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ABSTRACT 

Streamflow forecasting is a crucial step in many of the activities related to planning, 

management and operation components of water resources systems. Streamflow forecasting is 

important to the water resources system managers for making proper allocations of water to 

hydropower generation, irrigation, domestic and other uses on day to day basis. In recent times, 

due to the effect of changing the climate, the job of water managers has become more important 

and risky. In a country like in India, where the rainfall occurs mainly during the south-west 

monsoon months (June to September), the storage and proper utilization of water is a basic 

need. The development of a proper inflow forecasting system can be very useful for suitable 

utilization of storage waters. The forecasting of streamflow could be done for short-term as 

well as for long term basis. In this research, the short term duration of one day has been used 

for the development of forecasting models.  

The main aim of the present study is to develop the stochastic models for three sub-

catchments of the Tehri dam. Tehri dam was constructed on the confluence point of Bhagirathi 

and Bhilangana river, which are one of the sources of great Ganges river of India. The dam is 

built for multipurpose use. It is the main source of water supply for the Ganga canal and millions 

of people are dependent on the water supply from the Tehri reservoir. Therefore, the proper 

utilization of the storage water from the dam is very important for the people living in the 

command area of the canals which are receiving water from the dam.  

To fulfil the objective, at first, the rating curves have been developed for two sub-basins, 

namely Bhilangana and Balganga of Tehri catchment using method of least squares and ANN 

technique. Following this, the stochastic models have been developed for three main sub-

catchments of Tehri dam. The results of the stochastic models have been compared with the 

results of HEC-HMS. 

For developing the stage-discharge relationships, the data set of 1st June 2016 to 30th 

November 2018 from two gauging stations, namely Ghansali in Bhilangana river and Sarasgaon 

in Balganga river have been used. The performance of both the methods have been evaluated 

using Nash Sutcliffe Efficiency (NSE) and the coefficient of determination (R2). The results of 

the analysis show the good performance of both methods. For the method of least squares, the 

NSE was more than 95% and the coefficient of determination was more than 0.9. However, the 

efficiency of the ANN method was slightly better than the method of least squares. The RMSE 

was far less in the case of ANN.  
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Stochastic models have been developed for three main sub-catchments of Tehri dam, 

namely Bhagirathi at MBII, Bhilangana at Ghanshali, and Balganaga at Sarasgaon. In the 

present study four stochastic models namely Autoregressive (AR) model, Autoregressive 

models with exogenous inputs (ARX), Autoregressive moving average (ARMA) model, and 

Autoregressive moving average model with exogenous inputs (ARMAX) have been developed 

and used for daily streamflow forecasting purpose for monsoon and non-monsoon seasons. The 

rainfall and discharge data from June 2016 to May 15, 2019, for the three sub-basins, namely 

Bhagirathi at MB II, Bhilangana at Ghansali and Balganga at Sarasgaon were collected from 

Real-time inflow forecasting system website of Tehri dam. All the developed models were 

calibrated and validated by dividing the data into two parts. The performance of all the 

developed stochastic models has been checked using 6 indices namely NSE, RMSE, PBIAS%, 

R2, MAE and AIC. The comparison of the results of stochastic with and HEC-HMS model 

results shows that the performance of selected stochastic models is far better than the HEC-

HMS model for the three sites of the Tehri catchment during calibration and validation period. 

The programs have also been prepared using R-studio version 3.4.3 for the simulation of daily 

streamflow by stochastic models.  

The recommendations made on the basis of the study and scope for future work are 

listed below: 

 The stage-discharge relationship was drawn only using the data from 2016 to 2018, 

which may not cover the higher flood records and therefore, during the floods, the 

developed relationship may give lesser value than actual. For this, the relationship could 

be redrawn in future by using more dataset and a new relationship can be drawn only 

for flood situation i.e. for higher values of the flood stages. 

 In case of the stochastic model, only AR model was developed for non-monsoon season. 

In future, development of other stochastic models considering the rainfall and 

temperature are expected to give better results. 

 More efforts are required to be put in for increasing the efficiency of the HEC-HMS 

model with extended data bases. With extended data base, the efficiency of HEC-HMS 

is expected to improve further. 

 The updating of parameters of stochastic models on a daily basis is recommended in 

future work. 
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INTRODUCTION 

1.1 BACKGROUND 

Streamflow forecasting is a crucial step in many of the activities related to planning, 

management and operation components of water resources systems. Streamflow forecasting is 

important to the water resources system managers for making proper allocations of water to 

hydropower generation, irrigation, domestic and other uses on day to day basis. In recent times, 

due to the effect of changing the climate, the job of water managers has become more important 

and risky. In a country like in India, where the rainfall occurs mainly during the south-west 

monsoon months (June to September), the storage and proper utilization of water is a basic 

need. The development of a proper inflow forecasting system can be very useful for suitable 

utilization of storage waters. The forecasting of streamflow could be done for short-term as 

well as for long term basis. In this research, the short term duration of one day has been used 

for the development of forecasting models.  

The main aim of the present study is to develop the stochastic models for three sub-

catchments of the Tehri dam. Tehri dam was constructed on the confluence point of Bhagirathi 

and Bhilangana river, which are one of the sources of great Ganges river of India. The dam is 

built for multipurpose use. It is the main source of water supply for the Ganga canal and millions 

of people are dependent on the water supply from the Tehri reservoir. Therefore, the proper 

utilization of the storage water from the dam is very important for the people living in the 

command area of the canals which are receiving water from the dam.  

1.2 TEHRI DAM 

Tehri dam, a multi-purpose dam, is the highest earth and rock fill dam in Asia having a 

height of 260.5m. The dam has a gross capacity of storage 3540 MCM, with a capacity of power 

generation 2400 MW. The dam located in the Garhwal hills of Uttarakhand state is about 1.5 

km downstream in the confluence of Bhilangana and Bhagirathi rivers. These two rivers are 

one of the source of the Ganges river, which started from the Himalayan hill. The dam has 

constructed for the purpose of power generation, water supply, irrigation and flood control.  
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 Three phase planning has been done for the power generation to get the full potential of 

the dam. The first phase (Phase I) was completed and starting to generate power in the year of 

2006 with 1000 MW capacity. Phase two (2) of the Tehri power project was commissioned in 

2011 at Koteshwar, which is downstream of the Tehri dam having a capacity of 400 MW. The 

third phase (Phase 3) with the planning of generating 1000 MW by using pumped storage plant 

is to be commissioned by 2021. Tehri dam is the main source of water supply for millions of 

people living near the reservoir. Irrigation canals and farms of Uttar Pradesh state depend upon 

water from Tehri reservoir for Rabi crop.  

1.2.1 Tehri catchment 

The total Tehri catchment area is 7295 km2
, out of which 2328 km2 is snowbound and 

glaciers catchment. The maximum and minimum elevation of the Tehri catchment is about 

7000 m and 600 m respectively from the above mean sea level. The catchment has seasonal 

snowline with descend in the eastern part of the Himalayas to an altitude of 3200 m and in the 

western part of the Himalayas to an altitude of 2600 m in March. The catchment is located 

between latitude 30˚ 20’ 20” N to 31˚ 27’ 30” N and Longitude 78˚ 09’ 15” E to 78˚ 28’ 54” E. 

The catchment also receives uneven rainfall distribution mostly from south-west monsoon and 

receives the light showers during the winter season. The long term average annual rainfall of 

Tehri catchment ranging from 1016 to 2630 mm. The catchment receives atmospheric 

temperature range from 2˚C to 40˚C during the winter season and summer season. 

1.2.2 Tehri reservoir 

The area of the reservoir at FRL (Full reservoir level) is 42 km2. The length of the 

reservoir from the dam site embankment extends up 45 km upstream to Dharasu on river 

Bhagirathi and goes 25 km length to Ghansali on river Bhilangana. The reservoir has a gross 

and live storage capacity of 3549 MCM and 2616 MCM, respectively. The spillways of Tehri 

dam has been planned and designed for a maximum flow of 15,540 m3/s.  

1.3 OBJECTIVE OF THE STUDY 

The purpose of the present study is to develop stochastic models for daily streamflow 

forecasting in Tehri catchment mainly into three sub-basins, i.e. Bhagirathi, Bhilangana and 
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Balganga, which are important tributaries of the Tehri reservoir. For all the tributaries gauge 

and discharge, data are being observed manually as well through the non-contact gauge and 

discharge sensors. As a first step, gauge and discharge data for all the locations were corrected 

and processed, and then the flow forecast models were developed. This objective resulted in 

the following sub-objectives: 

i. Verification and preparation of the cross-section river profiles for the two sites, namely 

Ghansali and Sarasgaon. 

ii. Development of a stage-discharge relationship (rating curve equations) for Ghansali and 

Sarasgaon sites using ANN and method of least squares. 

iii. Development of stochastic models using AR, ARX, ARMA and ARMAX models for 

monsoon and non-monsoon daily flows for the three sub-basin (Bhagirathi, Bhilangana 

and Balganga River) of Tehri catchment. 

iv. Checking the Goodness of fit for the selected model and evaluation of the model 

performance. 

v. Selecting the best linear stochastic model for modelling daily streamflow forecasting in 

Bhagirathi, Bhilangana and Balganga River. 

vi. Selection of best stochastic model using Akaike Information Criteria (AIC). 

vii. Development of AR, ARX, ARMA and ARMAX models’ programs using a computer 

technique (e.g. R-studio programming language). 

1.4 THESIS OUTLINE 

The research report is divided into eight main chapters, which have been discussed. 

Chapters as follows:  

Chapter 1 presents an introduction for the present study, importance of the research 

study, brief details of the Tehri dam and its catchment, and objectives of the study. 

The review of literature pertaing to stochastic models is presented in Chapter 2. 

Chapter 3 provides an explanation of the study area and data used for the particular 

watershed area.  

Chapter 4 presents the details of the methodology used for development of the rating 

curve equations and also the results of the analysis.  

 Chapter 5 describes the methodology and results of daily streamflow forecasting using 

stochastic models.  
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Chapter 6 presents the conclusions from the presented study and recommendations and 

scope for future work are drawn. 
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LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter presents the review of literature pertaining to the use of stochastic models 

for inflow forecasting in the next section. 

2.2 STREAMFLOW FORECASTING USING Stochastic models 

Stochastic models have been widely used for modelling of hydrological processes, 

which are primarily stochastic in nature. Hipel (1977), Kottegoda (1980), Salas et al. (1980), 

and Kumar (1983) discuss the theoretical aspects of time series modelling and stochastic 

models. In flood forecasting, some researchers have used the stochastic model's world over. In 

context of flood forecasting for Indian Rivers also stochastic models have been widely used 

(see e.g. Chander and Sapolia, 1976 for river Brahmaputra; Goel, 1982; and Goel and Chander, 

1984 for flood stage forecasting using ARMAX models for river Marchur in Central India; 

Gosain and Chander, 1984 for river Yamuna etc.). Some of the recent applications (after 2010) 

of stochastic models for streamflow forecasting are reviewed in this section as follows: 

 Bogner and Pappenberger (2011) applied Autoregressive model with and without 

exogenous variable input (ARX and AR, respectively), as well as wavelet transforms (VARX), 

in a flood forecasting system at the Danube catchment.  

 Lohani et al. (2012) performed hydrological modelling and forecasting monthly 

reservoir inflow at Bhakra Dam using autoregressive (AR), artificial neural networks (ANNs) 

and adaptive neural-based fuzzy inference system (ANFIS). The results of the autoregressive 

(AR) model showed that the model could be useful for forecasting monthly reservoir inflow at 

Bhakra Dam. 

 Dutta et al. (2012) used several well-known TS based linear techniques and RR models 

for evaluation of streamflow forecasting in two sub-basins, namely upper Murray Basin and 

the Murray-Darling Basin in Australia. The model results showed that the ARMAX model 

provided better results for Bandiana station rather than the AR model for up to 3-days 

streamflow forecasting.  
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 Sarhadi et al (2014) have applied the ARMA and ARMAX model to determine the daily 

and monthly snow water equivalent (SWE) in Ontario, Canada. The results showed that the 

ARMAX model performed better than the ARMA and SARIMA model for the forecasting of 

daily SWE. 

 Akouemo and Povinelli (2017) have performed Data Improving in Time Series by using 

autoregressive with and without exogenous variable inputs (ARX) and artificial neural network 

(ANN) models. Two approaches were applied for the detection and imputation of anomalies in 

time series data. The paper results demonstrated that the proposed approaches were able to 

identify and impute anomalous data points. 

Ouyang et al. (2017) applied the Multi-Objective Genetic Algorithm (MOGA) to 

forecasting the models in his study by using stochastic models with ARX (Auto-Regressive 

model with exogenous variable inputs). In the study, they employed MOGA for the search for 

the optimal combination of non-sequential regressors in binary strings. The results of his study 

showed the optimal models performed good and have better the inundation forecasting in every 

time and time shift error and as well as error distribution. 

Agrawal (2018) applied stochastic models for real-time inflow forecasting for three sites 

of Tehri catchment. Some of the conclusions drawn in the study are given below: 

i. Autoregressive and Autoregressive models with exogenous inputs have performed very 

well for all the sites of Tehri catchment. 

ii. For the forecasting of monsoon flows with 6 hours lead time ARX (1,1) model has 

performed very well with NSE more than 82% at Tehri dam.  

iii. Reservoir levels were forecasted 78% of the time within the range of + 10 cm accuracy 

in 6 hourly forecastings during monsoon season.  

iv. In one- day advance forecasting during the non-monsoon season, 47 % of the forecasts 

are within the range of + 5 cm accuracy without updating of parameters.  With updating 

of parameters of the model, these models performed far better. During the period 

18.11.2018 to 30.12.2018 more than 90% of the forecasts are within the range of + 5 

cm accuracy.  

v. Stochastic models are easy to use and require fewer data. These models have performed 

very well in operation inflow forecasting system for Tehri dam. 

Based on the literature review, the applicability of stochastic models has been explored further 

using extended data beyond Nov. 2018 and the results have been compared with HEC-HMS 

model. 
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STUDY AREA 

3.1 GENERAL 

A detailed description of the study area in terms of its locale, precipitation, runoff, 

geology and soils and snow cover is presented in this chapter.  

3.2 STUDY AREA 

The study area for the present study is Tehri catchment (Fig. 3.1). Tehri catchment has 

a total area of 7295 km2 (Table 3.1). Tehri catchment has two main rivers, namely Bhagirathi 

and Bhilangana. The Bhagirathi catchment is positioned between longitude of 78˚ 09’ 15” E to 

79˚ 24’ 55” E and latitude 30˚ 20’ 20” N to 31˚ 27’ 30” N. The elevation difference of the 

catchment is very high, which ranges from 617m to 7000m above MSL. The Bhilangana 

catchment is positioned between longitude of 78° 38' 10.68" E to 79° 39' 24.48" E and latitude 

of 30° 25' 48.54" N to 30° 50' 36.708" N. The elevation difference of the catchment ranges 

from 840m to 3,717m above MSL (Figure 3.1). The main tributary of Bhilangana river is 

Balganga. The details of the catchment area are given in Table 3.1. 

A multipurpose Tehri dam is constructed across river Bhagirathi nearly 1.5 km 

downstream of its confluence with river Bhilangana at Tehri in Uttarakhand. The live storage 

and gross storage of the Tehri dam are 3540 and 2615 MCM, respectively. The catchment 

mostly receives rainfall from the southwest monsoon, but the distribution is uneven. Also, it 

receives light showers during the winter months. The average annual rainfall of the catchment 

varies from 1016 to 2630 mm. The catchment has eleven (11) number of automatic weather 

stations, and six (6) number of automatic water level stations (Figure 3.1 and Table 3.2). 
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Figure 3.1.Tehri Catchments with study area catchments. 

 

Table 3.1.Description of the study area and gauging stations 

River Station Country Drainage Area (km2) Elevation start (m) 

Bhilangana Ghansali India 784.34 850 

 Balganga Sarasgaon India 486.43 860 

Bhagirathi Dharasu India 4260.03 830 

Intermediate catchment 

surrounding Tehri 

Reservoir 

India 1764.02 617 
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Table 3.2. Details of Hydro-Meteorological stations of Tehri catchment 

3.3 PRECIPITATION 

Mostly Himalayan catchments in Indian Northside receive heavy rainfall through the 

south-west monsoon season which extends starts from June to September end. The climate of 

the catchment varies with different elevations and aspect changes, and the area is cold generally. 

3.4 RUNOFF 

The runoff of the Tehri catchment depends on two sources, viz. the snowmelt which 

occurs from the snow-covered areas and glaciers in uphills, and rainfall in the lower catchment. 

The contribution of snow melt and base flow makes the river as a perennial. The amount of 

snowmelt and extent of snow-covered area in the catchment vary from year to year and also 

within the year. 

S. No. Locations Latitude Longitude Remarks 

1 Gangotri 30°59’40.89” N 78°56‘13.00” E AWS with snow gauge 

sensor 

2 Harshil 31°02’07.72” N 78°45’04.02” E AWS with snow gauge 

sensors; Automatic and 

manual G&D stations 

3 Sukkhi 30°56’46.14” N 78°41’15.74” E AWS 

4 Bhatwari 30°49’06.92” N 78°37'05.17” E AWS 

5 Uttarkashi 30°43’42.80” N 78°25’25.53” E AWS; water level recorder, 

Manual meteorological 

observatory 

6 Dharasu 30°38'28.61” N 78°19’45.59” E AWS; Automatic and 

manual G&D stations 

7 Lambgaon 30° 37' 48” N 78° 33' 10” E AWS 

8 Tehri 30°22’46.16" N 78°28’59.29" E AWS; water level recorder 

Manual observatory 

9 Dhopardhar 30° 21’ 39” N 78° 47’ 24'' E AWS 

10 Ghansali 30°25’46.57'' N 78°39’23.71'' E AWS; Automatic and 

manual G&D stations; 

Manual meteorological 

observatory 

11 Sarasgaon 30026’37.13” N 78038’10.90”  E Automatic and manual 

G&D stations 

12 Thati Kathur 

(Bishan) 

30°34’43.31” N 78°38’55.81” E AWS 
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3.5 GEOLOGY AND SOILS. 

The rock at dam site consists of the Chandpur Phyllite. Based on lithological 

characteristics and engineering properties, this has been classified into broadly three grades viz. 

Grade I (Phyllite Quartize), Grade II (Quartzitic Phillite) and Grade III (Schistose Phyllite). 

Riverbed consists of large boulders. Average upstream slope of the river is 1: 22. 

3.6 SNOW COVER 

In the present study, the MODIS dataset has been used to find the snow covered area 

for the catchment. The results show that mostly 50 % of the catchment is snow-covered in 

winter and most part of this is temporary snow, which melts during the summer season. The 

permanent snow line is located approximately above 4500 m (Agrawal, 2009). 
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DEVELOPMENT OF RATING CURVES 

4.1 GENERAL 

 A rating curve or stage-discharge curve is a plot between stage and discharge at the 

gauging location of a stream. The development of the stage-discharge relationship in a river is 

important as it gives the estimate of discharge corresponding to a stage without direct 

measurement of discharge. In the past, a number of researchers have developed the stage-

discharge relationship using different techniques like least squares method, and ANN etc. 

(Goel, 2011; Mir & Dubeau, 2014).  

  In the present study, rating curves have been developed for Bhilangana at Ghansali and 

Balganga at Sarasgaon using method of least squares and artificial neural network (ANN) and 

their performance has been evaluated. 

4.2 DATA USED AND PRELIMINARY ANALYSIS 

The daily stage and discharge data from  June 2016 to November 2018 of two gauging 

stations, namely Ghanshali (Bhilangana river) and Sarasgaon (Balganaga river) have been used 

for the present study. The datasets were divided in two parts for model calibration and 

validation purpose. The data from June 2016 to December 2017 were used for calibration and 

data from January 2018 to November 2018 were used for validation. 

 The preliminary analysis of the data was started by grouping the observed daily 

discharge data and corresponding stages. The stage-discharge graphs are plotted for the two 

sites. The outliers are removed after plotting the data. The details of total number of data sets 

used for developing the stage-discharge relationship by least squares method and the outliers 

are given in Table 4.1.  

The data scrutiny and analysis included the following steps:  

 Screening of data series and removal of  outliers 

 Graphical comparison of streamflow and rainfall data 
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Table 4.1.Observed discharge and stage data summary used for developing stage-discharge 

relationship by least square method 

S. No Stations Data Type Unit Total No. Outlier 

1. Bhilangna Discharge_Stage m3/s_m 1100 62 

2. Balganga Discharge_Stage m3/s_m 1000 114 

 

The summary of the dataset used for calibration and validation using ANN method is given in 

Table 4.2. 

 

Table 4.2. Summary of the observed discharge and stage data used for developing a stage-

discharge relationship by ANN method. 

S. No Stations Data Type Unit Total No. Outlier Total 

1. Bhilangna Discharge_Stage m3/s_m 700 300 1000 

2. Balganga Discharge_Stage m3/s_m 560 240 800 

4.2.1 River cross sections and plots of stage discharge curves for the two sites 

The cross sections of the sites under consideration are plotted Fig. 4.1 and 4.2. 

 

Figure 4.1.Cross-section profile at Bhilangana catchment 
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Figure 4.2. Cross-section profile at Bhilangana catchment 

 

The arithmetic plots for the two sites are given Fig. 4.3 and Fig. 4.4. The log-log plots are given 

in Fig. 4.5 and 4.6.  

 

Figure 4.3. Arithmetic plot stage discharge for Bhilangana river at Ghansali   
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Figure 4.4. Arithmetic plot stage discharge for Balganga river at Sarasgaon 

 

Figure 4.5. Log-Log plot for Bhilangana at Ghansali 
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Figure 4.6. Log-Log plot for Balganga at Sarasgaon.  

4.3 RATING CURVE DEVELOPMENT USING METHOD OF LEAST SQUARES 

 The following equation 4.1 to equation 4.5 are used to develop the relationship between 

stage and discharge using method of least squares: 

       𝑄 = a(H − Ho)𝑏                                  (4.1)  

            LogeQ = Logea + bLoge(H-Ho)                   (4.2) 

 Or        Y= AX + B                   (4.3) 

Where,   

   𝑌=log𝑄; 𝐴=𝑛; 𝑋=log(H−Ho); 𝐵=log𝐾.  

Using regression analysis, the values of 𝐴 and 𝐵 can be calculated through the following 

relations 

       𝐴 =
N∑ (XY) −(∑ X) (∑ Y) 

 N(∑ X2)− (∑ X)2  
                                       (4.4) 

        𝐵 =
∑ Y −𝐴(∑ X) 

𝑁 
                                               (4.5) 

Where,    Q = Stream discharge;  H = Stage height; Ho = a constant representing the gauge 

reading corresponding to zero discharge; a and b are the rating curve constants.  
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The values of ‘a’ and ‘b’ from physical consideration of the cross section are given by the 

following equations; 

a = (1/n) WS1/2                                               (4.6) 

n = 0.034d1/6                                          (4.7) 

Where, W is the top width of the channel, S is the bed slope and n is Manning’s coefficient, d 

is medium size of the bed materials in mm. The typical value of ‘n’ for natural rivers are 

(Henderson (1966)): 

               The clean and straight river channel 0.025 – 0.03 

               Winding with pools and shoals 0.033 – 0.04 

               Very weedy, winding and overgrown 0.075 – 0.15                     

The values of b for different types of cross sections are given below:  

 For rectangular shape: 1.6 

 For triangular shape: 2.5 

 For parabolic shape: 2 

 For irregular shape: 1.6 to 1.9 

 

The values of ‘a’ and ‘b’ in equation 4.1 should be cross verified with the values of ‘a’ and ‘b’ 

from physical considerations.               

4.4 ARTIFICIAL NEURAL NETWORK (ANN) 

 An Artificial Neural Network (ANNs) is a system based on the operation of biological 

neural networks. The concept of ANN was developed in 1943 by Warren McCulloch and 

Walter Pitts, who suggested the conceptualization of human brain function built on a network 

of interconnected cells. However, the use of ANN in hydrological applications started in 1990s 

and picked up momentum from 2000 after the publication of ASCE  task committee report on 

Application of Artificial Neural network in Hydrology in ASCE Journal of Hydrologic 

Engineering. The architecture of Neural Network is designed in three layers, called the input 

layer, hidden layer(s), and output layer. In recent years numerous types of artificial neural 

network (ANN) have been developed, such as Feedforward, radial basis, recurrent and 

multilayer perceptron neural network. Gallant (1990) reported that the multilayer perceptron 

(MLP) and the feedforward ANN is the most commonly used type of ANN. In the present 
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study, the multilayer perceptron (MLP) based approaches have been used to develop the stage-

discharge relationships for two sub-basins of Tehri catchment.  

 A multilayer perceptron (MLP) is a class of feedforward artificial neural network, 

which consists of at least three layers of nodes: an input layer, a hidden layer and an output 

layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. 

The ANN uses the following expression: 

y = ƒ (∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖 + 𝑏)                                                                            (4. 8)  

where, the input are X subscripts (i = 1,2, ... n) and corresponding model weights are w with 

subscripts (i = 1,2, … n), b is the bias, y is the output and f(.) is the activation function. The 

actual node input expressed as, 

net = (∑𝑥𝑖

𝑛

𝑖=1

𝑤𝑖)                                                                                        (4. 9) 

4.4.1 Learning in multilayer feed-forward networks  

The weight matrix for the training is the initial step for developing an ANN model. 

There are two types of learning mechanisms or training, i.e. supervised and unsupervised. In 

the present study, supervised learning is used for training the dataset. There are a number of 

algorithms like backpropagation, Conjugate gradient algorithm, radial basis function, cascade 

correlation algorithm etc. available for supervised learning. In the present study, a 

backpropagation algorithm was used for the training of a multilayer perceptron (MLP). 

4.4.2 Back-propagation (BP)  

     In back-propagation, the minimization of errors for the target and calculated (simulated) 

output is done by the modification of the network weights. Usually, the algorithm is designed 

based on the correction of the error. Backpropagation algorithm includes the two phases, i.e. 

Forward phase and Backward phase. All the parameters weight normally initialized and 

updated (in each iteration) by using back-propagation and feed-forward method. 

I. Feed-forward calculation   

For Feed-forward calculation, the input nodes in the layer give the signal input to the 

hidden layer and at the same time to the output layer as follows:  
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The jth node for net input in the hidden layers is expressed by 

𝑛𝑒𝑡ℎ𝑗  = (∑𝑤ℎ𝑗𝑖𝑥𝑖

𝑛𝑖

𝑖=1

)                                                                           (4. 10) 

Where, ni, number of neurons (in the input layer) and the connection weight is whji, i
th represent 

the node input layer and jth node hidden layer. The following expression is the output of the jth 

node hidden layer hj which known as, 

 ℎ𝑗  = ƒ (𝑛𝑒𝑡ℎ𝑗)                                                                                    (4. 11) 

Where,  f(.) representing the sigmoid or activation function. 

ℎ𝑗 = 
1

1 + 𝑒𝑥𝑝(−𝑛𝑒𝑡ℎ𝑗)
                                                                (4. 12) 

                   

(a) Log-sigmoid     (b) Tan-sigmoid     (c) Purelin   

Figure 4.7. Activation of Transfer functions and their range 

The net input is equal to the kth node output layer is specified by the following relationship. 

𝑛𝑒𝑡ℎ𝑘 = (∑𝑤𝑜𝑘𝑗𝑥𝑗

𝑛ℎ

𝑗=1

)                                                                           (4. 13) 

 

Where, nh representing the number of neurons (hidden layer) and wokj is a connection weight 

for nodes and jth hidden layer as well as kth representing a node output layer.  

                         𝑦𝑘 = ƒ (𝑛𝑒𝑡𝑦𝑘)                                                                                       (4. 14) 

Now operating through the pure linear activation function, it can be written as,  

                                           𝑦𝑘 = purelin (𝑛𝑒𝑡𝑦𝑘)                                                                     (4. 15) 
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II. Error back-propagation 

The hidden layers and Input layers are propagated back by the error from the computed 

output layer to determine the updates for the weights. The technique is derivative from the 

known gradient descent process where the weights modernizing is done by moving the negative 

gradient alongside the multidimensional surface of the error function. The following expression 

bellow is the mean sum of square error E. 

E = 
1

2𝑁
∑(𝑦𝑘 − 𝑡𝑘)

2

𝑛𝑜

𝑘=1

                                                                          (4. 16) 

Where, tk representing the desired output (target kth) and yk is the computed output for the same 

node. 

4.4.3 Model Development 

 For Artificial Neural Network model, a different combination of TS with three 

antecedent gauge and discharge values were developed for the analysis as follows: 

 Model one: Qt = f(Ht
’ ),  

 Model two: Qt = f (Ht
’, Ht-1

’ ),  

 Model three: Qt = f (Ht
’, Qt-1),  

  

Where, Qt is a discharge or river flow in cumecs and Ht represents river stage in meter all 

correspond with time t (Ht-Ho).  

The feedforward back-propagation tool of MATLAB version 9.2 has been used in the 

study for developing the relationship between the stage and discharge. Three input-output data 

sets were given into the ANN tools for model development. The input layer of the model is the 

river stage and discharge data set, and the output layer neuron is only discharged dataset. The 

‘nntools’ function of MATLAB was used for the development of the ANN model.  

The gradient descent method was used for the adjustment of the weights and biases of the 

network during the simulation time. The adjustment of weight and bias was adjusted by using 

the learning function. The mean square error is the error performance function for the 

feedforward network (where the computation of the square error was done between the outputs 

network and target outputs). To obtain consistency in the results, the number of trials must be 

made randomly in order to resolve the uncertainties of the initial weights and stopping criteria 
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(Sahoo & Ray, 2006). The improvement of the developed model was frequently checked by 

testing data on iteration to avoid the overtraining. 

4.4.4 Preprocessing of input data 

  Preprocessing of input data is essential for the adeptness of the training algorithm. MLP 

is very sensitive and can only be used by scaling the data. Initially, the input variables were 

standardized or rescaled to make sure that the datasets get the same attention during the training 

process. In this study, normalization of raw data series was applied to both stages and discharge 

data series. 

4.4.4.1 Normalization of raw data series 

 The hyperbolic tangent (tansig) function was used in this study, in which the data sets 

were differentiated and monotonically increasing. The output of this function is in the range 

from -1 to +1, which is permanently bonded and then the input to the function may vary between 

-∞ to ∞. Another method is to rescale the data sets values with a mean of 0 and unit standard 

deviation (referred to as normalization). Here below is the expression of the normalization 

method. 

𝑥𝑛 = 
𝑥 − 𝑥

𝑥𝑆𝐷
                                                                           (4. 17) 

The normalized data were then de-normalized using the following relationship. 

𝑥 =  (𝑥𝑛 × 𝑥𝑆𝐷) + 𝑥                                                                 (4. 18) 

Where, n Number of observations in a data series; x is the data set, xSD standard deviation,  𝑥 

is the mean of the data set. 

4.5 MODEL PERFORMANCE EVALUATION 

The performance of a model can be assessed by using different performance indicators. 

In the present study, three different performance indicators namely correlation coefficient (r), 

the root means square error (RMSE) and Nash Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 

1970) were used as per following equations:                            

The coefficient of Correlation =  
∑ (𝘘𝑂−�̅�𝑂)𝑁

𝑖=1 (𝘘𝑝−�̅�𝑝)

√∑ (𝘘𝑂−�̅�𝑂)2𝑁
𝑖=1 ∑ (𝘘𝑝−�̅�𝑝)2𝑁

𝑖=1

                                        (4.19) 
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 Root Mean Square Error (RMSE)  = √
∑ (𝘘𝑂𝑖−�̅�𝑝𝑖)

2𝑁
𝑖=1

𝑁
                                    (4.20) 

Nash Sutcliffe Efficiency = 100 × [1 −
∑ (𝘘𝑂−�̅�𝑝)2𝑁

𝑖=1

∑ (𝘘𝑂−�̅�𝑂)2𝑁
𝑖=1

]                                                (4.21) 

Where, N is the number of observed data; Qo is observed river flow, Qp is predicted river flow,  

�̅�𝑂 is mean observed river flow and �̅�𝑝 is mean predicted river flow. 

4.6 RESULTS AND DISCUSSION 

The results obtained from both the least squares method and Artificial Neural Network 

(ANN) for developing the rating curve of Bhilangana river at Ghansali and Balganga river at 

Sarasgaon are discussed in this section. 

4.6.1 Least Square Method 

A higher degree of polynomial fit and best fits was obtained. The results of the 

calibration and validation process with and without outliers obtained for Bhilangana sub-basin 

are given in Table 4.3.  For Bhilangana sub-basin, the model performance indicator R2, RMSE 

and NSE are 0.994, 9.253 and 99.066%, respectively during the calibration process without 

outliers, while during the validation process, the model performance indicator R2, RMSE and 

NSE are 0.986, 9.252 and 94.360%, respectively. The results of the calibration and validation 

process with outliers and without outliers obtained for Balganga sub-basin is given in Table 

4.4.  For Balganga river the model performance indicator R2, RMSE and NSE are 0.997, 2.891 

and 99.276%, respectively during the calibration process without outliers, while during the 

validation process, the model performance indicator R2, RMSE and NSE are 0.938, 6.988 and 

87.433% respectively. The equation used for calculating the stream flow is given in Table 4.5 

for without outliers and in Table 4.6 for with outliers. The table represented the value of zero 

flow and the value of constant parameters of a and b. Figure 4.8 to 4.11 shows the graph plots 

of the relationship between stage and discharge with and without outliers, which will be used 

for calculating/computing discharge for the future. 
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Table 4.3. Representing performance and error results for Bhilangana River at Ghansali 

Artificial Neural 

Network (ANN) 

Number 

of 

Hidden 

Layer 

Data with Outliers 

Calibration Validation  

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Qt = f(Ht) 3 0.998 5.651 99.660 0.993 4.536 98.599 

Method of least squares  0.989 13.470 98.133 0.986 9.252 94.360 

 

Artificial Neural 

Network (ANN) 

Number 

of 

Hidden 

Layer 

Data without Outliers 

Calibration Validation 

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Qt = f(Ht) 3 0.999 0.947 99.990 0.996 3.174 99.322 

Method of least squares  0.994 9.253 99.066 0.986 8.424 95.324 

 

Table 4.4. Representing performance and error results for Balganga River at Sarasgaon 

Artificial Neural 

Network (ANN) 

Number 

of 

Hidden 

Layer 

Data with Outliers 

Calibration  Validation 

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Qt = f(Ht) 3 0.994 0.886 99.953 0.99 0.989 99.748 

Method of least squares  0.989 6.399 97.446 0.938 6.937 87.616 

 

Artificial Neural 

Network (ANN) 

Number 

of 

Hidden 

Layer 

Data without Outliers 

Calibration Validation 

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Coefficient 

of 

Correlation 

R2 

RMSE 

(m3/sec) 

Efficiency 

N % 

Qt = f(Ht) 3 0.999 0.031 99.992 0.999 0.204 99.989 

Method of least squares  0.997 2.891 99.276 0.938 6.988 87.433 
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Table 4.5. Summary of actual rating curve without outliers 

S. No Stations   Ho   b a Best 

fit 

Rating Curve equation

        

Range of 

applicability 

1. Bhilangana      849.39    1.900    31.783    98.97      Q = 31.783*(H-Ho)1.900       849.40 ≥ H ≤ 855.00 

2. Balganga 855.8     1.742    22.7743 99.58      Q = 22.774*(H-Ho)1.742    856.0 ≥ H ≤ 860 

 

Table 4.6.Summary of actual rating curve with outliers 

S. No Stations   Ho   b a Best fit Rating Curve equation

        

Range of 

applicability 

1. Bhilangana      849.39    1.896    32.882    95.45      Q = 32.882*(H-Ho)1.896       849.40 ≥ H ≤ 855.00 

2. Balganga 855.8     1.742    26.994    97.85      Q = 26.994*(H-Ho)1.711    856.0 ≥ H ≤ 860 

 

 

Figure 4.8.Rating Curve and Equation at Bhilangana River at Ghansali without outliers 
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Figure 4.9. Rating Curve and Equation at Bhilangana River at Ghansali with outliers 

 

Figure 4.10. Rating Curve and Equation at Balganga River at Sarasgaon without outliers 
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Figure 4.11. Rating Curve and Equation at Balganga River at Sarasgaon with outliers 

4.6.2 ANN-Artificial Neural Network  

Three number of the model combination with and without outliers were considered for 

the development of the stage-discharge relationship using ANN for two sub-catchments of 

Tehri catchment.  The ANN results were evaluated by considering the model statistical analysis 

performance.  

All the model combination is checked and the results are satisfactory for all the models. 

However, for Bhilangana sub-basin, the results of Model 1 without outliers and with 3 numbers 

of hidden layers are better as compared to other models results. Therefore, Model 1 is chosen 

during the calibration for the Bhilangana sub-basin. The results of the calibration and validation 

process for the Bhilangana sub-basin are given in Table 4.3. The calibration results of model 1 

give the value of the model performance indicator R2, RMSE and NSE as 0.999, 0.947 and 

99.99 %, respectively. The validation results of the model give the value of the model 

performance indicator R2, RMSE and NSE as 0.996, 3.174 and 99.322%, respectively.  

For the Balganga river, the results of Model 1 without outliers and with 3 numbers of 

hidden layers are better as compared to the other model results. Therefore, Model 1 is chosen 

for the Balganga river. The results of the calibration process give the coefficient of correlation 
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R2 as 0.999, RMSE as 0.031 and NSE as 99.992%. The results during the validation process 

give the coefficient of correlation, R2 as 0.999, RMSE as 0.204 and NSE as 99.989%. The 

results are also shown in graphs. Figure 4.12 and 4.13 shows the results of calibration (training) 

and validation of the chosen model for Bhilangana and Balganga sub-basins, respectively. 

Figure 4.14 to Figure 4.17 representing the comparisons of the observed and computed 

streamflow with and without outliers for two different methods used in simulating the 

streamflow, the figures show the results with above and below 10% of the observed streamflow.  

 

Figure 4.12. Representing Bhilangana river calibration and validation of Model 1. 
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Figure 4.13. Representing Balganga river calibration and validation of Model 1. 
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Figure 4.14.Observed and computed discharge a scatter plot for Bhilangana River at Ghansali 

without outliers 

 

Figure 4.15. Observed and computed discharge a scatter plot for Bhilangana River at 

Ghansali with outliers 
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Figure 4.16. Observed and computed discharge a scatter plot for Balganga River at Sarasgaon 

without outliers 

 

Figure 4.17. Observed and computed discharge a scatter plot for Balganga River at Sarasgaon 

without outliers 
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DEVELOPMENT OF STOCHASTIC MODELS FOR DAILY 

STREAMFLOW FORECASTING 

5.1 GENERAL 

Hydrologists often deal with the limited number of observed data while analysing the 

time series (TS). Use of stochastic models can be a possible solution for that case as it does not 

consider the physical nature of the time series during modelling (Box and Jenkins, 1976; Shahin 

et al.,1993). In hydrological field, the stochastic models commonly used are: pure random (or 

white noise) model, autoregressive (AR) model, moving average (MA) model, autoregressive 

moving average (ARMA) model, autoregressive moving average model with exogenous inputs 

(ARMAX) and autoregressive integrated moving average (ARIMA) model. In the present 

study, the AR, ARX, ARMA and ARMAX models have been used for daily streamflow 

forecasting purpose.  

This chapter presents details of data used, development of stochastic models for daily 

streamflow forecasting for monsoon and non-monsoon seasons, and their results. All the 

mathematical calculations of the stochastic model development have been done in Microsoft 

Excel software version 2010 and code was written in R-programming language using R studio 

version 3.4.3. The developed code of the stochastic model is attached in Appendix I. 

5.2 STUDY AREA 

 Three sub-basins, namely Bhagirathi (at MBII), Bhilangana (at Ghansali), and Balganga 

(at Sarasgaon) of Tehri catchment are considered for this study. The details of all the sub-basins 

have already been described in Chapter 3. 

5.2.1 Data Used 

The rainfall and discharge data from three sub-basins, namely Bhagirathi at MB II, 

Bhilangana at Ghansali and Balganga at Sarasgaon were collected from Real-time inflow 

forecasting system website of Tehri dam. The availability of rainfall and discharge data is given 
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in Table 5.1. Table 5.2 to Table 5.4 shows the statistical summary of the data set used for the 

present study for all three sub-basins. 

Table 5.1.Observed discharge and stage data summary  

Catchment Test 

Seasons Data of 

Discharge, 

Rainfall  
Monsoon       Non-Monsoon 

Bhilangana 

Calibration 

June 2016 – 

September 2016 

June 2017 to 

September 2017 

October 2016 – May 

2017; October 2017- 

May 2018 

All 

Validation 
June 2018 – 

September 2018 

October 2018– May 

15, 2019 
All 

Balganga 

Calibration 

June 2016 – 

September 2016 

June 2017 to 

September 2017 

October 2016 – May 

2017; October 2017- 

May 2018 

All 

Validation 
June 2018 – 

September 2018 

October 2018– May 

15, 2019 
All 

Bhagirathi 

Calibration 

June 2016 – 

September 2016 

June 2017 to 

September 2017 

October 2016 – May 

2017; October 2017- 

May 2018 

All 

Validation 
June 2018 – 

September 2018 

October 2018– May 

15, 2019 
All 

  

The equations used for computing the basic statistical characteristic of time series, like 

mean, sample variance, skewness coefficient, and standardization of the series data set are 

given below: 

 

Sample Mean 

𝑸 = 
𝟏

𝑵
 ∑𝑸𝒕

𝑵

𝒕=𝟏

                                                                                     (5. 1) 

Where, N representing the length of sample size, and 𝑄 is mean sample of data set. 

 

Sample Variance 

𝑺𝟐 = 
𝟏

𝑵 − 𝟏
 ∑(𝑸𝒕 − 𝑸)𝟐

𝑵

𝒕=𝟏

                                                                                  (5. 2) 
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Where, N representing the length of sample size, S is a variance of data set, 𝑄𝑡 is t-th data set 

series and 𝑄 is mean sample of data set. t = 1, 2, 3, …… 

Skewness coefficient 

𝜹 =   

𝟏
𝑵 − 𝟏 ∑  (𝑸𝒕 − 𝑸)𝟐𝑵

𝒕=𝟏  

𝑺𝟑
                                                                              (5. 3) 

Where, N representing the length of sample size, 𝛿 is skewness coefficient, S is a variance of 

the data set, 𝑄𝑡 is t-th data set series and 𝑄 is mean sample of data set. t = 1, 2, 3, …… 

Standardized series 

𝒁𝒗,𝝉 =  
𝑸𝒗,𝝉 − 𝑸𝝉

𝝈𝝉
                                                                              (5. 4) 

Where, 𝑍𝑣,𝜏  is the standardized data set, 𝜎𝜏 is the standard deviation of the data set, 𝑄𝑣,𝜏 length 

of the data set, and 𝑄𝜏 a sample mean of  data set. 

Table 5.2. Bhagirathi River monsoon data set analysis summary  

No. Parameter 

The monsoon season from 

June to September 

Non-monsoon season from 

October to May (next 

year) 

2016 2017 2018 2016 2017 2018 

1 Mean daily Runoff (Cumecs) 338.94 286.46 285.61 46.84 46.32 71.31 

2 Standard Deviation 155.05 149.89 121.15 31.56 20.47 22.37 

3 Coefficient of skewness 0.32 0.44 0.69 1.50 1.29 0.05 

4 Coefficient of Kurtosis -0.72 -1.24 0.15 1.36 0.60 -0.79 

5 Max daily Runoff 715.49 592.80 687.20 162.28 110.70 117.00 

6 Min daily Runoff 106.97 104.73 114.70 11.06 22.30 32.00 

 

Table 5.3.Bhilangana River monsoon and non-monsoon data set analysis summary  

No. Parameter 

The monsoon season from 

June to September 

Non-monsoon season from 

October to May (next 

year) 

2016 2017 2018 2016 2017 2018 

1 Mean daily Runoff (Cumecs) 105.21 325.57 111.55 12.89 14.55 11.91 

2 Standard Deviation 87.38 150.25 80.85 8.10 11.87 6.18 

3 Coefficient of skewness 2.17 0.41 1.31 1.39 1.87 1.71 

4 Coefficient of Kurtosis 7.63 -0.17 2.50 1.57 3.22 2.00 

5 Max daily Runoff 564.75 786.85 446.00 43.13 60.46 30.82 

6 Min daily Runoff 21.29 89.11 21.29 4.67 5.37 7.55 
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Table 5.4. Balganga River monsoon and non-monsoon data set analysis summary  

No. Parameter 

The monsoon season from 

June to September 

Non-monsoon season from 

October to May (next 

year) 

2016 2017 2018 2016 2017 2018 

1 Mean daily Runoff (Cumecs) 51.48 68.17 54.56 3.48 2.57 3.81 

2 Standard Deviation 45.79 51.52 48.28 1.61 1.72 2.64 

3 Coefficient of skewness 1.40 0.67 0.79 1.32 3.17 2.10 

4 Coefficient of Kurtosis 2.73 0.61 0.27 1.53 9.18 4.84 

5 Max daily Runoff 257.41 240.90 222.46 9.55 10.00 15.00 

6 Min daily Runoff 3.54 5.00 2.00 2.00 2.00 0.00 

5.3 STOCHASTIC MODELLING FORMULATION 

AR and ARMA models are one of the important and popular stochastic models used for 

the time series analysis and forecasting. In the present study, AR, ARX, ARMA and ARMAX 

models with the exogenous variable inputs were developed for monsoon season. However, for 

non-monsoon season, only AR model is used to simulate the daily streamflow. The following 

are the mathematical expression of the models: 

AR (p) model is represented as  

Qt = φ1 Qt-1 +…... + φp Qt-p + ɛt       (5.5) 

ARMA (p, q) model; 

Qt = φ1 Qt-1 +…... + φp Qt-p + Ɵ1 ɛt-1 + …...+ Ɵq ɛt-q + …...+ ɛt    (5.6) 

ARX (p, r) model; 

Qt = φ1 Qt-1 +…... + φp Qt-p + b1 dt-1 + …...+ br dt-r + ɛt    (5.7) 

ARMAX (p, q, r) model; 

Qt = φ1 Qt-1 +…... + φp Qt-p + Ɵ1 ɛt-1 + …...+ Ɵq ɛt-q + b1 dt-1 + …...+ br dt-r + ɛt (5.8) 

Where, Qt is the time dependent series (Variable), φ1 to φp are the coefficients of AR terms, 

Ɵ1 to Ɵq are the coefficients of MA, b1 to bq are the coefficients of exogenous input variable 

(Rainfall or Temperature). 
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5.3.1 Time-series modelling procedure  

The development of stochastic model involves three steps procedures, namely the 

model identification, the model parameter estimation and the model diagnostic checking. In 

this study, after the development procedure, the appropriate model was selected, which can 

produce good results for simulating daily flow by using the historical streamflow pattern, 

rainfall and temperature data. 

5.3.1.1 Model identification 

The identification of a model is the initial stage in order to exemplify the behaviour of 

the time series (TS) and to estimate the order of the model (p and q). In the present study, the 

Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) have been used 

for the identification of the model order. The Eqs. 6.9 to 6.12 have been used to compute ACF 

and PACF of the residuals. Table 5.5 shows the conditions for the identification of model order 

for TS models. 

Ck is usually called the lag-k autocovariance, 

𝐶𝑘 = 
1

𝑁
 ∑(𝑄𝑡 − 𝑄)

𝑁−𝑘

𝑡=1

(𝑄𝑡+𝑘 − 𝑄),          0 ≤ 𝐾 < 𝑁                                             (5. 9) 

Where, K represents lag time (or distance) between correlated pairs (𝑄𝑡, 𝑄𝑡+𝑘), N is total 

number of sample size, 𝑄 is the average sample. 

For a certain case that K = 0, C0 turns into the variance S2 of the Eq. (6.2) 

𝐶0 = 
1

𝑁
 ∑(𝑄𝑡 − 𝑄)

2
𝑁

𝑡=1

,          0 ≤ 𝐾 < 𝑁                                              (5. 10) 

𝑟𝑘 = 
𝐶𝑘

𝐶0
=

∑ (𝑄𝑡 − 𝑄)𝑁−𝑘
𝑡=1 (𝑄𝑡+𝑘 − 𝑄)

∑ (𝑄𝑡 − 𝑄)
2

𝑁
𝑡=1

                                               (5. 11) 

rk(95%) =  
−1 ± 1.96 √N − K − 1

N − K
                                               (5. 12) 

Where, 𝑟𝑘 is named the lag-k autocorrelation coefficient, the lag-k is the serial correlation 

coefficient of the autocorrelation function (ACF). The plot of 𝑟𝑘 against k is termed as the 

correlogram. 
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Table 5.5.Identification of the ACF and PACF for AR, MA  and ARMA  

Models ACF PACF 

AR (p) Decays geometrically P significant lags (order) 

MA (q) P significant lags (order) Decays geometrically 

ARMA (p, q) Decays geometrically Decays geometrically 

5.3.1.2 Parameter estimation 

The method of moments and the method of maximum likelihood is the two statistical 

methods usually used to estimate the parameters (Box and Jenkins, 1976; Salas et al., 1980). In 

the present study, the method of moments has been used to compute the parameters of the 

model. The expressions of the method of moments are as follows:  

a) For autoregressive with exogenous variable input ARX (p, r) model; 

   Qt = φ1 Qt-1 +…... + φp Qt-p + b1 dt-1 + …...+ br dt-r + ɛt            (5.13) 

Qt+1 = φ1 Qt+1-1 +…... + φp Qt+1-p + b1 dt+1-1 + …...+ br dt+1-r + ɛt                            (5.14) 

Qt+T = φ1 Qt+T-1 +…... + φp Qt+T-p + b1 dt+T-1 + …...+ br dt+T-r + ɛt                 (5.15) 

Where, φp is the p-th autoregressive coefficient of the AR(p) model, br is the r-th exogenous 

variable coefficient of the X(r).  

 AR(p), p = 1, 2, 3………. X(r), r = 1, 2, 3………. 

Which may be written as matrix notation 

[
 
 
 
 

Qt

⋮
⋮
⋮

Qt+T]
 
 
 
 

=  

[
 
 
 
 

Qt−1     dt−1 

⋮     ⋮
⋮     ⋮
⋮ ⋮

Qt+T−1 dt+T−1 ]
 
 
 
 

  

[
 
 
 
 
φ

𝑝

⋮
⋮
⋮
𝑏𝑟 ]

 
 
 
 

                                                                         (5. 16) 

Where, 

𝑌 =

[
 
 
 
 

Qt

⋮
⋮
⋮

Qt+T]
 
 
 
 

, 𝐻 =  

[
 
 
 
 

Qt−1     dt−1 

⋮     ⋮
⋮     ⋮
⋮ ⋮

Qt+T−1 dt+T−1 ]
 
 
 
 

 ,   Ɵ =  

[
 
 
 
 
φ

𝑝

⋮
⋮
⋮
𝑏𝑟 ]

 
 
 
 

                                                               (5. 17)   

[Y] = [H] [Ɵ] 

[H T] [Y] = [H T] [H] [Ɵ]                                    (5.18) 
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Then, parameter [Ɵ] is  

[Ɵ] = [H T × H]-1[H T] [Y]                 (5.19) 

Thus the parameter [Ɵ] array is determined by the applying equation 6.19.  

b) The linear equation for  ARMAX with exogenous variable input (p, q, r) model are; 

Qt = φ1 Qt-1 +…... + φp Qt-p + Ɵ1 ɛt-1 + …...+ Ɵ q ɛt-q + b1 dt-1 + …...+ br dt-r + ɛt  

Qt+1 = φ1 Qt+1-1 +…... + φp Qt+1-p + Ɵ1 ɛt+1-1 + …...+ Ɵ q ɛt+1-q + b1 dt+1-1 + …...+ br dt+1-r +ɛt 

Qt+T = φ1 Qt+T-1 +…... + φp Qt+T-p + Ɵ1 ɛt+T-1 + …...+ Ɵ q ɛt+T-q + b1 dt+T-1 + …...+ br dt+T-r + 

ɛt 

Where, φp is the p-th autoregressive coefficient of the AR(p) model, Ɵ q is the q-th moving 

average coefficient of the MA(q), br is the r-th exogenous variable coefficient of the X(r).  

 AR(p), p = 1, 2, 3………. MA(q), q = 1, 2, 3………. X(r), r = 1, 2, 3………. 

Which may be written as matrix notation 

                      

[
 
 
 
 

Qt

⋮
⋮
⋮

Qt+T]
 
 
 
 

  =  

[
 
 
 
 

Qt−1 ɛt−1     dt−1 

⋮     ⋮      ⋮
⋮        ⋮        ⋮
⋮ ⋮ ⋮

Qt+T−1 ɛt+T−1 dt+T−1 ]
 
 
 
 

  

[
 
 
 
 
φ

𝑝

⋮
Ɵ𝑞

⋮
𝑏𝑟 ]

 
 
 
 

                                                   (5. 20)    

Where, 

              𝑌 =

[
 
 
 
 

Qt

⋮
⋮
⋮

Qt+T]
 
 
 
 

, 𝐻 =  

[
 
 
 
 

Qt−1 ɛt−1     dt−1 

⋮     ⋮      ⋮
⋮        ⋮        ⋮
⋮ ⋮ ⋮

Qt+T−1 ɛt+T−1 dt+T−1 ]
 
 
 
 

,   Ɵ =  

[
 
 
 
 
𝑎𝑝

⋮
Ɵ𝑞

⋮
𝑏𝑟 ]

 
 
 
 

                                  (5. 21)   

[Y] = [H] [Ɵ] 

[H T] [Y] = [H T] [H] [Ɵ]                                             (5.22) 

Then, parameter [Ɵ] is  

[Ɵ] = [H T × H]-1[H T] [Y]                     (5.23) 

Thus the parameter [Ɵ] array is determined by the applying equation 6.23. 
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5.3.1.3 Model diagnostic checking  

In the present study, the model diagnostic checking was done by using three-step 

procedures. At first, the model was tested by means of goodness of fit using the Autocorrelation 

in model residuals, i.e. by ACF and PACF. Thereafter, the model performance was checked by 

using different model performance indicators (NSE, RMSE, R2 and MSE), and finally, the best 

model was chosen on the basis of lowest Akaike Information Criteria (AIC), provided other 

indices were also either the best ones or were close to the best ones.  

AIC value of a model can be estimated by using the following formula: 

AIC for an AR(p) 

AIC (p) = N(LN(SE2)) +2p                                     (5.24) 

Where, SE2 is the residual variance of standardized series, N total number of samples and p is 

the parameters of models. 

And, AIC for an ARMA (p, q) 

 AIC (p, q) = N (LN(SE2)) + 2(p + q)                                                   (5.25) 

Where, SE2 is the residual variance of standardized series, N total number of samples, and (p, 

q) is the parameters of models. 

5.3.2 Model performance 

The performance of a model can be assessed by using different performance indicators. 

In the present study, three different performance indicators were used, i.e. correlation 

coefficient (r), the root means square error (RMSE) and Nash Sutcliffe efficiency (NSE) (Nash 

& Sutcliffe, 1970). The evaluation of the models are given by the following equations:                            

The coefficient of Correlation =  
∑ (𝙌𝑶−�̅�𝑶)𝑵

𝒊=𝟏 (𝙌𝒑−�̅�𝒑)

√∑ (𝙌𝑶−�̅�𝑶)𝟐𝑵
𝒊=𝟏 ∑ (𝙌𝒑−�̅�𝒑)𝟐𝑵

𝒊=𝟏

                           (5.26) 

 Root Mean Square Error = √
∑ (𝙌𝑶𝒊−�̅�𝒑𝒊)

𝟐𝑵
𝒊=𝟏

𝑵
                                                          (5.27) 

Nash Sutcliffe Efficiency = 100 × [1 −
∑ (𝘘𝑂−�̅�𝑝)2𝑁

𝑖=1

∑ (𝘘𝑂−�̅�𝑂)2𝑁
𝑖=1

]                                         (5.28) 
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where, N is the Number of observations; Qo is the observed flow, Qp is the predicted flow,  �̅�𝑂 

is the mean of the observed flow and �̅�𝑝 is the mean of the predicted flow. 

5.4 RESULTS AND DISCUSSION 

This section discusses results obtained after using the stochastic models for the three 

sub-catchments of the Tehri basin. 

5.4.1 ACF and PACF plot 

The model is identified using the ACF and PACF plot in the present study. The ACF 

and PACF plots for all three sub-catchments are shown in Figure 5.1 (a to c). In this figure, the 

first plot represents to ACF, and the second one represents to PACF plot. From Figure 5.1 (a 

and c), the ACF graph shows the decays geometrically and PACF values show significant in 

lag 1 and rest is non-significant. From Figure 5.1(b), ACF values show the decays 

geometrically, and PACF values are shows the significant in lag 1 and lag 2 and the rest in non-

significant. According to the ACF and PACF results, AR and ARX models are appropriate for 

the time series.  
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(1)   (a)   (2) 

 

(1)   (b)   (2) 

  

(1)   (c)   (2) 

Figure 5.1. (a) Bhagirathi River (b) Bhilangana River and (c) Balganga River representing 

ACF and PACF values. (red line representing confidence limits of the model  ± 95%) 
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5.4.2 Calibration performance of the Model  

In the present study, the model was developed on a seasonal basis, i.e. for monsoon and 

non-monsoon season differently.  

5.4.2.1 Monsoon model performance   

For monsoon season, four stochastic linear TS models, namely AR, ARX, ARMA and 

ARMAX models with exogenous variable inputs have been developed for this study. The 

model calibration results are given in Table 5.6 to Table 5.8 for the three sub-basin, namely 

Bhagirathi, Bhilangana and Balganga, respectively. The value of Nash and Sutcliffe Efficiency 

(NSE), Coefficient of Determination (R2), Root Mean Square Error (RMSE), and Akaike 

Information Criteria (AIC) are given in the tables.  

The results of the Bhagirathi sub-basin are shown in Table 5.6. On the basis of the 

lowest AIC value, the results showed that the ARX (1, 0, 1) model is better than the other 

models. The lowest value of AIC is -283.517. The model performance indicator of the selected 

model shows very good results with high values of NSE (0.970), PBIAS% (0.537) and 

coefficient of determination (0.985). The graph of ACF and PACF of residuals is shown in 

Figure 5.2 for Bhagirathi sub-basin. The results show that the ACF and PACF residual values 

are falling within the confidence limit, which indicated the acceptance of the selected TS model. 

The observed discharge and the model simulated discharge is shown in Figure 5.3 and also 

plotted for the Bhagirathi sub-basin. The results of observed and simulated model values are 

shows a clear match.  

Table 5.6.Calibration monsoon Bhagirathi Catchment June 2016 to September 2016 

No.  Models Parameters NSE RMSE MAE PBIAS % R2 AIC 

1 AR (1,0,0) 0.898 49.435 34.542 0.824 0.956 -269.740 

2 AR (2,0,0) 0.897 49.561 34.614 0.830 0.956 -266.720 

3 AR (3,0,0) 0.904 47.912 33.733 0.676 0.959 -266.867 

4 ARMA (1,1,0) 0.977 23.166 17.514 -0.309 0.990 -217.870 

5 ARMA (2,1,0) 0.974 24.680 16.898 -0.310 0.989 -91.552 

6 ARMA (3,1,0) 0.976 24.228 17.054 -0.283 0.990 -40.404 

7 ARX (1,0,1) 0.970 27.945 20.436 0.537 0.985 -283.517 

8 ARMAX (1,1,1) 0.990 15.792 11.952 0.375 0.995 -245.156 

9 ARMAX (2,1,1) 0.970 26.623 19.044 -0.532 0.986 -143.033 

10 ARMAX (3,1,1) 0.972 26.032 18.804 -0.543 0.987 -121.580 

12 ARMAX (1,1,2) 0.973 25.583 20.040 -0.683 0.987 -222.211 

13 ARMAX (2,1,2) 0.970 26.606 18.943 -0.503 0.986 -142.036 

*The bold row indicates the chosen model for calibration.  
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(1)      (2) 

Figure 5.2. ACF and PACF residual of the model ARX(1,0,1) Bhagirathi river (2014). (red 

line representing confidence limits of the model  ± 95%) 

 

Figure 5.3 Calibration monsoon Bhagirathi Catchment June 2017 to September 2017 

 

The results of the Bhilangana sub-basin are shown in Table 5.7. On the basis of the 

lowest AIC value, the results showed that the ARMAX (1, 1, 1) model is better than the other 

models. The lowest value of AIC is -154.510. The model performance indicator of the selected 

model shows very good results with high values of NSE (0.910), PBIAS% (0.827) and 
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coefficient of determination (0.958). The graph of ACF and PACF of residuals is shown in 

Figure 5.4 for Bhilangana sub-basin. The results show that the ACF and PACF residual values 

are falling within the confidence limit, which indicated the acceptance of the selected TS model. 

The observed discharge and the model simulated discharge is shown in Figure 5.5 and also 

plotted for the Bhilangana sub-basin. The results of observed and simulated model values are 

shows a clear match.  

 

Table 5.7.Calibration monsoon Bhilangana Catchment June 2016 to September 2016 

No.  Models Parameters NSE RMSE MAE PBIAS % R2 AIC 

1 AR (1,0,0) 0.648 50.794 29.848 14.329 0.869 -61.358 

2 AR (2,0,0) 0.769 41.144 25.499 8.673 0.907 -72.733 

3 AR (3,0,0) 0.820 36.326 23.322 6.817 0.925 -73.845 

4 ARMA (1,1,0) 0.980 12.215 6.768 -0.116 0.991 -137.373 

5 ARMA (2,1,0) 0.980 12.216 6.884 -0.114 0.991 -134.742 

6 ARMA (3,1,0) 0.977 13.278 7.265 -0.134 0.989 -62.201 

7 ARX (1,0,1) 0.776 48.095 28.738 12.983 0.893 -34.051 

8 ARMAX (1,1,1) 0.910 31.038 21.523 0.827 0.958 -154.510 

9 ARMAX (2,1,1) 0.977 13.053 7.172 -0.282 0.989 -130.010 

10 ARMAX (3,1,1) 0.975 13.656 7.397 -0.285 0.988 -105.367 

12 ARMAX (1,1,2) 0.857 32.349 22.031 -0.933 0.955 -149.528 

13 ARMAX (2,1,2) 0.857 32.369 22.084 -0.934 0.955 -147.205 

*The bold row indicates the chosen model for calibration.  

  

Figure 5.4.ACF and PACF residual of the model ARX(1,0,1) Bhilangana river (2017). (red 

line representing confidence limits of the model  ± 95%) 
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Figure 5.5. Calibration monsoon Bhilangana Catchment June 2016 to September 2016  

The results of the Balaganga sub-basin are shown in Table 5.8. On the basis of the 

lowest AIC value, the results showed that the ARMAX (1, 1, 1) model is better than the other 

models. The lowest value of AIC is -188.701. The model performance indicator of the selected 

model shows very good results with high values of NSE (0.971), PBIAS% (0.319) and 

coefficient of determination (0.986). The graph of ACF and PACF of residuals is shown in 

Figure 5.6 for Balaganga sub-basin. The results show that the ACF and PACF residual values 

are falling within the confidence limit, which indicated the acceptance of the selected TS model. 

The observed discharge and the model simulated discharge is shown in Figure 5.7 and also 

plotted for the Balaganga sub-basin. The results of observed and simulated model values are 

shows a clear match.  

Table 5.8.Calibration monsoon Balganga Catchment June 2016 to September 2016 

No.  Models Parameters NSE RMSE MAE PBIAS % R2 AIC 

1 AR (1,0,0) 0.704 24.793 16.612 6.054 0.906 -176.585 

2 AR (2,0,0) 0.720 24.143 16.422 5.428 0.910 -174.531 

3 AR (3,0,0) 0.723 24.016 16.280 5.291 0.910 -171.500 

4 ARMA (1,1,0) 0.892 14.962 10.102 -0.133 0.962 -126.596 

5 ARMA (2,1,0) 0.893 14.926 9.887 -0.089 0.963 -108.271 

6 ARMA (3,1,0) 0.894 15.112 10.115 0.051 0.964 -100.613 

7 ARX (1,0,1) 0.967 9.840 6.964 2.752 0.985 -113.058 

8 ARMAX (1,1,1) 0.971 9.384 6.385 0.319 0.986 -188.701 

9 ARMAX (2,1,1) 0.878 15.916 10.548 -0.884 0.959 -172.126 

10 ARMAX (3,1,1) 0.879 15.846 10.459 -0.792 0.959 -149.161 

12 ARMAX (1,1,2) 0.854 17.406 12.353 -0.407 0.954 -112.894 

13 ARMAX (2,1,2) 0.853 17.462 12.183 -0.242 0.955 -96.799 

*The bold row indicates the chosen model for calibration.  
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(1)      (2) 

Figure 5.6. ACF and PACF residual of the model ARMAX(1,1,1) Balganga (2016). (red line 

representing confidence limits of the model  ± 95%) 

 

Figure 5.7. Calibration monsoon Balganga Catchment June 2016 to September 2016  

5.4.2.2 Non-Monsoon model performance   

The AR model is only used for the non-monsoon season. Therefore, the AR model 
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For the Bhagirathi sub-basin, the model performance indicator indicated a very high 

value of NSE. The results also indicate the suitability of the model on the basis of lower 

PBIAS% and higher value of coefficient of determination (Table 5.9). The observed discharge 

and the model simulated discharge is shown in Figure 5.8 and also plotted for the Bhagirathi 

sub-basin. The results of observed and simulated model values are shows a clear match. The 

graph of ACF and PACF of residuals is shown in Figure 5.9 for Bhagirathi sub-basin. The 

results show that the ACF and PACF residual values are falling within the confidence limit, 

which indicated the acceptance of the selected TS model.   

 

Table 5.9. Calibration performance results in Non-monsoon 

Catchments Year Models NSE RMSE MAE PBIAS % R2 

Bhagirathi 

MB II 

2016/2017 AR(1) 0.939 7.804 4.454 7.763 0.976 

2017/2018 AR(1) 0.904 6.510 4.345 8.153 0.965 

Bhilangana 
2016/2017 AR(1) 0.953 1.756 1.006 2.582 0.978 

2017/2018 AR(1) 0.980 1.665 0.846 -0.188 0.991 

Balganga 
2016/2017 AR(1) 0.967 0.292 0.156 1.738 0.985 

2017/2018 AR(1) 0.962 0.337 0.090 -1.096 0.986 

 

 

Figure 5.8. Calibration non-monsoon Bhagirathi Catchment October 2017 to May 2018  
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(1)      (2) 

Figure 5.9. Non-monsoon ACF and PACF residual of the model AR(1) Bhagirathi river 

(2017). (red line representing confidence limits of the model  ± 95%) 

For the Bhilangana sub-basin, the model performance indicator indicated a very high 

value of NSE. The results also indicate the suitability of the model on the basis of lower 

PBIAS% and higher value of coefficient of determination (Table 5.9). The observed discharge 

and the model simulated discharge is shown in Figure 5.10 and also plotted for the Bhilangana 

sub-basin. The results of observed and simulated model values are shows a clear match. The 

graph of ACF and PACF of residuals is shown in Figure 5.11 for Bhilangana sub-basin. The 

results show that the ACF and PACF residual values are falling within the confidence limit, 

which indicated the acceptance of the selected TS model.   

 

Figure 5.10. Calibration non-monsoon Bhilangana Catchment October 2017 to May 2018  
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(1)      (2) 

Figure 5.11. Non-monsoon ACF and PACF residual of the model AR(1) Bhilangana river 

(2016). (red line representing confidence limits of the model  ± 95%) 

 

For the Balganga sub-basin, the model performance indicator indicated a very high 

value of NSE (0.967). The results also indicate the suitability of the model on the basis of lower 

PBIAS% (1.738) and higher value of coefficient of determination (0.985) (Table 5.9). The 

observed discharge and the model simulated discharge is shown in Figure 5.12 and also plotted 

for the Balganga sub-basin and. The results of observed and model simulated values are shows 

a clear match. The graph of ACF and PACF of residuals is shown in Figure 5.13 for Balganga 

sub-basin. The results show that the ACF and PACF residual values are falling within the 

confidence limit, which indicated the acceptance of the selected TS model.   

 

 

Figure 5.12. Calibration non-monsoon Balganga Catchment October 2016 to May 2017 
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(1)      (2) 

Figure 5.13. Non-monsoon ACF and PACF residual of the model AR(1) Balganga (2016). 

(red line representing confidence limits of the model  ± 95%) 

5.4.3 Validation performance of the Model  

5.4.3.1 Monsoon model performance   

The results of model validation in monsoon season for Bhagirathi, Bhilangana and 

Balganga sub-basins are shown in Table 5.10. For Bhagirathi sub-basin, the values of NSE, 

PBIAS% and coefficient of determination are 0.934, -2.147 and 0.976, respectively. The 

statistical analysis results show the satisfaction of model. The observed streamflow and model 

simulated streamflow are compared and shown in Figure 5.14. The results of observed and 

simulated streamflow are shows the similarity, which confirms that the selected model can be 

used for the forecasting purpose during the monsoon season for the Bhagirathi sub-basin. 

 

Table 5.10. Validation performance results in monsoon from June 2018 to September 2018  

Models Models NSE RMSE MAE PBIAS % Coefficient R2 

Bhagirathi ARX (1,0,1) 0.934 34.482 25.648 -2.147 0.976 

Bhilangana ARMAX(1,1,1) 0.894 27.239 20.410 -2.491 0.946 

Balganga ARMAX(1,1,1) 0.966 10.348 6.481 0.013 0.983 
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Figure 5.14. Validation monsoon Bhagirathi Catchment June 2018 to September 2018 using 

2016 parameters 

For Bhilangana sub-basin, the values of NSE, PBIAS% and coefficient of determination 

are 0.894, -2.491 and 0.946, respectively (Table 5.10). The statistical analysis results show the  

satisfaction of model. The observed streamflow and model simulated streamflow are compared 

and shown in Figure 5.15. The results show the similarity between observed and simulated 

streamflow, which confirms that the selected model can be used for the forecasting purpose 

during the monsoon season for the Bhilangana sub-basin. 

 

 

Figure 5.15. Validation monsoon Bhilangana Catchment June to Sept 2018 using 2017 

parameters 
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For Balganga sub-basin, the values of NSE, PBIAS% and coefficient of determination 

are 0.966, 0.013 and 0.983, respectively (Table 5.10). The statistical analysis results show the 

satisfaction of model. The observed streamflow and model simulated streamflow are compared 

and shown in Figure 5.16. The results show the similarity between observed and simulated 

streamflow, which confirms that the selected model can be used for the forecasting purpose 

during the monsoon season for the Balganga sub-basin. 

 

 

Figure 5.16. Validation monsoon Balganga Catchment June 2018 to September 2018 using 

2016 parameters 

5.4.3.2 Non-Monsoon model performance   

The results of model validation in monsoon season for Bhagirathi, Bhilangana and 

Balganga sub-basins are shown in Table 5.11. For Bhagirathi sub-basin, the values of NSE, 

PBIAS% and coefficient of determination are 0.906, 6.850 and 0.965, respectively. The 

statistical analysis results show the satisfaction of model. The observed streamflow and model 

simulated streamflow are compared and shown in Figure 5.17. The results show the similarity 

between observed and simulated streamflow. 
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Table 5.11. Validation performance results in non-monsoon from October 2018 to May 2019    

Catchments Year Models NSE RMSE MAE PBIAS % Coefficient R2 

Bhagirathi 2018/2019 AR(1) 0.906 7.598 5.161 6.850 0.965 

Bhilangana 2018/2019 AR(1) 0.965 1.365 0.810 1.143 0.983 

Balganga 2018/2019 AR(1) 0.978 0.324 0.185 -0.309 0.991 

 

 

Figure 5.17. Validation Non-monsoon Bhagirathi Catchment October 2018 to May 2019  

 

For Bhilangana sub-basin, the values of NSE, PBIAS% and coefficient of determination 

are 0.965, 1.143 and 0.983, respectively (Table 5.11). The statistical analysis results show the 

satisfaction of model. The observed streamflow and model simulated streamflow are compared 

and shown in Figure 5.18. The results show the similarity between observed and simulated 

streamflow. 
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Figure 5.18. Validation Non-monsoon Bhilangana Catchment October 2018 to May 2019 

 

For Balganga sub-basin, the values of NSE, PBIAS% and coefficient of determination 

are 0.978, -0.309 and 0.991, respectively (Table 5.11). The statistical analysis results show the 

satisfaction of model. The observed streamflow and model simulated streamflow are compared 

and shown in Figure 5.19. The results show the similarity between observed and simulated 

streamflow. 

 

 

Figure 5.19. Validation Non-monsoon Balganga Catchment October 2018 to May 2019  
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5.5 COMPARISON OF STOCHASTIC AND HEC-HMS MODEL (BY AGRAWAL 

  2018) 

The HEC-HMS model has been setup and used for the Bhagirathi, Bhilangana and 

Balganga sub-basins in an earlier study by Agrawal (2018). In the present study also the same 

three sub-basins were used for simulating daily streamflow. Therefore, the results of stochastic 

model and the HEC-HMS model were compared in the present study. The comparison results 

of Stochastic model and HEC-HMS model for Bhagirathi, Bhilangana and Balganga sub-basins 

in terms of model performance indicator are shown in Table 5.12 and Table 5.13 during 

calibration and validation process, respectively. For all three sub-basins, the results indicated 

that the performance (on the basis of model performance criteria and visual inspection) of 

stochastic models for calibration and validation are far better than the HEC-HMS model. The 

observed streamflow and simulated streamflow using stochastic models and HEC-HMS model 

are also compared and shown in Figure 5.20 to Figure 5.22 for Bhagirathi, Bhilangana and 

Balganga sub-basins. The results of Agrawal (2018) for HEC-HMS model were further cross 

verified by setting up the model again and making additional efforts to improve the model 

efficiency. The results of HEC-HMS model obtained in this study are presented in next section. 

 

Table 5.12. Calibration performance results from June 2016 to May 2018 

S/No. Sub-Basins NSE Coefficient R2 RMSE PBIAS % 

Stochastic 

Models 

HEC-

HMS 

Stochastic 

Models 

HEC-

HMS 

Stochastic 

Models 

HEC-

HMS 

Stochastic 

Models 

HEC-

HMS 

1 Bhagirathi MB II 0.982 0.752 0.991 0.885 20.754 77.124 -0.080 -4.204 

2 Bhilangana 0.957 0.679 0.980 0.842 12.384 33.692 -1.114 -7.260 

3 Balganga 0.924 0.587 0.965 0.776 10.755 25.127 0.263 20.724 

 

Table 5.13. Validation performance results from June 2018 to Nov 2018 

S/No. Sub-Basins NSE Coefficient R2 RMSE PBIAS % 

Stochastic 

Models 

HEC-

HMS 

Stochastic 

Models 

HEC-

HMS 

Stochastic 

Models 

HEC-

HMS 

Stochastic 

Models 

HEC-

HMS 

1 Bhagirathi MB II 0.984 0.758 0.992 0.870 18.289 97.447 -0.271 -6.185 

2 Bhilangana 0.976 0.712 0.990 0.853 11.831 46.454 -0.607 -2.729 

3 Balganga 0.840 0.717 0.902 0.793 20.726 26.739 -9.911 5.116 
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Figure 5.20. Observed and forecasted streamflow for Bhagirathi sub-basins 

 

 

Figure 5.21. Observed and forecasted streamflow for Bhilangana sub-basins 
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Figure 5.22. Observed and forecasted streamflow for Balganga sub-basins 

5.6 RESULTS OF HEC-HMS MODEL OBTAINED IN THE PRESENT STUDY 

5.6.1 Calibration of the Model 

For the present study, the data of 1st June 2016 to 31st December 2017 were used for 

calibration of the model. The range of different parameter values used for the calibration 

purpose is given in Table 5.14. The calibrated parameter values for all four sub-catchments are 

given in Table 5.15-5.16. 

Table 5.14.Maximum and minimum parameter values 

Model  Parameter  Minimum Value  Maximum Value 

SCS Loss Initial Abstraction, Ia  0 mm  500 mm  

Curve Number, CN 1  100  

Clark’s UH Storage Coefficient (R) 0 hr  150 hr 

Time of Concentration (Tc) 0.1 hr 500 hr 

Base Flow Initial Base Flow, Qo 0 m3/s  100000 m3/s 

Recession Factor, Rc 0.000011   -  

Muskingum 

Routing 

K 0.1 hr  150 hr 

X 0  0.5 

Number of Steps 1 100 
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Table 5.15. Parameters values for all the sub-basins  

Model Parameter Sub-basin Value 

SCS loss 

Initial Abstraction 

Bhilangana 3 

Balganga 5 

MB 2 5 

Tehri Dam 5 

Curve Number 

Bhilangana 61 

Balganga 68 

MB 2 70 

Tehri Dam 60 

Base flow 

Initial Baseflow 

Bhilangana 30 

Balganga 2 

MB 2 90 

Tehri Dam 60 

Recession Factor 

Bhilangana 0.80 

Balganga 0.70 

MB 2 0.70 

Tehri Dam 0.75 

 

Table 5.16. Calibrated parameters (except model component) for all the sub-basins. 

Parameter Sub-basin Gage Value 

Gage Weights 

Bhilangana 

Bishan 0.35 

Dhoardhar 0.2 

Ghansali 0.45 

Balganga 

Bishan 0.6 

Dhopardhar 0.1 

Ghansali 0.3 

MB 2 

Bhatwari 0.1 

Dharasu 0.1 

Harshil 0.25 

Sukkhi 0.45 

Uttarkashi 0.1 

Tehri Dam 

Dharasu 0.2 

Ghansali 0.4 

Lambgoan 0.2 

Tehri 0.2 

Temperature Index 

Bhilangana 20 

Balganga 22 

MB 2 20 

Tehri Dam 18 

 

The calibration results for all the sub-catchments are given in Table 5.17. The NSE 

value is more than 76% for all the sub-basins, while the RMSE (Root Mean Square Error) 

values are also not very high. The lowest NSE value of 0.764 was obtained for Balganga sub-
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basin at the Sarasgaon gauging site, while the highest value of 0.798 was obtained for 

Bhagirathi basin at MB II. The highest RMSE value of 141.10 was found for the Bhagirathi 

basin at the Tehri dam.  

 

Table 5.17. Observed and simulated results for calibrated daily runoff in all sub-basin. 

Bhilangana Sub-basin at Ghansali 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 49.69 50.23 

Standard deviation (m3/sec.) 62.06 62.20 

Maximum (m3/sec.) 359.20 384.10 

Minimum (m3/sec.) 4.60 1.80 

Nash-Sutcliffe Coefficient (E) 0.782 

Coefficient of Determination (r2) 0.804 

Root Mean Square Error (m3/sec.) 25.20 

Balganga Sub-basin at Sarasgaon 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 21.16 21.05 

Standard deviation (m3/sec.) 32.05 29.76 

Maximum (m3/sec.) 191.90 185.70 

Minimum (m3/sec.) 2.00 0.60 

Nash-Sutcliffe Coefficient (E) 0.764 

Coefficient of Determination (r2) 0.757 

Root Mean Square Error (m3/sec.) 15.90 

Bhagirathi Sub-basin at MB II 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 158.39 159.03 

Standard deviation (m3/sec.) 177.18 165.82 

Maximum (m3/sec.) 1100.30 791.30 

Minimum (m3/sec.) 14.30 13.70 

Nash-Sutcliffe Coefficient (E) 0.798 

Coefficient of Determination (r2) 0.795 

Root Mean Square Error (m3/sec.) 80.40 

Bhagirathi Sub-basin at Tehri Dam 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 271.29 218.12 

Standard deviation (m3/sec.) 304.63 278.32 

Maximum (m3/sec.) 1525.60 1761.60 

Minimum (m3/sec.) 12.70 16.90 

Nash-Sutcliffe Coefficient (E) 0.789 

Coefficient of Determination (r2) 0.823 

Root Mean Square Error (m3/sec.) 140.08 

 

The comparison of observed and simulated daily runoff at all the gauging sites during 

the calibration periods are shown in Figure 5.23 to 5.26.  
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Figure 5.23.The simulated and observed runoff at Bhagirathi in MB II (calibration period). 

 

 

Figure 5.24. The simulated and observed runoff at Ghansali gauging site (calibration period). 
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Figure 5.25. The simulated and observed runoff at Sarasgaon gauging site (calibration 

period). 

 

 

Figure 5.26. The simulated and observed runoff at Tehri Dam, in the calibration period. 

5.6.2 Validation of the Model 

In validation, the same calibrated parameters are used to check the model capability for 

simulating runoff. In the present study, the data from 1st January 2018 to 28th November 2018 

were used for validation purpose. The results are given in Table 5.18. It can be observed that 
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the NSE values for all the sub-basins are more than 70%. The comparison of observed and 

simulated runoff for all the sub-basins during validation are shown in Figure 5.27 to 5.30.  

 

Table 5.18. Observed and simulated validation daily runoff for Bhagirathi river basin. 

Bhilangana Sub-basin at Ghansali 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 43.51 43.55 

Standard deviation (m3/sec.) 64.52 62.22 

Maximum (m3/sec.) 448.60 351.50 

Minimum (m3/sec.) 5.31 0.20 

Nash-Sutcliffe Coefficient (E) 0.768 

Coefficient of Determination (r2) 0.790 

Root Mean Square Error (m3/sec.) 31.40 

Balganga Sub-basin at Sarasgaon 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 18.65 20.23 

Standard deviation (m3/sec.) 33.02 34.17 

Maximum (m3/sec.) 179.10 179.10 

Minimum (m3/sec.) 2 2.00 

Nash-Sutcliffe Coefficient (E) 0.708 

Coefficient of Determination (r2) 0.705 

Root Mean Square Error (m3/sec.) 18.50 

Bhagirathi Sub-basin at MB II 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 128.47 137.84 

Standard deviation (m3/sec.) 133.415 136.44 

Maximum (m3/sec.) 687.20 934.22 

Minimum (m3/sec.) 22.30 10.34 

Nash-Sutcliffe Coefficient (E) 0.733 

Coefficient of Determination (r2) 0.752 

Root Mean Square Error (m3/sec.) 74.40 

Bhagirathi Sub-basin at Tehri Dam 

Statistical Parameters Observed Simulated 

Mean (m3/sec.) 221.937 218.80 

Standard deviation (m3/sec.) 279.508 287.74 

Maximum (m3/sec.) 1484.2 1647.13 

Minimum (m3/sec.) 15.20 12.70 

Nash-Sutcliffe Coefficient (E) 0.723 

Coefficient of Determination (r2) 0.756 

Root Mean Square Error (m3/sec.) 132.20 
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The results of the HEC-HMS application by Agrawal (2018) and the results obtained in 

this study clearly indicate that the performance of stochastic models is better than the HEC-

HMS. Therefore, the stochastic models are chosen for daily inflow forecasting of Tehri 

catchment and the details are presented in next section. 

 

 

Figure 5.27. Plotted observed and simulated runoff at Bhagirathi in MB II validation period. 

 

 

Figure 5.28. The simulated and observed runoff at Ghansali gauging site validation period. 
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Figure 5.29. The simulated and observed runoff at Sarasgaon gauging site validation period. 

 

 

Figure 5.30. The simulated and observed runoff at Tehri Dam validation period. 
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5.7 FORECASTING OF DAILY RUNOFF USING STOCHASTIC MODELS 

The best stochastic model has been used as a forecasting model to see the forecasting 

ability of the chosen stochastic model. During the forecasting, the model is simulated using the 

same model structure. However, for monsoon, the simulation period is taken from 1st June 2018 

to 14th August 2018. The forecasting is done for the period of 15th August to 30th September 

2018. For non-monsoon, the simulation period is taken from 1st October 2018 to 31st January 

2019. The forecasting is done for the period of 1st February to 15th May 2019. The forecasting 

results for all the sub-basins are shown in Figure 5.31 to 5.36. The results clearly indicate the 

suitability of stochastic models for use in forecasting.  

 

 

Figure 5.31. Forecasting streamflow for monsoon season at MB-II (Bhagirathi River Basin) 

by using Stochastic models (ARX(1,0,1)) 
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Figure 5.32. Forecasting streamflow for monsoon season at Ghansali gauging site by using 

stochastic models (ARMAX (1,1,1)). 

 

 

Figure 5.33. Forecasting streamflow for monsoon season at Sarasgaon gauging site by using 

Stochastic models (ARMAX (1,1,1)). 

0

50

100

150

200

250

300

350

400

450

500

2
-J

u
n

-1
8

6
-J

u
n

-1
8

1
0

-J
u

n
-1

8

1
4

-J
u

n
-1

8

1
8

-J
u

n
-1

8

2
2

-J
u

n
-1

8

2
6

-J
u

n
-1

8

3
0

-J
u

n
-1

8

4
-J

u
l-

1
8

8
-J

u
l-

1
8

1
2

-J
u

l-
1

8

1
6

-J
u

l-
1

8

2
0

-J
u

l-
1

8

2
4

-J
u

l-
1

8

2
8

-J
u

l-
1

8

1
-A

u
g-

1
8

5
-A

u
g-

1
8

9
-A

u
g-

1
8

1
3

-A
u

g-
1

8

1
7

-A
u

g-
1

8

2
1

-A
u

g-
1

8

2
5

-A
u

g-
1

8

2
9

-A
u

g-
1

8

2
-S

e
p

-1
8

6
-S

e
p

-1
8

1
0

-S
e

p
-1

8

1
4

-S
e

p
-1

8

1
8

-S
e

p
-1

8

2
2

-S
e

p
-1

8

2
6

-S
e

p
-1

8

3
0

-S
e

p
-1

8

D
is

ch
ar

ge
 (

C
u

m
ec

s)

Date

Forecasted line Observed Flow Observed Flow Simulated Flow Forecasted Flow

Simulated Forecasted 

0.00

50.00

100.00

150.00

200.00

250.00

D
is

ch
ar

ge
 (

C
u

m
ec

s)

Date

Forecasted line Qt cumecs Observed Simulated Forecasted Flow

Simulated Forecasted 



66 

 

 

Figure 5.34. Forecasting streamflow for the non-monsoon season at MB-II (Bhagirathi River 

Basin) by using Stochastic models (AR(1)) 

 

Figure 5.35. Forecasting streamflow for the non-monsoon season at Ghansali gauging site by 

using stochastic models (AR(1)). 
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Figure 5.36. Forecasting streamflow for non-monsoon season at Sarasgaon gauging site by 

using Stochastic models (AR(1)). 
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CONCLUSIONS AND RECOMMENDATIONS 

6.1 GENERAL 

Inflow forecasting of a storage dam is an important aspect due to its wider implication 

over society. Therefore, in the present study, an inflow forecasting system has been developed 

for Tehri reservoir. The aim is to improve the available information about the inflow to the 

Tehri reservoir which will give advance information and result in the improvement of the 

regulation of the spillway gates and the optimum generation of electricity for the full seasons 

(Monsoon and Non-monsoon). The system will play an essential role in disaster management 

of downstream of the reservoir. To fulfil the objective, at first, the rating curves have been 

developed for two sub-basins, namely Bhilangana and Balganga of Tehri catchment using 

method of least squares and ANN technique. Following this, the stochastic models have been 

developed for three main sub-catchments of Tehri dam. The results of the stochastic models 

have been compared with the results of HEC-HMS. 

6.1.1 Development of the stage-discharge relationship  

For developing the stage-discharge relationships, the data set of 1st June 2016 to 30th 

November 2018 from two gauging stations, namely Ghansali in Bhilangana river and Sarasgaon 

in Balganga river have been used. The performance of both the methods have been evaluated 

using Nash Sutcliffe Efficiency (NSE) and coefficient of determination (r2). The following 

conclusions are drawn from the analysis of the data: 

i. The results of the analysis show good performance by both the methods.  

ii. For the method of least squares, the NSE was more than 95% and the coefficient 

of determination was more than 0.9. However, the efficiency of the ANN method 

was slightly better than the method of least squares. The RMSE was far less in 

the case of ANN.  

iii. The equations developed using the method of least squares for the two sites are 

recommended to be used for the field application. The coefficients of these 

equations are in agreement with the physical analysis of cross sections of the two 

sites. 
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Bhilangna at Ghansali 

Q =31.783*(H-Ho)1.900   ; R2 = 0.994  

Range of applicability 849.40 ≥ H ≤ 855.00 

Balganga at Sarasgaon 

Q = 22.7743*(H-Ho)1.742  ; R2 = 0.997 

Range of applicability 856.0 ≥ H ≤ 860 

6.1.2 Development of Stochastic models   

Four stochastic models namely AR, ARX, ARMA and ARMAX have been developed 

for the three sites of the Tehri catchment. The rainfall and discharge data from June 2016 to 

May 15, 2019, for the three sub-basins, namely Bhagirathi at MB II, Bhilangana at Ghansali 

and Balganga at Sarasgaon were collected from Real-time inflow forecasting system website 

of Tehri dam. All the developed models were calibrated and validated by dividing the data into 

two parts. The performance of all the developed stochastic models has been checked using 6 

indices namely NSE, RMSE, PBIAS%, R2, MAE and AIC. The results of these models were 

compared with the results of HEC-HMS model. For the three sites, the models which performed 

the best on monsoon and non-monsoon basis during the calibration period are listed below: 

 

(i) ARX (1,0,1) model gave an NSE of 0.986 and MAE of 15.9 Cumecs for Bhagirathi 

at MB II. This model is recommended for use in the monsoon period. 

(ii) ARMAX (1,1,1) model gave an NSE of 0.953 and MAE of 15.127 Cumecs for 

Bhilangana at Ghansali. This model is recommended for use in the monsoon period. 

(iii) ARMAX (1,1,1) model gave an NSE of 0.971 and MAE of 6.385 Cumecs for 

Balganga at Sarasgaon. This model is recommended for use in the monsoon period. 

(iv) AR (1) model gave an NSE of 0.988 and MAE of 2.089 Cumecs for Bhagirathi at 

MB II. This model performed better than other models in terms of the six 

performance indicators used in the study. This model is recommended for use in the 

non-monsoon period. 

(v) AR (1) model gave an NSE of 0.980 and MAE of 0.846 Cumecs for Bhilangana at 

Ghansali. This model is recommended for use in the non-monsoon period. 

(vi) AR (1) model gave an NSE of 0.962 and MAE of 0.090 Cumecs for Balganga at 

Sarasgaon. This model performed better than other models in terms of the six 
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performance indicators used in the study. This model is recommended for use in the 

non-monsoon period. 

(vii) The comparison of Stochastic and HEC-HMS model shows that the performance of 

selected stochastic models is far better than the HEC-HMS model for the three sites 

of the Tehri catchment during calibration and validation both. 

(viii) The forecasting ability of the stochastic model was also checked. The results 

confirm that the stochastic models can be used for the forecasting of daily 

streamflow of the three sites of the catchment. 

(ix) The programs have also been prepared in R-studio version 3.4.3 software for the 

simulation of daily streamflow using stochastic models for all three sub-basins of 

the catchment. 

 

6.2 RECOMMENDATIONS AND SCOPE FOR FURTHER WORK 

The present study is the first step to develop an inflow forecasting system for Tehri dam 

using the data up to May 2019. Therefore, the present study could not be completed without 

limitations. The recommendations made on the basis of the study and scope for future work are 

given below: 

 The stage-discharge relationship was drawn only using the data from 2016 to 2018, 

which may not cover the higher flood records and therefore, during the floods, the 

developed relationship may give lesser value than actual. For this, the relationship could 

be redrawn in future by using more dataset and a new relationship can be drawn only 

for flood situation i.e. for higher values of the flood stages. 

 In case of the stochastic model, only AR model was developed for non-monsoon season. 

In future, development of other stochastic models considering the rainfall and 

temperature are expected to give better results. 

 More efforts are required to be put in for increasing the efficiency of the HEC-HMS 

model with extended data bases. With extended data base, the efficiency of HEC-HMS 

is expected to improve further. 

 The updating of parameters of stochastic models on a daily basis is recommended in 

future work. 
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APPENDIX-I 

R SCRIPT PROGRAM DEVELOPED AND USED IN THE STUDY 

##################################################################### 

R studio programming language have used for calibration and validation in 

development of the AR, ARX and ARMA models to forecasting daily streamflow for 

Tehri sub-basin. 

DESCRIPTION CALIBRATION FOR THE TIME SERIES ANALYSIS. 

The datasets used in the program is Discharge and Rainfall. Date, discharge and rainfall 

are prepared in a spreadsheet and exported as CSV (“comma-separated value”) file 

named ‘SARA_ARMAX-2016.CSV’. 

 

1. Setwd ("E:/WORK DIS/R/Sarasgaon")   #####load the directory file by using setwd 

2. Data = read.csv ('SARA_ARMAX-2016.CSV', TRUE, ",") 

 

attach(Data) 

class(Data) 

head(Data)       #### Selecting and Run 

 

3. ###### load R packages in the library 

 

library(ggplot2)        # Creat Elagant Data Visulisations Using Grammar of Graphics 

library(MASS)           # Support Functions and Dataset for venables and Ripley's MASS 

library(tseries)        # Time series Analysis and Computational Finance 

library(forecast)       # Forecasting Functions for Time series and Linera Models 

library(tidyverse)      # data manipulation and visualization 

library(lubridate)      # easily work with dates and times 

library(fpp2)           # Data for "Forecasting: Principles and Practice" (2nd Edition) 

library(zoo)            # S3 Infrastructure for Regular and Irregular Time series 

library(dplyr)          # A Grammar data Manipulation 

library(scales)         # Scale Functions for Visualization 

library(quantmod)       # Quantitative Financial Modelling Framework 

library(readr)          # Read reactangular Text data 
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4. ###### Data preparation with lag 

Q <- (Flow [4:122]) 

Q_1 <- (Flow [3:121]) 

Q_2 <- (Flow [2:120]) 

Q_3 <- (Flow [1:119]) 

R   <- (Rainfall [4:122]) 

R_1 <- (Rainfall [3:121]) 

R_2 <- (Rainfall [2:120]) 

R_3 <- (Rainfall [1:119]) 

D <- (Date [4:122])      #### Selecting and Run 

 

5. ###### Plotting the dataset using ggplot2 or normal graph plot 

newdate <- as. Date (Data$Date, "%m/%d/%Y") 

ggplot (Data, aes (newdate, Flow)) + geom_line (colour = "Blue") + scale_x_date (labels = 

date_format ("%b-%Y"), limits = c (as. Date ("2016-06-01"), as. Date ("2016-10-2"))) + ylab 

("Discharge in Cumecs") + xlab("Date")  

 

plot (as. Date (newdate, "%d-%b-%y"), Data$Flow, xlab = "Dates", ylab = "Discharge in 

Cumecs”, type = "l", col = "red", main = "Balganga River_Flow 2016"  

#### Selecting and Run  

6. ###### Computing error 

MA <- rollmean (Flow, 5)     #Error 

F_1 <- Flow [3:122] 

E1   <- (F_1-MA) 

E_1 <- (E1[1:119]) 

E_t <- (E1[2:120]) 

E   <-  E_t 

 

7. ###### Computing parameters (1,0,0), (2,0,0), (3,0,0), (1,1,0), (2,1,0), (3,1,0), (1,1,1), 

(2,1,1), (3,1,1), (1,1,1) by using matrix form. 

###### Data transpose and multiply data matrix (1,0,0) 

dim(Q_1) = c(119,1) 

Qd = Q_1 

Qt = t(Q_1)  
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M1 = Qt%*%Qd 

###### Inverse data  

B1 = solve(M1) 

###### inverse multiply Data transpose 

C1 = B1%*%Qt 

###### Parameter of (1,0,0) 

dim(Q) = c(119,1) 

Qobs = Q 

P1= C1%*%Qobs 

P1 

 

###### Data transpose and multiply data matrix (2,0,0) 

Q2 = cbind (Q_1, Q_2) 

dim(Q2) = c(119,2) 

Qd2 = Q2 

Qt2 = t(Q2)  

M2 = Qt2%*%Qd2 

###### Inverse data  

B2 = solve(M2) 

###### inverse multiply Data transpose 

C2 = B2%*%Qt2 

###### Parameter of (2,0,0) 

dim(Q) = c(119,1) 

Qobs = Q 

P2= C2%*%Qobs 

P2 

###### Data transpose and multiply data matrix (3,0,0) 

Q3 = cbind(Q_1, Q_2, Q_3) 

dim(Q3) = c(119,3) 

Qd3 = Q3 

Qt3 = t(Q3)  

M3 = Qt3%*%Qd3 

###### Inverse data  

B3 = solve(M3) 
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###### inverse multiply Data transpose 

C3 = B3%*%Qt3 

###### Parameter of (3,0,0) 

dim(Q) = c(119,1) 

Qobs = Q 

P3= C3%*%Qobs 

P3 

###### Data transpose and multiply data matrix (1,1,0)  

QE2 = cbind (Q_1, E_1) 

dim(QE2) = c(119,2) 

QEd2 = QE2 

QEt2 = t(QE2)  

ME2 = QEt2%*%QEd2 

###### Inverse data  

BE2 = solve(ME2) 

###### inverse multiply Data transpose 

CE2 = BE2%*%QEt2 

###### Parameter of (1,1,0) 

dim(Q) = c(119,1) 

Qobs = Q 

PE2= CE2%*%Qobs 

PE2 

 

###### Data transpose and multiply data matrix (2,1,0)  

QE3 = cbind(Q_1, Q_2, E_1) 

dim(QE3) = c(119,3) 

QEd3 = QE3 

QEt3 = t(QE3)  

ME3 = QEt3%*%QEd3 

###### Inverse data  

BE3 = solve(ME3) 

###### inverse multiply Data transpose 

CE3 = BE3%*%QEt3 

###### Parameters of (2,1,0) 
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dim(Q) = c(119,1) 

Qobs = Q 

PE3= CE3%*%Qobs 

PE3 

 

###### Data transpose and multiply data matrix (3,1,0)  

QE4 = cbind(Q_1, Q_2, Q_3, E_1) 

dim(QE4) = c(119,4) 

QEd4 = QE4 

QEt4 = t(QE4)  

ME4 = QEt4%*%QEd4 

###### Inverse data  

BE4 = solve(ME4) 

###### inverse multiply Data transpose 

CE4 = BE4%*%QEt4 

###### Parameters of (3,1,0) 

dim(Q) = c(119,1) 

Qobs = Q 

PE4= CE4%*%Qobs 

PE4 

 

###### Data transpose and multiply data matrix (1,1,1)  

QER3 = cbind(Q_1, E_1, R_1) 

dim(QER3) = c(119,3) 

QERd3 = QER3 

QERt3 = t(QER3)  

MER3 = QERt3%*%QERd3 

###### Inverse data  

BER3 = solve(MER3) 

###### inverse multiply Data transpose 

CER3 = BER3%*%QERt3 

##### Parameters of (1,1,1) 

dim(Q) = c(119,1) 

Qobs = Q 
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PER3= CER3%*%Qobs 

PER3 

 

###### Data transpose and multiply data matrix (2,1,1)  

QER4 = cbind(Q_1, Q_2, E_1, R_1) 

dim(QER4) = c(119,4) 

QERd4 = QER4 

QERt4 = t(QER4)  

MER4 = QERt4%*%QERd4 

###### Inverse data  

BER4 = solve(MER4) 

###### inverse multiply Data transpose 

CER4 = BER4%*%QERt4 

###### Parameters of (2,1,1) 

dim(Q) = c(119,1) 

Qobs = Q 

PER4= CER4%*%Qobs 

PER4 

 

###### Data transpose and multiply data matrix (3,1,1)  

QER5 = cbind(Q_1, Q_2, Q_3, E_1, R_1) 

dim(QER5) = c(119,5) 

QERd5 = QER5 

QERt5 = t(QER5)  

MER5 = QERt5%*%QERd5 

###### Inverse data  

BER5 = solve(MER5) 

###### inverse multiply Data transpose 

CER5 = BER5%*%QERt5 

###### Parameters of (3,1,1) 

dim(Q) = c(119,1) 

Qobs = Q 

PER5 = CER5%*%Qobs 

PER5 
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###### Data transpose and multiply data matrix (2,0,1)  

QR3 = cbind(Q_1, Q_2, R_1) 

dim(QR3) = c(119,3) 

QRd3 = QR3 

QRt3 = t(QR3)  

MR3 = QRt3%*%QRd3 

###### Inverse data  

BR3 = solve(MR3) 

###### inverse multiply Data transpose 

CR3 = BR3%*%QRt3 

###### Parameters of (2,0,1) 

dim(Q) = c(119,1) 

Qobs = Q 

PR3 = CR3%*%Qobs 

PR3 

 

###### Data transpose and multiply data matrix (1,1,2)  

QER_4 = cbind(Q_1, E_1, R_1, R_2) 

dim(QER_4) = c(119,4) 

QERd_4 = QER_4 

QERt_4 = t(QER_4)  

MER_4 = QERt_4%*%QERd_4 

###### Inverse data  

BER_4 = solve(MER_4) 

###### inverse multiply Data transpose 

CER_4 = BER_4%*%QERt_4 

###### Parameters of (1,1,2) 

dim(Q) = c(119,1) 

Qobs = Q 

PER_4 = CER_4%*%Qobs 

PER_4 

 

 ###### Data transpose and multiply data matrix (2,1,2)  
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QER_5 = cbind(Q_1, Q_2, E_1, R_1, R_2) 

dim(QER_5) = c(119,4) 

QERd_5 = QER_5 

QERt_5 = t(QER_5)  

MER_5 = QERt_5%*%QERd_5 

###### Inverse data  

BER_5 = solve(MER_5) 

###### inverse multiply Data transpose 

CER_5 = BER_5%*%QERt_5 

###### Parameters of (1,1,2) 

dim(Q) = c(119,1) 

Qobs = Q 

PER_5 = CER_5%*%Qobs 

PER_5           #### Selecting and Run 

 

8. ###### Forecasting AR, ARMA AND ARMAX 

 

###### (1,0,0) 

QF1= P1%*%t(Q_1) +E 

QF1 

###### (2,0,0) 

QF2 = (P2[1,] %*%t(Q_1)) +(P2[2,] %*%t(Q_2)) + E 

QF2 

###### (3,0,0) 

QF3 = (P3[1,] %*%t(Q_1)) +(P3[2,] %*%t(Q_2)) +(P3[3,] %*%t(Q_3)) + E 

QF3 

###### (1,1,0) 

QFE2 = (PE2[1,] %*%t(Q_1)) +(PE2[2,] %*%E_1) + E 

QFE2 

###### (2,1,0) 

QFE3 = (PE3[1,] %*%t(Q_1)) +(PE3[2,] %*%t(Q_2)) +(PE3[3,] %*%E_1) + E 

QFE3 

###### (3,1,0) 



87 

 

QFE4 = (PE4[1,] %*%t(Q_1)) + (PE4[2,] %* %t(Q_2)) + (PE4[3,] % * %t(Q_3)) + 

(PE4[4,] %*%E_1) + E 

QFE4 

###### (1,1,1) 

QFER3 = (PER3[1,] %*%t(Q_1)) +(PER3[2,] %*%E_1) +(PER3[3,] %*%R_1) + E 

QFER3 

###### (2,1,1) 

QFER4 = (PER4[1,] %*%t(Q_1)) +(PER4[2,] %*%Q_2) +(PER4[3,] %*%E_1) 

+(PER4[4,] %*%R_1) + E 

QFER4 

###### (3,1,1) 

QFER5 = (PER5[1,] %*%t(Q_1)) +(PER5[2,] %*%Q_2) +(PER5[3,] %*%Q_3) 

+(PER5[4,] %*%E_1) +(PER5[5,] %*%R_1) + E 

QFER5 

###### (2,0,1) 

QFR3 = (PR3[1,] %*%t(Q_1)) +(PR3[2,] %*%Q_2) +(PR3[3,] %*%R_1) + E 

QFR3 

###### (1,1,2) 

QFER_4 = (PER_4[1,] %*%t(Q_1)) +(PER_4[2,] %*%E_1) +(PER_4[3,] %*%R_1) 

+(PER_4[4,] %*%R_2) + E 

QFER_4 

###### (2,1,2) 

QFER_5 = (PER_5[1,] %*%t(Q_1)) +(PER_5[2,] %*%Q_2) +(PER_5[3,] %*%E_1) 

+(PER_5[4,] %*%R_1) +(PER_5[5,] %*%R_2) + E 

QFER_5    #### Selecting and Run 

 

9. ###### Name the dataset forecasted and Plotting   

dim(Q) = c(119,1) 

Qobs = Q 

colnames(Qobs) [1] <-"Observed_Flow" 

Qf = Qobs 

Qf<- data.frame (Qf) 

 

dim(D) = c (119,1) 



88 

 

Dt = D 

colnames(Dt) [1] <-"Date" 

Date = Dt 

Date <- data.frame(Date) 

 

dim(QF1) = c(119,1) 

QF1_D = QF1  

colnames(QF1_D) [1] <-"p.1.0.0" 

dim(QF2) =c (119,1) 

QF2_D = QF2  

colnames(QF2_D) [1] <-"p.2.0.0" 

 

dim(QF3) = c (119,1) 

QF3_D = QF3  

colnames(QF3_D) [1] <-"p.3.0.0" 

 

dim(QFE2) = c (119,1) 

QFE2_D = QFE2  

colnames(QFE2_D) [1] <-"p.1.1.0" 

 

dim(QFE3) = c (119,1) 

QFE3_D = QFE3  

colnames(QFE3_D) [1] <-"p.2.1.0" 

 

dim(QFE4) = c (119,1) 

QFE4_D = QFE4  

colnames(QFE4_D) [1] <-"p.3.1.0" 

 

dim(QFER3) = c (119,1) 

QFER3_D = QFER3  

colnames(QFER3_D) [1] <-"p.1.1.1" 

 

dim(QFER4) = c (119,1) 

QFER4_D = QFER4  
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colnames(QFER4_D) [1] <-"p.2.1.1" 

 

dim(QFER5) = c (119,1) 

QFER5_D = QFER5  

colnames(QFER5_D) [1] <-"p.3.1.1" 

 

dim(QFR3) = c (119,1) 

QFR3_D = QFR3  

colnames(QFR3_D) [1] <-"p.3.0.1" 

 

dim(QFER_4) = c (119,1) 

QFER_4_D = QFER_4  

colnames(QFER_4_D) [1] <-"p.1.1.2" 

 

dim(QFER_5) = c (119,1) 

QFER_5_D = QFER_5  

colnames(QFER_5_D) [1] <-"p.2.1.2" 

 

QF_2016sara = cbind (QF1_D, QF2_D, QF3_D, QFE2_D, QFE3_D, QFE4_D, 

QFER3_D, QFER4_D, QFER5_D, QFR3_D, QFER_4_D, QFER_5_D) 

QF_2016sara    #### Selecting and Run 

 

###### Plotting the forecasted dataset using ggplot2 

 

DQ <- cbind (Date, Qf, QF_2016sara) 

###### write.csv (DQ) 

DQ <- data. frame (DQ) 

DQ$Date <- as. Date (DQ$Date, "%m/%d/%Y") 

ggplot (DQ, aes (Date, Observed_Flow, color = P_Forecasted)) + geom_line (colour = 

"Blue", size = 1.2) + scale_x_date (labels = date_format("%b-%Y"), limits = c(as.Date 

("2016-06-04"), as.Date("2016-09-30"))) + ylab ("Discharge in Cumecs") + xlab 

("Date") +  geom_line(data = DQ, aes(y = p.1.0.0,   colour = "(1,0,0)"), size =0.8) + 

geom_line(data = DQ, aes(y = p.2.0.0,   colour = "(2,0,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.3.0.0,   colour = "(3,0,0)"), size =0.8) + 
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geom_line (data = DQ, aes (y = p.1.1.0,   colour = "(1,1,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.2.1.0,   colour = "(2,1,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.3.1.0,   colour = "(3,1,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.1.1.1,   colour = "(1,1,1)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.2.1.1,   colour = "(2,1,1)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.3.1.1,   colour = "(3,1,1)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.1.1.2,   colour = "(1,1,2)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.2.1.2, colour = "(2,1,2)"), size =0.8) + 

scale_y_continuous (limits = c (0,300)) + ggtitle ("Balganga river flow simulated”) + 

theme (plot.title = element_text (hjust = 0.5))   #### Selecting and Run 

 

10. ###### Computing ACF, PACF residuals 

acf (Qobs, lag.max = 20) 

pacf (Qobs, lag.max = 20) 

diffln_flow = diff (Qobs, 1) 

acf (diffln_flow, lag.max = 20) 

pacf (diffln_flow, lag.max = 20)       #### Selecting and Run 

 

11. ###### Checking the Goodness of fit for the selected model and evaluation of the model 

performance 

library(hydroGOF)    

gof(QF1_D, Qobs)    #### Selecting and Run 

 

 

DESCRIPTION VALIDATION FOR THE TIME SERIES ANALYSIS. 

The dataset used in the program is Discharge and Rainfall. Date, discharge and rainfall 

are prepared in a spreadsheet and exported as CSV (“comma-separated value”) file 

named ‘SARA_ARMAX-2017.CSV’. For validation process, two spreadsheets of 

datasets were prepared and exported as CSV (“comma-separated value”) file named 

‘SARA_ARMAX-2017.CSV’ for calibration of parameters and 'SARA_ARMAX-

2018_17val.CSV' for validation. 

 

1. Setwd ("E:/WORK DIS/R/Sarasgaon") 

2. Data = read.csv ('SARA_ARMAX-2017.CSV', TRUE, ",") 
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3. Data_18SA = read.csv ('SARA_ARMAX-2018_17val.CSV', TRUE, ",") 

 

Attach(Data) 

class(Data) 

head(Data) 

 

attach(Data_18SA) 

class(Data_18SA) 

head(Data_18SA)      #### Selecting all Run 

 

4. ###### Installation of the R package in the library 

library(ggplot2)        # Creat Elagant Data Visulisations Using Grammar of Graphics 

library(MASS)           # Support Functions and Dataset for venables and Ripley's MASS 

library(tseries)        # Time series Analysis and Computational Finance 

library(forecast)       # Forecasting Functions for Time series and Linera Models 

library(tidyverse)      # data manipulation and visualization 

library(lubridate)      # easily work with dates and times 

library(fpp2)           # Data for "Forecasting: Principles and Practice" (2nd Edition) 

library(zoo)            # S3 Infrastructure for Regular and Irregular Time series 

library(dplyr)          # A Grammar data Manipulation 

library(scales)         # Scale Functions for Visualization 

library(quantmod)       # Quantitative Financial Modelling Framework 

library(readr)          # Read reactangular Text data 

 

5. ###### Data preparation by lag using dataset of 2017.CSV for calibration of the 

parameters 

Qf <- (Flow [4:125]) 

Q_1f <- (Flow [3:124]) 

Q_2f <- (Flow [2:123]) 

Q_3f <- (Flow [1:122]) 

Rf   <- (Rainfall [4:125]) 

R_1f <- (Rainfall [3:124]) 

R_2f <- (Rainfall [2:123]) 

R_3f <- (Rainfall [1:122]) 
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Df <- (Date [4:125]) 

 

### using dataset of 2018.CSV for validation of the parameters 

Q <- (Flow_18sar [4:125]) 

Q_1 <- (Flow_18sar [3:124]) 

Q_2 <- (Flow_18sar [2:123]) 

Q_3 <- (Flow_18sar [1:122]) 

R   <- (R_18sar [4:125]) 

R_1 <- (R_18sar [3:124]) 

R_2 <- (R_18sar [2:123]) 

R_3 <- (R_18sar [1:122]) 

D   <- (Date_18sar [4:125]) 

 

6. ###### Plotting the dataset using ggplot2 or normal graph plot 

newdate <- as. Date (Data_18SA$Date_18sar, "%m/%d/%Y") 

ggplot (Data_18SA, aes (x=newdate, y=Flow_18sar)) + geom_line (colour = "Blue") +  

  scale_x_date (labels = date_format ("%b-%Y"), limits = c(as.Date ("2018-05-29"), 

as.Date("2018-10-16")))+  ylab("Discharge in Cumecs") + xlab("Date") 

 

plot (as.Date(Data_18SA$Date_18sar, "%m/%d/%Y"), Data_18SA$Flow_18sar, xlab 

= "Dates", ylab = "Discharge in Cumecs", type = "l", col = "red", main = "Balganga 

River flow simulated") 

7. ###### Computing error 

MAf <- rollmean (Flow, 7)     #Error 

dim(MAf) = c(125,1) 

Flf <- Flow [3:125] 

dim(Flf) = c(123,1) 

E1f   <- (Flf-MAf [2:124]) 

E_1f <- (E1f [1:122]) 

E_tf <- (E1f [2:123]) 

Ef   <-  E_tf 

 

MA <- rollmean (Flow_18sar, 7)     #Error 

dim(MA) = c(125,1) 
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Fl <- Flow_18sar [3:125] 

dim(Fl) = c(123,1) 

E1   <- (Fl-MA [2:124]) 

E_1 <- (E1 [1:122]) 

E_t<- (E1 [2:123]) 

E   <-  E_t 

 

8. ###### Computing parameters (1,0,0), (2,0,0), (3,0,0), (1,1,0), (2,1,0), (3,1,0), (1,1,1), 

(2,1,1), (3,1,1), (1,1,1) by using matrix form. 

###### Data transpose and multiply data matrix (1,0,0) 

dim(Q_1f) = c(119,1) 

Qd = Q_1f 

Qt = t(Q_1f)  

M1 = Qt%*%Qd 

###### Inverse data  

B1 = solve(M1) 

###### inverse multiply Data transpose 

C1 = B1%*%Qt 

###### Parameter of (1,0,0) 

dim(Q) = c(119,1) 

Qobs = Q 

P1= C1%*%Qobs 

P1 

 

###### Data transpose and multiply data matrix (2,0,0) 

Q2 = cbind (Q_1f, Q_2f) 

dim(Q2) = c(119,2) 

Qd2 = Q2 

Qt2 = t(Q2)  

M2 = Qt2%*%Qd2 

###### Inverse data  

B2 = solve(M2) 

###### inverse multiply Data transpose 

C2 = B2%*%Qt2 
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###### Parameter of (2,0,0) 

dim(Q) = c(119,1) 

Qobs = Q 

P2= C2%*%Qobs 

P2 

###### Data transpose and multiply data matrix (3,0,0) 

Q3 = cbind(Q_1f, Q_2f, Q_3f) 

dim(Q3) = c(119,3) 

Qd3 = Q3 

Qt3 = t(Q3)  

M3 = Qt3%*%Qd3 

###### Inverse data  

B3 = solve(M3) 

###### inverse multiply Data transpose 

C3 = B3%*%Qt3 

###### Parameter of (3,0,0) 

dim(Q) = c(119,1) 

Qobs = Q 

P3= C3%*%Qobs 

P3 

 

###### Data transpose and multiply data matrix (1,1,0)  

QE2 = cbind (Q_1f, E_1f) 

dim(QE2) = c(119,2) 

QEd2 = QE2 

QEt2 = t(QE2)  

ME2 = QEt2%*%QEd2 

###### Inverse data  

BE2 = solve(ME2) 

###### inverse multiply Data transpose 

CE2 = BE2%*%QEt2 

###### Parameter of (1,1,0) 

dim(Q) = c(119,1) 

Qobs = Q 
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PE2= CE2%*%Qobs 

PE2 

 

###### Data transpose and multiply data matrix (2,1,0)  

QE3 = cbind (Q_1f, Q_2f, E_1f) 

dim(QE3) = c (119,3) 

QEd3 = QE3 

QEt3 = t(QE3)  

ME3 = QEt3%*%QEd3 

###### Inverse data  

BE3 = solve(ME3) 

###### inverse multiply Data transpose 

CE3 = BE3%*%QEt3 

###### Parameters of (2,1,0) 

dim(Q) = c(119,1) 

Qobs = Q 

PE3= CE3%*%Qobs 

PE3 

 

###### Data transpose and multiply data matrix (3,1,0)  

QE4 = cbind (Q_1f, Q_2f, Q_3f, E_1f) 

dim(QE4) = c(119,4) 

QEd4 = QE4 

QEt4 = t(QE4)  

ME4 = QEt4%*%QEd4 

###### Inverse data  

BE4 = solve(ME4) 

###### inverse multiply Data transpose 

CE4 = BE4%*%QEt4 

###### Parameters of (3,1,0) 

dim(Q) = c(119,1) 

Qobs = Q 

PE4= CE4%*%Qobs 

PE4 
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###### Data transpose and multiply data matrix (1,1,1)  

QER3 = cbind (Q_1f, E_1f, R_1f) 

dim(QER3) = c(119,3) 

QERd3 = QER3 

QERt3 = t(QER3)  

MER3 = QERt3%*%QERd3 

###### Inverse data  

BER3 = solve(MER3) 

###### inverse multiply Data transpose 

CER3 = BER3%*%QERt3 

##### Parameters of (1,1,1) 

dim(Q) = c(119,1) 

Qobs = Q 

PER3= CER3%*%Qobs 

PER3 

 

###### Data transpose and multiply data matrix (2,1,1)  

QER4 = cbind (Q_1f, Q_2f, E_1f, R_1f ) 

dim(QER4) = c(119,4) 

QERd4 = QER4 

QERt4 = t(QER4)  

MER4 = QERt4%*%QERd4 

###### Inverse data  

BER4 = solve(MER4) 

###### inverse multiply Data transpose 

CER4 = BER4%*%QERt4 

###### Parameters of (2,1,1) 

dim(Q) = c(119,1) 

Qobs = Q 

PER4= CER4%*%Qobs 

PER4 

 

###### Data transpose and multiply data matrix (3,1,1)  
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QER5 = cbind (Q_1f, Q_2f, Q_3f, E_1f, R_1f) 

dim(QER5) = c(119,5) 

QERd5 = QER5 

QERt5 = t(QER5)  

MER5 = QERt5%*%QERd5 

###### Inverse data  

BER5 = solve(MER5) 

###### inverse multiply Data transpose 

CER5 = BER5%*%QERt5 

###### Parameters of (3,1,1) 

dim(Q) = c(119,1) 

Qobs = Q 

PER5 = CER5%*%Qobs 

PER5 

 

###### Data transpose and multiply data matrix (2,0,1)  

QR3 = cbind (Q_1f, Q_2f, R_1f) 

dim(QR3) = c(119,3) 

QRd3 = QR3 

QRt3 = t(QR3)  

MR3 = QRt3%*%QRd3 

###### Inverse data  

BR3 = solve(MR3) 

###### inverse multiply Data transpose 

CR3 = BR3%*%QRt3 

###### Parameters of (2,0,1) 

dim(Q) = c(119,1) 

Qobs = Q 

PR3 = CR3%*%Qobs 

PR3 

 

###### Data transpose and multiply data matrix (1,1,2)  

QER_4 = cbind (Q_1f, E_1f, R_1f, R_2f) 

dim(QER_4) = c(119,4) 
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QERd_4 = QER_4 

QERt_4 = t(QER_4)  

MER_4 = QERt_4%*%QERd_4 

###### Inverse data  

BER_4 = solve(MER_4) 

###### inverse multiply Data transpose 

CER_4 = BER_4%*%QERt_4 

###### Parameters of (1,1,2) 

dim(Q) = c(119,1) 

Qobs = Q 

PER_4 = CER_4%*%Qobs 

PER_4 

 

 ###### Data transpose and multiply data matrix (2,1,2)  

QER_5 = cbind (Q_1f, Q_2f, E_1f, R_1f, R_2f) 

dim(QER_5) = c(119,4) 

QERd_5 = QER_5 

QERt_5 = t(QER_5)  

MER_5 = QERt_5%*%QERd_5 

###### Inverse data  

BER_5 = solve(MER_5) 

###### inverse multiply Data transpose 

CER_5 = BER_5%*%QERt_5 

###### Parameters of (1,1,2) 

dim(Q) = c(119,1) 

Qobs = Q 

PER_5 = CER_5%*%Qobs 

PER_5 

 

9. ###### Forecasting AR, ARMA AND ARMAX 

###### (1,0,0) 

QF1= P1%*%t(Q_1) +E 

QF1 

###### (2,0,0) 
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QF2 = (P2[1,] %*%t(Q_1)) +(P2[2,] %*%t(Q_2)) + E 

QF2 

###### (3,0,0) 

QF3 = (P3[1,] %*%t(Q_1)) +(P3[2,] %*%t(Q_2)) +(P3[3,] %*%t(Q_3)) + E 

QF3 

###### (1,1,0) 

QFE2 = (PE2[1,] %*%t(Q_1)) +(PE2[2,] %*%E_1) + E 

QFE2 

###### (2,1,0) 

QFE3 = (PE3[1,] %*%t(Q_1)) +(PE3[2,] %*%t(Q_2)) +(PE3[3,] %*%E_1) + E 

QFE3 

###### (3,1,0) 

QFE4 = (PE4[1,] %*%t(Q_1)) + (PE4[2,] %* %t(Q_2)) + (PE4[3,] % * %t(Q_3)) + 

(PE4[4,] %*%E_1) + E 

QFE4 

###### (1,1,1) 

QFER3 = (PER3[1,] %*%t(Q_1)) +(PER3[2,] %*%E_1) +(PER3[3,] %*%R_1) + E 

QFER3 

###### (2,1,1) 

QFER4 = (PER4[1,] %*%t(Q_1)) +(PER4[2,] %*%Q_2) +(PER4[3,] %*%E_1) 

+(PER4[4,] %*%R_1) + E 

QFER4 

###### (3,1,1) 

QFER5 = (PER5[1,] %*%t(Q_1)) +(PER5[2,] %*%Q_2) +(PER5[3,] %*%Q_3) 

+(PER5[4,] %*%E_1) +(PER5[5,] %*%R_1) + E 

QFER5 

###### (2,0,1) 

QFR3 = (PR3[1,] %*%t(Q_1)) +(PR3[2,] %*%Q_2) +(PR3[3,] %*%R_1) + E 

QFR3 

###### (1,1,2) 

QFER_4 = (PER_4[1,] %*%t(Q_1)) +(PER_4[2,] %*%E_1) +(PER_4[3,] %*%R_1) 

+(PER_4[4,] %*%R_2) + E 

QFER_4 

###### (2,1,2) 
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QFER_5 = (PER_5[1,] %*%t(Q_1)) +(PER_5[2,] %*%Q_2) +(PER_5[3,] %*%E_1) 

+(PER_5[4,] %*%R_1) +(PER_5[5,] %*%R_2) + E 

QFER_5    #### Selecting and Run 

 

10. ###### Name the dataset forecasted and Plotting   

dim(Q) = c(119,1) 

Qobs = Q 

colnames(Qobs) [1] <-"Observed_Flow" 

Qf = Qobs 

Qf<- data.frame (Qf) 

 

dim(D) = c (119,1) 

Dt = D 

colnames(Dt) [1] <-"Date" 

Date = Dt 

Date <- data.frame(Date) 

 

dim(QF1) = c(119,1) 

QF1_D = QF1  

colnames(QF1_D) [1] <-"p.1.0.0" 

dim(QF2) =c (119,1) 

QF2_D = QF2  

colnames(QF2_D) [1] <-"p.2.0.0" 

 

dim(QF3) = c (119,1) 

QF3_D = QF3  

colnames(QF3_D) [1] <-"p.3.0.0" 

 

dim(QFE2) = c (119,1) 

QFE2_D = QFE2  

colnames(QFE2_D) [1] <-"p.1.1.0" 

 

dim(QFE3) = c (119,1) 

QFE3_D = QFE3  
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colnames(QFE3_D) [1] <-"p.2.1.0" 

 

dim(QFE4) = c (119,1) 

QFE4_D = QFE4  

colnames(QFE4_D) [1] <-"p.3.1.0" 

 

dim(QFER3) = c (119,1) 

QFER3_D = QFER3  

colnames(QFER3_D) [1] <-"p.1.1.1" 

 

dim(QFER4) = c (119,1) 

QFER4_D = QFER4  

colnames(QFER4_D) [1] <-"p.2.1.1" 

 

dim(QFER5) = c (119,1) 

QFER5_D = QFER5  

colnames(QFER5_D) [1] <-"p.3.1.1" 

 

dim(QFR3) = c (119,1) 

QFR3_D = QFR3  

colnames(QFR3_D) [1] <-"p.3.0.1" 

 

dim(QFER_4) = c (119,1) 

QFER_4_D = QFER_4  

colnames(QFER_4_D) [1] <-"p.1.1.2" 

 

dim(QFER_5) = c (119,1) 

QFER_5_D = QFER_5  

colnames(QFER_5_D) [1] <-"p.2.1.2" 

 

QF_2016sara = cbind (QF1_D, QF2_D, QF3_D, QFE2_D, QFE3_D, QFE4_D, 

QFER3_D, QFER4_D, QFER5_D, QFR3_D, QFER_4_D, QFER_5_D) 

QF_2016sara    #### Selecting and Run 
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###### Plotting the forecasted dataset using ggplot2 

 

DQ <- cbind (Dte, Q_f, QF_2018Sara) 

###### write.csv (DQ) 

DQ <- data. frame (DQ) 

DQ$Dte <- as. Date (DQ$Dte, "%m/%d/%Y") 

ggplot (DQ, aes (Dte, Observed_Flow, color = P_Forecasted)) + geom_line (colour = 

"Blue", size = 1.2) + scale_x_date (labels = date_format("%b-%Y"), limits = 

c(as.Date("2018-06-01"), as.Date("2018-09-30"))) + ylab("Discharge in Cumecs") + 

xlab("Date")  + geom_line(data = DQ, aes(y = p.1.0.0,   colour = "(1,0,0)"), size=0.8) + 

  geom_line (data = DQ, aes (y = p.2.0.0,   colour = "(2,0,0)"), size=0.8) + 

geom_line (data = DQ, aes (y = p.3.0.0,   colour = "(3,0,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.1.1.0,   colour = "(1,1,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.2.1.0,   colour = "(2,1,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.3.1.0,   colour = "(3,1,0)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.1.1.1,   colour = "(1,1,1)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.2.1.1,   colour = "(2,1,1)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.3.1.1,   colour = "(3,1,1)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.1.1.2,   colour = "(1,1,2)"), size =0.8) + 

geom_line (data = DQ, aes (y = p.2.1.2, colour = "(2,1,2)"), size =0.8) + 

scale_y_continuous (limits = c (0,300)) + ggtitle ("Balganga river flow simulated”) + 

theme (plot.title = element_text (hjust = 0.5))   #### Selecting and Run 

 

11. ###### Computing ACF, PACF residuals 

acf (Qobs, lag.max = 20) 

pacf (Qobs, lag.max = 20) 

diffln_flow = diff (Qobs, 1) 

acf (diffln_flow, lag.max = 20) 

pacf (diffln_flow, lag.max = 20)       #### Selecting and Run 

 

12. ###### Checking the Goodness of fit for the selected model and evaluation of the model 

performance 

library(hydroGOF)    

gof(QF1_D, Qobs)    #### Selecting and Run 


