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CHAPTER -1 

INTRODUCTION 

Soft Computing is a collection of techniques covering many areas that come under different 

classifications in computational intelligence. The computing techniques belong to the various 

fields such as computer science, machine learning and engineering fields, which undergoes 

study of model and their analysis of associated complex phenomena. Such benefits have not 

come forward through the conventional methods. They are far behind in yielding low cost 

complete solutions. Soft computing techniques use soft techniques contrasting it with classical 

artificial intelligence of its counterpart. The techniques are developed on the information 

processing in biological systems. The tasks like surrounding recognition, act according to the 

plans as per the ideas thought of in order to survive is the eloquent feature of the complex 

biological information system in humans.. The information processing involves both logical 

and intuitive processing. Logical processing is what conventional computers are good at, but 

they are far behind in capability for the later as compared to human beings. The three features 

are required for any computing system to have human like information processing capability: 

openness, robustness and real time processing[1]. Openness of a system is its capability to 

cope with circumstantial and random changes encountered in the real world and also allowing 

+ 
it to extend on its own. If a system has tolerance and also remains stable even if it meets with 

segregated, incomplete or imprecise information then it is said to be as robust. A system has 

real time processing characteristic if it reacts in a considerable amount of time if encountered 

with an event. Real world computing (RWC) systems are said to have these three features. A 

RWC system is therefore capable of representing the information in distributed manner, 

processing parallel in huge amount when required, adapting in order to organize itself and 

learning at the same time to achieve flexibility in information processing. Thus, RWC systems 

incorporate the soft computing techniques as key ingredient. 

There are various techniques which come under the soft computation. 

Swarm intelligence, evolutionary computation, neural networks, fuzzy logic, probabilistic 

reasoning are some of the known components. All these have their own distinct nature of 

working and presenting solutions that suit the systems. The aspect which is common to all 

these components is that they are not hard bounded by any mathematical formulation. 
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Swarm intelligence and evolutionary computation are two of the powerful soil computing 

techniques. A lot of research has been done to identify the better of them. But no such 

generalization can be done as the algorithms pertaining to both these techniques behave 

differently depending on the system to which they are applied. A comparative analogy and 

differences are thus chalked out for the particular system in order to conclude the nature of the 

two techniques. 

Particle Swarm Optimization (PSO) is a search heuristic technique [2]. It 

considers a set of particles which undergo movement in a particular area and corresponding 

dimensions. The area and dimensions are based on the parameters to be optimized. The 

algorithm reaches for both local as well as global searching ability. Identification of local and 

global best particle in every iteration smoothens the movement and thus leads to the 

optimized values of the parameters. 

Differential evolution (DE) is a population based evolutionary algorithm which 

- reaches out for the best candidate solution [3]. The algorithm pertains to population 

initialisation, recombination, mutation and selection, thereby obtaining the best of the 

individuals each and every time. The fitness value and the iterations lead to the optimised 

value of the parameters. 

To draw out the analogies and differences between these two techniques two 

systems ball and beam and robotic manipulator are considered. The first system is simpler as 

compared to the second one. This has been done in order to observe how both the algorithms 

work and behave for the two systems. 

The ball and beam control system is one of the most common and easy to handle 

system. It is a non linear system coupled with servomotors and gears but can be linearized 

under certain assumptions. Designing the feedback control law and to have a requisite output 

the controller seems necessary as it manipulates the required input signals to the system. The 

controller chosen for the purpose is PID. There are two of them and the controller gain 

parameters are optimized by the aforesaid two soft computing techniques. 

The robotic manipulator is a highly non-linear system. It is due to number of joints 

and links and the degrees of mobility associated with them. The kinematical model 
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coordinates one frame with the other involving transformation from one axis to another 

whereas the dynamic model beholds the control of end effectors movement due to the force, 

torque applied. The robotic manipulator used here is PUMA 560 which is a 6 DOF revolute 

jointed manipulator. The controller designed to regulate the torques and monitor the tracking 

of end effectors movement is computed torque controller (CTC). The controller considers all 

the inertial, coriolis, centrifugal forces and the gravity effects to regulate the torques. 

1.1 Motivation 

During the course work, I came to study about optimization in control systems. The 

optimization is utmost necessary for the systems to get good hold of output with the required 

convergence and accuracy. This fascinated me to learn some of the techniques and to apply 

them on some of the systems to know how they work. 

In feedback control algorithm there exists relation between the error input 

and the output driven by the system. To have a good regulation controllers are used which in 

turn consider error input and provide regulated input to the given system. But for controllers 

to work fine the parameters associated to them should be tuned properly. Many times they are 

tuned manually. But this does not seem to be a good methodology for the complex and higher 

order systems where there is no direct relation between the controller and the system 

parameters. For such purposes there should be techniques which can optimize the parameter 

values and thereby can tune them properly. The soft computation techniques seem to be the 

robust one and their algorithms pursue optimization in accordance with the system. I chose to 

use Particle swarm optimization (PSO), a search based technique, and Differential evolution 

(DE), an evolutionary technique, for my systems. They both are robust in nature and have fast 

convergence rate. 

1.2 Problem statement 

The dissertation focuses on the application of soft computing techniques to the ball and beam 

system and robot manipulator (PUMA 560) in order to draw out the analogies and differences 

in the two techniques. The aims of this dissertation are: 

• Study about the two soft computing techniques PSO and DE and their application. 

• Obtain the tuned controllers for the ball and beam system and robot manipulator 

PUMA 560 using the two techniques. 
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. Draw out conclusion on the techniques based on the convergence and the 

accuracy. 

1.3 Organization of thesis 

The thesis organized in such a way that a clear and precise understanding of work is 

presented. It has been divided into several chapters. Chapter 1 bears the introduction to work, 

problem concerned and the motivation for the work. Chapter 2 introduces Differential 

Evolution (DE), its nature, algorithm and the variants. Another soft computing technique 

known as Particle Swarm Optimization (PSO) is presented in Chapter 3. It gives idea about its 

algorithm, the variants and nature of operation. Chapter 4 is about the dynamics of Ball and 

Beam system. The Robot manipulator kinematics and dynamics are introduced in Chapter 5. 

It also gives an insight to PUMA 560. Chapter 6 is about the results drawn out from the 

application of techniques on the two control systems. The conclusion and future work 

suggestion are put forward in Chapter 7. 

-11 
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CHAPTER -2 

DIFFERENTIAL EVOLUTION (DE) 

2.1 Introduction 

Differential Evolution, one of the evolutionary computations, first of its kind was developed in 

1995 by Storn and Price[4]. DE is a genetic algorithm (GA) based approach which use 

particular operations on a population in order to minimize an objective function over the course 

of successive generations. As with other evolutionary algorithms, Alteration and selection form 

the basis of operation for optimization problem solution which helps in obtaining candidate 

solutions. DE uses floating-point instead of rigid method of bit manipulation of population 

member, and arithmetic operations instead of logical operations in mutation, in contrast to 

classical GAs. 

The main concept of Differential evolution is using a perturbation of two 

members as the vector to add to the third member, which produces a new vector [5].  The new 

vector then is mixed with the predefined parameters in accordance with certain rules to produce 

test vectors. This operation is called crossover. The final choice of the operation must bring to 

bear all members of the population such that a correct selection of vectors is done in order to 

produce the same number of competitors in the next generation. 

2.2 Basic DE steps 

The basic DE steps are as follows: 

a) Population Initialisalion 

The first step constitutes the decision of certain parameters for DE algorithm and creating 

arbitrary initial population in 'n' dimensional space [6]. 

x(0) = rand(O, 1) (x' - xjjL) + x1 L (2.1) 

where i = 1,2 ...... m ; j = 1,2...... 

'rn' represents number of solution vector. x jU, denote the upper and lower limits of the jth 

variable in the population respectively, rand(0,1) represents a uniformly distributed random 

value within (0,1). 
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Mutation 

Selection of several solution vectors is done randomly, and acquiring the difference between 

the vectors to multiply scaling factor F and furthermore adding on target vector to assist it 

mutate in order to vary its characteristic. The target vector can be the best one or anyone among 

the total individuals depending on the choice made. Two of the traditional common mutation 
6. 

types are[7][8]. 

DE/rand : Vi,g+I = Xrig+ F(Xr2,g  - Xr3.g) (2.2) 

DE/best : vi.g+I = Xbcsl+ F(Xr2g - Xr3.g) (2.3) 

The first one considers the two different individuals r2 and r3 along with the arbitrary 

individual r3 in order to mutate and obtain the desired individual whereas the second one 

considers the best individual among the whole population to have the requisite characteristic in 

the resulted individual. 

Crossover 

The crossover operation is considered to increase the variety of the population. After crossover, 

a trial vector 'u' will be produced [7]. The following formulation thus helps in indentifying 

whether the i1h  component is formed form the target vector or the donor vector. X1  is the target 

vector and Vi is the donor vector. 

Uj,i,g+i = vj,j,g+l if rand <= CR (2.4) 

if rand >= CR (2.5) 

Here, 'rand' is a random number that lies between 0 and 1. CR is the crossover rate and 'g' 

stands for the generation. 

Selection 

The selection is the final stage after the mutation and crossover operations are finished. The 

selection of the best solution depends on the fitness value of the individuals. For this every time 

the fitness value of the individuals are compared with that of the earlier fitness values. The 



individual having the best fitness value is considered for the selection. This is done for each 

and every iteration until the maximum numbers of iterations are completed. The best result is 

obtained when the iteration ends. 

Begin 

t 

Inout Objective function 

Initialise all agents 

Compute jnitial fitness 

values 

Satisfy end 

COflditiOfl? +f Output esuIII 

End 

Mutation operation 

Crossover ooeration 

Choice oreration 

LI1 
 <

Satisfyend 

condition? 

Fig.2. 1 Flowchart of DE algorithm 
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2.3 DE Variants 

Variants of DE have been developed depending on the mutation operator, crossover ratio, and 

mutation or scaling factor. 

i) Mutation operator[31 

F( ri r2 
Vg+1 

I  =Xg best + 
Xg Xg  ) (2.6) 

Vg+1'  = Xg'  + F (xg'1  - xg' 2 ) (2.7) 

vg+i'=xg'+F(xg
best 

xg 
 I)+F(xgrxg r2 

) (2.8) 

where, i is the current index , V+I is the mutant individual to be developed, ri and r2 are 

random integers mutually different and not equal to the current index i , and F (>0) is a real 

parameter, called mutation or scaling factor. 

Modified Mutation Factor DE (MFDE)[9} 

F = S * fr(0,1)2  * d - b (2.9) 

Where, d is linear decreasing factor, r is a random variable, s is an acceleration factor, b is 

deceleration factor. The MFDE improves the balance between exploration and exploitation. 

Crossover Ratio 

cr = cr,,+(( Crinax - * iter) / max_iterations (2.10) 

cr = 0.5 * (1 + randQ) (2.11) 

where, cr,) : maximum crossover ratio value 

: minimum crossover ratio value 

iter : current iteration. 
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CHAPTER -3 

PARTICLE SWARM OPTIMIZATION 

3.1 Introduction 

The search methodology comprising population strikes out as a good choice when the search 

area is large and takes a lot of effort in search criteria. Particle Swarm Optimization (PSO) 

belongs to that kind of search technique. PSO, first introduced by Dr. Russell C.Eberhart and 

Dr. James Kenedy, is an algorithm that adapts itself depending on previous successful 

regions[101. The population of individuals also known as particles follow a particular social 

cognitive pattern. The algorithm incorporates diversity as well as convergence. 

The algorithm considers two basic and primary operators: Position alteration and 

Velocity alteration[2]. In each iteration every particle is impelled to move towards its best 

position in previous occurrence locally as well as the global best position for the whole 

population. Each particle's new velocity is determined based on its present velocity, and how 

distant it is locally as well as globally from the best position in the past.. The new velocity 

value monitors and thus articulates the particle's next position in the given dimensional search 

area. Repetition of this process is carried out for a certain number of times, or until the 

proximity to the target is achieved. 

procedure PS(> 
repeat 

for i = L to number of individuals do 
if ((5', ) ((j7,) then i (( ) evaluates goodness 

for J = I to dimensions do 
/id Vzd is the best state lound so far 

end for 
end if 

II = 
/ r arbitrary 

for.) = indexes of neighbors do 
if (J(j;;,) then 

(f / r. (J IS the ii'ni?X of the best performer in the neighborhood 

end if 
end for 

fom J -- I to n u mber of di memis ions do 
= I . "i(I I ).p,,. js,,,) update veIoci' 

Max)  
update position 

end for 
end for 

until stoppmg criteria 

- 
end procedure 

- - - 

4 Fig.3.1 Particle Swarm Optimization algorithm 
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2.5.1 Notations used in algorithm 

I :the present time sample, 1-1 : the previous time sample 

Tn,ax : the total time sample for search 

Xìi(t) : the i,, particle's current position. 

v j(,(t) : the i,11  particle's current velocity. 

[V,na, +V,,] : the extreme limits on velocity. 

Pid: the Ith  particle's best position. 

Pgd : the global best position. 

ci: social parameter, generally taken to be 2.0. 

c2: social parameter, generally taken to be 2.0. 

çol : a positive number between 0 and 1. 

ç92: a positive number between 0 and 1. 

w(t): the inertia weight. 

Wstar, : the initial inertia weight. 

We,id : the final inertia weight. 

x : the constriction coefficient. 

3.2 Standard Particle Swarm Optimizer 

The optimization problem treats every parameter of function as a point in search area. The 

particles movement occur in a heterogeneous space. This is determined by the fitness value. 

There are regions which prove to be important than others. The particles are evaluated on the 

basis of objective function. This leads to the identification of better regions of the search 

space. 

10 
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Xj(j(1) = f ( (1 - 1), Vj(/ (i - 1), Pid , Pgd) (3.1) 

= Vjd(t - 1) + cjçoj (Pid - xj(J(t - 1)) + C2c02 (Pgd - Xid(t - 1)) (3.2) 

Xjd(t) = Xjd(t - 1) + Vjd(t) (3.3) 

The wider oscillations lead to explosion in basic PSO. In order to curb these surmounting 

oscillations binding the velocity to certain limit becomes necessary. The methodology to 

check this scenario is to consider a parameter Vmax and thus monitor the velocity from 

exceeding the limits in any dimension. Generally an upper limit is set as Vniax, the extremum 

for each particle. 

if v, > V, then Vid = (3.4) 

4 else if vid < - V, fl(LV  then - V,nc x (3.5) 

3.2.1 Inertia based Particle Swarm Optimizer 

The inertia weight is associated with the previous velocity as a multiplying factor. The 

decrement in inertia value follows a linear pattern. Every iteration carries a non zero inertia 

weight value. This helps the particle to maintain the particular direction as it was following in 

the past occurrence. Initial inertia weight values help in exploratory (global search) to 

whereas it later shifts to convergence (local search) mode [2]. 

Xjd(t) =f( w(t), Xjd(11)  ,vj(i-l), Pid , Pgd) (3.6) 

Vjd(t) = w(t) * vìi(t - 1) + cj (0/ (Pid - X/d(t - 1)) + C2çO2 (Pg/ - Xjd(t - 1)) (3.7) 

x1 ,(t) = X•dO - 1) + V j(/(1) (3.8) 



In order to have smooth transition w('!) is linearly reduced in each iteration. 

W(1) = 
(T n  ,(zxt)+(Wctart 

- Wend (3.9) 
Trnax 

4. 3.2.2 Particle Swarm Optimizer with constriction coefficients 

PSO constriction coefficient developed by Clerc[lll results in particle convergence over time. 

The constriction coefficient allows damping of oscillation amplitude by the consideration of 

local previous best points. The algorithm leads the particle to converge to a point over time. 

The constriction coefficient prevents the particle from falling to any unwanted point judging 

the right constraints are in place. The particle will follow its trajectory around the averaged 

local(pd) as well as global best position(pd). The nature of search varies as per the 

circumstance. The proximity of previous best position and the neighbourhood best position 

leads the particle to perform a local search whereas farther both the positions are the particle 

4 will perform a more spread out nature of search. The search changes the neighbourhood best 

position and best position in the past taking into account all constraints and values. The 

particle will shift from local search back to diversified search. The search criteria thus 

becomes well balanced between local and the global one taking into account the social 

conditions due to the inclusion of constriction coefficient methodology. 

Xjd (1) =f(x, Xj,-j, Vjd,J Pid. Pgd) (3.10) 

x =11,Where(p.CI+C7,(P>4 (3.11) 

Vid (1) = X [V (1 - 1) + CjçoJ (p - - 1)) + C22 (Pgrl Xid(t - I ))J (3.12) 

xd(1) = Xd(1 - 1) + Vjd(!) (3.13) 

Generally, k = 1; Ci = 2;c2 =2 ,and p=4.l 

12 
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3.2.3 Neighbourhood Topologies 

There are three main neighbourhood topologies used: wheel, circle and star. The 

determination of required individual to use for Pgd depends on choice of neighbourhood 

topology. The circle topology maintains a social connection to its k nearest neighbours (Pgd = 

41 
best particle among k closest neighbours, k generally tends to 2 ). The wheel topology has an 

individual at its focus. It is the particle through which information is processed. It separates 

one particle from the other, Pfd (Pgd = most favourable among Pfd  and Pid). The star topology is 

the most preferred topology. Every particle is well linked and associated to every other 

particle (p8 i = most favourable particle found in the swarm). 

t 

(a) (b) (c) 

Fig. 3.2 Topology (a) Circle Topology, (b) Wheel Topology, (c) Star Topology 

3.3 PSO variants 

1) Basic PSO (BPSO) 

 

 

X,d(t) = f ( Xj.j,jj , Vjj Pii , Pgd) (3.14) 

= VJ1  - 1) + cjçoj (Pid - - 1)) + c2c02 (Pgd - Xkj(t - 1)) (3.15) 

Xd(t) = Xid 0  - 1) + vld(t) (3.16) 

The parameters acceleration coefficients (c1. C2), inertia weight (w) are constant parameters. 

13 



ii) inertia Weight Approach (iWA)[iOJ 

The inertia weight w(t) should be suitably selected. A well suited inertia weight improvises 

the balance between local and global search. This thus diminishes the number of iterations to 

4 

find sufficiently optimal solution. 

Iter *(wmax - w7) 
W(t) = W, fla) - 

IteT*max 

(3.17) 

where, 11cr is 'Current Iteration', Iterniax is 'Maximum Iterations', w is 'Maximum inertia 

weight',w,,3, is 'Minimum inertia weight'. 

19 
iii) Constriction factor Approach (CFA) 

In CFA approach, the velocity is altered by constriction factor X [121. This leads to the 

enhancement in the performance of hybridized PSO. Selection of constriction factor is an 

important criteria. This helps in maintaining the velocities in set interval. The velocity values 

does not exceed the limits. 

2 
x = 

k 
 _____ 

where p Cl  + c2, pgreaterihan4 (3.18) 
2-q'- ,/ç0 2  

Generally, k = 1; c1  =2.05; c2=2.05 , and p = 4.1 

iv) Dynamic PSO 

To optimize dynamic system by PSO, inertia weight w(t) is modified as, 

w=(O.5+r3/2) (3.19) 

where r3  is uniformly distributed random numbers in [0,11. 

14 
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Fine Grained Inertia Weight Approach (FGIWA) 

w(t+1) = w,(t) - [(w,(t) - 0.4) * expf-(IXgbesi(t) - Xi.bes:(t)I 
* (iter/max_iter)))] (3.20) 

This approach combines both the non - linear and exponential characteristics. There is a 

regulated decrease in value by monitoring the particle's performance iteration wise. The 

inertia value decreases exponentially to a value approaching 0.4. This thus helps in obtaining 

global optimum by exploiting all the required searches. 

vi) Time Varying Acceleration Coefficients PSO (TVACPSO) [13] 

cj(iter) = cj - (cj3  - cie) * (iter/(max_iler-1)) (3.21) 

c2(iter) = C2s - (c2 - C2) * (iter/(,nax_iter-1)) (3.22) 

This particular approach provides a huge diversity in early iteration and convergence for later 

iterations. c1 (iter), c2(iter) are the local best weight and the global best weight at particular 

iteration iter respectively. c15, ci are the initial and last iteration local best weight. C2S , c2e are 

44 the global best acceleration coefficient for initial and last iteration. 

R AL 
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CHAPTER -4 

BALL AND BEAM SYSTEM DYNAMICS 

4.1 Introduction 

The setup used for ball and beam system is Ball and Beam GBB 1004 by the courtesy of 

Googol Technology. 

The dynamics of ball and beam system possesses non-linearity. The practical 

implementation involves additional non-linearity also. Deadband, backlash due to motor, 

sensing discrete position, and disturbed rolling on the surface are some of them. 

The mechanical plant consists of a base, a beam, a ball, a lever arm, a gear, a support 

block, a motor and an embedded electrical power supply. The ball can roll freely along the 

whole length of the beam. At one side the beam is connected to a fixed support block and on 

the other to a movable lever arm. The motor through gear controls the motion of the lever 

arm. There is optical incremental encoder built inside along with the motor that gives the 

information about the current rotary position. The linear potentiometer along the beam gives 

the actual linear position of the ball along the beam. These two positions are fed back to have 

the organized closed loop control. 

The angle of the beam is changed by alpha when the servo gear turns by the angle theta. 

Any movement away from the horizontal position, the gravity causes the ball to roll along the 

beam. The purpose is therefore to have a control algorithm which can stabilize the ball at a 

required position along the beam. The design is based on the non-linear Lagrangian equation 

of motion. The design is better as compared to expressing all the forces and the other 

geometric constraints. 

The transfer function of the motor and the system needs to be presented separately in order to 

have accurate dynamics of setup. 
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4.2 Model for Motor 

The transfer function of a DC motor with respect to position and the applied voltage is given 

by[14]: 

- V(s) s(rs+1) 

K 
(4.1) 

For the evaluation of system performance the values of motor parameters considered are: 

K = 0.7/rev/sec/volts, t = 0.014sec. 

L 

Beam 

Arm 

Fig 4.1 A Ball and Beam system schematic 

4.3 Model for Ball and Beam system 

Ball and Beam system is a Single Input Single Output(SISO) system. The beam angle bears a 

relationship with the rotation angle of the gear 9 in the following manner: 

a = 
d 
—9 
L 

(4.2) 

The controller is thus designed in order to keep the ball at requisite position by manipulating 

the gear angle 9. The forces such as inertia, gravity and centrifugal one affect the dynamics of 

the ball. The ball linear acceleration is thus given by 

( + m)P + ingsina - ,niá2  = 0 (4.3) 

17 



The system is linearized and the transfer function is obtained keeping the angle 7 in the 

neighbourhood of 0. 

Based on mechanical dynamics, the transfer function in open-loop mode for the system can be 

approximated by the double integrator[15][16][171 

O(s)-0 L11__*X(s) 

Fig 4.2 Transfer relation between input and output 

W(s)= 
X(s) 

- 
ntgd (4.4) 

-- 

9(s) L(kir +m)s2 

Where, 'g' is gravitational acceleration, 'in' is the ball's mass, 'L' is the length of the beam, 

'J' is the ball moment of inertia, 'R' is the radius of the ball, 'd' is the distance between the 

centre of the gear and the joint of the lever arm. 

X(s) and 0(s) are the Laplace transformation of the output (position of the ball) and 

input(beam angle) of the system. 

Target position of ball 

Yes Check for No 
range? 

[Read  actual position r4 

Lmplify and modulate 
ontrol signals 

all moves to target 

Fig4.3 Control algorithm flow-chart of Ball and Beam system 
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CHAPTER -5 

ROBOT MANIPULATOR DYNAMICS 

5.1 Introduction 

The Czech playwright, essayist and novelist Karel Capek was the first to use the word 'robot' 

in 1921 in his satirical drama entitled Rossum's Universal Robots. There is a Czech word 

'robota' which literally means "forced labourer" or "slave labourer". 

The robot is visualised as a machine that irrespective of exterior can 

operate in an environment modified by its own. The 'mechanical system' provides capacity for 

action which involves locomotion and manipulation apparatus. The 'sensory system' provides 

capacity for perception acquiring internal as well as external status for conditioning, processing 

and information retrieval. The 'control system' provides the necessary connection to perception 

which thereby decides action execution with respect to imposed constraints. 

"A robot is a software controlled mechanical device that uses sensors to guide or move end-

effectors through programmed motions in a workspace in order to manipulate physical 

objects." 

5.2 Robot Manipulator structure 

A manipulator has several joints with the help of which number of links are connected to each 

other[18]. The wrist of the manipulator is the final link and the base link is ground connected or 

to a foundation. The three dimensional space movement of the rigid body in a plane is due to 

manipulator's links and also the motion is constrained with respect to adjacent links. A link 

physically has at least two nodes so that it can join with the other links. The link having two 

nodes is the simplest case whereas there may be three and four nodes in parallel manipulator 

linkages. Binary, ternary, quaternary links can be found in manipulators. 

Two or more links connected at their nodes and allowing potential motion 

between the connecting links is said to be as joint. A predetermined path for the motion 

(constrained motion) irrespective of the forces applied, the joint is said to form a kinematic 

pair. Therefore a joint's motion can be either free or controlled. A desired way movement of 
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the links is due to actuators providing power in controlled joints. The position of other joints 

affects the status of freely moving joints. The kinematic pairs at each node forming the chain of 

links is called kinematic chain. The links and joints are assembled and interconnected in a way 

provides a controlled output motion due to supplied input motion. Kinematic chains vary being 

the open type in serial linkages and the table platforms having the closed types. 

The chain of connected links through powered joints help in achieving the 

desired final motion of the end-effector. Therefore, a kinematic linkage being the constrained 

one fixed (grounded) at one of its links (or joints) is said to be as mechanism. The input power 

of the robot is controlled and a desired motion of the end-effector is provided by the 

mechanism. Thus 'n' links can form 'n' distinct mechanisms and one mechanism is said to be 

as the inversion of the other. Generally, in robotic manipulator mechanisms there is a physical 

distinction of links and joints. Different cross sections and sizes of links are used to provide 

effective manipulation in commercial manipulator linkage. Its normally the three joints 

responsible for the action of arm and body and two or three joints for actuation of wrist. 

The mechanism should have proper distribution of degrees of mobility so that 

degrees offreedoin exist for execution of given task. 

5.3 Modeling of robot manipulator 

The model of a system is basically how the real system is represented. There are different 

number of ways how a system can be modelled. The type, complexity level, and nature shows 

the purpose and aspect of the system[l 8]. The representation of system mathematically is 

generally what is called as modeling. The two models which are basically used are: 

Kinematic model 

Dynamic model 

5.3.1 Kinematic model 

Kinematic model shows mathematically how the joints and links are mechanically and 

geometrically arranged. The model associates the required joint parameter values and the 

position outcome of the links and end effectors. There exist dynamic laws of motion which 

can't be put through the kinematic model. The two ways of representing the kinematic model 

are direct and inverse kinematics. 
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Direct Kinenialics 

This particular approach has variables associated with joints fixed, and the solution is put in 

the form of orientation and position of the tool with respect to the particular frame connected to 

the base. The relationship between the base frames with that of the end effector frame is 

propounded by this kinematics by developing a transformation matrix. 

The transformation matrix consists of twelve nontrivial elements which binds 

one frame with respect to another. The non reducible position portion of the matrix consists of 

the three elements. The reducible nine elements to three elements belonging to the orientation 

part is done by the Euler angles. Therefore, representation of one frame with respect to another 

involves at least three elements. This can be reduced to four only using Denavit-Hartenberg 

(DH) technique. However, this is done by restricting the selected link frame. 

y 

Joint Variable Q 
(x, y) 

Q= (qi.q: ........... qu) 

03 

02 

Space Variable X / 
X = (x,y.z,O,A,T) Oi 

x 
0 

Fig.5.1 Direct kinematics schematic 

Denavit-Hartenberg (DH) parameter: 

The reference frame is associated with each frame from the base to end effector for the 

determination of the motion of manipulator. The DH parameter is thus required for such 

assignment. The DH technique thus reduces the number of elements from six to four only for 

representing the frame relationship Fj to F1.1  
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DH parameters terminology: 

Link offset (d1) : The distance to the point where common perpendicular to the axis Zi and Z1..1 

is present. 

Link length (ai): The common perpendicular's length to Z1  and Z..i axis. 

Link angle (Os) : The angle made by the common perpendicular to the vector X1.1 and around 

the Z 1  axis. 

Link twist ( ) : The angle made by the vector Z1  with Z 1  

Assignment of link frame: 

The assignment of link frame involves few basic rules 

The link frame's Z, vector always lies on the joint axis leaving the end effector frame. 

The common perpendicular oriented from axes Z11  to Z1  has vector Xi along it. 

The intersection of Zi joint axes and the common perpendicular to axes Zi and Z11  has link 

frame F1 's origin. 

Inverse Kineinalics: 

The inverse kinematics aims at determining joint parameters of the manipulator in order to 

achieve the desired position of the end effectors. As compared to the forward kinematics 

problem which has DH parameter approach, it has no specific approach to achieve the required 

solution. The solution to the inverse kinematics problem is much more important and useful 

than the forward one. It maps the space configurations of the manipulator to the joint 

configurations thereby proving an important approach to obtain the desired position of the end 

effectors. 

-41 
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Fig.5.2 Inverse Kinematics schematic 

5.3.2 Dynamic model 

The manipulator is a highly coupled mechanical device consisting of several joints and 

links[19]. Being of mechanical nature, its dynamics is governed by dynamic laws. These 

dynamic laws consider the applied forces and torques and thereby involve differential 

equations. 

Robot manipulator is n-DOF system connected by different joints. The 

system's kinetic energy K(v,i>) is thus given by, 

K(v,i') =v' M(v) ) (5.1) 

Where M(v) is nxn dimension mass inertia matrix. M(v) is positive definite symmetric matrix 

for all 'v'. The kinetic energy depends on the velocity and thus have a specific representation. 

The potential energy U(v) whereas has no particular form. 

The Lagrangian L(v,i>) of n-DOF manipulator is the relation between its kinetic 

energy K and potential energy U. 

''M()i'U(v) (5.2) 

04 
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The Lagrange - Euler equation of motion is: 

d 16 11 J M (V) ]
vu 

— ! [1 ,T M(V) + 
U(v) 
- 

= t (5.3) 
ôv 2 

S ,T M(v) 1)1 = M(v)U (5.4) 

d 1 ii 

_..[_[... 
)T() 

'>11 = M(v)V+M(v)i) (5.5) 

The equation of motion becomes, 

— M(v)i + !t(v)i' 4 [! 1>1 M(v) l>]+ 
6U(v)

r (5.6) — — 
óv 2 

The equation can also be written in form of: 

M(v)i+ C(v,i))i)+G(v)=t (5.7) 

where, 

6 F 1 T M(v) (5.8) C(v,i)iM(v)i>--1- v öv 2 

G(v) (5.9)  
(5v 

C(v, i)i) is n dimensional vector of Centrifugal and Coriolis forces. G(v) is a n dimensional 

vector of gravitational forces. is n dimension vector of torques or forces applied by joint 

actuators. 

5.4 Robot Manipulator Control 

The problem to be pursued is planning a robot trajectory which follows the nominal trajectory 

based on the commands issued to the joint actuators that causes the manipulator to track or 

follow the desired trajectory. This is said to be as the 'Control problem' and for achieving 

solution numerous techniques have been proposed. 
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5.4.1 Control methods 

There are two methods to control the manipulator: 

• Control of task space 

• Control of joint space 

L 

Control by task space refers to the determination of position of the end effector 

corresponding to the coordinate frame when the joint space output is available. This is done by 

forward kinematics. The error if any is found in terms of position. Joint space problem is not 

considered. 

Xdt" inierse 
I ontroller I I Manipulator ] Forward X.  

C l:inniti 

Forward 

Fig.5.3 Task space control schematic 

Control by joint space aims at controlling the joint parameters in terms of angle for revolute 

joints and length for the prismatic joints. The inverse kinematics is used to determine the joint 

parameters. The error if occurs in the joint angles are considered for the problem. If the 

parameters are available in task space then they are converted to the joint space using 

transformation matrix. 

qout  

Fig.5.4 Joint space control schematic 
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The Computed Torque Control approach regulates the joint torque[201. The 

technique develops directly on the dynamic model. The approach cancels the gravity effects 

and also the coriolis and centrifugal force as well as the manipulator inertia tensor. The 

technique relies on the estimated values gravity factor, coriolis and centrifugal force and the 

inertia tensor. This is a powerful nonlinear controller. The principle lies in the feedback 

linearization and thereby computes the required arm torques. The manipulator's desired 

trajectory and error corresponding to it is given by, 

e(1) = q( j(1) —q(,(t) 

e(t) : error in the trajectory 

qd(t): desired trajectory 

q0(t): actual output trajectory 

(5.10) 

The principle being the nonlinear feedback one provides a method for tracking desired 

trajectory. It involves a proportional-plus-derivative (PD) feedback for computing torque. 

=M(q) ( + K. e K1,.e) + N(q, j) (5.11) 

the governed error is given by 

(41 + Ks,. e + K.e) =0 (5.12) 

K and K are the controller gains. 

As per theory, the error in tracking converges to zero. The CTC design involves two feedback 

loops, the inner and outer ones. The inner loop being the compensate one and the other one 

tracks the error. 
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Fig.5.5 Computed Torque Controller schematic 

5.5 PUMA 560 

The PUMA 560 is considered to be one of the most popular industrial robot from the operation 

point of view. In order to illustrate computational developments, various research issues and 

concepts it has been particularly used. It bears a wrist partition and has six degrees of freedom. 

It strikes similarities with the human arm and its rotational aspect bears waist, shoulder and 

elbow rotation. The orientation of gripper within the workspace is smoothly allowed due to the 

three degree of freedom wrist[21]. The jointed spherical manipulator has six revolute joints. 

The spherical wrist is so formed as a single point intersection of the last three joint axes occur. 

RPY (spherical) wrist is formed out of the last three revolute joints. The identification of joints 

once being done, the manipulator configuration along with the coordination frames with the 

links assigned can easily be drawn. Its a straightforward task of assigning frame for each joint 

link. 

41 
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CHAPTER -6 

SIMULATION RESULTS 

Simulation environment 

The simulation software used is MATLAB2008b and Simulink. 

6.1 Ball and Beam system 

The ball and beam system model is controlled by two PID controllersl22l. One of them 

regulates the system while the other one monitors the input to the servomotor considering the 

error in the system. 

Both the PID controller parameters are in turn optimized by the soft computing technique. 

Simulation has been carried out using two of the techniques. 

• Differential Evolution 

• Particle Swarm Optimization 

To obtain the desired position of the ball on the beam step input with the final magnitude of 1 

has been considered. The fitness function used to obtain the optimized values of the PID 

parameters is Integral Square of error. 

ISE = fe 2  dt (6.1) 

e stands out for the error in the position of the ball. 

tf is the total time of the simulation. 

Transfer functions used for the motor and the ball and beam system are 

Motor: Gm(s) 
- 

- 

8(S) 
- 

K 
(6.2) 

V(s) - s(rs+1) 

X(s) 
- 

m.qd 
- (6.3) System : W(s) 

= 9(c) - L( +m)s 2  
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The first technique used is PSO for optimizing the parameters of PID controllers. The results 

show the convergence of the system to the desired position. The error proflle has also been 

drawn out in order to understand the convergence to the steady state. Different number of 

iterations has been carried out to monitor the behaviour of the system 

~F 0.7 I 
'Ej '' 0.014s2+s I den(s) 

Outer PID Controller . Inner PID Conoller motor I Ball.8eam 

.-. 

". 

Pso 

Fig.6.2 PSO optimized PID controllers 
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Fig.6.3 PSO trials' Step Response 
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Table 6.1. PID parameters for PSO trials 

Outer PID Inner PID  

KD K1  Kp KD K1  

Trial 1 11.7867 5.3054 0.7264 12.8185 0.0197 0.7193 

Trial2 12.6990 2.7124 0.7197 14.2826 0.3342 0.8275 

Trial3 14.2539 6.6456 0.9191 11.5639 0.0162 1.1963 

Tria14 11.6541 5.5851 0.7912 14.6514 0.0369 1.5199 

Trial 5 14.2676 7.1934 0.1828 12.9867 0.1676 0.2701 

Table 6.2. Objective function values 

Trial! Tril2 Trial3 Trial4 I Ti ial5 

ISEvalte 0.2445 0. 1681 0.2526 0.2569 0.2766 

Number of trials considering swarm size of 50 and iterations ranging up to 2000 were 

simulated on the system. The response of the system is shown for five of the best trials. Of all 

the trials of PSO conducted on the system trial 2 seems the best for given number of iterations. 

The objective function value for the trial 2 is 0.1681 which is the least among all the objective 

function values for the 5 trials. The PID parameters for the trial 2 are given in table 6.2. The 

controller tuned with the mentioned gain parameters gives good steady-state response, least rise 

- time as well as least settling time. 
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Fig.6.4 Output position convergence after 5 iterations 

The above figure 6.4 shows the output position of the hail after 5 iterations. The five variants of 

PSO have been used. The convergence of IWAPSO to the steady state is fastest among all the 

variants. Also it does not show any overshoot and the graph shows the smooth nature. 
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Fig.6.5 Error convergence after 5 iterations 
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The figure 6.5 shows the error profile for the PSO variants. The DPSO (Dynamic PSO) variant 

shows the maximum error in the position whereas FGIWAPSO and IWAPSO show minimum 

error. Their steady state error converges to zero. 

025 

0.2 

0.15 

U, 
0 
0 

0. 
0.1 Oe 

A BPSO IWAPSO 

0.05 CFAPSO 

---DPSO FGIWAPSO 

0 100 200 300 400 500 600 700 800 900 1000 
samp'e time 

Fig.6.6 Output position convergence after 20 iterations 

With the increase in number of iterations the variants behave differently. The CFAPSO variant 

leads the ball to i-each the target position very quickly but its transient nature is not smooth. 

There tends to be some overshoots and undershoots in this case i.e. the ball does not settle 

easily at the required position. The BPSO takes a little more time but the ball i-caches its target 

position and settles down smoothly. 
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Fig.6.7 Error convergence after 20 iterations 

The figure 6.7 represents error convergence for the PSO variants obtained after 20 iterations. 

CFAPSO variant tends to reduce the error in position very quickly. The DPSO has the 

maximum error. BPSO takes some time but the steady state error converges to zero. The other 

two variants IWAPSO and FGIWAPSO have intermediate error profile. 

The second technique employed to obtain the parameter values is Differential Evolution. The 

evolutionary algorithm goes for the selection of the better individuals from the lot and 

ultimately comes out with the best one. The simulation has been done similarly as was done in 

case of PSO i.e. both the PID controllers are monitored with the help of DE for a given number 

of iterationsl 231. Five variants have been used for this particular purpose. 
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Fig.6.8 DE optimized PlD controllers 
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Fig.6.9 Output position convergence after 20 iterations 

Figure 6.9 shows for 20 iterations DE/rarid 1 and DE/cross variants tend to l'olIov closely. Out 

of the two DE/rand I shows the smooth characteristic whereas DE/cross /has overshoots and 

undershoots in order to reach for the target position. DE/best shows the intermediate response. 

The other two MFDE and DE/rand2 show poor responses. 
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Fig.6. 10 ElTor convergence after 20 iterations 
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As per the error profile presented in figure 6.10 the DE/randi and DE/cross show lesser error 

whereas MFDE and DE/i-and2 show large error. Hence, the parameter values optimized by the 

DE variant DE/randl should be used. 

0.25 

 

0.2 

0.15 
U) 
0 
C

0.1 

- 

0.05 

n 

/ N -------- 

.d —.-- 

- - - 
-.. çd 

_DE/randl MFDE 

- 
DE/rand2 DE/cross 

I I I 
DE/best 

"0 100 200 300 400 500 600 700 800 900 1000 
sample time 

Fig.6. I I Output position convergence after 5 iterations 

The number of iterations is reduced to 5. Figure 6.11 shows the output position of the hail for 

different DE variants. For lesser number of iterations DE/cross stands out amongst the others. it 

helps the system to reach the desired position very quickly. it also shows a good transient and 

steady state performance. DE/randi takes large time to settle at the required position. 
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Fig.6. 12 Error convergence after 5 iterations 

The error profile for different DE variants for less number of iterations i.e.5 is shown in figure 
146 

6.12. As per the figure DE/cross has the least error and takes very little time to reduce the error 

near to zero. DE/randl takes the largest time for steady state error convergence. The other three 

have intermediate error profile. 

Thus, for the same evolutionary algorithm the variants behave differently. It can be thereby 

inferred that for lesser iterations DE/cross suited the best whereas for the larger iterations it was 

DE/i and 1 



Different DE trials are considered to optimize the parameters of inner as well as outer PID 

controllers. The number of iterations considered here are 2000. Results of five best trials have 

been put here and their corresponding responses are shown in figure 6.13. 

4. 
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Fig.6. 13 Step response of DE trials 

The overshoots and rise time of different DE trials given in figure 6.14 and 6.15 are for the 

above step responses. 
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The trial 3 gives the most optimized solution for our system as per the response specifications 

comparison in Table IV and the graph in figure 6.15. It has the least peak overshoot and the 

rise time and settling time are pretty small enough. Though the ISE is larger than other trials 

and steady-state error value being the moderate one, is still very small. 

Table 6.3. PID parameters for DE trials 

Outer PID Inner PID  

K, KI  K, Kp KD K, 

Trial 1 14.4759 2.8703 0.4334 13.5289 0.1847 0.9047 

Trial 2 14.1719 3.7150 0.7572 12.5373 0.3804 1.1356 

Trial 3 14.9568 3.4404 0.1143 13.3117 0.6596 0.8455 

Trial 4 1 14.0607 3.1671 0.4209 12.2073 0.4230 1.5602 

Trial 5 1 14.4135 2.1280 0.1042 14.0914 0.6751 1.0221 

Table 6.4. DE trials specifications 

trial 1 trial 2 trial 3 trial 4 trial 5 

Rise time 0.4934 0.5396 0.3594 0.3132 0.2066 

Maximum 4 
ovcrshoot(%)  

1.6 0.4 1.2 8.8 

Steady-state 
error 

2.8197e- 
04 

5 .4334e- 
05 

8.0875e- 
04 

3.23 l0e- 
04 

5 .0299e- 
04 

ISE 0.1491 0.1955 0.2001 0.1881 0.1817 

Settling time 1 0.7198 0.6726 0.5924 1 0.6000 1 0.3264 

0.1 02 0.3 0.4 0.5 0.6 0.7 

time(sec) 

Fig.6. 15 Rise time of DE trials 
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The DE variants are considered here for optimizing the parameters for 2000 iterations. The four 

of the variants used are DE/randi. DE/MFDE, DE/CR, DE/best. This is shown in figure 6.16. 
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Fig.6. 16 Step response of DE variants 

Table 6.5. PID parameters for DE variants 

Outer PID Inner PID 

Kp K;)  K1  K, K1  K, 

DE/Rand1 13.1522 2.6097 0.9081 14.4458 0.7187 1.6445 

DE/MFDE 14.5089 4.6638 0.0600 13.6675 0.6312 0.7101 

DE/Best 14.9568 3.4404 0.1143 13.3117 0.6596 0.8455 

DE/Cross 10.5571 2.7636 0.1341 8.7904 0.0671 0.7206 
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Table 6.6. Comparison of DE variants 

DE/Randi DEIMFDE DE/Best DE/Cross 
Risetime 0.38 0.56 0.35 0.19 

Peak 2.1 
overshoot( %)  

2.0 0.4 4.5 

Steady-state 6.2401 e-06 
error  

4.1673e-04 8.0875e-04 5.1 788e-05 

ISE value 0.2102 0.2341 0.2001 0.1869 

Settling time 0.68 1 0.82 1 0.59 0.33 

Of the four DE variants DE/Best has the least peak overshoot and comparatively lesser rise 

and settling time as per the performance specifications in Table VI. thus stands out better 

considering the performance of the system. 
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Fig.6. 17 Output position convergence after 20 iterations 
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To obtain a comparative study on performance of DE and PSO, the variant used for DE is 

DE/randi whereas for PSO it is BPSO. The output position curves for the two techniques 

show that the convergence rate for DE is higher as compared to that of PSO. The rise time as 

well as settling time is far smaller for the DE as compared to PSO. The DE variant helps the 

system to come to the required position very quickly in contrast to PSO variant. 

Thus an inference can be drawn out from the above results based on the 

simulation performed. It shows that for ball and beam control system DE works better than 

PSO. 

6.2 Robot Manipulator 

The model has been developed following the Armstrong et.al  parameters[24]. The block 

diagram of manipulator PUMA 560 is shown in Appendix. The model has a computed torque 

controller (CTC). The input to the system is provided in terms of joint angles. The resulting 

joint angles are found with the help of 6-DOF manipulator kinematics. The three joint angles 

are provided as input whereas the other three joint angles are restricted to zero[25]. The 

computed torque controller regulates the torque considering the error in joint angles, their 

derivatives and double derivatives. Computation involves the inertial quantities, the coriolis 

and centrifugal forces and also the gravity effects. The controller has two gain parameters Kp 

and KD.  These controller gains are generally tuned by hit and trial in order to obtain the 

desired joint angles. Here the tuning is being done by using PSO and DE. The simulation 

undergoes certain iterations to follow up with best gain parameter values 127]. 

Input at joint 1 = 1.sin(0.0628t) degree 

Input at joint 2 = 2.sin(0.0628t) degree 

Input at joint 3 = 3.sin(0.0628t) degree 

The fitness function considered is Integral Square of error (ISE). 

ISE= fei2  + e2 2  + e3 2  dt (6.4) 

e1 , e2,  e3 : the errors of joint angles 1. 2 and 3 respectively. 

the time required for the simulation. 
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Fig.6.19 Reference signals 

The figure 6.19 represents the reference signals for all the three joint angles. These input 

signals are considered for all the simulation. The signals are sinusoidal in nature and they vary 

in magnitude but have no phase difference. 
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Fig.6.22 Trajectory of joint angle 3 

The trajectory tracking by the joint angles has been obtained by deploying DE algorithm. The 

population vector numbers 50 and the maximum number of generations considered is 500. The 

simulation has been carried out number of times. The best of all the trials has been used as the 

tuned values for controller parameters. The best trials are judged on the basis of objective 

function values. The best one has been considered based on the minimum objective function 

value. The figures 6.21. 6.22 and 6.23 show the trajectory followed by each of the joint angles. 

The trajectory of the joint I angle has been followed very closely whereas for the other two 

joint angles they have drifted a little bit away. 

3 

2 

CO 
C, 
C) 

C 

-2 

.3 L 

0 

45 



• : 
--+ ------4  -  ------------ --------- -----------   ------ 

+.i. 
--- ••-' 

_•,--------------------- if----------- 
-Je -  
•  

-08 I.  _____ _____ I  
0 U 41) bU bU 1UU IZU I4U IOU IOU ZVU 

time (sec) 

06 

0.4 

02 

a 0 
a, 
0) 

cc 
C 

-0.2 
0 

-0.4 

-0 6 

3 I I I I 
anglel 
ang1e2 

2 

1 

a, 
0, 

-I---- 
C 
0 

-1 

-2 - - - --. - - - - -- 

0 20 40 60 80 100 120 140 160 180 200 
time isec 

Fig.623 Trajectory of all joint angles 

Fig.6.24 Error profile of all joint angles 

The error profile for all the joint angles has been shown in figure 6.24. The error in angles is 

very small for all the joints. They lie in the range from -0.5 to 0.5. Of the three joints the joint 1 

has the least error and it is approximately equal to zero all the time. The joint 2 shows the 

ii 
maximum error whereas the joint 3 has error in the intermediate range. 
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Fig.6.25 Tracking of joint angle for different iterations 

.4 

Figure 6.25 is based on the iterations carried out using PSO. The profile clearly indicates the 

difference in the nature of tracking of the joint angle I depending on the number of iterations. 

Greater the iterations better is the tracking of joint angle. The largest number of iterations used 

is 2000 which gives a good result in the form of tracking. 
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Fig.6.26 Joint angle 1 output of PSO trials 
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Table 6.7. PID parameters for PSO trials 

K11  K1 , K 2  K1  K13  Kv. 
trial 1 53.7327 6.9512 22.7958 8.3448 24.1572 3.9336 
trial 2 24.9951 8.4353 22.9546 2.5698 22.7492 0.2575 
trial 3 50.6630 0.4545 22.7308 3.5669 24.1105 2.7908 

1' 
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Table 6.8. Comparison of PSO trials 

trial 1 trial 2 trial 3 
ISE value 1 0.2706 0.2765 0.2422 

The above three figures 6.26. 6.27 and 6.28 are plotted considering three best trials out of 

different number of trials conducted using PSO for the three joint angles 1. 2 and 3 

respectively. The trail 3 is the best among all in terms of tracking of joint angles. The objective 

function value for the trial 3 is lesser than the other 2 best trials considered. 
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Table 6.9. Comparison of PSO variants 

DPSO FGIWAPSO IWAPSO CFAPSO 
ISE value 1 0.2732 0.2422 0.0667 0.3104 

The three figures 6.29. 6.30 and 6.31 are plotted considering the variants of PSO for the three 

joint angles. The variants are DPSO. FGIWAPSO. IWAPSO and CFAPSO. Considering the 

CTC parameters as well as objective function values, obtained after certain number of 

iterations. IWAPSO turns out to be best among them. 
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Fig.6.32 Tracking of joint angle for different iterations 

Different numbers of iterations are run on the system using the DE aIgoithm. The tracking 

profile obtained after different iterations are presented in figure 6.32. it gives a clear picture 

that greater the number of iterations better is the tracking of joint angles. 
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The figures 6.25, 6.26 and 6.27 give the joint angle output for the joints 1. 2 and 3 respectively 

for 4 different DE trials. 
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Table 6. 10 PID parameters for DE trials 

Ii' 
K1'i  Kj 

trial 1 40.6204 6.9977 18.4839 5.6677 28.5997 
1  

4.0104 

trial 2 49.6508 8.6024 25.4249 5.2468 20.8589 3.8529 
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trial 3 49.4844 7.8203 23.2725 7.9673 15.4985 3.7496 
trial4 49.4701 7.6938 19.088() 5.0659 16.9926 3.5620 

ISE values: 

Trial I : 0.0667 

Trial 2: 0.0569 

Trial 3 : 0.0729 

Trial 4:0.1141 

The trial 2 seems the most optimum solution for the controller gains of CTC based on the 

comparison of the objective function values..The objective function (ISE) value for the trial 2 is 

0.0569 which is least among all the trials. Table 6.7 gives the required controller parameters of 

trial 2. 
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Fig.6.36 Joint angle I output of DE variants 

Table 6. 11 PID parameters for DE variants 

Kpj  K11  Kp2  K12  K 3  K3 
DE/Randl 44.4070 8.0802 49.2815 6.6430 31.3098 3.1743 

DE/MFDE 51.8096 9.6980 48.0670 4.0461 33.3116 3.5525 

DE/Best 49.6508 8.6024 25.4249 5.2468 20.8589 3.8529 
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DE/Cross I 52.8304 16.4656 I 49.1411 4.827 1 32.9930 1 4.3382J 

Table 6.12 Comparison of DE variants 

DE/Randi DEIMFDE DE/Best DE/Cross 
ISE value 0.1314 0.1374 0.0667 0.1293 

Of the four DE variants DE/Rand 1. DE/MFDE. DE/Best and DE/Cross, DE/Best has the least 

objective function value as per the performance specifications (ISE value) in Table 6.9. It 

thereby stands out best considering the performance of the robot manipulator. The parameters 

for the joint angle controllers can be used from the Table 6.8. 
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Table 6.13 CTC parameters for PSO and DE 

KpI Kyj I K 2  Kv2  Kp3  

PSO 50.6630 6.4545 22.7303 3.5669 24.1105 12.7098 

DE 49.6508 8.6024 25.4249 5.2468 20.8589 3.8529 

Table 6.14 Comparison of PSO and DE 

PSO DE 
ISE value 1 0.2429 0.0667 

The figures 6.29, 6.30 and 6.31 are obtained after simulation to draw out the convergence of 

both the techniques. As earlier, the trajectory followed in case of joint 1 is equal to that of the 

reference angle whereas same is not the case for joint 2 and 3.The trajectory followed deviates 

from the reference for both the techniques. Still the DE shows better follow up of trajectory as 

compared to that of PSO. 

Another striking difference is the number of iterations used for the 

convergence. The DE uses lesser number of iterations to optimize the parameters and hence for 

the convergence whereas PSO uses larger iterations. Also the objective function values show 

difference in both the techniques. The minimised objective function value is very small for DE 

but for PSO it is larger in magnitude. 
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CHAPTER -7 

CONCLUSION AND FUTURE SUGGESTIONS 

The dissertation aimed at application of soft computing techniques to two control systems. Both 

control systems are highly coupled non-linear device [23] involving complex time variable 

dynamics being. Two soft computing techniques are used for the fine tuning of controller 

parameters. One of them is a search based heuristic technique i.e. Particle Swarm Optimization 

(PSO) and the other is a population based generation technique known as Differential 

Evolution (DE). Both the techniques have different nature and pertain to different algorithm. 

The systems are simulated with the tuned 

parameters and the outputs are thus well regulated. Both the soft computing techniques give the 

desired output. The two techniques are similar to the point that they are iteration based and 

consider a population of likely individuals for the solution. The difference lies in their 

operation based on respective algorithms. It is found that Differential Evolution (DE) is better 

than Particle Swarm Optimization (PSO) in terms of convergence to the optimal values. The 

DE converges rapidly as compared to PSO. The number of iterations considered for DE is far 

smaller than PSO. In DE the number of iterations required was 500 whereas it ranged to 2000 

for PSO. The objective function values are also fairly minimized by DE. Hence, DE suits better 

than PSO for systems modelled in this dissertation. 

The soft computing techniques are not restricted by any mathematical 

formulation. They are flexible by nature. Different variants have been developed to make them 

much more adaptive towards the systems. There exist different controllers and techniques 

which can be applied on these systems. A better convergence, accuracy and tolerance can be 

looked out for using different techniques and methodologies apart from the above mentioned 

ones. Thus, future holds fair research opportunities in this area. 
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APPENDIX 

Appendix A : DE and PSO parameters 

DE parameters 

Number of vector(NP) 50 

Dimension(n) 6 

Maximum generations 500 

Mutation factor(F) 0.5 

Crossover Rate(CR) 0.9 

PSO parameters 

Number of iterations 1000/2000 

Dimension(n) 6 

Swarm size 50 

Inertiamin 0.4 

Inertiamax 0.9 

Local Correction factor(c 1) 2.0 

Global Correction factor(c2) 2.0 

-( 
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Appendix B: PUMA 560 dynamic parameters and Ball and Beam system 

parameters 

B.1 PUMA 560 dynamic parameters 

= M(&).O+ v(e,á). é±G(0) (B.1) 

where, 

angular position vector 

M,L,,: manipulator inertia matix 

V,LI J: centrifugal and coriolis vector 

torque vectors 

The above equation is the dynamic form of modelling for the robot manipulator. The term 

v(e,O) can be decomposed into centrifugal and coriolis terms. 

M(0).ë + B(0).F è.èl f C(0).[02] F G(0) (B.2) 

where, 

coriolis torque matrix 

(',,,,: centrifugal torque matrix 

10. O],,JyhJ : joint angular velocity products vector 

[6 21,,j : joint angular velocity square vector 

Only three links of PUMA 560 has been considered. Therefore, the other three links have O' 

9,= 0. 

1 
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M is a 6x6 symmetric matrix: 

m12  m13  0 0 0 1 

m 21  m22  m23 0 0 0 
m31  m32  rn33 0 m35  0 I 

M(9)= 0 0 0 m44  0 0 
o 0 0 0 m55 01 
o o 0 0 0 m661 

 

Matrix B is 

lb112  b113  0 b113  0 b123  0 0 0 0 0 0 0 0 01 

10 0 b214  0 0 b223  0 b225  0 0 b235  0 0 0 0 

B(0)=I° 
1b412 b413 0 

0 b314  0 
b415 0 

0 0 0 0 0 0 
00000000001 

0 0 0 0 0 

lo 0 b514  0 0 0 0 0 0 0 0 0 0 0 0] 

Lo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

Matrix C is 

[0 C12 C13 0 0 0 

c21  0 C23 0 0 0 
1 

31  c32  0 0 0 0 
C(9) —  

— 0 0 0 0 0 O 
Ic51 C52 0 0 0 0 

J 1.0 0 0 0 0 0 

J 

Matrix G is: 

0 
92 

94 
0 
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B.2 Ball and Beam system parameters 

Mass of the ball, m= 0.028 kg 

Radius of the ball, R = 0.01 m 

Acceleration due to gravity, g = 9.8 rn/s2  

Length of the beam, L = 0.4 m 

Distance between center of gear and joint of lever arm, d = 0.04 m 

The bounds on both the PD parameter values while tuning them are: 

Outer PID Inner PID____ 
Kp KD K1 KP  I KD K1  

Lower Bound 6 3 0.2 6 1 0.2 

Upper Bound 17 9 1.5 17 2 2.5 

j 
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