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Abstract

Controllability of distributed paramecter systems, essentially of dynamical systems
governed by partial differential equations, has evolved into a widely researched topic
in less than three decades. Despite generating a distinctive identity and philosophy
as a part of the theory of dynamical systems, this research field has played a signifi-
cant role in the advancement of the extensive theory of partial differential equations.

In last few decades, control theory has contributed enormously to study of realis-
tic problems of elasticity such as thermoelasticity, acroelasticity, problems depicting
interactions between fluids and elastic structures and real world problems of fluid
dynamics, to name but a few. Such real world problems present new mathematical
challenges. For instance, the mathematical foundations of basic theoretical issues
have to be enriched, along with the development of conceptual insights significant
to the designers and the practitioners. This poses novel challenges that need to be
addressed.

In our present work we focuss on the existence, uniqueness and controllablity
of nonlinear functional differential equations. We use theory of semigroup, cosine
family, measure of noncompactness and fixed point theorems to obtain the results.
The results can be applied to a class of functional differential equations, appearing
in the mathematical models of several phyQical phenomena to which the prototype
of partial differential equations modeling the phenomena, belongs.

The layout of the thesis, containing 10 chapters, is as follows.

Chapter 1 is introductory in nature. The delay differential equations and their
applicz.{tions are discussed. The objective of work done, current status of the field
and layout of the thesis is also presented in this chapter.

Chapter 2 illustrates some basic properties of semigroup theory, cosine fam-
ily, measure of noncompactness, controllability, fractional and stochastic differential
cquations.

In chapter 3 we study a functional differential equation with deviating argument
and ﬁnlitc delay to establish that it is approximately controllable.

The results of this chapter are published as ‘Approximate Controllability of a Func-
tional Differential Equation with Deviated Argument’ in Nonlinear Dynamics and
Systems Theory, Infor Math, volume 14, no. 3, (2014), 265-277.
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In chapter 4 existence of mild solution of a second order partial neutral dif-
ferential equation with state dependent delay and non-instantancous impulses is
investigated. We use Hausdorfl measure of noncompactness and Darbo Sadovskii
fixed point theorem to prove the existence.

The results of this chapter are published as ‘Existence of Solution for a Second-Order
Neutral Differential Equation with State Dependent Delay and Non-instantaneous
Impulses’ in International Journal of Nonlinear Science, World Scientific, volume 18,

n0.2, (2014), 145-155.

Chapter 5 consists of two parts. The first part deals with the existence of mild
solution of an instantaneous impulsive second order differential equation with state
dependent delay. In second part non-instantancous impulsive conditions are studied.
We introduce new non-instantaneous impulses with fixed delays.

The results of this chapter are in revision as ‘Existence of Solution of Impulsive
Second-Order Neutral Integro-Diflerential Equation with State Delay’ in Journal of

Integral Equations and Applications.

In chapter 6 we establish the existence and uniqueness of mild solution and the

approximate controllability of a second order neufral partial differential ecquation
with state dependent delay. The conditions for approximate controllability are in-
vestigated for the distributed second order neutral differential system with respect
to the approximate controllability of the corresponding lincar system in a Hilbert
space.
The results of this chapter are published as ‘Approximate Controllability of a Sec-
ond Order Neutral Differential Equation with State Dependent Delay’ in Differential
Equations and Dynamical Systems, Springer, DOI 10.1007/512591 — 014 — 0218 —
6,(2014).

Chapter 7 is divided in two parts. In the first part we study a second order
neutral differential equation with state dependent delay and non-instantaneous im-
pulses. The existence and uniqueness of the mild solution are investigated via Haus-
dorff measure of non-compactness and Darbo Sadovskii fixed point theorem. In the
second part the conditions for approximate controllability are investigated for the
neutral second order system under the assumption that the corresponding lincar

system is approximately controllable. A simple range condition is used to prove
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approximate controllability.
The results of this chapter are published as ‘Existence of Solution and Approximate
Controllability for Neutral Differential Equation with State Dependent Delay’ in In-
ternational Journal of Partial Differential Equations, Hindawi, volume 2014 (2014),
Article ID 787092, 12 pages.

In chapter 8 we study a fractional neutral differential equation with deviating ar-

gument to establish the existence and uniqueness of mild solution. The approximate
controllability of a class of fractional neutral differential equation with deviating ar-
gument is discussed by assuming a simple range condition.
The results of this chapter are published as ‘Approximate Controllability of a Frac-
tional Neutral System with Deviated Argument in Banach Space’ in Differential
Equations and Dynamical Systems, Springer, DO/ : 10.1007/s12591 — 015 — 0237 —
y, (2015).

In chapter 9 the approximate controllability of an impulsive fractional stochastic

neutral integro-differential equation with deviating argument and infinite delay is
studied. The control parameter is also included inside the nonlinear term. Only
Schauder fixed point theorem and a few fundamental hypotheses are used to prove
our result.
The results of this chapter are published as ‘Approximate controllability of an im-
pulsive neutral fractional stochastic differential equation with deviated argument
and infinite delay’ in Nomlinecar Studies, volume 22, no. 1, 1-16, (2015), CSP -
Cambridge, UK; 1&S - Florida, USA.

In chapter 10 the existence, uniqueness and convergence of approximate solutions
of a stochastic fractional differential equation with deviating argument is established.
Analytic semigroup theory is used along with fixed point approach. Then we in-
vestigate Faedo-Galerkin approximation of solution and establish some convergence
results.

The results of this chapter are accepted for publication as ‘Approximations of Solu-
tions of a Fractional Stochastic Differential Equations with Deviated Argument’ in

Journal of Fractional Calculus and Applications in 2015.
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Chapter 1
Introduction

Delay differential equations reflect dead-time in hereditary systems or aftereffect in
systems with mathematical models containing deviated arguments and differential-
difference equations. Delay differential equations are a class of functional differential
equations (FDEs). A functional differential equation is a differential equation in
which the derivative y/(t) of an unknown function y has a value at time ¢ that is
related to y as a function of some other function at time ¢. A general first-order func-
tional differential equation can be represented as y'(¢) = f(¢,y(t), y(h(t))), where
J and h are some suitable functions. FDEs are infinite-dimensional in contrast to
ordinary differential equations (ODEs), which are finite dimensional. The state may
be defined as a n-vector z(t) in the Euclidean space R in systems modeled by
ODEs. Deviated time-argument attempts to capture hereditary properties. So, in
FDEs the state can no longer be represented by a vector x(t) at discrete time ¢.
Then the state may be represented as a history valued function x; corresponding to
a dead time interval. Unlike ODEs, in case of FDEs originally different solutions
may coincide after some time, unless the uniqueness of the backward continuation
is guaranteed by atomicity property. '

In recent years detailed study of parabolic and hyperbolic partial differential
cquations (PDEs) is done on account of various engineering applications. Such
PDEs arise in the study of several dynamical systems like meteorological models,
reaction-diffusion or convection-diffusion systems, flame propagation, superconduc-

tivity, air pollution etc. As these type of dynamical systems are highly complex,

1



parallel methods play a significant role. The parabolic and hyperbolic (PDEs) can
be reformulated as abstract ordinary differential equations. Thereby, semigroup
theory is used. We refer [19],20],[35],[67],(72], [74],(77],(82],[86],[124],[135],[154] for

details and applications of semigroup theory .

Neutral differential systems are delay systems, involving highest order deriva-
tive of both the unknown quantity and its delayed or deviated part. G01lcra].1y‘
initial boundary value problems undergo investigation by reformulation into initial
value problems in abstract spaces. Such abstract formulations are generally writ-
ten as nonlinear functional differential equations. The initial conditions occur as
essential conditions. The boundary conditions are included in the domain of the
operator and thus appear as natural conditions. Thus certain invariant properties
of a prototype of problems can be studied in constrast to study of any particu-
lar PDE. Neutral differential equations with unbounded delay appear abundantly
as models in problems of mechanical engineering, mathematical biology, clectrical
systems cte. Hence it is a widely studied topic in several papers and monographs
for instance, partial neutral differential equation with infinite delay arise in the
study of conduction of heat in substances exhibiting fading memory, (sce (83]). For
allied applications and more details on neutral differential systems, one may see
[55],(62],[64],(78],[81],(92],[95],[96],{134]. Second order neutral differential systems
often model variational problems in calculus of variation. Some sccond order neu-
tral differential systems represent the dynamics of masses exhibiting vibrations, on
being connected to an electric bar. For more details related to applications of second

order neutral differential equations we refer [54],{105],[118].

Impulsive differential equations appear in systems involving stimulus or in the
simulation of any suddenly perturbed process. Discrete impulses are very small
compared to the whole time span of the process. We refer [43],(50],[(52], [61],[63],[109],
[117],[125],[144],[148],[159] regarding discrete impulses.

In contrast to integer-order, fractional-order derivatives efficiently incorporate
the hereditary properties of various materials with memory. Practical use of con-
trollers of fractional-order occur in servo systems for controlling hard disk drives,

milling of cement, reduction of chaos in electrical circuits, clectronic converters for




control_ling power, composite hydraulic cylinders, irrigation canals, etc. Fractional-
order controllers outperforms the traditional controllers by effectively modeling and
investigating real-world processes. Use of fractional-order dynamics enhances the
precision in modeling the systems. Fractional differential equation occur often in
the study of fractals. Some problems of viscoelasticity can also be modeled by frac-
tional differential equation. They also model problems in seismology. Many partial
differential systems can be reduced to functional differential equations with deviated

arguments, see for instance [73],[88],[115],[145].

Methods based on semigroup theory are quite efficient in the study of infinite-
dimensional control theory, population dynamics, quantum mechanics and trans-
port theory. With the advent of new functional-analytic results semigroup theory
is increasingly used as an alternative to other validated methods. In the context
of complex dynamical systems, limitations to semigroups, in particular, strongly
continuous semigroups, arc prevalent. This naturally gives rise fo cosine families,
integrated semigroups, resolvent families etc. The concept of cosine family is quite
similar to of semigroup theory just as the fundamental theorem of Sova-DaPrato-
Giusti is parallel to the Hille- Yosida-Feller-Phillips thcorem. The above two theo-
rems on the generation of cosine families and semigroups find a common origin in
the Henning-Neubrander representation theorem. Moreover, the classical form of
the Trotter-Kato-Neveu theorem on the convergence of semigroups applies to cosine
families with few modifications. Although, despite these similarities, cosine families

and semigroups are fundamentally different.

Random noise gives rise to fluctuations in deterministic models. Stochastic prob-
lems are more efficient than deterministic ones since they effectively assimilate the
randomness of the system. Results of controllability for abstract systems arc abun-
dantly available in literature (see for details [91],[111],[129],[140],[142],[166],[169] and
references therein), in comparison to fractional stochastic differential systems. We
refer [2],[126],(147],[152],[153],[172],[174] for the study of stochastic differential equa-

tions.



1.1 Motivation of Thesis

Reformulations to abstract forms are possible for a large number of PDEs. The
abstract formulation allows the study of a class of problems rather than just any
individual problem. Thus our results can be applied to the whole class consisting of
those prototype of problems.

Controllability of nonlinear dynamical systems involving deviating argument
had scarcely been studied in literature. Moreover state dependent delay and non-
instantaneous impulses are lately introduced in this century to study various real
world phenomena. The main objective of this thesis is to provide simple sufficient
conditions for the existence, uniqueness, exact or approximate controllability of first,
second and fractional order delay differential systems involving deviating argument
or impulsive conditions. The state may also depict a required future goal apart from
representing any action of the past.

In contrast to ODEs, the controllability of FDEs differ in three fundamental

ways:

(1) In the case of functional models, controllability means to attain a function
(the vector z(t) from time ¢; to time ¢; 4+ h) in contrast to ODEs, where

controllability implies reaching a point at a time ;.

(2) Starting at time ¢1, in the case of lincar systems with no delays, any point which
can be attained at time t, > t; can also be attained at time {1 +a(ta—t1),a > 0.
Whereas, delay differential equations are entitled to the existence of a required,
minimum reaching time. Thus, special kind of indices like class of system,
dclincating the number of units of delays required for attaining the target must
be added besides the usual controllability indices corresponding to reachable

spaces.

(3) The realization and type of the control law is different. The expression of the
state-feedback is u(t) = ((z;), implying the infinite dimension of the controller.
In case of memoryless controls, control law is represented as u(t) = ((x(1)).
Whereas in point-wise delayed controls, control law is represented as u(t) =

C(z(t); z(t — hy)). Here ( is some appropriate function.



These differences motivate us to study the controllability of delay systems. In

[127] the authors studied neutral functional differential equation of the form

%[fr(t)Jrg(t'm(t))] = Az(t) + (Bu)(t) + f(t, z(t)),
2(0) = o, te[0,7] (1.1.1)

Motivated by [127] we try to extend the problem to second order, fractional
order and stochastic case. We also study the effect of non-instantaneous impulses
and state dependent delay along with infinite delay. We also study the case where
the control term is included inside the nonlinear term.

Hernandez [93] studied new class of non-instantaneous impulses in FDEs. We at-
tempt to study another new class of non-instantaneous impulses in neutral fractional
stochastic differential equations.

C.G. Gal [79] investigated an abstract differential equation involving deviating
argument. Specifically the local and global solutions were investigated. He estab-
lished the existence and uniqueness of such solutions.

Pandey et al. [145] investigated a neutral differential equation coupled with
a deviating argument. Analytic semigroup theory was used along with fixed point
approach to cstablish the existence and uniqueness of mild solution. The use of com-
pact and fractional operators, analytic semigroups are prevalent in the investigation
of such systems. Such strict conditions on the operators restrict their applicability.

Benchohra ct al. [52] and Chang [61] discussed the exact controllability of func-
tional systems with impulsive conditions and unbounded delay. However, they as-
sumed . that the inverse of a controllability operator exists. Generally due to the
compactness of the generated semigroup it is not invertible. Hence their method-
ology does not work in infinite-dimensional cases. Moreover it is hardly possible to
apply and check their condition in real world complex systems.

With a different approach Zhou [176] established approximate controllability of
an abstract semilinear differential system. Naito [139] proved that the semilinear
problem in [176] is the approximately controllable, if a range condition on the control
operator is satisfied. Sakthivel et.al. [152] proposed viable results for both stochastic

and deterministic system to be approximate controllable.



Interestingly controllability results for functional differential equation with de-
viated argument coupled with impulsive conditions are not widely available so far.
In an effort to cover this void, we attempt to investigate remote control systems
where values of space variable are dependent on some remote space, by using simple

functions of deviating argument.

1.2 Review of literature

1.2.1 Existence of solution

The literature related to functional differential equations is very extensive. [86] con-
tains a comprehensive description of such equations. Similarly, for additional mate-
rial concerning abstract partial functional differential equations and related issues,
we refer [1],[21],[27],30],[90];{102]. For literaturc related to unbounded delay we re-
fer [92],[94],[95],[101],[108], and for state dependent delay we refer (89],[97],[99),[100].
For details in fixed point theory and inequalities we refer [3],(4],5],[7]. For related
work in second order functional differential equations we refer [25],[28],(34],(38],[161],
[162],(163],[165] and for the case of fractional differential equations we refer [11],[51],
[112],[113]. For methods in approximation of solutions we refer [22],[24],(25],{46],[87],
[125],[128]. Applications in population dynamics, and vibrational problems, and al-
lied fields are available in [12],[18],[23],(26],{29],(47],(48].{58],{103],[104], [130],[131],
[132].

Herndndez et.al. (1998) [95] investigated the existence solutions of a partial
neutral differential equations with unbounded delay. They proved existence of mild
and strong solutions by using strongly continuous semigroup. In (1998) Herndndez
et.al. [94] also proved a result of existence periodic solutions for the same class of
quasi-linear neutral differential equations with unbounded delay.

S. Agarwal and Bahuguna (2005) [8] proved the exact and approximate solutions
of a delay system coupled various types of nonlocal history conditions. The authors
investigated mild, strong, and classical solutions for existence and uniqueness. They
used the method of semidiscretization in time. The authors also proved a result

about the global existence of solutions.



S. Agarwal and Bahuguna (2006) [9] studied a nonlocal neutral differential equa-
tion. The existence of the solutions in a Banach space was proved by using Schauder’s
fixed point theorem.

Herndndez ct.al. (2006) [89] proved the existence of mild solutions for a func-
tional differential equation involving state-dependent delay. Also, Hernandez ct.al.
(2006) [99] proved the existence of mild solutions for the impulsive functional dif-
ferential equations of similar type.

Herndndez et.al. (2007) [98] investigated a neutral differential equation of first
and second order with impulses, using fixed point approach. The authors established
the existence of mild solutions.

Muslim and Bahuguna (2008) [136] proved the existence and uniqueness of so-
lution of a neutral differential equation involving deviating argument using analytic
semigroups theory and fixed point method.

P.Balasubramaniam et.al.(2009) [42] proved the existence, uniqueness and ap-
proximate solutions of a stochastic integro-differential equation. The convergence of
solutions was proved using Facdo-Galerkin approximations.

Tidke et.al. (2010) [160] proved the existence, uniqueness and other properties
of solutions of second order Volterra differential equation using strongly continuous
cosine family, a modified version of contraction mapping principle and an integral
inequality due to B. G. Pachpatte.

Lizhen Chen et. al. (2010) [66] investigated a second-order neutral differential
equation using measure of noncompactness and fixed point theory. The authors
established the existence of mild solutions. The compactness condition on cosine
family was relaxed in deriving the compactness of solution set.

Aihong Li et.al. (2010) [14] established the existence of mild solutions of an
impulsive neutral stochastic integro-differential equation with unbounded delays.
They assumed that an analytic resolvent operator is generated by the undelayed
part. They reformulated it into an integral equation. Sufficient conditions for the
existence of solutions were cstablished by using analytic resolvent operators and
Sadovskii fixed point theorem.

Fang Li (2011) [120] investigated s fractional neutral differential equation with

infinite delay via Kuratowski’s measure of noncompactness. Also the existence of



mild solution of some integro-differential equation was proved as a part of applica-
tion.

V. Vijaykumar ct.al. (2012) [167] proved the global existence of solutions for a
Volterra-Fredholm kind functional integrodifferential equations with impulsive con-
ditions. Assuming the Leray-Schauders Alternative theorem, they established the
global existence of solutions.

Zdzislaw BrzezZniak et. al. (2013) [57] investigated a stochastic NavicrStokes
equations with a multiplicative Gaussian noise. They considered the cquation in
2D and 3D possibly unbounded domains. The unknown velocity and its spatial
derivatives determined the noise term. The existence of a martingale solution was
established. The solution was derived using the classical Facdo-Galerkin approxi-
mation, the Jakubowski version of the Skorokhod theorem. Also, some compactness
and tightness criteria in nonmetric spaces were established. The compactness results
were established using a generalized version of the classical Dubinsky Theorem.

Shengli Xie (2013) [171] investigated a second-order integro-differential system
with unbounded delay and impulsive conditions. The author used the Kuratowski
measure of noncompactness along with progressive estimation approach to establish
the existence of mild solutions '

Sakthivel ct.al (2013) [153] established the existence of mild solutions of an im-
pulsive fractional stochastic differential equation involving unbounded delay. The
authors used fractional caleulus, stochastic analysis, fixed point methods and tech-
niques adopted directly from deterministic fractional equations. Sufficient condi-
tions were derived for the existence of mild solutions. Morcover, the existence of
solutions for fractional stochastic semilinear differential equations involving nonlocal
conditions was established.

Shengli Xice (2014) [170] studied the existence and uniqueness of mild solutions
for an impulsive fractional integro-differential evolution equation with unbounded
delay. The author generalized the existence theorem for integer order differential
equations to the case of fractional order.

Jankowski (2014) [106] considered boundary fractional differential problems with
advanced arguments. The existence of initial value problems was established with

the initial point defined at the end point of an interval. Moreover, nonhomogeneous




linear fractional differential equations were investigated. The existence of solutions
for fractional differential equations involving advanced arguments and boundary val-
ues was proved with the help of a monotone iterative technique. The corresponding
fractional inequalitics were also studied.

Zhang et. al. (2014) [173] considered impulsive differential equations with
fractional-order 0 < ¢ < 1. They proved the formula of solutions used in their
cited papers to be incorrect. The authors formulated and proved a formula for the
general solution of an impulsive Cauchy problem with Caputo fractional derivative
of order lying between 0 and 1. Moreover, the authors established an existence result
for a type of impulsive fractional differential system with special initial value with

the help of fixed point methods.

1.2.2 Controllability

We refer [10],[16],[40],[41],[43],[56],[71],[80],[116] for literaturc on controllability and
related topics

K. Naito (1987) [139] proved the approximate controllability of an abstract semi-
lincar control system The author assumed a relation, that has a simple form. More-
over that can be easily verified in many examples.

Mohan C. Joshi and Raju K. George (1989) [110] established global controlla-
bility of a semilinear system with both Lipschitzian and non-Lipschitzian types of
monotone nonlinearities.

Nandakumaran ct. al. (1995) [143] obtained the partial exact controllability for
a nonlinear system. The authors used semigroup formulation along with fixed point
approach to investigate the nonlinear system.

Dauer ct. al. (2002) [69] investigated the approximate and complete controllabil-
ity for semilinear functional differential systems. Sufficient conditions were formu-
lated and proved for cach of the two types of controllability. The authors removed
the limitation that linear systems with compact semigroup cannot be completely
controllable in infinite-dimensional spaces. The conditions were derived with aid
of the Schauder fixed point theorem in case of compact semigroup and the Banach
fixed point theorem in case of noncompactness of semigroup.

Mahmudov et. al. (2003) [127] investigated a semilinear neutral system to check
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its approximate controllability. The authors used the Schauder fixed point theorem
and some fundamental assumptions on the systems operator. The approximate
controllability of the semilinear system followed from the approximate controllability
of its linear part.

Jin-Mun Jeong et.al. (2007) [107] established the approximate controllability for
the semilinear retarded control system. The authors also derived the equivalent rela-
tion between controllability and stabilizability of the solution for the corresponding
linear control system.

Meili Li et.al. (2007) [122] dealt with the controllability of abstract neutral func-
tional integro-differential systems with infinite delay. The authors used fractional
power of operators and Sadovskii fixed point theorem to prove the results.

Sakthivel et.al. (2007) [149] established the approximate controllability of a non-
linear impulsive differential and neutral functional differential equation in Hilbert
space. The authors used semigroup theory and fixed point approach. For impul-
sive differential and neutral functional differential equations, the authors derived
sufficient conditions for approximate controllability.

R.K. George, A.K. Nandakumaran, and D.N. Chalishajar (2007) [141] dealt with
a nonlinear dispersion system. The authors established cxact controllability of the
system. The two kinds of nonlinearities, such as Lipschitzian and monotone were
used. The exact controllability of the above system with the aid of Integral Con-
tractors, was established. The advantage being the usc of Integral Contractors as a
weaker condition than the condition of Lipschitz.

Sakthivel et.al. (2009) [150] proved the exact controllability of second order
nonlinear impulsive control systems, of certain types. The authors derived sufficient,
conditions for the exact controllability of those type of systems.

Darwish ct. al. (2009) [68] dealt with the existence of controllability available
in literature. They established the fact the trivial modification of those available
results in literature can lead to the control of infinite dimensional systems. The
authors used the complete continuity of the nonlincarity instcad of the compactness
of operators.

P. Muthukumar and P. Balasubramaniam (2010) [138] formulated and proved

the sufficient conditions for the approximate controllability of McKeanVlasov type
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of second order nonlinear stochastic differential equation. At a given time { the
nonlinearities depended on the state of the of the system as well as on the probability
distribution at that time.

Yong-Kui Chang ct. al. (2010) [65] dealt with the global uniqueness of solutions
and controllability of a stochastic integro-differential equation in Iréchet spaces.
The authors used the resolvent operators along with a nonlinear alternative of Leray-
Schauder type theorem in Fréchet spaces due to Frigon and Granas.

Sukavanam et. al (2010) [158] established some sufficient conditions, for
S-controllability of a first order abstract semilinear stochastic control system. The
results were derived by the approach of separation principle.

Sukavanam ct. al. (2011) [157] cstablished the approximate controllability of a
fractional semilincar delay control systems by assuming that the approximate con-
trollability of the linear system. The existence and uniqueness of the mild solution
was also investigated.

Surendra Kumar et. al. (2012) [116] proved sufficient conditions of approximate
controllability of a fractional semilinear delay control systems. The authors also
proved the existence and uniqueness of mild solution of the system. They used
contraction principle and the Schauder fixed point theorem. Some examples were
provided as well.

Sakthivel et.al (2012) [151] dealt with a type of control systems represented by
abstract nonlinear fractional differential neutral equations. The authors established
exact controllability for the fractional differential control systems. The authors
formulated and proved sufficient conditions of the controllability of the nonlinear
fractional systems. The main tool was fixed point analysis. Further, investigation of
controllability for systems with nonlocal conditions was done. The authors proved
the controllability of nonlinear systems by assuming the exact controllability of the
associated linear control systems.

Muslim et. al. (2013) [137] focussed on a control system described by neutral
differential equation involving deviating argument. The authors used semigroups of
linear operators along with Banach fixed point theorem. The authors established
the complete controllability of the deviated system. Further a nonlocal system was

investigated by as an extension of the proved results.
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K. Balachandran et.al. (2014) [36] considered of nonlincar fractional integrod-
ifferential systems involving implicit fractional derivative. Sufficient conditions for
controllability were formulated and proved. The authors used measure of noncom-
pactness together with Darbo’s fixed point theorem.

K. Balachandran ct.al. (2015) [37] investigated the controllability of nonlincar
neutral fractional Volterra integrodifferential systems involving implicit fractional
derivatives. These types of systems were based on a number of problems involving
complex media. The authors derived sufficient conditions for controllability. The

main technique was based on condensing map and measure of noncompactness.

1.3 Organization of Thesis

This thesis contains 10 chapters.

Chapter 1 is introduction.

Chapter 2 gives an introduction to basics of semigroup theory, cosine family,
control theory, measure of noncompact-ness, fractional and stochastic differential
equations.

In chapter 3 we study the approximate controllability of a functional differ-
ential equation with deviating argument and finite delay. Sufficient condition for
approximate controllability is provided by assuming that the linear control system
is approximately controllable. Schauder fixed point theorem is used and the Cj
semigroup associated with mild solution has been replaced by fundamental solution.
The results of this chapter are published as ‘Approximate Controllability of a Func-
tional Differential Equation with Deviated Argument’ in Nonlinear Dynamics and
Systems Theory, Infor Math, volume 14, no. 3, (2014), 265-277.

In chapter 4 the existence of mild solution of a class of sccond order partial neutral
differential equation with state dependent delay and non-instantaneous impulses is
investigated. Hausdorft measure of noncompactness is used. Darbo Sadovskii fixed
point theorem is applied to prove the existence. Also, some restrictive conditions
such as the compactness of the associated cosine or sine operators and the Lipschitz
conditions on the nonlinear functions are replaced by simple and natural assump-

tions. In the last section an example is studied to illustrate the presented result.
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The re$u1ts of this chapter are published as ‘Existence of Solution for a Second-Order
Neutral Differential Equation with State Dependent Delay and Non-instantancous
hnpulsfes’ in International Journal of Nonlinear Science, World Scientific, volume 18,
no.2, (2014), 145-155.

Chapter 5 consists of two parts. The first part deals with the existence of mild
solution of a class of instantaneous impulsive second order partial neutral differential
cquation with state dependent delay. The second part studies the non-instantaneous
impulsive conditions. We use Kuratowski measure of noncompactness. To establish
the existence of mild solution Monch fixed point theorem is applied. We remove the
restrictive conditions on the priori estimation available in literature. The compact-
ness of cosine or sine operators, nonlinear terms and associated impulses are also
not required in this chapter. The noncompaetness measure estimation, the Lips-
chitz conditions, and compactness of the nonlinear functions arc replaced by simple
and natural assumptions. We introduce new non-instantaneous impulses with fixed
delays. In the last section we study examples to illustrate the presented result.
The results of this chapter are in revision as 'Existence of Solution of Impulsive
Second-Order Neutral Integro-Differential Equation with State Delay’ in Journal of

Integral Equations and Applications.

In chapter 6 we establish the existence and uniqueness of mild solution and

approximate controllability of a second order neutral partial differential equation
involving state dependent delay. The existence of mild solution is derived with
the help of Hausdorff measure of noncompactness and Darbo Sadovskii theorem.
Some restrictive conditions such as the eompactness of cosine or sine family and the
Lipschitz conditions on the nonlinear functions are replaced by simple and natural
assumptions. The conditions for approximate controllability are investigated for the
distributed second order neutral system by assuming that the corresponding linear
system is the approximately controllable.
The results of this chapter are published as 'Approximate Controllability of a Second
Order Neutral Differential Equation with State Dependent Delay’ in Differential
Equations and Dynamical Systems, Springer, DOI 10.1007/512591 — 014 — 0218 —
6, (2014).
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Chapter 7 is divided in two parts. In the first part a second order neutral par-
tial differential equation involving state dependent delay and non-instantancous im-
pulses is studied. The conditions for existence and uniqueness of the mild solution
are investigated via Hausdorff measure of non-compactness and Darbo Sadovskii
fixed point theorem. Thus, the assumption of compactness of cosine operators is
removed. The conditions for approximate controllability are investigated for the
neutral second order system with respect to the approximate controllability of the
corresponding linear system in a Hilbert space. A simple range condition is used to
prove approximate controllability. Thereby, the non-singularity of a controllability
operator is not required which was an essential condition in [39]. Since in infinite
dimensional spaces, with compact semigroup the controllability operator is not in-
vertible. Our methodology does not require to find the inverse of the controllability
Gramian operator. Also the associated limiting condition in [69] are removed. Ex-
amples are studied to substantiate the theory.

The results of this chapter arc published as ‘Existence of Solution and Approximate
Controllability for Neutral Differential Equation with State Dependent Delay’ in In-
ternational Journa) of Partial Differential Equations, Hindawi, volume 2014 (2014),

Article ID 787092, 12 pages.

In chapter 8 a fractional neutral differential equation with deviated argument is
investigated. The existence and uniqueness of mild solution is proved by applying
Banach contraction principle. We removed additional eonditions of compactness of
semigroups or nonlinecar functions, analyticity, uniform boundedness. We also in-
vestigate a fractional neutral differential equation involving deviating argument to
establish its the approximate controllability. A simple condition on the range of a
operator is used. Therefore assumption of nonsingularity of controllability operator
removed. Since in infinite dimensional spaces with compact semigroups, the control-
lability operator is not invertible. Our methodology does not require to find inverse
of the controllability Gramian. We also remove requirement to verify the associated
limiting condition. An example is also presented. |
The results of this chapter are published as ‘Approximate Controllability of a Frac-
tional Neutral System with Deviated Argument in Banach Space’ in Differential

Equations and Dynamical Systems, Springer, DOI : 10.1007/512591 — 015 — 0237 —
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y, (2015).

In chapter 9 the approximate controllability of a fractional impulsive stochastic

neutral integro-differential equation with deviating argument and infinite delay is
studied. The control parameter is included in the nonlinear term as well. Only
Schauder fixed point theorem and a few fundamental hypotheses are used to prove
our result. The assumption of the existence of the inverse of controllability oper-
ator is not required. This removes the limitation in infinite-dimensional space of
the nonexistence of the inverse incase of compact semigroups. Lipschitz continuity
of the nonlinear function is replaced by simple assumptions. An example is also
studied.
The results of this chapter are published as ‘Approximate controllability of an im-
pulsive neutral fractional stochastic differential equation with deviated argument
and infinite delay’ in Nonlinear Studies, volume 22, no. 1, (2015), 1-16, CSP -
Cambridge, UK; [&S - Florida, USA.

In the chapter 10 the existence, uniqueness and convergence of approximate so-
lutions of a stochastic fractional differential equation with deviating argument is
established. Analytic semigroup is used coupled with fixed point approach. Then
we consider Facdo-Galerkin approximation of solution and prove some convergence
results. We also study an example to illustrate our result.

The results of this chapter are accepted for publication as ‘Approximations of Solu-
tions of a Fractional Stochastic Differential Equations with Deviated Argument’ in

Journal of Fractional Calculus and Applications in 2015.



Chapter 2
Preliminaries

In this chapter, some basic definitions, lemmas and theorems are recalled. This
chapter has six sections. In scetion 2.1 some faets about operators defined on Banach
space are given. In section 2.2 introduction to semigroup theory is given briefly. In
section 2.3 some facts about control theory are discussed. In seetion 2.4 some basic
facts of fractional calculus and literature, related to the fractional order systems are
illustrated. In section 2.5 some basic definitions of measure of noncompactness are

given. In section 2.6 some basic facts of stochastic analysis are presented.

2.1  Basic concepts of Banach Space

Suppose X and ¥ to be the Banach spaces equipped with the norm || - ||x and || - ||y,
respectively. We denote by £(X, Y ) the space of all bounded lincar operators from
X to Y with the operator norm denoted by ||+|| z(x,vy and we may write simply £(X)
and ||||z(x), when X = Y. If Ais alinear operator in X, then D(A), N(A), and R(A)
denote the domain, null space and range space of A, respectively. The notations
a(A), p(A) stand for the mean spectrum and resolvent set of A, respectively and
R(A, A) := (M — A)™! denotes the resolvent operator of A.

Let J = (a,b) with —0o0 < a < b € co. Then, L?(J, X) represents the Banach

space of all Bochner-measurable functions F': J — X with the following norm

|Fllsizsg = { / |
oF

|Fller(g.x) = sup||F(t)|lx, p=oo.
teJ

F(s)|ds)?, 1< p< oo,

17
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Gronwall’s inequality: Let F' and G be the non-negative continuous functions and

for cach t >ty and a constant 8. Then the inequality
F(t) < B+ f G(s)F(s)ds, t>to, (2.1.1)
to
implies the following inequality
F(t) < ﬁexp(f lsjdd), 15k (2.1.2)
to

Furthermore, the notations C(J, X) and C™(J, X) stand for the spacc of all con-
tinuous and m-times continuously differentiable functions, respectively. The space
C§°(R, X) consists of all infinitely differentiable functions with compact support.
Set J = [0,T], T > 0. Then, C(J,X) and C™(J, X) denote the Banach spaces with
equipped with the norm denoted by

FH (D)o, (2.1.3)

IFlle = supl[F(Dllx, N Fflom =sup > |
teJ G

respectively.

Definition 2.1.1. [175) Let I = (0,T), or I =R",or I =R, m €N and 1 < p < c0.

The Sobolev spaces W™? is defined as

m-—1 k
Wm™P(I,X): = {F:there exists z € LP(I, X): F(t) = ZCkL
= k!
tm—l
+m*z(t), tel}. (2.1.4)

Note that z(t) = F™(t), ¢* = F¥(0). Also
WP (I, X) == {F e W™?(I,X): F*¥(0)=0, k=0,1,--- ,m—1}.  (2.1.5)

It is clear that F € Wy"P(I, X) if and only if ' = Trrr:——ll)' *z(t) for some z € L*(I, X).

Now, some basic definitions and theorems which will be used throughout this

thesis is provided.

Definition 2.1.2. Let X and X be the Banach spaces. A mapping [ : X — X is

said to be Lipschitz continuous if there exists a constant [ > 0 such that

1f(z1) = f(z)llz <z — 2]

X, for all 21, 29 € X. (216)
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Definition 2.1.3. A function f : X — X is said to be a Holder continuous if there

exist nonnegative real constants K and a such that
|f(21) = f(22)|lg < K||z1 — 22| for each 21,2, € X. (2.1.7)

The number a is known as the exponent of the Holder condition. The function
satisfies a Lipschitz condition, when a = 1. If @ = 0, then the function simply is
bounded.

Definition 2.1.4. The family of functions § = {f € § such that f: X — )ﬂf} is said
to be equicontinuous at a point zy € X if for every ¢ > 0, and every f € § there

exists a & > 0 such that
|f(20) = f(2)llg < €V 2z with ||z — z||x < 4. (2.1.8)

Definition 2.1.5. Let X be the Banach space and F' : X — X be a nonlinear

operator. Then each solution of the equation
F{a)=g, 2e€ X (2.1.9)

is called the fixed point of operator F'.

Definition 2.1.6. A mapping I from a subset M of a normed space X into X is

called a contraction mapping in there exists a positive number k < 1 such that
|F(z1) — F(z2)|| < k|21 — 2o for all z1,2 € M. (2.1.10)

Theorem 2.1.7. (Banach fixed point theoremn) Let N be a closed subset of a Banach
space X and let IV be a contraction mapping from N into N. Then, there exists a

unique z € N such that F(z) = z.

Definition 2.1.8. Let X and X be normed linear spaces. An operator T : X — X
is called compact if it maps every bounded subset of X into a relatively compact

subset of X.

Theoremn 2.1.9. (Arzela-Ascoli theorem:) Assume that K is a compact set in R", n >
1. Then, a set B € C(K) 1s relatively compact in C(K) if and only if the functions

in B are uniformly bounded and equicontinuous on K.
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Theorem 2.1.10. Let X and X be normed linear spaces. A lincar operator T': X —
X is compact iff it maps every bounded sequence (z,) in X onto a sequence (7'(2,.))
in X which has a convergent subsequence.

Theorem 2.1.11. (Schauder’s fixed point theorem:) Let M be a convex compact sct

in a Banach space X and mapping 7 : M — M is a continuous map. Then T has a

fixed point.

Theorem 2.1.12. (Schaefer’s fixed point theorem:) Let X be a Banach space and

T : X = X to be a continuous compact mapping. Whenever the set
M= | J{yeX:iy=2T(y)} (2.1.11)
0<A<1
is bounded, T has a fixed point.

Note that the Schaefer's fixed point theorem is version of Schauder’s theorem.

Sometimes it is known as the Leray-Schauder principle.

Lemma 2.1.13. [53] Let X be Hilbert space and X;, X3 be closed subspaces such
that X = X; + Xs. Then there exists a bounded linear operator P : X — Xs such
that for cach z € X, &1 = 2 — Pz € X, and ||z1]| = min{lly| : v € X1, 1 -Q)(¥) =
(1 — Q)(z)} where Q denotes the orthogonal projection on Xa.

2.2 Semigroup Theory and Cosine family

Suppose that X is a complex Banach space. Suppose A to be a closed linear operator

dense in X. Assume that D(A) is associated with the graph norm of A that is,

lyllpeay = llyllx + l|Ayllx. Since A is closed, therefore, D(A) is a Banach space,

continuously and densely embedded into X.

Definition 2.2.1. [146] The one parameter family {S(t)}>0, of bounded linear op-
erators from Banach X into itself is called a semigroup of bounded linear operators

on X if the following conditions hold;
(1) 8(0) = I, where I is the identity operator on X.

(2) S(t+s) =S8(t)S(s) for every t,s > 0.
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Definition 2.2.2. A semigroup {S(t)}.>0 of bounded linear operators on X is said

to be a strongly continuous semigroup or Cy semigroup if

ltigl S(t)x =z, forevery z € X. (2.2.12)

Definition 2.2.3. The semigroup {S(t)}¢>o of bounded linear operators is said to be
a uniformly continuous semigroup if lim; g || S(t) — I|| = 0.
Definition 2.2.4. The infinitesimal generator of a semigroup of bounded linear op-

erator {S(¢)}i>0 on Banach space X is a linear operator A on X defined as

Az =1lim ~—~—-——|l 0K e
£—0

, for z € D(A), (2:2:13)
whenever this limit exists. The domain of A denoted by D(A) defined as

P(4) = {ze X: oAb UkdmNa cxists}. (2.2.14)

A
t—0 t

Remark

1 Suppose A to be the infinitesimal generator of a Cy-semigroup {S(¢)}io.

Then, D(A) is dense in X and A is a closed bounded lincar opecrator.

2 Let S(t) be the Cp-semigroup. Then, there exist constants 6 € R and M > 1
such that

IS(B)|| < Me®, forall t>0. (2.2.15)

3 If § = 0, then, S(¢) is called uniformly bounded semigroup. Morcover, if

M =1, then S§(¢) is called Cy-semigroup of contractions.

4 The generator of the semigroup S(¢) is unique.

Theorem 2.2.5. Suppose S(¢) to be a uniformly continuous semigroup (Cy—semigroup)

of bounded linear operators defined on X which is generated by A. Then,
(1) |IS(2)]| is bounded on every finite subinterval of [0, o),

(2) for cach z € X, limy_y0 ¢ f:H‘S(s)zds =uS(t)z,
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(3) forall z € X, fn s)zds € D(A) and

f S(s)zds) = S(t)z — =, (2.2.16)
(4) for z € D(A), 5(t)z € D(A) and
£5(0)z = AS(1)z = 54z, (2.2.17)
(5) for all = € D(A),
S(t)z — S(s)z = / STV = / 7 7 R (2.2.18)

(6) if wo = infy50(2 log [|S(4)]]), then wy = limy o0 (5 log |S(1)]]) < o0
(7) for all w > wyp, there is a constant M,, such that [|S(t)|| < M,,e™* for all t > 0.

The constant wy is known as the growth bound of the semigroup.

For a linear operator A (not always bounded) in X, the resolvent sct p(A) of A
consists of all complex numbers A such that AJ — A is invertible. The resolvent of
A is a family R(X\, A) = (AT — A)~', X € p(A) of bounded linear operators which
plays an important role in the application of semigroup. For the resolvent operator
R(X, A) of the generator A of a Cy-semigroup, we have the following result which

shows that the resolvent operator is just the Laplace transform of the semigroup.

Lemma 2.2.6. Let S(t) be a Cy-semigroup with infinitesimal generator A and growth
bound wy. If Re()\) > w > wy, then A € p(A), and for all y € X the following results
hold:

(a) R(A Ay = (M — A)ly = [[CeMS(t)ydt and ||R(A, A)|| < 2; = Re());

e w; L
(b) For all y € X, limg,oo(B] — A)~'y =y, where 8 is constrained to be real.
In 1948, Hille and Yosida established an result known as Hille-Yosida Theorem

which plays an important role in the theory of semigroup of bounded lincar opera-

tors.
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Theorem 2.2.7. [146] (Hille-Yosida Theorem) A necessary and sufficient condition
for a closed lincar densely defined operator A on a Banach space X to be the
infinitesimal generator of a strongly continuous semigroup S(¢), ¢ > 0 on X is that
there exist real numbers M and ¢ such that every real A > 4 belongs to the resolvent
set of A and for such A and

||R(A,A)’“|| < (A—%-k-,v kE>1, (2.2.19)

where R(X, A) = (A — A)~! denotes the resolvent operator of A.

Theorem 2.2.8. Let U be a bounded linear operator. If ||U|| < v, then
1 v+ico

€ St M — U) ld). (2.2.20)

O S ino

The convergence in (2.2.20) is in the uniform operator topology and uniformly in ¢

on bounded intervals.

Theorem 2.2.9. Let A be a lincar operator dense in X which satisfies the following

two conditions:
(1) X, =A{): larg)| < § + p} U{0} € p(A); for some 0 < p < 7/2;
(2) There is a constant M such that

A= A)"" < A

|/\|, for AEZ and A > 0.

Fe

Then, A generates a Cp-semigroup S(t) fulfilling [|S(¢)|| < N, where N is a positive

constant and
1
S(l) = — / e”‘()sf — A)_ld)n
'l'__

2me
Here F is a smooth curve in ), starting from coe™* to coe® for some 6 € (m/2, m/2+
§), with the integral converging in uniform operator topology.
Definition 2.2.10. Let 3, = {A € C' : |arg\| < 0} U {0} for 6 € (0,7/2]. The family
the bounded linear operators S(t), z € )y, defined in Banach space X is said

to be analytic semigroup if
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(i1) S(z* + 2**) = 8(2*)8(2**), for each 2%, 2** € ) ,;
(271) the map z — S§(z) is analytic in ) ,;
(iv) lim, ,0S(z)y=yforally€ X and z € Y, 0<8 <.
Moreover, if
(v) [|S(2)|l is bounded in 3", for all 0 < 6’ < 0.

Then, S§(z), z € Zau{u} is called a bounded analytic semigroup.
We also have the following results

Theorem 2.2.11. Let A be a lincar opcrator dense in X. Then, the following hy-

pothesis are equivalent.

(£) A is the infinitesimal generator of a bounded analytic semigroup 8(z), z €

> ougoy on X.

(i1) 39 € (0,7/2) such that the operator e*™ generates strongly continuous semi-

groups on X.

(¢92) A is the infinitesimal generator of a strongly continuous semigroup S(t). { > 0

on X such that arg(S(t)) € D(A), for each ¢ > 0 and

M = sup [|tAS(¢)| < oo. (2.2.21)
t>0

(iv) A is the infinitesimal generator of a bounded strongly continuous semigroup

S(t), t 2 0 on X and there exists a positive constant C such that

|R(r + is, A)|| < gl-, ¥V r>0 and 0#s€ R. (2.2.22)

Cosine family
The family {C(t) : ¢ € R} in B(X), the space of all bounded linear operators, is

called a strongly continuous cosine family if the following conditions are satisfied:
(a) C(0) =TI (I is the identity operator in X);

(b) C(t+s)+C(t—s)=2C(t)C(s) for all t,s € R
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(¢) The map ¢ — C(¢)z is strongly continuous for each z € X.

{S(t) : t € R} is the strongly continuous one parameter family of sine operators
associated to strongly continuous {C(t) : ¢ € R}. Further S(t)z = jo" C(s)zds, z €
X, t € R. We refer books by Goldstein[84] and Fattorini[75] for further study.

The definition of abstract phase space B as introduced by Hale and Kato, is

given as follows

Definition 2.2.12. [85]: Let B be a linear space of maps from (—oo,0] into X en-

dowed with the seminorm ||.||ss and satisfying the following conditions:

(A) Ifx: (—o0,0+a] = X,b > 0, such that 2, € B and &|s,p4q) € C([o, 0+a] : X),
then for all ¢ € [o,0 + a) the following conditions hold
(i) z, € By
(@) |zl < Hllzells,
(i61) ||2e)lm < K(t — o)sup{llz(s)]| : o < s <t} + M (L + o)z, |8,
where I is a positive constant K,, M, : [0,00) — [1,00), K, is continuous;

M, is locally bounded and H, K,, M, are independent of z(.)

(B) The space B is complete. Then 98 is said to be abstract the phase space.

2.2.1 Fractional Powers of Operators

For the operator A for which —A generates an analytic semigroup S(t), one
can define fractional power of A. In particular, we assume that A is densely defined
closed lincar operator for which

+

Z ={A:0<v<|argh| <7m}UU, (2.2.23)
where U denotes a neighborhood of zero, and
1RO A < =2 for A i (2.2.24)
' 14 A ' o

For v = w/2 and M = 1, —A generates a Cp-semigroup while for v < /2, —A
generates of an analytic semigroup.

For an operator A with condition (2.2.23) and (2.2.24), one can define negative
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fractional powers 0 < a < oo by the formula
1 1 & _ 2
e o [ RO = 5 [ema—ena (2.2.25)
r 271 r

2me
where T' denotes the path starting in the resolvent of A from coe™ to ooet? for
v<@<mie, ' =T;UT,, where I} = [gexp(if) : 0 < o < o] and 'z =
[oexp(—if) : 0 < p < o0], avoiding the negative real axis and the origin and x ¢ is
positive for real positive values of x. For a > 0, the operators A™* are bounded due
to convergence of the integral (2.2.25).

By definition of A~%, the operators A~® form a semigroup
ABA = A7B) = A2 A8 for o, B >0, (2.2.26)

and there is a constant C such that for a € [0,1], ||A™®|| £ C. Morcover, let us
assumc that A satisfies the (2.2.23) and (2.2.24) with v < /2. Then,

A= A" for/ e A

If o =0, we get A* ="F

Theorem 2.2.13. [146] Let — A be the infinitesimal generator of an analytic semigroup
S(t) and 0 € p(A). Then,

(i) for a >0, S(1) : X = D(A%) for every ¢ > 0;
(i1) S(t)A%z = A*S(t)z for cach z € D(A%);
(#42) for ¢ > 0, the operator A°S(t) is bounded and
|AXS(t)|| < Mt=%e™%, for 6> 0,
for some constant M, which depends on o;
(iv) for @ € (0,1] and z € D(A?),

IS@)z — 2]l < Catel|A%]. (2.2.27)

2.3 Basic Concepts of Control Theory

Suppose a spaceship is to dock at the international space station. Is therc atleast
one control strategy to manoeuvre the spaceship to dock? This is the controllability

question.
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2.3.1; Finite dimensional control systems

A lincar nonautonomous linear control system can be represented by

d{;%) = Ax(t)a(t) + Bt)yu(t), bb<t<T
o) = = (23.1)

where fo, T are two real numbers and A(t) and B(t) are matrices of order n x n and
n x m respectively. For all ¢ € [to, 7] 2(t) € R" is known as the state of the system,
u(t) € R™ is called control. Let L?([tp, 7]; R™) and L?([to, 7]; R™) be function spaces
to which x(.) and u(.) belong.

The mild solution of (2.3.1) is given by

x(t) = o(t, to)xo + / d(t, s)Bu(s)ds

where ¢(t, s) is called the state transition matrix, since it relates the state at any
time ¢y to the state at any other time ¢.

Remark The control « which steers the initial state zg to the final state z, need
not be unique. If zp and w, belong to a subset of R™ then the resulting controllability
is called local controllability.

The set of all points to which the initial state zy can be steered in time 7 is

called the reachable set
K; = {z(r) e R*: z(.) is the solution of (2.3.1)}

The lincar system (2.3.1) is said to be controllable over the interval [to, 7] if the

reachable set K cquals to the whole space R™.

Definition 2.3.1. The controllability matrix of (2.3.1) G : L?([to, 7]; R") — R" is

defined as
t
Gu:/ @(7, 8)B(s)u(s)ds.
to

Definition 2.3.2. The controllability Grammian matrix W[ : R" — R" is defined as

t
W&uz/ @(,s)B(s)B*(s)¢™(r, s)ds.
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Clearly the controllable Grammian matrix is a symmetric matrix of order n x n.
Autonomous System: If the entries of matrices A and B are constants then the
system is said to autonomous. The solution of the autonomous system is given by

L
z(t) = e/‘(tﬂtu)xo +/ e/‘("_")Bu(s)ds

to

Theorem 2.3.3. [45] The linear control system (2.3.1) (autonomous or nonautonomous)

is controllable iff the controllability Grammian matrix is invertible.

2.3.2 Infinite Dimensional Control Systems

Infinite dimensional control systems is a widely researched field with emphasis on
delay control systems. The two basic concepts can be distinguished namely exact
controllability and approximate controllability.

The mathematical model of an infinite dimensional linear control system can be

written as
dz(t

—

= Az(t)z(t)+ B(t)u(t), txc <t <7
£ty = | o (2.3.2)

where the state z(f) of the system at time ¢ takes values in a Banach space V.
The control function u(t) takes valucs in another Banach space V. The operator
A: D(A) CV — V is aclosed, linear and densely defined operator. BV — V is
a bounded linear operator.

z(t) =T(t — to)zg + ft; T(t — s)Bu(s)ds is the mild solution of (2.3.2).
Definition 2.3.4. The system (2.3.2) is said to be approximately controllable if for all
¢ > 0 and two initial and final points xy, z, respeectively, there exists an admissible
control u(t) on [lo, 7] steering x, along a trajectory (mild solution) x(t) of (2.3.2) to

an e— neighbourhood of z, such that
[z(T) =z <€

If e = 0 the above definition gives exact controllability of system (2.3.2).

Definition 2.3.5. For system (2.3.2) the controllability map G : Ly([te, 7]; V) — V
is defined as

Gu = [L T(r — s)B(s)u(s)ds.
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Definition 2.3.6. The controllability Grammian map is defined as
t
Wiu= / T(r — 8)B(s)B*(s)T* (7 — s)ds.
to
Theorem 2.3.7. [45] The system (2.3.2) is approximately controllable iff W is pos-
itive definite.

In (1977) Triggiani [164] proved that if A generated a compact Cy semigroup T'(t),
then the linear system can never be exactly controllable in an infinite dimensional

space.

2.4 Basic Concepts of Fractional Calculus

There are two main approaches for defining a fractional derivative. One is through
Mittag-Leffer functions and the other approach generalizes a convolution type rep-
resentation of repeated integration. The Riemann-Liouville and Caputo definitions

take this approach. Now we consider the few definitions of fractional calculus.
Definition 2.4.1. [114] The Ricmann-Liouville fractional integral of order a > 0, of

the function F': R — X is defined by

%1 (b w08) 21 F 5)
RJI*FE :/ LF———«—afs, for ¢ > 0, 2.4.3
t ( ) y 1—\(&) ( )

where I € L'(R*,R) and J? = /. We can write

JAF(1) = ga() 5+ P(D), (24.4)
where g, is defined as
T TS0
Ta)’
ga(T) = (2.4.5)
0, t<0

and % denotes the the convolution of functions, defined on R or R*:

400
(o = ] dalt — $)F(s)ds, t €R, ga € L'(R), F € L*(R, X),

o0

t
(o % F)(t) = / Galt — 8)F(s)ds, ¢ €R*, go € L'(RY), F € L'(R*, X).
0
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Definition 2.4.2. The Riemann-Liouville derivative of order «, of the function F is
defined as
BRpEF) = D ;’m_“F(!)

B f(t mee-lpig)ds, ¢ >0,  (2.4.6)

F(m — ) dt™

form—-1<a<m meR where D* = g;, F e LYR*, X), J"°F €
WwmLR*, X).

Definition 2.4.3. [177] The Caputo derivative of a function F(t) is defined as

1 ; .
C i 1 AR iy m—u—lFm ; g 2.4,
FDIF() = sy [ (=) (s)ds. (2.4

in which m —1 <o <m, meNand ' e C™1((0,7),X)NL(0,T), X).

2.4.1 Basic Concept of Solutions of Fractional Differential

Equations

We consider the infinite dimensional fractional order problem illustrated as

‘Diy(t) = Ay(t), t € [0,7], (2.4.8)
y(0) = wo, (2.4.9)

where D} denotes the fractional derivative in Caputo scnse of order ¢, 0 < ¢ < 1,
the state y(-) takes its values in a Banach space X, A : D(A) C X — X is a closed
densely linear operator defined in X. In (2.4.8), A is assumed to be the infinitesimal
gencrator of Cy-semigroup of bounded linecar operator S(t), ¢ > 0.

The equation (2.4.8) is equivalent to the following integral equation

y(t) = yo + F_(l(ﬁ/(} (t —8)7 1 Ay(s)ds. (2.4.10)

The solution to (2.4.8) is closcly associated with a function y € C([0,7], X) that
satisfies the following assumptions

(2) y is continuous on [0, 7] and y(t) € D(A) for cach ¢ € [0, T,

(21) *Dfy(t) exists and is continuous on [0, 7] with 0 < ¢ < 1,

(it) y satisfies the equation (2.4.8) on [0, 7] and the initial condition y(0) = .
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Taking Laplace transform of equation (2.4.10), we get

Lly(t)] = )\q_lj e S (s)yods, (2.4.11)
0
Consider the one-sided stable probability density
— 1 — n—1+~—ng-—1 F(nq+ 1) .
Be(¢) = = Z_}H) ¢TI === sin(nmq), { € (0,00). (24.12)

whose Laplace transform is given by

/ T e, (0)de = e, g e (0,1) (2.4.13)
0

Therefore, we get
“00
A“_I] e MES(8)yodt
0

p; /0 D e /  B,(C)S(/¢Myyodc)dt, (2.4.14)

0
Then
L@l = [ e[ IS /cmdc]de. (2.4.15)
0 0
Taking inverse Laplace transformation of above equation

NG /Dm<1>q(c>sm/cq>yudq,
> ]meq(osmoyndc,
=4 ¥ o - (2.4.16)

where ¥ (¢) = %g‘l‘i@q(g—l/f.i') satisfies the conditions of a probability density
function defined on (0,00), i.e.- ¥y(¢) > 0, and f° ¥,(¢)d¢ = 1. Therefore, the
solution of (2.4.8) is given as

y(t) = Se(t)yo, (2.4.17)

where S,(1), t > 0 is defined by
Sy = | 0QSEOudc, y e D(A). (2.4.18)
1]
Next, we consider the following fractional differential equation

‘Diy(t) = Ay(t)+F(t), t€[0,T], 0<T < o0, (2.4.19)
y(0) = o, (2.4.20)
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where I € L1([0,T], X).

Taking Laplace transformation of the equation (2.4.19) on both sides we get |

o) = [ e ] 205t /cc)a

/ aal // ““Ci 1).{?(3)“23) d¢ds| dt.

Taking inverse Laplace transformation of above equation we get

y(t) = S,(t)yo + / (t — 8)T T (t — 5)F(s)ds, (2.4.21)

where, the operator 7;(t) is defined by

Tty = 0 [ QSO (2.4.22)

Definition 2.4.1. A continuous function y(-) € C([0,7], X) is said to be the solu-
tion problem (2.4.19)-(2.4.20) if the following integral cquation

y(1) = S,(B)yo + / (6= 81— )P (s)ds, (2.4.23)

is verified.

2.5 Basic Concepts of Measure of Noncompact-

ness

We start with axiomatic definition of measures of noncompactness of bounded

sets on a complete metric space.

Suppose (X, d) to be the complete metric space with metric d and My denotes
the class of all bounded subsets of X. Now, we present some notations which will
be needed. If U is a subset of a metric space (X, d), then diam(U) = sup{d(y,y’)
y, ¥ € U} is called the diameter of U. A set U in (X,d) is called k-separated if
d(y1,y2) > k for all distinct 4,7, € U and the set U is said to be a k-separation of
X.

Definition 2.5.1. [44] Let X be a complete metric space. A function ¢ : Nx — [0, 00)

is said to be a measure of noncompactness on X if it satisfies the following properties:
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(1) (W) =0 if and only if W € Ny is precompact. (Regularity)

(i1) (W) = (W), where W denotes the closure of W € Ny (Invariance under

closure)
(i11) (W1 U Wa) = max{e(W}), o(Wa)}, V Wi, Wa, W3 € Nx(Semi-additivity).

It is not difficult to see that the following basic results hold for any measure of
noncompactness. For any bounded set W, Wy, Wy € Ny, any measure of noncom-

pactness ¢ fulfills the following conditions[44]
(1) (W) < p(Ws), when Wy € Wa, [Monotonicity];
(i) (W1 N W) < min{e(W1), o(Ws)};

(it¢) (W) = 0 for each finite set W, [Non-singularity];

(iv) Let {Wy,} be a decreasing sequence of nonempty, closed sets in My such that
lim,, 00 (W) = 0. Then W = N>, W, # 0 is compact (Cantor’s generalized

intersection property).

Now, we are going to recall some definitions of the Kuratowski, Hausdorff and
separation measures of noncompactness.
Definition 2.5.2. [44] Let (X,d) be a metric space. The Kuratowski measure of
noncompactness a(U) of the set U C X is the greatest lower bound of those x > 0,
for which U admits a finite subdivision into sets, whose diameters are less than s

1.c.
a(U) = inf{x > 0: U UL, Uy X pdiany(UY) < k, k=1,2,:-- ;n € N},

Clearly, the set U is completely bounded if and only if a(U) = 0.
Definition 2.5.3. [44]: The Hausdorfl’s measure of noncompactness xy is denoted
by xy (D) which is infimum of
{r > 0, D such that D can be covered by finite no. of balls with radius r}

for a bounded set D in any Banach space Y.

Lemma 2.5.4. [44]: Let Y be a Banach space and D,C' C Y to be bounded and let ¢
denote both Hausdorff and Kuratowski measure of noncompactness. Then following

properties hold:



34

(1) D is relatively compact if and only if ¢y (B) = 0;

(2) ¢y (D) = @y(D) = gy(convD), where D and conv D are closure and convex

hull of D respectively;
(3) wy(D) < ¢y(C) when D C C;
(4) ¢y(D+C) < py(D)+ ¢y(C) where D+ C = {z+y;z € D,y € C};

(6) wy(DUC) =mazx{oy(D),py(C)};
(6) ¢v(AD) = |Alpy(D) for any A € R

(7) If themap @ : D(Q) CY — Z is Lipschitz continuous with Lipschitz constant
k, then ¢z(Q(D)) < koy(D) for every bounded subset D < D(Q), where Z is

a Banach space;

(8) If {W,,};12] is a decreasing sequence of bounded closed nonempty subset of Y

and limp, .oy (W,) = 0, then M2 W, is nonempty and compact in Y-

Definition 2.5.5. [44]: The map Q : W € Y — Y is called a x— contraction if
30 < k < 1 such that xyQ(C) < kxy(C), for any bounded closed subsct C' of W,

Lemma 2.5.6. (Darbo-Sadovskii) [44]: Let W € Y be closed and convex and 0 € W,
then the continuous map @ : W — W is x—contraction, if there exists atleast onc

fixed point of the map Q.
Lemma 2.5.7. [44]: For W(t) = {u(t) ru e W} C X
(1) If W € C([a,b]; X) is bounded, then for all ¢ € [a,b], x(W(t)) < xc(W).
(2) If W is equicontinuous on [a,b], then x(W(t)) is continuous for all t € [a,b] .
Also,
xc(W) = sup{x(W(t)).t € [a,D]}

(3) f W c C([a, b]; X) is bounded and equicontinuous , then for all ¢ € [a, b] x(W (1))

is continuous. Also,

i
a

5 ] W(s)ds) < / X(W(s))ds ¢ € [a.b)
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PC([0, a], X) denotes the space of all normalized piecewise continuous function
from [0,a] into X. Specifically, it is the space PC comprising of all functions wu :
[0,a] — X such that u is continuous at ¢ # f;, u(l;) = u(t;) and u(t}) exists
Vi=1,2,..,n ltis clear that PC associated with the norm ||z| pc = supies|z(t)|

is a Banach space. For any z € PC

- z(t), te(tiliq];
() = (t) (b tina] (2.5.24)
BT Pk Pl
SD, T (S C([fh ti—i—l]: X)
PC([0, a], X) denoting the space of all normalized piecewise continuously differ-
entiable function from [0,a] into X endowed with norm ||z||pc = supes||z(t)] +

supieg||2’()|| is a Banach space.

Lemma 2.5.8. {44] : For W(t) = {u(t) : ue W} c X;
(1) If W c PC([a,b]; X) is bounded, for all t € [a,b], x(W(t)) < xpc(W)
(2) If W is piecewise cquicontinuous on [a, b], then x(W(¢)) is piecewise continuous

for every t € [a,b]. Also

xrc(W) = sup{x(W(1)), ¢ € [a, ]}

(3) If W < PC([a,b]; X) is bounded and piecewise equicontinuous, for all ¢ € [a, b]

x(W(t)) is piecewise continuous. Also

. / W (s)ds) < / OW(sY)ds £ € a.b]

Lemma 2.5.9. [44]: If the semigroup S(t) is equicontinuous, then for all ¢ € [0, a] the
set {fot St — s)u(s)ds : ||u(s)|| < n(s) for a.e. s € [0,a]} is equicontinuous. Here
1 € L([0, a]; RY),

Condensing operator:

Definition 2.5.10. Suppose X; and X3 to be the Banach spaces and ¢; and ¢, be
the measure of noncompactness in X; and X, respectively, taking values in (Q, <),
(a partially ordered set) . A continuous map F' : D(F) C X; — a3 is said to
be (1, p2)-condensing whenever B C D(F), ¢1(B) < o F(B)) implies that B is

precompact.
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In other words, F' is (1, p2)-condensing in the proper sense if for any set B C D(F),

whose closure is not compact, we have
v2(F(B)) < ¢1(B).

Condensing operators contain both compact and contracting operators as special

cases.

2.6 Basic Concepts of Stochastic Analysis

We first recall some concepts from general probability theory.

Definition 2.6.1. Suppose {1 to be a given set. A o-algebra F on ) is a collection of
subsets of 2 with the following properties:
(r) B e F;
(it) F € F = F¢ € F, where F¢ = Q) — F is the complement of F in Q;
(idi) F1, F,--- € F = F = UL, F; € F.
Then (2, F) is said to be a measurable space.

If 1 and F5 are two o-algebras of subsets of (2, by F; V F3 we denote the smallest
o-algebra of subsets of {2 which contains the o-algebras F; and Fs.

By B(R"), we denote the o-algebra of Borel subscts of R™, i.e. the smallest
o-algebra containing all open subsets of R™.

For a family C of subsets of §2, ¢(C) will denote the smallest o-algebra of subsets
of Q containing C, o(C) will be termed the o-algebra gencrated by C.
Definition 2.6.2. A probability measure P on (Q,F)is a map P : F — [0,1] such
that
(1) P(@) =0, P(Q2) = 1.
(2) If Iy, I, -+ € F are disjoint, then

(3) If Fy, Fy,--+ ,€ F, then
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Definition 2.6.3. Then (Q, F, P) is said to be a probability space.

It is known as a complete probability space whenever F consists all the subsets

B of Q with P-outer measure zero, i.e. with
P*(B)=inf{P(F);Fe F,BC F} =0,

where P* represents the outer measure of B.

Definition 2.6.4. Let (€, F, P) be a probability space. A function ¥ : § = R" is

known as JF-measurable whenever
YN U):={wef: Y(w) e U} e F,

V U € R", where U is any open sct.
Definition 2.6.5. Let (€, F, P) be a probability space. A mapping X : 2 — R" is

said to be an n-dimensional random variable if for each F' € B, we have
XYF) eF.
The random variable X is also F-measurable.
Let F' € F. Then the indicator function of F,
1, we F
XF(W) e
0, w¢F
is a random variable.

Lemma 2.6.6. Let X : = R™ be a random variable. Then
F(X )= {X‘l(F) : F € B}

is called the o-algebra gencrated by X. This is the smallest sub-o-algebra of F with

respect to which X is measurable.

Definition 2.6.7. If [, |X|dP < oo, then the number

E[X] = /n XdP,

is called the expectation of X (w.r.t. P).
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Definition 2.6.8. A stochastic process is a parameterized collection of random vari-

ables {X(¢)| ¢t > 0} on a probability space (2, F, P) and taking values in R™.

For cvery fixed ¢ > 0, we get a random variable
w— X(tw); we
Again, fixing w € (2, the function
t = X(t,w); t>0,

is called a path of X(t).

Usually we denote a stochastic process by {X(¢), ¢ € J C R}, X = {X(/) }ses
or X(t), t € J, the dependence upon the second argument co being omitted.

Let J € R be an interval. Now, we state following result which is used to study

the stochastic process.

Definition 2.6.9. (i) The process X = X(t), t € J is continuous if for a.a. w, the
functions X (-, w) are continuous on J.

(i4) X is called to be right continuous if for a.a. w, the functions X(-,w) are right
continuous on .J.

(i4i) The process X = {X(t) : t € J} is continuous in probability if ¢, = #, with
tn, to € J implies X(t,,) = X(to).

(iv) X is said to be a measurable process if it is measurable on the product space

with respect to the o-algebra B(J) ® F, B(J) is a g-algebra of Borel sets in J.

Definition 2.6.10. Suppose (£2, F,P) to be a probability space. A filtration {F;| 1 €
J} is a weakly increasing collection of o-algebras on 2 and bounded above by F,

i.e. for s,t € J with s < ¢,
B CF,

A stochastic process X is said to be adapted to the filtration if, for every t € J,
X(t) is Fi-measurable.

Definition 2.6.11. The filtration is said to be normal if
(i) Fo contains all B € F such that P(A) = 0,
(17) Fy = Fi+, L € J, where Fy+ denotes the intersection of all F for s > {.
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Definition 2.6.12. Suppose X = {X(t) : t € J} to be the stochastic process. The
natural filtration for process X is the filtration, where F,; is generated by all values
of X(s) up to time s = {, i.e. F, = o({X ' (s)(A) : s <, A € L}). A stochastic
process is always adapted to its natural filtration.

Let us consider a family F = {F, : t € J} of o-algebras F, C F with the property
that ¢{; < ty gives F;, C Fy,.
Definition 2.6.13. A continuous stochastic process W (t), ¢ > 0 is called a standard
Brownian motion or a standard Wiener process if:
(z) W(0) =0,
(12) W(t) is a almost surely continuous stochastic process with independent incre-
ments,
(iii) EW(t) =0, t > 0, and E|W () = W(s)|? = [t —s| for t > s > 0.
Definition 2.6.14. An n-dimensional stochastic process X (t) = (X*(¢t),- -+, X"(t)),
t > 0 is called an n-dimensional standard Wiener process if each process W*(t) is
a standard Brownian motion and the o-algebras o(Wi(t): t >0), 1 < i < n are
independent.
Definition 2.6.15. Suppose that (X, d) denotes a metric space, and let G € R. A
function 8 : G — X is said to be a cadlag function, if Vi e G

o B(t—) := limyy B(s) exists; and
o B(t+) : limgy B(s) exists and equal to f(t).
1.e., B is right-continuous with left limits.
Definition 2.6.16. A bounded lincar operator 1" over a separable Hilbert space H is

called the trace class whenever for every orthonormal bases {ex}y of H the sum of

positive terms

ITly=TH(T| = Y < (T"T e8>,
k
is finite. In this case, the sum

Tr(T) =Y < Tex,ex >
k

is absolutely convergent. It is independent of the orthonormal basis. It is known as

the trace of T'.
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A linear bounded operator T : H — H is said to be Hilbert-Schmidt operator
if Yoo, | Tex]]? < oo.

We consider X and K to be two separable Hilbert spaces. Suppose f,(t) (n =
1,2,--+) be a sequence of real-valued one dimensional standard Brownian motions
mutually independent over (Q, F, P).

Let g, be a complete orthonormal basis in K. Then ) € L(K, K) is the operator
defined by Qs, = Mg, with finite trace Tr(Q) = > oo, An < 00. We define

n=

W(t) = i VAnBa(t)sa(t), t > 0.

W(t) € K is the @-Wiencr process. F;, = o(W(s) : 0 < s <t) denotes the filtration.
We denote Fr = F.
¢ € L(K, X). denotes a Q-Hilbert Schmidt function, if

18115 = Tr(6Qé*) = > IV Angsll® < co.

Lo(K, X) with the norm [|¢]|3, =< ¢, ¢ > is a Hilbert space.



Chapter 3

Controllability of a Functional
Differential System

In this chapter, controllability of functional differential system with bounded delay is
studied. We removed the use of analytic semigroup and compactness of the nonlinear
function. The limitation of non-existence of the inverse of controllability operator
is overcome by assuming a geometric relation between the range of the operator B
and a subspace associated with the fundamental solution. An example is studied to

substantiate the results.

3.1 Introduction

The controllability of infinite dimensional systems represented by nonlinear evolution
cquations is widely investigated in various articles such as [39],[70],[156], etc.
Chang and Liu [60] established the existence of mild and strong solutions of
a neutral differential equations involing nonlocal conditions. The authors used
Sadovskii fixed point theorem combined with compact analytic semigroups of uni-

formly bounded linear operators.

The use of fractional operators, analyticity and compactness to prove these re-
sults, imposed severe restrictions on the semigroup as well as the nonlinear part of
the system. Interestingly, the results for controllability of impulsive functional dif-

ferential equations with deviated argument are not abundantly available. To remove
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the above limitations, is one of the motivations of this chapter.

The approximate controllability of a class of functional differential equation in-
volving deviating argument and finite delay is discussed. Sufficient conditions for
approximate controllability are derived by assuming the approximate controllability
of the linear control system. Schauder fixed point theorem is used. We proceed by
establishing a connection between the reachable set of lincar control problem and of

the semilinear delay control problem coupled with deviating argument.

3.2 Functional Differential Equation with Devi-
ated Argument and Bounded delay

In this section we study the approximate controllability of the functional differential

equation with finite delay and deviated argument, which is illustrated as follows.

dx(t

. . A oia By zy, ala(z : 7
= As(t) [Pugit Py fr BN el F hidl oy

z(t) = ¢(t), ~h <t <0

where z(t) € X and u(t) € U, X and U being Hilbert spaces. Let Z = L?([0, 7]; X),
Zy = L2([-h,7]; X),0 <h <7 and Y = L*([0,7]; U) be the corresponding function
spaces. A : D(A) € X — X is a closed linear operator which generates a strongly
continuous semigroup 7T'(t). A; is a bounded linear operator from C([—h, 7]; X) to
L*([0,7],X). B : Y — Z is a bounded lincar operator. When z : [—h,7] = X is
a continuous function then z;(.) is denoted by x;(0) = z(t + 0), 6 € [—h,0] and
¢ € C([-h,0]; X). z, € C([—h,0],X) a Banach space of all continuous functions

from [—h,0] to X with norm

lzillc == supoe-nallze(0)lx = supoer-nallz(t +0)l|x fort € (0,7].

Co(J,X) = {u € C(J,X) : 3 > 0 such that ||u(t) —u(s)|| < Ui — s|,Vt,s €
J}. Simple Lipschitz conditions are required to study the differential equation with

deviated argument.
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3.2.1 Existence and uniqueness of mild solution

Let us state some definitions and lemmas which are used in proving the existence
and uniqueness of the mild solution and approximate controllability of (3.2.1). In
cquation (3.2.1) if we put f = 0 the resulting equation without the delay term is

called the corresponding linear system (3.2.2)

d‘;(f) — Ax(t) + Bu(t), t € [0,7]
#0) = $(0) € [<h,0) (32.2)

Let us consider the lincar delayed system

dz(t) 2 - T
- =Ax(t) + Az L€ 0,7] (3.2.3)

Ty = ¢ € [—=h,0]

Let z%(t) be the unique solution of system (3.2.3). Let £(X) denote the Banach
space of all bounded linear operators on X. Define a map S : J — L(X) by

A\ Vz 0
S()¢(0) = 2 (3.2.4)
0, i< 0.
Then S(t) is called the fundamental solution of (3.2.3) satisfying
t
S(t) = T(t)$(0) +/ T(t = s)A;S(s + B)ds, t> 0
0 (3.2.5)

S(0)4, LS = 0, LA 20
It follows from [169] that S(¢) is the unique solution of (3.2.3). It can be easily
shown that
S(t) < Koexp(Ko||Ai||r) := M
where {maz||T(¢t)||, t € [0,7]} = K.

Therefore the mild solution of semilinear control system (3.2.1) is defined as

Definition 3.2.1. The function z : (—h,7] — X is said to be a mild solution of
(3.2.1) if 2(.) € CL(J, X), z(t) = ¢(t) for t € [—h,0] and it satisfies the integral

cquation.

2(t) = S(1)6(0) + /U S DB /0 B8} o, 2 il S0, E
(3.2.6)
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and the mild solution of the corresponding lincar system with delay and control

term
dz(t
';g) = Az(t) + Ayz + Bu(t), L € [0,7] 2 By
To=¢ € [_h’[}]

is defined as

z(t) =S(t)p(0) + /0 S(t — s)Bu(s)ds,t € [0, 7]

2(t) =a(t), —h <t <0.

(3.2.8)

Definition 3.2.2. The set given by K.(f) = {=(T) € X : z € Zp} is called
reachable set of the system (3.2.1) . K, (0) denotes the reachable set of the associated
linear system (3.2.7).

Definition 3.2.3. The system (3.2.1) is called approximately controllable whenever

K, (f) is dense in X. The associated linear system is approximately controllable

whenever K-(0) is dense in X.

Let us assume that

(H1) The nonlinear function f: Jx X x X — X satisfies Lipschitz condition,

I f(t, 21, 21) — f(t, 22, 22) | < P(llz1 — z2|| + [|21 — 22]l)

for all =1, 29, 21,22 € X, t € (0,7] and 3 a constant g > 0,
such that || f(s,0,z(a(z(0),0))|| < g, Vs J

(H2) Let a : X x R* — R* satisfy the Lipschitz condition |a(z1, 5) — a(z2, )| <
L,||z1 — z2|| and a(.,0) =0

Lemma 1. The fundamental solution S(t) is bounded.
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Proof Since

t
|mwsm+mmm/mm+wm
i
gm+mmmf 15(@)ldo
0

t
§K+AK/ S(o)||do
o+ 114K [ IS (329)

t+h
s%+%mm] 15(0)||dor
0

15(8)|] <Koexp Kol||A1]|(t+ h) < Ko(1+d)exp K(T+h) =M
maz{||S(t)||: t € [0, 7]} =M
Hence the fundamental solution is bounded.
Lemma 2. If the Cy—semigroup T'(t) is compact then the fundamental solution S(t)
is compact.

Proof: Let us define the sequence of operators S,(¢) on [—h,7]. From the com-
pactness of T'(t) and boundedness of ||A;|| we conclude that S, is compact. Let
||A1|] = Ki. To prove S,(t) — S(t) in L(X) we first show that {S,(¢)} is a Cauchy
sequence in L(X). Let us define

Si(t) =T(t),t € [0,7]
=0,t € [—h,0]

ot (3.2.10)
Sn1(t) & L (LYH / T(t — 8)Sp(s+ 6)ds,t € (0,7],8 € [-h,0]
0
= 0,t¢ [-h, 0}
forn=1;2, ..
Therefore,

t
152(8) — S1(W]] < / [7'(t = s)[II|ALl[I[S(s + 0)]]ds
0
< KoK, Mt (3.2.11)
. 1 :
1Sa1(6) = Sa(O)ll S — KEKFMy7™ = 0 as, 1.0

Thus {tg,,_(ﬂ)} is a cauchy sequence. As £(X) is the Banach space of all bounded
lincar operators on X, 3 an operator S(t) € £(X) such that S,(t) — S(t) uniformly
on [0, 7] and hence S(t) is compact V¢ € [0, 7]. It is easy to check that S(t) is unique.
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Now, the equation (3.2.6) is checked to be the unique mild solution of (3.2.1).

Theorem 1. The system (3.2.1) has a unique mild solution in Cp(J, X) for every
control u € Ly([0,T); U) whenever assumptions (H1) and (H2) hold.

Proof: Suppose we define the space Cp,([—h,7], X) = {z € C([-h,7],X) : z €
CL([0,7], X)}. Fix 0 < t; < T such that

PMty(l+21La)R < M||8|| + MMpT||ul| + MTg + 1

Define the mapping @ : Cp,([—h. l1], X) = Cr,([—h. 1], X) as

(Pz)(t) = S()é(0) + ./o S(t —s)[Bu(s) + f(s,xs, t(a(z(s);s)))]ds, t € (0,t4]
= ¢(), 6 €[-h0] (3.2.12)

Suppose we take the space Br = {11"() & CLG([—h-, tl]: X) i ”I”C([—h,h],X} < R, JI(U) =
#(0)} endowed with the norm of uniform convergence. For any z € Bjp and

0<t <y,

lzellc = sup—n<o<ollz(0)lx < sup_nee<u, 12(Q)x < R.

Then
(@)@l < MISO)+ MMLT]]
b MG, e a0 = L5, 0- (a0, O]
+ 117(5,0,2(a(a(0),0))) 145
< Ml + MMsT]ul
b [ MIPits +9) 0l + talla(s) ~ 2O)) + sl
< MBSO + MMyt ul
+ [ Mp(la@)dto)+ [ nLae) 01 + gl
< M|$0)|| + M Mpty||ul| + M(t; + h)P|z|| + 2Mt, PlL,||z|| + gty
< M|¢(0)|| + M Mpty||ul| + M(ty + h)PR+ 2M#, PIL,R + g,
Let

M||g|| + M Mgty |ju|| + M(t, + h)PR +2Mt; PILL.R + gt, < R
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Then

M||@|| + M Mgti||u|| + gt1 < R(1 — M(t, + h)P — 2M¢, PIL,).

RHS is positive if

L(PM +2MPIL) < M(ti+h)P+2Mt,PlL, < 1
1

b (PM +2MPIL,)

(3.2.13)

Hence ® maps Bp into itself when ¢, satisfies (3.2.13). Then we prove that ® is a

contraction. Let x1, xo € By

1(@22)(t) — (@z2)(@®)] < / M (s, (zi)isza(a(z1():5))
— f(s, (z1)s, 3«'1(0(372(3): s))) — f(s, ($2)31$2(a($2(3)= 3)))

+ f(s (21)s, z1(a(x2(s), 5))) |l ds

< tMP(||zi(a(z1(s), 5)) — z1(a(za(s), 5)) |l

+  (ll(z2)s = (z1)sl]

+ [lwalalza(s), 8) — za(alza(s), s)DI]

< M P[la(z1(s), s) — a(za(s), )|

+ [zl + 0) — z1(s + O + (|22 — Tallc-nnx0)]
< tM(IPLy||21(s) — za(8)lc=nen).x)

+ - Pllza(ts) = 22 (t1)]| + Pllza = z1llo-n,600,%))
< ﬂ-ff(fPLa -+ QP) H:L'g - :1)1“(3([_;1‘;1]‘)() (3214—)

So, [ @1 — P@alc(-nu)x) £ MUIPLs + 2P)||z1 — zall¢(-nu),x)- Thus @ is a con-
traction mapping. Therefore, ® has a fixed point in Bg. Hence (3.2.6) is the mild
solution on [—h, ¢;]. Similarly it can be proved that (3.2.6) is the mild solution on

the interval [t1, 5], {; < t3 Repeating the above process we get that

Mi" .
l (”)L,& + 21))”.‘1:1 — :’;2”6‘{[—&,“];)«’)‘

||<I)":.f;1 - ‘I’n-'f"EHC{[—h'hJ,X) =

Thus (3.2.6) is the mild solution on the maximal existence interval [—h, t*], t* < oo.

Then we prove that x is well defined in [—h, r]. For that when ¢ € [—h, 0], then
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z(t) = ¢(t). Therefore it is bounded. When ¢t € [0,¢*) then

le@l < Mlé|+M / [MBHU )l + Pllz, — 0
+ Plz(a(z(s).s) - «:(o )l + glds
< M||a‘>||+MMBT||u(
+ M f Plllzs]) + ILallz(s) — 2(0)]| + g]
< Mgl + MMpr|u(s)]
+ MTP(||:1:(0)||+g)+1’1»./!'/0 Ulz(s)||ds (3.2.15)

By Gronwall’s inequality ||z(t)|| < ||z¢le < [M||¢||+M Mpr|u(s)||-+MTP(||z(0)|+
g)] exp(M7P). Thus ||lz(t)|| is bounded. Hence z is well defined on [—h, 7]. To prove
the uniquencss of solution let z; and z, be any two mild solutions of (3.2.6) such
that for t € [—h,0], z1(t) = za(t) = ¢. For t € [0,t%)

lea(t) — z2(D)] < M /D WA AT
—  f(s,(22)s, za(a(x1(8), 8)))lds + f(s, (z2)s, x2(a(z1(s), 5)))

— (355 (332 s,$2(ar(3"2 5),5)) ||

< M / P{l(e1)s = @2)sll + l121(5) = 22(3)l
+  Lo[lxi(s) — za(s)l[}ds
t
< thxlm)~:z:z(n)ndn+M_/U Plla(s) = a(s)llds
+ M/Df PILJl1(5) = ma(s)[|ds

0 t
< M [ Pllos(n) = a0 [ P2+ L) a1(s) sl ds
—h Jo
Since uniqueness of the mild solution is proved on [—h, 0] we get

laa(t) — 22(8)]| < MP2 + ILy) f lies(e) = za(s)|de

Hence by Gronwall’s inequality z1(t) = x5(t) for all t € [—h, 7.

3.2.2 Approximate Controllability

Define a lincar operator L from Z to C([0,7],X) by Lz = [] S(t — s)z(s)ds,t € )
[0,7].
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Let Kx(t) = [y S(t — s)(s)ds,t € [0,7].
Z can be decomposed uniquely as Z = Ny(L) ® Ng-(L) where Ny(L) is the null space
of the operator L and Ny(L) is its orthogonal space.

Let us:assume
(H3) V p € Z, 3 a function ¢ € R(B) such that Lp = Lqg.

The approximate controllability of the corresponding linear system (3.2.2) follows
from the hypothesis (//3). Then it is to be proved that the linear system (3.2.7)
with finite delay is approximately controllable. Next by assuming that the linear
system with delay (3.2.7) is approximately controllable, the system (3.2.1) is to be
proved to be approximately controllable using Schauder fixed point theorem. Define

the operator F': Cr, ([0, 7], X) — L*([0, 7], X) as
F(z)(t) = f(t,z, x(a(z(t),t)));0 <t <71

Hypotheses (H1),(H2) imply that F' is a continuous map. Hypothesis (/H3) implies
that for anyp € Z, 3 a ¢ € R(B) such that L(p=¢q) = 0. Thercforep—g = n € Ny(L)
which .implics that Z = No(L) @ R(B). Thus, it follows that the existence of a
lincar and continuous mapping Q from Ng-(L) into m It is defined as Qu* =
v where v is the unique minimum norm element v € (u* + No(L)) N R(B), i.c.
1Qu*|l = ||vl| = min{||v|| : v € {(u*+ No(L)) Y R(B)}. (43), implies that for every
v € {u* + Ni} HF(-B—) is not empty and every z € Z has a unique decomposition
z = n + ¢. Thus, the operator Q is well defined. Moreover, [|Q| = c for some

constant c.

Let us consider the subspace My of €, ([0, 7], X) which is defined as

7 { m € Cr,([0,7], X) : m(t) = Kn(t), ne€ No(L); 0<i{< 7 (3.2.16)

m(t) = 0, —h <t <0;
Let

Jo: My — Mo

defined by

Kn, 0<t<Lmy
fo= (3.2.17)
0 —-h <t <0
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where n is given by the unique decomposition of F'(z+m)(t) = n(t)+q(t), n € No(L)

and g € R(B).

The following assumption is made .

(A1) R(A;) € R(B)
Theorem 2. The operator f, has a fixed point in M if M(1+c)PT < 1.

Proof: Since S(t) is compact so K is compact and f; is compact. Let z € Z then

z=q+n,n€ No(L), g€ R(B). Also ||n]|z < (1 + ¢)|lzl|z (sec [158]). Let
B,={veM:|p|| <r}.

Let m € B,. Let ||£(0,0, (z 4+ m)(a(m(s),0)|| < {y Supposc on the other hand

< It =hicnl < [ 1806 o

L
§/ M(1+ e)||F(x +m)| zds
0

< [ M5 Ol o, (o s e+ (e m) ),

1040, (& + m)a(m(=). O+ IL£(0,0, 5+ m) a(m(s), O
<M(1+9) [ PliGe+ mls-+0) <0

(@ + m)(al(@+m)(s).8)) ~ (& + m)(a(m)(s), )| + L ds
<ML+ o) Pl il + o+ m)(e) ) ~al(s, 001+ s
<ML +0) [ Pl + ULl m) ) = ma) s

t
<M(1+) [ Pllall+7 +1Lalel +4ds
0

SULM@A ) P(||z||T + v+ L)\ T + 14 T)
A (3.2.18)
Dividing by r-and taking limit as r tends to oo we get a contradiction. So f, maps

B, into itself. Therefore by Schauder fixed point theorem it has a fixed point.

Theorem 3. Suppose the linear control system (3.2.2)

dz—g) = Az(t) + Bu(t)
z(0) = ¢(0) (3.2.19)
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is approximately controllable then the linear delay control system (3.2.7)

dz_(t'*) = Az(t) + Az + Bu(t)
z(t) = ¢(t), —h<t<0

is controllable if assumptions (A1) hold.

Proof: Consider

y'(t) = Ay(t) + Bu(t),t € [0,7]

(3.2.20)
y(t) = ¢(t). t € [-h,0]
The mild solution of equation (3.2.20) is as follows
t
y(t) = T(H)od(0 +/T£—sBusds,t>[}
y(t) = T(£)$(0) i (t —s)Bu(s) (3:2.21)

y(t) = ¢(t), t € [=h,0]

Since R(A;) € R(B). SoV ¢ > 0,3 w € U such that
”Aly-s —Bullz <e

Let 2(t) be a solution of linear delay control system corresponding to control (u—w)
satisfying
i
z(t) = T(¢)¢(0) + f T(t — s){B(u—w) + Azs}ds,t >0
0
z(t) = ¢(t),t € [~h, 0]

If t € [-h,0], then
zo(t) —yo(t) =0 po e bl At - N

----------

and if ¢t € (0, 7] then we get
20 -y) = [ T(-9)-Buls) + Az
0
= ] T(t — s)[—Bw(s) + Ayys|ds
0

t
4 / T(t — s)[A1zs — A1ys)ds
0
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Taking norm on both sides
o)~ 90l < Ko [ 1Bu(s) = Auads
+ I _/: |Ar1zs — Avysllds
< Kot||Bw(s) — Azs|z + Ko /: Ki||xs — yslds
& B4 1 £ ' Kalls — sllds

t
o Brarp s ] Ky l2(n) — y(m)lldn
—h

where ||A;|| < K; since A; is bounded linear operator from Cp,([—h,7], X) to
L2([0, 7], X). This implics

2(t) =yl < Koer + Kok, [ Jn) ~ )l (3.2.23)

Using Gronwall’s incquality
||z(t) — y(t)]| < Koer exp(KoK1{7 + h})

Since RHS depends on ¢ so it can be made as small as possible. This implies that
the reachable set of linear delay control system is densc in the reachable set of the
linear control system (3.2.2) which in turn is dense in X as (3.2.7) is apprroximately

controllable. Hence the linear delay control system is controllable.

Theorem 4. The semilinear control system (3.2.1) is approximately controllable if

the linear delay control system (3.2.7)

d:zEt) = Az(t) + Ajz, + Bu(t)

z(t) = (1), ~h<t<0

is approximately controllable .

Proof: Let x(.) be the mild solution of the linear delay control system (3.2.7) is
given by
z(t) = S(t)¢(0) + K Bu(t),t € (0, 7]

z(t) = ¢(t),t € [—h,0]
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We prove
y(t) = (t) +mo(t)

to be mild solution semilinear problem (3.2.1). Since
KFy (x4 me)(t) = Kn(t) + Kq(t)
operating K on both sides at m = my, fixed point of f,.

KFya +mo)() = Kn(t)+ Ka(t)
mo(t) + Kq(t) (3.2.24)

Add z(.) to both sides and using y(t) = z(t) + mo(t)

z(t) + KFp(x +mp)(t) z(t) + mp(t) + Kq(t)
z(t) + KFu(y)(t) y(t) + Kq(t)
=y(t) = =(t) + KFu(y)(t) — Kq(t)
) = S()¢(0) + K(Bu—q)(t) + KFi(y)(t) (3.2.25)

)
)

Il

= y(t t)o

This is the mild solution of semilinear problem with control (Bu — ¢). By following
the same proof in [155] we get the following conclusion that since g € R(B) there
exists a v € U such that ||Bu — ¢|| < ¢ for any given € > 0. Let z, be a solution
of the given semilinear delay control system (3.2.1) corresponding to the control v.

Then as shown by [139] we have

ly(r) — zu(7)|] = ||2(7) — z(7)|| < €. This implies
that 2(7) € K,(f). Then it follows that K,(0) € K,(f). Thus (3.2.1) is approx-

imately controllable since the corresponding linear system (3.2.7) is approximately

controllable.

3.2.3 Example

Let us consider the heat control system with finite delay

Whz) _ TYED) | y(140,0) + Bult,2) + [(t,2(t+ 0),2(ala(s),5)ds

0<t<T, —h<f<0,0<z<m7

y(t,0) = y(t,m)=0,0<t<T
y(t,z) = €&(z), —h<t<0, 0<z < (3.2.26)
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Let X = L?*(0,7) and A = —d‘i—i. Define

di
DA)={y € X:y, E‘i are absolutely continuous,
L
&2
2Y ¢ Xand y(0) = y(m) = 0}.
dz?
Fory € D(A),y=320, <y, ¢n > dpand Ay = —> 77 n* < y,n > é,. where
1
dalz) = %2 sinnz, 0 <z <m n=1,223.. is the eigenfunction corresponding
to the eigenvalue A, = —n? of the operator A. ¢, is an orthonormal base. A
will generate a compact semigroup 7'(t). such that T(t)y = > 77 el <y o, >
bn, n=1,2,... Vy € X. Let the infinite dimensional control space be defined as

B b i u2)3. Thus U

U={u:u=3 0 uUnbn D neoly <00} With-norm [u
is a Hilbert space.

Let B:U — X : Bu=2ud1 + 320 ptindn for u=3 1 stuydn € U. The bounded
linear operator B : L2(0,T : U) — L*(0,T; X) is defined by (Bu)(t) = Bu(t). Then
this problem (3.2.26) can be reformulated into an abstract semilincar differential
equation with deviated argument and finite delay by substituting [ = Ay If the
hypotheses (H1) — (H3) and assumption (A1) arc satisfied then it can be shown

that this system (3.2.26) is approximatecly controllable.

3.3 Conclusion

We proved the existence and uniqueness and approximaic controllability of the func-
tional differential equation (3.2.1) with deviated argument and finite delay by using
Schuader fixed point theorem, fundamental solution instead of Cy semigroup and
by establishing a geometric relation between the range of the operator B and a

subspace related with the fundamental solution.




Chapter 4

Existence of Solution for a
Second-order Neutral Differential
Equation with State Dependent
Delay and Non-instantaneous

Impulses

In this chapter the existence of mild solution of a class of second order neutral dif-
ferential equation inveving state dependent delay and non-instantancous impulses is
investigated. Hausdorff measure of noncompactness is used. Darbo Sadovskii fixed
point theorem is applied to prove the existence. Also, some restrictive conditions
such as the compactness assumption on the associated cosine or sine family of oper-
ators and the Lipschitz conditions on the nonlinear functions arc replaced by simple
and natural assumptions. In the last section we also study an example to illustrate

the presented result.

4.1 Introduction

Non-instantancous impulses occur abruptly at certain time points and continue their

action for a specified duration of time. The study of non-instantaneous impulsive

55
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differential cquations is significant to varied fields of applications like in the modeling
of stage by stage rocket combustion, maintaining hemodynamical equilibrium, etc.
A particular application is the abrupt injection of insulin in the bloodstream with
consequent gradual absorption since it acts for a finite interval of time. Differential
equation with non-instantancous impulses are recently studied by Hernandez et.al
[93].

We study the second order partial neutral differential equation with state depen-

dent delay modeled in the form

g;{:r(t) —g(t,z)) = Az(t)+ f{, Zopwe @ (t))s b € (50, tina], i=0,...n
o = Q€D
7'(0) INFELK,
(I AR, 7)), 1 € @psili=a2, . in
z'(t) J=9 t, m)p treElasi), T E0, 97,0 (4.1.1)

where A denotes the infinitesimal generator of a strongly continuous cosine family
{C(t) : t € R} and S(t) denotes the associated sine function. Here X is a Banach
space. The history valued function 2, : (—00,0] — X. z(0) = x(t +0) takes
values in some abstract phasc space B defined in chapter 2 as Definition 2.2.12;
g, f,JL, J?2,i = 1,...n are defined in the following section. 0.= tg = sp < t1 < 51 <

toy iy < tn < Sp < tny1 = a are prefixed numbers. Let-J = [0, al.
Let N, N be certain constants such that ||C(t)|| < N and [|S(¢)]| < N for every
t € J = [0,a]. For more details refer books by Goldstein[84] and Fattorini[75].
PC([0,a], X) denotes the space of normalized piecewise continuous function from
[0,a] into X. PC consists by all functions u : [0,a] — X such that u is continuous
at t # t;, u(t;) = u(t;) and u(t]) exists for all i = 1,2, ...,n. PC associated with the

norm ||z|| pc = supies||(t)|| is a Banach space. For any = € PC

5(0) = { o(t), t€ (bt ik

o), ==l =1.% i

SO, TE C([ti, t"_l_]_],X).
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Lemma 4.1.1. [44] If W € PC'(J, X) is bounded and the clements of W' are equicon-

tinuous, then

xpcr (W) = maz{sup;c s xW (t), supresx(W'(t))}

- where xpc1 denotes the Hausdorff measure of noncompactness in the space P X).

4.2 Main Result

The mild solution of the problem (4.1.1) is as follows.
Definition 4.2.1. A function z : (—o0,a] — X is a mild solution of the problem

(4.1.1) if zo = ¢, Q) = &, 2()|j0.a) € PCHX), z(t) ="} (t,x), YVt € (ti,51], i =
1,...,n, z'(t) = BB zd, V€ (trF], 1=1, 2 >p and

z(t) = C(t)(¢(0) — g(0,¢)) + S(E)(€ —n) + g(t, z4) +/; AS(t — s)g(s, z,)ds

+ /tS(i = 8) (8, Tp(s,e,), &' (8))ds, t € [0, 4]
z(t) = C?U — ;) (J (51, 3s,) = Glsi, Ta)) + S(t'= 5:) (JE(ssr5,) — 9 (54, 25,))
I o A ) / b VAN / (8= by (s, 50, (510,
for t E‘qi[st-, tin =1, - (4.2.1)

where é—ig(t,x,)ltzg = 7, where n is independent of x. To prove our result we
always assume p : J X B — (—o00,qa] is a continuous function. In this section
y : (—00,a] — X is the function defined by yo = ¢ and y(t) = C(t)(¢(0) —
9(0,9)) + S(t)(§ —n) on [0,44]. Clearly-fly,[ls < Kallylla + Mall¢lls where [[ylla =
supo<t<ally(t)|l

Let S(a) be the space S(a) = {z : (~o0,a] = X : 2y =0, 2/(0) =0, z|, €

PC'} endowed with norm |Jul|; = ||u|le + ||2'||sc. The following hypotheses are used.

(Hy) The function ¢ — ¢, is continuous from R(p™) = {p(s,¥) : p(s,¥) < 0}
into B and 3 a continuous bounded function J¢ : R(p~) — (0,00) such that
el < JO(E)lI8]lw for every t € R(p7).

(Hf) The function f: J x B — X satisfies the following:
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(1) Forevery z: (—o0,a] = X,z € B and z|; € PC, the function f(.,%, z) :
J — X is strongly measurable for every ¥ € B, z € X and f(¢,...) is

continuous for a.e. ¢ e J

(2) 3 an integrable function & : J — [0,+00) and a monotone continuous
nondecreasing function 2 : [0, +00) — (0,400) such that ||f({,v,z)| <
a(t)Q([lv]ls + ||z]|) Vt € J and v € B.

(3) Suppose Di(f) = {v(0) : v € Di}. For a.c. s,i,€ J 3 an integrable
function 7 : J — [0, 00) such that
X(S()(t, Dy, D)) < ms(t) sup_sgzpeo XEP1(0)). For Dy(0) = {v(0) : v €
Do}, for a.e. s,t,€ J, x(C(s)f(2, Dy, D)) < ma(t)sup_oocp<o X(D2(0))

(Hg) The function g : J x B satisfies the following.

(1) g(t,.) : B — X is continuous V¢ € J.

(2) If z : (—o0,a] = X be such that zy = ¢ and z|; € PC then the func-
tion ¢ — g(t, ;) belongs to PC and t — g(t, x;) is strongly measurable

function.

(3) There exists a function a non decreasing function w, such that
lg(t; ¥)lly < mg(O24(1[¢]w), for all (¢,v) € J x B

(4) The set V(r) = {AS(0)g(s,¢) : 0,s € J, ¥ € B.(0,B)} is precompact in
X for all r > 0.

(5) The sct {7; : v € V/(r, 9)} is cquicontinuous subsct of C([t;, 1], X) for

alli=1.-- n
(6) t — g(t,z;) is C* on J and %g(t,:ct)h:g = 1 where 7 is independent of z.

(7) The operator P : S(a) — C(J, X), is a completely continuous operator
defined as P(z)(t) = %g(t, z,+y;) is such that || Pz|| < ¢,||z|| +d,. Thus,
the set {Pz(t) : z € S,,t € J} is precompact in X.

(HJ) (1) For the maps J!({,¢) : J x B — X there exist positive constants
cl,c?, dl, d? such that

1H ) < dvlle +d, Vi=1,2,
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(2) The maps J}(.,v), J2(.,%) arc completely continuous V (., %) € (¢;, si] X
B i=1,..,n,

(HI) cy(a+1)+ (N + N)ct + (N + N)e) Ko + (c} + ) Ko +
limsup, o0 QE_T) f:}* ((N1 + No)my(s) + (N + N)m(s))ds +
ma::;{fna m(s)ds, f[; ne(s)ds} < 1

(H1) There exists a Banach space (Y, ||.||y), continuously included in X with AS(t) €
L(Y,X),Vt € Jand AS(.)z € C(J; X) for every x € Y. 3 constants Ny, Np
such that |ly]| < Ny|lylly, Yy € Y and [|AS®t)||cvx) < Ny, VE € J

(H2) R(C(t) — I) is closed and dim Ker(C(t) =) < oo, VO<t<a

Lemma 4.2.2. [96]: If y : (—o0,a] — X is a function such that yy = ¢ and y|; €
PC(X) then

3 < (My +J9)19lls + Kasup{lly(0)1l; 0 € [0, maz{0;s}]},

190(s.0)
seR(p7)U[0,q]

where J¢ = supier(p-)J°(t), My = supies M(t) and K, = maz,c, K(t).

Lemma 4.2.3. [96]: Let condition (H2) be satisfied and B C Y. If B is bounded in

X and the set {AS(t)y : t € [0,a],y € B} is precompact in X, then B is precompact

in X. -

Proof: Since for y € B, C(t)y —y = A j{; S(s)ydy = fni AS(s)ydy. The mean valuc

theorem for Bochner integral implies that

C(t)y—y € txconv(AS(s)y : 0 < s <t,y € B), where conw is the convex hull. Then
by hypothesis (//2) the result follows.

Lemma 4.2.4. [98]: A set B € PC?' is precompact in PC" if and only if each set
Bi,i = 1,...,n is precompact in C([ts, tisa], X).

Theorem 4.2.5. If the hypotheses (Hp), (Hf), (Hg),(HI),(H1) arc satisfied, then
the initial value problem (4.1.1) has atleast one mild solution.

Proof: Let ' =T} +1% Vi=1,--- ,nand j =0, ,n

ST, te (tysil;i=1,n
(Liz)(t) = § C(t — s)[J} (¢t zs) — 950 %s,)]

+S(!’ - Si)[‘]?(t?xsi) - g’(siaxsg)]a te (S‘isti+1];3' = 17 R
(4.2.2)
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9(t, %) + [, AS(t — 5)g(s.Ts)ds

(Ti2)(8) = 4+ [, S(t = 9)f (5, Botozs @ )ds,  t € (55,850a)55 =0, -
0? t ¢(8j$£j+1]:j201”'

where Tgp=¢ and T=x+ y on J.

Jf(ﬂ,ft)‘ t e (ﬂ:.‘:‘l],iz 1.

(Tiz)'(t) = AS(t — 8;)[JML, s,) =54, 2,)]

+C(t — 8:)[J2 (b, xs,) — ' (56, 35,)], L€ (siytipa];i=1,---

Pz(t) + [; AC(t - 5)g(s,%,)ds

(P?:r);(f) = & _[:j C([’ ] S)I(Ssjfp(s.z_,])ds: te (S,'fr’ij+1};j 1 Ga R
0., L Q’ (Sj,fj_fl},jiﬂ,"' 3

It is easy to check that

1Zelle < Kallylla + Mal|@llw + Kollzle,
where ||z]|; = supo<s<e||z(s)]|.

3 S k= (Mo + J9)l|9lls + Kallylla + Kall]la-

”fp(mfs)

\n

' (1.2.3)

e
(4.2.4)

(‘4‘2.5)

Thus I' is well defined and has values in S(a). Applying Lebesgue dominated con-

vergence theorem, axioms of phase space and the hypotheses (H f), (Hg) and it can

be easily proved that I' is continuous.

Stepl : We assert that there cxist & > 0 such that T'(By) C By, where B, = {z €
S(a) : ||lz]la < k}. In the following we define k := Kok + ||yslls = Kok + Kalylla +

M,||#||s. When we assume that the assertion is false, then V & > 0, there cxists
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ty € By. and ¢ € (s;,t;41] for some j € {0,--- ,n} such that k < ||T'zx(¢x)|1. Then,

b < D)+ T + @) O]+ |y )
< cpa||x||1+c+ﬁf_krrlg(s)g||fg3||mds
+ 7 [ ol T + L) s + (Nek + Fe) |

~— [
+ (‘p||”||1-|-f'+Ngf iy ()82 75| mds

+ N f QR 5l + ITEG) + (Nek + Nz
< ela+1k+e+ (N + N + (N + NS K,k

I AT / g ()UK ullylla+ Mol + Kok)ds

A s —_—
() f a(s)dsU Kallglla + (Mo + T2)[Bllo+ Kok + k)ds

< a4+ Dk+c+ ((N+ N+ (N+ N)E) Kok

e / k((ﬂi + No)my(s) + (N + N)mg(s))

3

s QKallylle + (My + J9) | llss + Kok + k)ds (4.2.6)
Hence

1 < cpla+1)+((V+ ﬁ)ci + (f\v" + N)cf)K
QUG|lylle + (Mo + J?)|| ¢l + Kok + k)
k

x [+ Raymyls) + (R + Ny (s))ds

cpla+ 1)+ (N + Kf)cil + (f\? + N))K,
4 timsupeo ) [ (s + Nomls) + (F + Nymy(s)ds~ (4:27)

0

+  lEmsup, s

A

which is a contradiction to the hypothesis (F1). Similarly, suppose there exists
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i € By, and t € (&, 5] for some i € {1, ,n} such that (T'zx)(¢) > k. Then,

(17 (e Tr )| + 17 (Ees T, )|

{cHTre s + i} + {1 Tve 1w + 5}
< {cM(Kallylla + Mal|@llw + Kak) + di }
{A(Kallylla + Malldllm + Kak) + di}

k < ||(Tlze) ()l

I

.+.

Hence,
1< (;} K,

which is a contradiction. Hence I'(By) C By.
Step 2 : To prove that I' is a x—contraction. Let =T} + F? Yi=1,u.
0,-- ,n be split into ' = [& 4+ T4 Tle + (T2 4 T? + PR Vi =1,
0,---,n
Di" = C(t —'s:)(—g(s, 2.) + I (51, %5.))
I-‘ilh = S("“ 5N Si)("riz(si: ‘1:3{) T QF(Si'. 3:61))
D} = I (6 m)
I2%x(t) = g(s, )
t
2b e T
IPz(t) = / AS(t — s)g(s, T5)ds
4o

Gl

t
Tia(t) = / St — 5)f(5,Tp(sz,))ds

(4.2.8)

(4.2.9)

7 =

Ny J =

The propertics of the function g in (Hg) , lemmas 4.2.3 and lemma 4.2.4 imply

that for all j = 0, ...,n, the sct of functions V(k,g); = {t — [G(t.z +w)]; : = €

Brj = 0,--- ,n} is precompact in C([s;, tj41], X). By lemma 2.5.8(2) xpc(W) =

sup{x(W(t)),t € J}. By lemma 2.5.4 (1) for any W C I'3*(By)

xper (LW () = xpcr(g(t, Wi +w))

= max{supicsxrcg(t, Wi + ut)), subiesxprcy (t, Wy + u1)}

= 0

By mean value theorem for Bochner integral, we derive

(4.2.10)

{T%z(t) : z € By} C t x conv({AS(h)g(s,4):0 < h,s < ¢, ||l < k})
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{(I’?b:z:(t))’ :x € By} €t x conv({AC(h)g(s,9): 0 < h,s <t ||Ylls < k})

This implies {T'%z(t) : z € By} and {([$°z(t))" : « € By} is precompact in X for all
t € J. Hence by Lemma 2.5.4(1),

t
Xpot (I‘?"’W(d)) = maa:{sup;e,xxpc(/ AS(t — s)g(s, W, + ys)ds),

t
sup;e.:x;:c(/ AC(t — s)g(s, W+ ys)ds)} =0 (4.2.11)

By lemma 2.5.9 for any W C I”?C(Bk), since S(t) is equicontinuous so, W is piecewise
cquicontinuous. Hence from the fact that p(s,Z;) < s, s € [0,a] and lemma 2.5.8(2)
and xpo(W) = sup{x(W({)),¢ € [s;,t;41], 4 = 0,---,n} such that for all j =
0,---,1n.

t
xpor (T3 () = xpcr (f S(t =) (s, Wpisz,) + ys; W'(s) +¢/(s))ds
&
= ma.’c{sup;eufxpg(/. S(t = 8)f(s, Wosz,) +Yss W(S) + 4/(s))ds,

t
SU;U:-EJXPC(/ C(t = 8)f (s, Wasiz,) +ya W(s) + y/(s))}ds

t

< maz{supic, / 1 (8)sup_secocoX(W(p(s, Ts) + 0) + y(s + 8))ds,

8

!
SUPes f 12(8)sup_cococox(W'(s +0) + y'(s + 0))ds}
t

< maz{supies / N1(8)sup_se<o<oX(W (s + 8) + y(s + 0))ds,

5

t
SUPiey / N2(8)sup_coco<oX (W' (s +0) + y'(s +0))ds}
' t

= ma:c{supteJ/ M (8)supo<r<sXW(T)ds,

]

¢
Sﬂpte.}f ?}'2(5)5U})0<7§3XW(T)C£S}

< ma:z:{/ua m(s)ds, /: na(s)ds}xper (W) (4.2.12)

Hence

X pct (FEPW) = E‘;UE){chl (P?cIV(t)), t e [3j1 t_‘,i+1]7 j = 0, LI ﬂ.}
€

< chl(W)ma:I:{/: nl(s)ds,/oa ne(s)ds} (4.2.13)
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For arbitrary z1,73 € By and t € (s;,Liq|Vi=1,---,n

xpcr (Tj°z)(t) = maz{supxpc(Ti*z)(t), supxpc(T; z) ()}

< maz{supxpcconv({C(0)[J} (s, ) — g(s,4)] : 0 < 0,5 < t, || < k}),
supxpoeomn (SO ) =~ 9, 9) -0 6,5 Z LT < b}

=0 (4.2.14)

Since

C(u“ = .‘f’a‘,‘){*)ril(sh .'?7..,-‘.) - g('qf\ Ih}_)]
€ conv({CO)[J!(5,%) —g(s,¥)] : 0. 0,5 < ¢, [[Y]| < k}).

and

S(t—S.;)[J}(S.,',JJ_q‘.) & _r}(Si,I,.“.)]
€ conv({C(O)[J (s, ) — g(s,4)] : 0 < 0,5 <t ||[]| < k}).

is precompact.
Similarly x(I'}®) =0, Vi=1,--«,nand x(I'}*) =0Vi=1,--- ,n
For ecach bounded set W € PC(J; X) we have,
xpor(TW) < xpot(TRW/4 TEW + TIW) % x por (T2W/ +EBW, + T2W)

a {
< 04040+ max{ / 1 (s)ds, / na(s)ds}xpcr (W)
Jo 0

7AN

Therefore, I' is a x—contraction. Applying Darbo-Sadovskii fixed point theorem
it is established that there exists a fixed point of I in S(a). So, 2 = z + y is a mild
solution of (4.1.1). '

Remark: Our abstract approach permits application to partial differential equa-

tions with instantancous impulsive tcrm involving nonlinear expression also.

4.3 Example

In this section we discuss a partial differential equation applying the abstract results

of this paper. In this application, B is the phase space Cy x L?(h, X) see ([98]).



65

Consider the second order neutral differential equation

%(w(i,o) — ]:; /Oﬁ n(t — s,v,0)z(s, v)dvds)

Ax(t :
= dita) + —/_ m(t — s)x(s — pr(O)p2(|z(t)||, o, ¢)ds t € [0,a],0 € [0,7],

do?
z(t,0) = z(t,7)=0, te€|0,aq],
z(s,0) = ¢(s,0) —0<s<0,0<0 <,
-&%:c([], o) = &(0),0<0o <,
i
#HtHe) = / ni(t; — 8)z(s,o)ds, t € (t;,8],i=1,..,n (4.3.1)

where ¢ € H([0,7]), £€ X, 0=ty = sg7< t1 <8y < by, .ty < 83 S tuy1 = @
Here, X = L2([0,n]), B = PCp x Lz(p X), A Cc D(A) ¢ X — X is the map
defined by Af = f” with domain D(A) = {f€ X : [ € X, f(0) = f(x) =0}. A
denotes the infinitesimal generator (C(t))tejg on X. A has a discrete spectrum, the

2

Z r - . 1 .
cigenvalues are —n?, n € N; with corresponding cigenvectors 2,(0) = (2)zsin(nd)

and the following properties hold
(Cl) Ap= =3 o2 . n? < ¢, z, > 2, where ¢ € D(A)

(C2) C(t)p = 32 cos(nt) < ¢, z, > 2z, and S(t)p = 310, <2 < ¢ 2, > 2, for
e X.

By defining maps p, g, f : {0,a] x B x X — X by
pt,) := pu(L)pa(llv(0)]));

g() (o) +/ / (s,v,0)(s, v)duds,

f@)(e) = / m(s)(s, 0, ¢)ds

the system (4.3.1) can be transformed into system (4.1.1) Assume that the functions

pi : R — [0,00), m: R — R arc piccewise continuous.

Bn(s v,0)

(1) The functions n(s, v, o), arc measurable, n(s, v, ) = n(s,n,0) = 0 and

:= maz{( / / / d -n(s,w_q, g))2dndsda)”2 1 i=0,1} < o0
h(s) do*




66

~ T T, 9'n(s,1,0)
Ly = (fﬂ [M/O h(s)( 500 Vedndsdo) < oo

(2) The function f : R x R — R is continuous and there is continuous function

J° 2 s < oo, and || £(t, )| < u(s)(lloll + lICI)

oo q(s)

(3) The functions n! € C([0,00);R) and L] := (f_gm (Lf’;%}-)ids)”? <oo, Vi=
1,2,.,m, j=1,2

So, g(t,.),Ji, (i = 1,...,n), f are bounded linear opcrators. We take ¥ = D(A).
Therefore if ¢ : ¥ — X is the inclusion then ¢ — AS(t) is uniformly continuous into
L(Y. X) and ||AS(t)||rev,x) < 1 for ¢ € [0.a] Suppose u(t)(e) = z(t, o) such that

2o = ¢ and continuous on [0, ;) then the right derivative

d ™

e ¢ = = e ) s d d L s fz‘

dﬁg(u )|t = 0(o) / f n(s,v,o)¢(s,v)dvds + /{; n(0,v,0)Y(0, v)dt
2 (4.3.2)

exists and is independent of x. Hence by assumptions (a) — (c) and thcorem 4.2.5 it

is ensured that mild solution to the problem (4.3.1) exists.

4.4 Conclusion

The existence of mild solution of a class of second order partial neutral differential
equation involving state dependent delay and non-instantancous impulses is proved.
Hausdorff mecasure of noncompactness and Darbo Sadovskii fixed point theorem
were used to replace some restrictive conditions such as the compactness of cosine

or sine family of operators and the Lipschitz conditions on the nonlinear functions.



Chapter 5

Existence of Solution of Impulsive
Second-Order Integro-Differential
Equation with State Delay

This chapter consists of two parts. The first part deals with the existence of mild
solution of a class of instantaneous impulsive second order partial differential equa-
tion involving state dependent delay. The second part studies the non-instantaneous
impulsive conditions on the same problem. Kuratowski measure of noncompactness
and Mdnch fixed point theorem are required to establish the existence of mild so-
lution. We remove the restrictive conditions on the priori estimation available in
literature. The compactness of cosine or sine operators, nonlinear terms and asso-
ciated impulses is removed. The noncompactness measurc estimation, the Lipschitz
conditions, and compactness on the nonlinear functions are replaced by simple and
natural assumptions. We introduce new non-instantancous impulses with fixed de-

lays. In the last section we study examples to illustrate the presented result.

5.1 Introduction

In recent times, much attention is paid to functional differential equation with state
dependent delay. We refer [13],[15],[59],[76] for details. For work in impulsive dif-

ferential cquations, we refer [63],[117],[144] regarding discrete impulses. However,
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in general the compactness of the impulsive terms, boundedness of estimates of
measure of noncompactness and a priori estimates are used to establish existence
results.

In this chapter we study the second order partial neutral differential equation

with statc dependent delay represented in the form

g;m) = Aa(t) - g(t,z) + [ 'ty Ty Z), L€ [0, £ 8,
= Loyl
T = ¢€B,
'(0) = £€X,
Ax(t;) = Iz, 21) AL dssell
AZ'(t) = oy, AP0 % 12, ot (5.1.1)

Here 0 = tg < by < tg,.i., < ln £ tyigq = b are prefixed numbers.

We also study the second order neutral differential equation

Po) = MO~ 90,2+ [ HEBan O, 1€ (e,
i=0,..,n
ry = ¢&B;
2(0) = £ X,
(t) = JHt,a(t — ), te (t,s), 1=12,..,n
() = JHt,z(t€ ty), tE s, = 1,200 (5.1.2)

Here 0 =ty =80 < t1 < 81 < tgy ooy < by < Sy Sibng1 = b are prefixed numbers.

In (5.1.1),(5.1.2) A is the infinitesimal generator of a strongly continuous cosine
family {C(t) : t € R} of bounded linear operators on a Banach space X and ¢ €
[0,b] = J. S(t) is the associated sinc function. The history valued function z; :
(—00,0] = X, z(0) = z(t + 0) belongs to some abstract phase space B defined
axiomatically in chapter 2 as Definition 2.2.12 and g, f, I}, I2, J}, J2,i = 1,..,n arc
appropriate functions which are defined in the following section, in the hypotheses
(Hf),(Hg),(HI) and (I J) respectively.

The second order abstract partial neutral differential equation similar to (5.1.1)

is extensively studied in [34],[38]. Actually, in these articles strict assumptions on
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semigroup or cosine family are assumed. This resulted in the finite dimensionality
of the abstract space. Thus the equations studied in those articles are actually
ordinary instead of being partial differential equations. Hence motivated by the
need to redress this issue and by the results in [98] and their various applications we
study partial neutral differential equation of second order involving state dependent
delay, instantaneous and non-instantancous impulses.

The main contribution of this work lies in the removal of compactness assump-
tion on the associated cosine or sine family of operators and associated impulsive
term. The noncompactness measure estimation and the Lipschitz conditions on the
nonlinear functions are replaced by simple and natural assumptions.

Suppose N, N, Ni, Ny be certain constants such that ||C(¢)]| < N, |S(t)] < N,
|AS|| € Ny ||AC
Goldstein[84] and Fattorini|75]. Let /2 denote the Banach space of all vectors 2 € X

< N, for every ¢ € J = [0,b]. For more details sece books by

for which C'(.)« is a continuously differential function on IR, endowed with the norm
(&)l = |lz]| + supo<e<s || AS(L)2]

PC([0,0], X) denotes the space of normalized piecewise continuous function from
[0,0] into X. For any z € PC

, xe k.

zi(t) =
ALY A e S T MR,

{ z(t), te€ (b tin];

SO, T S (f‘([ih £€+1]! X)

Definition 5.1.1. [44]:For a bounded sct B in any Banach space Y the Kuratowski
measure of noncompactness oy is defined by

ay(B) = inf{r > 0, B can be covered by finite no. of balls with diameter r}

Lemma 5.1.1. [44] Let h : [0,b] — E be an integrable function such that h € PC.
Then the function v(t) = fot C(t — s)h(s)ds belongs to PC?, the function s —
AS(t — s)h(s) is integrable on [0, ] for ¢ € [0.b] and

v'(t) = h(t) + A/t S(t — s)h(s)ds = h(t) + _/a AS(t — s)h(s)ds, t € [0,b]

0

Lemma 5.1.2. [44] Let h, € H ¢ L*([0,b], X).If there exists o € L*([0,0], [0, +00))
such that ||, (¢)|| < o(t) for h, € H and a.e. t € [0,b], then a(H(t)) € L'([0, 4], [0, +00))
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and ;
{/ :neN}) < 2/ a(H(s))ds, t € [0,0]
0
Lemma 5.1.3. [44](Ménch): Let X be a Banach space, 2 be a bounded open subset

in X and 0 € Q. Assume that the operator F : Q — X is continuous and satisfies

the following conditions:
(1) z # A\Fz, VA€ (0,1), z € 00

(2) D is relatively compact if D € @o(0U F(D)) for any countable sct D c Q.
Then F has a fixed point in Q.

5.2 Instantaneous Impulsive Second-order Differ-
ential Equation
We define the mild solution of the problem (5.1.1) as follows.

Definition 5.2.1. A function z : (=00, b] — X is a mild solution of the problem
(5.1.1) if zg = ¢, ' (0) =&, x()|jpe € PCH(X), and

wll) == t)o(0) + ()E+g£¢¢)—//15t—-;)gsr
+ f S(t—s / i Do, 5T dPdS+ Z C(t £ (0}
O<ti<t
S S - )R, (5.2.3)
0<t; <t

To prove our result we always assume p @ J X B — (—o00,b] is a continuous
function. Let y : (—oo0,b] — X is the function defined by 3o = ¢ and y(t) =
C(t)(#(0)) + S(t)(€) on [0,¢;]. From the definition of abstract phase space B in-
troduced by Hale and Kato and given in chapter 2, it clearly follows that [yl <
M = Kyllylls + Mollglls where llylls = suposccally(@)]. Let 7=z +

IZ sl < Ms = (My + J®)|6lls + Kallylly + Kolllls-

Taking supremum of M;, My as M and supremum of ' as M" we define the space
S(b) as S(b) = {z : (—o0,b] = X : m =0, 2/(0) =0, z|; € PC'} endowed with
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norm |jul; = ||u)|e + [|t']|oo-

The following hypothescs are required to prove our result.

(1y) The function t — ¢, is continuous from R(p~) = {p(s,¥) : p(s,4) < 0} into
B and there exists a continuous bounded function J? : R(p~) — (0, c0) such

that ||¢¢]|e < J¢(t)||#]|s for every t € R(p™).
(Hf) The function f: J x B x B — X satisfies the following:

(1) For every z : (—o0,a] = X,z¢ = 0, 2’'(0) = 0, z|; € PC" the function
Sz, ) « J — X is strongly measurable and f(t, .,.) is continuous for
a.e teJ

(2) There exists an integrable function p : J — [0, +00) such that || f(¢, u, v)|| <
p(t)(|lulls + ||v||e) Vi € J and u,v € B.

(3) There exists an integrable function u : J — [0, 00) such that
a(f(t, Dy, D})) < w(t)a(Dy) + afDy)) for ae. ¢ € J, where Dy = {v, :
we D}, D) = {v) /e DY &/ B € ),V Q| PC!

(Hg) The function g : J x B satisfies the following.

(1) g(t,.) is continuous V t € J.
(2) TFor every bounded V' C S(b) the set {@5(” : r € V} is uniformly
cquicontinuous on [¢;, ti11] for all i =0,-+- ,n where v,(t) = g(t, x:)

(3) For any bounded set @ € PCY, a(g(t,Q:)) < ca(Q:), t € J where cis a

positive constant.

(HI) For the maps I} : B xB — E, I} : B x B — E there exist positive constants
ct, ¢, d}, d? such that | IZ(t,v)| < c|lvlle +d, V=12,

i1

(H1) There exists a Banach space (Y, ||.|ly) continuously included in X such that
AS(t) € L(Y,X), for all t € J and AS(.)z € C(J;X) for every z € Y. 3
constants Ny, Ny such that ||y]| < Nyllylly, Vy € Y and |AS(t)||covxy <
Ni, VieJ

(H2) R(C(t) —I) is closed and dim Ker(C(t) —I) < 00, VO<t <)
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(H]) (1) For the maps Ji(t.¢) : J x B — X there exist positive constants
¢}, c2,d}, d? such that
12 ) < lolle + i, V5= 1,2,
(2) The maps J}(.,%), J2(.,%) are continuous V (.,¥) € (ti,si] x B i =
1,...,n,
Lemma 5.2.1. [96]: If y : (—o0,b] — X is a function such that yo = ¢ and y|, €
PC(X) then

ool < (My + J9)lIglls + Kysup{[ly(6)]}; 0 € [0, max{0, s}]},
s€R(p7)U[0,b]

where J# = SUPseg(p-y SO (1), My = sup,cy M(t) and IS, = max.e; K (t).

Lemma 5.2.2. [84]: Let condition (H2) be satisfied and B C Y. If B is bounded in
X and the set {AS(t)y +t € [0,0],y € B} is relatively compact in X, then B is
relatively compact in X.

Proof: Since for y € B, C(t)y —y = A [, S(s)ydy = fy AS(s)ydy, it follows from

mean value theorem for Bochner integral that

C(t)y—y € t x co(AS(s)y : 0 < s < t,y € B), where co is the convex hull. Then by
hypothesis (H2) the result follows.

Lemma 5.2.3. [98]: A set B ¢ PC'is rclatively compact in PC" if and only if each
set ’Bh;}é =1,...,n is relatively compact in C*([t;, Lix1], X).

Theorem 5.2.4. If the hypothesis (f¢), (H [), (Hg), (/11),(/11) and (H2) holds and
the cosine family is equicontinuous then there exists a mild solution of the problem
(5.1.1)

Proof: Let us define the function z : (—o0,0] = X as 29 = xp, 2(t) = 2'(t), t€ J
S(b) = {x : (—o0,b] = X : o = 0,2'(0) = 0, z(.)]; € PC'} Let T' = (I'1,T) :
S(b) x S(b) — S(b) be defined as

0, t <0
+ f; AS(t — s)g(s, x5 + ys)ds
Ti(z,2)(t) =< + [ St —3) [§ [ Frhotryen), T + YL)dr (5.2.4)

Tk z{kt <t C(t — f')”(-""t. + Yt 2, UE )
+Eo<t <t St — )Iz(rh + Y 21 F%‘) teJ.
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and Iy(z, 2)(t) = 'y (x, 2)'(t) Therefore,

Lo(z, 2)(t) =

0,

+ f[; AC(t — 8)g(s, x5 + ys)ds

+ Js Ct = 8) J3 F(.Totrr) + Yro 2y + Y )dr (5.2.5)
+ Zua‘-a AS(t — t) I} (e, + e, 20, + Y1)

% Zua‘-a C(t — t:) 12 (ze, + Yeir 2 + U1,)s t €.

I" is seen to be continuous by Lebesgue dominated convergence theorem, axioms of
phase space and the hypotheses (11¢), (I ), (Hg), (HI).

Step 1 : It is shown that Qy = {(z, z) € S(b) x S(b) : (z,2) = AI'(z, z) for some A €
(0,1)} is bounded. If t € Jy = [0,¢;] then

=@

(101

0 01 < T [ el + 31+ dids

F [ [ o6 ek + lln + 31+ Wryiras

M/ (J’\elc+N/ p(r)dr)ds + N;bd

m/ Nic+ N/ rydr) (zlfs* llzlls)ds

MR fo ]0 olr e (5.2.6)

o, )OI < R [ [elelln +F1) + dljds

N f / p(r) (1l + 1zl + M’ + )drds

t s s
M ] (Nac+ N / p(r)dr)ds + Nybd
0 0

Ko [ (et N [ ol + a0.)ds
M'N /ﬂ t fﬂ Sp(r)drds. (5.2.7)
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Thercfore,

lzlle +ll2lle < (N7 + Na)bd
+ M| / [e(N; + N2) + (N + N) / p(r)dr]ds

t ps o
+ M'(N+ N)] (/ p(?')dr)ds-’r—f (N1 + Nac) Ky
o Jo 0

(N + DK [ " p(r)drl(lzlls + 1zll.))ds. (5.28)

Since ||z||¢ + |lzl|: € C(Jo, X) by Gronwall’s lemma there is a constant Go > 0 such
that ”.’E”; " ”Z“g S GU‘ t € J and ”.'I.';_“g; S -'KbGG and HZf”gB < K},Gg, l € Jg. By
condition (HI) it is observed that

1B (@ + 920 FU)I < ARKGo+ M+ M) +df =
()

lz@tD = llz(t1) + L@y + Y 20 + 9| £ Go+m2
(5.2.9)

”x(tl) + Ill(mh + Yus 2 t+ y;,)” < GC' +

z(t), e (trea);

Aerlhe o P

When t € Jy = (t1,12], let u(t) = {

. 2(1)7 L € (tl,ﬁgl; BCY -
u(t) = { B = b Then u,v € O([t1, ta], X)
@l < f (NocKy + N K, ] " p()dr) (]l + l12]1)ds

t .. s & ) o
/ [NicM + Nf p(r)dr(M + M")]ds + Nibd
0 0
N“ﬂl(-’ftl + Yty 2t + y;;)“ + N”IIQ(IEEI + Ye 2+ yil)”

L - 8
/ (2N1eK,Go + N/ 2K,Gop(r)dr)ds
0 0

FA S &

t o s — L
+ /[Nlc-ﬁj—lr Nf p(r)dr(M+M’)ds+/ (N1eKp
0 0 131

+ NK, V[:p(-r)dr)(tsup lee(7)]l —{-tsup lv(7)|)ds (5.2.].6)

<r< 1=7<
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lo(O)I]

IA

L C—— s - i
] (2NycKyGo + N/ 2K,Gop(r)dr)(M + M')ds + Nybd
0 0
b 5 -
+ / [NacM +N/ p(r)dr(M + M')]ds
0 0

ta s
+ f (NackK, + NK, f p(r)dr)( sup [[u(r)]l + sup [u(r)[)ds
t 0 ty<t<s t1<t<s

(5.2.11)

Therefore, from equation (9.2.1), (9.2.2)

IA

sup |u(s)|| + sup [[v(s)]| er+ep
ty<s<t

t1<s<t

t g - - 8
& _/{N;(;+N2c+(f\f"+N)/ p(r)dr| Ky
51 0
Caup, 1SR gt [lv(m)l)ds  (5.2.12)

i <7r<s 157

X

where ey, e; are appropriate constants.
Using Gronwall’s lemma there exists constants Gy > 0 such that [[u(t)||+||v(¢)]| < G1
for t € [t1,ta). So ||z(t)| + [|z(t)|| < Gy, for & € Ji.
Similarly let G = max{Gy, Gy, -+ ,G,}, then ||(z,2)|| £ G and €2 is bounded.
Let R > G and Qg = {(z,2) € S(b) x S(b) : ||(z, 2)|ls < R}.
Since R > G, so
(z,2) # Xl(®,2), V(z,z2) € (5.2.13)

Step2 : Suppose V. C Qg be countable set and V' C e5({0,0} € I'(V)). Let
Vi ={z € S(b) : 3z € S(b),(z,2) € V},

Vo ={2€ S(b): 3z € SO),(z,2) € V}

VW xVace({0}ul (V) x Va)) xea({0} U T (Vi x Va)) (5.2.14)

From equations (5.2.4),(5.2.5), lemma 2.5.9 and (Hg)(2) we get that I‘J-((ﬁl)q- X
(Va)i), (j = 1,2) are equicontinuous on Ji(i = 0,1,---,n). From (5.2.14) it is
implied that (17;)1(& = 1,2) are equicontinuous.

Step3 : Now we prove that V; and V;, are relatively compact. We identify Vily,,
(k = 1,2) with ‘7; where Vi|s, is the restriction of Vi on J; = (ti,tiya1]. When
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t € Jo = [0,t,], from hypotheses (H f)(3), (Hg)(5) and Lemma 5.1.2 we get that

a(Vi(t)) < al1(Vi x Va)(1))

ot
< 2 [ alg(s, Vie +y)ds
Jo
t ]
¥ 2N-/ &/ f(?", le{r,:t:,-)+yp(r,:n.-)sv2‘r‘+y;-)drds
0 0
t t_ ps
< 2] Nlca(V13+y,q)ds+2/ QN/ p(r)dr(a(Vis + ys)
0 Jo 0
+ a(V23+y;))ds
t - 5
< 2/ (Nlc—I-QN/ p(r)dr)(a(Vis + ys) + a(Vas + 45))ds
0 Jo
t’r-u_r
< 2 [ [Nchb+2KbN[ p(r)dr( sup a(Vi(7))
J0 0<r<s
+ sup a(Vi(7)))]ds ' (5.2.15)
0<r<s
a(Va(t)) < a(l2(Va x 12)(2))
gt
< 2sz alg(s, Vis + ys))ds
0
{5 &
+ 2Nf ('}!/ S, Vipra,) + Ypirz,)s Vor + yp)drds
0 0

1 —
< 2/ Noca(Vis + ys)ds

+ / QN/ r)dr(a(Vis + ys) + o Vag + yt))ds

< /ﬂ (Ngc + QN/ w(r)dr)(e(Vis + ys) + a(Vos + Js))d‘?
< 2 /ﬂt[(:’\\id(b +2K,N ‘/0 p(r)dr) (0:;1;15)5 a(Vi(r))
+ sup a(Vi(1)))lds (5.2.16)

0<T<s

Since () := supg<,<; @(Vi(s)) (j = 1.2) are continuous and nondecreasing func-

tions on Jo. From equations (5.2.15),(5.2.16) we get that

ma(l) + mao(t) < /{;- K(c+ /: p(r)dr)(my(s) +ma(s))ds  (5.2.17)

where K is an appropriate constant. So, by Gronwall’s Lemma and (5.2.17) we

sce that a(Vi(t)) = 0, (k = 1,2) t € Jp. By lemma 2.5.4(1) we prove that
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Vi, (k = 1,2) is relatively compact in C(Jp, X). Since a(Vjy, + yi,) < a(Vy,) <

Ky supge <, @(Vj(s)) = 0 also H(.,.) (j =1,2) is continuous, we can show that
a(fll(vlu + yp,, Vo, + yil)) = a(Ilg(Vlil + yp,, Vo, + yil)) =0
Similarly, when t € J; = [, 4],
a(i(t)) < a(l(Vi x V5)(t))

< _/[Nchb+2KbN/ w(r)dr( sup a(Vi(1))

O<r<s

+  sup a(Vi(r)))lds (5.2.18)

0<7<s

a(Va(t) < 2 / [(E\icf(bm;(bﬁ / iyt s @ORLD

i1 i} t1<7<s

4+ sup a(Vi(7)))]ds (5.2.19)

t1<7<s

From equations (5.2.18),(5.2.19) we get that

sup a(Vi(s)) + sup a(Va(s)) <

[lg.‘igt !.;Sei‘-:{
t 8
/ K({e + / p(r)dr})( sup Vi(s) + sup Vo(s))ds  (5.2.20)
t1 0 t1<s<t ty<s<i

where K is an appropriate constant. So, by Gronwall’s Lemma and (5.2.20) we
see that a(Vi(t)) = 0, (k = 1,2) ¢ € J;. By lemma 2.5.4(1) we prove that
Vi, (k = 1,2) is relatively compact in C(Ji, X). Since a(Vje, + yr,) < a(Vyy,) <
Ky supge <, @(V;(s)) =0 also I3(.,.) (j = 1,2) is continuous, we can show that
a(l, (Vi + i, Vo, +91,)) = alds (Vigg + yo,, Vo +3,)) = 0.

Similarly Vi (k = 1,2) are relatively compact in-C(J;, X), (i = 2,3,--- ,n). Thus
Vi (k = 1,2) are relatively compaet in S(b). Now by lemma 5.1.3 we can prove that
I" has fixed point in Qp. If (z, 2) is a fixed point of I" on S(b) then (z + y) is a mild
solution of problem (5.1.1).

5.3 Non-instantaneous impulsive second order neu-

tral differential equation

In this section we will find the conditions for the existence of mild solution of the

problem (5.1.2). Let us define the mild solution as follows.
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Definition 5.3.1. A function z : (—oco0,a] — X is a mild solution of the problem
(5.1.2) if zp = ¢, 2'(0) = &, z()|py € PCY(X), z(t) = JHt,z(t —t)), Vi €
(L, 8], i=1,..,m, 2'(l) = J2(t, x(t — b)), t € (li,8:), i=1.2,..,n and

z(t) C(t)o(0) + S(1)€ — /0 AS(t — s)g(s, z,s)ds

S(t — . 3.7\3 J"a'r-:Ir dd’ 1
+ /0 (t s)fo f(r 22y, ' (r))drds, ¢ € [0, 4]
z(t) = C(t—s:)J(si,z(t —t1))

+ S(t— s:) (i, w(t — 1))

t
- ] AS(t — s)g(s,xs)ds
f )
+ / .‘J'(!.—s)/ J(8, @ p(rz,y, ' (r))drds,
Js 0

for t€sitiy1], i=1,...,n (5.3.21)

Let y : (—oo,b] — X is the function defined by yo = ¢ and y(t) = C(t)(¢(0)) +
S(t)(€) on [0,t1]. Clearly [lyulle < Kollylle + Mill¢lls where [lylly = supo<is|ly(E)]]-
Since S(b) = {z : (—00,b] = X : @ = 0,2'(0) = 0, z(.)|; € PC'}. Thercfore
Z = = + y is a mild solution of (5.1.2).

Theorem 5.3.1. If the hypothesis (He), (H [), (Hg), (HJ), (J{1) and (/2) holds and
the cosine family is equicontinuous then therc exists a mild solution of the problem
(5.1.1)

Proof: Let us define the function z : (—00,0] — X as zp = zp, 2(t) =2'(t), te J

Let I = (I';,Ty) : S(b) x S(b) — S(b) be defined as

0, t <0
Ti(z.2)(t) = { — Jy AS(t — s)g(s, @, + y,)ds (5.3.22)
+ Jy S(t = 5) f3 Fr\Toran, @4+ y)dr, € Jy=[0,41].

and I'y(z, 2)(t) = I'1(z, 2)'(t) Thercfore,

0, t<0
— f(; AC(t — s)g(s, s + ys)ds

To(z, 2)(t) = )
+ f; C(t —s) [, F(rs Borin)s T + Y. )drds,

(5.3.23)

te Jp=[0,t].
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Ji(t z(t ~ t), te€(tysi,

C(t — 8:)J7 (si, x(t — t1))

—S(t — s;)JJ2(si, z(t — 1)) (5.3.24)
— f;‘_ AS(t — s)g(s, s + ys)ds

|+ [, SW=5) [y S Totranys @+ iy )drds, € J; = (si, Lisn).

and Iy(z, 2)(t) = I'1(z, z)'(¢) Therefore,

Ta(z, 2)(t) = ¢

JA(tiz(t — ty), t € (48]
AS(t — s:)J} (si, x(t — t1))
=C(t — $:)J2 (55, 3(L — £1))
- f;‘_ AC(t — s)g(s, s + ys)ds
+ [} Ct = 8) f5 L0, Tpiran), @ + 9L drds,
t € Ji = (85, tip1)

(5.3.25)

It can be easily proved that I' is continuous by Lebesgue Dominated Convergence

theorem, axioms of phase space and the hypotheses (He), (H f), (Hg), (HJ).
Step 1: We show that Qg = {(z,2) € S(b) x S(b): (z,2) = A'(z, z) for some A €
(0,1)} is bounded. When ¢ € Jy = [0, {1]

le@ll < 0201 < N f [c(llelle + ) + d)ds

— L $ —
+ F [ [ w0l + Derll + 217+ Fydrds
0 0
t o - ] —
< ﬂ/ (A’10+N/ p(r)dr)ds + N bd
0 0
d i o 5
+ Ko [ Fiet N [ plodr)(lal + 21.)ds
0 0

t 5
+ M'N/ / p(r)drds (5.3.26)
0 Jo
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1O < T2z 2@l < N / (e(llz ]l + 7) + dds
+ N// ||z lls + [|2-lls + M’ + M)drds

< NI/(N28+Nf dr ds+N2bd
0
+ K [ (Nac+ N f p(r)dr)(lzlls + 12]ls)ds
0 0
t s
+ M'N//p(r)drd,s (5.3.27)
0 0

Therefore,
lelle + llzlle < (N + Na)bd

ALY s _ Ve

+ Wf [e(Ny+ N3) + (N+N)] p(r)dr]ds
0 0

L s N e
+ M (N+N) / (f p(r)dr)ds + / [(Nye + Nac) Ky
Jo Jo Jo

(Nt MK, ] " p(P)dri(lizlls + l2))ds (5.3.28)

Since ||z, + ||z]ls € C(Jo, X) by Gronwall’s lemma there is a constant Go > 0 such
that ”11.‘”; F ”Z”g < Gg, t € J and ”It”% < JK},GU and Hzt“m < I{bGD: Lo Jg. BY

condition (HJ) it is obscrved that for ¢ € [t1,51)
13 (¢, 2(t = 0l < A (2IGo+ M) + d] == (5.3.29)
When t € Jy = [s1, Lo

()]l

IA

ITs(e, YOS N (lzslla) + 62
N[ l|zs, e + d7)
W [ 1ell(o)lm + 1) + s

+ 4+

+

ﬁ‘[s‘ h/:p(?")(”xr”% % ”Z‘r”‘B £ ﬂ/f,"'m)drds

R s 4 - 3 £
H/ (Nic+ N / p(r)dr)ds + M’N/ / p(r)drds
8 &; /0

+ K / (Nie+ N f Pdr) ([l + [12lls)ds
+ [N(cK) + N(GK) ([l + [1=1)
Nibd + N(dY) + N(d?) (5.3.30)

[A
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s < T2 )N < Wil s +
N[ oulla + &
Mo [ i)l + 77) + dids

_|_

_I_

+

i 8
N / / ol 0zl Yzt M2 Bl dds
5 J0

IA

t__ 8 .t ps
Tﬁ/ (Nac + Nf p(r)dr)ds+M'N/ f p(r)drds
0 0 0 Jo

v K, f (Noc+ N / " p(r)dr)(lzlls + l12ll)ds

+ [Na(c o) + N(E K] (]| + 1]

Nabd + N (d2) + N(d?) + Nabd (5.3.31)
Therefore,
t 5
lzlle + N2lly € {K+ ﬁ/ [e(N7 + Ng) + (N + N)/ p(r)dr]ds
0 0

+ (N # N)]u (/Dsp(?')d'r)ds—}-‘/ﬂ [(Nye+ Nac) K,
N g / pdrl(lzfl + 1201.)1ds} (5.3.32)

where K is an appropriate constant. Since ||z, + ||2]|; € C(J1, X) by Gronwall’s
lemma there is a constant Gy > 0 such that ||z||, + ||z|l < Gi, t € J and ||z4]|s <
KyGo and ||z||ls < KpGq, t € Jo. By condition (HJ) it is observed that for ¢ €
[t2, 52)

193 (, 2(t — 61)]| < G2K,Gy+ M) +dj =n} j =1,2 (5.3.33)

Similarly let G = max{Go,m,G1,7m2--+,Gy}, then ||(z,2)|y < G and €y is
bounded.
Let R > G and Qg = {(z,2) € S(b) x S(b) : ||(z, 2)||s < R},
Since R > G,
(x,2) # Al'(z, z) V(z,z) € 08g (5.3.34)

Step2 : Suppose V' C Qg be countable set and V € @({0,0}  T'(V)). Let

Vi = {z € S(b) : 3z € S(b). (z, 2) € V},
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Vo= {z € S(b): Ix € 5(b), (,2) € V}

V c Vi x Vo c ({0} UTy (Vi x Va)) x ea({0} UT(V1 x V2)) (5.3.35)

From cquations (5.3.24),(5.3.25), lemma 2.5.9 and (Hg)(2) we get that Fj((?l)i X
(172)1-), (j = 1,2) are equicontinuous on Ji(i = 0,1,--- ,n). From (5.3.35) it is seen
that (17,;),-(3: = 1,2) are equicontinuous. Next we prove that V4 and V5 are relatively
compact. We identify Vi|y,. (k= 1,2) with f/; where Vi|y, is the restriction of Vi on
Ji = (si, tiy1]). Whent € Jy = [0, 1], from hypotheses (H f)(3), (Hg)(5) and Lemma
5.1.2 we get that

a(Vi(t)) < al(Vi x V2)(8))
2 2N1/ alg(s, Vis + ys))ds
0
t 8
+ 2N/ ry./ FIR Vw(,,xr)+yp(f‘x,,)7Vg,—}—;f;;)u’;r'rls
0 0
b t . 5
< 2] Nlccx(le+y,,.)ds+2/ 2N/ p(r)dr(c(Vas + ys)
0 0 0
+  aVas + yy))ds
b e 5
< 2] (1V1c+21\"f wu(r)dr)(a(Vis + ys) + o(Vas + 5))
0 0
A __ps
< 2 / [Nlcf(b+2f(hN-/ p(r)dr( sup a(Vi(T))
J0O 0 D<7<s
+ sup a(Vi(7)))lds (5.3.36)
0<r<s
a(Va(t)) < a(la(Vix V2)(t))
Y
< 2N2/ a(g(s, Vig + ys))ds
0
i 8
+ 2N/ Of/ f(‘.‘“, Vl,o(vz_xr)+yp(?',z,—):v2r+y:-)drds
Jo 0

t —
S 2/ NQCCY(V]_S +y3)d5
0

t s
+ 2] QN/ w(rYdr(a(Vis +ys) + a(Vas + ¥,))ds
0 0

IA

t . 8
2 / (Nac+2N f () dr) (a(Vis + 4) + o Vas + 1)) ds
0 0
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t s
< 2/ [(le;Kb+2KbN/ p(r)dr)( sup a(Vi(T))
0 0 0D<r<s
+  sup «a(Vi(r)))]ds (5.3.37)
0<r<s
Since m;(t) = supgc,<; @(V;(s)) (j = 1,2) are continuous and nondecreasing func-

tions on Jy. From equations (5.3.36),(5.3.37) we get that

my(t) + ma(t) ] K c+/ (r)dr)(mi(s) + ma(s))ds  (5.3.38)

where K is an appropriate constant. So, by Gronwall’s Lemma and (5.3.38) we
sece that a(Vi(t)) = 0, (k = 1,2) t € Jo. By lemma 2.5.4(1) we prove that
Vi, (k = 1,2) is relatively compact in C(Jo, X). Since a(Vyy, + yy,) < a(Vy,) <

K, supy< <, @(Vj(s)) = 0 also JI(.,.) (j = 1,2) is continuous, we can show that
O‘(Jll(vlil o yh)) = O"(‘]Ilz(vlh i yil)) =0
Similarly when ¢ € J; = [t1, s1],

a(Wi(t)) < a(l1(Vi x V3)(1))
< 2/ [Rﬁc;’(ﬁ—kﬂ(bﬁ f w(r)dr( sup a(Vi(T))

0<r<s

+ sup a(VI(T))J]ds—I-/O ek, sup a(Vi(s))ds

0<r<s tr<s<t
(5.3.39)
g - = 5
a(Va(t)) < 2 / (Nrcky + 26N / R sup a(Vil)
t1<7<s
+ sup a(Vi(1)))ds + cK) sup a(Vi(s))ds
t1<r<s b1 <s<t
(5.3.40)
From cquations (5.3.39),(5.3.40) we get that
sup a(Vi(s) + sup a(Va(s)) <
L1<s<t i <s<t
t
/(K{c+/ p(r)dr} 4+ ck)( sup Vi(s) + sup Va(s))ds  (5.3.41)
t t1<s<t t<s<t

where K is the appropriate constant. So, by Gronwall’s Lemma and (5.3.41) we
sce that a(Vi(t)) = 0, (k = 1,2) t € J;. By lemma 2.5.4(1) we prove that
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Vi, (k = 1,2) is relatively compact in C(Jy, X). Since a(Vyy, + i) < a(Vjy,) <

K, supges<q, @(V;(s)) = 0 also J3(.,.) ( = 1,2) is continuous, we can show that
a(Jy(Vie, +yu)) = a(J3 (Vi +y1,)) =0

Similarly Vi (k = 1,2) are relatively compact in C(J;, X), (i = 2,3,--- ,n). Thus
Vi (k = 1,2) are relatively compact in S(b). Now by lemma 5.1.3 we can prove that
I has fixed point in Q. If (2, z) is a fixed point of I' on S(b) then (z + y) is a mild
solution of problem (5.1.2).

Remark : We can also apply the above methodology to the following:

Lal) = M)~ [ gt r) [ T st 1 0], 1 £ b
¢S 1,01
Ty = ¢EB,
2(0) = £eX,
Az(t) = I )id=172 8N
AZ'(t) = Pag),i=1,2,..,n (5.3.42)

Here 0 = o < t; < tg, 4, b thyr = b are prefixed numbers.

E!‘2—9.:(3‘) = A(:z:(t)—]ﬂ g(r,mﬁdr)%—/(; FEE ) 180 £ € Wi, Liaa]

di?
) T
o = ¢€'B,
#(0) = £eX,
Cz(t) = JHta(t - t)), t€ (tis], i=1,2,.,n
() = Jtz(t—t)), t€ (tiys], i=12,...,n (5.3.43)

Here 0 = tg = 5o < t1 < 81 S toyery <ty < 8y Slpyr =bare prefixed numbers. The
mild solution of (5.3.42) is defined as

Definition 5.3.2. A function z : (—oo,b] — X is a mild solution of the problem
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(5. 342) if zo = ¢, 2/(0) =&, z(.)|pp € PC*(X), and
: t t
2(t) = C()(0) + S(E+ / 9(8, 2:)ds — ] Ot — 5)g(s, z.)ds
fStms)/j':*":.,-"f,(,.r,,)diw:ifs—f-ZC’t—t1 (z4,)

O<t; <t

+ Y St—t)Ia,) (5.3.44)

o<t; <t

We define S(b) = {z : (—o0,b] = X : xp = 0,2°(0) = 0, z(.)|; € PC'}. We
define I' =: S(b) x S(b) — S(b)

0, t <0
+f0 C(.‘ﬁ 8)g(s, s + Ys ds+f0 9(s, T5+ys)ds
T(z)(t) =% A S = s)[5 fO;Tptm))dr (5.3.45)
~4 EU-:: =t Hay+\vr)
+EO<:<»:S(£ L) I (2o, + yn)s ted

\

and proceed as in the first case of theorem 5.2.4.

Definition 5.3.3. A function z : (—oc0,b] — X is a mild solution of the problem
(5.3.43) if 2o = ¢, 2'(0) = &, (o € PCUX), z(t)= Sl z(t —t1)), YVt €
(L, s3], 1= 1, ., PlE) X J2(L, 20t 1), € (¢, 655 1,2,...,n and

8
—

Lo
—

CHO) +50)¢ = | Cle=als,zds
+ ;/{; g(s,zs)ds+ / S(t—s) /Us f(ryzp(s,z,))drds, t € [0,4]

Gt — 8T Es 26~ 1))
+ S(t = s;)J}(si, x(t — 1))

_ f jc(g _ )g(s, z,)ds

t ] s
/ g(s,zs)ds +/ S(t— s)/ f(8, Ty, )drds,
0 3 0
fOT L e [Sl‘, !";@_}.1], = ]., veey Th (5346)

2
—_

fa
po—

+

We define I' : S(b) x S(b) — S(b) be defined as
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0, t <0
L(z)(t) =4 — fot C(t — 5)g(s, T, + ys)ds + fot g(s, x4)ds (5.3.47)
—I—fot S(t — s) fﬂs T, ZBptrmny Jdrs te J=[0,t].
[ Jl(ta(t —t), t € (tisi,

C(t — si)J} (si,x(t — t1))

—S(t — 8;)J2(si, m(t — 1)) + ft_‘ g(s, xy)ds

F — 3 0.
i [ C(t—5)g(s, ws +ys)ds ool

+ fnt C(t—s) [; J(r, Tprz,)s Trt Yp)drds,

t ed; = [0,14].

.

and proceed as in Theorem 5.3.1.

5.4 Examples

In this section we discuss a partial differential equation applying the abstract results
of this paper. We discuss the partial differential equation in two examples. In Ex-
ample 1 instantaneous impulsive differential system is studied while in Example 2
non-instantaneous impulsive differential system is studied. As a result the dynamics
and solutions of these two examples will be different as we can perceive from equa-
tions (5.2.3) and (5.3.21). In this application, B is the phasc space PGy x L2(h, X)
see ([98]).

Example 1 : We study following system with instantancous impulses
2

3 i kg
ﬁx(t,cr) = (A =iV (o)) (x(t,0) — /:w/(]- r(s,0 —v)dods)

+ j: (a(z) + B(z(s,0 — h.(:r:(s,U))))sm(é))ds‘ t €[0,b],0 € [0,7],

- €

x(t,0) = =(t,m)=0,t€][0,]
z(s,0) = ¢(s,0), —0<s<L0,0<0 <,
%3:(0._ o) = £(0),0<0 <,
[N
Az(t;)(o) = ] ni(t; — s)z(s,0)ds, i=1,..,n
Li
Az'(t;)(o) = / ni(t — s)z(s,0)ds, i =1,...,n (5.4.49)
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where ¢ € HY([0,7]), £ € X, 0=ty =50 <t < 81 < logyutn <8y b1 = b
Here, X = L%([0,7]), B = PCyx L?(p, X), A C D(A) C X — X is the map defined
by A = (iA —iV)) with domain D(A) = H? N Hi. A denotes the infinitesimal
generator (C(¢))ep on X. A has a discrete spectrum, and the following properties
hold

(Cl) Ap = =322, A2 < @, zn > 2 where ¢ € D(A), An, zn, n € N are eigenvalues

and cigenvectors of A.

(C2) C(t)p = D32 1 co8(Anl) < Gi 2> 2, @0d S() =2 02, L B

i

for p € X.

By defining maps p, g, f : [0,b] x B x X — X by

p(t, o) =0 —h(z(s, o))
g(W)(o) = /_ /::c(s, o —v)dods),

1)@ = [ a@) s Blato,o— hials, o))sin(2)

5]

the system (5.4.50) can be transformed into system (5.1.1) Assume that the func-
tions p; : R — [0,00), m: R — R arc piccewise continuous.

g(t,.), I;, (i = 1,...,n), f are bounded lincar operators. We take Y = D(A). There-
fore if ¢ : Y — X is the inclusion then ¢ — AS({) is uniformly continuous into
L(Y, X) and [|AS(t)||Lev.x) < 1 for ¢ € [0, a] Hence by assumptions (H¢),(Hf),(Hg),
(HI), (H1),(H2) and theorem 5.3.1 it is ensured that mild solution to the problem
(5.4.50) exists.
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Example 2 : We study the following system with non-instantaneous impulses

g—;(r(t,o) = f; /Oﬂ:c(s,cr —v)dods) = (iA —iV(0))z(t, o)

+ /_ (a(z) + B(z(s,0 — h(:t:(s,o))))sin(g))ds, t €[0,b],0 € [0.7].

x(1,0) = =z(t,7) =0, t €[0,b],
z(s,0) = ¢(s,0),—00<s5L0,080<m,

—":E(O:U) = 5(0)1 0 <og<m,
z(t)(o) = f‘qi ni(t —t)z(s,0)ds, t € [si,ti], i=1,..,n

Z(O)(0) = / " ol — )z (KB A Elv Y il Y (5.4.50)
i

where ¢ € HY([0,7]), £ € X, 0 =tg=50 <11 <51 < layiln < 8y Slpgy = b
Here, X = L*([0,7]), B = PCyx L*(p, X), A € D(A) € X — X is the map defined
by A = (iA—1iV)) with domain D(A) = H>N Hj. A denotes infinitesimal gencrator
of (C(t))ier on X. Also, A has a discrete spectrum, A has a discrete spectrum, and

the following propertics hold

Cl) Ap=—3"2. X < ¢, 2, > 2, where ¢ € D(A), Ay, 2zs, n € N are cigenvalues
n=1"n .

and cigenvectors of A.

(C2) C)p = 2%, cos(Ant) < by 20 > 2, and S(t)g = Yoo 2D <6 2 > 2,
for ¢ € X.

By defining maps p, g, f : [0,0] x B x X — X as in example 1 the system (5.4.50) can
be transformed into system (5.1.2) Assume that the functions p; : R — [0,00), m :
R — R arc piccewise continuous. Hence by assumptions (H¢), (H f), (Hg),(HJ),

(H1), (H2) and theorem 5.3.1 it is ensured that mild solution to the problem (5.4.50)

exists.

5.5 Conclusion

Thus we cstablish the existence of mild solution of the non-instantanecous impul-

sive partial second order functional differential equations (5.1.1) and (5.1.2) , using
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Kuratowski measure of noncompactness and Mdnch fixed point theorem. The com-

pactness Lipschitz condition and other restrictive conditions have been removed.



Chapter 6

Approximate Controllability of a
Second Order Neutral Differential
Equation with State Dependent
Delay

This chapter investigates the existence of mild solution and approximate controlla-
bility of a second order neutral partial differential equation involving state dependent
delay. The Hausdorff measure of noncompactness combined with Darbo Sadovskii
theorem are used to establish the existence of mild solution of the system. The
strict assumption such as the compactncss of the associated cosine or sinc fam-

ily of operators is removed. Some fundamental and natural assumptions are used

instecad. The conditions for approximate controllability arc proposed for the dis-
tributed sccond order neutral system by assuming the approximate controllability

of the corresponding linear system in a Hilbert space.

6.1 Introduction

Of late, much attention is paid to functional differential equations with state de-

pendent delay. We refer [15],[17],[76],[123], for related information. Generally the

91
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literature related delay differential equations dealt with functional differential equa-
tions in which the state actually belonged to a finite dimensional space. As a result,
partial functional differential equations involving state dependent delay were mostly
abandoned. This is one of the motivations of our work.
In this paper, we study a second order neutral differential equation modeled in
the form
42
pet) - g(t,z)) = Az(t) + [ (t, Zp.20) + Bult). L€ J = [0,]

d
9 = QE 2, '{ﬂ{l‘(ﬁ) == g(t,ﬁ:t)]lt-_--_g =z 2€X (611)

where A denotes the infinitesimal generator of a strongly continuous cosine family
{C(t) : t € R} of bounded lincar operatots on a Hilbert space X and S(t) is the
associated sine function.. ‘The history valued function z;: (—00,0] = X, z.(0) =
z(t+0) takes values in some abstract phasc space B defined in chapter 2 as Definition
2.2.12; g, f are appropriate functions. Let U be another IHilbert space. u € U is a
control parameter. 13 is a bounded linear operator defined from a Hilbert space U
to X.

The existence and uniqueness of mild solutions of a second order abstract partial
neutral differential equation related to (6.1.2) is discussed in {34],[38]. The authors
assumed strict conditions on the cosine family gencrated by A, that limited the
underlying space X to finite dimension. Consequently, the equations discussed in
these works are actually ordinary instead of being partial differential equations.

The approximate controllability of infinite dimensional systems has been exten-
sively discussed, sce for instance [33],[39],[61],(121],[159] and the references therein.
However. in these papers the invertibility of a controllability operator is assumed.
As a consequence, their approach is unsuccessful in infinite dimensional spaces if the
generated semigroup is compact. Morcover it is practically troublesome to verify
their conditions directly. This is onc of the motivations of our paper.

[139],[156] proposed conditions on the systems operators together with the as-
sumption of approximate controllability of the corresponding lincar system. To the
best of our knowledge only a few papers are available in literature regarding approx-
imate controllability of neutral partial differential equation with state dependent

dclay.
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In the section 6.2 the existence of mild solution of the following second order

equation
—(@(t) — g(t,z0)) = Az(t) + f(t, Tpean), L € J = [0, 0]
Ty = ¢€'B, -j—t{:r(t) —g(t,zy)|lim0o =12, z€ X (6.1.2)

is discussed. Then in the next section the approximate controllability of the problem

(6.1.1) is proved. The last section illustrates the result with an example.

6.2 Existence of mild solution

Let N, N be certain constants such that ||[C({)]| < N and ||S(t)| < N for every
teJ=1[0,aq].

Definition 6.2.1. The set given by R(f) = {=(T) € X : x € X is a mild solution
0f(6.1.2)} is called reachable sct of the system (6.1.2) . Ry is the reachable set of

the corresponding linear control system (6.2.3).
The system (6.1.2) will be approximately controllable if R(f) is dense in X. Also
the corresponding lincar system is approximately controllable if Ry is dense in X.

The approximate controllability of the following lincar control system

z'(t) = Az(t)+Bu(t),t e J
z(0F 8F 3%
Q) = & (6.2.3)

has been studied by several authors. The existence of solutions of the second order

abstract Cauchy problem

2'(t) = Az(t)+h(l),teJ
z(0) = 2°
() = ! (6.2.4)

where h : [0,a] — X is an integrable function has been discussed in [162]
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Lemma 6.2.2. [75] Under the preceding assumptions, if A is a continuously differen-

tiable function, then

/C’t—sh(s)ds—S(f, /Sr—qh(s
We assume that the following conditions hold

(H1) There exists (Y,]|.|y) (a Banach spacc) continuously included in X such
that AS(t) € L(Y,X), for all t € J and AS(.)z € C(J; X), for every = €
Y. There exists constants Ny, Ny, such that ||ly]| < Ny|lylly, Vy € Y and
[ASE)llLev.x) < Ny, VteJ

(H2) R{C(t) — I) is closed and dim Ker(C(t) — I) < oo, VO <t <a

Lemma 6.2.3. [96] Suppose that the condition (£12) be satisfied and D C Y. If D is
bounded in X and the set {AS(t)y : ¢ € [0,a],y € D} is relatively compact in X,

then D is relatively compact in X.

Lemma 6.2.4. Suppose that ' be confinuously differentiable function, then

] AS(t — s)h(s)ds = —h(t) + C(i f S(t — s)h"(s) + S(t)h'(0)

Proof : By integration of parts formula, we get

fASt—s /Aé pd;o—[AS (p)dp = [CP)]s = CEIA(0) —

. and by applying lemma 6.2.2, we get

/tAS(L — s)h(s)ds = C(t)h(0) - f C(L —s)h'(s)ds

0
= C(t)h(0) — h(t) + f S(t — s)h"(s)ds + S(t)h'(0)
0
We cefine mild solution of problem (6.1.2) as follows.

Definition 6.2.5. A function z : (—o0,a] — X is a mild solution of the problem
(6.1.2) if zg = ¢; 2()|j0,q € C(J,X), the functions f(s,Tys.z,)) and g(s,zs) are

integrable and the integral equation is satisfied
t
2() = CW)(6(0) ~5(0,60) + S(@)z + [ AS( = 9)g(s,2.)ds
S0

+ g(t, zy) +/U S(t — 3)f(s,xp(s,2,))ds, t € [0, 0]
(6.2.5)
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To prove our result we always assume p : J x B — (—o0,a] is a continuous

function .

Lemma 6.2.6. [96] If y : (—o00,a] — X is a function such that yo = ¢ and y|; € C(X)
then
3 < (Mo + J?)|16lls + Kasup{lly(0)]|; 0 € [0, maz{0, s}]},

||yp(5;ys)
s € R(p7)U[0,q]

where J¢ = SUPeg(p-) P (1), Mo = sup,c; M(t) and K, = supye; K(t).

The function J¢ is defined as follows. The following hypotheses are used.

(Hy) The function ¢t — ¢; is continuous from R(p™) = {p(s,) : p(s,%) < 0} into
9B and there exists a continuous bounded function J? : R(p~) — (0, 00) such

that ||¢]|le < J(1)||@]l for every t € R(p™).
(Hf) The function f : J x B — X satisfies the following conditions:

(1) For each z : (—o0,a] — X, a9 € B and z|; € C([0,a};X), f(.,¥):J =
X is strongly measurable for every v € B and f(t,.) is continuous for

ae. t e

(2) 3 an integrable function ay : J — [0, 400) and a monotone continuous
nondecreasing function € : [0, +00) — (0, +00) with the property that
1/ (& o)l < @)y (llvlls) VE € J andv € B.

(3) Let D(0) = {v(f) : v € D}. For a.e. s,t,€ J, 3 an integrable function
n:J — [0,00) such that

X(S(s)f(t, D)) <n(t) sup x(D(6))

—oa<f<0

(Hg) The function g : J x B — Y satisfies the following

(i) g(t,.) : B — X is continuous V¢ € J. Let us define V(k,g) as the set
of function V(k,g) = {t — g(t,2) : z € Bi(0,S(a))}, where S(a) =
{z : (—o00,a] = X such that xg = 0, z|;, € C}. The set V(k) =
{AS(0)g(s,¢) : 6,8 € J, ¥ € By(0,B)} be relatively compact in X.
The set {v:v € V(k,g)} is an equicontinuous subset of C([0, a], X).



96

(ii) If z : (—oo,a] = X be such that zq = ¢ and z|; € C then the function
t — g(t,z,) belongs to C([0,a], X) and is strongly measurable from .J
into X.

(iii) There exists an integrable function oy : J — [0,+00) and a monotone
continuous nondecreasing function €, : [0,4+00) — (0,+o00) such that
lg(t, v)ll < ag()Qy(llvlls) VE € J and v € B.

(iv) g(a,za) =0, Yz € X and |lg(t, ¥)lly < arlldll +ca-
(HI) K.(Nyc: + fnﬂ[ﬁ + Nila(s)ds lim, 0o sup 22) < 1

Let Q = max{Q,, Q,} and o = max{q,, af}.

In this section y : (—oo,a] = X is the function defined by yo = ¢ on (—00,0]
and y(t) = C(£)(6(0) — 9(0, 8)) +5(t)= on 0, al. Clearly lyulln < Kallglla-+ Mall8ll2
where ||ylle = supo<i<ally(t)||- This follows from the definition of abstract phase

space B introduced by Hale and Kato and given in chapter 2.

Theorem 6.2.7. Whenever the hypotheses (Hy), (H f), (Hg), (HI) hold, then (6.1.2)

has atleast onc mild solution.

Proof: Suppose that S(a) denote the space S(a) = {z : (—o0,a] = X such that zo =
0, z|; € C} associated with supremum norm |[. |-

Suppose that T': S(a) — S(a) be the map denoted by (T'z)o = 0 and

Cz)(t) = g(t.z)+ f AS(t—s)g(s, T5)ds
+ /D S(L $) (5. B rm)ds (6.2.6)
where Ty = ¢ and T = x +y on J. It is easy to check that
[1Z:lle < Kallylla + Malldlle + Kallzll:,
where [|zfl; = supocu<tllz(s)|l-
[Epezlls < k* = (Mo + J9) [l + Kallylla + Kallzllo

Therefore I is well defined. T takes values in S(a). Also by axioms of phase space,

the Lebesgue dominated convergence theorem, and the conditions (H f), (Hg), (H¢)
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it can be shown that I' is continuous.

Stepl : There exists k > 0 such that I'(Bg) C By, where B, = {z € S(a) : ||| <
k}. In the following k = Kok + |luslls = Kok + Kal|tlla + Mal|¢|ls. Now if we
assume the assertion to be false, then V k > 0 3 z;, € By, and {; € [0,a] such that
k < ||[Pzg(te)|. Then,

k< |ITae(ty)]]
—— 145
< Nyalgills + Nyca+ i [ my(s)07R, lads
~ [l ’
F [ a(6) sz, =)
S 1{VY(-:I("{{m”i‘;"”u H- ‘Mlu”q‘b”% o !{ﬂ.;") & N}’CZ
— Lg
+ Nl/ a(8)QUK.||ylle + Mall¢lls + Kak)ds
ot s
+ N / a(8)dsUKllyll + (My+ T8l + Kok)
Hence
' ey QU l[ylla + M: K.k
1 = (NyqKa-}-Nl/ mg(s)dslimy_, sup (Kallylla + k”¢’||93+ )
0
3 e Q ot (M, + J? Kk
+ j\!’(/ Ct(S)dS Iimk_msup (Ka”y” +( Z:J )||¢||‘33+ )))
0
¢~ o~ , Q1)
< K, Nyer+ [ [N+ Ni]a(s)ds limq—,osup o ) (6.2.7)
0

which is a contradiction to the hypothesis (H 7). Hence I'(Bi) C By.
Step 2 : To prove that T is a Y—contraction. Let T be split into I' = {T"* +I'* + '},

[a(t) = g(s,70),
L
rba(t) = / AS(t — 8)g(s,T5)ds,
t
Ti(i) = / S(t — ) f (s, Tp(sz,))ds,
The properties of the function g in (Hg), lemma 6.2.3 imply that the set of function

V(k,g) = {t = g(t,z,+y:) : T € B} is relatively compact in C([0, a], X). By lemma
2.5.7(2) x(W) = sup{x(W(t)),t € J}. By lemma 2.5.4(1), for any W C I'*(By)

x(TW(t)) = x(g(t, W(t))) =0 (6.2.8)
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By mean value thcorem for Bochner integral, we derive

{Tba(t) : z € By} C t x conv({AS(h)g(s,¥) : 0 < h,s < L. |[¢]lm < k})

This implies {I"z(t) : © € By} is relatively compact in X for all £ € J. Hence by
lemma 2.5.4(1),
x(T*W (t)) = 0. (6.2.9)

By lemma 2.5.9 for any W C I'(By), since S(t) is equicontinuous so, W is equicon-
tinuous. Hence from the fact that p(s,7;) < s.s € [0,a] and lemma 2.5.7(3) and
x(W) = sup{x(W(t)),t € [0,a], } it implies that

WTWW) = x( / G O\ AR

IA

3
[ b cacosax (W (ot )+ ) s + 1)l

4
< [ n(sup—cocax(W(s-+0) + s+ 0))ds

I

t
f n(s)supocr<sxW(T)ds
g

IA

) [
[t

IA

Hence
(W) = sup{x(TW (1)), ¢ € [0,a],} < x(W) /U n(s)ds

For each bounded set W € C(J; X) we have,

xeTW) < xc(@*W +T'W + W)
0+0+ [ n(s)ds)xoc(W)
0

IA

Therefore, T' is a y—contraction. So, by applying Darbo-Sadovskii fixed point the-

orem it is proved that there exists a fixed point of I' in S(a). Thence, T = z + y is

a mild solution of (6.1.2). |
Remark : If the Lipschitz conditions on the nonlinear functions f, g are assumed

then it is casy to sce that the mild solution is unique.
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6.3 Approximate controllability

In this section the approximate controllability of the control system (6.1.1) is studied.

Assume that f, g satisfy following condition

(C1) There exists positive constants Ly, Ly such that f, g are Lipschitz continuous

in second variable.

Also, y : (—o0,a] — X is the function defined by yo = ¢ and y(t) = C()$(0) +
S(t)(z+9(0,¢) on J. Clearly [lyfls < KallyllatMal|¢lls where
The operators A; : L2(J, X) — X i = 1,2 are defined as

[ylle = supo<i<ally(t)|l

Az(l) = /: S(t — s)x(s)ds,

Agz(l) = / AS(t =s)z(s)ds.
0
Clearly A; are bounded lincar operators. We set 9, = ker(A;), A = (Ag,Ag)
and M = ker(A) Let Cy(J, X) denote the space consisting of continuous functions
x : J — X such that z(0) = 0, endowed with the norm of uniform convergence. Let

Ji LA(J, X) = Co(J, X), i = 1,2 be maps defined as follows

f
J1x(t) = /0 S(t — s)x(s)ds,

Joz(t) = /-? AS(t — s)z(s)ds.
(
So, Jiz(a) = Ai(zx), i =1,2. For :1 fixed ¢ € B and * € C(J,X) such that
#(0) = ¢(0), we define maps I, G 1 Co(J, X) — L2(J, X) by F(m)(t) = f(L, mu+axe)
and G(m)(t) = g(t, my+a;). Here x,(0) = z(L+0), for t+0 > 0 and x,(0) = ¢(L+0)
for t+60 < 0 and m(0) = m(t+90) for t+8 > 0 and m,(0) = 0 for t +0 < 0. Clearly,
F,G are continuous maps. We also assume that L%(J, X) = 9% + ﬁ(ﬁj, i=1,2
Referring Lemma 2.1.13 we denote P; the map associated to this decomposition and

construct X, = 9M; and X; = R(B). Also set ¢; = || F;||. We introduce the space
Z = {?’?'l € C{J(J, X) tm = Jl(nl) + Jg(?lg) o Pg(g(ﬂ, T; + m;)), n; € Ny, 1 =1, 2}
and we define the map I' : Z — Cy(J, X) by

F:J10P10F+J201320G+1020G.
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Lemma 6.3.1. If the hypothesis (H,) — (H,) and conditions (C1) hold for [, g and
G.K(,,(CIKTL! +coNL,) < V2 then I’ has a fixed point.

Proof: For z!,2%2 € Z let Af(s) = f(S,Zﬁ(s,zg(s)) + Tpts(s))) — f(s.z;(_glzl(_q)} i
To(s.a(s))) and Ag(s) = g(s,22 + ;) —g(s,2, +25). VO <t <a.

I(T2? =T (@) < II/O S(t = s)[P(AS)](s)ds

o / AS(t  )[Po(Bg))(s)ds] + | Po(Ag(t))]

< N £ NP(AD) ()]l ds + N [u I[P2(Ag)](s)llds
+ [|P(Ag(s)]
< NM2c|Af|l + !ﬂ\fh;ﬂl"gczﬂﬁkgﬂg + co||Ag(s)]].

Now

’ > \ s
||Af||§ = fﬂ “f(S Zﬁ{.s.zz[s)) wr ‘TP(SsI(S)}) = f(s’ ";{s,z][s}) A l’ﬂ(«?@(-ﬁ‘)))” ds

i
2 1 2 5.
< I /0 25,2203 — Zp(s.1 s 0
a
< 13 [ 12 - clids u
< alfKG|Z% = 2 ||5ds.

Similarly we find for g. So,
(D22 =Tz () < bt']|2® = 2l

where b = a'/?K,(c, JA\T'LI + czﬁv’u] L,) Repeating this get

(MUZJn

n_2 __ypn_l —_—
|(T"2* = T"2") ()]0 < a(n—1)/(2n)

2% = 2}{loo

As b= aKﬂ(clf\?Lf +czf\?1bg +coly) < V2 and 2% — /2 as n — 0o , the map
'™ is a contraction for n sufficiently large and therefore I' has a fixed point.

Theorem 6.3.2. If the associated lincar control system (6.2.3) is approximately con- "
trollable on J, the space L?([0,a], X) = M, + R(B),i = 1,2 and condition of the pre-
ceding lemma hold then the neutral second order differential control system (6.1.1)

with state dependent delay is approximately controllable on J.
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Proof: Assume that z(.) to be the mild solution and u(.) to be an admissible
control function of system (6.2.3) with initial conditions z(0) = (¢(0)—g(0, ¢(0)) and
#'(0) = 2. Let m be the fixed point of I'. So, m(0) = 0 and m(a) = A;(Pi(F(m))) +
Ao(P2(G(m))) + Po(G(m(e))) = 0. By lemma 2.1.13 we can split the functions
F(m), G(m) with respect to the decomposition L2(J, X) = 9% + R(B) i = 1,2
respectively by setting ¢ = F(m) — Pi(F(m)) and ¢ = G(m) — P(G(m)). We
define the function y(t) = m(t) + z(¢) for t € J and yo = ¢. So, z(a) = y(a). We
claim y = x +m is the mild solution of the system (6.1.2). By applying lemma 6.3.1

we get
z(t) + m(t) = C(t)z(0)+ S(t)z'(0)+ /t S(t — s)Bu(s)ds + Py (G(m))
0

L L
+ f AS(lL — 8) PG {m)ds + / S(t = s)P(F(m))ds. (6.3.10)
0 0

So,
(0= COs(0)+ (0% + Pzt m)) + [ 56 =o)Fem) - a

| Bil(s)ds ]{, s Gt dads
= CO(0) + 5Oz + PG+ [ S+ 91705, vhson)

t
+ Bu(s)]ds + / AS(t — s)lg(s,ys) — q2]ds (6.3.11)
0
As C}(J,U) and C§(J,U) are dense in L*(J,U) we can choose a sequence v. €

T

L2(J,U) and a sequence v2 € L%(J,X) such that Bvl — ¢q; and Bv: — ¢ as

T

n — 00. Let y™ denote the mild solution of the integral equation (6.3.11) when ¢ is

substituted by Buv,, and g2 by BvZ. Using lemma 6.2.4 we get
t
y"(t) = C()z(0) + 5(t)z + P (G(m)) +f S(t = 8)[f (s, Ypisyn(sy)
0

— Bup(s) + Bu(s)lds + ./o AS(t — s)[g(s,y) — Bv2(s)]ds
= C()z(0) + S(t)z + Pa(g(t, yr")) + B

t ] d2
-+ '/D S(t— s)[f(s, y;‘(s‘y{s))) — BuL(s) + Bﬁvﬁ(s) + Bu(s)]ds

t
+ /JlS(f—s)g(s,y;‘)ds (6.3.12)

0
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C(t)z(0) + S(t)z + P.G(m) + g2

: d*
+ [ 50— LI 0Utnon) + Btk = (o) +uls)lds

=
I

t
+ L AS(t — 5)g(s,ys)ds

t
= C(t)z(0) + S(t)z + g(t,u) + f S(t = $)f (s, Ynts.u(sn)
d?
+ B(-vl- ﬁun( s) + u(s))]ds + [ AS(t — s)g(s,ys)ds  (6.3.13)
Hence by definition (6.2.5) and equation (6.3.13) we conclude that y is the mild

solution of the following equation
2

L 016) = 0t 70) = A0 Tt o) + B+ Tzd( % u(0)

z(0)=¢€B %[T(ff) = gt xe)]li=0 = 2

Hence y*(a) € R(a, f, g, ¢, z). Since the solution map is generally continuous, y* — y
as n — o0o. Thus y(a) € Ra, f,g,,2). Thercfore Ro(a, (¢(0) — g(0, ¢(0)).2) C
R(a, [, g, ¢, z), which means R(a, f, g, ¢, z) is dense in X. Thus the system (6.1.1)

is controllable.

6.4 Example

In this section we discuss a partial differential equation applying the abstract results
of this paper. In this application, B is the phase space Cy x L*(h, X) (sce[96]).
We study the following system
9 ,0u(t,§) & px
—(—F b(t — ; £
5\ ot + /_m ./o (t — s,m,&)u(s, n)dnds)
8*ult, € t
= e ) + / a(t — s)u(s — pr(t)p2(||u(t)l, §)ds + Bu(t),
te[0,a],£ € [0,7],
u(t,0) = u(t,7)=0,tel0,a],
u(t,) = ¢t 7<0,0<€ELm,
(6.4.1)
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where ¢ € Cox L2(h, X), 0 < t; <, ...,t, < a By defining maps p, G, F' : [0,a] X B —
X by
p(t, ) = pr(L)pa(ll(0)])),

G)(€) = f_: /01r b(s,v, &)Y (s, v)dvds,

0

PINO = [ alo)ils, i

—og

the system (6.4.1) can be transformed into system (6.1.1) Assume that the functions

pi : R = [0,00), a: R — R are piccewise continuous.
(a) The functions b(s,n, ), W—Z?Q are measurable, b(s,n, m) = b(s,n,0) = 0 and

N XNV T ININRE - -
L= ma:c{(/o /;mA h(s)( o€ Rdndgle)* « i =01} <00

(b) The function F' : R x R — R is continuous and there is continuous function

SO M2 s < o, and [IF(t,€)| < uls) el

oo (s

(¢) The functions a! € C([0,00);R) and L} := (f?m %(55)112 < oo for all
i=2,...ny =102

Morcover g(t,.), f;;i = 1, ..., n arc bounded lincar operators .
Hence by assumptions (a) — (¢) and theorem 6.3.2 it is ensured that mild solution

to the problem (6.4.1) exists.

6.5 Conclusion

Thus, we establish the existence of mild solution and approximate controllability
of a second order neutral partial differential equation involving state dependent
delay. The conditions for approximate controllability were derived for the distributed
second order neutral system by assuming the approximate controllability of the
corresponding linear system in a Hilbert space. The strict assumptions such as the
compactness of the associated cosine or sine family of operators were removed. We
also removed the limitation of the non-existence of the inverse of the controllability

operator due to the compactness of the semigroup in infinite-dimensional spaces.



Chapter 7

Existence of Solution and
Approximate Controllability of a
Neutral Differential Equation with
State Dependent Delay

This chapter is divided in two parts. In first part we study a second order neu-
tral partial differential equation with state dependent delay and non-instantaneous
impulses. The conditions for existence of the mild solution are investigated via Haus-
dorff measure of noncompactness. Darbo Sadovskii fixed point theorem is applied.
Thus we remove the need to assume the compactness assumption on the associated
family of operators. The conditions for approximate controllability are investigated
for the neutral second order system with respect to the approximate controllabil-
ity of the corresponding linear system in a Hilbert space. A simple condition on
the range of an operator is used to prove approximate controllability. Thereby, the
non-singularity of a controllability operator is not required which was an cssential
condition in [39]. Since in infinite dimensional spaces, with compact semigroup the
controllability operator is not invertible. Our methodology does not require to find
the inverse of the controllability Gramian opcrator. Also the associated limiting

condition in [69] is removed. Examples are studied to substantiate the theory.

105
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7.1 Introduction

On account of the extensive use of non-instantaneous impulsive differential equa-
tions in electrical and mechanical engineering and other fields, they are recently

investigated by Hernandez [84] and many others.

The literature related to state dependent delay mostly deals with functional
differential equations in which the state belongs to a finite dimensional space. As
a consequence, the study of partial functional differential equations involving state

dependent delay is neglected. This is one of the motivations of our paper.

The paper [109] studies existence of differential equation via measure of non-
compactness. Measure of non-compactness significantly removes the need to assume

Lipschitz continuity of nonlinear functions and operators.

Infinite dimensional systems has been extensively investigated to establish their
controllability on account of their applicability in various processcs. In the papers
[39; 159] the authors established the exact controllability by using compact scmi-
group. As we know that compactness of the controllability operator follows from
compactnes of the operator B Co-semigroup. Therefore in infinite dimensional, due

to a result of Triggiani [164], the controllability operator is no longer invertible.

First we study the existence and uniqueness of mild solution of the second order

equation modeled in the form

d .
a(:} )+ g(t,x)) = Az()=*+S(t, Tppzn)s T € (Sistia]y i =0,...,m
p=¢€B, #0) = z€X

w(t) = Ji(t,x), t € (tys], i=1,2,...,m
2'() = JH(L, ze), (Esdili 3= L%t (7:1.1)

m

where A denotes the infinitesimal generator of a strongly continuous cosine family
{C(t) : L € R} in the Hilbert space X. The history valued function z; : (—00,0] — X,
x4(f) = x(t+0) takes values in the abstract phase space B defined defined in chapter
2 as Definition 2.2.12 ; g, f, J}, J2,i = 1,..,n are appropriately defined functions.

0=ty =8 <t <8 <ty.,<ly <8, < 1lpy1 = a are prefixed numbers.
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Specifically, we study the approximate controllability of

d
a(f(t) + g(‘:: mt)) = Az(t) + f(Z, 'T.-'J(f-,-'rc)) + Bu“)# teJ= [U’ a’]
p=¢e€B, 2(0) = welX (7.1.2)
B is a bounded linear operator on a Hilbert space U.
Let N, N be certain constants such that ||C(t)] < N and ||S(t)]| < N for

every ¢t € J = [0,a]. For morc details sec book by Fattorini [75] and articles
[161],[162],[163].

7.2 Existence of Mild solution

We define mild solution of prnBlem (7.1.1) as follows.

Definition 7.2.1. A function z : (—o0,a] — X is said to be a mild solution of the
problem (5.1.1) if @o = ¢; z(.)|j0,q) € PC(X), x(t) = J}(t,x,) YVt € (ti,s]i=1,...,n

and

o) = CWOO) + SO +9(0.0)]~ [ C-9glorzs
+ / S(t— 8)f(s,Tp(s,2,))ds, t €0, 4]
2(t) = C(t—'8)J (50,2:)+ St = 8:)(J2(s5 TsrY HG(5:, Ts;))

b= /C'!—-.s (s,zs)ds

./ S(t = s)f(s,mpsey)ds for t € [sptia]i=1,...,n (7.2.1)

To prove our result we always assume p : J X B — (—o0,a] is a continuous

function. The following hypotheses are used.
(Hy) The function ¢ — ¢, is continuous from R(p~) = {p(s,¥) : p(s,¥) < 0} into
% and there exists a continuous bounded function J¢ : R(p~) — (0, 00) such

that ||¢¢|ls < J(t)]|¢]le for every t € R(p™).
(Hf) The function f: J x B — X satisfies the following properties:

(1) For cach z : (—o0,a] = X,z0 € B and z|; € PC, the function f(.,4) :
J — X is strongly measurable for cach ¢ € B and f(¢,.) is continuous

for ae. t e J.
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(2) There cxists an integrable function a : J = [0,+00) and a monotone
continuous nondecreasing function €2 : [0,+00) — (0,+00) such that
If(t, )| < a()Q||v|ls) VI € J and v € B.

(3) Suppose D(0) = {v(6) : v € D}. For a.c. s.t,€ J, there exists an
integrable function 7 : J — [0, c0) such that
X(S(8)/(t, D)) < 1(t) Sup _gop<o X(D(0))

(Hg) The function g(.) is continuous V¢, v € J x B and g((,.) is Lipschitz continuous

such that there exists positive constant L, such that
lg(t, v1) — g(t, v2)|| S Lyllvy =valls, (t,v5) €J X B, i =1,2.

(HJ) (1) There exist positive constants ¢}, ¢}, d;, d; such that

125

171 )| < ol + 2 and 726, 0)] < dbvll +d2

(H1) (1) Ko(NaLy+ N [*a(s)ds lim, e sup 22+ Y0 | (Ne} + N(d} + L))
+3 0 e <1
(2) (KaNLya +" ANLy + N(Lp + L)YKa + 304 [ n(s)ds)
+ Y {Lp A <%
Lemma 7.2.2. ([96]) If y : (=00,a] = X is a function such that yo = ¢ and y[, €
PC(X) then
[Ypesgalls < (Mo + J2)||¢lls + Kesup{lly(0)]]; 8 € [0,max{0, s}]},

s€R(p7)U[0,q]

where J¢ = supyer(p-) I (t), My = supesM(t) and K, = maxe s K (t).

In this section y : (—oo0,a] — X is the function defined by yo = ¢ and y(t) =
C(t)¢(0) + S(t)(z + 9(0,9)) on Jy = [0,t1]. Clearly [[gells < Kallylla + Mal|6]|
where [|ylle = supo<i<ally(t)]]

Theorem 7.2.3. Whenever the hypotheses (H f),(Hg), (I{I),(H1) hold, the system

(7.1.1) will have atleast one mild solution.
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Proof: Suppose that S(a) denotes the space S(a) = {z : (—o0,a] = X| zp =
0, z|; € PC} associated with supremum norm ||. .
Suppose I' : §(a) = S(a) denote the map (Tx)p=0and ' =31 It+ > I?

Jil(taft)s t e (L;,S,—];i =1,---,n
(I‘E‘T)(i’) = C(t - si)Jil(si:Esi)

+S(t — 8)(JE (51, Ts;) + 9(81,Zs,))s t € (Sistiga);t =170+ ,m;
(n.22)

f:,- C(t—s)g(s,Ts)ds
(C22)(t) =X+ L2 5= 8)f (8, Tpeam)ds, L€ (sistinlii=0,---,n  (7.2.3)
0, t g (Si,£i+1],i20‘...,ﬂ.

where Ty = ¢ and T = z + y on J. It is casy to check that

H?t”% S Ku”y“u + ﬁJa”Qb”‘B + ‘r(u-l]:c”h

where ||z[|; = supo<s<|lz(s)]]-

”EP(S:TH”‘B <kt = (ﬂ'/fu = J¢)1|Q§||93 + Kn”y”u h: J'V{ﬂ":'t:”u'

So, T' is well defined. Moreover I' takes values in S(a). By applying the Lebesgue
dominated convergence theorem, and the hypotheses (/1 f), (f/g) coupled with the
axioms of phase space, we can prove continuity of I'.

Stepl : There exists k > 0 such that I'(Bg) C Bx, where By = {z € S(a) : ||z]. <

k}. When we assume the assertion to be false, then V k > 0 there exists zy € By
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~and & € (s, tiy1] such that k < ||[Tzi(ti)]].

oyl
IA

_Z ITF k() + Z Tz (84

A

n £ n - fre
SN / Ly(I1T5slls + lg(s, 0)ds + S N [ R L
i=0 8i i=1 /8

+ YN FRN + ) + D N(dHITRN + & + Lol 7wy, — Ol + lla(s, 0)II)
=l

i=1

IA

n te
SN f Ly(Kallgle + Malllle + Kok + lg(s, 0} ds
i=0 8

no b A
+ R / a(5)dsQKallylls + (Mo + T9)|llm + Kok)

1=0
+ 3" N (Kallylle + Maliglls + Kok) + )
i=1

+ N (Kallylla+ Mallolls + Kak) + d2
Lo(Kallylla + Mal|ldlls + Kak) + [lg(s, 0)1)

Hence

_ qa M, + J9)|plls + Kak
i e (Nf a(8)ds tim sup  elylls + (Mo & IO |$lm + Kak)
0

k—¥oo k

+ Nak,Ly) +Ka» (Nt + N(d} + Ly))

Q(r)

T

IA

Ka(NaL9+ﬁ/ afs)ds li_}m sup
0 T—r00

i=1

(7.2.4)

+ ) (Ne! + N(d} + Ly)))

(7.2.5)

which is a contradiction to the hypothesis (H1). Similarly (I'z)(¢) < k. for & €

(tiy 8 Vi=1,2,...,n. Supposc on the contrary,

k<) (Cize)(te) = D 1t Trw )
=1 =1

INA

n
> {ctHTrulls + i}
i=1

< Y {c (Kallylla + Mal|dllw + Kak) + ¢}}

i=1

(7.2.6)
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Hence,
1<) K (7.2.7)
i=1

which is a contradiction.
Step 2.: To prove that I' is a y—contraction. Let I' = 37" T't 4+ Y"1 T? be split
into "= Y0 T+ 370 o{T7 + 17} fort >0

I? 2(t) = / Ot — )9(5,7)ds

i
I22(0) = | 1 )fts, Zoz)ds

For arbitrary z1,z9 € By, and t € (s;,ti41]

> 1Tz - > rha®l < Y0 Ol s)uls. o, +w)
i=0 =R 2==() i

44

— g(s, za, +ys))ds]|

7L

£ ZNLgaﬂxl, — Ty, ||
i=0
< KoNLga|lzy — z3a (7.2.8)

So, F?l Vi = 0,...,n is Lipschitz continuous with Lipschitz constant NLjaK,.

For any W < T (Bg), W is piccewise equicontinuous since S(¢) is equicontinuous.
Hence from the fact that p(s,7;) < s,s € [0,a] and Lemma 2.5.9 and xpc(W) =
sup{x(W(t)),t € J} we have

I n t

x> rEwe) = 3o / SFLI MW £00)de

i=0 i=0 L
n {

> [ alo)stp-cocacox(W (pls,7.) + 0) + s+ 0))ds

1=0 &

VAN

IA

T t
Z / n(8)sup_coco<oX(W (s + 8) + y(s + 0))ds
1=0 ¥

I

mn t
Z/ 7(8)sUp_oo<r<oXW(7)ds
=0 Vi

xpc(W) Z f | n(s)ds

VAN
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For arbitrary z1, 7y € B and t € (s;, tiy1]

STz @) = Y (Tiz)@) < Y {NLpllzr, — T

i=1 i=1 i=l
+ Nr(a‘rJ.r;.fZ||5“-_1.«,-,- — Tag |l + LyllT2s, — 14, 1)}
< S ANLyj + N(Lyp + Lo}, + s
= Lggye— Ysl|
= Z{NLJ; + N(Lp + Lo) |21, — Zas, |5
< STUNLy + N(Ljp + L)} Kal|z1 = 22la

(7.2.9)

So, I'} Vi = 1, ..., nis Lipschitz continuous with Lipschitz constant (NLJ‘;—HT’ Ly2) Ke.
For arbitrary 1,22 € By and L € (L;, 84,

T

D=0 = YTz < Y Lodle ~ zalle

n
< Y Kolples =z (7.2.10)
1=\

For each bounded set W € PC(J; X) and t € (s;,t:41], ¥ i=0....,n we have,

T

xpoTW) < N xpo(TW) + 3 xpcTi W + TLW)

i=1 1=0

—~— g i’
(KaNLga+ Y {NLj + N(Ly2 + Lo)Hfo 4 ) / n(s)ds)x po(W)
i=( %

IA

For each bounded set W € PC(J; X) and ¢ € (t;, 5] Vi=1,2,...,n we have,
xpoTW) < > xpo(TiW) + Y xpollLW + T3,W)
i=1 i=0

< (O {Lyp K+ 04 0)xpo(W)

i=1

Therefore, I' is a x—contraction. Thus I" has a fixed point in S(a). This follows from

Darbo-Sadovskii fixed point theorem. So, z = z + y is the mild solution of (7.1.1).
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7.3 Approximate controllability

In this section the approximate controllability of the control corresponding to (7.1.1)

without the impulsive conditions is studied. We consider

%(a;’(t) +9(t,7)) = Azx(t) + f(t, 2p00) + Bu(t), t € J =[0,q]

r=¢€B, 270) = we X (7.3.1)
where A denotes the infinitesimal generator of a strongly continuous cosine family
{C(t) : t € R}. We define mild solution of problem (7.3.1) as follows.

Definition 7.3.1. A function z : (—00,a] — X is said to be a mild solution of the
problem (7.3.1) if 2o = ¢; x(.)|jp.a] € C(J,X), the functions f(s,T,(s2,)) and g(s, z,)

are integrable and the integral equation is satisfied
t
1) = Cl)0)+ 5w+ 90,0 = [ €= s)gls,z)ds
0

- A S(t = s)[f (s, @,(s,25)) + Bu(s)|ds, ¢ € [0, d]
(7.3.2)

Lemma 7.3.2. [162] Under the assumption that & : [0,a] — X is an integrable

function , such that

'(t) = Ax(t)+ h(t),t € J
z(0) =) 27,
A (7.3.3)

and A is a function continuously differentiable, then

/Ot C(t — s)h(s)ds = S(t)h(0) + /Dt S(t —s)h'(s)ds
Leta=T
Definition 7.3.3. The set given by Ry (f) = {2(T) € X : z is the mild solution of
(7.3.1) } is called reachable set of the system (7.3.1) . R(0) is the reachable set of
the corresponding linear control system (7.3.5).
Definition 7.3.4. The system (7.3.1) is called approximately controllable on [0, T if

Ry (f) is dense in X. The corresponding linear system is approximately controllable
if R(0) is dense in X.
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A continuous linear operator £ : L*([0.T]; X) — C([0,77; X) is defined as

i
szz/o S(T — s)p(s)ds, p € La([0,T]; X).

The kernel of the operator £ is indicated by N. This is a closed subspace of L2([0, T1; X).
Suppose N be the corresponding orthogonal subspace of
L2([0,T]; X). P denotes the projection on L*([0, T]; X) with range Ng-. Here R(B)

is the closure of the range of operator B. The following hypothesis are used

(HR) Ve > 0 and p(.) € L*([0,T]; X), Ju(.) € U such that ||£p — £Bul|x < ¢

The hypothesis (HR) is equivalent to the L?([0,77; X) = R(B) + Np or PR(B) =
Ng-. Theorem (7.3.5) proves that from hypothesis (/1 R) the approximate controlla-
bility of the system (7.3.4) follows. We know that L*([0, T]; X) = R(B) + N, follows
from the approximate controllability of (7.3.5). Thus from the closedness of the prod-
uct space it follows that (HR) is cquivalent to the approximate controllability of

(7.3.4).

Theorem 7.3.5. Whenever the assumptions (Hg) and (/1 R) hold then the associated

neutral system

d(z'(t) + g(¢, z))
di

= Az(t) + Bu(t),t e J
z(0) = ¢(0);
r(0) = w (7.3.4)

with [ = 0 is approximately controllable.

Proof: It is sufficient to prove that D(A) C Ryp(0) since D(A) is dense in X. Let
WT,¢) = C(1)p(0) + S(t)[w + (0, ¢(0))] — f;‘ C(l = s)g(s,xs)ds. For any chosen
£ € D(A), then & — W(T, ¢) € D(A). It can be casily scen from Lemma (7.3.2) and
[139] that there exists some p € C*([0,T); X) such that

"
n==¢—hT,¢) = / S(T — s)p(s)ds.
0

By hypothesis (/] R) there exists a control function u(.) € L%([0, T; U) such that |ln—
£Bu|| < ¢. As c is arbitrary it implies that K:(0) C D(A). Since the D(A) is dense
in X, Kr(0) is dense in X. Hence the neutral system with [ = 0 is approximately

controllable.
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We state the corresponding linear control system

'(t) = Az(t)+ Bu(t),teJ
#0) = &%
r0) = o (7.3.5)

Both exact and approximate controllability of the above system is studied exten-
sively in literature.

Assume that f, g satisfy following conditions. For a fixed ¢ € B and z € C(J, X)
such that z(0) = ¢(0), we define maps F,G : Co(J, X) — L*(J, X) by F(2)(t) =
f(t,z + z,) and G(2)(t) = g(t, z, + x,). Here 7(0) = x(t + 0), for t +6 > 0 and
x(0) = (¢t +0) for t +0 < 0-and z,(0) = 2(L +0) for t + 0 > 0 and 2,(0) = 0 for

i+ 0 <0. Clearly, F, G are continuous maps.

(C1) The function f(.) is continuous Vi, v € J xB and f(L, .) is Lipschitz continuous

such that therc cxists positive constant Ly such that

1, 01) = f(t,v2)|| < Lglloy — voll, (4v:) € J xB, i =1,2.

The above same condition also hold for G.

Also, y : (—00,a] — X is the function defined by yo = ¢ and y(t) = C(t)¢(0) +

S(t)(z+9(0,¢)) on J. Clearly ||yells < Kallylla+Malld|ls where [[ylla = supo<i<ally(t)]]-
The operators A; : L2(J, X) — X i = 1,2 are defined as

Apit)= / S(t = s)z(s)ds
0
Asz(t)= / C(t — s)x(s)ds
0
Clearly A; are bounded lincar operators. We set 9 = ker(A;), A = (A1, Az)
and 9 = ker(A). Let Cp(J, X) denote the space consisting of continuous functions

x: J — X such that z(0) = 0, endowed with the norm of uniform convergence. Let
Ji o L2(J, X) — Co(J, X), i = 1,2 be maps defined as follows

Jinit) = ./o St — s)x(s)ds

Jox(t) = ./0 C(t — s)x(s)ds
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So, Jiz(a) = Ai(z), i=1,2.
As a continuation of co-author N. Sukavanam’s work [155] and from hypothesis
(B1) in [139] we assume that L2(J, X) = 0N+ R(B), i=1,2.

By using lemma (2.1.13) we denote P; the map associated to this decomposition

and construct X, = 9; and X; = R(B). Also set ¢; = || F].

We introduce the space
Z ={ze€Co(J,X): z=Ji(n) + Ja(na),n; €N, i =1,2}
and we define the map I' : Z — Cy(J, X) by
F=JioPoF=Jyo0P0G

Lemma 7.3.6. If the hypothesis (I15) ~ (H,) and conditions (C1) hold for f, g and
a!(a({:lﬁhf +eNL,) < V2 then I has a fixed point.

Proof: For z2!.2%2 € Z let Af(s) = f(s,zg(s'zg(s)} + Zo(sp(sHh = f(st:](lg‘zl(s)) -
x.a{s,.r(.s'))) and Ag(S) 5 g('sﬂ Z? + xs) e f(S, 3; i :rs)- Vo <t<a

|02 -T2 < f S(t— $){PUADE)ds] 4 ] / Ci — 5)[Po(Dg))(s)ds]

IA

N fo MPADI)ds + N fg 1[P(Ag)] ()] ds
N 2e||A f]l2 + NtY2e;| Agllz

A

Now

|A7]E = /{; 1£ (5, 225230y + Zotadtsn) = F(8s 250510y T Bogointsn) °ds
2 = 2 2
< Ly /0 [1256s,22(5)) = Zp(s,2 oI m s

(%
13 [ a2 - =l
< al3K2||Z® — 2% ds

IA

Similarly we find for g. So,
(022 = T2)(0)]| < bt 2% = 2Y|oo
where b = (LllzK&((llﬁLf + caNL,). Repeating this get

. (btlf’? n .
||(FF 22 _ I‘“zl)(t)”:x. < m”zz — 31”00
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As b = aK(L(clﬁfo +eNL,) < V2 and 2% — V2asn — 00 , the map I is a
contraction for n sufficiently large and therefore I' has a fixed point.

Theorem 7.3.7. If the associated linear control system (7.3.4) is approximately con-
trollable on J, the space L%([0,a], X) = 9 + R(B),¢ = 1,2 and condition of the
preceding lemma (7.3.6) hold then the semilinear control system (7.3.1) with state

dependent delay is approximately controllable on J.

Proof: Assume z(.) to be the mild solution and u(.) to be an admissible control
function of system (7.3.4) with initial conditions z(0) = ¢(0) and 2'(0) = w +
g(0,¢). Let z be the fixed point of I'. So, z(0) = 0 and z(a) = A(P(F(2))) —
Ag(Py(G(2))) = 0. By Lemma 2.1.13 we can split the functions F(z),G(z) with
respect to the decomposition L2(J, X) = 9, + }{(_B—jz =1, 2 respectively by setting
q = F(z) — Pi(I(2)) and g = G(2) — Ps(G(z)). We define the function y(t) =
2(t) + x(t) for t € J and yo = ¢. So, x(a) = y(a). Thus by the properties of = and z

y) = f ST oy oS @ Ruleh) b
2 / Clt = 5)(a(5:0:) = qa(8))ds F C(0)x(0) + S()2'(0)  (7.3.6)

As CY(J,U) is dense in L*(J,U) we can choose a sequence vy € L*(J,U) and a
sequence v2 € L?(J, X) such that Bul — ¢; and Bv2 — ¢ as n — co. By Lemma

7.3.2 we get

y'() = /:S(t_S)U(*‘”=3L‘(s‘y(s)))—BUI( Wt Bu(s))ds
= /E C(t = s)(g(s,y) — Bun(s))ds + C(£)$(0) + S(t)(w — g(0, ¢))
B / S(t = $)(J (5, Yptsatep) = Bunls) *B; n(s) + Bule))ds
- /Ci-—b (5,47)ds + C(t)$(0) + S(t)(w + 9(0, d))

Hence by definition (7.3.1) and the last expression we conclude that y" is the mild

solution of the following equation

(y/0) + olt,20) = Ay(0) + 16 Yptaton) + Bwh(t) + 020 + u(t)
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z(0)=¢€B (0)=w

Hence y™(a) € Rye(a, f,g,¢,w). Since the solution map is generally continuous,
y* — y as n — oo. Thus y(a) € Rr(a, f,9,¢,w). Thercfore Rr(0)(a, #(0), w +
9(0,¢)) C Rr(a, f, 9, ¢,w), which mecans Rr(a, f, g, ¢, w) is dense in X . Thus the
system (7.1.1) is controllable.

7.4 Examples

Example 1:

In this section we discuss a concrete partial differential cquation applying the ab-
stract results of this paper. In this application, B is the phase space Cy x L*(h, X)
(sce [97]).

Consider the second order neutral differential equation

o Bu(t 3 / / b(t — s,n,€)u(s,n)dnds)

Bt ot

“ T 4 [ et 9uts — platiut) ) s,

t € (s bisa)y =0, ;n, € € [0, 7],

u(t,0) = u(tym) =0, (€ [0,al

u(r,§) = ¢(r,§)7<0,0<E<m,

w(r€) = w(t, &)1 ,0 L5,

u(t)(§) = / (it — s)u(s,E)ds t € (t, 8], i =1,2,--+.n

w(Ee) = / (t; — s)u(s,€)ds t € (t 8, 812 0 (7.4.1)

o0

where ¢ € Co x L2(h, X), 0 < t; <,..,tn < a. Fory € D(A) ,y= ", <
Yy dn > ¢n and Ay = — 320 n? < y,n > ¢,. where ¢, () = \/gsinnx, 0<z<
7, n = 1,2,3... is the cigenfunction corresponding to the cigenvalue A\, = —n? of

the operator A. ¢, is an orthonormal base. A will gencrate the operators S(t), C(t)
such that S(t)y = > >, Smf:m <Y, p > by, n=12,..Yy € X, and the operator

Cltyy =322 cos(nl) < y,dy, >y, n=1,2,..Vy e X,.

Let us suppose that the functions p; : R — [0,00), a : R — R arc piccewise




119

continuous. By defining maps p, G, F' : [0,a] x B — X by

’ p(t, %) = pr(®)p2(llL(0)])),

st = [ /O " b5, v, €)(s, v)duds,

0

Se)©) = [ alo)pis,&)ds

—o0

3 D .
S () (&) = /_ al(s)yp(s,f)ds i=1,---,n j=1,2

o0

the system (7.4.1) can be transformed into system (7.1.1) Assume that the following

conditions hold

. (a) The functions b(s,7,£), dh%’ﬂ arc measurable, b(s,n,7) = b(s,n,0) =0 and

3 s 2y 7" 3‘{5(5,'??:5) 2 /20 - __
L= maa:{(/u /_MA h(s)( o6 Ydndsd€)?: i =0,1} < o0

such that ||gllzx) < Lg-

(b) The function F : R x R — R is continuous and there is continuous function
Li=[° a? Js < 00 and || F|

oo h(s)

cxy < Ly.

(c) The functions a! € C([0,00);R) and LI := (f_ow %?—243)1’2 < oo for all

i=1,2..,nj=12

Morcover g(t, .), Jf,'é =1,..,n,j = 1,2 are bounded lincar operators .

Hence by assumptions (a) — (c¢) and Theorem (7.2.3) it is cnsured that mild solution

to the problem (7.4.1) exists.

Now let us consider a particular example from the point of view of concrete
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application

d ,0u(t,§) Lo
5}-(—8?——- + ./;oo-/(; b(t — s,m,&)u(s,n)dnds)

9?u(t, €)
-oa + a(t)b(u(t — p(u(t,0)),8)),

Lt e (85,1,;.[.1]} i=0,---,n, £€ {0,'}T],

u(t,0) = u(t,m) =0, te0,d],

u(r,§) = ¢(r,€)7<0,0<E <,

W(r,§) = w(rr<00<E<,

u(t)(€) = d;sin|u(t,€)], t€ @, 8l i=1,2,--5
W(t)(€) = d?cos|ut, &), t€(tisid, i=1,2,-+,n. (7.4.2)

where ¢ € B = CY(X). The functionsa: J =+ R, b:Rx J = R, p: R— R" are

piccewise continuous. We assume the existence of positive constants by, by such that
|b(t)| < bylt| + ba, VEER.
If we define maps
St 9)(€) = a()b(4(0,)),
p(t.¥) =t = u(4(0,0)),

and g(t,%)(€) as in the problem (7.4.1) we can transform (7.4.2) into (7.1.1). Also
a simple cstimate shows that || f(t, )| < a(t)[bill¥lle -+ bor™?] V ({,4) € J x B.

Also if we define J}(t,u(t)) = disin|u(l)| and J? = d cos|u(t)| for all i =
1,---,n then the hypotheses (HJ) can be casily proved. For instance,

172 (¢ w(t))] = l1d; sin [u@)]]] < d[lu(t)]
and

17 (8. ua (£)) = Ji (8, ua(@))] 1 sin fus (¢)] = dj sin [ua(¢)]]

s ()] — a1 (7.4.3)

IA

Similarly it is casily seen for J2. Now, if ¢ satisfies the hypothesis H, then 3 a mild
solution of (7.4.2).
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Example 2:

Consider the second order neutral differential equation

d dult, t  pw
ﬁ(ugg)'*u[ml;ﬂi—&mﬁmbﬁmm@)

:?_8%52 ; [ alt = syu(s = pr()pa( (O], E)ds + Bo(t)

t €[0,a],& € [0, 7],
”‘(t: U) = ?f.(?f,'ﬁ') =0,t€ [U?(L],
u(t, §) o(t,€) T<0,0<E <,

(7.4.4)

where ¢ € Cp x JAAX RO L. G ko Fag/ne D(A) , =) 2, <
Yy b > ¢n andAy=4 d7" 0 < y,n > gpeawhere ¢, (x)= \/gsinn:c, 0<a<
7, n = 1,2,3... is the cigenfunction corresponding to the eigenvalue A\, = —n? of
the operator A. ¢, is an orthonormal base. A will generate the operators S(t), C(¢)
such that S(t)y = Zfﬂw < Yy > On, n = 1,2... Yy € X, and the
operator C(8)y = > o cos(nt) <y, ¢y > ¢, n=1,2,...Vy € X,. Let the infinitc

dimensional control space be defined as U = {1 : 1w = 00 o tnn, Y eg s < 00}

n=2"n
cQ 2

with norm ||ullg = (O, ,u )2. Thus U is a Hilbert spacce. By defining maps

=2 Y

p,G,F :[0,e] x B — X by
ot ) = pr(©)p2 ([l (O)])),
1] b
G)&) = [ [ oo v (s, v)duds,
o0

FO)E) = [ alohu(s, s
the system (7.4.4) can be transformed into system (7.1.1) Assume that the functions

pi: R — [0,00), a: R — R are continuous and satisfies the following conditions.

a) The functions b(s,n, £ ,M are measurable, b(s,n, 7) = b(s,n,0) = 0 and
JE n

- Tl 3(s,n,6) 2.
L= ma:z:{(/o .[mfo h(s)( o6 Vdndsd€)'* : 1 =0,1} < 00

such that ||gllzx) < L.
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(b) The function F : R x R — R is continuous and there is continuous function

2

(c) The functions a! € C([0,00); R) and = %ds)m < oo for all
i=1,2,..,nj=1,2

Morcover g(t,.) is bounded linear operators.

Here we cxamine the conditions (H R) for this control system. Then by using
theorem (7.3.7) we show its approximate controllability. Let B:U—>X: Bu=
Qigdy + S22y undn  for u = Y0 undn € U. The bounded lincar operator B
Lo([0,T); U) — La([0, T}; X) is defined by (Bu)(t) = Bu(t).

Let @ € N C Ly(0,T : X), Nis the null space of I'. Also o = 3 7% () ¢n. Thercfore

/T S(T — s)a(s)ds = 0. (7.4.5)

This implies that N
T sinn(T — s)
=g A P o (3)deHBn & M
0

n
The Hilbert space L2(0,7T') can be written as

L4(0,T) = Sp{sins}* + Sp{sinds}*.

Thus for hi, hy € L2(0,T) there exists a; € {sins} L, oy € {sinds}t such that
hy — 2hs = a1 — 209. So let 1y = hg = ap- Then hy = o4 + 2ug, hg = oy + uy also
let u, = h,, n=3.4,--- andap, = 0, n = 3,4,--- . Thus we see that hypothesis
(HR) is satisfied as U = {u : u = 3 g, Unny dnp e < 00} and B:lr-3% s
Bu = 2us¢; + Y P

Hence by assumptions (a)—(c) and Theorem (7.3.7) it is ensured that the problem

(7.4.4) is approximately controllable.

7.5 Conclusion

The conditions for existence and uniqueness of the mild solution are derived via
Hausdorff measure of non-compactness and Darbo Sadovskii fixed point theorem.

The conditions of approximate controllability are established for the neutral second
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order system. A simple condition on the range of an operator is used to prove

approximate controllability of the system.



Chapter 8

Approximate Controllability of a
Fractional Neutral System with
Deviated Argument in a Banach

Space

In this chapter we proved the approximate controllability of an impulsive fractional
stochastic neutral integro-differential equation with deviating argument and infi-
nite delay. We use Schauder fixed point theorem and fundamental assumptions on
system operators. In infinite dimensional space, the assumption of invertibility of
controllability opcrator is removed as it not invertible in case of compact semigroup.
Specifically, we studied a remote control dynamical system represented by a neutral
fractional differential equation with deviated argument which may take values in a

remote space.

8.1 Introduction

Several papers studied the approximate controllability of semilinear control systems,
sce for instance [69], [139], [156] and references therein. Generally these papers pro-
posed conditions on the systems operators with assumption of approximate control-

lability of the corresponding lincar system. For instance, Naito [139] proved that

125
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a semilincar system is approximately controllable under a range condition on the
control operator and uniform boundedness of the nonlinear operator. Sukavanam
[156] proved sufficient conditions for approximate controllability where the nonlincar
function satisfies growth conditions.

Motivated by results in [139] and [156] the purposc of this chapter is to study
the cxistence and uniqueness of mild solution and approximate controllability of
a functional differential equation with deviated argument and finite delay using
Schuader fixed point theorem. We proceed by establishing a relation between the
rcachable sct of lincar control problem and that of the semilincar delay control
problem.

In this chapter we studied the existence, uniquencss and approximate controlla-

bility of the following fractional order neutral differential equation

CDx(L) + glt,2)] = Az(t) + [(L o, z(alz(t), 1)) + Bu(t), t € J=[0,T]
I‘(t) = Iy= G‘) eB, (e (—OC.O]
(8.1.1)

where o € (1/2,1), 0 < T < oo and “D{* denotes the fractional derivative in
Caputo sense. The state function z(.) belong to the Banach Space X. The control
function u(.) € L?*(J,U) where U is a Banach space. B : U — X is a bounded
linear operator. A : D(A) € X — X is a the infinitesimal generator of an strongly
continuous semigroup of bounded linear operators S(¢), t > 0 on X. The history
valued function z; : (—00,0] = X, x(0) = z(t + 0) belongs to some abstract
phasc space B defined axiomatically in chapter 2 as Definition 2.2.12. f,¢ and a
are suitably defined functions satisfving certain conditions to be specified in the
following hypotheses.

Let W be the closed subspace of all continuous functions  : (—o0, 0] —
L*((—o0, T]; B) such that the restriction z : [0, 7] = La((—o0, T]; B) is continuous.
Let ||.lw be a seminorm defined by ||z]lw = sup,cp r |zl Let D = Cp(J, X) =
{ue C(J,X) : ||u(t) —u(s)|| < L|t — s|,Vt,s € J}.

Definition 8.1.1. The function z(t) € C((—o0,T]; X) is said to be a mild solution
of (8.1.1) if z(.) € CL(J, X), z(t) = ¢(t) for t € [—00,0] and it satisfies the integral
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equation.

z(t) = Sa(t)[#(0) + 9(0,9(0))] — g(t, z:)
- ]ﬂ (t — 8)* L AT,(t — 5)g(s, z,)ds
- /Dl (L — 8)* Mo (t — 8)[Bu(s) + [(s, x5, z(a(z(s),s))))ds, t € J
(8.1.2)
where S, (t)a = [° pa(0)T(¢*0)zdd and Ty(t)z = a [ 0pa(0)T(t°0)xdb. Here

Pa(0) = 20717129, (671/*) is the probability density function defined on (0, c0),
that is . (#) > 0, and fow Yal(0)df =1 and

1 o0
Va(6) = e Z(—l)”_lﬁ’_m‘lw.ﬂn(nﬂa), 8 € (0, )
n=1 :

Lemma 8.1.2. [177] S,(t) and T4(t) arc linear bounded opcrators for any chosen

t > 0 such that for any z € X, ||Sa(t)z|| £ Mi||z|| and ||To(t)z|| < ‘f?—fi%”x”

Lemma 8.1.3. [L77] For any x € X, 0 < 8 < 1 and 5 € (0,1], we have AT,(t)x =
—_ T Cu B el

AV-PT,(t)A% and | A"Ta(t) | < S mansy ¢ € [0, T

Definition 8.1.4. The set given by K, (f) = {z(T) € X : x € X} is called reachable

set of the system (8.1.1) . K,(0) is the reachable set of the corresponding linear

control system (8.3.1).

Definition 8.1.5. The system (8.1.1) is called approximately controllable if K, (f) is
dense in X. The corresponding lincar system is approximately controllable if K (0)

is dense in X.

The following assumptions are required to prove our results

(H1) Vx1,29,21,22 € X, t € (0,7] the nonlinear function f : J x X x X — X

satisfies Lipschitz condition
1f(t, 21, 21) = f(t, 22, 22)[| < P(llz1 — 2ol + |21 — 221

with Lipschitz constant P > 0. and 3 a constant fy > 0,
such that || f(s, 0, z(a(x(0),0))|| < fo, Vs J
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(H2) Let a : X x Rt — R* satisfy the Lipschitz condition |a(z1, s) — a(x, s)| <
L.||z1 — z2|| and a(.,0) =0

(H3) The nonlinear function g : [0,T] x B — X is continuous and there exists
constant 0 < 8 < 1 such that g € D(A?).
APg(.,z) is strongly measurable.
Vi € [0,T), and 21, 2, € B, APg(t, ) satisfies the Lipschitz condition |APg(t, z)—
APg(t,y)|lx < Lg|lz — ylls with Lipschitz constant Lg > 0

8.2 Existence and uniqueness of mild solution
In this subsection the equation (8.1.2) is verified to be the unique mild solution of

the semilinear delay control system (8.1.1).

Theorem 8.2.1. The system (8.1.1) has a unique mild solution in Cp(J, X) for cach
control u € Ly([0, T]; U) if assumptions (1), (H2) and (/13) are satisfied.

Proof: Define the space

Cro([=00;T), X) = {z : 2 € C([—00, T}, X) N C(10,T], X)}

Let
R = 2MI6(0) +4(0, O+ ot [ AT ()
: ! 7(0 T+ ) S C((—00,T);X)
M__ o v, g D1+ B)C1g et
gy POl + 1) borgrag @)
I'(1 C jof
e ot )bl 3 (82.1)
Fix 0 < ¢; < T such that
_MP TRV 4 |48 agl 1 +B)Cip
T 5 Q)P(R—I-ILEHR)I' |A=|| Ly + Lyt3B ST+ o)
M t?rr 1
< [M19(0) + 900, 6O+ 71 o7\ 70 =71 BU) let-somiy
M N (1+ﬁ)01,3 o8
t Fay (Pl + it + Ly=grr o )

O(1+6)Cip,,

Tt ap) 119 0lec —oe,11i20] + 1 (8.2.2)
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Define the mapping ® : Cpy([—00, 1], X) = Ci,([—00, 1], X) as

Sa(t)((0) + g(0. 6(0))) — g(t, z¢)

—f[:t—s" LAT, (¢ — $)g(s, z5)ds

(Pz)(t) = +f0 )¢ T, (t — s)Bu(s)ds

+f0(t )2 T (t — 8) f(s, x5, z(a(z(s), s)))ds, t € (0, ]

| #(0), 9 € [~oc, 0]

Let us consider the space Br = {z(.) € Cr,([—00,t1}, X) : ||zllc(=cou)x) S

R, z(0) = ¢(0)} endowed with the norm of uniform convergence. For any « € Bg
and 0 <t < 1y,

lzellc < K sup{l|lz(s)]| : 0.< s < T} + M|o]|ss.

where K = sup,co{ K (t)} and M = supyeqr{M (1)} Now (®z)(¢) = x(¢) is given
by
a(t) = z(0) = Sa(t)(6(0) + 9(0,4(0)))
-+ / (t = 8)*LAT,(t — s)g(s, xs)ds
0

" /U( — 8)* Tu(t — 8)[Buls) + f(s, zs, x(a(x(s), 5)))]ds
(8.2.3)

Then

lz(0)lx < [ISa(®)ll$(0) + (0, $(O)) ]| + APl AP g(t, z1) — APg(t, 0)]|
+ /0 (t = 8)* Y| Talt — s)||Buls) + f(s,zs, z(a(z(s),s)))||ds

t
[ (= A= 1Ay, ) — A5, 0)lds
0

( {'ﬁ)cl B a8
Wt lg(t,0)
Mo

< MI9O) + 50, 60)] + g [ =9 IButs)las

+ lg(t,0)|| + ll (o011

' ye-l zs, z(a(z(s),s
+ [ e )(z— 155,24, 2(aa(s),5))
~ J(5,0,2(a(a(0), OV + 1(5,0,2(a(x(0), 0)))Ids

(8.2.4)
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} 4
+ nA-ﬂnLguzsn+Lg————“rlﬁll*+ﬁi§;‘ﬁ [ =il 4

f U S
Mo Lza—
B R
< M||¢(0) + g(0,(0))|l + T(+a) || u(8)||e((~o0,1:)

Mo : I ‘
b iy (€= Pl =0l + LLalats) (O + flds

P ol(1+ B)Ci_s [* _—
4 APl + L, R [ )

I'(1+ B)Ci- B)C1-8 a8

19, O}l c(=co.7:)

I(1+ap)B
Mo Ul
< Mllc‘»"(U)Jrg(O,d)(O))lHF(1+a) S 1Bu(s)llct-semi
Ma 4 St B Sy
b L P+
Jﬁ/ L¢3
+ IT]T")[P(HJQHT(G ) + glt]

I'(l1+ B8)Ci-
b APl + LS

1 C
" (_(12?)_‘9;_‘; t* (¢, 0)lle(=oor1ix)

fo (£ = 5)°P~ (llzall + Lp)ds

t2rx——
< M|¢(0) + (0, $(0))]| + +Q) o, ||B“( ) c(t=oc0,17:%)
M M .
+ pyay PR LHR) + s (PLJO)]) + flt

(14 8)Ci-5
BT(1 + aB)

|l g(t, 0)lle-comyix) < R

+ [|AT)| Ly R+ L,

I'(1+ 8)Ci-p
I'(1+apB)p

S (R 1)

(325)

Hence ® maps Bp into itsclf when ¢; satisfies (8.2.2). Next it is shown that ® is a

contraction.
¢(t)s L€ (_OO O]?
Sa(t)p(0), te[0,T]

Let us define z(t) = z(t) + y(t) where y(t) = { Let



T, T3 € B

[@21(¢) — Da(2)]]

So
1

H(I),’L‘l — (I’$2||(,"({—00,11],X) S {

+

+ 4+ o+ A

IA

—+
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' Ma -1
‘/FU+®@_)G
175, (2)e s (21 + 3)(a((z2 + ) (5), )
Pl (e vl & y)(a(zz(s) +3(s),9))
F(5, (22)s + 3o (22 + 5)(al22(6) + ¥(s),5))
o Lotda gt + (0 ) +y(s), ) llds
LA 1 A%lg(t, () +30) — 9t (2 + )l
F 0 e a2 - Aot (a+)
at, et vl
[ = e 4 u)a(1(9) + 5(6),9)
(214 w){a(za(s) + wls)ys)) 1 Il zade — (22
o2+ 9)azale) + o), o))
(51 4 ) (a(eas) £9( )
WA (2)s — (el

al,l'(1+B)C1_p 45
(1 + aB) /u (t= )" l(z2)s = (21)slwds

o
T a1 el = alloenin

K|lzz — z1lle(oot)ix) + 122 = 21lle(—co,ukix))

IA=2]| Lo K |22 = 21l (oot

Lg (1 = ﬁ)("i B m’i

( “fﬁ)[f llz Z]”C({ —oc,t ;X))
PME

1 L,L(1 4 B)Cy_pt®?
{——(1+ )(IL +K+1)+ T+ aB)B
A~ ;||L K}z — z1llc((-octi1ix) (8.2.6)

PMi¢ "
W?LI_)UL + K +1)+ ||[A7P|| LK
L,T(1 + B)Cy_pt™®




132

Repeating the above process we get that

PME |A-P||L, i
I‘(1+a)n7(lfla+[(+1)+ :

L F(l + 18)611— jtﬁﬁ n
] (1 + (xﬁ)ni Fllzr = z2lle-o0u1ix):

(8.2.7)

[9"21 — ®"Tallc((~cotr) ) < |

Thus ®" is a contraction mapping for large integer n. Therefore, ® has a fixed point
in Br. Henee (8.1.2) is the mild solution on (=00, ¢;]. Similarly it can be shown
that (8.1.2) is the mild solution on the interval [ty, o], 1 < t3. Thus (8.1.2) is the

mild solution on the maximal existence interval (—o0, (*], t* < oo.

Now it is shown that x is well defined in (—o0, 7. If { € (—oc, t*]

Ma(Mg)
I < Mo+ 3 [ atyfugs) s
Ma

+ m‘/; [PH&TS 0” -i-P”( ( )3) ~ ’B(U ” +fe]d‘3

+ ALK (2l + Ip)o-sou)ix)

aL,T(1 + B)Ci_g .

+ T+ of) /(!— ) NA AT =) (2l + 1) ci(=ootal:x)
Ma(Mj) ;20 1
<
< Mléll + T+ o) —[lu(3)]
"' PMa Jo-1
t ), Ta+ )(‘5 = 8)* Il ll + Lall( 0|l + fol
< [ﬂ[”d}” & A;?l-i—nr) 2a—1 ”’EL(S)”]
B 1- ”A_SHLHK
. [tV S (=l + fo) + 4~ L KT
1—[|A-F|| LK

L [RES JoUC -+ L) = )" fa(s) s

1= APl L, K




By Gronwall’s incquality

(@)

X
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Nzl {[M|J¢|[ P A S lu(s)l
e T— [A-PIL,K
N [FE2s 2 (2(O)l + fo) + | AP Ly K Ly]
1= [ AP[L,K
MPT®
' . 2.
Cxp(F(1+a)1—|[/1"ﬁ||L9K) (8 8)

So ||z(t)]| is bounded on [—o0, t*].

The uniqueness of mild solution is proved as follows. Let z; and x; be any two

solutions then since z(t) = 2(¢) + y(¢) where y(t) = {

|

z1(t) — z2(t)]]

o(t), t € (—o0,0];
Sa(1)9(0), t€10,T]

' Ma W\ )
[ raemt-?
LG5, 3, + et 4 1)@ +-2)(8):5D)

f(8,(21)s + 95, (21 + y)(a(22(s) + y(s),8)))
F(ss ()5 b o (225 3) (@2a(8) 2+ 3(8), 9))

7, (5)s s (21 + 1) (@(2(8) + 9(5), 5))llds
[AE Al Gt ) = o e+ )

J AT = DA )i+ )
gt (22)e + w)l

" PMa .
ﬁiifrjuus) w@r+yauﬂﬂ+yw%ﬂ)

(21 + y)(a(z2(s) + y(s), )| + ll(22)s — (z1)s]l
I(z2 + y)(alza(s) + y(‘ ), 5))

(21 + y)(alz2(s) + y(s), 8))I)

IATPIILgll(21)s — (22)sl]

aLyF(l - ,B)C‘l_ﬁ t ab1 B i
P(l + {}:ﬁ) /; (f' o S) 4 ”(2!2)3 (Zl)s"qs 1
(8.2.9)
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PM !
< — | (t=s)ds(IL,
= F(1+a«)v/0( 5)* " ds(

+ K22 = z1lle((~s0,ulsx) + 122 — 21lle((=00t11ix))

<2 — zl”C{-:x:.hh.\’)

+ ALK ||z2 — 21l o((—oot):0)

L,‘,F(l +B)Ci- ﬁ.ﬁ“ﬁ”z — z|
(1 T ﬁ) 2 “1C((—oo,t1];X)

PM [ 1
_ —8)* (L ds
mm)/(r ) (ILa + K + 1)ds
L,I(1 + B)C,_gt*?

< {

+ “A_ﬁ”":gK}HZZ - zl”C((—r\o?ti];X) + (1 2 0:[3)8

el - “l g K+ 1)d 2.1
< F(Ha /u $) ML+ K b+ 1) (8.2.10)
L,,I‘(I+,6}(1 gtah

where p = 1— +||A~?|| L K. So, by Gronwall's inequality we scc that

I'(1+a8)8
21 = 2z which implies z; = 25 on (—o0, 7. Thus z is well defined on (—o0, 7.

8.3 Approximate Controllability

Let us define a continuous linear operator £ : L([0,T]; X) — C([0,T]; X) as

T
iy == / (T = s)*\Ta(I* 2 5)p(s)ds, b € La((0,T]; X)
Jo
The following hypothesis is required to prove the approximate controllability
(HR) Ve > 0 and p(.) € L2([0,7]; V), Ju(.) € U such that ||£p — LBul|x < €

Theorem 8.3.1. If the assumptions /13 and H R hold then the corresponding neutral
system

d(z(t) + g(t, 71
dt

= Ax(t) +Bu(l)

z(l) = ¢(t), —0 <t <0 (8.3.1)
with [ = 0 is approximately controllable.
Proof: It is sufficient to prove that D(A) C }?r;(_ﬁj since D(A) is dense in X. Let
d(T,$) = Sa(T)[$(0) + 9(0,$(0))] — g(T' z) — [y (T = 5)* " ATa(T — 5)g(s, z.)ds
For any chosen £ € D(A), then £ — d(T, ¢) € D(A). It can be seen that therc cxists
some p € C'([0,T); X) such that

n=£—d(T, ) = / (T — ) Ta(T — s)p(s)ds.
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By hypothesis (I R) there exists a control function u(.) € L*([0, T]; U) such that ||n—
L£Bu|| < €. As ¢ is arbitrary it implies that Kr(0) C D(A). Since the D(A) is dense
in X, Kp(0) is dense in X. Hence the neutral system with f = 0 is approximately
controllable.

Let us define the operator K : Z = L*([0,T]; X) — C((—o0,T]; X), Kz(t) =
fﬂﬁ(é — §)*7 1T (t — 8)z(s)ds,t € [0, 7].
Z can be decomposed uniquely as Z = Ny(L)@® Ny-(L) where Np(L) is the null space
of the @perator L and Ny(L) is its orthogonal space.
Define the operator F : Cp,, ([0, 7], X) — L%([0,T], X) as

F(z)(t) = f(t, zy,z(a(z(t),1)));0 < t < 7.

Hypotheses (H1), (H2) imply that F'is a continuous map. Hypothesis (H R) implies
that for any p € Z, there exists a ¢ € R(B) such that L(p —q) =0. So,p—g=n €
No(L) from which it follows that Z = Ny(L) & R(B). Thus, it implies the existence

of a lincar and continuous mapping Q from Ny (L) into R(B) which is defined as
Qu* = v where v is the unique minimum norm clement v € (u* + No(L)) N R(B),
ie. [|Qul = |v|l = min{|jv|| : v € {(u* + No(L))\R(B)}. (H3), implies that
Yo € {u*+ Ny} n W is not cmpty and ¥z € Z has a unique decomposition
z = n + ¢q. Henee the operator @ is well defined. Moreover, [|Q| = ¢ for some

constant c.

Let us consider the subspace My of CL,([0,7]; X') which is defined as

M, — m € Cry([0,T], X) : m(t) = Kn(t); n€ No(L); 0<t <7 (8.3.2)
m(t) =0, -0 <t <0;
Let
fe: My — Mo
defined by
Kr En
fo=q A 0<tsT (8.3.3)
0, —h <t <0;

where n is given by the unique decomposition of F(z+m)(t) = n(t)+q(t), n € No(L)

and g € R(B).
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Theorem 8.3.2. The operator f, has a fixed point in Mj if the hypotheses (H1)—(/12)

M(14+c)PT™
hold and Fiia) <1,

Proof: Since the semigroup T'(1) is compact by hypothesis (/1S) so T,(t) is
compact and hence [, is compact. Let 2 € Z then z =g +mn,n € No(L), g € R(B).

Also ||nllz < (1 + ¢)||z||z for some constant c. Let

B.={ve Mo : ||v]] € r}

Let m € B,. Let ||£(0,0, (x 4+ m)(a(m(s),0)|| <!y Supposc on the other hand

Pl = Il < [ (05 9 = o)l
< 1+ﬂ)/ 2=+ Q| P+ )| zds
R f (1 (ss 2+ s (o - m)al (s, D)
— 10,0,z 4 m)(alr ,)))n
0.0, -+ m)(alm(s). O)Ids
< %] Pl m)(s 4 0) = 0]
+ (e + mal(o-+ m)(s). ) — (@ + m)(a((m)(s), O -+ 17
< MOLIL i 4 ol + (e + (e ) (), 0
+ lf]ds
< %sz)a /{] Pl||lz|| + r 4+ {Lall(z + m)(s) = m(s)|| + I;]ds
= ir%“% [D Pl + 7 F LLallz] + 1lds
M(1+c)

T2a-1
= i rT 416

ITII\/ +1,T°)

(8.3.4)

< Tty Plelel

Dividing by r and taking limit as r tends to oo we get a contradiction. So [, maps

B, into itsclf. Thercfore by Schauder fixed point theorem it has a fixed point.

Theorem: 8.3.3. The semilincar control system (8.1.1) is approximately controllable

if the linear delay control system (8.3.1) is approximatcly controllable.
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Proof: Let z(.) be the mild solution of the lincar delay control system (8.3.1) is
given by

z(t) = Sa(t)(9(0) +g(0,(0))) + g(t, z1)
+ / (L= 8)* ATa(t — 8)g(s, 3,)ds + K Bu(t), L€ (0,T]
z(t) = o(t),t € [~00,0] (8.3.5)

We prove
y(t) = z(t) + mo(t)
to be mild solution semilinear problem (8.1.1). Since
KF,(x + mo)(t) = Kn(t)+ Kq(t)

operating K on both sides at m = my, fixed point of f;.

K Fp(x + mo)(t)

Kn(t) + Kq(t)
mo(t) + Kq(t) (8.3.6)

Add z(.) to both sides and using y(t) = «(t) + mo(t)

olt) + KF(Emig) () < | 6(e) + im0+ K40
#(0) + KE)({) = ult) + Kot

W(0) = alt)+ KF)(e) - Kat)

) = Su()(@(0) +9(0,80)) + (t,7)
[@ AT gt mdas
K(Bu—a)(0) + K Fuy)(0) 837)

=Sl

This is the mild solution of semilinear problem with control (Bu — ¢). By following
the same proof in [155] we get the following conclusion that since g € R(B) there
exists a v € U such that ||Bv — ¢|| < ¢ for any given € > 0. Let z, be a solution
of the given semilinear delay control system (8.3.1) corresponding to the control v.
Then as shown by [139] we have ||y(T") — z,(T)|| = ||2(T") —2+(T')|| < ¢. This implies
that 2(7) € K¢(f). Then it follows that K7:(0) C K¢(/). Thus (8.1.1) is approx-

imately controllable since the corresponding linear system (8.3.1) is approximately

controllable.
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8.4 Example

Let us consider the heat control system with finite delay
](.
“Dgly(t,z) + _/ / (s = t,m, x)y(s, m)dnds] + ——u
= Bu(é,a,)-k/ as(s — t)y(s. a(y(s, z), s))ds,

D<t<T —0o<fl<0,0<z<mw
y(t,0)

glt.z) = E@); — 0 =il I ar=m. (8.4.1)

Il

y(t,m)=0,0<t<T

Let X = Ly(0,7) and A = &, Define

d
DA)={y € X:uy, d—z are absolulely continuous,

d*y
2 € X and y(0) = y(x) = 0}.
Fory € D(A) ,y= 32, < 4500 > ¢nand Ay = =57 0> < y,n. > ¢,
where ¢n(z) = 3% sinnz, 0 <z <m n=1,2,3... is the cigenfunction correspond-
ing to the cigenvalue A\, = —n? of the operator A. ¢, is an orthonormal basc. A

will generate a compact semigroup T((). such that T'(t)y = >.>°, et <y, b >
on, n=1,2,... Vy € X. Let the infinite dimensional control space be defined as
U={u:ru=Y 0, undal) roxing corwith nbrmilu|ly (383, ¥2)z. Thus U
is a Hilbert space.

Let B:U — X : Bu=2uyp, + Yoy Un®y foru= Y0, u,dy, €U. The bounded
linear operator B : Lo(0,7 : U) — L(0,7; X) is defined by (Bu)(t) = .’?u(t).
Then this problem (8.4.1) can be transformed into an abstract semilinear differen-
tial equation with deviating argument and infinite delay. Following the hypotheses
(H1) — (H3) and (HR) the approximate controllability of the system (8.4.1) is
proved by help of Theorem 8.3.3.

8.5 Conclusion

Thus, we proved the existence and uniqueness and approximate controllability of

the functional differential equation (8.1.1) with deviating argument and finite delay
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by using Schuader fixed point theorem and fundamental solution instead of Cy semi-
group. We also removed the limitation of the non-existence of the inverse of the con-
trollabﬂity operator due to the compactness of the semigroup in infinite-dimensional
spaces.:_ We achieved this by establishing a relation between the reachable set of lin-

ear control problem and that of the semilinear delay control problem.



Chapter 9

Approximate Controllability of an
Impulsive Fractional Stochastic

Differential Equation

The approximate controllability of a fractional impulsive stochastic neutral integro-
differential equation with deviating argument and infinite delay is studied. The
control parameter is also included inside the nonlinear term. Schauder fixed point
theorem is used to prove our result. The assumption of invertibility of controllability
operator is removed as the inverse fails to exist in infinite-dimensional space, in case
of compactness of the semigroup. Lipschitz continuity of the nonlinear function is
replaced by fundamental assumptions on the system operators. We also give an

example to illustrate our result.

9.1 Introduction

Results of controllability for abstract systems are abundant (sce for details [61; 174]
and references therein) rather than for fractional stochastic neutral differential equa-
tion with deviated argument and control parameter included inside the nonlinear

term.
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Benchohra, et al. [52] and Chang [61] discussed the exact controllability of func-
tional differential systems with impulsive conditions and unbounded delay. How-
ever, they assumed that the inverse of a controllability operator exists. Generally
due to the compactness of the generated semigroup it is not invertible in infinite-
dimensional space. Hence their methodology does not work in infinite-dimensional
cases. Moreover it is not always possible to apply their results.

Although with a different approach Zhou [176] established approximate control-
lability of an abstract scmilincar control system. Mahmudov [69] established that
approximate controllability of semilincar system follows from the approximate con-
trollability of its associated linear part.

In this chapter we studied the control system containing deviating argument.

°Difz(t) + g(t,z)] = Alz(t) + g(t, w)] + Bu(t) + (¢, x(a(z(t), 1)), u(?))

i
+f Gl 5, ts)dW (), t-€ J=[0,T),t #bayk = 15...,m

oo

zo(t) = o(t), t e J = (—n0,0]
(i) —z(ty )= IL(z(te)),  k=1L..m (9.1.1)

where A is the infinitesimal generator compact semigroup of uniformly bounded
lincar operators {S(t) : t € Rt} on a Hilbert space X. ¢Df denotes the Caputo
fractional derivative of order 0 < ¢ < 1. X and U are two scparable Hilbert spaccs.
There are three separable spaces X, I, U. The state spacc is denoted by X. Suppose
(Q, F, P) be a probability space together with a normal filtration 7, ¢ € J = [0, T].
Jo=h+J=(-00,T].

Fi=oa(W(s):0<s<t)and Fr=F.

Suppose L2(Q, F, P; X) = L*(Q; X) be the Banach space of all strongly measurable,
squarc integrable, X-valued random variables equipped with the norm ||z(.)[|7. =
E||lz(.;w)||%. The stochastic process is a collection of random variables S = {z(t, w) :
0 = X : 1 € J}. We usually suppress w and write x(¢) instead of z(t, w). W(l) € K
is the Q-Wiener process. The control parameter u(t) € L2([0,T], F, U). The history
valued function z; : (—00,0] = X, z,(€) = z(L+0) lies in some abstract phase space

B defined below. B is a bounded linear operator on a Ililbert space U.
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Let hg : J1 = R be a continuous function such that [ = fEm ho(t)dt < oo. Then
B = {¢: (—00,0] = X issuch that V a > 0, (E]|¢(6)||?)/? is a bounded measurable
function on [—a, 0], ||¢||(-q,0 = SUP_,<g<o |9(0)]| and

/ h(s) sup (E|(6)[2)2ds < co}.

—0o 8<0<0

B is a Banach space with respect to the norm

0
/ h(s) sup (E||¢(0)]|%)2ds < 0o, ¢ € B

s<0<0

Let f,g: J x B — X be measurable in X and G : J x J x B — LK, X) is
measurable in Lg(J, X') norm. The space containing all Q-Hilbert Schmidt opcrators
with domain K and range X is denoted by Lo(J, X). B is a bounded linear operator
from U into X. ¢(t) € B—is a random variable independent of W (t). It has finite
second moment. Also ¥(t) € X is a F;, measurable function.

Let D mdi B/ 5T A2 BT 00Tl 1)\t < tpn = T.
C(Jo, L*(€; X)) denotes the Banach space of all continuous maps from Jy = (—o0, T
into L2($2; X) which satisfy supiesE[|lz()|]> < oo. L§(%,X) = {f € Lo(2, X) :
f is Fo—measurable} denotes an important subspace. PC((—o0, T], L*(Q, F;, X)) =
{2(t) : Jo = (=00, T] = L3(Q, Fi, X) is continuous everywhere except at ¢, at which
z(t]), z(t;) exists and z(t; ) = z(tx) satisfying sup,c s, Ellz(t)||* < oo}

Ii(k =1,2,--- ,m): X — X is a nonlincar map and Az(tx) = z(tf) — 2(tg) is
the change in the state z at time t;. I indicates the amount of the change. Suppose
H be a closed subspace of PC(Jy, L*(Q2, ¢, B)) consisting of measurable and F;—
adapted X —valued process and Fy— adapted processes z € L?(£, Fo, B) endowed
@e/[3)V2.

Now we define few notations that are used in the following sections

with norm ||z|| g = (sup,e; F|

M =sup{||S@®)|| : 0 <t < T}, My =B,

Al = [ 1(s)lds.

Let us define the following operators:
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Let TT = [/(T — 8)@VTy(T — s)BB*T;(T — s)ds be the controllability

Gramian
Let R(e,T?) = (al +TF)7!
We assume the following hypothescs:
(H1) S(t), t > 0 is the compact semigroup.

(H2) f:J x X x U = X is continuous and 3 function A(.) € L1(/J, R™) and a non
decreasing function g; € Li(C x U,R*"),i=1,2,...,q,:

E|lf(tz,u)]? < Z Ai(t)gi(z, 1)

i=1
V(t,z,u) € I x X xU.
(H3) For cach a >0
¢
i - — 1% iz, % =
hmrsl:g(r ; asup{gt(r,u) (z,u)|] <7}) =00

(H4) Iy is continuous and 3dy :
ElL(@) < dy

Vre X(k=1,2,...,m).

(H5) g : J x B is completely continuous and uniformly bounded Elg(.,d)|I* <
M, (1 + [|9]1%)-

(H6) aR(a,I'T) — 0 in strong operator topology as a — 0*
(H7) () — L(y(t)) | < Lillz(te) —y@l), ¥ 2(te), y(te), k=1,--- m.
(H8) a: X x J — J is a continuous function such that |a(z(s), s)| < s.

(H9) The function G : J x J x B — L(K, X) satisfies the following conditions:

(i) V (t,s) € J x J, G(t,s,.) : B — L(K, X) is continuous.

(ii) For all z € B, G(,.,z): J x J = L(K, X) is strongly measurable.
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(iii)) There exists a positive integrable function ne L([0,T]) and there is
a nondecreasing function ¢ : [0,00) — (0,00) such that ¥V (¢,s,z) €

J x J x B we have

/D Bl|G(t, 5, 2)|[3ds < n(ty(l]3)

(iv) Vo € B, k(t)=limiyo ffa G(t, s, p)dw(s) exists and is continuous.
3 Mj > 0 such that E||k(¢)]|* < M.

Remark : The assumption (6) holds iff the following linear fractional control

problem is approximately controllable.
cDI(t) = Ax(t) +(Bu)(t),t € [0, T

z(0) = xp.

It is an extension of approximate controllability of linear first order problem in [69)].

We define mild solution of problem (9.1.1) as follows.

Definition 9.1.1. x € H is a mild solution of the problem (9.1.1) if z(t) is a
F;—adapted process such that z(t) = ¢(t) on (—o0,0), and the following integral
equation is satisfied
z(t) = S4()[#(0) +4(0,8)] — g(t, 1)
L
+ [ - 9T S alala(e), ), u(t) + Buls)lds
0

+ /Or(t —8) T, (t — 3)[_/_8 G(s, 1,2, )dW(T)]ds

+ Z (t = t)I 1T, (t — te) (2 (ty)), t € [0, T)

O<ty <t

(9.1.2)

where Sg(t) = 5 (4(0)S(t90)d0; and T, (t) = q f0°° 0¢,(0)S(199)df; ¢, is a proba-
bility density function defined on (0, 00), i.e. {,(#) >0, 6 € (0,c0) and '

Awqmsz
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Lemma 9.1.2. [152] Let G : J x J x Q — L% denote a strongly measurable function
with f;wEHG(tﬂi dt < 0o. We have

B f G(s)du(s)| < Lo f BIG(s) s

vt € [0,T] and p > 2. Here L is a constant containing p and 7.

Lemma 9.1.3. [168] S,(t), T,(t) are strongly continuous and compact. For all chosen

t >0 S,(1), T,(t) arc bounded lincar operators i.c.

V20, [Sg(t)zll < Mlizll, [[T,(t)z]| < F( +1 [l]

Lemma 9.1.4. [152] Let z(t) € PC(Jo, L*(Q, F; X)) then forany t€ J, z, €D
0
Uz @) < [|ze]ls < ||@]ls +1 Sl{lp}“;{:(s)”, where if:/ ho(8)dt
se(0,L

Lemma 9.1.5. [152] ¥V zp € L*(Q, Fp, X), Jw € L%, (9;(J, L{)) such that zp =
Exp+ [ w(s)dW(s)
Definition 9.1.6. The reachable set is R(T; ¢, u) = {xp(d,u)(0), such thal u €
L3.(JU)}. If R(T; ¢, u) = L*(, F;, X), then the problem (9.1.1) is approximately
controllable on [0, T’

In the next section we prove that (9.1.1) is approximately controllable if Vo > 0,
3 (z,u) € PC(Jo, L*(QF1; X)) x C(J,U) such that

ut) = (T —t)T'B*T;(T — t)R(a, T)p(z, ) (9.1.3)
2(t) = Sy(t)(zo+9(0,8)) = gltaz) + Y (8 — i) " Tylt —tx) (= (1))

+ /0 (t — &)1 1T (t = 8)[f (s, z(a(z(s), s)), u) + Bv(s)]ds
+ ] (b= 8T (1 — 5)] f " G(s, 7, )dW(r)]ds (9.1.4)
0 —0o

where

i
pr.) = Bort [ w(s)aW(s) = 5,1 a+9(0.6) + (T zr)
/4
_ fo (T = s)1VT,(T — 5) [(s, 2(h(x(s), 5)), u)ds
T 8
- /(T—S)Q_ITQ(T~S)[f G(s,7,z;)dW(7)]ds
0 —-0c

— Y (=) YT — ) Ie((th))
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9.2 Approximate Controllability

Now V a > 0, we define an operator F,(z,u) = (z,v) on PC(Jy, L3(2, F, X)) x
C(J,U) where

ot) = (T =& BT - )R(e Tp(z, v) (9.2.1)
20) = Si(t)@o+9(0,6)) —gltz) + Y (6= W) Tolt — ) k(ate))

+ '/0 (t — 8)T T, (t — s)[f (s, z(a(z(s), s)), u) + Bu(s)]ds

+ /0 (t — )" Ty(t — 8)[/_00 G(s, 1,2, )dW(7)]ds (9.2.2)

:
plae) & Bark [ w(s)dW(s) = SyT)(as +5(0,6)) + o(T,2r)

- / (T — )T MT,(T — s) f (s, z(h(z(s), 5)), u)ds

0

T ]
ol / @) S)q_lfﬂ;(".f' - 3)[/ G(s, 7, z;)dW (r)]ds
0 Re

= D (T )M (T = ) I (w(tw)) (9.2.3)

k=1

It will be shown that (9.1.1) is approximately controllable if for all & > 0 there
exists a fixed point of the operator F,, which is the mild solution of (9.1.1).
Theorem 9.2.1. There exists a fixed point of the operator F, i.e. 3 a mild solution

of (9.1.1) on J, if the hypotheses (H1) — (H9) are satisfied and

m

1 \NG®? SIE 9 MT1 -
— M? 4+ aAM 1 _— illi=
(G T aayMLT oMl +F(q+1){§n)\nl}
MTT .
e 29Lasupn(s)O] < 1 9.2.4
(F((H-l)) f&;g}fn(s) | (9.2.4)

Proof: Let Y,, = {{z(.),u(.)} € PC(Jo, L*(Q,F;, X)) x C(J x U) : E|z|* +
Ellu(t)||* < ro} and 1 is a positive constant. Thus, Y;, is a closed convex subset of
a Banach space PC(Jy, L*(2, F,, X)) x C(J x U).

Stepl: For 0 < a < 1, there is a positive constant 1y = 1o(e) such that [, :
Y., — Y.

(Falz,w))(t) = (2,v) (9.2.5)
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o(t) = (T'— )" 'B*THT —t)R(e. T])

.
x (Bar+ [ w(s)dW(s) = Sy(T)(wo +9(0,6)) + o(T, or)
0
T
- /0 (T = 8)T'T(T - s) f(s, x(h(z(s), 5)), u)ds

- fn T — ) f_ ,,c G(s, 7, 2,)dW (r)|ds

- 0~ )TTT )Tk (t)] (9.26)
¢, L€e (—OG,(]];

Sq(t)(zo + 9(0,8)) — g(t, z)

2(t) = $ 4+ Yocqcrlt — )T T8 = ) i (2(2x))

+ fot(t — )71 T, (L — 8)[f (s, z(alz(s), 5)), u) +Bu(s)|ds

| 54 Jot =) Tyt = s)f", Gls, 7z )dW (7)lds, t €]

{ ¢, L<0;
Let ® =
S(t)¢(0), t=>0.
Thercfore z(t) = Z(t) + ®(t), t € (—oo0,T). where ¥ =0, t <0 and for i > 0,
T(t) = S4(t)(9(0,¢)) — g(t, T, + Py)
+ Z (t =) Tyt — b Le((F + @) (Lk))

O<ty <t

+ /i(t — 8)IT T, (t = 8)[f(s, (T + ®)(a(T + D(s).5)),u) + Bu(s)]ds
Jo

t 5
e / (t — )T 1T, (6~ s)[/ G(s,7, %, + @, )dW (7)|ds (9.2.7)

JO —eo
So let ¥,2 = {{Z(.),u(.)} € PC(Jo, L*(, F,, X)) x C(J x U) : E|Z]|% + E|lu@®)|? <
ro and T =0}. Thus ¥ is a bounded closed convex sct.

Izl = 17+ el
< 2(||Z 5 + [12eli)
<

4 sup E|F(s)|? + [Foll} + 12 sup EJ3(s)] + [2oll3)
5€[0,1] s€[0,2)

IA

4(Pro + PMPE]S(0) | + 1 8]13) (9.2.8)

pi(r) = sup{gi(z(a(z(s), 8)),v) : Ellz|* + Ellv]* <r,
Y(z,v) € PC(Jo, L3, Fo, X)) x U}.
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If (z,u) € Y;, then

Blv@IP < 5

and

Ell=(t)|1?

Il

+ 4+

6 6 qM?

T
a - : 2 ¢ 2
() ME2E el +2 / Ellw(s)ds|

M?|| @Il + My M2(1 + [|¢]|*)
M, ( +4(lro + PME| )| + |4 ]l)

+ +

- {i/\ D(alalale) N+ T N d,
q-i— 0<I<T (q+
MTY
b oAty
+ 2Lgsupn(s)p(Pro+ PM?E|(0)* + ||4ll%)}]
=i
2 e\ 1 2 /T 2
£ ¥ Tl w
= CY2(P(Q+1)) M3 2E||2r||* + 2 4 El[w(s)ds||
+ M?||gll + M,M2(1 + [|9]1%)
AM, (1 +4(Pro + PMAEH0)]1* + 16113))
MTe!
il s —d
+ q-l-l {L] (92 TO}+0;TF(fI+1) k
MT9
2 oM,
+ 2Lg o n()y(lPro + M2 E||6(0)]1* + l|611%)}]
s€
=My (9.2.9)

6[ M2 M,( 1+||¢i|93)+M (1 + 4(Pro + PM2E|6(0)]1? + | #l1Z))

MT? 5
D(g+1) MT(Me+ {§ | Aill1i(ro) })

0<t<T
MTY

2(F(g+ )2{2M;

2L aup n(s)yp(lPro + PM?E[$(0)|* + [|4113)}]
s€

Ly (9.2.10)
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Dividing M, + L1 by ro and letting 1o — 0o, and by assumption (9.2.4) we get that

_ 1, gM? ., . MTI & ,u‘(rn)
e M 4 SR i
lm (M DEUME + ey {L 1A
MT? B(12rg)
2 2L
(F(q+1)) Gi‘é?”’(s) - J
1, gM* . guim ) MF’ -
< (Eg(m) M; +1)6[4Myl" + = {Z Xl Z}
q
+ 2( ML 2L supn(s)0] < 1 (9.2.11)

Iﬁ(q * 1) ) sed
Hence

172 (2, w)() [l = Efjz@)> + Ellv(@)* < Lt + Me < ro < 00,

Therefore, F* maps bounded sets of Y;, into bounded scts of Y.

Step 2 : As per Arzela-Ascoli theorem and stepl there is a need to prove :

(i) Vt € J V() = {F*(2,u)(t) : (z,u) € Y, } is pre-compact,

(43) Ve > 0 36 > 0 : [|F*(z,u)(t1) — F(z,u)(to)|

< eif (z,u) € Yy, |t1 — ta| £6, for all {1,15 € J.

For t = 0 it is trivial, as V(0) = ¢(0). Therefore fix a real number 0 < ¢ < T and
suppose T € R is such that 0 <7 < {.

We explicity state the operator

Fo(e,u)(t) = [F*9, (T — (7 BT (T <) Rlon T5)p(er, )
(Fo2)t = ft c/ 0(t — s)71E(0)S((t — s)"0) Bu®(s)dbds
b o[ [0 01~ 90) (s a(alals), ), s
N / f 0(t — s)1'€(0)S((t - 5)0)
% f_ (G s, 7, 2,)dW ()] d0ds
S / 0ES((t — t)16) Iu(w(t7))do

0<t <t
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— 4S(c) / f $)11£(8)S((t — 5)%6 — ¢%6) Bu®(s)d6ds
+ qS(e“'&)/ 6/ Ot — s)I71E(0)S((t — )0 — €96)

x  f(s,z(a(z(s),s)), u)dbds

+ qS( ‘5‘5)/ / O(t — )37 E(0)S((¢ — 8)70 — €%9)

X / [G(s, 7,z )dW (T)|dbds

£ 3 (-t asd) [ 0eS((L— 40— ADILa )0

O<t <t

+ Y (15—Lk)q’qu(cqé)[amf?&S((t—tk)‘?t?—e“‘é)fk(x(t;))dﬂ

(9.2.12)

Since S(¢%) is compact and z(t) is bounded on Y;, the set (F9°z)(t) is pre-compact
in X for all €,6 > 0. Also T,(t),S,(t) is compact if S(t) is compact, therefore the
set {F92(t)+ g(t, z¢) + Sy(t)g(0, ¢) = F2(z,u)(t)} is relatively compact. Let

F (e, u)(t) = [F2{2,u)(t), (T = " B'TH(T - 5)R(a, TH)p(z, ).

So
Volt) = (RS (2, 0)(0) + (3,0) € Yoo}

is pre-compact in X. i.e. 3 {y;,1 <i <n} in PC x U s.t.
V(e S Bly;, €/2).

Here B(y;, €/2) is an open ball in PC x U having y; as center and €/2 as radius.
Also, V (z,u) € Y,, we have

I (F(, W) () — (F7 (2, w) ()]

< 7¢E) / f 0(t — )T 1€,(6)S((t — 5)'0) Bu® (s)dBds

+ g En/t / B(t — 5)17,(0)S((t — 5)°0) Bu®(s)d6ds| |

+ 1¢E f / 0t — 5)17,(0)S((t — 5)96) (5, 2(alx(s), 5)), u(s))ddds|?
+ 1) | | 0= 5110 ((e - 5015, a(alals) ) u(s)dods
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t pd 8
+ 14E| /0 /0 9(t — 5)7€,(8)S((t — 5)°6) /_ Gls, 7, ,)dW (1)dds||?
+ 4B /t / Z 0t — ) E,0)S((¢ - 5)70) f_ " G572 )W (r)d0ds|?

+ 1B Y / B(t — 5)7€,(0)S((t — 5)'0) I (me(t4)) 0]

0<tp<t

+ 1B S f B(t — )7 16,(0)S((t — 5)"0) I (zx(tx))dds]?

= Eftk‘ﬁf.

IA

i
{7¢*M>T* / (t — )" [MEMc + Z IAill (o) + 2M
JO

i=1
+ 2Lgsupn(s)p(Pro + PME(|O)|* + dlla)]ds
s€J

)
+ 1Ml [ os(o)ao)?

7qM252 ¥ e > m |
< Fgrn ) LIRS YN Xillro) + 2Mj,
. FZ(q+1) t—g(f ‘3) [ B C'f';” ![p(;0)+ My,
4 2LG sup n(S)w(Prg + fzﬂsz”d)(O)”? % ||¢||35)]d5 Ny 7(}‘621’112?1015 40
sed
as €0 —0F R 1)

Thus there cxists relatively compact sets arbitrarily close to the set V/(¢), V ¢ € (0,T],
Hence for cach ¢ € [0,T], V(1) is relatively compact in C' X U.

Step 3: We prove the equicontinuity of V. = {F*(z, u)(.)|(z,1) € Yy} on [0, T].
When 0 <t <t <T

E”'U(Lu) - 'U(cb)HQ < I(T"N ’ta)q_lB*Tc:(T E Ereine f'h)q-lﬂ*ﬂ:("r - Lh)“
1 3
x 2Blorl +2 [ [Elule)dsE+ Mol
J0
+ MyM*(1 + [|o]1%)

+ M, (1 +4(Pro + PM2E||$(0)|1* + [I41%))

M
1—1( +1 {Z”)\Hl#z(rﬂ }"“ Z 1—1( _|_1 k

0<t<T
MT?
+ 2(I‘(q+ 1)) {2M,
+2L¢ i n(s)y(IPro + EM2E|¢(0)[|* + [|411%)}]
€

(9.2.14)
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and

E |l2(ty) - 2(ta)I” < 13E] f (ta = )" [Tylts = 8) = Talta — )] Bu(s)ds?

! 1313[]/D [(ts — )71 — (ta — 8)7 | Ty(ty — s) Bu(s)ds||?

+ 135 tb(zb_a)ff 7. (6 — 5) Bu(s)ds]?

+ 138 f (ta — )" [Ty (to — 9) — 5)|£(s, z(a(z(s), 5)), u)ds|?

+ 138 f [ty — 5 = (ta = 8)*" Ty (ts — )£ (5, 2{a(a(s), 5)), u)ds|?

+ 1381 [ 0= 91Ty = 5}l el 6) o). s

+ 13L||] (B —3) T Tt —3) — Tl —s)][/sG (sy7, ;) dw(T)]ds||®

¥ 13r||f (s /5) " Canlld =)=\ kta 2 5) [/ G(s, 7, z,)dw(r)]ds|?

& 13E|[/ (b — 8)T Tty — 8)] f C(sy7, 2 )dw(r)]ds|?

+ BB| 3 (= 8 Tl — ) = Tills =) ()

#1881 3t ) G

+ 13 Z (0= 6~ (to = )Tyt~ P

b 198lg) — ot (9.2.15)
Therefore,

i la
E |z(ty) — z(to)|* < 13£2M§% (ta — 8)q — 1E||u(s)||*ds
0

(]ﬂf.MfB 2/tﬂ g-1 —1
— —ft,— a1 ]d
+ B ) ) =9 = (ta= o) lds
E’l’l
® / [tb—sv-i— ta — )" E|lu(s)||%ds
QP'IMB G) / 1—1 2
§ d
e 13(I‘q+1) (ty — 8) E||u(s)||*ds

+ 132 1/ (t r;—l{z “)\inlm(rg)}ds
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+ 13(F(gﬂf1))2/0ﬂ[(tb—s 1 (t.—3)"Yds
[ M=ot = = I (o) s
+ 18 e [ a3 Iy

tq tu
+ 1382 / (ta — 5)722{21M,
0
+ 2Lgsupn(s)y(IPro+ EM2E|¢(0)]* + [|4ll5)}ds

s€.J
qM

4 3( Tlg+1

))2 /;u [(ts — )" = (ta—8)""]ds

X [ t"[(t,, — )TV (8, = 8)IT Y 2{ 2,
0
+ 2Lgsupn(s)p(lPro+ PAPE|¢0)| + ¢l1%)} ds

seJ

gM 5ty — t,)T /‘"' ©,
ST t, — 8)1 " 2{2M,
4 (11(q+1)) q T ({ S) { k

+ 2Lgsupn(s)¥(lPro + PM*E||p(0)|* + |6ll3)}ds
sed

(941
+ 18— Z E((Ty (ty — t) = Ty (ta = te) [ (ti))|I?
q —_—
O<t<ta
+ 13( > BTty = ta) (b))
0<t<la
X ( Z (ib = tﬂqﬁl = (ta i~ {_k)q—-l)
O<ty <ta
ty — ta)? M'
* 13(b 1) q Z BTy (ts — ti) I (2(tx)))?
q + ta <tp<ty
+ 13Lg[|$t,, = Ifh” (9216)

Thus RHS is independent of choice of (z,u). This follows from strong continuity
and compactness of T, and by Lebesgue Dominated Convergence theorem F'* — 0
as b, — 1, — 0. So I"®[Y,,] is cquicontinuous and bounded. So equicontinuity of V' is

shown. By Arzela-Ascoli, F*[Y;,] is relatively compact.

Theorem 9.2.2. Supposc that the hypotheses of the previous theorem (9.2.1) are
satisfied and [, G, g arc uniformly bounded then (9.1.1) is approximately controllable
on [0, 7.
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Proof: Suppose z* be a fixed point of F* in Y,. Applying Stochastic Fubini's

theorem, we get
t*(T) = xr — aR(a,I%)p(z, u).
By using the property that f, g, G and a are uniformly bounded we get that there
exists Lyg, My, > 0 such that
[{/(s,2%(a(z(s), 5)), u*(s)) +/ G(s,7,23)dW (m)}Iig < L3
and [lg(s, 25)|| < M.
Thercfore there exists subsequences,
{/(5,2%(a(a?(s);)), 4°(8)) y9s, 22, G(s, 7,25}
which converge weakly to
{1 (s,x(a(a(s), 5)), uls)), gls, 2), G (s, 7, 1)}
Since a is continuous so, a(z*(s), s) = a(z(s), s) as z*(s) — =(s).
From the above equation we get
Ellz™(T) — ar|® < 8llafal +T5)HEzr — S(T)(4(0) + g(0, ¢(0))]II*

+ SB[ fa(or + L)t u(o)fgts) + SBla(aT + 1) o(T, )P
b SB[ (0 = Hlaal + TE T 7 U6 28) — Fo)lds)
b SB[ (7= o a(al + T R(T= ) 6) )
b8BT Hfolal I

x| / (1G5, 792) = G (s, e AW (7)]ds)?

o0

T
+ 85(]0 (T — 8)" Y a(al +T5) ' Ty(T - s)

3 /_ " Gls,rz, )W (r)||ds)?

+ 8E Y (t— )" T (t — tp) Ik(x(t)) — O (9.2.17)

O<tp <t

as at — 0. This is due to the fact that 7},(1) is compact and also due to the theo-

rem of Lebesgue Dominated Convergence. Hence the approximate controllability of
(9.1.1) is proved.
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9.3 Example

Let us consider the following controlled neutral system with impulses

“Dfa(t, €) - C(t, 3t — b, &)

Il

Sala(t,6) = €30~ B )]+ u(t.)
St z(a(z(L,€),1),€). u(t,§))
/ G(t,s,z5)dw(s) 0 <y <1

z(t],8) —z(ty, &) = Te(z(tg,€), k=1, ,m.
z(t,0) z{t,1) =0, >0

+ +

z(t,§) = ¢t 8), =h <t £0; (9.3.1)

Here ¢ is continuous. Also I}, € C(R,R).
Let (}‘(t -Tt)(g) = C(!":IU’ 4 h’a&))a

F(¢, z(a(z(t), 1)), u(1))(€) = f(t w(a(2(t.£),1),£). u(t,§))
and (Bu)(t)(€) = u(t,€), Taking X = L*(0,1) and we define A © X = X by

Az = £2 where domain of A is

d€?
D(A) =Mz €\ X, &, d—; are absolutely continuous,
d*x dz dx
e Xo——(0) =)= 3.2
e X To=w=0 (9.3.2)
Then Az =Y oo (—n?n?) < z,eq > €y, £ € D(A).

where e,(8) = v2cos(nmd) 0< z <1, n =1,2,...

The operator A generates a compact semigroup
o0 1
ey
E 2e™T F|:'.os(irwr£)/ cos(nmé)a(y)dv
n=1 0

fl z(P)dy, z€ X (9.3.3)
0

Further, the functions f, ¢ are continuous and there exists constants k;, ks such that
F(t, x(a(z(t,€),t),8),u(t,£)) < ki, ((t,z(t — h,§)) < ko and there cxists constants
dy such that || Iy(z)| < dy.

Hence (9.3.1) can be expressed as (9.1.1). Since the associated linear system of the
(9.3.1) is approximately controllable, and theorem 9.2.2, the approximate controlla-

bility of (9.3.1) is guaranteed.
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9.4 ' Conclusion

We proved the approximate controllability of an impulsive stochastic fractional dif-
ferential equation. We substituted the use of Lipschitz continuity of the nonlinear
function and the inverse of the controllability operator with simple assumptions on
systems operator. Thereby we removed the problem of nonexistence of the inverse

of the controllability operator in case of compactness of the generated semigroup.



Chapter 10

Approximation of Solutions of a
Stochastic Fractional Differential

Equation with Deviated Argument

In this chapter the existence, uniqueness and convergence of approximate solutions
of a stochastic fractional differential equation with deviated argument is studied
by using analytic semigroup theory and fixed point method. Then we considered

Facdo-Galerkin approximation of solution and proved some convergence results.

10.1 Introduction

The approximation of solution to a nonlinear Sobolev type evolution equation was
studied by Bahuguna and Shukla [31] in a separable Hilbert space (H, ||.||, (.,.)). The
Faedo-Galerkin approximations of solution of a determistic problem was considered
by Milleta [133]. The more general case was dealt by D. Bahuguna, S.K. Srivastava

and S. Singh [32].

By far the Facdo-Galerkin approximation of solution stochastic fractional differ-
ential equation with deviated argument is neglected in literature. In an attempt to

fill this gap we study the following stochastic fractional differential equation with

159
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deviated argument in a separable Hilbert space (H, (.,.)).

“DBu(t) + Au(t) = f(i,uu),u(h(u(t),t)))d'*zgf). te0,7]

u(0) = we H (10.1.1)

where 0 < 8 < 1 and 0 < T < c0. ¢D] denotes the Caputo fractional derivative of
order 8 and A : D(A).C H — H is a lincar operator. A and the functions f, h are
defined in the hypotheses (/1) — (113).

Here we deal with two separable Hilbert spaces /1 and K. We assume

(H1) A is a closed, densely defined, self adjoint operator with pure point spectrum
0< X €A €+ € A < -+ with X, — o0 and m — o0 and corresponding

complete orthonormal system of cigenfunctions ¢; such that

/lqu == ,\j@- and < i, Q5 >= 5«;,j

If (H1) is satisfied then —A is the infinitesimal generator of an analytic semigroup
{e=4 .t > 0} in H. We also note that 3 constant C such that ||S(¢)|| < Ce*'" and
constants C;’s such that || £:S(t)|| < Cyy ¢ >0, 1 =1.2. Also |[AS(1)]| < Ct=! and
IA*S()]| < Cat ™.

We define the space I, as D(A®) endowed with the norm ||| . Let (2, §, P) be

a complete probability space cndowed with complete family of right continuous in-
creasing sub o— algebras {§;, ¢ € J} such that §, € §. A H/— valued random variable
is a F— mecasurable process.We also assume that W is a Wiener process on K with
covariance operator ). Suppose @ is symmetric, positive, lincar, and bounded op-
erator with TrQ < co. Let Ko = Q2 (I). The space L2 = L*(Ky, H,) is a scparable
Hilbert space with norm ||1/:|[L3 = ||'¢)CJ%||L2(K'H“). Let L2($), 5, P; Hy,) = L3(S); Hy)
be the Banach space of all strongly measurable, square integrable, //,—valued ran-
dom variables equipped with the norm [ju(.)||2, = E||u(,w)1|i. C% denotes the
Banach space of all continuous maps from J = (0,7 into L?(Q; H,) which sat-
isfy supesEl|lu(l)||%« < 0o. L3(Q, Hy) = {f € L3(Q, Hy) : [ is Fo — measurable}

denotes an important subspace. For 0 < a < 1 define
Cs ' ={ueC%: |lult) — u(s)|lamr < L|t — s|,Vt, s € [0,T]}.

We also assume the following hypotheses
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(H2) The function f : [O,T]x H, x H,—1 — L(K, H) is continuous and there exists
constant a Ly > 0 such that
1S (s, u,w) = f(s,v, 1)1)||2, < Ly[llt = 8| + [Ju = v]la + |Jur — v1]lazi]

(H3) Themaph : Hy, xR,

(u, t)—=h(v, s)|| < La(|lu—v]|at+]t—s|?)

Now let us define mild solution of (10.1.1) :

Definition 10.1.1. The mild solution of (10.1.1) is a continuous §; adapted stochastic

process u € C$ N CS™' which satisfies the following:
1. u(t) € H, has Cadlag paths on ¢ € [0, 7).

2. Vt € [0,T), u(t) is the solution of the integral equation

t
u(t) = Ta(t)up +'/ (t = )P 1S5(t — ) f(s.u(s), ulh(u(s),s)))dw(s), ¢ € [0,T]
; (10.1.2)
where S(t) = [ (5(0)S(tP0)d0; and Ts(t) = q [, 0¢3(0)S(t°0)db; (s is a proba-
bility density function defined on (0, 00), i.e. {5(0) > 0,6 € (0,00) and f; ¢5(0)df =

Col'(2—ax
L. Also [|Tp(t)ull < Cllull; [Sp(t)ull < wfsllull, I1A*Ss( unsr‘iH—ﬁEl;})t |-

Lemma 10.1.2. [147) Let f : J x Q x © — L2 be a strongly measurable mapping
with jUIEHf( )H” dt < oo. Then

(s)dw(s)] 3)]‘J ds

Vi € [0,7] and p > 2 where [, is a constant containing p and 7.

[ is incorporated into the constants in the following sections.

10.1.1 Existence and Uniqueness of Approximate Solutions

In this section we consider a sequence of approximate integrals and cstablish the
existence and uniqueness of solution for each of the approximate integral equa-
tions. For 0 < a < 1 and u € Cf, the hypotheses (H2) — (H3), imply that
f(s,u(s),u(h(u(s),s))) is continuous on [0,Tp]. Thercfore there exists a positive

constant

N = 2L4[T% + 2R(1 + LLy) + LLyT&] 4+ 2Ny,  No = E| £(0, uo, uo)|?
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such that || f(s, u(s),u(h(u(s),s)))|| <N, t€[0,T]. Choose T5, 0 < To < T
such that

( BT —~8) g, XA <R
I‘(l~+—[3’(1—cx))) Bl-a)—1~ 4
BOLT(2—d) TR=8)

- (F(l +B(1 - or))) 2"r‘fzﬁu —a)

— K 1 (10.1.3)

Let
BR = {u e C%O N C,?,O_l : 'H.(U) = Uqg, ”1.{, o 'IL{)”';hﬂ < R}

It is easy to sce that Bpg is a closed and bounded subsct of C,f,*b_l and complete. Let

us define the operator F,, : B :— Bp by

(Fau)(t) = Ts(t)uo +f0 (t — 5)P=1S5(t —8) fuls, u(s),ulh(u(s),s)))dw(s). (10.1.4)

Theorem 10.1.3. If the hypotheses (H1),(H2) and (H3) arc satisfied and ug €
LY, X4), 0 £ & < 1, then 3 a unique u, € Bp such that Fou, = u,, Vn =

0,1,2,---, i.c., u, satisfies the approximate integral equation
t
un(t) = Tp(t)uo + / (t — 8)P71Sp(t — 8) fu($,un(8) un(R(un(s),s)))dw(s),
0
te[0,T] (10.1.5)

Proof: Stepl : We nced to show that F,u € Cf}u_t, Yu € C,}“;,_l. It is casy to check
that F, : C§ — C§. f w'e C%{"‘, 0<ti<ta<Tyand 0 € a <1 then

E|lFuuts) = Fuu(t)lla-
< 3E||[Th(t2) — Ts(t1)luolloms

+3E]| / 2(!-2 — 5)P A1 85(ty — 8) fu (s, u(s), u(h(u(s): 8)))dw(s) |15
+38l [ Alta = ) Sylts = 5) = (1 = 9S50 )
0

A2 [(s,uls), u(h(u(s), 8)))dw(s)|lo

2217270 ta
< 3EITa(t) ~ Ta(tuoll + 3y 2o [ 2= 5207007

(14 6(1-0)),
X |ATHE fals, u(s), w(h(u(s), 5))) | *ds

+ 3[0-1 1A[(L2 = 5)P~188(lz — 8) — (b — 8)~185(t1 — 8)]

% | A==2|2 B fu(s, u(s), u(h(u(s). 5))) I %ds (10.1.6)
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Yu € H, we can write

ta ta
[S(t50) — S(t50)]u = / —%S(tﬁg)udtz f 08t° 1 AS(t70)dt.
3]

151
The first term of (10.1.6) can be estimated as follows

ITs(t2) = To(t1)]uolla—y < (fom Co(O)1S(t20) — SULO)INA* ol dB)?

< ([ GO IS0 luolado)

< Cllluolld=1(t2 = ta)? (10.1.7)

For the sccond term of (10.1.6) we get the following estimate

/;2@2 = §)PU2E| fuls, u(s), u(h(u(s), ) [*ds

Nitd XIS =or &
N 20l =a)—1

(10.1.8)

For the third term we will use the following estimate

[ Al = 7 atta = 5) — (= 95l = )
X A2 IR E s, u(s),u(h(u(s), D)
< [ GOIG S~ 0lis — (e~ 50N d8)
B (s, u(s), ui(u(s), ) s
< ['([ ao1 [ 1 st - spotanarnas

< G3lA*? P (t2 = t1)*N T (10.1.9)
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Hence from inequalities (10.1.7)-(10.1.9) we sce that the map F, : €' — C ' is
well-defined. Now we prove that F, : B — Bp. So for ¢ € [0,Ty] and u € Bp.

E||(Fpu)(t) = uol2
< 2B||(Ts(t) — Iuoll?

+2F|| /0 (t — 8)P71Sp(t — ) [ (s, ul(s), u(h(u(s), s)))dw(s)”zq

sz”(Tg(t)—I)u@”i-{- ( B('U, Uf) / “(i 23(1—0) 2”2

ra-+ ,6(1
X E|| fa(s,u(s), u(h(u(s),s)))||*ds
= _ . 18(1_0)_1
R + 9 BCL (2 — ) 2N ek R A Ry R

=2 AT+ (1 o) S NPT Wr. 2

Now we show that J,, is a contraction map by using (10.1.3) in last but onc incqual-

ity. Yu,v € Bp
El(Fu)(t) — (Fao)O)|% = E| / (1= )P A Sa(t—8)

x [f(s, ()(((%QD J(s.0(s), v(h(v(s), s)))dw(s)]II%
JBC F(2 2 ] 2 1-a)-2
= ( L1+ 8(1 —a)) /0 A
x BILf (s, uts)su(h(uls), $)) = Ls,0(5), v(h(v(s),8))) *ds
<( BCI(2 —a) JT?B(1—a)—1
— T(1 8N ) *28(1=a) -1
< |lw - 'u||i.

Y22L¢(1 + 2LLA)||u — v||

This implies that there exists a unique fixed point u, of F, which is the unique

approximate mild solution of (10.1.1)

Lemma 10.1.4. Let (H1) — (H3) hold. If ug € L3(Q, D(A%)), V0 < a < n < 1,
then wu,(t) € D(AY) for all ¢t € [0,Tp] with 0 < v < 5 < 1. Also if ug € D(A), then
un(t) € D(AY) Vt € [0,Tp], where 0 < vy <5 < 1.

Proof:By Theorem (10.1.3) we get the existence of a unique u,, € B, satisfying
(10.1.5). Theorem 2.6.13 of [146] implies for £ > 0, 0 <y < 1, S(t) : H — D(A?)
and for 0 < v <7 < 1, D(A") € D(A"). It is casy to scc that Holder continuity

of u, can be proved using the similar arguments from (10.1.6)-(10.1.9). Also from




Theorem 1.2.4 in [146], we have S(t)u € D(A) if u € D(A). The result follows from
these facts and that D(A) € D(AY) for 0 < v < 1.

Lemma 10.1.5. Let (/1) — (H3) hold and ug € L(Q, X,). Then for any ¢, € (0, Tp]
(|2 < Uy VLE [bo,Tp], n=
1,2, . Also if ug € L3(Q, D(A)) then 3 constant Up independent of n such that
EllunI2 < Us VtE [to,Tp), n=1,2,---, YV0<y<1.

3 a constant U,,, independent of n such that /7|

Pro:ofz Let ug € L3(2, Hy). Applying A7 on both sides of (10.1.4)

E

Jun (013

|Ts(t)uolly + 21l /0 (= 8)"71 85 (= 8) fuls,u(s), u(h(u(s), s)))dw(s)llg

66’,}1*(2 — "‘.f) QA.T(TU)2!3(1—W}—1
r1+8(1-17) 2801 —q)~-1

<2FE

< 203457 o>+ (

= Um‘

Also if ug € LE(R, D(A)), then we have that ug € L§(Q,D(AY)) for 0 < v < L

Hence,

? Ellu. (0I5

< 2B Talt ol 20 (¢ = )7 S5(t = 5) uls o), (), )5

S N(Tp)2P0--1
28(1 —7)—1

ACT2 =)

L+ B =) S

< 20 gl + (5 )

Hence proved.

10.1.2 Convergence of Solutions

In this section the convergence of the solution u, € H, of the approximate integral

equation (10.1.5) to a unique solution u of (10.1.2), is discussed.

Theorem 10.1.6. Let the hypotheses (H1) — (H3) hold and if up € L3(Q2, H,) then
Vo € (0,T],

lim sup lun(t) — um(t)|la = 0.

M0 (5> M o <t< Ty}
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Proof: Let 0 < a < 7y < n. For ¢y € (0, Tp)

E|| fa(t, un(t), un(h(un(t), 1)) = fn(t, tm (), wm(hlum(t), 1)) ||
< 2| fa(t, un(t), un(A(un(t), 1)) = Ja(ts wm(t), ttm ((um(t), 1))
< 2B fu(ly tm(£), tm (A(tm (L), 1)) = fn(Ls e (£) e (R(um(2), )1
< 22L;(1 + 2LLY)[E|ltn — uml% + E[(P™ = P™)um(t)|2]) (10.1.10)

Now,

1

el

E|(P™ = P™)um(®)|* < E[|A*TY (P — P™)A um(1)]|* < B A"um(1)|*

Then we have

|| fa(t, un(t), un(h(un(t), £))) = fn(t, tm(t), (Bt (2), £)))]|*

1
< 2(2L5(1 + 2L L) Ellun ~ tmllz + =5 Ell A um (O1%])

)\%7—0]

F0r0<t6<t0

r.;, t
Ellun(t) — um(®)[% <2 [ i / Y = 5)P ARt — 5)]?
0 t{,

% E||fult, un(t), un(htin (). 1))) = Fon(ts i (), o (At (t), £)))]|2dls
(10.1.11)

The estimate of first integral of the above inequality is

Eljun(t) — um(t)II2
< l Tt~ 5P AS(t ~ 5) P

X Bt un0), im0, ) = Sl (8, tm (e (8), )Pl
< ( ﬁCTF(Q - ’Y) )2 2N (.50 = 5116)23(1_7)-2
“T(1+ 81 —7)) 28(1 —~) —1

#, 0<é<1  (10.1.12)
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The estimate of second integral is

; t
Ellun(t) — um(®)la < / I(t — 5)°~1A%Sg(t — s)]|?
o

(t, un(t), un(h(un(t), 1)) — fm(t, um(t), um(h(um(t), ﬁ)))||2d5

:BC F(2 == 7) ! 28(o—1)—
S(F(llﬁ(luv)))zfq,('{_s) i

X 4Lf(1

Bl AV (s ]|2
A2(y — les

C,I'(2 — t )
< 4LJr(1 -+ 2LL“)(F(ﬂl -:‘6((1 _-_’Y(‘:)))‘z[f (ﬁ . “;)2.{3(0—1) 2
I
U, T?ﬁ(l—or}—l
0
202 26(1 —a)— 1

T

- um”?x

X E||un = tmf|Ads ] (10.1.13)

Substituting inequalities (10.1.12),(10.1.13) in (10.1.11) we get

('5) ~ um(t’) ||Er

BOD(2Z ) AN (kg = 6184)26A-N=2

<3 t
@ aa=) . Ba-m-1 "
BC.T(2 ~
+8Ly(1+2LL0) (G ,9 ) [/ (t —.5)2Bla—1-2
' Tzﬁu a)—1
X B[ty — tuml|2ds + Yoy ’ ]

A=) 26(1 — @) ~1

By using Gronwall’s inequality, there exists a constant D such that

; T i e AN (1o — 5141 )28(1-7)-2 ,
Bl ~ O < (o) gt T
[5071'1(2 o "}/) ULU ’j 23(1-a)-1

+8L#(1 4+ 2LLy)( j8 ]x D

L(1+8(1-7))

Let m — oo. Taking supremum over [tg, 7o) we get the following inequality.

gkl 26(1 - a) |

BCT(2—7) \g4N(to — 8:th)2P0-M-2 |
(1+801-7)) 26(1 —7) —1 % 2

Since { is arbitrary, the right hand side can be made infinitesimally small by choos-

Ellun(t) —um(®)ll3 < [(F )?
ing tg sufficiently small. Thus the lemma is proved.

Corollary 10.1.7. If ug € D(A), then lim sup Eljun(t) — um@®)]2 =0

M= (n>m, 0<t<Ty}
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Proof: By using Lemma (10.1.4) and Lemma (10.1.5) we can take ty = 0 in the

proof of Theorem (10.1.6) and hence the corollary follows.

Theorem 10.1.8. Let us assume that (H1) — (H3) are satisfied and suppose 1y €
L3(Q, X,). Then for ¢ € [0, Tp], 3 a unique function u, € By where

un(t) = Thug + [ (t — 8)P 1S5t — 8) ful. n(8), tn (B (un(s). 5)))dw(s),

and u(t) € Br, where

u(t) = Tyug + fo'(r — $)PLS, (1 — 8) (s, u(s), u(h(u(s), s)))dw(s),t € [0, Ty]. such
that u, — u as n — oo in Bp and w satisfies (10.1.2) on [0, Tg].

Proof: By using above Corollary, Theorem 10.1.3 and Theorem 10.1.6 it is to sce
that 3 u(t) € By such that
limy, o0 E|j1n(t) — u(t)]|2 = 0 on [0, To). Now

Ellun(t) — Tpuo + / (t.— 5)°1S5(t — ) ful(S, Un(8), Un(hnlun(8 ),8)))dw(s ||2

to

< F / (t —s) ’S s, 3(E = 8) fuls, un(s), (M (un(s), s)))dw(s )||2

60 T[?H -2

<Gagp) Nop o

(10.1.14)

Let n — oo then
E||un(t) Tgﬂg-f-ft (t = 8)P1S5(t — 8) fu(S, un(8), un(halun(s), 5)))dw(s)]?
)Lﬁ 2
% (ﬁ‘i—m)zN 35— to and since to is arbitrary we conclude u(t) satisfies (10.1.2).

Uniqueness follows casily from Theorcm 10.1.3, 10.1.6 and Gronwall’s inequality.

10.1.3 Faedo-Galerkin Approximations

For any 0 < Ty < T, there exists a unique u € Cf, satisfying the integral equation
u(t) = Taug + fef'(.ﬁ — 8)P1S5(t — ) f(s.u(s), u(h(u(s), s)))dw(s), t € [0,Tp]. This
follows previous section Also, 3 a unique solution u, € C7F, of the approximate
integral cquation
un(t) = Tytg + [5(t = 8)P1Sp(t — 8) fuls, n(s), tn(h(un(s), 5)))dw(s), ¢ € [0, To).
Faedo-Galerkin approximation #, = P™u,, is given by
P, (1) = i,(1) = Tp() PMug

+ [5(t — 8)P18p(t — 5) P f (5, un(s), un(h(un(s), s)))dw(s), t € [0, Ty). If

the solution u(t) to (10.1.2) exists on [0, Ty] then it can be expressed as
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Zu3 t)¢i, where o;(t) = (u(t),¢;) fori =0,1,2,3,:-+ and

i=

Up(l) = Z ail(t)¢i, where o (t) = (Un(t), ¢;) for i =0,1,2,3,-

=0
As a conscqucncc of Theorem 10.1.3 and Theorem 10.1.6, we have the following

result.

Theorem 10.1.9. Let us assume that (H1) — (H3) are satisfied and suppose ug €
L3(Q, X4). Then for t € [0,Tp), 3 a unique function u, € Br where

Un(t) = Ty P up + f(;'(é — 5)P185(t — 8) P fr(s, un(8), un(h(un(s), s)))dw(s),

and u(t) € Bp, where

u(t) = Tyuo + [ (t — 8)P~1Ss(t — ) [(s, uls), u(h(u(s), s)))dw(s), t € [0,Tp], such

that wu, — u as n — oo in By and u satisfies (10.1.2) on (0, Ty].

Now the commgonc;( of al(t) = oy(t) is shown. It is casily scen that

Gy, ]—AQ L{C“x 424 }‘i)c] + A® Z ai(t) i

1=n-i

L A ay(t) — o (t) } i + L Afai(t)@;. Thus we have
i=n+1
Jfvllﬂ“lu B —@a()]* 2 o X Elou(t) — ol (0.

Theorem 10.1.10. Let us assume (H1) — (HB) hold.
(i) If up € L2(£2, X,) then lim sup [Z/\ () **El|les(t) =l ®)|?] =

n—r0o0 ie[lo IU]
T

(ii) If up € LE(Q, D(A)) then lim sup [Z M2 E]ai(t) = o ()% = 0

0 tel0,To] T

The theorem 10.1.10 follows from the facts mentioned above the theorem.

Corollary 10.1.11. Let us assume (/1) — (H3) hold.
(i) If up € L3(, X,) then lim  sup  E[|A*[@,(t) — @u (][> =0

N0 4ty Tyl n>m

(i1) If up € L2(Q, D(A)) then lim  sup  E|A%[@.(t) — Gm(8)][|* =0

=0 ¢ (0, Tol,n>m

Proof;

E|| A%y O = B[P un(t) = Pmum(t)la

S QE” Pn[nn !‘ - J“'m("l‘)]”rx + QE”(‘PR - Pm):f}m("") ”i
1

< 21‘?”[“11({) - 'IL.”,_U:)] ”fk + 2)\;‘—-’1

E”/]l’}r'“m("")“2
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Then the result (i) follows from theorem 10.1.6 and result (i7) follows from corollary

10.1.7.

10.1.4 Example

Consider the following stochastic fractional differential equation with deviating ar-
gument. Suppose fort >0, z € (0,1),0< <1
dw(t)
dt '
v(t,z) =vy, t =0, z € (0,1) and v(t,0)=02(t1)=0,¢>0 (10.1.15)

DAY (t, 1) = va(t, ) + F(t,v(t, x),v(h(t,v(t, z))))

Let F is an appropriate Holder continuous function satisfying (H2) in

L%(K,(0,1)). w is a standard L2(0, 1) valued Weiner process.

Let us define A = —f:—2, f o= F,vu(t,z) = u(t) and assume o = 1/2. Let

D(A) = H}(0,1) N H*(0,1), D(AY?) = H}(0,1), i.c. the Banach spacc endowed
with the norm
Izl 2 = | 422, = € D(AY?),

We denote this space by X .
Also denote C;/? = C(t,0; D(AY?)) endowed with sup norm

llluage = sup f2(s)llyj2s & € G2
0<s<t
When v € D(A), A € R with Av = —v" = Av we have < Av, v >=< Av,v >, i.c
< =" v =l ][7 = Ml 7.
Therefore the solution v of Av = Av is of the form
v(z) = C cos(VAz) + Dsin(VAz)

From the conditions v(0) = v(1) = 0 imply that C = 0 and A = )\, = n’z%,n € N.

So, for each n the solution is

vp(x) = Dsin(y/ A,1).
Also note that < v,, v, >= 0 for n # m and < v,, v, >= 1. Therefore D = V2. For
v € D(A), 3 a sequence of real numbers {a,} such that

v(z) = Z anvn(z), Z(an)Z < 00, Z(/\)z(an)?.

neN neN neN

e
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So, AV2y(z) = 3 N VAulata(x), with v € D(AY?).

X_1/2 = H'(0,1) is a Sobolev space of negative index with equivalent norm ||.||-1/2 =
Yoo il < va > ||% Then (10.1.15) can be reformulated into (10.1.1). Now from
theorems (10.1.3),(10.1.6) we can similarly prove the existence, uniqueness and ap-

proximation of the mild solution of (10.1.15).

10.2 Conclusion

The existence, uniqueness and convergence of approximate solutions of a stochastic
fractional differential equation with deviated argument is established. Then Faedo-
Galerkin approximation of solution is considered and some convergence results are

proved.
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