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Abstract 

 

Fractional calculus is widely regarded as the calculus of the 21st century. It generalises the 

order of differential and integral operators to non-integer orders. Model order reduction and 

controller design are an integral part of systems and control engineering. This thesis deals with 

the formulation of modified balanced truncation approach and its application in the design of 

a fractional order two degree of freedom internal model controller (FO-TDF-IMC). A 

generalized FO-TDF-IMC technique is mathematically formulated in this thesis, in which the 

set-point tracking controller is an integer order and the disturbance rejection controller is of 

fractional order type. Further, the fractional order TDF-IMC controller is converted into 

classical feedback form, where the controller is expressed as PID controller in cascade with 

fractional order low pass filter. To validate the efficacy of the proposed FO-TDF-IMC scheme, 

an example of a boiler system is taken.  An extensive comparative analysis is undertaken with 

existing internal model control based techniques in literature such as one and two degree of 

freedom integer order internal model control technique. Further, the robustness of the proposed 

scheme is validated via introduction of input, output step disturbance and random disturbance 

respectively. The performance of the proposed approach is also scrutinized with respect to the 

key performance indices. The simulation results are a testimony to the effectiveness and 

superiority of the proposed technique. 
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CHAPTER-1 

 

INTRODUCTION 

 

1.1 GENERAL  

Deriving reduced-order models for large-scale linear systems has been an active area of 

research in the control systems literature because the analysis and design of algorithms for 

small systems is easy. The use of a reduced order model makes it easier to implement analysis, 

simulations and control system designs. Designing controller and observer is easy for small 

systems.  Power system, as one of the most complicated artificial system, consists of numerous 

dynamic components (such as generators), which causes that the order of the system model 

becomes very high. The model with high order consumes abundant time and computer memory 

during power system dynamic analysis and simulation tests, and brings much difficulty to the 

global controller design. Therefore, it is quite necessary to reduce the power system model for 

simplifying the simulation and controller design.   

  

Some of the important reasons for using low-order models over high order linear systems are 

listed as the following:  

  

(i) To have a better understanding of the system.  

(ii) To achieve feasible controller design.  

(iii) To reduce hardware complexity.  

(iv) To reduce computational complexity.    

 

1.2 MOTIVATION AND LITERATURE SURVEY  

 

The balanced truncation method (BTM) has been studied a lot since Moore [1] proposed the 

balanced realization theory in 1981. The model reduction based on the BTM can preserve the 

controllability, observability, and stability of the original system, and provide the upper bound 

of the error between the reduced model and original system [2]-[4].  
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Power system, as one of the most complicated artificial system, consists of numerous dynamic 

components (such as generators), which causes that the order of the system model becomes 

very high. The model with high order consumes abundant time and computer memory during 

power system dynamic analysis and simulation tests, and brings much difficulty to the global 

controller design [5]. Therefore, it is quite necessary to reduce the power system model for 

simplifying the simulation and controller design. The BTM, as a good linear model reduction 

method, has been applied to model reduction of power systems. In [6], the BTM is used to 

estimate the feasible order reduction of dynamic model in power system analysis. In [7] the 

order of the excitation model is reduced by adopting the BTM, and the robust PSS is designed 

based on the reduced model. The method is used to reduce the order of the multi-machine 

system model for the global PSS design in [8].  

The BTM can keep the dynamic behavior of the original system well, but may not gain the 

satisfied steady-state approximation. For this reason, the application of the BTM may face the 

limitation under some situations, such as the situation that the reduced model is needed to 

match the original system well in steady state.  

Here we modifies the BTM to narrow the steady-state deviations between the reduced model 

and original system by introducing a gain factor into the reduced model, on the premise that 

the reduced model can match the original system in the dynamic state. The testing results 

indicate that the modified method can decrease the deviations, lower the order of the system, 

and match dynamic behaviors of the original model. 
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Chapter-2 

 

BALANCED TRUCATION METHOD 

 

Balanced realization theory was initially proposed by Moore in 1981, on which balanced 

truncation method is based. In BTM we basically retain the characteristics of original system 

like controllability, observability and stability in reduced order model. 

 

2.1 CONTROLLABILITY  

As we know that system is described by its states, when it is possible to get a desired state of 

the system from an initial state in particular time period then system is called controllable, 

means its states are controllable. Controllability depends upon matrix [A] and matrix [B]. 

 

2.2 OBSERVABILITY  

As we know that system is described by its states, when it is possible to get a desired state of 

the system from the output in particular time period then system is called observable, means 

its states are observable because by knowing its output we can get any desired state. 

Observability depends upon matrix [A] and matrix [C]. 

 

2.3 SINGULAR VALUE DECOMPOSITION  

SVD can be defined, it is a transformation of correlated variables into a new set of uncorrelated 

variables that express various relations between the variables better than the previous set of 

variables.  

SVD can be seen as a method for data reduction.  

It is based on a theorem that says a rectangular matrix A can be written as a product of three 

matrices- an orthogonal matrix U, a diagonal matrix S and a transpose of an orthogonal matrix 

V. 

𝐴𝑚𝑛 = 𝑈𝑚𝑛𝑆𝑚𝑛𝑉𝑚𝑛
𝑇  
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Where  𝑈𝑇𝑈 = 𝐼, 𝑉𝑇𝑉 = 𝐼  and column of U are orthogonal eigenvectors of 𝐴𝐴𝑇 and column 

of V are orthogonal eigenvectors of 𝐴𝑇𝐴 and S is a diagonal matrix containing the square roots 

of eigenvalues from U or V in descending order. 

It is seen that BTM is very good in retaining the dynamic behavior of original system but it 

gives the poor results in the case of steady-state. So when the BTM is not a good choice when 

our main priority is to preserve the steady-state behavior. To overcome this problem here we 

have used the gain factor that helps to get better result. This gain is obtained by comparing 

original and reduced system which provide very satisfactory result in steady-state behavior as 

well as dynamic behavior. Sometimes it fails to retain the dynamic behavior of the original 

system but as we know that one method is not perfect in all scenarios so its output depends 

system to system.  

 

2.4 CONVENTIONAL BALANCED TRUNCATION METHOD  

For a stable linear time-invariant system, its mathematical model is 

𝑥̇ = 𝐴𝑥 + 𝐵𝑥 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                                           2.1 

Where 𝑥𝜖 𝑅𝑛 are the state variables; 𝑢𝜖 𝑅𝑚 are the input variables; 𝑦𝜖 𝑅𝑝  are output variables; 

𝐴𝜖 𝑅𝑚×𝑛, 𝐵𝜖 𝑅𝑝×𝑛, 𝐶𝜖 𝑅𝑝×𝑚 and 𝐷𝜖 𝑅𝑝×𝑚  are constant matrices. 

It is considered that system is controllable and observable. So with the help of Lyapunov 

equation, we can get the controllability gramian P and observability gramian Q as follow: 

𝑃 = ∫ 𝑒𝐴𝑡∞

0
𝐵𝐵𝑇𝑒𝐴𝑇𝑡 𝑑𝑡                                                  2.2 

 

𝑄 = ∫ 𝑒𝐴𝑇𝑡∞

0
𝐶𝑇𝐶𝑒𝐴𝑡 𝑑𝑡                                                  2.3 

 

are positive definite, and meet Lyapunov equations: 

 

𝐴𝑃 + 𝑃𝐴𝑇 + 𝐵𝐵𝑇 = 0                                                     2.4 

 

𝐴𝑇𝑄 + 𝑄𝐴 + 𝐶𝐶𝑇 = 0                                                     2.5 
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If [P] = [Q] then we can write with the help of singular value decomposition  

 

 𝑃 = 𝑄 = Λ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3, ………… . , 𝜎𝑛)                                        2.6 

 

If above conditions are met, then our system is said to be balanced.  

Where 𝜎1 ≥ 𝜎2 ≥ 𝜎3 …………… ≥ 𝜎𝑛 ≥ 0; 𝜎𝑖 𝑖𝑠 𝐻𝑎𝑛𝑘𝑒𝑙 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑎𝑙𝑢𝑒. 

  

Normally for a generalized system, above condition rarely met so we use a transformation to 

transform our generalized system into balanced system by using a nonsingular matrix T. 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                                           2.7 

 

Where 𝐴 = 𝑇𝐴𝑇−1, 𝐵 = 𝑇𝐵, 𝐶 = 𝐶𝑇−1,   are the system, input and output matrices for the 

balanced system and the controllability grammian is given by 𝑃 = 𝑇𝑃𝑇−1and observability 

grammian is given by 𝑄 = 𝑇−1𝑇
𝐴𝑇−1. 

The Hankel singular values of a balanced system are arranged in high to low order. Higher the 

value means stronger the controllability and observability energy corresponding to that state. 

Basically it means that it will affect input and output response more dominantly than others 

whose values are lesser. Based on this we can neglect the lower values because they do not 

affect the input and output response that much. It is the basic idea behind the balanced 

truncation method. By neglecting the lower value stated the dynamic and steady-state response 

remain almost same as the original system.  

 For a balanced system, it is divided into two parts. One part that contains r main sates and 

second part contains n-r less important states. Above system model that is divided into two part 

is written as   

[
𝑥̇1

𝑥2̇
] = [

𝐴11

𝐴21

   
𝐴12

𝐴22

  ] [
𝑥1

𝑥2
] + [

B1

B2

] 𝑈 

𝑦 = [𝐶1   𝐶2] [
𝑥1

𝑥2
] + 𝐷𝑢                                                2.8        
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where 𝑥1𝜖𝑅
𝑛,   𝑥2𝜖𝑅

𝑛−𝑟 

By truncating the less important states (let  𝑥2 = 0), the reduced model of system can be written 

as  

𝑥1̇ = 𝐴11𝑥1 + 𝐵1𝑢 

𝑦 = 𝐶1𝑥1 + 𝐷𝑢                                                          2.9 

 

Let G(s) be the transfer function of matrices  (A,B,C,D) and 𝐺𝑟(𝑠) be the transfer function of 

matrices (𝐴11, 𝐵1, 𝐶1,D), then the upper bound of deviation between G(s) and 𝐺𝑟(𝑠)) meets   

‖𝐺(𝑠) − 𝐺𝑟(𝑠)‖𝐻∞
≤ 2(𝜎𝑟+1 + ⋯…+ 𝜎𝑛)                                    2.10 

 

 

2.5 THE MODIFIED BALANCED TRUNCATION METHOD  

  

As we know that our reduced order model using conventional BTM can match dynamic 

behavior with original system but unable to produce the steady-state response, so in this section 

we will eliminate this problem by introducing a gain factor ‘K’ that will help the reduced order 

model to match the both the behavior.  

  

For the SISO LTI system, Let (𝑠) and 𝐺𝑟(s) be the transfer function of the original system and 

reduced order model as follows 

 

𝐺(𝑠) =
𝑏𝑛𝑠𝑛+𝑏𝑛−1𝑠𝑛−1+⋯……….+𝑏0

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯……….+𝑎0
                                           2.11 

 

𝐺𝑟(𝑠) =
𝑏𝑟𝑠

𝑟+𝑏𝑟−1𝑠𝑟−1+⋯……….+𝑏0

𝑠𝑟+𝑎𝑟−1𝑠𝑟−1+⋯……….+𝑎0
                                           2.12 
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For matching the steady-state response, gain factor is given by 

 

𝐾 =
𝐺(𝑠)

𝐺𝑟(𝑠)
|
𝑠=0

=
𝑏0

𝑎0

𝑎0

𝑏0
                                                    2.13 

 

Where 𝑎0 𝑎𝑛𝑑 𝑎0 positive, 𝑏0 𝑎𝑛𝑑 𝑏0 are non-zero, because the system is considered to be 

controllable, observable, and stable. Now the transfer function of the reduced order model can 

be written as 𝐺𝑟
′(𝑠) = 𝐾𝐺𝑟(𝑠). 

  

As final value theorem, if input is unit step the output of reduced order model is given by  

 

lim
𝑡→∞

𝑦(𝑡) = lim
𝑠→0

(𝑠𝐺𝑟(𝑠)
1

𝑠
) =

𝑏0

𝑎0
                                               2.14 

 

From above equation it can be seen that steady-state value of y only depends on the constant 

term of numerator and denominator.  For stability of the reduced order model the constant 

term  𝑎0  of the denominator must not be changed. So we propose that the gain factor ‘K’ should 

be inserted in the front of the constant term 𝑏0 of the numerator. By performing this, the transfer 

function of the reduced order model changes as 

 

𝐺𝑟(𝑠) =
𝑏𝑟−1𝑠𝑟−1+𝑏𝑟−2𝑠𝑟−2+⋯……….+𝐾𝑏0

𝑠𝑟+𝑎𝑟−1𝑠𝑟−1+⋯……….+𝑎0
                                            2.15 

 

From above equation we can find the final output of the reduced order model 𝐺𝑟
′(𝑠) as 

 

lim
𝑡→∞

𝑦(𝑡) = lim
𝑠→0

(𝑠𝐺𝑟(𝑠)
1

𝑠
) =

𝐾𝑏0

𝑎0
=

𝑏0

𝑎0
                                           2.16 

 

It can be seen that steady-state response of reduced order model and original system is same. 

Now for a multi-input multi-output system, considering the same dimensions of input and 

output.  
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G(𝑠) and 𝐺𝑟(𝑠) are the transfer function of original system and reduced order model as follows 

 

𝐺(𝑠) =
1

𝑓(𝑠)
[
𝑔11(𝑠)…… . . 𝑔1𝑝(𝑠)

𝑔𝑝1(𝑠)…… . . 𝑔2𝑝(𝑠)
]                                                2.17 

 

𝐺𝑟(𝑠) =
1

𝑓𝑟(𝑠)
[
𝑔

11
(𝑠)…… . . 𝑔

1𝑝
(𝑠)

𝑔
𝑝1

(𝑠)…… . . 𝑔
2𝑝

(𝑠)
]                                                2.18 

Where 

 

𝑓(𝑠) = 𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + ⋯……… .+𝑎0 

𝑔𝑖𝑗(𝑠) = 𝛽𝑛
𝑖𝑗
𝑠𝑛 + 𝛽𝑛−1

𝑖𝑗
𝑠𝑛−1 + ⋯……… .+𝛽0

𝑖𝑗
 

𝑓𝑟(𝑠) = 𝑠𝑟 + 𝑎𝑟−1𝑠
𝑟−1 + ⋯……… .+𝑎0 

𝑔𝑖𝑗(𝑠) = 𝛽
𝑛

𝑖𝑗
𝑠𝑛 + 𝛽

𝑛−1

𝑖𝑗
𝑠𝑛−1 + ⋯……… .+𝛽

0

𝑖𝑗
 

 

The introduced gain factor K is defined as 

 

𝐾 = 𝐺(𝑠)𝐺𝑟
−1(𝑠)|𝑠=0 =

𝑎0

𝑎0
𝑀𝑀

−1
                                               2.19 

 

Where, 𝑀𝑖𝑗 = 𝛽0
𝑖𝑗
, 𝑀𝑖𝑗 = 𝛽

0

𝑖𝑗
 are the ith row and jth column componant of M and 𝑀 . 

Now let 𝐸 = 𝐾𝑀, replace every constant term 𝛽
0

𝑖𝑗
 with 𝐸𝑖𝑗, then the transfer function matrix 

𝐺𝑟(𝑠) is changed as 

 

 

𝐺𝑟
′(𝑠) =

1

𝑓𝑟(𝑠)
[
𝑔

11

′
(𝑠)…… . . 𝑔

1𝑝

′
(𝑠)

𝑔
𝑝1

′
(𝑠)…… . . 𝑔

2𝑝

′
(𝑠)

]                                                2.20 

 

where 

𝑔
𝑖𝑗

′
(𝑠) = 𝛽

𝑛

𝑖𝑗
𝑠𝑛 + 𝛽

𝑛−1

𝑖𝑗
𝑠𝑛−1 + ⋯……… .+𝐸𝑖𝑗 
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After getting the modified transfer function matrix 𝐺𝑟
′(𝑠), we can obtain the reduced model  

(𝐴𝑟
′ , 𝐵𝑟

′ , 𝐶𝑟
′ , 𝐷𝑟

′) by performing the minimal state-space realization for 𝐺𝑟
′(𝑠). It can be noted  

that the order of modified model (𝐴𝑟
′ , 𝐵𝑟

′ , 𝐶𝑟
′ , 𝐷𝑟

′)may be higher than the one of the model  

(𝐴11, 𝐵1, 𝐶1,D), because the zeros of 𝐺𝑟
′(𝑠) are a little different from the ones of 𝐺𝑟(𝑠). If this  

case occurs, the conventional BTM can be used to reduce the order of (𝐴𝑟
′ , 𝐵𝑟

′ , 𝐶𝑟
′ , 𝐷𝑟

′) to make  

the order of final reduced model (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) equal to the one of (𝐴11, 𝐵1, 𝐶1,D). 

 

 

2.6 MATLAB SIMULATION AND RESULTS 

 

Proposed system 

 

𝐴 =

[
 
 
 
 
 
 
 
 
−1 0.545 1 0 0 0 0 0 0  
0 −1 1 0 0 0 0 0 0
0 −3.27 −0.05 −5 0 0 0 0 0
0 0 3.333 −3.333 0 0 0 0 0
0 0 −5.208 0 −12.5 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 −6 0 −3.27 −0.05 6 0
0 0 0 0 0 0 0 −3.333 3.333
0 0 0 0 0 0 −5.283 0 −12.5]

 
 
 
 
 
 
 
 

 

 

𝐵 = [
1 0 0 0 −1 0 1 0 1
1 0 1 0 0 1 0 0 1

]
𝑇

 

 

𝐶 = [
1 0 1 1 1 −1 1 1 1
1 0 1 −1 1 1 0 1 1

] 

 

Given that system is controllable, observable and stable. By the BTM we obtain these results  

 And the Hankel singular values are   

  Δ = diag(2.0017,0.9293,0.8311,0.3508,0.0989,0.0925,0.0140,0.0005)  
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From the matrix Δ, it can be seen that 𝜎4 > 𝜎5 . So the states of the balanced system 

(𝐴, 𝐵, 𝐶) corresponding to the singular values 𝜎4 ……… . . 𝜎9 are truncated, and the 

reduced model (𝐴11, 𝐵1, 𝐶1,D) is obtained as 

 

𝑥̇1 = [

−0.6007 −1.0826 −0.0747 0.6526
0.9337 −0.3948 −3.0295 1.5630

−1.1699 3.0092 −1.9299 −0.6306
0.5474 −1.5763 1.1289 −1.6936

] 𝑥1 + [

−0.1020 −1.5473
−0.6132 0.5982
−0.9971 −1.4878
−0.6195 0.8970

]𝑢 

 

𝑦 = [
0.0809 0.2216 −1.5985 −0.5545

−1.5486 −0.8275 −0.8079 0.9389
]𝑥1 

 

Controllability Grammian matrix P and observability Grammian matrix Q is obtained as  

 

 

 

 

 

By the modified BTM, we can calculate the gain factor K as  

 

𝐾 = [
1.02728 0.553385
1.10608 1.00925

] 
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After introducing K into the transfer function (𝑠) of  (𝐴11, 𝐵1, 𝐶1,D)  to obtain  𝐺𝑟(𝑠), 

making the minimal state-space realization for 𝐺𝑟
′(𝑠) to gain (𝐴𝑟

′ , 𝐵𝑟
′ , 𝐶𝑟

′ , 𝐷𝑟
′), and 

reducing the order of (𝐴𝑟
′ , 𝐵𝑟

′ , 𝐶𝑟
′ , 𝐷𝑟

′), we obtain the final reduced model (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟)  

as follow: 

 

𝑥̇𝑟 = [

−0.5972 −1.0737 −0.0894 −0.6638
0.9614 −0.3988 −2.9415 −1.6672

−1.1326 3.0409 −1.9020 0.5120
−0.5457 1.6691 −1.0519 −1.6394

] 𝑥𝑟 + [

−0.1129 −1.5506
−0.5619 0.6522
−1.0401 −1.4507
0.6085 −0.9139

] 𝑢 

 

𝑦 = [
0.0842 0.2968 −1.5887 0.5214

−1.5524 −0.8081 −0.8138 0.9662
] 𝑥𝑟 
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Figure 2.1: Step response of 𝑔11 

 

 

Figure 2.2: Bode plot of 𝑔11 
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Figure 2.3: Step response of 𝑔21 

 

 

Figure 2.4: Bode plot of 𝑔21 
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Figure 2.5: Step response of 𝑔12 

 

 

 

Figure 2.6: Bode plot of 𝑔12 
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Figure 2.7: Bode plot of 𝑔22 

Figure 2.8: Step response of 𝑔22 
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A comparison between various parameters of original system and reduced order 

system which is obtained using conventional balance truncation and modified 

balance truncation method:  

 

Table 2.1: Comparison of various parameters of 𝑔11 

𝑔11 Original BT MBT 

ISE NA 7.13E-04 6.27E-04 

SSE NA 0.031037 0.3082 

tr 2.2268 1.8102 1.8102 

ts 3.6874 3.4059 3.4059 

Mp 0 0 0 

tp 6.2949 6.1839 6.1839 

 

 

Table 2.2: Comparison of various parameters of 𝑔12 

𝑔11 Original BT MBT 

ISE NA 0.0024 0.0019 

SSE NA -0.60549 0 

tr 0.0345 0.0668 0.0668 

ts 3.953 5.0889 5.0889 

Mp 2.5974 1.0219 1.0219 

tp 1.1052 1.1288 1.1288 

 

 

Table 2.3: Comparison of various parameters of 𝑔21 

𝑔11 Original BT MBT 

ISE NA 0.0025 3.85e-04 

SSE NA 0.057181 0 

tr 2.5194 2.9046 2.9046 

ts 4.4642 3.9024 3.9024 

Mp 0 0 0 

tp 7.1259 7.6072 7.1259 
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Table 2.4: Comparison of various parameters of 𝑔22 

𝑔11 Original BT MBT 

ISE NA 6.13E-04 6.65E-04 

SSE NA 0.0313 0 

tr 1.8011 1.6367 1.6367 

ts 3.8334 3.2408 3.2408 

Mp 0 0 0 

tp 7.7827 7.1655 7.1655 
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Chapter-3 

 

INTERNAL MODEL CONTROL TECHNIQUE 

 

3.1 INTRODUCION  

In control theory, the era before 1980 was limited to the performance of controllers for single-

input, single-output (SISO) systems in view of stability considerations, and plant variations 

were almost never an issue. So, whenever industries uses complex processes such as higher 

order process or process with dead-time (e.g., transport dead-time on paper, mining, oil, food 

processing, resource allocation in computing etc), then model based control algorithms like 

dead-beat algorithm[9], Dahlin’s algorithm[10], Kalman’s approach[11], and Smith-predictor 

algorithm[12] were utilized to design controllers. These controllers provided an optimal 

response in absence of model uncertainties. However, Brosilow[13] developed a technique for 

tuning smith predictor controller, which failed to incorporate all the uncertainties in model 

parameter, and thereby creating robustness problems. The uncertainties are generally 

introduced due to process delays, high nonlinearity at different operating conditions, 

environmental variations (like temperature, pressure, relative humidity etc.), stochastic 

disturbances, and varying steady states. The disturbances could be eliminated using filters but 

the controller complexity increases. According to Garcia and Morari[14], the control system 

must be optimal in the sense that it maintains stability and robustness, alters the quantity of 

interest in a process to a desired set-point with fast and smooth tracking capacity, while 

rejecting environmental and process uncertainties, along with handling constraints on input and 

states. Besides, robust stability of the process is very necessary for high performance, safety, 

reduced manpower, and economic point of view for process industries.  

In this backdrop, optimal controllers prove good dynamic compensator to deal with set-point 

tracking, and input and state constraints, at the same time bringing optimality of the required 

performance criterion (quadratic performance index, integral square error) but robustness 

investigation is implicit, and control policy fails to process with time delay[15]. To obtain 

robust control performance against the nonlinear design of plants subjected to uncertainty and 

disturbances, a variety of adaptive control techniques like programmed adaptation and on-line 

adaptive control strategies, and robust techniques were evolved. Apart from rigorous 
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computational framework, this scheme can successfully tolerate parameter uncertainties, but 

the prerequisite to apply the adaptation algorithm is the complete knowledge of the reference 

trajectory or states to be tracked, and therefore, this kind of approach is unsuitable for the 

problem of tracking unknown trajectories[16]. While the robust control method based on H∞ 

demands the knowledge of limit of disturbance for asymptotic stability and disturbance 

rejection[17]. On the other hand, modern control techniques based on artificial techniques such 

as fuzzy logic and neural networks do not require knowledge of plant model, and these schemes 

provide robustness despite model discrepancies and noise disturbance. However, the 

computational expenses and the requirement of the expert’s advice for system identification 

have seriously restricted their application in practice[18]. Alternatively, in widely used 

standard PID type controllers, the most popular tuning rules Ziegler Nichols and Cohen-

Coon[19] have been a generic and efficient solution to real world control problems for more 

than three decades, and have the capability to achieve desired optimal performance only for 

specific inputs with little tolerance in plant variations. Thus, the inevitable mismatches between 

the assumed (nominal) models and the real-world processes destroyed the viability of many 

control schemes, thereby demanding certain novel approach in the field of robust control to 

increase the efficiency of the control system in the presence of plant uncertainties and 

disturbance. In this regard, internal model control (IMC) provides an advanced, effective, 

intuitive, generic, novel, powerful, and simple framework for the analysis and synthesis of 

control system performance, especially robust and optimal properties[20].  

The purpose of this paper is to review and explain the different aspects, methodologies, 

progress, and future prospects in internal model control technique for single-input, single-

output, linear time-invariant systems. No claim is made about developing anything novel. We 

just summarize what is available at different places in literature and present it in a tutorial 

prospect. Furthermore, valuable insight regarding the controller, its tuning techniques, 

modified structures, and future prospects are highlighted.  
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3.2 IMC Structure 

 

 

Figure: 3.1: Classical feedback structure 

 

IMC is basically a classical feedback structure as shown above with plant G(s) and controller 

C(s). A plant model 𝐺𝑀(𝑠) is added and subtracted in feedback path of the controller C(s) as 

shown in Figure 3.2 to achieve IMC structure. The plant model fed back to the controller gives 

a new controller Q(s), and the internal model along with controller is obtained in Figure 3.3. 

 

Figure: 3.2: Classical feedback structure with plant model 

 

Relation between Q(s) and C(s) is given by these equations 

𝑄(𝑠) =
𝐶(𝑠)

1+𝐺𝑀(𝑠)𝐶(𝑠)
                                                       3.1 

𝐶(𝑠) =
𝑄(𝑠)

1−𝐺𝑀(𝑠)𝑄(𝑠)
                                                               3.2 
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Figure: 3.3 IMC feedback structure 

 

Thus internal model control system consist a controller named as Q(s) and a plant 

model 𝐺𝑀(𝑠).  The difference between output of G(s) and 𝐺𝑀(𝑠) is represented by 𝐸′(𝑠) and 

it represents the mismatch between plant and plant model. 

Different input-output relationships from block diagram of an IMC structure figure are given 

below 

 

𝐸′(𝑠) =
𝐷(𝑠)

1+𝑄(𝑠)(𝐺(𝑠)−𝐺𝑀 (𝑠))
                                                       3.3 

 

𝑈(𝑠) =
𝑄(𝑠)

1+𝑄(𝑠)(𝐺(𝑠)−𝐺𝑀 (𝑠))
(𝑅(𝑠) − 𝐷(𝑠))                                         3.4 

 

𝐸(𝑠) =
1

1+𝑄(𝑠)(𝐺(𝑠)−𝐺𝑀 (𝑠))
(𝑅(𝑠) − 𝐷(𝑠))                                        3.5 

 

𝑌(𝑠) =
𝐺(𝑠)𝑄(𝑠)𝑅(𝑠)

1+𝑄(𝑠)(𝐺(𝑠)−𝐺𝑀 (𝑠))
+

(1−𝐺𝑀(𝑠)𝑄(𝑠))𝐷(𝑠)

1+𝑄(𝑠)(𝐺(𝑠)−𝐺𝑀 (𝑠))
                                      3.6 

 

Equation can also be described as 

 

𝑌(𝑠) = 𝜌(𝑠) + 𝜀(𝑠)𝐷(𝑠);  𝜌(𝑠) + 𝜀(𝑠) = 1                                    3.7 
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Where 𝜀(𝑠) represents sensitivity and 𝜌(𝑠)  is complementary sensitivity functions. And 𝜌(𝑠) 

determines performance of the system whereas 𝜀(𝑠) is for robustness of the system. 

 

3.3 PROPERTIES OF IMC STRUCTURE 

 

 Dual Stability 

        If the plant model is chosen perfectly means 𝐺𝑀(𝑠) = G(s) and no disturbance is present 

then from the equations, the system becomes open-loop and closed-loop system will be stable 

too if we chose G(s) and Q(s) stable. 

 

 Perfect Control:- 

        If perfect plant model is chosen as 𝐺𝑀(𝑠) = G(s) and controller Q(s) is equal to the inverse 

of model plant (Q(s) = 𝐺𝑀
−1(𝑠)) with stable G(s) then system is perfectly controllable as Y(s) = 

R(s). 

Basically IMC structure used open-loop controller to provide perfect closed-loop performance. 

 

It is clear from above discussion that IMC structure has many advantage as compared to 

classical feedback controller but ideal IMC structure requires perfect plant model which is in 

practical world is not possible as all practical systems are non-linear in nature. And as controller 

Q(s) is chosen as inverse of plant model 𝐺𝑀(𝑠) which is not possible in all the cases and inverse 

of plant model can create instability in presence of plant mismatch which may produce 

undesirable oscillation in output. 

To overcome this problem first plant model is factorised into two parts in which one part is 

invertible and minimum phase system (poles are on LHS of the s-plane) whereas other part is 

non-invertible and non-minimum phase system  (poles are on RHS of the s-plane). Now the 

chosen controller is basically inverse of invertible part of plant model. 

 

𝐺𝑀(𝑠) = 𝐺𝑀+(𝑠)𝐺𝑀−(𝑠)                                                     3.8 

where 
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𝐺𝑀+(𝑠) = 𝑖𝑠 𝑛𝑜𝑛𝑖𝑛𝑣𝑒𝑟𝑡𝑏𝑙𝑒 𝑎𝑛𝑑 𝑛𝑜𝑛𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝ℎ𝑎𝑠𝑒 

𝐺𝑀−(𝑠) = 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝ℎ𝑎𝑠𝑒 

and  

𝑄1(𝑠) = 𝐺𝑀−
−1 (𝑠)                                                          3.9 

 

But a problem arises as the controller 𝑄1(𝑠) is stable but it may not be proper. So to make 

controller proper and robust against the plant model mismatch, a low pas filter (LPF) is 

used with the inverted model 𝑄1(𝑠) to provide complete IMC controller. 

The low pass filter is used in the form given below 

𝐹(𝑠) =
1

(𝜆𝑠+1)𝑛
                                                          3.10 

 

𝑂𝑅  𝐹(𝑠) =
𝑛𝜆+1

(𝜆𝑠+1)𝑛
                                                       3.11 

 

where 𝜆 is adjustable parameter (tuning parameter) and the value of “n” is selected such 

that 𝑄1(𝑠) becomes proper or semi-proper. 

 

Equation and are for type-1 (step input) and type-2 (ramp input) system respectively. Filter 

used other than above mentioned equations may improve performance of system but 

reduces the robustness of system. The filter makes the controller robust and also reduces 

the mismatch between pant and plant model at higher frequencies. A care must be taken 

whenever choosing the value of 𝜆 because high value of 𝜆 surely increase the robustness 

but tracking speed decreases. 

 

Finally the IMC controller is now given by 

 

𝑄(𝑠) = 𝑄1(𝑠)𝐹(𝑠) = 𝐺𝑀−
−1 (𝑠)𝐹(𝑠)                                              3.12 
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Now the output equation can be rewritten as 

 

𝑌(𝑠) =
𝐺𝑀+(𝑠)𝐹(𝑠)𝑅(𝑠)

1+𝑄(𝑠)(𝐺(𝑠)−𝐺𝑀 (𝑠))
+

(1−𝐺𝑀+(𝑠)𝐹(𝑠))𝐷(𝑠)

1+𝑄(𝑠)(𝐺(𝑠)−𝐺𝑀 (𝑠))
                                       3.13 

 

 

3.4 Fractional Order Two Degree of Freedom IMC Controller 

 

As mentioned above Internal Model Control (IMC) is a control technique based on Q 

parametrization which was initially proposed by Manfred Morari and co-workers[21]. It 

provides many advantage over the classical feedback approaches such as dual stability, 

perfect control and zero steady state error and some tuning parameters. In this technique a 

plant model is used for control purpose. In one degree of freedom IMC method the 

controller basically control the difference between output of plant and plant model which 

nothing but equivalent mismatch and disturbance. But in one degree of freedom IMC 

method we cannot track set point and disturbance rejection simultaneously. So a two degree 

of freedom internal model control technique is used here that has two different controller, 

one for set point tracking purpose and the other one is for disturbance rejection purpose. 

However it is felt to improve the system performance even further with the use of fraction 

order calculus. An attempt was made to exploit the tools of fractional order calculus in 

control theory and applications [22]. Fractional order internal model control (FO-IMC) uses 

a fractional order filter in such a way that the overall closed-loop transfer function of the 

system mirrors the bode ideal closed loop transfer function which means that the system is 

able to retain the robustness in a desired range of frequency. 

Using a separate fractional order controller for set point tracking puts an upper bound on 

the extent to which system performance can be improved. To improve the performance of 

the system even more a second fractional order controller can be used in the feedback path 

similar to the TDF-IMC structure. A fractional order controller shows better disturbance 

rejection, an improved robustness and excellent capability to handle uncertainty in system 

parameters. Therefore, it is proposed to add a fractional order controller in the feedback 

path, while keeping an integer order controller for set point tracking. This ensures 
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computational simplicity as well as an improved disturbance handling capability for the 

system. 

 

Figure: 3.4 FO-TDF IMC structure 

 

Figure. 3.4 further can be simplified using transformations given in equations (3.14) and 

(3.15) 

 

𝐹(𝑠) =
𝑄(𝑠)

𝑄𝑑(𝑠)
                                           (3.14) 

 

𝐶𝑓(𝑠) =
𝑄𝑑(𝑠)

1−𝐺𝑅(𝑠)𝑄𝑑(𝑠)
                                  (3.15) 

 

 

 

Figure: 3.5 FO-TDF IMC structure 
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Let us consider a higher order system having the following transfer function 

 

𝐺(𝑠) =
∑ 𝑝𝑖𝑠

𝑖𝑚
𝑖=0

∑ 𝑞𝑗𝑠
𝑗𝑛

𝑗=0

; 𝑛 ≥ 𝑚                                                      3.16 

 

Now model order reduction is used to obtain a reduced order model for the above system 

in (3.14). Model order reduction (MOR) refers to a set of techniques used for reduction of 

computational complexity of higher order systems in such a manner that the input-output 

behaviour of the original system is retained to the maximum possible extent in the reduced 

order model. Several techniques are enlisted in literature for reduced order modelling such 

as Balanced truncation, Routh approximation, Pade approximation, Genetic algorithm, Big 

bang Big crunch optimization, Mihailov’s criteria, etc.  

Here balanced truncation method is used for model order reduction, the reduced order 

model for the system in (3.14) can be given by 

 

𝐺𝑅(𝑠) =
𝑚0+𝑚1𝑠

𝑠2+𝑛1𝑠+𝑛0
;   𝑚1 < 0                                                   3.17 

 

Where 𝑚𝑖 , 𝑛𝑗 ∈ ℜ∀𝑖, 𝑗 are the numerator and denominator coefficients of the reduced order 

model. It is assumed that  𝑚𝑖 < 0, for stability purpose it can be proven that 𝑛𝑗>0∀𝑗. 

Equation (3.17) can be re-written as 

𝐺𝑅(𝑠) =
𝑚0(1+𝑚2𝑠)

𝑠2+𝑛1𝑠+𝑛0
                                                            3.18 

 

where 𝑚2 =
𝑚1

𝑚0
. 

For the application of the proposed internal model control method, the plant model is now 

divided into minimum (𝐺𝑅−(𝑠)) and non-minimum phase parts (𝐺𝑅+(𝑠)) such that 

 

𝐺𝑅(𝑠) = 𝐺𝑅+(𝑠)𝐺𝑅−(𝑠)                                                           3.19 
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so  

𝐺𝑅+(𝑠) = 1 + 𝑚2𝑠, 𝐺𝑅−(𝑠) =
𝑚0

𝑠2+𝑛1𝑠+𝑛0
                                           3.20 

 

Using the internal model control principle, the set point tracking controller can be formulated 

as 

 

𝑄(𝑠) = 𝐺𝑅−
−1(𝑠)𝐹1(𝑠)                                                    3.21 

 

Here F(s) is chosen as a low pass filter to wean away the high frequency dynamics and to 

ensure that Q(s) is proper. 

It is given as in equation (3.22) 

 

 𝐹1(𝑠) =
1

(𝜆𝑠+1)2
                                                                3.22 

 

where 𝜆 is the filter time coefficient which is an adjustable parameter (tuning parameter).  

After simplification of (3.21) we get 

 

𝑄(𝑠) =
𝑠2+𝑛1𝑠+𝑛0

𝑚0(𝜆𝑠+1)2
                                                              3.23 

 

On the other hand, the disturbance rejection filter is computed as 

 

𝑄𝑑(𝑠) = 𝐺𝑅−
−1(𝑠)𝐹2(𝑠)                                                  3.24 

 

For an efficient disturbance rejection, we choose a fractional order filter 𝐹2(𝑠), which can 

be expressed via following fraction order transfer function 
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  𝐹2(𝑠) =
1

1+𝜂𝑠𝜐+1
                                                    3.25 

 

where 𝜂 > 1 & 𝜐 𝜖 (0,1). 

On substitution of the filter transfer function from (3.25) in (3.24), the disturbance rejection 

controller is obtained as 

𝑄𝑑(𝑠) =
𝑠2+𝑛1𝑠+𝑛0

𝑚0(1+𝜂𝑠𝜐+1)
                                                     3.26 

 

Using equations (3.18) and (3.26), the expressions for controller 𝐶𝑓(𝑠) is obtained as 

 

𝐶𝑓(𝑠) =
𝑠2+𝑛1𝑠+𝑛0

𝑚0𝑠(𝜂𝑠𝜐−𝑚2)
                                                           3.27 

 

Further simplification of (3.27) yields the final expression of fractional order controller as 

 

𝐶𝑓(𝑠) = (
𝑛1

𝑚0
+

𝑛0

𝑚0
(
1

𝑠
) +

1

𝑚0
𝑠) (

1

𝜂𝑠𝜐−𝑚2
)                                        3.28 

 

Equation (3.28) indicates that the proposed disturbance rejection controller is a series 

combination of integral order PID controller and fractional order filter. The fractional order 

filter shows more accurate and precise control and the overall fractional order control aids in 

an improved disturbance rejection capability. 

 

 

 

 

 

 

 



 
29 

 

CHAPTER-4 

MATLAB SIMULATIONS AND RESULTS 

 

Proposed transfer function of a boiler is given as[24] 

 

𝐺(𝑠) =
𝑠+1.5

5𝑠4+40𝑠3+56.5𝑠2+58.5𝑠+5
                                       (4.1) 

 

Transfer function given in equation (4.1) can be reduced using modified balanced truncation 

method, after model order reduction we get 

 

𝐺𝑅(𝑠) =
−0.004𝑠+0.0391

𝑠2+1.2467𝑠+0.1304
                                          (4.2) 

 

Now rearranging reduced order transfer function as shown before by using equations (3.15) 

and (3.16) 

 

𝐺𝑅(𝑠) =
0.0391(1−0.1023𝑠)

𝑠2+1.2467𝑠+0.1304
                                (4.3) 

 

Low pass filter 𝐹1(𝑠) according to equation (3.20) is given as 

 

𝐹1(𝑠) =
1

(𝜆𝑠 + 1)2
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where 𝜆 = 0.9 is taken which gives us the LPF 𝐹1(𝑠) as 

𝐹1(𝑠) =
1

(0.9𝑠+1)2
                                        (4.4) 

 

For disturbance rejection here fraction order filter 𝐹2(𝑠) is chosen which is given below 

 

  𝐹2(𝑠) =
1

1 + 𝜂𝑠𝜐+1
 

 

where 𝜂 = 0.2 and 𝜐 = 0.1 is taken which gives us 

 

𝐹2(𝑠) =
1

1+0.2𝑠1.1                                            (4.5) 

 

After substituting the equations (4.3), (4.4) and (4.5) into equation (3.28), we get transfer 

function of fractional order controller 

 

𝐶𝑓(𝑠) = (
𝑛1

𝑚0
+

𝑛0

𝑚0
(
1

𝑠
) +

1

𝑚0
𝑠) (

1

𝜂𝑠𝜐 − 𝑚2
) 

 

𝐶𝑓(𝑠) = (
1.2467

0.0391
+

0.1303

0.0391
(
1

𝑠
) +

1

0.0391
𝑠) (

1

0.2𝑠0.1+0.102
)            (4.6) 

 

Transfer function of fractional order controller in equation (4.6) is basically series 

combination of PID controller and fractional order filter. 
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A comparison between step response of original system and reduced order model is given in 

Figure: 4.1 

 

 

Figure 4.1: step response of original system and reduced order model 

 

A Comparison of step input tracking and input disturbance rejection of proposed technique 

versus various existing techniques shown in Figure 4.2 and Figure 4.3 shows the Comparison 

of step input tracking and output disturbance rejection of proposed technique versus various 

existing techniques whereas in figure: 4.4 simulation result is shown when random error or 

disturbance is present. 

As it can be seen that proposed FO-TDF-IMC technique produces better results than the other 

existing techniques in both the case when disturbance is present in input (Figure: 4.2) as well 

as when disturbance is present in output (Figure: 4.3). 

In the case of random disturbance or error proposed FO-TDF-IMC technique performs better 

than other IMC techniques. 
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Figure 4.2: Comparison of step input tracking and input disturbance rejection of proposed 

technique versus various existing techniques  

 

 

Figure: 4.3: Comparison of step input tracking and output disturbance rejection of proposed 

technique versus various existing techniques 
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Figure: 4.4: Comparison of step input tracking and random input disturbance rejection of 

proposed technique versus various existing techniques 

 

 

A comparison of performance indices of proposed FO-TDF-IMC technique and other IMC 

techniques are shown in Table: 4.1 and Table: 4.2. 

 

Table 4.1: Comparison of performance indices when disturbance is present in input 

CONTROLLER ISE IAE ITAE 

Proposed FO-TDF-IMC 0.02727 0.6237 14.49 

IO-TDF-IMC 1.142 2.819 55.91 

IO-ODF-IMC 1.206 3.552 96.97 

ZN 0.7669 2.839 38.84 
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Table 4.2:  Comparison of performance indices when disturbance is present in output 

CONTROLLER ISE IAE ITAE 

Proposed FO-TDF-IMC 0.03434 0.4813 6.927 

IO-TDF-IMC 1.115 2.073 17.07 

IO-ODF-IMC 1.085 2.045 17.68 

ZN 0.7676 2.752 34.37 
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CHAPTER-5 

CONCLUSIONS AND FUTURE SCOPE 

Model order diminution and controller design are integral concepts in control of real systems. 

This thesis has twin-fold objectives: formulation of modified balanced truncation technique to 

ameliorate the problem of steady state error and articulation of fractional order two degree of 

freedom internal model control principle for controller design of boiler system. Fractional order 

control offers several advantages over integral order control schemes such as greater degree of 

freedom and an enhancement in system response over the integral order control techniques. 

Keeping this in mind, the IMC scheme is extended to fractional order case, where the set point 

tracking controller and disturbance rejection controller are of integer order and fractional order 

respectively. An example of a boiler system is taken to demonstrate the effectiveness of the 

proposed scheme. An extensive comparative analysis is undertaken with respect to integer 

order single degree and two degree of freedom techniques in literature. It can be seen that the 

proposed scheme exhibits good set point tracking and excellent capability of disturbance 

rejection over the existing schemes in literature. The values of the performance indices, namely 

integral square error, integral absolute error and integral time absolute error are the least for 

the proposed scheme, thus authenticating the efficacy of the proposed technique. Further, even 

when a disturbance is introduced into the system at the input and the output, the FO-TDF-IMC 

technique rejects it effectively and swiftly, thus establishing the robustness of proposed 

approach. 

A cursory glance at the existing fractional order literature indicates that the fractional order 

control theory is wide open for upcoming research. The hardware implementation of fractional 

order controllers is a principal stumbling block in its adoption in industrial applications. 

Sometimes, the control energy required for implementation of fractional order controller is 

high, which may limit its practicality. Therefore, the future work must revolve around these 

issues and making it more suitable for seamless integration into industries.      
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