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ABSTRACT 

Lake Tumba has been chosen in this particular study because of the far-reaching role it 

plays in the Congo’s basin. It is a water body harboring many kinds of fish and other aquatic 

organisms, and constitutes an important water supply source for the surrounding villages. The 

quality of lake Tumba is till now not too much impaired apparently due to less human activities 

taking place in the catchment.  This study attempts to map and estimate lake Tumba water quality 

in terms of variables like TSS, TP and Chl-a concentration, employing remote sensing techniques 

(Landsat 8 OLI data). Concentration of various water quality variables (viz. Temperature, pH, DO, 

Turbidity, TSS, TP and Chl-a) was obtained at 18 points spatially distributed through the lake    

monitored physically in the months of September and October 2018.  

This study employies remote sensing techniques (Landsat 8 OLI data) combined with a 

limited number of monitored field water quality parameter samples. Regression models were 

implemented using band ratios mean reflectance values to predict measured water quality 

variables. Turbidity did not give good result for both September and October conditions. Only 

three parameters (TSS, TP and Chl-a) were taken into consideration in this particular study. The 

September image was also too much impacted by clouds. Therefore, only the clear portion of the 

lake was extracted for regression analysis purpose. The clear part of the lake contained only 9 

sampling points out of 18, which were considered in the analysis for September. TSS 

concentrations were ranging from 1.2-2.8mgl/l for September monitoring.  

High levels of TSS were recorded near inflow village Ikoko. TP and Chl-a concentrations 

were ranging from 1.6-3.5 mug/l; and 0.018-0.038 mug/l respectively and were found near lake 

surface5, inflow lokongoli, village Ikoko, and lake surface1, lake surface2, village lokongoli and 

village nkoso respectively. Concentration of TSS and Chl-a could successfully be estimated 

through remote sensing for September. However, similar estimation could not show a good result 

for October. This could be due to the impact of clouds held up in the ninth band of October image. 

Only TP estimation was successful for October using entire spatial information of the lake Tumba 

water quality. The temporal variation in the September and October water quality data did not 

emerge to be significant.  

The Land Use Land Cover classified maps obtained from ESA allowed a study of the 

change detection in different components in the catchment area. The findings of this research laid 
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a foundation for successfully employing remote sensing techniques for estimation and mapping of 

lake Tumba water quality parameters in future field monitoring studies for facilitating the overall 

management of this lake.  
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CHAPTER ONE  

INTRODUCTION 

1.1 General 

Fresh water bodies, the world’s most important natural resources are in these last decades 

undergoing threats from a large number of agents, including adverse effects from agriculture, Land 

Use and Cover change related consequences, and also from other enormous man-made activities 

(Romshoo and Rashid 2012; Torbick et al., 2013; Mushtaq and Pandey, 2014). Most of people in 

the world are living closer to water resources and carry out activities responsible for nutrient 

enrichment and algal in water bodies (Torbick et al., 2013). High concentration of nutrients and 

sediments in lakes and reservoirs is the result of artificial sources like excess use of fertilizers in 

agriculture, poorly managed urban waste system along with climate change consequences 

(Kondratyev et al., 1998). Upward rate of manmade activities and global perturbation of natural 

systems have led to acute seasonal water shortage (Mushtaq and Pandey, 2014). Stress on water 

bodies will always grow up in the near future if any precaution is not taken into consideration, and 

many academic works have proved deterioration in water status conditions as one of important 

threats to human beings (Torbick et al., 2013).  

Water quality assessment and monitoring play a far-reaching role and is very necessary 

task for each country to furnish water quality information to the public institutions and researchers 

in view of combating water quality problem.  (Seker et al., 203; Chen et al., 2007). Water quality 

is generally described by its aesthetic (appearance and smell), biological, physical, chemical 

properties and is related to environmental Land Use and Land Cover behavior (Kostas et al., 2012). 

An adequate water quality assessment   depends on a good field monitoring of water characteristics 

(Chapman, 1996). The use of monitoring in water quality assessment constitutes an important 

phase to describe water condition, to help determining trends and to provide useful information 

allowing establishment of a cause-effect relationship (Chapman, 1996).  

Monitoring of water quality by routine methods relies on water sample collection and 

field/lab analyses, which may reasonably provide exact results; but the process is costly, tedious, 

skill and time demanding, and cannot give synchronous water quality data for large areas. (Brivio 

et al., 2001; Khattab MFO and Merkel BJ, 2013). This is particularly true for large water bodies 
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like lake Tumba, which is among the largest freshwater lakes in Africa. Unlike in situ 

measurements, remote sensing techniques have nowadays started to play a major role in 

assessment of water body status for large areas and provide identification and quantification of 

water quality variables and critical pollution problems for the impeccable management of surface 

water resources (Ritchie et al., 2003). 

Using remote sensing techniques, surface water can entirely be monitored and assessed 

regularly and at a low cost. Relationships between water reflectance and monitored water quality 

variables are established using remote sensing technologies. Landsat images have been employed 

to predict and map water quality variables concentration in surface water. (Ritchie et al., 1990, 

Dekker and Peters, 1993; Wang et al., 2006).  

Regression models are commonly applied to clearly show the correlation between 

monitored water quality variables and band reflectance values.  

1.2 Objectives 

The specific objectives in this study aim to: 

• Employ the Landsat 8 satellite imageries for remote estimation of water quality variables 

in the lake Tumba, D.R. Congo. 

• Evaluate the changes in the lake catchment over the past decades. 
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 Water quality and its assessment 

2.1.1 Water quality 

The quality of water is an essential aspect of prime importance as life of human-beings depends 

on it. Water pollution may be defined as deterioration of the normal state, mainly when its physical, 

biological and chemical characteristics are impaired. Water may be considered as polluted when 

affected by man-made pollutant agents. Polluted water becomes dangerous for drinking purpose 

and aquatic life, especially for fish species. Water pollutants may originate from chemical 

compounds, or from infectious agents. Water pollution can be best considered in the perspective 

of possible pollutant cycles throughout the environment (Kumar De, 2018). 

Some possible effects of polluted water are: 

 disagreeable odour and colour. 

 The proliferation of undesirable aquatic plants in water body. 

 Death of large number of fish and other aquatic organisms. 

 Oil and grease floating on water surfaces. 

More than 700,000 of world’s people does not have access to pure drinking water. More than one 

million of people lose their lives each year due to water-borne diseases and 27,000 children below 

five years die every week from water-borne diseases. In India, 1000 children die of diarrheal 

diseases every day. Many African and Asian countries are suffering and struggling due to water 

pollution issues (Kumar De, 2018). Sources of pollution can be classified into two main categories 

based on their origin as described in the following sections. 

2.1.2  Point source 

Point source pollution refers to each defined, constrained and independent conduit, 

including but not limited to any pipeline, duct, drain, tubing, canal, cylinder from which pollutant 

agents are or may be loaded into water. Leakage from tanks and mine tailings are also considered 
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as point source pollution, but storm water drained from agricultural fields and acid rains or 

irrigation with its return flows are not at all considered as point source pollution (EPA, 1994) 

2.1.3  Nonpoint source  

Nonpoint source pollution originates from many undiscernible sources. Rainfall or 

snowmelt running off on and in the ground are the main causes of NPS. As the rainfall water is 

running off, it collects all the artificial pollutant agents, ultimately discharges them into surface 

waters and even our drinking groundwater aquifers. These pollutants not only consist of all 

chemical products used in agriculture (insecticides, herbicides and fertilizers), but also all 

dangerous products originating from urban production of energy and runoff; precipitates from 

incorrectly controlled building places, from natural ecosystems (forest), and eroding streambanks. 

Acid drainage from deserted mines salt from irrigation practices, nutrients and bacteria from 

animal waste, breeding waste, sediments from atmosphere and hydro modification are also 

considered as nonpoint source pollution (EPA, 1994) 

2.2  Water quality parameters relevant for remote sensing-aided assessment  

2.2.1 Turbidity 

Turbidity measures the extent to which light is scattered from a water body due to the 

suspended matter in water column, dissolved matter such as silt, clay, finite organic matter, 

plankton, other microscopic organisms, organic acids and decaying materials (Bilgehan Nas et al., 

2010). Excluding not those suspended matters, fluorescent dissolved organic matter, colored 

dissolved organic matter and other dyes can also contribute to water turbidity (Anderson, 2005). 

Turbidity affects the physical look of water, making it to be hazy, dusky, opaque or gloomy. Thus, 

increase in turbidity conditions may facilitate waterborne disease. Inorganic constituents have no 

notable health effects (Koltas et al., 2012). Water clarity and appearance are also affected by 

turbidity. The estimation of total suspended matter in water quality assessment is an indicator of 

turbidity. Water turbidity always depends on the amount of the particles that are suspended in the 

main column of the water body (Perlman, H. 2014). The more suspended matter that is present, 

the less light penetration will be in the water body. Turbidity is a relative measure of water clarity, 

but not a direct measure of total suspended solids although both are related. The changes in 
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suspended matter concentration (without providing an accurate measurement of solids) can be 

indicated by measuring turbidity (EPA, 2012). The color produced from plant decomposition 

(dissolved substances) found in wetlands and other water bodies in high concentration affects the 

appearance of water, water tending to appear brown or red. Turbidity measurement takes into 

account these dissolved substances although they are too small in size and are not counted in 

suspended solids concentration. (Anderson, 2005). 

  

Figure 2.1. Turbidity by TSS and vegetation decomposition 

(Source: EPA, 2012) 

2.2.2 Phosphorus 

Phosphorus exists in water bodies in both dissolved and particulate forms. It is a 

determining factor for all living organisms. Phosphorus is an important element that governs lake’s 

primary production and constitutes the limiting nutrient for algal growth. Increase in phosphorus 

concentrations, either naturally or artificially is the main cause of excessive nutrients in a water 

body (Chapman, 1996). Organic matter decomposition and weathering of P-bearing rocks are 

mainly the natural sources of phosphorus. Elevated levels of phosphorus in surface water are due 

to household wastes, especially waste waters that contain detergent, but also manufacturing 

discharges and chemical products run-off. Bacteria can mobilize and release phosphorus to water 

column when associated with mineral and organic constituents in water bodies (Chapman, 1996). 

Phosphorus is commonly incorporated in water quality monitoring programs as it is a contributing 

factor of biological cycle in water bodies. Increase in phosphate concentration can signify the 
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presence of water impairment and is largely the main cause the trophic status deterioration. 

Knowledge of the levels of phosphates is required particularly for drinking water supply in view 

of interpreting algae proliferation levels, and this is very important for lake management 

(Chapman, 1996). Phosphorus concentrations in laboratory are often estimated as total 

phosphorus, orthophosphates total or inorganic phosphate (combination of all phosphates and 

phosphorus). 

2.2.3 Chlorophyll-a 

Chlorophyll is commonly used as an indicator of water quality. It is a pigment found in all 

plants helping in photosynthesis process (Akbar T.A et al., 2009). Eutrophication refers to the 

presence of excess minerals and nutrients into a water body originating from natural and artificial 

sources, and their consequences on water resources (National Academy of Sciences, 1969). High 

concentrations of nutrients and minerals cause algal bloom and limit the sunlight to penetrate water 

column. Algae bloom entails depletion of oxygen required for aquatic life that leads to fish and 

other aquatic organisms’ death. Estimation of algae biomass concentration that is present in a water 

column can be provided by chlorophyll-a measure (Hambrook et al., 2007). If chlorophyll levels 

in water body are known, phytoplankton biomass and chlorophyll-a can easily be estimated (EPA, 

1989; Raschke, 1993). High concentrations of nutrients (main cause high chlorophyll levels in 

water body) originating from artificial sources like septic tanks discharge, badly managed 

wastewater systems, or fertilizer runoff can cause algal blooms that entails depletion of dissolved 

oxygen levels required for aquatic life, the primary cause of fish death. Estimation of chlorophyll-

a concentrations can indicate the water quality state, trophic status and organic pollution levels; it 

is also an important parameter in managing water quality (Scherz J.P, 1972) and monitoring water 

pollution (Johson, R.W et al., 1980). 
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Figure 2.2. Eutrophication and algae bloom 

(Source: EPA, 2012) 

2.2.4 Total Suspended Solids  

All substances whose size exceeds 2 microns (μ) present in a water body are known as total 

suspended solids. Every particle whose size is less than 2 microns (μ) is considered dissolved solid. 

TSS are essentially made of dead substances (inorganic), though algae and bacteria can also have 

contribution to TSS concentration in water body. Everything that floats or drifts on surface waters, 

from algal, precipitate, silt and sand to plankton are also considered as total solids (EPA, 2012). 

Organic particles originating from decaying can also be part of total suspended solids 

concentration. Micro organic particles detach and infiltrate water body as TSS through decaying 

process of algae plants and animals (Murphy, 2007). Suspended chemical products are considered 

as suspended solids (WHO, 2011).  

Total suspended solids are determinant factor in evaluating physical look of water (EPA, 

2014). Water clarity and suspended solids concentration are related. Some particles can decant into 

precipitate for couple of days at the bottom of a water body (EPA, 2014). Gravel and sand, heavier 

particles, when entering an area of low or no water flow, often settle out, improving water clarity. 

Increase in silt can smother fish eggs and benthic organisms (EPA, 2012). Other particles which 

do not settle out are called colloidal. They can also be called bedded sediments or bed load (EPA, 

2012). They vary from fine (silt and clay) to larger (sand and gravel), based on the water flow rate. 

They can sometimes move downstream without being incorporated in TSS measure. The strong 
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flow makes them to move along the bottom of a water body. This process is called bed load 

transport (Wood et al., 2014).  

  

Figure 2.3. TSS loading by erosion 

(Source: EPA, 2012) 

2.3 Remote sensing and water reflectance 

2.3.1 Remote sensing 

Remote sensing is the science of acquiring data about the earth objects or areas from far, without 

being in contact with them, generally from high flying aircraft or satellites. Remote sensing is 

divided into two types:  Active sensors and Passive sensors. Active sensors produce their own 

source of light or illumination (artificial light) that is measured by the sensor as they reflect off the 

target; passive sensors systems just detect sun light (natural reflectance off the target). Passive 

remote sensing is effective if the involved satellite platforms maintain sun-synchronous orbits. 

2.3.2 Water reflectance 

Every substance in natural system and environment may be a subject of absorption, 

transmission, scattering, emission, and reflection of sunlight (electromagnetic spectrum portions). 

The quantity of sunlight that an object may release depends on wavelength or a specific frequency. 

Objects yielding different spectral properties do not have same spectral curves, thus making 

possible the distinction between the materials. To determine water status conditions, remote 

sensing techniques rely on electromagnetic radiation detection by sensors. Thus, surface waters 
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can be monitored based on the electromagnetic radiation detection because water scattering 

characteristics depend on the substances’ type and concentration found in water (Shubha, 2000).  

Visible (VIS), Infrared (IR) and Microwave (MW) are the most important main spectral bands for 

assessing water bodies. (Richards, 1986; Schultz, 1988).   

 

Figure 2.4. Water reflectance and spectral curve 

(Source: Richards,1996) 

2.3.3 Landsat 8 

The Landsat Continuity Mission’s (LDCM), Landsat 8 started operating in 2013, on 11th 

of February and has two sensors: OLI (Operational Land Imager) and TIRS (Thermal Infrared 

Sensor). It images the whole earth each 16 days in an 8-day offset from Landsat-7. The OLI 

instrument images the earth in the 9 spectral bands that cover the VIS, NIR and SWIR portion of 

the electromagnetic spectrum. Band 1 and band 9 dealing with aerosol studies (band 1) and clouds 

detection (band 9) have been added. All the 9 bands of OLI sensor in which the earth is imaged 

are acquired at the same resolution, means 30 meters except band 1 that is acquired at spatial 

resolution of 15 meters. The two long wavelength bands 10 and 11, are the thermal infrared bands 

in which TIRS sensor collects data. OLI data register 100-meter spatial resolution of TIRS for 

generating geometrically and radiometrically calibrated 16-bit level 1 data products, duly terrain-

corrected. The thermal infrared bands (10, 11) are important because they provide more accuracy 

about temperatures generated by earth surface. (http://pubs.er.usgs.gov/publication/fs20133060). 

To characterize land cover state and conditions, OLI and TIRS offer ameliorated signal-to-noise 

radiometric performance quantized over 12-bit dynamic range (USGS, 2013). 

http://pubs.er.usgs.gov/publication/fs20133060
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Figure 2.5. Comparison of OLI and TIRS instruments vs. Landsat 7 ETM+ sensors band pass 

wavelengths 

(Source: USGS, 2013) 

Table 2.1. Processing parameter for Landsat8 standard data products 

Product Type Level 1T (terrain corrected) 

Data type 16-bit unsigned integer 

Output format GeoTIFF  

Pixel size 15 meters/30 meters/100 meters 

(panchromatic/multispectral/thermal) 

Map Projection UTM (Polar Stereographic for Antarctica) 

Datum WGS 84 

Orientation North-up (map) 

Resampling Cubic convolution 

 OLI: 12 meters circular error, 90% confidence 

Accuracy TIRS: 41 meters circular error, 90% confidence 

All orthorectified data products (standard level -1) which are generated using Landsat 1 to 

Landsat 7 are consistent with Landsat 8 data products, by quantizing and calibrating scaled digital 

numbers (DNs) which represent data acquired by OLI and TIRS instruments (multispectral image 
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data). The 16-bit delivered format of the products (OLI and TIRS products) are rescaled to the 

TOA radiance and/or reflectance by resorting to the metadata file that provides radiometric 

rescaling coefficients. TIRS products are converted to the at-satellite brightness temperatures by 

extracting the thermal constant coefficients from metadata file. The spatial resolution is an 

important aspect of viewing a satellite image, but the difference in reflected sunlight by various 

earth surface objects employed to detect features, the targets are less appreciated. Landsat 8 

facilitates further analysis in future thanks to its thermal and multispectral bands, also provides 

continuity to the anterior sensors. 

Table 2.2. Landsat8 bands properties and applications 

Landsat8 

Sensors 

band Band name Wavelength 

(um) 

Resolution 

(m) 

Applications 

 1 Coastal/Aerosol 0.433-0.453  Costal and Aerosol studies 

Operational 

Land Imager 

(OLI) 

2 blue 0.450-0.515  Bathymetric mapping, differentiate 

vegetation from soil, and 

coniferous vegetation deciduous 

 3 green 0.525-0.600  Emphasizes peak vegetation which 

is useful for assessing plant vigour 

 4 red 0.630-0.680  Discriminates vegetation slopes 

 5 NIR 0.845-0.885  Emphasis shorelines and organic 

matter content 

 6 Shortwave Infrared 

(SWIR)1 

1.560-1.660  Discriminates moisture content of 

the soil and organic matter: 

penetrates thin clouds 

 7 Short-wave Infrared 

(SWIR)2 

2.100-2.300  Improved moisture content of the 

soil and vegetation and thin clouds 

penetration 

 8 panchromatic 0.500-0.680  Sharper image definition 

 9 Cirrus 1.360-1.390  Improved cirrus detection and 

clouds contamination 

 

Thermal 

Infrared 

Sensors (TIRS) 

10 Long-wave Infrared 

(LWIR)1 

10.30-11.30  Estimation of the soil moisture and 

thermal mapping  

 11 Long-wave Infrared 

(LWIR)2 

11.30-12.50  Improved thermal mapping and 

estimated soil moisture 

 BQA Quality assessment   Quality assessment for each pixel 

in the scene 
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2.3.4 Remote sensing applications for water quality assessment 

Many researchers have used either bivariate regression or multiple regression to assess 

water quality from remote sensing techniques. It was observed in the published literature that 

instead of R2 values, more importance was attached to Pearson correlation coefficients, R and 

Significance values being statistically sound. Forrer (2012) has employed LANDSAT 5 to assess 

water quality variables (TSS and Chl-a) of BANHEAD RESERVOIR OF THE BLACK 

WARRIOR RIVER and found that TSS was strongly correlated with B3 to Sig* value of 0.008 63 

(<0.05 p value) and R of 0.63. The TSS values ranged from 4-11 mg/l during the time under study. 

Chl-a was correlated with B1/4 to Sig* value of 0.007 and R of -0.77 percent. The Chl-a values 

ranged from 2-8mu/l. Nas (2004) and Wang (2006) stated that for water bodies which are not too 

much polluted, band ratios seem to be suitable for WQPs retrieving using remote sensing 

techniques. Jangan (2015) assessed Korean lake WQPs (TSS, CHL, TP and TN) employing 

Landsat 8 images and found that TSS, TP and Chl-a were correlated with band ratio (B2/4) to a 

Sig* of 0.01 and R of -0.71, -0.52 and -0.66 respectively. 

Table 2.3. Multi and Bivariate Regression Models for remote sensing applications 

Jangan (2015) Multivariate   

WQPs Regression equation R Sig* 

TSS 11.80 - 50.608*B1 + 14.58*b4 - 4.7*B4/2 -0.71 0.01 

TP 0.06 + 0.041*b2-0.209*b4 + 0.003*B4/2 -0.52 0.01 

Chl-a 49.057 + 63.83*b2 - 236.05*B4/2 -0.66 0.01 

Forrer (2012) Bivariate   

WQPs Regression equation R Sig* 

TSS 0.308 + 23.574*B3 0.63 0.008 

Chl-a 1.019 - 0.437*B1/4 -0.77 0.007 
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CHAPTER THREE  

STUDY AREA AND METHODOLOGY 

3.1 Study area 

Lake Tumba is located 0 degree 45’S, 18 degrees 0’E in Equateur province in DRC, and 

drains north to Congo River. Lake Tumba is the second largest lake among all Congo basin’s lakes. 

The largest lake Mai-Ndombe lies just South of lake Tumba. Lake Tumba is a shallow lake with a 

mean depth of about 3 m (Mputu, 2013). The area covered by the lake is about 765 Km2 and may 

vary with seasons (Zanga, 2013). The lake is linked to Congo river via Irebu channel, through 

which water flows out or into the lake depending on flood levels. This water body harbors about 

114 kinds of fish and constitutes a reservoir of important fisheries (FAO, 2012). The lake lies at 

the center of the Tumba-Ngiri-Maindombe area, designated wetland of international importance 

by the Ramsar convention in 2008. 

 

Figure 3.1. Study area delineation 
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3.1.1 Climate 

Tropical and wet climate essentially dominates the ecoregion. Average annual temperature is 

approximately 25.C, min. and max. daily temperatures are 21.C and 31.C respectively (Hughes 

and Hughes 1992). The ecoregion receives an average of 1,800 mm of rainfall each year. October 

and November are two months that register highest rainfall, with 200 to 220 mm per month, 

followed by February and April, with 170 to 200 mm/month. July only registers 70 mm rainfall 

(Hughes and Hughes, 1992). 

3.1.2 Freshwater Habitats 

Situated on low slope, the lake Tumba records flood almost all the year. The small 

blackwater forest streams that flow the surrounding, inundated swamp into the lake are the main 

source of its nutrients. (Lévêque, 1997). The pH of the lake water is low due to water charged in 

carbon coming from the forest, ranging from 4.0 - 4.9 (Leveque, 1997; Brummett and Teugels, 

2004; Thieme et al., 2005 and Stiassny and Hopkins, 2007). Many islands are found within the 

Lake, and the mouths of some inflowing streams contain small deltas (Hughes, 1992). The la lake 

Tumba is shallow one, with depth being only 3 to 5 m, and the max depth being 8 m. DO is 

substantial in whole lake during the entire year due to frequent churning of the waters by strong 

winds. Irebu Canal allows lake Tumba waters to flow into the Congo River, but during high flood 

and floodwaters, the direction through the canal reverses from the Congo river entering the lake 

Tumba (Hughes, 1992). 

Mats of Echinochloa pyramidalis and Panicum parviflorum, Jardinea congoensis and J. 

gabonensis produce in beds along the lake’s edges and are occasionally interrupted by thickets of 

Cyrtosperma senegalense and Rhynchospora corymbosan in calm cove waters. Sometimes these 

thickets freely drift and break off. The area along the shores which are minimally exposed at 

periods of low water flow are subject of swamp forests growth. During high water flow, these 

forests may be submerged up to 4 m in depth (Hughes, 1992). 

3.1.3 Fish fauna 

107 fish species were reported from lake Tumba (Hughes, 1992). Ecologically, the lake 

Tumba is similar to Lake Mai-Ndombe and both lakes are connected by inundated swamps during 
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the rainy season. The species like Clupeocharax schoutedeni, Tylochromis microdon. Mormyrids, 

clariid and bagrid catfishes, characoids, clupeids, rivulins, and cichlids which are purely lacustrine 

fishes do not move between these two lakes, only swamp-adapted fishes freely enter the lake Mai-

Ndombe and vice-versa. Cichlidae and Clariidae are the two dominating fish families. 

Nannothrissa parva, one of three clupeids species inhabiting the lake is known only from Tumba, 

the Oubangui, and the upper Congo rapids. Congo river behaves like a canal during high floods, 

through which some species of fish enter the lake Tumba. (Hughes, 1992). 

3.1.4 Other noteworthy fishes 

Open waters of the lake harbor shoaling fish (Barbus and Microthrissa) and feed on small 

plankton (Hughes, 1992). The pelagic zone is inhabited by Odaxothrissa losera which feeds on 

small fish. The fish inhabiting near-shore areas of vegetation get their food from Insects and 

detritus. Phago boulengeri eats the fins of other fishes (Hughes, 1992). 

3.1.5 Other aquatic biotic species 

The vegetation near the lake Tumba banks serve as a refuge place for a large number of 

aquatic frogs and tadpoles (Hughes, 1992). Only 12 species of frogs are the most known relying 

on the lake. Two of them are endemic (Cryptothylax minutus and Phlyctimantis leonardi), which 

belong to the same family, hyperoliidae. The ecoregion also abounds many large aquatic reptiles 

and mammals. Hippopotamus amphibus is present but rare. Crocodylus cataphractus and C. 

niloticus are the two kinds of crocodile that occur in the lake (Hughes, 1992). Several piscivorous 

snakes inhabit Tumba landscape. The ecoregion abounds many kinds of bird which are similar to 

those of lower Congo River region. The African openbill (Anantomus lamelligerus). The pink-

backed pelican (Pelecanus refuscens), and ducks (Anasspp.) inhabit the ecoregion (Hughes, 1992). 

3.1.6 Ecological phenomenon 

Allochthonous suspended biomass from the surrounding forests constitutes the mineral 

content, which serve as the food chain of the lake Tumba (Beadle, 1981). August and September 

are the two months between which most fish species spawn. During the high flood, these fish 

species move many of kilometers upstream and enter flooded forest to feed and breed (Lévêque, 

1997). 
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3.2 Methodology for water quality monitoring and analysis 

3.2.1 Water sampling 

The lake water sampling for this study was conducted in the months of September and 

October 2018 during 3 days considering the large area of the lake. The polyethylene bottles used 

for water sampling were labeled, cleaned with nitric acid and rinsed twice with distilled water. At 

the sampling site, the bottles were rinsed three times with water to be sampled. The geographic 

coordinate of each sampling point was taken using a GPS receiver. The field sampling was 

conducted at 18 (eighteen) representative points for both September and October monitoring in the 

different parts of the lake, except the portion covered by vegetation. DO and pH were analyzed at 

the field itself, using DO meter and pH meter. All the samples were stored with ice packs and 

shipped to Agricultural Engineering Sciences Lab for analysis. 

Table 3.1.Sampling points coordinates for September monitoring 

 

 

Num Sample names X Y Sampling 

Depth(cm) 

1 Village Tondo 180103.46 9909284.77 15 

2 River tondo 180179.24 9911280.47 15 

3 Village bikoro 180733.23 9919727.41 15 

4 Inflow bikoro 177608.92 9929758.97 14 

5 Village lokongoli 173565.99 9896011.66 14 

6 Inflow lokongoli 171381.80 9896543.73 15 

7 Inflow nkoso 166337.35 9903580.98 15 

8 Village ikoko-bonginde 174159.99 9929015.20 14 

9 Village bikoro1 179057.01 9918573.52 14 

10 Village tondo1 178921.58 9908425.63 14 

11 Inflow village kolo 178532.09 9890499.58 15 

12 Lac_surface_pts1 160515.04 9910987.34 14 

13 Lac_surface_pts2 163538.03 9907869.00 14 

14 Lac_surface_pts3 168700.29 9911554.58 14 

15 Lac_surface_pts4 170983.00 9916222.00 15 

16 Lac_surface_pts5 167126.00 9921509.00 14 

17 Lac_surface_pts6 161024.88 9927756.90 14 

18 Lac_surface_pts7 155713.68 9926239.38 14 
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Table 3.2. Sampling points coordinates for October monitoring 

Number Sample names X Y Sampling 

depth (cm) 

1 village Tondo 180105.00 9909284.80 15 

2 river tondo 180171.40 9911286.50 15 

3 village bikoro 180738.30 9919732.43 14 

4 inflow bikoro 177602.13 9929751.71 14 

5 village lokongoli 173560.93 9896012.16 15 

6 Inflow lokongoli 171385.81 9896547.71 15 

7 Inflow nkoso 166335.34 9903581.95 15 

8 village ikoko-bonginde 174162.22 9929018.40 15 

9 village bikoro1 179058.31 9918576.54 14 

10 village tondo1 178924.58 9908422.33 15 

11 inflow village kolo 178534.09 9890494.58 15 

12 lac_surface_pts1 160517.10 9910985.59 14 

13 lac_surface_pts2 163534.18 9907872.00 14 

14 lac_surface_pts3 168703.18 9911554.58 14 

15 lac_surface_pts4 170988.00 9916228.00 15 

16 lac_surface_pts5 167121.00 9921519.00 15 

17 lac_surface_pts6 161028.19 9927752.90 15 

18 lac_surface_pts7 155713.11 9926225.57 15 

3.2.2 Laboratory Analysis 

The laboratory analyses were carried at the laboratory of water quality of Agricultural 

Sciences. The water quality parameters included Turbidity, Chlorophyll-a, Total phosphorus and 

Total suspended solids. In the laboratory, turbidity and TSS were analyzed according to standards 

procedures for the examination of water and wastewater provided by APHA (1992). Chlorophyll-

a and total phosphorus were analyzed following the standard procedures provided by EPA. 

3.2.2.1 Turbidity 

The samples were gently agitated. The mixed samples were poured into a cell and 

immersed in an ultrasonic bath for 1 to 2 seconds after applying vacuum degassing to cause 

complete bubble release. Then the turbidity values were directly read from the instrument display 

(APHA, 1992). 
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3.2.2.2 TSS 

The samples were well mixed and filtered using a standard, pre-weighed, glass-fiber filter. 

The residues were dried at a temperature of 103-1050C. The increase in the filter’s weight indicates 

the total suspended solids concentration (APHA, 1992) 

3.2.2.3  Chlorophyll-a 

The method 445.0 of EPA was used to determine Chl-a concentration (Arar and Collins 

1997). The method uses fluorescence detection to estimate Chl-a in fresh and marine water (Arar 

and Collins 1997). The samples were concentrated and filtered with a low vacuum through a fiber 

filter. The filters were tearing into small strips and incubated for 1,080 minutes in acetone prepared 

at 90% in the freezer and agitated many times (NSF 2004). The filter slurry was centrifuged at 675 

g for 15 minutes to clarify the solution. Before and after acidification to 0.003 N HCL, the 

fluorescence of an aliquot was then measured by adding 0.1 N HCL.  To estimate Chl-a 

concentration in the extracted sample, sensitivity calibration factors were finally applied (Arar and 

Collins 1997). 

3.2.2.4 Total Phosphorus 

The method 365.4 of EPA was used to determine total phosphorus concentration. Water 

sample was heated for 2.5 hours in the presence of H2SO4 (sulfuric acid). Dilution to 25 mg with 

distilled water and cooling of the residue were done. The residue was then placed on the Auto 

Analyzer for phosphorus determination (EPA, 1974). 

3.3 Processing of remote sensing data 

3.3.1 Data availability 

Two Landsat 8 OLI images (Path: 180 and Row: 61) were used in this particular study in 

view of assessing lake Tumba water quality. The images were acquired for 19th September and 

16th October 2018 during rainy season. Both images were downloaded from USGS EARTH 

EXPLORER and radiometrically corrected. The following figure describes the methodology used 

in this particular study. 
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Figure 3.2. Methodology chart 

3.3.2 Radiometric correction 

To retrieval water quality variables from remote sensing techniques, radiometric correction is very 

crucial (hu et al., 2004) as atmospheric reflection, refraction and absorption of light affect the 

image (Chavez, 1988). Radiometric correction was performed to mitigate these noise from 

atmosphere and transform DNs (Digital Numbers) to the spectral reflectance values (Chavez, 

1996). Dark object subtraction (DOS) algorithm in QGIS has been applied to transform DNs to at 

sensors reflectance values (Skirvin, 2000).  IBDOS model prosed by Chavez (1996) was selected 

for the same. The model variables are reprised below: 

𝜌ℷ = (𝐿𝑠𝑎𝑡𝑟𝑎𝑑 − 𝐿ℎ𝑎𝑧𝑒 1%) 𝜋 ∗
𝑑2

𝐸𝑜𝜆
∗ 𝑐𝑜𝑠𝜃𝑠 ∗  𝑇𝐴𝑈𝑣                                                             

Where ρλ = surface water reflectance, d = gap between earth surface and sun (in astronomical 

units), 

Lsatrad = sensor spectral radiance (Wm-2sr-1µm-1). 

Lsatrad = ML* Qcal + AL                                                                                                                                                                                 
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where ML and AL are the band-specific multiplicative and additive factors respectively, contained 

in metadata file, Qcal = Digital Number value 

Lhaze 1%rad = Lλmin – Lλ, 1%                                                                                   

Where Lλmin is sensor’s min spectral radiance, Lλ, 1% is the band radiance, supposed to have 1% 

of reflectance  

Lλ, 1% = 0.01 * Eoλ * cosθ/d2 * π 

Where Eoλ = external atmospheric solar irradiance, θ = zenith angle of the sun, TAUv = atmospheric 

radiance transmission from earth surface to the sensor. 

  After radiometric correction, image subsetting was performed using ERDAS Imagine 

software. Often, the images from EARTH EXPLORER contain areas too vast than the area of 

interest. Image subsetting was applied to only extract the area of interest (lake Tumba). For 

september image, not the entire lake was clear, some part was impacted by clouds and only the 

clear portion of the lake (contenaining 9 sampling points out of of 18) was extracted to be used in 

water quality analysis. The october image was also impacted by clouds, but not within the lake. 

The entire portion of the lake was subsetted for water quality analysis. 
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Figure 3.3. Images processing 

3.3.3 Image classification 

Mosaicking operation was performed before image classification to generate one image 

that represents whole catchment (lake Tumba catchment). 4 image tiles geo-referenced, containing 

the same map and projection information with the same number of layers were joined together 

(mosaicking). Often, the images used for classification contain areas too vast than the area of 

interest. Image sub setting was applied to extract only the lake Tumba catchment. Image sub setting 

not only rules the excess data in the image file out, but it also facilitates the processing due to 

reduced amount of the data to process (ERDAS, 1999).   

September October 
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Supervised classification using MLC was performed. Areas to represent each land cover 

class in the map were selected (training sites). It is just the samples of image’s elements that 

represent particular land cover class. They commonly represent identified or detectable samples to 

be mapped as land cover classes (ERDAS, 1999). They are pixels that represent what is recognized 

as a discernable pattern, or potential land cover class. On-screen digitizing of selected areas for 

each identified land cover on colour composite was performed to generate these training sites. An 

estimation classification was performed to evaluate the selected training pixels (ALARM 

command). This process helps to pre-classify the image data and select certain places among 

chosen land cover classes from where the occurrence of error may be possible. 

 In fact, it is a visual tool that gives an overview of where the classes will be assigned in 

the image and whether additional classes are required. Training samples were refined based on the 

analysis of outcome until an acceptable outcome was attained. The purpose was to generate classes 

that resemble well to the earth’s surface features. The digital image classification helps furnishing 

effective, compatible and repeatable routines to map vast areas (Kashaigili, 2006). The images 

characteristics like color, pattern, and texture were used to convert the image into land covers for 

visual interpretation. This operation involved enhanced image colour composite. The following 

classes were used: water bodies, Forest, Wetland, settlement and Agriculture. 

3.3.4 Change detection 

Missing the free cloud images of earliest years, ESA classified map was used for this 

purpose. Assessment of the change detection is generally useful as it helps identifying Changes 

that are developing or happening over a specific period in a defined place (Yeh et al., 1996). The 

two most categories of algorithms used in change detection are: (a) pixel-to-pixel comparison of 

multi-temporal images before image classification, and (b) post-classification comparison (Jensen, 

1996).  

In our case, we resorted to a post-classification comparison in view of assessing LULC 

changes over a period of 15 years. It is a suitable method (Jensen, 1996; Mundia and Aniya, 2006) 

of comparing data obtained in different seasons and from different references. This method has an 

advantage to overcome some complications linked to the analysis of images obtained in different 

seasons and from different references (Yuan et al., 2005; Coppin et al., 2004; Alphan, 2003). The 

LULC changes are effective using this approach (Wickware and Howarth, 1981); as it helps 
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quantifying changes that take place. The only limitation that can be evoked in this method is that, 

if the accuracy of each land cover class is wrong, the generated maps will also be wrong (Yuan et 

al., 2005; Zhang et al., 2002). This process enables changes identification using change detection 

matrix by comparing some independent classified images on the basis of pixel-by-pixel (Yuan and 

Elvidge, 1998). The change matrix generates a thematic layer holding an independent class for 

each coincidence of classes in multi-date dataset. 

3.3.5 Change detection analysis 

The following formulas helped to compute LULC change detection (Jensen, 1996) in lake 

Tumba catchment:  

% 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝐴𝑟𝑒𝑎 𝑖 𝑦𝑒𝑎𝑟 𝑥 − 𝐴𝑟𝑒𝑎 𝑖 𝑦𝑒𝑎𝑟 𝑥 + 1 

∑𝐴𝑟𝑒𝑎 𝑖 𝑦𝑒𝑎𝑟 𝑥
∗ 100 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝐴𝑟𝑒𝑎 𝑖 𝑦𝑒𝑎𝑟 𝑥 − 𝐴𝑟𝑒𝑎 𝑖 𝑦𝑒𝑎𝑟 𝑥 + 1

tyears
 

% 𝐴𝑛𝑛𝑢𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 =
Area i year x − Area i year x + 1

Area i year x ∗ tyears
∗ 100 

Where areai year x = area of cover at the first date, Areai year x+1 = area of cover at the second 

date, ∑area yearx = total cover area at the first date and tyears = period in years between the first and 

the second scene acquisition dates 

3.3.6 Correlating water quality variables and reflectance 

The radiometrically corrected Landsat 8 images were utilized for remote water quality 

assessment in this research. On the basis of UTM coordinates determined with a GPS device, the 

sampling points were located on the image and extracted for use in correlation and regression 

analysis. A 3x3 window around each sampling pixel was used for pixel values extraction (Brivio 

et al., 2001; Wang et al., 2005; Zhou et al., 2006).  

To determine how strong is the model, a Pearson correlation matrix was performed for both 

datasets. Bivariate linear regression modes were developed to check the correlation between 

measured water quality variables concentration, bands and band ratios mean reflectance values.  

Mean reflectance values were extracted from bands and band ratios of both images to be used as 

predicting variables in regression analysis. Blue (Band1), green (Band2), red (Band3) and near 
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infrared (Band4) bands have been selected to analysis correlation between dependent variables 

(TSS, Tb, TP, Chl-a) and independent variables (Peters and Dekker, 1993). Band ratios mean 

reflectance values of the 9 points found within the clear part of the lake for September image were 

used in regression model. Dependent variables that were utilized in this particular study include 

TSS, TP and Chl-a. Mean reflectance bands and band ratios values were used as independent 

variables.  

The statistical analysis was performed using EXCEL software. The choice of regression 

model equation to estimate all water quality variables was made based on correlation coefficients, 

significance value of each model developed, actual vs. predicted water quality values and apparent 

analysis of the generated maps.  
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CHAPTER FOUR  

RESULTS AND DISCUSSION 

4.1 General water quality status of the lake Tumba 

Table 4.1. Monitored water quality parameters for both September and October 2018 

 
 

Table above shows the monitored water quality parameters for September and October 

2018 conditions. In temperature, there is absolutely no variation during both September and 

October monitoring. From data which are available (Table 4.1), the variability of DO and pH is 

also negligible. The concentration of the monitored water quality parameters is too small, less than 

10 mug/l for Total Phosphorus, and less than 8 mug/l for Chl-a. Thus, water quality of the lake 

Tumba can be classified as “Oligotrophic”. These findings are supported by Chapman (1996) who 

stated for all lakes holding TP value not exceeding 10 mug/l and Chl-a value not exceeding 8 

mug/l are Oligotrophic. The descriptive statistics for TSS, TP, Chlorophyll-a and Turbidity for 

both months are provided below. 

Table 4.2.  Descriptive statistics for September water quality parameters 

Parameters N Max Min Mean Std. Deviation 

TSS (mg/l) 18 2.76 1.22 2.06 0.40 

TP (mug/l) 18 3.45 1.57 2.28 0.58 

Chlorophyll-a (mug/l) 

Turbidity (NTU) 

18 

18 

0.04 

12.98 

0.02 

7.12 

0.02 

9.39 

0.007 

1.83 
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Table 4.3. Descriptive statistics for October water quality parameters 

Parameters N Max Min Mean Std. Deviation 

TSS (mg/l) 18 2.79 1.26 2.1 0.39 

TP (mug/l) 18 3.55 1.59 2.39 0.53 

Chlorophyll (mug/l) 

Turbidity (NTU) 

18 

18 

0.04 

12.98 

0.03 

7.12 

0.03 

9.39 

0.003 

1.83 

 

The figures below show the equiconcentration contour maps, indicating the spatial 

variability of WQPs in the lake Tumba. Higher TSS concentrations were recorded at village Ikoko 

(2.761mg/l), inflow from bikoro village (2.4mg/l) and near village tondo (2.3 mg/l). Low 

concentrations were recorded at inflow from village nkoso (1.22mg/l), lake surface5 (1.82 mg/l) 

and at lake surface4 (2.1 mg/l). The highest concentrations of TP and Chl-a were recorded at lake 

surface5 (3.5 mug/l), inflow from lokongoli village (3mug/l), village Ikoko (2.9mug/l), village 

lokongoli (2.8mug/l); and lake surface2 (0.038mug/l), lake surface1 (0.036mug/l), village nkoso 

(0.035mug/l), village lokongoli (0.034 mug/l) respectively. The low concentrations of TP and Chl-

a were recorded at inflow from village kolo (1.592mug/l), village tondo (1.815mug/l), village 

bikoro (1.881mug/l), and village tondo (0.018mug/l), village bikoro (0.019mug/l), village Tondolo 

(0.02mug/l) respectively. 

 

Figure 4.1. Equiconcentration contour maps of TSS and TP 
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Figure 4.2. Equiconcentration contour map of Chl-a 

4.2 Land Use and Cover results  

LULC map includes lake Tumba watershed (Figure 4.3). The study area surrounding the 

watershed consists generally of flooded forest (83.86%). Water bodies also occupy an important 

portion in watershed (10.32%), followed by agriculture, wetland and settlement. 

Table 4.4. LULC areas and percentage of covered area 

Land Use Classes Km2 % Cover 

Forest 6118.01 83.86 

Water bodies 752.97 10.32 

Agriculture 360.96 4.94 

Wetland 35.56 0.48 

Settlement 27.24 0.37 

Table 5 lists the total area. The settlements that are present in lake Tumba catchment area 

have a low density (0.37%) considering the total covered area (7,294.77 sq. km). Still, this 

component may be considered important as Emmerth and Bayne (1996) and Wahl (1997) earlier 

stated that small towns may also serve as important source of NPSP. 
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Figure 4.3. LULC Classification map 

4.3 Change detection results 

Table 4.5 shows the covered area for each class from 2000-2015. The percentage of 

coverage change and the change in area between 2000 and 2015 are shown in the table 4.6. The 

area (Km2) covered by forest between two periods (2000 and 2015) was 5770.35 and 5756.58 

(83.64 and 83.44%) respectively. The area decreased by 13.17 km2 (0.20%) for this interval of 

period under consideration (2000 and 2015). The area covered by Water bodies was 741.15 and 

736.65 Km2 (10.74 and 10.68%), which decreased by 4.5Km2 (0.07%) between 2000 and 2015 

while agriculture increased by 16.65 Km2 (0.24%). Wetland and settlement were covering an area 

of 13.68, 14.16 and 2.16, and 2.7 (0.20, 0.03, 0.21 and 0.04%) between 2000 and 2015, and 

increased by 1.08 and 0.54 Km2 (0.02 and 0.01%) respectively. Annual rate of change (Km2/year) 

for forest and water bodies has decreased by 0.92 and 0.30 Km2 (0.02 and 0.04%) while agriculture 

area increased on an annual basis by 1.1Km2 (0.30%). Wetland and settlement area also increased 

by 0.07 and 0.04 Km2 (0.53 and 1.67%), annually. 

 



29 

Table 4.5. Covered area for each class from 2000-2015 

  Agriculture Forest Settlement Water Wetland 

2000 371.43 5770.35 2.16 741.15 13.68 

2001 367.11 5774.31 2.16 741.51 13.68 

2002 366.39 5775.57 2.16 740.97 13.68 

2003 366.93 5775.03 2.16 740.97 13.68 

2004 375.84 5765.94 2.16 741.06 13.77 

2005 377.01 5763.93 2.16 740.52 14.31 

2006 381.6 5762.25 2.16 738.45 14.31 

2007 378.99 5764.68 2.16 738.63 14.31 

2008 374.67 5770.71 2.16 736.83 14.4 

2009 380.43 5765.04 2.16 736.65 14.49 

2010 383.22 5761.8 2.16 737.1 14.49 

2011 390.96 5753.97 2.25 737.1 14.49 

2012 392.13 5753.34 2.43 736.38 14.49 

2013 392.49 5752.89 2.52 736.38 14.49 

2014 388.17 5756.58 2.61 736.65 14.76 

2015 388.08 5756.58 2.7 736.65 14.76 

Table 4.6. Change detection 

Cover classes 

2000 2015 
Change 

in area 

(Km2) 

% of 

Change 

Annual rate 

of change 

(km2/year) 

% Annual 

rate of 

change 

(% /year) 

Cover 

area 

(Km2) 

% cover 

coverage 

cover 

area 

(km2) 

% cover 

coverage 

Forest 5770.35 83.64 5756.58 83.44 -13.77 -0.20 -0.92 -0.02 

Water 741.15 10.74 736.65 10.68 -4.5 -0.07 -0.30 -0.04 

Agriculture 371.43 5.38 388.08 5.63 16.65 0.24 1.11 0.30 

Wetland 13.68 0.20 14.76 0.21 1.08 0.02 0.07 0.53 

Settlement 2.16 0.03 2.7 0.04 0.54 0.01 0.04 1.67 

Total 6898.77 100 6898.77 100         

Figures 4.4 - 4.8 show the trend of change in area for each class from 2000 to 2015 
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Figure 4.4. Trend of forest area variation 

 

Figure 4.5. Trend of water area variation 

 

Figure 4.6. Trend of agriculture area variation 
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Figure 4.7. Trend of settlement area variation 

 

Figure 4.8.Trend of wetlands area variation 

          The figures 4.9 - 4.12 show the ESA LULC classified maps for an interval of 5 years 
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Figure 4.9. ESA LULC  2000 and 2005 maps 

 

Figure 4.10. ESA LULC 2010 and 2015 
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4.4 Remote sensing aided water quality assessment for September 2018 

4.4.1 Monitored water quality variables  

Table 4.7. September TSS, TP, Chl-a and Tb concentrations 

Sample TSS 

(mg/l) 

TP 

(μgl-1) 

Chl-a 

(μgl-1) 

Tb 

(NTU) 

1 1.587 2.398 0.034 11.126 

2 2.112 2.111 0.036 10.121 

3 2.301 2.371 0.039 12.987 

4 1.765 2.318 0.038 9.985 

5 1.821 2.998 0.034 11.432 

6 1.221 2.837 0.035 11.876 

7 1.962 2.362 0.033 8.983 

8 2.103 3.054 0.029 9.659 

9 2.096 2.951 0.031 10.511 

10 1.296 2.437 0.034 10.651 

11 2.761 3.453 0.025 9.111 

12 2.436 1.651 0.02 8.866 

13 2.334 1.567 0.019 7.254 

14 2.341 1.763 0.019 7.312 

15 2.111 1.742 0.02 7.121 

16 2.332 1.699 0.018 7.324 

17 2.342 1.691 0.018 7.431 

18 2.311 1.571 0.018 7.323 

Table 4.5 shows the laboratory concentrations of TSS, TP, Chlorophyll-a and Turbidity 

found at the eighteen sampling points. Turbidity failed to show reasonably good correlation for 

bivariate linear regression model. Only three parameters (TSS, TP, Chl-a) were considered in this 

particular study, for both September and October dataset. The highest amount of TSS (2.761mg/l) 

was recorded near Inflow village Kolo. The highest amount of TP was recorded near the village 

Ikoko and lowest concentration was found near lake surface1. During September conditions, lake 

Tumba was not threated by algal bloom, apparently a reason why Chl-a and TP concentrations are 

low. 
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4.4.2 Correlating spectral reflectance and water quality variables 

The Correlation between Landsat 8, 1-4 bands and band ratios derived reflectance values 

and water quality parameters (Total Suspended Solids, Total phosphorus and Chlorophyll-a) was 

estimated MS Excel. Table 4.8 lists band mean reflectance values for all 18 sampling points. The 

table 4.9 shows the Pearson correlation coefficients (r and Sg*) of September variables (TSS, TP 

and Chl-a).  Different correlation coefficient values were recorded for each band/band ratios and 

water quality variables respectively. 

Table 4.8. Mean band reflectance values for each sampling points 

 Band1 Band2 Band3 Band4 

1 0.045 0.03 0.04 0.03 

2 0.03 0.02 0.02 0.02 

3 0.042 0.03 0.03 0.03 

4 0.087 0.07 0.07 0.01 

5 0.038 0.02 0.03 0.02 

6 0.12 0.10 0.11 0.15 

7 0.037 0.027 0.03 0.04 

8 0.038 0.027 0.03 0.03 

9 0.039 0.028 0.03 0.03 

10 0.04 0.03 0.035 0.04 

11 0.075 0.06 0.06 0.08 

12 0.037 0.028 0.03 0.04 

13 0.04 0.03 0.03 0.03 

14 0.04 0.03 0.03 0.04 

15 0.035 0.02 0.026 0.02 

16 0.04 0.03 0.03 0.03 

17 0.037 0.025 0.02 0.02 

18 0.03 0.02 0.02 0.03 
 

No single band has correlation with any water quality parameters for September conditions. 

Band ratio B2/4 was however found to have strong correlation with TSS. TSS has a strong negative 

correlation with GNDVI also. Chlorophyll-a and TP were most highly correlated with band ratios 

b2/4 and R3/4. Surface water that contains more algae presents different spectral curves with 

absorption in green and blue regions. Maximum and peak reflectance are displayed in red and near 

infrared regions. (Han, 1997). Chl-a and TP were also positively correlated with NDVI.  



35 

4.4.3 Estimating TSS, TP and Chl-a during September conditions 

Table 4.9. Pearson correlation coefficients between water quality parameters and various 

Landsat8 bands 

 Band1 Band2 Band3 Band4 B1/2 B1/3 B1/4 B2/3 B2/4 B3/4 BNDVI GNDV NDVI 

TS r 0.09 0.005 -0.02 -0.30 0.24 0.29 0.70 0.29 0.79 0.74 -0.70 -0.80 -0.75 

Sig* 0.8 0.9 0.94 0.41 0.53 0.44 0.03 0.43 0.01 0.02 0.03 0.01 0.02 

TP r -0.23 -0.15 -0.13 -0.13 -0.07 -0.07 -.54 -.04 -.70 -.71 0.54 0.70 0.71 

Sig* 0.54 0.69 0.72 0.72 0.84 0.84 0.12 0.91 0.03 0.03 0.12 0.03 0.03 

Chl r -0.27 -0.21 -0.21 0.08 0.03 0.08 -.50 0.17 -0.72 
-

0.78 
0.50 0.72 0.78 

Sig* 0.47 0.58 0.57 0.82 0.92 0.83 0.16 0.65 0.02 0.01 0.16 0.02 0.01 
Tb r 

 

-0.3 

 
-0.26 -0.28 -0.03 -0.10 0.18 -0.3 0.33 -.53 -.63 0.33 0.53 0.63 

Sg* 0.4 0.5 0.5 0.9 0.78 0.64 0.37 0.37 0.13 0.06 0.37 0.13 0.06 

Extracted mean band ratios reflectance values were utilized to develop regression models 

for water quality variables (Total Suspended Solids, Total Phosphorus and Chl-a) estimation. 

Predicting and predicted variables include Landsat 8 band ratios and monitored water quality 

variables respectively. Table 4.10 shows the predicting power of the model (R2) and the 

significance values (Sig*) band ratios. B2/4 was the band ratio holding the highest correlation with 

TSS. Dekker (2002) and Lathrop (1992) proved that TSS is strongly correlated with band ratios in 

surface waters that are not much polluted (Nas et al., 2010; Ritchie et al., 1987; Zhou et al., 2006) 

TP and chlorophyll-a were both correlated with band ratio B3/4. Table 12 lists regression equation, 

R2 and Sig* values. 

Table 4.10. Regression equation, R2 and Significance values (Sig*) for band ratios 

Regression 

equation 

B1/2 B1/3 B1/4 B2/3 B2/4 B3/4 

TSS = y+a*Bi 

 

0.059(0.4) 0.086(0.4) 0.49(0.29) 0.08(0.39) 0.64(0.009) 0.56(0.27) 

TP = y+a*Bj 0.015(0.5) 0.05(0.3) 0.015(0.6) 0.14(0.8) 0.33(0.11) 0.38(0.007) 

Chl-a=y+a*Bk 0.00(0.8) 0.00(0.12) 0.35(0.7) 0.41(0.3) 0.63(0.5) 0.68(0.005) 

 

Where y and a are regression constant and regression coefficient, Bi, Bj, Bk are band ratios for 

different WQPs. Thus, our regression model equations for September conditions get these forms:  
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Table 4.11. Regression equation, R and Sg* values for the chosen model 

Regression equation R Sig* 

TSS = 10.261*B2/4+1.8562 0.95 0.009 

TP = -10.308*B3/4+2.7101 0.95 0.007 

Chl-a = -0.2101*B3/4+0.0385 0.97 0.005 

4.4.4 Statistical results and TSS mapping for September conditions 

Total suspended solids are determinant factor in evaluating water clarity. Figure 4.11 

shows statistical results for TSS model. 

 

Figure 4.11. Statistical result for TSS chosen model 

Figure 4.11 displays TSS regression model. The predicting power of the model, R2 is 0.64 

and significance value, sg* is 0.009 (< 0.05 P-value). Figure 4.12 compares predicted vs actual 

TSS values. Actual values were little bit high compared to predicted one for September conditions 

and the level of correlation between actual and predicted values was 0.95. Using ArcGIS software, 

the TSS spatial distribution was generated (figure 4.13). The map successfully shows the spatial 

pattern of TSS in lake Tumba. TSS concentrations found in this lake varied between 1.5 and 3 mgl-

1
 during observed September conditions. High TSS concentrations were recorded at village Ikoko 

(2.761mg/l), inflow bikoro (2.4mg/l) and near village tondo (2.3 mg/l), and could be due to 

sedimentation from deforestation, land degradation due to forest management practices (logging) 

as well as slash from burning agriculture. 
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Figure 4.12. Comparison between actual and predicted TSS values 

 

Figure 4.13.Spatial TSS variation in lake Tumba 
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4.4.5 Statistical results and TP Mapping 

Total phosphorus plays an important role in evaluating eutrophication in surface waters. 

Figure 4.14 shows TP regression analysis results. 

 

Figure 4.14. Statistical results for TP chosen model 

 

Figure 4.15 Comparison between actual and predicted TP values 
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September conditions Total phosphorus in lake Tumba ranged from 1.6 to 3 μgl-1 High TP levels 

were found near lake surface5, inflow lokongoli, village lokongoli, and could be due to waste 

disposal from surrounding villages but also from plant poison used by men-fishers.  

 

Figure 4.16. Spatial TP variation in lake Tumba 
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4.4.6 Statistical results and Chl-a mapping 

Chlorophyll-a is commonly used as an indicator of water quality. It is a pigment found in 

all plants that is very useful for photosynthesis process. Figure 4.17 shows Chl-a regression model 

results.  

 

Figure 4.17. Statistical results for Chl-a chosen model 

 

 

Figure 4.18. Comparison between actual and predicted Chl-a values 
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values. Actual values were for the most of sampling points little bit high compared to predicted 

one. Using ArcGIS software, the Chl-a spatial distribution was generated (figure 4.19). The map 

successfully shows the spatial pattern of Chl-a in lake Tumba. Chl-a in lake Tumba ranged from 

0.018 to 0.038 μgl-1. The high concentrations were found near lake surface2, village lokongoli, 

village nkoso, and could be due to waste disposal from surrounding villages.  

 

Figure 4.19. Spatial Chl-a variation in lake Tumba 

 



42 

4.5 Remote sensing aided water quality assessment for October 2018 

4.5.1 Monitored water quality variables 

Table 4.12. October TSS, TP, Chlorophyll-a and Tb values 

Sample TSS 

(mg/l) 

TP 

(μgl-1) 

Chl-a 

(μgl-1) 

Tb 

(NTU) 

1 1.587 2.398 0.034 11.126 

2 2.112 2.111 0.036 10.121 

3 2.301 2.371 0.039 12.987 

4 1.765 2.318 0.038 9.985 

5 1.821 2.998 0.034 11.432 

6 1.221 2.837 0.035 11.876 

7 1.962 2.362 0.033 8.983 

8 2.103 3.054 0.029 9.659 

9 2.096 2.951 0.031 10.511 

10 1.296 2.437 0.034 10.651 

11 2.761 3.453 0.025 9.111 

12 2.436 1.651 0.02 8.866 

13 2.334 1.567 0.019 7.254 

14 2.341 1.763 0.019 7.312 

15 2.111 1.742 0.02 7.121 

16 2.332 1.699 0.018 7.324 

17 2.342 1.691 0.018 7.431 

18 2.311 1.571 0.018 7.323 

Table 4.12 shows the laboratory concentrations of TSS, TP, Chlorophyll-a and Turbidity 

found at the eighteen sampling points. Turbidity failed to show reasonably good correlation for 

linear bivariate regression model. Only three parameters (TSS, TP, Chl-a) were considered in this 

particular study, for both September and October dataset. The highest amount of TSS (2.761mg/l) 

was recorded near the Inflow village Ikoko. The highest amount of TP was recorded at lake 

surface5, inflow lokongoli. Chlorophyll-a levels were relatively low for this time of sampling 

because vegetation has not bloomed full and conditions are not favorable for algae growth.  
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4.5.2 Correlating water quality variables and reflectance 

The table 4.13 lists band mean reflectance values for all 18 sampling points. The table 4.14 

shows the Pearson correlation coefficients (R and Sg*) of October monitored variables (TSS, TP 

and Chl-a).  Different correlation values were recorded for each band/band ratios and each water 

quality variable. 

Table 4.13. Mean band reflectance for each sampling points 

Sample Band 1 Band 2 Band 3 Band 4 

1 0.033718 0.026458 0.030182 0.032982 

2 0.034314 0.026573 0.030439 0.034219 

3 0.027911 0.019637 0.023037 0.020317 

4 0.030985 0.022822 0.025555 0.025149 

5 0.046125 0.039517 0.04243 0.058481 

6 0.047141 0.040717 0.043894 0.059506 

7 0.050776 0.043675 0.047724 0.056514 

8 0.032613 0.023975 0.026699 0.026632 

9 0.029402 0.021824 0.024968 0.025804 

10 0.030634 0.023232 0.026596 0.028803 

11 0.040676 0.032884 0.035273 0.052994 

12 0.041429 0.033695 0.037624 0.042111 

13 0.04686 0.040377 0.044424 0.050252 

14 0.040618 0.032058 0.036813 0.032061 

15 0.034395 0.026713 0.031311 0.02444 

16 0.033361 0.025652 0.03027 0.022453 

17 0.030851 0.022687 0.027266 0.020414 

18 0.035654 0.027324 0.0318 0.030242 

Neither single band nor band ratios have showed good correlation with TSS and Chl-a for 

October image. This could be due to the impact of the cirrus clouds band (9th band). Only TP has 

strongly correlated with band ratio (B3/4) as in previous case (September image). 

4.5.3 Pearson correlation matrix 

Table shows correlation coefficients between water quality variables, bands and band ratios 

for October conditions. 
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Table 4.14: Pearson correlation coefficients between water quality parameters and Landsat8 

bands and band ratios 

 Band1 Band2 Band3 Band4 B1/2 B1/3 B1/4 B2/3 B2/4 B3/4 BNDVI GNDVI NDVI 

TS r -0.04 -0.08 -0.05 -0.15 0.15 0.24 0.06 
-

0.20 
0.25 0.24 -0.24 -0.25 -0.24 

Sig* 0.87 0.75 0.82 0.52 0.54 0.79 0.32 0.41 0.31 0.31 0.32 0.31 0.31 

TP 

r 
-0.05 -0.05 -0.07 -0.06 0.04 

-

0.41 
0.37 0.41 

-

0.52 
-

0.53 
0.41 0.52 0.53 

Sig* 0.82 0.81 0.77 0.80 0.87 0.08 0.12 0.08 0.02 0.02 0.08 0.02 0.02 

Chl 

r 
-0.08 -0.06 -0.13 0.18 0.15 0.02 0.22 0.03 

-

0.02 

-

0.02 
-0.02 0.02 0.02 

Sig* 0.73 0.79 0.58 0.45 0.54 0.91 0.36 0.87 0.92 0.92 0.91 0.92 0.92 

Tb r 

 

-0.07 

 
-0.06 -0.04 -0.15 0.13 0.29 

-

0.03 

-

0.26 
0.32 0.32 -0.29 -0.32 -0.32 

Sg* 0.77 0.81 0.87 0.53 0.58 0.22 0.89 0.27 0.18 0.18 0.18 0.18 0.18 

4.6 Model validation 

The validation was done in two steps: 

1. September image data: only the clear part of the lake Tumba was divided in two parts, one 

containing 5 points and another containing 4 points. The model developed for 4 points showing 

good correlation was validated against 5 points data. The table below shows the model regression 

equation and the percentage of correlation between actual and predicted values. 

Table 4.15. Regression equation, R2 of the chosen model and R and Sig* values of actual and 

predicted values. 

Regression equation R2 R Sig (<0.05) 

TSS= 14.52*b2/4+1.83 0.70 0.92 0.01 

TP= -19.33*b3/4+2.98 0.85 0.97 0.04 

Chl-a= -0.345*b3/4+0.04 0.88 0.96 0.02 

 

The figures 4.20 – 4.23 show the comparison between actual and predicted values. 
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Figure 4.20. Comparison between actual and predicted TSS values 

 

 

Figure 4.21.Comparison between actual and predicted TP Values 
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Figure 4.22.Comparison between actual and predicted Chl-a values 

For October image, we applied the September model (all 9 points of the clear part of the 

lake Tumba) to check whether the model is good or not. All 18 sampling points for the entire lake 

were considered. The figures 15 shows comparison between actual and predicted values for 

September model checked on October image 

2. For both September and October images: Employing both September and October images: The 

model developed employing all 9 points of the clear part of the lake Tumba from the September 

data was validated against all the 18 point TP data for October image. Actual and Predicted values 

were correlated to a level of 0.93, means 93 percent. The figure below shows the comparison 

between actual and predicted values. 
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Figure 4.23. Comparison of actual vs. Predicted values.  

 

Figure 4.24. Spatial TP variation in lake Tumba for October conditions. 
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CHAPTER FIVE  

FINDINGS AND RECOMMENDATIONS 

5.1 Findings 

Remote sensing techniques allowed to map and estimate water quality parameters in lake 

Tumba even during rainy conditions. Turbidity has not given good reasonable results for both 

September and October conditions. Therefore, only 3 parameters, TSS, TP and Chl-a were 

considered for the estimation. No single band has showed strong correlation with above water 

quality parameters under this study. However, band ratio (B2/4) was strongly correlated with TSS 

for September conditions.  

Bivariate regression model (equation 1/Table 4.10) served to predict and map TSS spatial 

variability in lake Tumba. TP and Chl-a showed a good correlation with band ratio (b3/4) for 

September conditions. Regression models (equation 2 and 3/Table 4.10) could predict and map 

the spatial variability of TP and Chl-a in lake Tumba for September conditions. Out of the data of 

9 points considered for remote sensing assessment, model developed from 4 points was 

successfully validated against the remaining 5 points. 

Higher levels of TSS within this water body was found near village Ikoko, inflow bikoro 

and village tondo, and could be due to sedimentation from deforestation, land degradation due to 

forest management practices (logging) as well as slash from burned agriculture. Higher levels of 

TP and Ch-a were found near lake surface5, inflow lokongoli, village lokongoli, village Ikoko, 

lake surface2, and could be due to waste disposal from surrounding villages. For October 

conditions, TSS and Chl-a did not show good correlation, maybe due to the impact of cloud in 

ninth band of October image. Hence, only TP values could be modelled and a map was produced. 

Also, model developed employing all the 9 points of September data could be successfully 

validated against the October data. During October conditions, the water quality parameters were 

slightly high compared to September conditions. 

No study of this kind has been done before for this lake due to the lack of understanding 

about the subject as well as of subsequent resources for lake monitoring. For the first time, 

regressions models were developed as a part of this research. The encouraging results of the 

validation of models in this study demonstrated that remote sensing combined with monitored 
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water quality can predict TSS, TP and Chl-a even for rainy conditions for synoptic lake Tumba 

water quality.  

5.2  Recommendations 

Lot of limitations or challenges were faced during the period of this research. The most 

important were: lack of free cloud images, lack of relevant information about climatic data of the 

lake Tumba catchment, and also the lack of subsequent resources for more detailed analyses of 

other important water quality variables. Following the above, we recommend: 

 Conduct the entire exercise for the dry season conditions and compare the results. 

 Develop a good water quality monitoring network, analysis infrastructure and process 

protocol for the lake Tumba. 

 Develop a Hydro-meteorological monitoring infrastructure for the lake catchment. 

 Considering the importance of this lake, plan and initiate more scientific studies on this 

lake and its catchment on various aspects e.g. Hydrological, Limnological, Socio-

economic etc. to arrive at and develop sound management policies. 
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