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Abstract

A 3-D convolutional neural network (3-D CNN) is proposed for the classification of

functional brain networks. fMRI technique is widely used to image the neuronal activ-

ity (which results in formation of functional networks) while lying static inside a MRI

machine. The idea is that the body at rest can simulate the neuronal activity of that

when engaged in extrinsic tasks. The study of neural activity is significant for under-

standing the working of brain. It is believed that low-frequency fluctuations observed

in the BOLD signals reflect the spontaneous neural activity and that the synchronized

fluctuations in distinct brain regions, therefore, point to functional connections between

them. Different functional connectivity networks have been found, and these networks

change in patients with multiple pathologies (neurological, psychiatric). Determination

of networks correctly is essential for getting in depth understanding of brain functioning

or understanding the differences between brain region connectivity of a normal being

and a patient for diagnostic and clinical purposes. Machine learning techniques became

very popular in the field of resting state fMRI network based classification. However,

the application of convolutional neural networks has been proposed only very recently

and has remained largely unexplored.

A 3-D CNN is designed to classify the functional networks with more speed and accu-

racy.
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Chapter 1

Introduction

The human brain is composed of anatomically connected systems which works in paral-

lel with task specific interacting regions of brain and continuously communicating with

11 organ systems of the body for proper functioning of the biological being that we

are. The human brain is the most complex machine in the physical universe. Study-

ing the connectivity of the systems of the brain research efforts have been focused

on improving the understanding of the functioning of this sophisticated machine to

gain insights on cognition, thinking, involuntary tasks, behaviour and subconscious.

Functional connectivity represents a novel approach which enables to explore the neu-

ronal activity of brain regions that are functionally connected when they may or may

not be anatomically distant. The extraction of functional networks from fMRI data

has became very much popular from more than two decades. Functional connectivity

MRI (fcMRI) measures the intrinsic functional correlations between brain regions (KR

et al., 2010; S et al., 2013). The method functional imaging using MRI is sensitive to

the entanglement of both distributed as well as adjacent areas (Biswal et al., 1995).

Physiological fluctuations in resting brain observed using echo-planar MRI (EPI,MRI)

consists of low-frequency signals (< 0.1 Hz) resulting due to correlation of neuronal

activity with both rCBF (regional cerebral blood flow) and blood oxygenation (Biswal

1



Chapter 1. Introduction 2

et al., 1995). Typically, tens or hundreds of concurrent functional networks can be effec-

tively and robustly extracted from whole-brain functional magnetic resonance imaging

(fMRI) data of an individual using independent component analysis (ICA).

1.1 Literature Survey

Magnetic Resonance Imaging (MRI) is the most widespread and popular imaging tech-

nique used for clinical and research applications due to its non invasiveness and absence

of any ionizing radiation. Its success is mostly due to at least three factors: 1) sensitiv-

ity of MR signal to various physiological parameters distinctive to living tissues (such as

diffusion properties of H20 molecules, relaxation time of proton magnetization or blood

oxygenation) resulting in a vast panoply of MRI modalities; 2) constant hardware im-

provements (e.g. mastering high field homogeneous magnets and high linear magnetic

field gradients allows an increasing of spatial resolution or a reduction of acquisition

time respectively); and 3) sustained efforts by researchers to develop robust software:

for image processing (to de-noise, segment, fusion, realign or visualize brain images),

for computational anatomy leading to exploration of brain structure modifications dur-

ing learning, brain development or pathology evolution and for time course analysis of

functional MRI data. Statisticians play a key role in this last factor since data pro-

duced are complex: noisy, highly variable between subjects, massive and, for functional

data, highly correlated both spatially and temporally (Bordier et al., 2010). The fact

that changes in regional cerebral blood flow (rCBF) resulting in fluctuations in blood

oxygenation (Biswal et al., 1995) is utilised to image the brain activity continuously

during a task, behaviour or emotion. This procedure is known as functional Magnetic

Resonance Imaging (fMRI). The fMRI signal is detected due to changes in magnetic

suseptibility of blood during neuronal firing. It is a indirect non-invasive detection of

brain activity : the detected signal is filtered by hemodynamic response function (HRF)

and the neuro-vascular coupling is only partially explained (Bordier et al., 2010; NK and
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J., 2004). Originally observed using positron emission tomography (PET) in between-

subject variation, functional correlations among widely distributed brain regions are

consistently observed in analyses of fMRI time series data (MD et al., 2007). As (Fris-

ton, 1994) noted in his exposition of functional connectivity, the repeated scans acquired

in quick succession with fMRI provide an abundant source of information about corre-

lated activity in brain regions. The earliest experiments regarding fMRI showed that

time course of BOLD signal from a region in the motor cortex was strongly correlated

with the contralateral motor region and the midline regions of motor system (Biswal

et al., 1995). The coherent fluctuations were immediately observed within individual

participants, indicating that the method is highly sensitive and raising the possibility of

computing individual differences (KR et al., 2010). Unlike earlier approaches focusing

on stimulus-evoked modulations gaining insight to functional connectivity, the corre-

lated activity observed by (Biswal et al., 1995) were manifest while participants rested

passively without any detectable movement, suggesting the fluctuations were chiefly

driven by intrinsic activity events constrained by anatomy (KR et al., 2010). Since

the seminal observation of Biswal and colleagues, multiple systems of brain have been

demonstrated to exhibit functional correlation at rest including the visual and auditory

systems, the default network and the medial temporal lobe memory system, the lan-

guage system, the dorsal attention system, and the frontoparietal control system (KR

et al., 2010). These observation strongly evince the presence of functional networks

in the brain at rest or task-negative/positive states and varied states of consciousness.

These intrinsic activities of brain are often measured at rest so the functional networks

are identified as resting state networks (RSNs). The fMRI procedure during rest or

passive fixation has the advantage of minimising the external fluctuations and can be

performed easily. The clinical applications of fMRI derived functional networks got

highlighted shortly after the their extraction and understanding the connection be-

tween intrinsic networks and brain regions integrity in normal patients (Biswal et al.,

1998). The basic idea is to utilise correlation strengths between functionally linked re-

gions as a marker for brain systems connectivity and integrity. This approach has come

out to be a powerful technique for mapping differences in neurological and psychiatric
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disorders. (Greicius et al., 2004) demonstrated that functional connectivity within the

default network is disrupted in patients with Alzheimer’s disease (AD) in comparison

with normal older controls. Connectivity disruptions were further detected in mild

cognitive impairment (MCI) and in cognitively normal older individuals who harbor

the pathology of AD. These observations indicate that the method is sensitive and of

potential diagnostic value. Functional disordering has been reported for a number of

neuropsychiatric disorders including autism, attention deficit hyperactivity disorder,

depression, and schizophrenia (KR et al., 2010). There are several methods that had

been developed to extract information from the raw fMRI data : voxel based, region

of interest (ROI) based, graph theory, independent component analysis, and machine

learning methods (Vergun et al., 2016). Out of these methods, ICA is the most popular

method for the extraction of functional network spatial maps from the raw fMRI data.

It is a statistical technique that does not involve any priori information only with the

assumption that the components are statistically independent and allows multivariate

fMRI signal to decompose into additive voxel activated components. These activated

components represents various spatial maps which may correspond to functional net-

works or some physiological activity or noises present in the data. To aid the mapping

of the brain region functioning for researches and clinical applications the spatial maps

from the application of ICA should be labelled and organized. The process of labelling

the functional networks is a very manual task and prone to inter-expert preferences

which is very time consuming and having high probability of inaccuracy. To fulfil the

necessity of automated labelling process methods of template matching through corre-

lation strengths and machine learning methods are commonly used. However, this task

of automation of functional networks labelling process is still challenging due to enor-

mous variability of presence of various types of functional networks and noises (Zhao

et al., 2018). Advanced machine learning techniques like deep learning Convolutional

Neural Networks (CNN) provides superior capability in recognising and representing

spatial patterns dealing with huge variability and noises. The CNN technique popular

with 2-D images with multiple channels for different purposes of classification, regres-

sion or segmentation when extended in 3-D framework shows a great effectiveness and
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robustness in accurate classification of functional brain networks (Zhao et al., 2018).

1.2 Obejectives of Dissertation Work

The objectives of this dissertation work includes :

1. Extracting the functional networks from the preprocessed fMRI data

2. Segregation of Functional Network Spatial Maps from Physiological Acivity and

Imaging Artifacts

3. Proposing and Implementation of 3D-CNN architecture

4. Evaluation and performance of the proposed structure from the conventional

techniques for automatic labelling



Chapter 2

Extraction of Functional Networks

from fMRI Data

2.1 Experimental Dataset

The RsfMRI data used for the preparation of proposed model is taken from the Pre-

processed Connectomes Project (PCP). The open share of preprocessed neuroimaging

data from Autism Brain Imaging Data Exchange (ABIDE) is used with entire pheno-

typic and scanning details. It is a initiative under the 1000 Functional Connectomes

Project (FCP) and International Neuroimaging Data- sharing Initiative (INDI). The

data present in the ABIDE is a collection of 16 international imaging sites that have

aggregated and openly share neuroimaging data from 539 individuals suffering from

Autism spectrum disorder (ASD) and 573 typical controls (TC). These 1112 datasets

are composed of structural and resting state functional MRI data along with phe-

notypic information. The data used for this experimental work is utilised from that

shared by University of Leuven and Social Brain Lab - Netherlands Institute

for Neuroscience. The participants belong to different age, diagnostic and gender

groups. The summary of the demographics is given below:

6
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Table 2.1: Demographics of Participants

ASD TC

Adolescent

Mean Age 13.92 14.34

Age Range 12.1 − 16.8 12.2 − 16.9

Gender 12M/3F 15M/5F

Adults

Mean Age 35 33.733

Age Range 22 − 64 20 − 42

Gender 15M/0F 15M/0F

2.2 Image Preprocessing

The preprocessing step of the fMRI data is the stage at which some operations are done

on the fMRI images to detect and repair potential artifacts that may be caused either

by the MRI scanner or by the person being scanned itself. Various types of artifacts

to be corrected at the preprocessing stages include (Poldrack et al., 2011):

• Spikes - Brief changes in brightness due to electrical instability in scanner.

• Ghosting - When there is a slight offset in phase between different lines of K-

space in an echo planar acquisition or due to periodic motion such as heartbeat

or respiration.

• Distortion - Due to inhomogeneity of main magnetic field caused by the air-tissue

interfaces.

• Slice-time differences - The data acquired to form the MRI images, various 2D

slices are taken at systematically different times, with differences ranging up to

several seconds.
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• Motion deformity - Mismatch of the location of subsequent images taken in time

with head motion. Another head motion related artifact can result into disrup-

tion of the MRI signal itself due to the protons that move into a voxel from a

neighboring slice have an excitation that is different from that expected by the

scanner, and the reconstructed signal will not accurately reflect the tissue in the

voxel; this is known as a spin history effect (Friston et al., 1996).

Figure 2.1: An overview of the standard fMRI preprocessing stream. With the
exception of motion correction, the rest of the preprocessing steps can be viewed as
optional, and their use will depend upon the needs of the study and the available

data (Poldrack et al., 2011)
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Figure 2.2: A pictorial representation of preprocessing steps (Fengler, 2016)

Preprocessing of fMRI images varies substantially with different software packages and

laboratories. In this work the fMRI data taken is already preprocessed at Preprocessed

Connectomes Project (PCP) (Craddock and Bellec, 2019) using data of ABIDE at

https://www.nitrc.org/projects/fcon_1000/ as per the connectome computation

system (CCS) protocol which starts with skipping of initial 4 volumes and then denois-

ing, motion realignment, slice-timing correction and 4D intensity normalization is done.

After these initial processes the functional images are registered to MNI152 standard

templates ( combining boundary based co-registration ). The whole procedure can be

found at http://lfcd.psych.ac.cn/ccs.html .

2.3 Decomposition of fMRI data

After the preprocessing of the raw data a statistical model is developed to find the

regions where the model explains the data illustratively. These statistical models are

https://www.nitrc.org/projects/fcon_1000/
http://lfcd.psych.ac.cn/ccs.html
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developed to detect the systematic patterns in the preprocessed data. These meth-

ods try to decompose the 4D data into some set of spatio-temporal components that

are additive in nature in different proportions to obtain the original signal. One such

method is Independent Component Analysis (ICA) which is a statistical technique used

to decompose a multivariate signal into its additive subcomponents with the assump-

tion that the components are statistically independent. The decomposed components

are again very useful in detecting artifacts or noise signals and the functional networks

can be separated from them. The preprocessed fMRI data is decomposed through

spatial ICA (SICA) technique in Group ICA fMRI Toolbox (Egolf et al., 2004). The

Independent Component Analysis step is done on the whole group of the participants

in the study to find smoothed, agregate and normalised spatial maps of the functional

networks. The order of the model of 100 was selected for decomposition. The FAS-

TICA algorithm was used to breakdown the fMRI data (Tichavsky et al., 2006). The

components which resulted from ICA application represent group components and so

the back reconstruction step is added for the final representation of the resultant com-

ponents to compute individual subject components (or functional networks in addition

to noise components).



Chapter 3

Identification of Functional

Network Spatial Maps

3.1 Signals in ICA Decomposed Components

After the decomposition of fMRI data using Independent Component Analysis a num-

ber of characteristic components gets separated which are composed of signals of inter-

est and various artifacts. Artifacts primarily related to motion and physiology deterio-

rates the functional signal-to-noise ratio. ICA then helps to separate the neural signals,

structured noise and random noise from the fMRI images. The signals of interest or

neural signals must be separated out from the noise present in the data to further the

analysis of the functional networks activated in the brain. Accurate identification of

the neural signals should be carried out to reduce the error or getting wrong conclusions

at the stage of utilizing functional networks.

11
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3.2 Large Scale Brain Networks

The large scale brain networks are a collection of constellation of brain regions which

when activated forms the functional networks. The functional networks are basically

formed from the activation or deactivation of synchronised brain regions signaling vari-

ous functions performed by the biological machinery. Various functional networks were

identified and named during the time course from the beginning of the RSN study.

Some of the typical large scale brain networks include:

Table 3.1: Various Functional Networks of the Brain

Resting State Func-
tional Networks

Interacting Regions

Default Mode Network Posterior cingulate Cortex; Medial Prefrontal Cortex;
Angular Gyrus; Temporopareital junction; Lateral Tem-
poral Cortex; hippocampus; parahippocampus; poste-
rior inferior parietal lobe

Sensorisensory Network Post Central Gyrus; Pre central gyrus; Supplementary
motor area

Auditory Network Superior temporal gyrus; Heschl’s gyrus; Insula; Post-
central gyrus

Visual Network Occipito temporal regions; striate cortex; polar visual
areas

Basal Ganglia Network base of the forebrain and top of the midbrain; globus
pallidus, ventral pallidum, substantia nigra, and sub-
thalamic nucleus, straitum

Fronto-pareital Network Inferior frontal gyrus; medial frontal gyrus; precunneus;
inferior parietal; angular gyrus

The various spatial maps of the resting state networks reported and developed by the

researchers in their study helps to easily learn the brain regions associated with the

extracted components. Some of the large scale brain networks were thoroughly assessed

by (Smith et al., 2009) in correspondence to BrainMap http://www.brainmap.org/

database of resting state networks.

http://www.brainmap.org/
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Figure 3.1: Ten large scale brain functional networks as reported in (Smith et al.,
2009) study.
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In fig 3.1 shows the well matched 10 pairs of the resting state networks obtained from

ICA decomposition of 36 subjects fMRI scans with a dimensionality of 20. Left column

of each pair figure corresponds to the resting state fMRI data of subjects group mean

superimposed on mean fMRI images of all subjects. Right column of each pair figure

corresponds to the networks from BrainMap superimposed on the MNI152 standard

template images. Maps 1, 2 and 3 (”visual”) shows medial, occipital pole, and lateral

visual areas. Map 4 (“default mode network”) occupies medial parietal, bilateral infe-

rior–lateral–parietal and ventromedial frontal cortices. Map 5 (“cerebellum”) includes

the cerebellum. Map 6 (“sensorimotor”) occupies supplementary motor area, sensori-

motor cortex, and secondary somatosensory cortex. Map 7 (“auditory”) is incorporated

with the superior temporal gyrus, Heschl’s gyrus, and posterior insula. Map 8 (“exec-

utive control”) includes several medial–frontal areas. Maps 9 and 10 (“frontoparietal”)

occupies several frontoparietal areas (Smith et al., 2009).

3.3 Manual Labelling of Decomposed Components

The independent components (ICs) after the ICA contains noise signals (N-ICs) and

signals of interest/ neural signals (S-ICs). There are a number of approaches for labeling

ICs investigated by the researchers. These approaches can be classified according to

1. whether ICA is performed on individual fMRI scan or is performed through a

single, ”group ICA” on group fMRI scans

2. whether the approaches are entirely automated or are ”manual”, requiring ele-

ment of visual inspection and human decisions

3. whether the approaches are entirely data driven or require some task-related

temporal or spatial (brain regions) information

4. and whether the approaches are based on Independent Components’s temporal

or spatial features, or both.



Chapter 3. Identification of Functional Network Spatial Maps 15

IC time courses and their associated Fourier frequency spectrums are used to dis-

tinguish N-ICs from S-ICs. The characteristics of these parameters to identify it as

a noise component include abrupt, large shifts in time course ( spikes ); oscillating,

”quasi-periodic” pattern; similarity to white noise; similarity to time courses of acti-

vations from regions of the brain where neural activity does not occur (ventricles and

vasculature); similarity to task-related activity; heteroscedacticity in residuals from

regressing IC time courses against a task-related time course; and relative amount of

power at frequencies considered typical for artifacts (Kelly et al., 2010). Details to

be taken care of at the time of visual inspection of independent components (ICs) to

denoise the fMRI data and label them correctly include (Kelly et al., 2010).:

• Degree of association of activation in CSF, white matter, gray matter and/or

blood vessels.

• Extent of components presence in brain periphery.

• Degree of clustering and scattering of thresholded voxels in IC spatial networks.

• Degree of similarity with constellations of brain regions known to perform par-

ticular functions.

Components are labelled Noise when:

IC shows “activation” or “deactivation” predominantly (90% or more) in peripheral

areas or in a spotty or speckled pattern, seemingly scattered randomly over a large vol-

ume (roughly 1/4th or more) of brain without consideration for functional-anatomical

boundaries.

Components are labelled Signals when:

At least 10% of the activation or deactivations are found in small (roughly 25 voxels

of 4x4x4 mm) to larger gray matter clusters localised to small regions of brain rather

being diffusely scattered across large volumes found in periphery.
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In cases regarding doubt whether more than 90% of a component represents noise, the

general rule is to label it S-IC; but if it also seems likely that the component represents

at least 90% noise, then the component is labeled as N-IC if and only if one or more

of the following conditions apply (Kelly et al., 2010).:

• High frequencies: More than 50% of power in the Fourier frequency spectrum

of the component lies above 0.1 Hz. This cutoff frequency is appropriate for

resting-state functional connectivity studies (D Greicius et al., 2007) and may be

modified accordingly for studies focusing on different frequency range of neural

signals.

• Spikes: One or more large (greater than five standard deviations), abrupt (over

six seconds or less) changes in the normalized time course.

• Sawtooth pattern: Sharp and alternate spikes in the time course of the IC resem-

bling a sawtooth pattern.

• Sinus co-activation: Roughly ten or more threshold voxels present in the superior

sagittal sinus.

Manual study of the resting state networks obtained from the IC after the process of

GICA resulted in identification of S-ICs and N-ICs. After the identification of S-ICs

proper recognition of the functional network is done carefully via human visual and

intellectual input. Some of the manual labels of the IC are reported next.
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Figure 3.2: The label identified for this IC through template matching is visual
network. But this IC is noise as the component is scattered to CSF and white matter
and also the power ratio of low frequency to high frequency (> 0.1 Hz) of the signal

is very low.
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Figure 3.3: The label identified for this IC through template matching is default
mode network. The component represents a network as most of the power of the
activated region lies below the 0.1 Hz frequency range. This IC is labelled incorrectly

as the component is lying in the occipital lobe. Therefore it is a visual network.
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Figure 3.4: The label identified for this IC through template matching is default
mode network. The component represents a network as most of the power of the
activated region lies below the 0.1 Hz frequency range. This IC is Correctly Labelled.
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Figure 3.5: The label identified for this IC through template matching is executive
control network. The component represents a network as most of the power of the
activated region lies below the 0.1 Hz frequency range. This component is incorrectly
labelled. It is DMN as most of the component is situated in the posterior cingulate

cortex.
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Figure 3.6: The label identified for this IC through template matching is sensori-
motor network. But this IC is noise as the component is scattered to CSF and white
matter and also the power ratio of low frequency to high frequency (> 0.1 Hz) of the

signal is very low.



Chapter 4

Proposition of the 3-D CNN

Framework

4.1 Development of Dataset

The dataset for the training of the deep learning model is developed from the fMRI

data downloaded from the PCP (Preprocessed Connectomes Project) via NITRC web-

site (mentioned in chapter 2). The independent components were extracted from the

dataset using ICA and the functional networks and artifacts were separated using the

rules mentioned in chapter 3.

The template figures used for the reference during the manual labelling includes Figure

4.1 alongwith Figure 3.1. The following figure shows the network assignment of parcels

using an independent dataset, the Human Connectome Project (HCP: 100 unrelated)

(Essen et al., 2013). 14 functional networks were identified through network assignment

of each parcel using Generalized Louvain method for community detection. The iden-

tified functional network topology replicated the spatial mappings of several previously

published network partitions (Gordon et al., 2014; Power et al., 2011; Thomas Yeo

et al., 2011) (Schultz et al., 2017).

22
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Figure 4.1: Resting-state fMRI data was used to create networks for visual inter-
pretation purpose using a community detection algorithm. This resulted in a total of
14 networks. Color indicates the network assignment for each parcel (Schultz et al.,

2017).

These networks then were separated into individual 3D images from the 4D form using

MATLAB(2019). All the individual functional networks were then grouped together

according to the functional networks they represent in separate folders. The folder

names represent the labels for the images contained in them. The input data to feed

into the 3D-CNN framework is then created using the imageDatastore function of the

MATLAB(2019) and accordingly 60% of the data is selected for network ’training’

purpose and 40% of the data is left for ’validation’ purpose.

4.2 3-D CNN Structure

The studies on automation using machine learning (ML) have shown that a diverse

number of complex features can be learnt using deep learning CNNs (Zhao et al.,

2018) which can be trained in either supervised or unsupervised fashion according to

the problem. However, most of the previous researches related to CNN are 2D-centric,
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which most of the time is not optimal for 3D image representation as it may miss the 3D

structural information present in the volumetric data. In this work, an improved fully

3D CNN framework of MATLAB(2019a) is used to train the CNN that aims to classify

and recognize RSNs reconstructed by Independent Component Analysis method. This

3D convolutional architecture can well extract 3D structural information as intrinsic

features. The proposed 3D CNN structure is summarized in Fig. 3. The details of the

layers are as follows:

Figure 4.2: Structure of 3D CNN used in the work.

4.2.1 Convolutional Layers

The convolutional layers of the proposed CNN is represented as C(f,d,s), where f is the

number of filters, also the number of 3D feature maps after convolution; d is the size

of the cubic filter and s is the stride. After each convolutional layer a leaky rectified
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linear unit (ReLU) as activation unit is used with scaling 0.01. After the training of the

CNN, RSNs-specific filters were obtained for each convolutional layers. All the filters

were initialized at the beginning such that when each filter slides over the image they

extracts certain features from it using convolution. Thus they form feature maps from

each extracted feature. The consecutive layers extracts features in the same way from

previous layer’s feature maps. After the back propagation in each cycle the weights

gets updated to extract the most useful features.

4.2.2 Pooling Layers

A pooling layer is used to reduce or down sample the convoluted filters feature maps.

By having less spatial information there is a gain computation performance; it also

means less parameters, so less chance to over-fit and gets to utilize the translation

invariance property of pooling layers (Scherer et al., 2010). Due to this the global

shifts in preprocessing steps (such as image registration) and individual shape and size

variability of RSNs can be accounted for. This is one of the major advantages of 3D

CNN for automatic and robust recognition of RSNs. In this work, a max pooling layer

with pooling size of 2 was taken.

4.2.3 Fully Connected Layer and Output Layer

The two layers are functioning as the classification/recognition element in the 3D CNN

framework. With well-extracted features from the feature maps as input, 256 nodes

were selected for fully connected layer. The output layer contains 11 nodes, each of

which uses SoftMax action function to predict and classify the resting state network.
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Results and Discussion

The performance of the 3D CNN model is discussed in this chapter. After the training

of the CNN structure the values of weights and biases were updated so that 3d filters

can be arranged to identify the independent components with great accuracy. The

performance of this work is then evaluated and compared with other techniques such

as template matching (correlation scores) and past works.

5.1 Training of 3D CNN

The proposed model was compiled and trained using MATLAB(2019a) software. The

dataset consists a total of 3261 NIFTI format 3D images of independent components

extracted from individual fMRI scans. Each image was around of 1.03 MB in size and

the total size of the dataset was 3.29 GB. The weights and biases for the convolutional

filters were randomly initialized as per the protocol of default options for training the

CNN in MATLAB. The 3D CNN structure was trained using the Stochastic Gradient

Descent optimizer with momentum (default is 0.9). A batch size of 100 images was

selected. The base learning rate was taken to be 0.001 with a learn rate drop factor of

26
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0.95. The model was trained on CPU (Intel(R) Xeon(R) E5-1650 v3 16 GB memory)

for 40 epochs.

The 3261 independent components were categorized in a total of 10 large scale func-

tional brain networks and 1 artifacts or noise category. The functional brain networks

accounted in this work are as follows: Auditory network, Basal Ganglia region/network,

Default mode network, Dorsal attention network, Frontoparietal network, Language

network, Precuneus region/network, Sensorimotor network, Ventral attention network

and Visual network.

5.2 Results

With the fully 3D trained CNN using the data formed using the dataset from the FCP

an accuracy of 97.55% is achieved. Out of the 3261 3D images 40% were used to

validate the CNN model. So, the proposed 3D CNN model successfully recognised

1272 images of 1304 total images. The CNN model showed great performance in the

identification and recognition of the functional networks extracted using ICA. For the

training purpose the dataset not only contained the functional networks spatial maps

but also the artifacts (or noise) components so that it can segregate the S-ICs from the

N-ICs well.

The training time-line of the CNN structure using MATLAB(2019a) is displayed in

figure 5.1 and table 5.1. The training of the CNN network almost took 43 minutes in

17 epochs to train itself for the best performance needed as can be seen in table 5.1.
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Figure 5.1: Training Progress of the CNN model
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Table 5.1: Learning Progress

Epoch Time
Elapsed
(hh:mm:ss)

Mini-batch
Accuracy

Validation
Accuracy

Mini-batch
Loss

Validation
Loss

Base
Learning
Rate

1 00:00:44 4.00% 30.37% 2.4128 2.3525 0.0010

3 00:06:54 73.00% 1.0714 0.0010

5 00:11:14 91.00% 88.57% 0.3049 0.3371 0.0010

6 00:13:44 94.00% 0.1658 0.0010

8 00:19:58 98.00% 0.0745 0.0010

9 00:21:48 96.00% 95.32% 0.0909 0.1415 0.0010

11 00:26:48 100.00% 0.0184 0.0009

13 00:32:23 99.00% 97.32% 0.0319 0.0794 0.0009

14 00:33:38 100.00% 0.0083 0.0009

16 00:39:51 100.00% 0.0061 0.0009

17 00:42:55 100.00% 97.62% 0.0054 0.0770 0.0009

19 00:46:38 100.00% 0.0064 0.0009

22 00:53:25 100.00% 97.47% 0.0062 0.0785 0.0008

24 00:59:36 100.00% 0.0027 0.0008

26 01:03:53 100.00% 97.62% 0.0021 0.0748 0.0008

27 01:06:21 100.00% 0.0017 0.0008

29 01:12:33 100.00% 0.0017 0.0008

30 01:14:21 100.00% 97.55% 0.0012 0.0774 0.0008

32 01:19:18 100.00% 0.0018 0.0007

34 01:24:50 100.00% 97.62% 0.0017 0.0775 0.0007

35 01:26:04 100.00% 0.0013 0.0007

37 01:32:15 100.00% 0.0009 0.0007

38 01:35:19 100.00% 97.47% 0.0015 0.0795 0.0007

40 01:39:02 100.00% 0.0013 0.0007

40 01:40:51 100.00% 97.55% 0.0017 0.0804 0.0007
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The convolutional filters after the completion of the training of CNN structure got

capable of successfully identifying and recognizing the independent components given

as input to the neural network. These filters extracted the specific 3D structural

information from the input ICs of fMRI images. The value of the weights of filters

stores the information about the edges, surfaces and volumes. The weights of the

filters were updated using the leaky ReLU activation function to get smooth output.

The CNN structure not only featured out the surface and volumetric information but

also the spatial information as the presence of different functional components is based

of specific brain regions.

A visual approach of the trained RSNs-specific convolutional filters was taken for the

better understanding of the CNN framework. Layer 1 (Figure 5.2) contains 32 different

types of filters having a size of 7 x 7 x 7. Each filter convolves with the input image

to extract feature maps from it. Layer 2 (Figure 5.3) contains 32 different types of

filters having a size of 5 x 5 x 5. Each filter from this layer convolves simultaneously

with previous layer’s all feature maps to extract new feature maps for the current layer.

Layer 3 (Figure 5.4 and 5.5) contains 64 different types of filters having a size of 3 x 3

x 3. Each filter from this layer also extract feature maps using all feature maps from

previous layer.
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Figure 5.2: 3D filters of Convolutional Layer 1
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Figure 5.3: 3D filters of Convolutional Layer 2
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Figure 5.4: 3D filters of Convolutional Layer 3
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Figure 5.5: 3D filters of Convolutional Layer 3
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The 3D CNN structure while successfully recognizing the various independent com-

ponents, correctly labelled the previously incorrectly labelled components using the

correlation scores. The CNN structure was able to successfully recognize the minute

spatial differences between the functional networks which criteria is majorly lost in

correlation and statistical techniques. In statistical methods the recognition of the

noise components presents itself to be difficult as the artifacts are not region specific

and or shape and sizes. This problem is majorly taken care of with the use of CNN

architecture. Some of the ICs correctly recognized by CNN model are listed below.

Figure 5.6: A component which was labelled as an auditory network using template
matching is correctly labelled as a language network using the CNN model

Figure 5.7: A component which was labelled as a frontoparietal network using
template matching is correctly labelled as a DMN using the CNN model
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Figure 5.8: A component which was labelled as a language network using template
matching is correctly labelled as a frontoparietal network using the CNN model

Figure 5.9: A component which was labelled as a visual network using template
matching is correctly labelled as a frontoparietal network using the CNN model

Figure 5.10: A component which was labelled as a functional component using
template matching is correctly recognized as noise using the CNN model
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Figure 5.11: A component which was labelled as a functional component using
template matching is correctly recognized as noise using the CNN model

Figure 5.12: A component which was labelled as a functional component using
template matching is correctly recognized as noise using the CNN model
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To make the CNN model more robust and precise it is also trained with artifact com-

ponents (N-ICs) so that it does not only identify the functional components correctly

but also successfully segregate the noise and signal components. This approach turned

out to be very successful as it makes the process of identification of components more

automatic and human error-free. This is one of the drawbacks of the statistical ap-

proaches of automatic labelling as these approaches also recognize and label the noise

components based on their output scores (ex. z - scores). Although CNN approach

is very promising in the identification of the noise components it is still a challenging

issue to segregate the RSNs and artifactual components as these do not have a defined

pattern or structure.

To test the universality of the trained fully 3D CNN model it is tested on a differ-

ent datatset from the ones used to train the model. The data was also taken from

the preprocessed connectomes project (PCP). The scans gathered at Carnegie Mellon

University, preprocessed using CCS protocol at 1000 functional connectomes project

(FCP) website were used to test the robustness of the proposed CNN model. The scans

consists of a total of 27 people (14 ASDs and 13 TCs) in the age group of 19 - 40. The

independent components of order 100 were extracted using the GICA functionality of

GIFT toolbox. The mean of the ICs of the group is taken for the testing of the neu-

ral network in identification and recognition of the functional networks. The network

showed a remarkable performance in correctly recognizing the networks as noise or

functional networks and identifying the correct functional networks with an accuracy

of 95.83%.

Some of the networks were deliberately labelled wrong and some of the networks were

identified false during the manual labelling process. The neural network not only

identified purportedly wrongly labelled components successfully but also corrected the

misidentified components.



Chapter 5. Results and Discussions 39

Figure 5.13: Resting State Network manually misdentified as DMN correctly rec-
ognized as Visual Network by 3D CNN model.

Figure 5.14: Resting State Network manually misidentified as sensorimotor net-
work is correctly identified as dorsal attention network by 3D CNN model.

Figure 5.15: Resting State Network deliberately labelled as frontoparietal but is
correctly identified as ventral attention network by 3D CNN model.
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Conclusion and Future Work

The traditional technique used to identify the resting state networks (RSNs) was overlap

based method also known as template matching. In recent years various machine

learning techniques were also reported to recognize the RSNs. Earlier 2D CNN learning

was approached and then recently 3D CNN learning was approached (Zhao et al., 2018).

The reported accuracy with overlap based method was found out around 85% (Zhao

et al., 2018) and the voxnet based 3D CNN model achieved an accuracy of 94.61%

(Zhao et al., 2018). In this work the proposed 3D CNN model achieved an accuracy of

97.55% and also was able to recognize the noise components effectively. In addition to

this the model’s robustness is tested with different dataset and found out to performed

very well. It is concluded that the CNN based machine learning techniques outperform

the traditional methods of identification and segregation of RSNs. Despite a great

performance of the proposed CNN framework, however, there also exist challenges and

limitations to it. First, the training datset preparation is a difficult issue for training the

CNN networks. As can be seen, the RSNs would have to be manually labelled before

it can be used for the training purposes which is a very time consuming process to

manually label thousands of functional network maps, among which 40 - 70 % of them

are RSNs. Also, there always lies unavoidable manual labelling mistakes and inter-rater

variability of labels. For these problems a reliable and fully or semi-automated CNN

40
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networks should be explored in the near future to accommodate larger datesets and

improved training accuracy.

Secondly, only large scale brain networks were considered in this work which is a test-

ing platform for the proposed 3D CNN framework. As the understanding of cortical

associations and the activation of brain region increases the accuracy of resting state

networks labelling increases. In the future, more number of functional networks must

be incorporated in the building of a more efficient and insightful CNN network as hun-

dreds of networks are already found out in the researches and large scale neuroimaging

projects (Zhao et al., 2018).

Finally, this deep learning approach gives a way towards the speed and automation

(free from human error) of recognition of resting state networks which would lead to

a better understanding of altered brain networks in degenerative brain diseases and

disorders.
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