies 

should have a large share in the original signals in order to appear in the cross-

correlation function. Hence, cross-correlation detects all the common frequencies.
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3.2.1.3 Coherence Function- 

 

For every frequency in the domain of cross-spectral density and power spectral density 

functions, the coherence function is a normalized function and gives a magnitude to 

measure the correlation between the two signals for a particular frequency. 

Mathematically, 

 
𝐶𝑥𝑦(𝑓) =  

|𝑃𝑥𝑦(𝑓)|
2

|𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)|
,      ∀   𝑓 = 0, 1, 2, … , (𝑁 − 1) 

    (3.70) 

Cauchy- Schwarz inequality guarantees that Cxy will always be less than 1 even if the 

noise signal is present in x and y[10]. When the same signal is used to find coherence 

function, it will turn out to be 1. Also if the signals x and y are linearly related, i.e., the 

relation between them can be expressed by a linear constant coefficient differential 

equation, then the coherence function turns out to be 1. 

For the signal x and y in Eq. (3.69) above, the graph is shown below, 

 

Fig. 3. 16 Coherence Function for x and y 

In summary, all of these function will be used as follows-  

For every pair of speed signals 𝜔𝑖 and 𝜔𝑗, 

 

a) First, calculate the Discrete Fourier transform of the signals and individual and 

total energy as a function of frequency, there would be Ng of it, where Ng is 

the number of generators in the grid. Find the low frequency inter harmonic 

band in the total energy. This also gives the value of dominant low inter 

harmonic frequency present in all the generators. 
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b) Now filter the frequency signals 𝜔𝑓𝑖 and 𝜔𝑓𝑗, and evaluate the correlation 

coefficients rij. If the groups are clearly visible from the ‘r’ matrix, then form 

the groups. If the groups are ambiguous then go for step (c). 

 
𝑟𝑖𝑗[𝑛] =  

∑ (𝜔𝑖[𝑘] −𝑊𝑖)(𝜔𝑗[𝑘] −𝑊𝑗)
𝑁
𝑘=1

√∑ (𝜔𝑖[𝑘] −𝑊𝑖)2
𝑁
𝑘=1 ∗ ∑ (𝜔𝑗[𝑘] −𝑊𝑗)

2𝑁
𝑘=1

 

; 1 ≤  𝑖, 𝑗 ≤ 𝑛 

    (3.71) 

c) Evaluate the Correlation Functions for every  pair of 𝜔𝑖 and 𝜔𝑗 according to 

equation (58) and (59). 

d) Evaluate the Power Spectral Density and Cross-Spectral Density functions for 

every speed signal and pair of speed signals respectively according to the 

equation given below, 

 
𝑃𝑖𝑗(𝑓) =  ∑ 𝐻 𝑅𝑖𝑗 [𝑛] 𝑒

−𝑗
2𝜋𝑓
𝑁

𝑛

𝑁−1

𝑛=0

,          0 ≤ 𝑓 ≤ (𝑁 − 1); 𝑓 ∈  ℤ 
    (3.72) 

 
𝑃𝑖𝑖(𝑓) =  ∑ 𝐻 𝑅𝑖𝑖 [𝑛] 𝑒

−𝑗2𝜋𝑓
𝑁
𝑛

𝑁−1

𝑛=0

,          0 ≤ 𝑓 ≤ (𝑁 − 1);  𝑓 ∈  ℤ 
    (3.73) 

where, 0 ≤ 𝑖 ≤ 𝑁𝑔;   𝑖 ∈ ℤ 

e) Evaluate the Coherence function for every pair of speed signals according to 

the following equation, 

 
𝐶𝑖𝑗(𝑓) =  

|𝑃𝑖𝑗(𝑓)|
2

|𝑃𝑖𝑖(𝑓)𝑃𝑗𝑗(𝑓)|
,      ∀   𝑓 = 0, 1, 2, … , (𝑁 − 1) 

    (3.74) 

and as was pointed earlier that  

 𝐶𝑖𝑖(𝑓) = 1     (3.75) 

f) Now visual inspection of coherence function can give information about the 

group of the generators, but in order for a computer to do it a method which 

can group them together should be applied on the coherence functions. For 

this, kmeans algorithm is used to determine the groups by feeding the data of 

the coherence function of one node with all the nodes of the grid. That is to 

say, the coherence function of node i with all other nodes of the power system 

is calculated and then it is stored in the form of a matrix. 

 𝑑𝑎𝑡𝑎𝑖 = [𝐶𝑖𝑗](𝑁𝑔×𝑁)
     ,1 ≤  𝑗 ≤ 𝑁𝑔;     (3.76) 

where, 

Ng is the number of generators and, 

N = Total number of samples in Coherence function. 

Now, this matrix is fed to k- means algorithm having Ng number of vectors to 

be clustered into optimum no. of groups k and all vectors have dimension N. 

 

The clustering takes place along the row of the datai matrix which implies that 

each row is considered one vector and there are Ng rows (because there are Ng 

generators) and these rows are clustered. 
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Hence, related to every coherent node there will be a datai matrix and each 

matrix may provide a different set of clustered nodes. Those generators will be 

considered in the same group which gives the same set of clustered nodes.

 

 

 Coherency for Non- Generator/Load Buses-  
 

The coherency for generator buses can be found using the method in the previous 

section. If this determination of coherent groups leads to k groups(k<Ng) of generators 

in the system, then the areas are determined. But each of the load bus can also be having 

oscillations as are having on the nearest coherent area in case of fault or outage. So, 

each load bus needs to be assigned to one of the coherent groups from the groups found 

in the previous section. In this scenario, the whole power system buses are allotted their 

particular areas and these areas are considered to be in synchronism within them, i.e., 

any two buses of an area are not violently oscillating against another bus within the 

same area. Such a formulation of areas will lead to the definition of clear cut boundaries 

which are connected via some links. These links even if disconnected will not cause 

much harm if the generation load balance is present in the subsystems created by such 

disconnection. It can help take a decision during intentional islanding. 

So in order to assign the load buses to one of the coherent groups of generators, the load 

angle is calculated for each load bus using PMU measurements. It can also be calculated 

from generator bus voltage measurements if all loads connected to load buses are 

assumed to be constant impedances [9]. In case,  the generator bus voltages are known, 

the admittance matrix equations help find the voltage phasors for non–generator buses. 

 
𝐼 = 𝑌𝑉 ⇒  [

𝐼𝑔
𝐼𝑙
] =  [

𝑌𝑔𝑔 𝑌𝑔𝑙
𝑌𝑙𝑔 𝑌𝑙𝑙

] [
𝑉𝑔
𝑉𝑙
]     (3.77) 

If all load injections are assumed to be admittances, then 

 

[

𝐼𝑙1
⋮
𝐼𝑙𝑁𝑙

] =  [
𝑌𝑙1′ … 0
⋮ ⋱ ⋮
0 … 𝑌𝑙𝑁𝑙′

] [

𝑉𝑙1
⋮
𝑉𝑙𝑁𝑙

]  ⇒  [𝐼𝑙] =  [𝑌𝑙𝑙′][𝑉𝑙] 
    (3.78) 

From this equation, when substituted in eq.(3.77), 

 [𝐼𝑙] =  [𝑌𝑙𝑙][𝑉𝑙] + [𝑌𝑙𝑔][𝑉𝑔] ⇒  [𝑌𝑙𝑙′][𝑉𝑙] =  [𝑌𝑙𝑙][𝑉𝑙] + [𝑌𝑙𝑔][𝑉𝑔] (3,79) 

⇒ {[𝑌𝑙𝑙] − [𝑌𝑙𝑙′]}[𝑉𝑙] + [𝑌𝑙𝑔][𝑉𝑔] = 0 

 ⇒ {[𝑌𝑙𝑙1]}[𝑉𝑙] + [𝑌𝑙𝑔][𝑉𝑔] = 0 ⇒  [𝑉𝑙]  =  [𝑌𝑙𝑙1]−1[𝑌𝑙𝑔][𝑉𝑔] (3,80) 

Hence, finding the angle of these phasors gives the value of phasor angles of load buses 

or non –generation buses, 

 [𝛿𝐿] = 𝑎𝑛𝑔𝑙𝑒([𝑉𝑙]) (3,81) 
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After the load angles of non- generator buses are found, the same procedure as that have 

been applied on speed signals is used to for the allotment of these buses to one of the 

groups of generators already found. 

Firstly, the filtered angles along with generator angles are used to calculate the 

correlation coefficients which gives the general information about the coherency of 

non-generator buses. Then, find the Cross-Correlation and Auto-Correlation 

functions[9]. Then coherence function is calculated which is used as a data for k-means-

algorithm. Then those buses can be considered to be in the same group which has the 

same value of cluster number. Also, k-means is run with the intention to divide the 

system into k-areas and the value of k was determined from the generator grouping 

done earlier with speed signals.

 

 K- Means Algorithm (Lloyd’s Algorithm)-  
 

This algorithm is a graph clustering algorithm which aims at grouping the nodes of the 

graph into a pre-specified number of clusters or groups. So for example, if a graph 

contains 100 nodes, then k means algorithm will allot every node to a group out of k 

groups and the number of groups k is pre-specified [35]. The procedure minimizes the 

squared Euclidean L2 distance of all points from their respective cluster centers. The 

algorithm selects k random centers or centroids(means) from the given group of points. 

Each centroid or mean represents one group and every point of the data will be given 

to these centroids or groups. Then every points instance(vector) is checked for the 

minimum distance centroid among the selected centroids. The point is allotted the group 

whose centroid has a minimum distance from the data point. Then new centroid is found 

and this virtual process is repeated again and again. It can be proved that the k- means 

algorithm will always converge and have a solution always. The algorithm procedure 

is given in the following points- 

STEP 1: INITIALIZE 

1) First randomly assign k centers from the data points. These will be centroids for 

the first iteration. Let kth center be Ck and let rth data point be given by Dr. r 

varies from 1 to n, where n is the number of data points in the data. 

2) Find L2 norm between the Ck and Dr , i.e., find the Cartesian distance between 

every centroid Ck and point Dr for every k from 1 to k. 

3) Find the centroid Cr which has a minimum value of L2 norm from the point Dr. 

and allot the point Dr to the group Cr. This can be done by storing Dr and Cr in 

one matrix. 

4) Do step 2 and step 3 with all the data points Dr, where r varies from 1 to n. Allot 

them one of the k matrices according to point number 3. 

5) After finishing step four, k groups are obtained or k matrices each containing 

one group is obtained. 
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STEP 2: LOOP 

1) Find DCr by calculating the distances from the centroid of one group to the data 

points in the same group, i.e., in the same matrix. This step should be done for 

every r from 1 to k, as there are k groups. Then find the sum D of all these 

distances. 

2) Check if the change in D is smaller than a predefined error threshold. 

3) If yes, exit the loop. In this case, the k matrices obtained are the groups required. 

4) If no, then proceed to next point. 

5) Find the new centroid of every group by averaging all the data points in one 

matrix. So there are new k centroids obtained by averaging the vectors present 

in one individual matrix. It is to be noted that only vectors or data points in 

individual matrices needs to be averaged and should not be done for all 

matrices’ data points in which case only one average will be there which is not 

intended. 

6) Find L2 norm between the Ck and Dr , i.e., find the Cartesian distance between 

every centroid Ck and point Dr for every k from 1 to k. 

7) Find the centroid Cr which has a minimum value of L2 norm from the point Dr. 

and allot the point Dr to the group Cr. This can be done by storing Dr and Cr in 

one matrix. Do step 6 and step 7 with all the data points Dr, where r varies from 

1 to n After finishing this step, k groups are obtained or k matrices each 

containing one group is obtained. Go to step 1. 

The above algorithm using random initialized data points is called Lloyd’s Algorithm. 

Apart from its simplicity of application and scalability, there are a few issues with the 

application of this algorithm. 

The Lloyd’s algorithm is sensitive for local extremum and can stop at such a local 

minimum. Also, it is too sensitive to the choice of the randomly chosen initial cluster. 

This doesn’t mean that it will not converge sometimes. In fact, Lloyd’s algorithm 

always converges to a minimum of this problem. The sensitivity issue leads to 

unreliable results. Because Lloyd’s algorithm is based on local search, it changes its 

results on different initializations. So, k clusters obtained from one initialization may 

have a different set of points when finding through some different initialization of 

centroids. Also, k means on its own takes a lot of iteration (fig.3.17). Below fig. 3.18 

shows an example of k-means run on a data set. Ideally, the star should have been 

grouped in one cluster and circle should have been grouped in another cluster. But 

different initialization leads to different clusters. Hence, k- means on its own is 

unreliable. Also, k-means group the data points based on the concept of nearness, i.e., 

points which are nearer to each other than all other points are grouped in a cluster. But 

sometimes nearness or crowdedness is not the only feature in the data. Sometimes, there 

can be patterns in the data which the human brain can easily find but if that pattern is 

to be made the rule to find the group then the concept of nearness gets violated. For 

example, in figure 3.18 the points on the top of the star are nearer to the points of the 
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circle on the top, so k- means will group them together. But it can be clearly seen that 

these groups are not the groups required. 

 

Fig. 3. 17 k means gives wrong results for different patterns and result is not unique. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  
Fig. 3. 18 k- means algorithm leading to different clusters and the results are also not 

satisfactory  
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Flowchart 3.3- Flowchart for k- means algorithm-  

 

So k- means is incapable to find such groups where the pattern is the rule to follow. It 

is to be noted that what the previous statement implies is not some drawback of k- 

means but it is not meant for use in these pattern finding and hence it is incapable for 

such application. The fact that grouping is totally wrong can be seen from Fig. 3.17. 

Furthermore, different initialization led to different groups in the data which echo the 

fact that traditional k- means or Lloyd’s algorithm without any intelligent initialization 

is totally unreliable. 

It is to be noted that the good centroid initialization can be found by k-means++ 

algorithm. The problem is, different random initialization leading to a different set of 

groups formed in the result. K-means++ is an algorithm which is used to initialize the 

centroid for Lloyd’s algorithm [14][11]. It initializes the centroids based on the 

probabilistic approach and tries to spread the initial centroids as much as possible in 

different areas of the data space. In this way, all the clusters which are widely separated 

can be found and hence always provides more or less the same result. The algorithm is 

as follows: 

1. Pick any random points as first center Ck. 

2. Find the distance d(C1, Dk) for all points k from 1 to n, and choose the point 

which has the highest probability, 

Start 

 Find d(Cm, Dl) 

Is m>k? 

Is l>n? 

m = m+1 

l= l+1 

Store Dl in the matrix 

Mm ofCmin 

Find centroid for min(d) 

Calculate avg(Mm) = 

Cm for all m= 1,2,…k 

Find d(Cm,Mm) for all 

matrices 

D = 

sum(d(Cm,Mm)) 

Is |Dk+1 – Dk| < 

eo 

Exit 

Initialize Cm randomly 

no 

yes 

yes no 

no 

yes 
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𝑃(𝐶1, 𝐷𝑘) =  

𝑑(𝐶1, 𝐷𝑘)
2

∑ 𝑑(𝐶1, 𝐷𝑘)2
𝑛
𝑘=1

 (3.82) 

3. Loop for i = 3,4,5,…,k. For finding jth centroid, all previous j-1 centroids are 

used. 

4. First assign every data points to one of the j-1 centroids which is nearest to it, 

i.e., calculate distance d(Ci, Dk) for i = 1 to j-1, and then select that i for centroid 

for which distance is minimum. Assign Dk to that centroid. 

5. Since every data point is now in one of the centroids, now a probability for every 

point is to be found according to the group in which that point is placed. Let 

S(Ci) be the group of points or set of data points assigned to the centroid Ci, i.e., 

S(Ci) is the group of points which are nearest to Ci than rest other data point. 

Let those data points be denoted by DkCi and nCi is the number of data points 

assigned to the group of centroid Ci then the probability of DkCi can be calculated 

as, 

 
𝑃(𝐷𝑘𝐶𝑖) =  

𝑑(𝐶𝑖, 𝐷𝑘𝐶𝑖)
2

∑ 𝑑(𝐶𝑖, 𝐷𝑘𝐶𝑖)
2𝑛𝐶𝑖

𝑘=1

  ,       𝑤ℎ𝑒𝑟𝑒 𝐷𝑘𝐶𝑖 ∈ 𝑆(𝐶𝑖) 
(3.83) 

6) Find this probability for all data points according to their nearest centroid. 

7) Choose jth centroid as the point having the maximum likelihood of getting 

selected, i.e., it has a maximum probability. 

8) If i<k, then go to step 3, else go to next step. 

9) Exit. The k centroid obtained are the initialized centroids to be used in Lloyd’s 

algorithm.  



 

49 
 

Flowchart 3.4- Flowchart for kmeans++ algorithm- 

 

 

Start 

Select C1 randomly 

i = 2 

d = d(C1, Dj), 

j = 1 

g = 1 

d(Cg, Dj) < d ? 

d = d(Cg, Dj) 

indexmin = g 

g = g+1 

g >= i-1 ? 

Store Dj in matrix 

Mindexmin of centroid 

Cindexmin 

no 

j >= n ? 

g = 1 

j = j+1 

F1 = 0 

p = 1 

f = 0 

Pp = 
𝑑(𝐶𝐺 ,𝑀𝑔(:,𝑝))

2

∑ 𝑑(𝐶𝐺 ,𝑀𝑔(:,𝑝))
2𝑛𝐶𝑖

𝑘=1

 Pp> f ? f = Pp 

indexmax(g) = p 

no 

p = p+1 

p >= coloumn(𝑀𝑔) ? 

no 

f > F1 ? 

yes 

g = g + 1 

no 
F1 = f 

Ci = Mg(:,indexmax(g)) 

yes 

g >= i – 1 ? 
no 

(goto 1) 

(goto 1) 

i= i+1 i >= k ? 
no 

EXIT 

yes 

yes 

yes 

no 

yes 

yes 
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 Spectral clustering-  
 

A graph can be assigned weights to cluster it into two groups, and concept of spectral 

clustering can be understood from the point of view of separating the nodes of the graph 

into two groups according to some characteristics which will be embedded in the weight 

matrix[12]. So, suppose that there are N nodes and they need to be grouped into two 

groups which are decided by the geometrical pattern they are making. Fig. 3.19 shows 

a bunch of data points which can easily be recognized to belong to one of the two 

groups. Let the points in the data be given indexes vi whose value will decide whether 

they are in group 1 or group 2. 

Then  

 
𝑣𝑖 = {

+1     , 𝑖𝑓 𝑖 ∈ 𝑔𝑟𝑜𝑢𝑝 1
   0     , 𝑖𝑓 𝑖 ∈ 𝑔𝑟𝑜𝑢𝑝 2

 
(3.84) 

 

                           
       Fig. 3. 19 Groups of data points for spectral clustering 

 

It can be visually identified in fig. 3.19 that fi =1 for i = 1,2, 3 and fi = 0 for i = 4,5. 

With every graph, there is an associated weight matrix W, which gives information 

about their connectedness or closeness according to some property solely decided by 

the formula used to find the weights for the graph. The formula used to find the weights 

for the graph is called the kernel. It associates two different nodes of the graph by some 

real number. 

Weights for this graph can be found from many available kernels such as, 

𝜀 − neighborhood Kernel-  

 
𝑤𝑖𝑗 = {

+1     , 𝑖𝑓 ‖𝕩𝑖 − 𝕩𝑗‖ <  𝜀

   0     , 𝑖𝑓 ‖𝕩𝑖 − 𝕩𝑗‖ >  𝜀
 

(3.85) 

Gaussian Distance Kernel-  

 

𝑤𝑖𝑗 = 𝑒
−
‖𝕩𝑖− 𝕩𝑗‖

2

2 𝜎2  

(3.86) 

where 𝜎 is a parameter which can be varied to obtain the different degree of results[13]. 

Once the weight matrix is formed, the objective function should be defined such that it 

will be extremum at the correct solution which in this case is easily visible. It is to be 
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noted that the value of weights is maximum for the points in the same group while it is 

very low for two points which belong to different groups. 

Hence according to Gaussian kernel and sigma 2, the weight matrix of the graph is 

 

𝑊 = 

[
 
 
 
 
1.0000
0.9930
0.9129
0.0015
0.0011

0.9930
1.0000
0.9311
0.0012
0.0009

0.9129
0.9311
1.0000
0.0002
0.0002

0.0015
0.0012
0.0003
1.0000
0.9318

0.0011
0.0009
0.0002
0.9318
1.0000]

 
 
 
 

 

(3.87) 

The objective function is, 

 

𝐹(𝕧) =  ∑∑𝑤𝑖𝑗 (𝑣𝑖 − 𝑣𝑗)
2

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.88) 

 

It can be verified easily that this function will be minimum at the true solution, because 

at true solution 𝑣 =  [1 1 1 0 0]. So if i and j belong to the same cluster their difference 

will be zero, so the only terms which will be remaining in equation 3.88 will be the 

terms corresponding to the weights of the edges joining group1 to group2. But weights 

of such cross edges is very low as can be seen from equation 3.87 and hence F will be 

minimum at the real true solution. So for obtaining true solution F must be minimized. 

𝐹 =  𝑤14 + 𝑤15 + 𝑤24 + 𝑤25 + 𝑤34 + 𝑤35 

𝐹 = 0.0015 + 0.0011 + 0.0012 + 0.0009 + 0.0003 + 0.0002 = 0.0052 
In order to see this is minimum, suppose another solution different from the true 

solution, e.g., 1 and 2 in group1 and 3,4,5 in group2, then 𝑣 =  [1 1 0 0 0]. 
𝐹 = 𝑤13 + 𝑤14 + 𝑤15 + 𝑤23+  𝑤24 + 𝑤25 

𝐹 = 0.9129 + 0.0015 + 0.0011 + 0.9311 + 0.0012 + 0.0009 = 1.8447 

Suppose another solution 1,2,3,4 in group1 and 5 in group2, then 𝑣 =   [1 1 1 1 0] and 

𝐹 =  𝑤15+ 𝑤25 + 𝑤35 + 𝑤45  
𝐹 = 0.0011 + 0.0009 + 0.0002 + 0.9318 = 0.9340 

Clearly, the last two wrong solutions give a higher value F than the true solution. Hence 

for finding a true solution, minimization of F must be done. The function  
𝐹(𝕧) =  ∑ ∑ 𝑤𝑖𝑗 (𝑣𝑖 − 𝑣𝑗)

2𝑁
𝑗=1

𝑁
𝑖=1  can be represented in matrix form as follows, 

 

𝐹(𝕧) =  ∑∑𝑤𝑖𝑗 (𝑣𝑖
2 + 𝑣𝑗

2 − 2𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

) 
(3.89) 

 

𝐹(𝕧) =∑∑𝑤𝑖𝑗𝑣𝑖
2

𝑁

𝑗=1

𝑁

𝑖=1

+ ∑∑𝑤𝑖𝑗𝑣𝑗
2

𝑁

𝑗=1

𝑁

𝑖=1

− 2∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.90) 

Since i and j are independent of each other, the order of summation can be changed in 

the second summation because sum has to be taken over all values of i and j and the 

index with which sum is taken first is not important, the result remains the same. 

 

𝐹(𝕧) =∑𝑣𝑖
2 (∑𝑤𝑖𝑗

𝑁

𝑗=1

)

𝑁

𝑖=1

+ ∑∑𝑤𝑖𝑗𝑣𝑗
2

𝑁

𝑖=1

𝑁

𝑗=1

− 2∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.91) 

 

𝐹(𝕧) =∑𝑣𝑖
2 (∑𝑤𝑖𝑗

𝑁

𝑗=1

)

𝑁

𝑖=1

+ ∑𝑣𝑗
2 (∑𝑤𝑖𝑗

𝑁

𝑖=1

)

𝑁

𝑗=1

− 2∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.92) 

Since W matrix is symmetric, hence 𝑤𝑖𝑗 = 𝑤𝑗𝑖 and substituting it in the second term 

will give, 
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𝐹(𝕧) =∑𝑣𝑖
2 (∑𝑤𝑖𝑗

𝑁

𝑗=1

)

𝑁

𝑖=1

+ ∑𝑣𝑗
2 (∑𝑤𝑗𝑖

𝑁

𝑖=1

)

𝑁

𝑗=1

− 2∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.93) 

Now it is very easy to verify that ∑ 𝑣𝑖
2(∑ 𝑤𝑖𝑗

𝑁
𝑗=1 )𝑁

𝑖=1 = ∑ 𝑣𝑗
2(∑ 𝑤𝑗𝑖

𝑁
𝑖=1 )𝑁

𝑗=1  

Hence, 

 

𝐹(𝕧) = 2∑𝑣𝑖
2 (∑𝑤𝑖𝑗

𝑁

𝑗=1

)

𝑁

𝑖=1

− 2∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.94) 

 

⇒ 𝐹(𝕧) = 2 [∑𝑣𝑖
2 (∑𝑤𝑖𝑗

𝑁

𝑗=1

)

𝑁

𝑖=1

−∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

] 

(3.95) 

Discarding the factor of 2 as it won’t affect optimization will lead to and defining  

𝑑𝑖𝑖 = ∑ 𝑤𝑖𝑗
𝑁
𝑗=1  will reduce equation 3.95 to the following form, 

 

⇒ 𝐹(𝕧) =∑𝑑𝑖𝑖𝑣𝑖
2

𝑁

𝑖=1

−∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.96) 

The second term is a quadratic form of the weight matrix W, i.e., 

 

𝑣𝑇𝑊𝑣 = ∑∑𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.97) 

And the first is the quadratic from of the matrix 𝐷 = [𝑑𝑖𝑗], where 

 
𝑑𝑖𝑗 = {

+𝑑𝑖𝑖     , 𝑖𝑓  𝑖 = 𝑗
   0     ,            𝑖𝑓 𝑖 ≠ 𝑗

 
(3.98) 

i.e., D is a diagonal matrix and 

 

𝑣𝑇𝐷𝑣 =  ∑∑𝑑𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

        , 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑖 = 𝑗 
(3.99) 

 

⇒ 𝑣𝑇𝐷𝑣 =  ∑𝑑𝑖𝑖𝑣𝑖𝑣𝑖

𝑁

𝑖=1

= ∑𝑑𝑖𝑖𝑣𝑖
2

𝑁

𝑖=1

 

(3.100) 

Hence Eq. 3.96 becomes 

 𝐹(𝕧) = 𝑣𝑇𝐷𝑣 − 𝑣𝑇𝑊𝑣 

⇒ 𝐹(𝕧) =  𝑣𝑇(𝐷 −𝑊)𝑣 

(3.101) 

Defining L = D – W as the laplacian matrix will give, 

 𝐹(𝕧) =  𝑣𝑇𝐿𝑣   , 𝑤ℎ𝑒𝑟𝑒     𝐿 =  𝐷 –  𝑊 (3.102) 

This is the objective function and it needs to be minimized. 

So to apply spectral clustering to a graph, the objective function is defined through the 

laplacian matrix and it is minimized. To minimize it one needs to differentiate equation 

3.102 with respect to all the components of 𝑣, 

 

𝑣𝑇𝐿𝑣 =  ∑∑𝑙𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

= ∑𝑣𝑖∑𝑙𝑖𝑗𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

(3.103) 

Differentiating 3.103 with respect to 𝑣𝑘, 

 
𝑑

𝑑𝑣𝑘
(𝑣𝑇𝐿𝑣) =  

𝑑

𝑑𝑣𝑘
(∑𝑣𝑖∑𝑙𝑖𝑗𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1

) =
𝑑

𝑑𝑣𝑘
(∑𝑣𝑖∑𝑙𝑖𝑗𝑣𝑗

𝑁

𝑗=1

𝑁

𝑖=1
𝑖≠𝑘

+ 𝑣𝑘∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

) (3.104(a)) 



 

53 
 

 
𝑑

𝑑𝑣𝑘
(𝑣𝑇𝐿𝑣) =   ∑

𝑑

𝑑𝑣𝑘
(𝑣𝑖∑𝑙𝑖𝑗𝑣𝑗

𝑁

𝑗=1

)

𝑁

𝑖=1
𝑖≠𝑘

+
𝑑

𝑑𝑣𝑘
(𝑣𝑘∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

) 

 

(3.105(b)) 

From product rule of differentiation applied on the second term, 

 

 𝑑

𝑑𝑣𝑘
(𝑣𝑇𝐿𝑣) =  ∑𝑣𝑖

𝑁

𝑖=1
𝑖≠𝑘

𝑑

𝑑𝑣𝑘
(∑𝑙𝑖𝑗𝑣𝑗

𝑁

𝑗=1

) + 
𝑑

𝑑𝑣𝑘
(𝑣𝑘)∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

+ 𝑣𝑘
𝑑

𝑑𝑣𝑘
∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

 

= ∑𝑣𝑖

𝑁

𝑖=1
𝑖≠𝑘

𝑑

𝑑𝑣𝑘
(∑𝑙𝑖𝑗𝑣𝑗

𝑁

𝑗=1

) + ∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

+ 𝑣𝑘
𝑑

𝑑𝑣𝑘
∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1
𝑗≠𝑘

+ 𝑣𝑘
𝑑

𝑑𝑣𝑘
(𝑙𝑘𝑘𝑣𝑘) 

=  ∑𝑣𝑖

𝑁

𝑖=1
𝑖≠𝑘

𝑑

𝑑𝑣𝑘
(∑𝑙𝑖𝑗𝑣𝑗

𝑁

𝑗=1

) + ∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

+  0 + 𝑣𝑘𝑙𝑘𝑘 

(3.106) 

 

 

 

𝑑

𝑑𝑣𝑘
(𝑣𝑇𝐿𝑣) = (∑𝑣𝑖

𝑁

𝑖=1
𝑖≠𝑘

𝑙𝑖𝑘
𝑑

𝑑𝑣𝑘
(𝑣𝑘) + 𝑣𝑘𝑙𝑘𝑘) + 

𝑑

𝑑𝑣𝑘
(𝑣𝑘)∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

 

(3.107) 

 𝑑

𝑑𝑣𝑘
(𝑣𝑇𝐿𝑣) =  ∑𝑙𝑖𝑘𝑣𝑖

𝑁

𝑖=1

+ ∑𝑙𝑘𝑗𝑣𝑗

𝑁

𝑗=1

 

(3.108) 

Since L is a symmetric matrix, therefore ∑ 𝑙𝑖𝑘𝑣𝑖
𝑁
𝑖=1 = ∑ 𝑙𝑘𝑗𝑣𝑗

𝑁
𝑗=1  

 𝑑

𝑑𝑣𝑘
(𝑣𝑇𝐿𝑣) =  2∑𝑙𝑘𝑖𝑣𝑖

𝑁

𝑖=1

= 2 𝐿(𝑘,:) 𝑣 

(3.109) 

So the differentiation is equal to the linear combination of elements of kth row of L 

matrix. This is found for every k = 1,2,3, …., N. When all these differentiations are 

arranged in a column matrix the resulting equation will lead to, 

 𝑑

𝑑𝑣
(𝑣𝑇𝐿𝑣) =  2 𝐿 𝑣 

(3.110) 

The solution has to satisfy the constraint 𝑣𝑇𝑣 = 1, which means that the vector is 

normalized. This is done so that the maximization and minimization will depend on 

eigenvalues only. This can be seen from the following, 

The optimization problem is, 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑣

(𝑣𝑇𝐿𝑣)           , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑣𝑇𝑣 = 1 (3.111) 

So the Lagrangian is, 

 ℒ(𝑣) =  𝑣𝑇 𝐿𝑣 −  𝜆(𝑣𝑇 𝑣 −  1) (3.112) 

Differentiating it w.r.t 𝑣 and 𝜆 will give 

 𝑑

𝑑𝑣
ℒ(𝑣) =  

𝑑

𝑑𝑣
𝑣𝑇 𝐿𝑣 −  𝜆

𝑑

𝑑𝑣
(𝑣𝑇𝐼 𝑣) = 0 

(3.113) 

 2 𝐿𝑣 −  2𝜆𝑣 = 0   ⇒  𝐿𝑣 =  𝜆𝑣 

𝑣𝑇 𝑣 −  1 = 0    ⇒     𝑣𝑇 𝑣 =  1 

(3.114) 

The solution of this equation are the eigenvectors of matrix L corresponding to 

eigenvalues 𝜆 of matrix L. There will be N eigenvectors. 

Now to minimize 𝑣𝑇 𝐿𝑣, multiply both sides of equation 3.113 by 𝑣𝑇, 

 𝑣𝑇 𝐿𝑣 =  𝜆(𝑣𝑇 𝑣) =  𝜆 (3.115) 
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Hence, to minimize 𝑣𝑇 𝐿𝑣, eigenvector corresponding to minimum eigenvalue should 

be chosen as the solution of equation 3.113. By visual inspection, the two groups can 

be identified. 

For our example in fig. 3.17, degree matrix is, 

 

𝐷 = 

[
 
 
 
 
2.9086
0
0
0
0

0
2.9262
0
0
0

0
0

2.8445
0
0

0
0
0

1.9348
0

0
0
0
0

1.9339]
 
 
 
 

 

(3.116) 

and the Laplacian matrix is L = D – W, 

 

𝐿 =  

[
 
 
 
 
   1.9086
−0.9930
−0.9129
−0.0015
−0.0011

−0.9930
    1.9262
−0.9311
−0.0012
−0.0009

−0.9129
−0.9311
   1.8445
−0.0002
−0.0002

−0.0015
−0.0012
−0.0003
   0.9348
−0.9318

−0.0011
−0.0009
−0.0002
−0.9318
    0.9339]

 
 
 
 

 

(3.117) 

 

The eigenvector matrix is (eige vectors are in columns) 

 

𝑣 =  

[
 
 
 
 
 0.4472
0.4472
0.4472
0.4472
0.4472

−0.3649
−0.3650
−0.3656
   0.5475
   0.5479

−0.0000
−0.0001
   0.0003
−0.7073
   0.7069

   0.4816
   0.3306
−0.8116
−0.0004
−0.0001

− 0.6595
    0.7466
−0.0872
    0.0001
    0.0000]

 
 
 
 

 

(3.118) 

The eigenvalues are 

 𝜆 =   [0.0000 0.0043 1.8661 2.7655 2.9121] (3.119) 

The least eigenvalue except zero is the second eigenvalue 𝜆 = 0.0043 and the 

corresponding eigenvector is the second column of 𝑣. This vector is 

 

𝑣1 =   

[
 
 
 
 
−0.3649
−0.3650
−0.3656
   0.5475
   0.5479]

 
 
 
 

 

(3.120) 

It can be seen from this vector that the values of nodes 1, 2 and 3 are nearly the same 

and negative. And the other two are positive. Hence 1,2 and 3 belongs to group1 and 

4,5 belongs to group2, which is the true solution. If we let negative values to represent 

1 and positive values to represent zeros, then the solution from v1 is 

 

𝑣2 =   

[
 
 
 
 
1
1
1
0
0]
 
 
 
 

 

(3.121) 

Hence spectral clustering can solve the grouping problem and not only this, spectral 

clustering can also solve the problem of patterns, and fig. 3.21 and 3.23 provides two 

applications of it which k-means algorithm was not able to solve.  
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            Fig. 3. 20 Original data of annular ring 

 

                         

 
      

          Fig. 3. 21Annulus data clustered through Spectral Clustering 
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         Fig. 3. 22 Unclustered Star data 

 

 

     
Fig. 3. 23 Clustered Star data through Spectral clustering  
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3.3 Part 3 – Finding Optimum cut for minimum power disruption 

 

 Constrained Spectral Clustering-  
 

Since k- means algorithm can’t be applied for different pattern groups another method of 

clustering which clusters based on characteristics different from nearness is employed. One 

such method is Spectral Clustering. In spectral clustering, a characteristic is selected to decide 

for the weights of the graph. In this method, certain constraints can also be satisfied besides 

grouping of nodes. 

The Power system is represented in the form of the graph, and each bus corresponds to the node 

of the network, and each line represents an edge of the graph. The weights of the edge are 

decided on the basis of the characteristic which will help minimize some related characteristics. 

In this study, the line powers are taken to be weights[7]. This is because once the power system 

is clustered in the form of groups, some lines connecting those groups need to be cut. It is then 

required to minimize this disruption in the power flow in these lines. So such lines will be cut 

such that the sum of removed line powers is minimum. 

In spectral clustering, constraints can be used to find the optimum solution. Here, Constraints 

are the information of coherency. In constrained spectral clustering, two matrices are required 

one is weight or adjacency matrix and other is constraint matrix[7], [14]. 

Let Constraint matrix be denoted by B, then B is obtained on the basis of coherency information 

which is known by applying previous methods of correlations to the power system speed and 

phase angle signals. This matrix is a square matrix having a dimension equal to the number of 

buses of the system. Two buses if present in the same area will be given a value of +1 and if 

present in different areas will be given a value of -1. So the ith row and jth column entry will be 

+1 if bus i and bus j are coherent and -1 otherwise[7]. If the buses are totally unrelated then 

they can be given a mutual value of zero. 

Mathematically,  

 𝐵 = [𝑏𝑖𝑗]𝑁×𝑁 (3.122) 

 
𝑏𝑖𝑗 = {

+1     , 𝑖𝑓 𝑖, 𝑗 ∈ 𝑀𝐿
−1     , 𝑖𝑓 𝑖, 𝑗 ∈ 𝐶𝐿

 (3.123) 

Here ML means a must link constraint and CL means a cannot link constraint. If the buses are 

coherent then they are said to belong to the set ML and to the set CL otherwise. 

In this study, the weight matrix is defined on the basis of line power flows[7]. So the weight 

matrix is[15], [7] 

 𝐴 =  [𝑎𝑖𝑗]𝑁×𝑁 (3.124) 

  

𝑎𝑖𝑗 = {
|𝑃𝑖𝑗| + |𝑃𝑗𝑖|

2
     , 𝑖𝑓 𝑖 ≠ 𝑗

          0                , 𝑖𝑓 𝑖 = 𝑗

 
(3.125) 
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There is a matrix associated with every graph called its Laplacian matrix whose spectra gives 

much information about the graph. This is denoted by L, 

The degree matrix is obtained by 

 𝐿 = 𝐷 − 𝐴              , 𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 
(3.126) 

 𝐷 = [𝑑𝑖𝑗]𝑁×𝑁 
(3.127) 

 

𝑑𝑖𝑗 = {
 0                   , 𝑖𝑓 𝑖 ≠ 𝑗
  𝑑𝑖𝑖                 , 𝑖𝑓 𝑖 = 𝑗

        ; 𝑑𝑖𝑖 = ∑𝑤𝑖𝑘

𝑁

𝑘=1

 
(3.128) 

Then Laplacian Matrix L is,  

 

𝐿 = 𝐷 − 𝐴 = {− 
|𝑃𝑖𝑗| + |𝑃𝑗𝑖|

2
     , 𝑖𝑓 𝑖 ≠ 𝑗

          𝑑𝑖𝑖                 , 𝑖𝑓 𝑖 = 𝑗

 
(3.129) 

Also, the volume, vol, of the graph is defined as 

 

𝑣𝑜𝑙 =  ∑𝑑𝑖𝑖

𝑁

𝑖=1

= 𝟏𝑇 𝐷 𝟏 
(3.130) 

where 1 is the vector containing all 1’s. In simpler terms, vol is the sum of all the weights taken 

from both sides of the edges. 

It is to be noted that whatever follows from here is the general spectral clustering method and 

the following points are not restricted for power system grid application only. 

The normalized Laplacian and constraint matrices are defined by[7][14], 

 𝐿′ = 𝐷−1 2⁄  𝐿 𝐷−1 2⁄  , 𝐵′ = 𝐷−1 2⁄  𝐵 𝐷−1 2⁄  (3.131) 

Spectral Clustering requires the minimization of an objective function formed by normalized 

Laplacian as,  

 ℒ(𝕧) =  𝕧𝑇 𝐿′𝕧 
(3.132) 

and the constraints[14] are 

 𝕧𝑇 𝐵′𝕧 >  𝛼,     𝑎𝑛𝑑 𝕧𝑇𝕧 = 𝑣𝑜𝑙 
(3.133) 

The first constraint requires that constraint matrix should be satisfied to some minimum extent 

and 𝛼 must be chosen accordingly so as to satisfy as much constraints as possible. The second 

constraint just normalizes the 𝕧 so that they remain within some magnitude and not exceed 

indefinitely. Also, it will lead to feasible eigenvalue solutions. 

So the complete optimization problem can be written as[16][14], 

 𝑎𝑟𝑔𝑚𝑖𝑛 𝕧𝑇 𝐿′𝕧

𝕧 ∈  ℝ𝑁
   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝕧𝑇 𝐵′𝕧 >  𝛼, 𝕧𝑇𝕧 = 𝑣𝑜𝑙, 𝕧 ≠  𝐷1 2⁄ 𝟏 (3.134) 
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So the Lagrangian is[7][10], 

 ℒ(𝕧) =  𝕧𝑇 𝐿′𝕧 −  𝜆(𝕧𝑇 𝐵′𝕧 −  𝛼) −  𝜇(𝕧𝑇𝕧 − 𝑣𝑜𝑙) 
(3.135) 

Differentiating this Lagrangian with respect to 𝕧 gives 

 𝐿′𝕧 −  𝜆 ( 𝐵′ +
𝜇

𝜆
𝐼) 𝕧 = 0 (3.136) 

 𝐿′𝕧 =  𝜆 ( 𝐵′ +
𝜇

𝜆
𝐼) 𝕧 (3.137) 

Also, the Kraush Kuhn Tucker conditions require [34], 

 𝜆(𝕧𝑇 𝑩′𝕧 −  𝛼)  ≥ 0 
(3.138) 

and 

 𝕧𝑇𝕧 = 𝑣𝑜𝑙 
(3.139) 

According to these equations the possibility of interest is 𝜆 ≠ 0 and let 𝜆 > 0. It will be clear 

later why 𝜆 > 0 is required. 

Also since 𝜆 ≠ 0 let’s select the boundary condition for a solution, i.e, converting inequality 

constraint into equality constraint for the boundary, 

𝕧𝑇 𝐵′𝕧 −  𝛼 = 0 ⇒  𝕧𝑇 𝐵′𝕧 =  𝛼 

But the main point is to bound 𝕧𝑇 𝐵′𝕧 by some constant or since now it is equal to 𝛼 lower 

bounding 𝕧𝑇 𝐵′𝕧  by some constant would be same as lower bounding 𝛼 by some constant. Let 

𝛽 be a constant such that[10], 

 𝛽 = − 
𝜇

𝜆
 𝑣𝑜𝑙 (3.140) 

Then from equation (3.98) we get 

 
𝐿′𝕧 =  𝜆 ( 𝐵′ −

𝛽

𝑣𝑜𝑙
𝐼) 𝕧 (3.141) 

Now it can be seen mathematically that the introduction of constant 𝛽 causes the lower 

bounding of 𝛼 as follows[14],  

Multiplying both sides of equation 3.102 by 𝕧𝑇 

 
𝕧𝑇𝐿′𝕧 =  𝜆 𝕧𝑇 ( 𝐵′ −

𝛽

𝑣𝑜𝑙
𝐼) 𝕧 =  𝜆 (𝕧𝑇 𝐵′𝕧 −

𝛽

𝑣𝑜𝑙
𝕧𝑇 𝕧) (3.142) 

since 𝕧𝑇 𝕧 = 𝑣𝑜𝑙 eq. 3.103 reduces to 

 𝕧𝑇𝐿′𝕧 =  𝜆 (𝕧𝑇 𝐵′𝕧 − 𝛽) 
(3.143) 

Since 𝐿 is symmetric and positive definite, so is 𝐿′, which can be shown as  
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- because 𝐷−1 2⁄  is the square root of a positive diagonal matrix, its entries will always 

be positive, 

- the elements of 𝑢 = 𝐷−1 2⁄ 𝕧 is the linear combination of elements of vector v, 

- since L is positive definite 𝕧𝑇𝐿𝕧 > 0 for any vector 𝕧, 

- now 𝐿′ = 𝐷−1 2⁄  𝐿 𝐷−1 2⁄ = (𝐷−1 2⁄ )𝑇 𝐿 𝐷−1 2⁄  which means 𝕧𝑇𝐿′𝕧 =

 𝕧𝑇(𝐷−1 2⁄ )𝑇 𝐿 𝐷−1 2⁄ 𝕧  

- This means 𝕧𝑇𝐿′𝕧 =  (𝐷−1 2⁄ 𝕧)𝑇 𝐿 𝐷−1 2⁄ 𝕧 =  (𝑢)𝑇 𝐿 𝑢 >0 for any u. 

- Hence 𝐿′ is positive definite. 

Using the above fact in eq. 3.104 requires 

 𝜆 (𝕧𝑇 𝐵′𝕧 − 𝛽) =  𝕧𝑇𝐿′𝕧 > 0 
(3.144) 

Now since 𝜆 (this was the reason to take it positive) is assumed greater than zero initially, the 

eq. 3.105 reduces to[14] 

 𝕧𝑇 𝐵′𝕧 − 𝛽 > 0 

𝕧𝑇 𝐵′𝕧 >  𝛽 

(3.145) 

Hence the introduction of 𝛽 leads to the lower bounding of the constraint, which was required. 

The constraint satisfaction is valid provided 𝜆 > 0. 

Hence, 

 𝜆 > 0               (𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
(3.146) 

So now the original optimization problem gets reduced to, 

Find 𝕧 such that 

 
𝐿′𝕧 =  𝜆 ( 𝐵′ −

𝛽

𝑣𝑜𝑙
𝐼) 𝕧     𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝛽 (3.147) 

This is a generalized eigenvalue problem which can be solved. But it is to be noted that only 

those solutions should be considered feasible whose eigenvalue is positive only. This is due to 

the fact that 𝜆 > 0 and hence it is a condition for the solution or for the feasible eigenvalues. 

So only those eigenvectors are chosen for which the generalized eigenvalues 𝜆 are positive. 

After choosing feasible eigenvectors, the vector which will lead to the minimum value of 

objective function are the ones which have lowest eigenvalues out of all the feasible eigenvalues 

except the zero eigenvalue[14][7], [15], which was the trivial solution and hence to be 

neglected. If the objective function is to be maximized, then the eigenvectors corresponding to 

maximum positive eigenvalues should have been selected. Also, there may be many positive 

eigenvectors but the number of eigenvectors selected should be one less than the number of 

clusters required. So to minimize F and form k clusters at the same time, k-1 lowest positive 

non- zero eigenvalues must be selected.  

There is one remaining constraint condition that needs to be satisfied and that is, 𝕧𝑇𝕧 = 𝑣𝑜𝑙. 

For finding each of selected k-1 eigenvectors 𝕧 are normalized according to,  
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 𝕧 ←
𝕧

𝕧𝑇𝕧
 𝑣𝑜𝑙 (3.148) 

Finally, to form k clusters, these k-1 eigenvectors are placed in the column of a data matrix. 

Suppose V denote the matrix of k-1 eigenvectors arranged in columns of V, then there are N 

rows in the V matrix because each of k-1 vectors has N components obeying to the fact that L 

has dimension N. 

 𝑉 = [𝕧𝑖]𝑁 × 𝑘−1 
(3.149) 

Now, the rows of this matrix need to be grouped and grouping can be done using k- means 

clustering as no pattern finding is required. So the N rows will be grouped into k clusters and 

this equivalently means that the N nodes of the graphs are grouped into k clusters according to 

the properties embedded in Laplacian matrix. 

How to select 𝜷 and k? 

Now, there are two independent selection that needs to be made at the starting of using this 

method for clustering and these are- the number of clusters k, and the value of 𝛽. Here, the 

emphasis on the value of 𝛽 should be given. 𝛽 should be chosen such that the generalized 

eigenvalues remain positive[14]. From the structure of the right side of the equation it can be 

seen that it contains the term 𝐵′ −
𝛽

𝑣𝑜𝑙
𝐼 which will directly determine the values of generalized 

eigenvalues. So in order for them to be positive the eigenvalues of 𝐵′ −
𝛽

𝑣𝑜𝑙
𝐼 must be positive 

and hence,  

 
𝑒𝑖𝑔 (𝐵′ −

𝛽

𝑣𝑜𝑙
𝐼) =  𝜆𝐵′ −

𝛽

𝑣𝑜𝑙
 > 0 (3.150) 

 𝛽 < 𝜆𝐵′ ∗  𝑣𝑜𝑙 (3.151) 

For this to be true, 

𝛽 < (𝜆𝐵′)𝑚𝑎𝑥 ∗ 𝑣𝑜𝑙 

But the constraint 𝕧𝑇 𝐵′𝕧 >  𝛽 needs to be satisfied so 𝛽 should not be less than zero or very 

small value. So a good choice for selecting 𝛽 is, 

 (𝜆𝐵′)𝑚𝑖𝑛 ∗ 𝑣𝑜𝑙 < 𝛽 <  (𝜆𝐵′)𝑚𝑎𝑥 ∗ 𝑣𝑜𝑙 (3.152) 

The more is the value of 𝛽 in this range, the more constraints are satisfied. So beta should be 

chosen higher if constraint satisfaction is strongly desired. But increasing the value of 𝛽 also 

reduces the feasibility of the eigenvectors obtained. Because the higher value of beta leads to 

more negative generalized eigenvalues. Hence less number of eigenvectors to select from[14]. 

Selection of k can be done on the basis of k- means run for clustering the graph prior to the 

application of spectral clustering on the graph. 

In summary, constrained spectral clustering methods involve the following steps[7], [14]-  

a) Prepare Adjacency matrix or weight matrix, 

b) Prepare Constraint matrix B, 
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c) Find laplacian matrix using L = D – W, 

d) Find normalized Laplacian and constraint matrices, 

e) Find eigenvalues of normalized constraint matrix, find the maximum and minimum 

eigenvalues. 

f) Chose 𝛽 such that  (𝜆𝐵′)𝑚𝑖𝑛 ∗ 𝑣𝑜𝑙 < 𝛽 <  (𝜆𝐵′)𝑚𝑎𝑥 ∗ 𝑣𝑜𝑙 

g) Solve the generalized eigenvalue problem, and find the generalized eigenvectors of, 

𝐿′𝕧 =  𝜆 ( 𝐵′ −
𝛽

𝑣𝑜𝑙
𝐼) 𝕧 

h) Discard the non-feasible, i.e., negative eigenvalues and chose first minimum k-1 

eigenvalues and arrange them in columns of matrix V, 

i) Then apply k-means clustering on the rows of V, 

j) The required indexes for every node is obtained, i.e., whether they belong to cluster 1, 

2, …..or, k.  
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Flowchart 3.5- Flow Diagram for Constrained Spectral Clustering-  

 

 Application of Constrained Spectral clustering in finding N-cut 

to minimize power disruption-  
Since coherency information about the power system is obtained through correlation 

coefficients earlier. Constrained spectral clustering can be employed for finding the 

normalized cut satisfying coherency constraint and minimizing power disruption. Also, 

the topology information needs to checked again and again for any fault and 

modification in the system during cascading outages. This helps in finding new 

coherency information correctly and also removing unnecessary data in the system. 

Find weight matrix A and 

constraint matrix B 

Find D and L = D-A 

Select k and 𝛽 such that 

(𝜆𝐵′)𝑚𝑖𝑛 ∗ 𝑣𝑜𝑙 < 𝛽 <  (𝜆𝐵′)𝑚𝑎𝑥 ∗ 𝑣𝑜𝑙 

Solve equation                      

𝐿′𝕧 =  𝜆 ( 𝐵′ −
𝛽

𝑣𝑜𝑙
𝐼) 𝕧 

Find    𝐿′ = 𝐷−1 2⁄  𝐿 𝐷−1 2⁄    and                          

    𝐵′ = 𝐷−1 2⁄  𝐵 𝐷−1 2⁄  

Select k-1 eigenvectors which 

has minimum positive 

eigenvalues. 

Normalize them. Arrange k-1 

eigenvectors in columns of M. 

Run k- means on rows of k-1 

eigenvector matrix M. 
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Suppose if the line is removed from the system. Due to fault in the line, relays removed 

the line from the system, then there is unnecessary power flow data in the power flow 

weight matrix. Including such data can give a cut passing through the removed line, 

which is already removed and hence should not be considered for application of this 

method. Also, coherency can change due to the removal of a line. For example, a bus 

is connected to two areas A1 and A2 only through link L1 and L2. Earlier, it was 

coherent with A1, but due to the occurrence of a fault in link L1, it is removed by the 

switchgear and relays. Then now that same bus which was earlier coherent with the 

area A1 will now be coherent with area A2 as it is joined to only A2 now. Hence, the 

checking of fault location is a part working here independently for the overall 

application.  

The second part is the Coherency determination which will provide the value of 

coherent areas k to the Constrained Spectral Clustering algorithm[7]. 

Then what is the need for Constrained Spectral Clustering algorithm? It is needed 

because the coherency determination doesn’t take into account the minimization of 

power if all areas obtained through coherency information needs to be cut down for 

islanding to prevent a blackout. Constrained Spectral Clustering algorithm minimizes 

this power flow disruption between the areas, in addition to satisfying coherency of 

buses which is provided to this algorithm in the form of constraints[7]. Some coherency 

constraint might get relaxed in order to minimize power flow disruption. 

In the case of cascading outage scenario, the operator has to manually run the algorithm 

which will first check the topology and information found will be sent to the coherency 

determination module. This module will provide the value of k to the spectral clustering 

algorithm which will decide which lines need to be cut. The constant topology check 

through fault location determination also secures the possibility in case the outages 

stops in between. Then the system becomes less vulnerable and the algorithm can be 

stopped.

 

 Another way to determine Preliminary Coherency-  

 
The coherency or coherent areas are calculated to find k to apply constrained spectral 

clustering to the system. Earlier in section, this was calculated using correlation 

coefficient, cross-correlation, Cross-spectral density and Coherence function. Another 

way to find is to spectrally cluster the system according to the dynamic coupling 

between the different buses[15]. The dynamic coupling between different buses is 

given by stiffness coefficients. 

 
𝐾𝑖𝑗 = 

𝜕𝑃𝑖𝑗

𝜕𝛿𝑖𝑗
 =  

𝑉𝑖 𝑉𝑗

𝑍𝑖𝑗
sin (𝛿𝑖 − 𝛿𝑖 + 𝜙𝑖𝑗) (3.153) 

More dynamically coupled buses are stiffer together with each other and hence follow 

oscillations closely. This coefficient can be used for grouping power system buses 

into coherent groups [11]. To use stiffness coefficient as the property of classification, 
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which is definitely is not a distance measure, k- means clustering can’t be used as it 

strongly classifies on the basis of geometrical distance. But spectral clustering can be 

used by embedding the property of stiffness coefficient into the Laplacian matrix. 

Because the stiffness coefficient is a mutual characteristic, Laplacian can be formed 

with them. 

The Laplacian matrix LD employing stiffness coefficient is given by [11], 

 𝐿𝐷 = [𝑙𝐷
𝑖𝑗
]
𝑁×𝑁

 (3.154) 

 

𝑙𝐷
𝑖𝑗
= 

{
 
 

 
   
|𝐾𝑖𝑗| + |𝐾𝑗𝑖|

2
                       , 𝑖𝑓 𝑖 ≠ 𝑗

       − ∑ 𝑙𝐷
𝑖𝑚

𝑁

𝑚=1
𝑚≠𝑖

                     , 𝑖𝑓 𝑖 = 𝑗
 

(3.155) 

After forming laplacian, spectral clustering is run to divide this system into two 

clusters. To do this[15][13], 

a) Solve for eigenvalues and eigenvectors of LD, 

b) Choose two lowest magnitude eigenvalues and corresponding eigenvectors, 

c) Arrange the eigenvectors in the columns of data matrix V, 

d) Perform k-means on the rows of V with the value of k = 2, 

e) If the clusters are satisfactory, then exit. 

f) If more clusters are required, then apply the whole method to the two clusters 

obtained above in step (e) to further divide one of them or both of them into 

two more clusters. Repeat this process until a satisfactory number of clusters 

are obtained. 
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4. TEST RESULTS-  

4.1 System Studied and Data-  

The System studied is IEEE 9 bus system whose parameters are as follows-  

Table 4. 1- Terminal conditions of IEEE 9- bus system 

Bus V[kV] 𝛿(deg) P[pu] Q[pu] 

1 17.16 0.0000 0.7163 0.2791 

2 18.45 9.3507 1.6300 0.0490 

3 14.145 5.142 0.85 -0.1145 

 

Table 4. 2- Transmission Line Characteristics of IEEE- 9 Bus System 

Line R[pu/m] X[pu/m] B[pu/m] 

From Bus To Bus 

4 5 0.01 0.168 0.176 

4 6 0.0170 0.0920 0.1580 

5 7 0.0320 0.1610 0.3060 

6 9 0.0390 0.1738 0.3580 

7 8 0.0085 0.0576 0.1490 

8 9 0.0119 0.1008 0.2090 

 

Table 4. 3- Load Characteristics of IEEE 9-bus System 

Bus P[pu] Q[pu] 

5 1.25 0.50 

6 0.90 0.30 

8 1.00 0.35 

 

The fault is created at bus 8 of the system. The fault type is 3 phase to ground fault. It 

is applied at 0.35s and cleared at 0.4s. The line data is on base 100MVA, 230kV [21]. 

The shortest path database consists of previous node matrix and visited node matrix 

formed during the shortest path tree generation. The weight matrix for the shortest path 

algorithm is obtained by weighing each link with its line impedance in the positive 

sequence network. The transformer is replaced by its leakage reactance. Also, the 

weights are taken after multiplying the line reactances in per unit by 100, i.e., 

converting them to percentage. The generated weight matrix is shown on the next page. 

The common velocity is found by the averaging of time of disturbance movement 

between different nodes. The fault causes the load angles to change as shown below 

and the time of arrival is calculated using these results. 

The weight matrix for links of the graph of IEEE 9 bus system is,  
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𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =

[
 
 
 
 
 
 
 
 
0
0
0
48
0
0
0
0
0

0
0
0
0
0
0
5.2
0
0

0
0
0
0
0
0
0
0
4.88

48
0
0
0
5.75
7.85
0
0
0

0
0
0
5.75
0
0

13.79
0
0

0
0
0
7.85
0
0
0
0

14.99

0
5.2
0
0

13.79
0
0
4.87
0

0
0
0
0
0
0
4.87
0
8.48

0
0
4.88
0
0

14.99
0
8.48
0 ]

 
 
 
 
 
 
 
 

 

The previous node matrix is =  

𝑝𝑟𝑒𝑣 𝑛𝑜𝑑𝑒 =  

[
 
 
 
 
 
 
 
 
1 7 9
4 2 9
4 7 3

1 4 4
5 7 4
6 7 9

5 7 6
2 7 8
8 9 3

4 7 9
4 7 9
4 7 9

4 4 4
5 5 4
6 4 6

5 7 6
5 7 8
5 9 6

4 7 9
4 7 9
4 7 9

5 7 4
5 7 9
6 7 9

7 7 8
8 8 8
9 9 9]

 
 
 
 
 
 
 
 

 

The visited node matrix =  

𝑝𝑟𝑒𝑣 𝑛𝑜𝑑𝑒 =  

[
 
 
 
 
 
 
 
 
1 4 5
2 7 8
3 9 8

6 7 9
9 5 3
7 6 2

8 2 3
4 3 1
4 5 1

4 5 6
5 4 6
6 4 5

7 9 8
7 8 2
9 3 8

2 3 1
9 3 1
7 2 1

7 8 2
8 7 9
9 3 8

9 5 3
2 3 5
7 6 2

4 6 1
6 4 1
4 5 1]

 
 
 
 
 
 
 
 

 

For Optimal PMU algorithm top_data matrix is generated which tells the information 

about the end nodes of every link present in the system. 

Optimal PMU suggests the PMU locations 2, 4, 9 are best for network observability. 

From these points, all the calculations for all the buses can be made. 

The bus angles signals are first low pass filtered to remove any high-frequency changes 

so that their smooth variation can be seen. The filter cutoff frequency is selected to be 

2Hz and a sampling rate of 50 samples is selected for Matlab built-in command.  
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Angle variations at PMU locations due to 3- phase fault at Bus 8-   

Actual PMU bus Angles measured through PMUs during a fault on bus 8-  

 

 

 

Fig. 4. 1 Bus angle(top), its derivative and double derivative measured from PMU 

  



 

69 
 

Bus 8 fault’s PMU angles calculated through Hilbert transform-  

 

 

 

Fig. 4. 2 Bus angle(top), its derivative and double derivative calculated from voltages 

through Hilbert Transform 

It can be observed that although the magnitude of the variation is a bit suppressed by 

Hilbert transform but the information about critical points is more or less preserved in 

this extraction. This can be seen by comparing previous curves which are actual data 

with these curves. 
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After running Matlab code on the data for finding T1, T2 and T3 points, the following 

data is obtained for an 8 bus system fault-  

Table 4. 4– Measured Time data of critical points at node 4, node 2 and node 9 

 T1(max. point) T2(max.speed 

point) 

T3(bifurcation 

point) 

Node 2 0.3606 s 0.3503 s 0.3500 s 

Node 4 0.3515 s 0.3513 s 0.3510 s 

Node 9 0.3505 s 0.3503 s 0.3502 s 

 

These results are used to calculate the time of arrival for each PMU node from 

eq.(31). These time of arrivals are – 

           Table 4. 5- Time of arrival of a disturbance at bus PMU locations 

Node Time of arrival 

Node 2 0.3501 

Node 4 0.3511 

Node 9 0.3501 

 

This toa is used to calculate T_M, the relative time of arrival matrix, the minimum 

time node is taken as node 9, 

     Table 4. 6- Relative time of arrival matrix at the PMU location w.r.t bus 9 

Node Relative time of arrival 

T29 0.000 

T49 0.00095 

 

The generated path matrix for node 2, node 4 and node 9 is- 

𝑝𝑎𝑡ℎ2 =  

[
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9

4
2
9
5
7
4
2
7
8

5
0
8
7
2
5
0
2
7

7
0
7
2
0
7
0
0
2

2
0
2
0
0
2
0
0
0]
 
 
 
 
 
 
 
 

 ;    𝑝𝑎𝑡ℎ4 =  

[
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9

4
7
9
4
4
4
5
7
6

0
5
6
0
0
0
4
5
4

0
4
4
0
0
0
0
4
0]
 
 
 
 
 
 
 
 

;      𝑝𝑎𝑡ℎ9 =  

[
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9

4
7
9
6
7
9
8
9
9

6
8
0
9
8
0
9
0
0

9
9
0
0
9
0
0
0
0]
 
 
 
 
 
 
 
 

 

 

 

These matrices are used to calculate the theoretical time of arrival, 
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𝑡𝑝2 =   

[
 
 
 
 
 
 
 
 
0.20
0.00
0.20
0.15
0.10
0.20
0.05
0.10
0.15]

 
 
 
 
 
 
 
 

 𝑚𝑠;      𝑡𝑝4 =   

[
 
 
 
 
 
 
 
 
0.05
0.15
0.15
0.00
0.05
0.05
0.10
0.15
0.10]

 
 
 
 
 
 
 
 

𝑚𝑠;      𝑡𝑝9 =   

[
 
 
 
 
 
 
 
 
0.15
0.15
0.05
0.10
0.15
0.05
0.10
0.05
0.00]

 
 
 
 
 
 
 
 

𝑚𝑠 

 

Then, the theoretical relative time of arrival is calculated by, 

𝑇𝑡ℎ =  [𝑡𝑝4 − 𝑡𝑝9, 𝑡𝑝2 − 𝑡𝑝9]  

Then, 

∆𝑘= ‖𝑇𝑡ℎ𝑘 − 𝑇𝑀‖
2 

The value of k for which ∆𝑘 is minimum is the solution. 

4.2 Determination of coherency and coherent areas-   

The data of the system studied is given in Appendix A. The IEEE standard 9- bus 

system is fed with two alternators at bus 2 and bus 3 and an infinite bus at the bus no. 

1. The disturbance is applied to the system on bus 6. This disturbance is produced by 

changing the phase angle of the 6th bus voltage instantly from 0 to π. The turbine model 

used is Cv – Iv model and the governor used is Mechanical Hydraulic type of governor. 

The simulation is done in PSCAD and for processing and programming, MATLAB is 

used. The run time is 60s and the sampling period is 100us. 

 

The data of the system run is given in table 4.1 to 4.3, and Fig. 4.3 shows the variation 

of speed signals of the two synchronous generators. Also, the phase angle of every bus 

is shown in fig.4.4. 
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Fig. 4. 3 Speed Signals of alternators at bus 2 and bus 3 

 

                    Fig. 4. 4 Load angles of buses 

The correlation coefficient between load angles of all buses in the system is as follows, 

𝑅𝑖𝑗 = 

[
 
 
 
 
 
 
 
 1.0
−0.47
−0.52
   0.92
−0.67
   0.94
−0.56
−0.58

−0.47
1.0

    0.50
−0.38
    0.51
−0.39
   0.91
   0.90

−0.52
   0.50
1.0
−0.45
   0.82
−0.46
   0.69
   0.69

    0.92
−0.38
−0.45
1.0
−0.56
    0.99
−0.47
−0.48

−0.67
   0.51
   0.82
−0.56
1.0
−0.58
   0.69
   0.71

   0.94
−0.39
−0.46
    0.99
−0.58
1.0
−0.48
−0.49

−0.56
   0.91
   0.69
−0.47
   0.69
−0.48
1.0
   0.99

−0.58
   0.90
   0.69
−0.48
   0.71
−0.49
   0.99
1.0 ]

 
 
 
 
 
 
 

 

From this matrix, a coherency table can be prepared. The correlation coefficient matrix 

consists of rows and columns representing bus 2 to bus 9. 
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        Table 4. 7- Coherency check from the correlation coefficient 

S.no. Correlated buses 

Bus 2 
(5,7) have high values 

Bus 3 
(8,9) have high values 

Bus 4 
6 has high value but 3,8,9 

seems to be more related to 

it than 2,5,7 

Bus 5 
(2,7) have high values 

Bus 6 
(4) has high value, but 3,8,9 

seems to be more related to 

it than (2,5,7) 

Bus 7 
(2,5) have high values 

Bus 8 
(3,9) have high values 

Bus 9 
(3,8) have high values 

 

From this table, it seems there can be two groups (2,5,7) and (3,8,9,1,4,6) if two clusters 

are to be chosen. While there can be three groups (2,5,7), (3,8,9) and (1,4,6) if three 

clusters need to be chosen. 

Coherency through correlation is evaluated according to equation 3.65 and equation 

3.66 with speed replaced by load angle of buses. 

The correlation functions are evaluated and their trend is shown in fig. 4.5 and finally 

the cross-spectral density and coherence functions are shown in fig. 4.6 and 4.7 

respectively. The cross-correlation functions show that buses 2,5,7 have functions 

whose shape is the same. While 3,8,9,6 follow each other closely in shape. A similar 

trend can be seen in Cross-spectral density functions which tells that the composition 

of frequencies (low-frequency range) of buses (2,5,7) are nearly same and so is the 

composition of frequencies of buses (3,8,9,6).  
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Fig. 4. 5 Cross- Correlation functions of load angles of buses. 

 

 

Fig. 4. 6  Power Spectral Density of load angle of buses  
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Fig. 4. 7 Coherence functions calculated with respect to bus 2 

It can be seen from coherence functions that buses 2, 5 and 7 are more related to each 

other than buses 1, 4, 7, 8, 9. 

But these coherence functions are functions of bus 2,3,4,5,6,7,8,9 with respect to bus 

2. There can be coherence functions with respect to bus 3, 4, 5, 6, 7, 8, 9. For 

determining which buses are near to each other these coherence functions can be k-

means clustered. 

The clustering result is 

           Table 4. 8- K- means cluster obtained through coherence functions 

S.no. 2 Cluster 3 Cluster 

Bus 2 (2,5,7); (1,3,4,6,8,9) (2,5,7); (3,4,8,9); (6) 

Bus 3 (3,8,9);(1,2,4,5,6,7) (2,5,7); (3,8,9); (1,4,6) 

Bus 4 (2,5,7); (1,3,4,6,8,9) (2,5,7); (1,3,4,6,8,9) 

Bus 5 (2,5,7); (1,3,4,6,8,9) (5,7); (1,3,4,6,8,9);(2) 

Bus 6 (2,3,5,7); (1,4,6,8,9) (2,5,7); (3,8,9); (1,4,6) 

Bus 7 (2,5,7); (1,3,4,6,8,9) (2,5,7); (1,3,4,8,9);( 6) 

Bus 8 (2,5,7); (1,3,4,6,8,9) (2,5,7); (3,8,9); (1,4,6) 

Bus 9 (2,5,7); (1,3,4,6,8,9) (2,5,7); (3,8,9); (1,4,6) 
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From this table, it can be strongly stated that the buses which are coherent are 2,5,7 and 

3,8,9. Buses 1,4,6 change groups in three cluster groups coherence functions calculated 

w.r.t to different buses. Also, groups can be identified by looking not only in every cell 

but also in different rows. The rows involving bus 2, bus 5 and bus 7 gives nearly the 

same result and hence can be said to strongly belong to one of the groups. Similarly, 

rows involving bus 3, bus 8 and bus 9 also have nearly the same group cells in third 

column. In 2 cluster, i.e., the second column, the grouping seems to be much stiffer. So 

k = 2 should be the used for spectral clustering. 

4.3 Coherency Determined through Dynamic Constraints-  

The Laplacian matrix is formed according to equation 3.154 of section 3. These use 

stiffness coefficients as their elements. The Laplacian matrix is 

𝐿𝐷 =

[
 
 
 
 
 
 
 
 
−31.15
0
0

31.15
0
0
0
0
0

0
−49.72
0
0
0
0

49.72
0
0

0
0

−57.39
0
0
0
0
0

57.39

31.15
0
0

−49.63
8.91
9.57
0
0
0

0
0
0
8.91

−119.19
0

110.28
0
0

0
0
0
9.57
0

−40.56
0
0

30.99

0
49.72
0
0

110.28
0

   −171.35
11.34
0

0
 0
0
0
  0
0

11.34
−307.84
296.49

0
0

57.39
0
0

30.99
0

296.49
−384.88]

 
 
 
 
 
 
 
 

 

Its eigenvalues are,  

𝑒𝑖𝑔(𝐿𝐷)

=  [−649.52 −266.03 −92.43 −76.28 −66.15 −43.62 −9.32 −8.36 0.00] 

The two lowest magnitude non zero eigenvalues are -8.36 and -9.32. Picking the 

eigenvectors associated with these two eigenvalues and arranging them in matrix V 

gives, 

𝑉 =

[
 
 
 
 
 
 
 
 
−0.5800 −0.4109
   0.4600 −0.2741
   0.4600    0.4436
−0.4000    0.4436
   0.3400 −0.2511
−0.1400     0.2755
   0.3700 −0.2280
−0.0064     0.3666
−0.0209     0.3790]

 
 
 
 
 
 
 
 

 

This matrix can be considered to be 9 points in two-dimensional space, where each 

vector or data point has a dimension of 2. Then this matrix can be plotted in the x- y 

Cartesian plane for visualization of grouping. The graph showing the points is shown 

in fig. 4.6. These points can clearly be seen to agree with the analytical results. The 

points are designated by the respective row number in which they are present in V 

matrix or, equivalently by the node number to which these rows points. In other words, 

the points present in the graph indirectly represent the buses. The encircled groups are 

cluster 1(on the lower right corner) and cluster 2 of Table 4.9. 
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Fig. 4. 8 Points plotted through components of two eigenvectors 

Clustering its rows, i.e., k-means is run on the rows of V considering one row as one 

data point gives the following two clusters. K-means can be run on MATLAB via built-

in command  

kmeans(V, k, ‘replilcates’, 5); 

It will return a vector whose row represents a node in the power system, and value in 

each row is the cluster number to which it belongs. 

𝑖𝑑 =  [2 1 2 2 1 2 1 2 2]𝑇 

 

Table 4. 9- Clustered group using dynamic coupling 

Cluster 1 (2, 5, 7) 

Cluster 2 (1, 3, 4, 6, 8, 9) 

 

Now k is known for this system and that is k = 2. 

For spectral clustering, first power flow data is used to obtain power flow in each of the 

lines/transformers connecting two buses after the outage in steady state is taken and 

stored in Pij matrix. 
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Then weight matrix is formed using the equation 3.124 and then laplacian is calculated 

and it comes out to be, 

𝐿 =  

[
 
 
 
 
 
 
 
 
1.674
0
0

−1.674
0
0
0
0
0

0
0.0865
0
0
0
0

−0.0865
0
0

0
0

0.0923
0
0
0
0
0

−0.0923

−1.674
0
0

3.5012
−0.408
−1.419
0
0
0

0
0
0

−0.408
1.0238
0

−0.615
0
0

0
0
0

−1.419
0

2.3710
0
0

−0.951

0
−0.0865

0
0

−0.6150
0

   1.4316
−0.7294

0

0
0
0
0
0
0

−0.7294
1.5881
−0.8587

0
0

−0.0923
0
0

−0.9518
0

−0.8587
1.9028 ]

 
 
 
 
 
 
 
 

 

From the cluster indicator matrix 𝑖𝑑 constraint matrix B should be formed according to 

equation 3.122. Hence, 

𝑏𝑖𝑗 = {

+1                                          , 𝑖𝑓 (𝑖, 𝑗) ∈ [2,5,7] × [2,5,7]

 +1 ,                               𝑖𝑓  (𝑖, 𝑗) ∈ [3,8,9,1,4,6] × [3,8,9,1,4,6]

−1                                 , 𝑖𝑓 (𝑖, 𝑗) ∈ [2,5,7] × [3,8,9,1,4,6]

 

After normalization of L and B matrices, the maximum eigenvalue of B is calculated, 

which is (𝜆𝐵′)𝑚𝑎𝑥 = 9. 

Taking 𝛽 = 100(< (𝜆𝐵′)𝑚𝑎𝑥 ∗ 𝑣𝑜𝑙 ) and finding the volume by Laplacian matrix as 

𝑣𝑜𝑙 = 𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐿 = 13.6712 

The generalized eigenvalue problem in equation 3.146 can be solved and its eigenvalues 

are 

𝑔𝑒𝑛 𝑒𝑖𝑔

=  [ −0.273 −0.238 −0.198 0.035 0 −0.037 −0.0873 −0.136 −0.136] 

There are only two clusters are required, so one eigenvector is needed to decide for the 

clusters. Now the eigenvalue corresponding to which the eigenvector will be selected 

must be minimum among the non-zero positive eigenvalues. There is only one non-zero 

positive eigenvalue which is the fourth element of the 𝑔𝑒𝑛 𝑒𝑖𝑔 matrix. The eigenvector 

corresponding to the fourth eigenvalue is  

𝑉 =

[
 
 
 
 
 
 
 
 
   0.5778
−0.9742
   1.0000
    0.6817
−0.3047
    0.7061
−0.3981
    0.3524
    0.7550]

 
 
 
 
 
 
 
 

 

It can directly be seen from this matrix or k-means can be applied on the rows of V to 

know that final clusters are (2,5,7) and (1,3,4,6,8,9). The direct visualization is the 

recognition of the fact that only (2,5,7) rows have negative values and all other are 
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positive values. Nevertheless, k-means can be applied on V and it returns the id matrix 

and that is, 

𝑖𝑑 =  [2 1 2 2 1 2 1 2 2]𝑇 

So finally, the power disruption turns out to be minimum if line 7-8 and line 4-5 is cut 

in case of emergency satisfying coherency constraints too. 

Test result on 14 bus system- 

The same analysis is performed on a 14 bus system with the use of dynamic stiffness 

coefficients. The disturbance is the removal of line TL6-12 with the help of breaker. The whole 

14 bus system is operating on 18kV. The simulation is done in RSCAD and the analysis is 

carried out. There is one difference in the model available in RSCAD simulation software from 

the standard IEEE test system that it doesn’t contain the 7th bus. Instead, the 4th, 7th, and 9th 

buses are connected via a three-winding transformer. So bus 7 voltage needs to be calculated 

using the impedance used for three- winding transformer. It is as follows-  

Z12, Z13, and Z23 are given, so individual winding resistances can be calculated as,  

 
𝑍1 = 

𝑍12 + 𝑍13 − 𝑍23
2

; (4.1) 

 
𝑍2 = 

𝑍12 + 𝑍23 − 𝑍13
2

 (4.2) 

 
𝑍3 = 

𝑍13 + 𝑍23 − 𝑍12
2

 (4.3) 

After calculating these impedances, V7 can be easily calculated as,  

 𝑉7 = 𝑉9 − 𝐼97 ∗ 𝑍1 = 𝑉4 − 𝐼47 ∗ 𝑍2 = 𝑉8 − 𝐼87 ∗ 𝑍3 
(4.4) 

After the fault, the voltage profile, phase angles, and speeds are as shown in figure 

below, 
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       Fig. 4. 9- Voltages of buses after line outage 

 

Fig. 4. 10- Speed variation of generators after the outage 

 

Fig. 4. 11- Bus angle variations after line outage 

This data along with line data in Appendix 6.2 is used with eqn. 3.152 and 3.154 in 

forming the 𝐿𝑑 matrix which is shown below as-  

𝐿𝑑 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
−21.3
16.8
0
0
4.5
0
0
0
0
0
0
0
0
0

16.8
−32.9
5.1
5.3
5.5
0
0
0
0
0
0
0
0
0

0
5.1
−10.5
5.4
0
0
0
0
0
0
0
0
0
0

0
5.3
5.4
−39.8
22.2
0
5
0
1.9
0
0
0
0
0

4.5
5.5
0
22.2
−36.3
4.1
0
0
0
0
0
0
0
0

0
0
0
0
4.1
−18.3
0
0
0
0
4.4
6.4
3.5
0

0
0
0
5
0
0

−20.6
5.9
9.7
0
0
0
0
0

0
0
0
0
0
0
5.9
−5.9
0
0
0
0
0
0

0
0
0
1.9
0
0
9.7
0

−25.8
11.1
0
0
0
3.2

0
0
0
0
0
0
0
0
11.1
−15.8
4.8
0
0
0

0
0
0
0
0
4.4
0
0
0
4.8
−9.1
0
0
0

0
0
0
0
0
6.4
0
0
0
0
0

−5.8
2.5
0

0
0
0
0
0
3.5
0
0
0
0
0
2.5
−11.4
2.5

0
0
0
0
0
0
0
0
3.2
0
0
0
2.5
−5.6]
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The lowest magnitude eigenvectors of it are, 

𝑒𝑖𝑔(𝐿𝑑) =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 

−0.25
−0.23
−0.24
−0.11
−0.17
−0.16
0.31
0.59
0.26
0.25
0.08
−0.31
−0.16
0.15

0.32
0.32
0.33
0.22
0.21
−0.25
0.10
0.16
−0.01
−0.08
−0.21
−0.47
−0.37
−0.27]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

When plotted in two-dimensional plane and considering each row as coordinates of one 

point, the 14 buses can be visualized as,  

 

    Fig. 4. 12- Bus groups found from stiffness coefficients after line outage 

It suggests that lines 11-6, 13-14, 5-6, 4-7, and 4-9 should be disconnected for 

maintaining coherent operation in respective areas. 

After this, the constraint matrix will be formed and then laplacian is formed which are 

used to solve the generalized eigenvalue problem in Eq. 3.146 and the lowest magnitude 

eigenvalue and corresponding eigenvector is selected which is 

𝑣 =  [0.02 0.02 0.03 0.02 0.02 0.03 −0.07 −1 −0.06 −0.10 −0.08 0.2 0.06 −0.07]𝑇 

 β is taken as 140 which satisfies Eq. 3.131 and the plot of the eigenvectors is as shown 
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     Fig. 4. 13 Buses represented by eigenvector after constraint spectral clustering 

 

This suggests that only bus 8 is to be removed for minimizing power disruption and 

still maintaining coherency which is acceptable as all generators are nearly coherent 

and only generator 8 was falling in group 2 which is not supplying much power and 

working as synchronous condenser. If one was to cut according to constraint matrix 

only i.e., according to previously suggested clusters as shown in fig. 4.12 then a large 

amount of load connected to buses 11, 14 10 and 9 buses would have been shed because 

the synchronous condenser won’t be able to supply this much load. So in effect, only 

generator 8 should be removed if an emergency arises.  
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5. CONCLUSION 

The method of multilateration depends on the velocity of propagation of disturbance 

which is assumed to be constant in the system studied. Also, the inertia of the system 

is not constant and its value must be found for the system by extensive study first and 

then that value can be used for calculation for such methods and determination of 

electromechanical wave velocity. Optimal PMU locations provide node 4, node 2 and 

node 9 as the best locations, but it can be seen from equation (6) that some variable 

measurements overlap, i.e., I(87) can be determined either from voltages as done in 

equation 3.7 or it can be found from the currents by applying KCL at node bus 7 since 

bus 7 is a Zero Injection Bus. Hence I(78) is the sum of currents I(57) and I(27). Further 

reduction of the number of PMUs can be obtained and it can be further analyzed. The 

results are satisfactory for the velocity of disturbance wave. A neural network can be 

trained to measure the time of arrival at a particular bus since it can optimize its weight 

to nearly know the relation between time of arrival and the three critical points of the 

disturbance wave coming to it. Since the power system is not changing suddenly, the 

nature of variation of the curve of bus angles is more nearly constant from faults 

originated in different locations in the power system, or it can be said that the faults 

originating in different directions have an effect on the disturbance reaching the bus, 

but the nature of variation might remain the same for a particular direction for a 

significant period of time. Also, the nature of variation depends on the fault type and a 

neural network can optimize itself to distinguish the faults in the system from the 

information of disturbance in the phase angle [4]. Hence, a law exists between the 

nature of variation of the bus angle curve and the time of arrival of the disturbance and 

also the type of fault in the system.  

The calculation of phase angles from the Discrete Fourier Transform gives wrong 

results. It is only helpful when the variation in the phase angle is very slow over time 

and hence can be assumed to be constant at least for a cycle during which the DFT takes 

its signal window. Moreover, Hilbert transform is more satisfactory when variation in 

phase angle is not very large and also the frequency should be small in comparison to 

the power frequency. The Hilbert Transform introduces oscillations in the extracted 

signal phase angle, but that is large enough to be noticeable only at the ends of the data 

and not in the middle or steady state. It reproduced much of the similarity of variation 

with the actual data.  

The determination of coherent areas from correlation functions and coherence functions 

are needed only when correlation coefficients doesn’t provide a crisp decision for some 

of the buses. Although, they can also give a blurry decision boundary. But coherence 

functions can be subjected to k-means to obtain more firm decision about the buses. 

There may be some groups which are infeasible.  

The method of spectral clustering using dynamic coupling coefficients to provide the 

value for k asserts good solution. The clustered groups can be subjected to go through 

constrained spectral k- embedded clustering to find lines which can be cut maintaining 
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coherency constraints as well as minimum disruption of power. The results are quite 

satisfactory in that the system remains stable even after removal of the lines predicted 

by the spectral clustering algorithm. On large systems, there may be more than two 

clusters. And the solution of preliminary clustering can provide such cluster groups 

which are infeasible. In those cases, out of all solutions, only those solutions are taken 

which are feasible and minimize power disruption.  
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6. APPENDIX  

6.1 MATLAB Codes used-  

Adjacency Matrix and Optimal PMU Algoritm- 

% generation of adjacency matrix 
top_data =  [   1   1   4; 
                2   2   7;  
                3   3   9; 
                4   4   5; 
                5   4   6; 
                6   5   7; 
                7   6   9; 
                8   7   8; 
                9   8   9]; 
adjmat = zeros(9); 
nb = max(max(top_data(:,2:3)));% no. of buses 
nl = length(top_data(:,1));% no. of links 
for i = 1:max(top_data(:,1)) 
    adjmat(top_data(i,2),top_data(i,3)) = 1; 
end 

 
adjmat = adjmat+adjmat' 
for i = 1:length(top_data(:,1)) 
    adjmat(i,i) = 1; 
end 
adjmat 

 

 

 
%------------------------------ Optimal PMU algorithm----------------

-- 
pmuprob = 'optimprob'; 
clc; 
clear(pmuprob); 
pmuprob = optimproblem; 
pmus = optimvar('pmus',9,'Type','integer',... 
'LowerBound',0,'UpperBound',1); 

 
tot_pmu = ones(1,9)*pmus; 
pmuprob.Objective = tot_pmu; 
showexpr(tot_pmu); 
cons1 = adjmat*pmus >= ones(9,1); 
showconstr(cons1); 
pmuprob.Constraints.cons1 = cons1; 
showproblem(pmuprob); 
[sol,cost] = solve(pmuprob); 
npmus = sol.pmus; 
cost 
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Shortest Path Database Algorithm (Dijkstra Algorithm)-  

%edges and their weights 
%clear all; 
close all; 
clc; 
%s.no.     f_N     t_N     weight 
%%data = [   1        1       2       6; 
%            2        1       4       1; 
%            3        2       3       5; 
%            4        2       4       2; 
%            5        2       5       2; 
%            6        3       5       5; 
%            7        4       5       1  ]; 

 
data = [   1        1       4       48; 
           2        2       7       5.20; 
           3        3       9       4.88; 
           4        4       5       5.75; 
           5        4       6       7.85; 
           6        5       7       13.79; 
           7        6       9       14.99;   
           8        7       8       4.87; 
           9        8       9       8.48]; 
% making the weight matrix 
n = max(max([data(:,2), data(:,3)]));%no. of nodes 
w_n = zeros(n); 
for i = 1:length(data(:,1)) 
    w_n(data(i,2),data(i,3)) = data(i,4); 
end 
w_n = w_n + w_n'; 
display(w_n); 
%#################----SHORTEST PATH ALGORITHM----

#####################        
v1_n = zeros(n); 
prev1_n = zeros(n); 
sd1 = zeros(n); 
%n_n = 1;  
for i = 1:n;% we will apply for loop here 
    unv_n = 1:n; 
    v_n = 0; 
    sd = inf*ones(1,n); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%i = 2;% we will apply for loop here 
    c_n = unv_n(i);% start by the start node unv_n(i) 
    prev_n(c_n) = c_n; 
    sd(i) = 0; 
while(length(unv_n) > 1) 
for j = 1:n 
if(w_n(c_n,j)>0&&sd(j)>(sd(c_n)+w_n(c_n,j))... 
&&chk_unv_n(unv_n,j) == 1)%only sd of nodes which are connected to 

c_n will be modified 
                sd(j) = sd(c_n) + w_n(c_n,j); 
                prev_n(j) = c_n; 
end 
end 
        v_n  = [v_n,c_n];%this matrix stores the order in which those 

are accessed during shortest tree formation 
%removing c_n from unvisited node 
        unv_n = remove_c_n(unv_n,c_n); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% finding the next current node 'c_n' by findig shortest distance 
        n_n = unv_n(1); %next node 
for k = 1:length(unv_n) 
if (sd(unv_n(k))<sd(n_n)) n_n = unv_n(k); 
end 
end 
        c_n = n_n; % setting next shortest distance node as the 

current node 'c_n' 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
    v_n = [v_n(2:length(v_n)),unv_n]; 
%display(v_n); 
%display(prev_n); 
%display(sd); 
    v1_n(i,:) = v_n; 
    prev1_n(i,:) = prev_n; 
    sd1(i,:) = sd; 
end 

 

 

 
function g = chk_unv_n(unv_n,j) 
for i = 1:length(unv_n) 
if(unv_n(i) == j) 
            g = 1;% found j node as unvisited 
return; 
end 
end 
    g = 0; 
end 

 

 
function y =  remove_c_n(unv_n,c_n) 
for i= 1:length(unv_n) 
if (unv_n(i) == c_n) 
            y = [unv_n(1:i-1),unv_n(i+1:length(unv_n))]; 
end 
end 
end 
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Backtracing Shortest Path Database Function- Backtrace(x,y,z) 

%s_n- source node, d_n- destination node 
% This functin takes input as previous node matrix, source node and  
% and destination node and provide output as the path vector 
% giving successive nodes for shortest path from source to 

destination node 
function [y] = backtrace(prev1_n,s_n,d_n) 
    path = d_n; 
    main_row = prev1_n(s_n,:); 
    d = d_n; %dummy d to change in the loop 
while(main_row(d) ~= s_n) 
        path = [main_row(d), path]; 
        d = main_row(d); 
end 
    path = [main_row(d),path]; 
    y = path; 
end 
 

Implementation of K- means in MATLAB-  

 
clc; 

clear all; 

close all; 

dim = 8; 

num_data = 100;%number of data points in 9 dimensional space 

x = rand(dim,num_data); 

n = 3; %number of clusters 

g = floor(10*rand(1,n)); 

display(g); 

error = 100; 

k = 2; % no. of iterations 

  

   for i = find(g == 0) 

        p = floor(10*rand); 

        while(find(g == p)~=0) 

            p = floor(10*rand); 

             

        end 

        g(i) = p; 

    end 

     

    %this block removes any similar element from the matrix 

    for i = 1:length(g) 

        for j = g(i+1: length(g)) 

            if(j>g(i) || j<g(i)) 

                continue; 

            else 

                p = floor(10*rand); 

                while(p == 0 || length(find(g == p))~=0) 

                    p = floor(10*rand); 

                     

                end 

                g(i) = p; 

                continue; 

            end 

        end 

         

    end 

    %################################################################### 

     

    cent_i = x(:,g); 
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    display(cent_i); 

    cent = cent_i; 

       

while(abs(error(k-1))>=1e-3) 

    clus = cell(1,n); 

    clus = {[],[],[]}; 

     

    %###################################################################### 

    %this block removes any zero element from the matrix 

     

    for i = x 

        dist = sum((cent - i).*(cent - i)); 

        m = find(dist == min(dist)); 

        clus{1,m} = [clus{1,m},i]; 

    end 

    %checking for empty centroids 

    emp_num = 0; 

    emp = []; 

     

    for i = 1:length(clus) 

        if(size(clus{1,i}) == size([])) 

            emp_num = emp_num + 1; 

            emp = [emp, i]; 

        end 

    end 

    display("Number of empty clusters = "); 

    display(emp_num); 

    clus(:,emp) = []; 

    cent(:,emp) = []; 

     

    n = length(clus); 

     

    cent_i = cent; 

    %calculation of new centroids 

    for i = 1:length(clus) 

        cent(:,i) = 

((clus{1,i})*ones(length(clus{1,i}(1,:)),1))/length(clus{1,i}(1,:));%here 

was  

    end 

     

    %calculation of evaluation index 

    eval_index(k) = 0; 

    for i = 1:length(cent(1,:)) 

        eval_index(k) = eval_index(k) + ones(1,length(cent(:,i)))*... 

            ((cent(:,i) - clus{1,i}).*(cent(:,i) - clus{1,i}))*... 

            ones(length(clus{1,i}(1,:)),1); 

    end 

     

    error(k) = eval_index(k) - eval_index(k-1); 

     

    k = k+1; 

     

     

end 

  

display("Number of iterations = "); 

display("centroid = "); 

display(cent); 

 display(eval_index); 

display(error); 
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Matlab code to calculate eigenvector in Spectral clustering-  

 
%Weighr matrix- t= 46s is choosen as fault settlling time 

for v = 1:n_nod 

    g1 = [Pij{v,:}]; %Pij is a cell matrix already stored in workspace 

    W(v,:) = g1(460000,:); %change this state according to new steady value 

end 

W = (abs(W) + abs(W'))/2;%laplacian must be symmetrical, so is W  

  

display(W);% values will be in per Unit 

  

%% 

                   %  FORM DEGREE MATRIX 

D = sum(W,2); 

D = diag(D); 

N = inv(sqrt(D)); 

%% 

             %VOLUME OF THE DATASET 

vol = sum(diag(D)); 

%% 

L = D - W; 

%%  

                    %UNNORMALIZED EMBEDDED CONSTRAINT MATRIX 

  

%UNCONSTRAINED CLUSTER FROM INITIAL COHERENCY 

% this section is written because ‘i’ vector contained only (n_nod-1) rows 

and the bus 1 was connected to bus 4 so i(1) must be equal to i(4), so they 

belong to the same cluster. Omit this section if all i has n_nod rows 

Q = zeros(n_nod);  

 

Q = zeros(n_nod); 

if (length(i) == n_nod -1) 

    i =  [i(3); i]; %this makes 1st element of resulting ‘i’ same as 4th 

end 

  

for k = 1:3 %k represent the kth cluster 

    Q(find(i == k), find(i == k)) = 1;% notice that i is a matrix 

end 

  

Q(find(~Q)) = -1; 

 

display(Q); 

  

%% 

% Now Calculate the normalized Laplacian and Constrain matrices 

% formin normalized laplacian 

LN = N*L*N; 

QN = N*Q*N; 

  

%% 

%solve for maximum eigenvalue of QN 

lamQ = (eig(QN)); 

betarange = [min(lamQ(find(lamQ>0.1)))*vol ,max(lamQ)*vol]; 

%% 

%select beta and solve generalized eigen value problem 

beta = 15; %beta must be chosen from betarange variable 

  

%% 

% solving the generalized eigen value problem A * vi = lami * B*vi 

% The problem is LN*v = lam*(QN-(beta/vol)*I)*v 

% this is same as solving considering A = LN, B = QN-(beta/vol)*I 

A = LN; B = (QN-(beta/vol)*eye(size(QN))); 

[V, lam] = eig(A,B); 

 
For running this code, MATLAB workspace must contain beforehand, the Power flow cell(not matrix) Pij, the cluster indicator 

vector i, the number of nodes of the graph n_nod . It is better if the code is run section wise. The code was written for 9- bus 
system.  
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6.2 System Data Used-  

 

 IEEE- 14 Bus System- 
 

Table 6.2. 1- Line Data  

From Bus To Bus R(pu) X(pu) B(pu) 

1 2 0.01938 0.05917  0.0264 

1 5 0.05403 0.22304 0.0246 

2 3 0.04699 0.19797 0.0219 

2 4 0.05811 0.17632 0.0187 

2 5 0.05695 0.17388 0.0170 

3 4 0.06701 0.17103 0.0173 

4 5 0.01335 0.04211 0.0064 

6 11 0.09498 0.19890 - 

6 12 0.12291 0.25581 - 

6 13 0.06615 0.13027 - 

9 10 0.03181 0.08450 - 

9 14 0.12711 0.27038 - 

10 11 0.08205 0.19207 - 

12 13 0.22092 0.19988 - 

13 14 0.17093 0.34802 - 

 
Table 6.2. 2– Transformer Data 

 

From Bus To Bus R(pu) X(pu) Tap Ratio 

4 7 0 0.20912 0.978 

4 9 0 0.55618 0.969 

5 6 0 0.25202 0.932 

7 8 0 0.17615 1 

7 9 0 0.11001 1 

 

Table 6.2. 3- Generator Dynamic Data 

 
Gen Xa(pu) Xd(pu) Xd’(pu) Xd”(pu) Xq”(pu) Xq’”(pu) Xq”(pu) Base 

(MVA) 

1 0.1450 1.7241 0.2586 0.2029 1.6587 0.4524 0.2029 615 

2 0.1540 1.7241 0.2586 0.2029 1.6587 0.4524 0.2029 60 

3 0.1540 1.7241 0.2586 0.2029 1.6587 0.4524 0.2029 60 

6 0.1540 1.7241 0.2586 0.2029 1.6587 0.4524 0.2029 25 

8 0.1540 1.7241 0.2586 0.2029 1.6587 0.4524 0.2029 25 
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Table 6.2. 4- Generator Data -2 

 
Gen. Ra(pu) Tdo’(s) Tdo” (s) Tqo’(s) Tqo” (s) H(s) D(pu/pu) Base(MVA) 

1 0.000125 3.826 0.0225 0.5084 0.0225 3.41 0.0 615 

2 0.000125 3.826 0.0225 0.5084 0.0225 3.41 0.0 60 

3 0.000125 3.826 0.0225 0.5084 0.0225 3.41 0.0 60 

6 0.000125 3.826 0.0225 0.5084 0.0225 3.41 0.0 25 

8 0.000125 3.826 0.0225 0.5084 0.0225 3.41 0.0 25 

 

Table 6.2. 5- Exciter Data- 

 

Gen Tr Ka Ta Vmax Vmin Ke Te Kf Tf 

1 0 6.2 0.05 5.2 -4.16 1 0.83 0.057 0.5 

2 0 6.2 0.05 5.2 -4.16 1 0.83 0.057 0.5 

3 0 6.2 0.05 5.2 -4.16 1 0.83 0.057 0.5 

6 0 6.2 0.05 5.2 -4.16 1 0.83 0.057 0.5 

8 0 6.2 0.05 5.2 -4.16 1 0.83 0.057 0.5 

 

Table 6.2. 6- Governor Data-  

 

Gen R T1 Vmax Vmin T2 T3 Dt 

1 0.05 0.49 15 0 2.1 7.0 0.0 

2 0.05 0.49 15 0 2.1 7.0 0.0 
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