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Abstract

The present research work deals with the existence of solutions and approximate

controllability of deterministic semilinear integer order systems with control delays

and fractional order systems without delay. To derive the existence and controlla-

bility results, various techniques have been applied along with the semigroup, cosine

and sine families, fractional calculus, fractional cosine family, fractional resolvent,

fixed point theory. Some examples are provided for the illustration of the obtained

results.

Some introductory matter along with literature survey on controllability of non-

linear and linear control systems of fractional and integer orders are given in Chapter

1. Basic concepts and definitions of control theory, semigroup theory, cosine family,

fractional calculus, fractional cosine family and nonlinear functional analysis which

are utilized in forthcoming chapters, are given in Chapter 2.

In Chapter 3, the existence of mild solutions of first-order retarded semilinear

system with control delay is proved under the locally Lipschitz continuity of non-

linear function and a fixed point theorem. Then the approximate controllability of

semilinear system is proved provided that the associated linear system without de-

lay is approximately controllable. Controllability results are obtained by using the

method of steps and semigroup theory. The results of this chapter are illustrated

with controlled heat equation.

Chapter 4 contains two sections. The first section deals with the approximate

and exact controllability of second-order nonlocal retarded semilinear system with

control delay. In this section the existence of solutions is derived applying fixed

point approach and cosine family. Here the nonlinear function is supposed to be

Lipschitz continuous. The controllability of the associated linear delay system is

proved by the method of steps and then the controllability of the actual system is
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deduced by proving that the reachable set of semilinear system contains the reach-

able set of associated linear system. The results of this section are illustrated with

controlled wave equations. In the second section, the approximate controllability

of second-order nonlocal retarded semilinear system with multiple delays in control

is discussed in Banach spaces. The existence of solutions is derived applying fixed

point approach. For this, nonlinear function is supposed to be locally Lipschitz.

Then the approximate controllability of associated linear system and actual system

is proved applying the technique similar to Chapter 3. Here, the problem of first

section is extended for multiple time delays. The obtained results are illustrated by

providing an example.

In Chapter 5, the partial approximate controllability of nonlocal Riemann-Liouville

fractional systems with integral initial conditions in Hilbert spaces without assum-

ing the Lipschitz continuity of nonlinear function is investigated. We also exclude

the usual assumptions on nonlocal functions such as Lipschitz continuity and com-

pactness. First, the existence results are derived applying Schauder’s fixed point

theorem and then the partial approximate controllability result is proved. For this,

we suppose that the associated linear system is partial approximately controllable

for ϕ = 0, where ϕ is nonlocal function. To obtain our result the concept of semi-

group is used rather than resolvent operator. Here, we assume that the semigroup

generated by linear map is compact. Lastly, an example is given to apply the ob-

tained results.

In Chapter 6, we analyze the approximate controllability of Riemann-Liouville

fractional systems with integral initial conditions in Banach space. First we deduce

the existence of mild solutions using fractional Riemann- Liouville family and fixed

point approach by assuming the Lipschitz continuity of nonlinear term. Then we

determine the approximate controllability of the system. We make use of iterative

and approximate technique to obtain the controllability result. The obtained results

are illustrated by providing an example.

Chapter 7 is concerned with the Riemann-Liouville fractional semilinear inte-

grodifferential systems with damping in Banach spaces. First we prove the existence

of solutions by applying fixed point approach. Then the approximate controllability
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of the system is shown by applying an approximate method. To obtain our re-

sults, we use the concept of Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent, where

0 < ϕ < ϑ ≤ 1 and λ is a real number. Finally, the obtained results are illustrated

by providing an example.

The final concluding remarks about the work presented in the thesis, and brief

discussion on the future work, are given in Chapter 8.

Keywords: Delay systems; Fractional systems; Integrodifferential systems; Riemann-

Liouville derivatives; Damping; Semigroup; Cosine Family; Fractional cosine family;

Fractional resolvent; Contraction map; Fixed point; Approximate method; Iterative

technique; Mild solutions; Reachable set; Approximate controllability
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Chapter 1

Introduction

1.1 General introduction

1.1.1 Origin of control theory

Control theory is an interdisciplinary branch of mathematics and engineering that

deals with the influence behavior of dynamical systems. Here, a system is defined

as an arrangement, collection or set of entities which are related by interactions and

produce various outputs in response to different inputs. If a system changes with

respect to time or other variable then it is known as a dynamical system. For exam-

ple, electromechanical machines such as motor car, aircraft or spaceships, biological

systems such as human body, economic structures of countries or regions, popula-

tion growth in a region are dynamical systems. If a dynamical system is controlled

by suitable inputs or controls to obtain the desired output or state then it is known

as a control system.

In real life, there are many control systems which are in use. For example,

our body temperature and blood sugar level needs to be controlled at desired set

points, insect and animal populations are controlled by very delicately balanced prey

predator relationship. These control systems are provided to us by nature. There

are many complex man-made as well as simple control systems which are used in

our everyday life. Automatic water heater, washing machine, missiles, etc. are some

examples. However, whether a control system is natural or man-made, those all

share a common aim, which is to control or regulate a particular variable within

1
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certain operating limits.

Controllability is an important area in the study of dynamical systems. It plays a

crucial role in control problems such as stabilization of unstable systems by feedback

control or in the study of optimal control. For this reason, it has been studied by

several authors during the past few decades. Controllability is a mathematical prob-

lem, which analyzes the possibility of steering a system from any initial state to any

final state utilizing a set of admissible controls. During the last two hundred years,

the classical areas of applied mathematics such as thermodynamics, electromagnetic

theory, mechanics of fluids, solids and particles etc., have been well developed and

generally reflect this emphasis on analysis too.

1.1.2 Controllability

Let Z = L2([0, c];V ) and U = L2([0, c];V ′) be the function spaces. Consider the

semilinear system
dz
dt

= ż(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (0, c],

z(0) = y0 ∈ V.
(1.1.1)

Here, z(t) ∈ V and u(t) ∈ V ′ are the state and control, respectively, of the system

where V and V ′ are Banach spaces. B : V ′ → V is a continuous linear map and

F : [0, c] × V → V is nonlinear. Here, we suppose that A : D(A) ⊆ V → V is a

closed and densely defined linear map with domain D(A), and it generates a C0-

semigroup {T (t)}t∈R+
0

defined on V (see Chapter 2).

The mild solution of the system (1.1.1) is defined as the solution of the integral

equation

z(t) = T (t)y0 +

∫ t

0

T (t− s)
(
Bu(s) + F (s, z(s))

)
ds, 0 ≤ t ≤ c.

Denote by z(t; y0, u) the mild solution of the system (1.1.1), corresponding to

control u ∈ U and the initial condition y0.

The system (1.1.1) is called exact controllable in the time interval [0, c], if for any

given final state zc in V , one can find a control u ∈ U such that the mild solution

z(t; y0, u) of the system (1.1.1) satisfies z(c; y0, u) = zc.

The system (1.1.1) is called approximate controllable in the time interval [0, c],
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if for given final state zc in V and ε > 0, one can find a control u ∈ U such that the

mild solution of (1.1.1) satisfies ‖z(c; y0, u)− zc‖ < ε.

It should be noted that approximate controllability empowers to steer the system

to any given neighborhood of any final state but exact controllability means that

system can be steered to any given final state. Obviously, the exact controllability

is necessarily stronger notion than approximate controllability. Approximate con-

trollability allows to steer the system to states belonging to a dense subset of the

state space. Therefore it is interesting to discuss the approximate controllability of

a system.

In this thesis, some results on the approximate controllability of semilinear delay

control systems of integer order and non-delay control system of fractional order are

established.

1.1.3 Motivation of the thesis

Many scientific and engineering problems can be modeled by deterministic and non-

deterministic partial differential equations, fractional order differential equations or

coupled ordinary and partial differential equations with or without delay in finite or

infinite dimensional spaces using semigroup and cosine family. The systems arising

in practice are mainly nonlinear to some extent. There are various properties of

the system such as existence, uniqueness and regularity of the solutions, stability of

equilibrium points, etc. Controllability is also an important area of study in control

theory. In many applications, the objective of the control action is to drive the sys-

tem from one state to another in an optimal fashion. However, before we formulate

the question of optimality it is necessary to pose the more fundamental question

of whether or not it is possible to reach a desired state from an initial state. So,

this gives the motivation to analyze the controllability of dynamical systems of an

abstract form.

In many problems, the present rate of change of some unknown function depends

upon previous values of the same function. Such problems are modeled by the time

delay systems. A system may experience time delay either in control or in state or

in both. Some of the examples of physical and biological systems which involves

time delays are population growth, a system involving feedback control, mixing of
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liquids, prey-predator population models etc. Thus the delay of a system constitutes

a crucial part of research area in the theory of control.

Retarded systems are the systems involving retarded arguments. In the prob-

lems having retarded systems, there has been an expanding interest for several

decades. Many natural incidents embrace a significant memory effect. Retarded

systems express the mathematical model of such real life problems. For example,

many problems occurring from medicine, bio sciences, chemical sciences, physical

sciences, economics are affected by their previous results at major scale. Therefore

for the study of controllability, it becomes much important to select retarded sys-

tems.

It is also seen that in various engineering models, such as semiconductor mod-

eling, heat conduction, nonlocal reactive transport in underground water flows in

porous media and biotechnology, mathematical formulation of nonlocal problems

arise naturally. The quantity of physical phenomena displayed by partial differential

equations with nonlocal conditions which have abstract formulation as a functional

differential equation is continually expanding.

The fractional differential systems have drawn the attention of many engineers,

physicists and mathematician in last twenty years. Because these systems poured

many applications in the areas of economics, engineering and science. The differ-

ential systems of fractional order have the capability to describe the memory and

hereditary properties of some significant materials and processes. The theory of

fractional calculus is the generalization of the theory of integration and differenti-

ation of integer order to arbitrary order (termed as fractional differentiations and

integrations). Particularly, this discipline has the concept and methods of solving

the differential systems of fractional order. It has been realized that the fractional

order differential operator is nonlocal but the integer order differential operator is a

local operator.

A detailed review of literature on controllability of various systems is given in

the next section.
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1.2 Review of literature

1.2.1 Controllability of first-order systems

Theory of controllability was originated from the great work done by Kalman [41] in

1960. In which, he discussed the controllability of linear system of finite dimensional

under a rank condition of the controllability matrix (see [10]). In 1967, Tarnove [84]

used the fixed point theorem due to Bohnenblust-Karlin to analyze A-controllability

for a nonlinear system, where A is a non-empty, closed, bounded convex subset of

the set of continuous functions. Subsequently, this idea was utilized by Dauer [20]

for the controllability of the systems of the form ż(t) = F (t, z) + G(t, u) in finite

dimensional spaces. Joshi and George [39] analyzed the controllability property of

the nonlinear systems (non-autonomous) in finite dimensional spaces with the sup-

position that its linear part is controllable. For this, they reduced the controllability

problem to the solvability of an operator equation. The solvability analysis of the

operator system was carried out by applying fixed point and monotone operator the-

ory. In 2009, Klamka [48] extended the results of [44] for the systems with control

delays.

A finite dimensional system is usually an approximation of some infinite di-

mensional system. Therefore motivated by work mentioned above, many authors

extended the results to more general cases including infinite dimensional systems.

A more general model for the system was considered by Fattorini [25] in 1966. In

this work, the controllability property was investigated for the case when the linear

map A is assumed to be closed and densely defined, and it generates a C0-semigroup

T (t). In 1967, he determined the approximate controllability for the case when A is

self adjoint, semibounded above and defined on a Hilbert space and the dynamical

system has only a finite number of scalar controls [26].

Controllability results were developed by Carmichael and Quinn [14] for the

nonlinear control system in an infinite dimensional setting. They formulated the

controllability problem as a fixed point problem and used Nussbaum fixed-point

theorem to establish conditions under which the nonlinear control system is exact

controllable from the origin to some open set contained in an appropriate function
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space. In 1983, Zhou [90] gave new sufficient conditions for the approximate con-

trollability of the semilinear control systems. The results were obtained for the

case when the range of the control operator satisfies an inequality condition. In

1984, he introduced some general conditions for exact reachability and approximate

controllability connected with two families of associated quadratic optimal control

problems [91].

Making use of Schauder’s degree theorem, Naito [71] studied the approximate

controllability for semilinear systems of the form ż(t) + Az(t) = (Bu)(t) + F (z(t))

with initial condition z(0) = 0 under the uniform boundedness of the nonlinear op-

erator and a range condition on control operator. In [70], he dropped the uniform

boundedness condition on nonlinear operator and used an inequality condition to

show that the semilinear system is approximate controllable.

In 1998, Bian [11] derived some results on approximate controllability for semi-

linear systems. In 1999, Jeong et al. [35] extended the results of [11] and discuss the

controllability results for semilinear systems with infinite delay. In 1988, Lions [59]

investigated the exact controllability of distributed systems. Here, the control was

assumed to be a boundary control or a local distributed control. In 1995, George [28]

proved the approximate controllability of the non-autonomous semilinear systems

under different assumptions on the linear and nonlinear operators. The controlla-

bility of impulsive systems was also proved by George et al. [29] in 2000.

In 2002, utilizing fixed point theorem and semigroup, Balachandran and Dauer

[3] presented a survey on the controllability of nonlinear systems and functional

integrodifferential systems in Banach spaces. In 2002, Dauer and Mahmudov [21]

investigated the approximate controllability for the semilinear delay functional differ-

ential systems applying Schauder’s fixed point theorem. For this, the corresponding

semigroup T (t) is assumed to be compact. Sufficient conditions for the exact con-

trollability of the semilinear functional differential systems were also derived when

the semigroup is not compact. These conditions were obtained by using the Banach

fixed point theorem. By assuming same conditions they also proved the approximate

and exact controllability of semilinear systems without delay in 2004 [22].

In 2005, Joshi and Kumar [40] investigated the approximation of exact con-

trollability problem involving parabolic differential equations. In [36], Jeong et al.
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analyzed the controllability of nonlinear and linear systems by assuming that the

system of generalized eigenspaces of A is complete. In 2007, they investigated the

controllability of nonlinear retarded control systems [34]. Further Lipschitz conti-

nuity and the uniform boundedness of the nonlinear term have been considerably

weakened. Ntouyas and Regan [72] proved some controllability results for semilin-

ear neutral functional differential inclusions with finite and infinite delays in Banach

spaces by replacing the compactness of operators with the complete continuity of

the nonlinearity.

Utilizing fixed point approach, the controllability property of nonlocal semilinear

evolution equation was investigated by Mahmudov [63] in 2008. In 2009, Wang [87]

obtained some sufficient conditions for approximate controllability of integrodiffer-

ential equations with multiple delays using Schauder’s fixed point theorem. In 2012,

Liu [60] extended the results of [87] and discussed the controllability of time varying

system with multiple delays and impulsive effects.

In 2013, Kang et al. [43] considered the nonlinear evolution equation and stud-

ied its controllability property. Here, they assumed that the nonlinear map verifies

the monotone condition. Kumar and Sukavanam [55] considered the nonlinear sys-

tem with delays in control and state and studied its controllability using Lipschitz

continuity. In 2015, Shukla et al. [80] determined the approximate controllabil-

ity of nonlinear systems with state delay by assuming the Lipschitz condition on

nonlinearity term. Here, they utilized fundamental solution rather than semigroup.

1.2.2 Controllability of second-order systems

In the beginning, the controllability of second-order systems were analyzed by con-

verting them into first-order systems. Later, it has been observed that the study

of a second-order system by converting them into first-order system need not give

desired results due to the behaviour of the semigroup generated by the linear part

of the transformed system. Therefore, it is more effective to study a second-order

system directly.

To discuss the differential systems of second-order as it is rather than converting

them into first-order systems, the theory of cosine family is a useful tool which was

introduced by Travis and Webb [85] in 1977. They studied the uniform continuity,
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regularity and some other properties of cosine families. In [86], they obtained the

solution of nonlinear second-order differential equations, using the theory of cosine

family.

In 1997, Park and Han [73] proved the controllability of second-order nonlin-

ear systems in Banach spaces by assuming the uniform boundedness of nonlinearity

term. Utilizing Schauder fixed point theorem, approximate controllability of in-

tegrodifferential systems of second-order is investigated in [4] and [74]. In 2003,

Mckibben [67] studied approximate controllability for second-order functional evo-

lution equation with the help of properties of cosine family and sequential approach

proposed by Zhou [90] in 1983.

Approximate controllability for neutral equations of second-order was studied by

Mahmudov et al. [62] in 2006. In [8] Balasubramaniam et al. studied approximate

controllability for distributed implicit functional control systems of second-order

with unbounded delay. Without assuming the compactness of the cosine family,

Sakthivel et al. [76] investigated the complete controllability for nonlinear impul-

sive control systems of second-order. They established controllability results by

utilizing the fixed point approach.

Kowalski and Sadkowski [50] presented some properties of cosine family. Using

the cosine family, they established the existence of mild solution of the abstract

second-order cauchy problem and gave some equivalent conditions for exact con-

trollability, null-exact controllability and approximate controllability. Finally, they

considered the mixed wave problem in the space L2[0, 1] and proved that it is ap-

proximately controllable. Utilizing Sadovskii fixed point theorem Kumar et al. [54]

obtained controllability results for second-order nonlocal differential system in 2014.

Here, they dropped the compactness of nonlinear map and cosine family.

In 2015, a numerical and an analytical estimation for the trajectory controllabil-

ity of integro-differential systems of second-order was given by Chalishajar D. and

Chalishajar H. [16]. In 2016, Mahmudov et al. [66] investigated the controllability

results for the evolution differential inclusions of second-order in Hilbert spaces. A

survey on controllability of differential systems of second-order was presented by

Klamka et al. [49] in 2017. In 2018, Kumar et al. [52] determined the controllabil-

ity of impulsive semilinear systems of second-order. They also discuss the case of
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nonlocal initial conditions.

1.2.3 Controllability of fractional order systems

Fractional differential equations are found to be appropriate models in many en-

gineering, biological and physical problems. For this reason, they have attracted

much attention in last two decades. In fact, fractional order derivatives confer a

better instrument for the illustration of hereditary and memory properties. There-

fore in the modeling of systems and processes, they have poured many applications

in the areas of electricity mechanics, heat conduction, electrodynamics of complex

medium, physics, viscoelasticity, aerodynamics, control theory etc.

Utilizing a fixed point theorem with fractional calculus, Balachandran and Park

[5] investigated the controllability of fractional semilinear integrodifferntial system

with nonlocal condition. In 2011, Sukavanam et al. [81] studied the approximate

controllability of fractional semilinear delay systems utilizing Gronwall’s inequality

and basics of fractional calculus. A set of sufficient conditions for the controllabil-

ity of fractional order nonlinear dynamical systems through Schauder’s fixed point

theorem was established by Balachandran et al. [6].

In 2012, Kumar et al. [53] investigated the approximate controllability of frac-

tional order semilinear systems with bounded delay making use of Schauder’s fixed

point theorem. In 2012, Tai and Lun [83] proved controllability of fractional im-

pulsive neutral evolution integrodifferential systems. Sufficient conditions for the

controllability were established by applying fractional calculus, resolvent operators

and Krasnoselskii’s fixed point theorem.

In 2013, Kamaljeet and Bahuguna [42] discussed the controllability of impulsive

differential equations of fractional order with finite delay and nonlocal conditions. In

2014, Souad and Toufik [24] considered the neutral evolution equations of fractional

order with Caputo derivatives and nonlocal conditions, and obtained the approxi-

mate controllability results assuming the compactness of the semigroup generated

by linear operator.

It is well known that the integrals initial conditions or Riemann-Liouville deriva-

tives play a crucial role in many practical problems. Such initial conditions are more

appropriate than other physically interpretable initial conditions. In [31], Heymans
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and Podlubny have given the physical interpretation of initial conditions expressed

in terms of integrals or Riemann-Liouville derivatives of fractional order in the area

of viscoelasticity.

In 2015, Liu and Li [61] developed approximate controllability results for a class

of Riemann-Liouville fractional equations of the form

Dϑ
t z(t) = Az(t) + F (t, z(t)) + (Bu)(t), t ∈ (0, c],(
I1−ϑ
t z(t)

)
t=0

= y0 ∈ V

for 0 < ϑ < 1 in Banach spaces. The theory of Laplace transform together with prob-

ability density function are used to derive the mild solution of the system in terms

of semigroup. To obtained the existence of solutions and controllability results, the

differentiability of semigroup and Lipschitz condition on F are assumed. Utilizing

the ideas of this article, Ibrahim et al. [33] obtained the existence and controllability

results for the same system with the initial conditions limt→0+ Γ(ϑ)t1−ϑz(z) = y0.

Here, the concept of ϑ-order resolvent is used rather than C0-semigroup.

Mahmudov and McKibben [64] determined the approximate controllability of

fractional systems with generalized Riemann-Liouville derivatives. Here, the non-

linearity term is not Lipschitz but it is measurable with respect to t. In 2017, Zhu

et al. [93] considered the same system as in [33] and obtained the optimal controls

utilizing the resolvent technique. Here, existence and optimal control were analyzed

without Lipschitz condition.

In 2018, Zhu et al. [92] analyzed the system considered in [33] with the condi-

tion 1/2 < ϑ < 1 and obtained the existence and controllability results with integral

contarctor nonlinearity. Utilizing Schauder’s fixed point theorem and semigroup,

Lian et al. [58] determined the existence of solution and time optimal control for

the systems of the form

Dϑ
t z(t) = Az(t) + F (t, z(t)) +B(t)u(t), t ∈ (0, c],(
I1−ϑ
t z(t)

)
t=0

= y0 ∈ V

for 0 < ϑ < 1 in Hilbert spaces without Lipschitz assumption. Making use of

compact method, they removed reflexivity of state space.



11 1.3. Organization of the thesis

1.3 Organization of the thesis

In this thesis, existence of mild solution and approximate controllability of semilin-

ear systems of integer order and fractional order have been investigated. Results are

obtained using fixed point, semigroup, cosine family and fractional calculus. There

are eight chapters in the thesis including the present one containing introduction

and literature review. The chapter-wise description is given below.

Chapter 2 contains basic concepts of control theory and nonlinear functional

analysis which are used in subsequent chapters.

In Chapter 3, the existence of mild solution of first-order retarded semilinear

system with control delay is proved under the locally Lipschitz continuity of non-

linear function and a fixed point theorem. Then the approximate controllability of

semilinear system is proved provided that the associated linear system without delay

is approximately controllable. Controllability results are obtained by the method of

steps and semigroup theory.

The results of this chapter are communicated to “FILOMAT Journal of

Mathematics”.

Chapter 4 contains two sections. The first section deals with the approximate

and exact controllability of second-order nonlocal retarded semilinear system with

control delay. In this section the existence of mild solution has been derived using

fixed point approach and cosine family. Here the nonlinear function is supposed to

be Lipschitz continuous. The controllability of the associated linear system with

delay is proved by the method of steps and then the controllability of the actual sys-

tem is proved. In the second section, the approximate controllability of second-order

nonlocal retarded semilinear system with multiple delays in control is discussed in

Banach spaces. The existence of mild solution has been derived using fixed point

approach. For this, nonlinear function is supposed to be locally Lipschitz. Then the

approximate controllability of associated linear system and actual system is proved.

The results of the first section of this chapter are published in “Applicable

Analysis (Taylor & Francis Online)” and the results of the second section of
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this chapter are accepted for publication in “Bulletin of the Iranian Mathe-

matical Society (Springer)”.

In Chapter 5, the partial approximate controllability of nonlocal fractional sys-

tems with integral initial conditions in Hilbert spaces without assuming the Lipschitz

continuity of nonlinear function is investigated. We also exclude the conditions of

Lipschitz continuity and compactness for the nonlocal function. The existence of

solution is derived applying Schauder’s fixed point theorem, then the partial approx-

imate controllability result is proved by assuming that the associated linear system

is partial approximately controllable for ϕ = 0, where ϕ is nonlocal function.

The results of this chapter are Published in “Rendiconti del Circolo Matem-

atico di Palermo Series 2 (Springer)”.

In Chapter 6 we analyzed the approximate controllability of Riemann-Liouville

fractional evolution equations with integral initial conditions in Banach spaces. First

we deduce the existence of mild solutions using fractional Riemann- Liouville family

and fixed point approach by assuming the Lipschitz continuity of nonlinearity term.

Then we established new sufficient conditions for the approximate controllability of

the system.

The results of this chapter are communicated to “Numerical Functional Anal-

ysis and Optimization (Taylor & Francis Online)”.

Chapter 7 is concerned with the Riemann-Liouville fractional semilinear inte-

grodifferential systems with damping in Banach spaces. First we proved the exis-

tence of mild solutions of the system using fixed point approach. Then we established

a set of new sufficient conditions for the approximate controllability of the system

by means of iterative and approximate technique. To obtain our results, we use the

concept of Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent, where 0 < ϕ < ϑ ≤ 1

and λ is a real number.

The results of this chapter are published in “Chaos, Solitons & Fractals

(Elsevier)”.



Chapter 2

Preliminaries

In this chapter, some basic concepts of control theory and nonlinear functional

analysis, which are used in subsequent chapters, are presented.

2.1 Basic concepts of control theory

2.1.1 Finite dimensional linear systems

A mathematical formulation of a finite dimensional linear control system can be

represented by the differential systems
dz(t)
dt

= ż(t) = A(t)z(t) +B(t)u(t), t ∈ (t0, c],

z(t0) = y0 ∈ Rn,
(2.1.1)

where z(t) ∈ Rn is known as the state variable and u(t) ∈ Rm is known as the

control at time t. A(t) and B(t) are piecewise continuous matrices of order n × n
and n×m respectively.

Let L2([t0, c];Rn) and L2([t0, c];Rm) be the function spaces to which z and u

belong, respectively. The solution of the system (2.1.1) is given by the equation

z(t) = Φ(t, t0)y0 +

∫ t

t0

Φ(t, s)B(s)u(s) ds, t0 ≤ t ≤ c,

where Φ(t, t0) is an n × n matrix, known as the state transition matrix and it has

the following properties:

13
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(i) d
dt

Φ(t, t0) = A(t)Φ(t, t0);

(ii) Φ(t, t) = I, the identity matrix of order n;

(iii) Φ−1(t, t0) = Φ(t0, t);

(iv) Φ(t, s)Φ(s, t0) = Φ(t, t0).

The state transition matrix Φ(t, t0) can be obtained by the following Peano’s

series,

Φ(t, s) = I +

∫ t

s

A(τ) dτ +

∫ t

s

∫ τ1

s

A(τ2)A(τ1) dτ2dτ1 + · · · .

If the matrix A does not depend on time t, then from the above series, one has

Φ(t, s) = eA(t−s).

Remark 2.1.1. If the matrices A and B are constants then the system is known as

autonomous system and in this case the solution takes the form

z(t) = eA(t−t0)y0 +

∫ t

t0

eA(t−s)Bu(s) ds, t0 ≤ t ≤ c.

Definition 2.1.1. The system (2.1.1) is said to be controllable on [t0, c], if for every

given vector zc ∈ Rn, one can find a control u ∈ L2([t0, c];Rm) such that the solution

of the system (2.1.1) satisfies z(c) = zc, that is

Φ(c, t0)y0 +

∫ c

t0

Φ(c, s)B(s)u(s) ds = zc.

If above is not the case, we say that the system is uncontrollable.

Remark 2.1.2. In general, the control u which steers the system from y0 to the

final state zc, depends on y0 and zc and it may not be unique.

The collection of all points to which the system can be steered in time c is known

as the controllable space or reachable set and is denoted by Rc, that is

Rc =
{
z(c) ∈ Rn

∣∣ z is a solution of (2.1.1) associated with u ∈ L2([t0, c];Rm)
}
.

The system (2.1.1) is said to be controllable on [t0, c] if the reachable set Rc

equals to the whole space Rn.
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Definition 2.1.2. Let B∗ and Φ∗ be the conjugate transpose of B and Φ respec-

tively. The matrices G : L2([t0, c];Rm)→ Rn and W c
t0

: Rn → Rn defined by

Gu =

∫ c

t0

Φ(t, s)B(s)u(s) ds (2.1.2)

and

W c
t0

=

∫ c

t0

Φ(c, s)B(s)B∗(s)Φ∗(c, s) ds, (2.1.3)

are known as the controllability matrix and the controllability Grammian matrix,

respectively.

Theorem 2.1.3. [18] The linear system (2.1.1) is controllable if and only if the

controllablility Grammian matrix W c
t0

given by (2.1.3), is invertible.

2.1.2 Infinite dimensional linear systems

In infinite dimensional spaces, the control problems are more difficult and conceptual

than the finite dimensional cases. For this reason, it is an important area of research

with a rich literature. To study the first-order systems, the theory of semigroup is

an important tool. Therefore first we review the theory of semigroup.

As usual, let B(V ) denotes the set of continuous linear maps from the Banach

space V to V and R+
0 be the set of non-negative real numbers.

Definition 2.1.3. [75] A family of operators {T (t)}t∈R+
0
⊂ B(V ) is called a strongly

continuous semigroup or C0-semigroup on V , if it satisfies the following properties:

(i) T (0)y = y for y ∈ V ;

(ii) T (s+ t) = T (s)T (t) for s, t ∈ R+
0 ;

(iii) lim
t↓0
‖T (t)y − y‖ = 0 ∀ y ∈ V .

Definition 2.1.4. [75] The infinitesimal generator A of a strongly continuous semi-

group T (t) is defined as

Ay = lim
t↓0

T (t)y − y
t

,

if the limit exists. The domain of A is the collection of all points y ∈ V for which

the limit exists.
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Theorem 2.1.4. [18] A C0-semigroup T (t) generated by A satisfies the following

properties:

(i) there are constants M and ω such that

‖T (t)‖ ≤Meωt ∀ t ∈ R+
0

and hence ‖T (t)‖ is bounded on every bounded interval;

(ii) for y ∈ V , we have

lim
h→0

1

h

∫ t+h

t

T (s)y ds = T (t)y;

(iii) for y ∈ D(A), T (t)y ∈ D(A) and

d

dt
T (t)y = AT (t)y = T (t)Ay.

An infinite dimensional linear control system can be written asż(t) = Az(t) +Bu(t), t ∈ (t0, c],

z(t0) = y0 ∈ V,
(2.1.4)

where for each fixed t, the state z(t) ∈ V and the control u(t) ∈ V ′; V ′ is another

Banach space. Let Z = L2([t0, c];V ) and U = L2([t0, c];V
′) are function spaces of

V and V ′, respectively. The linear map A : D(A) ⊆ V → V is closed with dense

domain D(A) and it generates a semigroup T (t), B : V ′ → V is a continuous linear

map.

For any y0 ∈ V , a function z ∈ L2([t0, c];V ) is the mild solution of (2.1.4) if it

satisfies

z(t) = T (t− t0)y0 +

∫ t

t0

T (t− s)Bu(s) ds, t0 ≤ t ≤ c.

Definition 2.1.5. [3] The system (2.1.4) is said to be approximate controllable on

[t0, c], if for given ε > 0 and a final state zc in V , one can find a control u in U

steering y0, along a solution (trajectory) of the system (2.1.4) to an ε-neighborhood

of zc, that is

‖z(c)− zc‖ ≤ ε.

If z(c) = zc, the system (2.1.4) is said to be an exact controllable system on

[t0, c].
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Remark 2.1.5. In case of finite dimensional systems, the concepts of approximate

controllablility and exact controllability are equivalent.

2.1.3 Infinite dimensional first-order semilinear systems

An abstract form of infinite dimensional semilinear control systems is given asż(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (t0, c],

z(t0) = y0 ∈ V,
(2.1.5)

where the state space and control space, and the operators A, B setting are similar

as defined in previous section. The map F : [t0, c]× V → V produces nonlinearity

in the system (2.1.5).

A mild solution of (2.1.5) is a function z(t) given by the nonlinear integral equa-

tion

z(t) = T (t− t0)y0 +

∫ t

t0

T (t− s)
(
Bu(s) + F (s, z(s))

)
ds, t0 ≤ t ≤ c.

Under suitable assumptions on F , the mild solution z(t) is unique for each fixed

u ∈ U .

Definition 2.1.6. The reachable set Rc(F ) of the system (2.1.5) is defined as

Rc(F ) =
{
z(c)

∣∣ z(t) is the mild solution of (2.1.5) associated with u ∈ U
}
.

The reachable set of linear system corresponding to semilinear system (2.1.5) is

denoted by Rc(0).

The controllability in terms of reachable set is defined below:

Definition 2.1.7. A control system is said to be approximate controllable on [t0, c],

if Rc(F ) is dense in V , that is Rc(F ) = V and it is said to be exact controllable, if

Rc(F ) = V .

An important result on the controllability of the system (2.1.5) was given by

Naito [71] which is given below:

Theorem 2.1.6. [71] The semilinear system (2.1.5) is approximate controllable if

the following conditions are satisfied:
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(i) the semigroup T (t) is compact;

(ii) F (t, y) is Lipschitz in y ∈ V ;

(iii) ‖F (t, y)‖ ≤ kF , where kF is a positive constant;

(iv) for every p ∈ Z = L2([t0, c];V ), one can find a q ∈ Range(B) satisfying the

equation ζp = ζq, where ζ : Z → V is defined as

ζz =

∫ c

t0

T (c− s)z(s) ds.

Condition (iv) of the above theorem implies the approximate controllability of

corresponding linear control system of (2.1.5) (when F = 0 in (2.1.5)) (for proof see

[71]).

2.1.4 Infinite dimensional second-order semilinear systems

First we define sine and cosine family, because mild solutions for the systems of

second-order are defined in terms of these families (for details see [85; 86]).

Definition 2.1.8. [86] A family of operators {C(t)}t∈R ⊂ B(V ) is called strongly

continuous cosine family if

(i) C(0)y = y for y ∈ V ;

(ii) 2C(s)C(t) = C(s− t) + C(s+ t) for s, t ∈ R;

(iii) C(t) is strongly continuous in t.

Definition 2.1.9. [86] The sine family {S(t)}t∈R ⊂ B(V ) associated with {C(t)}t∈R
is defined as

S(t)y =

∫ t

0

C(s)y ds, y ∈ V, t ∈ R.

Definition 2.1.10. [86] The infinitesimal generator A of a strongly continuous co-

sine family {C(t)}t∈R is defined by

Ay =
d2

dt2
C(t)y

∣∣∣∣
t=0

,

where

D(A) =
{
y ∈ V

∣∣ C(t)y is twice continuously differentiable function of t
}
.
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Lemma 2.1.7. [86] If A generates a strongly continuous cosine family {C(t)}t∈R,

then

(i) S(t) = −S(−t) for t ∈ R;

(ii) C(t) = C(−t) for t ∈ R;

(iii) S(s), S(t), C(s) and C(t) commute for s, t ∈ R;

(iv) 2S(s)C(t) = S(s− t) + S(s+ t) for s, t ∈ R;

(v) C(s)S(t) + C(t)S(s) = S(s+ t) for s, t ∈ R;

(vi) 2AS(s)S(t) = C(s+ t)− C(s− t) for s, t ∈ R.

A second-order abstract semilinear control system can be written as
d2

dt2
z(t) = z̈(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (t0, c],

z(t0) = y0 ∈ V,

ż(t0) = y1 ∈ V,

(2.1.6)

where the operators A, B, F , state space and control space are defined as earlier.

The system represented by the differential equation (2.1.6) is called an infinite

dimensional second-order semilinear control system.

The mild solution of (2.1.6) is given by a nonlinear integral equation which can

be written as

z(t) = C(t− t0)y0 + S(t− t0)y1 +

∫ t

t0

S(t− s)
(
Bu(s) + F (s, z(s))

)
ds, t0 ≤ t ≤ c.

2.2 Basic concepts of fractional calculus

First we give some definitions from fractional calculus.

Definition 2.2.1. The Riemann-Lioville fractional integral operator of order ϑ > 0

of a function f is given by

Iϑt f(t) =
1

Γ(ϑ)

∫ t

0

(t− s)ϑ−1f(s) ds.
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Definition 2.2.2. The Mittag-Leffler function Eϑ,ϕ(x) is defined as

Eϑ,ϕ(x) =
∞∑
n=0

xn

Γ(ϑn+ ϕ)
.

If ϕ = 1 then it is the-one parameter Mittag-Leffler function Eϑ.

Definition 2.2.3. The two-parameter Mittag-Leffler integral operator is given by

Eϑ,ϕ,λt f(t) =

∫ t

0

(t− s)ϕ−1Eϑ,ϕ
(
λ(t− s)ϑ

)
f(s) ds, t > 0.

Definition 2.2.4. The function defined by

Dϑ
t f(t) =

dϑ

dtϑ
f(t) =

dn

dtn
(
In−ϑt f(t)

)
=

1

Γ(n− ϑ)

dϑ

dtϑ

∫ t

0

(t− s)(n−ϑ−1)f(s) ds

is called ϑ- order Riemann-Lioville fractional derivative of f(t), where n−1 ≤ ϑ < n,

n ∈ N.

Definition 2.2.5. The function defined by

CDϑ
t f(t) =

1

Γ(n− ϑ)

∫ t

0

(t− s)(n−ϑ−1)fn(s) ds

is called ϑ- order Caputo fractional derivative of f(t), where n− 1 ≤ ϑ < n, n ∈ N.

This definition is more restrictive than Riemann-Lioville one because it needs

the absolute integrability of the nth-order derivative of the function f(t). Between

the two definitions there is the following relation:

Dϑ
t f(t) =C Dϑ

t f(t) +
m−1∑
k=0

tk−ϑ

Γ(k − ϑ+ 1)
f (k)(0+).

Lemma 2.2.1. Let ϑ > 0, m = [ϑ] + 1, and let zm−ϑ(t) = Im−ϑt z(t). If z(t) ∈
L1([0, c];V ) and zm−ϑ(t) ∈ ACm([0, c];V ), then

Iϑt D
ϑ
t z(t) = z(t)−

m∑
j=1

z
(m−j)
m−ϑ

Γ(ϑ− j + 1)
tϑ−j.
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2.2.1 Infinite dimensional fractional systems of order ϑ ∈

(0, 1)

Consider the fractional system of the formCDϑ
t z(t) = Az(t), t ∈ (0, c],

z(0) = y0 ∈ V,
(2.2.1)

where CDϑ
t is the Caputo fractional derivative of order ϑ ∈ (0, 1). A : D(A) ⊆ V →

V generates a C0-semigroup T (t).

The integral form of the Cauchy problem (2.2.1) is

z(t) = y0 +
1

Γ(ϑ)

∫ t

0

(t− s)ϑ−1Az(s) ds. (2.2.2)

By a solution of the Cauchy problem (2.2.1), we mean a function z satisfying

the following conditions:

(i) z is continuous on [0, c] and z(t) ∈ D(A) for each t ∈ [0, c];

(ii) CDϑ
t z(t) is continuous on [0, c], where 0 < ϑ < 1;

(iii) z satisfies the equation (2.2.1) on [0, c] and the initial condition z(0) = y0.

Notice that the integral equation (2.2.2) is equivalent to the Cauchy problem

(2.2.1).

The solution of (2.2.1) is given by

z(t) = T̂ϑ(t)y0,

where

T̂ϑ(t)y =

∫ ∞
0

φϑ(%)T (tϑ%)y d%

and

φϑ(%) =
1

ϑ
%−1−1/ϑψϑ(%−1/ϑ).

(T̂ϑ(t) is known as ϑ-order semigroup).

Note that φϑ(%) satisfies the condition of a probability density function. The

term ψϑ(%) is defined as

ψϑ(%) =
1

π

∞∑
n=1

(−1)n−1%−nϑ−1 Γ(nϑ+ 1)

n!
sin(nπϑ), % ∈ (0,∞).
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Now, consider the fractional systemCDϑ
t z(t) = Az(t) + f(t), t ∈ (0, c],

z(0) = y0 ∈ V,
(2.2.3)

where the function f ∈ L1([0, c];V ).

Definition 2.2.6. [94] A function z ∈ C([0, c];V ) is said to be a mild solution of

(2.2.3) if it satisfies

z(t) = T̂ϑ(t)y0 +

∫ t

0

(t− s)ϑ−1Tϑ(t− s)f(s) ds, 0 ≤ t ≤ c,

where

Tϑ(t)y = ϑ

∫ ∞
0

%φϑ(%)T (tϑ%)y d%.

A mathematical model of an infinite dimensional fractional linear control system

is given by CDϑ
t z(t) = Az(t) +Bu(t), t ∈ (0, c],

z(0) = y0 ∈ V.
(2.2.4)

A function z ∈ C([0, c];V ) given by

z(t) = T̂ϑ(t)y0 +

∫ t

0

(t− s)ϑ−1Tϑ(t− s)Bu(s) ds,

is known as the mild solution of the system (2.2.4).

The controllability of the fractional order control system (2.2.4) is a general-

ization of the controllability of first-order linear system. Now, we introduce the

controllability operator for (2.2.4) as in [77].

Ψc
0 =

∫ c

0

(c− s)ϑ−1Tϑ(T − s)BB∗T ∗ϑ(T − s) ds,

where B∗ and T ∗ϑ(t) are adjoint operators of B and Tϑ(t), respectively. It is easily

seen that Ψc
0 is continuous linear operator.

Let

R(λ,Ψc
0) = (λI + Ψc

0)−1 for λ > 0.



23 2.2. Basic concepts of fractional calculus

Lemma 2.2.2. [77] The fractional order linear control system (2.2.4) is approximate

controllable on [0, c] if and only if λR(λ,Ψc
0)→ 0 as λ→ 0+ in the strong operator

topology.

Consider the infinite dimensional fractional order semilinear control system in

abstract form as followsCDϑ
t z(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (0, c],

z(0) = y0 ∈ V,
(2.2.5)

where 0 < ϑ ≤ 1 and F is a nonlinear function. The mild solution z(t) of the system

(2.2.5) is given by the integral equation

z(t) = T̂ϑ(t)y0 +

∫ t

0

(t− s)ϑ−1Tϑ(t− s)
(
Bu(s) + F (s, z(s))

)
ds, 0 ≤ t ≤ c.

The system (2.2.5) is approximate controllable if the following conditions are

satisfied [77]:

(i) the C0-semigroup T (t) generated by A is compact;

(ii) ∀ t ∈ [0, c], the function F (t, ·) : V → V is continuous and ∀ z ∈ C([0, c];V )

the function F (·, z) : [0, c]→ V is strongly measurable;

(iii) there is a constant q1 ∈ [0, ϑ] and m ∈ L 1
q1

([0, c];R+
0 ) such that |F (t, z)| ≤ m(t)

∀ z ∈ V and almost all t ∈ [0, c];

(iv) the function F : [0, c] × V → V is continuous and there is a constant kF > 0

such that ‖F (t, z)‖ ≤ kF ∀ (t, z) ∈ [0, c]× V .

2.2.2 Infinite dimensional fractional systems of order ϑ ∈

(1, 2]

Consider the fractional system of order ϑ ∈ (1, 2]
CDϑ

t z(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (0, c],

z(0) = y0 ∈ V,

ż(0) = y1 ∈ V,

(2.2.6)
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where ϑ ∈ (1, 2] and CDϑ
t is the Caputo fractional differential operator. A generates

a strongly continuous ϑ-order cosine family {Cϑ(t)}t∈R+
0

. The other notations are

defined as in previous sections.

Now, we define the ϑ-order fractional cosine family. For this consider the system
CDϑ

t z(t) = Az(t), t ∈ (0, c],

z(0) = y ∈ V,

ż(0) = 0 ∈ V.

(2.2.7)

Applying Riemann-Liouville fractional integral of order ϑ on both sides of (2.2.7),

one can get

z(t) = y +
1

Γ(ϑ)

∫ t

0

(t− s)ϑ−1Az(s) ds.

Definition 2.2.7. [2] A family of operators {Cϑ(t)}t∈R+
0
⊂ B(V ) is called strongly

continuous ϑ-order fractional cosine family if

(i) Cϑ(0)y = y for y ∈ V , and Cϑ(t) is strongly continuous in t;

(ii) Cϑ(t)y ∈ D(A) and ACϑ(t)y = Cϑ(t)Ay for y ∈ D(A), t ∈ R+
0 ;

(iii) Cϑ(t)y satisfies z(t) = y + 1
Γ(ϑ)

∫ t
0
(t− s)ϑ−1Az(s) ds for y ∈ D(A), t ∈ R+

0 .

A is known as the infinitesimal generator of Cϑ(t). The family Cϑ(t) is also

known as the ϑ-order cosine family.

Definition 2.2.8. The fractional sine family {Sϑ(t)}t∈R+
0
⊂ B(N) associated with

{Cϑ(t)}t∈R+
0

is defined by

Sϑ(t) =

∫ t

0

Cϑ(s) ds, t ∈ R+
0 . (2.2.8)

Definition 2.2.9. The fractional Riemann-Liouville family {Rϑ(t)}t∈R+
0
⊂ B(N) is

defined by

Rϑ(t) = Iϑ−1
t Cϑ(t), t ∈ R+

0 . (2.2.9)

Definition 2.2.10. Cϑ(t) is called exponentially bounded if there are constants

ω ≥ 1 and λ ≥ 0 satisfying

‖Cϑ(t)‖ ≤ ωeλt, t ∈ R+
0 . (2.2.10)
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If ž(ρ) is the Laplace transform of z, that is

L{z(t)} =

∫ ∞
0

e−ρtz(t) dt = ž(ρ),

then

L{Iϑt z(t)} =
1

ρϑ
ž(ρ).

Using Laplace transform theory and the following well known relation∫ ∞
0

e−ρtCϑ(t)y dt = ρϑ−1(ρϑI − A)−1y, Re(ρ) > λ, y ∈ V, (2.2.11)

one can easily obtain∫ ∞
0

e−ρtSϑ(t)y dt = ρϑ−2(ρϑI − A)−1y, Re(ρ) > λ, y ∈ V (2.2.12)

and ∫ ∞
0

e−ρtRϑ(t)y dt = (ρϑI − A)−1y, Re(ρ) > λ, y ∈ V. (2.2.13)

Definition 2.2.11. A function z ∈ C([0, c];V ) is called a mild solution of (2.2.6) if

it satisfies

z(t) = Cϑ(t)y0 + Sϑ(t)y1 +

∫ t

0

Rϑ(t− s)
(
Bu(s) + F (s, z(s))

)
ds. (2.2.14)

2.2.3 Infinite dimensional fractional systems with damping

Consider the following Riemann-Liouville fractional systems with damping:Dϑ
t z(t) + λDϕ

t z(t) = Az(t), t ∈ (0, c],(
I1−ϑ
t z(t)

)
t=0

= y0 ∈ V,
(2.2.15)

where 0 < ϕ < ϑ ≤ 1 and λ is a real number.

Let R+ be the set of positive real numbers.

Definition 2.2.12. [68] A family of operators {Rϑ,ϕ,λ(t)}t∈R+ ⊂ B(V ) is called

Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent on the Banach space V if

(i) for any y ∈ V, Rϑ,ϕ,λy ∈ C((0,∞);V ), and

lim
t→0+

Γ(ϑ)t1−ϑRϑ,ϕ,λ(t)y = y;
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(ii) Rϑ,ϕ,λ(t) and Rϑ,ϕ,λ(s) commute for t, s > 0;

(iii) for t, s > 0, one has

Rϑ,ϕ,λ(s)Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)− Eϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)Rϑ,ϕ,λ(t)

= sϑ−1Eϑ−ϕ,ϑ(−λsϑ−ϕ)Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)

− tϑ−1Eϑ−ϕ,ϑ(−λtϑ−ϕ)Eϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s).

Definition 2.2.13. The linear operator A defined by

Ay = Γ(2ϑ) lim
t→0+

t1−ϑRϑ,ϕ,λ(t)y − Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
y

tϑ
for y ∈ D(A),

where

D(A) =

{
y ∈ V

∣∣∣∣∣ lim
t→0+

t1−ϑRϑ,ϕ,λ(t)y − Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
y

tϑ
exists

}
,

is called the generator of Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent Rϑ,ϕ,λ(t).

Lemma 2.2.3. [68] If A generates a Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent

Rϑ,ϕ,λ(t), then

(i) Rϑ,ϕ,λ(t)y ∈ D(A) and ARϑ,ϕ,λ(t)y = Rϑ,ϕ,λ(t)Ay for y ∈ D(A);

(ii) for y ∈ V , t > 0,

Rϑ,ϕ,λ(t)y = tϑ−1Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
y + AEϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)y;

(iii) for y ∈ D(A) and t > 0,

Rϑ,ϕ,λ(t)y = tϑ−1Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
y + Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)Ay.

Definition 2.2.14. A function z ∈ C1−ϑ([0, c];V ) is said to be a mild solution of

(2.2.15) if it satisfies

z(t) = Rϑ,ϕ,λ(t)y0.
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2.3 Basics concepts of functional analysis

Now we give basic definitions and theorems from functional analysis.

Definition 2.3.1. Let V and V ′ be two Banach spaces. Then F : V → V ′ is said

to be Lipschitz continuous if there exists a constant kF > 0 such that

‖F (y)− F (ỹ)‖V ′ ≤ kF‖y − ỹ‖V ∀ y, ỹ ∈ V.

Definition 2.3.2. Let V be a Banach space and F : V → V ′ be a map then each

solution of the equation

F (y) = y, y ∈ V,

is known as a fixed point of the map F .

Theorem 2.3.1. [51; 69] (Banach contraction fixed point theorem) Let E be a

nonempty, closed set in a Banach space V and F : E → E be a k-contraction map,

i.e,

‖F (y)− F (ỹ)‖ ≤ k‖y − ỹ‖, ∀ y, ỹ ∈ E and fixed k, 0 ≤ k < 1.

Then F has a unique fixed point in M .

Definition 2.3.3. (Nemytskii operator) Let F : [0, c]×V → V be a function, which

satisfies Caratheodory condition, that is F (t, y) is continuous with respect to y for

almost all t ∈ [0, c] and measurable with respect to t for all y ∈ V . Then the

operator F̃ : L2([0, c];V )→ L2([0, c];V ) defined by

(
F̃ z
)
(t) = F (t, z(t)), z ∈ L2([0, c];V ),

is called Nemytskii operator.

Theorem 2.3.2. [9] (Schauder fixed point theorem) Let E be a closed, convex and

bounded subset of a Banach space V . let T : E → E be a continuous and compact

operator that maps E into itself. Then the equation Ty = y has at least one solution

in E.
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Theorem 2.3.3. (Arzela-Ascoli theorem) Suppose E is a compact set in Rn. A

set S ⊂ C(E) is relatively compact in C(E) if and only if the functions in S are

uniformly bounded and equicontinuous on E.

Theorem 2.3.4. (Dominated convergence theorem) Let {ξn} be a sequence of mea-

surable functions on a set S satisfying |ξn| ≤ g a.e. on S for n = 1, 2, . . . ; where g

is integrable on S in the Lebesgue sense. If ξn converges pointwise to a function ξ

a.e. on S. Then ξ is Lebesgue integrable on E and

lim
n→∞

∫
S

ξn dx =

∫
S

ξ dx.

Lemma 2.3.5. (Fatou’s lemma) Let {ξn} be a sequence of integrable functions on a

set S such that ξn ≥ g a.e. on S for some integrable function g and limn→∞
∫
S
ξn dx <

∞. Then ∫
S

limn→∞ξn dx ≤ limn→∞

∫
S

ξn dx.

Definition 2.3.4. [18] (Gronwall’s inequality) Assume that the continuous functions

χ, ξ : [0, c]→ [0,∞) and κ > 0 satisfy

χ(t) ≤ κ+

∫ t

0

ξ(s)χ(s) ds ∀ t ∈ [0, c].

Then χ satisfies the following Gronwall’s inequality

χ(t) ≤ κ exp

(∫ t

0

ξ(s) ds

)
.

Theorem 2.3.6. [88]. Let ϑ > 0, ξ(t) be nonnegative, nondecreasing and locally in-

tegrable on [0, τ) (some τ ≤ ∞) and χ(t) be a nonnegative, nondecreasing, bounded

continuous function defined on [0, τ), and let ψ(t) be nonnegative and locally inte-

grable on [0, τ) with

ψ(t) ≤ ξ(t) + χ(t)

∫ t

0

(t− s)ϑ−1ψ(s) ds.

Then

ψ(t) ≤ ξ(t)Eϑ
(
χ(t)tϑΓ(ϑ)

)
.



Chapter 3

Approximate Controllability of

First-Order Retarded Semilinear

Systems with Fixed Delay in

Control

In this chapter, we prove the controllability of a class of retarded differential equa-

tions with fixed delay in control. First we prove the existence of mild solution by

applying fixed point theorem and Gronwall’s inequality. For this, the nonlinear

function is supposed to be locally Lipschitz. Then the approximate controllability

of the system is deduced via approximate method. Finally, an illustrative example

has been described.

3.1 Introduction and preliminaries

Let V and V ′ be Hilbert spaces and Z = L2([0, c];V ), U = L2([0, c];V ′) be the

function spaces. Let Ct = C([−a, t];V ) be the space of continuous functions from

[−a, t] to V with the norm ‖z‖Ct = sup
−a≤%≤t

‖z(%)‖V . Consider the retarded differential

systemż(t) = Az(t) +B0u(t) +B1u(t− a) + F
(
t, zt, u(t)

)
, t ∈ (0, c],

z(t) = ℘(t), u(t) = 0, t ∈ [−a, 0],
(3.1.1)

29
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where the state z ∈ Z, the control u ∈ U , A is a densely defined closed linear op-

erator generating a C0-semigroup T (t), B0 and B1 are continuous linear maps from

V ′ to V , ℘ : [−a, 0] → V is continuous and F : [0, c] × C0 × V ′ → V is a nonlinear

map. If z ∈ Cc, then zt : [−a, 0]→ V is defined as zt(θ) = z(t+ θ) ∀ θ ∈ [−a, 0].

Many natural incidents embrace a significant memory effect. Retarded systems

express the mathematical model of such real life problems. For example, many prob-

lems occurring from medicine, biosciences, chemical sciences, physical sciences, eco-

nomics are affected by their previous results at major scale. Therefore for the study

of controllability, it becomes much important to select retarded systems. Klamka

[46] studied the controllability of linear systems with time-variable delays in control.

In [55] Kumar et al. obtained a set of sufficient conditions for exact controllability

of semilinear retarded systems.

The system (3.1.1) admits the concept of distributed delay zt ∈ C([−a, 0];V ),

where delay is incurred as mentioned in above paragraph. The study of such systems

covers a wide range of applications. Sukavanam et al. [82] studied the controllability

of a semilinear delayed system with growing nonlinear term. In [23], Davies et al.

deduced the results for null and exact controllability of linear systems with delay in

both state and control. Utilizing sequence method and the concept of fundamen-

tal solution Anurag et al. [80] investigated the controllability of semilinear systems

with state delay. In [37], Jeong and Roh obtained some results for the approximate

controllability of the semilinear retarded control system of first-order under Lips-

chitz continuity of the nonlinear function. In this chapter, we extend the results for

semilinear delay system with control in nonlinearity term.

Definition 3.1.1. A function z ∈ Cc is said to be a mild solution of (3.1.1) corre-

sponding to a control function u ∈ U , if it satisfies

z(t) =


T (t)℘(0) +

∫ t

0

T (t− s)
(
B0u(s) +B1u(s− a)

)
ds

+

∫ t

0

T (t− s)F
(
s, zs, u(s)

)
ds, t ∈ (0, c],

℘(t), t ∈ [−a, 0].

(3.1.2)

Definition 3.1.2. The system given by (3.1.1) is said to be approximately control-

lable on [0, c], if for every given ε > 0 and a final state zc, one can find a control



31 3.2. Existence of mild solution

u ∈ U such that the mild solution of (3.1.1) corresponding to u satisfies

‖z(c)− zc‖ ≤ ε.

For the system (3.1.1), the systemsż(t) = Az(t) +B0u(t) +B1u(t− a), t ∈ (0, c],

z(0) = ℘(0)
(3.1.3)

and ż(t) = Az(t) +B0u(t), t ∈ (0, c],

z(0) = ℘(0)
(3.1.4)

are the associated linear systems with delay and without delay, respectively.

Throughout this chapter, we assume that there is a constant kT > 0 satisfying

‖T (t)‖ ≤ kT for 0 ≤ t ≤ c.

3.2 Existence of mild solution

To derive the existence result, we assume the following:

(H1) F is continuous in t and locally Lipschitz in z that is there is a constant λr

such that

‖F (t, z1, u)− F (t, z2, u)‖V ≤ λr‖z1 − z2‖C0

holds for all z` ∈ C0 with ‖z`‖ ≤ r (` = 1, 2), u ∈ V ′ and t ∈ [0, c];

(H2) there is a positive constant kF such that

‖F (t, z, u)‖V ≤ kF
(
1 + ‖z‖C0 + ‖u‖V ′

)
holds for all z ∈ C0, u ∈ V ′ and t ∈ [0, c].

Firs we prove the next lemma.

Lemma 3.2.1. Let z(t) be continuous on [0, c) (0 < c < ∞). If k1 and k2 be two

positive constants such that

‖z(t)‖V ≤ k1 + k2

∫ t

0

‖zs‖C0 ds ∀ t ∈ [0, c).
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Then

‖z(t)‖V ≤ (k1 + k℘) exp(k2c) ∀ t ∈ [0, c),

where z(t) = ℘(t) on [−a, 0] and k℘ = ‖℘‖C0.

Proof. Let t′ ∈ [0, c) be arbitrary but fixed. Then there is a t∗ ∈ [−a, t′] such that

sup
θ∈[−a,0]

‖z(t′ + θ)‖V = ‖z(t∗)‖V .

Now if t∗ ∈ [−a, 0], then

sup
θ∈[−a,0]

‖z(t′ + θ)‖V = ‖z(t∗)‖V

≤ k℘

< k℘ + k1 + k2

∫ t′

0

‖zs‖C0 ds.

If t∗ ∈ (0, t′], then

sup
θ∈[−a,0]

‖z(t′ + θ)‖V = ‖z(t∗)‖V

≤ k1 + k2

∫ t∗

0

‖zs‖C0 ds

≤ k℘ + k1 + k2

∫ t′

0

‖zs‖C0 ds.

Thus

‖z(t′)‖V ≤ sup
θ∈[−a,0]

‖z(t′ + θ)‖V ≤ k℘ + k1 + k2

∫ t′

0

‖zs‖C0 ds,

which gives

‖z(t)‖V ≤ ‖zt‖C0 ≤ k℘ + k1 + k2

∫ t

0

‖zs‖C0 ds ∀ t ∈ [0, c).

Using Gronwall’s inequality, we have

‖z(t)‖V ≤ ‖zt‖C0 ≤ (k1 + k℘) exp(k2c) ∀ t ∈ [0, c).

This proves the lemma. �

Theorem 3.2.2. Under hypotheses (H1) and (H2), the semilinear system (3.1.1)

admits a unique mild solution in Cc for each control u ∈ U .
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Proof. Let max
{
‖B0‖, ‖B1‖

}
≤ kB. Define a mapping Q : Cc1 → Cc1 as

(Qz)(t) =


T (t)℘(0) +

∫ t

0

T (t− s)
(
B0u(s) +B1u(s− a)

)
ds

+

∫ t

0

T (t− s)F
(
t, zs, u(s)

)
ds, t ∈ (0, c1],

℘(t), t ∈ [−a, 0].

Consider the ball

Ba0 =
{
z ∈ Cc1

∣∣ ‖z‖Cc1 ≤ a0, z(0) = ℘(0)
}
.

For any z ∈ Ba0 and 0 ≤ s ≤ c1

‖zs‖C0 = sup
θ∈[−a,0]

‖z(s+ θ)‖ ≤ sup
%∈[−a,c1]

‖z(%)‖ ≤ a0.

Thus

‖(Qz)(t)‖ ≤ kT‖℘(0)‖+ kTkB

(∫ t

0

‖u(s)‖ ds+

∫ t

0

‖u(s− a)‖ ds
)

+ kT

∫ t

0

∥∥F(t, zs, u(s)
)
− F (s, 0, u(s))

∥∥ ds
+ kT

∫ t

0

‖F (s, 0, u(s))‖ ds

≤ kT‖℘(0)‖+ 2kTkB
√
c‖u‖U + kTλa0

∫ t

0

‖zs‖ ds

+ kTkF

∫ t

0

(1 + ‖u‖U) ds

≤ kT‖℘(0)‖+ 2kTkB
√
c‖u‖U + kTλa0a0c1 + kTkF (c1 +

√
c1‖u‖U)

= kT
(
‖℘(0)‖+ 2kB

√
c‖u‖U + (λa0a0

√
c1 + kF‖u‖U + kF

√
c1)
√
c1

)
.

Now choosing a0 = 2kT (‖℘(0)‖+2kB
√
c‖u‖U +1) and 0 < c1 < c small enough such

that

(λa0a0

√
c1 + kF‖u‖U + kF

√
c1)
√
c1 ≤ ‖℘(0)‖+ 2kB

√
c‖u‖U + 1.

Then

‖(Qz)(t)‖ ≤ 2kT (‖℘(0)‖+ 2kB
√
c‖u‖U + 1)

= a0 (say).
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Therefore Q maps Ba0 into itself.

Now we show that Qn is contraction on Ba0 . Take z, z̃ ∈ Ba0 , then

‖(Qz)(t)− (Qz̃)(t)‖ ≤ kT

∫ t

0

∥∥F(s, (z)s, u(s)
)
− F

(
s, (z̃)s, u(s)

)∥∥ ds
≤ kTλa0

∫ t

0

‖(z)s − (z̃)s‖C0 ds

≤ kTλa0t‖z − z̃‖Cc1 .

Further,

‖(Q2z)(t)− (Q2z̃)(t)‖ ≤ kT

∫ t

0

∥∥F(s, (Qz)s, u(s)
)
− F

(
s, (Qz̃)s, u(s)

)∥∥ ds
≤ kTλa0

∫ t

0

‖(Qz)s − (Qz̃)s‖C0 ds

≤ kTλa0

∫ t

0

sup
−a≤%≤0

‖(Qz)(s+ %)− (Qz̃)(s+ %)‖ ds

≤ kTλa0

∫ t

0

(
sup
−a≤%≤0

‖(Qz)(%)− (Qz̃)(%)‖

+ sup
0≤%≤s

‖(Qz)(%)− (Qz̃)(%)‖
)
ds

= kTλa0

∫ t

0

sup
0≤%≤s

‖(Qz)(%)− (Qz̃)(%)‖ ds

≤ kTλa0

∫ t

0

kTλa0s‖z − z̃‖Cc1 ds

≤ (kTλa0t)
2

2
‖z − z̃‖Cc1 .

Repeating the above process, we have

‖(Qnz)(t)− (Qnz̃)(t)‖ ≤ (kTλa0t)
n

n!
‖z − z̃‖Cc1

≤ (kTλa0c1)n

n!
‖z − z̃‖Cc1 .

Therefore

‖(Qnz)− (Qnz̃)‖Cc1 ≤
(kTλa0c1)n

n!
‖z − z̃‖Cc1 ,

which shows that Qn is a contraction map for sufficiently large value of n. By

Banach fixed poin theorem, Q has a fixed point in Ba0 . So (3.1.2) is a mild solution
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on [−a, c1]. In similar way, the existence of mild solution on [c1, c2], where c1 < c2,

can be shown. Applying the above technique, one can deduce that (3.1.2) is a mild

solution on the maximal existing interval [−a, c∗), c∗ ≤ c.

Next, we show the boundedness of solution. Clearly z(t) is bounded on [−a, 0].

For t ∈ [0, c∗), one has

‖z(t)‖ ≤ kT‖℘(0)‖+ kTkB

∫ t

0

‖u(s)‖ ds+ kTkB

∫ t

0

‖u(s− a)‖ ds

+ kTkF

∫ t

0

(
1 + ‖zs‖C0 + ‖u(s)‖V ′

)
ds

≤ kT
(
‖℘(0)‖+

√
c‖u‖U(2kB + kF ) + kF c

)
+ kTkF

∫ t

0

‖zs‖C0 ds.

By Lemma 3.2.1, we have

‖z(t)‖ ≤
(
kT
(
‖℘(0)‖+

√
c‖u‖U(2kB + kF ) + kF c

)
+ k℘

)
exp

(
kTkF c

)
,

which shows that z(t) is bounded on [−a, c∗) and hence it is defined on [−a, c].
For uniqueness, let z1 and z2 be any two solutions of (3.1.1). Since z1(t) =

z2(t) = ℘(t) on [−a, 0], therefore the solution is unique on [−a, 0]. For t ∈ [0, c], set

a∗ = max
{
‖z1‖Cc , ‖z2‖Cc

}
.

Then

‖z1(t)− z2(t)‖V ≤ kT

∫ t

0

∥∥F(s, (z1)s, u(s)
)
− F

(
s, (z2)s, u(s)

)∥∥ ds
≤ kTλa∗

∫ t

0

∥∥(z1)s − (z2)s
∥∥
C0
ds.

Therefore

‖(z1)t − (z2)t‖C0 ≤ sup
−a≤%≤0

‖z1(%)− z2(%)‖V + sup
0≤%≤t

‖z1(%)− z2(%)‖V

= sup
0≤%≤t

‖z1(%)− z2(%)‖V

≤ kTλa∗

∫ t

0

∥∥(z1)s − (z2)s
∥∥
C0
ds.

By Gronwall’s inequality it follows that (z1)t = (z2)t for all t ∈ [0, c]. Hence z1 =

z2. �
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3.3 Controllability results

For further discussion, we suppose the following conditions:

(H3) the system (3.1.4) is approximately controllable;

(H4) there exists a function q ∈ L1[0, c] such that

‖F (t, z, u)‖ ≤ q(t)

for all (t, z, u) ∈ [0, c]× C0 × V ′.

First we prove the controllability of the linear delay system (3.1.3).

Theorem 3.3.1. Under the hypothesis (H3), the system (3.1.3) is approximately

controllable.

Proof. Let ε > 0 be given. Since 0 < c < ∞ therefore there is a positive integer `

such that c ∈ ((` − 1)a, `a]. Suppose z1, z2, . . . , z`−1 are given in V . Now consider

the system ξ̇(t) = Aξ(t) +B0u(t), t ∈ (0, a],

ξ(0) = ℘(0).
(3.3.1)

Set ξ1 = z1. By assumption (H3), there is a control u1 such that the mild solution

ξ(t) of (3.3.1) is given by

ξ(t) = T (t)℘(0) +

∫ t

0

T (t− s)B0u1(s) ds, 0 ≤ t ≤ a

and it satisfies ‖ξ(a)− ξ1‖ ≤ ε.

Define

r1(t) =

0, t ∈ [−a, 0],

u1(t), t ∈ (0, a].

Let

z(t) = T (t)℘(0) +

∫ t

0

T (t− s)B0r1(s) ds+

∫ t

0

T (t− s)B1r1(s− a) ds, 0 ≤ t ≤ a.

Then

‖z(a)− z1‖ = ‖ξ(a)− ξ1‖
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≤ ε.

Denote ξ(a) by ξa and consider the systemξ̇(t) = Aξ(t) +B0u(t), t ∈ (a, 2a],

ξ(a) = ξa.
(3.3.2)

Set ξ2 = z2 − χ2h, where χ2h =
∫ 2h

0
T (2h − s)B1r1(s − a) ds is known. Again by

assumption (H3), there is a control u2 such that the mild solution ξ(t) of (3.3.2) is

given by

ξ(t) = T (t)℘(0) +

∫ t

0

T (t− s)B0u2(s) ds, a ≤ t ≤ 2a

and it satisfies ‖ξ(2a)− ξ2‖ ≤ ε.

Define

r2(t) =

r1(t), t ∈ [0, a],

u2(t), t ∈ (a, 2a].

Let

z(t) = T (t)℘(0) +

∫ t

0

T (t− s)B0r2(s) ds+

∫ t

0

T (t− s)B1r2(s− a) ds, a ≤ t ≤ 2a.

Then

‖z(2a)− z2‖ = ‖ξ(2a) + χ2h − z2‖

= ‖ξ(2a)− ξ2‖

≤ ε.

Continuing in similar way, at the `-th step, we getξ̇(t) = Aξ(t) +B0u(t), t ∈ ((`− 1)a, c],

ξ((`− 1)a) = ξ(`−1)a.
(3.3.3)

Set ξ` = zc − χc, where χc =
∫ c

0
T (c− s)B1r`−1(s− a) ds is known. Then there is a

control u` such that the mild solution ξ(t) of (3.3.3) is given by

ξ(t) = T (t)℘(0) +

∫ t

0

T (t− s)B0u`(s) ds, (`− 1)a ≤ t ≤ c
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and it satisfies ‖ξ(c)− ξ`‖ ≤ ε.

Define

r`(t) =

r`−1(t), t ∈ ((`− 2)a, (`− 1)a],

u`(t), t ∈ ((`− 1)a, c].

Let

z(t) = T (t)℘(0)+

∫ t

0

T (t−s)B0r`(s) ds+

∫ t

0

T (t−s)B1r`(s−a) ds, (`−1)a ≤ t ≤ c.

Then

‖z(c)− zc‖ = ‖ξ(c) + χc − zc‖

= ‖ξ(c)− ξ`‖

≤ ε.

Now if we define the control r on [−a, c] as

r(t) =


0, t ∈ [−a, 0],

ri(t), t ∈ ((i− 1)a, ia], i = 1, 2, . . . , (`− 1);

u`(t), t ∈ ((`− 1)a, c].

Then we can write the mild solution z(t) of (3.1.3) corresponding to the control r(t)

as

z(t) = T (t)℘(0) +

∫ t

0

T (t− s)B0r(s) ds+

∫ t

0

T (t− s)B1r(s− a) ds, 0 ≤ t ≤ c

and it satisfies ‖z(c)− zc‖ ≤ ε. �

Next, we show the controllability of the original system using the above theorem.

Theorem 3.3.2. Under hypotheses (H1)-(H4), the semilinear system (3.1.1) is ap-

proximately controllable.

Proof. : Since q ∈ L1[0, c], we are able to find an increasing sequence 〈cn〉 in [0, c]

such that cn → c and ∫ c

cn

q(t) dt→ 0, as n→∞.
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Now by Theorem 3.3.1, for any given ε > 0 and zc ∈ V , we can select a control

ũ0 ∈ U satisfying∥∥∥∥zc − T (c)℘(0)−
∫ c

0

T (c− s)B0ũ0(s) ds−
∫ c

0

T (c− s)B1ũ0(s− a) ds

∥∥∥∥ ≤ ε

2
.

Let z1 = z(c1, ℘(0), ũ0). Again by Theorem 3.3.1, we can select a control ũ1 ∈
L2([c1, c];V

′) satisfying∥∥∥∥zc − T (c− c1)z1 −
∫ c

c1

T (c− s)B0ũ1(s) ds−
∫ c

c1

T (c− s)B1ũ1(s− a) ds

∥∥∥∥ ≤ ε

2
.

Define

w̃1(t) =

ũ0(t), t ∈ [0, c1),

ũ1(t), t ∈ [c1, c].

Evidently, w̃1 ∈ U . Continuing in same manner we obtain three sequences zn, ũn

and w̃n such that ũn ∈ L2([cn, c];V
′), w̃n ∈ U given by

w̃n(t) =

ũn−1(t), t ∈ [0, cn),

ũn(t), t ∈ [cn, c]

and zn = z(cn, ℘(0), ũn−1) with∥∥∥∥zc − T (c− cn)zn −
∫ c

cn

T (c− s)B0ũn(s) ds−
∫ c

cn

T (c− s)B1ũn(s− a) ds

∥∥∥∥ ≤ ε

2
.

Now, if z(c, w̃n) be the mild solution of (3.1.1) for the control w̃n, then

z(c, w̃n) = T (c− cn)

(
T (cn)℘(0) +

∫ cn

0

T (cn − s)B0w̃n(s) ds

+

∫ cn

0

T (cn − s)B1w̃n(s− a) ds+

∫ cn

0

T (cn − s)F
(
s, zs, w̃n(s)

)
ds

)
+

∫ c

cn

T (c− s)B0w̃n(s) ds+

∫ c

cn

T (c− s)B1w̃n(s− a) ds

+

∫ c

cn

T (c− s)F
(
s, zs, w̃n(s)

)
ds

= T (c− cn)

(
T (cn)℘(0) +

∫ cn

0

T (cn − s)B0ũn−1(s) ds

+

∫ cn

0

T (cn − s)B1ũn−1(s− a) ds+

∫ cn

0

T (cn − s)F
(
s, zs, ũn−1(s)

)
ds

)
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+

∫ c

cn

T (c− s)B0ũn(s) ds+

∫ c

cn

T (c− s)B1ũn(s− a) ds

+

∫ c

cn

T (c− s)F
(
s, zs, ũn(s)

)
ds

= T (c− cn)zn +

∫ c

cn

T (t− s)B0ũn(s) ds+

∫ c

cn

T (c− s)B1ũn(s− a) ds

+

∫ c

cn

T (c− s)F
(
s, zs, ũn(s)

)
ds.

Therefore

‖z(c, w̃n)− zc‖

≤
∥∥∥∥T (c− cn)zn +

∫ c

cn

T (c− s)B0ũn(s) ds+

∫ c

cn

T (c− s)B1ũn(s− a) ds− zc
∥∥∥∥

+

∥∥∥∥∫ c

cn

T (c− s)F
(
s, zs, ũn(s)

)
ds

∥∥∥∥
≤ ε

2
+ kT

∫ c

cn

∥∥F(s, zs, ũn(s)
)∥∥ ds

≤ ε

2
+ kT

∫ c

cn

q(s) ds

≤ ε

2
+ kT

ε

2kT

= ε

for sufficiently large value of n. Hence the systen (3.1.1) is approximately control-

lable. �

Remark 3.3.3. Under hypotheses (H3) and (H4), the semilinear system (3.1.1) is

approximately controllable if it has a solution for each control u ∈ U .

3.4 Example

Example 1. Consider the semilinear heat equation for 0 < x < π with control delay

∂ẑ(t,x)
∂t

= ∂2ẑ(t,x)
∂x2 +B0û(t, x) + û(t− a, x)

+ F
(
t, ẑ(t+ θ, x), û(t, x)

)
, t ∈ (0, c],

ẑ(t, 0) = ẑ(t, π) = 0, t ∈ (0, c],

ẑ(t, x) = ℘̂(t, x), t ∈ [−a, 0].

(3.4.1)
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To write it in abstract form, we make the following setting

(i) V = L2[0, π] and define A : D(A) ⊆ V → V by Ay = d2y
dx2 with domain

D(A) =

{
y ∈ L2[0, π]

∣∣∣∣ y, ∂y∂x are absolutely continuous,
∂2y

∂x2
∈ L2[0, π]

and y(0) = y(π) = 0

}
.

(ii) Let ξ`(x) = ( 2
π
)1/2 sin `x, 0 ≤ x ≤ π, ` = 1, 2, . . ., then λ` = −`2 is the eigenvalue

of A with corresponding eigenfunction ξ` and the family {ξ`}`∈N form a complete

orthonormal set for V and exp (λ`t) is the eigenvalue of the C0−semigroup T (t)

generated by A.

(iii) Define

V ′ =

{
υ ∈ L2[0, π]

∣∣∣∣∣ υ =
∞∑
`=2

α`ξ` with
∞∑
`=2

α2
` <∞

}

with the norm

‖υ‖V ′ =

√√√√ ∞∑
`=2

α2
` .

Let B0 : V ′ → V be a continuous linear map defined as

B0υ = 2α2ξ1 +
∞∑
`=2

α`ξ`,
∞∑
`=2

α`ξ` ∈ V ′.

The abstract form of (3.4.1) is
ż(t) = Az(t) +B0u(t) +B1u(t− a)

+ F
(
t, z(t+ θ), u(t)

)
, t ∈ (0, c],

z(t) = ℘(t), t ∈ [−a, 0],

(3.4.2)

where B1 = I, z(t) = ẑ(t, ·), u(t) = û(t, ·) and ℘(t) = ℘̂(t, ·).
If we take

F
(
t, zt, u(t)

)
=

(
t ‖zt‖2

C0

1 + ‖zt‖2
C0

ξ3(x) +
t2‖u(t)‖

1 + ‖u(t)‖
ξ4(x)

)
,

then ∥∥F(t, zt, u(t)
)∥∥ ≤ (t+ t2)
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≤ c(1 + c) (1 + ‖zt‖C0 + ‖u(t)‖) .

Hence (H2) and (H4) are satisfied. Also,∥∥F(t, (z1)t, u(t)
)
− F

(
t, (z2)t, u(t)

)∥∥ ≤ c
(
‖(z1)t‖C0

+ ‖(z2)t‖C0

)
‖(z1)t − (z2)t‖C0

≤ 2cr ‖(z1)t − (z2)t‖C0

= λr ‖(z1)t − (z2)t‖C0

for any (z1)t, (z2)t ∈ B(0, r) ⊂ C0 and u(t) ∈ V ′. Hence (H1) is satisfied. Since the

hypothesis (H3) is satisfied [18], therefore approximate controllability of the system

(3.4.2) follows from Theorem 3.3.2.

3.5 Concluding remarks

In this chapter, the concept of approximate controllability of first-order retarded

semilinear system has been presented. Here, the nonlinear function is assumed to

be locally Lipschitz continuous. The result of existence has been deduced by utilizing

iterative technique and a fixed point theorem. For this, we proved the Lemma 3.2.1.

The controllability results have been deduced by assuming that the associated linear

system without delay is approximately controllable.



Chapter 4

Controllability of Second-Order

Nonlocal Retarded Semilinear

Systems with Fixed Delays in

Control

This chapter contains two sections. The first section deals with the approximate

and exact controllability of second-order nonlocal retarded semilinear system with

control delay. In this section the existence of mild solution is derived applying fixed

point approach and cosine family. The controllability of the associated linear system

with delay is proved by the method of steps and then the controllability of actual

system is shown by proving that the reachable set of semilinear system contains the

reachable set of the associated linear system without delay. In the second section,

the approximate controllability of second-order nonlocal retarded semilinear system

with multiple delays in control is discussed in Banach spaces. The existence of

solution is derived under locally Lipschitz continuity of nonlinear function. Then

the approximate controllability of associated linear system and actual system is

proved by assuming that the associated linear system without delay is approximately

controllable. The Banach fixed point theorem combined with the theory of cosine

family and iterative technique, are the main tools used in this chapter.

43
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4.1 Controllability of second-order nonlocal re-

tarded semilinear systems with delay in con-

trol

4.1.1 Introduction and preliminaries

Let V and V ′ be Hilbert spaces and U = L2([0, c];V ′) be a function space. Let

Ct = C([−a, t];V ) denotes the set of all V -valued continuous functions defined on

[−a, t] with the norm ‖z‖Ct = sup
−a≤%≤t

‖z(%)‖. Consider the following second-order

retarded semilinear control system:

z̈(t) = Az(t) +B0u(t) +B1u(t− a)

+ F
(
t, zς(t), u(t) + u(t− a)

)
, t ∈ (0, c],

ψ(z) = h, u(t) = 0, t ∈ [−a, 0],

ż(0) = y1,

(4.1.1)

where the state z takes its values in the space V ; the control u takes its value in

the Banach space V ′; a > 0 represents the delay. A generates a strongly continuous

cosine family {C(t)}t∈R on V ; B0, B1 are continuous linear maps from V ′ to V ; the

map ς : [0, c] → [0, c] is nondecreasing and nonexpansive such that ς(t) ≤ t; the

delay function zς(t) ∈ C0 defined by zς(t)(θ) = z(ς(t) + θ), θ ∈ [−a, 0], monitors the

retarded state; and F : [0, c] × C0 × V ′ → V is nonlinear. The functions ψ and h

together represent the nonlocal delay condition.

The field of nonlocal differential systems has been observed and expeditiously

growing after the great work by Chabrowski [15], who introduced the concept of

nonlocal condition about three decades ago. The physical significance of nonlocal

condition was given by Byszewski [13]. nonlocal initial conditions have a lot of appli-

cations in areas such as population dynamics, blood flow problems, thermo-elasticity,

underground water flow, chemical engineering, etc. Controllability of nonlocal re-

tarded semilinear stochastic system was studied by Shukla et. al. [79]. Utilizing a

fixed point theorem, Urvashi and Sukavanam [1] deduced that nonlocal semilinear

stochastic system of second-order is approximately controllable under some condi-

tions. Utilizing a fixed point theorem, Kumar and Sukavanam [54] analyzed the
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delay in control

controllability for nonlocal differential systems of second-order. Kumar and Tomar

[56] proved the contollability of second-order nonlocal retarded semilinear systems

without converting them into first-order systems. However, as for as we know, there

is no discussion on controllability of nonlocal semilinear retarded systems of second-

order with control delay.

Definition 4.1.1. Let ℘ ∈ C0 be such that ψ(℘) = h. A function z ∈ Cc is said to

be a mild solution of (4.1.1) if it satisfies

z(t) =


C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
(
B0u(s) +B1u(s− a)

)
ds

+

∫ t

0

S(t− s)F
(
s, zς(s), u(s) + u(s− a)

)
ds, t ∈ (0, c],

℘(t), t ∈ [−a, 0].

Moreover, if ℘(0) ∈ V1, z is continuously differentiable on [0, c] and

ż(t) =AS(t)℘(0) + C(t)y1 +

∫ t

0

C(t− s) (B0u(s) +B1u(s− a)) ds

+

∫ t

0

C(t− s)F
(
s, zς(s), u(s) + u(s− a)

)
ds.

Here, the set V1 is given by

V1 =
{
y ∈ V

∣∣ C(t)y is once continuously differentiable w. r. to t
}
.

For the system (4.1.1), the corresponding linear systems with delay and without

delay are 
z̈(t) = Az(t) +B0u(t) +B1u(t− a), t ∈ (0, c],

z(0) = ℘(0),

ż(0) = y1

(4.1.2)

and 
z̈(t) = Az(t) +B0u(t), t ∈ (0, c],

z(0) = ℘(0),

ż(0) = y1,

(4.1.3)

respectively, provided that ψ(℘) = h.

We define the following sets:
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(i) The reachable set Rc(F ) for (4.1.1) is given by

Rc(F ) =
{
z(c, u) ∈ V

∣∣ z is a mild solution of (4.1.1) associated with u ∈ U
}
.

(ii) The trajectory reachable set R(F ) for (4.1.1) is given by

R(F ) =
{
z(·, u) ∈ Cc

∣∣ z is a mild solution of (4.1.1) associated with u ∈ U
}
.

(iii) The reachable set Rc(0) for (4.1.2) is given by

Rc(0) =
{
z(c, u) ∈ V

∣∣ z is a mild solution of (4.1.2) associated with u ∈ U
}
.

(iv) The trajectory reachable set K(0) for (4.1.2) is given by

R(0) =
{
z(·, u) ∈ Cc

∣∣ z is a mild solution of (4.1.2) associated with u ∈ U
}
.

(v) R̃(0) =
{
ω(·, u) ∈ Cc

∣∣ ω is a concatenation of ψ and z, where z ∈ R(0)
}

.

Definition 4.1.2. The system (4.1.1) is approximately (exactly) controllable if

Rc(F ) = V (Rc(F ) = V ).

Definition 4.1.3. The system (4.1.2) is approximately (exactly) controllable if

Rc(0) = V (Rc(0) = V ).

For further discussion we assume that there are constants kC and kS satisfying

‖C(t)‖ ≤ kC and ‖S(t)‖ ≤ kS for 0 ≤ t ≤ c.

4.1.2 Existence of mild solution

To deduced the existence results we make the following hypotheses:

(H1) ψ : C([−a, 0];V1) → C([−a, 0];V1) and for each given h there is a unique

function ℘ ∈ C([−a, 0];V1) such that ψ(℘) = h;

(H2) the nonlinear map F : [0, c]× C0 × V ′ → V is continuous in t and there is

a constant λ > 0 such that

‖F (t, z, u)− F (t, z̃, ũ)‖ ≤ λ
(
‖z − z̃‖C0

+ ‖u− ũ‖
)

for all t ∈ [0, c]; z, z̃ ∈ C0 and u, ũ ∈ V ′.
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Theorem 4.1.1. If hypotheses (H1) and (H2) are true, then the system (4.1.1)

admits a unique mild solution for every u ∈ U and y1 ∈ V . Moreover, the map

℘ 7→ z from C([−a, 0];V1) to Cc is Lipschitz and it induces the uniqueness of the

solution.

Proof. For the existence and uniqueness of mild solution, it is sufficient to show that

the map Q : Cc → Cc defined by

(Qz)(t) =


C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
(
B0u(s) +B1u(s− a)

)
ds

+

∫ t

0

S(t− s)F
(
s, zς(s), u(s) + u(s− a)

)
ds, t ∈ (0, c],

℘(t), t ∈ [−a, 0]

has a unique fixed point in Cc. Clearly, Q has a unique fixed point for t ∈ [−a, 0].

Therefore proof is needed only for t ∈ [0, c]. Let z, z̃ ∈ C([0, c];V ), then

‖(Qz)(t)− (Qz̃)(t)‖ ≤ kS

∫ t

0

∥∥F(s, zς(s), u(s) + u(s− a)
)

− F
(
s, z̃ς(s), u(s) + u(s− a)

)∥∥ ds
≤ kSλ

∫ t

0

∥∥zς(s) − z̃ς(s)∥∥C0
ds

≤ kSλ

∫ t

0

‖z − z̃‖Cc ds

= kSλt ‖z − z̃‖Cc .

Since −a ≤ ς(s) + θ ≤ s ≤ c for s ∈ [0, c] and θ ∈ [−a, 0], therefore we have

‖(Q2z)(t)− (Q2z̃)(t)‖ ≤ kS

∫ t

0

∥∥F(s, (Qz)ς(s), u(s) + u(s− a)
)

− F
(
s, (Qz̃)ς(s), u(s) + u(s− a)

) ∥∥ ds
≤ kSλ

∫ t

0

∥∥(Qz)ς(s) − (Qz̃)ς(s)
∥∥
C0
ds

≤ kSλ

∫ t

0

sup
−a≤%≤0

‖(Qz)(ς(s) + %)− (Qz̃)(ς(s) + %)‖ ds

≤ kSλ

∫ t

0

(
sup
−a≤%≤0

‖(Qz)(%)− (Qz̃)(%)‖

+ sup
0≤%≤s

‖(Qz)(%)− (Qz̃)(%)‖
)
ds
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= kSλ

∫ t

0

sup
0≤%≤s

‖(Qz)(%)− (Qz̃)(%)‖ ds

≤ kSλ

∫ t

0

kSλs‖z − z̃‖Cc ds

≤ (kSλt)
2

2
‖z − z̃‖Cc .

Repeating the above process, we obtain

‖(Qnz)(t)− (Qnz̃)(t)‖ ≤ (kSλt)
n

n!
‖z − z̃‖Cc

≤ (kSλc)
n

n!
‖z − z̃‖Cc .

Therefore

‖Qnz −Qnz̃‖Cc ≤
(kSλc)

n

n!
‖z − z̃‖Cc .

But (kSλc)
n

n!
< 1 for n to be large enough. Therefore by generalized Banach contrac-

tion principle Q has a unique fixed point in C([0, c];V ).

Next, let z1, z2 ∈ Cc be any two solutions of (4.1.1) associated with the nonlocal

delay functions h1, h2 ∈ C0, respectively. Then by hypothesis (H1), one can find

℘1, ℘2 ∈ C0 such that g(℘`) = h`, ` = 1, 2. Now, one can write

z`(t) =


C(t)℘`(0) + S(t)y1 +

∫ t

0

S(t− s)
(
B0u(s) +B1u(s− a)

)
ds

+

∫ t

0

S(t− s)F
(
s, (z`)ς(s), u(s) + u(s− a)

)
ds, t ∈ (0, c],

℘`(t), t ∈ [−a, 0].

For t ∈ [−a, 0], the case is trivial. Therefore we discuss only for t ∈ [0, c].

‖z1(t)− z2(t)‖ ≤ ‖C(t) (℘1(0)− ℘2(0))‖+ kS

∫ t

0

λ
∥∥(z1)ς(s) − (z2)ς(s)

∥∥
C0
ds

≤ kC ‖℘1 − ℘2‖C0
+ kSλ

∫ t

0

∥∥(z1)ς(s) − (z2)ς(s)
∥∥
C0
ds. (4.1.4)

Now, ∥∥(z1)ς(s) − (z2)ς(s)
∥∥
C0

= sup
−a≤θ≤0

‖z1(ς(s) + θ)− z2(ς(s) + θ)‖

≤ sup
−a≤%≤0

‖z1(%)− z2(%)‖+ sup
0≤%≤s

‖z1(%)− z2(%)‖
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= sup
−a≤%≤0

‖℘1(%)− ℘2(%)‖+ sup
0≤%≤s

‖z1(%)− z2(%)‖

≤ ‖℘1 − ℘2‖C0
+ sup

0≤%≤s
‖z1(%)− z2(%)‖ .

and hence from (4.1.4)

sup
0≤%≤t

‖z1(%)− z2(%)‖ ≤ (kC + kSλc) ‖℘1 − ℘2‖C0

+ kSλ

∫ c

0

sup
0≤%≤s

‖z1(%)− z2(%)‖ ds, 0 ≤ t ≤ c.

Applying Gronwall’s inequality, we obtain

‖z1 − z2‖Cc ≤ (kC + kSλc) exp(kSλc) ‖℘1 − ℘2‖C0
.

This completes the proof. �

Remark 4.1.2. It is easily seen that if the map ψ is not injective, then the system

(4.1.1) may have more than one solution for a fixed control u ∈ U .

4.1.3 Controllability results

First we prove the controllability of linear delay system (4.1.2). For this, we derive

a new form of the mild solution of the system
ξ̈(t) = Aξ(t) +B0u(t), t ∈ (t0, c],

ξ(t0) = z(t0) = ξt0 ,

ξ̇(t0) = ż(t0) = ξ̇t0 ,

(4.1.5)

where t0 ∈ (0, c) is fixed and z(t) is the mild solution of the system
z̈(t) = Az(t) +B0u(t), t ∈ (0, t0],

z(0) = ℘(0),

ż(0) = y1.

(4.1.6)

Lemma 4.1.3. If ℘(0) ∈ V1, then the mild solution of (4.1.5) can be expressed as

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u(s) ds, ≤ t0 ≤ t ≤ c.
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Proof. We know that the mild solution of (4.1.5) is

ξ(t) = C(t− t0)z(t0) + S(t− t0)ż(t0) +

∫ t

t0

S(t− s)B0u(s) ds, t0 ≤ t ≤ c. (4.1.7)

But z(t) is the mild solution of (4.1.6) therefore we have

z(t0) = C(t0)℘(0) + S(t0)y1 +

∫ t0

0

S(t0 − s)B0u(s) ds (4.1.8)

and

ż(t0) = AS(t0)℘(0) + C(t0)y1 +

∫ t0

0

C(t0 − s)B0u(s) ds. (4.1.9)

Using (4.1.8) and (4.1.9) in (4.1.7), we get

ξ(t) =
(
C(t− t0)C(t0) + AS(t− t0)S(t0)

)
℘(0) +

(
C(t− t0)S(t0) + S(t− t0)C(t0)

)
y1

+

∫ t0

0

(
C(t− t0)S(t0 − s) + S(t− t0)C(t0 − s)

)
B0u(s) ds

+

∫ t

t0

S(t− s)B0u(s) ds

= C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u(s) ds,

which completes the proof. �

Theorem 4.1.4. Under the hypothesis (H1), the associated linear delay system

(4.1.2) is approximately (exactly) controllable if the associated linear system (4.1.3)

is approximately (exactly) controllable.

Proof. Let the linear system (4.1.3) be approximately controllable and ε > 0 be

given. Since 0 < c < ∞, there is a positive integer ` such that c ∈ ((` − 1)a, `a].

Suppose z̃1, z̃2, . . . , z̃`−1 are given in the Hilbert space V . Now consider the linear

system 
ξ̈(t) = Aξ(t) +B0u(t), t ∈ (0, a],

ξ(0) = ℘(0),

ξ̇(0) = ξ1 = y1.

(4.1.10)

Set ξ̃1 = z̃1. By approximate controllability of (4.1.3) there is a control u1 such that

the mild solution ξ(t) of (4.1.10) is given by

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u1(s) ds, 0 ≤ t ≤ a
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and it satisfies ‖ξ(a)− ξ̃1‖ ≤ ε.

Define

r1(t) =

0, t ∈ [−a, 0],

u1(t), t ∈ (0, a].

Let

z(t) = C(t)℘(0)+S(t)y1+

∫ t

0

S(t−s)B0r1(s) ds+

∫ t

0

S(t−s)B1r1(s−a) ds, 0 ≤ t ≤ a.

Then

‖z(a)− z̃1‖ = ‖ξ(a)− ξ̃1‖

≤ ε.

Denote ξ(a) by ξa and ξ̇(a) by ξ̇a, and consider the system
ξ̈(t) = Aξ(t) +B0u(t), t ∈ (a, 2a],

ξ(a) = ξa,

ξ̇(a) = ξ̇a.

(4.1.11)

Set ξ̃2 = z̃2 − χ2a, where χ2a =
∫ 2a

0
S(2a − s)B1r1(s − a) ds is known. Again

by approximate controllability of (4.1.3) there is a control u2 such that the mild

solution ξ(t) of (4.1.11) is given by

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u2(s) ds, a ≤ t ≤ 2a

and it satisfies ‖ξ(2a)− ξ̃2‖ ≤ ε.

Define

r2(t) =

r1(t), t ∈ [0, a],

u2(t), t ∈ (a, 2a].

Let

z(t) = C(t)℘(0)+S(t)y1+

∫ t

0

S(t−s)B0r2(s) ds+

∫ t

0

S(t−s)B1r2(s−a) ds, a ≤ t ≤ 2a.

Then

‖z(2a)− z̃2‖ = ‖ξ(2a) + χ2a − z̃2‖
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= ‖ξ(2a)− ξ̃2‖

≤ ε.

Continuing in similar way, at the `-th step, we get
ξ̈(t) = Aξ(t) +B0u(t), t ∈ ((`− 1)a, c],

ξ((`− 1)a) = ξ(`−1)a,

ξ̇((`− 1)a) = ξ̇(`−1)a.

(4.1.12)

Set ξ̃` = zc− χc, where χc =
∫ c

0
T0(c− s)B1r`−1(s− a) ds is known. Then, there is a

control u` such that the mild solution ξ(t) of (4.1.12) is given by

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u`(s) ds, (`− 1)a ≤ t ≤ c

and it satisfies ‖ξ(c)− ξ̃`‖ ≤ ε.

Define

r`(t) =

r`−1(t), t ∈ ((`− 2)a, (`− 1)a],

u`(t), t ∈ ((`− 1)a, c].

Let

z(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0r`(s) ds

+

∫ t

0

S(t− s)B1r`(s− a) ds, (`− 1)a ≤ t ≤ c.

Then

‖z(c)− zc‖ = ‖ξ(c) + χc − zc‖

= ‖ξ(c)− ξ̃`‖

≤ ε.

Now, if we define the control r on [−a, c] as

r(t) =


0, t ∈ [−a, 0],

ri(t), t ∈ ((i− 1)a, ia], i = 1, 2, . . . , (`− 1);

u`(t), t ∈ ((`− 1)a, c],
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then the mild solution z(t) of (4.1.2) associated with r(t) is given by

z(t) = C(t)℘(0)+S(t)y1 +

∫ t

0

S(t−s)B0r(s) ds+

∫ t

0

S(t−s)B1r(s−a) ds, 0 ≤ t ≤ c

and it satisfies ‖z(c) − zc‖ ≤ ε. Hence (4.1.2) is approximately controllable. The

proof for exact controllability is similar. �

The forthcoming discussion obeys the following conditions:

(H3) R(B0) ⊇ R(B1) ⊇ R(F );

(H4) there is a δ > 0 such that

‖B0u(t) +B1u(t− a)‖ ≥ δ‖u(t) + u(t− a)‖ ∀ u(t) ∈ V ′;

(H5) λ < δ.

Following lemma shows that the iterative formula

B0un(t) +B1un(t− a)

= B0u
∗(t) +B1u

∗(t− a)− F
(
t, zς(t), un−1(t) + un−1(t− a)

)
, n = 1, 2, . . .

(4.1.13)

makes sense for each given u∗ ∈ U and zς(t) ∈ C0.

Lemma 4.1.5. Under the hypothesis (H3), the iterative formula given by (4.1.13)

is well defined for each given u∗ ∈ U .

Proof. Since 0 < c <∞ therefore c ∈ ((`− 1)a, `a] for some ` ∈ N.

Let u0 ∈ U , then for t ∈ (0, a]

B0u
∗(t) +B1u

∗(t− a)− F
(
t, zς(t), u0(t) + u0(t− a)

)
−B1u1(t− a)

= B0u
∗(t)− F

(
t, zς(t), u0(t) + u0(t− a)

)
= B0u11(t) (say).

If we take u1(t) = u11(t) for t ∈ (0, a], then for t ∈ (a, 2a]

B0u
∗(t) +B1u

∗(t− a)− F
(
t, zς(t), u0(t) + u0(t− a)

)
−B1u1(t− a)

= B0u
∗(t) +B1u

∗(t− a)− F
(
t, zς(t), u0(t) + u0(t− a)

)
−B1u11(t− a)
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= B0u12(t) (say).

Further, if we take u1(t) = u12(t) for t ∈ (a, 2a], then in similar fashion, one can

obtain u1(t) = u13(t) for t ∈ (2a, 3a]. Repeating the above process, at the `-th step,

we get

u1(t) = u1`(t) for t ∈ ((`− 1)a, c].

Clearly, the function u1 given by

u1(t) =


0, t ∈ [−a, 0],

u1i(t), t ∈ ((i− 1)a, ia], i = 1, 2, . . . , (`− 1);

u1`(t), t ∈ ((`− 1)a, c],

satisfies

B0u1(t)+B1u1(t−a) = B0u
∗(t)+B1u

∗(t−a)−F
(
t, zς(t), u0(t)+u0(t−a)

)
, 0 ≤ t ≤ c.

This proves the lemma. �

Remark 4.1.6. By a similar argument, it is easy to verify that every u∗ ∈ U can

be uniquely expressed as u∗ = u + u(· − a), where u ∈ U . Moreover, if a sequence

un + un(· − a)→ u+ u(· − a) then un → u and un(· − a)→ u(· − a).

In the next lemma, we prove that the operator equation

B0u(t) +B1u(t− a) = B0u
∗(t) +B1u

∗(t− a)

− F
(
t, zς(t), u(t) + u(t− a)

)
, 0 ≤ t ≤ c (4.1.14)

admits a solution u ∈ U for each u∗ ∈ U and zς(t) ∈ C0.

Lemma 4.1.7. Under hypotheses (H3)-(H5), the operator equation (4.1.14) is solv-

able in u ∈ U for each given u∗ ∈ U and zς(t) ∈ C0.

Proof. Let u0 ∈ U then by above lemma and assumption (H4)

‖un+1(t) + un+1(t− a)− un(t)− un(t− a)‖

≤ 1

δ
‖B0 (un+1(t)− un(t)) +B1 (un+1(t− a)− un(t− a))‖

=
1

δ

∥∥F(t, zς(t), un−1(t) + un−1(t− a)
)
− F

(
t, zς(t), un(t) + un(t− a)

)∥∥
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≤ λ

δ
‖un(t) + un(t− a)− un−1(t)− un−1(t− a)‖.

Hence

‖un+1 + un+1(· − a)− un − un(· − a)‖U

≤ λ

δ
‖un + un(· − a)− un−1 − un(· − a)‖U

≤
(
λ

δ

)2

‖un−1 + un−1(· − a)− un−2 − un−2(· − a)‖U

...

≤
(
λ

δ

)n
‖u1 + u1(· − a)− u0(t)− u0(t− a)‖U

→ 0 as n→∞,

which shows that 〈un + un(· − a)〉 is a Cauchy sequence in U . It means there is a

u ∈ U satisfying lim
n→∞

(un + un(· − a)) = u+ u(· − a). Now,

∥∥F(t, zς(t), un(t) + un(t− a)
)
− F

(
t, zς(t), u(t) + u(t− a)

)∥∥
≤ λ‖un(t) + un(t− a)− u(t)− u(t− a)‖

→ 0 as n→∞.

Thus

F
(
t, zς(t), u(t) + u(t− a)

)
= lim

n→∞
F
(
t, zς(t), un(t) + un(t− a)

)
= lim

n→∞
(B0u

∗(t) +B1u
∗(t− a)−B0un+1(t)−B1un+1(t− a))

= B0u
∗(t) +B1u

∗(t− a)−B0u(t)−B1u(t− a),

which proves the lemma. �

Theorem 4.1.8. Under the hypotheses (H1)-(H5), the semilinear system (4.1.1) is

approximately (exactly) controllable if the associated linear system without delay is

approximately (exactly) controllable.

Proof. It is enough to prove that R̃(0) ⊆ R(F ). Let x ∈ R̃(0), then there is a
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u∗ ∈ U satisfying

x(t) =


C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
(
B0u

∗(s) +B1u
∗(s− a)

)
ds, t ∈ (0, c],

℘(t), t ∈ [−a, 0].

By Lemma 4.1.7, one can finda control u ∈ U such that

B0u(t) +B1u(t− a) = B0u
∗(t) +B1u

∗(t− a)− F
(
t, xς(t), u(t) + u(t− a)

)
.

Let z ∈ Cc be the mild solution of (4.1.1) corresponding to u. Then we can write

z(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u
∗(s) ds

+

∫ t

0

S(t− s)B1u
∗(s− a) ds+

∫ t

0

S(t− s)F
(
t, zς(s), u(s) + u(s− a)

)
ds

−
∫ t

0

S(t− s)F
(
t, xς(s), u(s) + u(s− a)

)
ds, 0 < t ≤ c,

which gives

z(t)− x(t)

=

∫ t

0

S(t− s)
(
F
(
t, zς(s), u(s) + u(s− a)

)
− F

(
t, xς(s), u(s) + u(s− a)

))
ds.

Taking norm, we get

‖z(t)− x(t)‖

≤ kS

∫ t

0

∥∥F(t, zς(s), u(s) + u(s− a)
)
− F

(
t, xς(s), u(s) + u(s− a)

)∥∥ ds
≤ kSλ

∫ t

0

∥∥zς(s) − xς(s)∥∥ ds. (4.1.15)

Now,

‖zς(s) − xς(s)‖C0 = sup
−a≤θ≤0

‖z(ς(s) + θ)− x(ς(s) + θ)‖

≤ sup
−a≤%≤0

‖z(%)− x(%)‖+ sup
0≤%≤s

‖z(%)− x(%)‖.

Also z(%) = ψ(%) = x(%) for % ∈ [−a, 0]. Thus (4.1.15) leads to

sup
0≤%≤t

‖z(%)− x(%)‖ ≤ kSλ

∫ t

0

sup
0≤%≤s

‖z(%)− x(%)‖ ds.

Applying Gronwall’s inequality, we have ‖z − x‖Cc = 0. Hence R̃(0) ⊆ R(F ). �



57
4.1. Controllability of second-order nonlocal retarded semilinear systems with

delay in control

4.1.4 Example

Consider the following wave equation on [0, c] for 0 ≤ x ≤ 1:

∂2ẑ(t,x)
∂t2

= ∂2ẑ(t,x)
∂x2 + û(t, x) + u(t− a, x)

+ F
(
t, ẑ(ς(t) + θ, x), û(t, x) + û(t− a, x)

)
, t ∈ (0, c],

∂ẑ
∂x

(t, 0) = ∂ẑ
∂x

(t, 1) = 0, t ∈ (0, c],
n∑
i=1

αiẑ(ti, x) = ẑ0(x),

∂ẑ
∂t

(0, x) = ẑ1(x),

(4.1.16)

where −a ≤ t1 < t2 < · · · < tn ≤ 0.

The equation (4.1.16) takes the abstract form (4.1.1), if we set

(i) V = L2[0, 1] and define A : D(A) ⊆ V → V by Ay = d2y
dx2 with domain

D(A) =

{
y ∈ L2[0, 1]

∣∣∣∣ y, ∂y∂x are absolutely continuous,
∂2y

∂x2
∈ L2[0, 1]

and
∂y

∂x
(0) =

∂y

∂x
(1) = 0

}
.

Let ξ`(x) =
√

2 cos `πx and λ` = (`π)2, ` = 1, 2, . . ., then 0, λ1, λ2, · · · are eigenvalues

of A with corresponding eigenfunctions 1, ξ1, ξ2, · · · and the family {1, ξ1, ξ2, · · · }
form a complete orthonormal set for N . Define the control space

V ′ =

{
υ ∈ L2[0, 1]

∣∣∣∣∣ υ =
∞∑
`=2

α̃`ξ` with
∞∑
`=2

α̃2
` <∞

}
,

and the linear operators B0, B1 from V ′ to V given by Bjυ = υ, j = 0, 1. Evi-

dently, B0 and B1 are bounded and satisfy assumption (H5).

(ii) ς(t) = t2

t+t2
, t ∈ [0, c], which satisfy delay property and ẑς(t)(θ, x) = ẑ

(
t2

t+t2
+ θ, x

)
.

(iii) ψ(z)(t) = γ(z) for z ∈ C0, t ∈ [−a, 0]; h(t) = y0 = ẑ0(x), where γ : C0 → V is

given by

γ(z) =
n∑
i=1

αiz(ti)

and

z(ti) = ẑ(ti, x).
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Take ℘ ∈ C0 such that ℘(ti) = 1
αi

1
n
y0 = ℘(ti), then for each t ∈ [−a, 0],

ψ(℘)(t) = γ(℘) =
n∑
i=1

αi℘(ti)

=
n∑
i=1

αi
1

αi

1

n
y0

= y0

= h(t).

Therefore hypothesis (H1) is satisfied.

The spectral representation of A is

Ay = −
∞∑
`=1

(`π)2 〈y, ξ`〉 ξ`, y ∈ V.

A generates a cosine family {C(t)}t∈R defined by

C(t)y =
∞∑
`=1

cos(`πt) 〈y, ξ`〉 ξ`, y ∈ V,

with corresponding sine family

S(t)y =
∞∑
`=1

1

`π
sin(`πt) 〈y, ξ`〉 ξ`, y ∈ V.

If we consider the nonlinear part

F
(
t, zς(t), u(t) + u(t− a)

)
=

1

3

(∥∥zς(t)∥∥C0
ξ3(x) + ‖u(t) + u(t− a)‖ ξ4(x)

)
.

Then by Minkowski’s inequality we obtain∥∥F(t, zς(t), u(t) + u(t− a)
)
− F

(
t, z̃ς(t), ũ(t) + ũ(t− a)

)∥∥
≤ 1

3

(∥∥zς(t) − z̃ς(t)∥∥C0
+ ‖u(t) + u(t− a)− ũ(t)− ũ(t− a)‖

)
for any zς(t), z̃ς(t) ∈ C0 and u(t), ũ(t) ∈ V ′.
Above shows that F is Lipschitz with constant λ = 1

3
and hypothesis (H5) is satisfied.

Further, if we take α3 = 1
3
‖zς(t)‖C0 , α4 = 1

3
and rest αj = 0, then the hypothesis

(H3) is satisfied. The linear part of (4.1.16) without delay is controllable [18]. Thus

by Theorem 4.1.8, the system (4.1.16) is exactly controllable.



59
4.2. Approximate controllability of second-order nonlocal retarded semilinear

systems with multiple delays in control

4.2 Approximate controllability of second-order

nonlocal retarded semilinear systems with mul-

tiple delays in control

In this section, we consider the semilinear system with control delays in Banach

spaces. Here the inclusion condition among the range sets of the operators has been

dropped and the nonlinear function has been considered in more general form.

4.2.1 Introduction and preliminaries

Let Z = Lp([0, c];V ) be a function space, where p > 1 and V is a Banach space.

Consider the semilinear system

z̈(t) = Az(t) +
m∑
i=0

Biu(t− ai)

+ F
(
t, zς(t), u(t), u(t− â1), . . . , u(t− âm̂)

)
, t ∈ (0, c],

ψ(z) = h, u(t) = 0, t ∈ [−a, 0],

ż(0) = y1,

(4.2.1)

where the state z(t) ∈ V and the control u ∈ U = Lp([0, c];V
′), V ′ is another Banach

space; ai and âj, j = 1, 2, . . . , m̂ are fixed delays such that 0 = a0 < a1 < a2 < · · · <
am < c, 0 < â1 < â2 < · · · < âm̂ < c and a = max{am, âm̂}. B0, B1, . . . , Bm are

continuous linear maps from V ′ to V and F : [0, c] × C0 × V ′ × V ′ × · · · × V ′︸ ︷︷ ︸
(m̂+1) times

→ V

is nonlinear. The other notations are similar as in previous section.

Controllability results for semilinear and linear systems with delays in state or

control in finite and infinite dimensional spaces have been analyzed by many re-

searchers. Among them, Klamka [48] investigated the stochastic controllability of

linear systems with multiple delays in control in finite dimesional Hilbert spaces.

Controllability of linear systems with multiple delays in state was proved in [47].

Klamka [45] considered a finite dimensional system described by semilinear differ-

ential equations with control delays and determined the constrained controllability

using rank condition. In [60], Liu et al. analyzed the controllability of time-varying

systems of linear equations with impulsive effects and delays in control. Sukavanam
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et al. [82] studied the controllability of a semilinear delayed system with growing

nonlinear term. In [23] Devies et al. deduced the results for null and exact control-

lability of linear systems with delay in both control and state. Applying sequence

method and the concept of fundamental solution Anurag et al. [80] analyzed the

controllability of semilinear systems with state delay.

Up to now, there is no result on controllability of semilinear systems of second-

order with control delays. To fill this gap, the present section is devoted to analyze

the controllability of nonlocal retarded semilinear systems of second-order with mul-

tiple delays in control.

Definition 4.2.1. Suppose ℘ ∈ C0 satisfies ψ(℘) = h. A function z ∈ Cc is said to

be a mild solution of (4.2.1) if it satisfies

z(t) =



C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
( m∑

i=0

Biu(s− ai)
)
ds

+

∫ t

0

S(t− s)F
(
s, zς(s), u(s), u(s− â1), . . . , u(s− âm̂)

)
ds

for t ∈ (0, c],

℘(t) for t ∈ [−a, 0].

(4.2.2)

Moreover, if ℘(0) ∈ V1, then ż is continuous on [0, c] and is given by

ż(t) = AS(t)℘(0) + C(t)y1 +

∫ t

0

C(t− s)
( m∑

i=0

Biu(s− ai)
)
ds

+

∫ t

0

C(t− s)F
(
s, zς(s), u(s), u(s− â1), . . . , u(s− âm̂)

)
ds.

Here, V1 is defined as in previous section.

Definition 4.2.2. The system given by (4.2.1) is said to be approximately control-

lable on [0, c], if for every given ε > 0 and a final state zc ∈ V one can find a control

u ∈ U such that the mild solution z(t) of (4.2.1) corresponding to u satisfies

‖z(c)− zc‖ ≤ ε.

For the system (4.2.1), the systems
z̈(t) = Az(t) +

m∑
i=0

Biu(t− ai), t ∈ (0, c],

z(0) = ℘(0),

ż(0) = y1.

(4.2.3)
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and 
z̈(t) = Az(t) +B0u(t), t ∈ (0, c],

z(0) = ℘(0),

ż(0) = y1

(4.2.4)

are associated linear systems with delays and without delay, respectively, if ψ(℘) =

h.

Throughout this section, we again suppose that ‖C(t)‖ ≤ kC and ‖S(t)‖ ≤ kS ,

0 ≤ t ≤ c, where kC and kS are constants.

4.2.2 Existence of mild solution

To discuss the existence result we suppose the following:

(H1) ψ : C([−a, 0];V1) → C([−a, 0];V1) and for each given h there is a unique

function ℘ ∈ C([−a, 0];V1) satisfying ψ(℘) = h;

(H2) F is continuous in t and locally Lipschitz in z, that is, there exists a constant

λr > 0 satisfying

‖F (t, z1, u0, u1, . . . , um̂)− F (t, z2, u0, u1, . . . , um̂)‖ ≤ λr ‖z1 − z2‖C0

for all t ∈ [0, c]; z` ∈ C0 with ‖z`‖C0 ≤ r, ` = 1, 2 and uj ∈ V ′, j =

0, 1, 2, . . . , m̂;

(H3) there exists a kF > 0 satisfying

‖F (t, z, u0, u1, . . . , um̂)‖ ≤ kF (1 + ‖z‖C0 + ‖u0‖+ ‖u1‖+ · · ·+ ‖um̂‖)

for all t ∈ [0, c]; z ∈ C0 and uj ∈ V ′, j = 0, 1, 2, . . . , m̂.

Theorem 4.2.1. Under hypotheses (H1)-(H3), the system (4.2.1) has a unique mild

solution for each u ∈ U and y1 ∈ V .
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Proof. Let 0 < c1 < c and max
{
‖B0‖, ‖B1‖, . . . , ‖Bm‖

}
≤ kB. Define a mapping

Q : Cc1 → Cc1 by

(Qz)(t) =



C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
( m∑

i=0

Biu(s− ai)
)
ds

+

∫ t

0

S(t− s)F
(
s, zς(s), u(s), u(s− â1), . . . , u(s− âm̂)

)
ds

for t ∈ (0, c1],

℘(t) for t ∈ [−a, 0]

(4.2.5)

and consider the ball

Br0 =
{
z ∈ Cc1

∣∣ ‖z‖Cc1 ≤ r0, z(0) = ℘(0) and ż(0) = y1

}
.

Then, for any z ∈ Br0 and 0 ≤ s ≤ c1

‖zς(s)‖0 = max
θ∈[−a,0]

‖z(ς(s) + θ)‖ ≤ max
%∈[−a,c1]

‖z(%)‖ ≤ r0.

Thus

‖(Qz)(t)‖ ≤ kC‖℘(0)‖+ kS‖y1‖+ kSkB

(∫ t

0

m∑
i=0

‖u(s− ai)‖ ds
)

+ kS

∫ t

0

∥∥F(t, zς(s), u(s), u(s− â1), . . . , u(s− âm̂)
)

− F
(
t, 0, u(s), u(s− â1), . . . , u(s− âm̂)

)∥∥ ds
+ kS

∫ t

0

∥∥F(t, 0, u(s), u(s− â1), . . . , u(s− âm̂)
)∥∥ ds

≤ kC‖℘(0)‖+ kS‖y1‖+ (m+ 1)kSkBc
1− 1

p‖u‖U + kSλr0

∫ t

0

‖zς(s)‖C0 ds

+ kSkF

∫ t

0

[1 + ‖u(s)‖+ ‖u(s− â1)‖+ · · ·+ ‖u(s− âm̂)‖] ds

≤ kC‖℘(0)‖+ kS‖y1‖+ (m+ 1)kSkBc
1− 1

p‖u‖U + kSλr0r0c1

+ kSkF

(
c1 + (m̂+ 1)c1

1− 1
p‖u‖U

)
= kC‖℘(0)‖+ kS‖y1‖+ (m+ 1)kSkBc

1− 1
p‖u‖U

+ kS

(
λr0r0c1 + kF

(
c1 + (m̂+ 1)c1

1− 1
p‖u‖U

))
.

Now choosing r0 = 2
(
kC‖℘(0)‖+ kS‖y1‖+ (m+ 1)kSkBc

1− 1
p‖u‖U

)
+1 and c1 small

enough such that

kS

(
λr0r0c1 + kF

(
c1 + (m̂+ 1)c1

1− 1
p‖u‖U

))
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≤ kC‖℘(0)‖+ kS‖y1‖+ (m+ 1)kSkBc
1− 1

p‖u‖U + 1.

Then

‖(Qz)(t)‖ ≤ 2
(
kC‖℘(0)‖+ kS‖y1‖+ (m+ 1)kSkBc

1− 1
p‖u‖U

)
+ 1

= r0 (say).

Therefore Q maps Br0 into itself.

Now, take z, z̃ ∈ Br0 , then

‖(Qz)(t)− (Qz̃)(t)‖ ≤ kS

∫ t

0

∥∥F(s, zς(s), u(s), u(s− â1), . . . , u(s− âm̂)
)

− F
(
s, z̃ς(s), u(s), u(s− â1), . . . , u(s− âm̂)

)∥∥ ds
≤ kSλr0

∫ t

0

‖zς(s) − z̃ς(s)‖C0 ds

≤ kSλr0t‖z − z̃‖Cc1 .

Further,

‖(Q2z)(t)− (Q2z̃)(t)‖ ≤ kS

∫ t

0

∥∥F(s, (Qz)ς(s), u(s), u(s− â1), . . . , u(s− âm̂)
)

− F
(
s, (Qz̃)ς(s), u(s), u(s− â1), . . . , u(s− âm̂)

)∥∥ ds
≤ kSλr0

∫ t

0

∥∥(Qz)ς(s) − (Qz̃)ς(s)
∥∥
C0
ds

≤ kSλr0

∫ t

0

sup
−a≤%≤0

‖(Qz)(ς(s) + %)− (Qz̃)(ς(s) + %)‖ ds

≤ kSλr0

∫ t

0

(
sup
−a≤%≤0

‖(Qz)(%)− (Qz̃)(%)‖

+ sup
0≤%≤s

‖(Qz)(%)− (Qz̃)(%)‖
)
ds

= kSλr0

∫ t

0

sup
0≤%≤s

‖(Qz)(%)− (Qz̃)(%)‖ ds

≤ kSλr0

∫ t

0

kSλr0s‖z − z̃‖Cc1 ds

≤ (kSλr0t)
2

2
‖z − z̃‖Cc1 .

Repeating the above process, one can obtain

‖(Qnz)(t)− (Qnz̃)(t)‖ ≤ (kSλr0t)
n

n!
‖z − z̃‖Cc1
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≤ (kSλr0c1)n

n!
‖z − z̃‖Cc1 .

Therefore

‖Qnz −Qnz̃‖Cc1 ≤
(kSλr0c1)n

n!
‖z − z̃‖Cc1 .

which shows that the Qn is a contraction map for sufficiently large value of n. By

Banach fixed point theorem, Q has a fixed point in Br0 . Hence (4.2.2) is a mild

solution on [−a, c1]. In similar way, the existence of mild solution on [c1, c2], where

c1 < c2, can be shown. Applying the above technique, one can deduce that (4.2.2)

is a mild solution on the maximal existing interval [−a, c∗), c∗ ≤ c.

Next we show the boundedness of solution. Clearly z(t) is bounded on [−a, 0].

Now for t ∈ [0, c∗)

‖z(t)‖ ≤ kC‖℘(0)‖+ kS‖y1‖+ (m+ 1)kSkB

∫ t

0

‖u(s)‖ ds

+ kSkF

∫ t

0

(
1 + ‖zς(s)‖C0 + (m̂+ 1)‖u(s)‖

)
ds

≤ kC‖℘(0)‖+ kS

(
‖y1‖+

(
(m+ 1)kB + (m̂+ 1)kF

)
c1− 1

p‖u‖U + kF c
)

+ kSkF

∫ t

0

‖zς(s)‖C0 ds.

Therefore

‖z(t)‖ ≤ ‖zς(t)‖C0

≤ kC‖℘(0)‖+ kS

(
‖y1‖+

(
(m+ 1)kB + (m̂+ 1)kF

)
c1− 1

p‖u‖U + kF c
)

+M℘ + kSkF

∫ t

0

‖zς(s)‖C0 ds.

By Gronwall’s inequality, one has

‖z(t)‖ ≤
(
kC‖℘(0)‖+ kS

(
‖y1‖+

(
(m+ 1)kB + (m̂+ 1)kF

)
c1− 1

p‖u‖U + kF c
)

+M℘

)
exp(kSkF c),

which shows that z(t) is bounded on [−a, c∗) and hence it is defined on [−a, c].
For uniqueness, suppose z1 and z2 be two solutions of (4.2.1) for the same control

function u. Then z1(t) = z2(t) = ℘(t) for t ∈ [−a, 0]. Now for t ∈ [0, c], set

a∗ = max
{
‖z1‖Cc , ‖z2‖Cc

}
.
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Then

‖z1(t)− z2(t)‖V ≤ kS

∫ t

0

∥∥F(s, (z1)ς(s), u(s), u(s− â1), . . . , u(s− âm̂)
)

− F
(
s, (z2)ς(s), u(s), u(s− â1), . . . , u(s− âm̂)

)∥∥ ds
≤ kSλa∗

∫ t

0

∥∥(z1)ς(s) − (z2)ς(s)
∥∥
C0
ds

≤ kSλa∗

∫ c

0

∥∥(z1)ς(s) − (z2)ς(s)
∥∥
C0
ds.

Therefore

‖(z1)ς(t) − (z2)ς(t)‖C0 ≤ kSλa∗

∫ c

0

∥∥(z1)ς(s) − (z2)ς(s)
∥∥
C0
ds.

By Gronwall’s inequality, one has (z1)ς(t) = (z2)ς(t) for all t ∈ [0, c] and consequently

z1 = z2. �

4.2.3 Controllability results

The subsequent discussion needs the following hypotheses:

(H4) the system (4.2.4) is approximately controllable;

(H5) there exists a function q ∈ L1[0, c] satisfying

‖F (t, z, u0, u1, . . . , um̂)‖ ≤ q(t)

for all (t, z, u0, u1, . . . , um̂) ∈ [0, c]× C0 × V ′ × V ′ × · · · × V ′.

Theorem 4.2.2. Under hypotheses (H1) and (H4), the corresponding linear delay

system (4.2.3) is approximately controllable.

Proof. Set c = am+1 and r = min{a1, a2 − a1, a3 − a2, . . . , am+1 − am}. Since 0 =

a0 < a1 < a2 < · · · < am < am+1. Therefore for each ai+1 one can find a positive

integer ni and a constant αi ∈ [0, r) satisfying ai+1 = ai + nir + αi, i = 1, 2, . . . ,m.

Case 1: When α1, α2, . . . , αm are positive.

Let z̃0; z̃11, z̃12 . . . , z̃1n1 , z̃1n1+1; z̃21, z̃22, . . . , z̃2n2 , z̃2n2+1; · · · ; z̃m1, z̃m2, . . . , z̃mnm be

given in V and zc ∈ V be the final state. Consider the system
ξ̈(t) = Aξ(t) +B0u(t), t ∈ (0, a1],

ξ(0) = ℘(0),

ξ̇(0) = ξ1 = y1.

(4.2.6)
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Set ξ̃0 = z̃0. By (H4) one can find a control u0 such that the mild solution ξ(t) of

(4.2.6) is given by

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u0(s) ds, 0 ≤ t ≤ a1

and it satisfies ‖ξ(a1)− ξ̃0‖ ≤ ε.

Let

w0(t) =

0, t ∈ [−a, 0],

u0(t), t ∈ [0, a1]

and

z(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
( m∑

i=0

Biw0(s− ai)
)
ds, 0 ≤ t ≤ a1.

Then

‖z(a1)− z̃0‖ = ‖ξ(a1)− ξ̃0‖

≤ ε.

Denote ξ(a1) by ξa1 and ξ̇(a1) by ξ̇a1 , and consider the system
ξ̈(t) = Aξ(t) +B0u(t), t ∈ (a1, a1 + r],

ξ(a1) = ξa1 ,

ξ̇(a1) = ξ̇a1 .

(4.2.7)

Set ξ̃11 = z̃11 − χa1+r, where χa1+r =
∫ a1+r

0
S(a1 + r − s)

(∑m
i=1Biw0(s − ai)

)
ds =∫ a1+r

0
S(a1 + r − s)B1w0(s− a1) ds is known. Again by (H4) one can find a control

u11 such that the mild solution ξ(t) of (4.2.7) is given by

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u11(s) ds, a1 ≤ t ≤ a1 + r

and it satisfies ‖ξ(a1 + r)− ξ̃11‖ ≤ ε.

Let

w11(t) =

w0(t), t ∈ [0, a1],

u11(t), t ∈ (a1, a1 + r]
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and

z(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
( m∑

i=0

Biw11(s− ai)
)
ds, a1 ≤ t ≤ a1 + r.

Then

‖z(a1 + r)− z̃11‖ = ‖ξ(a1 + r) + χa1+r − z̃11‖

= ‖ξ(a1 + r)− ξ̃11‖

≤ ε.

Continuing in similar fashion, at the (n1 + 2)-th step (if α1 > 0), we get
ξ̈(t) = Aξ(t) +B0u(t), t ∈ (a1 + n1r, a2],

ξ(a1 + n1r) = ξa1+n1r,

ξ̇(a1 + n1r) = ξ̇a1+n1r.

(4.2.8)

Set ξ̃1n1+1 = z̃1n1+1 − χa2 , where χa2 =
∫ a2

0
S(a2 − s)

(∑m
i=1 Biw1n1(s − ai)

)
ds =∫ a2

0
S(a2 − s)B1w1n1(s − a1) ds is known. Then one can find a control u1n1+1 such

that the mild solution ξ(t) of (4.2.8) is given by

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0u1n1+1(s) ds, a1 + n1r ≤ t ≤ a2

and it satisfies ‖ξ(a2)− ξ̃1n1+1‖ ≤ ε.

Let

w1n1+1(t) =

w1n1(t), t ∈ (a1 + (n1 − 1)r, a1 + n1r],

u1n1+1(t), t ∈ (a1 + n1r, a2]

and

z(t) = C(t)℘(0)+S(t)y1+

∫ t

0

S(t−s)
( m∑

i=0

Biw1n1+1(s−ai)
)
ds, a1+n1r ≤ t ≤ a2.

Then

‖z(a2)− z̃1n1+1‖ = ‖ξ(a2) + χa2 − z̃1n1+1‖

= ‖ξ(a2)− ξ̃1n1+1‖

≤ ε.
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Repeating the above process, at the last step, that is, (n1 +n2 + · · ·+nm+m+1)-th

step (if αi > 0, ∀ i = 1, 2, . . . ,m), we get
ξ̈(t) = Aξ(t) +B0u(t), t ∈ (am + nmr, c],

ξ(am + nmr) = ξam+nmr,

ξ̇(am + nmr) = ξ̇am+nmr.

(4.2.9)

Set ξ̃c = z̃c − χc, where χc =
∫ c

0
S(c − s)

(∑m
i=1 Biwmnm(s − ai)

)
ds is known from

previous step. Then one can find a control umnm+1 such that the mild solution ξ(t)

of (4.2.9) is given by

ξ(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)B0umnm+1(s) ds, am + nmr ≤ t ≤ c

and it satisfies ‖ξ(c)− ξ̃c‖ ≤ ε.

Let

wmnm+1(t) =

wmnm(t), t ∈ (am + (nm − 1)r, am + nmr],

umnm+1(t), t ∈ (am + nmr, c]

and

z(t) = C(t)℘(0)+S(t)y1 +

∫ t

0

S(t−s)
( m∑

i=0

Biwmnm+1(s−ai)
)
ds, am+nmr ≤ t ≤ c.

Then

‖z(c)− zc‖ = ‖ξ(c) + χc − zc‖

= ‖ξ(c)− ξ̃c‖

≤ ε.

Now, define the control w on [−a, c] as

w(t) =

w0, t ∈ [−a, a1],

wi(t), t ∈ (ai, ai+1], i = 1, 2, . . . ,m;

where

wi(t) =

wij, t ∈ (ai + (j − 1)r, ai + jr], j = 1, 2, . . . , ni;

uini+1(t), t ∈ (ai + nir, ai+1].



69
4.2. Approximate controllability of second-order nonlocal retarded semilinear

systems with multiple delays in control

Then

z(t) = C(t)℘(0) + S(t)y1 +

∫ t

0

S(t− s)
( m∑

i=0

Biw(s− ai)
)
ds, 0 ≤ t ≤ c

is the mild solution of (4.2.3) for the control function w and it satisfies ‖z(c)−zc‖ ≤ ε.

For other cases, the proof is similar. �

Theorem 4.2.3. Under hypotheses (H1)-(H5), the semilinear system (4.2.1) is ap-

proximately controllable.

Proof. : Since q ∈ L1[0, c], one can find an increasing sequence 〈cn〉 in [0, c] such

that cn → c and ∫ c

cn

q(t) dt→ 0 as n→∞.

Now by approximate controllability of (4.2.3), for any given ε > 0 and zc ∈ V , one

can find a control ũ0 ∈ U satisfying∥∥∥∥zc − C(c)℘(0)− S(c)y1 −
∫ c

0

S(c− s)
( m∑

i=0

Biũ0(s− ai)
)
ds

∥∥∥∥ ≤ ε

2
.

Denote z1 = z(c1, ℘, ũ0) and ż1 = ż(c1, ℘, ũ0), where z(t, ℘, ũ0) is the mild solution

of (4.2.1) for the control ũ0. Again by approximate controllability of (4.2.3), one

can find a control ũ1 ∈ Lp([c1, c];V
′) satisfying∥∥∥∥zc − C(c− c1)z1 − S(c− c1)ż1 −
∫ c

c1

S(c− s)
( m∑

i=0

Biũ1(s− ai)
)
ds

∥∥∥∥ ≤ ε

2
.

Define

w̃1(t) =

ũ0(t), t ∈ [0, c1),

ũ1(t), t ∈ [c1, c].

Clearly, w̃1 ∈ U . Continuing in this manner, one can obtain three sequences zn, ũn

and w̃n such that ũn ∈ Lp([cn, c];V ′), w̃n ∈ U given by

w̃n(t) =

ũn−1(t), t ∈ [0, cn),

ũn(t), t ∈ [cn, c]
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and zn = z(cn, ℘, ũn−1), żn = ż(cn, ℘, ũn−1) with∥∥∥∥zc − C(c− cn)zn − S(c− c1)żn −
∫ c

cn

S(c− s)
( m∑

i=0

Biũn(s− ai)
)
ds

∥∥∥∥ ≤ ε

2
.

Let z(t, ℘, w̃n) be the mild solution of (4.2.1) associated with w̃n.

Denote

G(s) =
m∑
i=0

Biw̃n(s− ai) + F
(
s, zς(s), w̃n(s), w̃n(s− â1), . . . , w̃n(s− âm̂)

)
.

Then

z(c, ℘, w̃n)

= C(c)℘(0) + S(c)y1 +

∫ c

0

S(c− s)G(s) ds

= C(c− cn + cn)℘(0) + S(c− cn + cn)y1

+

∫ cn

0

S(c− cn + cn − s)G(s) ds+

∫ c

cn

S(c− s)G(s) ds

=
(
C(c− cn)C(cn) + AS(c− cn)S(cn)

)
℘(0)

+
(
S(c− cn)C(cn) + S(cn)C(c− cn)

)
y1

+

∫ cn

0

(
S(c− cn)C(cn − s) + S(cn − s)C(c− cn)

)
G(s) ds

+

∫ c

cn

S(c− s)G(s) ds

= C(c− cn)

(
C(cn)℘(0) + S(cn)y1 +

∫ cn

0

S(cn − s)G(s) ds

)
+ S(c− cn)

(
AS(cn)℘(0) + C(cn)y1 +

∫ cn

0

C(cn − s)G(s) ds

)
+

∫ c

cn

S(c− s)G(s) ds

= C(c− cn)

(
C(cn)℘(0) + S(cn)y1 +

∫ cn

0

S(cn − s)
( m∑

i=0

Biw̃n(s− ai)

+ F
(
s, zς(s), w̃n(s), w̃n(s− â1), . . . , w̃n(s− âm̂)

))
ds

)
+ S(c− cn)

(
AS(cn)℘(0) + C(cn)y1 +

∫ cn

0

C(cn − s)
( m∑

i=0

Biw̃n(s− ai)

+ F
(
s, zς(s), w̃n(s), w̃n(s− â1), . . . , w̃n(s− âm̂)

))
ds

)
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+

∫ c

cn

S(c− s)
( m∑

i=0

Biw̃n(s− ai)

+ F
(
s, zς(s), w̃n(s), w̃n(s− â1), . . . , w̃n(s− âm̂)

))
ds

= C(c− cn)

(
C(cn)℘(0) + S(cn)y1 +

∫ cn

0

S(cn − s)
( m∑

i=0

Biũn−1(s− ai)

+ F
(
s, zς(s), ũn−1(s), ũn−1(s− â1), . . . , ũn−1(s− âm̂)

))
ds

)
+ S(c− cn)

(
AS(cn)℘(0) + C(cn)y1 +

∫ cn

0

C(cn − s)
( m∑

i=0

Biũn−1(s− ai)

+ F
(
s, zς(s), ũn−1(s), ũn−1(s− â1), . . . , ũn−1(s− âm̂)

))
ds

)
+

∫ c

cn

S(c− s)
( m∑

i=0

Biũn(s− ai)

+ F
(
s, zς(s), ũn(s), ũn(s− â1), . . . , ũn(s− âm̂)

))
ds

= C(c− cn)zn + S(c− cn)żn +

∫ c

cn

S(c− s)
( m∑

i=0

Biũn(s− ai)
)
ds

+

∫ c

cn

S(c− s)F
(
s, zς(s), ũn(s), ũn(s− â1), . . . , ũn(s− âm̂)

)
ds.

Now,

‖z(c, ℘, w̃n)− zc‖

≤
∥∥∥∥zc − C(c− cn)zn − S(c− cn)żn −

∫ c

cn

S(c− s)
( m∑

i=0

Biũn(s− ai)
)
ds

∥∥∥∥
+

∥∥∥∥∫ c

cn

S(c− s)F
(
s, zς(s), ũn(s), ũn(s− â1), . . . , ũn(s− âm̂)

)
ds

∥∥∥∥
≤ ε

2
+ kS

∫ c

cn

∥∥F(s, zς(s), ũn(s), ũn(s− â1), . . . , ũn(s− âm̂)
)∥∥ ds

≤ ε

2
+ kS

∫ c

cn

q(s) ds

≤ ε

2
+ kS

ε

2kS

= ε

for sufficiently large value of n. Hence the systen (4.2.1) is approximately control-

lable. �
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Remark 4.2.4. Under assumptions (H1), (H4) and (H5), the system (4.2.1) is

approximately controllable if it has a solution for each given u ∈ U and y1 ∈ V .

4.2.4 Example

Consider the semilinear wave equation for x ∈ [0, 1]



∂2ẑ(t,x)
∂t2

= ∂2ẑ(t,x)
∂x2 +

m∑
i=0

Biû(t− ai, x)

+ F
(
t, ẑ(ς(t) + θ, x), û(t, x), û(t− â1, x), . . . , û(t− âm̂)

)
for t ∈ (0, c],

∂ẑ
∂x

(t, 0) = ∂ẑ
∂x

(t, 1) = 0 for t ∈ (0, c],

ẑ0(x) =
n∑
j=1

βj ẑ(tj, x),

∂ẑ
∂t

(0, x) = ŷ1(x),

(4.2.10)

where −a ≤ t1 < t2 < · · · < tn ≤ 0 and ς(t) = t3

1+c3
, 0 ≤ t ≤ c.

Clearly, ς satisfies ς(t) ≤ t and

z̃ς(t)(θ, x) = z̃

(
t3

1 + c3
+ θ, x

)
.

The equation (4.2.10) can be converted in the abstract form (4.2.1), if we make

the setting similar to the previous example.

If we take

F
(
t, zς(t), u(t), u(t− â1), . . . , u(t− âm̂)

)
=

(
t
∥∥zς(t)∥∥2

C0

1 +
∥∥zς(t)∥∥2

C0

ξ3(x) +
t2(‖u(t)‖+ ‖u(t− â1)‖+ · · ·+ ‖u(t− âm̂)‖)
1 + ‖u(t)‖+ ‖u(t− â1)‖+ · · ·+ ‖u(t− âm̂)‖

ξ4(x)

)
,

then ∥∥F(t, zς(t), u(t), u(t− â1), . . . , u(t− âm̂)
)∥∥

≤ (t‖ξ3‖V + t2‖ξ4‖V )

= (t+ t2)

≤ c(1 + c)
(
1 + ‖zς(t)‖C0 + ‖u(t)‖+ ‖u(t− â1)‖+ · · ·+ ‖u(t− âm̂)‖

)
.
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Hence (H3) and (H5) are satisfied.

Also, ∥∥F(t, (z1)ς(t), u(t), u(t− â1), . . . , u(t− âm̂)
)

− F
(
t, (z2)ς(t), u(t), u(t− â1), . . . , u(t− âm̂)

)∥∥
≤ c

(∥∥(z1)ς(t)
∥∥
C0

+
∥∥(z2)ς(t)

∥∥
C0

)∥∥(z1)ς(t) − (z2)ς(t)
∥∥
C0

≤ 2cr
∥∥(z1)ς(t) − (z2)ς(t)

∥∥
C0

= λr
∥∥(z1)ς(t) − (z2)ς(t)

∥∥
C0

for any (z1)ς(t), (z2)ς(t) ∈ B(0, r) ⊂ C0 and u(t) ∈ V ′. Hence F is locally Lipschitz,

that is, (H2) is satisfied. The linear part of (4.2.10) is approximately controllable (in

fact, it is exactly controllable) [18]. Thus by previous theorem, the system (4.2.10)

is controllable.

4.3 Concluding remarks

In this chapter, the existence and approximate controllability of second-order non-

local retarded systems have been analyzed. In first section, we determined the

approximate and exact controllability of second-order nonlocal retarded semilinear

systems with fixed delay in control under Lipschitz assumption. Utilizing a fixed

point theorem, the result of existence and uniqueness has been deduced. The con-

trollability of associated linear delay system has been proved by the method of steps

and then the controllability of actual system is shown by proving that the reachable

set of semilinear system contains the reachable set of the associated linear system

without delay. In second section, the approximate controllability for retarded sys-

tems of second-order with control delays and nonlocal conditions has been discussed

by assuming that the nonlinear term is locally Lipschitz which is a weaker condition

than Lipschitz continuity. Using fixed point approach, the existence and unique-

ness results have been derived. Then, under some assumptions, we proved that the

controllability of the corresponding linear system without delay implies the control-

lability of the corresponding linear delay system and the actual system by applying

an iterative technique. Here, the results have been proved without assuming the

inclusion condition among the range sets of the operators. But conditions (H3) and
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(H5) are very strong and may not be easily satisfied in many practical problems.

For this reason, an study on approximate controllability of the same system without

assuming the conditions (H3) and (H4) is a matter of next investigation.



Chapter 5

Partial Approximate

Controllability of Nonlocal

Riemann-Liouville Fractional

Semilinear Systems

In this chapter, we investigate the partial approximate controllability of nonlo-

cal Riemann-Liouville fractional systems with integral initial conditions in Hilbert

spaces without Lipschitz condition on nonlinear function. We also exclude the con-

ditions of Lipschitz continuity and compactness for the nonlocal function. The

existence results are derived by applying Schauder’s fixed point theorem, then the

partial controllability result is proved by assuming that the associated linear system

with local initial condition is partial approximately controllable. Lastly, an example

is provided to apply our results.

5.1 Introduction and preliminaries

Let V and V ′ be Hilbert spaces with the corresponding function spaces Z = L2([0, c];V )

and U = L2([0, c];V ′) respectively. Consider the semilinear systemDϑ
t z(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (0, c],(
I1−ϑ
t z(t)

)
t=0

= y0 − ℘(z),
(5.1.1)

75
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where 0 < ϑ ≤ 1 and Dϑ
t denotes the Riemann-Liouville fractional derivative of

order ϑ. The state z ∈ Z, the control u ∈ U and y0 ∈ V is given. The linear map

A : D(A) ⊆ V → V generates a C0- semigroup T (t). B is continuous linear map

from V ′ to V . F : [0, c] × V → V is nonlinear and ℘ is a function to be specified

later.

In last few decades, controllability results for various types of semilinear and

linear differential systems of fractional order have been analyzed in many articles.

Among them, Kumar et al. [53] investigated the approximate controllability for

nonlinear systems of fractional order with bounded delay by applying fixed point

theorem. Tai and Lun [83] proved controllability of impulsive fractional neutral in-

tegrodifferential equations by applying fractional calculus and resolvent operators.

Liu and Li [61] determined the controllability of Riemann-Liouville fractional sys-

tems in infinite dimensional Banach spaces by using C0-semigroup and Lipschitz

nonlinearity. In [92], Zhu et al. analyzed the controllability of Riemann-Liouville

fractional nonlinear systems using itegral contractor. Mahmudov [65] is the one who

analyzed the partial controllability for semilinear equations of fractional order with

Caputo derivatives. However, the partial controllability of fractional systems with

Riemann-Liouville derivatives is still untreated topic in the literature so for.

Our aim is to analyze the partial approximate controllability of the fractional

system (5.1.1) without Lipschitz condition or compactness of nonlocal function. For

this, we make an approximate problem of the fractional system (5.1.1) and prove

the compactness of the set of its solutions. Then we prove that it is possible to steer

the system to any open set containing any given final state in a closed subspace.

To define the mild solution of (5.1.1), consider the Banach space C1−ϑ([0, c];V ) ={
z
∣∣ t1−ϑz(t) ∈ C([0, c];V )

}
with the norm ‖z‖C1−ϑ = supt∈[0,c]{t1−ϑ‖z(t)‖V }. For

C0-semigroup T (t), we set supt∈[0,c] ‖T (t)‖ ≤ kT <∞ and ‖B‖ ≤ kB. Let V0 be the

closed subspace of V , P be the projection from V onto V0.

Definition 5.1.1. ([61]) A function z ∈ C1−ϑ([0, c];V ) is said to be a mild solution

of (5.1.1) if it satisfies

z(t) = tϑ−1Tϑ(t) (y0 − ℘(z))

+

∫ t

0

(t− s)ϑ−1Tϑ(t− s)
(
Bu(s) + F (s, z(s))

)
ds, (5.1.2)
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where

Tϑ(t) = ϑ

∫ ∞
0

αξϑ(α)T (tϑα) dα,

ξϑ(α) =
1

ϑ
α−1− 1

ϑωϑ

(
α−

1
ϑ

)
,

ωϑ(α) =
1

π

∞∑
`=1

(−1)`−1α−`ϑ−1 Γ(`ϑ+ 1)

`!
sin(`πϑ), α ∈ (0,∞)

and ξϑ is a probability density function defined on (0,∞).

Definition 5.1.2. The system (5.1.1) is said to be partial approximately control-

lable on [0, c] if for any given ε > 0 and zc ∈ V0, one can find a control u ∈ U such

that the mild solution z(t, u) satisfies

‖Pz(c, u)− zc‖ ≤ ε.

Lemma 5.1.1. ([61]) For each fixed t ≥ 0, Tϑ(t) is continuous linear map satisfying

‖Tϑ(t)y‖ ≤ kT
Γ(ϑ)

‖y‖ ∀ z ∈ V.

Remark 5.1.2. It is notable that Tϑ(t) is point wise bounded. Therefore by uniform

boundedness theorem, there is a constant k̂T > 0 such that supt∈[0,c] ‖Tϑ(t)‖ ≤ k̂T .

Throughout this chapter, we suppose the following conditions:

(H1) the semigroup T (t) generated by A is compact;

(H2) the function F : [0, c] × V → V is jointly continuous and there is a g ∈
C([0, c];R+

0 ) satisfying

‖F (t, y)‖ ≤ g(t), ∀ (t, y) ∈ [0, c]× V ;

(H3) the function ℘ : C1−ϑ([0, c];V ) → V is continuous and there is a constant

k℘ satisfying

‖℘(z)‖ ≤ k℘;

(H4) there exists a b ∈ (0, c) such that for any z, z̃ ∈ C1−ϑ([0, c];V ) satisfying

z(t) = z̃(t), t ∈ [b, c], we have ℘(z) = ℘(z̃);
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(H5) the linear system

z(t) = tϑ−1Tϑ(t)y0 +

∫ t

0

(t− s)ϑ−1Tϑ(t− s)Bu(s) ds (5.1.3)

is partial approximately controllable.

Remark 5.1.3. The system (5.1.3) is partial approximately controllable iff B∗T ∗ϑ(c−
s)P ∗y = 0, 0 < s < c implies that y = 0.

For ε > 0 and n ≥ 1, define the functional

ζε,n(y, z) =
1

2

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗y‖2 ds+ ε‖y‖ − 〈y, δn(z)〉, (5.1.4)

where

δn(z) = cϑ−1PTϑ(c)

(
y0 − T

(
1

n

)
℘(z)

)
+

∫ c

0

(c− s)ϑ−1PTϑ(c− s)F (s, z(s)) ds− zc,

and the operator G : C1−ϑ([0, c];V )→ V0 given by

G(z) = cϑ−1PTϑ(c)

(
y0 − T

(
1

n

)
℘(z)

)
+

∫ c

0

(c− s)ϑ−1PTϑ(c− s)F (s, z(s)) ds.

Consider the ball

B(0, λ) =
{
z ∈ C1−ϑ([0, c];V )

∣∣ ‖z‖C1−ϑ ≤ λ
}
.

Then, it can be easily prove that the set{
cϑ−1PTϑ(c)

(
y0 − T

(
1

n

)
℘(z)

) ∣∣∣∣ z ∈ B(0, λ)

}
is relatively compact in V and hence the map G : B(0, λ)→ V0 is compact [65].

5.2 Existence of mild solution

Lemma 5.2.1. For any B(0, λ),

lim‖y‖→∞ inf
z∈B(0,λ)

ζε,n(y; z)

‖y‖
≥ ε. (5.2.1)
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Proof. First we prove δn : B(0, λ) → V0 is continuous for any n ≥ 1. For this

take zν , z ∈ B(0, λ) satisfying limν→∞ ‖zν − z‖C1−ϑ = 0. In view of (H2) and

continuity of norm, one can get limν→∞ ‖F̃ (zν) − F̃ (z)‖C1−ϑ = 0 where the map

F̃ : C1−ϑ([0, c];V )→ C1−ϑ([0, c];V ) is defined by (F̃ (z))(t) = F (t, z(t)). Now,

‖δn(zν)− δn(z)‖V0 ≤
∥∥∥∥Pcϑ−1Tϑ(c)T

(
1

n

)
(℘(zν)− ℘(z))

∥∥∥∥
+

∥∥∥∥∫ c

0

(c− s)ϑ−1PTϑ(c− s)
(
F (s, zν(s))− F (s, z(s))

)
ds

∥∥∥∥
= k̂TkT‖P‖‖℘(zν)− ℘(z)‖

+
k̂T c

2ϑ−1(Γ(ϑ))2

Γ(2ϑ)
‖P‖‖F̃ (zν)− F̃ (z)‖C1−ϑ

→ 0 as ν →∞.

Now, suppose (5.2.1) does not hold. Then one can select sequences yν in V and zν

in B(0, λ), with ‖yν‖ → ∞ satisfying

limν→∞
ζε,n(yν ; zν)

‖yν‖
< ε. (5.2.2)

Since
{
δn(zν)

∣∣ ν ≥ 1
}
⊂ Range(G) is relatively compact. Therefore by taking a

subsequence, one can assume that

δn(zν)→ δn ∈ V. (5.2.3)

Denote ŷν = yν
‖yν‖ . Boundedness of ŷν enables to select a subsequence (still denoted

by ŷν) such that ŷν ⇀ ŷ ∈ V . Since T (t) is compact, one can see that

B∗T ∗(c− ·)P ∗ŷν → B∗T ∗(c− ·)P ∗ŷ in C1−ϑ([0, c];V ). (5.2.4)

From (5.2.1), one can obtain

ζε,n(yν ; zν)

‖yν‖
=
‖yν‖

2

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗ŷν‖2 ds+ ε‖ŷν‖ − 〈ŷν , δn(zν)〉.

Since ‖yν‖ → ∞, using Fatou lemma and (5.2.2)-(5.2.4), one can obtain∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗ŷ‖2 ds ≤ limν→∞

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗ŷν‖2 ds

= 0.
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By (H5), ŷ = 0 and hence ŷν ⇀ 0 ∈ V .

Thus

limν→∞
ζε,n(yν ; zν)

‖yν‖
≥ limν→∞(ε‖ŷν‖ − 〈ŷν , δn(zν)〉)

= ε,

which is a contradiction. �

Remark 5.2.2. It is easy to verify that for any fixed z ∈ B(0, λ), the map y 7→
ζε,n(y; z) is strictly convex and continuous.

Remark 5.2.3. For every fixed z ∈ C1−ϑ([0, c];V ), the functional ζε,n(·; z) has

a unique minimizer ỹε,n that defines a map χε,n : C1−ϑ([0, c];V ) → V given by

χε,n(z) = ỹε,n, where ζε,n(ỹε,n; z) = miny∈V ζε,n(y; z); which is bounded on B(0, λ)

for each fixed ε > 0, that is there is a constant κε such that ‖χε,n(z)‖ < κε for any

z ∈ B(0, λ), n ≥ 1.

Lemma 5.2.4. If zν , z ∈ B(0, λ) such that

lim
ν→∞
‖zν − z‖C1−ϑ = 0,

then

lim
ν→∞
‖χε,n(zν)− χε,n(z)‖V = 0.

Proof. Boundedness of ỹε,n,ν = χε,n(zν) enables to assume that ỹε,n,ν ⇀ ŷε,n. By

the definition of ζε,n and the optimality of ỹε,n,ν = χε,n(zν) and ỹε,n = χε,n(z), one

obtains

ζε,n(ỹε,n; z) ≤ ζε,n(ŷε,n; z)

≤ limν→∞ζε,n(ỹε,n,ν ; zν)

≤ limν→∞ζε,n(ỹε,n,ν ; zν)

≤ lim
ν→∞

ζε,n(ỹε,n; zν)

= ζε,n(ỹε,n; z).

Above shows that ŷε,n also minimize ζε,n(·; z), which means ŷε,n = ỹε,n. Therefore

lim
ν→∞

ζε,n(ỹε,n,ν ; zν) = ζε,n(ỹε,n; z),
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lim
ν→∞

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗ỹε,n,ν‖2 ds

=

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗ỹε,n‖2 ds,

lim
ν→∞
〈ỹε,n,ν , δn(zν)〉 = 〈ỹε,n, δn(z)〉

and

‖ỹε,n‖ ≤ lim
ν→∞
‖ỹε,n,ν‖.

From above relations, one has

‖ỹε,n‖ = lim
ν→∞
‖ỹε,n,ν‖. (5.2.5)

Since V is a Hilbert space and ỹε,n,ν ⇀ ỹε,n, therefore the result follows. �

In the next theorem, we show that the map Ψε,n : C1−ϑ([0, c];V )→ C1−ϑ([0, c];V )

defined by

(Ψε,nz)(t) = tϑ−1Tϑ(t)

(
y0 − T

(
1

n

)
℘(z)

)
+

∫ t

0

(t− s)ϑ−1Tϑ(t− s)
(
Buε,n(s, z) + F (s, z(s))

)
ds (5.2.6)

with

uε,n(s, z) = B∗T ∗ϑ(c− s)P ∗χε,n(z) = B∗T ∗ϑ(c− s)P ∗ỹε,n, (5.2.7)

has a fixed point.

Theorem 5.2.5. The operator Ψε,n has a fixed point in C1−ϑ([0, c];V ), for n ≥ 1.

Proof. Claim 1: Ψε,n is continuous.

Let zj ∈ C1−ϑ([0, c];V ) with zj → z ∈ C1−ϑ([0, c];V ) as j → ∞. Since F̃ and

uε,n are continuous, therefore

t1−ϑ‖(Ψε,nzj)(t)− (Ψε,nz)(t)‖

≤ kT k̂T‖℘(zj)− ℘(z)‖+
k̂T c

ϑ(Γ(ϑ))2

Γ(2ϑ)
‖F̃ (zj)− F̃ (z)‖C1−ϑ

+
k̂TkBc

ϑ(Γ(ϑ))2

Γ(2ϑ)
‖uε,n(·, zj)− uε,n(·, z)‖C1−ϑ .
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Hence ‖Ψε,nzj −Ψε,nz‖C1−ϑ → 0 as j →∞.

Claim 2: There exists a positive number λ(ε) > 0 such that Ψε,n(B(0, λ(ε))) ⊂
B(0, λ(ε)).

t1−ϑ‖(Ψε,nz)(t)‖ ≤ k̂T‖y0‖+ kT k̂Tk℘ +
ck̂T
ϑ

(
‖g‖+ k̂Tk

2
B‖P‖κε

)
= λ(ε).

Claim 3: Ψε,n is compact for n ≥ 1.

Hence by Schauder fixed point theorem, Ψε,n has a fixed point. �

Suppose that zε,n ∈ B(0, λ(ε)) be a fixed point of Ψε,n and χε,n(zε,n) minimizes

ζε,n(y; zε), and

uε,n(s, zε,n) = B∗T ∗ϑ(c− s)P ∗χε,n(zε,n)

is the associated control. Further, suppose that

zε,n → zε in C1−ϑ([0, c];V ) as n→∞

and χε(zε) minimizes ζε(y; zε), and

uε(s, zε) = B∗T ∗ϑ(c− s)P ∗χε(zε)

is the associated control.

Lemma 5.2.6. If

lim
n→∞

‖zε,n − zε‖C1−ϑ = 0,

then

lim
n→∞

‖χε,n(zε,n)− χε(zε)‖ = 0

and

lim
n→∞

‖uε,n(s, zε,n)− uε(s, zε)‖ = 0

Proof. By definition χε,n(zε,n) and χε(zε) minimize

ζε,n(y, zε,n) =

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗y‖2 ds+ ε‖y‖ − 〈y, δn(zε,n)〉

and

ζε(y, zε) =

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗y‖2 ds+ ε‖y‖ − 〈y, δn(zε)〉,
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respectively. The boundedness of χε,n(zε,n) enables to suppose that χε,n(zε,n) ⇀

χ̂ε ∈ V . Therefore the optimality of χε,n(zε,n) and χε(zε) give

ζε(χε(zε); zε) ≤ ζε(χ̂ε; zε) ≤ limn→∞ζε(χε,n(zε,n); zε) (5.2.8)

and

limn→∞ζε,n(χε,n(zε,n); zε,n) ≤ limn→∞ζε,n(χε,n(zε,n); zε,n)

≤ lim
n→∞

ζε,n(χε(zε); zε,n)

= ζε(χε(zε); zε). (5.2.9)

From (5.2.8) and (5.2.9), one has

ζε(χε(zε); zε) = ζε(χ̂ε; zε)

and

limn→∞ζε,n(χε,n(zε,n); zε,n) = limn→∞ζε,n(χε,n(zε,n); zε,n) = ζε(χε(zε); zε),

which shows that χ̂ε is also a minimizer of ζε(·; zε). From the uniqueness of the

minimizer χ̂ε = χε(zε). Therefore

lim
n→∞

ζε,n(χε,n(zε,n); zε,n) = ζε(χε(zε); zε),

lim
n→∞

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗χε,n(zε,n)‖2 ds

=

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗χε(zε)‖2 ds,

lim
n→∞
〈χε,n(zε,n), δn(zε,n)〉 = 〈χε(zε), δ(zε)〉

and

‖χε(zε)‖ ≤ lim
n→∞

‖χε,n(zε,n)‖.

From above relations, one has

‖χε(zε)‖ = lim
n→∞

‖χε,n(zε,n)‖. (5.2.10)

Since V is a Hilbert space and χε,n(zε,n) ⇀ χε(zε), therefore we obtain the strong

convergence. �
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In the next theorem, we show that the map Ψε : C1−ϑ([0, c];V )→ C1−ϑ([0, c];V )

defined by

(Ψεz)(t) = tϑ−1Tϑ(t) (y0 − ℘(z)) +

∫ t

0

(t− s)ϑ−1Tϑ(t− s)
(
Buε(s, z) + F (s, z(s))

)
ds

with

uε(s, z) = B∗T ∗ϑ(c− s)P ∗χε(z) = B∗T ∗ϑ(c− s)P ∗ỹε,

has a fixed point.

Theorem 5.2.7. The operator Ψε has a fixed point in C1−ϑ([0, c];V ).

Proof. Define the following sets

E =
{
zε,n ∈ C1−ϑ([0, c];V )

∣∣Ψε,nzε,n = zε,n, n ≥ 1
}
,

E1−ϑ =
{
wε,n

∣∣wε,n(t) = t1−ϑzε,n(t), zε,n ∈ E
}

and

E1−ϑ(0) =

{
wε,n(0) = Tϑ(0)

(
y0 − T

(
1

n

)
℘(zε,n)

)}
.

Claim 1: E1−ϑ(0) is relatively compact in V .

For wε,n ∈ E1−ϑ, n ≥ 1, define

ŵε,n(t) = t1−ϑẑε,n(t) =

wε,n(t), t ∈ [b, c],

wε,n(b), t ∈ [0, b).

Clearly,
{
ŵε,n

∣∣n ≥ 1
}

is uniformly bounded and equicontinuous on [0, c] therefore

by Arzela theorem it has a subsequence which converges in C([0, c];V ). Without

loss of generality, one can suppose that ŵε,n → ŵε ∈ C([0, c];V ). Then ẑε,n →
ẑε ∈ C1−ϑ([0, c];V ), where ẑε(t) = tϑ−1ŵε(t). By hypothesis (H4), one has ℘(zε,n) =

℘(ẑε,n)→ ℘(ẑε).

Now,

‖wε,n(0)− Tϑ(0)(y0 − ℘(ẑε))‖

=

∥∥∥∥Tϑ(0)

(
y0 − T

(
1

n

)
℘(zε,n)

)
− Tϑ(0)(y0 − ℘(ẑε))

∥∥∥∥
≤ k̂T

∥∥∥∥T ( 1

n

)
℘(zε,n)− ℘(ẑε)

∥∥∥∥
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≤ k̂T

(∥∥∥∥T ( 1

n

)
℘(zε,n)− T

(
1

n

)
℘(ẑε)

∥∥∥∥+

∥∥∥∥T ( 1

n

)
℘(ẑε)− ℘(ẑε)

∥∥∥∥)
≤ k̂T

(
kT ‖℘(zε,n)− ℘(ẑε)‖+

∥∥∥∥T ( 1

n

)
℘(ẑε)− ℘(ẑε)

∥∥∥∥) .
From above inequality, one has ‖wε,n(0)−Tϑ(0)(y0−℘(ẑε))‖ → 0 as n→∞. Hence

E1−ϑ(0) is precompact in V .

Claim 2: For fixed t ∈ (0, c], the set E1−ϑ(t) =
{
wε,n(t) = t1−ϑzε,n(t), zε,n ∈ E

}
is

precompact in V .

Claim 3: At t = 0, E1−ϑ is equicontinuous.

For t ∈ (0, c), one has

‖wε,n(t)− wε,n(0)‖

≤
∥∥∥∥Tϑ(t)

(
y0 − T

(
1

n

)
℘(zε,n))

)
− Tϑ(0)

(
y0 − T

(
1

n

)
℘(zε,n))

)∥∥∥∥
+ k̂T t

1−ϑ sup ‖Buε,n(s, zε,n) + F (s, zε,n(s))‖
∫ t

0

(t− s)ϑ−1 ds

≤ ‖ (Tϑ(t)− Tϑ(0)) y0‖+

∥∥∥∥(Tϑ(t)− Tϑ(0))T

(
1

n

)
℘(zε,n)

∥∥∥∥
+
k̂T t

ϑ

(
k̂Tk

2
B‖P‖κε + ‖g‖C

)
.

From above inequality, one has ‖wε,n(t) − wε,n(0)‖ → 0 as t → 0. Hence E1−ϑ is

equicontinuous at t = 0.

Claim 4: E1−ϑ is equicontinuous on (0, c].

Take τ1, τ2 ∈ (0, c] with τ2 > τ1 and h ∈ (0, τ1). Then for wε,n ∈ E1−ϑ, one has

‖wε,n(τ2)− wε,n(τ1)‖

≤
∥∥∥∥(Tϑ(τ2)− Tϑ(τ1))

(
y0 − T

(
1

n

)
℘(zε,n)

)∥∥∥∥
+

∥∥∥∥∫ τ2

τ1

τ 1−ϑ
2 (τ2 − s)ϑ−1Tϑ(τ2 − s)

(
Buε,n(s, zε,n) + F (s, zε,n(s))

)
ds

∥∥∥∥
+

∥∥∥∥∥
∫ τ1

0

τ 1−ϑ
2 (τ2 − s)ϑ−1Tϑ(τ2 − s)

(
Buε,n(s, zε,n) + F (s, zε,n(s))

)
ds

−
∫ τ1

0

τ 1−ϑ
1 (τ1 − s)ϑ−1Tϑ(τ1 − s)

(
Buε,n(s, zε,n) + F (s, zε,n(s))

)
ds

∥∥∥∥∥
which gives

‖wε,n(τ2)− wε,n(τ1)‖
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≤
∥∥∥∥(Tϑ(τ2)− Tϑ(τ1))

(
y0 − T

(
1

n

)
℘(zε,n)

)∥∥∥∥
+

∥∥∥∥∫ τ2

τ1

τ 1−ϑ
2 (τ2 − s)ϑ−1Tϑ(τ2 − s)

(
Buε,n(s, zε,n) + F (s, zε,n(s))

)
ds

∥∥∥∥
+

∥∥∥∥∫ τ1

0

(
τ 1−ϑ

2 (τ2 − s)ϑ−1 − τ 1−ϑ
1 (τ1 − s)ϑ−1

)
Tϑ(τ2 − s)

(
Buε,n(s, zε,n)

+ F (s, zε,n(s))
)
ds

∥∥∥∥+

∥∥∥∥∫ τ1

0

τ 1−ϑ
1 (τ1 − s)ϑ−1(Tϑ(τ2 − s)− Tϑ(τ1 − s))·(

Buε,n(s, zε,n) + F (s, zε,n(s))
)
ds

∥∥∥∥.
By assumption (H3) and continuity of Tϑ(t), one has∥∥∥∥(Tϑ(τ2)− Tϑ(τ1))

(
y0 − T

(
1

n

)
℘(zε,n)

)∥∥∥∥→ 0 (5.2.11)

as τ2 − τ1 → 0 for all wε,n ∈ E1−ϑ.

Now, ∥∥∥∥∫ τ2

τ1

τ 1−ϑ
2 (τ2 − s)ϑ−1Tϑ(τ2 − s)

(
Buε,n(s, zε,n) + F (s, zε,n(s))

)
ds

∥∥∥∥
≤ k̂T

ϑ
τ 1−ϑ

2 (τ2 − τ1)ϑ
(
k̂Tk

2
B‖P‖κε + ‖g‖C

)
(5.2.12)

and ∥∥∥∥∫ τ1

0

(
τ 1−ϑ

2 (τ2 − s)ϑ−1 − τ 1−ϑ
1 (τ1 − s)ϑ−1

)
Tϑ(τ2 − s)

(
Buε,n(s, zε,n)

+ F (s, zε,n(s))
)
ds

∥∥∥∥
≤ k̂T

ϑ

∣∣(τ2 − τ1)− τ 1−ϑ
2 (τ2 − τ1)ϑ

∣∣ (k̂Tk2
B‖P‖κε + ‖g‖C

)
. (5.2.13)

For τ1 − h > 0, one has∥∥∥∥∫ τ1

0

τ 1−ϑ
1 (τ1 − s)ϑ−1(Tϑ(τ2 − s)− Tϑ(τ1 − s))

(
Buε,n(s, zε,n) + F (s, zε,n(s))

)
ds

∥∥∥∥
=

∥∥∥∥(∫ τ1−h

0

+

∫ τ1

τ1−h

)
τ 1−ϑ

1 (τ1 − s)ϑ−1(Tϑ(τ2 − s)− Tϑ(τ1 − s))
(
Buε,n(s, zε,n)

+ F (s, zε,n(s))
)
ds

∥∥∥∥
≤ τϑ1 − hϑ

ϑ
τ 1−ϑ

1

(
k̂Tk

2
B‖P‖κε + ‖g‖C

)
sup

s∈[0,τ1−h]

‖Tϑ(τ2 − s)− Tϑ(τ1 − s)‖
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+
2k̂T
ϑ
τ 1−ϑ

1 hϑ
(
k̂Tk

2
B‖P‖κε + ‖g‖C

)
. (5.2.14)

Since Tϑ(t) (t > 0) is continuous in operator norm therefore from inequalities

(5.2.11)-(5.2.14) with h → 0+, one can conclude that E1−ϑ is equicontinuous in

(0, c]. Hence E1−ϑ is relatively compact in C([0, c];V ) and one can suppose that

wε,n → wε ∈ C([0, c];V ) as n → ∞. It means that zε,n → zε ∈ C1−ϑ([0, c];V ) as

n → ∞, where zε(t) = tϑ−1wε(t). Letting n → ∞ in Ψε,nzε,n = zε,n and applying

Lebesgue dominated convergence theorem, one can get

wε(t) = Tϑ(y0 − ℘(zε)) + t1−ϑ
∫ t

0

(t− s)ϑ−1Tϑ(t− s)
(
Buε(s, zε) + F (s, zε(s))

)
ds

for 0 ≤ t ≤ c.

Thus

zε(t) = tϑ−1Tϑ(y0 − ℘(zε)) +

∫ t

0

(t− s)ϑ−1Tϑ(t− s)
(
Buε(s, zε) + F (s, zε(s))

)
ds

which is a mild solution of the original system (5.1.1). �

5.3 Controllability result

By previous theorem for given ε > 0 there is a zε ∈ C1−ϑ([0, c];V ) satisfying

zε(t) = tϑ−1Tϑ(y0 − ℘(zε)) +

∫ t

0

(t− s)ϑ−1Tϑ(t− s)
(
Buε(s, zε) + F (s, zε(s))

)
ds,

with uε(s, zε) = B∗T ∗ϑ(c− s)χε(zε).
Next, we show the partial controllability of the original system.

Theorem 5.3.1. The semilinear system (5.1.1) is partial approximately control-

lable.

Proof. Since ζε is strictly convex therefore ζε(y, zε) has a unique minimizer ỹε ∈ V
satisfying

ζε(ỹε; zε) = min
y∈V

ζε(y; zε).

Now, for any y ∈ V and r ∈ R one can write

ζε(ỹε; zε) ≤ ζε(ỹε + ry; zε),
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which means

ε‖ỹε‖ ≤
r2

2

∫ c

0

(c− s)ϑ−1‖B∗T ∗ϑ(c− s)P ∗y‖2 ds

+ r

∫ c

0

(c− s)ϑ−1〈B∗T ∗ϑ(c− s)P ∗ỹε, B∗T ∗ϑ(c− s)P ∗y〉ds

+ ε‖ỹε + ry‖ − r〈y, δ(zε)〉.

Dividing by r > 0 and taking r → 0+, one can get

〈y, δ(zε)〉 ≤
∫ c

0

(c− s)ϑ−1〈B∗T ∗ϑ(c− s)P ∗ỹε, B∗T ∗ϑ(c− s)P ∗y〉ds

+ εlimr→0+

‖ỹε + ry‖ − ‖ỹε‖
r

≤
∫ c

0

(c− s)ϑ−1〈B∗T ∗ϑ(c− s)P ∗ỹε, B∗T ∗ϑ(c− s)P ∗y〉ds+ ε‖y‖.

In similar fashion with r < 0, one can get

〈y, δ(zε)〉 ≥
∫ c

0

(c− s)ϑ−1〈B∗T ∗ϑ(c− s)P ∗ỹε, B∗T ∗ϑ(c− s)P ∗y〉ds− ε‖y‖.

Thus∣∣∣∣∫ c

0

(c− s)ϑ−1〈B∗T ∗ϑ(c− s)P ∗ỹε, B∗T ∗ϑ(c− s)P ∗y〉ds− 〈y, δ(zε)〉
∣∣∣∣ ≤ ε‖y‖. (5.3.1)

But for uε = B∗T ∗ϑ(c− s)P ∗ỹε, one can get∫ c

0

(c− s)ϑ−1〈B∗T ∗ϑ(c− s)P ∗ỹε, B∗T ∗ϑ(c− s)P ∗y〉ds− 〈y, δ(zε)〉

=

〈∫ c

0

(c− s)ϑ−1PTϑ(c− s)BB∗T ∗ϑ(c− s)P ∗ỹεds− δ(zε), y
〉

= 〈Pzε(c)− zc, y〉, (5.3.2)

where

δ(zε) = zc − cϑ−1Tϑ(c)(y0 − ℘(zε))

−
∫ c

0

(c− s)ϑ−1PTϑ(c− s)F (s, zε(s)) ds. (5.3.3)

From (5.3.1) and (5.3.3), one has

|〈Pzε(c)− zc, y〉| ≤ ε‖y‖ for any y ∈ V.

Hence

‖Pzε(c)− zc‖ ≤ ε.

This proves the theorem. �
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5.4 Example

Consider the following initial-boundary value problem with Riemann-Liouville deriva-

tive for x ∈ [0, π]:
D

2/3
t ẑ(t, x) = ∂2

∂x2 ẑ(t, x) +Bû(t, x) + F (t, ẑ(t, x)), t ∈ (0, c],

ẑ(t, 0) = ẑ(t, π) = 0, t ∈ (0, c],(
I

1/3
t ẑ(t, x)

)
t=0

= ŷ0(x)−
m∑
j=0

∫ π

0

ω(x, s)ẑ(τj, s) ds, τj ∈ (0, c),

(5.4.1)

where m ∈ N, 0 < τ0 < τ1 < · · · < τm < c and ω(·, ·) ∈ L2([0, π]× [0, π];R+
0 ).

Take V = L2[0, π] and the operator A : D(A) ⊂ V → V is defined as

Ay = y′′

with the domain

D(A) =
{
y ∈ V

∣∣ y and y′ are absolutely continuous, y′′ ∈ V, y(0) = y(π) = 0
}
.

Then A can be expressed as

Ay =
∞∑
`=1

(−`2)〈y, ξ`〉ξ`, y ∈ D(A)

and it generates a compact semigroup T (t) given by

T (t)y =
∞∑
`=1

e−`
2t〈y, ξ`〉ξ`, y ∈ V with ‖T (t)‖ ≤ e−1, kT = 1;

where ξ`(x) =
√

2
π

sin `x are eigen functions of A corresponding to the eigenvalues

λ` = −`2, ` = 1, 2, . . . and the set
{
ξ`
∣∣ ` = 1, 2, . . .

}
form an orthonormal basis for

V . Now, define the space

V ′ =

{
υ =

∞∑
`=2

a`ξ`(x)

∣∣∣∣∣
∞∑
`=2

a2
` <∞

}

with

‖υ‖ =

(
∞∑
`=2

a2
`

) 1
2

,
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and the operator B : V ′ → V as

Bυ = 2a2ξ1(x) +
∞∑
`=2

a`ξ`(x).

Then the system (5.4.1) takes the formD
2/3
t z(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (0, c],(
I

1/3
t z(t)

)
t=0

= y0 − ℘(z),
(5.4.2)

where z(t) = ẑ(t, ·), u(t) = û(t, ·), y0 = ŷ0(·) and ℘ : C1/3([0, c];V ) → V is defined

as

℘(z) =
m∑
j=0

∫ π

0

ω(·, s)z(τj, s) ds.

Clearly, (H5) is satisfied [18]. If (H2)-(H4) are satisfied, then the partial approximate

controllability of the system (5.4.2) follows by previous theorem.

5.5 Concluding remarks

In this chapter, the partial approximate controllability of nonlocal Riemann-Liouville

fractional systems with integral initial conditions in Hilbert spaces has been studied.

Here, we used the continuity of nonlinear function. For the nonlocal function ℘, the

conditions of Lipschitz continuity and compactness have also been dropped. For

the function ℘, the assumption (H4) means that ℘ does not depend on the value of

z for t ∈ [0, b). Applying these ideas and techniques, one can analyze the partial

controllability of fractional systems with impulses or control delay.



Chapter 6

Approximate Controllability of

Riemann-Liouville Fractional

Semilinear Systems of

Higher-Order

The objective of this chapter is to analyze the approximate controllability of Riemann-

Liouville fractional evolution equations of order ϑ ∈ (1, 2). First we deduce the

existence of solutions using fractional Riemann-Liouville family and fixed point ap-

proach. We make use of iterative and approximate technique to prove the control-

lability of the system. Finally, an illustrative example has been provided.

6.1 Introduction and preliminaries

Let V be a Banach space and Zϑ−1 =
{
z
∣∣ (c−t)ϑ−1z(t) ∈ Lp([0, c];V )} be a function

space with the norm ‖z‖Zϑ−1
=
(∫ c

0
‖(c− t)ϑ−1z(t)‖pV dt

) 1
p . Consider the fractional

order system 
Dϑ
t z(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (0, c],(
I2−ϑ
t z(t)

)
t=0

= y0 ∈ D(A),(
Dϑ−1
t z(t)

)
t=0

= y1 ∈ V,

(6.1.1)

91
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where p > 1
2−ϑ , 1 < ϑ < 2 and Dϑ

t stands for Riemann-Liouville derivative of order

ϑ. The state z ∈ Zϑ−1, the control u ∈ U , where U = Lp([0, c];V
′) with the norm

‖u‖U =
(∫ c

0
‖u(t)‖pV ′ dt

) 1
p and V ′ is another Banach space. A : D(A) ⊆ V → V is

densely defined and it generates a fractional cosine family Cϑ(t). B is the continuous

linear map from U to Zϑ−1. F : [0, c]× V → V is nonlinear.

Liu and Li [61] developed approximate controllability results for Riemann-Liouville

fractional equations of the form Dϑ
t z(t) = Az(t) +F (t, z(t)) + (Bu)(t), 0 < ϑ < 1,

with integral initial condition
(
I1−ϑ
t z(t)

)
t=0

= y0 in Banach spaces. Here, the theory

of Laplace transform together with probability density function were used to analyze

the existence of solution and controllability for the system. Ibrahim et al. [33] deter-

mined the existence and controllability results for the same system with the initial

condition limt→0+ Γ(ϑ)t1−ϑz(z) = y0 using the concept of ϑ-order resolvent rather

than C0-semigroup. Mahmudov and McKibben [64] determined the approximate

controllability of fractional systems with generalized Riemann-Liouville derivatives.

In this chapter, we extend the existence and controllability results for fractional

systems of order ϑ ∈ (1, 2) with Riemann-Liouville derivatives.

To define the mild solution of (6.1.1), we derive the next lemma.

Lemma 6.1.1. Let ϑ ∈ (1, 2) and g ∈ Lp([0, c];V ). If z(t) ∈ L1([0, c];V ), z2−ϑ(t) ∈
AC2([0, c];V ) and z is a solution of the system

Dϑ
t z(t) = Az(t) + g(t), t ∈ (0, c],(
I2−ϑ
t z(t)

)
t=0

= y0 ∈ D(A),(
Dϑ−1
t z(t)

)
t=0

= y1 ∈ V.

(6.1.2)

Then

z(t) = Ṙϑ(t)y0 +Rϑ(t)y1 +

∫ t

0

Rϑ(t− s)g(s) ds, 0 < t ≤ c.

Proof. From Lemma 2.2.1 of Chapter 2, one can obtain

z(t) =

(
Dϑ−1
t z(t)

)
t=0

Γ(ϑ)
tϑ−1 +

(
I2−ϑ
t z(t)

)
t=0

Γ(ϑ− 1)
tϑ−2 + Iϑt Az(t) + Iϑt g(t)

=
tϑ−1

Γ(ϑ)
y1 +

tϑ−2

Γ(ϑ− 1)
y0 + Iϑt Az(t) + Iϑt g(t).

Taking Laplace-transforms, one has

ž(ρ) =
1

ρϑ
y1 +

1

ρϑ−1
y0 +

1

ρϑ
(
Až(ρ) + ǧ(ρ)

)
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= (ρϑI − A)−1y1 + ρ(ρϑI − A)−1y0 + (ρϑI − A)−1ǧ(ρ).

If δ is the unit impulse function, then by inverting the Laplace transform on both

sides and using (2.2.13), one can obtain

z(t) = Rϑ(t)y1 + Ṙϑ(t)y0 +Rϑ(0)y0δ(t) +

∫ t

0

Rϑ(t− s)g(s) ds

= Ṙϑ(t)y0 +Rϑ(t)y1 +

∫ t

0

Rϑ(t− s)g(s) ds.

This completes the proof. �

Since Rϑ(t)y is continuously differentiable on (0,∞) for all y ∈ D(A) and

lim
t→0+

Rϑ(t)

tϑ−1
y =

y

Γ(ϑ)
for y ∈ V (see [2]).

Therefore

lim
t→0+

Ṙϑ(t)

tϑ−2
y =

y

Γ(ϑ− 1)
for y ∈ D(A),

which shows that Ṙϑ(t)y has singularity at t = 0 and there is a constant k′R > 0

such that t2−ϑ‖Ṙϑ(t)y‖ ≤ k′R‖y‖ for y ∈ D(A). For this reason, to define the mild

solution of (6.1.1), we consider the Banach space C2−ϑ([0, c];V ) =
{
z
∣∣ t2−ϑz(t) ∈

C([0, c];V )
}

with the norm ‖z‖C2−ϑ = supt∈[0,c]{t2−ϑ‖z(t)‖V }.

Definition 6.1.1. A function z ∈ C2−ϑ([0, c];V ) is said to be a mild solution of

(6.1.1) if it satisfies

z(t) = Ṙϑ(t)y0 +Rϑ(t)y1 +

∫ t

0

Rϑ(t− s)
(
Bu(s) + F (s, z(s))

)
ds.

Definition 6.1.2. Let z(t, u) be a mild solution of (6.1.1) associated with a control

u ∈ U . The set given by

Rc(F ) =
{
z(c, u) ∈ V

∣∣u ∈ U},
is known as the reachable set of (6.1.1). Moreover, if Rc(F ) is dense in V , then we

say that the system (6.1.1) is approximately controllable on [0, c].



Chapter 6. Approximate Controllability of Riemann-Liouville Fractional
Semilinear Systems of Higher-Order 94

6.2 Existence of mild solution

To derive the existence result we suppose the following conditions:

(H1) Rϑ(t) is the fractional Riemann-Liouville family associated with the frac-

tional cosine family Cϑ(t) and there exists a constant kR > 0 satisfying

‖Rϑ(t)‖ ≤ kR, 0 ≤ t ≤ c;

(H2) there exists a constant kF > 0 satisfying

‖F (t, y)− F (t, ỹ)‖ ≤ kF‖y − ỹ‖ ∀ y, ỹ ∈ V ;

(H3) there is a function h ∈ Lp([0, c];R+
0 ) and a constant k′F > 0 such that

‖F (t, y)‖ ≤ h(t) + k′F t
2−ϑ‖y‖

for a.e. t ∈ [0, c] and all y ∈ V.

Theorem 6.2.1. Under hypotheses (H1)-(H3), the semilinear system (6.1.1) has a

unique mild solution in C2−ϑ([0, c];V ) for each control u ∈ U .

Proof. Theorem will be proved if we show that the map Q : C2−ϑ([0, c];V ) →
C2−ϑ([0, c];V ) defined by

(Qz)(t) = Ṙϑ(t)y0 +Rϑ(t)y1 +

∫ t

0

Rϑ(t− s)
(
Bu(s) + F (s, z(s))

)
ds,

has a unique fixed point in C2−ϑ([0, c];V ).

By above assumptions it is easily seen that the map Q is well defined.

For any z, z̃ ∈ C2−ϑ([0, c];V ), one can obtain

t2−ϑ‖(Qz)(t)− (Qz̃)(t)‖ ≤ t2−ϑ
∫ t

0

∥∥Rϑ(t− s)
(
F (s, z(s))− F (s, z̃(s)

)∥∥ ds
≤ kFkRt

2−ϑ
∫ t

0

sϑ−2s2−ϑ‖z(s)− z̃(s)‖ ds

≤ kFkRt

(ϑ− 1)
‖z − z̃‖C2−ϑ .

Further,

t2−ϑ‖(Q2z)(t)− (Q2z̃)(t)‖ ≤ kFkRt
2−ϑ
∫ t

0

sϑ−2s2−ϑ‖(Qz)(s)− (Qz̃)(s)‖ ds
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≤ kFkRt
2−ϑ
∫ t

0

sϑ−2 kFkRs

(ϑ− 1)
‖z − z̃‖C2−ϑ ds

≤ (kFkRt)
2

(ϑ− 1)ϑ
‖z − z̃‖C2−ϑ .

By inductions, one can obtain

t2−ϑ‖(Qnz)(t)− (Qnz̃)(t)‖ ≤ (kFkRt)
n

(ϑ− 1)(ϑ) · · · (ϑ+ n− 2)
‖z − z̃‖C2−ϑ

≤ (kFkRc)
n

(ϑ− 1)((n− 1)!)
‖z − z̃‖C2−ϑ ,

which gives

‖Qnz −Qnz̃‖C2−ϑ ≤
(kFkRc)

n

(ϑ− 1)((n− 1)!)
‖z − z̃‖C2−ϑ .

But the exponential series exp(kFkRc) =
∑∞

`=1
(kF kRc)

`−1

(`−1)!
is convergent. Therefore

(kF kRc)
n

(n)!
< (ϑ−1)

kF kRc
for some positive integer n. Hence by generalized Banach contrac-

tion theorem, Q has a unique fixed point in C2−ϑ([0, c];V ). �

6.3 Controllability results

In the next lemma, we prove some properties of the space Zϑ−1.

Lemma 6.3.1. The space Zϑ−1 has the following properties:

(i) Zϑ−1 is a Banach space;

(ii) C([0, c];V ) is dense in Zϑ−1.

Proof. (i) Let {zn} be a Cauchy sequence in Zϑ−1. Then it follows that {yn} is a

Cauchy sequence in Lp([0, c];V ), where yn(t) = (c − t)ϑ−1z(t). But Lp([0, c];V ) is

complete, therefore yn → y ∈ Lp([0, c];V ). If we take z(t) = y(t)
(c−t)ϑ−1 , then z ∈ Zϑ−1

and zn → z.

(ii) First we show that Lp([0, c];V ) is dense in Zϑ−1. For this, take any z ∈ Zϑ−1.

Then for any c′ ∈ (0, c), z ∈ Lp([0, c′];V ). Define the following sequence:

zn(t) =

z(t), 0 ≤ t < cn
n+1

,

(c− t)ϑ−1z(t), cn
n+1
≤ t ≤ c; n = 1, 2, . . . .
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Clearly, zn ∈ Lp([0, c];V ).

Now,

‖z − zn‖pZϑ−1
=

∫ c

cn
n+1

∥∥(c− t)ϑ−1
(
z(t)− (c− t)ϑ−1z(t)

)∥∥p
V
dt

→ 0 as n→∞,

which shows that the space Lp([0, c];V ) is dense in Zϑ−1. Since C([0, c];V ) is dense

in Lp([0, c];V ), therefore for any given ε > 0 and a f ∈ Lp([0, c];V ), there is a

g ∈ C([0, c];V ) satisfying

‖f − g‖Lp < c1−ϑε.

Therefore

‖f − g‖Zϑ−1
=

(∫ c

0

∥∥(c− t)ϑ−1[f(t)− g(t)]
∥∥p
V
dt

) 1
p

≤ cϑ−1‖f − g‖Lp
< ε.

Hence C([0, c];V ) is dense in Zϑ−1. �

Remark 6.3.2. It is notable that, inclusion maps I1 : C([0, c];V ) → Zϑ−1 and

I2 : Lp([0, c];V ) → Zϑ−1 are continuous. But the density result makes it clear that

the norm ‖ · ‖Zϑ−1
is not equivalent to any of norms ‖ · ‖C and ‖ · ‖Lp.

We define the following operators:

The Nemytskii type operator F̃ : C2−ϑ([0, c];V )→ Zϑ−1 is defined as

(F̃ z)(t) = F (t, z(t)), z ∈ C2−ϑ([0, c];V )

and the linear operator ζ : Zϑ−1 → N is defined as

ζz =

∫ c

0

Rϑ(c− s)z(s) ds, z ∈ Zϑ−1.

We observe that

‖ζz‖V ≤ kR

∫ c

0

(c− t)1−ϑ(c− t)ϑ−1‖z(s)‖V ds

≤ kRc
2p−pϑ−1

p

(
p− 1

2p− pϑ− 1

) p−1
p

‖z‖Zϑ−1
, p >

1

2− ϑ
.

Hence the operator ζ is bounded.

The subsequent discussion needs the following hypotheses:
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(H4) there exists a constant k̂F > 0 satisfying

‖F (t, y)− F (t, ỹ)‖ ≤ k̂F t
2−ϑ‖y − ỹ‖ ∀ y, ỹ ∈ V ;

(H5) for each ε > 0 and φ ∈ Zϑ−1, there is a u ∈ U such that

‖ζφ− ζ(Bu)‖V ≤ ε

and

‖Bu‖Zϑ−1
≤ b‖φ‖Zϑ−1

,

where the constant b is independent of φ;

(H6) bkRk̂F c
3−ϑ
(

p−1
2p−pϑ−1

) p−1
p

exp
(
kRk̂F c

3−ϑ) < 1.

Remark 6.3.3. It is easily seen that (H4) is stronger condition than (H2). Therefore

by previous theorem, the system (6.1.1) has a unique mild solution in C2−ϑ([0, c];V )

for each given u ∈ U if conditions (H1), (H3) and (H4) are satisfied.

Lemma 6.3.4. Under hypotheses (H1), (H3) and (H4), any mild solutions of the

system (6.1.1) satisfy the following:

(i) ‖z(·, u)‖C2−ϑ ≤ σ1 exp
(
kRk

′
F c

3−ϑ), u ∈ U ;

(ii) ‖z1(·, u1)− z2(·, u2)‖C2−ϑ ≤ σ2 exp (kRk̂F c
3−ϑ)‖Bu1 −Bu2‖Zϑ−1

, u1, u2 ∈ U ;

where

σ1 = k′R‖y0‖+ kR

(
c2−ϑ‖y1‖+ c

4p−2pϑ−1
p

(
p− 1

2p− pϑ− 1

) p−1
p (
‖Bu‖Zϑ−1

+ ‖h‖Zϑ−1

))
and

σ2 = kRc
4p−2pϑ−1

p

(
p− 1

2p− pϑ− 1

) p−1
p

.

Proof. (i) Let z ∈ C1−ϑ([0, c];V ) be a mild solution of (6.1.1) associated with u ∈ U ,

then

z(t) = Ṙϑ(t)y0 +Rϑ(t)y1 +

∫ t

0

Rϑ(t− s)
(
Bu(s) + F (s, z(s))

)
ds.

We have

t2−ϑ‖z(t)‖V ≤ t2−ϑ‖Ṙϑ(t)y0‖+ t2−ϑ‖Rϑ(t)y1‖
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+ t2−ϑ
∫ t

0

∥∥Rϑ(t− s)
(
Bu(s) + F (s, z(s))

)∥∥ ds

≤ k′R‖y0‖+ kR

(
t2−ϑ‖y1‖+ t2−ϑ

∫ t

0

(t− s)1−ϑ(t− s)ϑ−1‖(Bu(s)‖ ds

+ t2−ϑ
∫ t

0

(
h(s) + k′F s

2−ϑ‖z(s)‖V
)
ds

)
≤ k′R‖y0‖+ kR

(
c2−ϑ‖y1‖+ c

4p−2pϑ−1
p

(
p− 1

2p− pϑ− 1

) p−1
p

×
(
‖Bu‖Zϑ−1

+ ‖h‖Zϑ−1

))
+ kRk

′
F c

2−ϑ
∫ t

0

s2−ϑ‖z(s)‖V ds

= σ1 + kRk
′
F c

2−ϑ
∫ t

0

s2−ϑ‖z(s)‖V ds.

In view of Gronwall’s inequality, one can obtain

t2−ϑ‖z(t)‖V ≤ σ1 exp
(
kRk

′
F c

3−ϑ).
Therefore

‖z(·, u)‖C2−ϑ ≤ σ1 exp
(
kRk

′
F c

3−ϑ).
(ii) Let z` ∈ C2−ϑ([0, c];V ) be the mild solution of (6.1.1) associated with u` ∈
U, ` = 1, 2. Then

z`(t) = Ṙϑ(t)y0 +Rϑ(t)y1 +

∫ t

0

Rϑ(t− s)
(
Bu`(s) + F (s, z`(s))

)
ds.

We have

t2−ϑ‖z1(t)− z2(t)‖V ≤ kRt
2−ϑ
(∫ t

0

‖Bu1(s)−Bu2(s)‖ ds

+

∫ t

0

‖F (s, z1(s))− F (s, z2(s))‖ ds
)

≤ kRt
2−ϑ
(∫ t

0

(c− s)1−ϑ(c− s)ϑ−1‖Bu1(s)−Bu2(s)‖ ds

+ k̂F

∫ t

0

s2−ϑ‖z1(s)− z2(s)‖ ds
)

≤ kRc
4p−2pϑ−1

p

(
p− 1

2p− pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Zϑ−1

+ kRk̂F c
2−ϑ
∫ t

0

s2−ϑ‖z1(s)− z2(s)‖ ds



99 6.3. Controllability results

= σ2‖Bu1 −Bu2‖Zϑ−1
+ kRk̂F c

2−ϑ
∫ t

0

s2−ϑ‖z1(s)− z2(s)‖ ds.

In view of Gronwall’s inequality, one can obtain

t2−ϑ‖z1(t)− z2(t)‖V ≤ σ2 exp
(
kRk̂F c

3−ϑ)‖Bu1 −Bu2‖Zϑ−1
.

Hence

‖z1(·, u1)− z2(·, u2)‖C2−ϑ ≤ σ2 exp
(
kRk̂F c

3−ϑ)‖Bu1 −Bu2‖Zϑ−1
.

This proves the lemma. �

Lemma 6.3.5. If Rϑ(t) is the fractional Riemann-Liouville family associated with

the fractional cosine family Cϑ(t) generated by A, then for any y ∈ D(A), there is a

℘ ∈ Zϑ−1 such that ζ℘ = y.

Proof. Since for any y ∈ V , limt→0+
Rϑ(t)
tϑ−1 y = y

Γ(ϑ)
. Therefore (c− t)1−ϑRϑ(c− t)y ∈

Lp([0, c];V ) and (c− t)2(1−ϑ)Rϑ(c− t)y ∈ Zϑ−1. Now, if we take

℘1(t) =
[Γ(ϑ)]2

c
(c− t)2(1−ϑ)Rϑ(c− t)y,

then

ζ℘1 =
(Γ(ϑ))2

c

∫ c

0

Rϑ(c− s)
(
(c− s)2(1−ϑ)Rϑ(c− s)y

)
ds

=
(Γ(ϑ))2

c

(
s(c− s)2(1−ϑ)R2

ϑ(c− s)y
)c

0

− (Γ(ϑ))2

c

∫ c

0

s
d

ds

(
(c− s)2(1−ϑ)R2

ϑ(c− s)y
)
ds

=
(Γ(ϑ))2

c
c

y

(Γ(ϑ))2
− (Γ(ϑ))2

c

∫ c

0

2s(c− s)1−ϑRϑ(c− s)

· d
ds

(
(c− s)(1−ϑ)Rϑ(c− s)y

)
ds

= y − ζ℘2

=⇒ ζ℘ = y,

where ℘2(s) = 2[Γ(ϑ)]2

c
s(c− s)(1−ϑ) d

ds

(
(c− s)1−ϑRϑ(c− s)y

)
and ℘ = ℘1 + ℘2. �

Theorem 6.3.6. Under hypotheses (H1) and (H3)-(H6), the semilinear system

(6.1.1) is approximately controllable.
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Proof. It is sufficient to show that D(A) ⊆ Rc(F ), i.e, for any given ε > 0 and

ŷ ∈ D(A), one can find a control uε ∈ U satisfying∥∥y∗ − ζ(F̃ (zε))− ζ(Buε)
∥∥
V
≤ ε,

where y∗ = ŷ − Ṙϑ(c)y0 −Rϑ(c)y1 and zε(t) = z(t, uε). Since y0 ∈ D(A), it can be

seen that Ṙϑ(c)y0 +Rϑ(c)y1 ∈ D(A). By previous lemma, there is a ℘ ∈ Zϑ−1 such

that ζ℘ = y∗.

Let ε > 0 be given and u1 ∈ U . Then by hypothesis (H5) , there is a u2 ∈ U
satisfying ∥∥y∗ − ζ(F̃ (z1))− ζ(Bu2)

∥∥
V
≤ ε

32
,

where z1(t) = z(t, u1). Denote z2(t) = z(t, u2), again by hypothesis (H5) there is a

ω2 ∈ U satisfying ∥∥ζ(F̃ (z2)− F̃ (z1))− ζ(Bω2)
∥∥
V
≤ ε

33

and

‖Bω2‖Zϑ−1
≤ b
∥∥F̃ (z2)− F̃ (z1)

∥∥
Zϑ−1

= b

(∫ c

0

(
(c− t)ϑ−1‖F (t, z2(t))− F (t, z1(t))‖V

)p
dt

) 1
p

≤ bk̂F c
ϑ−1

(∫ c

0

(
t2−ϑ‖z2(t)− z1(t)‖V

)p
dt

) 1
p

≤ bk̂F c
pϑ−p+1

p ‖z2 − z1‖C2−ϑ

≤ bk̂F c
pϑ−p+1

p σ2 exp (kRk̂F c
3−ϑ)‖Bu1 −Bu2‖Zϑ−1

= bkRk̂F c
3−ϑ
(

p− 1

2p− pϑ− 1

) p−1
p

exp
(
kRk̂F c

3−ϑ)‖Bu1 −Bu2‖Zϑ−1
.

Now, if we define

u3(t) = u2(t)− ω2(t), u3 ∈ U,

then ∥∥y∗ − ζ(F̃ (z2))− ζ(Bu3)
∥∥
V
≤
∥∥y∗ − ζ(F̃ (z1))− ζ(Bu2)

∥∥
V

+
∥∥ζ(F̃ (z2)− F̃ (z1))− ζ(Bω2)

∥∥
V

≤
(

1

32
+

1

33

)
ε.
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Applying inductions, one can obtain a sequence {un} in U such that∥∥y∗ − ζ(F̃ (zn))− ζ(Bun+1)
∥∥
V
≤
(

1

32
+

1

33
+ · · ·+ 1

3n+1

)
ε,

where zn(t) = z(t, un), and

‖Bun+1 −Bun‖Zϑ−1

≤ bkRk̂F c
3−ϑ
(

p− 1

2p− pϑ− 1

) p−1
p

exp
(
kRk̂F c

3−ϑ)‖Bun −Bun−1‖Zϑ−1
.

Above shows that
{
Bun

}
n∈N is a Cauchy sequence in Zϑ−1. Since Zϑ−1 is a Banach

space and ζ is continuous therefore the sequence
{
ζ(Bun)

}
n∈N is Cauchy in V . Thus

one can find a positive integer n0 satisfying∥∥ζ(Bun0+1)− ζ(Bun0)
∥∥
V
≤ ε

3
.

Now, ∥∥y∗ − ζ(F̃ (zn0))− ζ(Bun0)
∥∥
V
≤
∥∥y∗ − ζ(F̃ (zn0))− ζ(Bun0+1)

∥∥
V

+
∥∥ζ(Bun0+1)− ζ(Bun0)

∥∥
V

≤
(

1

32
+

1

33
+ · · ·+ 1

3n0+1

)
ε+

ε

3

< ε.

This proves the theorem. �

Corollary 6.3.7. Under hypotheses (H1), (H3) and (H4), the system (6.1.1) is

approximately controllable if Range(B) is dense in Zϑ−1.

Proof. Let ε > 0 be given. Since Range(B) is dense in Zϑ−1 therefore for any ε′ > 0

and a nonzero function g ∈ Zϑ−1, one can find a control u ∈ U satisfying

‖g −Bu‖Zϑ−1
≤ ε′‖g‖Zϑ−1

.

Now,

‖ζg − ζ(Bu)‖V ≤ kR

∫ c

0

(c− s)1−ϑ(c− s)ϑ−1‖g(s)−Bu(s)‖V ds

≤ kRc
2p−pϑ−1

p

(
p− 1

2p− pϑ− 1

) p−1
p

‖g −Bu‖Zϑ−1



Chapter 6. Approximate Controllability of Riemann-Liouville Fractional
Semilinear Systems of Higher-Order 102

≤ kRc
2p−pϑ−1

p

(
p− 1

2p− pϑ− 1

) p−1
p

ε′‖g‖Zϑ−1

≤ ε.

Thus

‖Bu‖Zϑ−1
≤ ‖Bu− g‖Zϑ−1

+ ‖g‖Zϑ−1

≤ ε′‖g‖Zϑ−1
+ ‖g‖Zϑ−1

= (ε′ + 1)‖g‖Zϑ−1
.

Hence the condition (H5) is satisfied. If we choose ε′ in such a way so that (H6) is

satisfied. Then by previous theorem, the system (6.1.1) is approximately control-

lable. �

6.4 Example

Consider the following initial-boundary value problem with Riemann-Liouville deriva-

tive for x ∈ [0, π]:

D
4/3
t ẑ(t, x) = ∂2

∂x2 ẑ(t, x) + û(t, x) + F (t, ẑ(t, x)), t ∈ (0, 1],(
I

2/3
t ẑ(t, x)

)
t=0

= ŷ0(x),(
D

1/3
t ẑ(t, x)

)
t=0

= ŷ1(x),

ẑ(t, 0) = 0 = ẑ(t, π), t ∈ (0, 1].

(6.4.1)

Take V = V ′ = L2[0, π] and A : D(A) ⊂ V → V is defined as

Ay = y′′

where

D(A) =

{
y ∈ V

∣∣∣∣ y, ∂y∂x are absolutely continuous,
∂2y

∂x2
∈ V

and y(0) = 0 = y(π)

}
.

Then, A can be expressed as

Ay =
∞∑
`=1

(−`2)〈y, ξ`〉ξ`, y ∈ D(A)
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and it generates a cosine family {C(t)}t∈R ⊂ B(V ) defined by

C(t)y =
∞∑
`=1

cos(`t)〈y, ξ`〉ξ`, y ∈ V,

where ξ`(x) =
√

2
π

sin `x are eigen functions of A for the eigenvalues λ` = −`2,

` = 1, 2, . . .; respectively and the orthonormal set {ξ1, ξ2, . . .} is a basis for V . The

sine family {S(t)}t∈R associated with {C(t)}t∈R is defined as

S(t)y =
∞∑
`=1

1

`
sin(`t)〈y, ξ`〉ξ`, y ∈ V.

As ϑ = 4
3
∈ (1, 2), in view of subordinate principle A also generates an exponentially

bounded strongly continuous fractional cosine family C4/3(t) satisfying C4/3(0) = I,

and

C4/3(t) =

∫ ∞
0

µt,2/3(s)C(s) ds, t > 0,

where

µt,2/3(s) = t−2/3ψ2/3(t−2/3s)

and

ψα(y) =
∞∑
`=0

(−1)`
y`

`!Γ(−α`+ 1− α)
, 0 < α < 1.

Clearly, the corresponding Riemann-Liouville family R4/3(t) satisfies (H1).

The abstract form of (6.4.1) is
D

4/3
t z(t) = Az(t) +Bu(t) + F (t, z(t)), t ∈ (0, 1],(
I

2/3
t z(t)

)
t=0

= y0,(
D

1/3
t z(t)

)
t=0

= y1,

(6.4.2)

where z(t) = ẑ(t, ·), u(t) = û(t, ·), y0 = ŷ0(·), y1 = ŷ1(·) and B is the identity map.

If we take

F (t, ẑ(t, x)) = (1 + t2) + k0t
2/3‖ẑ(t, ·)‖V ξ3(x),

then

‖F (t, z(t))− F (t, z̃(t))‖V ≤ |k0|t2/3‖z(t)− z̃(t)‖V

≤ |k0|‖z(t)− z̃(t)‖V .
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Thus the hypothesis (H2), (H3) and (H4) are satisfied with kF = k̂F = k′F = |k0|.
Since p = 2, therefore p > 1

2−4/3
. By (ii) of Lemma 6.3.1 and Theorem 6.3.7, we see

that (H5) is satisfied. Now, if we take k0 satisfying

|k0| ≤
1

1 +
√

3bkR exp(kR)
,

then

bkRk̂F c
3−ϑ
(

p− 1

2p− pϑ− 1

) p−1
p

exp
(
kRk̂F c

3−ϑ) =
√

3bkFkR exp(kFkR)

≤

√
3bkR exp

(
kR

1+
√

3bkR exp(kR)

)
1 +
√

3bkR exp(kR)

<

√
3bkR exp(kR)

1 +
√

3bkR exp(kR)

< 1.

Above shows that (H6) is satisfied. Hence the approximately controllability of the

system (6.4.2) follows from Theorem 6.3.6 if y0 ∈ D(A).

6.5 Concluding remarks

In this chapter, approximate controllability result for semilinear fractional systems

of order ϑ ∈ (1, 2) with integral initial conditions has been presented by assuming

that the nonlinear term is Lipschitz continuous. Using fixed point approach, the

results of existence and uniqueness have been derived. Here, we introduced a bigger

state space Zϑ−1 containing Lp([0, c];V ) as a dense subspace. Controllability of the

system is shown using sequence method.



Chapter 7

Approximate Controllability of

Riemann-Liouville Fractional

Semilinear Integrodifferential

Systems with Damping

This chapter is concerned with Riemann-Liouville fractional semilinear integrodiffer-

ential systems with damping in Banach spaces. First we prove the existence of mild

solutions of the system using fixed point principle. Then we establish new sufficient

conditions for the approximate controllability of the system by means of iterative

and approximate technique. Finally, an example is provided for the illustration of

the obtained results.

7.1 Introduction and preliminaries

Let V be a Banach space and Z = Lp([0, c];V ) be the function space. Consider the

fractional order system
Dϑ
t z(t) + λDϕ

t z(t)

= Az(t) +Bu(t) + F

(
t, z(t),

∫ t

0

Θ(t, s, z(s)) ds

)
, t ∈ (0, c],(

I1−ϑ
t z(t)

)
t=0

= y0 ∈ V,

(7.1.1)

105
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where p > 1
ϑ
, 0 < ϕ < ϑ ≤ 1 and λ is a real number. Dϑ

t and Dϕ
t stand for

Riemann-Liouville derivative of order ϑ and ϕ respectively. The state z ∈ Z and

the control u ∈ U , where U = Lp([0, c];V ). A : D(A) ⊆ V → V is densely defined

and it generates a Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent Rϑ,ϕ,λ(t). B is

the linear map from U to Z. F : [0, c] × V × V → V and Θ : Ω × V → V are

nonlinear, where Ω =
{

(t, s)
∣∣ 0 ≤ s ≤ t ≤ c

}
.

The existence of damping is inevitable in real material. For this reason, in the

field of applications, anomalous diffusion equations with damping became an active

area of research. The tuned mass dampers provide an effective and relatively simple

way of reducing excessive vibrations of chimneys, towers and buildings. For example

the damped differential equation of integer order corresponding to a simple linear

oscillator system,

z̈(t) + 2ακż(t) + κ2z(t) = ψ(t), (7.1.2)

where z(t) is the displacement of structure, ψ(t) is the external force which is sup-

posed to be white noise, α is the damping ratio and κ is the natural frequency of

the structure. However, to describe a damped system with a viscoelastic damping

elements, fractional order damping gives a better model. Therefore, it is reasonable

to introduce the fractional derivatives of orders ϑ and ϕ to the displacement. Thus,

the equation (7.1.2) can be converted into the form

Dϑ
t z(t) + 2ακDϕ

t z(t) + κ2z(t) = ψ(t). (7.1.3)

If ϑ = ϕ = 1, (7.1.3) is a linear restoring model. In last few years, the dynamics

and vibration analysis of damped systems of fractional order have been of great in-

terest for researchers [12; 17; 19; 27]. In [89], Zarraga et al. analyzed the dynamical

behavior of fractional damped systems for mechanical engineering applications. In

[68], Mei and Peng obtained the existence results for the abstract fractional Cauchy

problem with damping using fractional (ϑ, ϕ, λ) resolvent Rϑ,ϕ,λ(t). In [78], Sheng

and Jiang derived the existence of solution for semilinear fractional systems with

damping.

In many fields such as thermoelasticity and nuclear reactor dynamics, we need

to reflect the memory effect of the systems in model. If differential equations are
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used in the modeling of such systems which embraces functions at any given space

and time, the impact of previous results is neglected. Therefore, in order to incor-

porate the effect of memory in such systems, an integral part is introduced in the

basic differential equation, which leads to integrodifferential equation. To model

dynamical systems, integrodifferential equations are utilized in many problems of

applied sciences. The integrodifferential equations have poured many applications

in aerospace systems, chemical kinetics, biological models, financial mathematics,

industrial mathematics, heat conduction, control theory, thermo elastic contact, vis-

coelastic mechanics and fluid dynamics etc. (see [32; 38] and references therein).

In integrodifferential models of many real life problems, the integral part may not

appear linearly. Therefore, it is important to consider an integrodifferential system

in which the integral term is introduced in nonlinear function.

The existence of mild solutions and controllability for different types of nonlin-

ear and linear systems by applying various techniques have been discussed by many

researchers. Among them, Liu and Li [61] proved the approximate controllability

of Riemann-Liouville fractional semilinear systems in infinite dimensional Banach

spaces by using C0-semigroup and Lipschitz nonlinearity. In [92], Zhu et al., proved

the approximate controllability of Riemann-Liouville fractional semilinear systems

using itegral contractor. Using fractional resovent, Ji and Yang [38] obtained the

solution to fractional semilinear integrodifferential systems with Riemann-Liouville

derivative without Lipschitz nonlinearity. In finite dimensional spaces, Balachan-

dran et al. [7] analyzed the controllability of fractional damped dynamical systems.

He et al. [30] obtained necessary and sufficient conditions for the controllability of

dynamical systems of fractional order with damping and control delay. However,

to the best of our knowledge, there is no result on the controllability of Riemann-

Liouville fractional integrodifferential systems with damping in infinite dimensional

spaces and this fact is the motivation of this chapter.

To define the mild solution of (7.1.1) in terms of Riemann-Liouville fractional

(ϑ, ϕ, λ) resolvent Rϑ,ϕ,λ (see Section 2.2), we consider the damped system

Dϑ
t z(t) + λDϕ

t z(t) = Az(t) + ψ(t), t ∈ (0, c],(
I1−ϑ
t z(t)

)
t=0

= y0 ∈ V,
(7.1.4)
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where 0 < ϕ < ϑ ≤ 1 and ψ ∈ Lp([0, c];V ).

Definition 7.1.1. A function z ∈ C1−ϑ([0, c];V ) is said to be a mild solution of

(7.1.4) if it satisfies

z(t) = tϑ−1Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
y0 + AEϑ−ϕ,ϑ,−λt z(t) + Eϑ−ϕ,ϑ,−λt ψ(t),

where

Eϑ,ϕ(x) =
∞∑
n=0

xn

Γ(ϑn+ ϕ)

and

Eϑ,ϕ,λt f(t) =

∫ t

0

(t− s)ϕ−1Eϑ,ϕ
(
λ(t− s)ϑ

)
f(s) ds, t > 0.

Theorem 7.1.1. A function z ∈ C1−ϑ([0, c];V ) is a mild solution of (7.1.4) if and

only if it satisfies

z(t) = Rϑ,ϕ,λ(t)y0 +

∫ t

0

Rϑ,ϕ,λ(t− s)ψ(s) ds. (7.1.5)

Proof. Let ξϑ,ϕ,λ(t) = tϑ−1Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
. By Lemma 2.2.3, one has

ξϑ,ϕ,λ(t) = Rϑ,ϕ,λ(t)− (Aξϑ,ϕ,λ ∗ Rϑ,ϕ,λ) (t)

Now,

ξϑ,ϕ,λ ∗ z = (Rϑ,ϕ,λ − Aξϑ,ϕ,λ ∗ Rϑ,ϕ,λ) ∗ z

= Rϑ,ϕ,λ ∗ z −Rϑ,ϕ,λ ∗ (Aξϑ,ϕ,λ ∗ z)

= Rϑ,ϕ,λ ∗ (z − Aξϑ,ϕ,λ ∗ z)

= Rϑ,ϕ,λ ∗ (ξϑ,ϕ,λy0 + ξϑ,ϕ,λ ∗ ψ)

= ξϑ,ϕ,λ ∗ (Rϑ,ϕ,λy0 +Rϑ,ϕ,λ ∗ ψ) ,

which implies

z(t) = Rϑ,ϕ,λ(t)y0 +

∫ t

0

Rϑ,ϕ,λ(t− s)ψ(s) ds.

Conversely, suppose z satisfies (7.1.5). By Lemma 2.2.3 z is well defined on (0, c].

One can write

(
s1−ϑRϑ,ϕ,λ(s)− Eϑ−ϕ,ϑ

(
−λsϑ−ϕ

))
Eϑ−ϕ,ϑ,−λt z(t)
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=
(
s1−ϑRϑ,ϕ,λ(s)− Eϑ−ϕ,ϑ

(
−λsϑ−ϕ

))
× Eϑ−ϕ,ϑ,−λt

(
Rϑ,ϕ,λ(t)y0 +

∫ t

0

Rϑ,ϕ,λ(t− s)ψ(s) ds

)
=
(
s1−ϑRϑ,ϕ,λ(s)− Eϑ−ϕ,ϑ

(
−λsϑ−ϕ

))
×
(
Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)y0 + Eϑ−ϕ,ϑ,−λt ((Rϑ,ϕ,λ ∗ ψ) (t))

)
= s1−ϑRϑ,ϕ,λ(s)Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)y0 − Eϑ−ϕ,ϑ

(
−λsϑ−ϕ

)
Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)y0

+ s1−ϑRϑ,ϕ,λ(s)
(
Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ ∗ ψ

)
(t)

− Eϑ−ϕ,ϑ
(
−λsϑ−ϕ

) (
Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ ∗ ψ

)
(t)

= s1−ϑ
(
Rϑ,ϕ,λ(s)Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)y0 − sϑ−1Eϑ−ϕ,ϑ

(
−λsϑ−ϕ

)
× Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)y0

)
+ s1−ϑ

(
Rϑ,ϕ,λ(s)Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)

− sϑ−1Eϑ−ϕ,ϑ
(
−λsϑ−ϕ

)
Eϑ−ϕ,ϑ,−λt Rϑ,ϕ,λ(t)

)
∗ ψ(t)

= s1−ϑ
(
Eϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)Rϑ,ϕ,λ(t)y0 − tϑ−1Eϑ−ϕ,ϑ

(
−λtϑ−ϕ

)
× Eϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)y0

)
+ s1−ϑ

(
Eϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)Rϑ,ϕ,λ(t)

− tϑ−1Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
Eϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)

)
∗ ψ(t)

= s1−ϑEϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)
(
Rϑ,ϕ,λ(t)y0 − tϑ−1Eϑ−ϕ,ϑ

(
−λtϑ−ϕ

)
y0

+ (Rϑ,ϕ,λ ∗ ψ) (t)− Eϑ−ϕ,ϑ,−λt ψ(t)
)

= s1−ϑEϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)
(
z(t)− tϑ−1Eϑ−ϕ,ϑ

(
−λtϑ−ϕ

)
y0 − Eϑ−ϕ,ϑ,−λt ψ(t)

)
.

Therefore

AEϑ−ϕ,ϑ,−λt z(t)

= Γ(2ϑ) lim
s→0+

(
s1−ϑRϑ,ϕ,λ(s)− Eϑ−ϕ,ϑ

(
−λsϑ−ϕ

))
Eϑ−ϕ,ϑ,−λt z(t)

sϑ

= Γ(2ϑ) lim
s→0+

s1−2ϑEϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)
(
z(t)− tϑ−1Eϑ−ϕ,ϑ

(
−λtϑ−ϕ

)
y0

− Eϑ−ϕ,ϑ,−λt ψ(t)
)
. (7.1.6)

Now, for any y ∈ N∥∥Γ(2ϑ)s1−2ϑEϑ−ϕ,ϑ,−λs Rϑ,ϕ,λ(s)y − y
∥∥

=

∥∥∥∥Γ(2ϑ)

∫ s

0

s1−2ϑ(s− %)ϑ−1Eϑ−ϕ,ϑ(−λ(s− %)ϑ−ϕ)Rϑ,ϕ,λ(%)y d%− y
∥∥∥∥
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=

∥∥∥∥Γ(2ϑ)

∫ 1

0

s1−ϑ(1− %)ϑ−1Eϑ−ϕ,ϑ(−λ(s− s%)ϑ−ϕ)Rϑ,ϕ,λ(s%)y d%− y
∥∥∥∥

=

∥∥∥∥Γ(2ϑ)

Γ(ϑ)

∫ 1

0

%ϑ−1(1− %)ϑ−1Eϑ−ϕ,ϑ(−λ(s− s%)ϑ−ϕ)

× Γ(ϑ)(s%)1−ϑRϑ,ϕ,λ(s%)y d%− Γ(2ϑ)

(Γ(ϑ))2

∫ 1

0

%ϑ−1(1− %)ϑ−1y d%

∥∥∥∥
≤ sup

%∈(0,1]

∥∥Γ(ϑ)Eϑ−ϕ,ϑ(−λ(s− s%)ϑ−ϕ)Γ(ϑ)(s%)1−ϑRϑ,ϕ,λ(s%)y − y
∥∥ (7.1.7)

Since Eϑ−ϕ,ϑ(0) = 1/Γ(ϑ) therefore from (7.1.6) and (7.1.7), we have

AEϑ−ϕ,ϑ,−λt z(t) = z(t)− tϑ−1Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
y0 − Eϑ−ϕ,ϑ,−λt ψ(t).

This implies

z(t) = tϑ−1Eϑ−ϕ,ϑ
(
−λtϑ−ϕ

)
y0 + AEϑ−ϕ,ϑ,−λt z(t) + Eϑ−ϕ,ϑ,−λt ψ(t).

This proves the theorem. �

In view of above theorem, we give the following definition:

Definition 7.1.2. A function z ∈ C1−ϑ([0, c];V ) is said to be a mild solution of

(7.1.1) if it satisfies

z(t) = Rϑ,ϕ,λ(t)y0 +

∫ t

0

Rϑ,ϕ,λ(t− s)
(
Bu(s) + F

(
s, z(s),

∫ s

0

Θ(s, %, z(%)) d%

))
ds.

Definition 7.1.3. Let z(t, u) be a mild solution of (7.1.1) associated with a control

u ∈ U . The set given by

Rc(F ) =
{
z(c, u) ∈ V

∣∣u ∈ U}
is known as the reachable set of (7.1.1). Moreover, if Rc(F ) is dense in V , then we

say that the system (7.1.1) is approximately controllable on [0, c].

7.2 Existence of mild solution

To derive the existence result we suppose the following conditions:

(H1) Rϑ,ϕ,λ(t) is differentiable and there exists a constant kR > 0 satisfying

‖t1−ϑRϑ,ϕ,λ(t)‖ ≤ kR, 0 < t ≤ c;
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(H2) there is a constant kF > 0 satisfying

‖F (t, y1, ỹ1)− F (t, y2, ỹ2)‖ ≤ kF (‖y1 − y2‖+ ‖ỹ1 − ỹ2‖)

for all y`, ỹ` ∈ V, ` = 1, 2;

(H3) there is a function h ∈ Lp([0, c];R+
0 ), and a constant k′F > 0 satisfying

‖F (t, y, ỹ)‖ ≤ h(t) + k′F t
1−ϑ (‖y‖+ ‖ỹ‖)

for a.e. t ∈ [0, c] and all y, ỹ ∈ V ;

(H4) there is a constant kΘ > 0 satisfying

‖Θ(t, s, y1)−Θ(t, s, y2)‖ ≤ kΘ‖y1 − y2‖ ∀ y` ∈ V, ` = 1, 2;

(H5) there is a function g ∈ Lp([0, c];R+
0 ) satisfying

‖Θ(t, s, y)‖ ≤ g(s)

for a.e. (t, s) ∈ Ω and all y ∈ V.

Theorem 7.2.1. Under hypotheses (H1)-(H5), the semilinear system (7.1.1) has a

unique mild solution in C1−ϑ([0, c];V ) for each control u ∈ U .

Proof. Theorem will be proved if we show that the map Q : C1−ϑ([0, c];V ) →
C1−ϑ([0, c];V ) defined by

(Qz)(t) = Rϑ,ϕ,λ(t)y0 +

∫ t

0

Rϑ,ϕ,λ(t− s)Bu(s) ds

+

∫ t

0

Rϑ,ϕ,λ(t− s)F
(
s, z(s),

∫ s

0

Θ(s, %, z(%)) d%

)
ds,

has a unique fixed point in C1−ϑ([0, c];V ).

By above assumptions, it is easily seen that the map Q is well defined.

Now, for any z, z̃ ∈ C1−ϑ([0, c];V ), one can obtain

t1−ϑ‖(Qz)(t)− (Qz̃)(t)‖

≤ t1−ϑ
∫ t

0

∥∥∥∥Rϑ,ϕ,λ(t− s)
(
F

(
s, z(s),

∫ s

0

Θ(s, %, z(%)) d%

)
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− F
(
s, z̃(s),

∫ s

0

Θ(s, %, z̃(%)) d%

))∥∥∥∥ ds
≤ kRkF t

1−ϑ
∫ t

0

(t− s)ϑ−1

(
‖z(s)− z̃(s)‖

+

∫ s

0

‖Θ(s, %, z(%))−Θ(s, %, z̃(%))‖ d%
)
ds

≤ kRkF t
1−ϑ
∫ t

0

(t− s)ϑ−1

(
sϑ−1s1−ϑ‖z(s)− z̃(s)‖

+ kΘ

∫ s

0

%ϑ−1%1−ϑ‖z(%)− z̃(%)‖ d%
)
ds

≤ kRkF t
1−ϑ
∫ t

0

(t− s)ϑ−1

(
sϑ−1 + kΘ

sϑ

ϑ

)
ds ‖z − z̃‖C1−ϑ

= kRkF t
ϑ

(
(Γ(ϑ))2

Γ(2ϑ)
+
kΘΓ(ϑ)Γ(ϑ+ 1)t

ϑΓ(2ϑ+ 1)

)
‖z − z̃‖C1−ϑ

≤ kRkF t
ϑ (Γ(ϑ))2

Γ(2ϑ)

(
1 +

kΘc

2ϑ

)
‖z − z̃‖C1−ϑ .

Further,

t1−ϑ‖(Q2z)(t)− (Q2z̃)(t)‖

≤ kRkF t
1−ϑ
∫ t

0

(t− s)ϑ−1

(
sϑ−1s1−ϑ‖(Qz)(s)− (Qz̃)(s)‖

+ kΘ

∫ s

0

%ϑ−1%1−ϑ‖(Qz)(%)− (Qz̃)(%)‖ d%
)
ds

≤ (kRkF )2 (Γ(ϑ))2

Γ(2ϑ)

(
1 +

kΘc

2ϑ

)
t1−ϑ

×
∫ t

0

(t− s)ϑ−1

(
s2ϑ−1 + kΘ

s2ϑ

2ϑ

)
ds · ‖z − z̃‖C1−ϑ

= (kRkF )2 (Γ(ϑ))2

Γ(2ϑ)

(
1 +

kΘc

2ϑ

)
t2ϑ

×
(

Γ(ϑ)Γ(2ϑ)

Γ(3ϑ)
+
kΘΓ(ϑ)Γ(2ϑ+ 1)t

2ϑΓ(3ϑ+ 1)

)
‖z − z̃‖C1−ϑ

≤ (kRkF t
ϑ)2 (Γ(ϑ))3

Γ(3ϑ)

(
1 +

kΘc

2ϑ

)(
1 +

kΘc

3ϑ

)
‖z − z̃‖C1−ϑ .

By induction, one can obtain

t1−ϑ‖(Qnz)(t)− (Qnz̃)(t)‖

≤ (kRkF t
ϑ)n

(Γ(ϑ))n+1

Γ((n+ 1)ϑ)

(
n∏
`=1

(
1 +

kΘc

(`+ 1)ϑ

))
‖z − z̃‖C1−ϑ
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≤
Γ(ϑ)

(
kRkF t

ϑΓ(ϑ)
(
1 + kΘc

2ϑ

))n
Γ((n+ 1)ϑ)

‖z − z̃‖C1−ϑ

≤
Γ(ϑ)

(
kRkF c

ϑΓ(ϑ)
(
1 + kΘc

2ϑ

))n
Γ((n+ 1)ϑ)

‖z − z̃‖C1−ϑ .

Therefore

‖Qnz −Qnz̃‖C1−ϑ ≤
Γ(ϑ)

(
kRkF c

ϑΓ(ϑ)
(
1 + kΘc

2ϑ

))n
Γ((n+ 1)ϑ)

‖z − z̃‖C1−ϑ .

But the Mittag-Leffler series

Eϑ,ϑ

(
kRkF c

ϑΓ(ϑ)

(
1 +

kΘc

2ϑ

))
=
∞∑
`=0

(
kRkF c

ϑΓ(ϑ)
(
1 + kΘc

2ϑ

))`
Γ((`+ 1)ϑ)

is convergent. Therefore

(
kRkF c

ϑΓ(ϑ)
(

1+
kΘc

2ϑ

))n
Γ((n+1)ϑ)

< 1
Γ(ϑ)

for n large enough. Hence by

generalized Banach contraction theorem, Q has a unique fixed point in the space

C1−ϑ([0, c];V ). �

Remark 7.2.2. Here, we assumed the Lipschitz continuity of both the nonlinear

functions Θ and F . To prove the existence results for semilinear systems, the Lip-

schitz continuity of nonlinear functions is broadly used by researchers. For example,

Liu and Li [61] proved the existence of solutions for Riemann-Liouville fractional

systems using Lipschitz continuity of nonlinear function. Recently, Li et al. [57]

proved the existence of solutions for Caputo fractional systems with damping by as-

suming Lipschitz continuity.

The conditions (H3) and (H5) guarantee that the map Q is well defined, that is

Qz ∈ C1−ϑ([0, c];V ) whenever z ∈ C1−ϑ([0, c];V ).

7.3 Controllability results

We define the following operators:

The Nemytskii type operator F̃ : C1−ϑ([0, c];V )→ Z is defined as

(F̃ z)(t) = F

(
t, z(t),

∫ t

0

Θ(t, s, z(s)) ds

)
, z ∈ C1−ϑ([0, c];V )

and the linear operator ζ : Z → V is defined as

ζz =

∫ c

0

Rϑ,ϕ,λ(c− s)z(s) ds, z ∈ Z.

We observe that the operator ζ is continuous.
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Remark 7.3.1. In view of Definition 7.1.3, the reachable set Rc(F ) is dense in V

if and only if for each ε > 0 and a ŷ ∈ V , one can find a control uε ∈ U such that

the mild solution zε associated with the control uε satisfies

‖ŷ −Rϑ,ϕ,λ(c)y0 − ζ(F̃ (zε))− ζ(Buε)‖ ≤ ε.

The subsequent discussion needs the following hypotheses:

(H6) there exists a constant k̂F > 0 satisfying

‖F (t, y1, ỹ1)− F (t, y2, ỹ2)‖ ≤ k̂F t
1−ϑ (‖y1 − y2‖+ ‖ỹ1 − ỹ2‖)

for all y`, ỹ` ∈ V, ` = 1, 2;

(H7) there exists a constant k̂Θ > 0 satisfying

‖Θ(t, s, y1)−Θ(t, s, y2)‖ ≤ k̂Θs
1−ϑ‖y1 − y2‖ ∀ y1, y2 ∈ V ;

(H8) kRk̂F k̂Θc
3−ϑϑ−1Eϑ

(
kRk̂F cΓ(ϑ)

)
< 1;

(H9) for each ε > 0 and φ ∈ Z, there is a u ∈ U such that

‖ζφ− ζ(Bu)‖V ≤ ε

and

‖Bu‖Z ≤ b‖φ‖Z ,

where the constant b is independent of φ;

(H10)
kRk̂F bc(1+k̂Θc

2−ϑ)( p−1
pϑ−1)

p−1
p Eϑ(kRk̂F cΓ(ϑ))

1−kRk̂F k̂Θc3−ϑϑ−1Eϑ(kRk̂F cΓ(ϑ))
< 1.

Remark 7.3.2. It is easily seen that (H6) and (H7) are stronger conditions than

(H2) and (H4), respectively. Therefore by previous theorem, the system (7.1.1) ad-

mits a unique mild solution in C1−ϑ([0, c];V ) for each given u ∈ U if conditions

(H1), (H3) and (H5)-(H7) are satisfied.

Lemma 7.3.3. Under hypotheses (H1), (H3) and (H5)-(H8), any mild solutions of

the system (7.1.1) satisfy the following:

(i) ‖z(·, u)‖C1−ϑ ≤ ρ1Eϑ
(
kRk

′
F cΓ(ϑ)

)
, u ∈ U ;
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(ii) ‖z1(·, u1)− z2(·, u2)‖C1−ϑ ≤ ρ2Eϑ
(
kRk̂F cΓ(ϑ)

)
‖Bu1 −Bu2‖Z , u1, u2 ∈ U ;

(7.3.1)

where

ρ1 = kR

(
‖z0‖+

(
p− 1

pϑ− 1

) p−1
p

(‖Bu‖Z + ‖h‖Lp)c
p−1
p +

k′F c
3−ϑ− 1

p

ϑ
‖g‖Lp

)
and

ρ2 =
kRc

p−1
p

(
p−1
pϑ−1

) p−1
p

1− kRk̂F k̂Θc3−ϑϑ−1Eϑ
(
kRk̂F cΓ(ϑ)

) .
Proof. (i) Let z ∈ C1−ϑ([0, c];V ) be a mild solution of (7.1.1) associated with u ∈ U ,

then

z(t) = Rϑ,ϕ,λ(t)y0 +

∫ t

0

Rϑ,ϕ,λ(t− s)
(
Bu(s) + F

(
s, z(s),

∫ s

0

Θ(s, %, z(%)) d%

))
ds.

We have

t1−ϑ‖z(t)‖V ≤ t1−ϑ‖Rϑ,ϕ,λ(t)y0‖+ t1−ϑ
∫ t

0

‖Rϑ,ϕ,λ(t− s)‖

·
∥∥∥∥Bu(s) + F

(
s, z(s),

∫ s

0

Θ(s, %, z(%)) d%

)∥∥∥∥ ds
≤ kR

(
‖y0‖+ t1−ϑ

∫ t

0

(t− s)ϑ−1‖Bu(s)‖ ds+ t1−ϑ
∫ t

0

(t− s)ϑ−1

·
(
h(s) + k′F s

1−ϑ‖z(s)‖V + k′F s
1−ϑ
∫ s

0

g(%) d%

)
ds

)
≤ kR

(
‖y0‖+

(
p− 1

pϑ− 1

) p−1
p (
‖Bu‖Z + ‖h‖Lp

)
c
p−1
p

+ k′F c
3−2ϑ− 1

p

∫ t

0

(t− s)ϑ−1 ds‖g‖Lp

+ k′F c
1−ϑ
∫ t

0

(t− s)ϑ−1s1−ϑ‖z(s)‖V ds

)

≤ ρ1 + kRk
′
F c

1−ϑ
∫ t

0

(t− s)ϑ−1s1−ϑ‖z(s)‖V ds.

From Theorem 2.3.6, we obtain

t1−ϑ‖z(t)‖V ≤ ρ1Eϑ
(
kRk

′
F cΓ(ϑ)

)
Therefore

‖z(·, u)‖C1−ϑ ≤ ρ1Eϑ
(
kRk

′
F cΓ(ϑ)

)
.
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(ii) Let z` ∈ C1−ϑ([0, c];V ) be the mild solution of (7.1.1) associated with u` ∈
U, ` = 1, 2. Then We have

t1−ϑ‖z1(t)− z2(t)‖V

≤ kRt
1−ϑ
(∫ t

0

(t− s)ϑ−1‖Bu1(s)−Bu2(s)‖ ds+

∫ t

0

(t− s)ϑ−1

·
∥∥∥∥F(s, z1(s),

∫ s

0

Θ(s, %, z1(%)) d%

)
− F

(
s, z2(s),

∫ s

0

Θ(s, %, z2(%)) d%

)∥∥∥∥ ds)
≤ kRc

p−1
p

(
p− 1

pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Z + kRk̂F c
1−ϑ
∫ t

0

(t− s)ϑ−1s1−ϑ

·
(
‖z1(s)− z2(s)‖+ k̂Θ

∫ s

0

%1−ϑ‖z1(%)− z2(%)‖ d%
)
ds

≤ kRc
p−1
p

(
p− 1

pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Z + kRk̂F c
1−ϑ
(∫ t

0

(t− s)ϑ−1s1−ϑ

· ‖z1(s)− z2(s)‖ ds+ k̂Θ

∫ t

0

(t− s)ϑ−1s1−ϑ
∫ s

0

d% ds‖z1 − z2‖C1−ϑ

)
≤ kRc

p−1
p

(
p− 1

pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Z + kRk̂F c
1−ϑ
(∫ t

0

(t− s)ϑ−1s1−ϑ

· ‖z1(s)− z2(s)‖ ds+ k̂Θ

∫ t

0

(t− s)ϑ−1c2−ϑ ds‖z1 − z2‖C1−ϑ

)
≤ kRc

p−1
p

(
p− 1

pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Z + kRk̂F k̂Θc
3−ϑϑ−1‖z1 − z2‖C1−ϑ

+ kRk̂F c
1−ϑ
∫ t

0

(t− s)ϑ−1s1−ϑ‖z1(s)− z2(s)‖ ds

≤ kRc
p−1
p

(
p− 1

pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Z + kRk̂F k̂Θc
3−ϑϑ−1‖z1 − z2‖C1−ϑ

+ kRk̂F c
1−ϑ
∫ t

0

(t− s)ϑ−1s1−ϑ‖z1(s)− z2(s)‖ ds.

From Theorem 2.3.6, we obtain

t1−ϑ‖z1(t)− z2(t)‖N ≤

(
kRc

p−1
p

(
p− 1

pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Z

+ kRk̂F k̂Θc
3−ϑϑ−1‖z1 − z2‖C1−ϑ

)
Eϑ
(
kRk̂F cΓ(ϑ)

)
.

Therefore

‖z1 − z2‖C1−ϑ ≤

(
kRc

p−1
p

(
p− 1

pϑ− 1

) p−1
p

‖Bu1 −Bu2‖Z
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+ kRk̂F k̂Θc
3−ϑϑ−1‖z1 − z2‖C1−ϑ

)
Eϑ
(
kRk̂F cΓ(ϑ)

)
,

which gives

‖z1(·, u1)− z2(·, u2)‖C1−ϑ ≤
kRc

p−1
p

(
p−1
pϑ−1

) p−1
p
Eϑ
(
kRk̂F cΓ(ϑ)

)
1− kRk̂F k̂Θc3−ϑϑ−1Eϑ

(
kRk̂F cΓ(ϑ)

)‖Bu1 −Bu2‖Z

= ρ2Eϑ
(
kRk̂F cΓ(ϑ)

)
‖Bu1 −Bu2‖Z .

This completes the proof. �

Theorem 7.3.4. Under hypotheses (H1), (H3) and (H5)-(H10), the semilinear sys-

tem (7.1.1) is approximately controllable.

Proof. It is sufficient to show that D(A) ⊆ Rc(F ), i.e, for any given ε > 0 and

ŷ ∈ D(A), one can find a control uε ∈ U satisfying∥∥y∗ − ζ(F̃ (zε))− ζ(Buε)
∥∥
V
≤ ε,

where y∗ = ŷ −Rϑ,ϕ,λ(c)y0 and zε(t) = z(t, uε).

It can be seen that there is a ℘ ∈ Z such that ζ℘ = y∗, if we take

℘(t) =
(Γ(ϑ))2 (c− t)1−ϑ

c

(
(c− t)1−ϑRϑ,ϕ,λ(c− t)y∗

+ 2t
d

dt

(
(c− t)1−ϑRϑ,ϕ,λ(c− t)y∗

))
.

Let ε > 0 be given and u1 ∈ U . Then by (H9), there is a u2 ∈ U satisfying∥∥y∗ − ζ(F̃ (z1))− ζ(Bu2)
∥∥
V
≤ ε

32
,

where z1(t) = z(t, u1). Denote z2(t) = z(t, u2), again by (H9) there is a ω2 ∈ U

satisfying ∥∥ζ(F̃ (z2)− F̃ (z1))− ζ(Bω2)
∥∥
V
≤ ε

33

and

‖Bω2‖Z ≤ b
∥∥F̃ (z2)− F̃ (z1)

∥∥
Z

= b

(∫ c

0

∥∥F̃ (z2)(t)− F̃ (z1)(t)
∥∥p
V
dt

) 1
p



Chapter 7. Approximate Controllability of Riemann-Liouville Fractional
Semilinear Integrodifferential Systems with Damping 118

= b

(∫ c

0

∥∥∥∥F (t, z2(t),

∫ t

0

Θ(t, %, z2(%)) d%

)

− F
(
t, z1(t),

∫ t

0

Θ(t, %, z1(%)) d%

)∥∥∥∥p
V

dt

) 1
p

≤ bk̂F

(∫ c

0

(
t1−ϑ‖z2(t)− z1(t)‖

+ k̂Θt
1−ϑ
∫ t

0

%1−ϑ‖z2(%)− z1(%)‖ d%
)p

dt

) 1
p

≤ bk̂F

(∫ c

0

(
1 + k̂Θc

2−ϑ
)p

dt

) 1
p

‖z2 − z1‖C1−ϑ

= bk̂F c
1
p

(
1 + k̂Θc

2−ϑ
)
‖z2 − z1‖C1−ϑ

≤ bk̂F c
1
p

(
1 + k̂Θc

2−ϑ
)
ρ2Eϑ

(
kRk̂F cΓ(ϑ)

)
‖Bu1 −Bu2‖Z

=
kRk̂F bc

(
1 + k̂Θc

2−ϑ
)(

p−1
pϑ−1

) p−1
p
Eϑ
(
kRk̂F cΓ(ϑ)

)
1− kRk̂F k̂Θc3−ϑϑ−1Eϑ

(
kRk̂F cΓ(ϑ)

) ‖Bu1 −Bu2‖Z .

Now, if we define

u3(t) = u2(t)− ω2(t), u3 ∈ U,

then ∥∥y∗ − ζ(F̃ (z2))− ζ(Bu3)
∥∥
V
≤
∥∥y∗ − ζ(F̃ (z1))− ζ(Bu2)

∥∥
V

+
∥∥ζ(F̃ (z2)− F̃ (z1))− ζ(Bω2)

∥∥
V

≤
(

1

32
+

1

33

)
ε.

Applying induction, one can obtain a sequence {un} in U such that

∥∥y∗ − ζ(F̃ (zn))− ζ(Bun+1)
∥∥
V
≤
(

1

32
+

1

33
+ · · ·+ 1

3n+1

)
ε,

where zn(t) = z(t, un), and

‖Bun+1 −Bun‖Z

≤
kRk̂F bc

(
1 + k̂Θc

2−ϑ
)(

p−1
pϑ−1

) p−1
p
Eϑ
(
kRk̂F cΓ(ϑ)

)
1− kRk̂F k̂Θc3−ϑϑ−1Eϑ

(
kRk̂F cΓ(ϑ)

) ‖Bun −Bun−1‖Z ,
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which shows that
{
Bun

}
n∈N is a Cauchy sequence in Z. Since Z is a Banach space

and ζ is continuous therefore the sequence
{
ζ(Bun)

}
n∈N is Cauchy in V . Thus, one

can find a positive integer n0 satisfying∥∥ζ(Bun0+1)− ζ(Bun0)
∥∥
V
≤ ε

3
.

Now, ∥∥y∗ − ζ(F̃ (zn0))− ζ(Bun0)
∥∥
V
≤
∥∥y∗ − ζ(F̃ (zn0))− ζ(Bun0+1)

∥∥
V

+
∥∥ζ(Bun0+1)− ζ(Bun0)

∥∥
V

≤
(

1

32
+

1

33
+ · · ·+ 1

3n0+1

)
ε+

ε

3

< ε.

This proves the theorem. �

Remark 7.3.5. If kRk̂F k̂Θc
3−ϑϑ−1Eϑ

(
kRk̂F cΓ(ϑ)

)
≥ 1, then the inequality (7.3.1)

of Lemma 7.3.3, which is used in the proof of above theorem, doesn’t make sense.

Corollary 7.3.6. Under hypotheses (H1) and (H3)-(H7), the system (7.1.1) is ap-

proximately controllable if Range(B) is dense in Z.

Proof. Let ε > 0 be given. Since Range(B) is dense in Z therefore for any ε′ > 0

and a nonzero function g ∈ Z, one can find a control u ∈ U satisfying

‖g −Bu‖Z ≤ ε′‖g‖Z .

Now,

‖ζg − ζ(Bu)‖V ≤ kR

∫ c

0

(c− s)ϑ−1‖g(s)−Bu(s)‖V ds

≤ kRc
ϑ− 1

p

(
p− 1

pϑ− 1

) p−1
p

‖g −Bu‖Z

≤ kRc
ϑ− 1

p

(
p− 1

pϑ− 1

) p−1
p

ε′‖g‖Z

≤ ε.

Thus

‖Bu‖Z ≤ ‖Bu− g‖Z + ‖g‖Z



Chapter 7. Approximate Controllability of Riemann-Liouville Fractional
Semilinear Integrodifferential Systems with Damping 120

≤ ε′‖g‖Z + ‖g‖Z

= (ε′ + 1)‖g‖Z .

Hence the condition (H9) is satisfied, if we choose ε′ in such a way that (H8) and

(H10) are satisfied. Then by previous theorem, the system (7.1.1) is approximately

controllable. �

7.4 Example

Consider the following initial-boundary value problem with Riemann-Liouville deriva-

tive for x ∈ [0, π]:

Dϑ
t z(t, x) + λDϕ

t z(t, x)

= κ2 ∂2

∂x2 z(t, x) + u(t, x) + F

(
t, z(t, x),

∫ t

0

Θ(t, s, z(s, x)) ds

)
for t ∈ (0, 1],(

I1−ϑ
t z(t, x)

)
t=0

= y0(x),

z(t, 0) = 0 = z(t, 1) for t ∈ (0, 1].

(7.4.1)

Take V = V ′ = L2[0, 1], B = I, the identity map and A : D(A) ⊂ V → V is

defined as

Ay = κ2y′′,

where

D(A) =
{
y ∈ W 2,2(0, 1)

∣∣ y(0) = 0 = y(1)
}
.

Then, A generates a Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent Rϑ,ϕ,λ(t) given

by

(Rϑ,ϕ,λ(t)y)(x) =
∞∑
n=1

(
∞∑
`=0

(
−κ2n2π2

)`
tϑ(`+1)−1Eϑ−ϕ,ϑ(`+1)

(
−λtϑ−ϕ

))
κn sin(nπx),

where ξn(x) = sin(nπx) are eigen functions of A for the eigenvalues λn = −κ2n2π2,

n = 1, 2, . . . and y(x) =
∑∞

n=1 κn sin(nπx) (see [68]). It is easily seen that (H1) is

satisfied.

If we take

z̃(t, x) =

∫ t

0

Θ(t, s, z(s, x)) ds
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and

F (t, z(t, x), z̃(t, x)) = F

(
t, z(t, x),

∫ t

0

Θ(t, s, z(s, x)) ds

)
= (1 + t2) + k0t

a0

(
z(t, x) +

∫ t

0

Θ(t, s, z(s, x)) ds

)
,

where

Θ(t, s, z(s, x)) = k1

(
t2 + s2

)
sa1 cos(ts) sin(z(s, x)).

and a` ≥ 1 − ϑ, ` = 0, 1. Then (H2), (H3) and (H6) are satisfied with kF = k′F =

k̂F = |k0|, because

‖F (t, y1, ỹ1)− F (t, y2, ỹ2)‖ ≤ |k0|ta0(‖y1 − y2‖+ ‖ỹ1 − ỹ2‖)

≤ |k0|ta0+ϑ−1t1−ϑ(‖y1 − y2‖+ ‖ỹ1 − ỹ2‖)

≤ |k0|t1−ϑ(‖y1 − y2‖+ ‖ỹ1 − ỹ2‖)

≤ |k0|(‖y1 − y2‖+ ‖ỹ1 − ỹ2‖)

and

‖F (t, y, ỹ)‖ ≤ (1 + t2) + |k0|ta0+ϑ−1t1−ϑ(‖y‖+ ‖ỹ‖)

≤ (1 + t2) + |k0|t1−ϑ(‖y‖+ ‖ỹ‖).

Also, the conditions (H4) and (H7) are satisfied with kΘ = k̂Θ = 2|k1|, because

‖Θ(t, s, y1)−Θ(t, s, y2)‖ ≤ |k1|(t2 + s2)sa1| cos(ts)|‖ sin(y1)− sin(y2)‖

≤ |k1|(t2 + s2)s1−ϑ‖y1 − y2‖

≤ 2|k1|s1−ϑ(‖y1 − y2‖)

≤ 2|k1|‖y1 − y2‖.

Now,

‖Θ(t, s, z(s, x))‖ ≤ |k1|
(
1 + s2

)
sa1

= g(s).

Hence (H5) is satisfied. If we choose the constants k0 and k1 sufficiently closed to

zero so that (H8) and (H10) are satisfied, then approximate controllability of the

system (7.4.1) follows from Theorem 7.3.4.
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7.5 Concluding remarks

In this chapter, existence and approximate controllability results for semilinear frac-

tional integrodifferential systems with damping have been presented. To prove our

results, the concept of Riemann-Liouville fractional (ϑ, ϕ, λ) resolvent has been used.

Using fixed point approach, the results of existence and uniqueness have been de-

rived. For this, we derived the definition of mild solution in terms of Riemann-

Liouville fractional (ϑ, ϕ, λ) resolvent Rϑ,ϕ,λ. Controllability result has been derived

using sequence method. For this, the Lamma 7.3.3 has been proved. The study

of such systems covers a broad area of applications. However, from physical view-

point, it is more appropriate to study the higher order fractional damped systems.

For this reason, we are committed to analyzing the existence and controllability for

Riemann-Liouville fractional integrodifferential systems of the form
Dϑ
t z(t) + λDϕ

t z(t) = Az(t) +Bu(t) + F

(
t, z(t),

∫ t

0

Θ(t, s, z(s)) ds

)
, t ∈ (0, c],(

I2−ϑ
t z(t)

)
t=0

= y0 ∈ V,(
Dϑ−1
t z(t)

)
t=0

= y1 ∈ V,

with 0 ≤ ϕ ≤ 1 < ϑ ≤ 2, in future.



Chapter 8

Conclusion and Future Directions

In this thesis, the approximate controllability of semilinear control systems of var-

ious types with local and nonlocal conditions have been investigated. Particularly,

the retarded systems of integer order with fixed point delays in control, and the

fractional systems of order ϑ ∈ (0, 1] and order ϑ ∈ (1, 2] have been considered.

Main assumptions made on nonlinear operator are continuity, locally Lipschitz con-

tinuity and Lipschitz continuity. Various inequality conditions have been obtained

on the systems constants. For obtaining the main results, we have used fixed point

theory, sequential approach along with Gronwall’s inequality. Moreover, a weaker

notion of approximate controllability, namely partial approximate controllability for

fractional systems has been discussed.

Some possible directions, in which the obtained results can be extended, are

described below:

• Utilizing the techniques and ideas of Chapter 3 and Chapter 4, one can deter-

mine the controllability of nonautonomous systems or systems with non in-

stantaneous impulses assuming the continuity of the nonlinear operator rather

than assuming the locally Lipschitz continuity.

• The results of Chapter 5 can be extended for the partial controllability of frac-

tional systems of order ϑ ∈ (1, 2] with Riemann-Liouville or Caputo deriva-

tives. Also, these results can be extended for the retarded systems or systems

with control delays.

123
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• The results of Chapter 6 and Chapter 7 can be extended for the controllability

of nonlocal fractional systems. Also, one can drop the assumption of Lipschitz

continuity and investigate the controllability of the same systems considered

in these chapters. If nonlinear operator is not Lipschitz, then even existence

of mild solution is the matter of investigation. Further, one can investigate

the partial controllabiliy of the semilinear damped systems.

• There is not much research work on trajectory controllability, null control-

lability, constrained controllability and complete controllability for Riemann-

Liouville fractional systems. Thus, there is a lot of scope in this area of

research. Also, this research work can be extended for higher order (bigger

than two) systems.
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