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Abstract

Information regarding licensed primary user (PU) space positioning can allow en-

abling of several important attributes in cognitive radio (CR) networks such as intelligent

location-aware routing, improved spatio-temporal sensing, along with aiding spectrum

policy enforcement. In this work, the issue of PU location estimation in presence of

CRs which are outlier is dealt with. This is an noteworthy problem to address practi-

cally as in many real-world scenarios the CRs reports unreliable information. Therefore,

firstly the accuracy that PU localization algorithms can achieve by jointly utilizing di-

rection of arrival (DoA) and received signal strength (RSS) measurements is considered

by evaluation of Cramer-Rao Bound (CRB). In past research, CRB for DoA-only and

RSS-only localizationialgorithms are evaluated separately and estimationierrorivariance

of DoA is assumed to be independent of RSS. In this work, for jointiRSS and DoA-based

PU localizationialgorithms, CRB is evaluated which is based on mathematical model in

which DoA is dependent on RSS. The bound is then used in futher work to examine the

performance of PU localization algorithms and impact of number of CRs is discussed.

CRB for uniformirandomiCR deployment is also derived and studies are performed to

find out number of CRs tightly approximate integration of CRB for fixed CR placement

by asymptotic CRB.

Following that statistics techniques are applied on squared range measurements and

two different methods are implemented for solving the task of PU localization in presence

of outlying CRs. The first approach is efficient in terms of computational complexity, but

only objective convergence is guaranteed theoretically in that approach. Contrary to that,

whole-sequence convergence is established for second method . In order to take benefits of

both the approaches, a hybrid algorithm is developed by integrating both the approaches

that offers computational efficiency along with whole-sequence convergence.Simulations

show that robust methods meet the CRB for large number of CRs. For small number of

CR measurements, the implemented robust methods does not achieve CRB but performs

better than other localization methods implemented in this work.
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Chapter 1

Introduction

Cognitive Radio (CR) is one of the approaches which promises to utilize the scarce RF

spectrum resources in a efficient manner [2]. In this respect, information regarding spec-

trum occupied with respect to space, frequency, and time which is precise and timely is

necessary for allowing CR for using spectrum in a opportunistic manner and for avoidance

of interference to primary users (PU) [3]. Particularly, knowledge about PU position could

help to enable several important attributes in CR networks including intelligent location-

aware routing, improved spatio-temporal sensing, as well as aiding in enforcement of

spectrum policies [4].

The task of PU localization in CR networks differs from localization in other appli-

cations such as Global Positioning System (GPS) and Wireless Sensor Networks (WSN),

because of following reasons. Firstly, PU does not communicate or cooperate with CRs as

they use spectrum bands of PU opportunistically. So, limited information regarding PU

signalling, such as modulation scheme or transmit power, is known by CRs. Therefore,

passive localization methods can be used. Secondly, as detection and localization of PUs

by the CRs is required to be done at a very low SNR throughout the whole coverage

area for avoiding interfering to primary user, the number of CRs needed is large and it

is necessary for CRs to cooperate among themselves.

1.1 Background and Literature Survey

The localization problem occurs in various areas such as navigationisurveillance,iand

acoustics. There are various methods for localizing based on different types of measure-

ments such as time-of-arrival (ToA), squared-range (SR), direction-of-arrivali(DoA),itwo-

wayitime-of-flighti(TW-ToF), and received-signal strength (RSS).
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Past researches can be classified to different categories depending upon type of mea-

surement exchanged among CRs to get the estimate of the location [5]. RSSibased al-

gorithms made use of receivedipower measured from PU to provide location estimates

at low computational and hardware complexity. TDoA based algorithms give location

estimate using differences of time among multiple reception of signal that is transmitted.

They are unsuitable for localization in CR networks as perfect synchronization among

CRs is required in TDoA-based algorithms. DoA based algorithms make usage of esti-

mates of target DoA, which is observed at different receivers, in order to obtain estimates

of location.

Localization using range and range difference are considered in [6]. Popular DoA

fusion algorithm includes Stansfield algorithm [7] and Maximum Likelihood (ML) [8] and

both of them provides different trade-off between complexity and complexity. Weighted

version of DoA fusion algorithm improves the accuracy of localization [8]. The weight

is generally estimated by error variance of DoA measurement, which is acquired using

RSS [9]. ToAiestimationierror is modeled as Cauchy-Lorentzidistribution in the method

implemented in [10]. In [11], robust statistics is exploited by usage of position of subset of

nodes for localization of sensors in a network. Authors in [12] try to get location estimates

using TW-ToF by minimizing worst-caseilikelihoodifunctioniand employing semidefinite

relaxation.

In this dissertation, the task of PU localization is examined. In CR networks, there

is a possibility that some CRs might report incorrect information maliciously or unin-

tentionally. This generally occurs due to physical obstruction of the scene, low battery,

network failures, and attackers. Thus, there should not be simple aggregation of mea-

surements provided by sensor nodes by the processing node. It will be better to localize

the PU based on reliable measurements and disregard the outlier measurements.

In the present work, performance of different localization algorithms is compared

with respect to number of CRs and their achievable accuracy is obtained using CRB,

which lower bounds estimation accuracy for an estimator which is unbiased. The CRB

evaluation using RSS-only localization is well studied in [5] which makes assumption of

correlated and independent shadowing channels. The DoA-only CRB is well studied in

various papers [13], but all of them have assumed that estimate of DoA from CRs are sub-

jected to independent and identically distributed gaussianierrors having zeroimean and

fixedivariance. As DoA estimationierrorivariance is dependent on RSS and other factors

(e.g. arrayiorientationierror) [9], therefore assuming it to be fixed result in inaccurate
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derived bounds.

In this dissertation, the primary objective is localizing a single PU when range mea-

surements of outlier is present cooperatively. The contributions of this dissertation are

summed as follows. Firstly, CRB of jointiRSS and DoA-basedilocalization, considering

interdependence of RSS and DoA, is derived. The CRB is evaluated for MUSIC algo-

rithm and optimal DoA estimator, where the error is provided by CRB of DoA estima-

tionierrorivariance. Hence, derived CRB helps in providing ultimate achievable accuracy.

Next, practical localization algorithm (WCL and W-Stansfield) is implemented to show

how close the CRB can be achieved. Then, two different methods are implemented for

finding solution of localization issue in presence of outliers. In the first algorithm, the pro-

posed localization problem is converted to GTRS [14], based of the IRLS. Numerical sim-

ulations infers that IRLS method provides objective convergence which is fast but in this

algorithm whole-sequence does not converges. The second method is globallyiconvergent,

but requires more time to converge. By combining these two method, a hybridimethod

is implemented having desired attributes, such as whole-sequenceiconvergence requiring

less number of iterations.i
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Chapter 2

JointiCRBs Derivation For Given

CR Placement

2.1 System Model

N CRs are assumed to cooperate to localize singleiPU. 2-dimensional location of the PU

and nth CR is denoted as `P = [xP , yP ]T and `n = [xn, yn]T , respectively. All locations are

fixedi in the observation period, and CR locations are defined. RSS and DoA are available

measurements at CRs. RSSimeasurement is modelled as ψ̂n , PT
c010−sn/10

dγn
Watt at the

nth CR, where PT is PUitransmitipower, c0 is averageimultiplicativeigaini(constant) at

reference distance, dn = ‖`n − `P‖ is the euclidean distance between the PU and nth CR,

γ is pathilossiexponent, and 10−sn/10 is randomivariable that reflectsishadowing. The RSS

is generally expressed in dBm using the given transformation φ̂n = 10 log10 (1000ψn). The

result is expressed as:

φ̂n = 10 log10 (1000PT c0)− 10γ log10 dn − sn , φn − sn (2.1)

The collection of RSSimeasurements of all CRs is denoted as φ̂ =
[
φ̂1, φ̂2, . . . , φ̂N

]T
. The

conditional distribution of φ̂ (for given `P ) is φ̂ ∼ N
(
φ,Ωs

)
, where φ =

[
φ1, φ2, . . . , φN

]T
and Ωs is covariance matrix of the collections of shadowing variables s = [s1, s2, . . . , sN ]T

, given by {Ωs}mn = σ2
se
−‖`m−`n‖/XC , where Xc denotes correlation distance within which

there is correlation of shadowing effects among nodes. The DoA of PU at nth CR is

expressed as θn , arctan
(
yP−yn
xP−xn

)
, ∠ (`P , `n). CRs perform signal processing tech-

niques on arrays, such as MUSIC [19], to obtain DoA estimate. The estimated DoA

is generally modelled as θ̂n , θn + vn, where vn ∼ N (0, σ2
n) and σ2

n is DoA esti-

mationierrorivariance. The collections of DoAimeasurements of all CRs at the fusion
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centre is denoted as θ̂ =
[
θ̂1, θ̂2, . . . , θ̂N

]
. Two differentimodelings of the DoA estima-

tionierrorivariance is considered, using MUSIC algorithm and CRB. The CRB of the

DoA estimation errorivariance for the unbiased DoAiestimators using an arbitraryiarray

response is presented in [8, Sec. IV, Eqn. 4.1], the resultant for the ULA is given by [16,

Sec. III-B, Eqn.20].

σ2
n,CRB =

1(
κ cos θ̃n

)2 6

NsNa (N2
a − 1) ρn

(2.2)

where κ is a constant which is determined by signaliwavelength and arrayispacing, Na

is number of antennas, Ns is number of samples, θn is arrayiorientation with respect to

incomingiDoA expressed as θ̃n , θn − θn, where θ̃niis orientation of nth ULA, and ρn is

SNR given by ρn = ψ̂n/PM , where PM is measurementinoise power. Using definition of

SNR, (2.2) can be represented as:

σ2
n,CRB =

6PM
κ2NsNa (N2

a − 1)

1

ψ̂n

1

cos2 θ̃n

= βfCRB

(
φ̂n

) 1

cos2 θ̃n

(2.3)

where fCRB

(
φ̂n

)
, 1

ψ̃n
and β , 6PM

κ2NsNa(N2
a−1)

. The DoAiestimate obtained from

MUSIC are, unbiased,iasymptotically in sampleisize and Gaussianidistributed with error

variance provided by [8, Sec. III-B, Eqn. 3.11]. The estimationierrorivariance making

use of ULA is expressed as [16, Sec. III-B, Eqn. 21]:

σ2
n,MU =

1(
κ cos θ̃n

)2 6

NsNa (N2
a − 1) ρn

(
1 +

1

Naρn

)

= βfMU

(
φ̂n

) 1

cos2 θ̃n

(2.4)

where fMU

(
φ̂n

)
, ψ̂n+(PM/Na)

ψ̂2
n

. In PU localization problem, RSS and DoAimeasurements

are used to obtain PU location estimate ̂̀P , [x̂p, ŷp]
T . The RMSE of the location esti-

mate is given by RMSE ,

√
E
[∥∥∥̂̀P − `P∥∥∥2]. It is assumed that narrow-band signals

from farifielditransmitters are propagated via single-path channel, thus DoAimeasurement

and fusion are practical and possible.

2.2 JointiCRB Derivation For Fixedi CR Deployment

In this module, jointiCRB and correspondingibound oniRMSE for fixedi CRiplacement

is derived, where DoAiestimates are derived from both optimaliestimator andiMUSIC
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algorithm. CRBiandiRMSE for RSS-onlyilocalization is derived as by-product. The

covarianceimatrix of unbiasediestimation of PU locations ̂̀P , obtained using RSSiand

DoAias measurements, is lower-boundediby theiCRB:

Ω̂̀
P
, E

[(̂̀
P − E

[̂̀
P

])(̂̀
P − E

[
ˆ̀
P

])T]
≥ F−1 (2.5)

where Fiis 2× 2 FisheriInformationiMatrix (FIM) given by:

F = −Eθ̂,φ̂

[
∂2

∂`2P
log p

(
θ̂, φ̂|`P

)]
(2.6)

Therefore, RMSEiis bounded byiRMSE ≥
√
{F−1}11 + {F−1}22 where ijth element of

matrix X is denoted by {X}ij. The standard decomposition of conditionaliprobability

p
(
θ̂, φ̂|`P

)
= p

(
θ̂|φ̂, `P

)
p
(
φ̂|`P

)
is used to decompose FIM as:

F =

{
−Eθ̂,φ̂

[
∂2

∂`2P
log p

(
θ̂|φ̂, `P

)]}
+

{
−
{
−Eφ̂

[
∂2

∂`2P
log p

(
φ̂|`P

)]}
, Fθ̂|φ̂ + Fφ̂

(2.7)

It should be noted that Fφ̂ is FIMifor using onlyiRSS for localization of PU and

therefore localizationiaccuracy of algorithm that use only RSSireadings is bounded by

its inverse. In rest of the work, RSS-onlyiFIM Fφ̂ is derived first and then the results

for jointiFIM F is obtained by derivation of Fθ̂|φ̂ for optimaliDoAiestimator and MUSIC

algorithm.

2.2.1 RSS-onlyiCRB

For derivation of RSS-onlyiFIM Fφ̂ the logarithmiofiPDF of φ̂ is expressed as:

log p
(
φ̂|`P

)
=− log

[
(2π)N/2 (det Ωs)

1/2
]

− 1

2
(φ̂− φ)TΩ−1s (φ̂− φ)

(2.8)

The RSS-onlyiFIM Fφ̂ is then provided by:

Fφ̂ =
1

2
Eφ̂

[
∂2

∂`2P
(φ̂− φ)TΩ−1s (φ̂− φ)

]
(2.9)

For obtaining a compact expression, we define L = [∆x,∆y]T and Λ = 1
εγ2

D2ΩSD
2 .

Therefore, the FIMiandiRMSE of PUilocalization based on RSS-only are provided by:

Fφ̂ = LΛ−1LT

RMSER,F ≥
√{

F−1
φ̂

}
11

+
{

F−1
φ̂

}
22

(2.10)

where subscriptiR,F denotes RSS-onlyibound for fixediplacement.
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2.2.2 JointiCRB Derivation Using OptimaliDoAiEstimation

In this module, jointiCRB with DoA estimation is derived which is given by optimal

estimator, using DoAierrorivariance provided by σ2
n,CRB . For derivation of conditional

FIM of DoA given RSS Fθ̂|φ̂ , logarithm of conditionaliPDF p
(
θ̂|φ̂, `P

)
is expressed as:

log p
(
θ̂|φ̂, `P

)
= log{

N∏
n=1

1√
2πσ2

n,CRB

exp

−
(
θ̂n − θn

)2
2σ2

n,CRB

}
=

N∑
n=1

{
log
(

cos θ̃n

)
− 1

2
log
[
2πβfCRB

(
φ̂n

)]

−
cos2 θ̃n

(
θ̂n − θn

)2
2βfCRB

(
φ̂n

) }

(2.11)

Therefore Fθ̂|φ̂ is provided by:

Fθ̂|φ̂ =
N∑
n=1

{
Eθ̂,φ̂

[
∂2gn
∂`2P

]
− Eθ̂,φ̂

[
∂2hn
∂`2P

]}
(2.12)

where, hn , log
(

cos θ̃n

)
and gn ,

cos2 θ̃n(θ̂n−θn)
2

2βfCRB(φ̂n)
. For obtaining compact expres-

sion of Fθ̂|φ̂ , we define P = [∆y,−∆x]T and Γ = diag (γ1, γ2, . . . , γN), where γn =

1
d4n

{
α cos2 θ̃n

dγn
+ 2 tan2 θ̃n

}
. Therefore, it can be verified that FJ,F,C = PΓPT . So, the joint

FIM and correspondingiRMSE are provided by:

FJ,F,C = PΓPT + LΛ−1LT

RMSEJ,F,C ≥
√{

F−1J,F,C
}
11

+ {FJ,F,C}22
(2.13)

where subscript J, F, C denotes jointiCRB for fixediCRiplacement using CRB of the DoA

estimationierrorivariance.

2.2.3 JointiCRB Derivation Using MUSICiAlgorithm

In this module, jointiCRB with DoA estimation provided by MUSICialgorithm, using er-

ror variance provided by σ2
n,MU is derived. The conditionaliFIM Fθ̂|φ̂ of DoAigiveniRSS is

obtained by replacement of fCRB

(
φ̂n

)
in (2.11) with fMU

(
φ̂n

)
given by (2.4). By appli-

cation of results obtained previously, Fθ̂|φ̂ = P∆PT is obtained, where ∆ = diag (δ1, δ2, . . . , δN)

and

δn =
1

d4n

{
cos2 θ̃n
β

[
c0PT e

σ2
s/(2ε)

dγn
− PM
Na

+
P 2
M

N2
a

Eφ̂

(
1

ψ̂n + PM
Na

)
] + 2 tan2 θ̃n}

(2.14)
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As RSS-onlyiFIM is not dependent on DoAiestimationialgorithm, the jointiFIM and cor-

respondingiRMSE obtained using MUSICialgorithm are provided by:

FJ,F,M = P∆PT + LΛ−1LT

RMSEJ,F,M ≥
√{

F−1J,F,M
}
11

+ {FJ,F,M}22
(2.15)

where subscript J, F,M denotes jointiCRB for fixediCRiplacement using error variance

provided by MUSIC algorithm.

2.3 JointiCRB Derivation For UniformiRandomiCR

Deployment

The RMSEibounds obtained in Section 2.2 are useful in evaluating the achievable local-

ization performance for fixed CRiplacement. For obtaining average accuracy for random

CRiplacement, ensemble averaging or numerical integration is required to be performed.

In this module, the achievable localization accuracy for uniform random placement is

discussed by deriving closed form asymptotic CRB for such case and assuming optimal

DoA estimator and i.i.d. shadowing.

Fig. 2.1. Circular model of CR Deployment [1].

It is assumed that CRs hearing PUiform a circle having radiusiR and are uniformly dis-

8



tributed in theiarea, as shown iniFig. 2.1. The CRsiare distributed independentlyiwithin

the circumference of circle, which indicates all θn’s and all dn’s are independent. Consid-

ering this scenario, distribution of θn is provided by θn ∼ U [0, 2π), and the distribution

of dn is expressed as:

pdn(r) =


2r

(R2−R2
0)
, R0 ≤ r ≤ R

0, otherwise
(2.16)

where R0 denotes guard distance required for avoiding overlapping of CRs and PU.

2.3.1 RSS-only CRB For Uniform Random CR Deployment

For RSS-onlyiFIM Fφ̂ with i.i.d. shadowing, using (2.10) it can be rewritten as:

1

N
Fφ̂ =

εγ2

σ2
sN

N∑
n=1

d−2n

 cos θn

sin θn

 [cos θn, sin θn] (2.17)

in which the fact is used that [∆xn,∆yn] = [dn cos θn, dn sin θn]. 1
N

Fφ̂ is interpreted as

ensembleiaverage of function of randomivariables θn and dn and its statisticalimean is

provided by:
1

N
E
[
Fφ̂

]
=
εγ2

2σ2
s

Edn
[
d−2n
]
I2 =

εγ2 log (R/R0)

σ2
s (R2 −R2

0)
I2

, fφ̂
(
R, γ, σ2

s

)
I2

(2.18)

where first equality is obtained from (2.17) which is based on i.i.d. distribution of θn and

dn, and Eθn
{

[cos θn, sin θn]T [cos θn, sin θn]
}

= 1
2
I2, where I2 denotes 2×2 identityimatrix.

The deviation probability of ensembleiaverage 1
N

Fφ̂ from statisticalimean 1
N
E
[
Fφ̂

]
is

provided by following theorem.

Theorem 1: (DeviationiProbability of RSS-onlyiFIM) : For δ0 > 0 ,we have

Pr
{∥∥∥ 1

N
Fφ̂ −

1
N
E
[
Fφ̂

]∥∥∥
F
> δ0

}
< 2ε2γ4

σ4
sδ

2
0N

[
1

2R2R2
0
− log2(R/R0)

(R2−R2
0)

2

] (2.19)

where ‖ · ‖ denotes Frobeniusimatrixinorm.

The intuition from Theorem 1 is that 1
N
E
[
Fφ̂

]
can be well-approximated with 1

N
Fφ̂

when value of N is large enough. For deviation probability to be less than predefined

threshold η ∈ (0, 1), the right-hand-side of (2.19) is bounded by η. Therefore, the number

of CRsirequired is:

N ≥ 2ε2γ4

σ4
sδ

2
0η

[
1

2R2R2
0

− log2 (R/R0)

(R2 −R2
0)

2

]
(2.20)
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Using this approximation, the RMSEiofiRSS-only algorithm having uniformirandom CR

placement is provided by:

RMSER,U ≥

(
2

Nfφ̂ (R, γ, σ2
s)

)1/2

(2.21)

where subscript R,U denotes RSS-onlyiCRB for uniform CRiplacement.

2.3.2 JointiCRB For Uniform Random CR Deployment

A similar procedure as used for asymptotic RSS-only CRB is applied to deriveiasymptotic

jointiCRB from F = Fφ̂ + Fθ̂|φ̂ . Fθ̂|φ̂ is first rewritten from (2.13) as:

1

N
Fθ̂|φ̂ =

1

N

N∑
n=1

{[
αd−(γ+2)

n cos2 θ̃n + 2d−2n tan2 θ̃n

]

×

 sin θn

− cos θn

 [sin θn,− cos θn]}
(2.22)

From (2.22), it is observed that 1
N

Fθ̂|φ̂ can be interpreted as ensembleiaverage of a function

of randomivariables θn and dn, with statisticalimean provided by:

1

N
E
[
Fθ̂|φ̂

]
=

1

(R2 −R2
0)

[
2 log (R/R0)

(
tan θT
θT

− 1

)
− α

2γ

(
R−γ −R−γ0

)(sin 2θT
2θT

+ 1

)
]I2

=fθ̂|φ̂
(
R, γ, σ2

s , θT , β
)
I2

(2.23)

The deviation probability of ensembleiaverage 1
N

Fθ̂|φ̂ from statisticalimean 1
N
E[F] =

1
N
E
[
Fφ̂

]
+ 1

N
E
[
Fθ̂|φ̂

]
is provided by the following theorem.

Theorem 2: (DeviationiProbability of JointiFIM): For δ0 > 0, the devia-

tion probability of jointiFIM, which is provided by (2.24), is given below, where fn ,

αd
−(γ+2)
n cos2 θ̃n + 2d−2n tan2 θ̃n.

Pr

{∥∥∥∥ 1

N
F− 1

N
E[F]

∥∥∥∥
F

> δ0

}
<

1

Nδ20

{
ε2γ4

σ4
sR

2R2
0

+ E
[
f 2
n

]
− 1

2

[
E [fn] +

2εγ2 log (R/R0)

σ2
s (R2 −R2

0)

]2}
(2.24)

N ≥ 1

ηδ20

{
ε2γ4

σ4
sR

2R2
0

+ E
[
f 2
n

]
− 1

2

[
E [fn] +

2εγ2 log (R/R0)

σ2
s (R2 −R2

0)

]2}
(2.25)

The intuition from Theorem 2 is that 1
N

F can be well-approximated with with 1
N
E[F]

when value of N is large enough. For deviationiprobability to be less than η, it is required

to boundiright-hand-side of (2.24) by η. The numberiof required CRs is thenibounded by
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(2.25). Using this approximation, the jointiFIM and correspondingiRMSE are provided

by:

FJ,U,C = N
[
fφ̂
(
R, γ, σ2

s

)
+ f ˆθ|φ

(
R, γ, σ2

s , θT , β
)]

I2 (2.26)

RMSEJ,U,C ≥

 2

N
[
fφ̂ (R, γ, σ2

s) + fθ̂|φ̂ (R, γ, σ2
s , θT , β)

]


1/2

(2.27)

where subscript J, U, C denotes jointiCRB for uniform CRiplacement using CRB evalu-

ated using DoA estimationierrorivariance.
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Chapter 3

Practical Localization Algorithms

In this dissertation work, two cooperative localization algorithms are selected to study

the achievable localization performance with respect to CRB derived in earlier chapters,

one dealing with RSS-onlyilocalization and other one dealing joint RSS/DoAilocalization.

3.1 Weighted Centroid Localization

Considering the RSS-only case, WCL is range-freeialgorithm which provides location es-

timate and has low-complexity. In this algorithm, PUilocation is estimated as weighted

average of all CR locations within the range of its transmission, where weights are de-

pendent on RSSiof each CR user. The WCLilocationiestimate is provided by:

̂̀
P,WCL =

N∑
n=1

ψ̂n`n/

N∑
n=1

ψ̂n (3.1)

WCL implemented using other weightingischeme also exists. Information about PU trans-

mit power and channel condition is not required by WCL, and it is robust to shadowing

variance as compared to range-basedialgorithms.

3.2 Weighted Stansfield Algorithm

For jointiRSS and DoA case, we consider weightediStansfieldialgorithm which is seen

to perform better compared to other DoAifusion algorithms, like maximumilikelihood

algorithm solved by iterative methods. Estimated errorivariances, which are dependent

on RSS, are weights for each DoA. The weightediStansfieldilocationiestimates is provided

12



by ̂̀P,St =
(
AT
StW

−1ASt

)−1
AT
StW

−1bSt, where

ASt =


sin
(
θ̂1

)
− cos

(
θ̂1

)
...

...

sin
(
θ̂N

)
− cos

(
θ̂N

)
 ,

bSt =


x1 sin

(
θ̂1

)
− y1 cos

(
θ̂1

)
...

xN sin
(
θ̂N

)
− yN cos

(
θ̂N

)
 (3.2)

and weighting matrix is expressed as W = diag [σ̂2
1, . . . , σ̂

2
N ] , where σ̂2

n is achieved by

replacement of true DoA θn with estimated DoA θ̂n in (2.3) or (2.4).

13



Chapter 4

Simulation Results

4.1 Simulation Settings

The basic parameter settings used in the simulations are summarized in this section. The

CRsiare placed in circle having radius R = 150m and guard region R0 = 5m which is

centerediaroundiPU with location `P = [0, 0]T and for simplicity. The power transmitted

by PU PT is set as 20dBm (100mW). The power of measurement noise PM is set as

80dBm (10pW) which provides moderateiestimate of noise. The path-loss exponent is

γ = 5 and shadowing standard deviation is σs = 6dB . Every CR is equipped with

ULA having Na = 2 antennas and Ns = 50 samples are used for each localizationiperiod.

It is assumed that arrayiorientationierror with respect to incomingiDoA follows uniform

distribution provided by θ̃n ∼ U(−π/3, π/3). Parameter π/3 is used for arrayiorientation

error as maximum orientationierror, which is π/2, leads to infinite errorivariance which

can can be validated through (2.3) or (2.4), therefore π/3 is a practical value. Each data

point in the results is achieved by averaging for 1000 CRiplacements and 2000 realization

of RSS/DoAimeasurement if applicable. In the following simulation results, theseisettings

are used unless stated otherwise.

4.2 Simulation Results

Impact of nodeidensity on localizationiaccuracy is studied. The results for WCL algo-

rithm and RSS-only CRB are presented in Fig. 4.1. Steady performance improvement

can be observed for RSS-onlyiCRB and WCLialgorithm on addition of more CRs, and

WCL algorithm maintains RMSEigap of around 10m for considerably large number of
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CRs, say 40, in comparison to RSS-onlyiCRB.

Fig. 4.1. Comparison of RMSE for RSS-onlyiCRBiandiWCLihavingivaryinginumber of

CRsiiniuncorrelatedishadowingienvironment(σs=6dB), withiuniform random deployment

in circle withiR = 150m.

i The gap is due to the fact that WCL does not make any assumption about the

information of channel condition, such as shadowing variance, while evaluation of CRB

makes use of such information. The derived jointiCRB output evaluated using optimal

DoAiestimators, Stansfield algorithm and weightediStansfieldialgorithm are shown in Fig.

4.2. The accuracy of jointiCRB and weighted Stansfieldialgorithm varies from 0.1 meters

to 1.5 meters, in comparison to accuracyirange of 5 to 25 meters for WCL and RSS-only

CRB in Fig. 4.1, and 1 to 2.5 meters for Stansfieldialgorithm, clearly indicating that by

using RSS and DoAimeasurement leads to more accurate location estimate compared to

using only RSS or DoA.
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Fig. 4.2. Comparison of RMSE for jointiCRB, Stansfieldialgorithm and weighted Stans-

fieldialgorithm havingivarying number ofiCRs in uncorrelated shadowing environment

(σs=6dB), with uniformirandom deployment in circle with R = 150m.

Accuracy of asymptotic CRBs derived in chapter 2 for uniform random CR deploy-

ment is evaluated and compared with the exact CRBs derived in chapter 4 conditioned

on specific CRiplacement. From (2.20) and (2.25) it can be observed that number of

CRs required to make asymptoticiCRB accurate is dependent on number of nodes. It

was that observed the value of R0/R plays key role in determination of required N. Thus

comparison of exactiCRBs, obtained after numericallyiaveraging over uniform random

CRiplacements, with asymptotic CRBs for R0/R=0.33, where results are shown in Fig.

4.3 and Fig. 4.4 for RSS-onlyibounds and jointibounds. For RSS-onlyibounds, asymp-

totic CRB approaches exact bounds, in that difference is less than 2.5 meters for N=40.

It should be noted that RMSE increases as R0 is increased since CRs that are closer to

PU are excluded. It can be observed from Fig. 4.4 that the approximation improves

drastically for N > 40 when R0/R=0.33.
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Fig. 4.3. Comparison of exactiandiasymptotic RMSE for RSS-onlyiCRB having vary-

inginumber of CRs in uncorrelatedishadowingienvironment(σs =6dB), for R0/R=0.33.

Fig. 4.4. Comparison of exactiandiasymptotic RMSE for jointiCRB having varying

numberiofiCRs in uncorrelatedishadowingienvironment(σs =6dB), for R0/R=0.33.

In Fig. 4.5, a comparative view of outputs for RMSE of RSS-onlyiCRB and Joint-CRB

is provided clearly depicting that as DoA estimation accuracy is significantly dependent

on RSS, and practicalialgorithms show that using both RSS and DoAiestimates helps

in providing improved localization accuracy compared to DoA alone, therefore CRB for
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Fig. 4.5. Comparative view of RMSE RSS-only CRB and Joint-CRB CRB having vary-

ing numberiofiCRsiiniuncorrelatedishadowingienvironment(σs =6dB), foriR0/R=0.33.

jointiRSS and DoA-localization is far more efficient in characterizing localizing ability of

CR network.
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Chapter 5

SR-based PU Localization

The problem of localizing source making use of range and range-difference measurements

accumulated using network of passive receiver has observed significant attention in liter-

ature due to their significance in many areas including teleconferencing, navigation, and

geophysics.

In [6], localization using range and range-difference are discussed. Therefore, in this

work, robust statistics methods are applied on squaredirangeimeasurements and two dif-

ferent methods are implemented to solve the issue of PU localization when some CRs

are outlying. The first approach is efficient in terms of computational complexity, but

only objective convergence is guaranteed theoretically in that approach. Contrary to

that, whole-sequence converges in the second method. In order to take benefits of both

the approaches, a hybrid algorithm is developed by integrating both the approaches that

offers computational efficiency along with whole-sequence convergence.

5.1 System Model

In the model used for robust PU localization in presence of outliers, the system comprises

of R CRs, with locations which is known, and location of PU is estimated by usage of range

measurement observed by CRs. The measurements are collected by a central processing

node and then the location of PU is computed. Each CR report range estimates, expressed

as ri, given by:

ri = ‖x− ai‖2 + vi, i = 1, . . . , R (5.1)

where ‖·‖2 represents Euclideanidistance, x ∈ Rn is coordinate of PU, ai ∈ Rn is location

of ith CR and vi is modelling the measurementierror. It is quite clear that n = 2 or 3 for
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our required applications .

It is assumed that measurement errors vi are independent and identicallyidistributed

random variable. For modelling the outlierimeasurements, measurement errors are as-

signed two-mode mixture PDF, which can be expressed as:

pV (v) = (1− β)N
(
v; 0, σ2

)
+ βH(v) (5.2)

Therefore, measurement errors are drawn with probability 1−β from distributionN (v; 0, σ2)

or with probability β from distribution H(v). N (v; 0, σ2) is used for modelling the mea-

surement noise for measurements which are outlier-free, which is Gaussian distribution

with zero mean and variance σ2, and H(v) is used to model the outlier errors. Hence,

probability β, also known as contaminationiratio, represents ratio of outlier measure-

ment to all the measurement. Theioutlierierroridistribution, H(v), is generally modeled

with shifted Gaussian distribution [15], Uniform distribution [16], an exponential distri-

bution [17] or a Rayleigh distribution [18].

Here, the primary goal is estimation of x by usage of measurements ri, i = 1, . . . R,

while measurementsifrom outlier CRs are disregarded. The fusion node has no knowledge

regarding number of outlier CRs and outlier measurements distribution. Moreover, a

assumption is made that all the measurements which are reported including noisy and

irrelevant measurements are non-negative. For that purpose, robust statistics is exploited

and methods are proposed to obtain the solution.
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Chapter 6

Squared Range Based Robust

Localization

In this module, robust statistics is applied to squared range measurements to develop a

localization method. Though this method is not optimum in the ML sense, the solution

to the problem can be obtained. The square-range-based least squares (SRLS) objective

can be formulated as follows [6]:

minimize
x

R∑
i=1

(
‖x− ai‖22 − r

2
i

)2
(6.1)

It is clearly evident that problemistated in (6.1) is non-convex. However, (6.1) can be

transformed into special category of optimization problem by rephrasing it as minimiza-

tion problem with a constraint provided by [6, 14] :

minimize
x,α

∑R
i=1

(
α− 2aTi x+ ‖ai‖2 − r2i

)2
subject to ‖x‖2 = α

(6.2)

It is noteworthy that α is not parameter to be set but a resultant of optimization pro-

cedure. The measurements from outlier CRs which are not reliable affect localization

accuracy significantly in this formulation. Robust statistics is used for decreasing the

sensitivity of estimator for common assumption. The robustness here expresses insensi-

tive behaviour of the estimator to minor deviations from common assumptions, which

is Gaussian distributed noise. In (6.2), β expresses deviation from this assumption.

The primary objective is dealing with unknownidistribution H(v) and to attain distribu-

tionalirobustness.

The statistical procedure must be having following attributes, as described in [19]. It

should be efficient, i.e. it must be having near optimum performance at presumed model,
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i.e., noise having Gaussianidistribution. It should be stable, i.e., it must be insensitive

to minor deviations from presumed model. Also, a catastrophe must not occur in case of

large deviation from the model or breakdown. The general method to robustize statistical

procedures is by decomposition of observed values into fitted values and the residuals [19].

In the implemented methods, it is tried to figure out residuals and re-fit them in a iterative

manner until objective function converges. Each term of (6.2) reflects residual obtained

from single CR. These residuals can be used for re-fitting observations in a iterative

manner.

Specifically, residuals are used to assign weight to each observation. A larger weight

should be assigned to an observation if it is fittedito theimodel and therefore it should

have greater role in making a decision. Taking inspiration from [20], the objective function

is defined as:

J (y,w) =
R∑
i=1

wi
(
ãTi y − bi

)2
+

R∑
i=1

ε2wi − lnwi (6.3)

where y =
[
x α

]T
, ãTi =

[
−2aTi 1

]
, bi = r2i − ‖ai‖

2, and w ∈ RR is weightivector

with wi > 0,∀i. The ε parameter is function of standardideviation ofinoise which is set

as ε = 1.34
√

3σ.

The first summation given in the objective function (6.3) represents the weighted

versioniofiobjective in (6.2). The otheriterms in (6.3) are added in such a way that leads to

development Geman-McClurei(GM)ifunction [21]. The goal of GMifunction is reduction

of the effect of largeierrors, by interpolation between `0 and `2 norm minimization [21].

The primary aim is minimization of J (y,w)ioveriy andiw. Specifically, the following

optimization problem is being solved:

minimize
y,w

J (y,w)

subject to yTDy + 2fTy = 0

wi > 0,∀i

(6.4)

where

D =

 In 0n×1

01×n 0

 , f =

 0n×1

−0.5

 (6.5)

The implemented algorithms exploits an alternative approach to update y and w. The

initialization is started by taking w
(0)
i = 1,∀i .Then at kth iteration, for updating y, the

following optimization problem is solved :

y(k+1) = arg min J
(
y, w(k)

)
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subject to yTDy + 2fTy = 0 (6.6)

In a similar manner, the updation of weights takes place as follows:

w(k+1) = arg min J
(
y(k+1),w

)
subject to wi > 0,∀i (6.7)

The above defined optimization is convex in nature and therefore, a global solution could

be achieved comfortably. Therefore, weightsiare provided by:

w
(k)
i =

1(
e
(k)
i

)2
+ ε2

(6.8)

where e
(k)
i = ãTi y

(k) − bi.

It is common to choose such weights in IRLS methods [19, 21]. In robust statistics,

the observed values are bifurcated into fittedivalues y(k) andiresiduals e(k) after every

iteration. Residuals are then used for tuning and updating the observations weights.

In case the residuals are large, i.e., ei � ε , each term of first summation in (6.3), is

tending to 1. In a similar manner, when residuals are small, each term tends to zero in

the summation. It can be inferred that large residuals observations are being minimized.

Then, two different methods are being introduced for finding solution of (6.6). In the

first method, it can be seen that (6.6) is mapped to GeneralizediTrustiRegioniSubproblems

(GTRS) [14]. Then, the exact solution at every iteration is obtained by employingiGTRS

formulation. In the second method, a gradient descent based approach is introduced

for solving the required optimization problem. Although this method is computationally

inefficient when compared to first method, it provides a number of desirable attributes.

6.1 SquarediRangeiIterativeiReweightediLeastiSquares

(SR-IRLS)iMethod

Theiproblem in (6.6) is reformulated in matrixiform as:

minimize
y

(Ay − b)TW (k−1)(Ay − b)

subject to yTDy + 2fTy = 0
(6.9)

where

A =


−2aT1 1

...
...

−2aTR 1

 , b =


r21 − ‖a1‖

2

...

r2R − ‖aR‖
2

 , (6.10)
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and W (k) is a diagonaliweightingimatrix for kth iteration and w
(k)
i is ith diagonalientry of

W (k) , i = 1, . . . R. It should be noted that in (6.9), minimization of quadratic objective

function is taking place on being subjected to quadraticiequalityiconstraint. Therefore,

this special category of optimizationiproblems are referred as GeneralizediTrustiRegion

Subproblemi(GTRS) [14]. This optimization problem is non-convex due to the equal-

ity constraint. However, it can be seen that globalisolution of GTRSiproblems can be

achieved efficiently [6, 14].

SRILS algorithm, given below, depicts the procedureito calculate theiestimate of (6.9)

using the theorems from [14].

SRILS Algorithm

Require: ai, ri for i = 1, . . . , R, ε, maximuminumber of iterationsimaxIter, and the con-

vergenceitolerance ∆

1. Compute A, b,D, and f using (6.5) and (6.10)

2. Initialize w
(0)
i = 1, ∀i, and k = 1

3. Repeat:

4. λl = max
{
−
(
ATW (k−1)A

)
ii
, i = 1, . . . , n

}
5. Find λ∗ : solve y(λ)TDy(λ) + 2fTy(λ) = 0 using a bisectionialgorithm in

interval (λl,∞) , where y(λ) =
(
ATW (k−1)A+ λD

)−1 (
ATW (k−1)b− λf

)
6. Update y : y(k) = y (λ∗)

7. Update w(k) using (6.8)

8. Until Convergence, i.e., if
∣∣J (y(k), w(k)

)
- J

(
y(k−1), w(k−1)) | < ∆ or the maximum

numberiofiiterations maxIter is reached.

On inspecting above algorithm, it is observed that matrix inversions are required for

(n + 1) × (n + 1)imatrices only, where n represents spaceidimension and is equivalent

to 2 . Therefore, the primary computational complexity of algorithm arises fromimatrix

multiplications. Therefore, the primary computational complexity of SR-IRLS algorithm

is due to number of iterations.
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Simulations prove that SR-IRLS method requires less time for solving the optimization

procedure. However, due to non-convexity, it is not guaranteed that whole-sequence of

the iterates converges .

This leads to look for a globally convergent algorithm. In next section, an new method

is discussed for solving (6.9) based on gradient descent. Then both the methods are

integrated to get to globally convergent and computationally efficient method.

6.2 SquarediRangeiGradientiDescenti(SR-GD) Method

In this section, SR-GD algorithm is discussed in order to solve optimization problem in

(6.6) which is based on gradientidescent and for which whole-sequence of iterates con-

verges and it is proven theoretically in [22]. For solving that purpose, Lipschitz continuity

of objective function gradient along with objective having a special form and constraint

are used. Simulations show that this method requires more number of iterations for

converging compared to SR-IRLS. The primary objective is to use both the methods in

order to implement a hybrid method. Taking inspiration from [22], y(k)iisiupdated at

each iteration as follows:

y(k) = arg min
y

〈
∇yJ

(
ŷ(k), w(k−1)) , y − ŷ(k)〉

+ l(k)
∥∥y − ŷ(k)∥∥2

2

(6.11)

subject to yTDy + 2fTy = 0,

where

ŷ(k) = y(k−1) + ω(k)
(
y(k−1) − y(k−2)

)
(6.12)

and l(k) is Lipschitziconstant of ∇yJ
(
y,w(k−1)) at kth iteration. Lipschitz continuity is

defined as: ∥∥∇yJ (u,w(k−1))−∇yJ (v,w(k−1))∥∥ ≤ l(k)‖u− v‖ (6.13)

It can be inferred using intuition that first term of the objective figures out the steepest

descent, while seconditerm prevents substantial changes in the magnitudeiof gradient.

The Lipschitziconstant of gradientifunction limits size of step theialgorithm and new

estimate y(k) is forced to be around prediction ŷ(k). The new prediction is calculated

using the extrapolation factor ω(k) = 1
12

√
l(k−1)

l(k)
and previous iterates [22]. w is updated

in similar manner as (6.8).

This problem is also non-convex, but whole-sequence convergence of the algorithm is

proved in [22] by exploitation of the characteristics of objective. It is easily noticeable

25



that optimization problem formulated in (6.11) is a GTRS problem. This is due to

minimization of quadratic objective subjected to a quadratic equality constraint. SR-GD

algorithm shows the steps toifinditheisolution of the localizationiproblem.

SR-GD Algorithm

Require: ai, ri for i = 1, . . . , R, ε, maximuminumberiofiiterationsimaxIter, and conver-

gence tolerance ∆ .

1. Compute A, b,D, and f using (9.5) and (9.10)

2. Initialize W (0) with identity matrix, y(−1) = y(0) = A†b, l(0) = 0, and k = 1

3. Repeat:

4. l(k) = 2
∥∥∥ATW (k−1)A

∥∥∥
F

5. ω(k) = 1
12

√
l(k−1)

l(k)

6. ŷ(k) = y(k−1) + ω(k)
(
y(k−1) − y(k−2))

7. Find λ∗ : solve y(λ)TDy(λ) + 2fTy(λ) = 0 using bisectionialgorithm in inter-

val
(
−l(k),∞

)
, where y(λ) =

(
l(k)In+1 + λD

)−1 (−ATW (k−1) (Aŷ(k)− b)+ l(k)ŷ(k)−

λf)

8. Update y : y(k) = y (λ∗)

9. Update w(k) using (9.8)

10. Until Convergence, i.e., if
∥∥y(k) − y(k−1)∥∥ < ∆ or the maximuminumberiof itera-

tions maxIter is reached.

The simulations shows that SR-GDimethod requires more iterations to obtain the

solution when compared toiSR-IRLS. This is because in SR-GD, the value ofinewiiterate

is bounded aroundiprevious iterates, which is not the case in SR-IRLS algorithm.

6.3 Squared Range Hybrid (SR-Hybrid) Method

In order to reap the benefits of SR-IRLS method fast objective convergence as well as SR-

GD whole sequence convergence, a hybrid approach is implemented in this work. To be
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precise, SR-IRLS method is first implemented and iterates are updated by steps stated in

SR-IRLS method. After the objective function converges, the steps mentioned in SR-GD

method are implemented to get conclusive solution.
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Chapter 7

Numerical Results

In this chapter, simulation results are presented to evaluate the performance of PU local-

ization methods implemented in this work. Performance of the algorithms are compared

with respect to various parameters such as RMSE, time etc. Robustness with respect

to outlier measurement error distribution of the implemented algorithms is examined. A

uniform distribution is obeyed by the outlier measurements, which models harsh environ-

ment.

The parameters used for simulation are set as follows.iThe CRs and PU are distributed

uniformly at random in a 4000× 4000m2 area. The range measurements are distorted by

AWGN having standard deviation of σ = 55m. The outlier CRs noises are distributed

uniformly inirange[−4000
√

2, 4000
√

2]. The distribution of measurementierror is defined

mathematically as follows:

pV (v) = (1− β)N
(
v; 0, σ2

)
+ βU (v;−Dmax, Dmax) , (7.1)

where U (v;−Dmax, Dmax) is uniform distribution with support [−Dmax, Dmax], which

models outlier measurements. N (v; 0, σ2) is zeroimean Gaussianidistribution having vari-

ance σ2. The performances of implemented algorithms are compared with reference to

RMSE, √
1

n
‖x− x̂‖22 (7.2)

averaged over sufficiently large number of random simulations. In this simulations, β =

0.4 i.e., 40% of the CRs are providing outlier measurements to fusion node.

From Fig. 7.1, it can be observed that the SR-based robust statistics methods perform

better as compared to the practical localization algorithms i.e. WCL and W-Stansfield

algorithm as well as from SR-LS algorithm in presence of outlying CRs. SR-hybrid
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gives the best performance among all the algorithms and converges to CRLB requiring

minimum number of secondary users (SU). Fig. 7.1 also shows that PU localization

methods accuracy increases substantially as the number of SUs increases. Moreover, it

can be clearly observed that the implemented methods tend to meet the CRB for large

number of SU.

Fig. 7.1. RMSE of localization methods against number of SUs for β = 0.4 and 500

Monte Carlo trials.

From Fig. 7.1 and Fig. 7.2, it can be inferred that the implemented SR-based ap-

proaches perform efficiently for the given simulation settings, as they are unbiased and

meet CRB .
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Fig. 7.2. Bias of localization methods against number of SUs for β = 0.4 and 500 Monte

Carlo trials..

Fig. 7.3. Timing performance of localization methods against number of SUs for β =

0.4 and 500 Monte Carlo trials.

Fig. 7.3 presents the running times of SR-based localization algorithms for different

number of SUs. It can be clearly observed that iterative methods needs more time for

computation as compared to SR-LS. It is observable in Fig. 7.3 that the running time

required by hybrid method is more when compared to SR-IRLS, but less when compared
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to SR-GD .

It is noteworthy to analyze the performances of the localization methods when range

measurements are distorted only by AWGN and no CR is reporting unreliable measure-

ments, i.e. β = 0. It is observable in Fig. 7.4, the SR-LS method outperforms other

methods in this case. There was such expectation from SR-LS method since LS methods

are developed mainly to take care of Gaussian noise, while robust SR-based methods

are developed to take care of outlier measurement. Therefore, there is trade-off between

efficiency and stability as efficiency is sacrificed for β = 0, in order to attain stable per-

formance when there is deviations from assumed model. But, it is easily noticeable that

RMSE of robust SR-based algorithms is not much higher when compared to the RMSE

for SR-LSimethod, which infers near optimum performanceifor AWGN.

Fig. 7.4. RMSEs of different algorithms in environmentiwith no outlierisensor i.e., β=0

for 500 Monte Carlo trials.
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Chapter 8

Conclusion

In this dissertation, various algorithms for PU localization in CR networks are imple-

mented and their performance is compared to each other with respect to RMSE, time

and number of SUs. First a framework is presented to examine achievable performance

of PU localization algorithms at the transmitter end in CRinetworks, which considers

the DoA is dependent on RSS. JointiCRB for fixediCR deployment is derived, for both

optimaliDoA estimator and MUSICialgorithm. Following that jointiCRB for uniform

CRiplacement is derived. Then, using jointiCRBs along with simulations results, the

effect of number of CRs on jointiCRB and practicalilocalizationialgorithms (WCL and

W-Stansfield) is examined and quantified.

Then the primary task is further extended by considering the problem of localizing sin-

gle PU when contaminated measurements from different CRs with unknowniprobability

distribution are present. For that purpose, theisquared-range objective is formulated and

exploited. In order to negate the effect of unreliable measurements and in order to find the

location estimates using outlier-free measurements, robust statistics is being used. Then

optimization procedure at hand is transformed into GTRS. Two methods(SR-IRLS and

SR-GD) and a hybridimethod are implemented to solve the problem. Simulations shows

that the robust algorithm perform better compared to the practical localization methods

and other methods implemented in this work, while providing satisfactory performance

for Gaussian noise.
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