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ABSTRACT

In this work, we have characterize the low SNR capacity of Nakagami-gamma also known

as generalized-K fading channel in nats per channel use with perfect channel state in-

formation at both transmitter and receiver(CSIT-R). We have focus in Low SNR regime

because wireless systems are now operating at Low SNR to have a higher energy effi-

ciency. We have shown that Low SNR capacity of generalized-K fading channel scales as
Ω

4m
SNR log2

(
1

SNR

)
, where m is the distribution shaping parameter and Ω is defined

in terms of channel mean square as Ω =
E[x2]

k
, where k is also the shaping parameter.

Our Asymptotic Low SNR capacity follows the exact results obtained from simulation

which justify our analysis. We also provide an on-off scheme that is achieving our Low

SNR capacity results which indicates that this scheme can be practically implemented

at Low SNR. Further, we also Analyze another important parameter called energy effi-

ciency of generalized-K fading channel at Low SNR in nats per channel use per joules

and also characterize the Minimum energy per nat that is required for reliable commu-

nication.
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Chapter 1

INTRODUCTION

1.1 Overview

In wireless communication, apart from LOS (line of sight) path, there exist various non

LOS paths because of various scatterers such as trees, buildings which causes the signal

reflection, diffraction and scattering. Hence, at the receiver multiple signal components

combines. This is called as multipath propagation environment. The multiple signal

components combine at the receiver antenna to produce a composite received signal.

Multipath propagation environment leads to constructive and destructive interference

which leads to amplifies and attenuate the received signal amplitude respectively causing

the received signal power varies, this is called multipath fading. Channel coefficient

depends on attenuation and delays of different multipath components which lead to

this variation in received signal power. But in practical life situation, multipath fading

and shadowing occurs simultaneously which yields a composite/multipath shadowed

fading environment or simply composite fading environment [1]. While evaluating the

performance metrics for wireless communication systems, it is necessary to consider the

effect of both fading and shadowing. This may be particularly true for the case of slow

moving or stationary MSs environment in which receiver is unable to average out the

effects of fading.

Depending upon the nature of radio propagation environment, several distributions

are used to model them. For multipath fading, we have Rayleigh distribution, Rician

distribution, Nakagami distribution, Weibull distribution, shadowing is modelled by

lognormal distribution. Depending on the nature of fading and shadowing, we have

different multipath fading shadowing environments which are modelled by different dis-

tributions which are combinations of fading and shadowing ditributions including widely

accepted Rayleigh lognormal, Nakagami lognormal, Weibull lognormal distribution. A

problem with these composite distributions in which shadowing is modelled by lognormal

distribution is their complicated mathematical expression that make the analysis very
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difficult. An alternate approach is to approximate lognormal distribution by gamma

distribution [2]. Hence using gamma distribution, various composite distributions have

been proposed such as Rayleigh-gamma distribution or K distribution [1], Nakagami-

gamma distribution or generalized-K distribution [3], all these distributions have simpler

mathematical expression, hence analysis of shadowed fading channels becomes simpler.

Energy efficiency has become a important parameter in designing wireless commu-

nication systems, so wireless systems are now operating at Low SNR to achieve high

energy efficiency. Hence analyzing the performance metric such as capacity at Low SNR

is of practical interest in wireless communication systems. Even by operating at low

SNR one can still achieve high capacity because today wireless system are operating at

huge bandwidth.

1.2 Literature Survey

Performance Analysis of various fading channel has been studied in [4]-[17]. For an

independent and identically distributed (i.i.d.) Rayleigh fading channel, the capacity

scales linearly min(Nr, Nt) times that compared to single-input single-output (SISO),

where Nt is the number of transmit antennas and Nr is the number of receive antennas

with perfect Channel State Information (CSI) at high signal-to-noise ratio (SNR)[4]–[6].

In [7], the capacity of the SISO Rayleigh flat fading channel at low SNR is derived.

In [8], Tall have characterized the ergodic capacity of MIMO (Multiple input multi-

ple output) Rayleigh fading channels with perfect channel state information at both

transmitter and receiver at asymptotically low SNR. Ergodic capacity of Rician fading

channel has been widely investigated in order to derive a closed form expression and/or

accurate approximations in [9]–[11]. The low-SNR regime capacity of a Multiple-Input

Multiple-Output (MIMO) Rician channel has been looked at in [12], [13], assuming

no CSI-T or mean CSI, respectively. In [14], closed form expressions for capacity of

an independent identically distributed (i.i.d.) flat Rician fading channel with perfect

channel state information at the receiver, and perfect channel state information at the

transmitter (CSI-T) is derived at Low SNR and the expressions derived can be seen as

a generalization of previous works as they captures the Rayleigh fading channel as a

special case, this also characterizes the expression for energy efficiency of Rician fading

channels at low-SNR which implies that the energy required to communicate one nat of

information reliably is asymptotically very low which is in contrast with no CSI-T case

where one cannot achieve a lower energy efficiency than -1.59 dB per information bit.
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The capacity of Nakagami fading channel has been investigated at Low SNR in [15] for

a multiple antenna channel assuming no CSI-T. In [16], the ergodic capacity of MIMO

Nakagami fading channels is analysed with both uniformly an non-uniformly distributed

phases where capacity upper bound for the channel is derived and then exact expres-

sions for the low signal-to-noise ratio (SNR) capacity is derived, based on which the

impact of fading parameter m on the capacity is examined. In [17], Low SNR capacity

of Nakagami-m fading channel has beed studied and closed form expressions for the ca-

pacity are derived and the result characterized the capacity of Rayleigh fading channel

as a special case, also closed form expressions of energy efficiency of Nakagami-m fading

channel is derived.

Performance analysis of generalized-K fading channels is done in [18]-[20]. In [18], the

performance metrics of digital communication systems over generalized-K (KG) fading

channels are analyzed. Closed form expressions for the SNR statistics, the average

Shannon’s channel capacity and the bit error rate (BER) are derived. Further, the work

in [19] presented the channel capacity under different adaptive transmission policies. In

[20] the channel capacity is analysed over generalized-K fading channel with L-branch

maximal-ratio combining (MRC). The derived results are obtained in the terms of well

known Meijer G function. But no one has provide the closed form expression of capacity

of generalized-K fading channel at Low SNR.

1.3 Organization Of Dissertation

In Chapter 2, we introduced modelling of fading and shadowing in which we introduced

different fading and shadowing phenomenon. We introduced Log normal shadowing

where we study why shadowing from building terrain and trees affect the link quality

in wireless communication systems, we also discuss the approximation of lognormal dis-

tribution to gamma distribution to describe shadowing effect in satellite and terrestrial

systems and also study the advantage of using gamma distribution as an alternate to

lognormal distribution. Then we introduced composite multipath fading shadowing en-

vironment which consists of multipath fading superimposed in shadowing, in this we

discuss the approach for obtaining composite distributions which describes fading and

shadowing simultaneously and then we present various composite distributions which

are obtained from combinations of multipath fading and shadowing distributions such

as Rayleigh-lognormal distribution and then we see approximating lognormal distribu-

tion by gamma distribution in Rayleigh-lognormal distribution, we have much simpler
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composite distribution called K distribution. Then we introduced Rician-lognormal dis-

tribution which is used to describe shadowed fading environment where we also compare

Rician-lognormal and pure Rician distribution for various levels of shadowing. Then

we introduced another composite distribution called Nakagami-lognormal distribution

where we also compare Nakagami-lognormal and pure Nakagami distribution for var-

ious levels of shadowing then we see approximating lognormal distribution by gamma

distribution in Nakagami-lognormal distribution, we have much simpler composite dis-

tribution named Nakagami-gamma or generalized-K distribution, we have also plotted

generalized-K distribution for different levels of shadowing.

In Chapter 3, we have chosen a shadowed fading channel which is modelled by

Nakagami-gamma distribution also known as generalized-K distribution. We discuss

how generalized-K distribution is used to describe variety of fading and shadowing model

as its special case. Then we will evaluated the capacity of generalized-K fading channel

in nats per channel use (ncpu) at asymptotic Low SNR by assuming perfect channel

state information at both transmitter and receiver(CSIT-R). We have shown that the

capacity of generalized-K fading channel at Low SNR scales as
Ω

4m
SNR log2

(
1

SNR

)
.

We also provide an on-off scheme that is achieving asymptotic Low SNR capacity results.

Further we also characterize the energy efficiency of generalized-K fading channel in

nats per channel use per joules at Low SNR, where we concludes as SNR increases

energy efficiency decreases or correspondingly energy per nat increases and then we also

characterize the Minimum energy per nat that is required for reliable communication.

In Chapter 4, we have compare exact capacity with our asymptotic Low SNR ca-

pacity results . The exact capacity curve follows the asymptotic capacity curves which

justify our work. We have plotted the erdogic capacity for generalized-K fading channel

for different values of shaping parameters m and k. The capacity through on-off scheme

is also plotted and we see this rate matches the exact capacity curve for all SNR values.

We also plotted another important performance metrics named Energy efficiency that

characterize the performance of generalized-K fading channel and we see that asymp-

totic results are very close to the exact one. Energy efficiency through on-off scheme is

also shown which is very close to the exact energy efficiency. Chapter 5 concludes the

work.
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Chapter 2

MODELLING OF FADING AND SHADOWING

2.1 Log Normal Shadowing

In satellite and terrestrial land mobile wireless communication systems, shadowing from

building terrain and trees lead to slow variation of mean signal level which affect the

link quality. Emperical measurement shows that this shadowing can be modelled by

a lognormal distribution function for various indoor and outdoor environment [1], the

lognormal distribuion is given as

f(y) =
ξ√

2πσy
exp

[
−(ξ log y − µ)2

2σ2

]
Where y is the channel amplitude square i.e y = |h|2 where µ and σ are logarithmic

mean and logarithmic variance of y and ξ is the constant given as ξ =
10

log10
= 4.3429.

Also note theat µ and σ are in db.

It is found that log-normal distribution can also be approximated by gamma distribu-

tion of [2]. As found in [21], gamma distributions can be used as alternate to lognormal

distribution to describe shadowing effect in satellite and terrestrial systems. The fitness

of this model was proved in [21] with emperical data. The advantage of using gamma

as an substitute to lognormal distribution is that it helps to simplify various composite

multipath/shadowing models.

2.2 Composite Multipath Shadowing

A composite multipath/shadowing fading environment consists of multipath fading su-

perimposed over shadowing. While evaluating the performance analysis of wireless com-

munication systems, it is necessary to consider the effect of combination of fading and

shadowing. This is particularly true for the case of slow moving MS(mobile station) or

pedestrain environment [1] in which receiver is unable to average out envelop fading due

to multipath. This type of fading is also observed in land-satellite systems subjected to

vegetative and or urban shadowing [1].
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There are different approaches that have been suggested in literature for obtain-

ing the composite distribution (distributions describing fading and shadowing simul-

taneously). In general, the probability density function of combination of fading and

shadowing can be expressed as follows

f(a) =

∞∫
0

fA
Z

(a
z

)
f(z)dz (2.1)

Where fA
Z

(az ) is the conditional density function of amplitude of fading channel in which

average power become random due to the consequence of shadowing and f(z) is the

distribution describing shadowing effect.

Now we present various composite distributions which can be obtained from combi-

nations of various multipath fading distributions and shadowing distribution for different

composite environment.

2.2.1 Rayleigh-lognormal distribution

Suzuki [22] also proposed a composite Rayleigh/lognormal distribution to model muli-

path fading sahdowing environment. Since consequence of shadowing is that the average

power of faded signal becomes random, the conditional distribution of channel amplitude

for the case of rayleigh fading is given as follows

fA
Z

(a
z

)
=

2a

z
exp−

(
a2

z

)

Now, having this superimposed on shadowing will give rise to Rayleigh-lognormal dis-

tribution that describe composite environment and can be obtained from equation (2.1)

where f(z) is lognormal distributed.

So the combined distribution for this case can be given as

fRL(a) =

∞∫
0

2a

z
exp−

(
a2

z

)
ξ√

2πσz
exp

[
−(ξ log z − µ)2

2σ2

]
dz

.

Where subscript RL indicate that the density function is Rayleigh-lognormal.

For the channel amplitude square y, the distribution can be given as follows

fRL(y) =

∞∫
0

1

z
exp−

(y
z

) ξ√
2πσz

exp

[
−(ξ log z − µ)2

2σ2

]
dz

6



2.2.2 K distribution

The Rayleigh-lognormal density function discussed above is in integral form, no closed

form solution exists. Hence performance evaluation of wireless system under such fading

shadowed channel is very difficult. Since we have said that the gamma distribution can

be used as an alternated to the lognormal distributions. We can have simpler composite

distributions if we use gamma distribution to model shadowing effects. So Rayleigh-

lognormal distribution can be well approximated by the rayleigh gamma distribution

which is so called as a K distribution [1] which can be given as follows

fRG(a) =

∞∫
0

2a

z
exp−

(
a2

z

)
1

Γ(k)

(
k

P0

)k
zk−1e

−
(
k
P0

)
z

dz

fRG(a) =
4

Γ(k)

(
k

P0

) k+1
2

akKk−1

(√
4k

P0
a

)

Where Kk−1 is the modified Bessel function of the second kind of order k − 1.

For the channel amplitude square y, the composite distribution can be written as

fRG(y) =
2

Γ(k)

(
k

P0

)(k+1)/2

y(k−1)/2Kk−1

(√
4k

P0

√
y

)

2.2.3 Rician-lognormal distribution

In rician fading shadowing, we have Rician lognormal distribution used to describe the

coomposite fading shadowing environment. Since consequence of shadowing is average

power of fading signal is not deterministic, so the conditional density function of channel

amplitude is given as follows

fA
Z

(a
z

)
=

2 (1 +K) a

z
exp−

(
K +

(K + 1)a2

z

)
I0

(
2a

√
K(1 +K)

z

)

Now, in similar manner incuding combining with lognormal shadowing, then probability

density function can be given as

fRiL(a) =

∞∫
0

2 (1 +K) a

z
exp−

(
K +

(K + 1)a2

z

)
I0

(
2a

√
K(1 +K)

z

)

× ξ√
2πσz

exp

[
−(ξ log z − µ)2

2σ2

]
dz

7



The density dunction of channel amplitude square y is given by

fRiL(y) =

∞∫
0

(1 +K)

z
exp−

(
K +

(K + 1)y

z

)
I0

(
2

√
K(1 +K)y

z

)

× ξ√
2πσz

exp

[
−(ξ log z − µ)2

2σ2

]
dz
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Figure 2.1: (Simulated) Comparision between Rician-lognormal distribution and pure

Rician distribution for different levels of shadowing

This equation is plotted in Fig. 2.1 for different levels of shadowing indicated by param-

eter σdb, for comparison, the density function of channel amplitude square y for pure

Rician fading is also plotted. We can inferred from the figure that at low shadowing

levels, the density function of pure Rician fading and composite Rician lognormal fad-

ing shadowing almost remain same but as severity of shadowing increases indicate by
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parameter σdb, there is a considerable difference in both the distributions.

2.2.4 Nakagami-lognormal distribution

The composite Nakagami/lognormal probability distribution which arises in Nakagami

shadowed environment was introduced by Ho and stuber [23]. Now including the con-

sequence of shadowing for the case of Nakagami fading, the density function of channel

amplitude a needs to be rewritten as

fA
Z

(a
z

)
=

2

Γ(m)

(m
z

)m
x2m−1e−

(
m
z

)
x2

Where the average power P0 has been replaced by the random variable z, now having

this fading superimposed on shadowing will give rise to composite distribution known as

Nakagami-lognormal fading shadowed distribution that describes the composite multi-

path fading shadowing environment and can be obtained from (2.1) So, by substituting

f(z) to be lognormal distributed the composite distribution is given by

fNL(y) =

∞∫
0

2

Γ(m)

(m
z

)m
x2m−1e−

(
m
z

)
x2 ξ√

2πσz
exp

[
−(ξ log z − µ)2

2σ2

]
dz

The density function for the channel amplitude square can be given as

fNL(y) =

∞∫
0

1

Γ(m)

(m
z

)m
ym−1e−

(
m
z

)
y ξ√

2πσz
exp

[
−(ξ log z − µ)2

2σ2

]
dz

Above Equation is plotted in Fig. 2.2. For comparison purpose, the density of

the channel amplitude square y under pure Nakagami fading conditions is also shown.

For low values of the shadowing parameter, the density functions of pure Nakagami

fading conditions and Nakagami-lognormal shadowed fading conditions are very close.

However, as the extent of shadowing increases (indicated by parameter σdb), the pdf of

the channel amplitude square y in shadowed fading channels move to the left indicating

the effect of shadowing.
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Figure 2.2: (Simulated) Comparision between Nakagami-lognormal distribution and

pure Nakagami distribution for different levels of shadowing

2.2.5 Generalized-K distribution

The Nakagami-lognormal density fuction shown discussed is in integral form, no closed

form solution exists, hence using the gamma distribution as an alternated to the lognor-

mal distributions, we have simpler composite distributions. Hence, Nakagami-lognormal

distribution can be well approximated by the Nakagami gamma distribution which is so

called as a generalized-K distribution [3] which can be given as follows

fNG(x) =

∞∫
0

2

Γ(m)

(m
z

)m
x2m−1e−

(
m
z

)
x2 1

Γ(k)

(
k

P0

)k
zk−1e

−
(
k
P0

)
z
dz

which can be written as

10



fNG(x) =
4m(β+1)/2xβ

Γ(m)Γ(k)Ω(β+1)/2
Kα

[
2

√
m

Ω
x

]

where Kα(.) is the modified bessel function of second kind of order α and Γ(.) is the

gamma function, k and m are the shaping parameters and Ω is the given in terms of

average power as Ω =
E[x]2

k
=
P0

k
.

The generalized-K distribution is shown in Fig. 2.3 for m = 1 and in Fig. 2.4 for

of m = 2 for the range of values of shadowing from weak (2 db) to strong shadowing

(9db). The effect of shadowed is clear from the density function plots. As the shadowing

parameter increase, the peaks of the density function move toward lower values of the

channel aplitude square y, indicating that the amount of increase in randomness.
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Figure 2.3: (Simulated) Nakagami-gamma or Generalized-K distribution for (m=1) and

different levels shadowing
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Figure 2.4: (Simulated) Nakagami-gamma or Generalized-K distribution for (m=2) and

different levels shadowing

2.3 Summary

In this chapter, we studied modelling of fading and shadowing in which we have studied

different fading and shadowing phenomenon. We have introduced Log normal shad-

owing where we have discussed the approximation of lognormal distribution to gamma

distribution to describe shadowing effect. Then we studied composite multipath fading

shadowing environment which consists of multipath fading superimposed in shadowing,

then we have presented various composite distributions which are obtained from com-

binations of multipath fading and shadowing distributions such as Rayleigh-lognormal

distribution, K distribution. Then we introduced Rician-lognormal distribution which

is used to describe shadowed fading environment. We then studied other composite

distributions called Nakagami-lognormal distribution and generalized-K distribution.
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Chapter 3

PERFORMANCE METRICS FOR GENERALIZED-K FAD-

ING CHANNELS

Let x is complex random variable that represent channel input, y is complex random

variable which represent channel output, then the system is modelled as

y = hx + w (3.1)

where w is zero mean circularly symmetric complex gaussian noise with variance σ2

written as w ∼ CN(0, σ2) and h is complex random variable which represent channel

coefficient. Let amplitude of channel coefficient follows a mixture of Nakagami fading

and gamma shadowing which is so called as generalized-K distribution defined as

f(a) =
4m(β+1)/2 aβ

Γ(m)Γ(k) Ω(β+1)/2
Kα

[
2

√
m

Ω
a

]
(3.2)

where Kα(.) is the modified bessel function of second kind of order α and Γ(.) is the

gamma function. k and m are the shaping parameters, β = k +m− 1 and α = k −m

and Ω is the average power given by Ω =
E[a]2

k
.

Since the generalized-K distribution depends on two shaping parameters, so can be

used to describe variety of fading and shadowing models as its special case, for m = 1

it reduces to K distribution, for m → ∞ and k → ∞ it approaches to AWGN channel

or no fading and for k →∞ it approaches to well known Nakagami distribution.

3.1 Capacity Analysis at low SNR

Let the channel input is subjected to following constraint as E[|x|2] ≤ P . According to

optimal power algorithm, optimal power can be given as [24]

p(h) =

[
1

λ
− 1

|h|2

]+

(3.3)

13



where,

a+ =


a, if a ≥ 0.

0, otherwise.

where λ is the lagrange multiplier which can be obtained through the above condition

of power constraint with equality i.e

E

[
1

λ
− 1

|h|2

]+

= P

Now assuming unit noise variance power P will become equal to SNR, so above can be

written as

E

[
1

λ
− 1

|h|2

]+

= SNR (3.4)

Capacity is then obtained as

C = E
[
log(1 + p(h)|h|2)

]

Substituting for p(h) from (3.3), we have C = E

[
log

(
|h|2

λ

)]
with |h|2 ≥ λ which can

be written as

C =

∞∫
λ

log

(
|h|2

λ

)
f|h|2(y)dy (3.5)

Now let us calculate the value of lagrange multiplier λ, for this we need to know the

density fuction of magnitude squared of chnanel coefficient.

Now if we know the pdf of a = |h|, then the pdf of y = |h|2 can be obtained as follows

f(y) =
1

2
√
y
fa(
√
y) (3.6)

so pdf of y = |h|2 using (3.2) is written as

f(y) =
1

2
√
y

4m(β+1)/2√yβ

Γ(m)Γ(k) Ω(β+1)/2
Kα

[
2

√
m

Ω

√
y

]
(3.7)

where Kα(.) is the modified bessel function of second kind of order α . So from (3.4) we

have

SNR =

∞∫
λ

[
1

λ
− 1

|h|2

]
f|h|2(y)dy

14



using (3.7), we have

SNR =
2m(β+1)/2

Γ(m)Γ(k) Ω(β+1)/2

∞∫
λ

[
1

λ
− 1

y

]
y(β−1)/2 Kα

[
2

√
m

Ω

√
y

]
dy (3.8)

Let us define a function G(x) = E

[
1

x
− 1

|h|2

]+

, putting x = λ and using (3.4), we have

G(λ) = E

[
1

λ
− 1

|h|2

]+

= SNR (3.9)

taking limits SNR→ 0 both sides, we have

lim
SNR→0

G(λ) = 0

lim
SNR→0

(λ) = G−(0) =∞ (3.10)

following this, we need to get series expansion of RHS of (3.8) at infinity, so we need to

know the series expansion of modified bessel function of second kind at infinity which

can be defined as follows [25].

Kα(x) ≈
√

π

2x
e−x

[
n−1∑
l=0

Γ(α+ l − 1
2)

(2x)l Γ(α− l − 1
2) l!

+ o

(
1

xn−1

)]

so by using this in (3.8) we have,

SNR =
√
π
m(β+1)/2

(
m
Ω

)−1/4

Γ(m)Γ(k) Ω(β+1)/2

∞∫
λ

(
1

λ
− 1

y

)
y(β−1)/2y−1/4 exp−

(
2
(m

Ω

) 1
2 √

y

)
dy

(3.11)

Let 2
(m

Ω

) 1
2 √

y = p which implies y =
(p

2

)2 Ω

m
, using this (3.11) can be written as

SNR =

√
π

Γ(m)Γ(k)

(
1

2

)β− 1
2

∞∫
2(m

Ω
λ)

1
2

(
1

λ
− 1(p

2

)2 ( Ω
m

)) p(β− 1
2)e−pdp (3.12)

Now Consider integral,

∞∫
2(m

Ω
λ)

1
2

(
1

λ
− 1(p

2

)2 ( Ω
m

)) p(β− 1
2) e−p dp in (3.12) which can be

written as
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=

∞∫
2(m

Ω
λ)

1
2

1

λ
p(β−

1
2) e−pdp − 22

(m
Ω

) ∞∫
2(mΩ λ)

1
2

p(β−
5
2) e−pdp

=
1

λ
Γ

[
β +

1

2
, 2
(m

Ω
λ
) 1

2

]
− 22

(m
Ω

)
Γ

[
β − 3

2
, 2
(m

Ω
λ
) 1

2

]
(3.13)

where, Γ(.) is the incomplete gamma function defined in [25] as

Γ(β, α) = (β − 1)! e−α
β−1∑
j=0

αj

j!
(3.14)

so by expanding the Γ(.) function in (3.13) by using (3.14) and also using the fact that

λu >> λv ∀u and v ∈ N but u > v ,which follows from (3.10), equation (3.13) is given

as (Appendix A)

≈ e−2
(
m
Ωλ
) 1

2

2(β− 1
2)
(m

Ω

)β
2
− 3

4
λ
β
2
− 7

4 (3.15)

so using this result, equation (3.12) can be written as

SNR ≈
√
π

Γ(m)Γ(k)
e−2(mΩ λ)

1
2
(m

Ω

)β
2
− 3

4
λ
β
2
− 7

4 (3.16)

e2(mΩ λ)
1
2
λ

−β
2

+ 7
4 ≈

√
π

SNR Γ(m)Γ(k)

(m
Ω

)β
2
− 3

4
= c (3.17)

divide both sides of (3.17) by powers of 2
(m

Ω

) 1
2
, we have

exp (λ
1
2 ) (λ

1
2 )

( 7
2−β)

2(mΩ )
1
2 ≈ exp

 log(c)

2
(
m
Ω

) 1
2

 (3.18)

This is of the form ey yp = ec1 which can be written as e
y
p
y

p
=
e
c1
p

p
. So using this fact

equation (3.18) can be written as

λ
1
2

( 7
2
−β)

2(mΩ )
1
2

exp
λ

1
2

( 7
2
−β)

2(mΩ )
1
2

≈
exp

(
log(c)

( 7
2
−β)

)
( 7

2
−β)

2(mΩ )
1
2

2(mΩλ)
1
2(

7
2 − β

) exp

2
(
m
Ωλ
) 1

2(
7
2 − β

)
 ≈ 2

(
m
Ω

) 1
2(

7
2 − β

) exp

(
log(c)(
7
2 − β

)) (3.19)
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This equation is of the form of xex = y whose solution is given in terms of the Lambert-

W function

so for β <
7

2
,we get

λ
1
2

( 7
2
−β)

2(mΩ )
1
2

≈W0

 2
(
m
Ω

) 1
2(

7
2 − β

) exp

(
log(c)(
7
2 − β

))


λ
1
2 ≈

(
7
2 − β

)
2
(
m
Ω

) 1
2

W0

2
(
m
Ω

) 1
2 c

1

( 7
2−β)(

7
2 − β

)


λ ≈
(

7
2 − β

)2
4
(
m
Ω

) W 2
0

2
(
m
Ω

) 1
2 c

1

( 7
2−β)(

7
2 − β

)
 (3.20)

Now substituting the value of c from (3.17) in (3.20) we get,

λ ≈
(

7
2 − β

)2
4
(
m
Ω

) W 2
0

 2(mΩ )
1
2(

7
2 − β

) ( √
π

Γ(m)Γ(k)

(m
Ω

)β
2
− 3

4

) 1
7
2−β

(
1

SNR

) 1
7
2−β



λ ≈
(

7
2 − β

)2
4
(
m
Ω

) W 2
0

(
2(

7
2 − β

) ( √
π

Γ(m)Γ(k)

(m
Ω

)) 1
7
2−β

(
1

SNR

) 1
7
2−β

)
(3.21)

Now using the property of lambert-W function, for A > 0 lim
x→∞

W (Ax)

W (x)
= 1, we have

λ ≈
(

7
2 − β

)2
4
(
m
Ω

) W 2
0

((
1

SNR

) 1
7
2−β

)
(3.22)

using the expansion of (3.5), it can be easily shown that the Capacity is given by

C ≈ SNR λ (3.23)

Hence we get the capacity at full CSIT-R at both the transmitter and receiver as

C ≈ SNR

(
7
2 − β

)2
4
(
m
Ω

) W 2
0

((
1

SNR

) 1
7
2−β

)
for β <

7

2
(3.24)

Although lambert function now is easily available in many software but it will be

interesting to see that above can also be converted into the generally used function which
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is logarithmic function. The solution to the equation of the form of xex = y with x > 1

can also be given in terms of an infinite ladder series [26] as

x = − log

−− log
(
− log(..)

y

)
y


The first three approximations in this ladder are

x1(y) = log(y)

x2(y) = log(y)− log log(y)

x3(y) = log(y)− log[log(y)− log log(y)]

In general xi(y) = x1(y)− log[xi−1(y)]

Now, if we used first approximation the (3.22) can be written as

λ ≈
(

7
2 − β

)2
4
(
m
Ω

) log2

((
1

SNR

) 1
7
2−β

)

λ ≈ 1

4
(
m
Ω

) log2

(
1

SNR

)
(3.25)

Hence Capacity is given as

C ≈ SNR
1

4
(
m
Ω

) log2

(
1

SNR

)
(3.26)

In the similar way, the solution of (3.19) for β >
7

2
can be given as follows

λ ≈
(

7
2 − β

)2
4
(
m
Ω

) W 2
−1

(
2(

7
2 − β

) ( √
π

Γ(m)Γ(k)

(m
Ω

)) 1
7
2−β

(
1

SNR

) 1
7
2−β

)
(3.27)

Now again using the property of lambert-W function for A < 0 lim
x→0+

W (Ax)
W (−x) = 1, above

can be given as

λ ≈
(

7
2 − β

)2
4
(
m
Ω

) W 2
−1

(
−
(

1

SNR

) 1
7
2−β

)
(3.28)

Hence, we get the capacity at full CSIR at both the transmitter and receiver as

C ≈ SNR
(

7
2 − β

)2
4
(
m
Ω

) W 2
−1

(
−
(

1

SNR

) 1
7
2−β

)
for β >

7

2
(3.29)
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The solution to the equation of the form of xex = y with x < −1 can also be given

in terms of an infinite ladder series [26] as

x = − log

− log
(
− log(..)

y

)
y


In this case, first three approximations in the ladder are

x1(y) = log(−y)

x2(y) = log(−y)− log(− log(−y))

x3(y) = log(−y)− log[log(− log(−y))− log(−y)]

In general xi(y) = x1(y)− log[−xi−1(y)] for i ≥ 2

Now, if we used first approximation the (3.28) can be written as

λ ≈
(

7
2 − β

)2
4
(
m
Ω

) log2

((
1

SNR

) 1
7
2−β

)

λ ≈ 1

4
(
m
Ω

) log2

(
1

SNR

)
(3.30)

Hence, Capacity is given as

C ≈ SNR
1

4
(
m
Ω

) log2

(
1

SNR

)
(3.31)

Now, for β ≈ 7

2
from (3.16), we have

e2(mΩ λ)
1
2 ≈

√
π

SNR Γ(m)Γ(k)

(m
Ω

)

λ ≈ 1

4
(
m
Ω

) log2

( √
π

SNR Γ(m)Γ(k)

(m
Ω

))
(3.32)

Hence we get the capacity in this case given by

C ≈ SNR
1

4
(
m
Ω

) log2

(
1

SNR

)
for β =

7

2
(3.33)

Clearly, from all the above cases, we can say the Low SNR capacity of Generalized-K

fading channel in general is given by C ≈ SNR
1

4
(
m
Ω

) log2

(
1

SNR

)
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3.2 Low SNR Capacity using ON-OFF Scheme

In this section, we will show that the asymptotic low SNR capacity results can also

be achieved by an on-off scheme. Since p(h) is defined as p(h) =

[
1

λ
− 1

|h|2

]+

, so if

1
λ −

1
|h|2 ≥ 0 or |h|2 ≥ λ, then transmission is done otherwise nothing is transmitted.

Now transmission is done with power,

=
SNR

prob(|h|2 ≥ λ)

so we can write,

p(h) =


SNR

prob(|h|2≥λ)
, if |h|2 > λ.

0, otherwise.

(3.34)

capacity in this case is given as

C ′ = E
|h|2

[
log
(
1 + p(h) |h|2

)]

=

∞∫
0

[
log
(
1 + p(h) |h|2

)]
py(y)dy

=

∞∫
λ

[
log

(
1 +

SNR |h|2

prob(|h|2 > λ)

)]
py(y)dy

C ′min =

∞∫
λ

[
log

(
1 +

SNR λ

prob(|h|2 > λ)

)]
py(y)dy

C ′ ≥
∞∫
λ

[
log

(
1 +

SNR λ

prob(|h|2 > λ)

)]
py(y)dy

C ′ ≥
[
log

(
1 +

SNR λ

prob(|h|2 > λ)

)] ∞∫
λ

py(y)dy

C ′ ≥
[
log

(
1 +

SNR λ

prob(|h|2 > λ)

)]
prob(|h|2 > λ) (3.35)

Consider, prob(|h|2 > λ) =

∞∫
λ

f|h|(y)dy which is given by (Appendix B)
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≈
√
π

Γ(m)Γ(k)
e−2(mΩ λ)

1
2

((m
Ω
λ
) 1

2

)β− 1
2

(3.36)

In (3.35) the factor
SNR λ

prob(|h|2 > λ)
using (3.36) is given by

(
Ω

m

) 1
2 1

λ
1
2

which→ 0 as

SNR → 0 and using the fact that log(1 + x) ≈ x for x → 0 , the capacity in (3.35) is

given as C ′ ≈ SNR λ. This proves that the on-off scheme is achieving the asymptotic

Low SNR capacity results.

3.3 Energy Efficiency at Low SNR

Now, we consider the energy efficiency of generalized-K fading channel. Energy efficiency

can be defined as capacity per unit SNR or the number of nats per unit of transmitted

energy that are reliably transmitted from transmitter to receiver i.e [27]

ηEE =
C

SNR
(3.37)

≈ 1

4
(
m
Ω

) log2

(
1

SNR

)
(3.38)

As SNR increases, we can find that energy efficiency decreases or correspondingly energy

per nat increases. Also, it can be noted from above expression that energy efficiency

also depends on parameter m and Ω, as m increases energy efficiency decreases.

3.4 Minimum energy per nat

Now we will calculate Eb
Nomin

, that is minimum Energy per nat required for reliable

communication which can be defined as follows [28]

Eb
Nomin

= lim
SNR→0

SNR

C(SNR)
=

1

Ċ(0)
(3.39)

Since, Capacity is given by

C(SNR) = SNR
1

4
(
m
Ω

) log2

(
1

SNR

)

Differentiating this respect to SNR we have

dC(SNR)

dSNR
=

Ω

4m

[
2 SNR log

(
1

SNR

) (
1

SNR2

)
+ log2

(
1

SNR

)]

=
Ω

4m
log2

(
1

SNR

)[
1− 2

log−1
(

1
SNR

)
SNR

]
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Taking limit SNR→ 0 on both sides, we have we have

Ċ(0) =
Ω

4m
log2

(
1

SNR

)
lim

SNR→0

[
1− 2(−1) log−2

(
1

SNR

)]

Ċ(0) ≈ Ω

4m
log2

(
1

SNR

)
(3.40)

Hence using (3.40), minimum energy per nat in (3.39) is given as

Eb
Nomin

≈ 1
Ω

4m log2
(

1
SNR

) (3.41)

This relation shows how minimum energy per nat varies with SNR, as SNR increases

minimum energy per nat increases.

3.5 Summary

In this chapter, we evaluated performance metrics for generalized-K fading channel.

We have evaluated the capacity of generalized-K fading channel in nats per channel use

(ncpu) at asymptotic Low SNR by assuming perfect channel state information at both

transmitter and receiver (CSIT-R). We have shown that the capacity of generalized-K

fading channel at Low SNR scales as
Ω

4m
SNR log2

(
1

SNR

)
. We also provide an on-off

scheme that is achieving asymptotic Low SNR capacity results. Further we have also

characterize the energy efficiency of generalized-K fading channel at Low SNR, where

we concludes as SNR increases energy efficiency decreases and then we also characterize

the Minimum energy per nat that is required for reliable communication.
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Chapter 4

RESULTS AND DISCUSSIONS

In this section we present some results, where we have compared exact capacity with

our asymptotic Low SNR results which justify our work. we have plotted the erdogic

capacity for generalized-K fading channel for different values of shaping parameters m

and k. We have set Ω =
1

k
in all our results presented so as to have a unity channel

mean square value.

In fig. 4.1, we have plotted erdogic capacity of generalized-K fading channel for

m = 1 and k = 1, where the exact capacity is plotted using standard optimization

tools. To obtained exact curve, we first calculate the lagrange multiplier λ that satisfy

the power constraint with equality and then we calculate the capacity using (3.5). Also

low SNR capacity results using Lambert and log function are also plotted. We can see

from the figure that our asymptotic capacity curves are following the exact capacity

curve. For the case of k = 1 and m = 1, we can also note that the lambert function

is lower bound on log function and we see that capacity given by lambert function is

close to exact curve than log function for this considered case. The capacity through

on-off scheme is also shown and we can see from figure that this rate matches with exact

capacity curve for all SNR values.
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Figure 4.1: (Simulated) Low SNR capacity in nats per channel use with respect to

SNR(db) for m = 1 and k = 1
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m = 1; k = 3.5
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Figure 4.2: (Simulated) Low SNR capacity in nats per channel use with respect to

SNR(db) for m = 1 and k = 3.5
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m = 1; k = 5
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Asymptotic Low SNR Capacity given by log function

Capacity through on-off scheme

Figure 4.3: (Simulated) Low SNR capacity in nats per channel use with respect to

SNR(db) for m = 1 and k = 5

Capacity results for different values of m and k are shown in Fig. 4.2 and Fig. 4.3.

We can see from figures that all our asymptotic results for the capacity matches the

exact capacity curves. For the case of m = 1 and k = 3.5 we can see that the capacity

is only given by log function. We can see that for the case of m = 1 and k = 5 log

function is lower bound on lambert function. We also note that capacity results given

by lambert function is very close as compared to the exact capacity curve. We also note

that in both figures, capacity through on-off scheme coincides with the exact capacity

curve which indicate that on-off scheme can be practically implemented. We can also

note that capacity decreases as k increases for same value of m.

The capacity for some other values of m and k are also shown in Fig. 4.4 and

Fig. 4.5. In Fig. 4.4, it can be noted that log function is upper bounding the lambert

function and capacity through log function is close to the exact capacity, whereas in Fig.

4.5 lambert function is upper bounding the log function and capacity through lambert

function is close to the exact capacity. The capacity through on-off scheme is also shown

and it almost matches the exact capacity curves for all SNR values.
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m = 2; k = 1.61
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Figure 4.4: (Simulated) Low SNR capacity in nats per channel use with respect to

SNR(db) for m = 2 and k = 1.61
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m = 4; k = 2
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Figure 4.5: (Simulated) Low SNR capacity in nats per channel use with respect to

SNR(db) for m = 4 and k = 2
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m = 1; k = 1
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Figure 4.6: (Simulated) Low SNR Energy efficiency in nats per channel use per joules

with respect to SNR(db) for m = 1 and k = 1
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m = 1; k = 3.5
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Figure 4.7: (Simulated) Low SNR Energy efficiency in nats per channel use per joules

with respect to SNR(db) for m = 1 and k = 3.5

Now, we shown another important parameter Energy efficiency that characterize the
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performance of generalized-K fading channel. Energy efficiency in nats per channel use

per joules with respect to SNR in db is shown in Fig. 4.6 and Fig. 4.7 for m = 1and

k = 1 and for m = 1 and k = 3.5 respectively. The exact energy efficiency is shown which

is calculated using (3.37) where we substitute exact capacity obtained from numerical

integration. We have also plotted asymptotic energy eficiency given by lambert and log

function. Clearly we can see that asymptotic results are very closed to the exact one.

Efficiency through on-off scheme is also shown which is very close to the exact energy

efficiency. We can also notes that energy efficiency of generalized-K fading channel at

low SNR decreases with increase in k for constant m.
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Chapter 5

CONCLUSION AND FUTURE WORK

We have studied modelling of fading and shadowing in which we studied different fad-

ing and shadowing phenomenon. We then introduced Log normal shadowing, com-

posite multipath fading shadowing environment which consists of multipath fading

superimposed in shadowing, then we presented various composite distributions which

are obtained from combinations of multipath fading and shadowing distributions such

as Rayleigh-lognormal distribution, K distribution, Rician-lognormal distribution, Na-

kagami-lognormal distribution, generalized-K distribution.

We have also characterized the erdogic capacity of shadowing fading channel partic-

ularly generalized-K fading channel in nats per channel use with perfect channel state

information at both transmitter and receiver. We have provided Asymptotic Low SNR

capacity expression Our Asymptotic Low SNR capacity follows the exact result obtained

by simulation. We have also seen that the Low SNR capacity results are also obtained

through an on-off scheme. We have also characterized two performance metrics, energy

efficiency and minimum energy per nat respectively.

We have compared exact capacity with our asymptotic Low SNR capacity results.

The exact capacity curve follows the asymptotic capacity curves. We have plotted

the erdogic capacity for generalized-K fading channel for different values of shaping

parameters m and k. The capacity through on-off scheme is also plotted and we found

that this rate matches the exact capacity curve for all SNR values. We have also plotted

another important performance metrics named Energy efficiency that characterize the

performance of generalized-K fading channel where we have see that asymptotic capacity

results are very close to the exact one. Energy efficiency through on-off scheme had also

been shown which is very close to the exact energy efficiency.

Analysis of capacity of Generalized-K fading channel with different estimated chan-

nels at transmitter and the receiver might be the object of further research work.
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APPENDIX A

Proof of equation (3.15)

Expanding incomplete gamma functions in (3.13) using the definition in (3.14), we have
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Now, using the fact that λu >> λv ∀u and v ∈ N but u > v , which follows from

(3.10), above becomes
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APPENDIX B

Proof of equation (3.36)

Consider, prob(|h|2 ≥ λ) =
∞∫
λ

f|h|(y)dy

substituting the density function of y given in (3.7) , probability becomes
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now using the definition of incomplete gamma function in (3.14)
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