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Abstract

With unprecedented advancement in mobility technology, most of the vehicles in the

world are still operating on fuels from natural resources. On burning these vehicles

contribute to air pollution significantly affecting life of every individual with maximum

concern for the older as well as to newest generations. Thus, it becomes extremely

important to measure and model air pollution and take preventive actions as efficiently

and quickly as possible. For modelling, traffic characteristics like volume, and density

near fixed monitoring sites plays an important role. These flow characteristics can also

be coupled with nearby land use to give a better spatio-temporally varied model for

pollutant prediction. Real-time congestion data can provide a fast and accurate measure

of various pollutants that a person can expect on a particular route. It can significantly

help non-motorized transit users and active users to plan their route based on the greenest

route available.

In the present study, real-time congestion information is fused in a land-use regression

model. The former is obtained from HEREmaps Traffic Flow API (Application programming

interface). To integrate land use information in the model, each raster pixel for the data

inside the buffer region can be converted to a point, and a value is assigned to it, which is

based on its distance from the monitoring station, land use, and traffic flow. Using these

point data, regression analysis can be done to obtain a predictive model which can be used

along any route to give a better-estimated value of pollutant concentration experienced

by the user. These results can be integrated with map services to give a greener and safer

route for active and non-motorized users leading to sustainable development.

Keywords : Air pollution, Land Use, Real-time traffic, Regression modelling
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Chapter 1

Introduction

1.1 General

Air pollution is the presence of non-natural or harmful substances which alters proportion

of various gases in the atmosphere. These pollutants can be in any form of gases (like

CO, NH3, SO2, NOx, CH4, CFC’s), biological molecules or particulate matter which can

be subdivided on basis of diameter of pollutants. These may be of organic or inorganic

matter (Manisalidis et al., 2020). These pollutants can harm the health of human beings

and other living beings.

In the United States of America, United States Environmental Protection Agency

(USEPA) have set upper limits for 6 major contributors of air pollution in its National

Ambient Air Quality Standards (NAAQS). These criteria pollutants are Sulfur Oxides

(SOx), Nitrogen Oxides (NOx), Particulate matter (PM), Carbon Monoxide (CO), Lead

(Pb) and Ozone (O3) (USEPA, 2022). Burning of fossil fuels and biomass yields Sulfur

Oxides (SOx), Nitrogen Oxides (NOx) and Carbon Monoxide (CO) whereas metal smelting

plants, petroleum refining and industrial effluents are major source for Sulfur Oxides

(SOx) and Lead (Pb) pollution (WHO, 2021). Lead (Pb) is also waste generated from

incineration plants, automobile exhausts and lead-acid batteries. These hydrocarbons

and Nitrogen Oxides (NOx) react in presence of sunlight to form Ozone (O3) (WHO,

2021). Major source of Particulate Matter (PM) pollution is industrial combustion and

vehicular emission. From Internal Combustion engines Carbon Monoxide (CO) is also

generated (WHO, 2021). In India, the Air (Prevention and Control of Pollution) Act,

1981 gave government power and rights to set standards for air pollution. The control

and enforcement for vehicular emissions also come under this act. A central agency

1



CHAPTER 1. INTRODUCTION

Central Pollution Control Board (CPCB) along with BIS, MoEF, MoPNG, MoRTH gave a

value for industrial area, residential areas, rural and other areas and ecologically sensitive

areas which are notified by the government in National Ambient Air Quality Standards

providing upper limit for 12 air pollutants (Envis CPCB, 2016). These are listed in

Table 1.1 with corresponding limits. Among all of these particulate matter is the most

common pollutant.

Table 1.1: National Ambient Air Quality Standards (NAAQS) India – 2009 (Envis CPCB,
2016)

Pollutant Time weighted average
Concentration in ambient air

Industrial,
residential, rural
and other areas

Ecologically
sensitive area

Sulfur dioxide (SO2)
Annual 50 20

24 hr 80 80

Nitrogen dioxide (NOx)
Annual 40 30

24 hr 80 80

PM10

Annual 60 60

24 hr 100 100

PM2.5

Annual 40 40

24 hr 60 60

Ozone (O3)
8 hr 100 100

1 hr 180 180

Lead (Pb)
Annual 0.5 0.5

24 hr 1 1

Carbon Monoxide (CO) milli
8 hr 2 2

1 hr 4 4

Ammonia (NH3)
Annual 100 100

24 hr 400 400

Benzene Annual 5 5

Benzo α pyrene nano Annual 1 1

Arsenic nano Annual 6 6

Nickel nano Annual 20 20

All these pollutants cause harmful effects to human being to such an extent that it can

2



CHAPTER 1. INTRODUCTION

lead to death, prior to which it causes many diseases and allergies (Velasco et al., 2019).

These symptoms may be classified as long term or short term symptoms. Old people

and children are highly susceptible to harmful effect of these pollutants (Manisalidis

et al., 2020). Epidemiological and toxicological studies have shown that the air pollution

primarily affect functioning of heart and lungs leading to adverse complications by entering

through respiratory tract and accumulating in lung cells (Manisalidis et al., 2020). From

Figure 1.1 it can be seen that for long term diseases ischaemic heart diseases and strokes

lead to more than half of the deaths caused by air pollution followed by lung related

problems which can finally lead to end of life (WHO, 2014). Long term air pollution

exposure can also lead to change in count of total blood cells (Manisalidis et al., 2020).

Prolonged exposure to these pollutants results in lung cancer and chronic obstructive

pulmonary disease (COPD) which is a proven fact (Polednik and Piotrowicz, 2020). Along

with these decline in cognitive ability is also seen along with neuro-degenerative diseases

like dementia (Sinharay et al., 2018).

Figure 1.1: Outdoor air pollution caused deaths, source: (WHO, 2014)

While for short term effects problems related to eyes, nose and throat are most

common. These may compile if exposed for long duration leading to bronchitis, pneumonia,

asthma, and allergic reactions (Velasco et al., 2019). Smog, particulate matter, ozone,

3



CHAPTER 1. INTRODUCTION

nitrogen dioxide and sulfur dioxide can all contribute to ear, nose and/or throat irritation.

Eyes, nose or throat infections maybe results of either smog or particulate matters

(Manisalidis et al., 2020). Smog is a mixture of fog with smoke leading to higher

quantity of suspended small diameter particles. Due to smog the amount of particulate

pollution increases manyfolds (EDF, 2017). Pollutants in the air cause oxidative stress,

which harms the skin. Although human skin functions as a biological protection against

pro-oxidative chemicals and physical air pollutants, repeated or protracted exposure to

excessive amounts of these pollutants can have serious consequences for the skin (Brauer

et al., 2015). Many of the short term effects caused due to air pollutants on the human

skin may contribute to problems like skin aging, atopic dermatitis, skin cancer, psoriasis,

and acne (Kathuria et al., 2017).

Not only living beings, it can cause damage to non-living agents like materials of

structures or monuments and it also greatly affects on the environment. It is also

the source for acid rain which damages crops, monuments and natural environment

(Envis CPCB, 2016). Both natural activities as well as human activities can cause

substantial damage in environmental ecosystem which may lead to air pollution. Some of

these may directly be emitted by various sources into air while others may be formed by

reaction between substances present in atmosphere. The former are known as primary

pollutants while later is called secondary pollutants (Envis CPCB, 2016). Urbanization

also plays an important role in determining type of pollutants (Wang et al., 2018).

Urbanization is a process composite of many changes started by population migration

leading to economic development and change in land use (Wang et al., 2018). A general

trend is also observed by scholars stating that the increase of population during urbanization

is also causing a rise in serious air pollution concentrations (Larkin et al., 2016). Studies

have been done to demonstrate correlation between air contamination and urban population

density (Wang et al., 2020). Approximately a quarter of particulate pollution is emitted

from the vehicles. With increase in vehicle ownership the amount of air pollution is ought

to rise (Larkin et al., 2016). At present Indian capital and areas nearby gets affected by

problem of air pollution every year. Indian cities, in general, are characterized by the

high motor vehicle population as they are excessively dependent on their road network

4



CHAPTER 1. INTRODUCTION

for freight and passenger traffic movements (Dutta and Jinsart, 2021). This problem of

severe air pollution intensifies in the winter months. In the winters the dispersion rate of

these pollutants changes due to which it takes more time to settle down (Tiwari et al.,

2018). Other than these meteorological factors, land use also plays an important role in

determining the dispersion of pollutants (Xu et al., 2021).

Till now most of the studies are towards finding the correlation between the land use

and pollutants concentration (Briggs et al., 1997). Another subset of spatial distribution

simulation focuses on finding the predictor variables based on GIS (Geographic Information

System) techniques for different pollutants (Eeftens et al., 2012). With the increase in

significance and accuracy of results obtained from these models, researchers have felt the

land use to be among one of the major contributing factor in pollutant concentration

detection (Yang et al., 2017; Shi et al., 2019; Xu et al., 2021).

The elementary principle of geo-spatial regression comes from idea of correlating any

measured quantity like pollutant concentration at any location or water contamination

level at a given location with the presence and intensity of influence of sources and sinks.

These presence or intensity can act as explanatory variables due to which increase and

decrease in the measured quantity can be seen (Mölter and Lindley, 2021).

The institutionalized method for Land Use Regression or the classical LUR approach

is used by most of the air pollution studies done. It is based on the method developed for

the European Study of Cohorts for Air Pollution Effects (ESCAPE) (Beelen et al., 2013).

ESCAPE study was done utilising already done studies in approx 30 cohorts spanning

pan-Europe. This was done to find correlation between long term air pollution and health

effects (Jerrett et al., 2004).

Another study on Land use regression technique was also conducted in Europe under

Small Area Variation in Air Pollution Health (SAVIAH) Project (Jerrett et al., 2004).

In this study air pollution emissions from vehicular sources were taken into account for

four European cities of Amsterdam (Netherlands), Huddersfield (U.K.), Prague (Czech

Republic) and Poznan (Poland). In this study a methodology was developed based on

the regression analysis and GIS tools were used for determining predictor variables. This

study was done for four 2-week periods by taking oxides of nitrogen as marker variable

5



CHAPTER 1. INTRODUCTION

for traffic related pollution. Later study by Briggs (2005) investigated the same for four

U.K. cities of Huddersfield, Hammersmith and Ealing, Sheffield and Northampton. All

these studies showed similar results as that found from other traffic pollution studies of

the time (Brauer et al., 2003).

1.2 Need for study

Air pollution contributes considerably to morbidity and death especially in Asia. Roughly

60% of the world’s population lives in Asia (Kaneda and Bietsch, 2015). And among

them about 88% reside in low to middle-income nations with around 3 million worldwide

excess fatalities as the result of exposure to external air pollution (Kumar et al., 2018).

According to a report published by World Health Organization (WHO, 2018) in April

2018 encompassing 100 countries for a span of 5 years from 2011 to 2016, top 15 most

polluted cities ranked by concentration of PM2.5 from the various monitoring database,

were situated in Asia with Delhi leading the list among the world’s largest cities (Guttikunda

et al., 2019). New Delhi, capital of India, is one of the world’s ten largest metropolitan

regions with a population estimated of 16.78 million in 2011 (Forstall et al., 2009; Apte

et al., 2011). Although there are various fixed monitoring stations which record air

quality data in real time but due to high spatial as well as temporal variability of pollutant

concentration it is very difficult to get correct pollutant concentration data for everyplace.

A proper air quality sampler with all the equipments is very difficult to place in a well

maintained grid without incurring huge costs. Both installation and maintenance of such

equipments would require a good amount of expense thus making the system non-feasible

for the project to sustain for long duration.

This study can help people to understand air quality around them. The health of the

entire community would consequently be benefited from reducing air pollution connected

to transport. To tackle the problem of air pollution government has also taken various

step to curb pollution causing activities. These include Graded Response Action Plan

(GRAP) in 2017. GRAP were set of action plans for an emergency situation when air

quality reaches very poor category and if air quality deteriorates to severe category strict

rules like shutting down schools and implementing the odd-even road-space rationing

6



CHAPTER 1. INTRODUCTION

scheme were exercised. It provided a step by step action plan for whole Delhi-National

Capital Region (NCR) region by taking all different agencies responsible for crubbing air

pollution on a single platform (Desk, 2020).

In general, choices about transit also affect physical activity. There is evidence that

active transportation decreases the risk of cardiovascular, cancer and various other causes

of death rather than driving an automobile (Mitsakou et al., 2021). Thus providing a

greener route will benefit active commuters in their route choice. Also, assessment of real

time pollutant concentration is essential for health effect studies and local policymaking

(Manojkumar et al., 2021).

1.3 Objectives of the study

The aim of this study is to model an air pollution prediction system based on land use

and traffic flow characteristic of any area. To carry out the study, this report is divided

into following goals:

• To understand various pollution modelling techniques for practical applications.

• To develop a real-time congestion-based land use model for prediction of pollutant

concentration.

• To perform a spatially varied regression analysis using Traffic API (Application

Programming Interface) data.

1.4 Organization of Report

The report contains five chapters briefed as following: chapter 1 initiates with introduction

of air pollution and land use regression, afterwards topics like the need and objectives of

the study are highlighted. In chapter 2, the key findings from various literature studies is

reviewed and the factors that are directly or indirectly affecting the modelling function

are mentioned. Methodology adopted for analysis is discussed in chapter 3. Results from

model analysis obtained are seen in chapter 4. In chapter 5, a general discussion and

limitations are highlighted followed by future work which can be done in this field.

7



Chapter 2

Literature Review

2.1 General

Any air pollutant concentration predictive model is constructed on basis of many factor

which can be meteorological in nature like temperature, pressure or relative humidity

or based on demographics of the area like population and traffic characteristics. To

understand the development of a spatio-temporal predictive models for pollutants taking

into consideration real-time congestion patterns a methodological review was done. To

identify articles related to this study keywords like - (“Land Use” OR “Air pollution” OR

“India”) were used in Google Scholar, Scopus and PubMed. Out of 527 research articles

52 were shortlisted based on abstract. These studies were used to understand land use

modelling and regression modelling. In additions to these, references from these selected

studies were used for further understanding. Only articles from last two decade (2001 -

2021) and in English were selected.

Urban PM2.5 consists mostly of compounds of carbon, ions, and chemicals which

are known to have come from traffic-related sources, industrial emissions, combustion of

biomass and salt (Manojkumar et al., 2021). As PM2.5 stays suspended in the atmosphere

for a longer duration and travels a larger distance it have a greater impact on the lives of

people. With a variety of toxic components PM2.5 is the most prominent difficulty faced

by developing country like India. This pollutant concentration can be found from two

ways one by fixed monitoring while second by mobile monitoring. In fixed monitoring

the outreach is very limited. To predict these pollutants’ concentration at any position

various different models are used like (a) proximity-based assessments (b) statistical

interpolation (c) land use regression models (d) line dispersion models (e) integrated

8



CHAPTER 2. LITERATURE REVIEW

emission-meteorological models. These models are discussed in brief in next section.

2.2 Models used in past

Before going into detail on land use regression methods, this section deals with several

other methods which can be used to model air pollution concentrations. There are several

methods which can be used to model air pollution in larger areas, like ‘interpolation

of fixed-site government monitoring data, dispersion modelling, satellite remote sensing,

land use regression (LUR), and proximity and deterministic methods’. The most important

methods, in the context of this study, are discussed below to determine their characteristics

and their strong and weak points. Fig. 2.1 shows the models that has been used in past

to model air pollution concentrations.

Figure 2.1: Different models used for Air pollution study

2.2.1 Proximity-based assessments

Measuring a subject’s proximity to a pollution source is the most fundamental method for

distinguishing intra-urban air pollution exposures. This strategy assists in the identification

of correlations between atmospheric pollution and health outcomes based on the idea

that proximity to emission sources may be used as proxies to indicate exposure in human

populations. Venn (2000) used a traffic activity index. Traffic flows on roadways near

a study schools were assessed as a continuous measure of traffic density for those 1-km2

grid cells. Scholars found greater traffic counts or pollutants near the dwelling aggravate

9
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asthma symptoms (Vliet et al., 1997; Ciccone et al., 1998). But later studies statistically

did not supported that pollution exposure affects asthma onsets (Wilkinson et al., 1999).

2.2.2 Geo-statistical interpolation

Geostatistical approaches based on both deterministic and stochastic methods, are used

in interpolation models. The target pollutant is measured at a network of monitoring

stations located across the study region. The goal is to obtain estimates of pollutant

concentrations at locations other than monitoring station locations based on interpolation

of results. “Kriging” is the most often used geostatistical approach in the field of

air pollution (Jerrett et al., 2001). Kriging models use spatial dependency in data to

create continuous pollution surfaces. The ability to provide both projected values and

associated standard errors (kriging variance) in unsampled sites is a significant benefit.

These standard errors measure the degree of uncertainty in spatial forecasts at unsampled

locations, indicating where interpolation is less accurate (Mulholland et al., 1998).

2.2.3 LUR models

The robust strength of Land use regression lies in its empirical structure of the regression

mapping. Because of this adaptation to new areas can be done without requirement

of additional monitoring or data stations (Jerrett et al., 2004). LUR also assists in

methods that identify areas requiring more intensive monitoring through the installation

of additional stations (Kanaroglou et al., 2005). The main setback for this method comes

from its area specificity (Jerrett et al., 2004).

2.2.4 Line dispersion models

Dispersion models are typically based on Gaussian plume equations (Bellander et al.,

2001). They generate geographic exposure estimates of air pollution concentrations

using assumptions about deterministic processes and data on emissions, meteorological

conditions, and topography. In the research by Nyberg et al. (2000), when a number

of factors were controlled, lung cancer was not substantially linked with simulated NO2.

These models have the following drawbacks: (a) very expensive data input; (b) unrealistic

assumptions regarding dispersion patterns (i.e., Gaussian dispersion); (c) extensive cross-

10
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validation required using monitoring data; and (d) temporal mismatches in data might

potentially generate estimate biases (Jerrett et al., 2004).

2.2.5 Integrated emission-meteorological models

Meteorological and chemical modules are used together in integrated meteorological-

emission (IME) models to study the dynamics of atmospheric pollutants (Nicholls et al.,

1995). They have a lot of potential, especially in locations with a lot of people, where

very little air pollution hazards may lead to significant and high secondary pollutant

levels, which can cause a lot of disease and death (Jerrett et al., 2004). For installation

and operation, IME models need high-end computing equipment, complex software, and

highly skilled and experienced individuals leading to increase in cost of installation and

operations.

2.3 Land use regression (LUR)

Land use describes how a part of land is being used by the humans. It represents the

type of economic, social or environmental activity being practised at a particular position.

Generally the land cover and use is used interchangeably but there is a difference between

two as Land use indicates how people are using the land, whereas land cover indicates the

physical land type. Land use does not describe the surface cover on the ground. Land

cover refers to the surface cover on the ground like vegetation, urban infrastructure,

water, bare soil or other. Land cover does not describe the use of land, and the use of

land may be different for lands with the same cover type.

Land use affects how the pollutant will behave and disperse at different places due

to which pollutant concentration may differ significantly. The spatial variability of

pollutants have not been explained within city by fixed monitoring stations because of

high dispersion rate and complex dispersion track because of land use (Sahsuvaroglu

et al., 2006).

Measured pollution concentrations y at site s are used as the response variable, while

land use types x within buffers surrounding location s are used as predictors of the

measured concentrations as shown in Figure 2.2. The approach comprises using least-
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squares regression modelling to estimate pollutant surfaces based on pollution monitoring

data and exogenous independent factors that already exist.

Figure 2.2: Land Use Regression (Source : Jerrett et al. (2004))

Several methods can explain such small-scale within-city variations such as geostatistical

interpolation, dispersion models, and LURmodels. Geostatistical interpolation of monitored

concentrations is problematic whenever networks are not dense enough, and therefore

fail to capture variability of concentrations over short distances. Dispersion models

depend on detailed and spatially resolved input data if they are to capture small-scale

spatial variations in air pollutants adequately. LUR modelling uses multiple linear

regression to analyse associations between measured pollutant concentrations at a number

of monitoring sites and predictor variables such as traffic, land use and topography. LUR

models have been shown to be a cost-effective method to explain the spatial variation

in air pollution in a number of studies (Beelen et al., 2013). Two of the major projects

done using LUR methodology were European Study of Cohorts for Air Pollution Effects

(ESCAPE) and Small Area Variation in Air Pollution Health (SAVIAH) Project both

conducted in Europe.
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2.3.1 ESCAPE project

The ESCAPE study was performed to evaluate the health implications of long-term

exposure to polluted air. The investigation in the European environment was necessary

since studies on the health impacts of air pollution exposure had previously been conducted

primarily in North American region only (Beelen et al., 2013). Numerous air pollution

concentrations were investigated as part of the ESCAPE study. Aside from particulate

matter, the influence of nitrogenous oxides on health was also investigated, therefore NOx

and NO2 were also considered in the project (Eeftens et al., 2012). Individuals enrolled

in the ESCAPE experiment had their health data taken from previous cohort studies.

Individuals’ exposure to air pollution concentrations was assessed at their residences. A

person’s home location in a cohort explains a lot of the disparities in exposure across

people (Cyrys et al., 2012).

The amounts of air pollution were measured in 36 places around Europe, although

not all categories of air pollution were detected in all regions. Particulate matter and

nitrogen oxides (NO2 and NOx) were detected in 20 study sites, whereas just NOx was

recorded in 16 regions. Most of the time, the territories comprised of a significant city

and its surrounds (Beelen et al., 2013). However, vast regions were also considered, such

as in the Netherlands and Belgium, where the entire nation was simulated. Because the

population of the research locations ranged from 100,000 to millions of people in big cities

like London and Paris, there was a huge variance between them (Cyrys et al., 2012).

Beelen et al. (2013) discuss the data utilised in the ESCAPE study. The information

is separated into two categories: central GIS data and local GIS data. The primary

GIS data collection is made up of four datasets: a 1:10000 digital road network from

Eurostreets, land use data from the CORINE land cover dataset, population density

data on a 100m grid, and height data from SRTM 90m. Local datasets include a local

digital road network combined with traffic intensity data, local land use data with more

specific local land use types, population density data (which is not modelled, unlike the

central GIS dataset on population density), altitude data (which was only used when

local data was better than the central dataset), and local data specific to a specific study

area (Eeftens et al., 2012).
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2.3.2 SAVIAH project

In the SAVIAH project by Briggs et al. (1997); Lebret et al. (2000), road traffic volume

was used for representing traffic conditions along with land use data and altitude as

predictor variables. This study was done to develop a method for mapping NO2 levels as

an indicator for traffic-related pollution was a critical component of the study. A variety of

approaches were used and compared as part of the study, including dispersion modelling

(CALINE and CAR — exclusively in Huddersfield), spatial interpolation (contouring,

kriging, and trend surface analysis), and regression mapping. Data on mean yearly NO2

concentrations for a dense network of around 80 locations were gathered using passive

diffusion tubes to aid in the development and calibration of these approaches (Lebret

et al., 2000). 8 to 10 sites were used as reference in the study area for validation. They

reported a good fit for mean annual concentration with R2 values in the range of 0.79 to

0.87. Three important variables were employed as predictors in the regression model in

the original SAVIAH study were traffic volume in the 300m buffer zone around each site,

land cover in the 300m buffer zone, and surface height at the site. The way these were

defined and the overall result of the multiple regression model were permitted to vary

due to variances in data availability in the different research locations (Briggs, 2005). In

summary, the study was a multicenter, EU-funded initiative that attempted to develop

and evaluate methodologies for measuring the link between traffic-related air pollution

and health at the small-area scale (Briggs et al., 2000).

In the study done by Brauer et al. (2003) in 3 European countries Netherlands,

Germany, and Sweden, PM2.5 filter absorbance and concentration of PM2.5 matter was

used as independent variables. These were predicted by using traffic volume as traffic

characteristics and population as demographic variables. This study by Brauer et al.

(2003) produced a good result with near similar trends for concentration of PM2.5 obtained

from this model. Half of the variability was explained by this study for Netherlands while

for Germany and Sweden explained variability was around 60%. A similar study published

earlier was carried out in Montreal, Quebec, Canada, in which the R2 was 0.54 (Gilbert

et al., 2005).

GIS softwares helps in process of linking data by providing means to combine geographic
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spatial information like pollution and population data. These will also help in modelling

large scale data usually resulting in better accuracy (Briggs, 2005).

2.3.3 Advantages of LUR

From literature it is known that land use regression is less data demanding than from

dispersion models (ROSS et al., 2007). Also as compared to proximity model higher

number of explanatory factors can be included in land use study. Ryan and LeMasters

(2007) affirmed the use of this model by using land use variables to differentiate exposure

in a buffer area which can not be done in case of other models.

2.4 Different variables used in LUR

Predictor variables are derived from various factors like land use types, traffic characteristics

and geography and meteorology of the area. This information is used by geographic

information systems (GIS) to create integrated environment to work taking into account

all the parameters based on spatial distribution (Sahsuvaroglu et al., 2006). In most of

the studies common traffic parameters included were length of major roads in buffer,

length of all roads in buffer and distance to nearest road or major road, while for land

use parameters residential and commercial area, industrial area, green space and water

area are taken in account (Meng et al., 2015; Lee et al., 2014). Similarly, from geographic

point of view altitude and height of building in nearby location was seen and variables

like temperature, wind speed, pressure and solar radiation is taken into account. For

each different variable different buffer area is chosen as well as a direction is determined.

Based on the studies one can say that possible direction of variables suggesting increase

in traffic will have a positive direction like length and density of the roads in the buffer

area, while increase in the variables like the distance of monitoring site with road results

in negative direction (Wang and Ogawa, 2015). For the land use variables, increase in

density of green area including forest area and park area will result in decrease of pollutant

concentration thus the assumed direction tends to be negative while more commercial and

residential area will result in higher concentration leading to a positive direction for the

predictor variables (Lee et al., 2014; Meng et al., 2015). Land use variables are the possible
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predictors for the spatial data while for the temporal nature of pollutants meteorological

data as well as traffic data can be used. Meteorological factors which heavily influence

PM2.5 concentration are wind speed and temperature. Strong variations are also observed

along with change in seasons. Various studies suggested negative correlation between

PM2.5 and wind speed lower than 3m/s and positive correlation between PM2.5 and wind

speed higher than 3m/s (Wang and Ogawa, 2015; Li et al., 2017). This is due to the fact

that wind can act as both dispersing force as well as transporting agent. When the wind

speed is low, it can help in dispersing away the pollutants within a certain geographical

range thus reducing pollution concentration but, when the wind speed is higher than

3m/s it becomes strong enough that it can transport large quantities of pollutants from

far away thus increasing pollutant concentration. In relation to temperature, PM2.5 has

a strong positive correlation with temperature (Meng et al., 2015). This is due to the

fact that temperature facilitates the formation of particles by providing them required

energy thus, at higher temperature the photo-chemical reaction can take place which lead

to formation of PM2.5 thus increasing its concentration in the atmosphere.
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Methodology

3.1 Overview

The main idea behind this study is to develop a spatio-temporal model for development

of a predictive technique for concentration of various pollutants. As discussed in the

literature review, land use regression provides good results in predicting the pollutants‘

concentration. It also helps in incorporating the spatial data and by differentiating among

buffer areas. For land use general predictor variables are line densities for different types

and densities of roads, traffic volumes for private as well as public modes, types of land

use and meteorological factors like, temperature, pressure, and relative humidity. The

detailed methodology of the study is shown in Fig. 3.1.

The type of land use variables helps in this study to provide spatial variability in the

model while the traffic flow conditions provides temporal variability in the study. In Land

Use regression an iterative process is used for removal of variables to the model as shown in

Figure 3.2. The first step in the modelling process starts with selecting a significance level

for a variable to stay in the model. Generally this significance level is around 5%. Model

is started by entering all the possible predictor variables. Now the predictor variable with

least significance or highest p-value is seen. If the p-value of predictor variable is greater

than the significance level then we say that the null hypothesis is accepted. The null

hypothesis says that the coefficient of variable is not significantly different from 0. If the

variable with highest p-value is less than the significance level then the iterative process

is stopped and all the remaining variables are included in the model.

For this study, Quantum Geographic Information System (QGIS) is used to visualize

and provide tools for spatial analysis by providing a way of capturing and linking spatial
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Figure 3.1: Methodology
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data within a single geographical structure (Briggs, 2005). Python was used to handle

the large amount of data generated while SPSS was uses to analyse the data.

Figure 3.2: Land Use Regression Methodology Source: Soni (2020)

3.2 Data

Most of the studies use vector analysis while this work try to perform and obtain result

from raster analysis. Raster analysis provides better and intuitive map algebra making it

faster and easy to use and update. Raster grid formatting is data model for satellite data

and other remote sensing data. The image in raster format is stored in form of matrix

consisting of pixels. Each pixel have different value based on the land use of that particular

pixel as shown in Figure 3.3. If the pixel is road pavement, traffic characteristics also

becomes functional. The count of each type of pixel along their weights can be computed

inside any buffer area around the monitoring station. Model can developed based on

the linear regression technique with each category of land use as different independent or

explanatory variable.

The vehicular emissions are difficult to obtain to higher accuracy levels but with the

knowledge of spatial geometry of the area and vehicular flow characteristics a proxy can

be created for vehicular emissions. For the dependent variable a training set is required
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Figure 3.3: Vector to raster image (Source: eo4geocourses (2018))

to perform the regression analysis. Therefore mainly 3 types of data are required for the

analysis which are :

• Pollution data

• Traffic data

• Land Use data

3.2.1 Pollution data

The pollution data is required as it provides the basic framework for independent variable

for the prediction model. It is obtained from the fixed monitoring stations located at

various locations in the study region. For this work, a total of 36 monitoring stations are

available in National Capital Territory (NCT) of Delhi as shown in Figure 3.4. Out of

these there are 24 sites operated by Delhi Pollution Control Committee (DPCC) while

6 sites are overseen by CPCB and rest 6 sites are maintained by India Meteorological

Department (IMD). The real time data is available at Central Control Room for Air

Quality Management1.

Concentrations of major pollutants like CO, NH3, SO2, NOx, are available along

1https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
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Figure 3.4: Location of different monitoring sites in Delhi

with meteorological data like temperature, wind direction and speed, barometric pressure

and relative humidity. For this study information about concentration of PM2.5 was

collected along with the meteorological data like relative humidity, wind speed, pressure,

temperature and solar radiance for 2 week period at 4 hour time interval. This model

can be used to predict any pollutant if its historical data is available. Pollution data can

be obtained as daily mean as well as hourly mean based on the availability of the traffic

data.

3.2.2 Traffic data

The traffic data can be approximated by the hierarchy of the road i.e. arterial, sub-

arterial or local road and the congestion on the road i.e. high, medium or low. This

flow data on different roads is obtained from HERE Maps Traffic Flow API as shown in

Figure 3.5. These two factors can specify about the pollution emission from that region

as areas with congestion are major hot-spots for particulate matter pollutants. As the

type of road goes up the hierarchy the amount of pollution emission will also rise as more

and more number of vehicles would ply on the major roads with more heavy vehicles thus

leading to increased pollution emissions. Based on the flow and category of road, a weight

can be associated to the road in buffer area. The traffic characteristics of the buffer area
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Figure 3.5: Speed Profile of different roads in Delhi

provides temporal variability in the model. If the monitoring site for the pollution is fixed

like in this study, real-time data can be useful in predicting the instantaneous pollutant

concentration data. It can be very useful for the active commuters to choose their route

based on the best option available.

For this study a ratio of average speed to free flow speed was used to categorise the

road. The values of this will range from 0 to 1 with 0 being nearly jam condition to 1

being free flow condition (Tsuboi and Yoshikawa, 2020). All the roads were classified like

“road 0” to “road 5” as shown in Table 3.1. Traffic conditions were recorded for every

2-hr time bin for the same 2 week periods as pollution data.
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3.2.3 Land Use data

The geography and geometry of nearby area affects heavily on dispersion of pollutants

in the atmosphere. Thus, it becomes an important factor to consider while predicting

air pollution. The area with high density of vegetation and greenery tends to give more

surface area for particles to settle and also helps to maintain the natural atmospheric

composition of gases. Whereas, the urban area be it commercial or residential tends to

increase the amount of air pollution in the nearby area. It is also seen that over the river

surface or in general any water body the pollutants concentration is relatively low. Land

use data provides the much needed spatial variability in the predicted model. For a better

model a higher number of training points are needed for development, thus for a better

spatially varied model a higher number of monitoring stations will be required. All the

classes of the land use can be used as a possible explanatory variable in the model. The

land use data can be obtained directly as services provided by the government agencies

like ISRO or one can classify the data from the satellite data available.

3.3 Processing Data

This section gives a brief on the process to obtain the data and the way to process it so

it can be used for the analysis. The data obtained from different sources may be in raw

form and would require pre-processing or it may be used directly.

3.3.1 Pollution Data

The pollution data is included in the meteorological data obtained. Particulate matter’s

interaction with other meteorological factors can be seen in Figure 3.6. All of these

parameters were obtained from the Central Pollution Control Board’s live monitoring

stations at 4 hour interval. The data was obtained as xlsx file. The following data was

recorded :

• Relative humidity (RH) : Relative humidity is a percentage ratio of the quantity of

atmospheric moisture present to the quantity that would be contained if the air was

saturated. Because the latter quantity is temperature dependent, relative humidity
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Figure 3.6: Interaction of particulate matter with meteorological factors (Source: Chen
et al. (2020))

is determined by both moisture content and temperature. The related Temperature

and Dew Point for the stated hour are used to calculate the relative humidity.

• Wind Speed (WS) : Wind speed is a basic atmospheric quantity created by air

flowing from high pressure to low pressure, mainly due to temperature variations.

Wind speed shows a complex trend with particulate pollution.

• Solar Radiation (SR) : The term “solar radiation” refers to the energy emitted by

the Sun, a part of which reaches the Ground. This is the principal source of energy

for the majority of activities in the atmosphere, oceans, and biosphere.

• Barometric Pressure (BP) : The force or weight of the air at any point is measured

by barometric pressure, often known as atmospheric pressure or air pressure.

• Atmospheric Temperature (AT) : The term “atmospheric temperature” refers to the

temperature of the Earth’s atmosphere at various altitudes. Many things influence

it, including incoming sun energy, humidity, and altitude. Temperature fluctuates

substantially at various heights relative to the Earth’s surface, and this temperature

variance distinguishes the four layers of the atmosphere.

• Particulate Matter (PM) : Particulate matter is the aggregate of all solid and liquid
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particles floating in air, many of which are dangerous. Dust, pollen, soot, smoke,

and liquid droplets are among the organic and inorganic particles in this complex

combination. The size, nature, and origin of these particles vary widely.

3.3.2 Traffic Data

The traffic data required for this study was obtained from HEREMaps API. The data was

obtained in xml file format at every 2-hr time interval for the same 2 weeks period. The

data obtained include speed and congestion for the region of interest. Region of interest

can be defined by either providing a bounding box pr using proximity or as corridor. The

bounding box is limited to maximum of 2 degrees of longitude and latitude. To obtain

the data a request is generated and for each request contains information on what data

is required. For this study the following request was generated :

https://traffic.ls.hereapi.com/traffic/6.2/flow.xml?apiKey=’+HERE API KEY+’&bbox=

28.39157,%2076.85863;28.87727,%2077.30729&responseattributes=sh,fc&units=metric

This request can be subdivided as shown in the Figure 3.7. The response from the

request is obtained in xml format which was converted to ordered dictionary in python

and the objects from the results are extracted.

Figure 3.7: Request for Traffic API data

The response to the request contains the following data as shown in fig Figure 3.8:

• “RWS” : It represents a list of roadway items (RW)

• “RW” : This is the overall flow item for a roadway. Each roadway will have a

roadway item with accessible traffic flow information
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• “FIS” : It represents a list of flow item elements (FI)

• “FI” : FI represents a single flow item

• “TMC” : TMC stands for “Traffic message channel”. Information about location

in coded format can be sent and received via TMC if the location code table is

integrated with the maps service provided.

• “PC” : TMC location code for any point

• “DE” : It represents the text description of the road

• “QD” : QD stands for queuing direction which can be “+” or “-”

Figure 3.8: XML file from Traffic API

• “LE” : It is the road segment length in units specified in request url

• “SHP” : SP represents the road shape item containing information about geometry

of given road segment

• “FC” : FC represents the functional class of the road ranging from 1 to 5 with 1

being lower road while 5 being higher road in hierarchy of roads

• “CF” :CF stands for Current Flow containing details about speed and Jam Factor

information for the given flow item.
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• “CN” : CN stands for Confidence Number indicating percentage of real time data

used. Data is said to be in real time if the CN value is greater than 0.7

• “FF” : FF represents the free flow speed on the given stretch of the road

• “JF” : JF stands for Jam Factor which represents the quality of travel. JF value

ranges from 0 to 10 with 10 being a condition of road closure. As the number

increases the quality of the travel will degrade

• “SP” : SP denotes the average speed in units specified in url and capped by speed

limit

• “SU” : SU stands for Speed Uncut which also represents average speed in units

specified in url but this is not capped by speed limit.

The following xml document was converted to ordered dictionary and each object was

retrieved and a dataframe was created specifying all the linestring coordinates and their

corresponding attributes. The factor of ratio of average speed to free flow speed was

calculated. Based on this factor all the line segments were divided into 6 categories viz.

“road 0”, “road 1”, “road 2”, “road 3”, “road 4” and “road 5” as shown in Table 3.1.

Thus a total of 168 created dataframe were saved in csv format.

Table 3.1: Road factor category corresponding to ratio of average speed to free flow speed

Ratio of average speed with
free flow speed

road factor
category

<0.05 road 0
0.05-0.275 road 1
0.275-0.5 road 2
0.5-0.725 road 3
0.725-0.95 road 4
>0.95 road 5

All the files were loaded in QGIS and data was clipped based on the buffer area as

shown in Figure 3.9. Then the sum of line length in all the buffer zones were calculated

and files were saved in csv format with each file name depicting the time and road factor

category and each file contain ringID and location with their respective sum of road

network.
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Figure 3.9: Road shapefile and monitoring stations

3.3.3 Land Use Data

For this study the data for Land use was obtained from United States Geological Survey

(USGS)2. Data from Landsat 8 satellite was used to classify the study area into various

categories and sub-categories. The classification was done using Semi-automatic Classification

Plugin (SCP) in QGIS. The Semi-Automatic Classification Plugin (SCP) facilitates the

supervised learning for the images obtained from remote sensing. Direct images from

ASTER, MODIS, GOES, Landsat, Sentinel-1, Sentinel-2, and Sentinel-3 can be obtained

using this. SCP provides necessary tools for the pre-processing as well as post-processing

of the satellite images.

The images from satellite is obtained in form of tiles or different bands which can is

clipped according to study area. For the Landsat 8 there are 6 bands namely Band 2,

Band 3, Band 4, Band 5, Band 6 and Band 7 for classification process corresponding

2https://earthexplorer.usgs.gov/
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Figure 3.10: Bandset of Landsat 8 (Source : Brown (2017))

to spectral reflectance detected by different sensors on the satellite for Blue, Green,

Red, Near Infra Red and Short Wave Infra Red (SWIR) 1 and 2 from Table 3.2. The

resolution for these bands is 30m as shown in Figure 3.10. After selecting the bands the

metadata information is used to convert the bands into surface reflectance by using the

central wavelength for each band-set and additive and multiplicative factor defined for

each image.

Table 3.2: Bandset Values of Landsat 8

Landsat 8 OLI and TRIS Bands (µm)

30m Coastal/Aerosol 0.435-0.451 Band 1

30m Blue 0.452-0.512 Band 2

30m Green 0.533-0.590 Band 3

30m Red 0.636-0.673 Band 4

30m NIR 0.851-0.879 Band 5

30m SWIR1 1.566-1.651 Band 6

100m TIR1 10.60-11.19 Band 10

100m TIR2 11.50-12.51 Band 11

30m SWIR2 2.107-2.294 Band 7

15m Pan 0.503-0.676 Band 8

30m Cirrus 1.363-1.384 Band 9
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The combination of these bands give different colour composites like True Colour

Composite (TCC) which is obtained from using Blue-Green-Red and False Colour Composite

(FCC) which is obtained from using Green-Red-NIR bands. Each different colour composite

helps in differentiating different objects based on their reflectance properties for e.g.

Vegetation is best shown in FCC as dark red areas as shown in Figure 3.11.

Figure 3.11: Colour Composites (Source: GeoSage (2016))

For the classification process first aim is to define the land cover classes followed by

creation of ROIs and process of supervised training. Following this, spectral signature is

assessed based on which a go ahead is given for the classification. This classification is

further refined and an accuracy assessment is done. A training input file is defined and

created where the ROIs are created and stored for training the data.

QGIS was used to create a buffer area around the fixed monitoring stations. The

whole study region was classified using Semi-automatic Classification Plugin (SCP) into

various class and sub classes as mentioned:

• Water bodies - (a) river (b) drain

• Vegetation - (a) forest (b) park

• Built up area - (a) roads (b) builtup
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Further the delimited file with details about location of monitoring stations were

loaded to QGIS. It will create a layer with point data with each point representing a

monitoring station. Then a multi-ring buffer area was created around each monitoring

station comprising 4 rings with distance between each concentric ring to be 250m. All

the rings were allotted a number from 1 to 4 with innermost ring ID to be 1. Further

the raster pixels in each buffer area was converted into a point and the resulting table is

used for further analysis. No. of points in the buffer are calculated which comes around

3670 points at an average in each buffer.

3.4 Data Merging

The data obtained from all the 3 data set was merged on the basis of location, time and

ringID. Data from traffic flow API included the sum of line length in each buffer zone and

location categorised on basis of ringID while the date and time was included in file name.

For the meteorological data, all the rings had same value for RH, WS, SR, BP and AT.

all these values were obtained on each monitoring station and for the case of land-use

data the densities for each type of land-use was calculated as sum of number of points

in any given buffer zone. Thus the final data obtained was analysed using correlation

analysis and linear regression.

3.5 Validation Data

The data validation was done in 2 ways one being validation from 10% of the dataset

and in other way pollutant concentration was predicted using data collected from the

field. The data for validation was obtained at 2 different location in Delhi. 10 instances

were chosen. Pollution data along with temperature and humidity were recorded using

mobile monitors. Buffer was created on the 2 locations and land use was recorded.

Other meteorological parameters were collected from nearest monitoring station for that

duration. Pollutant concentration was predicted for that time and compared with the

obtained data. 2 performance measure functions viz. Normalized Mean Square Error

(NMSE) and Fractional Bias (FB) were used for comparing the predicted values obtained

by using the result from model and the obtained concentration from the field.
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Results

4.1 Analysis

The analysis is done on three parts firstly to check the quality of classification of land

use, secondly as descriptive statistics of explanatory or independent variables and finally

to assess the goodness of fit of the model.

4.1.1 Spectral signatures

While classification any pixel value which lies inside the variance limit of the ROIs can

be classified otherwise it would remain unclassified as shown in Figure 4.1. On the other

hand, increasing the variance limit can result in mis-classification or wrong classification

for near equal spectral signatures. For this study the value was chosen to be mean ± σ.

Mean corresponds to mean value of all the ROIs in the given class. In spectral signature

it is denoted by dark solid line as shown in Figure 4.1 In the overlapping area, the

Figure 4.1: Spectral Signatures

classification can be little misguided but the training set with maximum possible coverage
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across wavelengths give the best results. From the image it is clear the plants show

high value of spectral reflectance in near infrared range of spectrum. Due to excessive

overlapping in signatures the differentiation among the two becomes very difficult.

Effect from both leaf pigments and physiological structure give plant leaves a characteristic

reflectance signature which comprises of low reflectance for red light as well as blue

coloured light. Reflectance of green coloured light is in medium range while the highest

reflectance is of near infrared region. Thus a sharp peak is observed in vegetation area

in near infrared region.

In same way the depth of water, suspended materials in water and roughness of water

surface will determine the spectral signature of water body. A major part from incident

radiation on water surface is either absorbed or transmitted and only a small part is

reflected back, thus very low values are obtained in spectral signatures.

4.1.2 Descriptive statistics

From the Table 4.1 it can be seen there are four sets of variables, first dependent variable

of pollutant concentration. In this study for PM2.5 is taken as a marker for pollution levels.

Secondly, the traffic flow variables are taken into account. These include the variables

namely road 1, road 2, road 3, road 4 and road 5, but due to no valid data in road 0 that

variable is neglected. These variables represents the effect of different roads categorised

based on ratio of average speed and free flow speed. Thirdly, the meteorological variables

are used namely Relative Humidity (RH), Solar Radiance (SR), Barometric Pressure

(BP), Atmospheric Temperature (AT) and Wind Speed (WS). Finally, the land use

variables consisting of density of identified near road points count, vegetation points count

, built up points count, bare soil points count and water points count are considered. Any

point count will represent the density of that land use as number of points for any land

use in any buffer will correspond to density.

It can be seen that PM2.5 ranges from near about 17 to 384 µgm i.e. it covers

a wide range of 367µgm. Mean pollutant concentration was 106µgm making the air

quality to lie in “moderate” bracket according to Indian system while the mode stands at

“Satisfactory”. Standard deviation can be used to see the deviation from the mean value.

Highest deviation can be observed in the value of road category 4 as the difference in sum
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Table 4.1: Descriptive statistics of variables

Descriptive statistics for PM2.5 , road 1 , road 2 , road 3

pm2.5 road 1

Mean 106.0602564 Mean 37.70346371
Standard Error 0.465568519 Standard Error 0.883164453
Median 99.815 Median 0
Standard Deviation 47.95581744 Standard Deviation 90.97022577
Sample Variance 2299.760426 Sample Variance 8275.581976
Kurtosis 1.729655672 Kurtosis 15.37643777
Skewness 1.017249133 Skewness 3.473588458
Range 366.63 Range 963.76
Minimum 17.62 Minimum 0
Maximum 384.25 Maximum 963.76
Sum 1125299.32 Sum 400033.75
Count 10610 Count 10610

road 2 road 3

Mean 158.1576494 Mean 138.1194317
Standard Error 2.132650949 Standard Error 1.867527167
Median 60.665 Median 56.985
Standard Deviation 219.6734002 Standard Deviation 192.3643636
Sample Variance 48256.40274 Sample Variance 37004.0484
Kurtosis 4.137649543 Kurtosis 4.622037978
Skewness 1.89050049 Skewness 1.989698174
Range 1592.23 Range 1409.85
Minimum 0 Minimum 0
Maximum 1592.23 Maximum 1409.85
Sum 1678052.66 Sum 1465447.17
Count 10610 Count 10610
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Descriptive statistics for road 4 , road 5 , RH , SR

road 4 road 5

Mean 321.5434788 Mean 13.21019133
Standard Error 3.865576196 Standard Error 0.325674
Median 166.39 Median 0
Standard Deviation 398.1731127 Standard Deviation 33.54600289
Sample Variance 158541.8277 Sample Variance 1125.33431
Kurtosis 2.522913765 Kurtosis 12.57507415
Skewness 1.605135284 Skewness 3.357694816
Range 2490.8 Range 209.23
Minimum 0 Minimum 0
Maximum 2490.8 Maximum 209.23
Sum 3411576.31 Sum 140160.13
Count 10610 Count 10610

RH SR

Mean 56.13223434 Mean 140.0301624
Standard Error 0.167735801 Standard Error 1.90003537
Median 54.93 Median 30.43
Standard Deviation 16.37723434 Standard Deviation 181.9773692
Sample Variance 268.2138045 Sample Variance 33115.76292
Kurtosis -0.7820929 Kurtosis 0.051124373
Skewness 0.064776704 Skewness 1.161247139
Range 82.86 Range 781.82
Minimum 11.69 Minimum 2.14
Maximum 94.55 Maximum 783.96
Sum 535108.59 Sum 1284496.68
Count 9533 Count 9173
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Descriptive statistics for BP , AT , near road point count , vegetation point count

BP AT

Mean 971.4930747 Mean 26.77707174
Standard Error 0.559795794 Standard Error 0.053744918
Median 982.59 Median 26.76
Standard Deviation 50.67929983 Standard Deviation 4.865622116
Sample Variance 2568.391431 Sample Variance 23.67427857
Kurtosis 17.55154424 Kurtosis -0.595676301
Skewness -4.403733321 Skewness 0.188461221
Range 259.14 Range 28.46
Minimum 735.67 Minimum 13.31
Maximum 994.81 Maximum 41.77
Sum 7962357.24 Sum 219464.88
Count 8196 Count 8196

near road count vegetation count

Mean 281.0111216 Mean 175.1993402
Standard Error 2.16428773 Standard Error 1.893259057
Median 230 Median 117
Standard Deviation 222.9321421 Standard Deviation 195.0148732
Sample Variance 49698.74 Sample Variance 38030.80077
Kurtosis 0.013329131 Kurtosis 6.589708854
Skewness 0.953564571 Skewness 2.332498839
Range 938 Range 1058
Minimum 2 Minimum 0
Maximum 940 Maximum 1058
Sum 2981528 Sum 1858865
Count 10610 Count 10610
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Descriptive statistics for built-up points count , bare soil points count , water points
count , WS

built up count bare soil count

Mean 379.7140434 Mean 113.6504241
Standard Error 2.732172722 Standard Error 1.321903768
Median 350 Median 64
Standard Deviation 281.4270531 Standard Deviation 136.162505
Sample Variance 79201.1862 Sample Variance 18540.22777
Kurtosis -0.57278498 Kurtosis 10.35893697
Skewness 0.628574674 Skewness 2.685020012
Range 1043 Range 935
Minimum 0 Minimum 0
Maximum 1043 Maximum 935
Sum 4028766 Sum 1205831
Count 10610 Count 10610

water count WS

Mean 4.047031103 Mean 1.092066506
Standard Error 0.124613418 Standard Error 0.008715466
Median 0 Median 0.89
Standard Deviation 12.83578692 Standard Deviation 0.85095267
Sample Variance 164.7574259 Sample Variance 0.724120446
Kurtosis 56.05182598 Kurtosis 4.049818924
Skewness 6.734628528 Skewness 1.758245084
Range 121 Range 6.4
Minimum 0 Minimum 0.06
Maximum 121 Maximum 6.46
Sum 42939 Sum 10410.67
Count 10610 Count 9533
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of total road length with high speed varies greatly spatially. On other hand wind speed

as well as other meteorological parameters accounts for the least deviation suggesting all

the buffer areas have relatively more consistency with regard to meteorological data.

As there were no valid points in road category with ratio of average speed to free flow

speed around 0, this road category was removed from the analysis. For the remaining

roads highest mean comes out to be of road category 4 while road category 1 and road

category 5 have lower value for mean. It can be due to the fact that none of the roads

achieve full free flow capacity while having nearly full jam condition is also difficult. For

all the roads the mode was 0 while the standard deviation was maximum for road category

4. From Table 4.1 it can be seen road 4 corresponds to highest values while road 5 results

in lowest values.

Temperature was not available for the given period at all times and only 24 stations

provided information on the temperature while no water body was detected in 7 of the

sites. This may be due to mis-classification or the spectral signature presence was less

than the pixel size making it a sub-pixel target.

4.2 Correlation Analysis

From Figure 4.2 it can be found that none of the predictor variable is strongly correlated

to the pollutant concentration. Particulate pollution is weakly yet positively related to

river density which is explained as air column above river moves along the river thus

pollutants are transported from another location. Particulate pollution is also positively

correlated with built up area as more hot-spots are developed in highly dense areas. It is

negatively related to park and forest density which is due to the fact that leaves and tree

canopy provides more surface area for the particulate pollutants to settle as well as they

also restore normal gaseous concentration. Negative co relation from temperature. This

may be accounted from the fact that higher temperature will result in more movement of

wind due to which more dilution happens. For pressure also particulate concentration is

negatively correlated. Higher Solar radiation will result in higher temperature and as the

temperature is negatively correlated and temperature is positively correlated with solar

radiance thus a natural outcome for SR and PM will be negative. For the wind speed
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Figure 4.2: Correlation analysis

as normal mean wind speed is less than 3m/s it helps it dispersing the pollutants thus

wind speed is showing negative co relation with pollutants concentration. For relative

humidity a positive correlation can be seen. As the data collection was done in month

of March humidity was less due to which positive correlation is seen. From literature it

is known that at higher humidity levels correlation with pollutant concentration reverses

the sign. The positive correlation between pollutant concentration and road network

density is because the one of the major air pollution source increases as road network

density increases.

4.3 Model Development and Evaluation

Model parameters are depicted in Table 4.2 with obtained p-values. The significance level

set for this study was 5%. For this model 3 iterations were done by initially including

all the variables for the model building. The highest p-value obtained was 0.977 for

bare soil points. A R2 value of 0.37 was obtained. As this p-value is way above the

significance level of 0.05 this variable was removed from the model building and again

regression analysis was done from which highest p-value obtained was 0.952 for road 5.

This variable was also removed and again iteration was done and highest p-value in this

model was obtained to be 0.856 for near road variable. In the next iteration variable

road 2 was removed as its p-value was 0.187. Thus the final model obtained had highest

p-value of nearly 0.06 for road 3 which was kept in the model.
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Table 4.2: Model Parameters

Source Value Standard
error

t Pr >
—t—

Lower
bound
(95%)

Upper
bound
(95%)

Intercept 68.167 10.440 6.529 <0.0001 47.702 88.633
road 1 -0.033 0.005 -6.911 <0.0001 -0.042 -0.024
road 3 0.005 0.002 1.878 0.060 0.000 0.009
road 4 0.009 0.001 7.610 <0.0001 0.007 0.012
RH 1.971 0.049 39.935 <0.0001 1.875 2.068
WS -9.371 0.584 -16.042 <0.0001 -10.516 -8.226
SR 0.064 0.003 19.733 <0.0001 0.058 0.071
BP -0.103 0.009 -11.810 <0.0001 -0.120 -0.086
AT 1.064 0.155 6.882 <0.0001 0.761 1.368

vegetation count -0.034 0.002 -16.098 <0.0001 -0.038 -0.030
built up count 0.011 0.002 6.535 <0.0001 0.008 0.015
water count 0.155 0.032 4.873 <0.0001 0.093 0.218

4.3.1 ANOVA

From the analysis of variance the obtained results are shown in Table 4.3. Adjusted mean

squares are a tool to measure how much variation is ebeing explained by the model. Mean

square can be seen as variance around the fitted values. Given the p-value of the F statistic

computed in the ANOVA table, and given the significance level of 5%, the information

brought by the explanatory variables is significantly better than what a basic mean would

bring.

Table 4.3: Analysis of Variance

Source DF Sum of
squares

Mean
squares

F Pr > F

Model 11 6783541.226 616685.566 417.358 <0.0001
Error 8084 11944866.170 1477.594

Corrected Total 8095 18728407.395

4.3.2 Goodness of fit statistics

The goodness of fit statistics obtained from the analysis of result is shown in Table 4.4.

A total of 8096 observations were taken for the model development while 100 other

observations were used for data validation. All the observations were given equal weights.

An adjusted R2 value of 0.361 i.e. 36% was obtained for the model. The root mean square
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error of 38.439 was obtained for the training set while mean absolute percentage error

(MAPE) is 30.33%.

Table 4.4: Goodness of fit statistics

Statistic Training
set

Validation
set

Observations 8096 100
Sum of weights 8096 100

DF 8084 88
R² 0.362 0.348

Adjusted R² 0.361
MSE 1477.594 1342.789
RMSE 38.439 36.644
MAPE 30.333 31.391

4.4 Model Validation

The model was validated by 2 ways. First the validation was done on 100 random

observations from the input data set. For the second 10 instances from 2 locations

were chosen for which particulate pollution data was collected. Along with particulate

pollution, humidity and temperature were also recorded. Buffer area around the 2

locations were made and land use category density of all land use types were found.

Similarly the road category sum length was also done and length of road in each category

was determined. The obtained model was then applied on this data set to obtain the

predicted values. Normalised Mean Square Error (NMSE) and Fractional Bias (FB) was

calculated to evaluate statistical performance measures.

In the first way, the goodness of fit statistics can be seen in Table 4.4. It can be

observed that for 100 observations the degree of freedom was 88, while the obtained R2

value was 0.348 or approx 35%. The root mean square error was obtained to be 36 while

MAPE was 31.4%.

In the second way for performance measure following were taken into account:

• Normalised Mean Square Error (NMSE) : It can be calculated as :

NMSE =
(Cp − Co)2

Cp × Co
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where Cp is predicted concentration of pollutant while Co is observed concentration

of pollutant.

For the model to be acceptable the value of NMSE should be less than 0.5. The

obtained value of NMSE is 0.099.

• Fractional Bias (FB) : It can be calculated as :

FB = 2× (Cp − Co)

(Cp + Co)

For the model to be acceptable the value of FB should lie between ±0.5. The

obtained value of FB is -0.13.
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Inferences and Conclusions

5.1 Discussion

The land use regression technique has been use in prediction for pollutants concentration

by various studies in the past like by Beelen et al. (2013) and Briggs et al. (1997).

For this work the data was collected for one 2-week period in the month of March.

Kanaroglou et al. (2005) and Gilbert et al. (2005) also conducted the study for one 2-

week period although the number of monitoring stations in both the studies were 100

and 67 respectively while in this study only 36 monitoring stations were taken into

account. Various researchers have used different pollutant as dependent variable like

NO2 (Sahsuvaroglu et al., 2006; Ross et al., 2005; Briggs et al., 1997; Brauer et al., 2003),

PM2.5 (Brauer et al., 2003; HOEK et al., 2001; ROSS et al., 2007; Morgenstern et al.,

2006) and NOx (Stedman et al., 1997; Madsen et al., 2007). The buffer area in these

above-mentioned studies varied from 500m to 2000m with concentric ring. These rings

were spaced at a distance of 50m to 300m. For this work 4 concentric ringed buffer zones

were selected with spacing for concentric rings at 250m, thus creating a total buffer of

1000m radius.This analysis was performed based on the linear regression model using

backward elimination method. The results obtained from the modelling were found to

be on lower side according to the literature reviewed. The R2 value of various research

ranged from 35% to 80% (Henderson et al., 2007). Hoogh et al. (2013) reported the model

performed worst in case of PM2.5 with explained variablity being just under 50%. The

R2 value obtained for model developed in this study was 0.36 signifying that only 36%

of the variability is explained. Hochadel et al. (2006) reported the explained variability

to be 17% for particulate pollution while for NO2 it was 90%.
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5.2 Conclusions

In the given study, the predictor variables of land use i.e. vegetation density, built-up

density and water density in any buffer area had significant effect in the final model.

Other than land use, meteorological variables also accounted for high number of statistically

significant variables with humidity, wind speed, solar radiance, pressure and temperature

being important variables.

To include the effect of real time traffic congestion, road were categorised into different

categories and effect of each road category depicted the effect of any congestion level in

the model.

If all the road length in all categories are summed up and regressed with pollutant

concentration correlation is positive thus it can be concluded that if total length of road

is increased in buffer area then the pollutants concentration is increased.

From the analysis of variance it can be concluded that model is significant at 5% confidence

interval.

MAPE value of the model is 30.33% which is quite high. This may be due to confounding

effect among meteorological variables or road categories.

For validation of 100 random sets the explained variability values lies between 35% to

42%.

NMSE and FB validate the model with the actual data obtained in the field.

5.3 Limitations

The data obtained from CPCB showed a R2 value of 0.67 between PM10 and PM2.5, while

this value should be approximately 0.95 as for the data obtained by mobile monitors as

shown in Figure 5.1

Low value for explained variability may be resulted from a poor classification or

limited data for training. The obtained spectral signatures resulted in degraded surface

reflectance from roads. And this is the reason behind the failure in detecting the road

network with a higher accuracy. This can be avoided by increasing the resolution to 1m

but at same time it can increase the computational time. Another proposed way can be

to use the open street map (OSM) data to determine road network in the buffer area.
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Figure 5.1: Comparison of PM2.5 data

For this study the 4 hour pollutants concentration was used. This can be replaced to

smaller time bins for better accuracy.

Another major drawback of the Land use model comes from its area specificity i.e.

the resulting model can be applied only to the area with same geographic features.

Another limitation of this study arises due to the size of buffer area. As each predictor

variable has a different radii till which it can affect the surroundings, for this study a

multi-ring buffer area for 4 rings of 250m was defined around the fixed monitoring site.

The biggest limitation in this land use regression methodology is due to incorrect

training. This type of error may creep in due to both human factors as well as incorrect

data recorded by the sensors due to any factor like high cloud cover percentage. Human

errors can be limited by exercising caution while classification while some unavoidable

circumstances arise like the following cases:

• presence of small, sub-pixel targets

• presence of boundaries of discrete land cover classes

• gradual transition between land cover classes (continuum)

• contribution of areas outside the area represented by a pixel

5.4 Future Scope

This model can be redeveloped on a much smaller time interval like one hour basis. This

can also help in increasing the training set which may help in improving the goodness of

fit for the model.
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The model can also be applied on all other live monitoring stations available in the

country.

Data from mobile monitors can be used in the study.
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