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ABSTRACT  

 

The controller design has been a prime focus since the evolution of control theory. 

Since then, various methodologies for controller design have come up. In classical 

controller design domain, one such technique is the Internal Model Control. This 

dissertation work presents a deep insight in the Internal Model Control (IMC) 

theory.  The IMC theory is built around the internal model principle. The overall 

IMC strategy is analyzed thoroughly. Although there are many other advantages 

of IMC, one exciting fact about this technique is that the control is achieved via 

only one tuning parameter ( ). In spite of having some fine advantages, there is a 

particular drawback that there isn’t any systematic tuning rules for finding the 

value of  . In literature, some techniques have been developed so far for the 

evaluation of   but most of them have failed in some or the other way. Because 

of this, usually researchers opt for the hit and trial method. To overcome this 

difficulty, this dissertation presents a new approach in the quantitative 

computation of the tuning parameter  . This has been carried out by 

incorporating the advanced control techniques in the classical control, i.e. the 

Linear Quadratic Regulator (LQR) approach in IMC. A systematic algorithm for 

determining the tuning parameters is developed and elucidated in an orderly 

manner. The proposed approach was successfully applied on the different types of 

plant models and for Load Frequency Control (LFC) problem for power systems. 

The system responses are simulated and the results are neatly depicted. The 

simulation results are testimony to the efficacy of the proposed technique. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

 
Control and automation has a huge potential in a world where everything is progressing so 

rapidly. Thus the study of control system plays a very important role for theλdevelopment of 

the world. The role of a control engineer revolves mainly around meeting the following four 

objectives system modeling, stability analysis, performance analysis and controller design. 

The designing of a controller plays an important role since it has to be done keeping in mind 

the several uncertainties such as the effect of disturbances on the model, etc.  

 

1.2 Problem Statement and Author’s Contribution 

 
Since the evolution of control theory, various methodologies for controller design have come 

up. One such technique is the Internal Model Control (IMC), in which the controller is based 

mainly on the exact model of the plant. The highlight of this technique is that the controller 

has only one tuning parameter i.e.  . And because of only one parameter, the tuning can be 

easily achieved, as compared to other popular methods which have more tuning parameters, 

and finding these controller parameters can be more complex. However, there isn’t any 

systematic method for finding the value of  . Some techniques have been developed so far 

for the evaluation of    but most of them are not as effective. In fact, the selection of the 

tuning parameter has been often done by trial and error method. 

Thus, keeping this in mind, a method has been proposed to find the value of the tuning 

parameter  . In this method, we incorporate the advanced control techniques with the 

classical control technique i.e., the Linear Quadratic Regulator approach in IMC Scheme. The 

aim is to construct a systematic algorithm for determining the tuning parameters with the help 

of LQR. 
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1.3   Dissertation Outline 

 
This dissertation is divided into the sections as follows. In the second chapter, the Internal 

Model Control theory is studied thoroughly. The IMC principle is defined around which the 

whole IMC theory is built. The properties and the designing procedure of IMC is explained in 

depth. The drawbacks of one-degree of freedom IMC are studied. The discussion is then 

moved over to the two-degree of freedom IMC. Its structural analysis is done and its 

advantages over one-degree of freedom IMC are discussed. In the third chapter, the Linear 

Quadratic Regulator approach is discussed. The basic LQR technique is studied 

comprehensively. The significance of the Q  and R  matrices are discussed. In the fourth 

chapter, the proposed theory is explained exhaustively. The design algorithm that is suggested 

is jotted down in step by step methodology. To check the effectiveness of the proposed 

approach, it is applied on different systems and models, which is discussed in the fifth 

chapter. Also the simulation results and the performance analysis that has been carried out is 

shown neatly. In chapter sixth, the dissertation has been concluded and the future work that 

can be carried out is discussed. Finally, the publication summary has been included in the 

end, which is based on the work carried out in the dissertation.  
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CHAPTER 2 

Internal Model Control 

2.1  Introduction 

 
In this chapter the Internal Model Control method is studied thoroughly. The studies on IMC 

structure came into light during the 1980s. A theory of inferential control was put forth by 

Joseph and Brosilow [1-2]. And in 1982, researchers named Garcia and Morari put down a 

firm theoretical methodology in this area [3]. Since then, Manfred Morari and his colleagues 

worked meticulously in this research area and greatly expanded it [4]. Basically, the IMC 

controller is designed to achieve control over these two basic objectives [5]. Firstly, the 

system’s response to set point changes should be in a particularly desired manner. Secondly, 

the system should oppose the consequences of disturbance in the process. Thus the Internal 

Model Control technique was developed keeping in mind these main objectives. To attain 

these objectives, the IMC is designed accordingly and the design methodology and various 

other features of IMC are discussed below. 

  

2.2  Internal Model Principle 

 
The Internal Model Control theory is developed around the internal model principle. This 

principle states that, “if any control system involves, implicitly or explicitly, some 

representation of the process to be controlled then a perfect control is easily achieved.” In 

fact, if the controller has been designed based on the exact model of the process then perfect 

control is theoretically possible [3]. 

 

2.3  IMC Strategy 

 
To demonstrate the effectiveness of the IMC principle, an open loop structure is considered 

below.  Fig.1 shows the structure of an open loop model.  C s  represents the controller and 

 G s  represents the plant model [5].  
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 R s  Y s
 G s C s

 

Figure 1: Open loop model 

The controller  C s  , sets control on the plant  G s  and the output  Y s  can be found as: 

        Y s R s C ss G  

Consider a plant model  sG , such that it is an exact representation of the process  G s , i.e.  

    sG s G
 

then set point trackingλis achieved by taking  a controller so that: 

     1
C s sG

 
 

Substituting (2) and (3) in (1), the output will be, 

    Y s R s  

Thus, it can be seen that the output follows the input and a perfect control is achieved. Open 

loop control systems are not as commonly used as closed loop control systems 

becauseλofλthe issue of accuracy. To get a deeper insight, a closed loop control system is 

considered. 

 C s  G s
 U s

 D s

 Y s





 E s R s

 

Figure 2: Structure of a classical feedback control. 
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A block diagram of a classical feedback control structure is shown in the Fig.2. IMC can be 

regarded as an exceptional case of classical feedback structure. For demonstrating this, we 

add and subtract the plant model  sG , as shown in Fig. 3.  

 R s  E s  U s

 D s

 Y s
 C s  G s

 G s  G s













 

Figure 3: Plant model inserted to feedback path [3] 

 

The structure then obtained, can be further adjusted to get a structure as shown in Fig. 4. The 

model  sG  and  C s  together forms a new controller  Q s , as shown in Fig. 5, which is a 

basic IMC structure. 

 R s  E s  U s

 D s

 Y s
 G s

 G s  G s

 





 
 C s

 E s

 

Figure 4: Basic feedback controller with plant model [3] 
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 R s  E s  U s

 D s

 Y s
 G s

 G s

 






 Q s

 E s

 

Figure 5: Basic IMC structure [3] 

 

Now the relation between IMC controller  Q s  and the classical controller can be given by 

the following two equations [5]. 


   

   1

C
Q

G C

s
s

s s


 
 


   

   1

Q
C

G Q

s
s

s s


 
 

The controller  Q s and the internal model  p sG  together characterize the IMC system. 

 

2.4  Analysis of the IMC Structure 
 
Consider the block diagram of IMC given in Fig.5. From the block diagram, it is seen that the 

error signal  E s  is given by, 

      E s R s E s   

The control signal  U s  is given as, 

      U s E s Q s  
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Substituting (7) in (8),  U s  can thus be written as, 

        U s R s E s Q s     

Now,  E s  can be written as, 


         E s G s G s U s D s     


 

In the above expression,  D s  is the disturbance affecting the system. Using (10), (9) can be 

modified as, 


              U s R s G s G s U s D s Q s       


 


 

     
     1

R s D s Q s
U s

G s G s Q s

  
   


 

From the block diagram, the output  Y s  can be written by 

        Y s G s U s D s   

Substituting  U s  in (13), 


   

     
     

 
1

R s D s Q s
Y s G s D s

G s G s Q s

   
   


 

Further simplifying, 


                           

     1

G s R s Q s G s D s Q s D s D s G s Q s D s G s Q s
Y s

G s G s Q s

   


   





  


 

           
     

1

1

G s R s Q s G s Q s D s
Y s

G s G s Q s

   
   




 

Thus the output equation of an IMC structure [5] is obtained as, 


       

     
     
     

1

1 1

G s Q s D sG s R s Q s
Y s

G s G s Q s G s G s Q s

   
         



 
 
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The above expression can be modified as, 

     ( )Y s R s D s    

The complimentary sensitivity function is represented by   and the sensitivity function is 

given as  , where,  

 

 
   

     1

G s Q s

G s G s Q s
 

   
 

   
     

1

1

G s Q s

G s G s Q s


  
   



  

The complimentary sensitivity function   accounts for the tracking performance of the 

system, whereas, the sensitivity function   tells about the robustness of the system. 

From the above expressions it can be seen that for a perfect control, i.e., for the system’s 

output to follow the set reference point, the plant model  G s must be an exact approximation 

of the process  G s . In other words, 

    G s G s
 

Also, to bring the effects of disturbance to zero, the controller  Q s  must be designed such 

that it is inverse of the plant model  G s . That is, 

     1
Q s G s


 

 

The above strategy is thus proved to deliver perfect set point tracking and disturbance 

rejection. 

 

2.5  Properties of IMC 
 
As suggested by Garcia and Morari [3], the advantages of IMC structure can be explained 

with the following three properties.  

1. Dual Stability: This property of IMC states that if there exists a model that is exact 

representation of a the system, i.e., if    G s G s , then one can easily say that if the 



12 
 

open loop system is stable, the closed loop stability is certainly ensured. In other 

words, if model is exact, for overall stability the stability condition of the plant and the 

controller is sufficient.  

 

2. Perfect Control: If the plant model is exact, i.e., if    G s G s  and if the controller 

is designed such that it is inverse of the plant model, i.e.,     1
Q s G s


   then the 

system will be perfectly controlled, provided the closed loop system is stable. The 

output will follow the set point perfectly. 

 

3. Zero Offset: If we select the IMC controller  Q s  as the inverse of plant model 

 G s  then the equations (19) the denominator terms will be equal to    G s Q s  and 

the gain between the output  Y s  and  R s  will be unity. Also the gain between 

output  Y s  and  D s  will be zero. This validates that the steady state deviation 

between the output and  R s  will not exist and there will be zero offset. 

 
 

2.6  Internal Model Control Design Algorithm 

 
In this section, the process of designing the controller by IMC technique [6] is discussed. 

Represent the plant as  G s  and the process model as  G s , such that 

    sG s G
 

 

Since the inverse of the process model is to be taken, it is important to make sure that it is 

invertible. For this, we factorise the process model into minimum phase (invertible) and non-

minimum phase (non-invertible) parts, 

   ( ) ( )s G sG G s   
 
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( )G s  represents the Non-minimum phase elements (noninvertible), which means the right 

half planeλ(RHP) zeros andλtime delays. ( )G s  represents Minimum phase elements that are 

invertible. 

Thus we take the inverse of the Minimum phase element as,  

   1
1 ( )s sGQ   

 

If it is not possible to factorize the elements of the process model, then we check if it is stable 

and that all the poles are on the left half side of the s-plane, then we can say that the model is 

invertible.  

 

If there are only non-invertible elements in the process model, then we have to use other 

factorization techniques because the non-invert ability of the components may cause 

instability when they are inverted. 

 

If the controller  1Q s  is improper, we need to augment a filter with the controller to make it 

proper. To improve the robustness of the system, it is necessary that the effect of model 

mismatch is reduced.  

 

Since, at high frequency end, the occurrence of model mismatch between the plant and the 

process is highly possible, a low pass filter  F s  is normally included to suppress these 

effects .Thus the IMC controller  Q s  is designed as the low pass filter augmented with the 

inverted model  1Q s . 

      1Q s Q s F s  


     

1
Q s G s F s

   
 
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The low pass filter that is to be adjoined is usually of the form,  

 
1

( )
( 1)n

F s
s




or 


1

( )
( 1)n

n
F s

s








 

where, n  is used to make  1Q s  proper or semi-proper and   is the filter tuning parameter. 

Filters other than the form given above can also be used to improve performance but the 

robustness of the system is compromised. 

 

The parameter   is used to vary the speed of response of the closed loop system. Thus the 

practical IMC structure with a single adjustable parameter   is depicted in the Fig.6  

 R s  E s  U s

 D s

 Y s
 G s

 G s

 







 Q s

 E s

 
1

G s
  

 F s

 

Figure 6: Schematic of practical IMC structure [5] 

 

When the value of   is increased, higher robustness performance is assured, but the time 

constant increases and thus slows the speed of response and of the system. On the other hand 

if the value of   is decreased beyond a certain point, the reference tracking performance is 

perfect but the disturbance rejection is compromised [6]. 
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2.7  Modified IMC structure 

 
In control systems, there are some applications in which the problem of set-point tracking is 

not as important as that of dealing with problem of disturbance rejection. The problem of 

disturbance rejection becomes severe with systems having a time delay. Some systems have a 

set-point that barely changes, but time-delay occurs. So, there is a need for a control theory 

that enables us to design systems that can independently control the disturbance rejection and 

the set-point tracking. Due to this concern, modified forms of the IMC structure were 

developed. One of the most effectively used structures is discussed henceforth. 

 

2.8  Two Degree of Freedom IMC 

 
Various forms of 2-DOF IMC structures have been put forth for different kinds of systems. 

For example, the integrating processes, unstable processes and systems in need of optimal set-

point rejection and disturbance tracking require a little distinct internal model control 

structure. 

Here we are mainly focusing on the optimization of eliminating the effects of disturbance and 

better tracking of the set-point. As discussed previously, the IMC structure is capable of 

giving excellent reference tracking but is unsuccessful in achieving satisfactory disturbance 

rejection. In the original IMC structure, there is a trade-off between the desired set-point 

tracking performance and the disturbance rejection performance of the system. Because of 

this, we can’t achieve good performance for both elimination of disturbance and the reference 

tracking simultaneously, we have to make a compromise between either of them.  

So, to eliminate the aforementioned shortcomings a two degree of freedom IMC structure [5] 

is established, in which two controllers  dQ s  and  Q s  are included in the original IMC 

structure.
  dQ s  is responsible for disturbance rejection performance and  Q s  is 

responsible for the set point tracking. 
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( )E s

'( )E s

( )Y s
( )G s

( )G s

( )U s( )R s

( )D s





( )Q s

( )dQ s

 

Figure 7: Two Degree of Freedom IMC structure [7] 

 
To apply this design scheme developed by Liu and Gao [7], we consider the IMC structure 

shown in the Fig.7. 

 

From the block diagram of two degree of freedom IMC the error signal  E s  is given by, 

        dE s R s Q s E s   

 

The control signal  U s  is given as, 

      U s E s Q s  

Substituting (29) in (8),  U s  can thus be written as, 

          dU s R s Q s E s Q s     

 

Now,  E s  can be written as, 

          E s G s G s U s D s     
  
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In the above expression,  D s  is the disturbance affecting the system. Using (32), (31) can 

be modified as, 

                 dU s R s Q s G s G s U s D s Q s       
  

            
       1

d

d

R s Q s Q s Q s D s
U s

G s G s Q s Q s




   
  

 

From the block diagram, the output  Y s  can be written by 

        Y s G s U s D s   

 

Substituting  U s  in (35), 

              
       

 
1

d

d

R s Q s Q s Q s D s
Y s G s D s

G s G s Q s Q s


 

   
  

Further simplifying, 

                                 
       1

d d d

d

G s Q s R s G s Q s Q s D s D s G s Q s Q s D s G s Q s Q s D s
Y s

G s G s Q s Q s

   


   




  

  
             

       
1

1

d

d

G s Q s R s G s Q s Q s D s
Y s

G s G s Q s Q s

   
   



  

 

Thus the output equation of a two degree of freedom IMC structure is obtained as, 

        
       

       
       

1

1 1

d

d d

G s Q s Q s D sG s Q s R s
Y s

G s G s Q s Q s G s G s Q s Q s

   
         



   
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From the above expressions it can be seen that for a perfect control, i.e., for the system’s 

output to follow the set reference point, the plant model  G s must be an exact approximation 

of the process  G s . In other words, 

    G s G s  

Also, the controller  Q s  must be designed such that it is inverse of the plant model  G s . 

That is, 

     1
Q s G s

   

Now, in two degree of freedom IMC, to bring the effects of disturbance to zero, the equation 

(42) must also be satisfied. 

      1 0dG s Q s Q s   

 

Thus the disturbance rejection controller  dQ s  is designed such that the above expression is 

satisfied. This is achieved by using a filter of the form (43) in designing of  dQ s  which is 

different from the one used in basic IMC.  

  
 

1 1

1
m

m

d

f s
s

 

  





 

 

Where, m is the no. of poles of  G s  and d  is the filter tuning parameter of disturbance 

rejection controller. 1 2, m    are selected such that they should satisfy the condition (44) 

for each pole 1 2, , mp p p  of the plant. 

       
1 2, ,

1 0
m

d
s p p p

G s Q s Q s


 


  
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The designing procedure for  Q s  is similar to that used in basic IMC (26). But,  dQ s  is 

designed by using filter of the form given by (43). Thus  dQ s  will be of the form, 

    
1

( )dQ s G s f s


   
  

  
   

 

1

1 1

1

m

d m

d

G s
Q s

s

 




     



 
 

By employing the above strategy in the new modified two degree of freedom IMC, one can 

achieve independent control over the reference tracking and disturbance rejection 

performance of the system easily. 
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CHAPTER 3 

Linear Quadratic Regulator 

3.1  LQR Approach 

 The quadratic regulator technique lays a theory that allows determining an optimal solution 

of a particular problem. This is accomplished by defining a certain performance index and 

then working out through a procedure to obtain the optimum solution. The LQR method gives 

an organised way of evaluating the control gain matrix. The prime focus of this method is to 

find out a control signal that usually minimizes a certain cost function; this cost function is 

also called as performance index [8].  

Let us consider a system, 



x Ax Bu

y Cx

 




 



The state feedback control is given by, 

 u Kx   

 

Here, K is the gain matrix. We have to find the optimum solution of K so that it minimizes the 

cost function given as, 


 

0

T TJ x Qx u Ru dt


 
 

 

In the above performance index, Q  is a symmetric positive semi-definite matrix and R  is a 

symmetric positive definite matrix. The value of R  defines the amount of control energy 

applied; large value of R  stabilizes the system with less control effort. The matrix Q  governs 

the effect of changes in the states; large value of Q  implies, the system is stabilized with least 

possible changes in states. 
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From (47) and (48), we get the system equation as, 

  x A BK x 
 

We can prove that  A BK  is stable, i.e. the eigenvalues will be on the left side of the 

imaginary axis. 

From (49) and (50) the performance index becomes, 


 

0

T TJ x Q K R K x dt


 
 

Considering, 


    T T Td
x Px x Q K R K x

dt
  

 

 
Where is P  symmetric positive definite matrix, we get, 


  T T T Tx Px x Px x Q K R K x    

 

 
From (50) and (53), we get, 


      TT T Tx A BK P P A BK x x Q K R K x     

 

    T TA BK P P A BK Q K R K       

 

Since  A BK  matrix is stable, we can say that there exists a matrix P that satisfies the 

equation (55). 

The gain matrix K is found to be as,  

 1 TK R B P  

 
The positive definite matrix P  in the equation must satisfy the Algebraic Riccati Equation 

(ARE) given by (57) which is the reduced form of (55). 


1 0T TPA A P PBR B P Q     
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Hence, the gain matrix K gives the optimum state feedback control. 

The matrices Q  and R  are to be assumed for solving the Riccati Equation. There are 

different ways of selecting the matrices Q  and R which depend on the particular application 

that it has been used in [9]. Some of them are mentioned below. 

 One of the most basic way is to use trial and error method. However, it doesn’t ensure 

accuracy. 

 Choose Q  as an identity matrix and R  as some factor   multiplied with an identity 

matrix. This is an elementary choice of Q  and R   

 Q I  R I  

 Another way is by choosing diagonal weights for Q  such that it is of the form (59) 

where, 11 22 nnq q q   and R  is selected such that R I . 

  11 22, , , nnQ diag q q q   

 In one particular way of selecting matrices Q  and R  , the output matrix C  from (47) 

is used. In this Q  is taken as, 

  TQ C C  TQ C C  

 
One can select any of these methods according to their desired performance and suitability. 
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CHAPTER 4 

Internal Model Control based on LQR 

4.1  Proposed Approach 

 
In the IMC controller, the tuning parameter has been usually determined by trial and error 

method until now. Hence a new method of determining the tuning parameters of IMC 

controller is proposed. The aim is to determine the tuning parameter by a step by step 

algorithm. A brief overview of the method is explained below. 

Initially, the controller is determined by applying IMC scheme. It is seen that the controller 

equation is in terms of the tuning parameters. This controller and the plant model is used to 

get the closed loop characteristic equation, that will also come in terms of tuning parameter. 

Further, through LQR, we find out the feedback gain matrix. With this feedback gain matrix 

we find out the eigenvalues. A closed loop characteristic equation with the help of the 

eigenvalues is found out.  

Now, both the closed loop equations are compared and the values of tuning parameters are 

determined. Hence, the proposed approach provides a systematic method for determining the 

values of tuning parameters.  

4.2  Proposed IMC Design using LQR  

 
The designing of the IMC controller based on LQR approach is described as follows. This 

method can be applied to a system of any order.  Suppose the plant model is considered to be a 

third order system as, 


  0

3 2
1 2 3

B
G s

s A s A s A


  



 

 

Step 1: Model order reduction by using Routh Approximation method [10]: 

First, reciprocate the plant model [4, 11]. Using (61), we can write,  
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
  0

3 2
3 2 1 1

B
G s

A s A s A s


  



 

Using [10], reduced order model can be determined as follows. The parameters of reduced 

model are expressed in terms of the   and  . In [10], they are expressed in a tabular form as 

shown in Table 1. Thus, i  and i terms are used to find the reduced thi  order numerator iP  

and denominator iQ . Using this approach, 2nd order reduced model can be expressed as  


   

 
2

2

P s
G s

Q s


 

where, 



 
 

2 2 2 1

2
2 2 1 21

P s s

Q s s s

  

  

 

    

Then, reciprocate the numerator and denominator to get the final reduced order model. Thus, 

the reduced model comes out to be in the form, 


  0

2
1 2

b
G s

s a s a


   

where, 0 1 1 2 2 1 2, ,b a a       . 

Table 1: Alpha and  Beta table for Routh Approximation. 

  - Table 

 3A  1A  

3
1

2

A

A
 

 
2A  1 

2
2

2
2 1 3

A

A A A
 

  

2 1 3

2

A A A

A



 
 

  - Table 

 0B  0  

0
1

2

B

A
 

 

0   

2 0   0   
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Step 2: Design of IMC controller for the given reduced model [11]: 

Represent the plant as  G s , and the process model as  sG , such that, 

    sG s G
 

Factorise the process model into minimum phase (invertible) and non-minimum phase (non-

invertible) parts, 

   ( ) ( )s G sG G s  
 

( )G s  represents the non-minimum phase elements (noninvertible) and ( )G s  represents 

minimum phase elements that are invertible. The IMC controller is defined by, 


     

1
  Q s G s f s

   


 

The proposed filter is of the form , 


    1

p
f s

s s p


   

where,  is the filter tuning parameter and p  is the pole that is augmented to make  Q s  

proper. Assume  G s  is invertible. Thus, from (65), (68) and (69), we write, 


   

  

2
1 2

0 1

s a s a p
Q s

b s s p

 


   

The relation between IMC and the classical controller can be given by the following equation. 


   

   1

Q s
C s

G s Q s


  

Substituting (65) and (70) into (71), the controller equation comes out to be, 


   

  

2
1 2

0 1

s a s a p
C s

b s s p p

 


      
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Step 3:
 
Get the closed loop characteristic equation from the controller (72) designed by IMC 

approach. The above controller  C s  and system  G s can be written in terms of 

conventional closed-loop characteristic equation. We know the characteristic equation  is 

given by, 

    1 0G s C s   

  
 
  

2
1 20

2
01 2

1 0
1

s a s a pb

b s s p ps a s a 

   
   
            

Simplifying (74), we get, 

   1 0s s p p p       

   1 0s s p     

  2 1 0s p s p      

Simplifying further, the closed loop characteristic equation in terms of   and p is obtained 

as, 



 2 1
0

p p
s s


 


  
 

 
Step 4: Design of LQR approach for state space model: Consider the state space model of 
(65) as, 



x Ax Bu

y Cx

 




 

The above system is expressed in terms of controllable form. This form can be written as  



1 1

1

x A x B u

y C x

 




 

The above system matrices 1A , 1B  and 1C  can be written as  

  

1 1
02 1

1

00 1
, ,

1 0

A B
ba a

C

  
        
  
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The performance index to be minimized [12] is taken as, 


 

0

T TJ x Qx u Ru dt


 
 

State feedback control matrix u is given as, 

 u Kx   

Hence, system equation becomes, 

  1 1x A B K x 
 

The feedback gain matrix K is, 


1

1
TK R B P  

The positive definite matrix P is found by solving the Algebraic Riccati Equation (ARE) [13] 

given as, 


1

1 1 1 1 0T TPA A P PB R B P Q     

The positive semi definite matrix Q  is taken as,  11 22,Q diag q q , where, 11 22q q , and the 

positive definite matrix R  is taken as, 0R  . The matrix P  is of the form given below, 



11 12

12 22

p p
P

p p

 
  
   

Substituting (81) and (87) in (85), gives, 


   

1
1

1 11 12
0

12 22

0

TK R B P

p p
R b

p p







 
  

   

Thus the gain matrix K  is, 



0 12 0 22b p b p
K

R R
      
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Step 5: From the gain matrix K , computed in (89), get the matrix  1 1A B K as, 



0 12 0 22
1 1

02 1

2 2
0 12 0 22

2 1

00 1 . .

0 0
0 1

. .

b p b p
A B K

ba a R R

b p b pa a
R R

                 
 

              



  2 2
1 1 0 12 0 22

2 1

0 1

A B K b p b p
a a

R R

 
       
    

From (91), the eigenvalues can be found by the following characteristic equation,  

 1 1( ) 0sI A B K    



  2 2
1 1 0 12 0 22

2 1

1

( ) . .

s

sI A B K b p b p
a s a

R R

 
                    



2 2
1 1 0 12 0 22

2 1

2 2
2 0 22 0 12

1 2

1

( ) . .

. .

s

sI A B K b p b p
a s a

R R

b p b p
s a s a

R R



      
     

   

   
       

     

Hence, (95) gives the closed loop characteristic equation as (LQR approach) 



2 2
2 0 22 0 12

1 2 0
b p b p

s a s a
R R

   
       
     

 

Step 6: By comparing the characteristic equations from (78) and (95), the values of   and p  

can be evaluated. 

Comparing (78) and (95), the following two equations are obtained, 



2
0 12

2

b pp
a

R
 

  
   
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

  2
0 22

1

1p b p
a

R



  

  
   

Now, (96) can be written as,  



2
0 12

2

b p
p a

R


 
  
   

Substituting (98) in (97), we get, 



2
20 12

2 2
0 22

1

.
1

.

b p
a

R b p
a

R





 
  

   
 



2 2
20 12 0 22

2 1

. .
1

b p b p
a a

R R
 

   
      

     

Further simplifying, the following polynomial equation is obtained, 



 
   

2
1 0 222

2 2
2 0 12 2 0 12

0
Ra b p R

Ra b p Ra b p
 


  

 
 

The solution of the polynomial equation (101) gives the optimum value of . From this,   

calculate p  from (98). 

Step 7: The IMC controller  C s  which was formulated in (72), is reconfigured into an ideal 

PID form [5]. From (72),  C s is given as, 


   

  

2
1 2

0 1

s a s a p
C s

b s s p p

 


      

The ideal PID form is given as, 



 
2

0 1 2

i
p d

C C s C s
C s

s
K

K K s
s

 


  
 

Therefore, 

 0 1 2, ,i p dC K C K C K    
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Rearrange (102), such that it is of the form (105), 


   1

C s F s
s


 

Using (102) and (105), we get, 



 
     

2 1 2

0 0 01 1 11

1
1

pa pap
s s

b p b p b p
C s

s
s

p

  




 
      

  
      

From (105) and (106), we can write,  



 
     

2 1 2

0 0 01 1 1

1
1

pa pap
s s

b p b p b p
F s

s
p

  




 
      

  
      

Applying Taylor series to the function  F s , we get,  

   2
0 1 2F s C C s C s    

where, 


     

0 1 2

'' 0
0 , ' 0 ,

2!

F
C F C F C  

 

By comparing (104), (109) and using (107), the PID controller parameters can be obtained as 

   2
0 1i

p
K a

b p


  

   1 2
0 1 1p

p
K a a

b p p


 

  
        


 

2

1 2
0

1
2 1 1 1d

p
K a a

b p p p

 
  

    
                

The formulae for PID parameters in terms of IMC tuning parameter and p  are constructed. 

From step 7, the optimum value of   and p  are obtained by (101) and (98). By substituting 
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these values in the formulae, constructed by (110), (111) and (112), PID controller parameters 

are obtained. 

Thus LQR approach has been successfully applied to design the IMC controller, which gives 

a proper method for determining the tuning parameters of IMC. 

This controller design technique is applied on some plant models in the next segment. 
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CHAPTER 5 

Numerical Studies 

5.1  Illustrative Examples 

 

In this section the application of proposed approach is shown. The examples that are 

considered are discussed thoroughly so that one can get a better understanding of this 

technique. The plant models considered are of different types, so that the usefulness of the 

proposed technique is highlighted.  

 

Example 1: Consider a second order system with time delay. This plant model is taken from 

[14] by S. Skogestad. The controller is designed by our proposed method and the results are 

compared with that of [14]. 


 

 2
1

s

G s
e

s




  

The plant model can be approximated as, 


   

2

1

2 1
G s

s

s s



   

The state space model, as given by (81) is, 

    

0 1 0
,

1 2 1

1 1 , 0

A B

C D

   
        
    

The matrices Q  and R  are selected in a way such that  11 22,Q diag q q  and 0R  as, 



20 0
, [1]

0 17
Q R

 
  
   

Using (115), and solving equations (86) and (88). The feedback gain matrix is evaluated as, 

  3.5826 3.3071K   
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From (89), 12p  and 22p  are found out to be, 

 12 223.5826, 3.3071p p   

Using (117) and solving the polynomial (101). The value of   is taken as the minimum of the 

two values, that are obtained by solving (101), for faster speed of response. Then by 

substituting the value of   into (98), the value of p  can be determined. These values of   

and p  are obtained as 

 0.2368, 1.0855p    

Substituting the values of   and p  in (107), and applying Taylor series, the values of PID 

parameters are obtained as, 


0.8799, 0.4634, 0.3744p i dK K K  

 

 
Thus, the controller designed by the proposed method is, 


  0.4634

0.8799 0.3744C s s
s

  
 

Simulation Results: For a set point of unity, the response is simulated as shown by Fig. 8. 

 

Figure 8: Response of a second order plus time delay system of Example 1 
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Example 2: This plant model is taken from [15]. The plant is such that it has integral action 
in the plant itself. The proposed method is applied as follows. 


   1

s

G s
e

s s




  

The plant model of this process can be approximated as, 


  2

1
G s

s
s s



  

 

The state space model, as given by (81) is, 

    

0 1 0
,

0 1 1

1 1 , 0

A B

C D

   
       
    

 

The matrices Q  and R  are selected in a way such that  11 22,Q diag q q  and 0R  as, 


10 0

, [0.01]
0 4

Q R
 

  
 

 

 
Using (123) solve the equation (86) and (88). Thus, feedback gain matrix is evaluated as, 

  31.6228 20.5464K   

 
From (89), 12p  and 22p  are found out to be, 

 12 220.3162, 0.2055p p   

 
Using (125) and solving the polynomial (101). The value of   is taken as the minimum of the 

two values, that are obtained by solving (101), for faster speed of response. Then by 

substituting the value of   into (98), the value of p  can be determined. These values of   

and p  are obtained as 

 0.05, 1.58p    
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Substituting the values of   and p  in (107), and applying Taylor series, the values of PID 

parameters are obtained as, 

 0.5948, 0, 0.5836p i dK K K    

 
Thus, the controller designed by the proposed method is, 

   0.5948 0.5836C s s   

 

Simulation Results:  

For example 2 the reference is set at unity and the output response is simulated as shown by 
Fig. 9. 

 

Figure 9: System response for Example 2 
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Example 3: Consider a plant model given in [16]. The example taken in [16] is of a nonlinear 
so called separable system. The linear part is defined by its transfer function. Thus controller 
is designed taking in consideration the transfer function, i.e., 


   

4
0.5 1

G s
s s


  

 

The plant model of this process can be approximated as, 


  2

8
2

G s
s s


  

 

The state space model, as given by (81) is, 

    

0 1 0
,

0 2 1

8 0 , 0

A B

C D

   
       
   

The matrices Q  and R  are selected in a way such that  11 22,Q diag q q  and 0R  as, 



10 0
, [0.01]

0 1
Q R

 
  
   

 
Using (131) solve the equation (86) and (88). Thus, feedback gain matrix is evaluated as, 

  31.6228 10.9323K   

 
From (89), 12p  and 22p  are found out to be, 

 12 220.3162, 0.1093p p   

 
Using (133) solve the polynomial (101). The value of   is taken as the minimum of the two 

values, that are obtained by solving (101), for faster speed of response. Then by substituting 

the value of   into (98), the value of p  can be determined. These values of   and p  are 

obtained as 

 0.1035, 3.2742p    
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Substituting the values of   and p  in (107), and applying Taylor series, the values of PID 

parameters are obtained as, 

 4.8905, 0, 2.0671p i dK K K    

 
Thus, the controller designed by the proposed method is, 

   4.8905 2.0671C s s   

 
Simulation Results: 

The simulation is done for set point of unity. Fig. 10 shows the output response obtained for 
example 3. 

 

Figure 10: Response of the system of Example 3.  
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Performance Analysis: 

 

Integral error criterion is used to evaluate the optimal performance of the system. They are 

ISE stands for integral of squared error, IAE stands for integral of absolute error and ITAE 

stands for integral of time weighted absolute error. The error analysis has been carried out for 

the examples worked out in this section. Table 2 shows the results obtained for each of the 

example and is compared with some existing approaches. 

 
Table 2: Performance analysis of proposed approach with other techniques for the 

examples considered. 

Examples Method 
Reference Tracking 

ISE IAE ITAE 

1 
Proposed 1.826  2.402  3.681 

Skogestad [14] 2.1  3.551 12.5  

2 
Proposed 1.599  2.135  3.098  
Kaya [15] 1.82  3.201 10.62  

3 
Proposed 0.03423  0.07823  0.08876  

Saxena & Hote [16] 0.08481  0.228  0.3301  
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5.2  Tuning of Load Frequency Controller for Power Systems 

 

For application purposes the plant model of load frequency control of power systems is 

considered. The load frequency control of power systems with non-reheated, reheated and 

hydro turbines is discussed in [5]. The plant model of the non-reheated and reheated turbines 

is taken to apply the proposed technique for designing of controller. 

 

LFC System Description: 

A power system is usually characterized by complex nonlinear large scale systems [17]. 

However, it is possible to linearize the system about its operating point for the problem of 

load frequency control. The single area power system consists of a governor, turbine and 

machine represented by the Fig. 11.  

 gG s  tG s  pG s

1 R

dP

f
GPGXu

Governor Turbine
Load and
Machine

Droop
Characteristics

-

-

+



Figure 11: Linear model of a single-area power system 
 

 

 

In Fig. 2, u is the control signal, GX is the Incremental change in governor valve position, 

GP Incremental change in generator output, dP represents the Load disturbance and f is 

the Incremental frequency deviation. 

The dynamics of these components [18] can be given by the following, 
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 Governor: 


  1

1g
G

G s
T s


  

where, GT  is the governor time constant. 

 Turbine: The turbine is classified into non-reheated and reheated turbine. The transfer 

function for non-reheated turbine is given by, 


  1

1t
T

G s
T s


  

where, TT  is the turbine time constant. 

The transfer function of the reheated turbine is given by, 


    

1

1 1
r

t
r T

cT s
G s

T s T s




   

where, rT  is the reheated turbine constant and c is the percentage of the power generated in 

the reheated turbine. 

 Load and Machine: 


 

1
P

p
P

K
G s

T s


  

where, PK  is the electric system gain and PT  is the electric system time constant 

Without considering the droop characteristics, the overall transfer function,  wdG s , is written 

as, 

        wd g p tG s G s G s G s  

Whereas, when the droop characteristics are considered, the overall transfer function 

becomes,
 


       

     1
g p t

d
g p t

G s G s G s
G s

G s G s G s R


  
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where, R  is speed regulation due to governor action. 

 

 LFC system having Non-Reheated turbine: 

The plant model of non-reheated turbine with droop characteristics [18] is given by, 


  250

3 215.88 42.46 106.2
G s

s s s


    

This model is reduced to the form (65) by using Routh approximation Method. Thus the 

reduced model is 


  2

18.68

3.173 7.94
G s

s s


   

The state space model, as given by (81) is, 



 
 

0 1

7.94 3.173

0

18.68

1 0

0

A

B

C

D

 
    
 

  
 



  

The matrices Q  and R  are selected in a way such that  11 22,Q diag q q  and 0R  as, 



5000 0

0 4

[0.1]

Q

R

 
  
 

  

Using (146) solve the equation (86) and (88). Thus, feedback gain matrix is evaluated as, 

  223.1821 7.8254K   

From (89), 12p  and 22p  are found out to be, 

 12 22119.4765, 4.1892p p   

Using (148) solve the polynomial (101). The value of   is taken as the minimum of the two 

values, that are obtained by solving (101), for faster speed of response. Then by substituting 
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the value of   into (98), the value of p  can be determined. These values of   and p  are 

obtained as 


56.852 10 , 28.5704p     

Substituting the values of   and p  in (110), (111), and (112), the values of PID parameters 

are obtained as, 

 4.8427, 12.1202, 0.7631p i dK K K    

 

Thus the controller designed by the proposed method is, 


  12.1202

4.8427 0.7631C s s
s

  
 

 

Simulation Results 

The frequency deviation for the LFC system having non-reheated turbine is shown in Fig. 12. 

The simulations are done for a load disturbance of 0.01 units. 

 

Figure 12: Response of power system with Non-Reheated turbine 
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 LFC system having Reheated turbine: 

The plant model of reheated turbine with droop characteristics [18] is given by, 


   4 3 2

87.5 59.52

16.12 46.24 48.65 25.3

s
G s

s s s s




   
 

This model is reduced to the form (5) by using Routh approximation Method. Thus the 

reduced model is 


  2

1.572

1.285 0.6682
G s

s s


   

 

The state space model, as given by (81) is, 



 
 

0 1

0.6683 1.285

0

1.572

1 0

0

A

B

C

D

 
    
 

  
 



  

The matrices Q  and R  are selected in a way such that  11 22,Q diag q q  and 0R  as, 



1911 0

0 0.01

[0.1]

Q

R

 
  
 

  

Using (155) solve the equation (86) and (88). Thus, feedback gain matrix is evaluated as, 

  137.8145 12.453K   

From (89), 12p  and 22p  are found out to be, 

 12 222876.68, 79.2176p p   

 

Using (157) solve the polynomial (101). The value of   is taken as the minimum of the two 

values, that are obtained by solving (101), for faster speed of response. Then by substituting 
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the value of   into (98), the value of p  can be determined. These values of   and p  are 

obtained as 


45.134 10 , 11.122p     

Substituting the values of   and p  in (110), (111), and (112), the values of PID parameters 

are obtained as, 

 9.0382, 4.7018, 3.5155p i dK K K    

Thus the controller designed by the proposed method is, 


  4.7018

9.0382 3.5155C s s
s

  
 

 

Simulation Results 

The frequency deviation for the LFC system having reheated turbine is shown in Fig. 13. The 

simulations are done for a load disturbance of 0.01 units. It is clearly seen that the frequency 

deviation response of proposed controller is the better than the existing controllers. 

 

Figure 13: Response of power system with Reheated turbine 
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Performance Analysis: 

Integral error criterion is used to evaluate the optimal performance of the system. ISE stands 

for integral of squared error, IAE stands for integral of absolute error and ITAE stands for 

integral of time weighted absolute error. The comparison between the proposed technique and 

some existing methods, on the basis of performance indices, is given in Table 3 and Table 4.  

Table 3: Performance analysis of Power system for Non-Reheated Turbine. 

 
Nominal 

ISE IAE ITAE 

Proposed 65.166 10  31.772 10  32.482 10  

Tan [18] 6137.4 10  315.73 10  330.26 10  

FO-PID Sondhi& 
Hote [19] 

614.7 10  34.719 10  316.04 10  

Padhan&Majhi 
[20] 

636.26 10  37.665 10  316.05 10  

 
Table 4: Performance analysis of Power system for Reheated Turbine. 

 
Nominal 

ISE IAE ITAE 

Proposed 66.336 10  33.739 10  21.022 10  

Tan [18] 661.85 10  311.59 10  23.098 10  

FO-PID 

Sondhi & Hote 
[19] 

616.04 10  34.23 10  21.039 10  

Padhan&Majhi 
[20] 

620.07 10  35.912 10  21.406 10  
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CHAPTER 6 

Conclusion and Future Prospects 

 

This dissertation presents a new and straightforward approach for controller design. The IMC 

theory was discussed briefly, and its advantages were studied. Also an elementary study of 

the LQR technique was carried out. The proposed approach has been discussed thoroughly. 

The designing of IMC controller is done by incorporating the advanced control techniques in 

the classical control, i.e. the Linear Quadratic Regulator approach in IMC. A mathematical 

algorithm for determining the tuning parameters is developed. The proposed approach was 

successfully applied on various plant models and two models of the Load Frequency 

controller for power systems. The system responses were simulated and a comparison is made 

with some existing approaches. And after comparing them with the results of the other 

techniques, it is clearly seen that the proposed technique exhibits much better system 

response. The error analysis was carried out. Compared to the results of other methods, the 

errors were much smaller in the proposed approach. It is quite evident that the performance of 

the proposed technique is much superior to the existing techniques.  

In future, further study will be carried out in this direction. We will extend this technique for 

controller design for a practical hardware system. In this approach, 1DOF IMC structure was 

used. In future, designing of the controller will be carried out by 2DOF IMC structure. 
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