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ABSTRACT

Design and implementation of control systems in safety critical applications reg-

ularly involves formal verification to ensure specification satisfaction and cor-

rectness of implementation. The M.Tech dissertation work presents a methodol-

ogy for temporal logic verification of stochastic systems using a discretization-

free approach that combines automata-based verification and barrier certificates.

The main objective is to provide a lower bound on the probability that a given

temporal logic specification is satisfied over a finite time horizon. This work

considers a subclass of temporal logic specifications called safe-LTL properties

over finite traces. The method essentially utilizes the automaton representation

of the negation of specification for decomposing the specification to a sequence

of simpler reachability problems and compute upper bounds for the reachability

probabilities using barrier certificates.

The work proposes novel theoretical results for barrier certificate based verifi-

cation of safety properties for switched stochastic systems in continuous-time,

which is then implemented using SMT solvers and Counter Example Guided

Inductive Synthesis (CEGIS) framework. In addition, this work also handles

the implementation of safety verification for discrete-time stochastic systems us-

ing a similar technique. The approach is examined through simple illustrative

examples and results are provided.
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Chapter 1

Introduction

Control theory involves building effective control systems for complex physical

processes which match required specifications and standards. This usually in-

volves modeling a system, measuring the system parameters in comparison to

the specifications and providing corrective action with the help of controllers.

These systems are checked against simple specifications such as stability. On

the other hand, formal verification is the process of providing mathematical or

algorithmic proof against complex specifications expressed in terms of temporal

logic, for an abstract or a simple model of a software system described as fi-

nite state machines, labeled transition systems, timed automata, etc. However,

with the advent of increasingly complex cyber-physical systems which have

safety-critical components, it becomes unsurprisingly important to deal with

the verification of complex dynamical systems against complex specifications

including safety, reachability, etc. This topic has gained significant attention in

the past few decades and extensive research has resulted in the development of

model checking [1], first introduced by E.M Clarke [2], which require models

represented as finite state automata that describe all the possible behaviors of

the system unambiguously. These pieces of software or tools go through all the

possible system states to examine all behaviors in a systematic manner and come

up with a counterexample that violates the required specification. As expected,
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Chapter 1. Introduction 2

this method suffers from what we call the ’State Space Explosion’, meaning that

the model checker cannot traverse through a vast number of states, hence inap-

plicable to the infinite states represented by continuous and hybrid dynamical

systems. It also fails to check properties such as liveness, which requires ver-

ification of an event that must ’eventually happen’. Symbolic model checking

[3] to an extent addresses the former issue of increasing complication with the

number of states by representing a set of states implicitly as boolean functions.

However, with further increase in states, the number of boolean functions re-

quired also can grow exponentially. Bounded model checking (BMC) [4] does

not reduce the complexity of the previous methods but allows specifications

to be checked in a finite time horizon and keeps increasing this horizon until

it arrives at unsatisfiability or some already known upper bound. This way,

liveness properties for a limited execution time could be checked. Moreover,

a BMC problem can be reframed by reducing it to a propositional (or boolean)

satisfiability problem which can then be solved using SAT solvers, thereby re-

ducing significantly the computational intensity. Abstraction based verification

allows to model the continuous dynamics of hybrid systems as much simpler,

discretized models such as timed automata [5] or switched affine systems (SAS)

[6] and use these models to perform model checking for infinite state systems.

These abstract models have smaller state spaces that capture the required be-

havior of the original system by omitting some unnecessary details. Simulation

and bisimulation relations [7], or approximate bisimulation relations [8] help

establish the behavioral consistency between the dynamical system and its ab-

straction. Property satisfaction of abstract models implies property satisfaction

of the original complex models. However, this method too subsequently has

the drawback ffers of curse of dimensionality and cannot be applied to systems

with a large number of state variables.

Formal verification of stochastic dynamical systems, i.e, systems riddled with

noise and uncertainties is even more challenging and little progress has been

made in literature. For discrete-time stochastic systems, available results include

that of verification of probabilistic properties in stochastic hybrid systems using

probabilistic model checkers [9] and linear time specifications using Markov
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chain abstractions [10]. For continuous and hybrid systems with linear dy-

namics, reachable set computation [11] has been used for verification of safety

properties in the worst case setting. For non-linear dynamics, examples include

probabilistic guarantees in stochastic hybrid systems using discrete approxima-

tion [12] and verification of stochastic hybrid systems described as piece-wise

deterministic Markov processes [13]. Each of these works is dependent on state

set discretization and suffer from state space explosion. Verification with the

help of barrier certificates, as introduced in [14] for non-linear model invalida-

tion is a discretization-free approach. It has also been adopted for safety ver-

ification of continuous-time stochastic systems in [15] and attempts to resolve

these previously mentioned disadvantages. In [16], probabilistic guarantees

for infinite-time horizon are achieved for verifying whether a stochastic hybrid

system reaches what we call an unsafe region. In order to achieve this, a super-

martingale property is required to be assumed, which presupposes stochastic

stability, hence decreasing the number of systems the method can be applicable

to. This issue is handled in [17], where a relaxation of the supermartingale prop-

erty known as c-martingale property is considered for discrete-time stochastic

systems. This property is applicable to a larger group of systems as it does

not require any stability assumption. However, probabilistic guarantees can

only be achieved for a finite-time horizon. This work also combines the idea

of automata based verification and barrier certificates for verification against a

general class of linear temporal logic specifications.

The main aim of this work is to provide a systematic discretization-free approach

for the probabilistic verification of continuous-time switched stochastic systems

against a wide class of temporal logic properties called safe-LTL properties.

The method involves computing a lower bound on the probability such that a

certain specification given as temporal logic is satisfied by a system. In order to

do this, we utilize the automaton representation of negation of the specification

to decompose the problem into simpler reachability tasks. Barrier certificates

are then used to evaluate the probability bounds for these reachability problems.

These individual probability bounds are then combined to obtain a (potentially

conservative) lower bound on the probability for satisfaction of the original
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specification which is the ultimate objective. ates for arbitrary switching and (ii)

using multiple barrier certificates for some probabilistic switching. In addition,

controller synthesis and verification of discrete-time stochastic systems for safety

properties is also handled. Suitable algorithms are provided and the methods

are illustrated with the help of numerical examples.

The rest of the thesis is presented in the following order: Chapter 2 introduces

preliminary notations and concepts relevant to the work. Chapter 3 discusses

the method involving the verification of continuous-time switched stochastic

systems using barrier certificates, and corresponding algorithm. Chapter 4 deals

with controller synthesis of discrete-time stochastic systems for satisfaction of

safety properties and finally, chapter 6 presents illustrative examples to support

the theory developed, along with conclusion and future work.



Chapter 2

Notations and Preliminaries

2.1 Notations

We represent the set of real, positive real, non-negative real, positive integer

and non-negative integer numbers with the notations R, R+, R+
0 , N, and N0

respectively. Rn denoted an n-dimensional Euclidean space and Rn×m denotes

the space of real matrices with n rows and m columns. Given a matrix A ∈ Rn×n,

Tr(A) represents trace of A which is the sum of all diagonal elements of A.

2.2 Continuous-Time Switched Stochastic Systems

Let (Ω,F ,P) denote a probability space Ω being the sample space, F being

filtration, and P as the probability measure. The filtration F = (Fs)s≥0 satisfies

the conditions of right continuity and completeness [18]. Let (Ws)s≥0 be an

r-dimensional F-Brownian motion.

Definition 2.1. A switched stochastic system is a tuple S = (Rn,M,M,F,G),

where

• Rn is the real state space;

5



Chapter 2. Notations and Preliminaries 6

• M = {1, 2, . . . , l} is a finite set of modes;

• M is a subset of the set of all piece-wise constant càdlàg functions of time

fromR+
0 to M, characterized by a finite number of discontinuities on every

bounded interval in R+
0 ;

• F = { f1, f2, . . . , fl} and G = {g1, g2, . . . , gl} are such that for any m ∈ M,

fm : Rn
→ Rn and gm : Rn

→ Rn×r satisfy following conditions:

(i) Locally Lipschitz continuity: for any h ∈ R+, there exists a Kh > 0

such that

‖x1‖, ‖x2‖ ≤ h =⇒

‖ fm(x1)− fm(x2)‖+‖gm(x1)−gm(x2)‖≤Kh‖x1−x2‖.

(ii) Linear growth condition: There exists a K′ > 0 such that for all x ∈ Rn,

‖ fm(x)‖ + ‖gm(x)‖ ≤ K′(1 + ‖x‖).

A continuous-time stochastic process ξ : Ω × R+
0 → R

n is a solution process of

the system S if there exists µ ∈ M that satisfies

dξ = fµ(ξ)dt + gµ(ξ)dWt (2.1)

P-almost surely (P-a.s.) at each time t ∈ R+
0 . For any given m ∈ M, we denote

Sm as the subsystem of S defined by the stochastic differential equation

dξ = fm(ξ)dt + gm(ξ)dWt. (2.2)

Solution process of Sm exists and is unique due to the assumptions on fm and

gm [18]. ξµ(t) represents the value of the solution process at time t ∈ R+
0 under

the switching signal µ, starting from the initial state ξµ(0) = x0 P-a.s. Solution

process of Sm is nothing but the solution process of S under the switching signal

µ(t) = m, for all t ∈ R+
0 . ξm(t) represents the value of the solution process of Sm

at time t ∈ R+
0 , starting from the initial state of ξm(0) = x0 P-a.s.
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2.2.1 Generator

The infinitesimal generatorD of the solution process ξ on function B : Rn
→ R

is defined by:

Definition 2.2. For any given m ∈ M, the generator D of the process ξ of the

stochastic system Sm acting on function B : Rn
→ R is given by

DB(x0,m) = lim
t→0

E[B(ξm(t))|ξm(0) = x0] − B(x0)
t

. (2.3)

The generator is essentially the stochastic equivalent of the partial derivative

term in deterministic processes. It is the characterization the evolution of the

expected value of the barrier certificate, i.e E(B(x(t)) by using Dynkin’s formula

[19], which is given by

E[B(ξm(t2)|ξm(t1)]

= B(ξm(t1) + E[

t2∫
t1

DB(ξm(t),m)dt|ξm(t1)], (2.4)

for t2 ≥ t1 ≥ 0.

2.3 Discrete-Time Stochastic Control Systems

We consider the probability space (Ω,FΩ,PΩ) with Ω being sample space, FΩ

being the sigma algebra on Ω that consists a subset of Ω as events and PΩ is

the probability assigned to these events. Random variables are assumed to

be measurable functions (X,Ω) → (SX),FX and Prob{A} = PΩ{X−1(A)} for any

A ∈ FX.

Definition 2.3. Discrete-time stochastic control system is denoted by the tuple

S = (X,Vw,U,w, f ) where

• X and Vw are Borel spaces pertaining to state and uncertainties in the

system;
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• U is a set of discrete control inputs;

• w is a set of independently and identically distributed random variables

on the set Vw with w := {w(k) : Ω→ Vw, k ∈N0}

• f : X×U×Vw → X is a measurable function that characterizes the evolution

of the state trajectories.

For an initial condition x(0) ∈ X, the state evolution of the system is evaluated

from:

x(k + 1) = f (x(k),u(k),w(k)) k ∈N0 (2.5)

2.4 Linear Temporal Logic

Verification almost always deals with the state behaviour of a system, and not

just input-output behaviour. Linear Temporal Logic helps describe the specifica-

tions for the state trajectories with a simple yet mathematically precise notation

[1]. LTL is a type of modal temporal logic that has modalities with respect to

time. It allows to reason about the future of paths, for example, a condition that

will never happen or that a condition will happen at the very next transition. LTL

specification is primarily used because it can describe certain very important

properties such as safety (This bad event will not happen globally) or liveness

(Eventually a good event will happen). LTL is further classified into Metric

Temporal Logic , Real Time Temporal Logic, Signal Temporal Logic, etc., but

for our application, we form the basis through Propositional Temporal Logic,

which is an extension of propositional logic with temporal operators. Hence, it

contains the usual Boolean operators such as NOT (¬), AND (∧) and OR (∨) in

addition to which temporal operators such as NEXT (� or X), GLOBALLY (� or

G), EVENTUALLY (♦ or F) and UNTIL (U). Each of these operators describe the

behaviour of the system in future time. For example, Xϕ where ϕ is a certain

LTL property, is true if ϕ holds in the next state of the system and Fϕ is true if

ϕ holds eventually, that is, in at least one of the states during system execution.
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The LTL formulas over a set Π of atomic propositions are obtained as

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦ϕ | �ϕ | ϕ1Uϕ2

Figure 2.1: Illustration of LTLF formulas.

In our work, as we are concerned with the verification of stochastic systems

in finite time, we discuss LTL formulas over finite traces, represented by LTLF.

The syntax of LTL over finite traces is more or less the same as LTL formulas

over infinite traces, however, the semantics of LTLF is written through finite

traces, i.e, a non empty finite sequence of consecutive steps over a set of atomic

propositions Π. In other words, this finite sequence is also called a finite word.

|σ| is used to represent the length of σ and σk represents a interpretation of a

prposition at kth position in the trace, where 0 ≤ k < |σ|. Given a finite trace σ

and an LTLF formula ϕ, we can say that the LTLF formula ϕ is true at the kth

step (0 ≤ k < |σ|), denoted by σ, k |= ϕ by the following definitions:

• σ, k |= >;

• σ, k |= p, for p ∈ Π iff p ∈ σk;

• σ, k |= ¬ϕ iff σ, k 6|= ϕ;

• σ, k |= ϕ1 ∧ ϕ2 iff σ, k |= ϕ1 and σ, k |= ϕ2;

• σ, k |= ϕ1 ∨ ϕ2 iff σ, k |= ϕ1 or σ, k |= ϕ2;

• σ, k |= �ϕ iff k < |σ| − 1 and σ, k + 1 |= ϕ;
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• σ, k |= ♦ϕ iff for some l such that k ≤ l < |σ|, we have σ, l |= ϕ;

• σ, k |= �ϕ iff for all l such that k ≤ l < |σ|, we have σ, k |= ϕ;

• σ, k |= ϕ1Uϕ2 iff for some l such that k ≤ l < |σ|, we have σ, l |= ϕ2, and for

all m s.t. k ≤ m < l, we have σ,m |= ϕ1.

σ |= ϕ is the representation for when σ satisfies the formula ϕ and is valid if

and only if σ, 0 |= ϕ. L(ϕ) denotes the language associtated with a given LTLF

formula ϕ. The regular Boolean equivalences like ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2),

ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2, ♦ϕ ≡ >Uϕ, and �ϕ ≡ ¬♦¬ϕ are also applicable. LTLF

formulas for an execution trace of length 6 is illustrated in figure 2.1.

In chapter 3, we consider only a fragment of LTLF formulas called safe-LTLF for-

mulas [20]. Here, in addition, we exclude the next (�) operator which enable us

to describe behaviour of continuous trajectories using such properties. There-

fore, we use a subset of LTLF known as safe-LTLF\�, which has been introduced

in [21].

Definition 2.4. A safe-LTLF is a subclass of LTLF formula that is represented in

a positive normal form (PNF) and consists of negations only adjacent to atomic

propositions with temporal logic operator always (�)

Deterministic Finite Automota (DFA) can be used to represent LTLF specifica-

tions. It is defined as follows:

Definition 2.5. A deterministic finite automaton is given by the tuple A =

(Q,Q0,Σ, δ,F) where

• Q represents the finite set of states,

• Q0 ⊆ Q denotes the set of initial states,

• Σ is a finite set of symbols called the alphabet,

• δ : Q × Σ → Q is a transition function that determines the transition

between one state to the other,

• F ⊆ Q is a set of accepting states.
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The notation q σ
−→ q′ denotes the transition relation (q, σ, q′) ∈ δ. A finite word

σ = (σ0, σ1, . . . , σn−1) ∈ Σn is said to be accepted by an automatonA if there exists

a finite state run q = (q0, q1, . . . , qn) ∈ Qn+1 such that q0 ∈ Q0, qk
σk
−→ qk+1 for all

0 ≤ k < n and qn ∈ F. L(A) is the language of A and it is the set of all words

accepted by the automaton.

According to [22], every LTLF formula ϕ can be represented by a DFA Aϕ that

accepts the the language (set of all words) of the specification ϕ, i.e., we can

say that L(ϕ) = L(Aϕ). Such DFA can be either explicitly or symbolically

constructed using tools like SPOT [23] and MONA [24].

Remark 2.6. : The DFAAϕ is constructed over the alphabet of the atomic propo-

sitions, i.e. Σ = 2Π. A Labeling function from the state space to the alphabet,

L : Rn
→ Σ, associates the solution trajectory of the system S to the finite set of

words, thereby enabling us to physically interpret the trajectories of the system

with the help of state sequences. We work with the set of atomic propositions

Π as the alphabet Σ instead of its power set 2Π for ease of understanding.

2.5 Property Satisfaction

2.5.1 Continuous-Time

For a given continuous-time switched stochastic system S = (Rn,M,M,F,G)

with dynamics (2.1), the solution trajectories over finite time intervals are con-

nected to LTLF\� formulas with the help of a measurable labeling function

L : Rn
→ Π, for state space Rn and the set of atomic propositions Π.

Definition 2.7. For a switched stochastic system S = (Rn,M,M,F,G) and the

labeling function L : Rn
→ Π, a finite sequence σξ = (σ0, σ1, . . . , σn−1) ∈ Πn is a

finite trace of the solution process ξ over a finite time horizon [0,T) ⊂ R+
0 if there

exists an associated time sequence t0, t1, . . . , tn−1 such that t0 = 0, tn = T, and for

all j ∈ {0, 1, . . . ,n − 1}, t j ∈ R+
0 following conditions hold

• t j < t j+1;
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• ξµ(t j) ∈ L−1(σ j);

• If σ j , σ j+1, then for some t′j ∈ [t j, t j+1], ξµ(t) ∈ L−1(σ j) for all t ∈ (t j, t′j);

ξµ(t) ∈ L−1(σ j+1) for all t ∈ (t′j, t j+1); and either ξµ(t′j) ∈ L−1(σ j) or ξµ(t′j) ∈

L−1(σ j+1).

For illustration, consider the solution trajectory represented in 2.2 with the

regions of interest given by X0,X1,X2 and X3. The finite trace of this trajectory

would be the sequence of atomic propositions that would hold true until a

period of time T, measured at t0, t1, t2 and t3.

Next we define the probability for the solution trajectory ξ of the switched

stochastic system S starting from some initial state ξµ(0) = x0 ∈ Rn to satisfy

safe-LTLF\� formula ϕ over a given finite time horizon [0,T) ⊂ R+
0 .

Definition 2.8. Consider a switched stochastic system S in definition 2.1 and a

safe-LTLF\� formula ϕ over Π. Then Px0{σξ |= ϕ} denotes the probability that

solution process ξ of the system S starting from the initial value of x0 ∈ Rn over

a finite time horizon [0,T) ⊂ R+
0 satisfies the specification ϕ.

Remark 2.9. The set of atomic propositions Π = {p0, p1, . . . , pN} and the labeling

function L : Rn
→ Π separate the state space into a measurable partion Rn =

∪
N
i=1Xi as Xi := L−1(pi). We can assume that Xi , ∅ for any i without loss of

generality.

2.5.2 Discrete-Time

For a given discrete-time stochastic control system S = (X,Vw,U,w, f ) with state

evolution described by equation 2.5, a labeling function L : X→ Π is again used

to associate the solution processes with LTLF formulas. For the state evolution

of the solution process described by xN = (x(0), x(1), ..., x(N − 1)) ∈ XN,N ∈ N0,

and labeling function L, the finite trace of the solution process is given by

L(xN) = {σ0, σ1, ..., σ} ∈ ΠN, where σk = L(x(k)), for all k = {0, 1, 2, ...,N − 1}.
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Figure 2.2: Example of a Solution Trajectory and its Regions of Interest.

For a given LTLF specification ϕ over finite traces of length N, we define the

probability of specification satisfaction by the given discrete-time stochastic

control system by the following.

Definition 2.10. For a given stochastic control system S as defined in definition

2.3, the probability that the system satisfies the given LTLF property ϕ is given

by Pρx0
= {L(xN) |= ϕ} where x0 is the initial condition of the state evolution and

ρ is the control policy.

Remark 2.9 applies in the discrete-time case too.



Chapter 3

Verification of Continuous-Time

Switched Stochastic Systems

3.1 Barrier Certificates

Safety specification in a system suggests that the states of a control system do

not visit a particular region of the state space throughout their operation. As an

example, for a line-following robot, it is required that the position of the robot

never leaves a given path. Other extensive applications where safety verification

is required includes rocket range launch safety systems, where the range of the

rocket or missile must not exceed a specified perimeter or air traffic controllers

that ensure traffic separation. Barrier certificates is a concept that is vital in

ensuring safety of a system. Mathematical verification of safety using barrier

certificates is quite similar to the Lyapunov’s approach of proving stability.

Both use functions that give us information about the properties of the system

without explicitly knowing the state evolution. Barrier certificates are functions

that seperate the regions of state space into a safe region which the states can

visit and unsafe region which the states of the system cannot and hence, certain

conditions imposed on these functions, if satisfied, imply that the given system

is safe.

14
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In order to apply the concept of barrier certificates to continuous-time switched

stochastic systems, the following terms must be introduced.

3.1.1 Supermartingales and c-martingales

A function B : Rn
→ R is called a supermartingale for a system S if the condition

E(Bµ(t2) | Bµ(t1)) ≤ E(Bµ(t1)) for all t2 ≥ t1 holds. This condition implies that

the expected value of the function B is non-decreasing over a period of time. A

sufficient condition for a stochastic system to be a supermartingale isDB(x0) ≤ 0

whereDB(x) is the infinitesimal generator defined in definition 2.2.

Although the supermartingale property on stochastic systems is useful for safety

verification in infinite time horizon, it assumes stochastic stability, i.e, zero noise

at equillibrium point which is not always applicable [25]. Finding practical

systems where such a condition holds is extremely difficult, and hence we relax

the supermartingale property to what we call a c-martingale property, which is

applicable to a wider class of systems but can only provide safety verification

in a finite-time horizon.

Definition 3.1. A function B : Rn
→ R is called a c-martingale for the system S

if

E[B(ξµ(t2) | ξµ(t1)] ≤ B(ξµ(t1)) +

∫ t2

t1

c(t)dt

for all t2 ≥ t1, where c is a function of time.

The c-martingale property of the system asks for the expectation of a barrier

certificate to increase gradually over a period of time, and hence for a finite time

period, the value would still be bounded.

The following lemma is a consequence of [26, Theorem 1] and is also discussed

in [25, Theorem II.1]. It will be further used to prove theorems 3.3 and 3.4.

Lemma 3.2. Let B : Rn
→ R+

0 be c-martingale for the system S, c ≥ 0. Then for any

positive constant λ and an initial condition x0 ∈ Rn,
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P{sup
0≤t<T

B(ξµ(t)) ≥ λ | x(0) = x0} ≤
B(x0) +

∫ T

0
c(t)dt

λ
. (3.1)

The next two subsections deal with the conditions imposed on barrier certificates

to give an upper bound on reachability probability. These theorems have been

inspired by the results in [15] in which supermartingale condition is used for

verification of continuous-time switching diffusion systems for safety proprties.

3.1.2 Common Barrier Certificate

For a switched stochastic system S given in definition 2.1 with several switching

modes, we now look at how existence of a barrier certificate allows us to compute

a probabilistic guarantee via an upper bound that the unsafe region of the state

space is visited by the system. We later use this upper bound for probablistic

verification of satisfaction of a safe-LTLF\� property ϕ.

Theorem 3.3. Consider a switched stochastic system S = (Rn,M,M,F,G) with dy-

namics (2.1) and sets X0,X1 ⊆ Rn. Suppose there exists a twice differentiable function

B : Rn
→ R+

0 and constants c ≥ 0 and γ ∈ [0, 1], such that

B(x) ≤ γ ∀x ∈ X0, (3.2)

B(x) ≥ 1 ∀x ∈ X1, (3.3)

∂B
∂x

(x) fm(x) +
1
2

Tr
(
gT

m(x)
∂2B
∂x2 (x)gm(x)

)
≤ c

∀x ∈ Rn,∀m ∈M. (3.4)

Then γ + cT is the upper bound on the probability that the solution process ξ of the

system S starts from an initial state ξµ(0) = x0 ∈ X0 and reaches X1, the unsafe region,

within time horizon [0,T) ⊂ R+
0 .

Proof. The generator associated with the system Sm is given by

DB(x,m) =
∂B
∂x

(x) fm(x) +
1
2

Tr(gT
m(x)

∂2B
∂x2 (x)gm(x)),
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where m ∈M. By using Dynkin’s formula, for any m ∈M and for 0 ≤ t1 ≤ t2 < T,

we have

E[B(ξm(t2)|ξm(t1)]

= B(ξm(t1) + E[

t2∫
t1

DB(ξm(t),m)dt|ξm(t1)]

≤ B(ξm(t1)) +

∫ t2

t1

cdt.

This implies that B(x) is a nonnegative c-martingale for all m ∈ M and hence

(3.1) in Lemma 3.2 holds. Using (3.2) and the condition X1 ⊆ {x ∈ Rn
| B(x) ≥ 1},

we have P{ξµ(t) ∈ X1 for some 0 ≤ t < T | ξµ(0) = x0} ≤ P{sup0≤t<T B(ξµ(t)) ≥ 1 |

ξµ(0) = x0} ≤ B(x0) + cT ≤ γ + cT. This concludes the proof. �

It must be noted that in theorem 3.3, X0 refers to the region where the solu-

tion trajectories are initialized and X0 refers to the unsafe region the states are

prohibited to enter.

If there exists a twice differentiable function B : Rn
→ R+

0 satisfying the condi-

tions (3.2)-(3.4) of Theorem 3.3, then we call it a common barrier certificate. In

most of the cases, finding common barrier certificates may not be feasible or may

result in conservative probability bounds. To alleviate these issues, we provide

results using multiple barrier certificates for switched stochastic systems with a

restricted set of switching signals.

3.1.3 Multiple Barrier Certificates

Consider a switched stochastic system S as defined in (2.1) and m,m′ ∈ M =

{1, 2, . . . , k}. At any instant t, the transition probability between modes is given

by

P{(m,m′), t + h} =


λmm′(ξµ(t))h, if m , m′,

1 + λmm(ξµ(t))h, if m = m′,
(3.5)

where h > 0, λmm′ : Rn
→ R is a bounded and Lipschitz continuous function

representing transition rates such that λmm′(x) ≥ 0 for all x ∈ Rn if m , m′ and
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m′∈M λmm′(x) = 0 for all m ∈M. It is assumed that the transition from one mode

to another is independent of the Wiener process Wt. Refer to [27] for a detailed

discussion on how the transitions are generated.

The next theorem provides conditions to obtain an upper bound on the reacha-

bility probability for switched stochastic systems using multiple barrier certifi-

cates.

Theorem 3.4. Consider a switched stochastic system S = (Rn,M,M,F,G) with dy-

namics (2.1), sets X0,X1 ⊆ Rn, and the transition rates between two switching modes

m,m′ ∈M asλmm′ : Rn
→ R. Suppose there exists a set of twice differentiable functions

Bm : Rn
→ R+

0 , and constants c ≥ 0 and γ ∈ [0, 1], such that

Bm(x) ≤ γ ∀x ∈ X0, (3.6)

Bm(x) ≥ 1 ∀x ∈ X1, (3.7)

∂Bm

∂x
(x) fm(x) +

1
2

Tr(gT
m(x)

∂2Bm

∂x2 gm(x))

+
∑

m′∈M

λmm′(x)Bm′(x) ≤ c ∀x ∈ Rn. (3.8)

for all m ∈ M. Then γ + cT is the upper bound on the probability that the solution

process ξ of the system S starts from an initial state ξµ(0) = x0 ∈ X0 and reaches X1,

the unsafe region, within time horizon [0,T) ⊂ R+
0 .

Proof. The generator associated with the system S is given by

DBm(x,m) =
∂Bm

∂x
(x) fm(x) +

1
2

Tr(gT
m(x)

∂2Bm

∂x2 gm(x))

+
∑

m′∈M

λmm′(x)Bm′(x),

where m ∈ M. With the help of condition (3.8) and Dynkin’s formula, one can

say that Bm(x) is a nonnegative c-martingale. Thus, condition (3.1) in Lemma 3.2

holds. The rest of the proof follows similar to that of Theorem 3.3. �
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3.2 Decomposition into Sequential Reachability

For a wide class of LTL properties such as a safe-LTLF\� formulaϕ, the process of

safety verification for a switched stochastic system entails the following steps:

• Consider the negation of the safe-LTLF\� formula i.e., ¬ϕ and construct its

corresponding DFA.

• From the DFA, decompose ¬ϕ into simpler reachability problems.

• Use barrier certificates to calculate the upper bound of the probability that

the reachability problem is satisfied.

• Once the upper bound on the probabilities of each sequential reachabil-

ity problem is obtained, combine them to compute the over all upper

bound on the probability of violation of the safety property, which can be

used to calculate the tight lower bound on the probability that safe-LTLF\�

specification ϕ is satisfied.

The procedure for decomposition into sequential reachability is illustrated par-

allely with an example.

For a set of atomic propositions Π = {p0, p1, p2}, consider the following safe-

LTLF\� formula ϕ adapted from [17]:

ϕ = (p0 ∧ �¬p1) ∨ (p1 ∧ ¬�p0)

Consider a DFA A¬ϕ = (Q,Q0,Π, δ,F) that accepts all finite words over the set

of atomic prpositions Π that satisfy ¬ϕ, the negation of the specification. For

the given example, the corresponding DFA is given in figure 3.1. The sequence

q = (q0, q1, . . . , qn) ∈ Qn+1, n ∈N is called an accepting state run if q0 ∈ Q0, qn ∈ F,

and there exists a finite word σ = (σ0, σ1, . . . , σn−1) ∈ Πn such that qk
σk
−→ qk+1 for

all k ∈ {0, 1, . . . ,n − 1}. The set of such finite words are given by σ(q) ⊆ Πn The

length of q ∈ Qn+1 by |q| is n + 1. Let R denote the set of all finite state runs that
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Figure 3.1: DFA for ¬ϕ.

are accepted, starting from p ∈ Π without considering self-loops, where

R :={q=(q0, q1, . . . , qn)∈Qn+1
| qn∈F, qk,qk+1,∀k<n}. (3.9)

R can be computed by considering A¬ϕ as a directed graph G = (V,E) with

vertices V = Q and edges E ⊆ V ×V such that (q, q′) ∈ E if and only if q′ , q

and there exist p ∈ Π such that q
p
−→ q′. It can be easily noticed from the graph

of the automaton that an accepting state run is nothing but the finite path in the

graph that starts froma vertex q0 ∈ Q0 and ends at qF ∈ QF, i.e, a state run that

starts at the initial state and ends at the accepting state without any self-loop.

Hence, such a path belongs to the set of accepting state runs, R. Various depth

first search algorithms [28] are available to compute R.

For each p ∈ Π, we define a set Rp as

R
p := {q = (q0, q1, . . . , qn) ∈ R | σ(q0, q1) = p}. (3.10)

For any q = (q0, q1, . . . , qn) ∈ Rp
∀p ∈ Π,Pp(q) is a set of all sequence of state runs

of length 3,

P
p(q) := {(qk, qk+1, qk+2) | 0 ≤ k ≤ n − 2}. (3.11)

Remark 3.5. Note that Pp(q) = ∅ for |q| = 2. This is because any accepting state

run of length 2 that starts at the subset of the state space definitely reaches
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the same subset, and hence there is trivial probability for satisfaction of the

specification.

This is what we call decomposition into sequential reachability.

Consider the above stated safe-LTLF specification ϕ and the corresponding DFA

of ¬ϕ in figure 3.1. For this example, the accepting state runs without self-loops

R
p for each proposition pi, i = {0, 1, 2} are given by

R
p0 = {(q0, q1, q3)}

R
p1 = {q0, q2, q3)}

R
p2 = {q0, q3}

For each of these accepting state runs, we consider the sequence of subpaths of

lengths 3, Pp(q) given by

P
p0 = {(q0, q1, q3)}

P
p1 = {q0, q2, q3)}

Note that accepting state runs of length 2 or less are not considered.

3.3 Computation of Probabilities Using Barrier Cer-

tificates

Now that we have the subpaths of lengths 3 from the DFA, we can compute

lower bound on the probability of satisfaction of ϕ for the solution trajectories ξ

for a given initial condition. Given the DFAA¬ϕ for the negation of specification

¬ϕ, we perform the computation of upper bound on probability of reachability

over each element of Pp(q), q ∈ Rp using barrier certificates. The following

theorem allows us to compute the over all upper bound on the probability

of satisfaction of negation of specification ¬ϕ from the individually computed

lower bounds of probability for reachability tasks.
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Theorem 3.6. For a given safe-LTLF\� specification ϕ, let A¬ϕ denote the DFA of to

its negation, Rp denote the set defined in (3.10), and Pp be the set of runs of length 3

defined in (3.11). Then the upper bound on the probability that the solution process of

system S starts from any initial state x0 ∈ L−1(p) satisfies ¬ϕwithin time horizon [0,T)

is given by:

Px0{σξ |=¬ϕ}≤
∑
q∈Rp

∏
{(γν + cνT) |ν=(q, q′, q′′)∈Pp(q)}. (3.12)

Here γν+cνT is the upper bound on the probability that the solution trajectory of system

S starting from X0 := L−1(σ(q, q′)) and reaches X1 := L−1(σ(q′, q′′)) within time horizon

[0,T) computed as given in Theorem 3.3 (or Theorem 3.4).

Proof. For p ∈ Π, where Π is the set of atomic propositions, let q ∈ Rp be an

accepting run and setPp(q) be the set of runs of length 3 as defined in (3.11). For

a particular element ν = (q, q′, q′′) ∈ Pp(q), γν + cνT is the upper bound on the

probability that the solution trajectories of the system S reach L−1(σ(q′, q′′)) after

starting in L−1(σ(q, q′)) within time T. This is derived in Theorem 3.3 (or Theorem

3.4). Now the upper bound on the probability that traces corresponding to

solution processes reach the accepting state through the path of q is given by the

product of individual probability bounds of all elements ν = (q, q′, q′′) belonging

to the set Pp(q), i.e., the product of the probability for reachability tasks of all

sub-paths of length three corresponding to a particular accepting state run. This

is given by

P{σ(q) |= ¬ϕ} ≤
∏{

(γν + cνT) |ν=(q, q′, q′′)∈Pp(q)
}
. (3.13)

The above formula only considers one accepting state run and its subpaths of

length three. The product essentially represents the events happening conse-

quentially. Now, to calculate the overall upperbound on the probability that

solution processes that start from any initial state x0 ∈ L−1(p) violate the speci-

fication ϕ (or satisfy ¬ϕ) can be obtained from the sum of product probability

bounds for all possible accepting state runs and the overall tight upperbound is

given by the following formula.
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Px0{σξ |=¬ϕ}≤
∑
q∈Rp

∏
{(γν + cνT) |ν=(q, q′, q′′)∈Pp(q)}.

�

Theorem 3.6 lets us decompose the complex specification into a set of sequential

reachabilities, compute upper bounds on the reachability probabilities using

Theorem 3.3 (or Theorem 3.4), and then combine the bounds in a sum-product

expression.

Remark 3.7. In the case that for certain elements ν ∈ Pp(q) in (3.12), barrier certifi-

cates cannot be found, we can replace the upper bound by a trivial probability

of 1. We must be able to find at least one barrier certificate for each accepting

state run q ∈ Rp in order to get a final non-trivial probability.

Corollary 3.8. Given the result of Theorem 3.6, the lower bound on the probability that

the solution process of S starting from any x0 ∈ L−1(p) over time horizon [0,T) ⊂ R+
0

satisfies safe-LTLF\� specification ϕ is given by

Px0{σξ |= ϕ} ≥ 1 − Px0{σξ |= ¬ϕ}.

3.4 Computation of Barrier Certificates

In this section, we provide the Counter-Example Guided Inductive Synthesis

(CEGIS) framework for searching barrier certificates of specific forms satisfy-

ing conditions in Theorem 3.3 (or Theorem 3.4). The approach uses feasibility

solvers for finding barrier certificates of a given parametric form using Satisfia-

bility Modulo Theories (SMT) solvers such as Z3 [29] and dReal [30]. In order

to use the CEGIS framework, we raise following assumption.

Assumption 3.9. System S has compact state-space X ⊂ Rn and partition sets

Xi ∈ L−1(pi), i ∈ {1, 2, . . . ,N} are bounded and semi-algebraic, in the sense they

can be represented by polynomial equalities and inequalities.
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Remark 3.10. The assumption of compactness of state-space X ⊆ Rn can be

supported by considering stopped process ξ̃ : Ω ×R+
0 → X as

ξ̃µ(t) :=


ξµ(t), for t < τ,

ξµ(τ), for t ≥ τ,

where τ is the first time of exit of the solution process ξ of S = (Rn,M,M,F,G)

from the open set Int(X). Note that, in most cases, the infinitesimal generator

corresponding to the stopped process ξ̃ is identical to the one corresponding to

ξ over the set Int(X), and is equal to zero outside of the set [26]. Thus, the results

in theorems 3.3 and 3.4 can be used for the systems with this assumption.

Next lemma provides the feasibility condition required for the existence of

common barrier certificate given in theorem 3.3.

Lemma 3.11. Consider a switched stochastic system S = (X,M,M,F,G) with As-

sumption 3.9. Suppose sets X0, X1, and X are bounded semi-algebraic sets. Suppose

there exists a function B(x), constants γ ∈ [0, 1] and c ≥ 0, such that the following

expression is true

∧
x∈X

B(x) ≥ 0
∧
x∈X0

B(x) ≤ γ
∧
x∈X1

B(x) ≥ 1

∧
m∈M

(∧
x∈X

∂B
∂x

(x) fm(x) +
1
2

Tr
(
gT

m(x)
∂2B
∂x2 (x)gm(x)

)
≤ c

)
. (3.14)

Then B(x) satisfies conditions in Theorem 3.3.

Next we provide a similar lemma giving the feasibility condition for the exis-

tence of multiple barrier certificates required in Theorem 3.4.

Lemma 3.12. Consider a switched stochastic system S = (X,M,M,F,G) with switch-

ing signal following transition probability given in (3.5) and Assumption 3.9. Suppose

X0, X1, and X are bounded semi-algebraic sets. Let there exist a set of functions Bm(x)
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for all m ∈M, constants γ ∈ [0, 1] and c ≥ 0, such that following expression is true

∧
m∈M

(∧
x∈X

Bm(x) ≥ 0
∧
x∈X0

Bm(x) ≤ γ
∧
x∈X1

Bm(x) ≥ 1

∧
x∈X

∂Bm

∂x
(x) fm(x) +

1
2

Tr(gT
m(x)

∂2Bm

∂x2 gm(x))

+
∑

m′∈M

λmm′(x)Bi′(x) ≤ c
)
. (3.15)

Then the conditions in Theorem 3.4 holds.

In order to utilize CEGIS framework, we consider a barrier certificate of the

parametric form B(a, x) =
∑k

i=1 aibi(x) with some user-defined (nonlinear) basis

functions bi(x) and unknown coefficients ai ∈ R, i ∈ {1, 2, . . . , k}. With this choice

of barrier certificate the feasibility expression (3.14) can be rewritten as

ψ(a, x):=
∧
x∈X

B(a, x)≥0
∧
x∈X0

B(a, x)≤γ
∧
x∈X1

B(a, x)≥1

∧
m∈M

(∧
x∈X

∂B
∂x

(a, x) fm(x)+
1
2

Tr
(
gT

m(x)
∂2B
∂x2 (a, x)gm(x)

)
≤c

)
. (3.16)

Similarly one can obtain feasibility expression ψ(a, x) for multiple barrier certifi-

cates using (3.15). The coefficients ai can be efficiently found using SMT solvers

such as Z3 for the finite set X ⊂ X of data samples. We denote the obtained

candidate barrier certificate with fixed coefficients ai by B(a, x)|a and the cor-

responding feasibility expression by ψ(a, x)|a. Next we obtain counterexample

x ∈ X such that B(a, x)|a satisfies ¬ψ(a, x)|a. If ¬ψ(a, x)|a has no feasible solution,

then the obtained B(a, x)|a is a true barrier certificate. If ¬ψ(a, x)|a is feasible, we

update data samples as X = X∪ x and recompute coefficients ai iteratively until

¬ψ(a, x)|a becomes infeasible. For detailed overview on CEGIS procedure we

refer readers to [31]. To obtain a tight upper bound on the probability, one can

utilize bisection method over c and γ iteratively. The pseudocode for CEGIS

framework to compute such barrier certificates is given in Algorithm 1. In addi-

tion, one can also refer to figure 3.2 which describes the flowchart of the CEGIS

framework.
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Remark 3.13. In addition, under the assumption that fm and gm, m ∈M are poly-

nomial functions of ξ, the conditions in theorems 3.3 and 3.4 can be formulated

as a sum-of-square program to compute polynomial type barrier certificates.

[15].

Algorithm 1 CEGIS Framework
Require: c, γ

1: Define X ⊂ X . set of finite data samples in X
2: Define B(a, x) :=

∑k
i=1 aibi(x)

3: while True do
4: if ψ(a, x) is unsat then
5: infeasible
6: break
7: else
8: Compute candidate B(a, x)|a for given c and γ
9: if ¬ψ(a, x)|a is unsat then

10: B(a, x)|a is a barrier certificate
11: break
12: else
13: cex = x ∈ X s.t. ¬ψ(a, x)|a is sat
14: X← X ∪ cex
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Figure 3.2: Flowchart for CEGIS framework



Chapter 4

Controller Synthesis of

Discrete-Time Stochastic Systems

4.1 Control Barrier Certificates

As in the case of continuous-time switched stochastic systems, we apply the

concept of barrier certificates in order to provide verification to safety problems.

In this chapter, however, it must be noted that we only deal with one single

safety verification problem, where we are given a region that represents the

possible initial conditions of the discrete solution processes xN and an unsafe

region that the processes must avoid at any cost. The safety verification problem,

as mentioned before, relies on finding a tight lower bound on probability for

property satisfaction of the solution processes, and in case of a safety problem

we handle in this chapter, the specification states that the solution processes do

not enter an unsafe region.Ensuring low probability in a finite time horizon will

give us guarantee regarding the safety of the system.

Here, since we are dealing with discrete time control systems, we have to com-

pute the right control input that will drive the system to safety. For this, we

introduce the notion of a control barrier certificate, which is pretty similar to the

28
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barrier certificate in chapter 3, but here, the expectation of the barrier certificate

will not only depend on the state of the system, but also on the control input at

the current state.

Definition of a control barrier certificate is as follows.

Definition 4.1. A function B : X→ R+
0 is a control barrier certificate of a discrete-

time stochastic control system S = (X,Vw,U,w, f ) with U = (u1,u2, ...,up), p ∈ N

being a finite set of discrete inputs if

∨
u∈U

E[B( f (x(k),u(k))) | x(k),u(k)] ≤ B(x(k)) + c (4.1)

for all x ∈ X, k ∈N0 and for a constant c > 0

Now, we look at the following lemma and utilize this for our subsequent theorem

for safety verification using control barrier certificates.

Lemma 4.2. For a discrete-time stochastic control system S = (X,Vw,U,w, f ), let us

assume that a control barrier certificate B : X → R+
0 exists with some non negative

constant c. Then, for any constant λ > 0 and any initial condition x(0) ∈ X, the

probability that the value of barrier certificate being greater than λ given the initial

condition is given by

P{ sup
0≤t<Td

B(x(k)) ≥ λ | x(0)} ≤
B(x0) + cTd

λ
. (4.2)

To compute the tight upper bound on the probability of a reachability problem

using barrier certificates, we state the following theorem, that has been the

primary work of the author of [17].

Theorem 4.3. For a discrete time stochastic control system S = (X,Vw,U,W, f ),

consider X0,X1 ⊆ X. Suppose there exists a control barrier certificate B : X→ R+
0 and

a constant c > 0 such that the condition in definition 4.1 is satisfied and there exists a

constant γ ∈ [0, 1] such that

B(x) ≤ γ ∀x ∈ X0 (4.3)
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B(x) ≥ 1 ∀x ∈ X1 (4.4)

Then the probability that the solution processes start at X0 and reach X1 within a finite

time horizon [0,Td] ⊆N0 is upper bounded by γ + cTd.

Proof. B(x(k)) is a control barrier certificate so 4.2 in 4.2 holds. Since X1 ⊆

{x ∈ Xs.tB(x) > 1}, we have P{x(k) ∈ X1for some0 < k < Td | x(0) = x0} ≤

P{sup0<k<TdB(x(k)) ≥ 1 | x(0) = x0} ≤ γ + cTd �

This is a typical optimization problem and we minimize the value of c and γ,

while finding the optimum discrete controller values for regions within the state

space.

Remark 4.4. The corresponding controller u(x) in the discrete case is given by

u(x) = {u ∈ U | E[B( f (x,u)) | (x,u)] ≤ B(x) + c}. What it means is that for different

regions in state space, we arrive with different control inputs that are active

while the solution process lies under those regions and definition 4.1 provides

regions of state space in which a given control input is valid and can be given

as Xi : {x ∈ X | E[B( f (x,u)) | (x,u)] ≤ B(x) + c} for all i = {1, 2, ..., l} where and⋃
i Xi = X.

Corollary 4.5. Let the safety specification ϕ represent the specification that no solution

process that begins in X0 must reach X1. Given the result of Theorem 4.3, the probability

that the solution process of S starting from any x ∈ X0 over time horizon [0,T) ⊂ R+
0

satisfies the specification ϕ under control policy ρ is lower-bounded by

P
ρ
x0
{σξ |= ϕ} ≥ 1 − Pρx0

{σξ |= ¬ϕ}.

4.2 Computation of Control Barrier Certificates

In this section, we once again provide the Counter-Example Guided Inductive

Synthesis (CEGIS) framework for searching control barrier certificates of specific

forms satisfying conditions in 4.3. The approach uses feasibility solvers for

finding barrier certificates of a given parametric form using Satisfiability Modulo
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Theories (SMT) solvers such as Z3 [29] and dReal [30]. In order to use the CEGIS

framework, we raise following assumption.

Assumption 4.6. System S has compact state-space X ⊂ Rn and partition sets

X0 and X1 are bounded, semi-algebraic sets, i.e., they can be represented by

polynomial equalities and inequalities.

We provide the following lemma that allows us to formulate the controller op-

timization as a satisfiability problem which is required for finding the existence

of a control barrier certificate and a corresponding control strategy using the

CEGIS approach.

Lemma 4.7. Suppose assumption 4.6 holds and partion sets X0,X1 and X are bounded

semi-algebraic sets. If there exists a barrier certificate B(x) such that the following

condition is true

∧
x∈X

B(x) ≥ 0
∧
x∈X0

B(x) ≤ γ
∧
x∈X1

B(x) ≥ 1
∧
x∈X

(
∨
ui∈U

E[B( f (x,ui,w)) | (x,ui)] ≤ B(x) + c)

(4.5)

Then B(x) satisfies conditions in Theorem 4.3 and

u(x) ∈ ui ∈ U | {E[B( f (x,ui)) | x,ui] ≤ B(x) + c}

is the control input that drives the discrete stochastic control system to safety.

In order to utilize CEGIS framework, we consider a barrier certificate of the

parametric form B(p, x) =
∑k

i=1 pibi(x) with some user-defined (nonlinear) basis

functions bi(x) and unknown coefficients pi ∈ R, i ∈ {1, 2, . . . , k}. With this choice

of barrier certificate the feasibility expression (4.7) can be rewritten as
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ψ(p, x) := (
∧
x∈X

B(p, x) ≥ 0
∧
x∈X0

B(p, x) ≤ γ
∧
x∈X1

B(p, x) ≥ 1∧
x∈X

(
∨
ui∈U

E[B(p, f (x,ui,w)) | (x,ui)] ≤ B(p, x) + c) (4.6)

We denote the obtained candidate barrier certificate with fixed coefficients ai

by B(a, x)|a and the corresponding feasibility expression by ψ(a, x)|a. Next we

obtain counterexample x ∈ X such that B(a, x)|a satisfies ¬ψ(a, x)|a. If ¬ψ(a, x)|a

has no feasible solution, then the obtained B(a, x)|a is a true barrier certificate. If

¬ψ(a, x)|a is feasible, we update data samples as X = X ∪ x and recompute coef-

ficients ai iteratively until ¬ψ(a, x)|a becomes infeasible. For detailed overview

on CEGIS procedure we refer readers to [31]. To obtain a tight upper bound on

the probability, one can utilize bisection method over c and γ iteratively. The

pseudocode for CEGIS framework to compute such barrier certificates is given

in Algorithm 1 in chapter 3. In addition, one can also refer to figure 3.2 which

describes the flowchart of the CEGIS framework.

Remark 4.8. For the implementation of CEGIS approach and computation of

barrier certificate using z3 solver, we must calculate the value of E[B( f (x,u,w) |

(x,u). This expectation value cannot be calculated directly and hence a simple

workaround is used. This can be done by considering w as a normal variable.

We start by expanding B( f (x,u,w)), separating terms without the variable w,

terms associated with odd powers of variable w and terms multiplied with

even powers of w. Terms without the stochastic variable w can be treated as

constants, since x and u are non-stochastic and known. Plain central moments

of odd powers of the normal variable w is 0, and hence the expectation of

terms with odd powers of w are 0. The plain central moments of the normal

variable is given by σp(p − 1)!! where σ is the standard deviation and p is the pth

power associated with w. !! denotes double factorial, which is the product of all

numbers from 1 to p with the same parity as p. Once we have the expectation

of all terms seperately, the expectation of E(B( f (x,u,w) | (x,u) is nothing but the

sum of the expectations of individual terms.
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Examples and Conclusion

In this chapter, we apply the theorems and implementation technique men-

tioned in chapters 3 and 4 on examples and provide results that help us assert

that our method of probabilistic verification of stochastic systems using barrier

certificates is indeed effective and accurate.

5.1 Two Dimensional Switched Stochastic System

Consider a two dimensional switched stochastic system S = (R2,M,M,F,G)

with M = {1, 2}, and dynamics

S1 :
dξ1 = −0.1ξ2

2dt + dW1t,

dξ2 = −0.1ξ1ξ2dt + dW2t;
(5.1)

S2 :
dξ1 = −0.1ξ2

1dt + dW1t,

dξ2 = −0.1ξ1ξ2dt + dW2t.
(5.2)

33
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Let the regions of interest be given as

X0 = {(x1, x2) ∈ R2
| (x1 + 5)2 + x2

2 ≤ 2.5},

X1 = {(x1, x2) ∈ R2
| (x1 − 5)2 + (x2 − 5)2

≤ 3},

X2 = {(x1, x2) ∈ R2
| (x1 − 4)2 + (x2 + 3)2

≤ 2}, and

X3 = R2
\ (X0 ∪ X1 ∪ X2).

The sets X0, X1, X2, and X3 are shown in Figure 5.1.

The set of atomic propositions is given by Π = {p0, p1, p2, p3}, with labeling

function L(x) = pi for any x ∈ Xi, i ∈ {0, 1, 2, 3}. Given an initial state, we are

interested in computing a tight lower bound on the probability that the solution

process of S over time horizon [0,T) ⊂ R+
0 satisfies the following specification:

• If it starts in X0, it will always stay away from X1 or always stay away

from X2 within time horizon [0,T) ⊂ R+
0 . If it starts in X2, it will always

stay away from X1 within time horizon [0,T) ⊂ R+
0 .

This property can be expressed by the safe-LTLF formula

ϕ = (p0 ∧ (�¬p1 ∨ �¬p2)) ∨ (p2 ∧ �¬p1). (5.3)

For this system, we first perform decomposition into sequential reachability for

the negation of the given specification, i.e, DFA for ¬ϕ which is given in figure

5.2. This DFA shows us all the words that satisfy ¬ϕ, and in principle, all the

words that our system must not possess. From figure 5.2, we get Q0 = {q0} and

F = {q3}. We first use the DFA to compute all the accepting state runs and then

decompose these state runs to simpler subpaths of length 3.

The set of accepting state runs without self-loops for the given example is

R = {(q0, q4, q3), (q0, q1, q2, q3), (q0, q1, q4, q3), (q0, q3)}.
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Figure 5.1: State space and regions of interest.

Figure 5.2: DFA for ¬ϕ.
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The sets of Rp for p ∈ Π are

R
p0 = {(q0, q1, q2, q3), (q0, q1, q4, q3)}, Rp1 = {(q0, q3)},

R
p2 = {(q0, q4, q3)}, Rp3 = {(q0, q3)}.

The sets Pp(q) for q ∈ Rp are as follows:

P
p0(q0, q1, q2, q3) = {(q0, q1, q2), (q1, q2, q3)},

P
p0(q0, q1, q4, q3) = {(q0, q1, q4), (q1, q4, q3)},

P
p2(q0, q4, q3)={(q0, q4, q3)},Pp1(q0, q3)=Pp3(q0, q3)=∅.

Note that each of the element of Pp(q) for p ∈ Π is a simple reachability problem

for which we use the concept of barrier certificate in accordance with theorems

3.3 or 3.4.

To compute the upper bound on reachability probabilities in each element of

P
p(q) for all p ∈ Π, we use the SMT solver Z3 and CEGIS approach to compute

common barrier certificates and minimize values of c and γ using bisection

method. The obtained values of c and γ for each of the elements of Pp(q) and

their computed upper bounds γ+cT are listed in Table 5.1. Now, using Theorem

3.6 we get,

Px0{σξ |= ¬ϕ} ≤ (0.002038 × 0.03437) + (0.002050 × 1)

= 0.00212 ∀x0 ∈ L−1(p0);

Px0{σξ |= ¬ϕ} ≤ 0.03437 ∀x0 ∈ L−1(p2); and

Px0{σξ |= ¬ϕ} = 1 ∀x0 ∈ L−1(p1) and ∀x0 ∈ L−1(p3).

The lower bound on the probabilities that ξ starts at any x0 ∈ L−1(p), p ∈ Π

satisfying safe-LTLF\� property (5.3) over time horizon T = 10 are

Px0{σξ |= ϕ} ≥ 0.99788 ∀x0 ∈ L−1(p0);

Px0{σξ |= ϕ} ≥ 0.96563 ∀x0 ∈ L−1(p1); and

Px0{σξ |= ϕ} ≥ 0 ∀x0 ∈ L−1(p1) and ∀x0 ∈ L−1(p3).
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Table 5.1: Values of c and γ for all ν ∈ Pp(q), q ∈ Rp

ν c γ γ + cT

(q0, q1, q2) 1.953125 × 10−4 9.765 × 10−5 0.002050
(q1, q2, q3) 0.25 0.25 1
(q0, q1, q4) 1.853125 × 10−4 1.853125 × 10−4 0.002038
(q1, q4, q3) 1.953125 × 10−4 9.765 × 10−5 0.002050
(q0, q4, q3) 0.003125 0.003125 0.003437

For this computation, we used polynomial barrier certificates or order 5 each

with 21 coefficients far all ν. Each individual computation takes on an average

3 hours.

5.2 Temperature Control System

Consider a room temperature control system governed by the following stochas-

tic difference equation adapted from [32].

x(k + 1) = x(k) + τs(αe(Te − x(k)) + αH(Th − x(k))u(k)) + 0.1w(k)

x(k) denotes the state of the system, i.e., the temperature of the room. u(k) is

the control input that represents the heater value and w(k) is a standard normal

random variable that represents uncertainities in the system operation. τs is

the sampling time of 1 minute, αe = 0.008 and αh = 0.0036 are heat exchange

coefficients. Th = 55◦C and Te = 15◦C are the heater temperature and ambient

temperature respectively.

The regions of interest is given by X0 = [21, 22] and X1 = [0, 20], X2 = [23, 45]

and X3 = X\(X0 ∪ X1 ∪ X2) and the objective of our problem is to compute a

control policy that any solution process that starts at X0 must not reach any

point in either X1 or X2. The specification ϕ for a set of atomic propositions

Π = {p0, p1, p2, p3} is given as ϕ = p0 ∧ ¬(p1 ∨ p2). The control policy must be

optimized in such a way that we get the tightest upper bound of probability

that this specificiation is satisfied.
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We consider that the control input takes the values within the set U = [0, 0.5, 1]

and for each state that the system visits, one of these controller values is assigned

such that the system is not driven to an unsafe region. We initialize the compu-

tation by assuming that there exists a polynomial control barrier certificate of

the order 4. We initialize the values of c and γ with 0.002 and 0.5 respectively.

We here consider the horizon to be of length 50, equivalent to 50 minutes time

duration.

By using z3 solver and CEGIS approach, we obtain the barrier certificate given

by:

B(x) = 0.197561325479868x4
− 16.9985338044351x3 + 548.479208526386x2

−7865.64018165559x + 42300.6247825696

The minimum values of c and γ are obtained as

c = 0.0005

γ = 0.015625 + 0.0005 × 50 = 0.040625

Hence, the upper bound on the probability of reachability is given by:

P
ρ
x0
{L(xN) | ϕ} = 0.959375

for all x0 ∈ L−1(p0)

Plot of this barrier certificate as a function of state is shown in figure 5.3. As

one can see, for the initial region of X0 = [21, 22], the value of B(x) is less than

γ = 0.15625 and and B(x) > 1 for regions X1 = [0, 20] and X2 = [23, 50].

The corresponding controller obtained is:

u(x) = min{ui ∈ U | E[B( f (x,ui)) | (x,ui)] ≤ B(x) + c}
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Figure 5.3: Barrier certificate as a function of state.

The plot of the controller u(x) obtain in accordance with state x is shown in figure

5.4 and multiple realizations of state evolution with different initial conditions

over the given time horizon is represented in figure 5.5. One can see that in

no realization is the state reaching the unsafe set. This proves that our method

is extremely effective for safety verification of stochastic systems over a finite

horizon of time.

Figure 5.4: Controller values as a function of state
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Figure 5.5: 10 realisations of state vs time.

5.3 Conclusion

In this thesis, a discretization-free approach for safety verification of stochastic

system has been proposed as an alternate to existing state-space discretization

methods. The approach uses a combination of barrier certificates and automata

based verification in order to provide effective results with the lower bound

of the probability that a given stochastic system satisfies a wide class of Linear

Temporal Logic Properties. In order to do this, the specification was first decom-

posed into simpler reachability problems using automata based approach and

then probability for each reachability problem was handled using barrier cer-

tificate approach. These individual results were combined to obtain the lower

bound on the probability of property satisfaction. Both continuous time and dis-

crete time stochastic systems were handled. Novel theory for barrier certificate

approach in continuous-time switched stochastic system was developed and

results were obtained through SMT based solvers and CEGIS approach, for two

particular examples in continuous-time and discrete-time. While handling dis-

crete systems, only a fraction of the LTL properties called safety properties were

dealt with. A generalized code was built for implementation for application to

higher order systems with a wide class of dynamics.

In the future, the generalized code can be converted into a full-fledged tool

box to be made available to public. In addition, the barrier certificate approach

can be utilized for a wider class of systems such as interconnected stochastic
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systems, where the existence barrier certificates could be found for verification

of individual subsystems and a compositionality result can be obtained for

verification for the whole interconnected system.
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