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Abstract

With the unprecedented increase in the world population, there is an increase in the

number of vehicles and industries, which results in a worldwide increase in air pollution.

Currently, the world population touched the mark of 8 billion. Vehicular emission is the

main reason for the increase in air pollution. Thus, measuring and modeling air pollution

and taking preventive actions efficiently becomes extremely important. For modeling,

traffic characteristics including traffic volume and density near fixed monitoring sites,

play an important role. Other factors such as meteorological data like Relative Humidity

(RH), Atmospheric Temperature (AT), Wind Speed (WS), and Barometric Pressure (BP)

are also used. The pollution decreases during summers as the temperature increases,

wind speed increases in summers, and the humidity is less. Due to all these reasons air

pollution decreases as winds blow away the pollution. As the winter approaches at the

start of November, the pollutants accumulate in the air due to high humidity and wind

speeds. There are only 36 monitoring stations located in Delhi. There is a large need of

monitoring stations, but it is not feasible to install new monitoring stations as there is a

high cost of setting and maintenance of the static stations. So, there is a need to develop

a prediction model for the prediction of the pollutants at the locations that are away

from the monitoring stations. The study mainly takes four types of features for model

development. These features are: Meteorological features, Traffic flow features, Point of

Interest (POI) features, and historical data on pollution gathered from the monitoring

stations. The research study aims to develop a model to minimize the error between the

actual values and the predicted values.

Keywords: Air Pollution, Spatial Prediction, Temporal Prediction, Monitoring sta-

tions
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Chapter 1

Introduction

1.1 Background

Air pollution is a global issue that demands attention due to its profound impacts on

human health and the environment. It occurs when elements that are hazardous to people

and other living things are released into the atmosphere. Pollutants are toxic solids,

liquids, or gases that harm our environment and are created in more significant quantities

than usual (Manisalidis et al., 2020). It has been known that long-term exposure to

toxic air components has many harmful effects on human health. It will also lead to

cardiovascular problems and breathing problems. Exposure to polluted air poses risks

to human well-being and leads to significant economic burdens in terms of healthcare

costs and productivity losses. Moreover, air pollution contributes to climate change by

increasing greenhouse gas concentrations, exacerbating the global warming phenomenon

and its associated consequences. The main reason for air pollution is burning fossil fuels,

industries, increasing traffic, etc. The most common air pollutants are: (a) Solid Particles

(Mercury, lead), (b) Particulate matters (PM2.5 and PM10), (c) Gaseous Pollutants (NO,

CO, SO2)

These could consist of biological or inorganic material. The health of people and other

living things may be harmed by these contaminants. According to a recent study from the

University of Chicago, air pollution is currently reducing people’s life expectancy in Delhi

by 10 years. According to the researchers, the Air Quality Life Index demonstrates that

particulate matter pollution lowers life expectancy more than communicable diseases.

The average Indian will see a five-year reduction in life expectancy as a result of the

Indian Ganges plain being the most polluted region in the world and failing to fulfil WHO

standards for air quality. High levels of air pollution contribute to diseases including

asthma and various pulmonary illnesses. According to a study, chronic exposure to air
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pollution appears to cause diabetes (Eze et al., 2014). According to epidemiological and

toxicological research, air pollution enters the respiratory tract through the lungs and

builds up in lung cells, which negatively impacts heart and lung function and causes

other difficulties. Long term air pollution exposure can also lead to change in count of

total blood cells (Manisalidis et al., 2020).

Figure 1.1: Number of deaths by risk factors, India, 2019 Adapted from (Data, 2019)

We can see from the Fig. 1.1 that in India, the highest number of deaths (1.67 Million)

in 2019 were due to air pollution (outside and indoor). According to WHO data, nine out

of ten people breathe filthy air. The WHO estimates that exposure to particulate matter

causes about 7 million deaths annually. PM2.5, an extremely fine particulate matter,

can enter the lungs deeply and interact with blood to cause diseases like heart attacks,

lung cancer, and pulmonary infections like asthma and pneumonia. More individuals are

impacted by PM than by any other pollutant. PM’s main ingredients are sulfate, nitrates,

ammonia, sodium chloride, black carbon, mineral particles, and water. It comprises a

complex combination of suspended in the air, solid and liquid particles of organic and

inorganic materials. While particles with a diameter of 10 millimeters or less, or PM10,

can enter and lodge deep inside the lungs, particles with a diameter of 2.5 microns or less,

or PM2.5, are much more harmful to human health. The lung barrier can be breached

by PM2.5, allowing it to enter the bloodstream. Most air pollution-related deaths occur

in developing and impoverished nations, primarily in African and Asian nations (WHO,
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2008-09). The air pollution in Southeast Asia was five times higher than the WHO

standard.

Population movement, which began the urbanization process, triggers economic growth

and changes in land usage (Wang et al., 2019). Scholars have also seen a common pat-

tern that the urbanization of people is increasing the concentrations of hazardous air

pollution (Larkin et al., 2016). Studies have been conducted to show a link between

air pollution and the density of metropolitan populations (Wang et al., 2020). Cars are

responsible for around 25% of particle pollution emissions. The amount of air pollution

should grow as the number of vehicles on the road increases (Larkin et al., 2016). Cur-

rently, air pollution affects the capital city of India and the surrounding areas annually.

Predicting air pollution has become an important study area with several key objectives.

Accurate prediction models offer researchers a means to comprehend the intricate inter-

actions between different pollutants, meteorological conditions, and geographical factors.

By analyzing historical data and utilizing advanced statistical and machine learning tech-

niques, researchers can identify and measure the main contributors to air pollution, such

as industry emissions, vehicular traffic, and biomass burning. This knowledge facilitates

the development of specific interventions and policies to address pollution sources and

minimize exposure risks.

1.2 Need for study

The Asian countries are in the developing stage, particularly India and China. These two

countries are the highest populated in the world. Many Asian cities are now among the

most polluted in the world because of the rapid industrialization and economic growth

that has accompanied them (Chung et al., 2011) . Developed countries such as Europe

and America had done their bit of pollution while growing, and now, they are going

towards green energy. But on the other side, other developing countries depend highly

on coal for their energy supplies. This is the reason for the increasing pollution in the

Asian and African regions. The World Health Organization (WHO, 2018) released a

report in April 2018 that covered 100 countries over five years from 2011 to 2016 and

found that the top 15 most polluted cities by PM2.5 concentration were all in Asia, with

Delhi at the top of the list among the largest cities in the world (Guttikunda et al., 2019)

.

The measurements are taken by air quality stations that are static. Proper moni-

toring stations are essential to obtain accurate Air Quality Index(AQI) readings of the
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environment. However, it is not practical to build these stations in several locations.

The causes are:

1. It consumes a considerable quantity of space.

2. The cost of establishing a station is around Rs. 15 million, and its annual upkeep

is around Rs 2.4 Million per year, which is a considerable cost.

Other solutions, such as crowdsourcing (using mobile phones with sensors), may need

to be more reliable Hsieh et al., 2015. Crowdsourcing approaches can only detect limited

contaminants, such as carbon dioxide. These technologies cannot effectively quantify sig-

nificant pollutants such as PM2.5 and PM10. Due to the following factors, there is a need

for a prediction model that, utilizing monitoring station data, can forecast the concen-

tration of air pollutants at locations without monitoring stations. Researchers worldwide

employ various techniques, including interpolation, to estimate the concentration of con-

taminants. However, the air quality values are not uniform over a region. Several things

influence air quality. The three most crucial factors are:

1. Weather circumstances

2. Land usage

3. Traffic

This results in non-smooth numbers, making interpolation procedures challenging to

anticipate. Another significant issue is the need for more data. Due to the small number

of sites, the spatial data is sparse. We must use temporal data (traffic and weather) and

additional parameters such as Point of Interest (POI) data to reduce the error in our

prediction.

1.3 Objectives of the study

The aim of this study is to develop a prediction model that can predict the parameter

count of the air pollution causing elements using the spatial and temporal features such as

meteorological factors, traffic density, POI, and pollutants concentration of the locations

with monitors. To carry out this study, report is divided into following parts:

1. To understand various techniques used by researchers to predict the pollution con-

centration.

2. To develop a model that can predict the pollutants concentration as close as possible

to the original data.
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1.4 Organization of report

This seminar report includes three chapters and is organised as following:

1. Chapter 1 initiates with introduction of air pollution and the factors responsible

for air pollution. Further the objective of the study and need for doing this study

is elaborated.

2. Chapter 2 describes the key findings from various literature studies and the factors

that are directly or indirectly affecting the modelling function are mentioned.

3. Chapter 3 discusses about what data is needed for modelling and how the data

is extracted for the use in modelling. It also talks about data preprocessing and

different models used for the predictions.

4. Chapter 4 discusses about the results achieved using different models. It also de-

scribe the data analysis part for the processed data.

5. Chapter 5 discusses the conclusion and future work that can be done for further

improvements in the results.
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Chapter 2

Literature Review

Several predictive modeling research had been done in the past. The main factors that

can be used for a good predictive model are historical data on pollutants of the monitoring

stations, meteorological data of the locations where the stations are present, and locations

where the pollutants need to be predicted. The researchers used basic to all complex

models for the prediction and reduced the error in the prediction. The literature review

is done to understand all the models and the approaches that had been used by the

researchers in the past. To identify articles related to the study, keywords such as ‘Air

Pollution’, ‘Spatial Prediction’, and ‘Temporal Prediction’ are used on Google Scholar.

The references from the studies are also used for understanding the approach. Only

articles from 2001 to 2022 in the English language are used for the study.

Most of the carbon, ion, and chemical components found in urban PM2.5 are known

to originate from sources connected to traffic, industrial emissions, biomass combustion,

and salt combustion (Manojkumar et al., 2021). PM2.5 has a higher impact on people’s

lives since it travels a greater distance and is suspended in the atmosphere for a longer

period. The main challenge facing emerging nations like India is PM2.5, which contains

a variety of harmful components. Various models such as Proximity based assessments,

interpolation methods, predictive mapping and spatial temporal DNN are used in the

past.

2.1 Models used in the past

This section deals with several other methods that can be used for pollutants prediction

for the locations with no monitoring stations. Some of the methods used by researchers

are: Proximity based assessments, Interpolation Methods, Predictive Mapping and Spa-

tial temporal DNN. The most important models in the context of the study are described
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Figure 2.1: Different models used for air pollution prediction

below to determine their characteristics and strong and weak points. Fig. 2.1 shows some

of the models that were used in the past.

2.1.1 Proximity based assessments

The most fundamental method for getting the air pollution exposures at any particular

location is dependent on subject’s proximity to a pollution source. The base of this

model is that the closer is the pollution producing sources the more is the pollution at

a particular location. A traffic index is used to check the credibility of the model (Venn

et al., 2000). Traffic flow near schools were accessed as a continuous measure of traffic

density for one kilometre square grid cells. The study found out that the air pollution

increases with the increase in the traffic flow.

2.1.2 Interpolation methods

Several interpolation methods such as IDW (Inverse distance Weighted) interpolation and

kriging interpolation can be used for the prediction. A network of monitoring stations

spread out across the study area is used to measure the target pollutant. The objective

is to interpolate results to generate estimates of pollutant concentrations at sites other

than monitoring station locations. In IDW interpolation, the inverse distance factor is

calculated for each location because as the distance increases, the correlation between the

pollutants decreases. Kriging is the most used algorithm for interpolation. By utilising

weights that indicate the correlation between the data at two sample sites or between a

sample location and the location to be estimated, the regression-based technique known

as kriging estimates values at unsampled locations (Diem and Comrie, 2002). It offers

fair estimates of values at unsampled places with the least amount of estimated variance.
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2.1.3 Predictive mapping

For mapping air pollution in most urban areas, distance-weighting and kriging are of-

ten not appropriate methods. The relative scarcity of air quality sensors (small sample

size) and their presumably uneven geographical distribution provide the biggest chal-

lenges to applying these interpolation algorithms (i.e. inappropriate sampling scheme).

A substantial collection of evenly spaced, spatially autocorrelated data is needed for

distance-weighting. Contrary to distance-weighting and kriging, linear regression models

may generate an accurate surface without the need for spatially autocorrelated obser-

vations. Measured observations behave as partially repeated measurements of a single

observation rather than as single observations for spatially autocorrelated data. A depen-

dent variable and one or more independent variables are statistically related in a linear

regression analysis, which results in an equation. The dependent variable’s anticipated

values are produced using the equation.

2.1.4 Spatial temporal DNN

This is a modeling technique used to predict the pollutants. In this model both spatial

and temporal methods are taken into consideration. Spatial factors are POI and landuse.

Temporal factors used are meteorological data such as temperature, RH, wind speed etc.

and other factors such as PM2.5 and PM 10. The model was trained using historical data

per hour for one year (Soh et al., 2018). A technique for integrating relevant data that

relies on temporal and spatial correlations between monitoring sites. A convolutional

neural network (CNN) and long short-term memory were used to merge many neural

network topologies after first identifying the most pertinent spatial-temporal relationships

between places (LSTM).

2.2 RAQ : Random forest

In their study, (Yu et al., 2016) proposed a random forest-based approach, called RAQ,

for predicting air quality in urban sensing systems. The authors recognized the impor-

tance of leveraging data from urban sensing systems to improve air quality predictions.

The random forest algorithm was chosen due to its ability to handle complex datasets,

capture non-linear relationships, and provide robust predictions. The RAQ approach

presented by (Yu et al., 2016) involves collecting air quality data from urban sensing sys-

tems, such as sensor networks deployed throughout the city. The collected data, including

pollutant concentrations and meteorological variables, are input features for the random
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forest model. The authors aimed to develop a predictive model capable of forecasting air

quality levels in real time by training the model with historical data. The advantages of

the RAQ approach are evident in its ability to handle large and heterogeneous datasets.

Random forests can effectively handle missing data and outliers, leading to more reliable

predictions. The ensemble nature of the random forest algorithm allows for capturing

the interactions and nonlinearities between air quality parameters and meteorological

variables, which are essential for accurate predictions. The research by (Yu et al., 2016)

contributes to the field of air quality prediction by introducing the RAQ approach, which

leverages urban sensing systems and the random forest algorithm. This innovative ap-

proach could enhance urban air quality monitoring and management. The RAQ approach

can assist policymakers, environmental agencies, and urban planners in making informed

decisions to mitigate air pollution and protect public health by providing real-time predic-

tions. Further research could expand the RAQ approach to incorporate additional input

features like traffic patterns, landuse data, or emission inventories. Additionally, the per-

formance of the RAQ model can be evaluated and compared with other prediction models

to assess its accuracy and effectiveness in different urban environments. In conclusion,

the study presents the RAQ approach as a promising method for predicting air quality in

urban sensing systems. Random forest modeling allows for robust predictions, capturing

complex relationships between air quality parameters and meteorological variables. Ap-

plying the RAQ approach can significantly contribute to air pollution management and

the development of sustainable urban environments.

2.3 landuse regression

In their comprehensive review, (Hoek et al., 2008) focus on land-use regression (LUR)

models as a valuable tool for assessing the spatial variation of outdoor air pollution.

LUR models quantify the relationship between air pollution measurements at monitor-

ing sites and land-use characteristics, traffic, and other relevant variables. The authors

highlight the importance of LUR models in providing high-resolution spatial air pollution

maps, essential for understanding exposure patterns and identifying pollution hotspots.

They discuss the critical components of LUR models, including the selection of predictor

variables, the modeling approach, and the validation techniques used to assess model

performance. (Hoek et al., 2008) provide a detailed overview of the land-use character-

istics commonly included in LUR models, such as traffic intensity, industrial emissions,

population density, and green space. They also discuss the challenges of selecting ap-
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propriate predictor variables and considering temporal variations in air pollution levels.

The review highlights the advantages of LUR models, such as their ability to capture

small-scale spatial variation and provide insight into the impact of specific land-use fac-

tors on air pollution levels. The authors also discuss the limitations of LUR models,

including the need for extensive monitoring data, potential biases, and the challenges

of extrapolating results to areas without monitoring stations. The research contributes

significantly to the field by synthesizing existing knowledge on LUR models for assessing

spatial variation in outdoor air pollution. Further research in this area could address the

limitations of LUR models, such as improving the spatial representativeness of monitor-

ing sites, considering the influence of meteorological factors, and incorporating new data

sources, such as remote sensing data and mobile monitoring technologies. Additionally,

exploring the application of LUR models in different geographical regions and investi-

gating their utility for other air pollutants would further enhance the understanding and

applicability of these models. (Larkin et al., 2017) address the need for a global-scale

landuse regression (LUR) model to estimate NO2 concentrations, considering the impor-

tance of understanding the spatial patterns and variability of this pollutant across diverse

regions. The authors recognize that LUR models provide a robust approach to predict

air pollution levels by incorporating landuse and other relevant spatial predictors. The

results of the study indicate that the global LUR model accurately estimates NO2 concen-

trations across different geographical regions. The model incorporates several important

predictors, including landuse, population density, road networks, and satellite-derived

data, to account for the major sources and spatial patterns of NO2 pollution. The results

of the study indicate that the global LUR model accurately estimates NO2 concentra-

tions across different geographical regions. The model incorporates several important

predictors, including landuse, population density, road networks, and satellite-derived

data, to account for the major sources and spatial patterns of NO2 pollution. The study

presents a comprehensive analysis of NO2 concentrations using a large dataset consisting

of satellite-derived NO2 observations, ground monitoring data, and various geospatial

predictors. The authors apply a hierarchical modeling framework to develop a global

LUR model that captures the spatial variations in NO2 concentrations, accounting for

regional differences and the influence of local landuse characteristics. In conclusion, the

papers provide a brief review of LUR models for assessing the spatial variation of outdoor

air pollution. The authors emphasize the importance of these models in generating high-

resolution pollution maps and understanding the role of land-use factors in shaping air

quality patterns. The review contributes to advancing the knowledge and application of
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LUR models, ultimately aiding in developing targeted air pollution mitigation strategies.

2.4 Spatio temporal prediction

(Wen et al., 2019) address the complex challenge of air pollution prediction by proposing

a novel spatiotemporal convolutional long short-term neural network (ST-CLSTM). The

authors recognize the need to capture the spatiotemporal relationships between air pollu-

tion and meteorological variables, which play an important role in influencing air quality.

The study highlights the limitations of traditional modeling approaches in properly cap-

turing the complex patterns and non-linear dynamics of air pollution. To overcome these

limitations, the authors introduce the ST-CLSTM model, which combines the strengths

of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks.

This enables the model to learn the spatial and temporal dependencies inherent in air

pollution data.

The proposed ST-CLSTM model achieves accurate and reliable air pollution predic-

tions by leveraging the spatiotemporal information in multi-dimensional data. The study

demonstrates the superiority of the ST-CLSTM model over conventional models through

extensive experiments and comparisons. The results indicate that the ST-CLSTM model

outperforms other models in terms of prediction accuracy and generalization capability.

The study also highlights the significance of using meteorological variables into air pol-

lution prediction models. Meteorological factors, such as temperature, humidity, wind

speed, and atmospheric pressure, have a good influence on air pollution levels. By inte-

grating meteorological data into the ST-CLSTM model, the authors effectively capture

the relationship between meteorological conditions and air pollution dynamics.

The application of the ST-CLSTM model holds considerable promise for various prac-

tical scenarios. The model’s high-resolution predictions offer valuable insights into the

spatial and temporal distribution of air pollution, aiding in the identification of pollution

hotspots and the formulation of targeted mitigation strategies.

In conclusion, the study conducted by (Wen et al., 2019) introduces a novel spa-

tiotemporal convolutional long short-term neural network (ST-CLSTM) for air pollution

prediction. The proposed model successfully addresses the challenges associated with

capturing complex spatiotemporal relationships and non-linear dynamics in air pollution

data. By integrating meteorological variables into the model, the authors provide a com-

prehensive understanding of the interdependencies between meteorology and air quality.

The ST-CLSTM model demonstrates good performance and offers valuable insights for
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Distance R2 R2 Correlation
D3 0.868 C3 0.912
D6 0.898 C6 0.913
D9 0..913 C9 0.919

Table 2.1: R2 value (Gryech et al., 2021)

air pollution management and decision-making processes.

(Gryech et al., 2021) proposes a novel method for spatial prediction of urban air

pollution. The method uses a combination of machine learning and spatial interpola-

tion techniques. The machine learning model is used to learn the relationship between

air pollution levels and a set of environmental and meteorological features. The linear

interpolation techniques is used to fill in the missing values in the air pollution data. Mo-

rocco. The results showed that the method was able to improve the accuracy of spatial

prediction of air pollution.

A linear model is used for prediction. In a linear model, Multiple Linear Regression is

used. It is used to predict the measurements of the station that is not working (Gryech

et al., 2021). The research paper focuses on the prediction of NO2 as this is the only

pollutant that’s data is available for all the 20 stations. R2 (R-squared) value is used as a

performance metric. After training the model, the R2 value comes out to be 0.93. We can

see that the performance is good, but there is a disadvantage in that they are taking data

from all the stations. This will lead to an increase in the model complexity. This model

is not robust as it won’t work when more than one station breaks down. So, to reduce

complexity, they had taken the top 3 or top 6 correlated stations from the correlation

matrix and the top 3 or top 6 closest stations from the distance matrix. The author has

tried to predict the pollutants of the PA 18 station.

(Gryech et al., 2021) used only the correlation between different stations and the

distance between them is taken as the factor to predict the pollutants. Still, there are

more such factors that are influencing the concentration of the contaminant. Two of

the elements are meteorological and traffic-related factors. Meteorological factors include

temperature, wind speed, wind direction, humidity, and pressure in the environment. So,

now they have used meteorological and traffic features for air quality prediction. (Gryech

et al., 2020) focuses on using meteorological and traffic related features to predict air

quality levels. The paper proposes a novel machine learning model that combines a sup-

port vector machine (SVM) with a random forest (RF) model. The model was trained

and tested on a dataset of air quality data from the city of Casablanca, Morocco. The re-

sults showed that the model was able to achieve a high accuracy in predicting air quality
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levels. The study by (Samal et al., 2021) addresses the need for accurate spatiotemporal

prediction models for air quality, considering the significant impact of air pollution on

public health and urban planning. The authors recognize the inherent challenges in cap-

turing the complex spatial and temporal variations of air pollutants, which are influenced

by various factors such as emissions, meteorology, and landuse patterns.

The authors suggested a novel strategy that blends deep learning methods and distance-

based interpolation approaches to address these issues. By using the recorded values

from close-by monitoring stations, distance-based interpolation techniques offer a way to

calculate the levels of air pollution at unmonitored locations. Using this interpolation

technique, a thorough spatiotemporal air quality dataset may be produced. To further

capture the complex correlations and patterns found in the spatiotemporal air quality

data, the author used deep learning techniques. Convolutional neural networks (CNNs)

and recurrent neural networks (RNNs) are two deep learning models that are used to

extract significant features and understand the complicated temporal correlations con-

tained in the data. The suggested model’s accuracy and prediction power are improved

by combining deep learning and distance-based interpolation.

The effectiveness of the approach is demonstrated through extensive experiments and

evaluations conducted on real-world air quality datasets. The results indicate that the

combined distance-based interpolation and deep learning model outperforms traditional

interpolation techniques and standalone deep learning models. The proposed methodol-

ogy achieves high prediction accuracy for both spatial and temporal dimensions, enabling

reliable air quality estimates at unobserved locations and future time points.

In conclusion, (Samal et al., 2021) presents a comprehensive study on spatiotemporal

prediction of air quality using distance-based interpolation and deep learning techniques.

The integration of these approaches addresses the challenges associated with capturing

the complex spatial and temporal variations of air pollution. The proposed model offers

a valuable tool for accurately predicting air quality at unmonitored locations and fu-

ture time points, supporting decision-making processes for urban planning and pollution

management.
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Chapter 3

Methodology

3.1 Overview

The main idea behind this study is to develop a spatio-temporal model for development

of a predictive technique for concentration of various pollutants. As discussed in the

literature review the air pollution for the locations with no monitors can’t be directly

predicted using only the historical data of the monitoring stations. Other factors affecting

the pollutants at any location are meteorological factors such as wind speed, RH (Relative

Humidity), Temperature and pressure. Traffic and road related data is also used as it is

observed from the literature review that the air pollution is directly proportional to the

traffic flow at any particular area. Other factors such as POI (point of interest) is also

an important feature for decreasing the error in our prediction model. A point of interest

(POI) is a specific point location that someone may find useful or interesting. It includes

the locations such as hotels, schools, colleges, factories, water bodies, forest, parks etc.

The area of study is Delhi, India.

3.2 Dataset

Data is the most important aspect for the modelling of the prediction model. The data

is scraped using various API’s (Application Programmable Interface) available on the in-

ternet. Different API’s such as HERE maps, Open Street Maps (OSM) etc. are used for

the data extraction. The historical data of the pollutants at the locations of monitoring

stations and the meteorological data is present in downloadable form at the CPCB (Cen-

tral Pollution Control Board) and DPCC (Delhi Pollution Control Committee) website.

The POI (Point of Interest) data is taken from the OSM (Open Street Maps). QGIS

(Quantum Geographic Information System) is used do all the spatial analysis.
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3.2.1 Pollution data

The pollution data is the independent variable that is used as a label to predict the

pollutants for the study region. It is obtained from the fixed monitoring stations located

at various locations in the study region. There are total of 40 monitoring stations located

in Delhi region. Out of these there are 24 sites operated by Delhi Pollution Control

Committee (DPCC) while 6 sites are managed by CPCB, and rest 6 sites are maintained

by India Meteorological Department (IMD) and 2 sites by Indian Institute of Tropical

Meteorology (IITM). The real time data is available at Central Control Room for Air

Quality Management. The pollutant taken into consideration is PM2.5 .The data is taken

for six months that is 1 November 2022 to 30 April 2023. The data is taken in an interval

of 15 minutes.

3.2.2 Meteorological data

The meteorological data is an important aspect for the modelling of the prediction model.

The meteorological data includes Atmospheric Temperature (AT), Wind Speed (WS),

Relative Humidity (RH) and Barometric Pressure (BP). All these parameters were ob-

tained from the Central Pollution Control Board’s live monitoring stations at 15 minutes

interval. The data was obtained as excel file. The following data was recorded:

1. Atmospheric Temperature (AT): The temperature of the Earth’s atmosphere at

various altitudes is referred to as the ”atmospheric temperature.” It is influenced

by a variety of factors, such as altitude, humidity, and solar energy. The four layers

of the atmosphere can be distinguished by the temperature variations that occur

at varying heights in relation to the Earth’s surface.

2. Wind Speed (WS): Air flows from high pressure to low pressure, primarily as a result

of temperature differences, and this process produces wind speed, a fundamental

atmospheric quantity. The relationship between wind speed and particle pollution

is complex.

3. Relative Humidity (RH): The ratio of the amount of atmospheric moisture that is

actually present to the amount that would be contained if the air were saturated is

known as relative humidity. Relative humidity depends on both moisture content

and temperature because the latter is temperature dependent. The relative humid-

ity is determined using the relevant temperature and dew point for the specified

hour.

15



4. Barometric Pressure (BP): The pressure that results from the weight of the air

above us is known as barometric pressure. Despite being relatively light, the air

in the atmosphere above us starts to take on some weight as gravity pulls the air

molecules together.

3.2.3 Traffic data

The traffic data required for the study is obtained from HERE Maps API. The data was

obtained in Extensible Markup language (XML) file format at every 15 minutes interval

for six months. The data obtained include speed and congestion for the area of interest.

The area of interest can be defined by providing the bounding box. To obtain the data a

request is generated and for each request contains information on what data is required.

For this study the following request was generated:

https://traffic.ls.hereapi.com/traffic/6.2/flow.xml?apiKey=’+HEREAPIKEY+

’&bbox=28.086520,76.730347;28.92163,77.631226&responseattributes=sh,fc

This request can be divided into subparts as shown in the Fig. 3.1. The response

from the request is obtained in xml format which was converted to ordered dictionary in

python and the objects from the results are extracted.

Figure 3.1: Sub Parts of API request

The following data is extracted from the response obtained through API as shown in

Fig. 3.2:

• “RWS” : It represents a list of roadway items (RW)

• “RW” : This is the overall flow item for a roadway. Each roadway will have a

roadway item with accessible traffic flow information

• “FIS” : It represents a list of flow item elements (FI)
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Figure 3.2: XML file from Traffic API

• “FI” : FI represents a single flow item

• “TMC” : TMC stands for “Traffic message channel”. Information about location

in coded format can be sent and received via TMC if the location code table is

integrated with the maps service provided.

• “DE” : It represents the text description of the road

• “CN” : CN stands for Confidence Number indicating percentage of real time data

used. Data is said to be in real time if the CN value is greater than 0.7. A value

greater than 0.5 and less than or equal to 0.7 indicates historical speeds

• “FF” : FF represents the free flow speed on the given stretch of the road

• “JF” : JF stands for Jam Factor which represents the quality of travel. JF value

ranges from 0 to 10 with 10 being a condition of road closure. As the number

increases the quality of the travel will degrade

• “SP” : SP denotes the average speed for the road segment. If the speed is above

speed limit, then it is capped to the speed limit. The speeds above the speed limit

are not taken into consideration.

• “SU” : SU stands for Speed Uncut which also represents average speed. It ignores

the speed limit of the road segment

3.2.4 Landuse data

According to the context of our research, landuse data refers to information about how

land is utilised, such as for residential, commercial, industrial, or agricultural purposes.
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Figure 3.3: Traffic Data extracted from API

This data is essential for various purposes, including urban planning, resource manage-

ment, and environmental monitoring. Landuse data is extracted from OpenStreetMap

(OSM). OpenStreetMap is an open-source platform that provides a wealth of geospatial

data, including information about landuse. OSM can be a valuable resource for extract-

ing landuse data, particularly for areas where official data may not be readily available or

may need to be updated. In OSM, landuse data is available in shape file (.shp) format.

A shape file is a file which stores the geometry of landuse data as polygons in the file.The

landuse data is divided into different files such as Point of Interest, buildings, water etc.

After processing these files, the categories formed are :

1. Commercial

2. Educational

3. Green

4. Water

5. Industrial

6. Residential

There are various sub categories under each category. The sub categories for each

category is shown in Table 3.1. ’Industrial’ and ’Residential’ categories don’t have any

sub category.

landuse data is plotted on QGIS and the visualization is shown in Fig. 3.4. Plotting

is done for a buffer of radius 8 km for better visualization.
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Commercial Educational Green Water
Arts centre Cinema hall College park farmland riverbank
Public building Sports centre School track Nature reserve wetland
Market Place Hotels University playground Orchard water
Museum Memorial Hostel forest Recreation ground reservoir

Table 3.1: Sub categories under categories formed for landuse

Figure 3.4: Visualization of landuse data in QGIS

3.2.5 Realtime data

Pollution measuring devices were installed in buses in Delhi to get realtime data every 10

minutes. Monitors provide parameters such as PM2.5, PM10, Air Quality Index (AQI),

Temperature, Humidity, device name and (Lat, Long) of the device. Out of these param-

eters, PM2.5 and lat, long of devices are taken at an interval of 15 minutes. The dataset is

taken for six months in the time period ranging from 1 November 2022 to 30 April 2023.

Extracted realtime data is shown in Fig. 3.5. There are a total number of 21 different

buses with monitoring devices in the extracted dataset.

3.3 Data preprocessing and preparation

We have collected different datasets according to factors affecting air pollution at any

location. We have temporal factors such as Atmospheric temperature, Barometric pres-

sure, Relative Humidity, Wind speed and wind direction. landuse data is taken for spatial

19



Figure 3.5: Sample realtime data

variability. The issue is that the datasets are in raw format and must be processed before

being used for prediction. Some of the issues are:

3.3.1 Removing overlapping areas from landuse dataset

As stated above, landuse data is extracted from OSM in shape file format. There are three

shape files named POI, landuse and buildings. The problem is that the landuse patterns

or polygons present in POIs are also buildings but with different classes or names. For

example, there is one university, and we have many departments in that university. So

the area of the whole university, including departments, is present in the POI file as a

different entity, and the area of departments is present in the buildings file as a different

category. So this is the overlap in the area when we concatenate two files to find all

landuse types in a particular buffer. Also, there are overlaps of areas present in the same

shape files. For example, in the POI file, we have a park polygon with fclass as a park.

Also, there is a memorial present in the park with fclass as a memorial in the shapefile.

So, the area of the memorial is added two times whenever we take the landuse area

inside a buffer. To remove this overlap, we had formed two algorithms. One algorithm

for removing the overlapping areas from 2 shape files and another algorithm to remove

the overlapping areas from the same shape file. Below are two algorithms for removing

overlaps from landuse data.

Algorithm 1 is used to remove overlaps from 2 different shapefiles. We take two

shapefiles and then check the intersection between the two files. After we have the
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Algorithm 1 Remove Overlapping Features from Two Shapefiles

1: procedure Remove Overlap(file1, file2)
2: Intersect file1 and file2 to get intersection
3: for all rows in intersection do
4: Match osmid1 and osmid2 with corresponding osmids in file1 and file2
5: Find area1 and area2 of the polygons from the osmids
6: Match fclass of both polygons with their categories
7: if category1 != category2 then
8: if area1 >= area2 then
9: Remove area2 from file1
10: else
11: Remove area1 from file2

12: else
13: if area1 >= area2 then
14: Remove area2 from file2
15: else
16: Remove area1 from file1

17:

18: return file1, file2 with non-overlapping features

intersection of both files, we loop through each of the rows. For each row, find the

corresponding osm ids in their respective files and check which of the polygons has a

larger area than the others. If the fclass of both the polygons is the same, then the

smaller polygon is removed from the respective file and the larger polygon is kept as it is.

Otherwise, if the fclass is different for both polygons, then the polygon with a smaller area

is removed from the larger one. This is how the overlap is removed from 2 different files.

Visualization of Algorithm 1 on a single polygon is shown in Fig. 3.6. In Fig. 3.6, the left

side plot shows two overlapping polygons. The blue colour polygon represents the area of

a residential building, and the red colour represents a park on the building premises. We

can see that the area of the park is coming twice, one in the residential polygon and the

other in the park polygon. As the fclass of both the polygons are different, the smaller

area that is the park, depicted by red, is removed from the residential polygon that is

depicted by blue. Two plots on the right side depicts how the overlap is removed from 2

polygons.

In Fig. 3.7, we can see that the fclass is the same for both polygons. In processing

landuse data, we generated categories such as commercial, industrial, green, water, resi-

dential etc. The fclass park and grass both come under the green category. So, as they

belong to the same category, we have to take the union of both the polygons and the

polygon with the larger area is kept in the shapefile.
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Figure 3.6: Removing overlap from landuse data where polygons belongs to different
categories

Figure 3.7: Removing overlap from landuse data where polygons belongs to same cate-
gories
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3.3.2 Data preparation

The objective of our research is to predict the spatiotemporal distribution of PM2.5 in

areas where no monitoring stations are present. To achieve this, we utilised various

datasets, including PM2.5 data from static and mobile monitors, landuse data, traffic flow

data, and meteorological data collected from the CPCB website. Our methodology began

by creating a vector or line string between each static data point and its corresponding

mobile data point. We then generated rectangular buffers with varying breadths of 50,

100, 150, and 200 metres based on the length of the vector. We identified the landuse

categories that fall within each buffer, which was done by accounting for overlapping data

in the landuse dataset. After this step, using the traffic flow data, we determined the

lengths of roads with low congestion (congestion factor less than 0.5) and high congestion

(congestion factor greater than 0.5) in each buffer. Once we obtained each buffer’s landuse

and traffic flow data, we merged it with the meteorological data to form the final dataset.

It is worth noting that we limited our analysis to five static stations, namely Lodhi Road,

Delhi IMD, Jawaharlal Nehru Stadium, Delhi DPCC, Sri Aurobindo Marg Delhi DPCC,

Major Dhyan Chand National Stadium, Delhi DPCC, and Nehru Nagar, Delhi DPCC,

due to their higher number of real-time data points in the surrounding 1.5 km radius,

resulting in a total of 10,107 data points for the six months. This subsection outlines

how we synthesised the various datasets to form the final.

PM2.5(static) and PM2.5(mobile) data

Our research aims to match the PM2.5(static) data with the PM2.5(mobile) data to create

a unified dataset. We used the DateTime and latitude/longitude information available

for both datasets to accomplish this. We began by identifying the mobile data points

located within a 1.5-kilometre radius of each static point. We used the haversine distance

metric to calculate the distance between two points, which provides a distance value in

kilometres. The Haversine distance gives the shortest distance between two points on the

earth’s surface (Wikipedia, 2011) . The distance is calculated using the longitudes and

latitudes of the two places. The distance between two stations i and j for kth pollutant is

defined in Eq. (3.1)

D(i,j) = 2arcsin

((√
sin2

(
(λj − λi)

2

)
+ cos (λi) cos (λj) sin

2

(
ϕj − ϕi

2

))
(3.1)

Where λi,λj are latitudes and ϕi, ϕj are longitudes of the two places i and j respec-

tively.
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After finding all the points within the specified radius, we concatenated the resulting

five data frames. However, due to the overlap in mobile data points between the five sta-

tions, we encountered duplicate entries. To address this issue, we used the drop duplicates

function in pandas and provided a subset of columns to identify duplicate rows. Specif-

ically, we used the From Date, device name, latitude(mobile), longitude(mobile), and

PM2.5(mobile) columns to identify and remove duplicates. The device name column

identifies the device to which the portable data point belongs. Thus, any data points

with the same device name, location, and PM2.5 value simultaneously were considered

duplicates and removed from the dataset. With this approach, we matched the PM2.5

static and mobile values based on the From Date column.

Landuse data

After, we had matched PM2.5 static and mobile data, now we have to form buffers for

each row and find the landuse patterns present in each of the buffers. The landuse data

extracted from OSM has EPSG:4326, which is latitude, and longitude are in degrees. We

have to change CRS in metres to form the buffer in metres.

First of all, we will understand about EPSG and CRS: EPSG (European Petroleum

Survey Group) is an organisation that maintains a database of coordinate reference sys-

tems (CRS) for geospatial data. CRS is a system that defines how geographic coordinates,

such as latitude and longitude, are referenced and displayed on a map. In a geodataframe,

EPSG refers to the CRS’s EPSG code in which the data is. The EPSG code is a unique

identifier for a CRS, and it specifies the projection, datum, and units used in the coor-

dinate system. The EPSG code can convert between different CRSs and project data

onto different map projections. CRS, on the other hand, is a set of rules that define how

the coordinate system is defined and how the positions on the Earth’s surface can be

described. It describes how the Earth’s surface is approximated and how coordinates are

related to this surface. CRS is essential in geospatial data analysis because it allows us

to accurately overlay and analyse data from different sources using different coordinate

systems.

We have changed the CRS of landuse data from EPSG:4326 to EPSG:7760. EPSG:7760

refers to the coordinate reference system in metres. Also, we had to convert the latitude

and longitude of both static and mobile data points to EPSG:7760. Now we run a loop

through each of the rows. For each row, a linestring is made between the latitude and

longitude of static and mobile data points. After that, a rectangular buffer is created,

and the landuse data is intersected with this buffer. This generates an intersected geo-

24



dataframe containing all the landuse categories in the buffer. After that area of each of

the polygons in the intersected geodataframe is found grouping by different categories,

and the area of each category is stored in a dictionary. After iterating all rows, each

category’s areas for each row are stored in the dictionary, and a new dataframe is formed

from that dictionary. Now the new dataframe is merged with the dataframe containing

PM2.5 static and mobile data points. In Fig. 3.8, a buffer of width 150 metres is formed

between PM2.5 static and mobile data points. Fig. 3.8 shows the distribution of landuse

data in the buffer. Red color represents the residential area, green color represents the

green area and violet color represents the commercial area.

Figure 3.8: Distribution of landuse data in a buffer

Traffic flow data

We used the HERE Maps Traffic flow API to gather and extract traffic flow data every

10 minutes. The extracted data included parameters such as CN, FF, JF, SP, and SU.

From these parameters, we derived a new feature called the ”congestion factor” using the

formula FF/SU, where FF represents the free flow speed of vehicles on a particular road
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segment, and SU represents the average speed of vehicles on roads if the speed limit of

the roads is ignored. The roads are divided into four categories as shown:

1. roads 1 : 0 <= congestionfactor < 0.25

2. roads 2 : 0.25 <= congestionfactor < 0.5

3. roads 3 : 0.5 <= congestionfactor < 0.75

4. roads 4 : 0.75 <= congestionfactor

The extracted data was stored in Excel files for all roads in Delhi, with each file

representing traffic flow data for a specific DateTime. We formed a dataset above, which

contains DateTime and respective PM2.5 static and mobile data points. For using traffic

flow data, we created four categories of roads as roads 1, roads 2, roads 3, and roads 4.

For making this dataset, we have to match the DateTime from the dataset created above

with the file names extracted from here maps API. We have taken the DateTime from

the dataset and then formed a path with the DateTime for the directory where the

file is present. Try and except exception is used to handle the cases when the file for

particular DateTime does not exist. After finding the csv file with the specific DateTime,

we formed the shapefile from this file to find the length of roads within a given buffer. We

took latitude and longitude from the above dataset for the static and mobile data points.

A point geometry is formed from these latitudes and longitudes and uses these points to

create a linestring between these two points. After this, we formed a rectangular buffer of

different widths ranging from 50 metres to 200 metres. Now intersection is done between

the shapefile of traffic flow data and the buffer geometry. After getting the intersected

shapefile, we formed four dataframes for each road category. Then we have found the

length of road segments for each road category and stored them in their respective lists.

After iterating through the above dataset, we added the traffic data to the above dataset.

DateTime features

For using Machine learning, ensemble models and Artificial Neural Networks for predic-

tion, we have to process the DateTime column for considering the temporal effect of the

dataset on the prediction. Hence, we have developed some features from the DateTime

column. The features are as follows: 15th minute of the day, day of the week and week

of the year.

1. 15th minute of the day: In an hour, if we consider an interval of 15 minutes, then

we will have 4 data points each hour. There are 24 hours in a day, so we have a
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total of 96 data points each day. So, the 15th minute of day represents that the

dataset belongs to which 15th minute of a particular day.

2. Day of the week: In a week there are 7 days. This feature represents that this day

is which one out of 7 days in a week.

3. Week of the year: It tells us the week for which we are finding the day and the 15th

minute of that day is which week of the year. In a year there are 52 weeks for a

non leap year. But we have taken data for 6 months and 10 days. Hence we have

only 28 weeks in our data.

These 3 features are used to correctly identify the temporal pattern in the dataset. It

is used to check if there is any seasonality in the dataset. These 3 features have datatype

as ’object’. So we need to convert these features into numerical data type using encoding

techniques. Most commonly used encoding techniques are: One hot encoding and label

encoding.

Label encoding

Any variable with two or more categories (values) is referred to as a categorical or discrete

variable. Nominal and ordinal categorical variables are two different types. A nominal

variable’s categories do not naturally have an inherent order. For instance, gender is

a categorical variable that has two categories (male and female), neither of which has

any inherent ordering. The ordering of an ordinal variable is obvious. Take pollution

as an example, which has three categories: low, medium, and high. Label encoding is

used for ordinal categorical variables. Using the Label Encoding technique, categorical

columns can be transformed into numerical ones that can be fitted by machine learning

models that only handle numerical data. In a machine-learning project, it is a crucial

pre-processing phase. Label encoding can be applied only to ordinal categorical variables.

Ordinal categorical variables are the categories which have an inherent order. Suppose we

have a column traffic flow in a dataset that has elements as Low, Medium, and High. We

can apply label encoding to this column as it is an ordinal categorical variable. As shown

in Table 3.2 that after applying label encoding, the traffic flow column is converted into

a numerical column with values as 0,1 and 2, where 0 is the label for low, 1 for medium

and 2 for high traffic flow.
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Traffic Flow Traffic flow encoded
Low 0
Low 0
High 2
Medium 1

Table 3.2: Label Encoding

One hot encoding

One hot encoding is used for nominal categorical variables. It is used to encode categorical

datasets into numerical data that will be appropriate for Machine learning models. It

creates a binary feature for each unique category in the categorical feature. For example

if there are three categories in the categorical column, then three rows will be made, each

representing a category. After that, the value in the column which belongs to a category

becomes 1, and all other column values become 0 for a particular row. Suppose we have

a column with 3 colors that are Red, Green and yellow, as shown in Table 3.3. The first

column in the table represents categorical variables, and the next three columns represent

one hot encoded data.

Color Green encoded Yellow encoded Red encoded
Green 1 0 0
Green 1 0 0
Yellow 0 1 0
Red 0 0 1
Red 0 0 1

Table 3.3: One Hot encoding of nominal categorical variables

Hence, we will use one hot encoding for the DateTime features that we have created

above. After applying one hot encoding, the number of features increases and below are

the number of features obtained:

1. 15th minute of the day : 96 columns

2. Day of the week : 7 columns

3. Week of the year : 28 columns

In total, we have 131 columns that are formed from the Datetime feature.
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3.4 Models and their architecture

3.4.1 Ensemble models

Machine learning models use a single model for prediction tasks. Anytime we want to

make any decision in life, we tend to collect as much data as possible and take advice

from many people. The more information, the more the probability of our decision being

correct. Similarly, machine learning is a mathematical model that observes the data’s

patterns and dependencies and predicts the output based on the patterns observed. The

more data, the more accuracy of predictions. But in most cases, more than a single

model is required for accurate predictions. This drawback of machine learning models

is handled by ensemble methods. Ensemble learning methods also use machine learning

models, but instead of a single model, they use multiple models for the prediction. These

models are also called base estimators. The disadvantage of using a single estimator is:

1. High Variance: A single model becomes very sensitive to changes in the patterns

in the data such that it considers noise and outliers as a pattern.

2. High bias: The model becomes so much less sensitive to changes in the patterns

that it ignores the noise and the basic patterns in the dataset.

Different types of ensemble learning methods are Bagging and Boosting.

Bagging: Bagging is a parallel learning algorithm. Multiple learners are used in bag-

ging. Multiple subsets of data are created from the dataset with repetition. For example,

we have a dataset with 100 rows, and we want to make a bagging model of 5 estimators,

then we have to make 5 subsets of data from the given dataset. Suppose we make each

subset of size 20. We will make the first subset by selecting random data from the dataset.

After that, the subset is not removed from the original dataset. It means that the rows

in one subset can also occur in another. It helps in reducing variance and hence reducing

the overfitting of the model. Random Forest is a type of bagging algorithm. Multiple

parallel decision trees are taken in Random Forest, and the data subsets are given to

each decision tree. For classification, we take the category with the highest number of

repeating instances. In regression, we can take the mean of all the predictions coming

from each decision tree. Fig. 3.9 shows the working of bagging algorithm. In random

forest, models were taken as Decision trees. We do majority voting for classification tasks

and averaging for regression tasks.
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Figure 3.9: Bagging algorithm

Boosting: Boosting: Boosting algorithm uses weak learners for the prediction task.

Boosting training is done sequentially compared to the parallel manner done in the bag-

ging algorithm. The process of training continues till the error reduces below a threshold.

Different types of boosting algorithms are:

1. Adaptive Boosting (AdaBoost): This algorithm is used for classification tasks. For

every iteration, Adaboost identifies the points that are misclassified and increase

their weights so that the next learner gives more attention to the misclassified

points. It also reduces the weights of correctly classified points.

2. Gradient Boosting: Gradient boosting algorithms are used for both classification

and regression tasks. Some of the popular gradient-boosting algorithms are Light-

GBM and XGBoost. Gradient boosting does not focus on changing the weights

of misclassified points. Instead, it focuses on reducing the difference between the

predicted and original values. It can easily handle datasets with large dimensions

without overfitting in the model. These type of algorithms can easily identify the

non linear relationship between the dependent and independent variables.

3.4.2 Artificial neural networks

Artificial Neural Networks (ANN) is a machine learning algorithm inspired by how the

human brain processes information. It can identify complex patterns and relationships in

the dataset. ANN works with the dataset where conventional machine learning models

may suffer to work. They composed of interconnected nodes called neurons, arranged

in layers that process and transmit data. The ANN structure typically comprises three
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layers: the input, hidden layer(s), and output layers. The input layer receives the input

data, which is then processed by the neurons in the hidden layer(s), and final, the output

layer produces the network’s final output. The complexity of the problem being solved

determines the number of hidden layers and neurons in each layer. ANN employs weights

and biases that assign values to each neuron, influencing it impact on the network’s

output. During training, these values adjust to minimize the difference between the

network’s output and the expected result. Backpropagation is the most commonly used

training algorithm for ANN. It involves propagating the error from the output layer back

through the network, allowing adjusting the neurons’ weights and biases. To summarize,

ANN is a network of interconnected neurons arranged in layers. The network trained

using algorithms such as backpropagation to adjust weights and biases, minimizing the

output error. Understanding the structure and function of ANN is vital to create effective

machine-learning models.

Activation functions

Activation functions are used in Artificial Neural Networks (ANNs) to figure out what

the neurons should output. There are different activation functions like sigmoid, ReLU,

tanh, and Softmax, and they have different advantages and disadvantages.

The sigmoid function is popular activation function. It maps input values to a range

between 0 and 1. If the input value to a neuron is greater than 1, then it is clipped to

1 and the neuron’s output is 1. Similarly if the input to neuron is less than 0, then it is

made 0. It is a monotonic and differentiable function. It is represented as: f(x) = 1
1+e−x

The difference between sigmoid and softmax function is that sigmoid function is used

for binary classification tasks and softmax function is used for multiclass classification

tasks. Other activation functions include the hyperbolic tangent function (tanh), which

is similar to the sigmoid function but outputs a value between -1 and 1.

ReLU is the most popular and widely used activation function in thw world. It is

a simple activation function represented by the formula : f(x) = max(0, x) . We can

understand from the formula that when the input to a neuron is positive, then the output

of the neuron is same as input and if the input value to the neuron is negative, then ReLU

makes it zero. ReLU function is both monotonic and differentiable.

The choice of activation function can have a substantial impact on the performance of

an ANN. For the development of effective and efficient ANNs for various machine learning

tasks, it is crucial to comprehend the characteristics and uses of activation functions.
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Batch normalization

Batch normalization is one of the methods to reduce overfitting in neural networks. It

further improves the training speed and stability of neural networks. In batch normaliza-

tion, the inputs to each layer are normalized, which helps to solve the problem of internal

covariate shift. Batch normalization normalises each layer’s inputs to have zero mean

and unit variance.

For a given mini batch:

1. Find mean of the mini batch

µB =
1

m

m∑
i=1

xi (3.2)

Here µb is the mean of mini batch, xi is the input value and m is the batch size

2. Find the variance of mini batch

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (3.3)

Here σ2
B is the variance of mini batch

3. Normalize the inputs in the mini-batch

x̂i =
xi − µB√
σ2
B + ϵ

(3.4)

Here x̂i is the normalized value of ith batch.

4. Normalized value x̂i is then transformed using following formula

yi = γx̂i + β (3.5)

Here γ is the scaling parameter and β is the shift parameter. Both are learnable

parameters.

3.4.3 Long short term memory

LSTM is a type of Recurrent Neural network (RNN) that can be used in various domains

such as Time series forecasting and Natural language processing. LSTMs are a special

kind of RNN that can learn long term dependencies. The horizontal line on top in called

cell state. LSTMs have the ability to add or remove some information from the cell

state. The addition or removal of information is controlled by the gates. Firstly, we have

to decide, which information to keep and which to delete. This decision is made by a
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sigmoid layer called the forget gate layer. It looks at ht−1 and xt and a number between

0 and 1 is generated for each value in cell state.

ft = σ (Wf · [ht−1, xt] + bf ) (3.6)

After that, we have to decide which information we are going to store in the cell state.

A sigmoid layer called ’input gate layer’ decides which values need to be update. A tanh

layer creates a vector C̃t that could be added to the state. Now, we will update the old

cell state Ct−1 to the new cell state Ct. For this, we multiply old cell state by ft for

forgetting the things. After that we add it ∗ C̃t to this.

it = σ (Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)
(3.7)

Finally, we will decide what should be the output. It will be based on our cell state.

Above, we used sigmoid function to decide which information to keep and which one to

forget as shown in Eq. (3.6). After that, we pass the cell state through tanh and multiply

it by the output of sigmoid gate so that only desired information reaches the output. The

output ht is given by Eq. (3.8)

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)
(3.8)

Figure 3.10: LSTM Architecture (StackOverflow, 2018)
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Chapter 4

Results and Discussion

4.1 Data analysis

The final dataset is created, and it contains spatial and temporal features. Spatial features

are the distance between static and mobile data points and landuse data categories such

as green, residential, commercial, industrial, and water, and length of roads according

to congestion factor. Temporal features are PM2.5 (static), and meteorological features

such as Atmospheric Temperature, Barometric pressure, Relative Humidity, and Wind

Speed. We have a total of 18336 rows in the dataset. Fig. 4.1 represents histogram plot

for PM2.5 static and PM2.5 mobile. The Histogram of PM2.5 static is right-skewed with

a skewness of 1.32. Positive skewness means that the tail of the distribution is skewed

towards the right, indicating a longer right tail and relatively fewer extreme values on the

left side. The mean and median for PM2.5 static are 118.122 µg/m3 and 105.74 µg/m3,

respectively. The mean value is slightly more than the median, which indicates that

there are some high values in this column. We have removed outliers from our data on a

daily basis because if we remove outliers from the whole data, then the days where the

pollution level is actually high may be removed. This is the reason our histogram plot

is right skewed. PM2.5 mobile data is also right-skewed with a skewness of 1.15. Mean

and median values for the data are 109.29 µg/m3 and 89.66 µg/m3. There are more

extreme values in the data. This is due to the reason that in PM2.5 mobile data, we

have data for many stations, which makes it very dynamic. Fig. 4.2 shows a histogram

plot for Atmospheric Temperature and Wind Speed. Atmospheric temperature is slightly

right skewed with the skewness of 0.350056. Mean and median values are 20.195◦C and

20.400◦C respectively. It infers that there are not many extreme values in this data. Wind

speed is slightly left-skewed with a skewness of -0.827592. Mean and median values are

1.024 m/s and 1.10 m/s, respectively. It infers that the data points are evenly distributed.
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Figure 4.1: Histogram for PM2.5 static and PM2.5 mobile

Figure 4.2: Histogram for Atmospheric Temperature and Wind Speed

Figure 4.3: Histogram for Relative Humidity and Barometric Pressure
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Fig. 4.3 shows a histogram plot for Relative humidity and Barometric pressure. They

have a skewness of -0.531401 and 0.591725, respectively. The mean and median for

relative humidity are 61.304 % and 63.10 %, respectively. The mean and median for

Barometric pressure are 962.619 mbars and 949.700 mbars, respectively.

4.2 Correlation analysis

In our dataset, we have spatial as well as temporal features. Fig. 4.4 shows a plot of the

correlation of PM2.5 static and mobile data with temporal variables. It can be observed

that the predictor variable, that is, PM2.5 mobile, is highly positively correlated with

PM2.5 static. There is a positive correlation between the predictor variable with Baro-

metric Pressure and Relative Humidity. It has a negative correlation with Atmospheric

Temperature and Wind Speed. It is inferred from the correlation matrix that particulate

matter that is PM2.5 increases if Atmospheric temperature and Wind Speed decrease.

Higher wind speeds disperse the pollutants. It enhances the mixing and dispersion of air

pollutants, reducing their concentration in a specific area. Due to the dilution and dis-

persion of air pollutants, PM2.5 reduces with an increase in wind speeds. PM2.5 decreases

with an increase in Atmospheric temperature due to the reason that Wind speed increases

with an increase in Atmospheric temperature and more dispersion of particulate matter

happens. The dataset is taken from 1 November 2022 to 30 April 2023. In this time

period, relative humidity is very less, due to which a positive correlation is seen between

PM2.5 and relative humidity. From the literature, it is known that PM2.5 decreases with

an increase in humidity.

Fig. 4.5 shows correlation of PM2.5 static and mobile data with spatial variables.

PM2.5 is positively correlated with commercial areas, industrial areas, and the length of

roads. In the commercial areas, there will be high particulate matter concentration as

these are the areas where more population visits frequently. Due to this, there will be

more traffic congestion in these areas compared to areas with residential buildings. In

industrial areas, there will be machinery and industrial works that generate pollutants

such as PM2.5, PM10, and nitrogen oxides. This leads to an increase in the concentration

of pollutants and higher pollution. PM2.5 is most positively correlated with roads 3 and

roads 4 as these categories of roads represent the roads where the congestion factor is

greater than 0.5. There will be high emissions of pollutants due to high congestion,

which further leads to high air pollution. PM2.5 is negatively correlated with green areas,

residential areas, and water areas. PM2.5 decreases with an increase in green areas which
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is due to the fact that leaves and tree canopy provide more surface area for the particulate

pollutants to settle as well as they also restore normal gaseous concentration.

Figure 4.4: Correlation of PM2.5 static and PM2.5 mobile with temporal variables

4.3 Model development and evaluation

The aim of our project is prediction of PM2.5 at locations without monitoring stations.

We have spatial as well as temporal variables in our dataset. We have used Artificial

neural network for spatial variables and time series models such as Long Short Term

memory (LSTM) and Gated Recurrent Units (GRU) for temporal variables.

XG boost

XG Boost model is used as a base machine learning model for comparison with results

from deep learning models. The parameters used are max depth equals to 10, number of

estimators as 50 and alpha value as 10. The results obtained from XG Boost are shown

in Fig. 4.6

ANN architecture

1. Input layer: There are 147 units in input layer which represents the number of

features.

37



Figure 4.5: Correlation of PM2.5 static and PM2.5 mobile with spatial variables

Figure 4.6: Actual and Predicted results on test data using XG Boost
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Figure 4.7: ANN architecture for PM2.5 prediction

2. Hidden layer 1: There are 8 neurons used in hidden layer 1 followed by batch

normalization layer. Relu activation function is used in this layer.

3. Hidden layer 2: There are 16 neurons used in hidden layer 2 followed by batch

normalization layer. Relu activation function is used in this layer.

4. Hidden layer 3: There are 16 neurons used in hidden layer 3 followed by batch

normalization layer. Relu activation function is used in this layer.

5. Hidden layer 4: There are 8 neurons used in hidden layer 4 followed by batch

normalization layer. Relu activation function is used in this layer.

6. Output layer: There is 1 neuron used in output layer. Linear activation function is

used in this layer.

LSTM-ANN architecture

Fig. 4.9 shows a hybrid model used for spatiotemporal predictions. The LSTM model

is used for temporal predictions, and ANN is used for spatial predictions. In this ap-

proach, we have used two layers, each containing 32 units of LSTM. Instead of temporal

predictions, we took temporal vector embeddings from the hidden state of the LSTM

layer. The LSTM hidden state represents a compressed and abstract representation of

the temporal features. The hidden state representation learned by the LSTM model can

capture valuable temporal patterns. These vector embeddings are provided as an input

to ANN along with spatial features present in the data.
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Figure 4.8: Training and Validation loss plot and Plot for actual and predicted values for
buffer size of 50 meters using ANN model

Figure 4.9: LSTM-ANN architecture for PM2.5 prediction

40



In ANN, three hidden layers are used, containing eight, sixteen, and eight neurons,

respectively. The relu activation function is used for each of the neurons. The linear

activation function is used in the output neuron. Best performance is observed when the

buffer size equals 100 meters, and the number of epochs is equal to 50.

Figure 4.10: Training and Validation loss plot and Plot for actual and predicted values
for buffer size of 100 meters using LSTM-ANN model

GRU-ANN architecture

This is a hybrid model that is used for spatiotemporal predictions. GRU model is used for

temporal predictions, and ANN is used for spatial predictions. In this approach, we have

used two layers, each containing 32 units of GRU. Instead of temporal predictions, we took

temporal vector embeddings from the hidden state of the GRU layer. The GRU hidden

state represents a compressed and abstract representation of the temporal features. The

hidden state representation learned by the GRU model can capture valuable temporal

patterns. These vector embeddings are provided as an input to ANN along with spatial

features present in the data. GRU has a simple architecture than LSTM. It combines

the forget and input gates into a single update gate and merges the cell state and hidden

state into a single hidden state.

In ANN, three hidden layers contain eight, sixteen, and eight neurons, respectively.

The relu activation function is used for each of the neurons. The linear activation function

is used in the output neuron. The best performance is observed when the buffer size equals

50 meters and the number of epochs equals 40.
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Figure 4.11: GRU-ANN architecture for PM2.5 prediction

Figure 4.12: Training and Validation loss plot and Plot for actual and predicted values
for buffer size of 50 meters using GRU-ANN model
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4.3.1 Comparison of results

We have used four different models for spatio-temporal prediction of PM2.5 at different

locations. These four models are:

1. XG Boost

2. ANN

3. LSTM-ANN

4. GRU-ANN

XG Boost, along with time-dependent features, is used as a base model for comparison

of deep learning models. Each model is trained for four buffer sizes that are 50 meters,

100 meters, 150 meters, and 200 meters. The best results for XG Boost are obtained at

the buffer of the breadth of 50 meters.

ANN model is trained for 25 epochs. After 25 epochs, there is not much change in

loss means the loss function is converged. The best results using ANN are obtained for a

buffer size of 50 meters. we can see performance metrics from Table 4.1.

After that, we trained hybrid models using deep learning models such as LSTM and

GRU for temporal data and ANN for spatial data. The LSTM model takes data in

sequences. The lag factor for time series models is taken as 4. After forming data

sequences, the sequential data is given as input to LSTM and GRU. LSTMs and GRUs

have the property that they form vector embeddings of temporal data after identifying

temporal patterns in the data. We extracted these embeddings from the hidden layer.

These embeddings are provided as input to ANN along with the spatial data. Now, ANN

has three hidden layers containing eight units, 16 units, and eight units, respectively. The

final output from ANN is the spatiotemporal predictions. The best results are obtained

for a buffer size equal to 100 meters for the LSTM-ANN model and a buffer size equivalent

to 50 meters for the GRU model.

Out of all models, the best performance metrics are obtained for the GRU-ANN model

for a buffer size equal to 50 meters. It has an R squared value equal to 0.747. But it can

be observed that LSTM-ANN results are consistent for all buffer sizes. We can see that

LSTM-ANN has R-squared values of 0.707, 0.737, 0.71, and 0.72 for buffers of sizes 50

meters, 100 meters, 150 meters, and 200 meters.

Fig. 4.13 shows a comparison plot for different models’ predictions. In this plot, we

have used the best prediction values for each model. In this plot time, the bin is taken

as 75 so that the prediction results can be seen easily. Fig. 4.14 shows a comparison plot

of different models for test data of 10 days.
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Figure 4.13: Comparison of predictions using different models on test data for time bin
equals to 75

Figure 4.14: Comparison of predictions using different models on test data
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Table 4.1: Performance Metrics for Different Models for different buffer size

Rectangular buffer of width 50 meters

Model MSE RMSE MAE MAPE R squared

XG Boost 231.84 15.226 10.73 0.742 0.636

ANN 199.02 14.1 9.37 0.5 0.687

LSTM-ANN 186.66 13.66 9.78 0.95 0.707

GRU-ANN 161.17 12.69 8.32 0.53 0.747

Rectangular buffer of width 100 meters

Model MSE RMSE MAE MAPE R squared

XG Boost 273.36 16.53 11.26 0.61 0.571

ANN 215.54 14.68 10.31 0.44 0.66

LSTM-ANN 167 12.92 8.38 0.47 0.737

GRU-ANN 192.02 13.85 9.11 0.43 0.698

Rectangular buffer of width 150 meters

Model MSE RMSE MAE MAPE R squared

XG Boost 259.38 16.1 12.13 1.18 0.592

ANN 212.76 14.58 10 0.41 0.666

LSTM-ANN 184.77 13.59 9.01 0.52 0.71

GRU-ANN 193.85 13.92 10.12 1.05 0.6957

Rectangular buffer of width 200 meters

Model MSE RMSE MAE MAPE R squared

XG Boost 235.12 15.33 11.16 1.1 0.631

ANN 211.81 14.55 10.22 0.9 0.667

LSTM-ANN 178.28 13.35 8.99 0.56 0.72

GRU-ANN 196.22 14 10.26 1.09 0.692
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In the given study, temporal variables such as PM2.5 static, meteorological factors such

as Wind Speed and Atmospheric Temperature, and length of roads divided according

to congestion factor significantly impact the predictions of PM2.5 mobile at locations

without monitoring stations. To include the effect of road congestion, roads were divided

into four categories according to the congestion factor.

Spatial factors also correlate with PM2.5 mobile, but the impact of spatial features

is very low for prediction. It can be seen from Fig. 4.5 that PM2.5 mobile negatively

correlates with green, residential, and water bodies areas.

From Table 4.1, we can analyze the performance of different models using the metric

used in the table. Mean squared error(MSE) indicates the overall accuracy of the models,

and it should be as low as possible. GRU-ANN has the lowest MSE when buffer widths

are 50 meters. On the other hand, LSTM-ANN achieved the lowest MSE in the different

3 scenarios.

Mean absolute error (MAE) represents the average magnitude of the errors. GRU-

ANN model showed the best performance when the buffer width was 50 meters. At the

same time, LSTM-ANN achieved the lowest MAE in the other three scenarios.

The Mean Absolute Percentage Error (MAPE) measures the average percentage dif-

ference between the actual and predicted values. Lower values of MAPE are desired.

ANN has the lowest MAPE when buffer widths are 50 and 150 meters. GRU-ANN has

the lowest MAPE for a buffer width of 100 meters, and LSTM-ANN has the lowest MAPE

for a buffer width of 200 meters.

GRU-ANN achieved the highest R squared values when the buffer width was 50

meters, and LSTM-ANN achieved the highest R squared values in all other scenarios.
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It is observed that LSTM-ANN outperforms every other model for buffer widths of

100 meters, 150 meters, and 200 meters. Also, LSTM-ANN has consistent results for all

four scenarios. Hence, LSTM-ANN is the most significant model of all the models used

in the research.

5.2 Future work

In the present study, we have used training and validation data for six months and test

data for ten days. Our models have yet to see all the temporal variations of an entire

year. So, this model can be further trained for one-year data so that the model can see all

the temporal variations of a year. This can result in better predictions of PM2.5 mobile at

locations without monitoring stations. Investigating the temporal dynamics and incor-

porating more granular temporal data in our model to capture short-term dependencies

would be valuable. Additionally, since road congestion has been a crucial factor, further

exploration can be done for better categorization of roads and to incorporate real-time

traffic data to capture effects due to congestion better. Lastly, the potential of differ-

ent models can be explored, and combining the strengths of other models could lead to

improved predictive performance. By working in these areas in future research, we can

improve PM2.5 mobile predictions at locations without monitoring stations.
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