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ABSTRACT 

 

A quantum computer performs computations on the principles of quantum 

mechanics that enables faster speed and higher security than classical computers, and 

also has the ability to process large amount of information due to its inherent ability 

of parallel processing. The important building blocks of the quantum computer are 

qubit, quantum register, quantum logic, quantum network, quantum reversibility, 

quantum teleportation, quantum data compression, quantum cryptography, universal 

quantum computing, and quantum algorithm. Quantum computers rely on basic 

quantum principles of superposition and entanglement. The time evolution of an 

arbitrary quantum state is computationally more powerful than evolution of a digital 

logic state.  Theoretical quantum computing based on the rotation of the qubits has 

proved that there is a possibility of quantum devices to address the complex 

computing problems. However, presently, there is no computer in existence that can 

completely work on the principles of quantum mechanics. Therefore, the enormous 

advantages of quantum computing in comparison to its classical counterpart have 

forced researchers to explore the possibilities of physical realization with the help of 

emerging technologies. The basic requirements of Divincenzo criteria have to be 

fulfilled for the successful implementation of the quantum computing. This criteria 

suggest that the system realizing the quantum computing should have well 

characterized qubit; proper initial state of all qubits; enough isolation to the 

qubit(s); precise qubit state manipulation and facilitation of qubits interaction should 

be in time less than the qubit decoherence time; and the physical system should 

facilitate the measurement of each qubit to obtain the output of the quantum 

computation. 

Spintronics is one of the most efficient ways to physically realize quantum 

computing due to strong analogy of electron spin to the qubit. Spin-torque based on-

chip qubit architecture paves the way for the research in spintronics based physical 

realization of quantum computer. However, the qubit decoherence is a critical issue in 

spin qubit architecture from the complex computing point of view. This issue can be 

dealt by two ways in this thesis; firstly, by utilizing the materials with spin qubits 

having very high spin coherence, and secondly, by reducing and optimizing the 

number of elementary quantum operations with the help of elementary quantum gate 
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library.  This thesis presents both ways in detail with demonstrations of reduction in 

number of elementary operations by elementary quantum gate library. A computing 

platform is realized using reduced elementary gates such as CNOT, SWAP, Toffoli, 

and Fredkin wherein the reduction in number of elementary operations is 36.36%, 

36.36%, 35.44%, 35.64%, respectively. The optimization of the reduced number of 

operations for the quantum circuits representing the Boolean logics AND, OR, XOR, 

Hall Adder (HA), and Full Adder (FA), is also achieved with a reduction after 

optimization of 37.97%, 41.58%, 45.45%, 40%, and 40.55%, respectively.  A 

quantum Fourier transform that is an integral part of the Shor's algorithm for the 

number factorization is also reduced and optimized. The reduction of 35.71% in 

number of elementary operations for the quantum Fourier transform is also 

demonstrated. Various other complex computing operations can be realized using the 

spin torque based qubit architecture. This thesis lays strong foundation for researchers 

aspiring to work in the area of quantum computing using spintronics platform and 

also discusses the associated challenges.  
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Chapter 1 

Introduction 

1.1     Introduction 

The present day computing systems perfectly obeys the laws of classical 

physics. Quantum computing would provide the computing power required to solve 

problems that are currently intractable for classical computers—at least in a 

timeframe that’s practical. At atomic levels, the quantum dynamics which is 

analogous to the classical dynamics, fails to follow the laws of classical physics. The 

laws of quantum mechanics are followed by the system in terms of motion, energy, 

and momentum. The obstacles in classical computing at the atomic level pave the way 

to quantum dynamics based quantum computing (QC) [1].  

Qubit is a basic building block of the quantum computation. Qubit represents a 

two level quantum system which is manipulated and measured in a controlled way. A 

quantum computer is composed of N qubits, and its wave function resides in a 2^N-

dimensional complex Hilbert space. A particular quantum state of a specific isolated 

system is mathematically represented by its wave function. The quantum computation 

is performed through the input qubit state preparation, desired unitary transformation 

acting on the prepared state, and output state measurement. The time evolution of 

quantum wave function is unitary and governed by Schrodinger’s equation provided 

that its interaction with the environment is negligible. Schrodinger’s equation 

represents the description of matter in terms of wavelike properties of particles in a 

field. The probability density of a particle represents the solution of the Schrodinger’s 

equation. The measured output states are probabilistic and basic postulates of 

quantum mechanics set the probabilities of different possible outputs. A quantum 

algorithm is required to be repeated until the probability of the measured output 

becomes 1 so as to reach the desired output. Therefore, the quantum algorithms are 

analogous to probabilistic classical algorithms. The superposition and entanglement 

properties of quantum dynamics make quantum computers more powerful than their 

classical counterparts and solve the certain computational problems like integer 

factorization more efficiently than a classical computer.  
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The successful implementation of quantum computer needs some basic 

requirements to be fulfilled. Scalability of the device performing quantum 

computation is an important aspect to construct quantum computers of practical use. 

A challenging issue in most of physical setups is that it should be possible to enlarge 

the device so as to contain many qubits, and meet all the requirements. These are 

known as the Divincenzo criteria [2] and can be summarized in the following:  

The Divincenzo criteria are required to be fulfilled for the successful 

implementation of quantum computer. The quantum computers need to be scalable for 

its practical use. The criteria are as follows:   

1. Storage of quantum information (qubit) – The information is encoded in a 

scalable system till the computation is performed. 

2. Initial state preparation-The state of all qubits should be set to zero before 

computation begins.    

3. Isolation- The isolation of the system from external environment is needed to 

reduce the decoherence effects. Decoherence is defined as the loss of 

information from a quantum system into the environment.  

4. Quantum gate implementation- For the realization of quantum gate, the 

individual qubit state isolation, manipulation, and controlled interactions are 

required. Moreover, the gate operation time should be less than the 

decoherence time. 

5. Read out- Scalable physical system should have measured the final state of 

qubits at the end of the computation to obtain the output. 
 

Conventional electronics employ electron’s charge to store, process, and 

communicate with the help of analog and digital information. However, conventional 

electronics has not utilized the spin of electron for the information processing. The 

spin of an electron is observed as tiny magnetic moment attached to the electron 

(Figure 1.1). Elementary particles, composite particles, and atomic nuclei also carry 

spin in the form of angular momentum. The quantum mechanical spin of an electron 

is a pseudo-vector quantity.  A pseudo-vector is a quantity that transforms like 

a vector under a proper rotation, but in three dimensions. It gains an additional sign 

flip under an improper rotation such as reflection. By placing a single electron in a 

magnetic field, we can make its spin polarization bi-stable since only polarizations 

parallel and anti-parallel to the field are stable (or meta-stable). These two 

https://en.wiktionary.org/wiki/decoherence
https://en.wikipedia.org/wiki/Vector_(geometry)
https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Improper_rotation
https://en.wikipedia.org/wiki/Reflection_(mathematics)
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polarizations could represent logic bits 0 and 1 [3, 4, 5]. In solid state devices, the 

study of electronic charge, electron spin along with its magnetic moment forms 

spintronics.  The basic concept of spintronics is the manipulation of spin-polarized 

currents in contrast to mainstream electronics in which the spin of the electron is not 

considered. Also spintronics deals with the interaction of static spins [6].  The spin 

degree of freedom provides new effects, new capabilities, and new functionalities to 

the electron [4, 7, 8]. 

N

S

S

N

Magnetic 

Moment of electron 

 

Figure 1.1 Electron spin and associated magnetic moment. 

There is gradual shift from semiconductor devices based industry to spin 

devices based industry due to the non-volatility of spin-electronic devices. The non-

volatility helps to retain the data, high speed, and compatible with fabrication 

processes. These will certainly help to meet sensing, storage, and computing needs of 

the information technology [9].  

1.2     Background and Motivation 

Feynman proposed a quantum mechanics based computing framework in 1982 

[10]. He observed that a quantum dynamics based computing system does 

computation tasks faster than classical mechanics based systems. Many physicists laid 

the QC foundation by proposing mathematical models like Turing machine [11] and 

quantum logic gates [12]. QC machine is a hypothetical example of Turing machine. 

Turing machine works on the Church-Turing principle [13]. 

1.2.1 Turing Machine 

A Turing machine is a hypothetical machine first proposed by the 

mathematician Alan Turing in 1936 [14] (Figure 1.2). Any computing algorithm can 
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be simulated by a Turing machine, irrespective of the complexity of the algorithm. 

There are four basic elements of a Turing machine. 

1. Program 

2. Finite state control  

3. Magnetic tape 

4. Read-write tape head 

1

1

0

1

Magnetic Tape

Finite State 
Control 

Program
R/W Head

 

Figure 1.2 Turing machine. 

The tape is infinite-long which acts like a memory in a typical computer, or 

any other form of data storage. The blocks on the tape are usually blank at the start 

and can be written with symbols. The Turing machine processes symbols ‘0’, ‘1’, and 

‘blank’. Head of the Turing machine is positioned over one of the squares on the tape. 

It reads the symbol, edits the symbol by writing or erasing a symbol, and shifts the 

tape left or right by one square so that the machine can read and edit the symbol on a 

neighboring square according to the given program.  

1.2.2 Principles of Quantum Mechanics 

Quantum Mechanics [15] is a framework for the maturity of physical theories. 

Quantum mechanics is a foundation for the actual physical theories such as quantum 

electrodynamics. It states four mathematical postulates that a physical theory must 

pacify. The four postulates of quantum mechanics imply the state of a closed system, 

evolution of closed system, the interaction of the system with external systems, and 

state of a composite system in terms of its constituent parts. These postulates provide 

a general background to explain the behavior of a physical system.  

 First postulate 

Any physical system is a complex inner product space (or Hilbert space) 

known as the state space of the system. The system is completely described by its 

state vector, which is a unit vector in its state space. A system whose state space can 



 

5 

 

be described by the two dimensional complex vector space 2, can serve as an 

implementation of a qubit, wherein states of system represent the state of the qubit. 

Some systems may require an infinite dimensional state space. 

 Second  postulate 

The time evolution of a closed quantum system is described by the 

Schrodinger equation 

                                                        


H
dt

d
i                                                  (1.1) 

                               

where,  is Planck’s constant, and H is fixed Hermitian operator known as the 

Hamiltonian of the system. The transition of quantum system state from a state   at 

time t1 to a new state '  at time t2 is through the unitary transformation 

                                                                    U'                                                                    (1.2) 

where, U is a unitary  operator 






 




)(
exp),( 12

21

ttiH
ttU  which preserves the 

norm. Unitary operator  U   satisfies IUUUU  †† , where †U  is the adjoint of 

complex conjugate of U, and I  is the identity operator. A two-qubit gate is a unitary 

operator on  4.  Identity operator and Pauli gates are unitary operators (1.3).  

          

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







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x , 







 


0

0

i

i
y   , 












10

01
z                               (1.3) 

  Third postulate 

For a quantum system having set of M possible outputs, the state measurement 

is described by a collection of measurement operators. The measurement operators are 

linear and act on the state space of the system. Let, a quantum system is in state   

before the measurement, the probability p(m) of a outcome m(Pm :m M) is   

 mm PPmp
†

)(  . The state of the system after measurement is




mm

m

PP

P
†

. 

The measurement operators satisfy the completeness equation, i.e. sum of the 

probabilities of all outcomes is 1.  

 

 

https://en.wikipedia.org/wiki/Hermitian_adjoint
https://en.wikipedia.org/wiki/Identity_(mathematics)
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 Fourth postulate 

The state space of a composite physical system is the tensor product of the 

state space of the individual components of physical systems. If one component is in 

state 1 , and a second component is in state 2 , then the state of the combined 

system is 21   . A state of a combined system is separable if it can be expressed 

as the tensor product of states of the components, otherwise the state is entangled.  

1.3     Basic Concepts of Quantum Computing  

1.3.1 Qubits 

Qubit is analogous to bit in Boolean computing. It represents the fundamental 

unit of QC and quantum information. In a two dimensional vector space, a qubit is 

represented by a vector. Photon polarization state, two energy levels of electron 

around the atom, spin of an electron, etc., are examples of the qubit. In quantum 

mechanics, Bloch sphere (Figure 1.3) is a geometrical representation of the pure 

state space of a two-level quantum mechanical system (qubit).  

 

Figure 1.3 Bloch sphere representing qubit state.  

The pure states represented by the points on the surface of the Bloch sphere, 

however, mixed states are represented by the interior points of the sphere. Moreover, 

n-qubit quantum system can be represented on Bloch sphere. The spin eigenstates [1 

0]T  ( 0 ), and    [0 1]T ( 1 ) of an electron form the basis unit vectors in the two 

dimensional spin ½ linear vector space. Qubits exist in a superposition or a linear 

combination of states. If a measurement is done on a qubit with a spin state 10 ba   

(superposition state), the qubit is found in only one of the states of 0 and 1  , with 

probabilities a2 and b2, respectively, where, a and b are complex variables. In case of 

classical computing, superposition or linear combination of states does not exist. A 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Pure_state
https://en.wikipedia.org/wiki/Pure_state
https://en.wikipedia.org/wiki/Two-level_system
https://en.wikipedia.org/wiki/Qubit
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QC device remains in all possible states simultaneously. Therefore, measurement of a 

particular state is probabilistic. The qubit state upon measurement leads to quantum 

collapse.  

1.3.2 One-Qubit Gates 

The 2x2 unitary matrices are one-qubit gates, which transform the single 

qubits. All Pauli gates, identity gate, NOT gate, phase shift gate, combination of NOT 

and phase shift gate, and Hadamard gate are single qubit gates. The single qubit gates 

are summarized in Table 1.1. 

Table 1.1: One-qubit gates 

 

1.3.3 Two-Qubit Gates 

A composite quantum system consists of quantum systems A and B with basis 

sets n-dimensional {  }, and m-dimensional {  }, respectively. The tensor product 

of {  }, and {  } representing the composite quantum system is 

{   }. The resulting basis state has m*n dimensions. The state space of 

quantum computation grows exponentially with the increase in physical size of 

composite systems. The two-qubit gates perform the controlled operations in the form 

‘If A is true then do B’.  The two-qubit gates are CNOT (Controlled NOT), and CU 

(Controlled Unitary). 

 

Sr. No. Gate Matrix representation  
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1.3.3.1 CNOT Gate 

The CNOT gate flips the qubit b  if qubit a  is 1 , otherwise keeps b  

unchanged as shown in Table 1.2. 

Table 1.2: CNOT gate 

Quantum Circuit Matrix Representation 

 

 

               



















0100

1000

0010

0001

 

 

1.3.3.2 CU Gate 

The operator U performs the unitary operation on qubit b if qubit a  is 1  

and does not change the state of qubit b  if qubit a  is 0 . The CU gate and its 

matrix representation are shown in Table 1.3. 

Table 1.3: CU gate 

Quantum Circuit Matrix Representation 

U
 

 













** aebe

ba
X

ii 
, 

122 ba  

 

1.3.4 Three-Qubit Gates 

The Toffoli gate is a 3-qubit gate (Table 1.4). Toffoli gate is universal gate for 

reversible computation. Reversible gates provide the input information at the output 

(NOT gate in case of Boolean computing).  Any 2n x 2n permutation matrix can be 

implemented using Toffoli gates. A permutation matrix is a square unitary matrix 

where all entries are 0 or 1. Permutation matrix specifies a reversible Boolean 

function.   
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Table 1.4: Toffoli gate 

Quantum Circuit Matrix Representation 

 

 


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The Toffoli gate can be implemented using 2-qubit quantum gates as shown in Figure 

1.4. 

H Q Q H

Q

P
Input 

states

Output 

States

 

Figure 1.4 Toffoli gate implementation with 2-qubit quantum gates. 

 

where,  









i
P

0

01
 and 














40

01


i

e
Q .  

In a universal set of gates, any unitary operation on n qubits can be implemented by a 

sequence of 2-qubit operations. A unitary operation can be approximated to any 

required degree of accuracy using only CNOTs, H, P, and Q gates. 
 

1.3.5 Reversibility/Irreversibility of Classical and Quantum Gates 

The classical gates such as AND, OR, NAND, NOR, etc. are irreversible 

except the NOT gate. The output state of NOT gate provides the input state 

information and there is no loss of information during the operation. But in case of 

other classical gates, the input(s) state(s) information cannot be recovered from the 

output state. In an AND gate operation, the information is lost during the 

transformation of two inputs into a single output and it is same for other classical 

gates. According to the Landuaer’s principle [16], the amount of energy consumption 

per bit loss of information to the external environment is  

                                              2lnKTE                                            (1.4) 
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where, K is Boltzmann’s constant and T is  the  temperature of the external 

environment.   

In a complex classical circuit, the amount of information lost due the large 

number of gate operations which results in high energy consumption. It is an 

important issue when the circuits are implemented with the switching device 

dimensions reaching the atomic level. The unitary operators are used for quantum 

computation to transform the qubits in a reversible way. The single qubit quantum 

gates, two-qubit quantum gates, and Toffoli gate are reversible gates. During the 

measurement, quantum state collapses into the classical state. Hence, upon 

measurement the quantum state cannot be recovered. Therefore, the measurement 

process/operation is irreversible.  

1.3.6 Quantum Circuits and Algorithms 

A quantum circuit is a sequence of unitary operations and measurements on n-

qubit states. The input state of each qubit is prepared in some known state before the 

computation begins. The input states of quantum circuit shown in Figure 1.5, undergo 

unitary transformations UA, UB, UC, and UD. The dimensions of each unitary matrix in 

the quantum circuit is 2nx2n, where n is the number of qubits in the quantum circuits. 

Also, the gates Z, and H operate on single qubits only. 

Z

H

Input  

States

Output 

States

 

Figure 1.5 Quantum circuit. 

Quantum circuit model is generally utilized to run the quantum algorithms. 

The number of steps constitutes a quantum algorithm. Each step of quantum 

algorithm is executed sequentially on quantum computer. A quantum algorithm 

specifies for each n, a sequence On = O1………Ok  of n qubit operations. The map n → 

On must be computable i.e. the individual circuits must be generated from a shared 

pattern. 
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Quantum algorithms use some essential features such as quantum 

superposition or entanglement. The Shor’s algorithm and Grover’s algorithm are used 

for number factoring and searching unstructured database, respectively.   

1.3.6.1 Shor’s Algorithm  

Quantum computers perform some tasks efficiently than classical computers. 

Finding factors of a number by classical computation takes a longer time due to the 

exponential number of operations required to perform the factorization. Quantum 

computation performs the same task in n2 operations if the number of qubits used for 

the operation is n. Shor proposed a polynomial quantum algorithm for factoring a 

number M in 1994 [17].  

 Algorithm  

1. )(mod)( Manf n  , choose the values of a and n. 

2. Find the period ‘r’ of sequence )(nf by using quantum discrete Fourier transform 

(DFT). 

3. Find the ‘greatest common divisor’ of )1(),1( 22 

rr

aa and M by using Euclid’s 

algorithm. 

4. A nontrivial common divisor (h), is factor of M. 

5. If 
h

M
is non-prime integer, go to step1. 

6. Else go to step 7. 

7. End 

 

1.3.6.2 Grover’s Search Algorithm  

A search algorithm is used to obtain the shortest path from one place to 

another. The classical search algorithms perform )(NO operations to obtain the 

shortest path from N paths. Grover proposed the search algorithm to obtain the 

shortest path with )( NO  operations [18].  

 Algorithm  

1. Apply the Hadamard transformation on 0 to prepare the initial state 0 . 

2. Apply the oracle operation 0

)(

1
0)1(  f

 . 
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3. Apply the ‘inversion about mean’ operation IG  002ˆ   to make the 

high probability amplitude of solution state. 

4.  Repeat the steps 2 and 3. 

5. Measure the final state.  

 

1.4     Spintronics Fundamentals  

The imbalance of the spin populations at the Fermi level creates spin transport 

in the materials such as ferromagnetic metals. The shift in energy states produces 

unequal filling of energy bands (Figure 1.6). Due to this inequality, there is transport 

of net spin polarization. However, the magnitude and polarity of spin polarization is 

based on the specific measurement. In a ferromagnetic metal-semiconductor material, 

the ferromagnetic metal acts as a source for spin polarized electrons injected into the 

semiconductor through the tunnel barrier [19]. 

Energy

Down Spin Up Spin

Energy

Down Spin Up Spin

 

 

Figure 1.6 Band structure (Energy vs DOS) of nonmagnetic material (left) and ferromagnetic 

material (right) 
 

1.4.1 Spin Accumulation and Injection 

 Spin accumulation is defined as creation of non-equilibrium electron spins in 

metals and semiconductors. The spin accumulation is achieved through spin injection, 

optical spin orientation, and spin resonance. The spin accumulation through spin 

injection is possible through injection of spin polarized electrons from one material 

into another with the help of electric current. The source material could be a 

ferromagnetic metal (Fe). When spins are injected from ferromagnet into a metal such 

as Al, the spins injected are of non-equilibrium form i.e. Spin accumulation. The type 

of spin accumulation is possible through electrical spin injection between two 
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nonmagnetic materials (Al and Cu). In case of optics based spin injection, the material 

is exposed to circularly polarized light. Electron spins in the material gains the 

angular momentum from the light photons. This procedure is called optical 

orientation. One more technique used for the spin accumulation is spin resonance. For 

this, magnetic field is applied to split the spin up and spin down electron states. The 

process is called Zeeman splitting. The spin resonance is mostly used in metals and 

semiconductors.  

Electrical spin injection is of most interest in spintronic devices. The injected 

spin polarization travelling under the influence of electric field is the spin drift 

transport (Figure 1.7). The non-equilibrium spin can travel diffusively due to 

concentration gradient called as spin diffusion [19]. There is power dissipation in 

spintronic devices [20] due to spin-polarized current [21]. 

FM NM

0 Distance x

M(Magnetization)

 

(a) 

N(E)N(E) N(E) N(E)

E E
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(b) 

Figure 1.7 (a) Electrical spin injection (b) Energy band diagrams.  
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1.4.2 Spin Detection 

Spin current can be detected by the phenomenon called as moment exchange 

between the flux of electrons and magnetization orientation of the ferromagnetic layer 

also called as spin transfer torque or STT effect [8], [22], [23]. The dynamic behavior 

(Figure 1.8) of M (Magnetization) in a ferromagnetic film can be described by the 

Landau–Lifshitz–Gilbert (LLG) equation  

                                                                                           (1.5)                

 

where γ is the gyro-magnetic ratio, 
s

2
  , α  is the damping constant and Heff  is 

the effective field. 

 

Figure 1.8 Precession of magnetic moment M around a magnetic field Heff. 

Under the influence of flux of electrons, a net moment will be generated which 

will produce an additional spin torque to modify the equation as above 

 

                     (1.6) 

Where αJ  is the moment generated due to the flux of electrons and s is the unit vector 

along the spin polarized magnetic moment [22]. If the third term in the above 

equation is large above a critical value, then the magnetization of the target layer or 

magnetization of the magnet will switch. 

1.4.3 Spin Relaxation  

Spin relaxation refers to the process by which a non-equilibrium population of 

electron spins is brought to its equilibrium value in a material. If an electron suddenly 

changes its spin orientation, then it is referred to as spin flip. However, if spin 

population changes gradually with time, then it is referred to as spin relaxation [8]. 
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Spin relaxation is of supreme importance in spintronics, since everyone is 

concerned with using the spin polarization of either a single charge carrier or the net 

spin polarization of an ensemble of charge carriers to encode and decode information. 

Relaxation of nuclear spins requires a microscopic mechanism for a nucleus to change 

orientation with respect to the applied magnetic field and/or interchange energy with 

the surroundings [24]. 

 

1.4.4 Spin Interaction  

When an electron trapped in a cavity is placed in the magnetic field, the spin 

polarization of the electron is switched between the two states 0 and 1 by making the 

magnetic field parallel and antiparallel to electron polarization. Electrons trapped in 

cavities formed in tiny semiconductor structure are called quantum dots. Parallel and 

antiparallel polarizations of each quantum dot representing the bits 1 and 0 are stable 

states. Spin of each quantum dot interacts only with the spin of its nearest quantum 

dot. The interaction is quantum mechanical and called as exchange interaction. Spins 

of certain chosen quantum dots (inputs) are polarized using local magnetic fields 

(Figure 1.9).  

Input 1 Input 2Output Global 

Magnetic 

Field
 

Figure 1.9 Spin interaction. 

The input states take the interacting system from ground state to an excited 

state. The system is then allowed to get relaxed to the ground state by releasing the 

energy. The spin orientation of a certain quantum dot (output) represent the result of a 

specific computation due to the exchange interaction of inputs. The exchange 

interaction represents the only hardware based system [4].  

1.5 Evolution of Spintronics Based Computing 

The evolution of the spintronic based QC is elaborated in the subsequent 

subsections. 
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1.5.1 Evolution of Spintronics Based QC 

The classical computing follows the laws of physics till the size of transistors 

reaches the size of atom. Quantum computing would provide the computing power 

required solving problems that are currently intractable for classical computers—at 

least in a timeframe that’s practical. Therefore, it is necessary to accomplish the 

computing at atomic size that follows non-classical physics called quantum mechanics. 

A quantum computer does the computations based on the quantum mechanics. 

Moreover, quantum computers guarantee faster speed and higher security than 

classical computers and have the ability to store large amount of information. 

Quantum computers rely on quantum principles i.e. superposition and entanglement. 

The time evolution of a random quantum state is more capable computationally than 

evolution of a digital logic state. However, presently, there is no computer in existence 

that can completely operate on the quantum mechanics.  

Quantum computers contradict from the classical computers in a way in which 

information is stored [26]. In former, information is stored in the form of qubits. The 

polynomial time problems for which no solution exists on any classical machine, can 

be solved by quantum computer [27].  The realization of Boolean logic gates can be 

analogous to the computation by a specific pair of two-qubit quantum gates through 

their interactions [28].    

There are various ways to explore the physical realization of the quantum computation. 

Spintronics is one of the most adequate ways to physically realize QC due to the 

electron spin comparable to the qubit. Spintronics is a branch of physics which deals 

with the manipulation, storage, and transfer of information with the aid of electron’s 

spin in extension to or in place of the electron charge [29]. Moreover, intensive 

research is going on to create new ways of spintronics based QC by utilizing electron 

spin as qubit [30]. The exploration of nuclear quantum computer, quantum dot 

architectures, and spin-torque based on-chip qubit architecture etc. pave way for the 

research in spintronics based physical realization of quantum computer.      

1.6     Problem Definition 

  The focus of the thesis is towards second order transmission coefficient matrix 

based modeling of spin-torque based n-qubit architecture and optimal decomposition 

of the quantum circuits with the help of the reduction and optimization techniques.  
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The thesis work is divided into five phases:  

i. Second order transmission coefficient matrix modeling of the spin-torque 

based n-qubit architecture. 

ii. Reduction in number of operations for the elementary gates such as 

CNOT, SWAP, Toffoli, and Fredkin gates and their implementation.  

iii. Optimization of the quantum circuits for the reversible Boolean logic and 

their implementation.  

iv. Implementation and analysis of the reversible D-Latch. 

v. Implementation and analysis of the spin-torque based quantum Fourier 

transform (QFT). 

1.7    Outline of the Work 

The thesis work is based on the modeling of the spin-torque-based qubit 

architecture, wherein, a modified matrix is proposed to analyze the effect of ratio of 

reflection barrier height to exchange interaction, on electron–qubit interaction, 

deviation of axis of rotation for single-qubit rotation, and average error probability for 

two qubit rotation in a spin-torque-based n-qubit reconfigurable architecture. 

Moreover, reduction and optimization techniques are developed to reduce the number 

of operations required to perform the QC in terms of fidelity and number of electrons 

required to realize any quantum operation/gate.  

Seven chapters are included in the thesis. Each chapter contains motivation 

behind the problem under study. Moreover, implementation, results, and analysis are 

also thoroughly presented in a coherent manner. A brief discussion of each chapter is 

presented as below: 

Chapter 1 provides the introduction to QC and spintronics. Moreover, it 

explains the evolution of the spintronics based QC and neuromorphic computing. In 

addition, the chapter presents summary of the thesis. 

In Chapter 2, the extensive literature related to optical and spintronics based 

quantum devices such as quantum electrodynamic cavity based qubits, quantum dot 

based qubits etc., is discussed. Moreover, spintronics based neuromorphic computing 

is also explained in brief.  
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In Chapter 3, a modified (second order) transmission coefficient matrix is 

proposed to analyze the effect of ratio of reflection barrier height to exchange 

interaction on electron–qubit interaction, deviation of axis of rotation for single-qubit 

rotation, and average error probability for two qubit rotation in a spin-torque-based n-

qubit reconfigurable architecture. 

In Chapter 4, the conventional and reduced quantum gates are compared for 

existing and modified matrices. The quantum gates performance is analyzed in terms 

of number of electrons required per gate for the electron–qubit interaction, gate 

fidelity, number of elementary quantum operations per gate, and gate execution time. 

Optimal quantum circuit decompositions of Boolean logic are presented in 

Chapter 5 with the help of developed elementary quantum library { 

yR , 
zR , SWAP } 

for the spin-torque-based QC architecture. The reversible Boolean logic performance 

is analyzed and compared for the conventional, reduced, and optimal decompositions 

on the first- and second-order transmission coefficient matrix based spin-torque QC 

architecture. 

An implementation and analysis of the reversible D-Latch is presented in 

Chapter 6. An optimized quantum circuit for the reversible D-Latch is presented to 

obtain the fidelity and number of electronics required to implement the latch over the 

five clock cycles.   

Chapter 7 is devoted towards the optimal decomposition and implementation 

of the Quantum Fourier Transform (QFT). The spin-torque based architecture has 

been modeled with the help of optimized decomposition of quantum circuits for the 

QFT. Moreover, an optimal-depth Clifford+T gates set based quantum circuit is 

utilized to implement the QFT. The performance analysis in terms of fidelity, 

magnitude, and phase difference of respective density matrices for different forms of 

three-qubit QFT, is presented.  

The conclusions drawn based on the obtained results, and future scope are 

presented in Chapter 8.  

A list of references and list of publications based on work carried out, is 

presented at the end of the thesis.  
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Chapter 2 

Quantum Computing Architectures: A Literature Review 

2.1 Introduction to Quantum Computing 

The QC works on Schrodinger equation that provides the quantum description 

of matter in terms of waves. Its solution is related to the probability density of an 

element in time and space. The measured output states are probabilistic and basic 

postulates of quantum mechanics set the probabilities of the possible outputs. The 

superposition and entanglement properties of quantum dynamics make quantum 

computers more powerful than their classical counterparts and solve certain 

computational problems like integer factorization much more efficiently than a 

classical computer. 

The possibilities of computation with the help of quantum physics are 

elaborated in [31]. The two-state quantum system is represented by a unit vector in 

Hilbert space C2, where C are complex numbers. The two states 0  and 1 are 

represented by unit vectors (1, 0) and (0, 1), respectively. These two states form 

orthogonal basis to the Hilbert space. There is a need of many such two-state qubits 

(particles) to build a quantum computer. The Hilbert space for n qubits is the tensor 

product of n spaces C2*C2*C2. The 2n vectors form the computational basis. A 

physical entity representing the two state quantum system ( 0 / 1 ) is called qubit [32]. 

0  is called “ground state” and 1 is called “excited state.”  A Hilbert space of 2n 

forms a quantum system, wherein 2n mutually orthogonal quantum states represent 2n 

different things.  The 2n mutually orthogonal states of n qubits are written as { i }, 

where i is n bit binary number.  

2.1.1 Quantum Register  

Quantum register state is a vector in a multi-dimensional Hilbert space, in a 

system that comprises of a number of qubits. Within a quantum register, calculations 

are performed by manipulating qubits. Quantum and classical computers have a 

conceptual difference. Classical computers have an array of n flip-flops called as 

classical register while in case of quantum computing, collection of n qubits is termed 

as quantum register.   In quantum registers, information is stored in binary form [33]. 
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2.1.2 Quantum Logic 

The individual qubit rotation and its interaction with other qubits in a quantum 

system are needed for the evolution of its state from one to other. This is done with 

the help of simple quantum logic operations called quantum gates. The fundamental 

single-qubit quantum gates are I, X, Z, Y and H. However, there are only two single-bit 

gates in classical computing i.e. Identity and NOT gates. For a two-qubit controlled 

gate, evolution/rotation of quantum state of second qubit is possible if quantum state of 

first qubit is 1 . Two-qubit quantum gates are CNOT, controlled SWAP (CSWAP), 

controlled CNOT (CCNOT), etc. Moreover, classical gates such as AND, OR, NAND, 

NOR, XOR etc. can be realized with the help of single- and two-qubit quantum gates. 

Fundamental arithmetic operations such as addition and multiplication performed by 

many quantum gates architectures are given in [34].  

The quantum computer and factorization are reviewed in [35]. Moreover, the 

quantum computing concepts are elaborated in [1] and [36]. The universal quantum 

gate helps to generate the quantum operation of any other quantum gate. The most easy 

representation of the universal quantum gate is by a pair of a gate V( ,  )  and CNOT 

or controlled XOR. V( ,  )  represents a general rotation of a single qubit.   
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The universal quantum gates are given in [37-40]. A quantum gate is a powerful and a 

significant concept as two-qubit gates are appreciable for quantum computation.  

2.1.3 Quantum Network 

Quantum networks form a significant element of quantum computing. 

Basically, they allow the communication of quantum information between quantum 

processors. Quantum network consists of quantum logic gates wherein each gate 

executes unitary operations on one or more than one quantum system called qubits. 

Unitary operations are reversible. Because of this, Quantum networks affecting 

underlying arithmetic operations cannot be directly drawn from their classical 

Boolean counterparts. For the basic arithmetic operations, quantum networks can be 

built up in various ways. Quantum gates employing two or more number of qubits can 

act as a building block of networks [33]. 
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2.1.4 Quantum Reversibility 

Quantum gates are reversible. Reversible gates have the same number of 

inputs and outputs. They are useful as they are the promising ways to enhance the 

energy efficiency of computers beyond the classical Von-Neumann  Landauer limit of 

KT ln 2 energy dissipated per irreversible bit operation, where, K is the Boltzmann 

constant and T is the temperature [34].  

2.1.5 No-cloning Theorem 

The unique property of quantum computation is no-cloning. It is not possible to 

clone a quantum state if it is not known i.e. it is not possible to create the replica of 

unknown quantum state unless it is already known. For example, one cannot clone an 

entangled quantum state [41]. No-cloning theorem is an essential element in quantum 

cryptography as it blocks observers from creating the copies of transmitted quantum 

cryptography key. However, no cloning theorem is a final limitation for error 

correction. 

2.1.6 Dense Coding 

Basically, in dense coding, quantum entanglement is utilized to increase the 

rate at which information is sent via noiseless quantum channel. Qubits are utilized to 

store and transmit the information. Sending a single qubit between two parties will 

ensure secure communication and reduced communication complexity in 

computations. Moreover, dense coding establishes the relationship between classical 

information, qubits, and information in the quantum entanglement [33].  

2.1.7 Quantum Teleportation    

A known state can be used to communicate a single qubit just by sending the 

classical information. However, if the state is not known, any measurement may 

change the state and the state cannot be cloned. Therefore, the only way to 

communicate the information is by sending the physical qubit such as electron or by 

swapping the state into another quantum system and send it. The quantum information 

can be transferred from one location to another by the means of quantum 

teleportation. The information is sent with the aid of classical communication and 

already shared quantum entanglement. However, quantum teleportation has only 

achieved between molecules [42].   
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2.1.8 Quantum Data Compression  

The information extraction from a classical system and quantum system is 

different. In the case of classical system, the information extracted and information 

required to describe the system is precisely same. However, in case of quantum 

system, infinite information would be required to describe a single qubit, and upon 

measurement, only one bit of information can be obtained from that qubit. This shows 

that the data is compressed in case of quantum system.  Therefore, quantum mechanics 

based systems are the one where ensemble of identically prepared quantum systems 

provide much more information [43]. 

2.1.9 Quantum Cryptography  

The cryptographic tasks are possible with the help of properties of quantum 

systems. The main aspect of the quantum cryptography is quantum key distribution. A 

random secret key is established for cryptography through the method of quantum key 

distribution. The impressive feature of quantum cryptography is that it permits the 

possibility of device independent cryptography in a way that the protocols can be 

executed on untrusted devices [44].  

2.1.10 Quantum Algorithm 

A quantum algorithm is an array of unitary steps/operations to manipulate 

initially prepared quantum state to achieve desired quantum state upon measurement 

at the final state. Quantum algorithms solve some problems quicker than classical 

algorithms. The algorithms for factoring and unorganized data searching are Shor’s 

algorithm and Grover’s algorithm [45]. Shor’s algorithm runs exponentially faster and 

Grover’s algorithm runs quadratically faster than their classical equivalents. 

2.2 Physical Realization of Quantum Computation  

The most important aspect of the quantum computing is its physical 

realization. Some basic requirements should be fulfilled for the successful realization 

of the quantum computing. These requirements are known as Divincenzo criteria [46]. 

For the construction of a practical quantum system, scalability is an important issue. In 

most of the physical setups, the incorporation of as many qubits as possible along with 

meeting Divincenzo criteria is a major challenge. Therefore, in this section, myriad 

ways to physically realize a quantum computing system are presented.  
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One of the ways for the realization of quantum logic is to consider the 

individual photon as flying qubit. [47]. The single-photon level between two-distinct 

levels in an optical resonator is utilized through the demonstration of conditional 

dynamics. The other way is through the neutral atoms trapped in one- and two-

dimensional arrays of dipole traps with a laser beam (see Figure 2.1) focused with 

microfabricated arrays of microlens [48]. A lateral separation of 125 μm is provided to 

selectively address the trap sites.  

                         

Array of Foci

Microlens Array

 

Figure 2.1 One- and two-dimensional arrays of dipole traps with a laser beam. 

The implementation of many quantum gate operations would be possible by 

creating two interleave sets of trap arrays with reconfigurable separation.  A general 

technique is proposed to generate and manipulate the strong interactions between spin 

states of nearby atoms in an optical lattice [49]. The optical potentials are varied to 

modulate the spin exchange interaction. This technique helps for the applications such 

as scalable quantum computation and complex topological order that supports external 

particle excitations.    

The interaction between atoms and the quantized electromagnetic modes inside 

a cavity is studied under the cavity quantum electrodynamics [50]. In Figure 2.2, a 

laser is utilized to energize the cavity. The changes in the cavity are observed through 

cavity transmission due to coupling to atoms. Moreover, the spontaneous emission of 

atoms is also observed. The spontaneous emission lifetime of atoms is in nanoseconds 

which makes it difficult to measure the state of the atom when passed through the 

cavity. A superconducting waveguide and superconducting qubit are utilized as cavity 

and atom, respectively. Moreover, a number of superconducting quantum circuits can 
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play the role of atom.  A simple architecture composed of two lossy cavities which are 

coupled permits switching between Markovian and non-Markovian regimes for the 

dynamics of a qubit inserted in one of the cavities [51]. If the cavity without qubit is 

perfect, qubit coherence is preserved. Moreover, if there is a small photon leakage in 

the cavity without qubit, qubit coherence can be precisely maintained. 
  

 

Cavity

Qubit

 

Figure 2.2 Cavity quantum electrodynamics system. 

A pair of flying and stationary qubits is utilized for the robust and scalable 

quantum computation [52]. This proposal helps to get rid of difficulty in storing the 

photons in linear optics setup. As there is no direct qubit-qubit interaction, it reduces 

decoherence and helps to realize a distant quantum gate with fewer control errors.  

Therefore, the architecture designed with the help of this proposal is distributed in 

nature and can find applications in integrated quantum computation and quantum 

communication. In connection with distributed quantum computing, the stable ground 

states of source atoms are used for encoding the qubits. Two photons are created 

simultaneously to realize two-qubit gate [53]. These photons are passed through a 

linear optics network to perform the measurement on them to avoid the explicit 

interaction between the qubits. The obstacles in the realization of quantum gates is 

imperfections in coupling strengths. From the distributed quantum computing point of 

view, quantum networks play a vital role. One such quantum network is proposed 

[54] based on a single atom trapped in the optical cavity. The atom and cavity 

together form a node to manipulate the quantum information. The interaction between 

two nodes is made possible by coherent exchange of a photon. Due to the node 

approach, quantum network provides a way towards scalable architecture. To provide 

a robust SWAP and entangling quantum gates, optical fibres are utilized between two 

distant cavity atoms in cavities and these gates are very promising for high level of 

coherent control [55]. One more obstacle in realization of the robust multi-qubit 

quantum computer is effect of temperature. A superconducting charge qubits are 

located in a microwave cavity [56]. It is observed that the quantum operations are 
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unaffected by thermal effects and random operation errors. This contribution helps in 

realization of high fidelity quantum computing.    

The alkaline earth atoms can also be utilized for the quantum information 

processing. Two independent lattices, one used for encoding the qubit on nuclear spin 

and other for moving qubits for quantum gate operations [57]. The examples are 

realization of spin models in optical lattices and reservoir gas interaction with atoms in 

optical lattice.  There is a need of strong long distance interaction for the fruitful 

realization of quantum gates. Rydberg atoms have unique properties of dipole-dipole 

interactions and radiative lifetimes [58]. These two properties depend on principle 

quantum number (>>1) of Rydberg atom. It has been proved in the past that the 

Rydberg atoms have the ability to facilitate long distance qubit interaction. This helps 

to realize quantum information processing.     

The vibrational modes of molecules with shaped lasers can also be used for 

quantum operations [59]. The 2n vibrational computing states are encoded as qubits on 

the ground electronic surface of the molecule. The amplitudes are cycled between 

these states along with a gateway state (shaped laser pulse) for the quantum 

operations from basic gates to prime factorization. A realistic Hamiltonian and dipole 

surface are used for the molecular quantum computation. A multilayer microwave 

integrated quantum circuit is proposed [60]. It sets the way towards the realization of 

progressively complex superconducting devices to achieve the target of a scalable 

quantum computer. It approves for high density connectivity to external measurement 

and control circuitry.  

To design a scalable quantum computer which is based on long wavelength 

radiation quantum gates, blueprint for a trapped ion based scalable quantum computer 

module is presented in [61]. A fully scalable design is presented that uses ion transport 

between different modules that are connected together to form a large scale device. 

The model is also appropriate for alternative trapped ion quantum computer 

architectures like schemes using photonic interconnects. The proficient quantum 

communication over long distances remains eminent challenge because of operation 

errors and fibre attenuation [62]. Quantum repeaters (QRs) can overcome this problem 

and hence, can increase the communication rate. QRs can be categorized in three 

generations. The improved quantum repeater architecture is also identified for 

particular set of experimental parameters. 
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It is very complicated to trap and cool the atoms and ions in vacuum for the 

quantum computing [63]. Therefore, there is a need of replacement entities motivated 

to use quantum dots and single dopants. It is comparatively very easy to cool the 

quantum dots to form array of qubits.  For example, an electron or hole is bound in a 

localized potential with discrete energy levels in a semiconductor nanostructure.  In the 

next section, spin quantum dots are reviewed for the realization of quantum 

computing.  

2.2.1 Spin Quantum Dots 

Quantum dots are the electrons trapped in a cavity. They are categorized in two 

types i.e. electrostatic and self-assembled. The electrostatic quantum dots are formed 

when the confinement is formed by the controlled voltage on the metallic gate. The 

self-assembled quantum dots are formed through a random semiconductor growth that 

creates confinement potential [64, 65]. The depth of potential required for the 

confinement is the basis for the difference between electrostatic and self-assembled 

quantum dots. Moreover, electrostatic quantum dots and self-assembled quantum dots 

operate at very low temperature and high temperature, respectively. Electrostatic 

quantum dot is controlled electrically whereas self-assembled quantum dot is 

controlled optically.     

Danial Loss and DiVincenzo proposed array of electrostatic quantum dots for 

quantum computation [28]. Each quantum dot comprises a single electron. Spin state 

of the electron is utilized as qubit state. The quantum logic is realized by modulating 

the voltage on the electrostatic gates present between confined electrons to move the 

electrons near to each other or away from each other. This results in voltage controlled 

exchange interaction between the quantum dots [66].  When an electron is confined, 

the states are quantized. The current voltage relationship for the quantum dot can be 

described with the help of interaction model [67]. The emission wavelength or 

emission colour of a quantum dot depends on the dot size.  A bulk semiconductor and 

quantum dot energy gap are shown in Figure 2.3(a) and Figure 2.3(b), respectively 

[68]. The energies are determined by the radius of the quantum dots.   
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Figure 2.3 (a) Energy band gap in a bulk semiconductor, and (b) Quantized energy levels 

for quantum dot. 

Spin-orbit interaction helps to couple an alternating electric field to the electron 

spin of a quantum dot (Figure 2.4). Several mechanisms are presented [69] for the 

efficient control of the spin in the quantum dots.  A transverse magnetic field is 

produced due to Dresselhaus and Rashba spin-orbit interaction in the presence of a 

Zeeman splitting [70]. Decoherence [71] is hindrance in fruitful realization of the 

quantum gates. The spin dynamics of electrons and various decoherence effects are 

presented in [72].    
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Figure 2.4 Electric field control of spin via the spin-orbit interaction. 

Carbon materials have excellent property of weaker nuclear-spin interactions as 

13C with nuclear spin ½ are available with 1% only [73].  Therefore, carbon structures 

provide encouraging materials to build quantum dots with considerably long 

decoherence time. An electron confined to carbon nanotube or graphene quantum dot 

structure is presented in [74]. In graphene, it is observed that only hyperfine 

interactions couple with the electron.  However, in case of carbon nanotube (CNT), the 

decoherence is due to curvature as it induces hybridization of the electron orbitals. 

These nuclear-spin interactions affect the related spin dynamics.  Spin relaxation in 

heavy-hole quantum dots in low external magnetic fields is studied [75]. The two-
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phonon processes and spin-orbit interaction are responsible for saturation for the spin 

relaxation rate in heavy-hole quantum dots.  

A linear triple-quantum-dot array is used in [76] to demonstrate a coherent time 

evolution of two interacting distant spins via a quantum mediator. Single-shot spin 

readout is used to calculate the coherent time evolution of the spin states on the outer 

dots. Dependence of the exchange frequency as a function of the detuning between 

middle and outer dots is also observed. This gives the way for scaling up spin qubit 

circuits using quantum dots. It is presented that the spin information conveyed by one 

or two electrons can be transmitted between two quantum dots which are separated by 

4 μm with a classical fidelity of 65% [77]. 

2.2.2 Quantum Computing with Quantum Dots  

DiVincenzo criteria [2] directs the physical system to realize the quantum gate 

operations, therefore, spin states of coupled single electron quantum dots are utilized 

for the realization of a universal set of one- and two-quantum bit gates. A qubit is 

realized as spin of excess electron on a single electron quantum dot (Figure 2.5) [28]. 

Electrical gating is facilitated between the qubits. If the barrier potential between two-

qubits is high, the qubits are isolated and are not allowed to interact. The exchange 

interaction between two qubits grows as the barrier potential is lowered. The spin 

states of qubits 1 and 2 are used for the realization of universal set of one and two 

quantum gates.  

The Heisenberg exchange is modelled as  
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Figure 2.5 Heisenberg exchange interaction between two quantum dots. 

                                                 Hs(t)= J(t) S1˙S2                                                                                    (2.2) 
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where, J(t) is time-dependent exchange constant.  S1 and S2 are ½ spin operators of 

first and second qubits, respectively. The dependence of J on magnetic field B(z) or 

electric field E(x) or by modulating the inter-dot distance 2d (Figure 2.6) is elaborated 

in [64]. V(x, y) is the barrier potential. This helps to design quantum gates by adapting 

J(t).       
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Figure 2.6 Laterally coupled quantum dots. 

A singlet-triplet qubit is implanted in the presence of homogenous magnetic 

field to propose a set of universal gates [78]. It is all gate manipulation by varying the 

potential offset or misalignment between the two dots by applying electrical voltage. It 

does not depend on the tunnel coupling between the dots (Figure 2.7). With the help of 

this topology, single qubit rotation and two-qubit entanglement are realized to 

constitute universal quantum gates. Toffoli-Fredkin gate is a universal reversible logic 

gate. The inherent property of a reversible gate is non-dissipation of energy [79].  A 

linear array of exchange coupled three quantum dots is utilized to implement a Toffoli-

Fredkin gate [80].  
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Figure 2.7 Double quantum dot. 

AC magnetic field needs to be generated to selectively drive spin resonance in 

the coupled spin system. The frequency of qubit rotation (Rabi frequency) is 

proportional to electron-g factor. The value of g-factor is different for different 
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materials [81]. For a graphene quantum dot, the value of g-factor is 2. Due to this, the 

graphene quantum dot can be rotated five times faster for the same external magnetic 

field [82] than others. This rotation in graphene quantum dot at faster rate helps to 

realize fault-tolerant quantum computing.   A quantum dot on bilayer graphene is 

shown in Figure 2.8.  

Back Gate

SiO2

+   + +   + +   +   +   + +   +  +  +   

Top Gate

ε Dopant Atoms

Bilayer Graphene

Quantum Dot

 

Figure 2.8 Bilayer graphene based quantum dot. 

Spin qubits of graphene nanoribbons have small bandgaps. Moreover, 

additional flexibility is provided for two-qubit quantum operation.  Single electron spin 

qubit is realized in [83]. It has electrical control speed (upto 30 MHz) and enhanced 

phase coherence time (20 μs) mediated by extrinsic spin electric coupling. This qubit 

shows excellent performance with single-qubit gate fidelities exceeding 99.9% on an 

average. It offers a path to large scale spin qubit systems with fault tolerant 

controllability. 

The long-distance interaction of three-quantum gates is shown in Figure 2.9.  In 

this, two distant qubits can be strongly coupled without disturbing the intermediate 

qubit states. The electrical control of graphene quantum dots is possible due to 

formation of tuneable bandgap by electric fields [84].  
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Figure 2.9 Electric-field-tunable electronic properties of graphene quantum dots . 
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Hole spins in Ge/Si nanowire quantum dots for universal and electrically 

controlled quantum gates are proposed in [85]. Electric dipole induced spin resonance 

is utilized for the single qubit rotation. Cavity electric field of a superconducting 

transmission line resonator facilitates the two-qubit entanglement. The precise control 

over qubits (Figure 2.10a and Figure 2.10b) is made possible due to the weak 

Dresselhaus spin-orbit interaction and strong Rashbha spin-orbit interaction via 

external electrical field applied in perpendicular direction. Due to the strong Rashbha 

spin-orbit interaction, g-factor is precisely controlled to perform single- and two-qubit 

gates independently.   
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Figure 2.10 (a) Perpendicular electric field and, (b) Two-qubit quantum gate realization 

between qubit 2 and 4.  

2.2.3 Spin Torque Based Quantum Computing Architecture  

Spin is a primary entity envisioned for the physical realization of qubits. The 

quantum computing is based on individual qubit rotations and two qubits interactions 

in composite systems. To accomplish the task, the external magnetic field is used to 

manipulate the qubits. In complex computing systems, it is very difficult to precisely 

control and manipulate the individual qubits through external magnetic field. In the 

recent past, STT (Spin Transfer Torque) is used to switch the polarization of 
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nanomagnets to achieve the classical computing [7][23]. Spin torque like effects can 

be used to implement quantum processes involving single qubit initialization and 

rotation as well as two qubit entanglement. Qubit readout can be implemented using 

the same architecture. 

The architecture shown in Figure 2.11 consists of four qubits S3, S2, S1, and S0 

embedded in a spin-coherent semiconductor channel. The static qubits could be 29Si 

nuclear spin, 31P donor level, electronic donor spin, or nanoscale magnet embedded in 

the semiconductor [86]. A nanomagnet is a sub micrometric system that presents 

spontaneous magnetic order (magnetization) at zero applied magnetic field. The small 

size of nanomagnets prevents the formation of magnetic domains. The magnetization 

dynamics of sufficiently small nanomagnets at low temperatures, typically single-

molecule magnets, presents quantum phenomena, such as macroscopic spin 

tunnelling. At larger temperatures, the magnetization undergoes random thermal 

fluctuations present a limit for the use of nanomagnets for permanent information 

storage. The spin reservoir injects the iterant spins into the channel to control the 

qubit operations. The spin reservoirs are held at some specific spin potentials. The 

spin potentials are generated by magnetic contacts [87- 91], giant spin Hall Effect [92-

106], or spin pumping [107] at low and room temperature. The barrier gates Ri and Gi 

of each qubit are controlled to carry out a specific operation. Also, the semiconductor 

channel has barriers B0 to B2 to provide the isolation and control of the flow of 

electrons through the channel. Integration of qubits with semiconductors provides 

device fabrication prospect [108]. 
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Figure 2.11 Spin-torque based qubit-architecture.   
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2.2.4 Fabrication Aspects of Qubit 

The most challenging issue of the architecture is the fabrication of the qubit. There are 

several technologies proposed by researchers for the qubit fabrication. Specifically, 

the measurement of the qubit adds challenge to the realization of the architecture as 

quantum computer from the qubit initialization to the qubit measurement. Detection 

of the single spins in silicon is not yet realized [109], there could be a possibility of 

fast single charge detection due to RF single electron transistor (SET) technology 

[110]. There are several proposals given by researchers in these directions such as 

single atom Si nanoelectronics using controlled single-ion implantation [111], single 

atom devices by ion implantation [112], atomically precise placement of single 

dopants in Si [113], single ion implantation method for single-dopant devices [114], 

controlled shallow single-ion implantation in silicon [115], integration of single ion 

implantation method in focused ion beam system [116], etc. These proposals could 

help to perform the qubit manipulations and measurements. 

2.3 Technical Gaps 

Based on literature review, it is observed that the spintronics based 

architectures have the potential to realize the QC. Further exploration is necessary to 

realize the important aspects of QC such as a set of reversible quantum gates, classical 

gates, quantum Fourier transform (QFT) on the generalized simulation platform.  

High fidelity quantum operations are targeted for the realization of the spin-torque-

based fault tolerant quantum computing.  

The research gaps evaluated based on the literature survey are as follows: 

 Lack of Generalized simulation platform: A generalized simulation platform is 

not provided by the previous models [82] to realize the spin torque based 

initialization, manipulation, and measurement of the spin qubit in an n-qubit 

system architecture. Also, a set of high fidelity quantum gates are required to be 

realized on the generalized simulation platform.  

 Optimal decomposition of the quantum circuits: The spin-torque-based 

architecture needs the sequence of single-qubit rotation and two-qubit 

entanglements for the realization. The reduction in number of operations required 

for the realization of the complex computation is needed to preserve the qubit 
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coherence. Therefore there is a need of optimized quantum circuits 

decomposition. 

 Reversible Boolean logic exploration: The previous models [82] have realized 

only single-, two-qubit manipulations. In addition, a two-qubit CNOT gate is 

realized as a capstan example. The model is required to be further explored to 

realize the Boolean logic in terms of reversible AND, NAND, OR, NOR, etc. 

gates to achieve the no information loss at low power dissipation.   

 Quantum Fourier transform: In quantum computing, the quantum Fourier 

transform (QFT) [117-125] is a linear transformation on qubits. In addition, QFT 

is an important operation for the quantum algorithms. The physical realization of 

QFT is achieved by multilevel atoms, linear optics operators, cavity quantum 

electrodynamics, and photonic lattices. But, these methods have difficulties in 

realizing scalable architecture. The spin-torque-based architecture is scalable, and 

it will help to get rid of the difficulties posed by previous methods for the 

realization of the QFT.  

The entire thesis covers the solution to aforementioned problems. The results are 

obtained through extensive and rigorous simulations on MATLAB.  

 

https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Qubit


35 

 

 

Chapter 3 

Transmission Coefficient Matrix Modeling of the Spin-

Torque Based n-Qubit Architecture 

3.1      Introduction 

In the modern era, classical computing is facing several challenges such as 

inability to solve the complex problems efficiently [17], scaling limitation, high 

power dissipation [126], etc. There is a pressing need to deal with the aforementioned 

problems associated with classical computing. Quantum computing (QC) [1] can 

become an exciting option due to its unique characteristic of imitating the particle 

behavior at subatomic levels. In addition, QC performs the quantum operations in less 

time compared to classical computing due to parallel information processing. This 

helps to solve the complex problems such as integer number factoring, and 

unorganized data searching efficiently.   

QC is required to be physically realizable and needs rigorous efforts for real 

implementation. Any physical system implementing the QC has to fulfill the 

DiVincenzo criteria [2]. Spintronics [127] can be the most efficient way to physically 

realize QC due to the electron spin analogous to the qubit [128]. Spintronics based 

computing architectures such as nuclear quantum computer [129], and quantum dot 

(QD) architecture [28, 130, 131] have shown encouraging prospects for the physical 

realization of the QC. However, these architectures have some implementation issues. 

In the case of QDs, precisely controlling and manipulating individual electron is very 

difficult. Other critical issues with QDs are long-distance interaction inability, spin 

decoherence, spin measurement complexities, and computing architecture scaling 

limitation. To get rid of problems encountered due to long distance interaction 

inability in the aforementioned architectures, several models were proposed such as 

interaction [132] between static and flying qubits in a carbon nanotube [133], static 

and mobile spins interaction in graphene [134], static and flying qubit entanglement in 

degenerate mesoscopic systems [135], flying conduction band electron-static qubit 

interaction model [136], and electrical control of a solid-state flying qubit [137]. 

Moreover, a spin-torque [138, 139] based architecture for QC to realize single-qubit 

rotation and two-qubit exchange interaction through the first order transmission 
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coefficients matrix model is presented in [108]. However, investigation of effects 

such as ratio of reflection barrier height to exchange interaction ( /Rf l J ) on quantum 

operations are not considered. As an improvement over previous models, a modified 

transmission coefficient matrix is proposed in this chapter to include the effect of 

/Rf l J  on single-qubit rotation and two-qubit entanglement.  

The analytical and matrix methods proposed in [108] to realize the single-

qubit rotation and two-qubit entanglement do not provide a general simulation 

framework to trace the performance of more than two-qubit quantum circuits [140]. 

Therefore, in this work, a fully specified matrix (FSM) based general methodology is 

utilized for the spin-torque based n-qubit reconfigurable architecture. Moreover, for 

the fault-tolerant QC, an optimized quantum library is essential for every physical 

machine description (PMD) [141]; and no optimized quantum gate library is 

introduced for the spin-torque based QC. This work includes modeling of modified 

matrix-based single-qubit rotation and two-qubit entanglement for n-qubit 

architecture.  

This chapter consists of three sections including the current introductory 

section. Section 3.2 explains spin-torque based QC architecture. Section 3.3 discusses 

the modified matrix-based single-qubit rotation and two-qubit entanglement models 

for n-qubit architecture performed with the help of generalized FSM method. 

3.2      SHE Based Spin-Torque QC Architecture 

The spin-torque based n-qubit architecture performs the single-qubit rotation 

and two-qubit entanglement. The single- and two-qubit architectures form the basic 

building blocks of the n-qubit architecture. 

3.2.1 Single-Qubit QC Architecture 

The spin-torque based single-qubit architecture is shown in Figure 3.1(a). The 

static spin qubit Q1 is embedded in a spin-coherent channel. Architecture facilitates 

controlled barrier gates R1 and G1. The G1 is set to high barrier height and the pair of 

R1-G1 barriers isolates or allows qubit for the rotation. The distance between barrier 

G1 and qubit Q1 is d. The channel carries quantum information. The heavy metal-

nanomagnet assembly injects electrons into the channel with the desired spin-

polarization. Switches Sw1 and Sw2 remain ON and OFF, respectively for spin 
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generation [142, 143], and OFF and ON, respectively for non-local spin injection 

[144].  

Bloch sphere representation of spin qubit state evolution is depicted in Figure 

3.1(b). The deviation in the qubit state from its desired state depends on relaxation 

time T1 and coherence time T2 (shown in Figure 3.1b). The variation in angles θ and φ 

depends on T1 and T2, respectively. The variation in φ represents the qubit dephasing; 

therefore, T2 of spin-qubits is the fundamental requirement for the physical realization 

of QC architectures. 

The heavy metal allows charge current Ic1 to pass along x-axis. The Ic1 

produces spin current Is1 along z-axis. The Is1 exerts a torque on nanomagnet next to 

heavy metal to set nanomagnet spin polarization to the desired spin state. The 

magnitude and direction of torque depend on the magnitude and direction of Ic1. It 

also depends on the spin-Hall angle of the material used. Is1 can be expressed as [138] 

                              
1 11 cosh

2

  
    

  

NM SF
SH

HM HM

cs
A

I I
q A t


                                          (3.1) 

where, ANM is cross-sectional area of the nanomagnet, AHM is the area of heavy metal, 

SH is the spin Hall angle, SF is the spin-flip length, and tHM is the thickness of heavy 

metal. In addition, Is1 can be greater than Ic1 due to the continuous scattering of 

electrons on the surface. The spin state of nanomagnet makes the nanomagnet to act 

as a spin reservoir.  

 To perform non-local spin injection from the spin reservoir into the 

channel, switch positions Sw1 and Sw2 are reversed. The heavy metal allows charge 
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Figure 3.1 Single-qubit (a) Architecture (b) Qubit state evolution on Bloch sphere. 
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current Ii1 to pass along z-axis. The current Ii1 injects spin-polarized electrons from 

nanomagnet through TB into the semiconductor channel. The injected spin-polarized 

electrons traverse through the channel to constitute spin current. Spin current in the 

channel depends on two factors i.e. channel material and temperature. The spin 

current exerts the torque on static qubit to modulate its quantum state. The increase in 

barrier height of R1 increases the interaction by producing standing waves between 

barriers R1 and G1. Subsequent to the interaction, the barrier G1 reflects electrons back 

to the reservoir. The qubit state measurement is performed after the process of qubit-

electron interaction.              

From the material perspective, qubits can be represented by Si nuclear spin, P 

donor level, or nanoscale magnet embedded in the semiconductor [86]. For electrons 

bound to donors in silicon, at low temperature, T1 becomes very long i.e. minutes to 

hours. The increase in temperature reduces T1 due to the valley-orbit excited state of 

the donor. T2 is comparatively shorter than T1 for donor electrons. In literature, 

experiments have been carried out to measure T2. A T2 of 0.52 ms is obtained for a P 

donor doped in isotopically enriched 28Si [145]; T2 is measured approximately 60 ms 

for a P donor in 28Si at 7 K [146]; in [147], an antimony 121Sb is implanted in 

isotopically pure 28Si. A T2 of Sb electron at 50 nm below the Si/SiO2 surface is 

measured as 0.3 ms, however, it is increased to 0.75 ms at same depth below the 

surface when the surface is passivated with hydrogen. Therefore, effect of silicon 

surface on T2 due to surface defects and ion implantation plays a significant role in 

spin-qubit dephasing; the decoherence time of free electrons is measured as 3 μs [148] 

at 4.2 K which is sufficient to perform more than 100 basic quantum operations. The 

gate execution time of spin-torque based quantum gates is comparatively less than the 

aforementioned decoherence times. Moreover, a single qubit rotation can be carried 

out in 10 ns through the flying spin electrons and qubit interaction. The spin lifetimes 

of over 500 ns at 60 K have been reported in undoped Si [149] that is more than 

sufficient to perform complex quantum gates. The major source of decoherence in 

architecture is when electrons moving in semiconductor channel. Moreover, 

decoherence depends on the material of which semiconductor channel is made up of 

and temperature. Therefore, for the quantum computing, isotopically enriched 28Si 

doped with P is more significant than other forms of Si due to its long enough 

coherence time to physically realize  QC gates. 
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Channel can be made up of semiconductor materials such as Si, graphene, etc. 

The spin diffusion lengths of silicon and graphene are 200 nm [150, 151] and 5 μm 

[152], respectively at room temperature. Therefore, graphene has better spin transport 

characteristics at room temperature than Si. The nanomagnet used for spin injection 

can be prepared of Fe, CoFe, CoFeB, or full-Heusler alloys. Spin injection efficiency 

of Fe, CoFe, or CoFeB reported is ~60-70% [150]. Whereas, the spin polarization of 

Heusler alloys is ~100% [153, 154]. Hence, researchers are working on the Heusler 

alloys based spin injection for the futuristic spintronics devices. Among heavy metals 

available, Pt, β-Ta, β-W, or CuBi alloys [138] can be preferred for spin generation due 

to their ability to generate large spin current.  

   To reduce power dissipation due to the charge current required to inject 

spin-polarized electrons into a semiconductor channel, a novel two-switch based 

assembly is incorporated in the architecture for spin generation and injection. The 

spin Hall Effect (SHE) is used to generate spins and non-local spin injection 

facilitates electron spins insertion in the channel. Moreover, a tunnel barrier (TB) is 

sandwiched between nanomagnet and semiconductor channel to reduce conductivity 

mismatch between nanomagnet and semiconductor channel materials.  

3.2.2 Two-Qubit QC Architecture 

A two-qubit architecture is shown in Figure 3.2. It consists of two single-qubit 

structures separated by a semiconductor channel. Barrier B1 is entrenched into the 

channel to control the electrostatics of electrons and facilitates qubit isolation. Two-

qubit operation is performed on Q1 and Q2. G1 and G2 are set to low barrier heights to 

allow two-qubit interaction. The distance between Q1 and Q2 is d12.  

During a two-qubit operation, barriers used for interaction are R1 and R2.  Electrons 

are injected from the side of Q2 into the channel. Electrons traverse through the 

channel from Q2 to Q1 and interact first with Q2 and then with Q1. The sequential 

interaction of flying electrons with Q1 and Q2 performs two-qubit rotation. The two-

qubit interaction depends on distance d12.  
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Figure 3.2 Two-qubit architecture. 

3.2.3 Three-Qubit QC Architecture 

A spin-torque based three-qubit reconfigurable architecture is shown in Figure  

3.3. The architecture consists of three static spin qubits Q1, Q2, and Q3; and barrier 

gates R1-R3, G1-G3, and B1-B2. The pair of R-G barriers isolates or allows a qubit to 

take part in a specified QC operation.  

 

Figure 3.3 Three-qubit architecture. 

The architecture performs elementary single-qubit rotation on any of the 

qubits; and two-qubit operation on any pair of the qubits to realize reversible quantum 

gates. Architecture can be extended to n qubits by adding required number of single 

arms. 
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3.3      Modified Matrix Based Single-Qubit Rotation and Two-Qubit                  

          Entanglement in n-Qubit QC Architecture 

 Spin density matrix as expressed in (3.2) represents spin polarization of 

injected electrons. 

                                             1
ˆ ˆ ˆ[ ]

2
   e x y zI x y z                                                    (3.2) 

where, I, x, y, and z are unitary Pauli spin matrices.  

Hamiltonian for the interaction of injected electrons with the qubit [104] is 

represented as 

                                           
2

0( ) ( )
2 *

     e i Rf l

p
H J S x x x

m
                                     (3.3)

 

where, m* and p are effective mass and momentum operator of an electron, 

respectively, J is hyperfine or exchange interaction, x-x0 represents interaction 

distance, and 
iS  is standard basis matrix representing the ith qubit. The order of 

iS  

matrix depends on the number of qubits that forms overall state space of the 

architecture. This work generalizes the order of Si to 2n+1×2n+1 for the n-qubit 

architecture. 

The overall spin density matrix of n-qubit system is represented as 

                                              
1 2 3

..........   
ns Q Q Q Q                                        (3.4) 

where, 1Q , 2Q , 3Q ,….., and nQ are spin density matrices of Q1, Q2, Q3,…..,and 

Qn, respectively. The order of s  matrix is 2n×2n. For a qubit, the transmission 

coefficient at the reflection barrier [136] is  

                                  
2

4

4 2 ( 2 ( 1) )


     i kd

Rfl s Rfl

t
i V i e       

                            (3.5) 

where, 
 is 2 *m

k
, k is wave vector, is reduced Plank’s constant, 3

( ( 1) )
2 2

  s

J
V s s , 

s =0 and s =1 are for singlet and triplets, respectively. The singlet and triplet 

transmission coefficients are expressed from (5) as 

                                    
2 2

1

1 4 3 12  ( 1)


     
s i kd

t
i x i x e

                                             (3.6) 
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                                              (3.7) 
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where, 


Rf l
x

J

,  J
v

, and v is velocity of the electron. The transmission coefficient 

matrix containing ts and tt, respectively is  
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 
 
 
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t

t
t

t

t

                                                         (3.8) 

and reflection matrix is  r t I , where I is identity matrix. After simplifying (3.8), 

the modified t  is expressed as 

                                
2 2

1

(1 4 ) ( ( 4  ( 1)))


     i kd
t

i x I iS i x e
                                        (3.9) 

For / 0 Rf l J , (3.9) reduces to  

                                                     1
 

 
t

I iS
                                                         (3.10) 

The generalized reflection matrix RF for qubit rotation is  

                                          
1 1 1

1
2 2

02 2 2  



     n n n

i kd i kd

FR r e t I e I R I t                                  (3.11) 

With the help of (3.11), singlet and triplet components of RF  are expressed as   

                                                1 1

2 2






s s

s

s s

a ib
R

a ib
and 1 1

2 2


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
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a ib
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                                   (3.12) 

The terms 
1s

a ,
1s

b ,
2sa ,

2sb ,
1t

a ,
1t

b ,
2t

a , and 
2t

b used in (12) are expressed as  

1

2 2 2 212  + (3   4   24 ) sin(2 ) + 24  sin(4 )  cos(2 ) + 12  cos(4 )          sa x x x kd x kd kd x kd                                                

                                                                                                                                                            (3.13)                                              

2

2 2 21  24  cos(2 ) + 12  + 4  sin( ) 3  sin(2 ) + 12  cos(4 )       sa x kd x x 2kd kd x kd  

(3.14)                                                             

1

2 2 23   4  + (4   3  + 24 ) cos(2 ) 24  cos(4 )  sin(2 ) + 12  sin(4 )           sb x x x kd x kd kd x kd                                       

                                                                                                                                                            (3.15) 

2

2 24   3   24  sin(2 )  4  cos(2 ) +3  cos(2 )+12  sin(4 )         sb x kd x kd kd x kd                   (3.16)                                                          

1

2 2 24   (8 1) cos(2 ) (4  + ) sin(2 )  2  cos(4 )         ta x x kd x kd x kd                           (3.17)                                                          

2

2 2 21 + 8  cos(2 )  4  + 4  sin(2 ) +  sin(2 )  4  cos(4 )       ta x kd x x kd kd x kd                     (3.18)                                                              

1

2 2 4   (8  + 1) sin( ) + 4  cos(2 ) +  cos(2 ) 2  sin(4 )         tb x x 2kd x kd kd x kd           (3.19)    

2

2 24  +  + 8  sin(2 )  4  cos(2 )   cos(2 )  4  sin(4 )         tb x x kd x kd kd x kd                   (3.20) 

Singlet and triplet angles θs and θt  are expressed as   
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The interaction factor α is  

                                                        s t                                                              (3.23) 

Variation in α due to /Rf l J is shown in Figure 3.4.  

There is increase in scattering of electrons due to increase in /Rf l J  that 

results in considerable increase in α. Therefore, the number of electrons required for 

the desired rotation is reduced. The overall fully specified spin density matrix 

representing spin qubit state evolution due to the interaction of injected electron spins 

of spin density matrix 
e  and spin qubit of spin density matrix

s  is 

                                                
†

  
 F e s FR R                                                 (3.24) 

The generalized FSM and partial trace methods realize single-qubit rotation 

and spin qubit state measurement, respectively. In addition, same methods are utilized 

to perform two-qubit entanglement and measurement. The process of sequential 

interaction and reflection changes  iteratively. The quantum collapse occurs during 

qubit state measurement.  

 

Figure 3.4 Interaction factor variation. 

3.3.1 Single-Qubit Rotation 

In this work, to demonstrate a single-qubit rotation, Q1 is selected. The initial 

state of Q1 is set to |S1  = |0   to perform the rotation about x-axis by π/2.  
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It is clearly seen from Figure 3.5 that there is a decrease in number of 

electrons due to increase in /Rf l J . The reduction in number of electrons is due to 

improvement in α (Figure 3.4).  However, the component of spin state along axis of 

rotation deviates from initial value (not seen in Figure 3.5 due to smaller angle of 

rotation i.e. π/2). The deviation in axis of rotation results in decrease in fidelity for 

higher angle rotations. The same procedure can be carried out for any other qubit in 

the architecture. The effect of /Rf l J on product of number of electrons (N) required 

for single qubit rotation and α is depicted in Figure 3.6. The Nα product is equal to the 

desired angle of rotation (θ) for the matrix proposed in [85]. With the help of 

modified matrix proposed in this work, the Nα product is plotted for different values 

of /Rf l J . Though, there is decrease in N, the Nα product is increasing linearly with 

increase in θ due to considerable improvement in α.  

 

Figure 3.5 Single-qubit rotation about x-axis. 

3.3.2 Two-Qubit Entanglement 

Qubits Q1 and Q2 are selected to perform two-qubit entanglement. 

Transmission and reflection matrices for Q1 are 1t and 1r ; and for Q2 are 2t  and 2r , 

respectively. Moreover, barrier R2 on the side of qubit Q2 has reflection and 

transmission matrices bt and br , respectively. The injection side barrier R2 has a barrier 

height of ГInj. The overall reflection matrix 
FR for two-qubit interaction can be 

represented by qubit reflection matrices
1FR ,

2FR , and 
3FR  in cascade at Q1, Q2, and R2, 

Sz1 

Sy1 

Sx1 

0



Rf l

J

 

12



Rf l

J

 



45 

 

 

respectively. The
1FR ,

2FR , and 
3FR  are functions of 

0R ,
1FR , and 

2FR , respectively due to 

sequential interaction.  

 

Figure 3.6 Nα variation. 

In this work, a two-qubit entanglement operation is performed on Q1 and Q2. 

The state evolution of entanglement between two-qubits is obtained (Figure 3.7). 

There is a considerable reduction in number of electrons and  Inj
for the entanglement. 

The entanglement is also called SWAP  gate as it performs half of the SWAP gate 

operation. 

 

Figure 3.7 Two-qubit entanglement.  

The accuracy of two-qubit entanglement depends on average error probability 

(AEP). The AEP based analysis for two-qubit entanglement is carried out as follows. 

The overall reflection matrix at injection side barrier can be represented in the form of 

unitary and non-unitary components as  
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where, a, b, and c represent unitary components while 'c and ''c are non-unitary 

components. AEP [85] are obtained by varying kd and kd12 (Figure 3.8).  There is an 

increase in AEP due to the effect of /Rf l J . The effect of increase in AEP on 

quantum gate operation in terms of fidelity is elaborated in chapter 4.  
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                                                                             (c) 

 
        (d) 

Figure 3.8 Average error probability (AEP) for (a) Kd variation at ΓInj = 0 (b) Kd variation 

atΓInj = 30 (c) Kd12 variation at ΓInj = 0 (d) Kd12 variation at ΓInj = 30. 

3.4      Summary 

Spin-torque based QC architecture is emerging as one of the novel 

technologies to meet scalability challenges due to its intra-architecture spin qubit state 

manipulation. The existing model for spin-torque based QC does not include the ratio 

of reflection barrier height to exchange interaction to the transmission coefficients. 

Therefore, in this work, a modified matrix  is proposed to analyze the effect of ratio of 

reflection barrier height to exchange interaction on electron-qubit interaction, 

deviation of the axis of rotation for single-qubit rotation, and average error probability 

(AEP) for two qubit rotation in a spin-torque based n-qubit reconfigurable 

architecture. 
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Chapter 4 

Elementary Quantum Gates Reduction for the Spin-Torque 

Based n-Qubit Architecture 

4.1    Introduction 

 Conventional and reduced decompositions of quantum circuits are utilized to 

evaluate the performance of complex quantum logic in terms of number of elementary 

gates, gate fidelity, execution time, and number of interacted electrons. The accuracy 

of physical realization of a quantum gate depends on fidelity, that is a measure of 

closeness of spin qubit state at the end of evolution to the desired state. The fidelity is 

expressed as  

                                            
2

)( 




 ddTrf 

                                               
(4.1) 

where, 
d and ρ are the density matrix representing the desired final state of the 

operation and density matrix representing obtained state, respectively. The fidelity is 

required to be more than 99% for fault tolerant QC [155]. 

4.2   Realization of Reversible Quantum Gates 

A reconfigurable simulation platform is presented in this chapter to trace the 

fidelity of complex quantum gates. A complex quantum gate is required to be 

decomposed into elementary quantum gates such as CNOT, SWAP, etc. [156]. For 

the spin-torque based physical realization, quantum circuits representing these 

elementary quantum gates are needed to be further decomposed into a sequence of 

elementary single- and two-qubit operations. The flowchart for n-qubit reconfigurable 

quantum gate operation is shown in Figure 4.1. 
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Measure the qubit state(s)

END
 

Figure 4.1 Flow chart for n-qubit reconfigurable quantum gate operations. 
 

 

From the flowchart, Op is the number of elementary operations required to perform an 

n-qubit quantum gate, and θ is the angle of rotation, ρS  and ρQ are spin density 

matrices representing spin states of qubit and electron, RF is the overall spin density 

matrix, d is the qubit distance between barrier and qubit, d12 is the distance between 

two qubits, and Γ is the barrier height. Here, 1 and 2 are representing any two qubits 

of spin-torque based reconfigurable architecture. N is number of electrons required to 

perform single- or two-qubit operations.  The physical realization and qubit state 

evolution of single-, two-, and three-qubit gates are presented in following 

subsections.  

4.2.1    Realization of Single-Qubit Operations 

Single-qubit gates perform specified unitary operations through controlled 

rotation about a specified axis. Single-qubit gates are NOT, Z, Hadamard, S, T etc. 
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NOT gate flips qubit state and Hadamard gate changes axis of qubit rotation from x-

axis to z-axis and vice versa. Z, S, and T gates perform π, π/2, and π/4 radians rotation 

about z-axis, respectively. The NOT gate rotates the qubit by π radians about x-axis. 

In this work, Q3 is selected to simulate Hadamard gate operation. The gate operation 

is performed in three steps as shown in Figure 4.2. The |S1  , |S2  , |S3  ,…, |Sn  are 

quantum states of qubits Q1, Q2, Q3,…., Qn, respectively. Figure 4.3 and Figure 4.4 

show state evolution of convention and modified Hadamard gates, respectively. The 

Sz1, Sz2, Sz3,…., Szn are z components of states |S1  , |S2  , |S3  ,…, |Sn  , respectively. 

The initial state of |S3  is |1  . 

in

in

in

out

out

out

in out





in out
 

Figure 4.2 Hadamard gate. 

 

4.2.2    Realization of Two-Qubit Operations 

Two-qubit quantum gates work on the following principle: 'If A is true, then 

act on B'. The two-qubit CNOT gate along with elementary single-qubit gates forms 

universal set of quantum gates. The SWAP gate consists of three CNOT gates in 

sequence to perform exchange of spin states of two qubits. Two-qubit CNOT and 

SWAP gates are realized by selecting Q2 and Q3 in n-qubit architecture. In the 

following subsections, realization of modified matrix based reduced CNOT and 

SWAP gates, is presented. 

 

Figure 4.3 State evolution of conventional Hadamard gate. 
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Figure 4.4 State evolution of modified Hadamard gate. 

4.2.2.1 CNOT  Gate  

The CNOT gate is an important component of a QC architecture. The 

conventional decomposition of CNOT gate is shown in Figure 4.5. In addition, for 

higher fidelities there is a need of reduction in number of elementary operations 

through decomposition of CNOT gate to get rid of the obstacles of decoherence at 

circuit level. 
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Figure 4.5 Conventional CNOT gate decomposition. 
 

In [108], identity rules are proposed to obtain optimal quantum gate library for 

different physical descriptions. With the help of quantum gate library and optimal 

gates proposed herein, we have obtained the decomposition for the reduced CNOT 

gate as shown in Figure 4.6.  
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Figure 4.6 Reduced CNOT gate decomposition. 
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The conventional CNOT and reduced CNOT gates have 11 and 7 number of 

elementary operations, respectively. Figure 4.7 depicts evolution of initial state 

|S1S2S3….  = |111….  for modified matrix based reduced CNOT gate, respectively. 

For the reduced CNOT gate, the initial Hadamard operation is represented by the 

rotation of the qubit about y-axis by π/2 in counterclockwise direction. However, final 

Hadamard operation is represented by the rotation about y-axis by π/2 in clockwise 

direction. The result demonstrates that state |S2  initialized to |1   flips state |S3  ; and 

state |S3  remains unchanged for state |S2  initialized to |0  .  

 

Figure 4.7 State evolution of an initial state 111321 SSS  for the modified matrix based 

reduced CNOT gate. 

4.2.2.2 SWAP  Gate 

The SWAP gate consists of three CNOT gates in sequence. First, second, and 

third CNOT gates have qubits Q2, Q3, and Q2, respectively as control qubits. The 

conventional decomposition of the SWAP gate is given in Figure 4.8(a). The reduced 

decomposition of the SWAP gate is given in Figure 4.8(b). 
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(a)  

(b) 

Figure 4.8 (a) Conventional decomposition of SWAP gate, (b) Reduced decomposition of 

SWAP gate 

The SWAP gate evolution of an initial state |10  is shown in Figure 4.9. At the 

end of third stage CNOT gate state evolution, initial states of Q2 and Q3 are swapped 

and of other qubits remain in |0   states.  

 

Figure 4.9 State evolution of an initial state 010321 SSS for the modified matrix based 

reduced SWAP gate.  

4.2.3    Realization of Three-Qubit  Operations  

The three-qubit gates work on the principle: 'If A and B are true, then act on 

C'. Qubits are kept in isolated states except Q1, Q2, and Q3 to perform three-qubit 

gates. 

4.2.3.1 Toffoli  Gate  

The Toffoli gate performs CCNOT operation. In this work, Q1 and Q2 act as 

control qubits and, Q3 acts as controlled qubit to realize three-qubit Toffoli gate. The 

Toffoli gate flips quantum state |S3   if states |S1   and |S2  are in quantum |1  state. 

The conventional decomposition of the Toffoli gate is given in Figure 4.10(a). 

Moreover, the reduced decomposition of the Toffoli gate is presented in Figure 

4.10(b). 
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(b) 

Figure 4.10 (a) Conventional decomposition of Toffoli gate (b) Reduced decomposition of 

Toffoli gate. 
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The evolution of an initial state |111  depicted in Figure 4.11 shows that state 

|S1S2  initialized to |11  flips state |S3  . 

 

Figure 4.11 State evolution of an initial state of 111321 SSS for the modified matrix based 

reduced Toffoli gate. 

4.2.3.2 Fredkin  Gate 

Fredkin gate performs CSWAP operation. In this work, three-stage quantum 

circuit of Fredkin gate is simulated; first stage performs CNOT gate on qubits Q2 and 

Q3; second stage realizes Toffoli gate; and third stage performs CNOT gate on Q1 and 

Q2. For the Fredkin gate, Q1 acts as control qubit, and Q2 and Q3 act as controlled 

qubits. Fredkin gate is also utilized in chapter 6 for the realization of reversible D-

Latch. The conventional and reduced decompositions of the Fredkin gate are shown in 

Figures 4.12(a) and 4.12(b), respectively. The evolution of an initial state |101  is 

shown in Figure 4.13.  The obtained results confirm that the state |S1  initialized to 

|1  changes |S2S3   from |01  to |10  . 
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                                 (a) 

         

                              (b) 

Figure 4.12 (a) Conventional decomposition of Fredkin gate (b) Reduced decomposition of 

Fredkin gate. 
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Figure 4.13  State evolution of an initial state of 101321 SSS for the modified matrix based 

reduced Fredkin gate. 
 

4.3   Performance Evaluation and Comparison    

In this work, the decomposition circuits that consist of elementary operations 

are utilized for both forms of quantum gates i.e. conventional and reduced. Moreover, 

the performance is analyzed based on modified transmission coefficient matrix-based 

conventional and reduced forms of the quantum gates. The elementary operations 

comparison for each of the quantum gates realized in this work is given in Table 4.1.  

Table 4.1: Gate-wise number of elementary operations (Quantum cost) 

Gate Elementary operations Reduction 

(%) Conventional    [108] Reduced 

CNOT  11  7 36.36 

SWAP 33 21 36.36 

Toffoli 79 51 35.44 

Fredkin 101 65 35.64 

The comparison shows that the average reduction in number of elementary 

operations is ~36%. The gate execution time is very important factor from the qubit 

decoherence time. It is observed for reduced forms of the two-qubit and three-qubit 

gates that the average gate execution time is reduced by 10.58%, 13.77%, 14.30%, 

and 12.92% of CNOT, SWAP, Toffoli, and Fredkin gates, respectively.  

The reduction in number of electrons required for realization of quantum gate 

is very significant from the architecture point of view. As depicted in Figure 3.1, due 
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to spin-generation and injection assembly, for Op number of quantum operations, two 

Op switching activities are required. In reduced CNOT gate, number of switching 

activities is considerably reduced due to 36% reduction in number of elementary 

operations in comparison to conventional CNOT. Moreover, it is observed for 

conventional and reduced gates that electrons are further decreased due to increase in 

/ 0 Rf l J  (see Table 4.2). In addition, there is reduction in number of electrons 

required to realize a modified-matrix based conventional gate, existing matrix based 

reduced gate, and modified-matrix based reduced gate by 9.25%, 14.73%, and 

22.64%, respectively in comparison to the first order conventional gates.  

 

 

Table 4.2: log10 (Interacted electrons) comparison 

Gate 
0


Rf l

J  0


Rf l

J  

Conventional    [108] Reduced Conventional Reduced 

CNOT 4.7442 4.6747  4.7027  4.6318  

SWAP 5.2213  5.1519  5.1799  5.1109  

Toffoli 5.5925  5.5236  5.5492  5.4785  

Fredkin 5.7009  5.6319  5.6583  5.5916  

The fidelity variation is comparatively less in case of CNOT and SWAP gates. 

The average gate fidelity comparison of quantum gates is given in Table 4.3. The key 

parameters are given in Table 4.4. The CNOT and SWAP gates have gate fidelity well 

above the fault-tolerant fidelity. However, gate fidelity of modified-matrix based 

Toffoli and Fredkin gates is below the fault-tolerant fidelity that needs error 

correction.  

There is a trade-off between fidelity and reduction in number of electrons for 

the second order form of quantum gates. Existing matrix-based reduced gates have 

higher average fidelity while modified matrix based reduced gates require minimum 

number of electrons. The modified matrix based reduced gates achieve both i.e. better 

fidelity with reduced number of electrons. Moreover, the two- and three-qubit gates 

are realized with the help of single-qubit rotations about y- and z-axes and two-qubit 

entanglement only. Therefore, quantum gate library for the spin-torque based 

architectures is { yR , zR , SWAP}.  
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Table 4.3: Average gate fidelity comparison 

Gate 0


Rf l

J
 0


Rf l

J
 

Conventional  [108] 

(%) 

Reduced 

(%) 

Conventional 

(%) 

Reduced 

(%) 

CNOT 99.86  99.94 99.93 99.92 

SWAP 99.59 99.68 99.51 99.61 

Toffoli 99.04 99.17 98.81 98.72 

Fredkin 98.74 98.96 98.13 98.72 

 
Table 4.4: Parameters used for simulations 

Symbol Parameter Quantity
 

d Distance between qubit Q and barrier 

G 

17.6359 nm 

k Wave number in mesoscopic systems 

for single qubit rotation 

1.7724e8 [157] 

Ω J
v
 

π/16    [108] 

 Inj
 Injection side barrier height for first 

order two qubit entanglement 

100 [108] 

4.4    Summary 

Conventional and reduced quantum gates are compared for existing and 

modified matrices. Performance of high fidelity conventional and reduced quantum 

gates is evaluated with the help of quantum gate library { yR , zR , SWAP}. The 

quantum gates performance is analyzed in terms of number of electrons required per 

gate for the electron-qubit interaction, gate fidelity, number of elementary quantum 

operations per gate, and gate execution time. Reconfigurability is accomplished 

through barrier height modulation to reduce the architecture hardware. It is observed 

that existing model based reduced gates have better fidelity and modified model based 

reduced gates require less number of electrons for the gate realization in comparison 

to other forms of realizations.  High fidelity (~99%) of quantum gates is attained for 

the fault tolerant QC. 
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Chapter 5 

Optimal Quantum Circuits Decomposition of Boolean Logic 

and Reversible D-Latch for Spin-Torque Based Multi-Qubit 

Architecture 

5.1.   Introduction 

Researchers are intensively working on the novel technologies to meet the 

modern computing challenges such as power dissipation and performance [126]. The 

power dissipation is a key issue in applications like internet of things (IoT) [158] due 

to essential ultralow power operations at high speed. According to Landauer’s 

principle [159], loss of information in irreversible process causes heat dissipation. In 

complementary metal oxide semiconductor (CMOS) based modern complex 

computing systems with high density, the heat dissipation is very high due to 

irreversibility. Hence, the alternate ways to realize the computing systems are 

essential to abate the information loss. The reduction in energy loss per bit loss of 

information could mitigate the problem of heat dissipation. However, this energy loss 

cannot go below the thermodynamic limit [160]. The other alternative would be 

utilization of low power and reversible computing [161-176] to circumvent the loss of 

information. The subsequent recourse is more significant in the epoch of transistors 

reaching the size of atom [177] to reduce the overall power dissipation. Therefore, 

with sub-nanometer technology, implementation of the CMOS based reversible 

Boolean logic [178] could resolve the problem of heat dissipation. However, 

challenges still persist as physical devices show the quantum mechanics [179] based 

behavior that affects the performance of metal oxide semiconductor field effect 

transistors (MOSFETs) in sub-nanometer scaled CMOS architectures. Moreover, for 

the large data processing, inherent parallelism of computing architecture is essential. 

Consequently, there is a need to have transpired technologies to engrave the issues 

such as loss of information and efficient quantum mechanics based scalable physical 

architectures. Therefore, the efforts are going on to develop the reversible Boolean 

logic circuits [180] and their modeling for physical implementation. Quantum 

computing (QC) [1] could be the most efficient way to realize the reversible Boolean 

logic due to its fundamental ineffaceable characteristic of reversibility and parallel 
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processing. Moreover, QC operations follow the principle of quantum mechanics 

which is an added advantage to realize them physically at sub-nanometer level.  

Spintronics [127] emerged as a novel technology for the non-volatile memory 

and logic [181] that has tremendous potential for quantum computing [182], wherein 

electron spin can be mapped to the qubit [94]. Several spintronics based models [28, 

129, 131, 136] have been proposed to realize the QC. Recently, a spin-torque based 

QC architecture [108] has been proposed to realize the elementary single and two-

qubit operations. We have developed an elementary quantum gates library {Ry
(θ), 

Rz
(θ), SWAP} for the spin-torque based quantum gates, where Ry

(θ)
, Rz

(θ) are the 

rotations by an angle θ about y-axis and z-axis, respectively; and SWAP  is the two 

qubit entanglement. In this chapter, the quantum gate library is utilized to design the 

optimal decompositions of quantum circuits representing the reversible Boolean 

computing blocks such as ANDR, ORR, XORR, NANDR, NORR, XNORR, half adder 

(HAR), and full adder (FAR) for the modeling of physical realization on spin-torque 

based QC architecture. 

The exponential growth of the semiconductor industry over the years is due to 

the doubling of number of transistors on semiconductor chip every 18 months [183]. 

It results in cost reduction by 25–30% per year with increased complexity. There is an 

increase in power dissipation due to the scaled transistors and metal interconnects. 

The novel nanodevices which could implement the memory and logic on the same 

chip help to improve the speed. The semiconductor industry is facing several 

problems due to the complex computing [184]. The reasons being the transistor size 

reaching the size of the atom and parallel processing is required for the complex 

computing. Therefore, there is a need of alternatives to address these problems. 

Several technologies have been proposed in the past to provide the possible solutions. 

Quantum computing (QC) provides a suitable platform for the complex computing 

applications due to inherent parallel processing [1]. However, the physical realization 

of the quantum computing requires the technology which should imbibe quantum 

computing characteristics. Spintronics is one such technology which is more suitable 

for the quantum information processing due to electron spin analogous to the qubit 

[128]. However, major challenge is to preserve the spin state of the qubits for the 

sequential circuits due to clock cycle based operations. Therefore, in this chapter, we 
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have presented an optimized decomposition of the sequential circuits with the help of 

elementary quantum circuits. For the first time, the optimal decomposition of the 

sequential circuits at the elementary level is presented and realized with the help of 

modified transmission coefficient matrix based model for the spin-torque based qubit 

architecture through the iterative process. The spin-torque qubit architecture facilitates 

the single-qubit rotation and two-qubit entanglement through the interaction of the 

spin polarized electrons with the spin-qubit. The optimal decomposition of the 

sequential circuits reduces the number of elementary operations required for the 

realization of quantum circuits in comparison to the conventional decomposition.    

The chapter is divided into five sections including the introduction. The 

section 5.2 presents the optimal decompositions of the reversible Boolean computing 

blocks. The performance evaluation of reversible computing blocks in terms of 

fidelity and number of electrons required for the realization is presented in section 

5.3. The overview of reversible sequential circuits such as D- Latch, T-Latch, and 

Master-Slave flip-flop is presented in section 5.4. The optimized decomposition of the 

D-Latch and its spin qubits state evolution are elaborated in section 5.5. Finally, 

chapter is summarized in section 5.6. 

5.2.   Optimal Decomposition of Reversible Boolean Computing  

The decomposition of the computing blocks depends on the physical system 

implementing the quantum circuit [185-186]. Therefore, physical machine description 

(PMD) could be different for each of the physical realizations to implement the same 

quantum algorithm [105]. The spin-torque based QC architecture realizes the single- 

and two-qubit decompositions of the quantum circuits. The elementary quantum gate 

library for the conventional decomposition is {Rx
(θ), Rz

(θ), SWAP}. 

The CNOT gate is the basic building block of the reversible Boolean 

computing blocks. Therefore, from the spin-torque based architecture point of view, 

the number of elementary operations realizing the CNOT gate is required to be 

reduced.  

However, post-reduction, the redundant operations are required to be 

removed; and two sequential elementary operations about the same axis are merged as 

single operation through the optimization. Therefore, the quantum circuits 



66 

 

representing the Boolean computing blocks are further optimized as shown in Figure 

5.1. Therefore, this paper considers the conventional, reduced, and optimal 

decompositions of the reversible computing blocks for the performance analysis.  
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(c)  

Figure 5.1 Reversible Boolean gates optimization (a) Removal of redundant single qubit 

rotations  (b)  Single rotation about y-axis by –π (c) Single qubit rotation about z-axis by 7π/4. 
 

The gate-wise number of elementary operations for each of the optimal 

decompositions is shown in Table 5.1.  

Table 5.1: Number of elementary operations 

 

In this work, we have presented only optimal decompositions of quantum circuits 

representing the reversible computing blocks. For the simplicity purpose, a group of 

elementary operations are represented by a functionally equivalent two-qubit module 

(shown in Figure 5.2).  

Computing block 
Conventional 

decomposition 

Reduced 

decomposition 

Optimal 

decomposition 

ANDR 79 51 49 

ORR 101 65 59 

XORR 22 14 12 

NANDR 79 51 49 

NORR 101 65 59 

XNORR 22 14 12 

HAR 90 58 54 

FAR 180 116 107 
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Figure 5.2 Two-qubit module. 

 

The Z, S, S† rotate single qubit by an angle of π, π/2, and –π/2, respectively 

about the z-axis. The optimal decompositions of quantum circuits representing 

elementary two-input XORR, ANDR, and ORR gates are shown in Figure 5.3, Figure 

5.4, and Figure 5.5, respectively. The T and T† gates are single qubit rotations about z-

axis by an angle of π/4 and –π/4, respectively.   
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Figure 5.3 QC based optimal XORR gate. 

 

For the realization of the two-input reversible Boolean gates, the Qubits Q1, Q2, 

and Q3 are employed to perform the quantum operations and remaining qubits are 

kept isolated. The initial quantum states of |S1  , |S2  , and |S3  are represented by 

inputs A, B, and 0, respectively. A quantum NOT gate is required to be added at Q3 of 

each of the gates as shown in Figure 5.3, Figure 5.4, and Figure 5.5 to realize 

reversible XNORR, NANDR, and NORR, respectively. 
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Figure 5.4 QC based optimal ANDR gate. Figure 5.5 QC based optimal ORR gate. 
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Figure 5.6 QC based optimal HAR. Figure 5.7 QC based optimal FAR. 
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Figure 5.8 QC based optimal reversible Boolean logic. 

 

The reversible half adder (HAR) and full adder (FAR) constitute the basic 

building blocks of reversible computing. The optimal decomposition of the HAR is 

shown in Figure 5.6. Similar to the elementary Boolean gates realization, qubits Q1, Q2 

and Q3 are selected to realize the HAR. For the FAR (Figure 5.7), the operations are 

carried out on qubits Q1, Q2, Q3, and Q4. A sequence of reversible Boolean logic 

computing blocks is shown in Figure 5.8 to realize different logic blocks. It requires 

202 conventional decompositions, 130 reduced decompositions, and 120 optimal 

decompositions for the realization. The interconnection of optimal computing blocks 

may need further optimization depending on the redundant elementary operations at 

the interface of the blocks. However, the sequence of reversible Boolean computing 

blocks shown in Figure 5.8 does not need further optimization. 

5.3.    Performance Evaluation of Reversible Boolean Computing 

The performance of reversible Boolean logic computing blocks is evaluated in 

terms of number of switching activities of the transistors T1 and T2 (shown in Figure 

5.9)  to generate and inject the non-local spins into the semiconductor channel for the 

qubit rotation; and fidelity deviation of each of the computing block from the fault 

tolerant fidelity. 
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Figure 5.9 Spin qubit architecture. 
 

In comparison to conventional decomposition, the reduction in number of 

switching activities of the transistors T1 and T2 to realize the optimal decompositions 

of the reversible computing blocks ANDR, ORR, XORR, NANDR, NORR, XNORR, 

HAR, and FAR is 37.97% ,41.58%, 45.45%, 37.97%, 41.58%, 45.45%, 40%, and 

40.55%, respectively. We envision a decrease in power dissipation due to reduction in 

number of switching activities. The state evolution of the computing blocks 

considered for the analysis in this chapter for the second order optimal decomposition 

of respective computing blocks is shown in Figure 5.10 to Figure 5.17, where 1 and -1 

represent the quantum logic states |0  and |1  , respectively.  
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(b) 

Figure 5.10 ANDR (a) Quantum circuit and (b) Spin qubit state evolution. 
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(b) 

Figure 5.11 NANDR (a) Quantum circuit and (b) Spin qubit state evolution. 
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Figure 5.12 ORR (a) Quantum circuit and (b) Spin qubit state evolution. 
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(b) 

Figure 5.13 NORR (a) Quantum circuit and (b) Spin qubit state evolution. 
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Figure 5.14 XORR (a) Quantum circuit and (b) Spin qubit state evolution. 
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Figure 5.15 XNORR (a) Quantum circuit and (b) Spin qubit state evolution. 
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Figure 5.16 HAR (a) Quantum circuit and (b) Spin qubit state evolution. 
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Figure 5.17 FAR (a) Quantum circuit and (b) Spin qubit state evolution. 
 

A comparison of number of electrons required to realize each of the computing 

blocks by first and second order conventional, reduced, and optimal decompositions is 

depicted in Table 5.2. It shows that the second order optimal decomposition requires a 

minimum number of electrons for the computing block realization due to second order 

singlet and triplet transmission coefficients and reduced number of elementary 

operations.  
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Table 5.2: Gate-wise number of interacted electrons  

 log10(Number of electrons interaction) 

First order  
conventional 

First 
order 
reduced  

First 
order 
optimal 

Second 
order 
conventional 

Second 
order 
reduced 

Second 
order 
optimal 

ANDR 5.59 5.56 5.54 5.52 5.56 5.52 

ORR 5.69 5.66 5.65 5.61 5.64 5.58 

XORR 5.03 5.00 4.98 4.95 4.87 4.82 

NANDR 5.60 5.57 5.55 5.53 5.57 5.53 

NORR 5.70 5.66 5.65 5.62 5.63 5.60 

XNORR 5.06 5.00 5.02 4.95 4.92 4.87 

HAR 5.64 5.60 5.60 5.55 5.58 5.54 

FAR 5.92 5.88 5.90 5.84 5.86 5.82 

The average fidelities obtained for reversible computing blocks are shown in 

Table 5.3. There is an improvement in gate fidelity for optimal decomposition of 

computing blocks in comparison to the reduced decomposition. The performance 

evaluation of HAR and FAR circuits is prerequisite to meet the future computing 

challenges. There is improvement in the fidelity of the optimal decompositions in 

comparison to the reduced decompositions. However, there is a considerable 

reduction in fidelity of FAR in comparison to the HAR fidelity for all forms of the 

decompositions due to large number of elementary operations required to realize the 

FAR and needs error correction. 

Table 5.3: Average gate fidelity comparison  

 Fidelity (%) 

First order  
conventional 

First 
order 
reduced  

First 
order 
optimal 

Second 
order 
conventional 

Second 
order 
reduced 

Second 
order 
optimal 

ANDR 99.25 99.04 99.04 99.09 98.88 98.88 

ORR 99.03 98.86 98.89 98.82 98.67 98.70 

XORR 99.76 99.80 99.83 99.70 99.75 99.79 

HAR 99.13 98.95 98.98 98.93 98.75 98.79 

FAR 98.14 98.01 98.07 97.71 97.58 97.65 
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Table 5.4: Parameters used for simulations [108] 

Symbol
 

Quantity
 

kx0 for single qubit rotation   

kx0 for two-qubit entanglement 
2


   

kx12 for two-qubit entanglement   

  J
v
 

16
   

 Inj
for first order two-qubit entanglement 100 

 

5.4.   Reversible Sequential Circuits  

Sequential circuit constitutes an important part of the digital logic. Unlike a 

combinational circuit, its output depends on the present values of the inputs as well as 

the past values of the outputs. In digital circuits, almost all logic devices are the 

mixture of combinational and sequential circuits. The major obstacles in realizing the 

sequential circuits are clock cycle based operation and irreversibility resulting in loss 

of information. According to Landauer's principle, there is heat dissipation due to loss 

of information [159]. For one bit loss of information, the heat dissipation is kT ln 2 

where k and T are the Boltzmann’s constant and temperature, respectively. The 

absence of loss of information represents the thermodynamically reversible system. A 

reversible sequential circuit is one of the possible solutions to avoid the loss of 

information [187]. However, the design of reversible sequential circuits is a 

challenging task for the researchers working in the area of reversible logic design. The 

reason being, the one-to-one mapping of the qubit states in the presence of the clock 

cycles. Moreover, an extra hardware is required for one-to-one mapping. Therefore, 

the major focus is on the reduction of the hardware required to realize the reversible 

sequential logic. In the past, the reversible circuits are realized with the help of the 

transistors. However, the number of transistors required to realize the reversible 

circuits was very huge in comparison to their irreversible counterparts. Several 

designs have been presented for the reversible sequential circuits [188-191]. The 

quantum gates based reversible sequential circuits such as D-Latch, T-Latch, and 

Master-Slave flip-flop [190] are given in Figure 5.18, Figure 5.19, and Figure 5.20, 
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respectively. For the reconfigurable spin-torque based architecture, the reduction in 

number of elementary single-qubit rotations and two-qubit entanglements required to 

realize the Fredkin gate based sequential circuits is necessary. In chapter 4, the 

reduced decomposition of the Fredkin gate is presented. In this chapter, modeling of 

the spin-torque based physical realization of the D-Latch is presented through the 

optimal decomposition.  
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Figure 5.18 Reversible D-Latch. 
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Figure 5.19 Reversible T-Latch. 
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Figure 5.20 Reversible Master Slave Flip-Flop. 
 

The Fredkin gate shown in these figures is a reversible quantum gate. 

Moreover, it is the basic constituent of the reversible gate. The quantum circuit 
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representing the Fredkin gate is shown in Figure 5.21. It is a sequence of CNOT-

Toffoli-CNOT gates. The truth table for the Fredkin gate is given in Table 5.5.   

5.5.   Optimized Decomposition of Reversible D-Latch  for Spin-           

          Torque based n-Qubit Architecture 

The optimization technique to reduce the number of elementary operations is 

presented in [9] as shown in Figure 5.22.  

in
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out
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out
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Figure 5.21 Quantum circuit for Fredkin gate. 

Table 5.5: Truth table for the Fredkin gate 

Input qubit states Output qubit states 

in
S1

 
in

S2  
in

S3  
out

S1

 
out

S2  
out

S3  

  0     0     0     0     0  0  

0  0  1  0  0  1  

0     1  0  0     1  0  

0  1  1  0  1  1  

  1     0  0     1  0      0  

1  0  1  1  1  0  

1     1  0  1  0     1  

1  1  1  1  1  1  
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Figure 5.22 Optimization technique. 

The decomposition of the reversible D-latch is achieved with the help of optimization 

technique (Figure 5.23). 

With the help of optimization techniques, the number of elementary operations 

required for the realization of quantum circuits are considerably reduced. It helps in 

reducing the time required to realize a quantum circuit.  The flowchart for the D-

Latch realization with the help of transmission coefficient matrix based model is 

presented in Figure 5.24. 
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Figure 5.23 Optimal decomposition of reversible D-latch. 
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Figure 5.24 Flowchart for the spin-torque based reversible D-Latch. 
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Figure 5.25 D-Latch state evolution for D=0, E=0, QPRV=0 (RESET). 
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Figure 5.26 D-Latch state evolution for D=1, E=1, QPRV=1 (SET). 
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Figure 5.27 D-Latch state evolution for D=1, E=0, QPRV=1. 
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The present state output is given as input for the next state through the 

iterative process. The state evolution of the three-qubits utilized for the realization of 

the D-Latch is depicted in Figure 5.25, Figure 5.26, and Figure 5.27.  

The fidelity comparison for the first order conventional and second order 

optimal decomposition for each of the 5 cycles is given in Table 5.6. It is observed 

that there is a slight reduction in the fidelity as number of cycles is increasing which 

results in small but incremental error at the end of each clock cycle. Therefore, we 

have approximated the obtained output at the end of each cycle for the error 

correction. The D-Latch with error correction is shown in Figure 6.11. It is observed 

that there is an improvement in the fidelity of the D-Latch. The fidelity comparison 

after the approximation is presented in Table 5.7. Therefore, there is a need of 

additional quantum circuits in feedback path for the error correction.  

Table 5.6: Fidelity comparison without output state error correction 

 

Inputs 

(DEQPRV) 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt.  

000 99.52 99.09 99.29 98.55 99.06 98.07 98.84 97.63 98.62 97.24 

001 98.22 98.83 97.16 98.20 96.12 97.52 95.09 96.79 94.08 96.01 

010 99.01 98.70 98.78 98.09 98.55 97.51 98.34 96.94 98.12 96.40 

011 98.62 98.99 97.55 98.37 96.50 97.74 95.47 97.12 94.45 96.50 

100 99.05 98.44 98.68 97.50 98.67 97.51 98.67 97.51 98.67 97.51 

101 98.51 98.58 98.49 98.58 98.45 98.58 98.42 98.58 98.41 98.58 

110 98.51 98.58 98.51 98.58 98.51 98.58 98.51 98.58 98.51 98.58 

111 98.33 99.09 97.29 98.15 97.29 98.15 97.29 98.15 97.29 98.15 
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Figure 5.28 D-Latch with error correction. 

Table 5.7: Fidelity comparison with output state error correction  

5.6.   Summary 

Semiconductor industry is facing two-fold challenge at sub-nanometer level. 

First, the high power dissipation in irreversible computing architectures due to 

information loss. Second, inability to handle large data due to sequential information 

processing. These issues create obstacles in producing the presumed low power 

complex computing outcomes. The heat dissipation can be reduced by utilizing the 

CMOS based reversible computing architectures. However, these architectures fail to 

Inputs 

(DEQPRV) 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt. 

1st 

order 

Conv. 

2nd 

order 

opt.  

000 99.52 99.09 99.52 99.09 99.52 99.09 99.52 99.09 99.52 99.09 

001 98.22 98.83 98.22 98.83 98.22 98.83 98.22 98.83 98.22 98.83 

010 99.01 98.70 99.01 98.70 99.01 98.70 99.01 98.70 99.01 98.70 

011 98.62 98.99 98.62 98.99 98.62 98.99 98.62 98.99 98.62 98.99 

100 99.05 98.44 99.05 98.44 99.05 98.44 99.05 98.44 99.05 98.44 

101 98.51 98.58 98.51 98.58 98.51 98.58 98.51 98.58 98.51 98.58 

110 98.51 98.58 98.51 98.58 98.51 98.58 98.51 98.58 98.51 98.58 

111 98.33 99.09 98.33 99.09 98.33 99.09 98.33 99.09 98.33 99.09 
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enhance the performance owing to inability to process large data. QC can circumvent 

these problems due to its fundamental ineffaceable characteristics of quantum 

mechanics based reversible computing and parallelism. Spin-torque based physical 

realization is the most suitable platform for reversible computing due to the electron 

spin analogous to the qubit. However, optimal quantum circuits are required to 

physically realize the complex Boolean logic due to spin-qubit decoherence and reduce 

the number of transistor switching activities for the spin generation and injection 

required for the spin-qubit rotation. Therefore, in this chapter, optimal quantum circuit 

decompositions are presented with the help of developed elementary quantum library 

{Ry
 (θ), Rz

 (θ), SWAP} for the spin-torque based QC architecture. The reversible 

Boolean logic performance is analyzed and compared for the conventional, reduced, 

and optimal decompositions on first and second order transmission coefficients based 

spin-torque QC architecture. The results encourage to set a path towards QC based 

reconfigurable complex computing systems in near future. The results presented in the 

chapter show that the Boolean logic computing fidelities satisfy the minimum 

requirement for fault-tolerant operations.  Moreover, the average number of switching 

activities for optimal decompositions is reduced by 36.81% and 8.68% in comparison 

to conventional and reduced decompositions, respectively. We envision the 

considerable reduction in architecture power dissipation due to optimal decomposition 

of the computing blocks. Moreover, these optimal decompositions help to reduce the 

overall execution time of the reversible Boolean computing blocks to improve the 

qubit coherence. Moreover, the multiple Boolean computing blocks can be realized 

simultaneously with different sets of qubits by modulating respective qubit injection 

and reflection barrier heights. 

Quantum computing due to its ability of inherent parallel processing has 

emerged as one of the novel solutions to the complex computing problems. In 

connection with this, several proposals have been given for the quantum circuits 

based design of the reversible combinational and sequential circuits. However, the 

implementation of the reversible sequential logic is challenging in comparison to the 

reversible combinational logic. Spin-torque based reconfigurable architecture is 

emerged as one of the novel technologies to realize the quantum circuits. However, 

the architecture needs the optimized decomposition of the quantum circuits utilized 
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for the reversible sequential logic due to required number of single qubit rotations and 

two-qubit entanglements. In this chapter, the elementary decomposition of the 

quantum circuits representing the reversible D-Latch is optimized with the help of 

elementary quantum library {Ry
 (θ), Rz

 (θ), SWAP}. The number of elementary 

operations required to realize the D-Latch over 5 clock cycles is reduced by 43.56 %. 

The average fidelity of the D-Latch considered for the implementation and analysis at 

the end of each clock cycle is well above 97%. The fidelity is further improved by 

approximating the present state output utilized for the next state input.   
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Chapter 6 

Spin-Torque Based Quantum Fourier Transform 

6.1   Introduction 

Complex computing problems can be solved efficiently by quantum 

computing (QC) in comparison to classical computing [192]. Quantum computers are 

able to efficiently solve the problems such as unorganized data searching [193], 

number factoring [194], counting solution problem [195], hidden subgroup problem 

[196], security of cryptographic systems [197], etc. Moreover, quantum computers 

can perform the operations in polynomial time as compared to the classical computer. 

However, the most critical issue with the QC is its physical realization. At present, the 

physical realization of QC is possible with the help of a classical computer and up to 

some extent by quantum computer. However, the technologies for the physical 

realization of quantum computer are not developed enough to deal with complex 

computing applications; therefore, most of QC based problems are solved on classical 

computers. To get rid of these obstacles, researchers are actively involved in the 

implementation of large scale QC. QC developed rapidly when Shor [17] through his 

algorithm showed that QC based integer number factoring could be performed in 

polynomial time. The integral component of the Shor’s algorithm is Quantum Fourier 

Transform (QFT). From the computing point of view, QFT is one of the most 

imperative computational problems and finds its application in phase estimation 

[119], discrete algorithms [194], interchange of position and momentum states [119], 

quantum key distribution protocol [198], multiparty quantum telecommunication 

[199], and quantum arithmetic [200].  

QFT is physically realized with the help of bulk resonance, atomic, and solid-

state implementations [201, 202]. QFT based on solid-state technologies shows 

enormous prospects to realize the quantum computing at nanoscale. Recently, a spin-

torque based architecture has emerged as one of the novel technologies to realize the 

single-qubit rotation and two-qubit entanglement [119]. However, the number of 

elementary operations required to realize the QC with this architecture is an issue due 

to the quantum circuit decomposition required for the elementary level. Therefore, in 
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this chapter, the optimal decomposition of the QFT and its realization with the 

generalized spin-torque based QC architecture is presented.  

The chapter consists of eight sections including the introduction. Section 6.2 

presents the mathematical treatment for the n-qubit QFT. The decomposition of the 

phase controlled gates used in quantum circuits for n-qubit QFT is elaborated in 

section 6.3. In section 6.4, decomposed quantum circuits are reduced and then 

optimized.  The performance of the three-qubit QFT in terms of output state density 

matrix, magnitude/phase difference and fidelity comparison for the different forms of 

three-qubit QFT, is explained in section 6.5. The Clifford+T gate set based 

implementation of the QFT is presented in section 6.6. Finally, conclusions are drawn 

in section 6.7. 

6.2  Multi-Qubit Quantum Fourier Transform  

The Discrete Fourier Transform (DFT) finds its applications in digital signal 

processing for the conversion of time domain signals into frequency domain. The 

DFT of an n-bit input is given as  
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where, N is the number of samples. However, for the complex signals, in comparison 

to QFT, DFT requires comparatively large time for the time domain to frequency 

domain conversion [1]. Therefore, QFT can be utilized for the time domain to the 

frequency domain conversion. The QFT on n-qubit states is expressed as  
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where, |n    and |k   are the input and output states of the qubits, respectively,  and N 

is the number of qubits. (6.2) is further decomposed as  
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Figure 6.1 Multi-qubit QFT. 
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Based on (6.6), QFT is constructed for n-qubits (Figure 6.1). The quantum circuit for 

QFT consists of Hadamard and controlled phase shift gates [1]. H and R represent the 

Hadamard and controlled phase gate, respectively. A SWAP gate is utilized at the end 
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between successive odd and even numbered qubits, respectively (1and 3, 2 and 4). A 

four-qubit QFT for the unitary operation is represented as   

                                4

1 1 1 1

1 1
   

1 1 1 1

1 1

 
 

 
 
  
 

  

i i
QFT

i i

                                                (6.7) 

6.3   Decomposition of Phase-Controlled Gate for multi-qubit  QFT 

A phase-controlled gate performs an unitary operation U[1] that is represented 

as   

                                                        U A X B X C                                                     (6.8) 

Therefore, the decomposition of phase-controlled gate [1] for (6.8) is shown in Figure 

6.2.  
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Figure 6.2 Controlled unitary gate. 

 

The expressions for A, B, C, and X are given in (6.9), (6.10), (6.11), and (6.12).  

                                      

4

4

0
   

0

 
  
 

 
 
 

 
 

  
 
 

i

i

e
A

e

 

 
                                                 (6.9) 

                                         

4 4

4 4

cos( ) sin( )
4 4

 

sin( ) cos( )
4 4

    
   

   

    
   

   

 
 

  
 
  

i i

i i

e e
B

e e

   

   

 

 

                          (6.10) 



95 

 

                                

2 2

2 2

cos( ) sin( )
4 4

 

sin( ) cos( )
4 4

  
 

  
 
 

i i

i i

e e
C

e e

 

 

 

 
                             (6.11) 

                                                   
0 1

1 0

 
  
 

X                                                 (6.12) 

where, δ, β, and, γ are the phase angles such that the unitary operation U for the phase 

rotation is performed. Matrix X represents the CNOT gate operation.  Therefore, (6.8) 

is modified to, 
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                  (6.13) 

The controlled rotations required in QFT are of the form  

                                 2

2
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0
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                                                                      (6.14) 

The (6.13) is equivalent to (6.14) when δ= -3β, and U is given below 
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                                                 (6.15) 

6.4   Reduction/Optimization of QFT  

The spin-torque based architecture needs further decomposition of the H, R, 

and CNOT into the single qubit rotations and two qubit entanglements. A 

conventional CNOT is decomposed into 11 elementary operations in sequence [108]. 

The Rx, Rz, and SWAP are single-qubit rotation about x-axis, single-qubit rotation 

about z-axis, and two-qubit entanglement, respectively. The matrix representation of 

the SWAP is given in (6.16).  
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                                        (6.16) 

With the help of decomposed CNOTs, Hs, and single qubit rotations, 

conventional decomposition of three-qubit QFT is achieved. For a hundred-qubit 

QFT, the number of operations required is 124050 (Table 6.1) which is very large, 

and will take longer time to perform the QFT. The elementary decomposition of the 

three-qubit QFT is shown in Figure 6.3. 

QFT is optimized further by reducing the number of single qubit operations 

about the same axis at the interface of two quantum gates (Figure 6.4). The 

optimization of QFTs with more number of qubits can be performed with same 

methodology. There is a considerable reduction in the number of elementary 

operations due to optimization (Table 6.1). The number of elementary operations 

required to realize the QFT for their conventional, reduced, and optimized forms up to 

10 qubits is given in this chapter. 
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Figure 6.3 Conventional decomposition of three-qubit QFT. 
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Figure 6.4 Reversible Boolean gates optimization (a) Removal of redundant single qubit 

rotations (b) Single rotation about y-axis by –π (c) Single qubit rotation about z-axis by 7π/4. 

 

The reduction in the number of elementary operations helps in minimizing the 

number of switching activities needed for the spin generation and injection, preserve 

the spin-qubit coherence, and reduce overall switching power dissipation. For the 

spin-torque based QC architecture, the number of operations with the help of quantum 

gate library {Ry, Rz, SWAP} are reduced. Ry is the qubit rotation about y-axis. The 

reduced/optimized decomposition of the three-qubit QFT is shown in Figure 6.5. 

Table 6.1: Number of elementary operations  

QFT 
size 

Conventional  
decomposition  

Reduced 
decomposition  

Optimal 
decomposition  

3 84 55 54 

4 162 106 103 

5 265 175 169 

6 393 261 251 

7 546 364 347 

8 724 484 463 

9 927 621 593 

10 1155 775 739 



99 

 

 

Figure 6.5 Reduced decomposition of three-qubit QFT. 
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The conventional, reduced, and optimized forms of the QFT are realized on 

the spin-torque based QFT. For the representation purpose, the state evolution of input 

state |000  is shown in Figure 6.6.  

 

Figure 6.6 Qubit-state evolution for the input 000 for modified (second order) transmission 

coefficient based reduced/optimized decomposition of the QFT. 
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6.5  Performance Analysis of Three-Qubit QFT 

The performance of the modified (second order) transmission coefficient based 

three-qubit QFT is analyzed based on the reduction in number of electrons required, 

deviation in the qubit states at the output, and QFT fidelity for all possible 

combinations of the input states, and its ability to trace the periodicity. The number of 

electrons required for the QFT realization depends on the number of operations 

involved to perform the QFT; angle of rotation for single qubit operations; and two-

qubit entanglement. There is considerable reduction in the number of electrons 

required for the reduced/optimized forms of the QFT. The magnitude and phase 

difference between conventional, reduced, and optimized forms of the QFT for the 

input |100  are shown in Figure 6.7. Ideally, the respective phase difference and 

magnitude difference should be zero. However, the magnitude difference and phase 

difference between first order conventional and modified (second order) matrix based 

conventional QFTs is large in comparison to other respective magnitude and phase 

differences due to 34.52% more number of operations is required for the conventional 

decomposition; and the effect of the ratio of height of the injection side barrier to the 

exchange interaction on the single-qubit rotation and two-qubit entanglement. 

The expression for the fidelity given in [203] for the model used in this 

chapter is 

                                           
2

22 2

( ) ( )

( )( ) ( )
 d o o

ind o

Tr Tr
F

TrTr Tr

  

 

                                            (6.17) 

where, ρd, ρo, and ρin are desired or, ideal output states spin density matrix, obtained 

states spin density matrix, and input states spin density matrix. The fidelity 

comparison for all forms of the three-qubit QFT is given in Table 6.2. The first order 

conventional, first order reduced, modified (second order) conventional, and modified 

(second order) reduced three-qubit QFTs have the average fidelities of 99.97%, 

99.98%, 99.74%, and 99.90%, respectively. 

The most important aspect of the QFT is periodicity extraction. An input state 

preparation (Figure 6.8a) is required to extract the periodicity of the three qubit QFT. 

Therefore, the input state is prepared (Figure 6.8b) and subsequently QFT is obtained 

for the input as shown in Figure 6.8(c). It is observed that the output density matrix is 

periodic with a period of four for the input of periodicity two. 
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(d) 

 

Figure 6.7 Magnitude and phase difference for the input 000  between (a) first order 

conventional and first order reduced QFT (b) first order conventional and modified (second 

order) matrix based conventional QFT (c) first order reduced and modified (second order) 

order reduced QFT (d) Modified (second order) order conventional and modified (second 

order) order reduced QFT. 

 

Table 6.2: Fidelity for conventional and reduced three-qubit QFT 

Input 
states 

First order 
conventional  

(%) 

Modified 
(second) 

order 
conventional 

(%) 

First 
order 
reduced  

(%) 

Modified 
(second) 

order 
reduced 

(%) 

000
 

99.98 99.81 99.98 99.90 

001
 

99.91 99.92 99.99 99.94 

010
 

99.99 99.86 99.99 99.81 

011
 

99.99 99.92 99.99 99.94 

100
 

99.98 99.86 99.99 99.94 

101
 

99.97 99.93 99.99 99.96 

110
 

99.98 99.81 99.99 99.96 

111
 

99.97 98.82 99.98 99.77 

 

Count 
Count 

Count 

Count 



104 

 

QFT

Input state

preparation 

 

(a) 

 

(b) 

  

(c) 

Figure 6.8 QFT Periodicity estimation for the input state (a) Quantum circuit (b) Periodicity 

2 of the input state (c) Periodicity 4 of the output state. 

 

6.6   Clifford+T Gate Set Based QFT Implementation 

The quantum computation needs a finite gate set to solve the problem of 

efficient approximation. However, there is a limitation on the basic gates sets like 

Count 
Count 

Count 
Count 

Mag. 

Mag. 
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universal Clifford+T gate [204]. Therefore, there is a need of optimized Clifford+T 

gate set based quantum circuits with minimum depth [205]. In this chapter, an 

optimal-depth quantum circuit is utilized to implement the Clifford+T gate based 

three-qubit QFT (Figure 6.9). The number of elementary gates, T-depth, and total 

depth of the quantum circuit is 40, 9, and 32, respectively. The optimal decomposition 

of the Clifford+T gate based QFT is shown in Figure 6.10.  The state evolution of the 

spin-qubit state is shown in Figure 6.11. It is observed from the Figs. 6.6 and 6.11 that 

the respective input and output states are the same. Therefore, it is possible to realize 

the Clifford+T gate set based QFT with the help of spin-toque-based single-qubit 

rotation and two-qubit entanglement model. 

The number of elementary operations required for the three-qubit conventional 

QFT and reduced QFT is 84 and 55, respectively. However, the Clifford+T gate based 

QFT decomposition results in 188 elementary operations. After applying the 

reduction technique, it requires 134 elementary operations to realize the three-qubit 

QFT. 
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Figure 6.9 Clifford+T gate set based QFT. 
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Figure 6.10 A reduced decomposition of the Clifford+ T based QFT. 
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Figure 6.11 Qubit state evolution of the Clifford+T gate set based three-qubit QFT 

for 000 input. 
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6.7    Summary 

Quantum computing (QC) provides an efficient platform to solve complex 

problems such as number factoring and searching. The Quantum Fourier Transform 

(QFT) is an integral part of quantum algorithms for  integer number factoring, phase 

estimation, discrete algorithms, interchange of position and momentum states, 

quantum key distribution protocol, multiparty quantum telecommunication, and 

quantum arithmetic, etc. The theoretical and experimental implementations of QFT on 

various platforms have been proposed by researchers. Spin-torque-based qubit(s) 

manipulation is one of the encouraging solid-state device technologies. However, till 

date, QFT is not realized by spin-torque based QC architecture. In this chapter, the 

spin-torque based architecture has been modeled with the help of optimized 

decomposition of quantum circuits for the QFT. Moreover, an optimal-depth 

Clifford+T gates set based quantum circuit is utilized to implement the QFT. The 

performance analysis in terms of fidelity (>99%), magnitude, and phase difference of 

respective density matrices for different forms of three-qubit QFT, provides a novel 

way of its physical realization. 
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Chapter 7 

Conclusions and Future Scope  

The work presented in the thesis is concluded in this chapter. The modeling of 

single qubit rotation and two qubit entanglement; the reduction and optimization 

techniques to reduce the overall quantum operation time to preserve the spin 

coherence; and implementation and analysis of optimized three-qubit quantum 

Fourier transform (QFT) as an application, are presented in a systemic way in this 

thesis. 

7.1     Conclusions 

The thesis covers the work that is divided in five phases. In first phase, 

modified matrix based single-qubit rotation and two-qubit entanglement are 

performed on reconfigurable n-qubit architecture for the fault-tolerant QC. It is 

observed that interaction between flying electrons and static qubit is improved due to 

the inclusion of the reflection barrier height to exchange interaction ratio to modify 

the transmission coefficient matrix. Moreover, there is reduction in number of 

electrons required for single-qubit rotation and two-qubit entanglement. However, in 

case of single-qubit rotation, the component of spin qubit state along the axis of 

rotation deviates from reference. The deviation is negligble for smaller angles of 

rotation. However, it is observed that impact of deviation on fidelity is high for higher 

angle of rotations. In case of two qubit entanglement, there is increase in AEP due to 

effect of / 0 Rf l J . 

In second phase of the thesis, the work is focused on  performance of high 

fidelity conventional and reduced quantum gates evaluation with the help of quantum 

gate library {
yR ,

zR , SWAP}. It is observed that existing model based reduced gates 

have better fidelity and modified model based reduced gates require less number of 

electrons for the gate realization in comparison to other forms of realizations. 

Performance of reversible Boolean computing blocks in n-qubit reconfigurable 

architecture is analyzed with the help of optimal decompositions in third phase of the 

thesis. The results presented in this work show that the Boolean logic computing 

fidelities satisfy the minimum requirement for fault-tolerant operations.  Moreover, the 
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average number of switching activities for optimal decompositions is reduced by 

36.81% and 8.68% in comparison to conventional and reduced decompositions, 

respectively. We envision the considerable reduction in architecture power dissipation 

due to optimal decomposition of the computing blocks. Moreover, these optimal 

decompositions help to reduce the overall execution time of the reversible Boolean 

computing blocks to improve the qubit coherence. Moreover, the multiple Boolean 

computing blocks can be realized simultaneously with different sets of qubits by 

modulating respective qubit injection and reflection barrier heights.   

The reversible sequential circuits are considered in phase four of the thesis. 

The implementation and analysis of spin-torque based Reversible D-Latch is presented 

in this work. The optimized decomposition is realized through the iterative process for 

the next state output with the help of the modified transmission coefficient matrix. Due 

to the optimal decomposition of the Reversible D-Latch, the total number of 

elementary operations required for 5 cycles is 285 in comparison to the conventional 

decomposition that needs 505 numbers of operations. It is observed that the average 

fidelity of the D-Latch is close to the fault tolerant fidelity due the qubit state 

approximation at the end of each clock cycle.  

In the final phase of the thesis, QFT’s optimal decomposition is achieved for 

the spin-torque based QC architecture with the help of modified (second order) density 

matrix and optimized decomposition of the quantum circuit. Due to the optimization, 

there is a reduction in the number of transistor switching activities and the number of 

electrons required for the realization of the QFT. Moreover, the spin-torque based QFT 

is able to trace the periodicity of the prepared input states of periodicity of 4. The 

important outcome of the analysis is that the fidelity of the spin-torque-based three-

qubit architecture is more than 99%, which encourages utilizing the spin-torque based 

architecture platform for the realization of complex computing applications of which 

QFT is an integral part.   

7.2      Future Scope 

The focus of the work is to have reduced and optimal quantum circuit 

decompositions to preserve the coherence of spin-qubits. However, the experimental 

verification of these circuit decompositions is not concealed in this thesis. Therefore, 

the experimental verification of fidelity and other parameters obtained in this thesis, 
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can be taken up as future work. Apart from this, the several potential problems that 

can be addressed in future as follows: 

1. The challenges are qubit decoherence for realization of complex computing blocks 

and stability and precise control of qubit isolation and manipulation through 

barrier height control. Therefore, timing circuits are required to be developed for 

the effective control of the qubit barrier height so as to realize the sequence of 

elementary quantum operations for complex computing tasks.    

2. The spin injection is an important aspect in designing the spintronics based 

devices. In the spin torque based QC, the single and two qubit operations are 

realized by considering the ideal conditions such as 100 % spin injection, and 

decoherence-free operations. However, in actual, the effect of low spin injection, 

and decoherence on the qubit manipulation are required to be considered to 

analyze the effect on qubit manipulation. 

3.   Unlike the classical Boolean operations, the quantum operations are prone to 

errors. The error correcting codes are bit flip, sign flip, and Shor codes. Therefore, 

the physical implementation of QC should have the ability to realize the error 

correcting codes. Previous models have performed low fidelity quantum 

operations in comparison to the spin torque based models. Therefore, the spin 

torque based high fidelity error correcting codes would be more suitable for the 

fault tolerant quantum computing.   

4.  There are several technologies proposed for the fabrication of the qubits. Therefore, 

fabrication of qubit could be seen as part of work to be done in future. 
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