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ABSTRACT 

 

The present work deals with thermal transport in Josephson junction. In Josephson junction, heat 

current is phase dependent just like Josephson super current. Using topological insulators in 

Josephson junctions provide edge states for transport of heat current from one superconducting 

lead to other. Bogoliubov-de gennes transformation is used to set the theoretical formulation for 

thermal conductance in topological Josephson junctions. Andreev Reflection mechanism is used 

to describe thermal transport in topological Josephson junctions. In one dimensional short 

Topological Josephson junction the thermal conductance is function of phase only and shows 

less oscillation in thermal conductance. But in two dimensional Topological Josephson junction 

thermal conductance is function of phase and interface barrier strength and oscillations are more 

pronounced here. In one dimensional long topological Josephson junction thermal conductance 

shows abrupt behavior as a function of junction length and phase difference. These results of 

thermal conductance in topological Josephson junction can be used in thermal sensing devices 

where switching behavior is controlled by junction length. For short junctions, the system shows 

a sharp switching behavior while for long junctions the switching is smooth, which indicates a 

credential to use these systems for thermal switching device. 

 

 

 

 

Keywords: Josephson junction (JJ), Andreev Reflection (AR), Andreev Bound State (ABD), 

Topological insulators (TI), Quantum spin Hall Effect (QSHE), superconductor-topological 

insulator-superconductor (S-TI-S), critical width (dc), Quantum well (QW), Two dimensional 

topological insulator (2DTI) 
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CHAPTER 1 

Introduction 

1.1   Background 

Quantum tunneling is responsible for many physical phenomena that amazed scientists in the 

early 20th century. According to classical physics an electron can’t tunnel through the barrier 

unless its kinetic energy is greater than the potential barrier. But as per quantum physics an 

electron can tunnel through the barrier as shown in figure 1.1, if its kinetic energy is less than the 

magnitude of barrier potential, therefore produces a tunneling current. In quantum tunneling the 

electron tunnels through the barrier without changing energy although the amplitude reduced. 

 

 

Fig 1. 1 Phenomenon of tunneling across a barrier: in classical and quantum physics [1] 

 

 

The transmission probability of electron through a barrier is given by 𝑇 ≈ 𝑒−2𝑘𝐿 where 
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𝑘 = √
2𝑚

ℏ2
(𝑉 − 𝐸) 

(1.1) 

1.2   Josephson Tunneling 

In 1962, B. D. Josephson discovered a different kind of tunneling in superconductors, in which 

superconducting pairing of electrons is important [1]. Experimentally it was proved by P. W. 

Anderson and J.M. Rowell in 1963 [2]. Electrons can attract each other via distortion of lattice. It 

was first realized by Frolich in 1950. When an electron goes through a crystal, lattice distortion 

produced and sets the heavier ions into slow forced oscillations. Because electron moves with 

high speed so it cross the region before the oscillations stop. At the same time if another electron 

pass through this region, it will experience a force which is attractive. So this attractive force 

lowers the energy of second electron. Since coulomb’s repulsion is instantaneous so repulsive 

force between the electrons is small while the attraction mediated by lattice distortion is highly 

retarded in time. So the attraction caused by weak lattice distortion can overcome a stronger 

Coulomb’s repulsion. Thus the net effect is the attractive in nature of two electrons via a lattice 

distortion (or phonon) to form a pair of electrons known as the cooper pair.  When two 

superconducting leads separated through a weak link, then a dissipation less current flows across 

the junction. This current is known as Josephson current and junction called Josephson junction. 

The weak link may be insulator (I), normal metal (N), or a topological insulator (TI).  An S-I-S 

junction is shown in figure 1.2.  

 

Fig 1. 2 The SIS Josephson junction used to detect the Josephson tunneling current. [1] 
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In figure 1.2 an insulator is connected to two superconductors. If the width of insulator is thin 

(about few micrometer) then the current will flow across the junction. But if the width of 

insulator is large then current will not flow. 

1.3   DC and AC Josephson Effect 

There are two types of Josephson Effect DC Josephson effect and AC Josephson effect. In DC 

Josephson Effect a DC current flows across junction without applying any voltage. The equation 

is given as   

𝐼 = 𝐼0𝑠𝑖𝑛(𝜃2 − 𝜃1) (1.2) 

 

A DC voltage applied across the junction causes RF current oscillations across the junction. This 

is called AC Josephson effect [3]. 

𝐼 = 𝐼0sin [𝛿(0) −
2𝑒𝑉𝑡

ℏ
] (1.3) 

 

The current oscillates with frequency  𝜔 =
2𝑒𝑉

ℏ
 

The current – voltage relation of Josephson junction can describe with the help of diagram. 

 

Fig 1. 3 current voltage characteristics of a Josephson junction [3] 
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DC current flows in the absence of applied voltage. At voltage above 𝑉𝑐 junction has a finite 

resistance, but the current has an oscillatory component of frequency   𝜔 =
2𝑒𝑉

ℏ
. 

1.4   Topological Josephson junctions 

Josephson junction is made by sandwiching a thin (30-40 angstrom) insulator between two layers 

of superconducting material. But the discovery of topological insulators and unique properties of 

topological insulators leads Physicists to use it in Josephson junctions because the bulk of 

topological insulators behaves as an insulator and its surface provides channels for conduction. 

The conduction from the channels in topological insulators is quite interesting and flows without 

backscattering. 

 

 

junction. 

 

 

 

Fig 1. 4 Schematic of topological Josephson junction 

 

In figure 1.4 two superconductors are connected through a topological insulator. In chapter 2 all 

basic information about topological insulators is discussed. 

1.5   Motivation 

In electric charge transport Joule heating is major disadvantage. For this proper thermal 

management and active cooling are required in electronic devices. Interestingly not only 

Josephson current but also heat current between two superconductors kept at different 

temperatures depends on phase difference across the junction. So theory what we use for electric 

part is not changed for thermal current and thermal current flows without scattering so we can 

Superconductor 
TI 

. Superconductor 
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say that thermal current is more prominent. Phase dependence of heat currents is recently 

discovered in superconducting quantum interferences devices (SQUIDs) and using topological 

insulator instead of insulator opens new era of Josephson junctions called topological Josephson 

junctions. The unique properties of topological insulators makes it so interesting. 

1.6    Organization of Thesis  

This thesis is organized as follows: 

Chapter 1 gives all the information about Josephson effect, its types and briefly about the 

topological Josephson junction. Motivation part describes the reason for doing this work. 

Section 2.1, 2.2 and 2.3 explains the origin of topological insulator and how topology related 

with Physics. We describe theoretical and experimental part of this discovery. Section 2.4 and 

2.5 gives the idea about two dimensional and three dimensional topological insulators 

respectively, their electronic band structures, properties and benefits in Josephson junction. 

Section 3.1 describes the concept of thermal current in Josephson junctions and in section 3.2   

transport mechanism is discussed. Section 3.3 contains all the mathematical work and theories 

used to calculate thermal conductance in one dimension. In section 3.4 and 3.5 the behavior of 

thermal conductance in short and long one dimensional topological Josephson junction is 

discussed respectively. In section 3.6 we extend the earlier case for two dimension.  

Chapter 4 is an application part of topological Josephson junction and we showed how 

topological junction can be used as thermal sensor in that chapter. It is discussed for short 

junction. 

In chapter 5 we conclude our thesis and scope of work in future. 
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CHAPTER 2 

 Review of Relevant Literature 

In chapter 1 we briefly describe the topological Josephson junctions. Now in chapter 2 we will 

give review about topological materials and we will describe how and why topology is used in 

condensed matter Physics. All the necessary information about topological insulators is given in 

this chapter which will be used in chapter 3 and onwards. 

2.1   Electronic Band Structures of Solids 

Metals, insulator and semiconductor are first three states of matter which describes electronic 

phase. After that magnet, superconductors are more exotic phase and in recent year topological 

insulator emerge as a new electronic phase which fascinates the research world. Electrical 

conduction in metals, insulators, and semiconductors is described by band theory of solids [4]. 

The band structure of these three states is shown in figure 2.1.  
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Fig 2. 1 Schematic of band structure of metal, semiconductor and insulator [3] 

Conduction band is present above the Fermi level and valence band is below the Fermi level. 

Fermi level is highest energy state occupied by electrons in materials at absolute zero 

temperature. In metals conduction and valence band overlaps so there are free electrons to flow. 

This makes metals good conductors. Silver, copper, gold, aluminum are some examples of 

conductors. In insulator the energy gap between conduction and valence band is large (about 

6eV).Because of this large gap electrons can not jump into conduction band from valence band. 

So conduction is not possible in insulators. Diamond (energy gap about 5.4eV) is good example 

of insulator. In case of semiconductor the energy gap between conduction and valence band is 

about 1ev. On increasing the temperatures the electrons can jump from valence band to 

conduction band. At zero temperature semiconductors act like insulators but with increasing 

temperature their conductivity increases. Germanium (0.7eV) and Silicon (1.1eV) are examples 

of semiconductors. 

2.2   Use of Topology in Condensed Matter and Classification of Topological 

Matter 



18 
 

D. J. Thouless was the first who describes this new state of matter, quantum hall state and he 

shares a Noble prize in 2016 with Duncan, Haldane and Kosterlitz. They showed how to use 

topology in condensed matter Physics [5]. Topology is the branch of Mathematics which studies 

the quantities that does not change under continuous changes. To relate the topology in physics 

one can consider Hamiltonian of many-particle system separating the ground state and excited 

state through an energy gap. Here topology is in the line that on changing the Hamiltonian the 

bulk is not close. A unique point of view is to associate some integer numbers for each 

topological classes. These are called topological invariants and helpful in defining the band 

structure. A simple example to understand this is given in figure 2.3. 

 

Fig 2. 2 Continuous deformation of a cup into doughnut. In terms of topology both are same 

because number of holes for objects is equal i.e. 1 adapted from [5] 

A doughnut has one hole that is representing the topological invariant. We can see the 

continuous deformation from a doughnut to a cup. Both cup and doughnut belongs the same 

topological class because they have same number of holes i.e. 1. There are mainly three 

symmetries on which class of topological matters depends: The time-reversal symmetry Θ, the 

particle-hole symmetry and the Chiral symmetry [6, 7]. The quantum hall state does not follow 

any of the symmetries so edge states are not safe in this state. These are also called trivial 

topological insulators. On the other hand in quantum spin hall state the edge states are protected 

by time-reversal symmetry and called non-trivial topological insulators. 

2.3   Topological State of Matter 

Other than these three states there exist some material for which the bulk and edge shows 

different behavior. The bulk shows insulating behavior and edge shows conducting nature [8]. 

They are called topological insulator. The most common system which shows this type of 

behavior is two dimensional electron gas (2DEG). When a strong perpendicular magnetic field is 
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applied on 2DEG its bulk behaves as insulator and edge as conductor. An electron travelling in 

these states can not backscatter as the counter propagating channel is on the other side. The 

quantum Hall (QH) state breaks time-reversal symmetry due to the presence of high magnetic 

field. In recent year one new state of matter is in light which does not breaks the time-reversal 

symmetry but breaks two other symmetries. This state is called Quantum spin Hall state (QSH) 

or normally topological insulator [9]. This state is driven by Spin-orbit coupling. In this state of 

matter spin up electron is carried by one mover and spin down electron is carried by another 

which can be shown in figure 2.2.  

 

 

Fig 2. 3 Schematic of the spin polarized edge channels in a quantum spin hall insulator [26]. 

The quantum spin hall insulator state is invariant under time reversal symmetry and has a charge 

excitation gap in the 2D bulk, but has topologically protected 1D gapless edge states that lie 

inside the bulk insulating gap. The edge states have a distinct helical property: two states with 

opposite spin polarization counter propagate at a given edge. Due to this reason they are also 

called helical edge states i.e. the spin is correlated with direction of motion. In this precise sense 

the QSH insulator represents a new topologically distinct state of matter. 

2.4   Two Dimensional Topological Insulator 

As we see in figure 2.2 QSH state needs the counter-propagation of opposite spin states. This 

type of coupling between spin and the orbital motion is relativistic effect and we know the spin 

orbit coupling depends on  𝑍4 . Light elements also show spin-orbit coupling but did not turned 

into topological insulator, while heavy materials turned into topological insulator. Two groups 
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Kane and Mele group and Berniveg, Hughes and Zhang group (BHZ) started work on this topic 

independently. Graphene is the first predicted (According to Kane and Mele model) topological 

insulator but this is not used in experiments because it has small energy gap 10−3𝑒𝑉 [10]. The 

model which is used by BHZ is considered more general which is proposed in 2006. They 

predicted that HgTe/CdTe quantum wells with band inversion mechanism behave as two 

dimensional topological insulator. In the band inversion mechanism valence band and 

conduction band inverted at critical thickness. The quantum well behaves as conventional 

insulator when critical thickness is less than 6.5 nm and behaves as topological insulator beyond 

critical thickness [11, 12, 13]. Unlike the Graphene in which energy gap is too small for direct 

experiments, the energy gap in HgTe/CdTe quantum wells is enough large for performing direct 

experiments. The mechanism which is used in BHZ model is proved mathematically based on 

continuum models and also in first principle and tight binding methods, which all produced the 

Quantum spin hall state and topological phase transition. When HgTe - based quantum well 

structures are grown, the special properties of the well material can be utilized to tune the 

electronic structure. For wide QW layers, quantum confinement is weak and the band structure 

remains “inverted”. However, the confinement energy increases when the wall width is reduced. 

Thus the energy levels will be shifted and finally the energy bands will be aligned in a “normal” 

way, if the QW thickness 𝑑𝑄𝑊 falls below a critical thickness dc.  

 

Fig 2. 4 (a) band inversion mechanism in HgTe/CDTE quantum wells, (b) energy spectra of 

quantum wells [11] 

As in semiconductors the conduction band is filled with s-orbital electrons and valence band is 

filled with p-orbital electrons. Bands are inverted in Hg and Te elements because spin-orbit 
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coupling is strong in heavy elements. The edge states of two dimensional topological insulators 

are protected by time- reversal symmetry. These edge states are also called helical edge states. 

They have one pair of 1D edge states crossing at zero momentum. In figure 2.4 (b) before the 

critical thickness there is an insulating energy gap between valence band and conduction band 

but after critical thickness there are edge states shown by blue and red lines.   

From the explicit solution of BHZ model, there is a pair of helical states exponentially localized 

at the edge, and described by the effective helical edge theory. The concept of “helical” edge 

states refers to the fact that states with opposite spin counter-propagate at a given edge as we see 

in fig 2.4 (b). This is in sharp contrast to the “chiral” edge states in the QH state, where the edge 

states propagate in one direction only, as shown in fig 2.4 (a). In the QH effect the chiral edge 

states cannot be backscattered for sample widths larger than the decay length of the edge states. 

In the QSH effect, one may naturally ask whether backscattering of the helical edge states is 

possible. It turns out that TR symmetry prevents the helical edge states from backscattering. The 

absence of backscattering relies on the destructive interference between all possible 

backscattering paths taken by the edge electrons.  

2.5   Three Dimensional Topological Insulators 

Fu, Kane and Mele, in 2007 first discovered the three dimensional topological insulators. In two 

dimensional topological insulators conduction occur from edge states and it also has an 

insulating bulk but in three dimensional topological insulator bulk is insulating and its surfaces 

behaves as conductor.  As shown in figure the bulk of a three dimensional topological insulator 

is gapped but the surface of 3DTI are gapless and this is the reason for developing the metallic 

two dimensional electron gas. The surface of three dimensional topological insulator supports 

electronic motion in any direction along surface, but the direction of electron’s motion 

determines its spin direction. The dispersion relation describes a cone with a spin perpendicular 

to the momentum which rotates with it. This cone is called Dirac cone. 
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The first predicted three dimensional topological insulator is  𝐵𝑖2𝑆𝑏1−𝑥 in 2007 [14]. After that 

in 2009 𝐵𝑖2𝑇𝑒3, 𝑆𝑏2𝑇𝑒3 and 𝐵𝑖2𝑆𝑒3 are experimentally proved three dimension topological 

insulators. Soon after the theoretical prediction of the three dimensional insulator in 

𝐵𝑖2𝑇𝑒3, 𝑆𝑏2𝑇𝑒3  and 𝐵𝑖2𝑆𝑒3 class of materials, the surface states with a single Dirac cone is 

observed using angle resolved photo Spectroscopy. Unlike Graphene, the Hamiltonian of 

topological insulators is the function of real spin rather than a sub-lattice pseudo-spin degree of 

freedom. This implies spin dynamics will be qualitatively different from the Graphene. Due to 

the dominant spin-orbit interaction it is also very different from ordinary spin-orbital coupled 

semiconductors. 

 Experimental studies have provided evidence of the existence of chiral surface states and of 

their protection by time reversal symmetry. Several efforts have focused on the role of magnetic 

impurities on the surface states of three dimensional topological insulators. The key to the 

eventual success of topological insulators in technological materials is linked to their transport 

properties which is described in section 3.2. Potential applications of topological surface states 

necessarily rely on the realization of an edge metal allowing continuous tuning of the Fermi 

energy through the Dirac point, the presence of a minimum conductivity at zero carrier density 

and bipolar transport. 

 

Fig 2. 5 (a) Schematic of three dimensional topological insulator, (b) band 

structures of surface states on a 3DTI. Arrows represent the spin of the electrons 

and always perpendicular to its momentum [27]. 
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CHAPTER 3 

Study of Thermal Conductance in Topological Josephson Junctions 

In chapter 2 we discussed how topology is used in condensed matter and all the necessary 

information about topological insulators which will be used in studying the thermal conductance 

in topological Josephson junctions. In the present chapter the origin of thermal current in 

Josephson junction is discussed and then the variation of thermal conductance in one 

dimensional and two dimensional Topological Josephson junction is discussed.  

3.1   Thermal Current in Josephson Junctions 

In superconductor-insulator-superconductor Josephson junction, the total electrical current is 

contribution of three parts: Quasi-particle current, an interference current, The Josephson current. 

[15] Quasi-particle current has dissipation nature because its response to temperature drop or 

voltage cross is non-equilibrium. An interference current represented as 𝐼𝑐𝑐𝑜𝑠 (∅)) and it’s the 

result of coupling between quasi-particle and condensate. The Josephson current is represented 

as 𝐼𝑐𝑠𝑖𝑛 (∅) and can flow without the voltage across the junction [16]. 

These results lead the Physicists to study the energy transfer through junction. In Josephson 

junction energy current is divided just as its electrical counterpart. The current carried by the 

quasi-particles are dissipative in nature. Interference current and pair current are non-dissipative. 
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The interference current flows only when there is a temperature or voltage drop across the 

junction but Josephson current can flow in absence of voltage too [17]. 

As we discussed in chapter 1 that heat current or energy current is also phase dependent like 

Josephson current. So the theory we are using for Josephson current may be applied for thermal 

current also. Here we only talk about the thermal current. 

3.2    Transport Mechanism: Andreev Reflection 

Here we are connecting two superconducting leads through a three dimensional topological 

insulator so we know that bulk of 3DTI is insulating and surfaces are conducting. To understand 

the transport mechanism of surfaces Andreev Reflection mechanism is used. 

The surface of three dimensional topological insulators is conducting so there are electrons to 

move. It is like interface of N-S junction. From the conducting surface when one electron with 

energy less than superconducting gap (∆) comes toward the superconducting lead, it cannot enter 

in the superconducting regime because of the zero density of states at this energy. Instead 

electron is back reflected as a process called Andreev reflection [18, 19]. 

In Andreev reflection electron reflects back as a hole from the interface to N-side and make a 

bound state called Andreev Bound State (ABS). At the same time one Cooper pair is transmitted 

in superconductor regime as shown in figure 3.1a. We can extend this mechanism for S-3DTI-S 

Josephson junction as we see in figure 3.2. This process happens in both interfaces. One Cooper 

pair is transmitting in right lead and same process happens in the left lead. So Cooper pair is 

transmitting through left lead to right lead and this process conserves charge and energy. In 

figure 3.2 in the right superconducting lead Andreev reflection proceeds as: one electron with 

energy EF+ε and wave vector kF+q and back reflects as hole with opposite spin, energy EF-ε and 

wave vector –

kF+q . 

 

 

Fig 3. 1 N- S interface of a Josephson junction [18] 
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Fig 3. 2 Andreev reflection in S-TI-S Josephson junction. The two superconductor leads have a 

gap 2∆ [18] 

 

3.2   Theoretical Formulation for Thermal Conductance in Topological 

Josephson Junctions 

We had already discussed transport mechanism of cooper pairs in Superconductor-topological 

insulator-superconductor junction. Quasi-particles with energy above or below the 

superconducting gap carries the heat current in junction. Heat current does not suffer 
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backscattering and it is more faster than electrical part. Here we are studying the thermal 

conductance in Josephson junctions based on surface states of three dimensional topological 

insulators. There is a phase difference ØR-ØL across the junction and the pair potential is given 

by ∆𝑒𝑖∅𝑟. Here we take an assumption that change on pair potential is small than superconducting 

coherence length [20]. 

The mathematical formulation for the study of thermal conductance is set by the help of 

Bogoliubov-De Gennes equation. Josephson junctions are typical example of inhomogeneous 

system. To describe the inhomogeneous systems Ginzburg-Landu theory is used but 

disadvantage with this theory is that it is not applicable for quasi-particles. The microscopic 

description to discuss inhomogeneity and to make BCS mean field Hamiltonian spatially 

dependent, Bogoliubov-De gennes Hamailtonian is used. 

The Bogoliubov-De Gennes Hamiltonian for electron-like and hole-like quasi-particles is given 

as        

H= −ℎ𝑘ℎ𝑘
∗ + 𝜎𝑦

2∆2𝑒−𝑖∅𝑟𝑒𝑖∅𝑟 (3.1) 

Where ℎ𝑘 =
ℎ

2𝜋
𝜗𝐹𝑘. 𝜎 − 𝜇𝜎0 is the Dirac Hamiltonian for single-particle which defines the helical 

surface of topological insulators, k is the charge carrier wave vector, 𝜗𝐹 is the Fermi velocity. 

The eigenfunctions for the electron-like quasi-particle which is moving right side and hole-like 

quasi-particle which is moving left are given by  

𝜑1(𝑥, 𝑦) = (𝑢, 𝑒𝑖𝑘𝜃𝑒𝑢, −𝑒−𝑖∅𝑟𝑒𝑖𝜃𝑒𝑣, 𝑒−𝑖∅𝑟𝑣)
𝑇

𝑒𝑖𝑘𝑒.𝑟 

𝜑2(𝑥, 𝑦) = (𝑣, 𝑒𝑖𝜃ℎ𝑣, −𝑒−𝑖∅𝑟𝑒𝑖𝜃ℎ𝑢, 𝑒−𝑖∅𝑟𝑢)
𝑇

𝑒𝑖𝑘ℎ.𝑟 

(3.2) 

(3.3) 

 

Where r = (x, y) and 𝑘𝑒,ℎ= 𝑘𝑒,ℎ(𝑐𝑜𝑠𝜃𝑒,ℎ, 𝑠𝑖𝑛𝜃𝑒,ℎ)  

u, v are coherent factors and given as  
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𝑢 =
1

2
√1 +

√𝜔2 − ∆2

𝑤
, 𝑣 =

1

2
√1 −

√𝜔2 − ∆2

𝑤
 

(3.4) 

 

In one dimension the barrier potential plays no role so we skip the barrier potential for one 

dimension. Although potential leads to the boundary condition. 

The wave functions of electron like quasi-particles for the three regions(S, TI, S) may be written 

as   

A) 𝜑𝐿 = 𝜑𝑆
𝑒± + 𝑟1𝜑𝑆

𝑒− + 𝑟𝐴
1𝜑𝑆

ℎ− 

B) 𝜑𝑀 = 𝑓𝜑𝑁
𝑒+ + 𝑔𝜑𝑁

ℎ+ + 𝑚𝜑𝑁
𝑒− + 𝑛𝜑𝑁

ℎ− 

C) 𝜑𝑆 = 𝑡1𝜑𝑆
𝑒+ + 𝑡𝐴

1𝜑𝑆
ℎ+ 

 

(3.5) 

Where,  𝑟1  and  𝑟𝐴
1 amplitudes of normal and Andreev reflections. f, g, m, n are corresponding 

transmission and reflection amplitude in NM and 𝑡1, 𝑡𝐴
1 are the amplitudes of electron-like and 

hole-like quasi-particles in the right superconducting lead. 

 Similarly wave functions for hole-like quasi-particles for three regions may be given as 

A) 𝜑𝐿 = 𝜑𝑆
ℎ+ + 𝑟2𝜑𝑆

ℎ− + 𝑟𝐴
2𝜑𝑆

𝑒− 

B) 𝜑𝑀 = 𝑓′𝜑𝑁
𝑒+ + 𝑔′𝜑𝑁

ℎ+ + 𝑚′𝜑𝑁
𝑒− + 𝑛′𝜑𝑁

ℎ− 

C) 𝜑𝑆 = 𝑡2𝜑𝑆
𝑒+ + 𝑡𝐴

2𝜑𝑆
ℎ+ 

 

(3.6) 

The thermal conductance of a one dimensional Josephson junction is given by  

             

𝑘(∅) =
1

ℎ
∫ 𝑑𝜔𝜔(𝜏𝑒(𝜔, ∅) + 𝜏ℎ(𝜔, ∅))

𝑑𝑓

𝑑𝑡

∞

∆

 
(3.7) 
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Where f =
1

𝑒𝜔 𝑘𝑏𝑇⁄ +1
 is the Fermi distribution function. 

3.3   Result and Discussion for Thermal Conductance in Short One 

Dimensional Topological Josephson Junctions 

The transmission probability for short one dimensional topological Josephson junction is given 

by  

  

𝜏𝑒,ℎ(𝜔, ∅) =
𝜔2 − ∆2

𝜔2 − ∆2𝑐𝑜𝑠2 ∅
2

 

 

(3.8) 

It is pointed out that transmission probability is independent of strength of barrier potential in 

one dimension. Here we calculate the thermal conductance as a function of phase with different 

superconducting gap. 

 

 

Fig 3. 3 Thermal conductance as a function of phase in units of thermal conductance quantum 

for 𝒌𝑩𝑻 = ∆ 
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Fig 3. 4 Thermal conductance as function of phase in units of thermal conductance quantum for 

𝒌𝑩𝑻 = ∆/2 

 

 

 

 

Fig 3. 5 Thermal conductance as function of phase in units of thermal conductance quantum for 

𝒌𝑩𝑻 = ∆/4 

 

 

From these plots of thermal conductance as a function of phase we observe that thermal 

conductance decreases with decreasing temperature. This is due to less number of thermally 

excited quasi-particles on decreasing temperature. The oscillations starts on lowering the 



30 
 

temperature but temperature can’t be lowered too much because thermal conductance will be 

decreased. As we see that in one dimension transmission probability is only the function of phase 

and superconducting gap. We neglect the barrier strength potential case but in two dimensional 

case we have to take in account the strength of barrier potential. 

3.4   Result and Discussion for Long One Dimensional Topological Josephson 

Junction 

In one dimensional short topological Josephson junctions we consider only phase dependence in 

transmission function because the intermediate region is very thin. For numerical simplicity L=0 

is taken into account. But in long one dimensional S-TI-S junctions the intermediate region plays 

an important role because in intermediate region hole and electron wave vector depends on 

energy as we have shown in equation number 3.4.  So the modified transmission function for 

long topological junction is given as… 

𝜏𝑒,ℎ(𝜔, ∅) =
𝜔2 − ∆2

𝜔2 − ∆2𝑐𝑜𝑠2(
∅
2 ∓

𝜔𝐿
ℏ𝛝𝐹

)
 

(3.9) 

Here transmission function as well as thermal conductance is a function of junction length L and 

phase difference ∅. The three dimensional profile of thermal conductance as a function of phase 

and junction length is given in figure 3.6, 3.7 and 3.8. 
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Fig 3. 6 Thermal conductance of a long one dimensional S-TI-S Josephson junction in units of 

GQ as a function of junction length and phase difference for 𝒌𝑩𝑻 = ∆ 

 

 

Fig 3. 7 Thermal conductance of a long one dimensional S-TI-S Josephson junction in units of 

GQ as a function of junction length and phase difference for 𝒌𝑩𝑻 = ∆/𝟐 
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Fig 3. 8 Thermal conductance of a long one dimensional S-TI-S Josephson junction in units of 

GQ as a function of junction length and phase difference for 𝒌𝑩𝑻 = ∆/𝟒 

Thermal conductance in long one dimensional topological Josephson junctions as a function of 

phase difference and junction length shows abrupt behavior.  

This type of behavior of thermal conductance in short and long topological Josephson junctions 

clearly indicates that topological Josephson junctions may be used as thermal switches because it 

can achieve a large temperature difference between the on and off state which is discussed in 

chapter 4. 

3.5    Result and Discussion for Two Dimensional Topological Josephson 

Junction  

As discussed in section 3.1 that, in two dimensional case we have to take into account the 

strength of barrier potential. It is modeled by a delta potential U δ(x), with barrier height U. The 

boundary condition with the help of this potential is given by 𝜑𝐿(0, 𝑦) = 𝑐𝑜𝑠𝑍𝜏0𝜎0 +

𝑖𝑠𝑖𝑛𝑍𝜏𝑧𝜎𝑥𝜑𝑅(0, 𝑦) where 𝑍 =
𝑈

ħ𝑣𝐹
 and 𝜏 is the Pauli matrix. In two dimensional case there are 

more than one channels N>>1 to carry the quasi-particles. So here we are plotting the thermal 

conductance as a function of interface barrier strength with N>>1 for  𝑘𝐵𝑇 = ∆ 2⁄ . 
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Fig 3. 9 Thermal conductance as a function of interface barrier strength Z for 𝒌𝑩𝑻 = ∆/𝟐 

 

In two dimensional topological Josephson junction the thermal conductance as a function of 

interface barrier strength shows oscillations with temperature. Incidence of quasi-particles play 

an important role here. 

Oblique incidence of quasi-particles in topological insulator from superconductor does not show 

unit transmission because it can backscattered. This type of incoming of quasi-particles 

experiences a higher barrier potential at interface. Quasi-particles which have normal incidence 

show unit transmission. We got oscillations in thermal conductance for two dimensional 

topological Josephson junction due to resonance formation at interface when incidence of quasi-

particles is normal. We see that in heat current the contribution of oblique incidence is less than 

the normal incidence of quasi-particles. 
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CHAPTER 4 

Application of Topological Josephson Junctions as Thermal Switch 

In the previous chapter we have discussed the thermal conductance behavior in one dimensional 

and two dimensional topological Josephson junction and find that it is showing oscillations more 

rapidly in two dimensional topological Josephson junction. In the present chapter we will discuss 

how topological Josephson junction based on two dimensional topological insulator can be used 

as thermal switch.  

4.1   Two Dimensional Topological Insulator in Josephson Junctions 

We make some changes here in junction three dimensional topological insulator is replaced by 

two dimensional topological insulator and we study the behavior of thermal conductance as a 

function of magnetic flux. The motive of using the two dimensional topological insulator is that 

it has helical edge states which are conducting and conductance increased from  
2𝑒2

ℎ
𝑡𝑜 

4𝑒2

ℎ
 due to 

Andreev reflection [22]. Experimentally it has proven that heat current also depends on phase 

and it is found on superconducting quantum interference device (SQUID) [23]. Experimentally it 

is also proven that heat current also diffracted with magnetic flux [24, 25].  

On the basis of above discussion, temperature biased topological Josephson junction can be used 

as thermal switch and it can be controlled by weak magnetic field. The switching behavior can 

be controlled by junction length i.e. junction is short or long. The two superconducting 

electrodes are separated by the edge channels of two dimensional topological insulators. Heat 

current is produced when we put these two superconducting leads at different temperatures i.e. 

∆𝑇 = 𝑇𝐿 − 𝑇𝑅.  

4.2   Thermal Conductance for Short Junction  

Here we show the flux dependence of thermal conductance for short junction 𝐿 = 𝜉0, for different 

temperatures. The short junction and long junction is decided according to characteristic length. 
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Fig 4. 1 Flux dependence of thermal conductance for short junction for 100mK [28] 

 

Thermal conductance is suppressed exponentially as we see in figure 4.1. At low temperature, 

less number of thermally excited quasi-particles and also the superconducting gap is present. 

That’s why thermal conductance is decreasing. When we apply some magnetic flux, the 

superconducting gap is closed so that we can get higher thermal conductance of k=2GQ where  

𝐺𝑄 =
𝜋2𝑘𝐵

2 𝑇

3ℎ
 is the thermal conductance quantum. The change in thermal conductance is rapid. 

The oscillations we got in thermal conductance can be related to the point that electron and hole 

wave vectors are energy dependent. 
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CHAPTER 5 

Conclusion and Scope of Future Work 

 

5.1   Conclusions 

 Heat current depends on phase just like the Josephson current. The thermal conductance in 

topological Josephson junction, (either one dimensional or two dimensional, based on three 

dimensional topological insulator) shows oscillations in possible range of superconducting gap 

and temperature. In one dimension the oscillations are not too pronounce and the transmission 

function has only phase dependence. In one dimensional short topological Josephson junction, 

the transmission function as well as thermal conductance is independent from the strength of 

interface barrier. With lowering the temperature the thermal conductance decreases rapidly. But 

in two dimensional topological Josephson junction we see that thermal conductance depends on 

barrier potential also. We got oscillations in thermal conductance as a function of Z (strength of 

interface barrier). Because of this potential, incoming quasi-particle experiences some force 

there. In two dimensional topological Josephson junctions, the normal incidence of quasi-

particles gives the unit transmission because at interface resonance occurs. While in oblique 

incidence unit transmission not occurred. In long topological Josephson junctions the 

transmission function is function of phase and junction length. The study of thermal conductance 

for short and long one dimensional topological Josephson junction and two dimensional 

topological Josephson junction indicates that topological Josephson junctions can be used in 

thermal sensing devices. It can be controlled by small magnetic field and the switching behavior 

is controlled by junction length. For short junction the behavior is sharp and for long junction the 

thermal conductance behavior is smooth.  

5.2   Scope of Future Work 

1. Experimental set up for Thermal switch using topological Josephson junction 

2. Phase tunable- thermal rectification in the topological SQUPIT. 
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3. Phase coherent heat circular based on multiple Josephson junctions. 

4. Phase-dependent heat and charge transport through superconductor–quantum dot hybrids 
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