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Abstract

Information regarding licensed primary user (PU) space positioning can allow en-
abling of several important attributes in cognitive radio (CR) networks such as intelligent
location-aware routing, improved spatio-temporal sensing, along with aiding spectrum
policy enforcement. In this work, the issue of PU location estimation in presence of
CRs which are outlier is dealt with. This is an noteworthy problem to address practi-
cally as in many real-world scenarios the CRs reports unreliable information. Therefore,
firstly the accuracy that PU localization algorithms can achieve by jointly utilizing di-
rection of arrival (DoA) and received signal strength (RSS) measurements is considered
by evaluation of Cramer-Rao Bound (CRB). In past research, CRB for DoA-only and
RSS-only localization algorithms are evaluated separately and estimation error variance
of DoA is assumed to be independent of RSS. In this work, for joint RSS and DoA-based
PU localization algorithms, CRB is evaluated which is based on mathematical model in
which DoA is dependent on RSS. The bound is then used in futher work to examine the
performance of PU localization algorithms and impact of number of CRs is discussed.
CRB for uniform random CR deployment is also derived and studies are performed to
find out number of CRs tightly approximate integration of CRB for fixed CR placement
by asymptotic CRB.

Following that statistics techniques are applied on squared range measurements and
two different methods are implemented for solving the task of PU localization in presence
of outlying CRs. The first approach is efficient in terms of computational complexity, but
only objective convergence is guaranteed theoretically in that approach. Contrary to that,
whole-sequence convergence is established for second method . In order to take benefits of
both the approaches, a hybrid algorithm is developed by integrating both the approaches
that offers computational efficiency along with whole-sequence convergence.Simulations
show that robust methods meet the CRB for large number of CRs. For small number of
CR measurements, the implemented robust methods does not achieve CRB but performs

better than other localization methods implemented in this work.
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Chapter 1

Introduction

Cognitive Radio (CR) is one of the approaches which promises to utilize the scarce RF
spectrum resources in a efficient manner [2]. In this respect, information regarding spec-
trum occupied with respect to space, frequency, and time which is precise and timely is
necessary for allowing CR for using spectrum in a opportunistic manner and for avoidance
of interference to primary users (PU) [3]. Particularly, knowledge about PU position could
help to enable several important attributes in CR networks including intelligent location-
aware routing, improved spatio-temporal sensing, as well as aiding in enforcement of
spectrum policies [4].

The task of PU localization in CR networks differs from localization in other appli-
cations such as Global Positioning System (GPS) and Wireless Sensor Networks (WSN),
because of following reasons. Firstly, PU does not communicate or cooperate with CRs as
they use spectrum bands of PU opportunistically. So, limited information regarding PU
signalling, such as modulation scheme or transmit power, is known by CRs. Therefore,
passive localization methods can be used. Secondly, as detection and localization of PUs
by the CRs is required to be done at a very low SNR throughout the whole coverage
area for avoiding interfering to primary user, the number of CRs needed is large and it

is necessary for CRs to cooperate among themselves.

1.1 Background and Literature Survey

The localization problem occurs in various areas such as navigation surveillance, and
acoustics. There are various methods for localizing based on different types of measure-
ments such as time-of-arrival (ToA), squared-range (SR), direction-of-arrival (DoA), two-

way time-of-flight (TW-ToF), and received-signal strength (RSS).
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Past researches can be classified to different categories depending upon type of mea-
surement exchanged among CRs to get the estimate of the location [5]. RSS based al-
gorithms made use of received power measured from PU to provide location estimates
at low computational and hardware complexity. TDoA based algorithms give location
estimate using differences of time among multiple reception of signal that is transmitted.
They are unsuitable for localization in CR networks as perfect synchronization among
CRs is required in TDoA-based algorithms. DoA based algorithms make usage of esti-
mates of target DoA, which is observed at different receivers, in order to obtain estimates
of location.

Localization using range and range difference are considered in [6]. Popular DoA
fusion algorithm includes Stansfield algorithm [7] and Maximum Likelihood (ML) [8] and
both of them provides different trade-off between complexity and complexity. Weighted
version of DoA fusion algorithm improves the accuracy of localization [8]. The weight
is generally estimated by error variance of DoA measurement, which is acquired using
RSS [9]. ToA estimation error is modeled as Cauchy-Lorentz distribution in the method
implemented in [10]. In [11], robust statistics is exploited by usage of position of subset of
nodes for localization of sensors in a network. Authors in [12] try to get location estimates
using TW-ToF by minimizing worst-case likelihood function and employing semidefinite
relaxation.

In this dissertation, the task of PU localization is examined. In CR networks, there
is a possibility that some CRs might report incorrect information maliciously or unin-
tentionally. This generally occurs due to physical obstruction of the scene, low battery,
network failures, and attackers. Thus, there should not be simple aggregation of mea-
surements provided by sensor nodes by the processing node. It will be better to localize
the PU based on reliable measurements and disregard the outlier measurements.

In the present work, performance of different localization algorithms is compared
with respect to number of CRs and their achievable accuracy is obtained using CRB,
which lower bounds estimation accuracy for an estimator which is unbiased. The CRB
evaluation using RSS-only localization is well studied in [5] which makes assumption of
correlated and independent shadowing channels. The DoA-only CRB is well studied in
various papers [13], but all of them have assumed that estimate of DoA from CRs are sub-
jected to independent and identically distributed gaussian errors having zero mean and
fixed variance. As DoA estimation error variance is dependent on RSS and other factors

(e.g. array orientation error) [9], therefore assuming it to be fixed result in inaccurate



derived bounds.

In this dissertation, the primary objective is localizing a single PU when range mea-
surements of outlier is present cooperatively. The contributions of this dissertation are
summed as follows. Firstly, CRB of joint RSS and DoA-based localization, considering
interdependence of RSS and DoA, is derived. The CRB is evaluated for MUSIC algo-
rithm and optimal DoA estimator, where the error is provided by CRB of DoA estima-
tion error variance. Hence, derived CRB helps in providing ultimate achievable accuracy.
Next, practical localization algorithm (WCL and W-Stansfield) is implemented to show
how close the CRB can be achieved. Then, two different methods are implemented for
finding solution of localization issue in presence of outliers. In the first algorithm, the pro-
posed localization problem is converted to GTRS [14], based of the IRLS. Numerical sim-
ulations infers that IRLS method provides objective convergence which is fast but in this
algorithm whole-sequence does not converges. The second method is globally convergent,
but requires more time to converge. By combining these two method, a hybrid method
is implemented having desired attributes, such as whole-sequence convergence requiring

less number of iterations.



Chapter 2

Joint CRBs Derivation For Given
CR Placement

2.1 System Model

N CRs are assumed to cooperate to localize single PU. 2-dimensional location of the PU
and n'" CR is denoted as £p = [zp, yp]" and £, = [x,, ya|", respectively. All locations are
fixed in the observation period, and CR locations are defined. RSS and DoA are available
measurements at CRs. RSS measurement is modelled as @n =3 PT% Watt at the
n'™ CR, where Py is PU transmit power, ¢y is average multiplicative gain (constant) at
reference distance, d,, = ||£,, — £p|| is the euclidean distance between the PU and n'* CR,
7 is path loss exponent, and 107%"/19 is random variable that reflects shadowing. The RSS
is generally expressed in dBm using the given transformation qgn = 10log; (1000¢,). The

result is expressed as:

~

¢n = 101log; (1000Prcy) — 107 1og,o dpy — 5, = @y — Sn (2.1)

) R . 1T
The collection of RSS measurements of all CRs is denoted as ¢ = [qﬁl, oo, ..., (bN} . The

conditional distribution of ¢ (for given £p ) is ¢ ~ N (0,9s), where ¢ = [¢y, by, . ... ,EN}T
and () is covariance matrix of the collections of shadowing variables s = [sq, $2,...,$ N]T
, given by {Q,} = o2e lltm=tl/Xe where X, denotes correlation distance within which

there is correlation of shadowing effects among nodes. The DoA of PU at n'* CR is

YyrP—Yn
Tp—Tp

expressed as 6, = arctan( ) £ /(lp,t,). CRs perform signal processing tech-
niques on arrays, such as MUSIC [19], to obtain DoA estimate. The estimated DoA
is generally modelled as 6, 2 6, + v,, where v, ~ N (0,02) and o2 is DoA esti-

mation error variance. The collections of DoA measurements of all CRs at the fusion



centre is denoted as 0 = 51, @\2, e ,§N]. Two different modelings of the DoA estima-
tion error variance is considered, using MUSIC algorithm and CRB. The CRB of the
DoA estimation error variance for the unbiased DoA estimators using an arbitrary array
response is presented in [8, Sec. IV, Eqn. 4.1], the resultant for the ULA is given by [16,
Sec. 111-B, Eqn.20].

a1 6
n,CRB — < n ) NsNa (Ng o 1) Dn

(2.2)
K cos 0,

where k is a constant which is determined by signal wavelength and array spacing, N,
is number of antennas, N, is number of samples, 6, is array orientation with respect to
incoming DoA expressed as én 29, —0,, where én is orientation of n** ULA, and p, is
SNR given-by p, = @n /Py, where Py is measurement noise power. -Using definition of

SNR, (2.2) can be represented as:

g et B L 1
mOEB ™ k2N, N, (@ =L} @n cos? gn
o e (2.3)
= BfcrB (%) %
cos2 6,

where forp (g@) £ ﬁ and § = W. The DoA estimate obtained from
MUSIC are, unbiased, asymptotically in sample size and Gaussian distributed with error
variance provided by [8, Sec. III-B, Eqn. 3.11]. The estimation error variance making

use of ULA is expressed as [16, Sec. III-B, Eqn. 21]:

Kk cos 0,

2 1 6 Lol
R e < ~) NgN, (N2 = 1) py, Naupn 04
| .

cos? 6,

= Bfuv (4)

where fyp <g£n> £ W In PU localization problem, RSS and DoA measurements

n

are used to obtain PU location estimate (p £ [Z,,7,)". The RMSE of the location esti-

PN 2
mate is given by RMSE £ | |E [Hép - KPH } It is assumed that narrow-band signals

from far field transmitters are propagated via single-path channel, thus DoA measurement

and fusion are practical and possible.

2.2 Joint CRB Derivation For Fixed CR Deployment

In this module, joint CRB and corresponding bound on RMSE for fixed CR placement

is derived, where DoA estimates are derived from both optimal estimator and MUSIC

5



algorithm. CRB and RMSE for RSS-only localization is derived as by-product. The
covariance matrix of unbiased estimation of PU locations Zp, obtained using RSS and

DoA as measurements, is lower-bounded by the CRB:

o, 28 (-2 [6]) (fo—2 [0]) ] 2 29
where F is 2 x 2 Fisher Information Matrix (FIM) given by:

87 -
F=-E53 [@ log p (0, Wp)] (2.6)

Therefore, RMSE is bounded by RMSE > /{F-'} , + {F-1},, where ij" element of
matrix X is denoted by {X};;. The standard decomposition of conditional probability

P (5, $\€p> =0 (5@, Ep) D (q?&]fp)is used to decompose FIM as:
F = {—Eaa {% logp </é|a),£p):| }

0? ~
+ {— {—]E(?) {% log p (q’)\ﬁp)} } & F§|$+ F$
It should be noted that [ is FIM for using only RSS for localization of PU and

(2.7)

therefore localization accuracy of algorithm that use only RSS readings is bounded by
its inverse. In rest of the work, RSS-only FIM Fj is derived first and then the results

for joint FIM F is obtained by derivation of F@@ for optimal DoA estimator and MUSIC

algorithm.

2.2.1 RSS-only CRB

For derivation of RSS-only FIM Fj; the logarithm of PDF of g/g is expressed as:

logp (QZA5|€P) = =alog [(27T)N/2 (det QS)1/2]

rr=d g (2.8)
-S@-9T (G- 9)
The RSS-only FIM Fj is then provided by:
Fo— 5 |2 G50 G-3 2.9
=3 ¢[@(¢—¢) s(¢—¢)] (2.9)

For obtaining a compact expression, we define L = [Ax, Ay]? and A = 67LQDQQSD2 .

Therefore, the FIM and RMSE of PU localization based on RSS-only are provided by:

Fj= LA'LT

RMSEp f > \/{F;I}n + {Fél}gg

where subscript R, F' denotes RSS-only bound for fixed placement.

(2.10)
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2.2.2 Joint CRB Derivation Using Optimal DoA Estimation

In this module, joint CRB with DoA estimation is derived which is given by optimal
estimator, using DoA error variance provided by o orp - For derivation of conditional

FIM of DoA given RSS Fglfﬁ , logarithm of conditional PDF p <§|$, l p) is expressed as:

TR SRR I GO

n=1 1/ 2702 opp 207 orp
N - 1 R
= Z {log (cos 9,L> ~ 3 log [QWﬂfCRB (%)] (2.11)
n=1
TN 2
cos? 8, (0 = 6

28 fcrp (én)

1ng (/é|$u €P

N———

Therefore Fg@ is provided by:

N
0%g,, 9%h,
Fos= 3 {%5s (5 | =0 5 | e

n=1

A cos? gn <§n—0n)2

where, h, £ log <cos 5,1) and g, = 28 Fonn(3)
CRB n
sion of Fgp , we define P = [Ay,—Ax]T and T' = diag (1,72, ...,7vn), Where 7, =

d% {%725" + 2tan? 577} . Therefore, it can be verified that F ;g = PI'P”. So, the joint

For obtaining compact expres-

FIM and corresponding RMSE are provided by:

F;ro=PIPT + LAT'LY

RMSEJvFvC 2 \/{F;}?,C}ll & {FJ7F7C}22
where subscript J, F, C' denotes joint CRB for fixed CR placement using CRB of the DoA

(2.13)

estimation error variance.

2.2.3 Joint CRB Derivation Using MUSIC Algorithm

In this module, joint CRB with DoA estimation provided by MUSIC algorithm, using er-
ror variance provided by o,y is derived. The conditional FIM F g of DoA given RSS is
obtained by replacement of forp (én) in (2.11) with fyp (9571) given by (2.4). By appli-

cation of results obtained previously, F5| 3= PAPT is obtained, where A = diag (6;, da, . . .

and _
5 - 1 | cos?4d, COPTe"g/ 29 Py,
T 15} d, N,
(2.14)
P (2 )iy 2wan?d
+ Nz ?Zn—l- % |+ 2tan®6,}

7
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As RSS-only FIM is not dependent on DoA estimation algorithm, the joint FIM and cor-

responding RMSE obtained using MUSIC algorithm are provided by:
F ryu = PAPT + LAT'LT

RMSEj par 2 \/{F;}?,M}u + {F rarty,

(2.15)

where subscript J, F, M denotes joint CRB for fixed CR placement using error variance

provided by MUSIC algorithm.

2.3 Joint CRB Derivation For Uniform Random CR
Deployment

The RMSE bounds obtained in Section 2.2 are useful in evaluating the achievable local-
ization performance for fixed CR placement. For obtaining average accuracy for random
CR placement, ensemble averaging or numerical integration is required to be performed.
In this module, the achievable localization accuracy for uniform random placement is
discussed by deriving closed form asymptotic CRB for such case and assuming optimal

DoA estimator and i.i.d. shadowing.

Fig. 2.1. Circular model of CR Deployment [1].

It is assumed that CRs hearing PU form a circle having radius R and are uniformly dis-

8



tributed in the area, as shown in Fig. 2.1. The CRs are distributed independently within
the circumference of circle, which indicates all 6,,’s and all d,,’s are independent. Consid-
ering this scenario, distribution of 6, is provided by 6,, ~ U[0,27), and the distribution

of d,, is expressed as:

9
Ty, o <r <R
pa,(r) = § (F=F3) (2.16)

0, otherwise

where R denotes guard distance required for avoiding overlapping of CRs and PU.

2.3.1 RSS-only CRB For Uniform Random CR Deployment

For RSS-only FIM F with i.i.d. shadowing, using (2.10) it can be rewritten as:

1 2 cos 0,
NFa = ;;N Z d? [cos B, sin 0] (2.17)

in which thefact is used that [Ax,, Ay,] = [d, cosb,,d,sinb,]. +F 3 is interpreted as

N
ensemble average of function of random variables 6,, and d, and its statistical mean is

provided by:

2 2
€y ' ev*log (R/Ry)

= Eq, |d. %1, = I

¢i| 20’? i [ g ] 2 0'2 (R2 - R%) % (218)

= fg, (R,’y, 03) I,
where first equality is obtained from (2.17) which is based on i.i.d. distribution of 6,, and
d,, and Ey_ {[cos 6,,, sin Qn]T [cos O, sin Qn]} = %Ig, where I denotes 2 X 2 identity matrix.
The deviation probability of ensemble average %F 3 from statistical mean %E [F 4 is

provided by following theorem.
Theorem 1: (Deviation Probability of RSS-only FIM) : For §, > 0 ,we have

Pe{|4¥; 4 FE[F5]| > %}

2e2~4 1 log? (R/Ro)

o362N | 2R2R2 (RLRg)?

(2.19)

where || - || denotes Frobenius matrix norm.

The intuition from Theorem 1 is that %E [F (2)] can be well-approximated with %F 3
when value of N is large enough. For deviation probability to be less than predefined
threshold n € (0, 1), the right-hand-side of (2.19) is bounded by 7. Therefore, the number
of CRs required is:

2,4 2
> 2e%y 1 log” (R/Ry) (2.20)
oidon [2R*Ry (R? — R3)?



Using this approximation, the RMSE of RSS-only algorithm having uniform random CR

placement is provided by:

1/2
2
RMSEry 2> | =——5——~ 2.21
R’“(qu;(R,fy,az)) 220

where subscript R, U denotes RSS-only CRB for uniform CR placement.

2.3.2 Joint CRB For Uniform Random CR Deployment

A similar procedure as used for asymptotic RSS-only CRB is applied to derive asymptotic
joint CRB from F = Fj + F5 . Fg 5 is first rewritten from (2.13) as:

N
1 1 o~ Pt
~Foa =% Z { o0 cos? B, 4 24, ban? |
iy (2.22)
sin 6,
X [sin Qn, — COS Qn]}
—cos b,

From (2.22), it is observed that %Fal 2 can be interpreted as ensemble average of a function

of random variables #,, and d,,, with statistical mean provided by:

%E [F%} :ﬁ [2 log (R/Ry) (tagTeT — 1)
Ty > (R —Ry") (Sig;fT + 1)]12 (2.23)

:f§|$ (R, Y, 0'3, GT, 6) IQ
The deviation' probability of ensemble average _F0| P from statistical mean —E[F] =
%E [FZJ + NE [Fm 5} is provided by the following theorem.
Theorem 2: (Deviation Probability of Joint FIM): For §, > 0, the devia-

tion probability of joint. FIM, which is provided by (2.24), is given below, where f, £
ady, 7 cos? 6, + 2d, 2 tan? 6,,.

1 €24 S 2¢v2 log (R/Ro)1?
{HNF—NE[F] ; > 50} < N(Sg {U§R2R3 +E [fn} D) {E[fn] + U?(RQ—RS> } }

(2.24)

1 e2y4 | 2¢v2log (R/Ry)1?
Nzn—(sg{m+E[fn}—§[E[fn]+ TR~ ) } } (2.25)

The intuition from Theorem 2 is that +F can be well-approximated with with +E[F]

when value of N is large enough. For deviation probability to be less than 7, it is required

to bound right-hand-side of (2.24) by n. The number of required CRs is then bounded by

10



(2.25). Using this approximation, the joint FIM and corresponding RMSE are provided
by:
FJ,U,C =N |:f<;§ (R7 Y, U?) + fg% (R7 s 0-37 eTv B)i| I, (226)

1/2

2
N [15(R,7,02) + fa3 (R, 702,07, 8)]

where subscript J, U, C' denotes joint CRB for uniform CR placement using CRB evalu-

RMSE ¢ > (2.27)

ated using DoA estimation error variance.

11



Chapter 3

Practical Localization Algorithms

In this dissertation work, two cooperative localization algorithms are selected to study
the achievable localization performance with respect to CRB derived in earlier chapters,

one dealing with RSS-only localization and other one dealing joint RSS/DoA localization.

3.1 Weighted Centroid Localization

Considering the RSS-only case, WCL is range-free algorithm which provides location es-
timate and has low-complexity. In this algorithm, PU location is estimated as weighted
average of all CR locations within the range of its transmission, where weights are de-

pendent on RSS of each CR user. The WCL location estimate is provided by:

bower =Y Unlal Y tn (3.1)
neT n=1

WCL implemented using other weighting scheme also exists. Information about PU trans-
mit power and channel condition is not required by WCL, and it is robust to shadowing

variance as compared to range-based algorithms.

3.2 Weighted Stansfield Algorithm

For joint RSS and DoA case, we consider weighted Stansfield algorithm which is seen
to perform better compared to other DoA fusion algorithms, like maximum likelihood
algorithm solved by iterative methods. Estimated error variances, which are dependent

on RSS, are weights for each DoA. The weighted Stansfield location estimates is provided

12



by ZRSt = (AgtwflAgt)_l Agtwflbgt, where

sin (51) — COS (51)

Agt = : : :
sin (@\N) — COoSs (@\N)
7 sin <§1> — 71 COS ((/9\1>
b = : (3.2)
Ty sin <§N> — YN COS (§N>
and weighting matrix is expressed as W = diag[0?,...,5%] , where 52 is achieved by

replacement of true DoA 6, with estimated DoA 8, in (2.3) or (2.4).
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Chapter 4

Simulation Results

4.1 Simulation Settings

The basic parameter settings used in the simulations are summarized in this section. The
CRs are placed in circle having radius R = 150m and guard region Ry = 5m which is
centered around PU with location £p = [0,0]7 and for simplicity. The power transmitted
by PU Pr is set as 20dBm (100mW). The power of measurement noise Py is set as
80dBm (10pW) which provides moderate estimate of noise. The path-loss exponent is
v = 5 and shadowing standard deviation is 0, = 6dB . Every CR is equipped with
ULA having N, = 2 antennas and N, = 50 samples are used for each localization period.
It is assumed that array orientation error with respect to incoming DoA follows uniform
distribution provided by 6, ~ U(— /3, 7/3). Parameter 7 /3 is used for array orientation
error as maximum orientation error, which is 7/2, leads to infinite error variance which
can can be validated through (2.3) or (2.4), therefore 7/3 is a practical value. Each data
point in the results is achieved by averaging for 1000 CR placements and 2000 realization
of RSS/DoA measurement if applicable. In the following simulation results, these settings

are used unless stated otherwise.

4.2 Simulation Results

Impact of node density on localization accuracy is studied. The results for WCL algo-
rithm and RSS-only CRB are presented in Fig. 4.1. Steady performance improvement
can be observed for RSS-only CRB and WCL algorithm on addition of more CRs, and
WCL algorithm maintains RMSE gap of around 10m for considerably large number of

14



CRs, say 40, in comparison to RSS-only CRB.
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Fig. 4.1. Comparison of RMSE for RSS-only CRB and WCL having varying number of
CRs in uncorrelated shadowing environment(o;=6dB), with uniform random deployment

in circle with R = 150m.

The gap is due to the fact that WCL does not make any assumption about the
information of channel condition, such as shadowing variance, while evaluation of CRB
makes use of such information. The derived joint CRB output evaluated using optimal
DoA estimators, Stansfield algorithm and weighted Stansfield algorithm are shown in Fig.
4.2. The accuracy of joint CRB and weighted Stansfield algorithm varies from 0.1 meters
to 1.5 meters, in comparison to accuracy range of 5 to 25 meters for WCL and RSS-only
CRB in Fig. 4.1, and 1 to 2.5 meters for Stansfield algorithm, clearly indicating that by
using RSS and DoA measurement leads to more accurate location estimate compared to

using only RSS or DoA.
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Fig. 4.2. Comparison of RMSE for joint CRB, Stansfield algorithm and weighted Stans-
field algorithm having varying number of CRs in uncorrelated shadowing environment

(0s=6dB), with uniform random deployment in circle with R = 150m.

Accuracy of asymptotic CRBs derived in chapter 2 for uniform random CR. deploy-
ment is evaluated and compared with the exact CRBs derived in chapter 4 conditioned
on specific CR placement. From (2.20) and (2.25) it can be observed that number of
CRs required to make asymptotic CRB accurate is dependent on number of nodes. It
was that observed the value of Ry/R plays key role in determination of required N. Thus
comparison of exact CRBs, obtained after numerically averaging over uniform random
CR placements, with asymptotic CRBs for Ry/R=0.33, where results are shown in Fig.
4.3 and Fig. 4.4 for RSS-only bounds and joint bounds. For RSS-only bounds, asymp-
totic CRB approaches exact bounds, in that difference is less than 2.5 meters for N=40.
It should be noted that RMSE increases as Ry is increased since CRs that are closer to
PU are excluded. It can be observed from Fig. 4.4 that the approximation improves

drastically for N > 40 when R,/R=0.33.
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Fig. 4.3. Comparison of exact and asymptotic RMSE for RSS-only CRB having vary-

ing number of CRs in uncorrelated shadowing environment (o, =6dB), for Ry/R=0.33.
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Fig. 4.4. Comparison of exact and asymptotic RMSE for joint CRB having varying

number of CRs in uncorrelated shadowing environment(os =6dB), for Ry/R=0.33.

In Fig. 4.5, a comparative view of outputs for RMSE of RSS-only CRB and Joint-CRB
is provided clearly depicting that as DoA estimation accuracy is significantly dependent
on RSS, and practical algorithms show that using both RSS and DoA estimates helps

in providing improved localization accuracy compared to DoA alone, therefore CRB for

17



~-RSS-CRB (Orig.) ~eJoint-CRB (Orig.)
® ~-RSS-CRB (Asym.) - Joint-CRB (Asym.)
~-Joint-CRB, MUSIC

»

RMSE (m)
RMSE (m)

10 2 Y 0 o & 0

Fig. 4.5. Comparative view of RMSE RSS-only CRB and Joint-CRB CRB having vary-

100 10 2 3 0 50 60 o 8 %0 100
Number of SU Number of SU

ing number of CRs in uncorrelated shadowing environment (o, =6dB), for Ry/R=0.33.

joint RSS and DoA-localization is far more efficient in characterizing localizing ability of

CR network.
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Chapter 5

SR-based PU Localization

The problem of localizing source making use of range and range-difference measurements
accumulated using network of passive receiver has observed significant attention in liter-
ature due to their significance in many areas including teleconferencing, navigation, and
geophysics.

In [6], localization using range and range-difference are discussed. Therefore, in this
work, robust statistics methods are applied on squared range measurements and two dif-
ferent methods are implemented to solve the issue of PU localization when some CRs
are outlying. The first approach is efficient in terms of computational complexity, but
only objective convergence is guaranteed theoretically in that approach. Contrary to
that, whole-sequence converges in the second method. In order to take benefits of both
the approaches, a hybrid algorithm is developed by integrating both the approaches that

offers computational efficiency along with whole-sequence convergence.

5.1 System Model

In the model used for robust PU localization in presence of outliers, the system comprises
of R CRs, with locations which is known, and location of PU is estimated by usage of range
measurement observed by CRs. The measurements are collected by a central processing
node and then the location of PU is computed. Each CR report range estimates, expressed
as r;, given by:

T’Z:||J}—CLZ||2+'UZ, 2217,R (51)

where || - ||2 represents Euclidean distance, & € R™ is coordinate of PU, a; € R™ is location

of i'" CR and v; is modelling the measurement error. It is quite clear that n = 2 or 3 for

19



our required applications .
It is assumed that measurement errors v; are independent and identically distributed
random variable. For modelling the outlier measurements, measurement errors are as-

signed two-mode mixture PDF, which can be expressed as:
pv(v) = (1= BN (v;0,0%) + BH(v) (5.2)

Therefore, measurement errors are drawn with probability 1—23 from distribution N (v; 0, o2)
or with probability 8 from distribution H(v). N (v;0,0?) is used for modelling the mea-
surement noise for measurements which are outlier-free, which is Gaussian distribution
with zero mean and variance o2, and H(v) is used to model the outlier errors. Hence,
probability 3, also known as contamination ratio, represents ratio of outlier measure-
ment to all the measurement. The outlier error distribution, H(v), is generally modeled
with shifted Gaussian distribution [15], Uniform distribution [16], an exponential distri-
bution [17] or a Rayleigh distribution [18].

Here, the primary goal is estimation of x by usage of measurements r;, = = 1,... R,
while measurements from outlier CRs are disregarded. The fusion node has no knowledge
regarding number of outlier CRs and outlier measurements distribution. Moreover, a
assumption is made that all the measurements which are reported including noisy and
irrelevant measurements are non-negative. For that purpose, robust statistics is exploited

and methods are proposed to obtain the solution.
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Chapter 6

Squared Range Based Robust

Localization

In this module, robust statistics is applied to squared range measurements to develop a
localization method. Though this method is not optimum in the ML sense, the solution
to the problem can be obtained. The square-range-based least squares (SRLS) objective

can be formulated as follows [6]:

R
minimizez (|lx — aills - rf)Q (6.1)

i=1
It is clearly evident that problem stated in (6.1) is non-convex. However, (6.1) can be
transformed into special category of optimization problem by rephrasing it as minimiza-

tion problem with a constraint provided by [6,14] :

minimize > 1, (o — 2aTx + [|al|” — r?)Q

. (6.2)
subject to ||z|]* = a

It is noteworthy that o is not parameter to be set but a resultant of optimization pro-
cedure. The measurements from outlier CRs which are not reliable affect localization
accuracy significantly in this formulation. Robust statistics is used for decreasing the
sensitivity of estimator for common assumption. The robustness here expresses insensi-
tive behaviour of the estimator to minor deviations from common assumptions, which
is Gaussian distributed noise. In (6.2), 8 expresses deviation from this assumption.
The primary objective is dealing with unknown distribution H(v) and to attain distribu-

tional robustness.
The statistical procedure must be having following attributes, as described in [19]. It

should be efficient, i.e. it must be having near optimum performance at presumed model,
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i.e., noise having Gaussian distribution. It should be stable, i.e., it must be insensitive
to minor deviations from presumed model. Also, a catastrophe must not occur in case of
large deviation from the model or breakdown. The general method to robustize statistical
procedures is by decomposition of observed values into fitted values and the residuals [19].
In the implemented methods, it is tried to figure out residuals and re-fit them in a iterative
manner until objective function converges. Each term of (6.2) reflects residual obtained
from single CR. These residuals can be used for re-fitting observations in a iterative
manner.

Specifically, residuals are used to assign weight to each observation. A larger weight
should be assigned to an observation if it is fitted to the model and therefore it should
have greater role in making a decision. Taking inspiration from [20], the objective function

is defined as:

R R
J(y,w) = Z w; (ELZ-Ty - bi)2 + Z 2w, — Inw; (6.3)
i=1 o=

where y = [ T« ]T, ELiT = [ —2al 1 ], by =12 — ||az~||2, and w € R is weight vector
with w; > 0,Vi. The e parameter is function of standard deviation of noise which is set
as € = 1.34v/30.

The first summation given in the objective function (6.3) represents the weighted
version of objective in (6.2). The other terms in (6.3) are added in such a way that leads to
development Geman-McClure (GM) function [21]. The goal of GM function is reduction
of the effect of large errors, by interpolation between ¢y and ¢ norm minimization [21].

The primary aim is minimization of 7 (y, w) over y and w. Specifically, the following

optimization problem is being solved:

mil?lliglize J(y, w)
subject to  y Dy +2fTy =0 (6.4)
w; >0,V1
where
D— L Opxa = Onx1 (6.5)
Otxn O —0.5

The implemented algorithms exploits an alternative approach to update y and w. The

initialization is started by taking w!” = 1,Vi .Then at k'" iteration, for updating 7, the

following optimization problem is solved :

(k+1)

Y =argmin J (y,w(k))
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subject to  yTDy +2fTy =0 (6.6)
In a similar manner, the updation of weights takes place as follows:

(k+1)

w =argmin J (y(kﬂ),w)

subject to  w; > 0,Vi (6.7)

The above defined optimization is convex in nature and therefore, a global solution could
be achieved comfortably. Therefore, weights are provided by:

1
fod § 2 (6.8)

2
(egk)) + €2

It is.common to choose such weights in IRLS methods [19,21]. In robust statistics,

where ") = a; y® — b,

7

(k) “and residuals e®) after every

the observed values are bifurcated into fitted values y
iteration. Residuals are then used for tuning and updating the observations weights.
In case the residuals are large, i.e., ¢; > ¢ , each term of first summation in (6.3), is
tending to 1. In a similar manner, when residuals are small, each term tends to zero in
the summation. It can be inferred that large residuals observations are being minimized.

Then, two different methods are being introduced for finding solution of (6.6). In the
first method, it can be seen that (6.6) is mapped to Generalized Trust Region Subproblems
(GTRS) [14]. Then, the exact solution at every iteration is obtained by employing GTRS
formulation. In the second method, a gradient descent based approach is introduced

for solving the required optimization problem. Although this method is computationally

inefficient when compared to first method, it provides a number of desirable attributes.

6.1 Squared Range Iterative Reweighted Least Squares
(SR-IRLS) Method

The problem in (6.6) is reformulated in matrix form as:

minimize  (Ay — b)TW* Y(Ay — b)
y (6.9)
subject to  y"Dy+2fTy =0

where
—2af 1 r? — Jlay|®

A=| + 1 |.b= : , (6.10)

—2aj 1 i~ lall”
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and W®*) is a diagonal weighting matrix for k' iteration and wgk) is 4" diagonal entry of
W® i =1,...R. It should be noted that in (6.9), minimization of quadratic objective
function is taking place on being subjected to quadratic equality constraint. Therefore,
this special category of optimization problems are referred as Generalized Trust Region
Subproblem (GTRS) [14]. This optimization problem is non-convex due to the equal-
ity constraint. However, it can be seen that global solution of GTRS problems can be
achieved efficiently [6, 14].

SRILS algorithm, given below, depicts the procedure to calculate the estimate of (6.9)

using the theorems from [14].

SRILS Algorithm

Require: a;,7; for i = 1,..., R, ¢, maximum number of iterations mazlter, and the con-

vergence tolerance A
1. Compute A,b, D, and f using (6.5) and (6.10)

2. Initialize w” =1,Vi, and k = 1

)

3. Repeat:
4. N =max {= (ATWODA) Li=1,.. 0}
5. Find \* : solve y(\)"Dy(\) + 2" y(\) = 0 using a bisection algorithm in

-1

interval (A, 00), where y(\) = (ATW(kfl)A + AD) (ATW(kfl)b — Af)
6. Update y : y* =y (\*)
7. Update w'®) using (6.8)

8. Until Convergence, i.e., if ’j (y(k), w(k)) -J (y(k‘l), w(kfl)) | < A or the maximum

number of iterations mazlter is reached.

On inspecting above algorithm, it is observed that matrix inversions are required for
(n + 1) x (n + 1) matrices only, where n represents space dimension and is equivalent
to 2 . Therefore, the primary computational complexity of algorithm arises from matrix
multiplications. Therefore, the primary computational complexity of SR-IRLS algorithm

is due to number of iterations.
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Simulations prove that SR-IRLS method requires less time for solving the optimization
procedure. However, due to non-convexity, it is not guaranteed that whole-sequence of
the iterates converges .

This leads to look for a globally convergent algorithm. In next section, an new method
is discussed for solving (6.9) based on gradient descent. Then both the methods are

integrated to get to globally convergent and computationally efficient method.

6.2 Squared Range Gradient Descent (SR-GD) Method

In this section, SR-GD algorithm is discussed in order to solve optimization problem in
(6.6) which is based on gradient descent and for which whole-sequence of iterates con-
verges and it is proven theoretically in [22]. For solving that purpose, Lipschitz continuity
of objective function gradient along with objective having a special form and constraint
are used. Simulations show that this method requires more number of iterations for
converging compared to SR-IRLS. The primary objective is to use both the methods in
order to implement a hybrid method. Taking inspiration from [22], y*) is updated at

each iteration as follows:

y" = argmin (V, 7 (5, w*Y) .y =)

(6.11)
+1® [y = P,
subject to  y? Dy + 2fTy =0,
where
Gk = k=1 4 (k) (y(k’*l) - y(k—Z)) (6.12)

and [®) is Lipschitz constant of VI (y, w(kfl)) at k" iteration. Lipschitz continuity is
defined as:
HVyj (u,'w(k_l)) — VT (v,w(k_l))” < 10|y — v (6.13)

It can be inferred using intuition that first term of the objective figures out the steepest
descent, while second term prevents substantial changes in the magnitude of gradient.
The Lipschitz constant of gradient function limits size of step the algorithm and new
estimate y*®) is forced to be around prediction §*). The new prediction is calculated
using the extrapolation factor w(k) = %\/@ and previous iterates [22]. w is updated
in similar manner as (6.8).

This problem is also non-convex, but whole-sequence convergence of the algorithm is

proved in [22] by exploitation of the characteristics of objective. It is easily noticeable
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that optimization problem formulated in (6.11) is a GTRS problem. This is due to
minimization of quadratic objective subjected to a quadratic equality constraint. SR-GD

algorithm shows the steps to find the solution of the localization problem.

SR-GD Algorithm

Require: a;,r; for © = 1,..., R, ¢, maximum number of iterations maxlter, and conver-

gence tolerance A .
1. Compute A,b, D, and f using (9.5) and (9.10)
2. Initialize W© with identity matrix, y=") = 3@ = A, 1© =0, and k = 1

3. Repeat:

o

1= 9 “ATW(k’l)A"
F
1 1(k—1)
5. w(k) = 121/ —l(k)
6. G = yE=D 4 (® (y-D) _ g2

7. Find )\* : solve y(A\)T Dy(\) + 2fTy()\) = 0 using bisection algorithm in inter-
val (—I®, 00) , where y(A) = (11,1 + AD)_I (—ATWED (AW — p) 1R gk) —
Af)

8. Update y : y® =y (\*)
9. Update w®) using (9.8)

10. Until Convergence, i.e., if Hy(k) = y(kfl)H < A or the maximum number of itera-

tions maxlter is reached.

The simulations shows that SR-GD method requires more iterations to obtain the
solution when compared to SR-IRLS. This is because in SR-GD, the value of new iterate

is bounded around previous iterates, which is not the case in SR-IRLS algorithm.

6.3 Squared Range Hybrid (SR-Hybrid) Method

In order to reap the benefits of SR-IRLS method fast objective convergence as well as SR-

GD whole sequence convergence, a hybrid approach is implemented in this work. To be
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precise, SR-IRLS method is first implemented and iterates are updated by steps stated in
SR-IRLS method. After the objective function converges, the steps mentioned in SR-GD

method are implemented to get conclusive solution.
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Chapter 7

Numerical Results

In this chapter, simulation results are presented to evaluate the performance of PU local-
ization methods implemented in this work. Performance of the algorithms are compared
with respect to various parameters such as RMSE, time etc. Robustness with respect
to outlier measurement error distribution of the implemented algorithms is examined. A
uniform distribution is obeyed by the outlier measurements, which models harsh environ-
ment.

The parameters used for simulation are set as follows. The CRs and PU are distributed
uniformly at random in a 4000 x 4000m? area. The range measurements are distorted by
AWGN having standard deviation of ¢ = 55m. The outlier CRs noises are distributed
uniformly in range[—40()0\/§7 4000\/5]. The distribution of measurement error is defined

mathematically as follows:
pv(v)=(1- BN (U§ 0, 02) + BU ;2o R ) (7.1)

where U (v; — Dyax, Dimax) 18 uniform distribution with support [—Dinax, Dmax], which
models outlier measurements. A (v; 0, 0?) is zero mean Gaussian distribution having vari-

ance o2. The performances of implemented algorithms are compared with reference to

RMSE,
1 s

—llT — 2

Vol — a3 (72)

averaged over sufficiently large number of random simulations. In this simulations, [ =
0.4 i.e., 40% of the CRs are providing outlier measurements to fusion node.

From Fig. 7.1, it can be observed that the SR-based robust statistics methods perform
better as compared to the practical localization algorithms i.e. WCL and W-Stansfield
algorithm as well as from SR-LS algorithm in presence of outlying CRs. SR-hybrid
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gives the best performance among all the algorithms and converges to CRLB requiring
minimum number of secondary users (SU). Fig. 7.1 also shows that PU localization
methods accuracy increases substantially as the number of SUs increases. Moreover, it
can be clearly observed that the implemented methods tend to meet the CRB for large
number of SU.
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900 - ‘\\ > SR-LS |
. ~ SR-Hybrid
800 "\ SR-GD
\\ - WSTAN
700 - N, WCL I
_ Seee - - CRLB
T 600 = i
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Fig. 7.1. RMSE of localization methods against number of SUs for g = 0.4 and 500

Monte Carlo trials.

From Fig. 7.1 and Fig. 7.2, it can be inferred that the implemented SR-based ap-
proaches perform efficiently for the given simulation settings, as they are unbiased and

meet CRB .
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Fig. 7.2. Bias of localization methods against number of SUs for g = 0.4 and 500 Monte

Carlo trials..
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Fig. 7.3. Timing performance of localization methods against number of SUs for § =

0.4 and 500 Monte Carlo trials.

Fig. 7.3 presents the running times of SR-based localization algorithms for different
number of SUs. It can be clearly observed that iterative methods needs more time for
computation as compared to SR-LS. It is observable in Fig. 7.3 that the running time

required by hybrid method is more when compared to SR-IRLS, but less when compared
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to SR-GD .

It is noteworthy to analyze the performances of the localization methods when range
measurements are distorted only by AWGN and no CR is reporting unreliable measure-
ments, i.e. § = 0. It is observable in Fig. 7.4, the SR-LS method outperforms other
methods in this case. There was such expectation from SR-LS method since LS methods
are developed mainly to take care of Gaussian noise, while robust SR-based methods
are developed to take care of outlier measurement. Therefore, there is trade-off between
efficiency and stability as efficiency is sacrificed for S = 0, in order to attain stable per-
formance when there is deviations from assumed model. But, it is easily noticeable that
RMSE of robust SR-based algorithms is not much higher when compared to the RMSE
for SR~-LS method, which infers near optimum performance for AWGN.
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Fig. 7.4. RMSEs of different algorithms in environment with no outlier sensor i.e., 5=0

for 500 Monte Carlo trials.
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Chapter 8

Conclusion

In this dissertation, various algorithms for PU localization in CR networks are imple-
mented and their performance is compared to each other with respect to RMSE, time
and number of SUs. First a framework is presented to examine achievable performance
of PU localization algorithms at the transmitter end in CR networks, which considers
the DoA is dependent on RSS. Joint CRB for fixed CR deployment is derived, for both
optimal DoA estimator and MUSIC algorithm. Following that joint CRB for uniform
CR placement is derived. Then, using joint CRBs along with simulations results, the
effect of number of CRs on joint CRB and practical localization algorithms (WCL and
W-Stansfield) is examined and quantified.

Then the primary task is further extended by considering the problem of localizing sin-
gle PU when contaminated measurements from different CRs with unknown probability
distribution are present. For that purpose, the squared-range objective is formulated and
exploited. In order to negate the effect of unreliable measurements and in order to find the
location estimates using outlier-free measurements, robust statistics is being used. Then
optimization procedure at hand is transformed into GTRS. Two methods(SR-IRLS and
SR-GD) and a hybrid method are implemented to solve the problem. Simulations shows
that the robust algorithm perform better compared to the practical localization methods
and other methods implemented in this work, while providing satisfactory performance

for Gaussian noise.
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