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Abstract 

- Controllability of distributed parameter systems, essentially of dymiamnical systems 

governe(l by partial differential equations, has evolved into a widely researched topic 

in less than t11r0e decades. Despite generating a (hstmctive identity and philosophy 

as a part of the theory of dynamical systems, this research field has played a signifi-

cant role in the advancement of the extensive theory of partia.l differential equations. 

In last few decades, control theory has contributed enormously to study of realis-

tic problems of elasticity such as thcrrnoelasticity, acroelasticity, problems depicting 

interactions between fluids and elastic structures and real world problems of fluid 

dynamics, to name but a few. Such real world problems present new mathematical 

challenges. For instance, the mathematical foundations of basic theoretical issues 

have to be enriched, along with the development of conceptual insights significant 

to the (lesigners and the practitioners. This poses novel challenges that need to be 

addressed. 

lii our present work we focuss on the existence, uniqueness and controllablity 

of nonlinear functional differential equations. We use theory of sernigroup, cosine 

family, measure of noncompactness and fixed point theorems to ol)tain the results. 

The results can be applied to a class of functional differential equations, appearing 

in the mathematical models of several physical phenomena to which the prototype 

of partial differential equations modeling the phenomena., belongs. 

rfll(s layout of the thesis, containing 10 chapters, is as follows. 

Chapter 1 is introductory in nature. The delay differential equations and their 

applications are discussed. The objective of work done, current status of the field 

and layout of the t11e5is is also presented in this chapter. 

Chapter 2 illustrates some basic properties of semigroup theory, cosine fam-

ily, measure of noncompactness, controllability, fractional and stochastic differential 

equations. 

In chapter 3 we study a functional differential equation with deviating argument 

and finite delay to establish that it is approximately controllable. 

The results of this chapter are published as 'Approximate Controllability of a Func-

t.ioimal l)ilferential Equation with Deviated Argument' in Nonlinear Dynamics and 

Systems Theory,  Imifor Math, volume 14, no. 3, (2014), 265-277. 



In chapter 4 existence of mild solution of a second order partial neutral (hf-

fcreutial equation with state dependent delay and non-instantaneous impulses is 

investigated. We use Ilausdoril measure of nonconipactness and Darbo Sadovskii 

fixed point theorem to prove the existence. 

The results of this chapter are published as 'Existence of Solution for a Second-Order 

Neutral Differential Equation with State Dependent Delay and Non-instantaneous 

Impulses' in International JournaI of Nonlinear Science, World Scientific, volume 18, 

no.2, (2014). 145-155. 

Chapter 5 consists of two parts. The first part deals with the existence of mild 

solution of an instantaneous impulsive second order differential equation with state 

dependent delay. In second part non-instantaneous impulsive conditions are studied. 

We introduce new non-instantaneous impulses with fixed delays. 

The results of this chapter are in revision as 'Existence of Solution of Impulsive 

Second-Order Neutral Integro-Differential Equation with State Delay' in Journal of 

Integral Equations and Applications. 

In chapter 6 we establish the existence and uniqueness of mild solution and the 

approximate controllability of a second order neutral partial differential equation 

with state dependent delay. The conditions for approximate controllability are in-

vestigated for the distributed second order neutral differential system with respect 

to the approximate controllability of the corresponding linear system in a Ihilbert 

space. 

The results of this chapter are published as 'Approximate Controllability of a See-

ond Order Neutral Differential Equation with State Dependent Delay' in Differential 

Equations and I)ynamical Systems, Springer, DOI 10.1007/.s12591 - 014 - 0218 - 

6, (2014). 

Chapter 7 is divided in two parts. In the first, part we study a second order 

neutral differential equation with state dependent delay and non-instantaneous im-

pulses. The existence and uniqueness of the mild solution are investigated via Flaus-

dorif measure of norl-cOlnl)actlless  and Darbo Sadovskii fixed point theorem. In the 

second part the conditions for approximate controllability are investigated for the 

neutral second order system under the assumption that the corresponding linear 

system is approximately controllable. A simple range condition is used to prove 
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approximate controllability. 

The results of this chapter are published as 'Existence of Solution and Approximate 

Controllability for Neutral Differential Equation with State Dependent Delay' in In-

ternatiorial Journal of Partial Differential Equations, Hindawi, volume 2014 (2014), 

Article ID 787092, 12 pages. 

In chapter 8 we study a fractional neutral differential equation with deviating ar-

gument to establish the existence and uniqueness of mild solution. The approximate 

controllability of a class of fractional neutral differential equation with deviating ar-

gumdnt is discussed by assuming a simple range condition. 

The results of this chapter arc published as 'Approximate Controllability of a Frac-

tional Neutral System with Deviated Argument in Banach Space' in Differential 

Equations and Dynamical Systems, Springer, DOI : 10.1007/812591 - 015 —0237—

y, (2015). 

In chapter 9 the approximate controllability of an impulsive fractional stochastic 

neutral integro-differential equation with deviating argument and infinite delay is 

studied. The control parameter is also included inside the nonlinear term. Only 

Schauder fixed point theoremim and a few fundamental hypotheses are used to prove 

our result. 

The results of this chapter are published as 'Approximate controllability of an un-

pulsive neutral fractional stochastic differential equation with deviated argument 

and infinite delay' in Nonlinear Studies, volume 22, no. 1, 1-16, (2015), CSP - 

Cambridge, UK; 1&S - Florida, USA. 

In chapter 10 the existence, uniqueness and convergence of approximate solutions 

of a stochastic fractional differential equation with deviating argument is established. 

Analytic semigroup theory is used along with fixed point approach. Then we in-

vestigate Faedo-Galerkin approximation of solution and establish some convergence 

results. 

The results of this chapter are accepted for publication as 'Approximations of Solu-

tions of a Fractional Stochastic Differential Equations with Deviated Argument' in 

Journal of Fractional Calculus and Applications in 2015. 
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Chapter 1 

Introduction 

l)elay differential equations reflect dead-tinie in hereditary systems or aftereffect in 

systems with mathematical models containing deviated arguments and differential-

difference equations. Delay differential equations are a class of functional differential 

equations (FDEs). A functional differential equation is a differential equation in 

which the derivative y'(t) of an unknown function y has a value at time I that is 

related to y as a function of some other function at time I. A general first-order func-

tional differential equation can be represented as y'(t) = f(t, y(I), y(h(i))), where 

f and ii are some suitable functions. FDEs are infinite-dimensional in contrast to 

ordinary differential equations (ODEs), which are finite dimensional. The state may 

be defined as a u-vector x(t) in the Euclidean space W' in systems modeled by 

ODEs. I)cviated time-argument attempts to cal)ture hereditary properties. So, in 

FDEs the state can no longer be represented by a vector x(t) at discrete time I. 

Then the state may be represented as a history valued function Xt corresponding to 

a dead time interval. Unlike ODEs, in case of FDEs originally different solutions 

may coincide after some time, unless the uniqueness of the backward continuation 

is guaranteed by atoinicity property. 

Iii recent years detailed study of parabolic and hyperbolic partial differential 

equations (PDEs) is done on account of various engineering applications. Such 

PI)Es arise in the study of several dynamical systems like meteorological models, 

reaction-(liffusion or convection-diffusion systems, flame propagation, superconduc-

tivity, air pollution etc. As these typo of dynamical systems are highly complex, 

1 
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parallel methods play a significant role. The parabolic and hyperbolic (PDEs) can 

be reforitiulated as abstract ordinary differential equations. Thereby, selnigroIl) 

theory is used. We refer [191,{20] ,[35], [67] ,[72], [74],[771,[82],[86] ,[124], [135] ,[154] for 

details and applications of sernigroup theory 

Neutral differential systems are delay systems, involving highest order deriva-

tive of both the unknown quantity and its delayed or deviated part. Generally, 

initial boundary value problems uiidcrgo investigation by reformulation into initial 

value problems in abstract spaces. Si.ichi abstract formulations are generally writ-

ten as nonlinear functional differential equations. The initia.l conditions occur as 

essential conditions. The boundary conditions are included in the domain of the 

operator and thus appear as natural conditions. Thus certain invariant properties 

of a prototype of problems can be studied in constrast to study of any particu-

lar PDE. Neutral differential equations with unbounded delay appear abundantly 

as models in problems of mechanical engineering, mathematical biology, electrical 

systems etc. Hence it is a widely studied topic in several papers and monographs 

for instance, partial neutral differential equation with infinite delay arise in the 

study of conduction of heat in substances exhibiting fading memory, (see [83]). For 

allied applications and more details on neutral differential systems, one may see 

[551,[62],[641,[78] ,[81], [92],[95],[96] ,[134]. Second order neutral differential systems 

often model variational problems in calculus of variation. Sonic second order mien-

tral differential systems represent the dynamics of masses exhibiting vibrations, on 

being connected to an electric bar. For more details related to applications of second 

order neutral differential equations we refer [54],[105].[118]. 

Impulsive differential equations appear in systems involving st iinulus or in the 

simulation of any suddenly perturbed process. Discrete impulses are very small 

compared to the whole time span of the process. We refer [43],[501,[521, [611,[631,[1091, 

[117],[125],[144],[148],[159] regarding discrete impulses. 

In contrast to integer-order, fractional-order derivatives diliciently imicorporate 

the hereditary properties of various materials with memory. Practical use of con-

trollers of fractional-order occur in servo systems for controlling hard disk drives, 

milling of cement, reduction of chaos in electrical circuits, electronic converters for 
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controlling power, composite hydraulic cylinders, irrigation canals, etc. Fractional-

order controllers outperforms the traditional controllers by effectively inodeliiig and 

investigating real-world processes. Use of fractional-order dynamics enhances the 

precision in modeling the systems. Fractional differential equation occur often in 

the study of fractals. Some problems of viscoelasticity can also be modeled by frac-

tional differential equation. rrlley  also model problems in seismology. Many partial 

differential systems can be reduced to functional differential equations with deviated 

arguments, see for instance [73] ,[88], [115], [145]. 

Methods based on semigroup theory are quite efficient in the study of infinite-

(Innensiomlal control theory, population dymiamincs, quantum mechanics and trans-

port theory. With the arlvent of new functional-analytic results semigroup theory 

is increasingly used as an alternative to other validated methods. In the context 

of complex dynamical systems, limitations to semigroups, in particular, strongly 

continuous sernigroups, are prevalent. This naturally gives rise to cosine families, 

integrated senmigroups, resolvent families etc. The concept of cosine family is quite 

similar to of semigroup theory just as the fundamental theorem of Sova-DaPrato-

Ciusti is parallel to the Ilille- Yosida-Feller-Phillips theorem. The above two theo-

reins on the generation of cosine families and semnigroups find a common origin in 

the iIenning-Ncubramider representation theorem. Moreover, the classica.l form of 

the Trotter-Kato-Neveu theorem on the convergence of semigroups applies to cosine 

families with few modifications. Although, despite these similarities, cosine families 

and semigroups are fundamentally different. 

Random noise gives rise to fluctuations in determuimmistic models. Stochastic prob-

lenis are more efficient than deterministic ones since they effectively assimilate the 

randomness of the system. Results of controllability for abstract systems are abun-

dantly available in literature (see for details [91].[111],[129],[140],[142],[166],[169] and 

references therein), in comparison to fractional stochastic differential systems. We 

refer [2].[126],[147],[152],[153],[172],[174] for the study of stochastic differential cqua-

tions. 



In 

1.1 Motivation of Thesis 

Reformulations to abstract forms are possible for a large number of PJ)Es. The 

abstract formulation allows the study of a. class of problems rather than just any 

individual problem. Thus our results can be applied to the whole class consisting of' 

those prototype of probleiis. 

Controllability of nonlinear dynamical systems involving deviating argument 

had scarcely been studied in literature. Moreover state dependent delay and non-

instantaneous impulses are lately introduced in this century to study various real 

world phenomena. The main objective of this thesis is to provide simple sufficient 

conditions for the existence, uniqueness, exact or a.p)rOXimate controllability of first, 

second and fractional order delay differential systems involving deviating argument, 

or impulsive conditions. The state may also depict a, required future goa.l apart from 

representing any action of the past. 

In contrast to ODEs, the controllability of FDEs difler in three full(lalllclltal 

ways: 

In the case of functional models, controllability means to attain a function 

(the vector x(t) from time ti  to time t1  + Ii) in contrast to ODEs, where 

controllability implies reaching a point at a time i. 

Starting at time t1 , in the case of linear systems with no delays, any point which 

can be attained at time 12  > 11  can also be attained at time 11 -f-a(12 —t i ), a > 0. 

Whereas, delay differential equations are entitled to the existence of a required, 

minimum reaching time. Thus, special kind of indices like class of system, 

delineating the number of units of delays required for attaining the target must 

be added besides the usual controllability indices corresponding to reachable 

spaces. 

The realization and t'I)e  of the control law is different. The exl)ression  of the 

state-feedback is n(l) = ((xi), implying the infinite dimensioii of the controller. 

In case of ineinoryless controls, control law is represented as u(t)  

Whereas in point-wise delayed controls, control law is i'epresentecl as n(1.) = 

((x(t); x(t - hi )). here (is some appropriate function. 
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rrhese  differences motivate us to study the controllability of delay systems. In 

[127] the authors studied neutral functional differential equation of the form 

dt 
[x(t) + g(t, x(i))] = Ax(t) + (13u)(t) + f(, x(t)). 

X(0) = x0, L E [0,I]  

Motivated by [127] we try to extend the problem to second order, fractional 

order and stochastic case. We also study the effect of non-instantaneous impulses 

and state dependent delay along with infinite delay. We also study the case where 

the control term is included inside the nonlinear term. 

IIcrnandez [93] studied new class of non-instantaneous impulses in FDEs. We at-

tempt to study another new class of non-instantaneous impulses in neutral fractional 

stochastic differential equations. 

C.G. Gal [79] investigated an abstract differential equation involving deviating 

argument. Specifically the local and global solutions were investigated. He estab- 

- lislieci the existence and uniqueness of such solutions. 

Pandey et al. [145] investigated a neutral differential equation coupled with 

a deviating argument. Analytic semigroup theory was used along with fixed point 

ap)roach to establish the existence and uniqueness of mild solution. The use of com-

pact and fractional operators, analytic scmigroups are prevalent in the investigation 

of such systems. Such strict con(htions on the operators restrict their applicability. 

Bcnchohra et al. [52] and Chang [61] discussed the exact controllability of func-

tional systems with impulsive conditions and unbounded delay. 1-lowever, they as-

sume(1 that the inverse of a controllability operator exists. Generally due to the 

compactness of the generated semigroup it is not invertible. Hence their method-

ology does not work in infinite-dimensional cases. Moreover it is hardly possible to 

apply and check their condition in real world complex systems. 

\ ,\Tjtli a different approach Zhou [176] established approximate controllability of 

an abstract semimilimmear differential systemim. Naito [1391 proved that the semnihinear 

problem in [176] is the approximately controllable, if a range condition on the control 

oI)erator is satisfied. Sakt-hivel et.al. [152] proposed viable results for both stochastic 

and deterministic system to be approximate controllable. 
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Interestingly controllability results for functional differential equation with (Ic-

viated argument coupled with impulsive conditions are not widely available so far. 

In an effort to CoVer this VOi(I, we atteiript to investigate remote control systeit IS 

where values of space variable are dependent on some remote space, by using simple 

functions of deviating argument. 

1.2 Review of literature 

1.2.1 Existence of solution 

The literature related to functional differential equations is very extensive. [861 coil-

ta.ins a comprehensive description of such equations. Similarly, for additional inat;c-

rial concerning abstract partial functional differential equations and related issues, 

we refer [1],[21],[27],[30],[90],[102]. For literature related to unbounded delay we re-

fer [92] ,[94], [95] ,[101],  [108], and for state dependent delay we refer [89], [97], [99], [100]. 

For (letailS in fixed point theory and inequalities we refer [3],[4].[5],[7]. For related 

work in second order functional differential equations we refer [25],[28],[34],[38]J161]1  

[162],[163],[165] and for the case of fractional differential equations we refer [11],[51], 

[112], [113]. For methods in approximation of solutions we refer [22], [24], [25], [46], [87], 

[125],[128]. Applications in population dynamics, and vibrational problems, and al- 

lied fields are available in [12]j18],[23],[26],[29],[47],[48],[58],[103],[104] [130].[131, 

[132]. 

Hernández et.al. (1998) [95] investigated the existence solutions of a. partial 

neutral differential equations with unbounded delay. They proved existence of mild 

and strong solutions by using strongly continuous semigroup. In (1998) Flernández 

ct.al. [94] also proved a, result of existence periodic solutions for the same class of 

quasi-linear neutral differential equations with unbounded delay. 

S. Agarwal and l3ahuguna (2005) [8] proved the exact and approximate solutions 

of a delay system coupled various types of nonlocal history conditions. The authors 

investigated mild, strong, and classical solutions for existence and uniqueness. They 

used the method of semidiscretization in time. The authors also proved a result 

about the global existence of solutions. 
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- 
S. Agarwal and Bahuguna (2006) [9] studied a nonlocal neutral differential equa- 

tion. The existence of tile solutions in a Banach space was proved by using Schauder's 

fixed point theorem. 

Herndiidcz ct.al. (2006) [891 proved tile existence of mild solutions for a func-

tional differential equation involving state-dependent dehy. Also, Hernández et.al. 

(2006) [99] proved the existence of mild solutions for the impulsive functional dif-

ferential equations of similar type. 

Hernández et.ai. (2007) [98] investigated a neutral differential equation of first 

and second order with impulses. using fixed point approach. The authors established 

the existence of mild solutions. 

Muslim and Bahuguna (2008) [136] proved the existence and uniqueness of so-

lution of a neutral differential equation involving deviating argument using analytic 

seinigroups theory and fixed poiiit nietliod. 

P.Balasubramaniam ct.al.(2009) [42] proved the existence, uniqueness and ap-

I)roxilliatc solutions of a stochastic integro-differential equation. The convergence of 

solutions was proved using Facdo-Galerkiu approximations. 

Tidke et.al. (2010) [160] proved the existence, uniqueness and other properties 

of solutions of second order Volterra differential equation using strongly continuous 

cosine family, a modified version of contraction mapping principle and an integral 

inequality due to B. G. Pachpatte. 

Lizhen Chen et. al. (2010) [66] investigated a second-order neutral differential 

equation using measure of noncompactness and fixed point theory. The authors 

established the existence of mild solutions. rç  lie compactness condition on cosine 

tumidly was relaxed in deriving the compactness of solution set. 

Aihong Li et.al. (2010) [14] established the existence of mild solutions of an 

impulsive neutral stochastic integro-differential equation with unbounded delays. 

rI1Iey assumed that an analytic resolvent operator is generated by the undclaycd 

part. The),  reformulated it into an integral equation. Sufficient conditions for the 

existence of solutions were established by using analytic resolvdnt operators and 

Sadovskii fixed point theorem. 

Fang Li (2011) [120] investigated s fractional neutral differential equation with 

infinite delay via Kuratowski's measure of noncomnpactncss. Also the existence of 



mild solution of some integro-differential equation was proved as a part of applica-

tion. 

V. Vijaykurna.r et.al. (2012) [167] proved the global existence of solutions for a 

Vol terra-Fredholrn kind functional integrodifferential equations with impulsive con-

ditions. Assuming the Leray-Schauders Alternative theorem, they established the 

global existence of solutions. 

Zdzislaw Brzciniak et. al. (2013) [57] investigated a stochastic NavicrStokes 

equations with a multiplicative Gaussian noise. They considered the equation in 

2D and 3D possibly unbounded domains. The unknown velocity and its spatial 

derivatives determined the noise term. The existence of a martingale solution was 

established. The solution was derived using the classica.l Faedo-Galerkin approxi-

mation, the Jakubowski version of the Skorokhod theorem. Also, some compactness 

and tightness criteria in nonmetric spaces were established. The compactness results 

were established using a generalized version of the classical Dubinsky Theorem. 

Sliemigli Xic (2013) [171] investigated a second-order imitegro-differeutial system 

with unbounded delay and impulsive conditions. The author used the Kuratowski 

measure of noncompactncss along with progressive estimation approach to establish 

the existence of mild solutions 

Sakthivel et.al (2013) [153] established the existence of mild solutions of an im-

pulsive fractional stochastic differential equation involving unbounded delay. The 

authors used fractional calculus, stochastic analysis, fixed point methods and tech-

niques adopted directly from deterministic fractional equations. Sufficient condi-

tions were derived for the existence of mild solutions. Moreover, the existence of 

solutions for fractional stochastic semihinear differential equations involving nonlocal 

conditions was established. 

Shengli Xie (2014) [170] studied the existence and uniqueness of mild solutions 

for an impulsive fractional integro-differential evolution equation with unbounded 

delay. The author generalized the existence theorem for integer order differential 

equations to the case of fractional order. 

JankowAki (2014) [106] considered boundary fractional differential problems with 

advanced arguments. The existence of initial value problems was established with 

the initial point defined at the end point of an interval. Moreover, nonhomogeneous 



• linear fractional differential equations were investigated. The existence of solutions 

for fractional differential equations involving advanced arguments and boundary val-

ues was proved with the iieip of a monotone iterative technique. The corresponding 

fractional inequalities were also studied. 

Zhang et. al. (2014) [1731 considered impulsive differential equations with 

fractional-order 0 < q < 1. They proved the formula of solutions used in their 

cited papers to be incorrect. The authors formulated and proved a formula for the 

general solution of an impulsive Cauchy problem with Caputo fractional derivative 

of order lying between 0 and 1. Moreover, the authors established an existence result 

for a type of impulsive fractional differential system with special initial value with 

the help of fixed point niethods. 

1.2.2 Controllability 

\'Ve refer [10], [16])  [40], [41] )  [43], [56], [71], [80], [116]  for literature on controllability and 

relatc(i topics 

K. Naito (1987) [139] proved the approximate controllability of an abstract semi-

linear control system The author assumed a relation, that has a simple form. More-

over that can be easily verified in many examples. 

Mohan C. Joshi and Raju K. George (1989) [110] established global controlla-

bility of a semilirmear system with both Lipschitzian and non-Lipschitzian types of 

monotone nonlinearities. 

Nanclakurnaran et. al. (1995) [1431 obtained the partial exact controllability for 

a. nonlinear system. The authors used semfligroup formulation along with fixed point 

approach to investigate the nonlinear system. 

Dauer et. al. (2002) [69] investigated the approximate and complete controllabil-

ity for semilinear functional differential systems. Sufficient conditions were formu-

lated and proved for each of the two types of controllability. The authors removed 

the limitation that linear systems with compact senuigroup cannot be completely 

controllable in infinite-dimensional spaces. The conditions were derived with aid 

of the Schauder fixed point theorcin in case of compact scuhigroup and the Banach 

fixed point theorem in case of noncompactness of sernigroup. 

Malimuclov et. al. (2003) [127] investigated a semilinear neutral system to check 
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its approximate controllability. The authors used the Schaucler fixed point theorem 

and some fundamental assumptions on the systems operator. The approximate 

controllability of the semilinear system followed from the approximate controllability 

of its linear part. 

Jiii-Muii Jeong ct.al. (2007) [107] established the approximate controllability for 

the semilinear retarded control system. The authors also derived the equivalent rela-

tion between controllability and stabilizability of the solution for the corresponding 

linear control system. 

Mcili Li et.a.l. (2007) [122] dealt with the controllability of abstract neutral func-

tional integro-differential s stems with infinite delay. The authors used fractional 

power of operators and Sadovskii fixed point theorem to prove the results. 

Sakthivel et.al. (2007) [149] established the approximate controllability of a non-

linear impulsive differential and neutral functional differential equation in Hubert 

space. The authors used sernigroup theory and fixed point approach. For impul-

sive differential and neutral functional differential equations, the authors derived 

sufficient conditions for approximate controllability. 

R.K. George, A .K. Nandakumaran, and D.N. Chalisha.ja.r (2007) [141] dealt with 

a nonlinear dispersion system. The authors established exact controllability of the 

system. The two kinds of nonlinearities, such as Lipschitzian and monotone were 

used. The exact controllability of the above system with the aid of Integral Con-

tractors, was established. The advantage being the use of Integral Contractors as a. 

weaker condition than the condition of Lipschitz. 

Sakthivel et.al. (2009) [1501 proved the exact controllability of second order 

nonlinear impulsive control systems, of certain types. The authors derived sufficient 

conditions for the exact controllability of those type of systems. 

Darvish et. al. (2009) [681 dealt with the existence of controllability available 

in literature. They established the fact the trivial modification of those available 

results in literature can lead to the control of infinite dimensional systems. The 

authors used the complete continuity of the nonlinearity instead of the compactness 
- 

of operators. 

P. Muthukumar and P. Balasubra.ma.niam (2010) [138] formulated and proved 

the sufficient conditions for the approximate controllability of McKeanVlasov type 
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of second order nonlinear stochastic differential equation. At a given time t the 

nonlinearitics depended on the state of the of the system as well as on the probability 

(listribution at that time. 

Yoiig-Kui Chang et. al. (2010) [65] dealt with the global uniqueness of solutions 

and controllability of a stochastic integro-differential equation in Fréchet spaces. 

The authors used the resolvent operators along with a nonlinear alternative of Leray-

Schauder type theorem in Fréchet spaces due to Frigon and Granas. 

Sukavanarn et. al (2010) [158] established some sufficient conditions, for 

S-controllability of a first order abstract semilinear stochastic control system. The 

results were derived by the approach of separation principle. 

Sukavaiiain et. al. (2011) [157] established the approximate controllability of a 

fractional semilinear delay control systems by assuming that time approximate con-

trollability of the linear system. The existence and uniqueness of the mild solution 

was also investigated. 

Surendra Kumnar et. al. (2012) [116] proved sufficient conditions of approximate 

controllability of a fractional semilinear delay control systems. The authors also 

proved the existence and uniqueness of mild solution of the system. They used 

contraction principle and the Schaucler fixed point theorem. Some examples were 

1)t0\ni(le(l as well. 

Sakthivel et.al  (2012) [151] dealt with a type of control systems represented by 

abstract nonlinear fractional differential neutral ecluations. The authors established 

exact controllability for the fractional differential control systems. The authors 

formulated and proved sufficient conditions of the controllability of the nonlinear 

fractional systems. The main tool was fixed point analysis. Further, investigation of 

controllability for systems with nonlocal conditions was done. The authors proved 

the controllability of nonlinear systems by assuming the exact controllability of the 

associated linear control systems. 

Muslim et. al. (2013) [137] focussed on a. control system described by neutral 

differential equation involving deviating argument. The authors used scmnigroups of 

linear operators along with Banach fixed point theorem. The authors established 

the complete controllability of the deviated system. Further a nonlocal system was 

investigated by as an extension of the proved results. 
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K. Balaclia.ndran et.a1. (2014) [36] considered of nonlinear fractional integrod-

ifferciitial systems involving implicit fractional derivative. Sufficient conditions for 

controllability were formulated and proved. The authors used measure of noncom-

pactness together with Darbo's fixed point theorem. 

K. Balachandran et.al. (2015) [37] investigated the controllability of nonlinear 

neutral fractional Volterra integroclifferential systems involving implicit fractional 

derivatives. These types of systems were based on a number of problems involving 

complex media. The authors derived sufficient conditions for controllability. The 

main technique was based on condensing map and measure of noncompactncss. 

1.3 Organization of Thesis 

This thesis contains 10 chapters. 

Chapter 1 is introduction. 

Chapter 2 gives an introduction to basics of semigroup theory, cosine family, 

control theory, measure of iioiicomnpact-ness, fractional and stochastic differential 

equations. 

In chapter 3 we study the approximate controllability of a functional differ-

ential equation with deviating argument and finite delay. Sufficient condition for 

approximate controllability is provided by assuming that the linear control syst;em 

is approximately controllable. Schauder fixed point theorem is used and the 

semigroup associated with mild solution has been replaced by fundamcnt;al solution. 

The results of this chapter arc published as 'Approximate Controllability of a Fiuic-

tional Differential Equation with Deviated Argument' in Nonlinear Dynamics and 

Systems Theory, Infor Math, volume 14, no. 3, (201.4), 265-277. 

In chapter 4 the existence of mild solution of a class of secoiid order partial neutral 

differential equation with state dependent. delay and non-instantaneous impulses is 

investigated. Ilausdorif measure of noncompactncss is used. Darbo Sadovskii fixed 

point theorem is applied to prove the existence. Also, some restrictive conditions 

such as the compactness of the associated cosine or sine operators and the Lipschitz 

conditions on the nonlinear functions are replaced by simple and natural assutnp-

tions. In the last section an example is studied to illustrate the presented result. 
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The results of this chapter are published as 'Existence of Solution for a Second-Order 

Neutral Differential Equation with State Dependent Delay and Non-instantaneous 

impulses' in International Journal of Nonlinear Science, World Scientific, volume 18, 

no.2, (2014), 145-155. 

Chapter 5 consists of two parts. The first part deals with the existence of mild 

solution of a class of instantaneous impulsive second order partial neutral differential 

equation with state dependent delay. The second part studies the non-instantaneous 

impulsive conditions. We use IKuratowski measure of noncompactness. To establish 

the existence of mild solution Monch fixed point theorem is applied. We remove the 

restrictive conditions on the priori estimation available in literature. The compact-

ness of cosine or sine operators, nonlinear terms and associated impulses are also 

not required in this chapter. The noncompactness measure estimation, the Lips-

ciiitz conditions, and compactness of the nonlinear functions are replaced by simple 

and natural assumptions. We introduce new non-instantaneous impulses with fixed 

delays. In the last section we study examples to illustrate the presented result. 

The results of this chapter are in revision as 'Existence of Solution of Impulsive 

Second-Order Neutral Integro-Differential Equation with State Delay' in Journal of 

Integral Equations and Applications. 

in chapter 6 we cstal)lish the existence and uniclueness of mild solution and 

approximate controllability of a second order neutral partial differential equation 

involving state dependent delay. The existence of mild solution is derived with 

the help of I-Iausdorff measure of noncompactness and Darbo Sadovskii theorem. 

Some restrictive conditions such as the compactness of cosine or sine family and the 

Lipschitz conditions on the nonlinear functions are replaced by simple and natural 

assumptions. The conditions for approximate controllability are investigated for the 

(listributedi second order neutral system by assuming that the corresponding linear 

system is the approximately controllable. 

The results of this chapter are published as 'Approximate Controllability of a Second 

Order Neutral Differential Equation with State Dependent Delay' in Differential 

Equations and Dynamical Systems, Springer, DOI 10.1007/s12591 - 014 - 0218 - 

6, (2014). 
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Chapter 7 is divided in two parts. In the first part a second order neutral par-

tial differential equation involving state dependent delay and non-instantaneous mi-

pulses is studied. The conditions for existence and uniqueness of the mild solution 

are investigated via ilausdorff measure of nOn-coflhl)actfleSs and l)arho Sadovskii 

fixed point theorem. Thus, the assumption of compactness of cosine operators is 

removed. The conditions for approximate controllability are investigated for the 

neutral second order system with respect to the approximate controllability of the 

correspOfl(liflg linear system in a Hubert space. A siniple range condition is used to 

prove approximate controllability. Thereby, the non-singularity of a controllability 

operator is not required which was an essential condition in [39]. Since in infinite 

dimensional spaces, with compact semigroup the controllability operator is not in-

vertible. Our methodology does not require to find the inverse of the controllability 

Cramian operator. Also the associated limiting condition in [69] are removed. Ex-

amples are studied to substantiate the theory. 

The results of this chapter are published as 'Existence of Solution and Approximate 

Controllability for Neutral Differential Equation with State Dependent Delay' in In-

ternational Journal of Partial Differential Equations, Ilindawi, volume 2014 (2011), 

Article ID 787092, 12 pages. 

In chapter 8 a fractional neutral differential equation with deviated argument is 

investigated. The existence and uniqueness of mild solution is proved by applying 

Banach contraction principle. We removed additional conditions of compactness of 

semigroups or nonlinear functions, analyticity, uniform boundedness. We also in-

vestigate a fractional neutral differential equation involving deviating argument to 

establish its the approximate controllability. A simple condition on the range of a. 

operator is used. Therefore assumption of norisingularity of controllability operator 

removed. Since in infinite dimensional spaces with compact sernigroups, the control-

lability operator is not invertible. Our methodology does not require to find inverse 

of the controllability Gramian. We also remove requirement to verify the associated 

limiting condition. An example is also presented. 

The results of this chapter are published as 'Approximate Controllability of a Frac-

tional Neutral System with Deviated Argument in Banach Space' in Differential 

Equations and Dynamical Systems, Springer, DO! 10.1007/.s12591 —015-0237— 
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• y,(2015). 

in chapter 9 the approximate controllability of a fractional impulsive stochastic 

neutral integro-differential equation with deviating argument and infinite delay is 

studied. The control parameter is included in the nonlinear term as well. Only 

Schauder fixed point theorem and a few fundamental hypotheses are used to prove 

our result. The assumption of the existence of the inverse of controllability oper-

ator is not required. This removes the limitation in infinite-dimensional space of 

the nonexistence of the inverse incase of compact sernigroups. Lipschitz continuity 

of the nonlinear function is replaced by simple assumptions. An example is also 

studied. 

The results of this chapter are published as 'Approximate controllability of an un-

pulsive neutral fractional stochastic differential equation with deviated argument 

and infinite delay' in Nonlinear Studies, volume 22, no. 1, (2015), 1-16, CSP - 

Cambridge, UK; I&S - Florida, USA. 

In the chapter 10 the existence, uniqueness and convergence of approximate so- 

• lutions of a stochastic fractional differential equation with deviating argument is 

established. Analytic semigroup is used coupled with fixed point approach. Thou 

we consider Faedo-Calerkin approximation of solution and prove some convergence 

results. We also study all example to illustrate our result. 

The results of this chapter are accepted for publication as 'Approximations of Solu-

tions of a Fractional Stochastic Differential Equations with Deviated Argument' in 

Journal of Fractional Calculus and Applications in 2015. 



Chapter 2 

Preliminaries 

In this chapter, some basic definitions, lemmas and theorems are recalled. This 

chapter has six sections. In section 2.1 some facts about operators defined on Banach 

space are given. In section 2.2 introduction to semigroup theory is given briefly. In 

section 2.3 some facts about control theory are discussed. In section 2.4 some basic 

facts of fractional calculus and literature, related to the fractional order systems are 

illustrated. In section 2.5 some basic definitions of measure of noncomnpactncss are 

given. In section 2.6 some basic facts of stochastic analysis are presented. 

2.1 Basic concepts of Banach Space 

Suppose X and Y to be the Banach spaces equipped with the norm 11 
. lix and 11 

. Ily, 

respectively. We denote by £(X, Y) the space of all bounded linear operators from 

X to Y with the operator norm denoted by lir(X,Y) and we may write simply £(X) 

and ll(x), when X = Y. If A is a linear operator in X, then D(A), N(A), and R(A) 

(lenote the doimmain, null space and range space of A, respectively. The notations 

(T(A), p(A) stand for the mean spectrum and resolvent set of A, respectively and 

I?(A, A) := (\I - A) denotes the resolvent operator of A. 

Let J = (a, b) with -oo  < a < b < oo. Then, LP(J,  X) represents the Banach 

space of all Bochner-measurablc functions P J —* X with the following norm 

lIFilLp(j,x) := ilP(3)lld8)1', 1 < p < oo, 

ii "ii LP(J,X) := sup P(i) Ii x, p = 00. 
t€J 
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Gronwall's inequality: Let F and C be the non-negative continuous functions and - 

for each t > to and a constant fi. Then the inequality 

F(t) + I < G(s)P(s)ds, t >  to ,
o  

implies the following inequality 

F(t) <exP(i
t 

G(s)ds), t (2.1.2) 
o 

Furthermore, the notations C(J, X) and Cm(J, X) stand for the space of all con-

tinuous and in-times continuously differentiable functions, respectively. The space 

c(/?., X) consists of all infinitely differentiable functions with compact support. 

Set J = [0, T], T > 0. Then, C(J, X) and Cm(J. X) denote the Banach spaces with 

equipped with the norm denoted by 

IFlic  := sup IIF(t)IIx, IIFlIc' := sup II  Fk(i)I c, (2.1.3) 
tEJ tEJ 

k=O 

respectively. 

DefInition 2.1.1. [1751 Let I = (0, T), or I = , or I = IR, m E N and 1 < p < 00. 

The Sobolcv spaces 14" is defined as 

rn—i 

j,j/rflP(J X) : = IF : there exists z G U(I, X) : F(I.) 
= 

+ 
(m - 1)! 

* z(t), t E I}. (2.1.4) 

Note that z(t) = FT'1(t), ck = P'(0). Also 

VV"(I, X) := IF E Wm'(J, X): i(0) = 0, k = 0, 1,... ,rn - 11. (2.1.5) 

It is clear that F E W''(I, X) if and only if F 
= 

*z (t) for some z E LP(I, X). 

Now, some basic definitions and theorems which will be used throughout this 

thesis is provided. 

Definition 2.1.2. Let X and X be the Bana.ch spaces. A mapping f : X —* X is 

said to be Lipschitz continuous if there exists a constant I > 0 such that 

111(z1) — f(z2)II < lzi  — z21IX, for all z1, z2  E X. (2.1.6) 
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Definition 2.1.3. A function f : X -+ X is said to be a Flölder continuous if there 

exist iiomiegative real constants K and a such that 

IIf(zi) - f(z2)IL < KMz1 - z2II for each z1,z2  E X. (2.1.7) 

The number a is known as the exponent of the I-folder condition. The function 

satisfies a Lipschitz condition, when a = 1. If a = 0, then the function simply is 

bounded. 

Definition 2.1.4. The family of functions 3 = {f G a such that f : X - X} is said 

to be equicontinuous at a point z0  e X if for every f > 0, and every f E 3 there 

exists a 6 > 0 such that 

f(zo) - f(z)II < € V z with lizo - zllx <ö. (2.1.8) 

Definition 2.1.5. Let X be the Banach space and F : X -* X be a nonlinear 

operator. Then each solution of the equation 

P(z) = z, z e X (2.1.9) 

is called the fixed point of operator F. 

Definition 2.1.6. A mapping P from a subset M of a normed space X into X is 

called a contraction mapping in there exists a positive number k < 1 such that 

IIF(zi) - P(z2)II kz1  - z211 for all z1,z2  E AT (2.1.10) 

Theorem 2.1.7. (Banach fixed point theorem) Let N be a closed subset of a Banach 

space X and let F be a contraction mapping from iV into N. Then, there exists a 

unique z E N such that F(z) = z. 

Definition 2.1.8. Let X and X be normed linear spaces. An operator T : X - X 

is called compact if it maps every bounded subset of X into a relatively compact 

subset of X. 

- Theorem 2.1.9. (Arzela-Ascoli theorem:) Assume that K is a compact set in R', n 

1. Then, a set B c C(K) is relatively compact in C(K) if and only if the functions 

- in B are uniformly bounded and equicontinuous on K. 
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Theorem 2.1.10. Let X and X be norined linear spaces. A linear operator T: X 

X is compact if it maps cery bounded sequence (zn) in X onto a sequence (T(z,)) 

in X which has a convergent subsequence. 

Theorem 2.1.11. (Schauder's fixed point theorem:) Let M be a convex compact set 

in a Banach space X and mapping T: M - Al is a continuous map. Then T has a 

fixed point. 

Theorem 2.1.12. (Schaefer's fixed point theorem:) Let. X be a Banach space and 

T: X - X to be a continuous compact mapping. Whenever the set 

M= U {yeX:y=)'T(y)} (2.1.11) 

is bounded, T has a fixed point. 

Note that the Schaefer's fixed point theorem is version of Schauder's theorem. 

Sometimes it is known as the Leray-Schaudcr principle. 

Lemma 2.1.13. [531 Let X be Hilbert space and X1 , X2  be closed subspaces such 

that X = Xi  + X2. Then there exists a bounded linear operator P : X -+ X2  such 

that for each x E X, x1  = x— Px E X1  and j jx j jj = min{IIyII : y E X1, (1—Q)(y) 

(1 - Q)(x)} where Q denotes the orthogonal projection on X2. 

2.2 Semigroup Theory and Cosine family 

Suppose that X is a complex Banach space. Suppose A to be a closed linear operator 

dense in X. Assume that D(A) is associated with the graph norm of A that is, 

IIyIID(A) := IIyIIx + IlAylix. Since A is closed, therefore, D(A) is a Banach space, 

continuously and densely embedded into X. 

Definiiion 2.2.1. [146] The one parameter family {S(t)} >0, of bounded linear op-

erators from Banach X into itself is called a semigroup of bounded linear operators 

on X if the following conditions hold; 

S(0) = I, where I is the identity operator on X. 

S(t + s) = S(t)S(s) for every 1,s > 0. 
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Definition 2.2.2. A semigroup {S(t)}1>o  of bounded linear operators on X is said 

to be a strongly continuous semigroup or CO  scrnigroup if 

limS(t)x=x, for every xEX. (2.2.12) 

Definition 2.2.3. The semigroup fS(I)}t>o  of bounded linear operators is said to be 

a uniformly continuous scmigroup if limt,o  II 8(t) 
- 

 III  = 0. 

Definition 2.2.4. The infinitesimal generator of a semigroup of bounded linear op-

erator {S(t)} >0  on Banach space X is a linear operator A on X defined as 

II S(t)z - zil Az = urn , for z E 1) (A), (2.2.13) 
I 

whenever this limit exists. The domain of A denoted by I)(A) defined as 

D(A) = {z 11  S(t)z - zil X : lirn exists}. (2.2.14) 
t->u 1 

Remark 

1 Suppose A to be the infinitesimal generator of a CO-semigroup {8(I)} > . 

Then, D(A) is dense in X and A is a closed bounded linear operator. 

2 Let 8(1) be the Co-scmigroup. Then, there exist constants 6 E 1? and AJ > 1 

such that 

118(t)II < Me6 , for all I > 0. (2.2.15) 

3 If 6 = 0, then, 8(1) is called uniformly bounded semigroup. Moreover, if 

Al = 1, then 8(t) is called Co-seinigroup of contractions. 

4 The generator of the semigroup S(t) is unique. 

'J'heorein 2.2.5. Suppose 8(t) to be a uniformly continuous semigroup (6'3 —semigroup) 

of bounded linear operators defined on X which is generated by A. Then, 

(I.) 1)8(1)11 is bounded on every finite subinterval of [0, oc), 

1 tI-h (2) for each z E X, hrnh_>O f, S(s)zds = S(t)z, 
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for all z e X, fS(s)xds E D(A) and 

A(f S(s)zds) = S(1)z - z, (2.2.16) 

for z e D(A), S(t)z E D(A) and 

4
S(i)z = AS(t)z = S(t)Az, (2.2.17) 

for all z E D(A), 

- S(s)z 
= f S(r)itzdr 

= / AS()zdr. (2.2.8) 

if -nio  = inf,>o(. log 18(1)11), then v;o log IIS(I)II) < oo, 

for all to > to0, there is a constant M such that IIS(i)lI 1V1e" t  for all I > 0. 

The constant to0 is known as the growth bound of the semigroup. 

For a linear operator A (not always bounded) in X, the resolvent set p(A) of A 

consists of all complex numbers A such that Al - A is invertible. The resolvent of 

A is a family R, A) = (Al - A)', A E p(A) of bounded linear operators which 

plays an important role in the application of scinigroup. For the resolvent operator 

R(A, A) of the generator A of a CO-scmigroup, we have the following result which 

shows that the resolvent operator is just the Laplace transform of the scmnigroup. 

Lemma 2.2.6. Let S(t) be a CO-sernigroup with infinitesimal generator A and growth 

bound to0. If I?e(A) > to > to0, then A € p(A), and for all y E 1V the following results 

hold: 

R(A.A)y = (Al - A)'y = f0oo  e"S(t)ydt and IIl?(A,A)II < -aW-- = l?e(A): 
-  

(b) For all y e X, lirn 0 8I - A)'y = y, where ,8 is constrained to be real. 

In 1948, 1-lille and Yosida established an result known as Flille-Yosida Theorem 

which plays an important role in the theory of semigroup of bounded linear opera-

tors. 
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Theorem 2.2.7. [146] (Hille-Yosida Theorem) A necessary and sufficient condition 

for a closed linear densely dc{iiied operator A on a Banach space X to be the 

infinitesimal generator of a strongly continuous SeIx1igrOU) S(i), I > 0 on X is that 

there exist real numbers M and S such that every real A > S belongs to the resolvent 

set of A and for such A and 

IIRP, fl)kll < 
M 

- (A - S)k"' k > 1, (2.2.19) 

where R(A, A) = (Al - A) -1  denotes the resolvcnt operator of A. 

Theorem 2.2.8. Let (J be a bounded linear operator. If 11(111 15 v, then 

1 

1,00 

u+ioo
etu = eAt(AI 

- U)'dA. (2.2.20) 
2iri 

The convergence in (2.2.20) is in the uniform operator topology and uniformly in t 

on bounded intervals. 

Theorem 2.2.9. Let A be a linear operator dense in X which satisfies the following 

two conditions: 

• (1) > = {A: J argAJ < E + pj U {0} C p(A), for some 0 <ji < 71/2; 

(2) 'l'hcre is a constant Al such that 

it/i 
(Al—A)'< 

JAI 
 for AE E and A>O. 

it 

Then, A generates a (]0-semigroup S(t) fulfilling IS(t)II N, where N is a positive 

constant and 

S(t) = I e(Al - A)'dA. 
2iri Jr 

Here ,: is a smooth curve in Ep  starting from ooe'°  to ooe °  for some 0 E (71/2, 71/2+ 

5), with the integral converging in uniform operator topology. 

Definition 2.2.10. Let EO  = e C: jargAl < O} U {0} for 0 E (0,71/2]. The family 

the bounded linear operators S(t), z E ou{o} defined in Banach space X is said 

to be analytic scxnigroup if 

(i) S(0) = I; 
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a 

S(z*  + z**) = S(z*)S(f*),  for each z, z E 

the map z - 8(z) is analytic in 

lirnoS(z)y = y for all yE X and z E Eo,, 0 < 0' < 0. 

Moreover, if 

IIS(z)II is bounded in E0, for all 0 <0' <0. 

Then, 8(z), z e E0,101 is called a bounded analytic scrnigroup. 

We also have the following results 

Theorem 2.2.11. Let A be a linear operator dense in X. Then, the following hy- 

pothesis are equivalent. 

A is the infinitesimal generator of a bounded analytic sernigroup 8(z), z E 

>I:Ou{O} On X. 

I t9 e (0, ir/2) such that the operator e±"9  generates strongly continuous semi 
dP 

- 

groups on X. 

A is the infinitesimal generator of a strongly continuous semigroup 8(1). 1 > 0 

on X such that arg(S(t)) C D(A), for each I > 0 and 

It'I := sup IItA8(t)II < 00. (2.2.21) 
t>o 

A is the infinitesimal generator of a bounded strongly continuous semigroup 

8(1), t > 0 on X and there exists a positive constant C such that 

IR(r + is, A)I ~ , 

ISI 

 V r> 0 and 0 sE R. (2.2.22) 

Cosine family 

The family {C(i) : 1. E RI in 13(X), the space of all bounded linear operators, is 

called a strongly continuous cosine family if the following conditions are satisfied: 

C(0) = I (I is the identity operator in X); 

C(t + s) + C(t - s) = 2C(t)C(s) for all 1, s e ll 
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(c) The map t —* C(1)x is strongly continuous for each x E X. 

{S(t) : I IR} is the strongly continuous one parameter family of sine operators 

associated to strongly continuous {C(t) : t e }. Further S(I)x 
= J0

•1 
C(s)xds, x e 

X, t R. We refer books by Coldstcin[84] and Fattorini[75] for further study. 

The definition of abstract phase space 93 as introduced by Hale and Kato, is 

given as follows 

I)cJinitw'n 2.2.12. [85]: Let 1Z be a linear space of maps from (—oc, O  into X en-

dowed with the seminorm 11.11,z  and satisfying the following conditions: 

(A) If x : (—oo, a+aj —* X, b > 0, such that x and XI[+a)  E C([a, a+a] : X), 

then for all t E [a, a + a) the following conditions hold 

St e 

IIx(I)II < Ii IlxtII, 

1146 < K(t - a)sup{IIx(s)lI : a < s < t} + M(I + a)IIx!I, 

where II is a positive constant If,,, M, : [0, oo) —* [1,00), Ka is continuous, 

A!,, is locally bounded and If, K, M are independent of x(.) 

(B) The space 93 is complete. Then is said to be abstract the phase space. 

2.2.1 Fractional Powers of Operators 

For the operator A for which —A generates an analytic semigroup 8(1), one 

can define fractional power of A. In particular, we assume that A is densely defined 

closed linear operator for which 

={A:0<v<jargA]}UU, (2.2.23) 

where U denotes a neighborhood of zero, and 

± 

11 '' " 
Al

+ 
' for A EE . (2.2.24) 

For v = 7r/2 and Al = 1, —A generates a Co-semigroup while for v < 7r/2, —A 

generates of an analytic sernigroup. 

For an operator A with condition (2.2.23) and (2.2.24), one can define negative 
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fractional powers 0 < a < oo by the formula 

27ri ' 27 -i r 
(2.2.25) 

where F denotes the path starting in the resolvent of A from ooe 0  to ooe 0  for 

v < 0 < it i.e., F = F1  U ['2, where IT1  = [pcxp(iO) : 0 < p < oo] and 17 2 = 

[pexp(—i0) 0 < p < oo], avoiding the negative real axis and the origin and x is 

positive for real positive values of x• For a > 0, the operators A are bounded due 

to convergence of the integral (2.2.25). 

By definition of A, the operators A form a scmigroup 

= = for a, 3 > 01 (2.2.26) 

and there is a constant C such that for a E [0, 1], IAII < C. Moreover, let us 

assume that A satisfies the (2.2.23) and (2.2.24) with v <ir/2. Then, 

= (A)', for a > 0. 

Ifo= 0, we get A = I. 

Theorem 2.2.13. [1461 Let —A be the infinitesimal generator of an analytic selrligroup 

S(t) and 0 p(A). Then, 

for a > 0, 8(1.) : X - D(Al) for every 1. > 0; 

S(t)A°z = AaS(1)z  for each z e 

for I > 0, the operator AaS(1)  is bounded and 

AaS(i)Il ~ iVIt_a_5t for 6 > 0, 

for some constant All,, which depends on a; 

for a E (0, 1] and z E D(Aa), 

I8(t)z - zil <CatIlAaZII. (2.2.27) 

2.3 Basic Concepts of Control Theory 

Suppose a spaceship is to dock at the international space station. Is there a.tleast 

one control strategy to manoeuvre the spaceship to dock? This is the controllability 

question. 



27 

2.3.1 Finite dimensional control systems 

A linear nonautoiiornous linear control system can be represented by 

dx(t) 

d(t) 
= Ax(t)x(t) + B(t)u(t), to < I 

X(to) =X0 (2.3.1) 

where to, r are two real numbers and A(t) and B(t) are matrices of order n x n and 

ri x in resl)eCtively. For all t E [to, r] x(t) E 1R is known as the state of the system, 

it(t.) e m  is called control. Let L2([10, T]; R ) and £2([to, r] be function spaces 

to which x(.) and u(.) belong. 

The mild solution of (2.3.1) is given by 

x(t) = (t, to)xo  + f (t, s)Bu(s)ds 

where ó(t, s) is called the state transition matrix, since it relates the state at any 

time to  to the state at any other time t. 

Remark The control u which steers the initial state x0  to the final state x need 

not be unique, if XD and :UT  belong to a subset of WZ  then the resulting controllability 

is called local controllability. 

The set of all points to which the initial state x0  can be steered in time r is 

called the reachable set 

= {x(T) E : x(.) is the solution of (2.3.1)1 

rFl1e linear system (2.3.1) is said to be controllable over the interval [t0, r] if the 

reachable set K- equals to the whole space R. 

Definition 2.3.1. The controllability matrix of (2.3.1) C : L2([t0, T] ) - W is 

defined as 

Cu 
= f (r,$)B(s)u(s)ds. 

Definition 2.3.2. The controllability Grammian matrix W : lR —+ lW is defined as 

u = j q 

= 

(r, s)B(s) I3*(s)*(r, s)ds. 



Clearly the controllable Grammian matrix is a symmetric matrix of order ii x ii. 

Autonomous System: If the entries of matrices A and 13 are constants then the 

system is said to autonomous. The solution of the autonomous system is given by 

X(t) = + f e'Bu.(s)ds 
t) 

Theorem 2.3.3. [45] The linear control system (2.3.1) (autonomous or nonautonoinous) 

is controllable if the controllability Gramnmian matrix is invertible. 

2.3.2 Infinite Dimensional Control Systems 

Infinite dimensional control systems is a widely researched field with emphasis on 

delay control systems. The two basic concepts can be distinguished namely CXaCt 

controllability and approximate controllability. 

The mathematical model of an infinite dimensional linear control system can be 

written as 

= Ax(i)x(t) + B(t)u(t), to < I 

x(to) =X0 (2.3.2) 

where the state x(t) of the system at time t takes values in a 13anach space V. 

The control function u(i) takes values in another Banach space V. The operator 

A : D(A) C V —* V is a closed, linear and densely defined operator. B : V — V is 

a bounded linear operator. 

x(t) = T(t — to)xo  + .J T(t — s)Bn(s)ds is the mild solution of (2.3.2). 

Definition 2.3.4. The system (2.3.2) is said to be approximately controllable if for all 

> 0 and two initial and fiiial points x0 1'T respectively, there exists an admissible 

control u(t) on [t o, T] steering ;t:0 along a trajectory (mild solution) x(t) of (2.3.2) to 

an €— neighbourhood of XT such that 

IIx(T) - xVII < € 

If £ = 0 the above definition gives exact controllability of system (2.3.2). 

Definition 2.3.5. For system (2.3.2) the controllability map C : r2([10, r]; 

is defined as 

Cu 
= f T(T — s)B(s)u(s)cls. 
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- Definition 2.3.6. The controllability Grammian map is defined as 

= i T(r - s)B(.$)I3*(s)T*(r 
 - )d.s. 

Theorem 2.3.7. [45] The system (2.3,2) is approximately controllable ifi W is pos- to  
itive definite. 

In (1977) Triggiani [164] proved that if A generated a compact Co  semigroup T(t), 

then the linear system can imever be exactly controllable in an infinite dimensional 

space. 

2.4 Basic Concepts of Fractional Calculus 

There are two main approaches for defining a fractional derivative. One is through 

Mittag-Leffer functions and the other approach generalizes a convolution type rep-

resentation of repeated integration. The Riemann-Liouville and Caputo definitions 

take this approach. Now we consider the few definitions of fractional calculus. 

DcJinition 2.4.1. [114] The Riernaumn-Liouville fractional integral of order > 0, of 

the function P : -* X is defined by 

RLJp(t) 
= 

ds, for t > 0, (2.4.3) 

where P e Ll(R±,  lR) and J = 1. We can write 

JF(t) = ga( i )  * F(t), (2.4.4) 

where g, is defined as 

{7 

r>0 
ga(r) = 

a) 
(2.4.5) 

0, 1 < 0 

and * denotes the the convolution of functions, defined on R or 

+00 

00  * F)(t) = 

100 
go, (I — s)F(s)ds, I E R, g C L1(R), Fe L'(R,x), 

- (g * F)(t) = fa( t - s)F(s)ds, t C g E L1(R), Fe L'(RtX). 
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Definition 2.4.2. The Riemann-Liouville derivative of order a, of the function P is 

defined as 

RL/)ctp(/) 
= 

- 
1 d,n j t

(,   - 
1 F'(s)ds, t > 0, (2.4.6) 

F(m_a)din7 

for m - 1 < a < m m E R. where D1  = - F E L 1 (R,X), Jal € dt"' 

/'1 (R .X). 

Definition 2.4.3. [177] The Caputo derivative of a function F(t) is defined as 

1 rt 

DF(t) = F(m - a) j0 
/ (t - s)mlFrn(s)ds. (2.4.7) 

in which in - 1 < a < m, rn e N and P € C" 1((0, 7'), X) fl L'((O. T), X). 

2.4.1 Basic Concept of Solutions of Fractional Differential 

Equations 

We consider the infinite dimensional fractional order problem illustrated as 

cD,.(t) = .4y(t), t € [0,7'], (2.4.8) 

y(0) = (2.4.9) 

where denotes the fractional derivative in Caputo sense of order q, 0 < q < 1, 

the state y(.) takes its values in a Banach space X, A D(A) c X - X is a closed 

densely linear operator defined in X. In (2.4.8), A is asstuned to be the infinitesimal 

generator of o-scmigroup of bounded linear operator S(t). I > 0. 

The equation (2.4.8) is equivalent to the following integral equation 

1 
y(t) = Yo + 

J'(t 
 - s)Ay(s)ds. (2.4.10) 

The solution to (2.4.8) is closely associated with a function y € C([0, T], X) that 

satisfies the following assumptions 

y is continuous on [0, T] and :ii(i) € D(A) for each I € [0, T], 

cD /(t) exists and is continuous on [0, T] with 0 < q < 1, 

y satisfies the equation (2.4.8) on [0, 7'] and the initial condition y(0) = yo. 
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Taking Laplace transform of equation (2.4.10), we get 

L[y(t)] = A-1 1
00 

eS(s)iJo ds (2.4.11) 

Consider the one-sided stable probability density 

= (-1'' 
F(nq± 

1) sin(nq), (E (0, oo). (2.4.12) 

whose Laplace transform is given by 

I00  e-,\((J),,(()d( = e', q E (0, 1). (2.4.13) 

rIhe1.efore  we get 

q-1 
 I

00 

C  \
q 
 t S(s)yodt 

= r f c [ (()S(t/()yod(]dt, (2.4.14) 

r1l1(11  

L[y(1)] 
= 

00 

j 

et [f q(()S(t/()yodç] dt. (2.4.15) 

Taking inverse Laplace transformation of above equation 

00 
(t) 

= f y q
(()S(t /)y0ciç,  

= f q ()S(t)yo d(, 

Sq(t)yo, (2.4.16) 

where Wq(() = 1q(1k) satisfies the conditions of a probability density 

function defined on (0, oo), i.e. Wq(() 0, and f° W q )d = 1. Therefore, the 

solution of (2.4.8) is given as 

Y(t) Sq (t)yo, (2.4.17) 

where Sq(f), I > 0 is defined by 

Sq(t)y = or 
Wq()S(t()ydç, y e D(A). (2.4.18) 

Next, we consider the following fractional differential equation 

cDy(t) = Ay(t) + F(t), t E [0,?'], 0 T < oo, (2.4.19) 

Y(0) = Yo (2.4.20) 
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where FE L'([O,TI.X). 

Taking Laplace transformation of the equation (2.4.19) on both sides we get 

LEY(t)1 
I 

= e[fo  
(I)(,(S(t/()y0d]dt 

+ It J i ! 
_______ 

t 5) 
,(ç)S( (t 

- 8)-1 

) F(s) dds I dl.. 
(q 

Taking inverse Laplace transformation of above equation we get 

y(t) == Sq (t)yo + 
JO  (

I s) 1 (t - s)F(s)ds, (2.4.21.) 

where, the operator Yq(1) is defined by 

= qf( q(S(l)yd(. (2.4.22) 

Definition 2.4.1. A continuous function y(.) e C([01  TI, X) is said to be the solim-

tion problem (2.4.19)-(2.4.20) if the following integral equation 

= Sq(i): o  + /(i (2.4.23) 

is verified. 

2.5 Basic Concepts of Measure of Noncompact-

ness 

We start with axiomatic definition of measures of mioncomnpactness of bounded 

sets on a complete metric space. 

Suppose (X, (1) to be the complete metric space with metric il and Vx denotes 

the class of all bounded subsets of X. Now, we present some notations which will 

be needed. If U is a subset of a metric space (X, d), then cliam(U) - sup{d(yl  y') 

y, y' E U} is called the diameter of U. A set U in (X, d) is called k-separated if 

d(yi , Y2) > k for all distinct i/i, Y2 E U and the set U is said to be a k-separation of 

X. 

Definition 2.5.1. [44] Let X be a complete metric space. A function : J'f —* [0, oo) 

is said to be a measure of noncompactness on X if it satisfies the following properties: 
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(W) = 0 if and only if 11 E A(,<  is precompact. (Regularity) 

p(l'V) = .p(W), where W denotes the closure of W E .A1x(nvariancc under 

closure) 

(I'Vi  U 14"2) = inax{(1'Vi), o(W2)1, V l4', W2, 14"3  E .iVx(Semi-additivity). 

It is not diflicult to see that the following basic results hold for any measure of 

noncompactncss. For any bounded set W 0/1, MI2  E 'x, any measure of noncom- 

pactness fulfills the following conditions [44] 

(l'V j ) < (M12), when 14"1  C '12,  [Monotonicity]; 

(W1  fl W2) < min{(LVi ). (11,2)1; 

( W) = 0 for each finite set W, [Non-singularity]; 

Let {W,,} be a decreasing sequence of noneinpty, closed sets in Afv such that 

lim,, 4 (W,,) = 0. Then MI = fl 1  MI,, lb is compact (Cantor's generalized 

intersection property). 

Now, we are going to recall some definitions of the IKuratowski, Hausdorif and 

separation measures of noncoiripactness. 

Definition 2.5.2. [44] Let (X, d) be a metric space. The IKuratowski measure of 

iioncornpactness a(U) of the set U C X is the greatest lower bound of those tt > 0, 

for which U admits a finite subdivision into sets, whose diameters are less than ic 

i.e. 

(.1(U) :- inf{ft > 0 : U C U1Uk, Uk C X. diam(Uk) < tt, k = 1,2,• , n E N}. 

Clearly, the set U is completely bounded if and only if a(U) = 0. 

Definition 2.5.3. [44]: The 1-lausdorif's measure of noncompact.ness Xr  is denoted 

by xy(D) which is infimum of 

{ r > 0, D such that I) can be covered by finite no. of balls with radius r} 

for a bounded set D in any Banach space Y. 

Lemma 2.5.4. [44]: Let Y be a Banach space and I), C C Y to be bounded and let 

deiiote both Flausdorff and Kuratowski measure of rioncompactness. '[lien following 

pioperties hold: 
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D is relatively compact if and only if py(B) = 0; 

y(D) = py(75) = py(convD), where and cont? I) are closure and convex 

hull of D respectively; 

py(D) py(C) when D C C; 

c'y(D+C)<py(D)+çcy(C) where D+C={x+y;xe D,yeC}; 

y(D U C) = rnax{y(D), y(C)}; 

çy()D) = AI(py(D) for any .A e 

If the map Q : D(Q) C Y - Z is Lipschitz continuous with Lipschitz constant 

k, then pz(Q(D)) < ky(D) for every bounded subset I) C D(Q), where Z is 

a Banach space; 

If {W,,} is a decreasing sequence of bounded closed noncinpty subset of Y 

and tim, py(W) = 0, then flW,, is nonemptv and compact in Y. 

Definition 2.5.5. [44]: The map Q : TV C Y —* Y is called a — contraction if 

0 < k < 1 such that xyQ(C) <kXy(C), for any bounded closed subset C of l'V. 

Lemma 2.5.6. (Darbo-Sadovskii) [44]: Let 147  C Y be closed and convex and 0 E TV, 

then the continuous map Q : TV —* W is X — contraction, if there exists atleast one 

fixed point of the map Q. 

Lemma 2.5.7. [44]: For 147(t) = {u(t) : u e W} C X 

If W C C([a, b]; X) is bounded, then for all t e [a, b], (W(t)) < xc(W). 

If W is equicontinuous on [a, b], then (W(t)) is continuous for all I E [a, b] 

Also, 

xc(I'V) = ,s'up{(l'V(1.)). I E [a, 1.] } 

If 14/ C C([a, b]; X) is bounded and equicontinuous , then for all I e [a, b] X (ll'(I)) 

is continuous. Also, 

x(f
I I 

W(s)ds) < 
I 

X (W(s))ds I C [a. b] 
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1'C([O, a], X) denotes the space of all normalized piecewise continuous function 

from [0, a] into X. Specifically, it is the space I'C comprising of all functions it 

[0, a] - X such that u is continuous at I Ij, u(I) = u(I) and u(I) exists 

V i 1,2......n. It is clear that I'C associated with the norm IIa;IIpc = .sup€jJIx(/)II 

is a Banach space. For any x E PC 

I x(t), I E (ti, t+i]; 
(2.5.24) x(t) = 

x(t), I = t, i = 1,2,...,n. 

So, 1 E C([I, t+],  X). 

1'C([O, a], X) denoting the space of all normalized piecewise continuously differ- 

entiable function from [0, a] into X endowed with norm 11.xIl pc = su.pj IIx(i) + 

sup€jIIx'(t)II is a Banach space. 

Lemma 2.5.8. [44] : For W(t) = {u(t) : a e W} C X; 

If W C PC([a, b]; X) is bounded, for all I E [a, b], (W(t)) < xpc(W) 

If W is piecewise equicontinuous on [a, b], then (W(I)) is piecewise continuous 

for every I E [a, b]. Also 

- xic(IV) = s'up{(i'V(t)),t E [a,b]} 

If W C PC([a, b]; X) is bounded and piecewise equicontinuous, for all I E [a, b] 

(W(t)) is piecewise continuous. Also 

Ja' 

t 

fa 

t 
x(l'V(s)ds) (l'V(s))ds I E [a, b] 

Lemma 2.5.9. [44]: If the semigroup S(t) is equicontinuous, then for all I c [0, a] the 

set {f S(t - s)u(s)ds : IFu(s)II ii(s) for a.e. s E [0, a]} is equicontinuous. Here 

il E L([0,a];R), 

Condensing operator: 

Definition 2.5.10. Suppose X1  and X2  to be the Banach spaces and pi  and p2 be 

the measure of noncoinpactncss in X1  and X2, respectively, taking values in (Q, ), 

(a partially ordered set) . A continuous map P : D(P) C X1  —+ X2 is said to 

be (, 2)-condcnsing whenever B C D(F), 1 (B) 2(F(B)) implies that B is 

precompact. 
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In other words, F is (yr,  p2)-condensing in the proper sense if for any set B C D(F). 

whose closure is not compact, we have 

,c2(F(B)) <c1(B). 

Condensing operators contain both compact and contracting operators as special 

cases. 

2.6 Basic Concepts of Stochastic Analysis 

We first recall some concepts from general probability theory. 

Definition 2.6.1. Suppose ci to be a given set. A u-algebra F on ci is a collection of 

subsets of ci with the following properties: 

0 E F; 

F e F FC  e F, where Fc = ci - F is the complement of F in ci: 

F1 ,F2,..EFF:= U 1 FEF. 

Then (ci, F) is said to be a measurable space. 

If F1  and F2  are two u-algebras of subsets of ci, by F1  VT2  we denote the smallest 

u-algebra of subsets of ci which contains the u-algebras F1  and F2. 

By B(Y), we denote the u-algebra of Borci subsets of TR', i.e. the smallest 

u-algebra containing all open subsets of W. 

For a family C of subsets of ci, u(C) will denote the smallest u-algebra of subsets 

of ci containing C, u(C) will be termed the u-algebra generated by C. 

Definition 2.6.2. A probability measure P on (ci, F) is a map P : F - [0, 11 such 

that 

1'(0) = 0, P(ci) = 1. 

If F1, F2,.. E F are disjoint, then 

F) = P(F). 

If F1, e F, then 

P( F) P(J). 1  
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Definition 2.6.3. Then ([, F, P) is said to be a probability space. 

It is known as a complete probability space whenever F consists all the subsets 

B of Q with P-outer measure zero, i.e. with 

P* (B) = inf{P(F); F E F, B C F} = 0, 

where P represents the outer measure of B. 

Definition 2.6.4. Let (Q, .F, P) be a probability space. A function Y Q -+ R is 

known as F-measurable whenever 

Y-'(U):={wEcl: Y(w)EU}EF, 

V U E where U is any open set. 

Definition 2.6.5. Let (2, F, P) be a probability space. A mapping X : 1 -* lR is 

said to be an n-dimensional random variable if for each F E B, we have 

X'(F) E.F. 

The random variable X is also F-measurable. 

Let F € F. Then the indicator function of F, 

Ii, wEF 

10, wF 

is a random variable. 

Lemma 2.6.6. Let X: Q I1' be a random variable. Then 

F(X) := {X 1(F) F E B} 

is called the o-algcbra generated by X. This is the smallest sub-o-algcbra of F with 

respect to which X is measurable. 

Definition 2.6.7. If j IXIdP < oo, then the number 

E[X] = fo XdP 

is called the expectation of X (w.r.t. P) 
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Definition 2.6.8. A stochastic process is a parameterized collection of random vari-

ables {X(t)I t > 01 on a probability space (, F, P) and taking values in lR. 

For every fixed 1 > 0, we get a random variable 

w—*X(t,w); wE1. 

Again, fixing w e Q, the function 

i —* X(t, w); t > 0, 

is called a path of X(t). 

Usually we denote a stochastic process by {X(t), I E .1 C l}, X = {X(I)},.j  

or X(I), I e J, the dependence upon the second argument co being omitted. 

Let J C R be an interval. Now, we state following result which is used to stud 

the stochastic process. 

Definition 2.6.9. (i) The process X = X(t), I E J is continuous if for a.a. w, the 

functions X(.,) are continuous on .1. 

X is called to be right continuous if for a.a. w, the functions X(., w) are right 

continuous on J. 

The process X = {X(I) : I e J} is continuous in probability if t, -* to  with 

t, to  E J implies X(t) _*1'  X(to). 

X is said to be a measurable process if it is measurable on the product space 

with respect to the u-algebra 13(J) 0 F, 13(J) is a u-algebra of Borel sets in J. 

Definition 2.6.10. Suppose (L F, IP) to be a probability space. A filtration {F( I I C 

J} is a weakly increasing collection of u-algebras on Q and hounded above by F, 

i.e. for s, I E .1 with s < t, 

FcF,cF. 

A stochastic process X is said to be adapted to the filtration if, for every I J, 

X(t) is F-rneasurabIe. 

Definition 2.6.11. The filtration is said to be normal if 

F0  contains all B E F such that P(A) = 0, 

F = F,4., I C J, where F,.- denotes the intersection of all . for .s > I. 
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- Definition 2.6.12. Suppose X = {X(t) : t E J} to be the stochastic process. The 

natural filtration for process X is the filtration, where F1  is generated by all values 

- of X(s) up to time s = 1, i.e. Tt.  = a({X'(s)(A) •.s < 1, /1 e }). A stochastic 

process is always adapted to its natural filtration. 

Let us consider a family F = {F : t G J} of a-algebras F1  C F with the property 

that 11 < 12 gives F C 

Definition 2.6.13. A continuous stochastic process 147(1), 1 > 0 is called a standard 

l3rownian motion or a standard Wiener process if: 

1,17 (0) = 0, 

147(1) is a almost surely continuous stochastic process with independent mere-

inents, 

EU/(t) = 0, 1 > 0, and EIW(t) - W(s)I' = It - sI for I > S > 0. 

Definition 2.6.14. An n-dimensional stochastic process X(t) = (X'(t), , X'(t)), 

I > 0 is called an n-dirnensioiial standard \'\Tiencr process if each process 1,1, t(1) is 

a standard Brownian motion and the a-algebras a(W(t) : I > 0), 1 < i < n are 

independent. 

Definition 2.6.15. Suppose that (X, d) denotes a metric space, and let C c R. A 

function /1: C —* X is said to be a cdlhg function, if V 1. E C 

/3(1—) := liin tt  B(s) exists; and 

. : lim81 /3(s) exists and equal to f(t). 

i.e., /3 is right-continuous with left limits. 

Definition 2.6.16. A bounded linear operator T over a separable Hubert space II is 

called the trace class whenever for every orthonormal bases {Ck}k of II the sum of 

positive terms 

11T11 = TrITI = < (T*T)J 2ek , ek  >, 

is finite. In this case, the sum 

T'r(T) = E <iek,ek > 

is absolutely convergent. It is independent of the ortlionormal basis. It is known as 

the trace of T. 
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A linear bounded operator T: H —* H is said to be Hubert-Schmidt operator 

if IITeklI 2  
We consider X and K to be two separable 1-lilbert spaces. Suppose fl7 .(i) (n = 

1, 2,...) be a sequence of real-valued one dimensional standard Brownian motions 

mutually independent over (cl. F, P). 

Let c,,  be a complete orthonormal basis in K. Then Q e L(K, K) is the operator 

defined by Qc = )c with finite trace Tr(Q) = A co. We define 

00 

W(t) = j /58(t)c(t), t > 0. 
n= 1 

W(t) E K is the Q-Wiener process. .F = cr(W(s) : 0 <s < t) denotes the filtration. 

We denote FT = F. 

E L(K, X). denotes a Q-Hilbert Schmidt function, if 

IIII ~ = Tr(Q) 
= 

lI/ cnII2 0°. 

LQ(K, X) with the norm =< , > is a Hubert space. 



Chapter 3 

Controllability of a Functional 

Differential System 

In this chapter, controllability of functional differential system with bounded delay is 

studied. We removed the use of analytic selnigroup and compactness of the nonlinear 

- function. The limitation of non-existence of the inverse of controllability operator 

is overcome by assuming a geometric relation between the range of the operator 13 

• and a subspace associated with the fundamcnta.l solution. An example is studied to 

Sul)Stafltiate the results. 

3.1 Introduction 

The controllability of infinite dimensional systems represented by nonlinear evolution 

equations is widely investigated in various articles such as [39],[70],[156], etc. 

Chang and IAn [60] established the existence of mild and strong solutions of 

a neutral differential equations involing nonlocal conditions. The authors used 

Sadovskii fixed point theorem combined with compact amialytic semigroups of uni-

fornily bounded linear operators. 

The use of fractional operators, analyticity and compactness to prove these re-

sults, imposed severe restrictions on the semigroup as well as the nonlinear part of 

the system. Interestingly, the results for controllability of impulsive functional dif-

ferential equations with deviated argument are not abundantly available. To remove 
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the above limitations, is one of the motivations of this chapter. 

The approximate controllability of a class of functional dii lerential equation in-

volvmg deviating argument and finite delay is discussed. Sufficient conditions for 

approximate controllability are derived by assuming the approximate controllability 

of the linear control system. Schauder fixed point theorem is used. We proceed by 

establishing a. connection between the reachable set of linear control problem and of 

the sernilincar delay control problem coupled with (leviating argument. 

3.2 Functional Differential Equation with Dcvi-

ated Argument and Bounded delay 

In this section we study the approximate controllability of the functional differential 

equation with finite delay and deviated argument, which is illustrated as follows. 

= Ax(i) + A 1 x1  + Bz(t) + f(/.. x,. x(a(x(t), 1))).1 E J = [0, 
dt (3.2.1) 

x(t)=c(t),—h<t < 0 

where x(t) E X and u(1) E U X and U being Hilbert spaces. Let Z = L2 ([0 ]; X), 

= L2([ — h, r]; X), 0 < h. < T and Y = f 2([0, r]; U) be the corresponding function 

spaces. A : D(A) C X — > X is a closed linear operator which generates a strongly 

continuous semigroup T(t). A1  is a bomuided linear operator from C([—h, r]; X) to 

L2([0, r], X). B Y —* Z is a hounded linear operator. When x : [—Ii, r] —> X is 

a continuous function then xt (.) is denoted by x(0) = x(1 + 0), 0 e [—Ii, 0] and 

E C([ — h, 0]; X) . Xt  G C([ — h. 01, X) a Banach space of all continuous functions 

from {—h. 01 to X with norm 

IIXtIIc := supoEl_,l,o]IIxt(G)jlx = .9upoEI..11,ol11x(/. + O)IIx for t. e (0, r]. 

(.L(J, X) = {n. E C(.J, X) i > 0 such ,Iut/, II?t(t) — mt(.$)Il < I'l. — ... Vt, .s E 

J}. Simple Lipschitz conditions are required to study the differential equation with 

deviated argument. 
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3.2.1 Existence and uniqueness of mild solution 

Let us state some definitions and lemmas which are used in proving the existence 

and uniqueness of the mild solution and approximate controllability of (3.2.1). In 

equation (3.2.1) if we put f 0 the resulting equation without the delay term is 

called the corresponding linear system (3.2.2) 

dx(t) - Ax(t) + Bu(t), t E [0, 7 ] 
di - 

x(0) = /.(0) E [—li, 0] (3.2.2) 

Let us consider the linear delayed system 

dx(t) 
= Ax(t) + A1x, I [0, ] dl (3.2.3) 

xo = E[—h,OJ 

Let x(L) be the unique solution of system (3.2.3). Let £(X) denote the Banach 

space of all bounded linear operators on X. Define a map S: J —* £(X) by 

{  
S(0(0) 

x(i), I > 0; 

= 0, < . 
(3.2.4) 

r1Iefl S(i) is called the fundamental solution of (3.2.3) satisfying 

S(t) = T(t)0(0) + [T(t — s)A1 S(s + O)ds, t > 0 
Jo (3.2.5) 

S(0)=I,S(1)=0. —h<i<0 

it follows from [1691 that 8(1) is the unique solution of (3.2.3). It can be easily 

shown that 

S(I) < Koexp(KOIIA1IIT) :=  Al 

where {rnaxllT(I)II. I, E [0, ]} = K0. 

rIheI.efore  the mild solution of semnilinear control system (3.2.1) is defined  as 

Definition 3.2.1. The function x : (—h. r] -* X is said to be a mild solution of 

(3.2.1) if x(.) C(.J, X), x(1) = (I) for I E [—h, 01 and it satisfies the integral 

equation. 

J( ) 

t

x(t) = S(I)Q(0) + 8(1 - s)Bu(s)ds + 
JO

S(t - s)f(s, x, x(a(x(s), s)))ds, t E I 

(3.2.6) 
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and the mild solution of the corresponding linear system with delay and control 

term 

dx(t)  

dl 
= Ax(t) + A1 x, + 13u(t). 1, E [0, rl 

(3.2.7) 

x0 =q e[— h, O1 

is defined as 

t 
X(t)  =S(t)(0) + J S(t - s)Bu(s)ds, t € [0, r]  

o (3.2.8) 

x(t) =(t), —h < t <0. 

Definition 3.2.2. The set given by Kr(f) = {x(T) E X x E Zh} is called 

reachable set of the system (3.2.1) . K,-(0) denotes the reachable set of the associated 

linear system (3.2.7). 

Definition 3.2.3. The system (3.2.1) is called approximately controllable whenever 

K(f) is dense in X. The associated linear system is approximately controllable 

whenever K(0) is dense in X. 

Let us assume that 

(Hi) The nonlinear function f: J x X x X -+ X satisfies Lipschitz condition, 

IIf(t,xi,zi) - f(t,x2,z2)II P(IIxi - X2II + lizi - z211) 

for all xi , x2, z1, z2  E X. I E (0, r] and EJ a constant g > 0, 

such that llf(s, 0, x(a(x(0), 0)))jI < g. V s E J 

(H2) Let a X x - R satisfy the Lipschitz condition a(xi, s) - a(x2, s)I 

LaIIXi - X2I1 and a(., 0) = 0 

Lemma i. The fundamental solution S(t) is bounded. 
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1'roof Sincc 

IIS(t)II 5Ko  + KoIIAiII f IIS(s + O)IIds 

rt+o 
<Ko +ko IIA i IJJ IIS(u)IIda 

<1(0 + IAiIIKo fIIS(u)IId (3.2.9) 
t+h 

<K0  + K011A111 fo IIS(u)IIdo 

IIS(i)II Ko cxpKo IIAi II(L+h) K0(1+d)expK(r+h) = M 

inax{IIS(t)II : t E [0,r]} = M 

hence the fundamental solution is bounded. 

Lemma 2. If the Co —sernigroup T(1) is compact then the fundamental solution S(t) 

is compact. 

Proof: Let us define the sequence of operators S(t) on [—Ii, r]. From the com-

pactness of T(t) and boundedness of hAul we conclude that S is compact. Let 

Il/lull = K1. To prove S(t) - S(t) in £(X) we first show that {S,(t)} is a Cauchy 

sequence in (X). Let us define 

S1(t) = T(t),t e [0,r] 

= 0,t E [—h,0] 
(3.2.10) 

S flf i(t) = T(t) + I T(1. - s)S(s + 9)ds, t E (0,T], 0 E [--h, 0] 

= 0,t E [—Ii,O} 

for it = 1,2, 

Therefore, 

IIS2(1) - S1  (L)l I 1 JIT(t - s)IIIIA1I IIIS(s + 0)Ilds 

i 0i 1ivit (3.2.11) 

llS+i(t) - S(t)Il I('(M1r -* 0 as, n -4 0 
ii! 

Thus {S,,(i)} is a cauchy sequence. As L(X) is the Banach space of all bounded 

linear operators on X, I an operator S(t) E £(X) such that S(t) - 8(1) uniformly 

on [0,r] and hence 8(t) is compact Vt e [0,r]. It is easy to check that S(t) is unique. 



46 

Now, the equation (3.2.6) is checked to be the unique tnilcl solution of (3.2.1). 

Theorem 1. The system (3.2.1) has a unique mild solution in CL(J,  X) for every 

control u e L2([O,TI;  U) whenever assumptions (111) and (H2) hold. 

Proof: Suppose we define the space CL0([—h,r],  X) = {x E C([ — h,r], X) : x E 

CL([O,-r],X)}. Fix 0 < 1 1  <T such that 

I'Mti (l + 21La)R < Ma5J + MMBTIIuI + MTg + 1 

Define the mapping : CL0([—h. ii], X) —> C,0 ([—h1  ti], X) as 

(x)(i) = S(t)0(0) + f S(t — s)fBu(s) + f(s,x.9 ,x(a(x(s),$)))Jds, I E (0,i j ] 

= (G), 9 E [—h.0I (3.2.12) 

Suppose we take the space B,, = {x(.) E C, 0 ([—h, I 1 ], X) : R, x(0) = 

(0)} endowed with the norm of uniform convergence. For any x E 131, and 

o<ti1, 

IIxtIIc = Sup_h<o<ollxt(0)IIx :5 sup_, <(<t1 IIx(()II x  < R. 

Then 

I (1r) (I) < IV! (0) + It'I IV! ,iTIInl I 

+ / M[IIf(s, x, x(a(x(s), s))) - f(s. 0. x(a(x(0), 0)))11 

+ 11f(.s,0.x(a(x(0),0)))lllds 

A/IIII + MMBTIIUII 

f+ 
M[P(x(s +0) — O + ILa IIX(S) — x(0)ll) + glds 

V! II(0) II + IVIIVIBtlIluIl 

f 

t1 fti 

± 
A'fl'(llx(a)Ild(a) 

± J [A1lLX() — x(0)II + g]ds 
h 0 

iVIçb(0) + ItiM8ti IIuII + !if(t 1  + h)PIIxII + 2A'1t i P1L0 IIxII + gi 1  

M(0) + i'VIM,,ii IjuII + ]'i1(11 + 17.)PR + 21t•II1PIL(L R + g /1  

Let 

Mq + AiM3ti Mi4 + ItI(11  + h)PR + 21tI11 P1La R + g11  < R 
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- Then 

A1I10II + + 9t1  < R(1 - AI(t 1  + h)P - 2AitiP1La ). 

RHS is positive if 

t i (Pi1/I + 2IhI1'1Li(l ) < iti(t + h)P + 2ltitiPlLa  < 1 
1 

1 
< (PM + 2MP1La) 

(3.2.13) 

Hence '1 maps BR into itself when t1  satisfies (3,2.13). Then we prove that is a 

contraCtiO11. Let x1 , x2  E BJ? 

((Fxi )(t) - (1x2)(t) II 
< jo, 

AiIIf(s, xi(a(xi (s), s))) 

- f(s, (x), xl(a(x2(s), .$))) - j'(s, (x2)s , x2(a(x2(s), .$))) 

+ f(s, (x1)3, xi(a(x2(s), s)))llds 

< 11V1P[IIxi (a(xi (s), s)) - xl(a(x2(8), s))II 

+ (1I(x2) - (xi)sll 

+ lli'2(a(:1;2(s), .) - x1(a(x2(s), •)))ll)1 

ti'vJP[lla(xi (s), s) - a(x2(8), s) 

+ IIx2(8 + 0) - xi (s + 0)11 + (11x2 - X1 IIC([_h,1 j);X))] 

< 1J/I(1PLa IIX 1(S) - 

+ PIIx2(t1) - xi(ti) II + Pllx2 - xllIc([...h,ti],X)) 

< Jt'It(lPLa  + 2P)I1:1;2 - X1 IIC([-h,ti],X) (3.2.14) 

So, IlFxi - x2IIc([_/,tl],x) 
< IVIt(iPLa  + 2P) lxi - x2llc(I/1,t11,x). Thus is a con- 

traction mapping. Therefore, has a fixed point in BR. hence (3.2.6) is the mild 

solution oii [—Ii, Ii]. Similarly it can be proved that (3.2.6) is the mild solution on 

the interva.l [t i , 121, 11 < t2  Repeating the above process we get that 

1110  
 

- 
1I 4 :1;i - I:z:2 IIC([-h,t 1 ],X) -i- 21) llrii - :1,'211c(E_h,ti1;x). 

rplllls (3.2.6) is the mild solution on the maximal existence interval [—Ii, t*], t < oo. 

Then we prove that x is well defined in [—Ii, T]. For that when t E [—h, 0], then 



x(t) = (t). Therefore it is bounded. When t E [0, 1*)  thcii 

llx(t)Il :5 M11011 + M / [111113 IIu(s)Ii + PIIx. - Oil 

+ PIx(a(x(s). s) - x(a(x(0), 0)11 + g]ds 

J\,1Ii ,Ii + 11'ii\113r11u(s)il 

+ Mf P[11x811 + iIaiIX(S) - x(0)ii + g} 

Mllll + MMB-rliu(s)Ii 

+ MTP(IIX(0)ii + g) + Al f lllx(,$)lld.s (3.2.15) 

By Groriwall's inequality Ix(1) II IIxtIlc < [MiiIi + MMBYIiU(s) +JtJTI'( llx(0) + 

g)] exp(MrP). Thus lIx(t)Il is bounded. hence x is well defined on [—Ii, r], To prove 

the uniqueness of solution let x1  and x2  be any two mild solutions of (3.2.6) such 

that forte [—h,0], xi (t) = x2(t) = . For I E [0,1*) 

lxi (I) - X2(1) M JO Ilf(s, (x), :1:1 (a(rz:i(s), ,$))) 

- f(s, (X2),, x2(a(xi(s), s)))lids + f(s, (.X2).q , x2(a(xl(s),  s))) 

- f(s, (x2)., x2(a(x2(s), )))Ii 

~ Mf P{lI(xi),5 - (x2)slj + IIxi(s) - X2(S)li 

+ 1La lIX l (5) - 
t 

fo 

t 

~ Al PlIxi (r) - x2(li) ldij + iv! I'Iixi (s) - x2(s) lids 
I 

 

+ Al/ PiLaliXi(S) x2(s)ilds 

~ I f PIlxi() - r2()Iid + A'! / J'(2 ± 1La )ilxi (S) - x2(8) lids 
.0 

Since uniqueness of the mild solution is proved on [—Ii, 01 we get 

Ilxi (1) - x2(t)ii <M fP(2 + IL11 ) lxi (s) - x2(8)iids 

Hence by Gronwall's inequality x1(t) = x2 (t) for all t E [—h, r]. 

3.2.2 Approximate Controllability 

Define a linear operator L from Z to CL([0, TI, X) by Lx = .1 S(i - s)x(s)ds, I E 

[O,T]. 
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- Lot I(x(t) = j' S(t - s)x(.$)ds, t E [0, r]. 
Z can be decomposed uniquely as Z = N0(L)1'%(L) whore N0(L) is the null space 

- of the operator L and N0(L) is its orthogonal space. 

Let us assume 

(113) V p c Z, I a function q E R(B) such that Lp = Lq. 

The approximate controllability of the corresponding linear system (3.2.2) follows 

from the hypothesis (113). Then it is to be proved that the linear system (3.2.7) 

with finite delay is approximately controllable. Next by assuming that the linear 

system with delay (3.2.7) is approximately controllable, the system (3.2.1) is to be 

proved to be approximately controllable using Schauder fixed point theorem. Define 

the operator F CL0([0, rl, X) - L2([0, r], X) as 

P(x)(t) = f(t, Xt, x(a(x(1), L))); 0 < t < r. 

Hypotheses (Ill), (112) imply that P is a continuous map. Hypothesis (113) implies 

that for any p E Z, El a q E I?(13) such that L(p—q) = 0. Therefore p—q = n. e iV0(L) 

which implies that Z = AT0(L) 0 I?(I3). rflus  it follows that the existence of a 

linear and continuous mapping Q from N(L) into R(B). It is defined as Qu* = 

v where 'v is the unique minimum norm element v E (u*  + N0(L)) fl R(13), i.e. 

IIQu*II = lvii = rnin{iivli : v E {(u* ± N0(L)) fl R(B)}. (113), implies that for every 

v E {u*  + N} fl R(13) is not empty and every z E Z has a unique decomposition 

z = n + q. Thus, the operator Q is well defined. Moreover, ilQii = c for some 

corist alit C. 

Let us consider the subspacc 11/10  of C10 ([0, 4 X) which is defined as 

I E CL0 ([0,TI,X) : iii(t) = Kn(1), n E No(1); 0 I r 
= (3.2.16) 

?n(l) = 0, —h < t < 0;  

Let 

M0  -4 11110  

defined by 

{ 

Kn, 0 < I <r; 
(3.2.17) 
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where n is given by the unique decomposition of P(x+m)(t) = n(t)+q(t), n E N0(I) 

and q E 11(B). 

The following assumption is made 

(Al) I?(A1 ) c 11(13) 

Theorem 2. The operator h has a fixed point in M0  if M(1 + c)Pi-  < 1. 

Proof: Since S(1) is compact so K is compact and f x  is compact. Let z E Z then 

z = q + n, n E N0(L), q E R(B). Also 1mhz <(1 + c)hhzhlz (sec [158]). Let 

13r ={vEMo :llvll <r}. 

Let rn E Br. Let 111(0,0,  (x + m)(a(in(s), 0)11 < I f  Suppose on the other hand 

r < IIf(m)II =Il1II f IIS(L - s)n(s)hlds 

i\1(1 +c)IIF(x  + m)hhzds 

M(1 + c)[lIf(s, (x + m), (x + m)(a((x + m)(s), s)))hI 

- 11(0,0. (x + rn)(a(m(s). 0))))hI +11 f(° 0, (x + m)(o (rn(s), 0)))) IN 

<M(1 + c) j P[Il(x + rn)(s +0) - Oil  

+hI(x + nz)(a((x + rn)(s), s)) - (x + rn)(a((in)(s), 0))II + ljlds 

<M(1 + c) 
f P[IIxII + IlrnhI + lla((x + m)(s), s) - a(rn(s), 0)j ± ljlds 

~111f(1 + c) 
.L P[IlxhI + r + lLa hI(X + rn)(s) - m(s)Il + 11]ds 

<M(1 ± c) j P[hlxll + r + 1La IIXhI + l f ](15 

•.......M(1 c)P(IlxhIT + rr + 1La IlxIIT + 11T) 

(3.2.18) 

Dividing:byr..and taking limit as r tends to oo we get a contradiction. So f maps 

Br into itself. Therefore by Schauder fixed point theorem it has a fixed point. 

Theorem 3. Suppose the linear control system (3.2.2) 

dx(t) 
= Ax(t) + Bu(t) 

dt 

x(0) = q5(0) (3.2.19) 



is approximately controllable then the linear delay control system (3.2.7) 

dx(t) 
dl 

= Ax(t) + A1x + Bu(t) 

x(t) = (l), —h < i < 0 

is controllable if assumptions (Al) hold. 

Proof: Consider 

= Ay(t) + Bu(t), t E [0,r] 

y(t) = (t). t E [-ii, 0] 

The mild solution of equation (3.2.20) is as follows 

y(l) = T(t)0(0) + 1 T(t - s)Bu(s)ds, 1> 0 

y(t) = (t), t E [—h,0 

Since R(A1) C R(B). So V c > 0, 1 a, e U such that 

IIAiy8 - Bwllz < 
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(3.2.20) 

(3.2.21) 

Let x(t) be a solution of linear delay control system corresponding to control (u - w) 

satisfying 

x(t) = T(t)0(0) + i T(I - s){B(u - w) + Ai x3 }ds, t > 
(3.2.22) 

X(1) = c(t), I E [—It, 0] 

If I E [—It, 0], then tTR,AL 

xo(t) - yo(I) = 0 CCN.O. 

and if t e (0, r] then we get 

Q: 
x(t) - y(t) 

= JO T(l - s)[—Bw(s) + Ai x] 

= JT(t - s)[—Bw(s) + Aiy3]ds 

JO 
+ T(t - s)[A1 x - Aiy3]ds 
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Taking norm on both sides 

IIx(t) - y(t)Il 5K010 IIBw(s) - Aix3tIds 

+ Kof I1A1x - Aiy.IIds 

<Korlll3w(s) - A jX3  + K0 f KdIx - ysllds 

<K0cr + K0 
f K1Ilx. - yIds 

<K0CT + Ko / KiiIx() - y()Id 

where IJA I II < Ki since A1  is bounded linear operator from CL0([—h,-rl, X) to 

12([o, r], X). This implies 

x(t) 
- y(l)II Kocr + i(oi(i/ Jx() - y@?)IId (3.2.23) 

Using Gronwall's inequality 

IIx(t) - y(t)jJ :5 K0€rexp(I(o I(1 {r -t- h}) 

Since RHS depends on . so it can be made as small as possible. This implies that 

the reachable set of linear delay control system is dense in the reachable set of the 

linear control system (3.2.2) which in turn is dense in X as (3.2.7) is apprroxirnatcly 

controllable. Hence the linear delay control system is controllable. 

Theorem 4. The semilincar control system (3.2.1) is approximately controllable if 

the linear delay control system (3.2.7) 

dx(t) 
- Ax(t) + A1x + Bu(t) 

dt - 

X(I) = cb(t), —h < t < 0 

is approximately controllable 

Proof: Let x(.) be the mild solution of the linear delay control system (3.2.7) is 

given by 

x(t) = S(t)0(0) + KBu(I), t E (0,rl 

x(t) = q5(t),t E I—h,01 
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We prove 

Y(I) = x(t) + rno(t) 

to be mild solution semilinear problem (3.2.1). Since 

KF,L (x + mo)(t) = Kn(t) + Kq(t) 

operating K on both sides at rn = m0, fixed point of f. 

KFj(x+mo)(t) = Kn(t)+Kq(t) 

= rt(t) + Kq(t) (3.2.24) 

Add x(.) to both sides and using y(t) = x(t) + rno(t) 

x(t) + KF,(x + rno )(t) = x(t) + rno(t) + Kq(t) 

x(1) + KFh(y)(1) = y(t) + Kq(t) 

= y(t) = x(t) + KFh (y)(t) - Kq(t) 

=> ij(t) = S(t)cb(0) + K(Rn - q)(t) + KPj (y)(t) (3.2.25) 

This is the mild solution of semilinear problem with control (Bu - q). By following 

the same proof in [1551 we get the following conclusion that since q E R(B) there 

exists a v e U such that IIBv - q1I < c for any given f > 0. Let x be a solution 

of the given semilinear delay control system (3.2.1) corresponding to the control v. 

Then as shown by [139] we have IIy() - x,(r)lI = IIx(r) - x(r)II . This implies 

that x(-r) E K(f). Then it follows that K(0) C KT(f). Thus (3.2.1) is approx-

imately controllable since the corresponding linear system (3.2.7) is approximately 

controllable. 

3.2.3 Example 

Let us consider the heat control system with finite delay 

Dy(t,x) 
= 

02y(t,x) 
+y(( -t- O,x) + Bu(t,x) + f(t,x(t + O),x(a(x(s),$)))ds 

Ut (J.1 

0<t<T, —li<0<0, 0<x<7r 

y(t. 0) = y(t, r) = 0, 0 < t < T 

y(t,x) = e(x), —h <1 <0, 0 <x <-. (3.2.26) 
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Let X = L2(0, 7r) and A = -. I)efine 

D(A) = {y e X : y, are absolutely continuous, 
dx 

e X andy(0) y() = O}. 

For y E D(A) ' = < y, 0, > on  and Ay = -
El  2 <y, n> thu. where 

= sinnx. 0 < x < ir, n = 1,23... is the eigcnfunction corresponding 

to the cigenvaluc An = —n2  of the operator A. 0, is an orthonormal base. A 

will generate a compact scmigroup T(t). such that T(t)y = 
2,  

< y, > 

n 1. 2, ... V y E X. Let the infinite dimensional control space be defined as 

U = {u : = 
El 

fl=2 u < oo} with norm III' = (2 Thus U 

is a hubert space. 

Let B : U —* X : Bu = 2u21  + 2 11101 for u = uthr, e U. The bounded 

linear operator B: L2(O, T: U) -* I 2(0, T; X) is defined by (Bu)(t) = Bu(t). Then 

this problem (3.2.26) can be reformulated into an abstract semnilincar dilferent ial 

equation with deviated argument and finite delay by substituting I = A1. if the 

hypotheses (ill) — (113) and assumption (Al) are satisfied then it can be shown 

that this system (3.2.26) is approximately controllable. 

3.3 Conclusion 

We proved the existence and uniqueness and approximate controllability of the func-

tional differential equation (3.2,1) with deviated argument and finite delay by using 

Schuader fixed point theorem, fundamental solution instead of CO  scmigroul) and 

by establishing a geometric relation between the range of the operator B and a, 

suhspace related with the fundamental solution. 



Chapter 4 

Existence of Solution for a 

Second-order Neutral Differential 

Equation with State Dependent 

Delay and Non-instantaneous 

Impulses 

In this chapter the existence of mild solution of a class of second order neutral dif-

ferential equation invoving state dependent delay and iion-instantaneous impulses is 

investigated. Hausdorff measure of noncompactness is used. Darho Sadovskii fixed 

point tlieorcni is applied to prove the existence. Also, some restrictive conditions 

such as the compactness assumption on the associated cosine or sine family of oper-

ators and the Lipschitz conditions on the nonlinear functions are replaced by simple 

and natural assumptions. In the last section we also study an example to illustrate 

the I)rescnted result. 

4.1 Introduction 

Non-instantaneous impulses occur abruptly at certain time points and continue their 

actioii for a specified duration of time. The study of non-instantaneous impulsive 

55 
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differential equations is significant to varied fields of applications like in the modeling 

of stage by stage rocket combustion, maintaining hemodynamical equilibrium, etc. 

A particular application is the abrupt injection of insulin in the bloodstream with 

consequent gradual absorption since it acts for a finite interval of time. Differential 

equation with non-instantaneous impulses are recently studied by I-Iernanclez et.al  

[93]. 

We study the second order partial neutral differential equation with state depen- 

dent delay modeled in the form 

(x(t) - g(t, Xt)) = Ax(t) + f(t, p(txt)  x'(i)), I E (si, t 11, i = 0......n 

XO = 

X,  (0) = EX, 

x(t) = J(t,x), t G (t,s1], i = 1,2,...,n 

x'(t) = •J(t, Xt),  I e (ti, si], 1,2,..., n  

where A denotes the iiifinitesiinal generator of a strongly continuous cosine family 

{C(i) : I c R} and S(i) denotes the associated sine function. Here X is a Banach 

space. The history valued function x : (—oo,0] -* X. x(0) = x(t + 0) takes 

values in some abstract phase space q3 defined in chapter 2 as Definition 2.2.12; 

g, f, .J. J, i = 1, .., n are defined in the following section. 0 = 10  = .s0  < t1 s < 

t2. ----  < t, < s < t,,j. = a are prefixed numbers. Let .J = [0, a]. 

Let iV, N be certain constants such that IIC(t)II < N and IIS(I.)II <N for every 

t e J = [0, a]. For more details refer books by Goldstein[84] and Fattorini[75]. 

Pc([0, a], X) denotes the space of normalized piecewise continuous function from 

[0, a] into X. PC consists by all functions it : [0, a] -* X such that u is continuous 

at I t, n(t) = u(I) and u(t) exists for Al i = 1, 2, ..., ri. PC associated with the 

norm IHIpc = sup,€.,llx(I.)II is a Banach space. For any x E PC 

I x(t), I E (ti , I+i]; (4.1.2) = 

I = t, i = 1,2,...,n. 

So, i E C([t1 , t, 11. X). 
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Lemma 4.1.1. [44] If W c I'C' (I, X) is bounded and the elements of 14" are equicon-

tinuous, then 

Xc' (Mi) = max{sup(EJXI'V(t), sup€jx(W(t))} 

where Xpc'  denotes the Flausdorif measure of noncompactness in the space PC' (J. X). 

4.2 Main Result 

The mild solution of the problem (4.1.1) is as follows. 

Definition 4.2.1. A function x : (—oo, al —* X is a mild solution of the problem 

(4.1.1) if x0  = , x'(0) = , x(.)Itoi E PC1 (X), x(t) = J'(t, Xt),  V t e (ti , si], i = 

n. x'(t) = J?(t, x,), I € (t.. si ], i = 1,2,..., 11 and 

x(I) = C(t)((0) — 9(0, )) ± S(I)( 
- ) + g(t, Xt) 

+ J AS(t — s)g(s, x)ds 

+ f S(t - s)f(s, Xp(s,x,), x'(s))ds, t E [0, 1,] 

x(t) = C(I - s1)(Jj1(s, xe,) - g(Sj, x. 1 )) + S(t — Si) (J(s, x) - g'(sj, x.9 )) 

+ g(t, x1) + f AS(i. — s)q(s, x.)ds + J S(t — .$)f(s, Xp(s,x,), 

for t E [Si,  t-F,], i = 1..... n (4.2.1) 

where gg(t, Xt)1t0 = ij, where r is independent of x. To prove our result we 

always assume p : I x 123 - (—oo, al is a continuous function. In this section 

(—oo, a] —p X is the function defined by Yo = q5 and y(t) = C(t)((0) - 

g(0, )) + S(t)( — ij) on [0, t,1. Clearly Ilyt 1j S  < KallYlla + MalIIl where lJa = 

sUPo<t<a  lty(t) II 

Let S(a) be the Space S(a) = {x : (—oo, a] —* X : x0  = 0, x'(0) = 0, xlj E 

PC1  } endowed with norm 1jull  I Ilu II + lu'  . The following hypotheses are used. 

(114,) The function I —* 6t  is continuous from R(p) = {p(s, ) : p(.s, ') 01 

into 93 and 3 a continuous bounded function j4, : R(p) —* (0, oo) such that 

IIcIhB < J4,(t)111I for every I E 

(hf) The function f : J x 93 —* X satisfies the following: 



For every x : (—oo, a] —* X. x0  E and x.j E P, the function f(., it', x) 

I --> X is strongly measurable for cvcry 4' E 113 , x E X and f(t.,...) is 

continuous for a.e. I E J. 

1 an integrable function a : J — [0. +oo) and a monotone continuous 

nondecreasing function f1 : 10,+oo) -+ (0.+oo) such that 11f(1,v,x)1 

c)(IIvII + lxii) Vt E I and V E . 

Suppose D1 (0) = {v(0) : v E D1 }. For a..c. s, 1., E .1 I an integrable 

function 'i : J —* [0, oo) such that 

x'(S(s)f(I, D1 , D2)) < iii(t) SUI)_,, <0<oX(Di(0)). For D2(0) = {v(0) : v c 

D2 }. for a.e. s,t, e J, x(C(s)f(I, D1 , D2)) <772(t) sup_ <o<0  (Da (0)) 

(I-Ig) The function g : I x 93 satisfies the following. 

g(t, .) : 1Z — X is continuous Vt E J. 

If a: : (—oo, a] - X he such that x0  = and xij E PC then tlic fiuic-

tion I —+ g(t, x) belongs to PC and t - g((,xt ) is strongly measurable 

function. 

There exists a function a non decreasing function W g  such that 

ilg(i, 011y :5 mg(1) g(ii4,Ji), for all (I, 4') e J x 113 

The set V(r) = {AS(0)g(s, 4,): 0, s E 1, ib E Br(0. 3)} is precompact in 

X for all r> 0. 

The set {j : v E V(r, g)} is cquicontmuous subset of C([I, X) For 

all i = 1, , n 

1 —* g(t, Xt) is C' on J and jg(i, xe)it=o = 77 where 77 is independent of x. 

The operator P : S(a) —* C(J, X), is a completely continuous operator 

defined as P(x)(t) = 
dt 

g(t,x1 +y) is such that IIPxjj cilxiI+d. Thus, 

the set {Px(t) : XE Sa.t e J} is precompact in X. 

(HJ) (1) For the maps .J,'(i. ) : .1 x -+ X there exist positive constants 

c4,d,d such that 

IiJ(i, v)i( ilvik + d, V j = 1, 2, 
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(2) The maps J(., 'u'), J(., ) are completely continuous V (., ) CE (ti, s1 ] x 

B i=1,...,n, 

c1,(a + 1) + ((N + N)ct + (N ± N)C)Ka  + (c + G)Ka  + 

l(r) 1iinsup — J ((AT, + 1V2)7flq (S) + (N + JV)rn1(s))ds + 

fll (i;Z{f /i (s)ds, f 'r12(s)ds} < 1 

(Hi) There exists a Banach space (Y, II.Iy), continuously included in X with AS(t) E 

£(Y)  X), Vt E J and AS(.)x E C(J; X) for every x e Y. 3 constants N, N, 

such that IIII <Nyllylly, Vy e Y and IIAS(t)II(y,x) , Vt E I 

R.(C(t) - I) is closed and dim Kcr(C(t) - I) < oo, V 0 < t < a 

Lemma 4.2.2. [96]: If y : (—oo, a] —* X is a function such that i/o = and ylj E 

PC(X) then 

IlYp(,y)II (M + I) IIIk ± i O E [0, max{0, s}] }, 

sE IR(p)U[0,a] 

where :To = sup(( _ ) I(t), Al,,, = sup,.€ .;ill(t) and K(1  = maxtejl((t). 

Lemma 4.2.3. [96]: Let condition (112) be satisfied and B C Y. If B is bounded in 

X and the set {AS(L)y : I e [0, a], y E B} is prccompact in X, then B is precoinpact 

in X. 

Proof: Since for y E 13, C(t)y y = A J S(s)ydy = f AS(s)ydy. Tile mean value 

theorem for Bochiner integral implies that 

(?(t)q._ :q E Ix conv(AS(s)y : 0 < .s < I, y E B), where corro is the C0flVCX hull. Then 

by hypothesis (112) the result follows. 

Lemma 4.2.4. [98]: A set B C PC1  is prccompact in PC' if and only if each set 

= 1....,n is precomnpact in C'([IJ+1],X). 

Theorem 4.2.5. If the hypotheses (1I,), (Jif), (Jig), (HI), (111) are satisfied, then 

the initial value problem (4.1.1) has atleast one mild solution. 

Proof: Let F = Ft +F, Vi = 1,... ,nandj = 0,... ,fl 

- t e (1 j,s1 ;i = 1,... 

(Ftx)(t) = (t — Si) IJ(I,x8 ) — g(s j,xs,)] 

• +S(t - s1)[J?(t,x) — I E (s,t +,];i = 1.... 
(4.2.2) 



g(t, ) + f AS(t - s)g(s, ?U)ds 

(Fx)(t) + J S(t - s)f(s, Xp(,), x)ds, I. (.'j. '+i1; i = 0, n 

0, 1 V (si, t + },i = 0,... n. 

(4.2.3) 

where YO  =q5 and =x+yon J. 

I E (I,sj1;i = 1. 

= AS(t - s1)[.J' (I. - g(sj, .x)J 

+C(t - s)[J(t, x8 ) - g'(sj, x)],  I C (si, t+i]; i = 1. n 

(4.2.4) 

Px(t) + J' AC(t - 

(Fx)'(t) = ± f C(t - s)f(s,;(3, ) )ds, I E (si, I+i];j = 0,... , 

0, 1Ø(s,1 +ij,j=0,... ,n. 
(4.2.5) 

It is easy to check that 

IILtII! < Kallylla + MaII0I1,  + KaIIXIIt, 

where IIxIIt = supo<<tIIx(s)II. 

lXp(s, )II k : (Ma  + J)IIcII + Kallylla + Kallxlla. 

Thus F is well defined and has values in S(a). Applying Lebesgue dominated con-

vergence theorem, axioms of phase space and the hypotheses (Hf), (Hg) and it can 

be easily proved that F is coiitinuous. 

Stepi : We assert that there exist k > U such that F(Bk) C Lk, where '3k = {x e 

S(a) liXila k}. In the following we define k := Kak + IIYsII = Kak + Kaltylla + 

MaIIII. When we assume that the assertion is false, then V k > 0, there exists 
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xk E BA.. and tk € (si, t for some j E {O, , n} such that k < IIFxk(tk)II1. Then, 

k < IIFx(t)) II + JFx(t)) + II (Fx)'(t)  II + II (Fx)'(t)  II 

cpa lI x II  + C+ N1 ]
Ik  
 rng(s)uIJ sII!2 ds 
Si 

- ftk 

+ NJ J193  + II(s)II)ds + (Nc + Nc)IIx5JI 
Si 

f 1'k 

+ CpX1 + c + N2 ] rn.q(s)II? ks IIds 
Si 

tk 

+ N c(s)l( IIp(.9, )  Il l + Ix(s) II) + (c + ATc) IIx II 
J.

" 

< c(a + 1)k + c + ((N + N)c + (N + N)C)Kak 
tk  

+ (N1  + N2) j'j 
mg(s)c(KaIIyIIa + AlaIIII + Kak)dS 

- 
ftk 

+ (N + N) J a(s)dsl(KaIIyIla  + (Ma  + J)IIII + Kak + k)ds 
Si 

< (a+1)k+c+((N+)c+(N+N)c)I(ak 
ftk 

+ 
 J

((N1  + N2)rn9(s) + (N + N)m1(s)) 
Si 

x c(Ka IJyIIa  + (Ma  + + Kak + k)ds (4.2.6) 

hence 

1 < cp(a+1)+((N+)c+(N+N)c)Ka  

(1 aIIYIa + (Al. + + Kak + k) 
+ 1irnSUp_> 

k 
' tk 

x 
 J (( + 2)rn(J (s) + (N + iV)m j(s))ds 

< c(a +1) + ((N + N)c + (N + 

+ 1irnsup- J ((N1  + N2)mg(s) + (N + N)mj(s))ds (4.2.7) 
T 

which is a contradiction to the hypothesis (Hi). Similarly, suppose there exists 
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Xk E Bk and tk  E (t2 , sil for some i E {1, ,n} such that (FX)(tk) > k. Then. 

k < IRFxk)(tk)III = IIj 1 (tk ,  xktk )I + lIJ(tk,k)II 

~ {c?F + d} + {II?Tktk I + (1} 

< {C(KaIIylIa  + MaII3 + Kak) + d} 

+ {c(KaIIyIIa  + MHI + K0k) + d} (4.2.8) 

Flence, 

1 <c 1'a (4.2.9) 

which is a contradiction. Hence F(Bk) C Bk. 

Step 2 To prove that F is a X—contract1o1. Let F = F + [' V i = 1,... , j = 

0,.. ,n be split into F = F + Ft" + F + {F + F ± F}, V i = 1.... ,n;j = 

0, ... ,n 

= C(t - sj)(—g(s,xs ) + 

S(t - s)(.J(s, x3) - g' (s j . x 9 )) 

= J(t,z,,) 

Fx(L)  

Frx(t) 
= IS' AS(t - s)g(s, )ds 

Fx(t) 
= Ls(t - 

The properties of the function g in (Jig) , lemmas 4.2.3 and lemma 4.2.4 imply 

that for all j = 0, ..., n, the set of functions V(k, g)j = { —* [(t, xt  + t)1 : x E 

Bk j = 0,•. ,ri} is precompact in C([s,t +i],X). By lemma 2.5.8(2) xpc(W) 

sup{(W(t)),t e J}. By lemma 2.5.4 (1) for any W C F(Bk) 

Xc' (FW(t)) = Xpc' (g(f, W + y(.)) 

= max{supjxpcg(t, W + ye )), sup j xpcg (1, W + yt)} 

= 0 (4.2.10) 

By mean value theorem for Bochner integral, we derive 

{Fx(t) x e Bk} C t x coriv({AS(h)g(s, ii.') : 0 < Ii, s < 1, Ik''lI :5 k}) 
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{(lbx(j))i : x E Bk} C I x conv({AC(h)g(s, ) 0 < it, s <t, k}) 

This implies {Frx(t) : x E Bk} and {(Frx(t))' : x E Bk} is prccompact in X for all 

t E J. Hence by Lemma 2.5.4(1), 

Xpc' (FrW (t )) = inax{su t€ ixc(J AS(t - s)g(s, V73  + y5)ds), 
Si 

suvt€xc(f AC(t - s)g(s, 1'1/ + y3)ds)} = 0 (4.2.11) 

By lemma 2.5.9 for any W C F(Bk ), since S(t) is equicontinuous so, 14 is piecewise 

cquicontinuous. Hence from the fact that p(s, ) <s, s E [0, a] and lemma 2.5.8(2) 

and xpc(W) = sup{(W(t)), t E [si, t4-11,  j = 0, . . . n} such that for all j = 

0, ,it. 

Xpc' (FCW(t)) = pi (f S(t - s)f(s, Wp(s, )  + y3, 'V'(s) ± y'(s))ds 

= rnax{suVtE JXPc(f S(t - s)f(s, W (8, )  + y, 'V'(s) + y'(s))ds, 

C(t 
- )f(, Wp(s,) + y. ,  W'(.S) + y'(s))}d 

max{sup f 71,(s)snp_ < o<o x'(W(p(s, 3 ) + 0) + y(s + 0))ds, 

•SuLj?tcJ Is
i 

72(s)s?1p_<o<oX(W'(s + 0) + y'(.s + 0))ds} 

rnax{supj f 
(s)sup_ <o<o X(W(s + 0) + y(s + 0))ds, 

SUPtEJ f 1 2(s)sup_ )<o<o x(W'(s + 0) ± ?j'(s + 0))ds} 

max{suptj f m(s) snpo< <8 xFV(r)ds, 

SUPtEJ 
I 

i)2(s)supo<T<SxW(T)ds} 

<rnax{frIi(s)dsf172 (s)ds}XPc1(W) (4.2.12) 

Hence 

xci(F9'V) = sup{xpci(FW(t)), I E [si, tj 11, j = 0, , n} 
LEJ 

xpc' (W)max{

j a 
7 1(s)ds, I 712(s)ds} (4.2.13) 

Jo 
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For arbitrary x1,x2  E Bk and t E (s,i+i] Vi = 1, ,ii 

XPct (Fx)(t) = max{supp0(Fx)(t), supxpc(T X) (1) } 

< max{supj'cconv({C(0)[J'(s,i') - : 0 <0, s < 1, Jk'M < k}), 

- g(s, p)) : 0 < 0. s < /, Il tbIl < k})} 

=0 (4.2.14) 

Since 

and 

S(t - s1)[J'(s,x) - g(s,,x.)] 

e conv({C(0)[J 1(s, ) - g(s, J')1 : 0 < 0, s < t, <k}). 

is precom pact. 

Similarly (F) =0, Vi= 1,... ,nand (F) = 0Vi 1,... .n 

For each bounded set 14" E PC'(.J; X) we have, 

XPc' (FW) xi'c' (FW -I-  FlV + FCW) + Xr'c (FW + FV + F9V) 
pa 

< 0 + 0 + 0 ± 
rnax{J 

1i(s)ds,  J ii2(.$)ds}pct(l'V) 
0 0 

Therefore, F is a X—contraction. Applying Darbo-Sadovskii fixed point theorem 

it is established tha.t there exists a fixed point of F in S(a). So, z = x + y is a mild 

solution of (4.1.1). 

Remark: Our abstract approach permits application to partial differential equa-

tions with instantaneous impulsive term involving nonlinear expression also. 

4.3 Example 

In this section we discuss a partial differential equation applying the abstract results 

of this paper. In this application, q3 is the phase space Co  x L2(h, X) see ([98]). 
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Consider the second order neutral differential equation 

a2 t it 

- I J 

n(t - s,v,a)x(s,v)dvds) 

= 
a2x(t,a) + 

f "?,(I - s)x(s - pi(I.)p2(IIx(t)II, C)d I E [0, a], a E [0, ], 

x(I,0) = x(t,7r) = 0, t e [0, a], 

x(s,a) = (s,a) —0080,0a7r, 

a 
a) = (o), 0 <a <ir, 

at 

x(t)(a) 
= J.  n

il - s)x(s, a)ds, I e (t i, si], i = 1, ..., n (4.3.1) 

where 0 E 111 ([O,ir]), e X, 0 = /.o  = .s0  < t < Sl < t 2,...,i < s, < t,, = a 

Here, X = I 2([0, it]), = J'G0  x L2(p,X), A C D(A) C X -+ X is the map 

defined by Af = f/I with domain D(A) = {f rz X : f' E X, f(0) = f(ir) = 01. A 

denotes the infinitesimal generator (C(L)) jE R on X. A has a discrete spectrum, the 

cigerivalues are —n2, n E N; with corresponding cigenvectors z(0) = ()sin(nO) 

and the following properties hold 

(Cl) Ap = - n2  < 5, z,, > z,, where 0 E D(A) 

(C2) C(t) = cos(nt) < , Z > z —'oo and S(t) = 
sir(nt) 

<, z, > z74 , for 
71=

EX. 

By defining maps p, g, f [0, a] x x X —* X by 

p(t, ') := pm(t)p2(INI'(0)II), 

j0 (.ir 

J J n(s, v, a)i,b(s, v)dvd.s, 
— 0 

0 

f()(a) := f m(s)(s, a, )ds 

the system (4.3.1) can be transformed into system (4.1.1) Assume that the functions 

IR —* [0, co), to. : IR - are piecewise continuous. 

(1) The functions n(s, 'u, a), 8n(s.v,u) are measurable, n(s, v, it) = n(s, r,, 0) = 0 and 
thi 

0 

JO 
Lg :=rriax{( 

ir 

,
)2didsdu) 2 : i 

J

= 0, 1} <00 I
oc  



(an(sTh(T))2ldl) <00 Zq : (j 
h(s) D(71  

The function f JR x JR - JR is continuous and there is continuous function 

f0 jds <00. and ILf(t,(T)Il < ii(.$)(IIaIl + 1(11) 

The functions n E C([O,00);IR) and L (f° (12d.)1/2 < 00, V i 

1,2, ..., ri, j = 1,2 

So, g(t. .), J, (i = i ..., n), f are bounded linear operators. We take Y = D(A). 

Therefore if t : Y -* X is the inclusion then I - AS(t) is uniformly continuous into 

L(Y X) and IVS(t)IILy,x) < 1 for I E [0. a] Suppose u(t)(a) = x(t, a) such that 

xO = 6  and continuous on [0. t) then the right derivative 

0(u) 
= L I v. a)(s, v)dvds + / n(0, v, a)(01  v)dv,  

= 77(7) (4.3.2) 

exists and is independent of x. Hence by assumptions (a) - (c) and theorem 4.2.5 it 

is ensured that mild solution to the problem (4.3.1) exists. 

4.4 Conclusion 

The existence of mild solution of a class of second order partial neutral differential 

equation involving state dependent delay and non-instantaneous impulses is proved. 

Hausdorif measure of noncompactiicss and Darbo Sadovskii fixed point theorem 

were used to replace some restrictive conditions such as the compactness of cosine 

or sine family of operators and the Lipschitz conditions on the nonlinear functions. 



Chapter 5 

Existence of Solution of Impulsive 

Second-Order Integro-Differential 

Equation with State Delay 

- This chapter consists of two parts. The first part deals with the existence of mild 

solution of a class of instantaneous impulsive second order partial differential equa-

tion involving state dependent delay. The second part studies the non-instantaneous 

impulsive conditions on the same problem. Kuratowski measure of noncompactxicss 

and Moiich fixed point theorem are required to establish the existence of mild so-

lution. We remove the restrictive conditions on the priori estimation available in 

literature. The compactness of cosine or Sine operators, nonlinear terms and asso-

ciated impulses is removed. The noncompactncss measure estimation, the Lipschitz 

conditions and compactness on the nonlinear functions are replaced by simple and 

natural assumptions. We introduce new non-instantaneous impulses with fixed de-

lays. In the last section we study examples to illustrate the presented result. 

5.1 Introduction 

In recent times, much attention is l)aicl to funct;ional differential equation with state 

(lepen(ieut delay. We refer [13],[15],[59],[76] for details. For work in impulsive dif-

ferential equations, we refer [63],[117],[144] regarding discrete impulses. However, 
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in general the compactness of the impulsive terms, boimdedness of estimates of 

measure of noncompactness and a priori estimates are used to establish existence 

results. 

In this chapter we study the second order partial neutral differential equation 

with state dependent delay represented in the form 

d2  
7 x(t) = A(x(t) - g(t, Xf)) + f f(t, Xp(t.x),  x)dt, I E [0, b], t 

= 

x'(0) = eeX, 

Lx(t) = i = 1,2,...,n 

i = 1,2..... Ti.  

Here 0 = to  < 11  < t2, ..., < 1,-, < t, 1  = b are prefixed iiumhers. 

We also study the second order neutral differential equation 

x(i) = A(x(i) - g(t, xt))+f  f1, Xp(t,), x'(t))cit, t E (si , t 1], 

Xo  = 

x'(0) = E X, 

X(t) = Jji x(f i i )), I E (f•, •s], i = 1,2......n 

x'(I) = J(t, x(t - t1 )), I e (ti, s}, i = 1,2, ..., ii (5.1.2) 

FIcrc0=to =so <ti <si :5i2, .... <17s<—tn+i=b  are  prcfixCdnUmberS. 

In (5.1.1),(5.1.2) A is the infinitesimal generator of a strongly continuous cosine 

family {C(t) : I e R} of bounded linear operators on a Banach space X and I E 

[0, b] = J. S(t) is the associated shic function. The history valued function x 

(—oo,0] - X, x(0) = x(t ± 0) belongs to some abstract phase space 93 defined 

axiomatically in chapter 2 as Definition 2.2.12 and g, f, I), I, J,?,  i = 1, .., ii are 

appropriate functions which are defined in the following section, in the hypotheses 

(11f), (JIg), (III) and (11.1) respectively. 

The second order abstract partial neutral differential equation similar to (5.1.1) 

is extensively studied in [34],[38]. Actually, in these articles strict assumptions on 
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• seinigroup or cosine family are assumed. This resulted in the finite dimensionality 

of the abstract space. Thus the equations studied in those articles are actually 

• ordinary iiistead of being partial differential equations. Hence motivated by the 

need to redress this issue and by the results in [98] and their various applications we 

study 1)artial neutral differential equation of second order involving state dependent 

delay, instantaneous and non-instantaneous impulses. 

The main contribution of this work lies in the removal of compactness assump-

tion on the associated cosine or sine family of operators and asSociate(l impulsive 

term. The noncoinpactness measure estimation and the Lipschitz conditions on the 

nonlinear functions are replaced by simple and natural assumptions. 

Suppose N, N, N11  N2  be certain constants such that IIC(t) II N, S(t) < N, 

Ni  11AC11 < A2  for every 1. I = [0,1)]. For more details see books by 

Goldstein[84] and Fattorini[75]. Let E denote the Banach space of all vectors :1; E X 

for vincii C(.)x is a continuously differential function on R, endowed with the norm 

IIx (t)IIj = IxII + supo<e<bIIAS(t)xll, x E E. 

PC([0, b. X) denotes the space of normalized piecewise continuous function from 

[0, b] into X. For any x e PC 

I x(1) t E (t,t +i1; 
x(t) = 

( :c(t), I = t, i = 1,2...n. 

So, E C([12 , t+i,  X). 

1)efinition 5.1.1. [441:For a bounded set B in any Banach space Y the IKuratowski 

measure of noncompactness ay is defined by 

inf{r > 0, B can be covered by finite no. of balls with diameter r} 

Lemma 5.1.1. [44] Let It [0, b] - E be all integrable function such that Ii E PC. 

rFhen the function v(t) = J C(t - s)h(s)ds belongs to PC', the function s -* 

AS(t - s)h(s) is integrable on [0, 1] for I E [0. b] and 

jo 

t 

fo 

t 
(i) = - Im(t) A S(t - .$)h(s)ds = h(t)  + 4S(I - s)h(s)ds, t [0, b]  

Lemma 5.1.2. [44] Let It,, E H C L'([0, b]. X),If there exists p  E L'([0, b], [0, +oo)) 

such that I/m,,(t) < '(I) for It, E H and ac. t E [0, b], themi ct(H(t)) E L1 ([0, b], [0, +oc)) 
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and 
rt 

c({ / h(s)ds : n E N}) <2 / a(H(s))ds, t e [0,b] 
Jo Jo 

Lemma 5.1.3. [44](Monch): Let X he a Banach space, Q he a bounded open subset. 

in X and 0 G Q. Assume that the operator F : Q —f X is continuous and satisfies 

the following conditions: 

x -~AFx.VAE(0,1), xEO 

D is relatively compact if D C (0 U F(D)) for any countable set D C 2. 

Then F has a fixed point in ft 

5.2 Instantaneous Impulsive Second-order Differ-

ential Equation 

We define the mild sohition of the prol)lem (5.1.1) as follows. 

Definition 5.2.1. A function x : (—oc. b] - X is a mild solution of the problem 

(5.1.1) if x0  = , x'(0) = , x(.)Ilo.b] E PC1(X), and 

X(1) = C(i)(0) + S(i) + g(t, Xt) 
— L 

AS(t — s)g(s, x.)ds 

+ f S(t — .$) f f(r, Xp(r.,.), :r)drds + C(/. t)I' x) 
0 0 

+ S(t - t)I(x, .x) (5.2.3) 

o<<t 

To prove our result we always assume p : J x 93 —+ (—oo, bl is a continuous 

function. Let y : (—oo, b] —> X is the function defined by Yo = and y(t) 

C(t)((0)) + S(t)() on [0, L i ]. From the definition of abstract phase space 1B in-

troduced by Hale and Kato and given in chapter 2, it clearly follows tha.t IyIk 

K bllYll!, + M&I!II where IIyIb = supo<<IIy(i)II. Let = x + y 

(M ± )IIcII + IbIIY lb + KbiIXiib. 

Taking supremum of All , M2  as it71 and supreinum of y' as it!' we define the space 

S(b) as 8(b) = {x : (—oo,b} — X : xO  = 0. x'(0) = 0, aj e PC'} endowed with 
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noun IIII 1 = lull 00 IItL' 1100. 

The following hypotheses are required to prove our result. 

(11) The function I - is continuous from (p) = {p(s, ') : p(s, ') O} into 

and there exists a continuous bounded function J : R(p) —* (0, oo) such 

that IltII JO(t)11011 93  for every t E R(p) 

(hf) The function f : J x IZ x —* X satisfies the following: 

For every x : (—oo, a] - X,x0  = 0, x'(0) = 0, xlj  E PC' the function 

f (., X, x) : J — X is strongly measurable and f(t, .,.) is continuous for 

a. c. t E J. 

There exists an integrable function p : J — [0, +oo) such that Ilf(I, u,  v)Il ~ 

p(t)(llulI + IlvlI) Vt e J and u,v E IB . 

There exists an integrable function ji : J -4 [0, oo) such that 

c(f(t, D1 , D)) (i)(a(IJ) + (D)) for ac. I e J, where Dt  = {v 

v E D}. D = {v : v' E I)'} C (t E .1), V' C PC' 

(Jig) The function g : J x IS satisfies the following. 

g(t, .) is continuous V I E I. 

For every bounded V c S(b) the set {(v)(t) : x E V} is uniformly 

equicontinuous on [ti , ti] for all i = 0, , ii where v(t) = g(t, x,) 

For any bounded set Q C PC', a(g(t, Qt)) < c(Q), I E J where c is a 

positive constant. 

(HI) For the maps Ij1  : IZ x —> E, I, : IB x IB - E there exist positive constants 

such that lII(t,v)Il clIvll +d, Vj = 1. 2, 

(Ill) There exists a Banach space (Y, Lily) continuously included in X such that 

AS(t) c £(Y,X), for all I E J and AS(.)x E C(J;X) for every x E Y. 

constants Ny, 7\j1  such that llll :5 Nyllyly, Vy E Y and IIAS(i)11cy,x) 

iV 1. Vt E J 

(112) fl(C(t) - I) is closed and dim Ker(C(t) — I) < oo, V 0 < t < b 
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(HJ) (1) For the maps J'(i, ) : I x T3 — X there exist positive constants 

c, c, d, d 2  such that 

II.J(t,v)II <IIvII + d, Vj = 1,2, 

(2) The maps J(., '). J(., ') are continuous V (.,J)) E (ti , s] x 

1,...,n, 

Lemma 5.2.1. [96]: If y : (—Do. bl - X is a function such that yo = and yl.' e 

PC(X) then 

IIYp(.s,,,)I3 :!~ 04 + J)IIII + 1fb8uv{I11J(0)II; 0 E [0, inax{0. s}]}, 

sE R(p) U [O,b] 

where JO = SuJ)ER(P-) J(I.), Mb = SUPIEJ M(t.) and Kb = I11aXtEJ K(t). 

Lemma 5.2.2. [84]: Let condition (112) be satisfied and 13 C Y If B is bounded in 

X and the set {AS(t)y : I E [0, b], y E 13} is relatively compact in X, then B is 

relatively compact in X. 

Proof: Since for y E 13, C(t)y 
- y = A f S(s)ydy = f AS(s)ydy, it follows from 

mean value theorem for Bochner integral that 

C(I)y — y E t x co(AS(s)y : 0 < s < t,y E B), where co is the convex hull. Then by 

hypothesis (F12) the result follows. 

Lemma 5.2.3. [98]: A set B C PC' is relatively compact in PC' if and only if each 

set B, i = 1, ..., ii is relatively compact in C' ([t, i+,},  X). 

Theorem 5.2.4. If the hypothesis (11), (11]), (JIg), (III), (/11) and (112) holds and 

the cosine family is equicontinuous then there exists a. mild solution of the problem 

(5.1.1) 

Proof: Let us define the function z : (—oo, 01 —* X as z0  = x, z(t) = x'(t), I E .1 

S(b) = {x : (—oo,b] —* X : xo  = 0,x'(0) = 0, x(.)j E 1'C1 } Let F = (F1 .F2 ) 

S(b) x S(b) — S(b) be defined as 

0, t<0; 

+ f AS(I — s)g(s, x,, + y.)ds 

F,(x, z)(i) = ± f S(t — s) i: f( rJw(r,xr) x + y.)dr (5.2.4) 

+ EO<ti<t  C(t — t) 1 (x + y. z1i  + y) 

+ ><< S(i — t)I(x( , + y, Zj + y),  t E I. 
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and F2(x, z) (t) = Fi (x, z)'(I.) Therefore, 

lo, t<0; 

I 

+ AC(1 - s)g(s, x8  + y5 )ds 

F2(x, z) (t) = + f1 C(t - s) J' f(r, p(r,x,-) + Yr, x. + y)dr (5.2.5) 

+ AS(t - t)I2'(x, + Yt, Zt. + 

+ >II<< C(t - t)I(x + y, z, + yli  ), t E J. 

F is sceii to be continuous by Lebesgue dominated convergence theorem, axioms of 

phase space and the hypotheses (IIçb), (hf), (Jig), (Iii). 

Step 1: It is shown that Qo = {(x, z) E S(b) x S(b) : (x, z) = AF(x, z) for some A E 

(0, 1)} is bounded. If t E Jo = [0, t11 then 

IIx(t)II = IIFi(x, z)(t)II :5 W, 1 [c(ll xllz + M) + d]ds 

+ f J 
p(r)(x + IIzII + M' + M)drds 

0 
pt 

f 
M / (Nic+N  p(r)dr)ds+Ni bd 

Jo  

f + K6  / Jo
(N1c+ N p(r)dr)(IIxII5  + IIzIIs)ds 

pt p8 

+ IVI'iY I I p(r)drds, (5.2.6) 
Jo Jo 

z(t)Ij IIF2(x, z)(i)II N2 f [c(IIt;lI + M) + 111(1.S 

+  NJ J p(r)(JIxrIl + llz + M' +M)drd 
00 

It 

p5 

M (N2c+N / p(r)dr)ds+N2bd 
Jo 

pt 

+ K6  / (N2c + N / p(r)dr)(11x118  + IIzIIs)ds 
Jo Jo 

fo 

t

1'9 
+ M'Np(r)drds. (5.2.7) 
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Therefore, 

IxIt + lizilt (N1  + N2)bd 
- 

Is 

+ M[/ [c(N1 +N2)+(N+N) I p(r)dr]ds 
Jo Jo 

jo + M'(N + N) ( p(r)dr)ds + J 
[(Ni c + N2c)Kh 

.5 
+ (N + )I(b 

J
p(r)dr](I lxll ., ± IIz)Ids. (5.2.8) 

Sincc 114 + IIZlIt E C(Jo, X) by Gronwall's lemma there is a constant G0  > 0 such 

that llxilt + llzilt :5 CO 3 1 E J and IIxtII :~ K,Ca and IIztII :5 KbGO, I E jo• By 

condition (HI) it is observed that 

II1(xi.1 + y,, z,.1  + y1)j < c(2Kj,Go + M + lvi') + d := 

lIx(1)II = IIx(11) + I(x 1  + Yt,, z + y ) :5 Co  +  77, 

IIz(tflhl = IIz(ti) + J?(x, + 1Jt 1  z, + y,)II C0  + 112 

(5.2.9) 

x(t), I e (11,t21; 
When I E J1  = (11,121, let u(1) 

= { 
t = 11. 

I z(t), t E (t1,t2]; 
v(t) 

= 1 = 

Then u,v E C([t1, 121,X) 
ztt , 

 

- fo IIu(t)II < ,I (N1 cK + NI(b p(r)dr)(lxI5  + IIzIl.)d.s
Jo  

fo 

t PS

+ [NicM+N I p(r)dr(M+lti')Ids+Nibd 
Jo 

+ NlII(xti + yt1, Zt1  ± y, )lI + NIlI(xt, + Yt,,  zt 1  + y 1 )lI 
f

0

t,  PS 

(2NicK,Co  + N J 
2K1,Gop(r)dr)ds 

0 
t fS ft 

+ [iVicM+Nj p(r)dr(M+JVI')ds+J (N1cI(b 
fo 0 

+ NKb
I 

p(r)dr)( sup IIu(r)II + su Ilv(r)Il)ds (5.2.10) 
t1<r<s t1<r<S 
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I.t l
N2 IV / 

1 
IIv(t)II < / (2cKCo  + 2KbCo p(r)dr)(M +  M N ')ds + .2bd 

Jo Jo 
it

+[NcM+Nf p(r)dr(M+M')]d.s 
  

+ / (NcK, + NKb / p(r)dr)( sup uer) + sup IIv(r)II)ds 
ft1 JO L1 <s tl:5t<$ 

(5.2.11) 

Therefore, from equation (9.2.1), (9.2.2) 

Sill)  IIu(s)II + SUI)  IIv(s)II < e1  + C2 
t1<s<t 

(S 

+  J [ATic+N2c+(N+N)J p(r)drlKb 
Li 0 

x ( sup Iu(r)II + sup IIv()II)ds (5.2.12) 
iirs ti<Ts 

where e1, e2  are appropriate constants. 

Using Cronwall's lemma there exists constants C1  > 0 such that IIu(t)II+IIv(t)II C1  

fortE [1 1,t2]. So IIx(t)II + IIz(t)II <C1, forte J1. 

Similarly let C = max{Co,Cj,... ,C}, then II(x,z)II C and Q0  is bounded. 

Let H> C and QR = {(x,z) E 8(b) x S(b) II(x,z)IIb < R}. 

Since R > C, so 

(x,z) 71  AF(x,z), V(x,z) E 8lJ? (5.2.13) 

Step2: Suppose V C be countable set and V C o({0, 0} C F(V)). Let 

V1  = {x E S(b) z E S(b). (x, z) E V}, 

V2  = {z E 8(b) : 3X E S(b), (x, z) e V} 

V c V1  x V2  c z({O} U F(V1  x V2)) x o(101 U F(V x V2)) (5.2.14) 

From equations (5.2.4),(5.2.5), lemma 2.5.9 and (Hg)(2) we get that F1((V x 

(V2)), ('1 = 1,2) are equicontinuous on J(i = 0, 1, . . . ,n). From (5.2.14) it is 

implied that (V)(k = 1, 2) are equicontinuous. 

Step3 Now we prove that V1  and V2  are relatively compact. We identify VkIJ,, 

(k = 1,2) with V where VkIJ is the restriction of Vk on Ji  = (ti, t +1]. When 
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t E J0 [0, i1 , from hypotheses ([If)(3), (Hg)(5) and Leimna 5.1.2 we get that 

c(Vi (I,)) < n(Fi(V1  x V)(i)) 

~ 2N1
1 

cl(g(s, V13  + y3))ds 

+ 2N / 0'/ f(r, Vlp(r,x,.) + Yp(r,r,.), V2r ± y'.)drds 
.0 .0 

ft ci 
< 2 / Nica( V13  + y9)ds + 2] 2/V 

J iz(r)dr(a'(Vi3  + y) 
JO 0 .0 

+ a(V2+y'9))ds 

f t 13

2 (Nic + 2/V I (r)dr)(a(Vi,9 ±y,)±a(V23 +y))ds 
.Jo 

fo 

3 

< 2 / [NicI4 + 2KN i(r)dr( sup a(Vi  (T)) 
.Jo 0<7-<s 

+ sup a(Vi (r)))]ds (5.2.15) 
O<r<s 

0(1/2(1)) < cx(F(V1  x V2)(t)) 

< 2W2 f 1 a(g(s, V1,9  + y,9 ))ds 

+ 2N 1
0 

(Y f ,f(•i', Vlp(r,x ) + p(r,x) V2r + y)dr(is 

< 210 N2ca(1, . + y)ds 

+ 2f 2N f (r)dr(a(Vi, + y,$)  + a(1' ± y))ds 

~ 2 / (N2c + 2iV / it(r)dr)(a( V13  + Ys)  + 0(V23  + y))ds 
Jo Jo 

fo 

i [S
2 [(NlcKb + 2KbiV / (r)dr)( sup a(Vi (r)) 

.0 O<r<.s 

+ sup a(Vi (r)))}ds (5.2.16) 
0<'r<s 

Since in(I.) sup0<. <1  a(V.(s)) (j = 1. 2) are continuous and nondccrcasmg func- 

tions on ./0. From equations (5.2.15),(5.2.16) we get that 

It 

[S 

m1(I.) + ni2(t.) ~ K(c + I t(r)ilr)(rn.i (s) + 'ni 2(.))d.s (5.2.17) 
Jo 

where 1< is an appropriate constant. So, by Gronwall's Lemma and (5.2.17) we 

see that a(Vk(t)) = 0, (k = 1,2) 1 E J0. By lemma 2.5.4(1) we prove that 
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Vk, (k = 1,2) is relatively compact in C(Jo, X). Since a(Vj 1  + y,1 ) :5 civ) 

K1, SUI)O<<,I  a(Vj (s)) = 0 also I(., .) (j = 1, 2) is continuous, we can show that 

c(1(Vit1  + y.  V211  + y 1 )) = c(I?(Vit1  + Yt1)  V211  + y 1 )) = 0 

Similarly, vIicri t E J1  = [t 1 , t 1 ], 

a(V(t)) < a(Fi (Vi  x 
- 

J() 

S 
2 / [i\T1cK,., + 2KN /.1(r)dr( sup ci'(Vi (r)) 
it 1 O<s 

+ sup a(Vi (r)))]ds (5.2.18) 
O<r<s 

t 

in 

S 

< 2 [(Nl cKb+2KbN 1i(r)dr)( sup c(Vi (r)) 
it i t1<r<s 

-{• Sill)  a('' (T)))lds (5.2.19) 
11 rS 

Froimi equations (5.2.18),(5.2.19) we get that 

Slip (.(V1(S)) + Sup (V(s)) < 
11 <s<t. 11<s<t 

J

pt 

I 
K({c + i(r)dr})( sup Vi (s) + sup V2(s))ds (5.2.20) 

t1 ii<.s:5i tiS<1 

where K is an appropriate constant. So, by Cronwall's Lemma and (5.2.20) we 

see that n(Vk (t)) = 0, (k = 1,2) 1 e J. By lemma 2.5.4(1) we Irove that 

Vk, (k = 1,2) is relatively compact in C(J1, X). Since a(t1  + yti) a(Vjt1) 

Kb sup << , a((s)) = 0 also I(., .) (j = 1, 2) is continuous, we can show that 

n(L( V 11  + Yt 1 , V211  + y)) = (I( Vu1  + Ytj  V21  + y1)) = 0. 

Similarly V,, (k = 1,2) are relatively compact in C(J, X), (i = 2,3, . , n). Thus 

(k = 1, 2) are relatively compact in S(b). Now by lemma 5.1.3 we can prove that 

F has fixed point in 2J?. If (x, z) is a fixed point of F on S(b) then (x + y) is a mild 

solution of problem (5.1.1). 

5.3 Non-instantaneous impulsive second order neu-

tral differential equation 

In this section we will find the conditions for the existence of mild solution of the 

problem (5.1.2). Let us define the mild solution as follows. 
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Definition 5.3.1. A function x : (—cc, al - X is a mild solution of the problem 

(5.1.2) if x0  = , x'(0) = x(.)I[o.bl e PC'(X), x(t) = ,J(t, x(t - t1)), V I E 

(thsjl, i = 1,..n. :z:'(I) = ,J(I,x(I - li)), I.E (i i = 1.2..... ii and 

X(t) = C(t)(@) + S(t) 
- 1 AS(t - s)g(s, x 5 )ds 

çt p3 

+ 
j

S(t - s) J 
f(r, Xf)(,r) x'(r))drds, I. [0, t1] 

0 0 

x(t) = C(t - s)J'(s,x(t - Ii)) 

+ S(! - s).J(s,:r(I. - I i )) 

- f AS(I - s)g(s, x.9 )ds 

+ S(i. - s) f • f(s, xp(r,x,.), x'(r))drd.s, 

for I e [si , i = 11  ..., n (5.3.21) 

Let y : (—oo,bl -* X is the function defined by Yo = and y(t) = C(t)((0)) + 

S(t)() on [0, Ii]. Clearly j jjjt jjz < Kbllyllb + A41101193 where 11Y11b = supo<t<bll.?i(I)II. 

Since S(b) = {x : (—oo,b] --~ X : xO  = 0,x'(0) = 0, x(.)I.j E PC1 }. Therefore 

= .x + y is a mild solution of (5.1.2). 

Theorem 5.3.1. If the hypothesis (H), (11]), (Hg), (Hi), (111) and (112) holds and 

the cosine family is equicontinuous then there exists a mild solution of the problem 

(5.1.1) 

Proof: Let us define the function z : (—co, 01 -* X as z0  =-x'0, z(t) = x'(t). I, E .1 

Let F = (F1,F2 ) : S(b) x S(b) --~ S(b) he defined as 

(0, I0; 

Fi (x. z)(I) = I - AS(I - s)g(s, x3  + y3)ds (5.3.22) 

teji [0,ii I. 

and 17 2(x,z)(t) = Fi (x,z)'(t) Therefore, 

t <o 0. - 

— f 
F2 (x,z)(t) 

AC(t - s)g(s, x + y3)ds 
(5.3.23) 

= { 

+ f0 C(t - s) .[o f(r, Xp(r,xr),  X ± y)drds, 

I.E J1  = [0,11]. 
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J(t,x(t - 11 ), I E (t,s], 

C(I - s)J(s,x(t - t1)) 

F1(x, z)(t) = —S(t 
- s2)J?(s, x(t - ti)) (5.3.24) 

AS(t. - s)g(s, x + y8 )ds 

+ f. S(t - s) fos f(T,lp(r,xr ), X. + Y.)dr(15, I E Ji = (Si, 

and 172(x,z)(t) = Fi(x,z)'(t) Therefore, 

J?(t,x(t - t1), I E (t,s] 

AS(I - s)J'(s,x(/ - ii)) 

—G(i - s)J(s? , .x(i - ii)) 
F2 (x,z)(I) = (5.3.25) 

- f AC(t - s)g(s, x + y3)ds 

+ f C(t - s) f f(r,;(rxr ), x' + y)drds, 

I E J1  = (s,I + ]. 

It can be easily proved that F is continuous by Lebesgue Dominated Convergence 

theorem, axioms of phase space and the hypotheses (I-I), (Iii), (Jig), (Iii). 

Step 1: We show that Qo = {(x, z) E S(b) x S(h) : (x, z) = )J'(x, z) for some .A E 

(0, 1)} is bounded. When I e Jo = [0, lu 

< I I r i (x, z) (I.) II !~- f [(,( jjxjjz  N1 + M) + ((1S 

+ N1101, 
p(T)(IIXrII+ IIrII+ 1'+M)dTd 

 
I.t 

fo 
<  M / (Nic+N p(r)dr)ds+Nibd 

o  
t 

fo 
+ Kb (Nic+ N p(r)dr)(IIxII8  + IIzII8)ds 

f  
t 

IS
+ M' 

Jo 
I p(r)drds (5.3.26) 



Rul 

llz(t)Il :5 IIF2(x, z)(t)II ~ N 1 fc(lixllz + M) + djds 

+ N / I p(r)(IxrII + IkrI + M' + M)drds 

< M10
t 
(N2c+N / p(r)dr)ds+N2bd 

Jo 
PS 

+ Kb I 
Jo 

(N2c+ N I 
Jo 

p(r)dr)(IjxI5  + IlzII5)d1s 

10,  10",  
+ M N' p(r)drds (5.3.27) 

Therefore, 

IixIIt + llzll t   E(Ni + N2)bd 
P s _._ PS 

+ M I [c(Ni  + N2) + (N + N) / p(r)drlds 

1.Jo Jo 

+ A'I'(N f + N) (f p(v)dr)ds + J j (N + N2G) K1)  

+ (N + N)Kb Jo p(r)dri(Iixil5  + llzlls)lds (5.3.28) 

Since lixllt + llzilt E C(J0,X) by Gronwall's lemma there is a constant Go  >0 such 

that llxllt  + iIzlIt Go, t E •J and ilxtli K,C0 and llztlk K6G0, t e Jo. By 

condition (HJ) it is observed that for I e [t i , Si) 

li.J(t,x(t - 11))IIE < c(2K&Go+M) +d := (5.3.29) 

\'Vhen I E J2  - [si ,t2] 

Ilx(t)Il < ill'i(x, z)(t)ll IV[c(llx5  II) + d] 

+ [cllx,il + d1 

+ f [c(lIx(s)lI + M) + (lids 

+ N / f p(r)(IxrIl + IIz,.II + M' + M)drds 
.Si 0 

+ FV p(r)(1r)ds + J'N f fo 
p(r)drds 

+ 
 K f

(Nic + Nf p(r)dr)(IIxlI 5  + Ilzlls)ds 
Si 0 

+ [N(cKb) + N(cKb)}(IIxIi + llzll) 

+ N1bd + N(d) + N(d) (5.3.30) 



E1! 

Iz(t)II II1'2(a', z)(t)II :5 II [c  IIXs. IIc + d 

+ N[cjIx3II + d 

+ 
I[c(Ix(s)II +M) +d]ds 

+ iV f f p(r)(IIxrII + IIZrII + M' + M)drds 

p3 

jj p(r)drds 
ts

M / (N 
Jo

c + N / p(r)dr)ds + M'  
Jo  

PS 

+ K 
fo

(N 
Jo

2c + N I p(r)dr)(IIxII8 + IIzII3)ds 

+ [N2(cKb) + j\T(c2 J(& )1(IIxI + 11211) 

+ N2bd+ N(d) + N(d) + N2bd (5.3.31) 

r1I crcfore  

t PS 

IIx + lizilt < {K +M [c(2 + N2) + (N + ) / p(r)dr]ds 
1 Jo 

pt 

± AI'(N + N) I (/ p(r)dr)d + / [(Nic + N2C)Kb  
Jo Jo Jo 

+ (N + )Kb 
JO p

(r)dr ]( jj x j j.,, + IlzJIs)Jds} (5.3.32) 

where K is an appropriate constant. Since lixilt + j jzjj j  E C(J1, X) by Gronwall's 

lemma there is a constant C1  > 0 such that IIx + lizilt < C1, t G I and IlxtlI 

KC0 and jIztjI KbCl, I E Jo• By condition (HI) it is observed that for I E 

[12 , 82) 

IIJ(t, x(I - tj)I[ <c(2KbCl  + M) + d := r j = 1,2 (5.3.33) 

Similarly let C = inax{Co, q, C1, 772• , G }, then 11  (x, z) C and QO  is 

bounded. 

Let R> C and Q1  = (x, z) E S(b) x S(b) : II(x,z)IIb < R}, 

Since I? > C, 

(x, z) 0 )F(x, z) V(x, z) E 0R (5.3.34) 

Step2: Suppose V C UR be countable set and V C ({0, 01 C F(V)). Let 

Vi {x E S(b) : El z E S(b). (x, z) e V}, 



V2  = {z E S(b) : Ix e S(b), (x, z) E V} 

V c V1  x V2  c ({O} u F1(VI  x V2)) x ({o} u r2(V1  x V2)) (5.3.35) 

From equations (5.3.24),(5.3.25), lemma 2.5.9 and (IJg)(2) we get that F((V1) x 

(V2)), (j = 11  2) are equicontinuous on = 0, 1,... , n). From (5.3.35) it is seen 

that (Vk )(k = 1, 2) are equicontinuous. Next we prove that V1  and V2  are rc1ativcy 

compact. We identify VkIJ, (k = 1,2) with %'j where VkIJ is the restriction of Vk  on 

ii  = (s1, tj1]. When t E JO  = [0, t1], from hypotheses (Hf)(3), (11g)(5) and Lemma 

5.1.2 we get that 

c(Vi (t)) < c(F1(Vi  x V2)(0) 

< 2Ni a(q(.s, V1, + y.))ds 
. fo 

+ 2N jo 
(Y

f
j(m, Vlp(r,xr ) + Yp(r,x,) V2r + y)thds 

0 

2 
fo  N

ica(Vi,+ y4ds + 2 10 2N 
 jo 

i(r)dr((Vi + y8) 

+ c(V28 -i-y))ds 
p8 

< 
2JO 

(Nic + 2N J 1i(r)dr)(c( V13  + y) + a(V25  + y)) 
0 

pt_ 

fo 

3 

< 2 [NlcKb + 2KbN 1i(r)dr( sup 
1Jo  

+ sup c(Vi (r)))1d.9 (5.3.36) 
0<<s 

c.(V(t)) < a(F2(Vi  x V2)(1)) 
1. 

2 W2 fo ((g(s, V1.9  + y3 ))ds 

+ 2N 
f f 

f(r)  Vlp(i.xr ) + Vp(r,xr) V2r  + y.)drd.s 

~ 2i N2ca(Vl.s+ys)ds  

+ 2f 21\1  f (r)dr(a( V13  + y) + a(' + y))ds 

fn 2 / (N2c + 2N /L(r)dr)(a(V1.9  + y) + cl(V2.9  + y'9 ))ds 
Jo  



EX 

JO 

t 
_ .

PS 

~ 2 [(NIcKb + 2KAT I (r)dr)( sup c(Vi ('r)) 
JO Ors 

+ sup c(V1(r)))]ds (5.3.37) 
O<T<.q 

Since rri(t) := sup0<8<  (V(s)) (j = 1,2) are continuous and nondecreasing func-

tions on J0. From equations (5.3.36),(5.3.37) we get that 

JO 
t 

mi (t) + m2 K(c + 
10",

j.i(r)dr)(rni(s) + m2(s))ds (5.3.38) 

where K is an appropriate constant. So, by Gronwall's Lemma and (5.3.38) we 

see that (Vk (1)) = 0, (k = 1, 2) t E J0. By lemma 2.5.4(1) we prove that 

Vk, (k = 1,2) is relatively compact in C(J0,X). Since (V 1  + yt1) :5 a('t) 

K,,sup0<<,, c(Vj (s)) = 0 also J(.,.) (j = 1,2) is continuous, we can show that 

a(J(Vi 1  + y 1)) = cx(J(Vi 1  + y 1 )) = 0 

Similarly when t E Ji = [11, 811, 

a(1/1  (t)) < c'(F1(V1  x V2)(0) 

it 

t

JO 
2 [NlcKb+2KbN ;L(r)dr( sup a(Vi(T)) 

O<r<s 

+ sup (Vi (T)))}ds + JO l( c sup a(Vi (s))ds 
r 0<<s ti<S<t 

(5.3.39) 

PS 

c(1'(t)) < 2 [(Ni cK&  + 2Kb N] ji(r)dr)( sup a(V1(r)) 
j"I 0 t<r<s 

+ sup a(Vi (r)))]ds+cKi, sup a(V2(s))ds 
j <r<S t1<s<t 

(5.3.40) 

From equations (5.3.39),(5.3.40) we get that 

5U) ((V1(S)) + sup a(V2(.)) < 

pt 

jo, 

(K{c + jt(r)dr} + cK)( sup Vi (s) + sup V2(s))ds (5.3.41) 
t1S/ t,<s 

where K is the appropriate constant. So, by Gronwall's Lemma and (5.3.41) we 

see that c(Vk (t)) = 0, (k = 1,2) t E J1 . By lemma 2.5.4(1) we prove that 



Vk,(k = 1,2) is relatively compact in C(.11,X). Since (i', + y 1 ) a(V11) 

K,, sup0<<,, a(V(s)) = 0 also .J(.,.) (j = 1.2) is continuous, we can show that 

+ yt1)) = c(J(Vi  + y,1)) = 0 

Similarly Vk (k = 1,2) are relatively compact in C(J, X), (i = 2,3,••• , n). Thus 

Vk (k = 1,2) are relatively compact in S(b). Now by lemma 5.1.3 we can prove that 

F has fixed point in . If (a;, z) is a fixed point of F on S(b) then (x + y) is a mild 

solution of problem (5.1.2). 

Remark: We can also apply the above methodology to the following: 

= A(x(1) 
- / q(r, :v)dr) + f I E [0, h], t ti, 

= 

xo = 

x'(0) = EX, 

x(t) = I(xt j, i= 1,2,...,n 

Lx'(t) = I(x), i = 1,2,...,n (5.3.42) 

Flere 0 = to < Ij < 12, ..., < In < Ill-I-i = & are prefixed numbers. 

x(t) = A(x(t) 
- J g(r, x)dr) + L f(t, Xp((,x))dI,  1 E (si , t ±1]. 

i=0.....n 

Xo = 

x'(0) = EX, 

x(t) = .J'(t,x(t—/.i )), t i= 1,2,...,71. 

x'(l) = .J?(t, x(t - ti)), I E (ti, sL i = 1,2, ..., ii (5.3.43) 

FIcreO=1o=so<1i:5sit2,...,<inSn<-1n+lb are PrCfixCdmb 5.T'e 

mild solution of (5.3.42) is defined as 

Definition 5.3.2. A function x : (—oo, b] -* X is a mild solution of the problem 
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(5.3.42) if xo  = , x'(0) = , x(.)I[o,b] E PC'(X), and 

fo

t

x(1) = C(t)q(0) + S(t) + g(s, x3)ds 
- / C(t - s)g(s, x8)ds 

Jo 

+ j' S(t - S) j'f(r,xP(r,-,))drds+ C(t -t)I(x) 

+ S(t - t)I(x1,) (5.3.44) 
0<ti<t 

We define S(b) = {x : (—oo,b] -+ X : xo = O,x'(0) = 0, x(.) j  E PC'}. We 

define F =: 8(b) x 8(b) —* S(b) 

0, 1<0; 

+ f0t C(t - s)g(s, x3  + y)ds + f0t g(s, x3  + y8)ds 

F(x)(t) 

= { 

+jS(t - s)Jf(r,p(r,r))dr (5.3.45) 

+ >i<< C(t — t)I21(x + Yt1) 

+ >< 8(1 - 11)I(x ti  + Ytj, t e J 

and proceed as in the first case of theorem 5.2.4. 

Definition 5.3.3. A function x : (—oo, b] —~ X is a mild solution of the problem 

(5.3.43) if xo  = , x'(0) = , x(.)I[o,b] E PC'(X), x(t) = J'(t, x(t - t 1)), V t E 

(i,$), i = 1,...,n, x'(t) = J(t,x(t —t1)), t i = 1,2,...,n and 

x(t) = C(t)(0) + S(t) 
— 1 C(t - s)g(s, x3)ds 

+ fo 
g(s, x)ds + fo 

S(t - s) f(r, xp(3,))drds, I E 10, l 
  0 

X(t) = C(t — 3)J'(s1. x(t — ti)) 

+ S(i —s)J(s,x(t —t1)) 

- f C(t - s)g(s, x8 )ds 

+ f g(s, x3)ds + f 8(1 - s) I f(s, xp(r,xr))drds, 

for I E [Si, tj], i = 1.....n (5.3.46) 

We define F: 8(b) x 8(b) —~ 8(b) be defined as 



0, t<O; 

F(x)(t) = 
- f (7(1. - s)g(s, :r:, + ?J)ds ± fo,q(s, :v8)ds (5.3.47) 

+ J S(t - s) f1 f(1, p(r ,x ,.))dr, I E J1  = [0, tj. 

J(t,x(t - t1), t e 
s).J(s,x(1. - li)) 

F(x)(t) = 
ii )) + f çj(.s, .x)d.s 

(5.3.48) 

- f C(t - .$)g(s, xs  + y8)ds 

+ f C(t - s) f f (r, p(r ,x ,.), X + y)drcis, 

t e J,  

and proceed as in Theorem 5.3.1. 

5.4 Examples 

In this section we discuss a partial differential equation applying the abstract results 

of this paper. We discuss the partial differential equation in two examples. In Ex-

ample 1 instantaneous impulsive differential system is studied while in Example 2 

non-instantaneous impulsive differential system is studicd. As a result the dynamics 

and solutions of these two examples will be different as we can perceive from equa-

tions (5.2.3) and (5.3.21). In this application, 93 is the phase space P(70  x 0(h, X) 

see ([981). 

Example 1: We study following system with instantaneous impulses 
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x(t, o) = 

t  
x(s, u - v)dods) 

U •

p

x 
  

+ f(a(x) + B(x(s,a - 1(x(s,a))))sn())ds, I E [0,b],a E [0,it], 

(i, 0) = '1, (1, it) = 0, 1 E [0, b], 

x(s,a) = (s,a), —oo <S <0,0 <a <ir 

x(0.a) = (a), 0 <a <it, 
at 

Ax(t)(a) 
= f n(t - s)x(s, a)ds, i = 1, ..., n 

Ax'(i) (a) 
= f n (i - s)x(s, a)ds, i = 1, ..., n (5.4.49) 



Mh 

- where q5  E JI'([O,ir]), E X, 0 = = o < 1 :5 81 5  t2 .,t., < Su < t, 1  = b 

Here, X = L2([0,ir]), 93 = PC'0  x L2(p,X), A C D(A) C X —+ Xis the map defined 

- by A = (iA — iV)) with domain D(A) = 112 fl iI. A denotes the infinitesimal 

generator (C(t))1€  on X. A has a discrete spectrum, and the following properties 

hold 

(Cl) A = - L
OO 
 A2  < , Zn  > Zn  where D(A), A7 , z,, n E 01 are cigenvalues 

7L1 fl 

and cigcnvectors of A. 

(C2) CC(1)0 = CO9(Ant) < , z, > z E' and S(t)p = n 
.in(,X,t) 

< q, z,- > z,, 

for 0 E X. 

By defining maps p,g,f: [0,b] x x X —* X by 

p(t, a) := a - h(x(s, a)) 

f jo x(s, a — v)dads), 
00  

f )
00 

()(a) := 
1-

(a(x) + B(x(s,a — h(x(s.a))))sin()) 

the system (5.4.50) can be transformed into system (5.1.1) Assume that the func- 

tions p, : IR - [0, oo), m : IR —* IR are piecewise continuous. 

g(1,.), I, (i = 1 ..., n), f are bounded linear operators. \'Ve take Y = D(A). rfhere 

fore if i. : Y — X is the inclusion then 1, —+ AS(t) is uniformly continuous into 

L(Y.X) and IIAS(i)IILx) < 1 fortE [0, a] hence by assumptions (H),(Hf),(Hg), 

(HI), (I11),(112) and theorem 5.3.1 it is ensured that mild solution to the problem 

(5.4.50) exists. 



EM 

Example 2 : We study the following system with non-instantaneous impulses 

a) 
- f x(s, a - v)dads) = (i - iV(a)),x(t. a) 

f 
 

± f(a(x) + ]3(x(s,a - h(x(s,(7))))sin())ds, L E [0,b],a E [O.k]. 

= x(t,ir) = 0, I.E 10,bl. 

x(s,a) = q(s,a), -00< S <0,0 <a < 7r, 

a 
x(0,o) = (o•), 0 < a 

x(t)(a) 
= f n(t - t i )x(s, a)ds, t E (,Si, tj], i = 1,..., n 

x'(t)(a) 
= f n(t - ti)x(s, a)ds, I e [s j, ti]. i = 1, ..., ii (5.4.50) 

where d) E I-I([0,ir1), E X, 0 = to < ti ........ I,, < s, < b 

Here, X = L2([0, in). = PC0  x L2(p, X), A C D(A) C X - X is the map dcuined 

by A = (i - ill)) with domain D(A) = jj2 fl H. A denotes infinit;esimal generator 

of (C(t))IER  on X. Also, A has a discrete spectrum, A has a discrete spectrum, and 

the following properties hold 

(Cl) Ad) = - 
°° A2 1, < , z > z, where p E D(A), An, Z, Ti E O't are cigenvalues 
It=

and cigenvectors of A. 

X'00 S?fl(Xt) 

(C2) C(t) = cos(A,t) < , Z, > Z and S(t)5 = < th, z, > z, 

for E X. 

By defining maps p, g. f : [0, h] x 113 x X -+ X as in example I the system (5.4.50) can 

be transformed into system (5.1.2) Assume that the functions p : IR - [0,00), rn 

1R - IR are piecewise continuous. hence by assumptions (H), (hf), (JIg), (JIJ). 

(Hi), (112) and theorem 5.3.1 it is ensured that mild solution to the problem (5.4.50) 

exists. 

5.5 Conclusion 

Thus we establish the existence of mild solution of the non-instantaneous impul-

sive partial second order functional differential equations (5.1.1) and (5.1.2) , using 
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Kuratowski measure of noncolnl)aclness and Mónch fixed point theorem. The corn-

pactmless Lipschitz condition and other restrictive conditions have been removed. 



Chapter 6 

Approximate Controllability of a 

Second Order Neutral Differential 

Equation with State Dependent 

Delay 

This chapter investigates the existence of mild solution and approximate controlla-

bility of a second order neutral partial differential equation involving state dependent 

delay. The Hausdorif measure of nonconipactness combined with Darbo Sadovskii 

theorem are used to establish the existence of mild solution of the system. The 

strict assumption such as the compactness of the associated cosine or sine fain-

ily of operators is removed. Some fundamental and natural assumptions are used 

instead. The conditions for approximate controllability are proposed for the dis-

tributed sccoiicl order neutral system by assuming the approximate controllal)ihty 

of the corresponding linear system in a Hilbert space. 

6.1 Introduction 

Of late. much attention is paid to functional differential equat;ions with state de-

pendemit delay. We refer [15],[171,[76],[123], for related information. Generally the 
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literature related delay differential equations dealt with functional differential equa-

tions in which the state actually belonged to a finite dimensional space. As a result, 

partial functional differential equations involving state dependent delay were mostly 

abandoned. This is one of the motivations of our work. 

In this paper, we study a second or(ler neutral differential equation modeled in 

the form 

d2  
(x(t) - g(t, Xt)) = Ax(t) ± f(t. X,,(it)) ± Bu(t), L E J = O, aI 

= E , [x(t) - g(t,xt )lj t o = z. z E X  

where A denotes the infinitesimal generator of a strongly continuous cosine fami]y 

{C(i) : t E R} of bounded linear operators on a filbert space X and S(1) is the 

associated sine function.. The history valued function x : (—oo, 01 - X, x(0) = 

x(t+O) takes values in some abstract phase space a3 defined in chapter 2 as Definition 

2.2.12; g, f are appropriate functions. Let U be another hubert space. u E U is a 

control parameter. 13 is a bounded linear operator defined from a Ililbert 5l)tCC (1 

to X. 

The existence and uniqueness of mild solutions of a. second order abstract partial 

neutral differential equation related to (6.1.2) is discussed in 341,[381. The authors 

assumed strict conditions on the cosine family generated by A, that limited the 

underlying space X to finite dimension. Consequently, the equations discussed in 

these works are actually ordinary instead of being partial differential equations. 

The approximate controllability of infinite dimensional systems has been ex ten-

sively discussed, see for instance [33],[39],[611,[1211,[159] and the references therein. 

I-however, in these papers the invcrtibility of a. controllability operator is assumed. 

As a, consequence, their approach is unsuccessful in infinite dimensional spaces if I lie 

generated semigroup is compact. Moreover it is practically troublesome to verify 

their conditions directly. This is one of the motivations of our paper. 

[1391,[1561 proposed conditions on the systems operators together with the as-

sumption of approximate controllability of the corresponding linear system. To the 

best of our knowledge only a few papers are available in literature regarding approx-

imate controllability of neutral partial differential equation with state dependent 

delay. 
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- In the section 6.2 the existence of mild solution of the following second order 

equation 

d2  
- q(t, xt )) = Ax(t) + f(t, X,,(t. 2 )), I E J = [0, a] 

= E 1B , [x(t) - g(t,x)]Ito  = z, z E X (6.1.2) 
dt 

is discussed. Then in the next section the approximate controllability of the problem 

(6.1.1) is proved. The last section illustrates the result with an example. 

6.2 Existence of mild solution 

Let N. be certain constants such that IIC(t)II < N and IIS(I)II < N for every 

I E 1= [0, a]. 

Definition 6.2.1. The set given by R(f) = {x(T) E X : x E X is a mild solution 

of (6.1 .2)} is called reachable set of the system (6.1.2) . R.o  is the reachable set of 

the corresponding linear control system (6.2.3). 

The system (6.1.2) will be approximately controllable if R(f) is dense in X. Also 

the corresponding linear system is approximately controllable if 'R.0  is dense in X. 

The approximate controllability of the following linear control system 

x"(t) = Ax(t) + Bu(t), t E J 

X (0) = x°, 

X,  (0) = r1 (6.2.3) 

has been studied by several authors. The existence of solutions of the second order 

abstract Cauchy problem 

x"(t) = Ax(t) + 11(1), I E I 

- 

x(0) = 

x'(0) = X
1 (6.2.4) 

where Ii: [0, a] - X is an integrable function has been discussed in [1621 
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Lemma 6.2.2. [75] Under the preceding assumptions, if It is a continuously differen- 

tiable function, then 
f t t 

/ C(t - s)h(s)ds = S(t)h(0) + f
o  

S(t - s)h'(s)ds 

We assume that the following conditions hold 

(Hi) There exists (Y, lily) (a Banach space) continuously included in X such 

that AS(t) e L(Y,X, for all t e J and AS(.)x E C(J; X), for every x E 

Y. There exists constants N, N1, such that llyll < Nyllylly, Vy E Y and 

llAS(t)llL(y,x) ~ N1 , Vt e I 

(1-12) (C(t) - I) is closed and (tim Ker(C(t) - I) < 0°, V 0 < I < a 

Lemma 6.2,3. [96] Suppose that the condition (112) be satisfied and D C Y. If D is 

bounded in X and the set {AS(t)y : I. E [0, a], y E i)} is relatively compact in X, 

then 1) is relatively compact in X. 

Lemma 6.2.4. Suppose that ii' be continuously differentiable function, then 

I JO 

í 
AS(t — s)h(s)ds = —Ii(i) + C(t)h(0) + S(t — s)Ii"(s) S(t)h'(0) + 

 

Proof: By integration of parts formula, we get 

pt 0 et 

J AS(I — s)ds = 

- it  
AS(p)dp 

=

AS(p)dp = [C(p)] 1  — C(t)h(0) — I 
o .0 

and by applying lemma 6.2.2, we get 

ft t 

j AS(t - s)h(s)ds = C(t)h(0)
JO 

- h(t) + C(t — s)h'(s)ds 

= C(t)(0) — (t) + h h J S(I — s)h"(s)ds + S(I)W(0) 

We aeline mild solution of problem (6.1.2) as follows. 

Definition 6.2.5. A function x : ( —oo, a] —* X is a mild solution of the problem 

(6.1.2) if x0 = ; X(.)110,a] E C(J,X), the functions f(s, and g(s, x) are 

integrable and the integral equation is satisfied 

x(t) = C(t)((0) — g(0,(0)) + S(t)z + 
/ 

AS(/ — s)g(s,x8)ds 

+g(t, Xt) + 
10' 

S (t - s)[(s, x(,))ds, I c [0, a] 

(6.2.5) 
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To prove our result we always assume p : I x 93 - (—oc, a] is a continuous 

function 

Lemma 6.2.6. [96] If y : (—oo, a] —> X is a function such that Yo = and y1 j  E C(X) 

then 

IIYp(s,y)II (Ma  + J)IIc&Ik ± Kasip{IIy(0)IIO E [O,max{O,s}]}, 

SE R(p) U [0, a] 

where J = SUPtER(p_) I(t), Ma  = SUPj M(t) and "a = SUPtJ K(t). 

The function JO is defined as follows. The following hypotheses are used. 

(Ii) The function t —* <Pt is continuous from R(p) = {p(s, ) : p(s, ) :5 O} into 

93 and there exists a continuous bounded function JO : R(p) - (0, oo) such 

that IItII Y5 (1)jJO jj z  for every I. E (1)-). 

(11f) The function f : I x 93 —* X satisfies the following conditions: 

For each x : (—oo, a] —* X, x0  E 93 and xlj e C([0, a], X), f(., ) : I — 

X is strongly measurable for every p E 93 and f(t, .) is continuous for 

a.e.tEJ. 

1 an integrable function cef  : I —+ [0, +oo) and a monotone continuous 

iiondecreasing function Q1  : [0, ±oo) —* (0, +oo) with the property that 

IIf(t,v)lI < cef (t)Qj(IIvI) Vt E I and v E 'B. 

Let D(0) {v(9) : v E D}. For n.e. s, t, E I, 3 an integrable function 

J -4 [0, oo) such that 

x(S(s)f(1, D)) < 11(t) SU (D(0)) 
—oo<O<O 

(hg) The function g : J x 'B — Y satisfies the following 

(i) g(t,.) : 'B —+ X is continuous Vt E I. Let us define V(k, g) as the set 

of function V(k, q) = It —* q(i, x,) : :z; E Bk (0, S((i.))}, where S(a) = 

{x : (—oo, a] —+ X such 111(1.1. :z:o = 0, x j  E C}. The set V(k) = 

{AS(0)g(s,) : O.s E I, ' E Bk (0. 1)3)1 be relatively compact in X. 

The set {v : v E V(Ie, g)} is an equicontinuous subset of C([0, a], X). 
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If x : (—oo, al - X be such that x0  = and xlj E C then the function 

I -* g(t, x1) belongs to C([O, al, X) and is strongly measurable from .1 

into X. 

There exists a.n integrable function ag  : I -* [0, ±oo) and a monotone 

continuous nondecreasing function i2 : [0, +oo) -+ (0, -j-oo) such that 

llg(t, v)II :5 ag(t)lg(lIvIl) Vt E I and V E . 

g(a, X) = 0, V x e X and I I g(t, J)y :~ Ci /I -I- C2. 

(III) J<(J\rC1 + f1 [N + Ni]a(s)ds 1imTQO  SUP < 1 

Let f = max{ 9, c11 } and a = max{aq , (i'j}. 

In this section y : (—oo, a] -* X is the function defined by yo on. (—oo, 0] 

and y(t) = C(t)((0) - g(0, )) + S(t)z on [0, a]. Clearly 11 Yt 1193 5 KaIIJIIa + MaIIøII 

where IlYlla = SUPO<t<ally(t)II. This follows from the definition of abstract phase 

space 93 introduced by Hale and Kato and given in chapter 2. 

Theorem 6.2.7. Whenever the hypotheses (JI), (Hf), (JIg), (III) hold, then (6.1.2) - 

has atleast one mild solution. 

Proof: Suppose that S(a) denote the space S(a) = {x : (—oo, a] -+ X such Ihaixo = 

0, xj e C} associated with supremum norm  11.11, 

Suppose that F : S(a) -* S(a) be the map denoted by (Fx)o  = 0 and 

(Fx)(t) = g(t,x) + 
JO 

AS(t - .$)g(s,)ds 

+ /S(t - s)f(s,;(. ) )ds (6.2.6) 

where = and T. = a: + y on J. It is easy to check that 

tI?tIIs < Kallylla + iVIaIIII + KajIXIIt. 

where IIxI, = supo<. <t Ix(s) II. 

IIXp(s,.,)II3 k := (i/I + J)IIII + KatIYMa + KaIIXlIa. 

Therefore I' is well defined. F takes values in 8(a). Also by axioms of phase space, 

the Lebesgue dominated convergence theorem, and the conditions (Hf), (Jig), (II) 
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it can be shown that F is continuous. 

Stepi There cxists k > 0 such that F(Bk) C Bk, where Bk  = {x E S(a) : IIXIIa 

k}. In the following k = Kk + 11 y, 11 ,S = Kak + KIIyjI + M(JIII. Now if we 

assume the assertion to be false, then V k > 0 1 Xk E Bk and tk E [0, a] such that 

k < 111  Xk(tk) II. Then, 

k < IIFxk(tk)II 

~ Nyc1 + Nc2 + N1
J"

tk 
mg(s)I8lIds 

+ J
tk 

S 

< Nycj(KyIa  + ilu/aIkbII + K(Lk) + Nc2  
tk 

 + N1 I '(S)](KaIIyIIa  + MaII4'II + Kak)d 
 

+ 
J'tk 

(S)dS(Ka IIyIIa  + (Ma  + J)IIII + Kak) 

hence 

a 1(Ka IyIIa  + MaIIc!k + Kak) 
1 < (NyciKa  + N1  I 1flg (S)dSliflk oo  SUP 

Q(K 
 zmk_>sup a 

k 

+ i( a(s)ds 1 IIYIIa + ((Al.  + IIII 

1

+ Kak) )) a 

k 
a Q(T) 

< Ka (NyCi  + I + Ni1(s)ds 1iiiir sup) (6.2.7) 
0 

which is a contradiction to the hypothesis (IIl). Hence F(Bk) C Bk. 

Step 2 To prove that F is a —contraction. Let F be split into F = {F + F' + Fc}, 

F'x(t) = 

Ibx(t) 
= J AS(t - s)g(s,)ds, 

Fcx(t) = JS(i - s)f(s,;(8 , ) )ds, 

The properties of the function g in (JIg), lemma 6.2.3 imply that the set of function 

V(k, g) = It -> g(t, xt+yt) : x E Bk} is relatively compact in C([0, a], X). By lemma 

2.5.7(2) x(W) = sup{(W(t)),t E J}. By lemma 2.5.4(1), for any W C F"(Bk) 

= x (g(t, 141(t))) = 0 (6.2.8) 



By mean value thcorcm for Bochner integral, we derive 

{Fbx(t) x € Bk} C t x conv({AS(h)q(s, ) 0 < It, s < 1. IIII3 :!~ k }) 

This implies {Fbx(i) : x € Bk} is relatively compact in X for all I E .1. Hence by 

lemma 2.5.4(1), 

= 0. (6.2.9) 

By lemma 2.5.9 for any 14 C Fc(Bk ), since S(t) is equicontinuous so, W is cquicon-

tinuous. Hence from the fact that p(s, ) :5 s. s E [0, a] and lemma 2.5.7(3) and 

x(W) = sup{(W(i)), I E [0, a], } it implies that 

X(I'(1)) = x(f S(1 - s)f(s, + y)(ls 

< f i(s)snp <o<o x(W(p(.s, ) -I- 0) + y(s + O))ds 

< / (s)sup_ <o<oX(W(s +0) + y(s + O))ds 

< f ui(s)supo<<.W()ds 

X(W)/ii(s)ds 

(W) 

Hence 

y(FCW) = sup{(FW(I)), I E [0, a], } (W) 10" 77(s)ds 

For each hounded set 14/ € C(J; X) we have, 

xc(fl'V) < xc(rW + F"W + FCIII) 

(0+0± 
10 

n(s)ds)ypcff) 

Therefore, F is a k—contraction. So, by applying Darbo-Sadovskii fixed point the-

orem it is proved that there exists a fixed point of F in S(a). Thence, Tr = x + y is 

a mild solution of (6.1.2). 

Remark : If the Lipschitz conditions on the nonlinear functions f, g are assumed 

then it is easy to see that the mild solution is unique. 
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6.3 Approximate controllability 

In this section the approximate controllability of the control system (6.1.1) is studied. 

Assume that f, g satisfy following condition 

(Cl) There exists positive constants L9, L f  such that f, g are Lipschitz continuous 

in second variable. 

Also, y : (—oc, a] - X is the function defined by i/o = and y(t) = C(t)(0) + 

S(t)(z+g(O, ) on J. Clearly Ilyt ll z  <KIIvII+M where Ik'iII = supo<,<(Ijy(i)tI 

The operators A.1  I,2(J, X) - X i = 1, 2 are defined as 

Aix(t) 
= 

S(t - s)x(s)ds, 

A2x(t) 
= f AS(1 - s)x(s)ds. 

Clearly Ai are bounded linear operators. We set 91 = kei'(A), A = (A1, A2 ) 

and Jt = ker(A) Let C'0(J, X) denote the space consisting of continuous functions 

x : J -> X such that x(0) 0, endowed with the norm of uniform convergence. Let 

J L2(J, X) -f co  (J, X), i = 1,2 be maps defined as follows 

.11x(i) L 8(1 -  

J2x(t) 
= J AS(t - s)x(s)ds. 

So, Jx(a) = A(x), i = 1, 2. For a fixed and x E C(J, X) such that 

= (0), we define maps F,  C: C(J, X) —* 1 2(J, X) by F(rn)(i) = f(i, m, + :i;,) 

and G(ni)(t) = g(1, I1t+Xj). Here x(0) = x(1+0), for 1+0 > 0 and x1 (0) = 91(t+0) 

for / + 0 < 0 and rnm(0) ni(t ± 0) for 1+0 > 0 and rnt (0) = 0 for t + 0 < 0. Clearly, 

P, C are continuous maps. We also assume that L2(J, X) = + R(13), i = 1, 2. 

Referring Lemma 2.1.13 we denote P the map associated to this decomposition and 

construct X2 'Ri  and X1  = R(B). Also set ci  = IIT'ill. We introduce the space 

Z = {m E C0 (J, X) : m = Ji(rii) + J2(n2) + 112(g(1, Xt + rnt )), ni  e Ti, i = 1, 21 

and we define the mimap F : Z — c0(J, X) by 

J1O P1 O 1`+  J2  0 P2  0C + P2  o C. 
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Lemma 6.31. If the hypothesis (H p) - (JJq) and conditions (Cl) hold for f,g and 

aKa(ci NLj + c2 NL9) < v then F has a fixed point. 

Proof: For z1 , z2  E let Af(s) = f(s, Z,z2(s))  + x ( ,4))) — f(s. Z,(.Zl(.c))  + 

xP(.,X($))) and Ag(s) = g(s, z + x8 ) — g(s, z + x8). V 0 t a. 

IRFz2 - Fz2 )(t)II < f S(L s)[Pi (Af)](s)dsll 

+ iif AS(t — s)[P2(Ag)(s)dsI + IIP2(Ag(1))I 

< N I II[P1 (Af)](s)IIds + N1 fo  
ii

Jo . 
+ IP2(A9(8))II 

< Nt 2ci IIAf 112 + 2th I2c2 IIAglI 2  ± c2 A9(8)I. 

Now 

p
1  

IA! Il = I IIf(s, Z(.sz2(s)) + Xp(8,(s))) — f(s, _ 
p(s.Z'(s)) + xp(s,x(sn)II 2d3 

Jo 

a  

2 
2  ~ L fo'L IIZ(s,z2(s)) - 

 
a 

< L  2 f IIz— zIIds 
1 

 

(1J4KIIZ2 —Z'I  00 I(i.S. 

Similarly we find for g. So, 

II(Fz2  — Fz')(t)Il :~- bt 112 
— z'II 

where b = ah /2 K(t (clKUJf + c2Ni L0 ) Repeating this get 

Il 
(t), 

1/2)n 
(Fn 2 '"-1)(t)II < 11,2 — I z — 1 

— 2(n_)/(2n) II- oo 

As b = aKa(ci NLi  + C2 N1 1 9  + C2Lg) < s/ and 2' — v~-2 as ii —+ 00 , the map 

rn is a contraction for n sufficiently large and therefore F has a fixed point. 

Theorem 6.3,2. If the associated linear control system (6.2.3) is approximately con-

trollable on J, the space L2([0. a], X) = O't +I?(13), i = 1, 2 and condition of the Ire-

ceding lemma hold then the neutral second order differential control system (6.1.1) 

with state dependent delay is approximately controllable on J. 
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Proof: Assume that x(.) to be the mild solution and u(.) to be an admissible 

control function of system (6.2.3) with initial conditions x(0) = ((0)—g(O, (0)) and 

= z. Let in be the fixed point of F. So, ri;.(0) = 0 and ni(a) = A1(I'1 (F(71)))) + 

A2(P(C(iii))) + P2(C(,n(a))) = 0. By lemma 2.1.13 we can split the functions 

P('m), G(m) with respect to the decomposition L2(J, X) = 91 + R(B) i = 1, 2 

respectively by setting q = F(m) - Pi (F(rn)) and q2 = G(m) - P2(C(m)). We 

define the function y(l) = m(t) + x(t) for I E I and Yo = . So, x(a) = y(a). We 

claim y = x + rn is the mild solution of the system (6.1.2). By applying lemma 6.3.1 

we get 

1, 
x(I) ± rn 

f
(1) = C(t)x(0) + S(t)x'(0) + S(t - s)Bu(s)ds + P.2(G(rn)) 

+ / AS(i - s)P2G(rn)d + fo  
8(1 - s)Pi (F(m))ds, (6.3.10) 

Jo  

So, 

y(t) = C(t)x(0) + S(t)z ± P2(9(t, xt + mt)) + / 
S(t - s)[F(rn) - q1  

+ I3u(s)]ds + 
103 

AS(t s)[C(rn) - q2]ds 

= C(t)x(0) + S(t)z + P 
1

S(t2(C(m)) + - s)[f(s, - 

+ B I AS(Iu(s)]ds + - s)[g(s, Y) - q2]ds (6.3.11) 

As c(.J, U) and C(.J, U) are dense in L2(J, U) we can choose a sequence v7  E 

L2(I, U) and a sequence V2 E L 2(I, X) such that Bv,'j —* q and Bv - q as 

ii --~ 00. Let y"  denote the mild solution of the integral equation (6.3.11) when q is 

substituted by Bv and q2  by Bv. Using lemma 6.2.4 we get 

y'(t) = C(t)x(0) + S(t)z + P2(C(rri)) 
+ JO 

8(1 - s)[f(s, Y(3, 
 

— Bv(s) + Bu(s)]ds + I AS(I — s)[g(s, y) - Bv(s)Ids 
Jo 

= 

TZ 

C(t)x(0) + S(t)z + P2(g(t, yr))  + Bv 

+ J S(t — s)[f(s, Y(())) - Bv(s) + Bv,(s) + Bu(s)]d5 

+ AS(I - s)g(s, y)ds (6.3.12) 
J), 
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As ii - oo 

y(t) = C(t)x(0) + S(t)z + P2G(m) + q 
d2  

+ 1 S(t  - s)[f(s, yp,)  + - v(s) + u(s))]ds 

+ / AS(1 - s)g(s, y)ds 
Jo 

t 

= C(t)x(0) + S(1)z + g(i, y) + JO 
S(1. - s)[f(s, 

 

+ B(—v - v(s) + u(s))}ds + J 
AS(t - s)g(s, y.)ds (6.3.13) 

Hence by definition (6.2.5) and equation (6.3.13) we conclude that y is the mild 

solution of the following equation 

(y(t) - g(1, Xt)) = Ay(L) + f(t, Yp((t)))  + B(—v(t) ± v(t) + u(t)) 
dt2 

(0) = [X(t) - = Z 
dt 

Flence y14(a)  E R.(a, f, g, 0, z). Since the solution map is generally continuous, y' - y 

as n —* 0°. Thus y(a) e fl.(a,f,g,&z). Therefore R.0(a,((0) - g(0,(0)).z) C 

1.(a,f,gz), which means 7?_(a,f,g,z) is dense in X. Thus the system (6.1.1) 

is controllable. 

6.4 Example 

In this section we discuss a partial differential equation applying the abstract results 

of this paper. In this application, 93 is the phase space Co  x L2(1t, X) (see[961). 

We study the following system 

o Ou(t, 

+ It 
/r 

- s, i, )u(s. 77)dids) 
-.o 

- 
82n(t, 

+ It a(t — s)u(s - p(t)p2(IIu(t)II, )ds + Bu(t), 
— (92 

tE[0,a],E[O,ir], 
- 

u(t0) = u(t,ir) = 0, t E [0,a], 

u(t, 0 = q(t, ) 'r <0, 0 < < it. 
- 

(6.4.1) 
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wliercq E Co xL2(h,X), 0< t1  <,...,t L  <aBydefiningrnapsp,G,F: [0,a]x8 —* 

X by 

:= p1(1,)p2(IIP(0)1I), 
pO 11r 

G(iJ)() :=J J b(s.v,)(s,v)dvds, 
—00 0 

pO 
:= J a(s)(s. )d.s 

the system (6.4.1) can be transformed into system (6.1.1) Assume that the functions 

pj —> [0, oo), a: R - R are piecewise continuous. 

Ob(m) The functions b(s. '1/. are measurable, b(s, j, it) = b(s, q, 0) = 0 andc,), 

1  
L9  := rnax{(

f
fj

b(s,i, ) )
2ddsd)"2 0,1} <oo 

The function F x IR - is continuous and there is continuous function 

f0 ds < 00. and lIF(t,)II <i(s)IIII 

rO (a (s))2  

The functions a E C([0, oo); IR) and 14 := (j00 h(s)  ds)1"2  < oo for all 

i = 1, 2, ...,nj= 1,2 

Moreover g(t, .), I, i = 1, ..., it are bounded linear operators 

1-lemice by assmnptions (a) - (c) and theorem 6.3.2 it is ensured that mild solution 

to the problem (6.4.1) exists. 

6.5 Conclusion 

Thus, we establish the existence of mild solution and approximate controllability 

of a second order neutral partial differential equation involving state dependent 

delay. The conditions for approximate controllability were derived for the distributed 

second order neutral system by assuming the approximate controllability of the 

corresponding linear system in a Hilbert space. The strict assumptions such as the 

compactness of the associated cosine or sine family of operators were removed. We 

also removed the limitation of the non-existence of the inverse of the controllability 

operator due to the compactness of the semigroup in infinite-dimensional spaces. 



Chapter 7 

Existence of Solution and 

Approximate Controllability of a 

Neutral Differential Equation with 

State Dependent Delay 

This chapter is divided in two parts In first part we study a second order iieu-

tral partial differential equation with state dependent delay and non-instantaneous 

nnpulses. The conditions for existence of the mild solution are investigated via Flaus-

(lorfi measure of noncornpactness. Darbo Sadovskii fixed point theorem is applied. 

Thus we remove the need to assume the compactness assumption on the associated 

family of operators. 'flic conditions for approximate controllability are investigated 

for the ncutra.l second order systein with respect to the approximate controllabil-

ity of the corresponding linear system in a 1-lilbert space. A simple condition on 

the range of an operator is used to prove approximate controllability. Thereby, the 

iion-singularity of a, controllability operator is not required which was an essential 

(ollditi011 in [39]. Since in infinite dimensional spaces, with compact seliligroup the 

controllability operator is not invertible. Our methodology does not require to find 

the inverse of the controllability Gramian operator. Also the associated limiting 

conditiomi in [69] is removed. Examples are studied to substantiate the theory. 

105 
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7.1 Introduction 

On account of the extensive use of non-instantaneous impulsive differential equa-

tions in electrical and mechanical engineering and other fields, they are recently 

investigated by 1-Iernandez [84] and many others. 

The literature related to state dependent delay mostly deals with functional 

differential equations in which the state belongs to a finite dimensional space. As 

a consequence, the study of partial functional differential equations involving state 

dependent delay is neglected. This is one of the motivations of our paper. 

The paper [109] studies existence of differential equation via measure of non-

compactness. Measure of non-cOml)aCtflCSS significantly removes the need to assume 

Lipschitz continuity of nonlinear functions and operators. 

Infinite dimensional systems has been extensively investigated to establish their 

controllability on account of their applicability in various processes. In the papers 

[39; 1591 the authors established the oxact controllability by using compact semi-

group. As we know that compactness of the controllability operator follows from 

cornpactnes of the operator B Co-semigroup. Therefore in infinite dimensional, due 

to a result of Triggiani [164], the controllability operator is no longer invertible. 

First we study the existence and uniqueness of mild solution of the SCCOn(l order 

equation modeled in the form 

+ g(I,x)) = A:r(/) + .f(I.xp(t,x)). I. G (s, t + ]. i = 0.
dt 

.... ii 

x0 =qEB, x'(0) = zEX 

X (t) = J(L.x), t E (t,s], i 

x'(l) = J(t.x), t e i = l,2,...,n (7.1.1) 

where A denotes the inlinitesimimal generator of a strongly continuous cosine family 

{C(I.) : I e R} in the Ililbert space X. The history valued function :i:, : (—oo, 01 - X, 

= x(+O) takes values in the abstra.ct phase space 93 defined defined in chapter 

2 as I)efinitiou 2.2.12 g, f, J, J, I = 1,.., n. are appropriately defined functions. 

0 = to = 80 < t .sj. t2.....< I,, < sT, < = a are prefixed m.mibers. 
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Specifically, we study the approximate controllability of 

dt 
(x'(t) +g(t,x)) = Ax(t) + f(t,X,,((r,)) + Bu(1), t E J = [0, a] 

x0=qE3, x'(0) = wX (7.1.2) 

/3 is a bounded linear operator on a IIilbert space U. 

Let. N, AT  be certain constants such that IIC(i)II < N and IIs(f)II < N for 

every I E I = [0, a]. For more details see book by Fattorini [75] and articles 

[161] ,[ 162] [163] 

7.2 Existence of Mild solution 

We define mild solution of pro11eni (7.1.1) as follows. 

Definition 7.2.1. A function x : (—oo, a] -* X is said to be a mild solution of the 

problem (5.1.1) if xo = ; x(.)Iio,i e I'C(X), x(i) = I j', x) V t E (ti, s] I = 1. ..., n 

and 

X(I) = C(t)(0) + S(t)[z + g(0, )] 
- I C(t - s)g(s,x3)ds 

+ I S(t - s)f(s, Xp(3 ,x ))ds, t E [0, I] 

X(t) = C(1 - 81)J'(s, x.) + S(t - s)(J(s, x) + g(Sj, x)) 

- J C(t—s)g(s,x)ds 

+ I S(t - s)f(s, xp(8))ds for I E [si, t+d i = 1, ..., n (7.2.1) 

To move  our result we always assume p : I x - (—oo, a] is a continuous 

function. The following hypotheses are used. 

(Ii) The function t -+ Ot  is continuous from (p) = {p(s,',b) : p(s,) 0} into 

93 and there exists a continuous bounded function J : R(p) —p (0, oo) such 

that It[I < J(t)[04 for every I E (pj. 

(I-If) The function f : I x 93 - X satisfies the following properties: 

(1) For each :z: : (—oo, a] - X, x0  E 93 and :vl.j E PC, the function f(., ) 

I - X is strongly measurable for each E 93 and f(t, .) is continuous 

for a.e. t E I. 
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There exists an integrahie function a: J --> (0, ±oo) and a monotone 

COiltiflU011S noiidecreasiiig function Q: (0, +oo) —> (0, +oo) such that 

111(1, v) < ((i)l(IIv II) Vt E .J and v E 93. 

Suppose D(0) = {v(0) : v € D}. For a.e..s. I, e .J, there exists an 

intcgra.ble function i •i - [0, oo) such that 

(S(s)!(t, I))) < rj(1) sup_ <<0  x(I)(0)) 

(Hg) The function g(.) is continuous Vt, v E J x 93 and g(I, .) is Lipschitz continuous 

such that there exists positive constant L9  such that 

lg(t, v1 ) - 9(1, v2)I1 L,jIti - v2I, (1. v1) E I x 93, i = 1,2. 

(IlJ) (1) There exist positive constants c , c, d, d such that 

II,J 1 (t, v)II < c IIvII + c and II ,J?(t, v)II < d Iv + d 

(2) llJI(1, ,it) - •J'(t,v)Il L,ju— vI for all n,v E 93 i = 1..... ii. j = 1.2 

V,T1  (Hi) (1) Ka(NcJ g  + N f c(s)ds 1ifl r _>o  sup + _1(Nc + N(d ± Lq ))) 

+ > C.Ka  < 1. 

(2) (Ka JVLq(L + > 1 {NLji + N(LJ 2 + L9)}K. f q(.$)ds) 

+ >ii{Lji}Ka < 1 

Lemma 7.2.2. ([961) If y (—, a] — X is a function such that Yo = 0 and yl.' E 

I'c(X) then 

IIYp(s,y.,)II (Ma  + + Kasvp{IIy(0)II; 0G [0, max{O, .s}]}. 

SE R(p) U [0, a] 

where .0 = sup,eR(P_)J(t), Ma  = sup,€jM(1) and ha  = maxlE,JK(t). 

In this section y : (—oo, a] --~ X is the function defined by Yo = q5 and y(t) = 

C(t)0(0) + S(t)(z ± g(0, )) on I = [0.11]. Clearly kallylla + M5 3  

where IIYIIa = SttPO<t<ally(t)II 

Theorem 7.2.3. Whenever the hypotheses (Hf), (Hg), (III), (Hi) hold, the system 

(7.1.1) will have atleast one mild solution. 
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Proof: Suppose that S(a) denotes the space S(a) = {x : (—cc, a] -* Xj XO = 

0, xlj  E PC} associated with supremum norm 

Suppose F : S(a) - S(a) denote the map (Fx)o  = U and F = F + 

t e (11,s];i = 1,.. 

(Fx)(t) = C(t - 

+S(t - s)(J?(s, 3 ) + g(s j , x 3 )), t E (se, t+i}; i = 1,..- 

(7.2.2) 

f C(t - s)g(s,rt)ds 

(Fx)(t) = + f S(1 - s)f(s, X,,(,??))dS, t C (si , t+i]; i = 0, , n (7.2.3) 

0, t 0 (s,t i,i = 0,...,ri. 

where To = and Y = x + y on I. It is easy to check that 

xtII /<a ll Y ll a  + 1hhia II4)II _f_ j<(LIIXIIt, 

where jjxjj j, = supo<.9<  iix(s) II. 

X p(s, )  ii k : (M(, + J)iiqil + KaliYii(L + KlLIIXiIa. 

So, F is well defined. Moreover F takes values in S(a). By applying the Lebesgue 

dominated convergence theorem, and the hypotheses (iii), (Jig) coupled with the 

axioms of phase space, we can prove continuity of F. 

Stepi : There exists k > 0 such that F(Bk) C Bk, where Bk  = {x E S(a) : iHia 

k}. When we assume the assertion to be false, then V k > 0 there exists Xk E Bk 
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and tk E (si, t+i] such that k < IlFxk(tk)ll. 

k IIFxk(ik)II 
+ 

IIFx(t)Il 

IV 
flk 

+ I I g(s, o)ll)ds ± >12 1S7 Isi  

+ >2 N(ciiIj + c) + >12 N(d.lIIl + (1,2 + - 

011 + Ig(s, 0)1

tk 

1) 

NJ Lg(Kallylla  + MaIIIl + Kak + ig(s, 0)ll)ds 

+ >12 li C(S)dSl(Ka IIyll a  + (Ma  + IIlI + Kak) 

+ >2 N(c(Ka lylla  + MallIl + Kak) + c) 

+ N((i(KaIIyIla  + itI'a llPlIS  + I<(Lk) + (I. 

+ Lg(Kallyll a  + A'Ialkt4k3 + Kak) + lg(s. 0)11) (7.2.4) 

Hence 

1 < (N / lim Sup aUYa + (M )II a  + JlI + Kak) 

k 
n 

+ NaKaLg)+Ka>2(Nc +N(d + L9)) 
i= 1 

c(T) 
~ 

TI 

K(N(iL9  + N 
j a 

a(s)ds urn sup— + >2(Nc+ N(d  + L9))) 
T-9C3 T i—i 

(7.2.5) 

which is a contradiction to the hypothesis (ill). Similarly (I'x)(t) < k. for tk  E 

(ti , s] V i = 1, 2, ..., i-i. Suppose on the contrary, 

71  k < >2(Fxk)(1k) 
= 

Jil  

< {c Il + c} 

< {C(KaIlYlla  + MalIIl + Kak) + c} (7.2.6) 
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1-Ieiice, 
74 

1 Cil (7.2.7) 

which is a contradiction. 

Step 2.: To prove that F is a X—contraction. Let F = F + 172 be split 

into F = F + 0{F + F} for I > 0 

F 1 x(t) = fC(t - s)g(s,)ds 

Fx(t) 
= 

S(t - s)f(s, (3, ) )ds 

For arbitrary x1, x2  E Bk, and I E (Si, t+11 

U H U ( 

IIF 1xi(t) - F 2 x(t) 11 if C(t - s)(g(s, Xi + ys) 
Si i=O i=O i=O 

- g(s,x2  +y3))dsI 
U 

< ATL9axi, - x2  ihB 
i=O 

< KaNLgaIIXi - X21Ia (7.2.8) 

So, F Vi = 0, ..., n is Lipschitz continuous with Lipschitz constant NLgaKa. 

For any 14' C F(Bk), 111  is piecewise equicontinuous since S(t) is equicontinuous. 

Hence froin the fact that p(s, ) :!~ s, s e [0, a] and Lemma 2.5.9 and xpc(W) = 

sup{(W(t)),t e J} we have 

n U 

x( F 1 W(t)) = x(f S(t - s)f(s, Wp(8, )  + y8 )ds 
i-O i=O 

fl I 

+ 0) + y(. + 0))ds 
SI S i=O 

It 

/ 7i(s)sup <o<oX(W( + 0) + y(s + 0))ds 

7, 

I ii(s)sup_ <7 oW(r)ds 
i=O , 

xpc(W) E I ri(s)ds 
i-O ' 
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For arbitrary x1, x2  E Bk and t E (si, ti 

I(Fxi)() - 
1

(Fx2)(0II < 2{JvLj.IITs, - X2s,II 

+ - 7II + 11q IIX 2.s, - xi.ID} 

< >{NL + IV(L.j,2 + Lg)}IIxisj  + Ys 

- X25, - YSII 

>{NL + N(L /2 ± Lg)}lIxis  - x23.II 

; EfNL,i + N(L,; + Lq )}KaIIXi - X2IIa 

(7.2.9) 

So, F V = 1, ..., fl 1s Lipschitz continuous with Lipschitz constant (N L 1  +N !?) K 1. 

For arbitrary x 1 , :1:2 E Bk and I E (Ii"Sil , 

71 

- ~ 

1 ahj.J hIIX 1 X2IIa (7.2.10) 

For each bounded set 14/ E PC(J; X) and I E (sj, t+1],  V i = 0. ..., m we have, 

fl It. 

xpc(fl'V) ~ xi'c(FW) + jI xpc(F 1 1'V + Fl4) 
i=1 i=O 

< (KaNLg  + {NL -F N(LJ2 + Lg)}K + f (s)ds)xpc(W) 
i=O 

For each bounded set W E Pc(J; X) and t E (ti, sil V i = 1, 2, ..., n we have, 

xpc(FW) xpc(F 14/) + xpc(F 1  14 -F FW) 

~ ({L }1(a + 0+ O)xpc(W) 

Therefore, F is a X—contraction. Thus F has a fixed point in S(a). This follows from 

Darbo-Sadovskii fixed point theorem. So, z = x + y is the mild solution of (7.1.1). 
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7.3 Approximate controllability 

In this section the approximate controllability of the control corresponding to (7.1.1) 

without the impulsive conditions is studied. We consider 

(x'(t) + g(L. Xt)) = Ax(t) + f(t, xp(j,)) + Bn(i), t E J = [0, a] 
(11 

= B, x'(0) = w E X (7.3.1) 

where ii denotes the infinitesimal generator of a strongly continuous cosine family 

{C(t) : t E R}. We define mild solution of problem (7.3.1) as follows. 

Definition 7.3.1. A function x (—oc, a] - X is said to be a mild solution of the 

probleni (7.3.1) if x0 = ; X(.)Iioai E C(J,X), the functions f(s, xp(,)) and g(s, x) 

are illtegral)le and the integral equation is satisfied 

X(t) = C(1)(0) + S(t) [w + g(O, )] 
-- JO 

C(t - s)q(s, x.)d 

+ f S(t - )[f(s, :z;,,(s. xx)) ± /3u(s)]ds, I E [0, a] 

(7.3.2) 

Lemma 7.3.2. [162] Under the assumption that It : [0, a] - X is an integrable 

function , such that 

x"(t) = Ax(t)+h(t),tI 

X (0) 

X,  (0) = (7.3.3) 

and It is a function continuously differentiable, then 

J

t 

JO, 

t 
C(t - s)h(s)ds = S(t)h(0) + S(t - s)h'(s)ds 

Let a = T 

Definition 7.3.3. The set given by R.T(f) = {x(T) E X : x is the mild solution of 

(7.3.1) } is called reachable set of the system (7.3.1) . R(0) is the reachable set of 

the corresponding linear control system (7.3.5). 

Definition 7.3.4. The system (7.3.1) is called approximately controllable on [0,7'] if 

R j (f) is dense in X. The corresponding linear system is approximately controllable 

if R(0) is dense in X. 
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A continuous linear operator £ : L2([0. Ti; X) -> C([O. 7]; X) is defined as 

"7.  
S(T - s)p(s)ds, p E f2 ([0, T]; X). 

.0 

The kernel of the operator £ is indicated by N. This is a closed subspace of 1,2([O. T]: X). 

Suppose iV be the corresponding orthogonal subspace of 

L2([O, Ti; X). P denotes the projection on L2([U, TI; X) with range N6L.  Here 7(/ 

is the closure of the range of operator 13. The following hypothesis are used 

(HR) Vc > 0 and p(.) E 1,2([0. T]; X). u(.) E U such that. p - £Bullx  < c 

The hypothesis (II?.) is equivalent to the I 2([0,7']; X) = R.(13) + No or 1'R(13) = 

Ne-. Theorem (7.3.5) proves that from hypothesis (fIR) the approximate controlla-

bility of the system (7.3.4) follows. We know that L2([0, Ti:  X) = 17(B) + N0  follows 

from the approximate controllability of (7.3.5). Thus from the closedness of the prod-

net space it follows that (III?) is equivalent to the approximate controllability of 

(7.3.4). 

Theorem 7.3.5. Whenever the assumptions (1-Ig) and ([IR) hold then the associated 

neutral system 

d(x'(L) + g(t, xe.)) 

(1/, 
= .4x(i) + I3u(I,). I. E .1 

X(0) = 

x'(0) = w (7.3.4) 

with f 0 is approximately controllable. 

Proof: It. is sufficient to l)1'ovc that D(A) C 1.(0) since D(A) is dense in X. Let 

h(T, ) = (i(/.)(0) + S(i)[w 4- .q(0, 0(0))] - f0' C(i - .$)q(,s, :r)ds. For any chosen 

e D(A), then - h(T, ) e D(A). It can be easily seen from Lemma (7.3.2) and 

[139] that there exists some p G C' ([0. T]; X) such that 

h(T. ) 
= L S(T - 

By hypothesis (II B.) there exists a control function n(.) E 1,2 ([0. T}; (I) such that In— - 

£BuII < . As c is arbitrary it implies that KT(0) C D(A). Since the D(A) is dense 

in X, K7.(0) is dense in X. Hence the neutral system with f 0 is approximately 

controllable. 



- We state the corresponding linear control system 

x"(t) = Ax(t) + Bu(t), t E I 

X(0) = 

X,  (0) = 
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(7.3.5) 

Both exact and approximate controllability of the above system is studied exten-

sively in literature. 

Assume that f, g satisfy following conditions. For a fixed and x E C(J, X) 

such that x(0) = (0), we define maps F, C : c0(J, X) - L2(J, X) by F(z)(L) = 

1(1, z + XL) and G(z)(t) = g(t, Z1 + x,). 1-lere XL(0) = x(t + 0), for I + 0 > 0 and 

;c,(0) q(I + 0) for I + 0 < 0 arid z,(0) = z(i + 0) for I + 0 > 0 and z1(0) = 0 for 

I + 0 <0. Clearly, F, C are continuous maps. 

(Cl) The function f(.) is continuous Vt, v E J x 93 and f(t. .) is Lipschitz continuous 

such that there exists positive constant L1  such that 

lf(t,vi) - f(t,v2)I Ljllvi  —v2IIc, (I,v) El X B, i = 1.2. 

- The above same condition also hold for C. 

Also, y (—oo, a] —* X is the function defined by i/o = and y(t) = C(t)0(0) + 

S(t)(z+g(0, )) on J. Clearly ItII :5  KaIIyIIa+MaIIII where Il/ha = 5PoahIY(t)II. 

The operators A : L2(J, X) —+ X i = 1, 2 are defined as 

Aix(t) = 

 JO " 
 S(t - s)x(s)ds 

A2x(1) 
ja 

 C(t — s)x(s)ds 

Clearly Ai  are bounded linear operators. We set = ker(Aj), A = (A1, A2) 

and 91 = ker(A). Let G0 (J, X) denote the space consisting of continuous functions 

x : J — X such that x(0) = 0, endowed with the norm of uniform convergence. Let 

J: J 2(J, X) — C0(J, X), i = 1,2 be maps defined as follows 

.Jix(I) 
= in 

S(i — 

J2x(I) 
= 

C(t — s)x(s)ds 
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So, Jx(a) = A(x), i = 1,2. 

As a continuation of co-author N. Sukavanam's work [155] and from hypothesis 

(81) in [1391 we assume that J2(,J,  X) = + J?(I). i = 1,2. 

By using lemma (2.1.13) we denote P, the map associated to this decomposition 

and construct X2 = Bj  and X1  = R(B). Also set ci  = IP. 

We introduce the space 

Z = {z E C0(J, X) : z = Ji (ni ) + J2(n2), ni  E Ol, i = 1, 21 

and we define the map F : Y --~ G0(J1  X) by 

F=:J1 o/'i oP—J2oP2oC 

Lemma 7.3.6. If the hypothesis (JIg,) - (11q ) and conditions (Cl) hold for 1 and 

aK1(qiVLj  + (:2 NL9) < then F has a fixed point. 

Proof: For z 1 , z2  E Z let Af(s) = f(s, Z(z2())  + Xp(,.r(.$))) - f(s. Z (92l(s))  + 

and Ag(s) = g(s, z + x.9 ) - f(s, z + x3). V 0 I < a 

I(Fz2  - Fz2)(t)Il ~ II
10 
 S(t - s)[Pi(Af)](s)dsll +11 

JO 
C(t - s)[P2(Ag)](s)dsll - 

II [P1  (A 1)1(s) IkLs + N 
.L' ii 

[P2(Ag)1(s)  lids - 

< .11/2ci ilAfiI 2  + NtV2c2Ag2 

Now 

ilAfli = ilf(s Z z2(s)) + Xp(,x(s))) f(s, Z(8 l()) + Xp(s,x(s)il 2dS 

L 

 ja 
liZ(s,z2(s)) - Z p(S,Z I($))li93 dS 

i 93 

j.a 

ilz - Z:  lIis 

< aLKllz2  - z1i 00 ids 

Similarly we find for g. So, 

ii (Fz2  - Fz 1 )(t) ii bI'IIz2  - Z111
.  

where 1) = a/K(L ((1NL1  + (,-2 NLq). Repeating this get 

z2  - F'z')( 
(b11/2)" 

ii - 

.2 .1
11 li(Fu t)iI00 

2('')/(') 00 
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As b = aKa(ciNfj + c2NL9 ) < and 2.' -f as n -+ Do , the map F' is a 

contraction for ii sufficiently large and therefore F has a fixed point. 

Theorem 7.3.7. If the associated linear control system (7.3.4) is approximately coii-

trollable On J, the space L2([O, a], X) = O1 + R(B), i = 1,2 and condition of the 

preceding lemma (7.3.6) hold then the semilincar control system (7.3.1) with state 

dcl)endcnt delay is approximately controllable on J. 

Proof: Assume x(.) to be the mild solution and u(.) to be an admissible control 

function of system (7.3.4) with initial conditions x(0) = (0) and x'(0) = w + 

g(O,4. Let z be the fixed point of F. So, z(0) = 0 and z(a) = A1(P1 (F(z))) - 

A2(I'2(C(z))) = 0. By Lemma 2.1.13 we can split the functions F(z), C(z) with 

respect to the decomposition L2(J, X) = -t- R(B) i = 1. 2 respectively by setting 

(/j = P(z) - I(F(z)) and q = C(z) - P2(C(z)). We define the function y(t) = 

z(i.) + ,r(t) for 1 e .1 and vo = . So, ;:;(a) = ij(a). Thus by the properties of :v and z 

y(t) I S(t -s)(f(s, Yp(s,y(s)) - q1(s) + Bu(s))ds 

J *t C(t —,S)(g(S,Y.) — q2(s))ds+C(t)x(0)+S(t)x'(0) (7.3.6) 

As U) is dense in L2(J. U) we can choose a sequence v,3  E L2(J, U) and a 

sequence v, 2  E L2(J, X) such that J3v, - qi and Bv -* q2  as n -* oo. By Lemma 

7.3.2 we get 

y"(t) jo 
= S(t - -Bv1 (s)+ Bu(s))ds 

— / C(t - s)(g(s, y) - Bv(s))ds -- C(t)(0) + S(t)(w - g(0, )) 
Jo 

= f S(1 - s)(f(s, Y(5,(3))) - J3v(s) + Bv(s) + Bu(s))ds 
ds 

I C (t - s)g(s, y)ds + C(t)qi(0) ± S(t)(w + g(0, )) 

hence by definition (7.3.1) and the last expression we conclude that y'1  is the mild 

solution of the following equation 

(y'(1) + g(t, Xt)) = Ay(t) + f(t, Yp(t.,,(t)))  + B(—v(t) + v(t) + u(t)) 
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X (0) = q e 93 x' (0) = w 

Hence ylz(a)  E 7Z.T(a, f, g, q5, w). Since the solution map is generally continuous, 

— i as n —* 00. Thus y(a) E 77,(a,f,g.,w). rThel.efore  1ZT(0)(a,(0),w + 

g(0, )) C 7Z7'(a, f, q, 0, w), which means 'R.T(a, f. g, , w) is dense in X . Thus the 

system (7,1.1) is controllable. 

7.4 Examples 

Example 1: 

In this section we discuss a concrete partial differential equation applying the ab- 

stract results of this paper. In this application, 93 is the phase space Co x 1 2 (h X) 

(see [97]). 

Consider the second order neutral differential equation 

a ôu(t. 
± 

1 
F b(t — .. , e)u(s, )dds) 

-coO 

— a211(1 
+ T a(t — s)u(s — pi(t)p2(IIu(t)II), )ds. 

L E (Si, ii±], i = 0, ' , n, E [0, in, 

u(t,0) = u(t,ir) = 0. 1 E [0, a], 

b(r,e)r<0,0<ir. 

= w(t,e) 1< 0,0 < < 

u(t)() = f a(t. — s)u(s, )ds t e (tij sd, i 1, 2, ii 

= / a(t — s)u(s,)ds I E (t i, s11, i = 1,2,... ii (7.4.1) 

where ç C x L2 (h,X), 0< I <,...,t,1 < a. For ye D(A) , y= 

y, > and fly = 7.1,2 < y,n > 6n. where 0(x) = /sinnx, ü < x < 

in, n = 1, 2, 3... is the cigenfunction corresponding to the eigenva.lue )t = — n2  of 

the operator A. is an orthonormal base. A will generate the operators S(t), C(t) 

such that S(I)y = 
rn(flt) 

> 0,L, ii = 1, 2, ... V y e X, and the operat;or 

= cos(nl.) < y, q,, > q, n = 1,2, ... V 'tj C X,. 

Let us suppose that the functions p, : R —+ [01  oo). a : JR -4 JR are piecewise 



119 

continuous. By defining maps p, C, F: [0, a] x B —> X by 

p(t, ) := p1(t)p2(IIL'(0)II), 

O f j'7T 

=1  J 
b(s,v,)'çb(s,v)dvds, 

- 0 

f
0 

a(s)(s)ds 

0 

'Jij := j aii wo (s, ~)  ds i = 1,... ,n j = 1,2 
OU 

the system (7.4.1) can be transformed into system (7.1.1) Assume that the following 

conditions hold 

The functions b(s,?], ) are measurable, b(s, i, r) = b(s, i, 0) = 0 and 

° 1 (ab(sThe))2dlldsd)1/2: i = 0, 1} < - L9:=rnax{([ 
f
"
I 

JO  

such that IIgtI(x) < L9. 

The function F : R x R —+ R is continuous and there is continuous function 

L1 = f° f-d.s <oo and IIFIIrx <Li. 

oo 
r0 (82ds)u/2 

 < 

for all The functions a 

E 

C([0,00);) and 14 := (j_ 

, 

i=1,2,...,mj=1,2 

Moreover g(t, .), J,i = 1, ...,n,j = 1.2 are bounded linear operators 

Ilence by assumptions (a) — (c) and Theorem (7.2.3) it is ensured that mild solution 

to the problem (7.4.1) exists. 

Now let us consider a particular example from the point of view of concrete 
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application 

3 5u(1 
+ f [it  

- 

32u(t, 
± a()h(u(t - i(n(i, 0)), c)), 

t E (s,1+1, i =0,•" ,n, E [0,7r], 

u(t,0) = u(t,ir) = 0. t E [0,a], 

u(r,) = 

= w(r,)r0,0ir, 

u(1)() = (11 sin Iu(1, )I I cH (1, s;], i = 1,2. 

= d cos Iu(t,)I, I E (t i , si], i = 1., 2, , n. (7.4.2) 

where q5 € 1B = C10, (X). The functions a : .1 —+ 1, b: R x .1 -4 R, /1. : R —4 lR are 

piecewise continuous. We assume the existence of positive constants b1, b2  Such  that 

Ib(t)I <biltl±b2, Vtei. 

If we define maps 

f(t, i')() = a(t)b(I'(0, )), 

p(t.) = I — 

and g(t,-)() as in the problem (7.4.1) we can transform (7.4.2) into (7.1.1). Also 

a simple estimate shows that IIf(t,')Il < a(1)[bilI'II ± b2ir1/2
1 V (I.,i,b) E I x . 

Also if we define J'(t, u(t)) = d sin Iu(i)I and J = d COS ju(t)I for all i = 

1,••• , ii then the hypotheses (I-IJ) can be easily proved. For instance, 

ilJ(t,u(t))II = Ild sin Ju(t)III :5 dlIu(i)II 

and 

IIJ(t. ui (1)) - J'(t, 112(t))II = IId sin Jul(1)1 — d sin kt.2(t)II1 

< 1 ' [Fui(i) I 112(/)111. (7.4.3) 

Similarly it is easily seen for •J. Now, if satisfies the hypothesis II t  then 3 a mild 

solution of (7.4.2). 
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Example 2: 

Consider the second order neutral differential equation 

3 th(t,) + f  fb(L - s, 77, u(s,)dds) 

- 
32u(t, + 

1CCt
a(t - s)u(s - pi (t)p2(IJu(t) II) e)ds + Bv(t) - 32 

t E [0, a], e [01 7r], 

71(t,0) = u(t,7r) = 0, t e [0, 0], 

u(t,) = (t,) r < 0,0 < it, 

(7.4.4) 

where th E CO  x L2(h, X), 0 < 11 <,...,t < a For y E D(A) , y = < 

y,, > 0,, and Ay = — 1 n2  < y , n > . where (x) = sinnx, 0 < x < 

it, n = 1,2,3... is the cigenfunction corresponding to the cigenvalue ) = of 

the operator A. On is an orthonormal base. A will generate the operators S(t), C(t) 

such that S(t)y = 
1I1(11t) < y, ,, > , n = 1, 2, ... V y X, and the n=

00 

1 n 

operator C(t)y = cos(nt.) < y, 4 > 'n = 1,2, ... V y E X, . Let the infinite 

dimensional control space be defined as (J = {u : u = n=2 u < oo
Tt 

} 
00 2 with norm IIuIIu = 'u,) . Thus U is a Hubert Space. By defining maps 

p,G,F: (0, a] x B —* X by 

p(t. ') := Pi (t)P2(  II'1(0) ID 

jO pit 

=1  J 
b(s,v,/'(s,v)dvds, 

00 0 

f
0 

a(s(s)ds 

the system (7.4.4) can he transformed into system (7.1 .1) Assume that the functions 

IR — (0, 00), a : R — R are continuous and satisfies the following conditions. 

(a) The functions b(s, m, ), are measurable, b(s, i, it) = b(s, q, 0) 0 and ij~ 

pit0 7r 
:= rnax{( i(Db(s))2ddd)1/2 i = 0, 11 <00 

o I_00L h(s) 3' 
J 

such that IIgII(x) < L9. 
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The function P : IR x IR —* R is continuous and there is continuous function 

Ilj — 0 
ds <oo and IFIIrx) < L1. 

— h(s) 

((" (.$))2 
ds)112  < oo for all The functions a e C([O, oo); l) and Ii tj_ h(s) 

i=1,2,...,nj=1,2 

Moreover g(t, .) is bounded linear operators. 

Here we examine the conditions (ill?) for this control system. Theii by using 

theorem (7.3.7) we show its approximate controllability. Let B : U - X flu 

2u21 + 2 u, On f or u = n-2 UnOn e U. The bounded linear operator 13 

L2([O,T]; U) - L2([O,T];X) is defined by (Bu)(i) = Bu(i), 

Let a N C L2(0, T X), N is the null space of F. Also a = a(s). Therefore 

f S(T - s)c(s)ds = 0. (7.4.5) 

This implies that 
sin ri(T — .5) 

a(s)ds = 0, n e 
Lfl 

jV 

The Hubert space 112 (0 7  T) can be written ,is 

L2(01  T) = Sp{sin s}' + Sp{siii 4s} '  

Thus for h1. h2  e L2(0, T) there exists a E {sin .s} I, a2  E {sin 4}1  such that 

h1 _2h2 =al -2a2.Soletu2 =h2 —a2.Thenhla1+2U2, h2 =a2 ±112  also 

let it, = h, ii = 3. 4, and a 0, n = 3.41 Thus we see that hypothesis 
00 

(FIR) is satisfied as U = {u : u = n=-2 fl(/)fl n=-2 u < oo} and B U —* X 
00 

Bu = 2u21  + En=2 Uflq5fl. 

Hence by assumptions (a)—(c) and Theorem (7.3.7) it is ensured that the problem 

(7.4.4) is approximately controllable. 

7.5 Conclusion 

The conditions for existence and uniqueness of the ini]cl solution are derivc.l via 

Hausdorif measure of non-compactness and Darbo Sadovskii fixed point theorem. 

The conditions of approximate controllability are esl:a.blished for the neutral second 
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order systeiii. A S1Ifll)le  condition on the range of an operator is used to prove 

approxunate controllability of the system. 



Chapter 8 

Approximate Controllability of a 

Fractional Neutral System with 

Deviated Argument in a Banach 

Space 

in this chapter we proved the approximate controllability of an impulsive fractional 

stochastic neutral integro-differential equation with deviating argument and infi-

nite delay. We use Schauder fixed point theorem and fundamental aSSUmI)tiOflS on 

systeiti operators. In infinite (hulielisional space, the assuniptioli of invertibility of 

controllability operator is renioved as it not invertible in case of compact seinigroup. 

Specifically, we studied a remote control clynaniical system represente(l by a neutral 

fractional differential equation with deviated argument which may take values in a 

remote sl)aCe. 

8.1 Introduction 

Several papers studied the approximate controllability of semihinear control systems, 

see for instance [69], [139], [156] and references therein. Ccnerally these papers pro-

posed coli(litions on the systems operators with assumption of approximate control-

lability of the corresponding linear system. For instance, Naito [139] I)rOvCCl that 

125 
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a semihnear system is approximately controllable under a range condition on the - 

control operator and imiform bouncledness of the nonlinear operator. Sukava nam 

[156] proved suflicient conditions for approximate controllability where the noiiliiicar 

function satisfies growth conditions. 

Motivated by results in [1391  and [1561 the PUtPOSC of this chapter is to study 

the existence and uniqueness of mild solution and approximate controllability of 

a functional differential equation with deviated argument and finite delay using 

Schuader fixed point theorem. We proceed by establishing a relation between the 

reachable set of linear control problem and that of the semilinear delay control 

problem. 

In this chapter we studied the existence, uniqueness and approximate controlla-

bility of the following fractional order neutral differential equation 

cDrx(t) ± g(t, xt)I = Ax(t) + f(t. x,. x(a(x(t). 1))) -I- 13u(i), I E J [0, Ti 

x(t) = X0 = e E 3, I E (—oc.0] 

(8.1.1) 

where a e (1/2, 1), 0 < T < oo and 'D,11  denotes the fractional derivative in 

Ca.puto sense. The state function x(.) belong to the 13anach Space X. The control 

function n(.) E L2(J, U) where U is a Banach space. B : U - X is a bounded 

linear operator. A : D(A) C X -* X is a the infinitesimal generator of an strongly 

continuous semigroup of hounded linear operators S(t). t > 0 on X. The history 

valued function Xt : (—oo, 01 -* X, x(0) = x(i + 0) belongs to some abstract 

phase space 93 defined axiomatically in chapter 2 as Definition 2.2.12. f, g and a 

are suitably defined functions satisfying certain conditions to be specified in the 

following hypotheses. 

Let (4/ be the closed subspace of all continuous functions x (—oo, 01 - 

L2((—oo. 7']; ) such that the restriction x : [0, T] - L2((—oo. T]; ) is continuous. 

Let 1 1 -111,v  be a seminorm defined by j jxjjjj1 = SUPtE[0T] IIx,,II. Let I) = C j (J, X) 

{n E C(.J, X): Iu('.) - u()jI <L]i - •I, W. .c  G .J}. 

Definition 8.1.1. The function x(t) E C((—oo, TI; X) is said to be a mild solution 

of (8.1.1) if x(.) E C,(J, X), x(t) = th(t) for I e [—oo, 0] and it satisfies the integral 
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- equation. 

X(t) = Sa(t)[c(0) +g(0,(0))] - g(t,xt ) 

- J (t - s)'A'J(t - s)g(s, x)ds 

+ (t - s)'T(t - )[Bu(s) + f(s, x, x (a(x(s). s)))]ds, t E I J  

where S(t)x = j(0)T(iaO)xdO and T(t)x = af9(0)T(tO)xdO. Flere 

= 0_1 _1/ ( (0_1/(k) is the probability density function defined on (0, ), 

that is (0) > 0, and f pa(0)(1O = 1 and 

F(na + 1) 
sin(nra), 0 (0, ) (0) = (-1) '0 

n! 
flrrrl 

Lemma 8.1.2. [177]  S(t) and 7(1) are linear bounded operators for any chosen 

1 >0 such that for any x E X, IISa(t)XII MiIIII and  IIT(1)xII < Fl~ ) IIxIL 

Lemma 8.1.3. [177] For any x e X, 0 < ,13 < 1 and i E (0, 1], we have ATQ(t)x = 

./l 1-13T(i)A'x and I1Y1T(t)II 
-

" < aC,, ['(2-i,) 
t E [0, T]. 1'? F(i+a(1-r)) 

Definition 8.1.4. The set given by KT(f) = {x(T) E X x E X} is called reachable 

set of the system (8.1.1) . KT (0) is the reachable set of the corresponding linear 

control system (8.3.1). 

Definition 8.1.5. The system (8.1.1) is called approximately controllable if Kr(f)  is 

dense in X. The corresponding linear system is approximately controllable if KT (0) 

is dense in X. 

The following assumptions are required to prove our results 

(ill) VX1, x2, z1 , z2  e X, I e (0, r] the nonlinear function f I x X x X —~ X 

satisfies Lipschitz condition 

- IIf(t, Xi, Zi) - f(1, X2, Z2)I1 P(llxm - X2II + IIzi - Z211) 

with Lipschitz constant P > 0. and I a constant fo > 0, 

such that 11f(s,0,x(a(x(U).0)))II fo V SE I 
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(1-12) Let a : X x R -* R satisfy the Lipschitz condition Ia(xi, s) - a(x2 , s)I 

L(IlIxl - x211 and a(., 0) = 0 

(113) The nonhinea.r function g : [0, T] x -* X is continuous and there exists 

constant 0 </3 < 1 such that g E D(A). 

Ag(., x) is strongly measurable. 

Vt E [0, T], and X1 X2  E , Ag(t, .) satisfies the Lipschitz condition Ag(t, x)— 

A'3g(t, )IIx !~ LlIx - jill z  with Lipschitz constant Lq  > 0 

8.2 Existence and uniqueness of mild solution 

In this subsection the equation (8.1.2) is verified to he the unique mild solution of 

the semilincar delay control system (8.1.1). 

Theorem 8.2.1. . The system (8.1.1) has a unique mild solution in C1 (J, X) for each 

control u E L2([0, TI; U) if assumptions (111), (112) and (113) are satisfied. 

Proof: Define the space 

= {x : XE C([ —oo,T],X) nC1 ([0,TI,X)}. 

Let 

Jlf CE 
R. = 2IM1I(0) + ç1(0, (0))II + 

F(1 + a) F2  

___________ 

F(1 +  /3)C -s t(i ) ± (P1LaIIX(0)Il + fo)t? + Lq  
F(1+a) /3F(1+a/3) 1 

+ 
+ fi)C1_5 

tg(t, 0)IIc((_oo;I'I;x)I + 1 (8.2.1) 
1,(1 1- (Y/3)fl 

Fix 0 < t1  <7 such that 

AlP  

P(R + ILa IIR)1.? + + Lgt' fi'1 
+ /3)C1  

F(1 - 1 () flI'(l + a/3) 

Ma /_t 1  
[M(0) + g(0, (0))I1 + F(1 + a) 2a - 

IU3tL(8)IIC((_oo,T);X) 

F(1+/3)Cl_s j(1)  
+ 

M  
r(l+a) (O +f0)11+L9 

flF(1+a/3) 1 9 

['(1 + I3)C1 _0  
+ 

F(1 + a/9) t1 
Ig(t, 0)Ic ,T];X)] + 1 (8.2.2) 
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Define the mapping : CL0 ([—oo, ii], X) - CL0 ([ — oo,  ti], X) as 

S(t)(q5(0) + g(0, COM - g(t, Xt) 

- J(t - s)'AT(L - s)g(s, x8)ds 

('1x)(1) = + J(t - s)'T(t - s)Bu(s)ds 

+j(t - s)'T(t - s)f(s,x3,x(a(x(s),$)))ds, t (0t1] 

(0), 9 E [—oc, 01 

Let us consider the space BR = {x(.) E CL0([-00, [i], X) : IIxIIc(I_oo,t1bx) ~ 

1?, x(0) = (0)} endowed with the norm of uniform convergence. For any x e BR 

and 0 < I < 11, 

IIxdIc < Ksup{IIx(s)jI : 0 < s <T} + iVIIIII, 

where K = suptE[o,Tj{K(I)} and Al = suptE lo,?'I{M(I)}. Now (x)(t) = x(t) is given 

by 

x(t) = Xt(0) = S(t)(q5(0) + g(0, (0))) 

+ I  (t - - s)g(sx8)ds 

+ 1,( I - S)ct -17',,(t -s)[Bu(s)+f(s.x,,x(a(x(s),$)))Ids 

(8.2.3) 

Then 

llxt(0) lix IlS(l)li lI(°) + g(0, 0(0))lI + llA'Il lIAg(t Xt) - A'g(t, 0)11 

+ 
 I

(t - s)1llT(t - s)llliBu(s) + f(s,x,x(a(x(s),$)))llds 
0 

+ f
o 

(I -s)'IlA't(I -s)illiAy(5,x.) - Ag(s,0)Ids 

+ 
F( 1 + )C11 

g(t, 0)  lg(t,0)l + 
F(1 +c88 

a jM(0) + g(0,(0))II + 
M 

17(1 + a) 
(I - s)lIBu(s)ilds 

+  f
It/Ia 

17(1+ 
(1— s)'[jlf(s, x, x(a(x(s), s))) 

- f(s, 0, x(a(x(0), 0)))il + IIf(s, 0, x(a(x(0), 0))) lljds 

(8.2.4) 
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aF(1 

f 
- Y'IHI +19  + IlAlIL9IlxsII + L9  

F(1+a8) 

+ 
F(1 + fl)C1 

1 IIg(i, 0)IIc((_,T);x) F(1+a/3)/3  

Il/ICE Uj2-1 

 11 IV! II(0) + g(0, (0)) II + 
F(1 4- CE) V 2a - l 

Bu(s) Ilc-oo,T1;X) 

Ma it 

+ F(1 + a) 
(1— .$)'[P(IIx3 - 0 + 11jX(S) - x(0)II) + fa }ds 

JO 

aP(1 + /3)Ci_fi 
s)'x + l + IIAIlL9IIx.Ii + L9  

F(1+a/3) j0 

+ 
F(1 + )C1_fl 

tIg(t, 0) IIC((-T];X) 

Ma 
< iVI(0) + g(0, (°))II + F(1 + a) 

Ci 
11 Btt,(.$) IIC((-.,T];X) 

IVIa 
+ 

F(1 +a) J (1 - [P(II II + 1LaIIII sII)]d, 
0 

v! 
+ 

/ 
 F(1 + a) 

[P(1Iia  IIx(0)II) + g]t 

+ IIA'II19IIx8II + L9  
aF(1 + fl)C1_ 

JO
(t - s) 1(Ilx8II + 19)ds 

F(1+a/3)  
F(1 +  

+ )C1_fltfl1I9(t O)IIc((_,T];x) 

Ma ~,2a-l

j 
iVIII(0) + g(0, (0))II 

+ F(1 +
IIBu(s)iIc,'fl;x) 

+ 
M 

h + 1LIJR)1 + 
M 

[I'(lLa IIX(0)II) + fo}t 
F(1 + a) 1[' a F(1 + a) 

+ IIAIIIjjR + 
L!1F(1 + 9)C1_11 
 

131'(1 + a/3) 1,
(0(R  + 1) 

r(1 +8)C_ 
+ 

F(1 + 
a/3)/3 tIIg(t0)IIc((_,r];x)  <H 

(8.2.5) 

Hence J maps BR  into itself when t1  satisfies (8.2.2). Next it is shown that ( is a 

contraction. 
(—oo0]; 

Let us define x(1) = z(t) + y(t) where y(t) 
= t G [0,T] 
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x1, x2  E B!? 

ilxi (t) - x2(t) 
< 

- 

fo 

Ma 
(t 

F(1+a) 
x Ilf(s, (z1) + y, (zi + y)(a((zi  + y)(.$), s))) 

- f(s, (zi)8  + y. (z1 + y)(a(z2(s) + y(s), s))) 

- f(s, (z2)3  + y3, (Z2 + y)(a(z2(s) + y(s), s))) 

+ f(s, (z1)3  + y, (z j  + y)(a(z2(s) + y(s), s)))lids 

+ iIAiI iiAEg(t, (Zi)t + Yt) - g(t, (Z2)t + yt)1 Ii 

+ Z (1— s) liA'(t - A16 (Zi)t + Yt) 

- g(t, (Z2)t +yt)]ll 

< 
a PAJ 

f (t_S) (zi+y)(a(zi(s)+y(s),$)) 
F(1 a) 

- (Zi + y)(a(z2(s) + y(s), SMI + li(z2)s - (zi)sli 

+ il(z2 + Y)(a(z2(s) + y(s), s)) 

- (Zi -i- y)(a(z2(s) + y(s), s))il) 

+ llAlIL,il(zi) - (z2),li 

+ 
aLF(1 + fi)Cl_fl 

It(t - s) 1ii(z2) - (zi).iids F(1 + afi) 

- 

PM 

F(  1+a) 
'IL aflZ - Z1IiC((_,ij];X) 

+ K 1k2 - Z1 liC((-oo,ti I;X) + 1k2 - zill C((-oo,t hX)) 

+ iiAiiLgt<ii22 - z1il(;((.,,,i);x) 

+ 
L9F(i + fl)c1_stii Z2 

 - ZlliC((_o,tiJ;x) 
['(1 + (fi)fl 
I'A'It 

( 
J 0F(1 + i3)C1_,31 

+K+1)+ 
- F(1+a) F(1+a 

+ li 4 il L9 K} li2 - Z1ilc((_tj];x) (8.2.6) 

So, 

- PMt 1  
(ILa  + K + 1) + ilA 31lL9K libXi - X2il(,((_,(jJ,X) ri + a) 

- + L9F(1+fi)C1_t' 
} llxi - X2 

F(1+a13)/3 
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Repeating the above process we get that 

IIxi - T1 X2IIC(( , tlX) < I_ 
PMt 

(1f + K IIIIL9K 
F(1+a)n! n! 

+ 
L9F(1 +)3)C1_1t 

}IIxi X2IIC((_oo,t t ]; X). 
F(1 + aj3)ri! 

(8.2.7) 

Thus 1T  is a contraction mapping for large integer n. Therefore, 1 has a fixed point. 

in BR.  Flence (8.1.2) is the mild solution on (—oo, t11. Similarly it can he showTl 

that (8.1.2) is the mild solution on the interval [/,. 121,  tl < t2 . Thus (8.1.2) is the 

mild solution on the maximal existence interval (—oo. /S],  V < oo. 

Now it is shown that x is well defined in (—oo, TJ. If I E (—oc. i] 

Ma(MB) 

f 
MjIIu(s)IIds IIx(t)Il ~ MIIIl + 1' (1 + a) 

+ 
Ma 

1'(1 + a) 
fo 

[PlIx. - Oil + PIIx(a(x(s), s) - x(a(x(0), 0)11 + folds 

+ II II L9 K(Jlx + iq)c((-cytiIx) 

aL9F(1 + 
)C1_ J (/. - s) 1 lIA'(i - s)Il (ilxlI + lq)c((-.t j ];x) F(i+aj3)  0 

2

ECYO--1 
____________ 

' i1i( + 
F(1 + a) V  

f Thl!Jcv 

+ Jo ['(i + a) 
(1 - )a_1 

[lIx.II + IL(L IIX(s) - x(0)iI + fol 

\/'lIu(s)iIl [Mliil + 1'(l+o) 

1 - IlA'5 11 1J(;K 
I'M( 

'(IIx(0)II + fo) + AlILq K1q ] * V 2c-1 
+ 

1 - IIA8iILK 
[ j'u,fPn 

1F(1+) f(J( ± 1L0)(t - s)''lIx(s) lids] 
+ 

ThT7k 
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By Gronwall's inequality 

r  [MIIII + V II u(5)II1 
Ilx(t) IIXt Ic { 1 - IIAIIL9K 

+ 
PM 

'
a( 

IIx(0)II + fo) + IIAIILuK19]}  

1 - IIAIIL9K 
MPT 

X CXP(11 
+ ()1 - IIAøIL9K 

(8.2.8) 

So IIx(t)II is bounded on [—oo, t*]. 

The uniqueness of mild solution is proved as follows. Let x1  and x2  be any two 

solutions then since x(t) = z(t) + y(t) where y(t) 
= { 

I E (—oo, 0]; 

S(X(i)(0), 

 

I. E [0,T] 

IIzi(t) - Z2(1)II 
M o

F(1 
(t - s)' 

x (IJ(s, (z) + y,, (z + y)(a((zi + y)(s), s))) 

- f(s, (zi ). + y., (z1  + y)(a(z2(s) + y(s), s))) 

- f(s, (z2)3  + y, (z + y)(a(z2(s) + y(s), s))) 

+ f(s, (zi ) + Ys, (z1  + y)(a(z2(8) + y(s), s)))IIds 

+ A' [g(t, (zi)t  + y) - g(t, (Z2)j + Yt)]II 

+ [(1. — s)'IIA'T(t - s)Ij IA +[q(i, (Zi)1 y,.) 
Jo 

- g(t, (Z2)t + t)1 

J PMa 

F(1 + 
(t - s)'(II(zi + y)(a(zi(s) + y(s), 

- (zi + y)(a(z2(s) + y(s), s))II + II(z2)s - (zi)slj 

+ II(z2  + y)(a(z2(s) + y(s), s)) 

- (Zi + y)(a(z2(s) + y(s), s))II) 

+ - (z2),II 

+ 
+ )C1_1 f (i. - )1II(z2)s - (zi)5Ilds F(1+a8) 

(8.2.9) 
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PM 
f'(f    -S) 1 d(iLaIIZ2 - Z1 IC(-x.tiI;X) F(1+a) 

+ IIIz2 - Z1IIC(( ,t 1 ;X) + J JZ2 - Z1IIC((_t i 1;X)) 

+ IIh1II1J91cTlIz2  Z1IIC((_,t i 1;X) 

+ 
I19F(1 + 

- Z1IC((_,( j];x) 

PM 
F(1 + 

 

3  
+ IIAIII9 

L91'(l + i3)C1 _ 8i 
K}IIz2 - Z1IIC((_rt i 1.X) + 

- F(1 + c08 

PM 

I (1 - s)'(1L ± K + 1)ds (8.2.10) 

where = 1— +IAIIL9K. So, by Gronwall's inequality we see that 

= z2  which implies x1  = x2 on (—oo,T]. Thus xis well defined on (—ocT). 

8.3 Approximate Controllability 

Let us define a continuous linear operator £ : L2([0, T]; X) -* C([0, T]; X) as 

P-p = / (T - s) 1TQ (T - s)p(s)ds. p E £2([O. TI; X) 
.10 

The following hypothesis is required to prove the approximate controllability 

(HR) VE > 0 and p(.) E L2({0, ]; V), n(.) E U such that llZp - £Bullx  <c 

Theorem 8.3.1. If the assumptions 113 and HR hold then the corresponding neutral 

system 

d(x(t) + g(t, x1.) 
= Ax(I.) + I??I(I) 

(It 
X(1) = 5(t), —cc <t < 0 (8.3.1) 

with f 0 is approximately controllable. 

Proof: It is sufficient to prove that D(A) C KT(0) since D(A) is dense in X. Let 

d(T, ) = S( (T)[(0) + g(0, (0))I - g(T, x7.) - f"(T - s)AT(T - s)g(s, .x)ds 

For any chosen E D(A), then e - d(T. ) E D(A). It can he seen that there exists 

some p e C'([O. TI;  X) such that 

1T 
= - d(T, ) 

= J (T - s)'T(T - s)p(s)d.s. 
0 
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By hypothesis (fIR) thcre exists a control function u(.) E L2([O, T]; U) such that j —

£Bu < c. As c is arbitrary it implies that KT(0) C D(A). Since the D(A) is dense 

in X, K'r(0) is dense in X. 1-Icrice the neutral system with f 0 is approximately 

controllal)le. 

Let us define the operator K : Z = L2([0,T];X) —* C((—oo,T];X), Kx(t) = 

f(t - s)'Ta(t — s)x(s)ds,t E [0,4 

Z can be decomposed uniquely as Z = N0(L)N0-'-(L) where N0(L) is the null space 

of the operator L and 1V0(L) is its orthogonal space. 

I)efiiie the operator F CL0 (I0. TI, X) /2([0 TI, X) as 

F(x)(t) = f(t, Xt, x(a(x(1), 1))); 0 < I < T. 

hypotheses (1-11), (112) imply that F is a continuous map. hypothesis (FIR) implies 

that for any p e Z, there exists a q E R(B) such that L(p - q) = 0. So, p - q = n E 

No(L) from which it follows that Z = N0(L) ED R(B). Thus, it implies the existence 

of a linear and continuous mapping Q from N (L) into R(B) which is defined as 

= v where v is the unique minimum norm element v E (ut + N0(L)) flR()Y), 

i.e. IIQu*Il = lvii = min{IlviI : v E {(u* + N0(L)) fl R(B)}. (113), implies that 

Vv e {u*  + N311 n R(B) is not empty and Vz e Z has a unique decomposition 

z = n + q. Hence the operator Q is well defined. Moreover, JJQJJ = c for some 

constant c. 

Let us consider the subspace 111 of CL0([0, T]; X) which is defined as 

f in E G1,0([0,TI,X) : ni(i) = Kn.(i), n E No(L); 0 < I 
= (8.3.2) 

1. rn(t)=0, —00<t<0; 

Let 

M0  -+ M0  

defined by 

I Kn 0 < t < — 
' (8.3.3) 

10, —h<t<0; 

where n is given by the unique decomposition of F(x+rn)(t) = n(t)+q(t), n E N0(L) 

and q e R(B). 
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Theorem 8.3.2. The operator J has a fixed point in j\.'Io if tile hypotheses (Hl)—(II2) 

hold and M(l+e)PT < 1. 

Proof: Since the semigroup T(f) is compact by hypothesis (uS) so T(I.) is 

compact and hence fa is compact. Let z E Z then z = q -1- u, n E iV0(L), q E I?(13). 

Also IIflhIz 5 (1 + c)IIzIIz for some constant C. Let 

= {v E Mo: IIvII i.} .  

Let m E B, Let IIf(Q, 0. (x + m)(a(m(s), 0)11 < I f  Suppose on the other hand 

< Ilfx(m)II = (t -.'llT(i - )Il In(s)lids II KnII :5 
fo  . 

Ma ft 
(1, -  s)t(i + c)liF(x + m)Ilzds 

F(1 + a) 
Afa(1 + f [Iif(s. (x ± m)., (x + m)(a((x + m)(s), s)))ij 
F(1±a) 

- lIf(° 0, (x + m)(a(m(s), 0))))II 

+ iIf(° 0, (x + m)(a(m(s). 0))))ii]ds 
1110(1 + c)f ' 

+ in) (s + 0) -  011 
F(1+a) 

+ (x + m)(a((x + m)(s), s)) - (x H m)(a((m)(s), 0)) 11± lj]ds 

Ai(1 + c)a 

1
P[jj-rjj + 11mll  + lia((x ± m)(s), s ) a(rn(s). 0)1 

F(1±a) 

± I f  lds 
11(1 + c)a I 

P[iixli + r + 11 ( x + ni)(s) - rn(s)iI + 11]ds 
F(1 + a) .Jo 

t1(1 + c)n' It  P[llxll ± r + iL,IIlI + 11]d,s 
F(1+a) 

 

111(1 + c) iT2 

v

T21
I'(ai + 1T) HI V + rT 4 1LiIxiI 

I'(l + a) 2a - 1 2a  - 1 
(8.3.4) 

Dividing by r and taking limit as r tends to oo we get a contradiction. So f maps 

B, into itself. Therefore by Schauder fixed point; theorem it has a fixed point. 

Theorem 8.3.3. The sernihinear control system (8.1.1) is approximately controllable 

if the linear delay control system (8.3.1) is approximately controllable. 
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Proof: Lot x(.) be the mild solution of the linear delay control system (8.3.1) is 

given by 

X(t) = S(t)((0) + y(O, cb(0))) + g(t, Xt) 

+ f (t - 8) 1 A1(t - s)g(s, x3)ds + KBu(t), t E (0, '1'] 

X(t) = cb(t), I E [—oo, 0] (8.3.5) 

We prove 

Y(I) = x(i) + rno(i) 

to be mild solution semilinear problem (8.1.1). Since 

KF1(x + riio )(I) = Kn(i) + Kq(t) 

operating K on both sides at in = 7-n0, fixed point of f. 

KF,(x + ino)(t) = Kn(t) + Kq(I) 

= mo(t) + Kq(t) (8.3.6) 

Add x(.) to both sides and using y(t) = x(t) + mo(t) 

x(I) + I(['j (:i + 'rno )(I) = :i;(i) + 'iü(i) + Kq(t) 

x(t) + KF,L (y)(I) = y(I) + Kq(t) 

= y(I) = x(t) + KF,(y)(I) - Kq(t) 

= y(t) = Sa(I)((0) +g(0,(0))) +g(t,xt ) 

+ f, ( I - s) 1 AT(I - s)y(s,:v)ds 

+ K(Bu - q)(t) + KPj(y)(t) (8.3.7) 

This is the mild solution of semilinear problem with control (Bit - q). By following 

the same proof in [155] we get the following conclusion that since q E R(B) there 

exists a v E U such that IIBv - Il < c for any given € > 0. Let x be a solution 

of the given seinilinear delay control system (8.3.1) corresponding to the control v. 

Then as shown by [139] we have I:ii(T) - :x:,(T) II = I I:;(T) - x(T) II . This implies 

that x(r) e KT(j). Then it follows that K'1 (0) C K1 (J) Thus (8.1.1) is approx-

imately controllable since the corresponding linear system (8.3.1) is approximately 

controllable. 
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8.4 Example 

Let us consider the heat control system with finite delay 

i32?J(t,x) 
cD[v(t x) + 1,10  a

i(s - 1, , x)y(s. ?))dl1ds] + 
 

= Bu(t, x) + I a2(s - t)y(s. a(y(s. x), s))ds, 

O<t<T. —oo<O<O,O<x<ir 

y(t, 0) = y(L. it) = 0, 0 <t <T 

y(i,x) = e(x), -  00  < t <0, 0 < x < 7r. (8.4.1) 

Let X = 1,2(0,7r) and A = . Define 

D(it) = {y e X : y, 
dy 

 are absolutely continuous, 
dx 

d2y 
E X an.dy(0) = y(ir) 01. 

For y E D(A) , y = < y. > and fly = — 1 n2  < y.n > 05. 

where 2(x) = sin nx, 0 < x < it, n = 1, 13... is the eigenfunction correspond- 

ing to the cigenvalue An = —n2  of the operator A. 6, is an orthonormal base. A 

will generate a compact semigroup T(t). such that T(I)y = e 2  < y, > 

, n = 1, 2, ... V y E X. Let the infinite dimensional control space be defined as 

U = {u u = n=2 n2 u < oo} with norm IIuIIu = (=2 Thus U 

is a Flilbert space. 

Let B : U —* X : Bu = 2u2& + 2 u,, for u = >fl-2 11lLO1 e U. The bounded 

linear operator B : f2(0, T U) — L2(0, T; X) is (lefilled by (13u)(1) = Bu(t). 

Then this problem (8.4.1) can be transformed into an abstract seniiliiiear differen-

tial equation with (leviating argument and infinite delay. Following the hypotheses 

(111) — (113) and (HR.) the approximate controllability of the system (8.4.1) is 

proved by help of Theorem 8.3.3. 

8.5 Conclusion 

Thus, we proved the existence and uniqueness and approximate controllability of 

the functional differential equation (8.1.1) with deviating argument and finite delay 
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by using Schuader fixed point theorem and fundamental solution instead of CO  semi-

group. We also removed the limitation of the non-existence of the inverse of the con-

trollability operator due to the compactness of the semigroup in infinite-dimensional 

spaces. We achieved this by establishing a relation between the reachable set of un-

ear control problem and that of the semilinear delay control problem. 



Chapter 9 

Approximate Controllability of an 

Impulsive Fractional Stochastic 

Differential Equation 

'l'lic approximate controllability of a fractional impulsive stochastic neutral integro-

diflerential equation with deviating argument and infinite delay is studied. The 

control l)aramctel is also included inside the nonlinear term. Schauder fixed point 

Ilicorcum is used to prove our result. The assumption of invertibility of controllability 

operator is removed is the inverse fails to exist in infinite-dimensional space, in case 

of compactness of the seungroup. Lipschitz continuity of the nonlinear function is 

replaced by funclamciital assumptions on the system operators. We also give an 

example to illustrate our result. 

9.1 Introduction 

Results of controllability for abstract systems are abundant (sec for details [61; 1741 

and references therein) rat her than for fractional stochastic neutral differential equa-

tion with deviated argument and control parameter included inside the nonlinear 

term. 

141 
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Bencholira et al. [52] and Chang [61] discussed the exact controllability of func-

tional differential systems with mipulsive conditions and unbounded delay. how-

ever, they assumed that the inverse of a controllability operator exists. Generally 

due to the compactness of the generated semigroup it is not invertible in infinite-

dimensional space. Hence their rnetho(lolOgy does not work in infinite-dimensional 

cases. Moreover it is not always possil)le to apply their results. 

Although with a different, approach Zhou [176] established approximate control-

lability of an abstract semilinear control system. Ma.hiuuclov [69] established that 

approximate controllability of semilinear system follows from the approximate con-

trollability of its associated linear part. 

In this chapter we studied the control system containing deviating argument. 

cDl[x(t) + q(1, x1)] = A[x(I) + g(1, Xt)]  + Bu(t) + f(t, x(a(x(t). 1)), n(t)) 

+ / C(I, s, :r . )ill'V(s), I e .1 [0, T], I, tk, k  

xo(i) = (t), I. E Ii = (-. 0] 
- 

X (t) - x(ç) = Ik(X(tk)), k = 1..... rn,  

where A is the infinitesimal generator compact semigroup of uniformly bounded 

linear operators {S(t) I on a Hilhcrt space X. CD  denotes the Caputo 

fractional derivative of order 0 < q < 1. X and U are two separable Flilbert spaces. 

There are three separable spaces X, K, U. The state space is denoted by X. Suppose 

(1, F, I') be a probability space together with a normal filtration F,. t E J = [0, '1']. 

10=11 + .1= (—oo,T. 

= a(l'V(s) : 0 < s < 1) and FT = F. 

Suppose L2(, F, P; X) L2(Q; X) be the Banach space of all strongly measurable, 

square integrable, X-va.lued randoin variables equipped with the norm IIx(.) IL2 = 

ElIx(.; w)Ift. The stochastic process is a collection of random variables S = {x(I., w) 

—* X : I. E .J}. We usually suppress 'iv and write :r(I.) instead of :z:(t, w). lV(I) e K 

is the Q-Wiencr process. The control parameter it. (1) E I 2({0, T], F, U). The history 

valued function Xt (—co, 0] —> X, X1 (0) = x(I. +0) lies in some abstract Phase space 

93 defined below. 13 is a bounded linear operator on a Ililbert space U. 
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- Let ho 1i —+ IR be a continuous function such that I = f° ho(t)dt < oo. Then 

= { : (—oo, 0] —* X is such that V a > 0, (E(0) lI2 )1 '2  is a bounded measurable 

- function on [(t, 0], JI [-a,O) = sup_ <0<0  I(0) 11 and 

/0 
sup (EII0(0)II 2)"2ds < oo}. 

00 s<O<O 

93 is a 13anach space with respect to the norm 

h(s) Sill) (EII(0)II2 )1/2ds <00, E 93  

-(Xi O0 

Let f. g : J x 3 —* X be measurable in X and C .J x J x —* L(K, X) is 

measurable in LQ(J, X) norm. The space containing all Q-llilbert Schmidt operators 

with domain K and range X is denoted by LQ(J, X). B is a bounded linear operator 

from (I into X. (t) E — is a random variable independent of W(t). It has finite 

second moment. Also i/'(t) e X is a T1  measurable function. 

Let D = 1, t2 , , t C J = [0,'I'J, U = to  < ti < < tm < lm+l = T. 

((Jo. L2 (c2; X)) denotes the Banach space of all continuous maps froin Jo = (—oo,T] 

into L2(; X) which satisfy sup ej0 EIIx(t)II2  < 00. L, X) = If E L2(), X) 

.1 is T—rncasnrabIe} denotes all important subspacc. PC((—oo, T], i 2(l, J, X)) = 

{X(t) : J0 = (—oc, T] f12( , X) is continuous everywhere except at 'k  at which 

x(q:), x(ç) exists and x(ç) = X(tk) satisfying Sup,j0 EIIx(t) 11 2  < Do}. 

Ik(k = 1,2, , ni) : X —* X is a nonlinear map and Ax(tk ) = x(t) — x(ç) is 

the change in the state x at time tk. 'k indicates the amount of the change. Suppose 

11 be a closed subspace of PC(Jo. L2(12, T. )) consisting of measurable and .T—

adapted X—valued process and To—  adapted processes x E L2(l, T0, ) endowed 

with norin IIxIIii = (supt€j Ellxt Il Is )1 '2. 

Now we define few notations that are used in the following sections 

A'I = sup{IS(t)Il : U < I < T}, A'11  = IIBII, 

hAll = i: lX(s)Ids. 

111flr>c,o = lmrn,. = - 

Let us define the following operators: 
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Let F' = f01 (T - s)(')T1(T - s)BB*T(T 
- s)ds be the controllability 

Cramian 

Let R(a,F) = (al+Ffl 1  

We assume the following hypotheses: 

(Hi) S(t), t > 0 is the compact semigroup. 

(H2) f: J x X x U -f X is continuous and 3 function )(.) E L1(J, R) and a non 

decreasing function gj E L1(C x U, R), i = 1,2, ..., q,: 

EIIf(i, x. u)112 < A(t)g(x, u) 

V(f,x,u) el x X x U. 

(1-13) For each a > 0 

lirnsup(r— Ci  sup{g(x,u): II(x,u)!I < r}) = 00 
r-4c3 z=1 

(H4) 'k  is continuous and Rdk : 

Eli Ik(x) 11 2  < dk 

Vx E X(k = 1,2, ...,m). 

q : I x 93 is completely continuous and uniformly bounded EJg(., )Il 2  < 

M,,(1 + lIllIz ). 

aR(a, F) -f 0 in strong operator topology as a -> 

(H7) Ii Ik(X(tk)) - Ik(y(tk) ) < L, (llx(tk) - y(tk) ll) V X(tk). y(tk), k = 1, in. 

(118) a: X x .1 —+ I is a continuous function such that la(x(s), s)l :5 s. 

(H9) The function C: J x J x 93 - L(K, X) satisfies the following conditions: 

V (1, s) E J x I. G(t, s, .) : -+ L(K, X) is continuous. 

For all x E IZ , G(., ., x) : I x I —* L(K, X) is strongly measurable. 



145 

There exists a positive integrable function ri E L1([O, T}) and there is 

a nondccreasing function ,b : [0, oo) - (0, cc) such that V (t, s, x) E 

J x J x B we have 

/ EIIC(t,s,x)II'2ds n(t)(jx) 
Jo 

0 
V 0 E , k(t) = lim(L_QD f_a  C(t, s, )dw(s) exists and is continuous. 

M > 0 such that EIk(L)II2 

Remark : The assumption (HG) holds ill the following linear fractional control 

problem is approximately controllable. 

cDl(t) = Ax(t) + (Bu)(t), t E [0, TI 

X(0) = :v0. 

- 
It is an extension of approximate controllability of linear first order problem in [691. 

We define mild solution of problem (9.1.1) as follows. 

- Definition 9.1.1. x E ii is a mild solution of the problem (9.1.1) if .x(t) is a 

T—adaptcd process such that x(i) = 0(t) on (—co, 0), and the following integral 

equation is satisfied 

x(t) = Sq(t)[I(0) + 9(0, )I - g(t. Xt) 

+ JO 
 (t 

 - 
s)lTq(t 

- s)[f(L, x(a(x(t), t)), u(L)) + Bn(s)]ds 

+ f(t_ s)-"(t 
- 

s)[f C(s,r1x)dW(r)Ids 

+ (t - - tk)Ik(x(ç)), t E [0,1'] 
O<tk<t 

(9.1.2) 

where Sq(t) = f cq (0)S(t'O)dO; and 'J(t) = q J" O q(0)S(t'1O)dO; çq  is a proba-

bility density function defined on (0, co), i.e. ((0) > 0, 0 E (0, co) and 

ç(0)do = 1. 
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Lemma 9.1.2. [1521 Let C: J x J x ci —* J 2  denote a strongly measurable function 

with f0 EliC(t)ii2dt <00. We have 
LO  

Eli f C(s)dw(s)ii" ~ Lof EiiC(s)IiLO  ds 

Vt E [0, 'T] and p > 2. Flcre Lc, is a constant containing p and T. 

Lemma 9.1.3. [168] S.,(I), Tq(t) are strongly continuous and compact. For all chosen 

t > 0 Sq(i), T(1(t) are bounded linear operators i.e. 

V t > 0, ilSq(il < Mlixii, ilTq(t)xii <
F(q+ 1) iixii 

Lemma 9.1.4. [152] Let x(t) E PC(J0, L2(ci, F, X)) then for any I E I, xt  E 

fo 
llix(L)ii Ilxiii < iq)i + I sup ilx(s)il, 'wlic'rc I = / ho(t)dl 

selo.ti 

Lemma 9.1.5. [152] V x1  E L2(ci, T,, X), w E (ci; (J, L)) such that x 1  = 

Ex, + J7 w(s)dW(s) 

Definition 9.1.6. The reachable set is R(T; 0,v) = {x' j.(b, u)(0), such that. ii E 

L(J.U)}. If R(T;,u) = L2(Q,T,X), then the problem (9.1.1) is approximately 

controllable on [0, T] 

In the iiext section we prove that (9.1.1) is approximately controllable if Vu > 0, 

(x, ii) E PC(Jo, L2(ci, g7t , X)) x C(.J, U) such that 

u(t) = (T — t)" 1 BT(T — I)R(CE, F')p(x, u)  

Z(1) = Sq(t)(xo + 9(0, q)) — g(t, x1) + (t - tk)"'Tq (t — t k )Ik (X(t k )) 

O<tk<t 

+ /(t - s) 17(t — s)[f(s, x(a(x(.$), s)). u) + Bv(s)]ds 

± f (t — s)'Tq(t — s)[fC(sTxr )dw(r)Ids (9.1.4) 

where 

EXT + / w(.$)dW(s) - S,(T)(xo  + q(0, o)) ± q(T, xj,.) 

1T 

— j (T - s)"Tq(T - s)f(s, x(h(x(s), s)), u)ds 
JO 

I-.,,  

- J 
(1' — .9)_lTq(T 

- s){ J C(s,r,x)dW(r)]ds 
.0 — 

rn 

- (t - tk)'Tq(T — lk)Ik.(X(tk)) 
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- 9.2 Approximate Controllability 

Now V a > 0, we define an operator F( (x, u) = (z, v) on PC(10, L2(Q, X)) x 

C(J, U) where 

v(i) = (T — — t)R(cE, F')p(x, u) (9.2.1) 

z(t) = Sq(t)(xo + 9(0, )) — g(t, Xt) + E  (1 tk)'1Tq(t - tk)Ik(X(tk)) 
O<tk<t 

+ f(t - s)-lT(,(t 
- s)[f(:, x(a(x(s), s)), u) + Bv(s)]ds 

+ f (t 'i - s)(1 — s)[f 
) 

r C(s, , x)dW(r)]ds (9.2.2) 
0 — 

1T 
p(x, u) Ex'j' + j w(s)d'V(s) — Sq(T)(xo  + g(O, 5)) + g(T, TT) 

- f(T —s)''1(T — s)f(s, x(h(x(s), s)), u)ds 

— f (T - s)"J 1(T — s)[f G(s, r, x)dW(r)]ds 

In 

- (T - t)lT(T 
- tk )Ik(x(tk )) (9.2.3) 

it will be shown that (9.1.1) is approximately controllable if for all a > 0 there 

exists a fixed point of the operator F, which is the mild solution of (9.1.1). 

Theorem 9.2.1. There exists a fixed point of the operator F i.e. I a mild solution 

of (9.1.1) on J, if the hypotheses (Hi) — (119) are satisfied and 

1 qAl2 AlT' 

aF(q + 1) 
)2 AJ2  + 1)G[4M912  + 

F(q + 1) { lIIli} 

A fT 
+ 

2( F(q + 1) 
)221 su1 n(s)e] < 1 (9.2.4) 

Proof: Let 1.0  = {{x(.). u(.)} E PC(J0, J2(
, 
 j7

t , X)) x C(J x U) : EIIxII2  + 

EIu(t)II2 < ro} and r0  is a positive constant. Thus, Y1-0  is a closed convex subset of 

a Banach space l'C(]1, 1j2@2, F,, X)) x C(J x (j). 

Stepi: For 0 < a < 1, there is a positive constant r0  = ro(a) such that F 

Y10  4 Yr0 . 

(F(x, u))(t) = (z. v) (9.2.5) 
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v(t) = ('I' - - t)R(c. F' 
IT 

x [IIxT  + / w(s)dW(s) - Sq(T)(xo ± g(O, )) + q(T, XT) 

71  
Jo 

- 

fo
(T  - s)"Tq(T - .)f(s. x(h(x(s), s)). 'u)d. 

 
f T PS 

- 

 (T_s)Tq(T_s)[J G(s,r,x)dW('r)}ds 
- 

- (T - i)_lTq(T 
- lk)Ik(X(tk))] (9.2.) 

, te(—oc.O1; 

Sq(i)(xo + g(O, )) - g(1, x) 

z(t) = + >0<tk <t(t - t)_h7'q(t 
- tk)Ik(x(tk)) 

+ f(t - s) 1T(t - s)[f(s, x(a(x(s), s)). u) + Bv(s)lds 

+ f(t - s)Q'Tq (t - s)[fC(s,r,x)dW(r)]ds, t E .J. 

I , t<o;  
LetI= - 

I 
S(1.)(0)1  t > 0. 

Therefore x(t) = (t) + I(t), t € (—oo,7']. where = 0, t <0 and for t > 0, 

YM = S11(t)(90, 5)) - g((., Y1, 
+ (P,) 

+ (1 - t)_lT
q
(t 
- tk)Ik((X ± J?)(tk)) 

O<tk<t 

+ /(t - s)_lTq(t 
- s)[f(s, ( + (I)(a( + (1(s). s)), u) + Bv(s)Id. 

± /(t - s)T(t - s)[f C(s, r, Y, + ()dW(r)Ids (9.2.7) 
oo 

So let = {{(.), u(.)} E PC(J0, L2(c2,F11  X)) x C(J x U) : EIIII2  + EIIu(t) 11 2  < 

r0  and YO  = 01. Thus Y is a. bounded closed convex set. 

' 
xtII3 = IIt + (ItIi2  3  

< + lIItIIIz ) 

< 4(12 sup EII)II2  + IlxoII + /2 sup E114 (.$)II2  + IIcJ oII) 
sE[O.t.] selOt) 

~ 4(12r0  + 12M2ElI(0)Il2  -I- IIIII
2 (9.2.8) 

= sup{g(x(a(x(s) , s)), v) : EIIxII2  + EIIvII2  

V(x, v) E PC(Jo, I 2(Q. J, X)) x U}. 
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- If (x,u) E Yro  thou 

7,  

EIIv(t)II2 ü2 (['(q  + [2E 
6 qM2 

2M?IIxi'II 2  +2f  EIIw(s)ds 112 

+ M2IIII + It'!1i%'i 2(1 + II1I2) 
I i2 ' + M(1 + 4(12r0  + 12 Ai2EII(0)II2  + II4I) 

+ dk 
F(q+l) 

i=1 

+ 2( 
MT"

)2{2Mk 
F(q+ 1) 

+ 2La supn(s)'i(12ro  + 12M2EIIc(0)Il2  + IIc&(I)}I 

6 qM2 
)2M[2EIJxi'II2  + 2J EIIw(s)dsll2  a2( F(q+1) 

+ AI2III' + MM2(1 + III2) 

+ M(1 + 4(12,0  + 12if2EII(0)lI2  + IIqII)) 
iVJT 

+ 
F(q + 1) { IIAIIii(ro)} + I F(q + 

1)dk 
i=1 

+ 2( 12Mk.  
F(q+1) 

+ 2Lcsupn(s)'i1(12ro  + 12M2EII(0) 112 + IlclIIS )}1 
s€J 

= It/Ic (9.2.9) 

and 

EIIz(t)112 = 6[M2M9(1 + IIlIIs ) + IvI(1 + 4(12ro + 12M2EIl(0) 112 + 1I411)) 
m 

+ 112(ItI + { IlAilllIL(ro)}) F(q+1) 1  

+ 

+ 2( )2{2Mk 
F(q+1) 

+ 2Lsupn(s)(12ro  + 12M 2 Ellc(0) 112 + lIlI)}] 
sEJ 

= L 1 (9.2.10) 
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Dividing M(, + L1  by ro and letting r0  - oo, and by assumption (9.2.4) we get; that 

1 qA1I 2 AiT' ?_ 

urn ( . 2 ( F(q  + 1)l + 1)6[4M912 
 + I'(q + 1) II'\IIi 

MTq  
________ + 

2( F(q + 1) )
2 

)(12ro) 
2La sup n(s) I 

s€J ro 

1 qM2 MT" 
(c2(r(q ± 1)

)Ahi  + 1)6[4M912  + 
F(q + 1) IIIh} 

,1Tq 
+ 

2 F(q+ i) 
2J,supn(.$)O] < i (9.2.11) 

sE.J 

Hence 

IlP(x,u)(t)II = EIIz(t)II2  + EIlv(t)112 < L1  + Mc  5 ro 

Therefore, F maps bounded sets of Y, into bounded sets of Yro. 

Step 2 : As per Arzela-Ascoli theorem and stepi there is a need to provc 

Vt e J V(1) = {F(x, u)(1) : (x, u) E Yro } is pre-coxupact, 

V€ > 0 36 > 0 IlFa(x, n)(t i ) - F(x, u)(t2)ll 

c if (x,u) E Yro, hi - 121 < 6 , for all t1,12  E J. 

For t = 0 it is trivial, as V(0) = (0). Therefore fix a real number 0 < t < T and 

suppose r e R is such that 0 <r < 1. 

We explicity state the operator 

[CSz (T - 1)q-1 J3*'-J'* (7 
- s)  

(Fz)t = q 
/ L: 

O(t - s)'(0)S((t - s)O)J3ua(s)dOds  

± q / j 0(1 - s)''(0)S((t - s)'0)f(s, x(a(x(s), s)), u)d0ds 
.0  

tt—( 

I00 q / + 0(1 - 8)(0)S((t - 8'0) 

:i;r )dW(:)]dOds 
OU 

00 

+ (1— tk)1qf  0S((t - 
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= qS(c6) 
J J 0(t - s)"'(0)S((t - s)"O - )Bua(s)dOds  

+ qS(c6) 
f f 0(1 - s)" 1 (0)S((t - s)"O 

- 

0 5 

x f(s, x(a(x(s), s)). u)d0ds 

+ qS() f 
J-0(t   - - s)'0 - (q) 

f [G(s, T, x,)dI4, (T)jdOds 
00 

-F (1 - tk)'qS(S) J 0S((t - t )0 - 

O<tk<t 5 

-F (t - 1)lqS(cä) 
f 9S((t - - 

t- <tk<t 

(9.2.12) 

Since S(c Ô) is compact and z(t) is bounded on Y,.0  the set (F'5z)(t) is prc-compact 

in X for all €, c > 0. Also Tq(t), Sq(t) is compact if S(t) is compact, therefore the 

set {FESz(1) + g(t, Xt) -1- S.,(t)g(0, ) = F2(x, u)(t)} is relatively compact. Let 

F(x, u)(t) = [F2(x, u)(t), (T - t)_lB*7(T 
- s)R(c, r ')p(x, u)]. 

So 

V(1) = {F(x,u)(t) : (x,u) E Yro } 

is prc-compact in X. i.e. 3 {yj, 1 <i <n} in PC x U s.t. 

V.,.(t) C U 1B(y,e/2). 

here J3(y. €/2) is an OpOIi ball in PC x U having yj  as center and €/2 as radius. 

Also, V (x, u) E Y we have 

II (F(x, a))(1) - (F(x, u))(L) II 
i ç6 

7q2 E / / 0(1 - s)' 1 q(0)S((t - s)10)Bua(s)d0ds2 
Jo Jo 

+ 7q2EII f f 0(1 - '1q(0)S((i - s)"O)Bu(s)dOdsII2 
t- (5 

+ 7q2EII 
jo, fn

0(t  - s)' 1 q (0)S((1 - s)0)f(s, x(a(x(s), s)), u(s))d0dsll 2  

+ 7q2EIt 
i f 0(1 - s)' q(0)S((t - s)O)f(s, x(a(x(s), s)), u(s))dOdsll2 
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+ 7q2EI / f0(t — s)'q(0)S((t — s)0) G(sT, x)dW(r)d0dsII 2  

+ 7q2E / / 0(1 — s)_q(0)S((t — s)9) f G(s. 7-,x)dW(r)d0dsI12  

+ 7q2EIj f 9(1 — s)" 1 q(0)S((t — s)"9)I(xk (tk ))d9dsll 2  
0 

+ 7q2EI f 0(1 s)"1eq(o)S((t — s)'O)I(xk(tk))d9dsll 2  
t<tk<t 

< {7q2MT / — s)[M2 M + Ildl(ro) + 2 'k 

+ 2LG  sup n(s)i(12ro + 12 M 2EIj(0) 11 2  + IIII
2

)1ds 

fo 
+ 7q2M2mdk}(th(0)d0)2 

7qlt/I2c2  

F2(q + 1) I 
(t — s)'[AiMc + IIIIi('o) + 2Mk  

+ 2Lasupfl(S)V)(12r0 + 12 M2 EII(0) 112  + IIII)1ds + 7q62Al2ndk —* 0 
sEJ 

as c, 6 —* 0 (9.2.13) 

Thus there exists relatively compact sets arbitrarily close to the set V(t), Vt E (0,TI, - 

Hence for each I E 0, T], V(t) is relatively compact in C x U. 

Step 3: We prove the cquicontinuity of V = {P(x,u)(.)I(:u,u) E Yr0 } on 101 77I. 

WhCfl0<ta <tb<T 

EIlv(I1) — v(Ih) 112 < II (T — 'It) 
_lJ3*7(T 

— 1(1) — (7' — )_l/3*T*(T 
 

x 1 [2EIIxTII2 +21 EIIw(s)dsll2 + M2IIIk 
0 

+ 11 1q 1vi (1 + lIII2) 

+ Afq (l + 4(l2ro + 12  ivI2EII(0) 11 2  + IIcbIlIs )) 
fl2 

+ 
I'(q+ l) IlA illwi(ro)}  - i F(q+ 

1)dk 
1=1 

It IT' 

F(q+1) 
{2Mk 

+ 2Lcsupn(s) 1,(l2 ro  + 12 M2 EIIçD(0)I 2  + II )}I II  
sEJ 

(9.2.14) 
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- and 

to 

E Il2(tb) Z(ta)II 2  < 13EII Jo, (Ia - s)'[7(tb - s) Tq(ta -s)]Bu(s)dsll2 

+ 13E11 J [(tb - s)"' - (Ia  - s) 1 1ITq(t& - s)Bu(s)dsll2 
0 
rtb  

+ 13E11 J (t s)"1Tq(lb - s)Bu(s)dsll2 
to  

to  

+ 13E11 Jo 
(ta s)"'[Tq(t& - s) -Tq(ta - s)]f(s, x(a(x(s), s)), u)ds 

 

I+ 13EII [(lb -  s' -  (Ia - SY'ITq(tb - s)f(s, x(a(x(s), s)), u)ds 
 

r t6  
+ 13E11 J (t - s) 1Tq (tb - s)f(s, x(a(x(s), s)), u)dsll2  

to  

+ 13E11
Jo,

(ta - S)"[Tq(tb - s) - - s)}[ I C(S,T,Xr)dW(T)1dSIl 2  
Jc,o 

to  

+ 13E11 Jo 
 RIb  - sY'1- (ta SY'1ITqtb - s)[ I G(S,T, xr )dW(r)]d3 
 ic,3 

Ptb Cs 
+ 13EII / (t - S)"Tq(tô  - s)[ / C(s, Y,2T)dw(Y)1dsII 

i 

J3o 

+ 13EII (ta  - tk)' '('f(ib - tk) - Tq (ta  - tk))I(x(tk))112 
O<tk<to 

+ 13E11 I (lb - - tk)I(x(tk))II 2  
to<tk<tb 

+ 13E11 E ((lb - 1k)' 1  - (La - tk)' )Tq (lb - tk)I(X(tk)) 112  

O<tk<t 

+ 13Elg(t a , Xt0 ) - g(t, Xt6 ) 11 2 (9.2.15) 

Therefore, 

ta 

 E Ilz(ti) - z(t(L )Il2 13c2M12-1- J (11  - s)q - 1EIlu(s)112ds 

+ 13( 
qIIIMB )2 

T° 
(t - - (La  - s)'1ds I(q+1) 

I. to x J [(tb - 
5)q.-1 

- (t(, - 
)rJ_1] 

Elm(s) II2ds 
0 

it" 

t&

+ 13( 
qMMj3 )2  (Lb - t) 

(tb - s)'EIlu(s)lI2ds 
F(q+1) q 

4q •t 114 

+ 13c2 
j  

(Ia  - )q-1{ 
IIAIIi,i(ro)}ds 

q  i= 1 



qM 2 

I 
[(lb--(t + 13(F(q+1)) 

 

X 
JO

All 

[(lb — s)1
- (ta s ) 1 { IIAIIiti(ro)}ds 

i=1

q (tb t)' th 
__________ '2 __________ + l3(( 

+ iY 
- 

1.. 

(tb -
) 1{

(/  jr1 

+ 13€2 
10  (t - 8)2{2A! 

q 

+ 2L(;sup n.(s)P(12 ro  + l2 ]1i2 L'Ilq)(0)II 2  ± I101I)}d. 

2 

f 
 [(lb — 

)o1 
- (l - )-- ds + 13(F(q+1) 

 qM 
 ) 

0 

x  I [(lb - s) 1  — (ta  - s) 1]2{2Mk 
.0 

-I- 2Lsupn(s)th(l2ro + 121112  ilI(0) 112  F IIII)}ds 
sEJ 

11,  M )2  (1& - t) 

it." (lb -
13(r(q+ 1) q 

. 

+ 2LG supn(s)1/'(121-
0  + 12  ii2EIl(0) 11 2  + I10II)}ds 

+ 13 ElI('J(l1, — tk) — T(ta  — tk)I(X(tk))II 
q— 1 

0< tk <t 

+ 13( EII7(tb — ta) 1(3;(tk ))Il 2) 
O<tk<( 

x ( (lb - — (ta 1k)) 

O<tk<to 

+ 13 
a (tb—t ) 1q 2 

q + 1 F(1 + q) ) 1 EIITq(tb  — tk)I(X(lk))II 
t <tJ <t 

+ 13L 1qIIxt, Xtb ll
2 
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(9.2.1G) 

Thus RI-IS is indepcndent of choice of (x. u). This follows from strong continuity 

and compactness of Tq  and by Lebesguc Dominated Convergence theorem J — 0 

as 1, - I.,, —+ 0. So J[Yr0] is equicontinuous and bounded. So equicontinuity of V is 

shown. By Arzcla-Ascoli, Fa[Y7 j is relatively compact. 

Theorem 9.2.2. Suppose that the hypotheses of the previous theorem (9.2.1) are 

satisfied and f, C, g are uniformly bounded then (9.1.1) is approximately controllable 

on [0,T]. 
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Proof: Suppose Xa  be a fixed point of F  in Y. Applying Stochastic Fubini's 

theorem, we get 

i:a(T) = XT — (YR.((, F)p(x, u). 

By using the property that f. g, C and a are uniformly bounded we get that there 

exists L!, M > 0 such that 

li{f(s,x(a(x(s),$)),n(s)) + T30 

 C(s,r,x)dw(r)}llo 

and jjg(s, x)ll M. 

Therefore there exists subsequences, 

{f'(s, x'(a(x(s), s)), ufl(s)). g(s. x), C(s, T, x)} 

which converge weakly to 

{f(s, x(a(x(s), s)), u(s)), g(s, x5), C(s, r, 

Since a is continuous so, a(x(s),$) —+ a(x(s),$) as xe(s) —* x(s). 

From the above equation we get 

ElIx'(T) - xll2 8llc(aI + F)'[ExT — Sq(T)(cb(0) + g(O, (0)))]112  

+ 8E(f llJ + F'w(s)lIods) + 8Ella(i + F)'g(T, x 2  )ll  

+ 8E(1 (T — s)'lla(aI ± F)'T(T — s)[f(s,x) — f(s)] lids)2  

+ 8E(1 (T — s) h Ila(aJ + F'(T - s)f(s) lids)2  

+ 8E(f(T — S)-111(((J + F 1T(1(T — s) 

x [f [[C(s,r, x) — C(s, x)1dW(r)} lids)2  

rT 
+ 8E( (T — s)" 111a(al ± FY'Tq(T - s) J  

x 
f 00 

C(s, T, x7)dW(r))llds)2  

+ 8E (1 — i)7(t 
- tk)Ik(X(tk)) 0 (9.2.17) 

O<tk<t 

as —* 0. This is clue to the fact that ?,(i) is compact and also due to the theo- 

rem of Lebesgue Dominated Convergence. Hence the approximate controllability of 

(9.1.1) is proved. 
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9.3 Example 

Let us consider the following controlled neutral system with impulses 

Dx(t, ) - ((1, x(t - It, ))} = [x(t, ) - X - It, ))1 ± u(1, ) 

+ f(t, x(a(x(t, ), 1), u(t, )) 

+ 1-00 G(t, s, x)dw(s) 0 <y < 1 

x(i) - x(ç,) = lk(x(tk, e)) k 

x(1, 0) = x(t, 1) = 0, t > 0 

x(t,) = —Ii < 1<0; (9.3.1) 

Here is continuous. Also 'k  E C(., IR). 

Let g(t, Xt)() = ((1, x(1 - Ii, )), 

F(t, x(a(x(t), 1)). u(t))() = f(t, x(a(x(t. ), 1),  ). u(t.  )) 

and (Bu)(t)() = u(1,), Taking X = L2(0, 1) and we define A X - X by 

Ax = where domain of A is 

D(A) = {x E X, x, 
dx
-  are absolutely continuous, 

d2x dx dx
E X, —(0) = —(l) = 01 (9.3.2) 

dy dy 

Then Ax = 1 (—n27r 2) <x,e > e, xe D(A). 

where e(0) = / cos (nirO) 0 <x < 1, n = 1,21  

The operator A generates a compact semigroup 

S(t)x = 2e 22' cos(n) f cos(n)x()dth 

+ j x()d, x E X (9.3.3) 

Further, the functions f, ( are continuous and there exists constants k1, k2  such that 

f(t, x(a(x(t, ), 1),  ), u(t,  )) < k1, ((1, x(t - h, )) < k2  and there exists constants 

1k such tha.t IIIk(:c)I 4. 

1-lence (9.3.1) can be expressed as (9.1.1). Since the associated linear system of the 

(9.3.1) is approximately controllable, and theorem 9.2.2, the approximate controlla-

bility of (9.3.1) is guaranteed. 
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94 : Conclusion 

We proved the approximate controllability of an impulsive stochastic fractional dii-

ferential equation. We substituted the use of Lipschitz continuity of the nonlinear 

function and the inverse of the controllability operator with simple assumptions on 

systems operator. Thereby we removed the problem of nonexistence of the inverse 

of the controllability operator in case of compactness of the generated semigroup. 



Chapter 10 

Approximation of Solutions of a 

Stochastic Fractional Differential 

Equation with Deviated Argument 

In this chapter the existence, uniqueness and convergence of approximate solutions 

of a stochastic fractional differential equation with deviated argument is studied 

by using analytic semigroup theory and fixed point method. Then we considered 

Faedo-C alerkin approximation of solution and l)roved some convergence results. 

10.1 Introduction 

The approximation of solution to a nonlinear Soholcv type evolution equation was 

studied by Bahuguna and Shukia [31] in a separable hubert space (H, Iii, (., .)). The 

F'acdo-Galerkin approximations of solution of a determistic problem was considered 

by Milleta [133]. The more gcnera.l case was dealt by D. Bahuguna, S.K. Sriva.stava 

and S. Singh [32]. 

By far the Faedo-Galerkin approximation of solution stochastic fractional differ-

ential equation with deviated argument is neglected in literature. In in attempt to 

fill this gap we study the following stochastic fractional differential equation with 

159 
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deviated argument in a separable hubert space (H, 

'Du(t) + Au(t) = f(1, u(t),n.(I (n(t), ,)))d(t) t E [0,TI 
dt 

U(0) = U() E 11 (10.1.1) 

where 0 < < 1 and 0 < T < oo. '1.) denotes the Caputo fractiona.1 derivative of 

order 0 and A : D(A) .0 Ii - H is a linear operator. 11 and the functions f, Ii are 

defined in the hypotheses (111) - (113). 

Flcrc we deal with two separable Ililbert spaces 11 and K. We assume 

(I-Il) Il is a closed. densely (leliliNi, se]I adoiut operator viI.li pure point. Sl)ectluill 

0 < Ao 5 A t < A, with A,,, —+ oc and in - oo and corresponding 

complete orthonormal system of cigenfunctions b1 such that 

AjOj  and < 6j, p j  >= Si,J 

If (I-il) is satisfied then —A is the infinitesimal generator of an analytic semnigrol.ip 

{ e" : t > 01 in H. We also note that 3 constant C such that IIS(t) < Cew and 

constants 's such that IiS(t)Ii < Cj. I. > 0. i = 1.2. Also IAS(t)ii < Cl and 
dti 

IiAS(t)ii 

We define the space H as D(A1 ) endowed with the norm Let (Q.  a!  P) be 

a complete probability space endowed with complete family of right continuous in-

creasing sub a— algebras {,/ E J} such that at  C 3. A II— valued random variable 

is a. F— measurable proccss.We also assume that 14/ is a \Vicncr process on K with 

cova.riance operator Q. Suppose Q is symmetric, positive, linear, and bounded op- 

erator with TrQ < oo. Let K0  = Q 12  (K). The space = L2(K0, 1J( ) is a. separable 

Hilbert space with norm = ii L2(J(!J Let /.2(l , 
/); I/() j2 (l: II) 

be the Banach space of all strongly measurable, square integrable, 1I,—valued ran- 

dom variables equipped with the norm iiu(.) = EIiu(.; w)  ii,. C denotes the 

Banach space of all continuous maps from J = (0. T} into L2(cl; H) which sat- 

isfy sup1€jEiiu(i)ii < 00. L(fl, H,.) = {f II) : f is F0  — measurablc} 

denotes an inn portant subspa.ce. For 0 <c < 1 define 

C' = {u e G: iiu(l) — n(s)i_t <Lit — ,sj,Vt, s E [01  T]}. 

\'O also assume the followi ung hypotheses 



161 

(1-12) The function f : [0, T] x fh, x H() _ j  - L(K, II) is continuous and there exists 

constant a L f  > 0 such that 

- llf(,s, a, u1 ) 
- 

[(s. v, u1 ) <L1 ll°' + lu - vl + lkti - 1
11 

 

([13) The map ii : Ji(  xR. - R satisfies llh(it, 1)—h(v,  •)ll LJ(lln_vI+lt_8112) 

Now let us define mud solution of (10.1.1) 

Definition 10.1.1. The mild solution of (10.1.1) is a continuous at  adapted stochastic 

process 'a E C fl G7 which satisfies the following: 

u(t) e 11(  has Ctd1àg paths on I E [0, T] 

Vt E [0, 'F], u(t) is the solution of the integral equation 

'a(l) = '1(t)uo  + I  (t - s)'S(t - s)f(s. u(s),u(h( (s), s)))dw(s), t C [0, T] 

(10.1.2) 

where S8(i) = f ç5(o)S(I'30)de; and T(t) = q j Oç13 (0)S(tO)d9; is a proba- 

• hilitv density function defined on (0, oo), i.e. (0) ~! 0, 0 E (0, oo) and f0 (3(0)dO = 

1. Also ll(t)ull < Cllull, llSt(t)ulI 
ao 

r lull, ll 8 (t)ulI I1±(j_a)) tllUll 

Lemma 10.1.2. [147] Let f : I x ci x ci -~ L2  be a strongly measurable mapping 

with J' Ellf'(t)ll dl < 00. Then 

ElI J f(s)dw(s)ll' <13 f EIlf(s)ll2ds 110  

Vt E [0, T] and p ~: 2 where 1, is a constant containing p and T. 

1 is incorporated into the constants in the following sections. 

10.1.1 Existence and Uniqueness of Approximate Solutions 

In this section we consider a sequence of approximate integrals and establish the 

existence and uniqueness of solution for each of the approximate integral equa-

tions. For 0 < ce < 1 and it E G, the hypotheses (112) - (H3), imply that 

f(s, u(s), u(h(u(s), s))) is continuous on [0, T0 ]. Therefore there exists a positive 

constant 

N = 2L j [T' + 2R(1 + LL,L ) + LL,T 2 ] + 2N0, No  = Ellf(0, n0,  'uo)112 
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such that IIf(s, u(s), u(h(u(s), s)))ll N, t e [0, T]. Choose '1, 0 <1 < T 

such that 
13CaF(2 

- 
)N_T'°1 < 1? 

F(1 +fi(1— a)) (1—a)-1 - 4' 

D 
fiGF(2 - a) )2 2L f2fl(° < 1 (10.1.3) = (F Il ) 1)1 

Let 

BR = {u e C. 0  fl C..0 ' : 7t(0) = u  0 llu - uoll'fb, R} 

It is easy to see that BR is a closed and hounded subset of and complete. Let 

us define the operator T: B, :--> BR by 

(Fu)(t) = T(t)uo + f ( i - s)S(1 - s)J(s, u(s), u(h(u(.$). s)))dw(s). (10.1.4) 

Theorem 10.1.3. If the hypotheses (Hi), (112) and (113) are satisfied and 110  E 

L(cl, Xe), 0 < a < 1. then El a unique u E B,? such that Ft-tUr, = Un, V n. = 

01  11  2,••• , i.e., u satisfies the approximate integral equation 

= T0(t)uo  + JO (I 
- s)'S(t - s)f(s, un(s) ,u,(h(u(s) , s)))dw(s). 

I E [0,T] (10.1.5) 

Proof: Stepi : We need to show that .T,u E Cr 1 , Vu Cr'. It is easy to check 

"2 
EllLF,u(t2) - .Tu(1i) ii_i 

3EI[T,(1) - 79(t1)]uolI_i 
12 

± 3E11 (12  - s) 1 fl 1S(12  - s)f(s, u(s), u(h(u(s). s)))dw(.$)II Q Q 
 

P11 

± 3E11 I A[(12  - s)'Sfl(t2  - s) - (t - s) 1 Sfl(t l  - .$)] 
Jo 

x  
2G'F2(2 - a) 12 

<3E11[Tfl(12) - T(1i)}uoIl 1 + Ni + (1 f, 11(12 - 8)2 (1 () 2 ll 

x Ilfl' I12  ElI f(s, u(s), s)))ll2ds I- 

p1, 

+3] 11 n[(12 - .9) 1S(12  -- .9) - (1 - s)'S8(t i  - s)] 
0 

x 11A2112Ellf(s,  n(s), u(h(u(s). 8)))112ds (10.1.6) 
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- Vu E H, we can write 

('t2 t2 

 -S(t'O)udt = 

J 
0t1AS(t'O)dt. [S(tO) - S(t'O)]u 

= dt tl 

The first term of (10.1.6) can be estimated as follows 

100

II [7'(t2) - T,j(Ij)}uoJ_1 < ( ((0)IIS(l,O) - S(/4O)IIIIA'uoIId0)2 

(13(8) 
2 
 IS(taO)IIdt]IIuoII

JO
adO)2 

[L'dt 
011a_i(t2 - (10.1.7) <Cfllu "2 

For the second term of (10.1.6) we get the following estimate 

P12 

/ (t2  - 8)21 2EIIfYL(s, u(s), u(h(u(s), s)))ll2ds 
it1 

N(t2  - 
(10.1,8) 

2,8(1—cm)-1 

For the third term we will use the following estimate 

I•11 

J !IA[(t2 - s)' 1S,(t2  - s) 
- 

(t1  - s)1S,(ti - 8)]II2 
0 

x IIfla_2II2ElIflL(,S, u(s), u(h(u(s), s))) II2ds 

c(9)II[S((t - s)O)Itt2  - S((t - s)O)Itt,}IId)2 
dt 

x EIf(s, u(s), u(h(u(s), 8)))112ds 

I ' ! f2 IIA
2 S((t - s)0)IIdt]dO)2Nds 

C A2112(t2 - t 1 )2NT0 (10.1.9) 
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Hence from incqualitics (10.1.7)-(10.1.9) we SCC that the map F. : To   —> is 

well-defined. Now we prove that .F, : B1, — B,?. So for I Cz [0, To] and it e B11 . 

Eli (.Fu)(1,) — uo112  Ia 

< 2E(T1 (t) 
- I)uoIi 

' + 1  2Eii (t — .$) S(t — s)f(s, u(s), u(h(u(s), .$)))dw(s) II
2  
Q 

flCF(2 — (Y) )2 

/ 1(12 - s)21211
2  <2EiI(T(1) — I)uoll + + fi(1 

. 

x Eilf(s, u(s), u(h(u(s). s)))II 2 d.s 

- 
R 2(_1(2 — )2N_0 11' I? 

<— + — — B 
1(1+(1—a)) fi(1—a)-1 2 2 

Now we show that .T is a contraction map by using (10.1.3) in last but one inequal- 

ity. Vu,v E B 

(Fv)(t) li = Eli fo  
(t —

)/31AaS(1 — 
 

x [f(s, u(s), u(h(u(s), s))) — f(s. v(s), v(h(v(s), s)))dw(s)]il 

/3CaF(2 - a) )2 
f t(t2 

 — s)212 
F(1 -1-8(1—a))  

x EIif(s,  u(s). u(h(u(s), s))) — f(s. v(s), v(h(v(s), s))) II2c1s 

/3Cr'(2—a) 2 T2 3(1—a)-1 
<( 
— F(1 + (i — a)) 

)22L1(1 + 2LLh)iiu 
2/3(1 — a) — 1 

~ iiu - vil. 

This implies that there exists a unique fixed point n,, of Fl  which is the unique 

approximate mild solution of (10.1.1) 

Lemma 10.1.4. Let (Hi) — (113) hold. If uo  E L(c, D(A')), VO < a < 77 < 1, 

then u7,(t) E D(A7 ) for all t E [0, T0 ] with 0 < y < 77 < 1. Also if u0  E D(A). then 

u,L(t) E D(A) V/ E [0,T0 ], where 0< 'y  <q < 1. 

Proof:By Theorem (10.1.3) we get the existence of a unique 'Ity,  e B11, satisfying - 

(10.1.5). Theorem 2.6.13 of [146] implies for I. > 0, 0 < 'y < 1, 3(1.) : II —* D(A) 

and for 0 y < 77 < 1, D(A'1) C D(/U). It is easy to see that holder continuity 

of u can be proved using the similar arguments from (10.1.6)-(10.1.9). Also from 
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Theorein 1.2.4 in [146), we have S(t)u E D(A) if u E D(A). The result follows from 

these facts and that D(A) C D(A) for 0 <')' < 1. 

Lemma 10.1.5. Let (Ill) - (113) hold and u0  E LW1, Then for any to  E (0, T0 ] 

a constant U 0 , independent of a such that EIIa,,(t)II'< U 0  Vt. E [ta, 1'0], n = 

1, 2, . . . Also if u0  E L(Q, D(A)) then I constant Uo  independent of n such that 

EIIun(t)II <Uo  Vt e [10,T01, n = 1,2,••• , V 0< -Y <1. 

Proof: Let u0  C L(Q, Ha). Applying A' on both sides of (10.1.4) 

EIIu,,(t) II 
t 

<2EIT(t)uolI +2Ilf (I— s)''S(t - s)f(s, u(s), u(h(u(s), s)))dw(s)Il 
0 

<2Ct 2 11 2  + (
_i3CF(2 

- y) )2 A(To ) 
= 

- 0 Iko F(1 + /3(1 
- )) 2/3(1 - ) —1 

Also if u0  C L2, D(A)), then we have that u0  C L, D(A")) for U < y < 1. 

hence, 

Ellu(t) 112 

<2EIlT(t)uoII + 211 
J 

(t - .$) 1S3(t - s)f,,(s, u(.$), u(h(u(s). s)))dw(s)II 
0 

<2C2IluoII2  + 
-y) )2 N(To) ( 

= UO 
F(1 + /3(1 

- -
y)) 2/3(1 

- 'y) - 1 

hence proved. 

10.1.2 Convergence of Solutions 

In this section the convergence of the solution u C Ha  of the approximate integral 

equation (10.1.5) to a unique solution u of (10.1.2), is discussed. 

Theorem 10.1.6. Let the hypotheses (111) - (113) hold and if u0  C L, H) then 

Vt0  C (0, 1'], 

urn sup llu,L(t) - u,(t) II( = 0, 
fll-400 {,t>Mf0((<Th) 
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Proof: Let 0< a <'y < i. Fort0  E (0,T0] 

Ellfn(t,tmn(t),un(h(un(1),t))) - frn(t,Um(t),itm(h(u,n(t),t)))112 

< 2Ef(t, u(t), u(h(n(t), t))) f(t, Um(t), t)))112  

< 2EJ,(t, um(t), 'urn(h(um(i), 1))) - Jm(t, Um (t). Um (IL(Um(t), 1)))I12  

< 2(2L(1 + 2LL L )[EIIu,j  - + EII(PT' - (10.1.10) 

Now, 

1 
EII(J-  - I n')Um(t) 11 2  < Eli A''(P" pm)JYu(t)II2  < EIIA"Um(t)112 

Am 

Then we have 

Eilf(t, u(t), u(h(u(t). t))) - fm(t, ttm(t), Um( h(tm(t),  t)))Il2  

< 2(2Lj (l + 2LI11 )[ElIn - UmI + 
1 

2( EllAm(t)iI2]) 
Am 

For 0 < t < to  

() 
f 

EIIu,1(t) - u(t) 
2(I +1)11(1 

- s) 1 AS,3(t - s) 1 2  
0 t) 

x Eilf(t, u(t), u(h(u(t). 1))) fm(t, Um(i), u(h(u(t), t)))II2ds 

(10.1.11) 

The estimate of first integral of the above inequality is 

EIiu(t) - tLm(t)Ii 

ft,o 
s)''AS(t - s)112  

0 

x ElIf(t, u(t), u(h(u(t), t))) fm (1, Um(t), Um(h(Um(t), t)))I12ds 

< 
flCF(2 

- ) )2 2N(tO  - ö1t)2(1)2  
t, 0 < S < 1 (10.1.12) 

- F(1+ . (1—'y)) 2(1.-')-1 
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The estimate of second integral is 

EIIu(t) — Um(t)II it 
 II(t - s) lAaS(t — s)Il2  
) 

x EIIf(t, u7 (t), u(h(u(t), t))) — f 1(t, u7 (t), un (h(Um(t), t)))II2ds 

<(_CF(2 — ) )2 

ft 
t(t -

F(1+3(i—'y))  0 

11 2  
- UmII + ElIAn111(s) jds X 4L1(1 + 2LLh)[Ellun   

A2('y—a) 

< 4L(1 + 
211'fiCF(2 — -y) 2[f(f — 

F(i +  

x ElIu — uIIds + 
U to 0 

2(1 — a) 

Substituting inequalities (10.1. 12),(10.1.13) in (10.1.11) we get 

EIIu7(t) - 'u1n(t) 1 1 2 
a 

(10.1.13) 

< 
tiCF(2 

- 'y) 2 41V(to  — 611 )2I (1)2  

— F(1+fi(1 _))) 2(1—) —1 
to 

-) J(f — + 8L1(1 + 2LL/L)( 
j3CF(2 — )2[ 

F(1 + fi(1 
- 

"0'
-y)) 

U 0  
x EIIu - un.LII(ds + 2(-) 2/(1 - a) - 1' 

Tu 

By using Gronwall's inequality, there exists a constant I) such that 

EIIu(t) - Um(t)11 2 
 <[(_/3C1F(2 — 'Y) )2 41\(10_— tl 

— F(1 + Ni — )) 2(1 — ) —1 

+ 8L1(1 + 2LLh)(_
fiC1,(2 — ) 2 U10 T2;(l_a)_l 

F(1 + (1 — ))) -a) 2(1 — a) 1' 
D 2( 

nt 

Let in —> oo. Taking suprcrnum over [t0 , T0 ] we get the following inequality. 

EIIn(t) - Um(t)Il < 1(_ CF(2 — Y) )4A(tO_— 
- P(1 + [(1 — )) 20(1 — ) - 1 toJ X D 

Since t is arbitrary, the right hand side can he made infinitesimally small by choos-

ing t sufficiently small. Thus the lemma is proved. 

Corollary 10.1.7. If u0  e D(A), then lim sup EIIu(i) — u7(t)II' = 0 
lfl-+OO {n~m, O<t<To} 
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Proof: By using Lemma (10.1.4) and Lemma (10.1.5) we can take to  = 0 in the 

proof of Theorem (10.1.6) and hence the corollary follows. 

Theorem 10.1.8. Let us assume that (1-li) - (113) are satisfied and suppose u0  

Xa). Then for t E [0, To], El a unique function u,-, E B,?  where 

= Tu0  + f(t - s) 1S1 (I. -  

and u(t) E B11, where 

u(I) = T'uo  + Jo (t - s)'S(L - s)f(.s, u(s), u(h(u(s), .$)))dw(s), 1.E [01  T0 ], such 

that n0  —* it as ri - 00 in Bp and it satisfies (10.1.2) on [0, T0 ]. 

Proof: By using above Corollary, Theorem 10.1.3 and Theorem 10.1.6 it is to see 

that I u(t) E 13,,. such that 

— 0 on [0,'J'oj  .Now II( - 

Ellitn(t) - Tit0  + / (t - s)° S(i - s)f7 (s, u,1(s), iz(/i(u(s), s)))dw(s)Il2  
to 

I.  f. 

<EJJ I (t - s) 1Sfi (t - s)f,, (s, u,,(s), it7, (h,,(u(s), s)))dw(s) 11 2  
.0 

______ 

T2t2  
<( 

OC 
)2N° 

— F(1. + ) 2/3 -2 
(10.1.14) 

Let n —* oo then 

EIIu(t) - 7u0  + f /i (1 - s)'S1 (t - s)f,(s, ii7,(s), u((u(s), s)))dw(s)II2  
.2(3-2 

<  ( fiG \2NsL_10 and since to  is arbitrary we conclude u(t) satisfies (10.1.2). 1 - +3)) 2fl-2 

Uniqueness follows easily from Theorem 10.1.3, 10.1.6 and Gronwall's inequality. 

10.1.3 Faedo-Galerkin Approximations 

For any 0 < To < T, there exists a unique it E C111Z,  satisfying the integral equation 

U(t) = 7 3uo  + f (1 - s) 1S fi(t — s)f(s. u(s), u(h(u(s), s)))dw(s). t E [0, T0 ]. This 

follows previous section Also, El a unique solution u, e C'.7 of the approximate 

integral equation 

u,,(t) = Tfiuo  + f(t — s)'S1 (t — s)f,,(s, ufl (s), u(h(u.(s), s)))dw(s), I E [0. T0 ]. 

Faedo-Galcrkin approximation ü,, = 11/77  is given by 

I''u77 (I.) = u,, (I) = T0(I.) P"uo  

+ J(t - s)11Sfl (1 - s)Pf(s, u fl(s), u,,(h(u0 (s), s)))dw(s), t E [0, 1]. If 

the solution ii(I.) to (10.1.2) exists on [0. T] then it can be expressed as 
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00 

u(t) = a1(L) 1, where a1(t) = (u(1), 1) for i = and 

'u(t) a(t), where c(t) = ((t), j) for i = 0, 1,2,3, 

As a consequence of Theorem 10.1.3 and Theorem 10.1.6, we have the following 

result. 

Theorem 10.1.9. Let us assume that (Hi) - (113) are satisfied and suppose u0  E 

L'(c, XQ ). Then for t e [0, T0 ], El it unique function u e 13R  where 

= T1 Pu0  + f(i - s)'S1j(t - s)Pf,.(s, u fl(s), u(h(u1 (s), s)))dw(s), 

and u(t) E where 

(t) = 7u0  + f(t - s) 1S1(1 - s)f(s, n(s), u(h(u(s), s)))dw(s), t E [0, T0 ], such 

that it,, —* 'a as it --> oo in 13 and it satisfies (10.1.2) on 10, TO]. 

Now the convergence of '(t) —* o(/.) is shown. It is easily seen that 
Ii 00 

Aa[u(t) — 2(t)] = A[{at (t) — c(t)}J + A > 
1=0 i=n+1 

00 

A{a(t) - a'(t)} 1  + Aa(t). Thus we have 
1=0 

EIIA'[u(t) — ü,,(i) 112 > 
> 11  AEia1(t) — a(t)l2 . 

Theorem 10.1.10. Let us assume (ill) - (113) hold. 

If 'a0  E L, X) then lim sup [ A1(t)2Elia1(t) — 'i (t) 11 21 = 0 
700 t€It0,Th] 1=0 

If no  E L, D(A)) then lim sup [ Ai(t)2'Eilai(t) (t)iI 2] = 0 
fl00 t€10,T0] jO 

The theorem 10.1.10 follows from the facts mentioned above the theorem. 

Corollary 10.1.11. Let us assume (111) - (H3) hold. 

If u0  E L0 . 21c X) then u 
TZ->

n  
 tc 

sup EIiAIu14(t) - u,(t)] 11 2  = 0 ' 00 

If u0  e L(cl, D(A)) then liiri sup Eli  A[ü,(1) - ü 1(t)] 11 2  = 0 
fl->00 tE0,Tø],n>mfl 

Proof: 

m(t)] 112 = EIiPu,1(t) — P'urn(1)li' 

< 2EI'T'[u,(t) - u,,(l,)]Ii + 2EiI(i" — J)Tfl):(f (/)Il2 

<2E11 ['a,, (1) — u, (1)] Il E u + 2--- li A,,,(I.) 11 2  
Am 
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Then the result (i) follows from theorem 10.1.6 and result (ii) follows from corollary 

10.1.7. 

10.1.4 Example 

Consider the following stochastic fractional differential equation with deviating at-

gumnent. Suppose for t > 0, .x E (0, 1),0 <,8 < 1 

CD/i v(t 
(1 W(t) 

x) = v(t. x) + F(1. v(t, x), v(h(t, v(t. x)))) dl 

v(1,x) = v0, 1=0, XE (0.1) and v(1,0) = v(t, 1) = 0, 1>0 (10.1.15) 

Let F is an appropriate Holder continuous function satisfying (112) in 

L(K, (0, 1)). iv is a standard L2(0, 1) valued Weiner process. 

Let us define A = f F, v(1,x) = u(t) and assume = 1/2. Let 

D(A) = Hol 1) fl H 2(0, 1), D(A'/2) = H(0, 1), i.e. the Banach space endowed 

with the norm 

IIxll112 := IIA 2xII, x E D(A112). 

We denote this space by X112 . 
1/2 1/2 Also denote C = C(1, 0; D(A )) endowed with sup norm 

IIxIIt,112 := sup IIx(, )IIii2, x E C 2. 
O<.s<! 

When v E D(A). ,\ E R with Av = —v" = Av we have < Av.v, >=< Xv,v>, i.e. 

< —v", V >= IIvIL = XIIvI12. 

rfhcrcforc  the solution v of Av = Av is of the form 

v(x) = Ccos(vx) ± Dsiii(V5x) 

From the conditions v(0) = v(1) = 0 imply that C = 0 and A = X = n2ir2, n E N. 

So, for each n the solution is 

v,,(x) = Dsin(/r). 

Also note that < v, Vm >= 0 for n rn and < v, Vn >= 1. Therefore D = For 

v E D(A), 3 a sequence of real numbers {a} such that 

v(x) = E a'v(x). E (a)2 < 00 (A)2(an )2 .  

nEN 'tEN r'EN 
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So, A'12v(x) E71€N v'Xa,v,1(x), with v E 

X_112  = H'(O, 1) is a Sobolcv space of negative index with equivalent norm I.I1-1/2 = 
OO 2 

II " > . Then (10.1.15) can be reformulated into (10.1.1). Now from 

theorems (10.1.3),(10.1.6) we can similarly prove the existence, uniqueness and ap-

proximation of the mild solution of (10.1.15). 

10.2 Conclusion 

The existence, uniqueness and convergence of approximate solutions of a stochastic 

fractional differential equation with deviated argument is established. Then Faedo-

Galerkin approximation of solution is considered and some convergence results are 

proved. 

3 



173 

List of Publications 

Journals 
* 

Sanjukta Das, D. N. Pandey, and N. Sukavanam, Exact Controllability of an 

Impulsive Semilinear System with Deviated Argument in a Banacli Space, 

Journal of Difference Equations, 1-lindawi, volume 2014 (2014), Article ID 

461086, 6 pages, http://dx.doi.org/10.1155/2014/461086.  

Sanjukta Das, D. N. Pandey and N. Sukavanam, Approximate Controllabil-

ity of a, Functional Differential Equation with Deviated Argument, Nonlinear 

Dynamics and Systems Theory, hifor Math. volume 14, no. 3, (2014), 265-277. 

1). N. Pandey, Sanjukta Das, N. Sukavanam, Existence of Solution for a 

Second-Order Neutral Differential Equation with State Dependent Delay and 

Non-instantaneous Impulses, International Journal of Nonlinea.r Science, \'Vorld 

Scientific. volume 18, no. 2, (2014), 145-155. 

Sanjukta Das, D. N. Pandey and N. Sukavanamn, Existence of Solution of un-

pulsive Second-Order Neutral Integro-Differential Equation with State Delay, 

in revision in Journal of Integral Equations and Applications, Rocky Mountain 

Mathematics Consortium, http://rmmc.asu.edu/.  

Sanjukta Das, D. N. Pandey and N. Sukavanam, Approximate Controllability 

of a Second Order Neutral Differential Equation with State Dependent Delay, 

Differential Equations and l)ynarnical Systems, Springer, DOI 10.1007/s12591-

014-0218-6, (2014). 

Sanjukta Das, D. N. Pandey and N. Sukavanam, Existence of Solution and 

Approximate Controllability for Neutral Differential Equation with State De-

pendent Delay, International Journal of Partial Differential Equations, Himi-

davi, volume 2014 (2014), Article ID 787092, 12 pages, 

http://dx.doi.org/10.1155/2014/787092.  

Sanjukta Das, D. N. Pandey, and N. Sukavanam, Approximate Controllability 

of a Fractional Neutral System with Deviated Argument in Banach Space, Dif-

ferential Equations and Dynamical Systems, Springer, DOI: 10.1007/s12591-

015-0237-y, (2015). 



174 

8. Sa.ijukta Das, D. N. Pa.ndey, and N. Sukavanani, Approximate controllability 

of an nnl)ulsive  neutral fractional stochastic dii ferential equation with deviated 

argument and infinite delay, NONLINEAR STUDIES - www.nonlinearstudies.com. 

volume 22, no. 1, (2015), 1-16, CSP - Cambridge, UK; - Florida, USA. 

Sanjukta. Das, D. N. Pandey, and N. Sukavanam, Approximations of Solutions 

of a Fractional Stochastic Differential Equations with Deviated Argument. 

accepted for publication in Journa.l of Fractional Calculus and Applications in 

(2015). 

Sanjukta Das, D. N. Pandey, and N. Sukavanam, Approximations of Solu-

tions to Neutral Retarded Integro-differential Equations, accepted to appear 

in Journa.l of Nonlinear Evolution Equations in (2015). 

Sanjukta Das, D. N. Pandcy, and N. Sukavanam, Approximate Controllability 

of an Impulsive Stochastic Delay Differential Equations, to appear in Journal 

of Advanced Research in Dynamical and Control Systems, (JARDCS), jarcics-

Oct-21-2014-cf8cb309 in (2015). 

Conferences 

Sanjukta Das, D. N. Pa.ndey, N. Sukavanam Existence results for a, partial 

neutral differential equation with deviated argument in a Banach Space in 

International Conference on Recent Trends in Algebra and Analysis with 

Applications(ICRTAA-2014) held at Department of Mathematics, Aligarh Mus-

lim University, Aligarh, India during February 12-14, 2014. 

Sanjukta Das, D. N. Pandey, and N. Sukavanam, Approximations of Solutions 

of a Stochastic Differential Equations, accepted for publication in Springer 

Proceedings of International Conference on Recent Trends in Mathematical 

Analysis and Applications, (ICRTMAA) 11cld at lIT Roorkee on 21-23 J)e-

cember 2014. 

Sanjukta Das and D. N. Pandey, Approximate Controllability of an Impulsive 

Stochastic Differential Equation with Deviating Argument, SIAM Dynamical 

Systcin-15, Utah, USA, May 17-21, 2015. 



Bibliography 

S. Abbas, D. Bahuguna, Existence of solutions to quasilinear functional dif-

ferential equations, Electronic Journal of Differential Equations, vol. 2009, no. 

164, (2009), 1-8 

S. Abbas, D. Bahuguna, M. Baiierjee, Effect of stochastic perturbation on a 

two species Competitive model, Nonlinear Analysis: Flybrid Systems, vol. 3, 

no. 3, (2009), 195-206. 

- 131 R. P. Agarwal, Difference Equations and Inequalities: Theory, methods and 

applications, second edition, Monographs and Textbooks in Pure and Applied 

Mathematics, 228, Marcel Dekker, Inc., New York, (2000), 1-971. 

II. P. Agarwal, S. Ding and C. Nolder, Inequalities for differential forms, 

Springer, New York, (2009), 1-387. 

R. P. Agarwal, M. Median and D. O'Rcgan, Fixed point theory and applica-

tions, Cambridge University Press, Cambridge, (2001), 1-170. 

R. P. Agarwal, D. O'R.egan, Infinite interval problems for differential, differ-

ence and integral equations, Kiuwer Academic Publishers, Dorclrccht, (2001), 

1-34 1. 

R. P. Agarwal, I). O'Regan and D.R. Sahu, Fixed point theory for Lipschitzian-

type mappings with applications, Springer, New York, (2009), 1-368. 

S. Agarwal, D. Bahuguna, Exact and approximate solutions of delay difftr-

ential equations with nonlocal history conditions, Journal of Applied Mathe-

matics and Stochastic Analysis, vol. 2005, no. 2, (2005), 181-194. 

175 



176 

[91 S. Agarwai, D. Bahuguna, Existence of solutions to Sobolev-typc partial neu-

tral differential equations, Journal of Applied Mathematics and Stochastic 

Analysis, vol. 2006, Article ID 16308, (2006), 10 pages. 

[101 S. Agarwal, Gilles Carbou, Stephane Labbe and Christophe Pricur, Control of 

a network of magnetic ellipsoidal samples, Mathematical Control and Related 

Field, AIMS, vol. 1 (2011), no. 2, 129-147. 

Bashir Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral 

boundary value problems of fractional order, Journal: Nonlinear Analysis: 

Flybrid Systems, vol. 4, no. 1, (2010), 134-141, 

1 Ahmecl , P. J. Witbooi and K. C Patidar, Modeling the dynamics of an 

epidemic under vaccination in two interacting populations, Journal of Applied 

Mathematics, vol. 2012, Article ID 275902, (2012), 14 pages. 

W.G. Aicilo, 11.1. Freedman, J. Wu, Analysis of a model representing stage-

structured population growth with state-dependent time delay, SIAM Journal 

of Applied Mathematics, vol. 52. no. 3, (1992). 855-869. 

[141 AihongLin, YongRen, NingmaoXia, On neutral impulsive stochastic integro-

differential equations with infinite delays via fractional operators, Mathemat.-

ical and Computer Modelling, vol. 51, (2010), 413-424. 

[151 D. Alexander, D. Michael, L . Elena, On equations with delay depending on 

solution, Nonlinear Analysis TMA, vol. 49 no.5, (2002), 689-701. 

Angell, S. Thomas, R. K. George, Sharma, J. Pankaj, Controllability of 

Urysohn integral inclusions of Volterra type, Electronic Journal of Differential 

Equations, vol. 2010, no. 79, (2010), 1-12. 

A. Anguraj, M. Mallika Arjunan, E. M. Hernóndez, Existence results for an 

impulsive neutral functional differential equation with state-dependent delay, 

Applicable Analysis, vol. 86, no. 7, (2007) 861-872. 



177 

0. Arino, K. Boushaba, A. Boussouar, A mathematical model of the dynam-

ics of the phytoplankton-nutrient systeiri, spatial heterogeneity in ecological 

models, Nonlinear Analysis RWA, vol. 1 no. (1) (2000) 69-87. 

D. Bahuguna, Existence, uniqueness and regularity of solutions to semilinear 

nonlocal functional differential equations. Nonlinear Analysis, vol. 57, no. (7), 

(2004), 1021-1028. 

[203 D. Bahuguna, Existence, uniqueness and regularity of solutions to sernilinear 

retarded differential equations, Journal of Applied Mathematics and Stochas-

tic Analysis, vol. 2004, no. 3, (2004) 213-219. 

D. Bahuguna, Integrodifferential equations with analytic semigroups, Journal 

of Applied Mathematics and Stochastic Analysis, vol. 16, no. 2, (2003), 177-

189. 

D. Bahuguna, Quasilinear integrodiflerential equations in Banach spaces, Non-

linear Analysis: Theory,  Methods and Applications, vol. 24, no. (2), (1995), 

175- 183. 

1). Bahuguna, S. Abbas, J. Dabas, Partial functional differential equation 

with an integral condition and applications to population dynamics, Non-

linear Analysis: Theory, Methods and Applications, vol. 69, no. 8, (2008), 

2623-2635. 

1). Bahuguna, S. Agarwal, Approximations of solutions to neutral functional 

differential equations with nonlocal history conditions. Journal of Mathernat-

ical Analysis and Applications, vol. 317, no. 2, (2006), 583-602. 

D. Bahugumia, M. Muslim, Approximation of solutions to a class of second 

order history-valued delay differential equations, Nonlinear Dynamics Systems 

rFheory,  vol. 8, no. 3, (2008), 237-254. 

I). Bahuguna, M. Muslim, Approximation of solutions to retarded differen-

tial equations with applications to population dynamics, Journal of Applied 

Mathematics and Stochastic Analysis, vol. 2005, no. 01, (2005), 1-11. 



178 

D. Bahuguna, M. Muslim, A study of nonlocal history-valued retarded differ-

entia.l equations using analytic semigroups, Nonlinear Dynmics and Systems 

Theory, vol. 6, no. 1, (2006), 63-75. 

D. Bahuguna, R. Shukla, Approximation of solutions to second order semi-

linear integrodifferential euqations, Numerical Functional Analysis and Opti-

mwation vol. 24, no. 3-4, (2003), 365-390. 

D. Bahuguna, R. K. Shukla, I'artial functional dii ferential equations and ap-

plications to population dynamics, Nonlinear Dynamics and Systems Theory, 

vol. 5, no. 4, (2005), 345-356. 

D. Bahuguna, R. K. Shukla, S. Saxena, Functional (liflerential equations with 

nonlocal conditions in Banach spaces. Nonlinear Dynamics and Systems The-

ory, vol. 10, no. 4, (2010), 317-323. 

[31) D. Bahuguna, R. Shukla, Approximations of solutions to nonlinear sobolev 

type evolution equation, Electronic Journal of Differential Equations, vol. 

2003, no. 31, (2003), 1-16. 

D. Bahuguna, S.K. Srivastava, S. Singh, Approximation of solutions to semi-

linear integrodifferential equations, Numerical Functional Analysis and Opti-

mization, vol 22, no. 5-6, (2001), 487-504. 

K. Balachandran and E. R. Anandhi, Boundary controllability of integrodif-

ferential systems in Banach spaces, Proc. Indian icad. Sci. (Math. Sci.), vol. 

lii, no. 1, (2001), 127-135. 

K. Balachandran, S. Anthoni Marshal, Existence of solutions of second order 

neutral functionaldifferenl;ial equations, Tamkang .Iournal of Mathematics, vol. 

30, no. (4), (1999), 299-309. 

K. Balachandran, M. Chandrasekaran, Existence of solutions of a delay differ-

ential equation with nonlocal condition, Indian .Journal of Pure and Applied 

Mathematics, vol. 27, no. 5, (1996), 443-449. 



179 

K. Balachandran, S. Divya, Controllability of nonlinear implicit fractional 

integrodifferential systems, International Journal of Applied Mathematics and 

Computer Science vol. 24, no. (4), (2014), 713-722. 

K. Balachandran, S. Divya, M. Rivero, Juan J. rfl1jillo Controllability of non-

linear implicit neutral fractional Volterra integrodifferential systems, Journal 

of Vibration and Control, 2015; DOI: 10.1177/1077546314567182. 

K. Balachandran, D.G. Park, S. Anthoni Marshal, Existence of solutions 

of abstract-nonlinear second-order neutral functional integrodifferential equa-

tions, Computer Mathematics Applications, vol. 46, no. 89, (2003), 1313-1324. 

K. Balachandran and J. Y. Park, Existence of solutions and controllability of 

nonlinear integrodifferential systems in 13anach spaces, Mathematical Prob-

lenis in Engineering, vol. 2003, no. 2, (2003), 65-79. 

K. Balachandran, J. Y. Park, Controllability of fractional integrodifferential 

systems in Banach spaces. Nonlinear Analysis Hybrid Systems, vol. 3, no. 4, 

(2009), 363-367. 

P. Balasubramaniam, T. Senthilkumar, Delay-dependent robust stabilization 

and 1-J control for uncertain stochastic T-S fuzzy systems with discrete inter-

val and distributed time-varying delays, International Journal of Automation 

and Computing, vol. 10, no. 1, (2013), 18-31. 

P. Balasubraniaiiiam, M. SyedAli, J. H. Kim, Faedo-Calerkin approximate 

solutions for stochastic semnilinear integro-differential equations, Computers 

and Mathematics with Applications, vol. 58, no. 1, (2009), 48-57. 

P. Balasubrarnaniam, V. Vembarasan, T. Senthulkumar, Approximate con-

trollability of impulsive fractional Integrodifferent.ial systems with nonlocal 

conditions in Hilbert space, Numerical Functional Analysis and Optimization, 

vol. 35, no. 2, (2014), 177-197. 

J. Banas, K. Goebel, Measure of noncomnpact.ness in 13anach space, Lecture 

Notes in Pure and Applied mathematics 60, New York, M. Dekker, 1980. 



[45] S. Ba.rnett, Introduction to Mathematical Control Theory, Clarendon Press, 

Oxford, 1975. 

E. B. M. Bashier and K. C. Patidar, A fitted numerical method for a sys-

tern of partial delay differential equations, Computers and r\[athemnatics with 

Applications, vol. 61, no. 6, (2011), 1475-1492. 

N. Bazicy, Approximation of wave equations with reproducing nonlinearities, 

Nonlinear Analysis TMA, vol. 3, (1979), 539-546. 

N. Bazlcy, Global convergence of Facclo-Galcrkin approximations to nonlinear 

wave equations, Nonlinear Analysis TMA, 4 (1980), 503-507. 

M. Benchohra, J. henderson, S.K. Ntouyas, Existence results for impulsive 

multivalucd semilinear neutral functional differential inclusions in Banach 

spaces, Journal of Mathematics Analysis and Application, vol. 263, no. 2. 

(2001) 763-780. 

M. Bcnchohra, J. Henderson, S.K. Ntouyas, Impulsive differential equations 

and inclusions, Hinda.wi Publishing Corporation, New York, 2006. 

M. Bcnchohra, C. M. N'Guerekata, Measure of noncompactncss and non-

densely defined semilinear functional differential equations with fractional or-

der, CUBO A Mathematical Journal, vol.12, no. 03, (2010), 35-48. 

M. Bcnchohra, L. Gorniewicz, S. K. Ntouyas and A. Onahab, Controllability 

results for impulsive functional differential inclusions. Reports on Matheina.i-

ical Physics, vol. 54, (2004), 211-228. 

R. Bhatia., Notes on functional analysis, Text and readings in mathematics, 

50, 1-linclustan Book Agency, India, (2009). 

D. C. Blasio, K. Kunisch, and E. Sincstrari, Mathematical models for the 

elastic beam with structural damping, Applicable Analysis, vol. 48, no. 1-4, 

(1993), 133-156. 

180 



181 

1). C. Blasio, E. Sinestrari, L2-regularty for parabolic partial int egro differential 

equations with delay in the highest-order derivatives, Journal of Mathematical 

Analysis and Application, vol. 102, no. 1, (1984), 38-57. 

M. Bragdi, M. Ilazi, Existence and controllability result for an evolution 

fractional integrodifferential systems, International Journal of Contemporary 

Mathematical Science, vol. 5, no. 19, (2010), 901-910. 

Zclzislaw. Brzeniaka, Elzbieta Motyl, Existence of a martingaic solution of the 

stochastic NavierStokes equations in unbounded 2D and 3D domains, Journal 

of Differential Equations, vol. 254, (2013), 1627-1685. 

M. Cainpos, Numerical solution of a diffusion equation with reproducing non-

linearity, Zeitschrift fr angewandte Mathematik und Physik, vol. 36, (1985). 

Y. Cao, J. Fan, T.C. Card, 'I'lie effects of state-dependent time delay on a 

stage-structured population growth model, Nonlinear Anal. Ti\'IA, vol. 19 no. 

2. (1992) 95-105. 

J. C. Chang and H. bin, Existence of solutions for a class of neutral par-

tial differential equations with nonlocal conditions in the cr-norm, Nonlinear 

Analysis, vol. 71, no. 9, (2009). 3759-3768. 

Y.K. Chang, Controllability of impulsive functional differential systems with 

infinite delay in Banach spaces, Chaos, Solitons and Fractals, vol. 33, (2007), 

160 1-1609. 

Y.K. Chang, A. Anguraj, M. Mallika Arjunan, Existence results for impulsive 

neutral functional differential equations with infinite delay, Nonlinear Analysis 

FIS, vol. 2, (2008), 209-218. 

Y.K. Chang, W.T. Li, Existence results for impulsive dynamic equations on 

time scales with nonlocal initial conditions, Mathematics Computer and Mod- 

- elling, vol. 43, (2006), 377-384. 

Y.K. Chang, J.J. Nicto, Existence of solutions for impulsive neutral integro-

differential inclusions with nonlocal initial conditions via fractional operators, 



182 

4 

Numerical Functional Analysis and Optimization, vol. 30, no. (3-4), (2009) 

227-244. 

Y. K. Chang, Zhao, Zhi-Flan and Juan J. Nieto. Global existence and con-

trollability to a stochastic integro-diflercntial equation, Electronic Journal of 

Qualitative Theory of Differential Equation, vol. 2010, no. 47, (2010), 1-15. 

Lizhen Chen, Qixiang I)ong, Gang Li, Second-order neutral functional differ-

ential equations with measure of nonconipactness in Banach spaces, Interna-

tional Journal of Nonlinear Science, vol. 10, no. 4. (2010), 387-395. 

J. Dabas, D. Baimguna, Existence and uniqueness of solutions of strongly 

damped wave equations with integral boundary conditions. Nonlinear Dynam-

ics and System Theory, vol. 11, no. 1, (2011), 65-82. 

[681 M. A. Darwish, Sotiris K. Ntouyas. Semilinear functional differential equations 

of fractional order with state-dependent delay, Electron Journal of Differential 

Equations, vol. 2009, no. 38, (2009), 1-10. 

[691 J. P. Dauer, N.I, Mahmudov, Approximate controllability of semilinea.r func-

tional equations in Ililbert spaces, Journal of Mathematical Analysis and Ap-

plications, vol. 273, (2002), 310-327. 

[701 J. P. J)auer, N.I, Mahmudov, Controllability of some nonlinear systems in 

Hilbert spaces, Journal of Optimization theory and Application, vol. 123. no. 

2, (2004), 319-329. 

B. Dubey, H.aju K. George, Controllability of semilincar matrix Lyapunov 

systems, Electronic Journal of Differential Equations vol. 2013, no. 42, (2013), 

1-12. 

S. A. Dubey and D.Baliuguiia, Existence and regularity of solutions to nonlocal 

retarded differential equations, Applied Mathematics and Computation, vol. 

215, (2009), 2413-2424. 

L. E. El'sgol'ts and S. B. Norkin, Introduction to the theory of differential 

equations with deviating argument;s, Academic Press, (1973). 



183 

[741 K.J. Engel, R. Nagel, One parameter semigroups for linear evolution equations, 

Springer-Verlag, New York, (2000). 

[751 H. 0. Fattorini; Second order linear differential equations in Banach spaces, 

North-Holland Mathematical Studies, 108, Amsterdam: North-Holland, 

(1985). 

C. Fengde, S. Dexian, S. Jinlin, Periodicity in a food-limited population model 

with toxicants and state dependent delays, Journal of Mathematical Analysis 

and Applications, vol. 288. no. 1, (2003), 136-146. 

A. Fricdxiian, Partial differential equations, bit, Rinehart and \Vixiston, Inc., 

New York-Montreal, Quc.-London, (1969). 

X. Fu, K. Ezzinbi, Existence of solutions for neutral functional differential evo-

lution equations with nonlocal conditions, Nonlinear Analysis, vol. 54, (2003), 

215-227. 

1 79] C. C. Gal, Semnilincar abstract differential equations with deviated argument, 

Research on Evolution Equation Compendium, vol. 333, no. 16, (2009), 381-

386. 

R. K. George, D.N. Chalizhajar, A. K. Nandakumar and F.S. Acharia, Trajec-

tory controllability of nonlinear integro-differential system, Journal of Franklin 

Institute, vol. 347, no. 7, (2010), 1065-1075. 

R. K. George and T.P.Shah, Asymptotic Stability of Semi-linear Discrete 

Dynamical Systems Involving(sp) Matrix, Nonlinear Studies, vol. 16, no. 1, 

(2009), 23-29. 

R. Goethel, Faedo-Galerkin approximation in equations of evolution, Mathe-

matical Methods in the Applied Science, vol. 6, (1984), 41-54. 

M.E. Gurtin and A.C. Pipkin, A general theory of heat conduction with finite 

wave speeds, Arch. Rat. Mccli. Anat. vol. 2, (1968), 113-126. 

J. A. Goldstein; Senmigroups of linear operators and applications, New York: 

Oxford University Press, 1985. 



[85] J. K. Hale, J. Kato; Phase space for retarded equations with infinite delay, 

Funkcial Ekvac, vol. 21, (1978), 11-41. 

[861 J. K. Hale and S. M. V. Lund, Introduction to functional differential equations. 

Springer-Verlag. New York, Inc., 1993. 

R. ila.loi, D. N. Pandey and D. Bahuguna, Existence, uniqueness and asyinp-

totic stability of solutions to non-autonomous semi-linear differential equations 

with deviated arguments, Nonlinear Dynamics and Systems Theory, vol. 12, 

no. 2, (2012), 179-191. 

R. Haloi, On solutions to a nonautonomous neutral differential equation with 

deviating arguments, Nonlinear Dynamics and Systems Theory, vol. 13, no. 3, 

2013, 242-249. 

[891 Eduarclo I-Iernnclez, Andra. Prokopczyk, Luiz Ladcira, A note on partial func-

tional differential equations with state-dependent delay, Nonlinear Analysis: 

Real World Applications, vol 7, no. 4, (2006)1  510-519. 

H. R. Henriqucz, Generalized solutions for the abstract singular Ca.uchy pro])-

1cm, Communications on Pure and Applied Analysis, (2009). 

H. R. Henrquez, and Andra Prokopczyk, Controllability and stabilizabilit.y 

of linear time-varying distributed hereditary control systems, Mathematical 

Methods in Applied Science, DOT: 10. 1002/mma. 3219, (2014). 

E. Hernández. Existence results for partial neutral int.egrodifferential equations 

with unbounded delay, Journal of Mathematical Analysis and Applications, 

vol. 292, (2004), 194-210. 

Eduardo ITernandez, Donal 0' Regan, On a new class of abstract impulsive 

differential equations, Proc. Amer. Math. Soc., vol. 0002-9939, (2012), 11613-

11612. 

E. Hcrnandez, II. R. Henriquez, Existence of periodic solutions of partial neu- 

tral functional differential equations with unbounded delay, Journal of Math 41 - 

ematical Analysis and Applications, vol. 221, (1998), 499-522. 

184 



185 

E. Hernández, H. Henrquez, Existence results for partial neutral functional 

differential equation with unbounded delay, Journal of Mathematical Analysis 

and Applications, vol. 222, (1998), 452-475. 

E. M. IIernándcz, M.A. McKibben, On state-dependent delay partial neutral 

functional-differential equations, Applied Mathematics and Computation, vol. 

186, (2007), 294-301. 

Eduardo Heriiández Morales, Mark A. McKibben, H. R. Henrquez, Exis-

tence results for partial neutral functional differential equations with state-

dependent delay, Mathematical and Computer Modeling, vol. 49, (2009), 1260-

1267. 

E. M. I-Iernández, M. Rabello, H. R. FIenrquez, Existence of solutions for 

impulsive partial neutral functional differential equations, Journal of Mathe-

matical Analysis and Applications, vol. 331, (2007), 1135-1158. 

E. Hernández, M. Pierri, G. Goncalves, Existence results for an impulsive 

abstract partial differential equation with state-dependent delay, Computer 

Mathematics and Applications, vol. 52, (2006), 411-420. 

E. Herridndez, R. Sakthivel, S. Tanaka Aki, Existence results for impulsive 

evolution differential equations with state-dependent delay, Electronic Journal 

of Differential Equations, vol. 28, (2008), 1-11. 

Yoshiyuki flino, Satoru Murakami, Toshiki Naito, Functional differential equa-

tions with infinite delay, in: Lecture Notes in Mathematics, vol. 1473, Springer-

Verlag, Berlin, 1991. 

Poul C. Hjorth, S. Markvorscn, S. Kokkendorff, Hyperbolic Spaces are of 

strictly negative type, Proceedings of the American Mathematical Society, 

vol. 130, no. 1, (2002), 175-181. 

Poiml C. I-Ijorth, P. Røgen, R. Bywater, Construction of the Simplest Model to 

Explain Complex Receptor Activation Kinetics Journal of Theoretical Biology, 

vol. 218, no. 2, (2002), 139-260. 



186 

S 

[1041 Poul G. Iljorth, J. Starke, K. Berg Thomson, A. Sorensen, C. Marschlcr, 

F. Schulder, A. Dedericlis. Nonlinear effects in examples of crowd evacuation 
J. 

scenarios, Intelligent Transportation Systems (ITSC), IEEE 17th International 

Conference (2014). 

[1051 F. Huang, Some problems for linear elastic systems with damping, Acta Math-

ernatica Science, vol. 10, (1990), 319-326. 

Tadcusz .Ja.nkowski, Fractional problems with advanced arguments, Applied 

Mathematics and Computation, vol. 230, (2014)1  371-382. 

J.M. Jeong, JR. Kim, 11.11. Roh, Controllability for seniilinear retarded cou-

trol systems in Hilbert spaces, Journal of Dynamical and Control Systems, 

vol. 13, no. 4, (2007)1  577-591. 

J. M, Jeong, Dong-Gun Park, W. K. Kang, Rcgular Problem for Solutions of 

a Retar(lcd Semilinear Differential Nonlocal Equations, Computer and Math-

eniatics with Applications, vol. 43, (2002), 869-876. 

S. Ji and C. Li, A unified approach to nonlocal impulsive differential equations 

with the measure of noncompact.ness, Advances in Difference Equations. vol. 

2012, (2012), article 182. 

Mohan C. Joshi, Raju K. George. Controllability of nonlinear systems, Numer-

ical Functional Analysis and Optimization, vol. 10. no. 1-2, (1989), 139-166, 

D01: 10.1080/01630568908816296 

Kamaljeet; D. Bahuguna, Controllability of the impulsive finite delay differ-

ential equations of fractional order with nonlocal conditions. Neural Parallel 

Science and Computing vol. 21, no. 3-4, (2013), 517-532. 

Eva Kaslik, Sccnith Sivasundaram, Dynamics of fractional-order neural net-

works, IJCNN 2011, (2010)1  611-618. 

Eva Kaslik, Seeiiith Sivasundarain.Nonlinear dynamics and chaos in fractional-

order neural networks, Neural Networks vol. 32. (2012), 245-256. 



187 

A. A. Kilbas and H. M. Srivastava and J. J. Trujillo, Theory and Applications 

of Fractional Differential Equations, Elsevier, Amsterdam, (2006). 

Pradeep Kumar, On the New Concepts of Solutions and Existence Results for 

Impulsive Integro-Differential Equations with a Deviating Argument, Nonlin-

ear 1)ynamics and Systems Theory, vol. 14, no. 1, (2014), 58-63. 

[116} Surendra Kuinar, N Sukavanam, Approximate controllability of fractional or-

der seinilinear systwns with bounded delay, Journal of Differential Equations, 

vol. 252, no. 11, (2012), 6163-6174. 

V. Lakshinikanthan, D.D. Bainov, P.S. Simeonov, Theory of impulsive differ-

ential equations, \'Vorld Scientific, Singapore, 1989. 

1. Lasiecka, 1). Lukes, and L. Pandolfi, A feedback synthesis of boundary 

control probleni for a plate equation with structural damping, Appi. Math. 

Comnput. Sci. vol. 4, (1994), 5-18. 

Hacng Joo Lee, Jeongyo Park, Jong Yeoul Park, Existence results for second-

order neutral functional differential and integrodifferential inclusions in Ba-

nach spaces, Electronic Journal of Differential Equations, vol. 2002, no. 96, 

(2002), 13-22. 

Fang  Li. An existence result for fractional differential equations of neutral type 

with infinite delay, Electronic Journal of Qualitative Theory of Differential 

Equations, vol. 2011, no. 52, (2011). 1-15. 

M. Li, M. Wang, F. Zhang, Controllability of impulsive functional differential 

systems in Banach spaces, Chaos, Solitons and Fractals, vol. 29, (2006), 175-

181. 

Meili Li, Yongrui Duami, Xianlomig Fu and Miansen Wang, Controlability of 

neutral functional integro-differential systems in abstract spaces, J. Appl. 

Math. and Computing, vol. 23, no. 1-2, (2007), 101-112. 

4 

W.S. Li, Y.K. Chang, J.J. Nieto, Solvability of impulsive neutral evolution 



MR 

lb 

differential inclusions with state-dependent delay, Mathematics Computer and 

Modelling, vol. 49, (2009), 1920-1927. 

Y. Lin, J.H. Liu, Semilinear integrodiffcrcntial equations with nonlocal Cauchy 

problem, Nonlinear Anal, Theory Methods and Applications. vol. 26, (1996), 

1023-1033. 

J. M. S. Lubuma and K.C. Patidar, Non-standard methods for singularly per-

turbeci problems possessing oscil]a.tory/laycr solutions, Applied Mathematics 

and Computation vol. 187, (2007), 1147-1159. 

N. I. Mahinudov and M. A. MclKibhcn, Approximate controllability of second-

order neutral stochastic evolution equations, Dynamics of Continuous, l)is-

crete and Impulsive Systems Series B: Applications and Algorithms, vol 13, 

(2006), 619-634. 

N. I. IVEahrnudov and S. Zorlu, Approximate controllability of semilinear nen- 

tral systems in Ililbert spaces, Journal of Applied Mathematics and Stochastic - 

Analysis, vol 16, no.3, (2003), 233-242. 

A. A. Martynyuk, About approximation of solutions of linear systems in Ba-

nach space, Differential Equations, vol. 8, no. Ii, (1972). 1988-1999. 

[1291 A. A. Martynyuk, Absolute stability of nonlinear control systems, Mathemat-

ical Modelling: Theory and Applications, 25, 2nd edition, Springer, (2008). 

[1301 A. A. Martynyuk, To one method of investigation of mechanical systems with 

distributed parameters, Prikl. Mckh., vol. 6, no. 12, (1970), 97-103. 

[1311 A. A. Martynyuk, L.G. Lobas and N.V. Nikit;ina, Dynamics and Motion Sta-

bility of Wheeled Transporting Vehicles. Tekhnika, Kiev, (1981). 

[132] A. A. Martynyuk, L. N. Larisa N.. Vladislav, \Veakly connected nonlinear 

systems: houndedness and stability of motion, CRC Press/ Taylor Francis 

Group, (2013). 

[1331 P. D. Miletta, Approximation of solutions to evolution equations, Matheniat-

ical Methods in the Applied Sciences, vol. 17, no. 10, (1994). 753-763. 



189 

[134] I. Mishra, D. Bahuguna, S. Abbas, Existence of almost automorphic solu-

tions of neutral functional differential equation, Nonlinear Dynamics Systems 
4 rflleoi.y,  vol. 11, no. 2, (2011), 165-172. 

1135] 11. Murakamni, On linear ordinary and evolution equations, Funkcial Ekvacial, 

vol. 9, (1966), 151-162. 

M. Muslim and D. Bahuguna, Existence of solutions to neutral differential 

equations with deviated argumrient Electronic Journal of Qualitative Theory of 

Difli'reiitial Equations, vol. 2008, no. 27, (2008) 7  1-12. 

M. Muslim, Fahad Al- Mufadi and R. P. Agarwal, Controllability of abstract 

neutral differential equations with deviated arguments, Dynamics of Contin-

uous, 1)iscretc and Impulsive Systems, Series A: Mathematical Analysis vol. 

20, (2013), 755-767. 

of [138] P. Muthukumar, P. Balasubrainaniarn, Approximate controllability of second-

order damped McKean\Tlasov stochastic evolution equations, Computers and 

IVlathematics with Applications, vol. 60, no. 10, (2010), 2788-2796. 

[1391 Koichiro Naito, Controllability of Semilimmear Control Systems Dominated by 

Linear Part, Siani .1. Control and Optimization vol. 25, no. 3, (1987), 715-722 

A. K. Nandakuinaran, D. N. Chalishajar and Raju K. George, Exact Control-

lability of second order semi-linear neutral functional differential inclusions 

in Banach spaces, Mediterrian Journal of Mathematics vol. 1, no. 4, (2004), 

463-477. 

A. K. Nandakumnaran, D. N. Chalishajar, R. K. George, Exact Controllability 

of the nonlinear third order dispersion equation, J. Math. Anal. Appl., vol. 

332, (2007), 1028-1044. 

A. K. Nandakumaran, and Raju K. George, Exact Controllability of a Semi 

Linear rfherInoeltic  System, Numerical Functional Analysis and Optimiza-

tion, vol. 25, no. 3-4, (2004), 271-285. 



190 

[143] A. K. Nandakumaran, R. K. George, Partial exact controllability of a. nonlinear 

system, Revista Mathematica do la, vol 8, no 1,(1995). 181-196. 

[14/1] J.J. Nicto, D. O'Rcgan, \Jai'iatioiial approach to impulsive differential equa-

tions, Nonlinear Analysis, RWA. vol. 10, (2009), 680-690. 

[1451 D. N. Pandey, A. Ujlaya.n and I). l3ahuguna, On nonlinear abstract neutral di f-

ferential equations with deviated argument, Nonlinear Dynamics and Systems 

Theory, vol. 10, no. 3, (2010), 283-294. 

A. Pazy. Semigroups of linear operators and applications to partial differen-

tial equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 

(1983). 

C. Da Prato, J. Zahczvk. Stochastic equations in infinite dimensions, Encvclo-

pedia of Mathematics and Its Applications, Cambridge: Cambridge University 

Press, (1992). 

R. Sakthivel, E. R. Anandhi, Approximate controllability of impulsive differ-

ential equations with state-depemident delay, International Journal of Control, 

vol. 83. no. 2, (2009), 387-393. 

R. Sakthivel, N. I. Mahmudov, J. TI. Kim, Approximate controllability of 

nonlinear impulsive differential systems, Reports on Mathematical Physics, 

vol. 60, no. 1, (2007), 85-96. 

[1501 R. Sakthive], N. I. lvlahmnuclov, J. II. Kim, On controllability of secomid-order 

nonlinear impulsive differential systems, Nonlinear Analysis, vol. 71, (2009), 

45-52 

[151] R. Sakthivel, N.J. Mahmudov, Juan. J. Nieto, Controllability for a class of 

fractional-order neutral evolution control systems, Applied Mathematics and 

Computation, vol. 218, (2012), 10334-10340. 

[1521 R. Sakthivel, Juan J. Nieto and N. I. Mahmuclov, Approximate controllabil- 

ity of nonlinear deterministic and stochastic systems with unbounded delay, p 

Taiwancsc Journal of Mathematics, vol. 14, no. 5, (2010), 1777-1797. 



191 

j [1531 R. Sakthivel, P. Revathi, Yong Ron, Existence of solutions for nonlinear frac- 

OL stochastic differential equations, Nonlinear Analysis, vol. 81, no. 04, 

(2013), 70-86. 

[154 I. Sega!, Nonlinear scmigroups, Annals of Mathematics, vol. 78, (1963), 339-

364. 

[155] N. Sukavanain, Approximate controllability of semilinear control of control 

system with growing nonlinearity, Math. Theory of Control Proc. Int.Conf., 

Marcel Dekker, New York, (1993), 353-357. 

[1561 N. Sukavanam, and Divya, Exact and approximate controllability of abstract 

semilinear control systems, Indian Journal of Pure and Applied Mathematics, 

vol. 33, no. 13, (2002), 1835-1837. 

[157] N. Sukavanam, Surendra Kumar, Approximate controllability of fractional 

order semilinear delay systems, Journal of Optimization rrhcory  and Applica-

tions, vol. 151, no. 2, (2011), 373-384. 

158] N. Sukavanam, Mohit Kumar, S-controllability of an abstract first order semi-

linear control system, Numerical functional analysis and optimization, vol. 31, 

no. 9, (2010), 1023-1034. 

1591 Z. Tai, X. Wang, Controllability of fractional- orderimpulsive neutral func-

tional infinite delay integrodifferential systems in Banach spaces, Applied 

Mathematics Letters, vol. 22, (2009), 1760-1765. 

[160] l-1.L. Tidke, M.B. Dhaknc, Existence and uniqueness of solutions of certain 

second order nonlinear equations, Note di Matematica, Note Mat. vol. 30, no. 

2, (2010), 73-81. 

r
[161] C.C. Travis, C.F. Webb, Compactness, regularity, and uniform continuity 

l)rol)O1ties of strongly continuous cosine families, Houston Journal of Mathe-

matics, vol. 3, no. 4, (1977), 555-567. 

111621 C.C. 'f•av, G.F. Webb, Cosine families and abstract nonlinear second order 



192 

dilferential equations, Acta Math. Acad. Sci. Flungaricae. vol. 32, (1978), 76-

96. 

C.C. Travis, G.F. Webb, Second order differential equations in Banacli space, 

in: Proceedings Intcrnat. Syinpos. on Nonlinear Equations in Abstract Spaces, 

Academic Press, New York, (1987), 331-361. 

R. Triggiani, A note on the lack of exact controllability for mild solutions in 

13anach spaces, SIAM Journal of Control and Optimization, vol. 15, (1977). 

407-411. 

K. 'rsujioka, Remarks on controllability of second order evolution equations 

in Flilhcrt spaces, SIAM Journal of Control, vol. 8, no. 11, (1970), 90-99. 

[1661 V. Vembara.san, P. Balasubramaniani, E. M 'Joo. JI state-feedback control 

of time-delay systems using reciprocally convex approach, Journal of Process 

Control, vol. 24, (2014), 892904. 

[1671 V. \Tijayakuma.r, S. Sivasankaran and M. Mallika Arjunan, Global existence for 

Volt;erra-Fredholm type neutral impulsive functional integrodifferential equa 

tions, Surveys in Mathematics and its Applications, vol. 7, (2012), 49-68. 

[168] J. Wang and Y. Zhou, A class of fractional evolution equations and optimal 

controls. Nonlinear Analysis. vol. 12, (2011), 262-272. 

[1691 L. V. Wang, Approximate controllability of delayed semilinear control of con-

trol system, Journal of Applied Mathematics and Stochastica.l Analysis, vol. 

1, (2005), 67-76. 

Shengli Xie, Existence results of mild solutions for impulsive fractional integro-

differential evolution equations with infinite delay. Fractional Calculus and 

Applied Analysis, vol. 17, no. 4, (2014)1  1158-1174. 

Shengli Xie, Solvability of impulsive partial neutral second- 

order functional integro-differential equations with infi- 

nite delay. Boundary \/alue Problems. 20 13:203, (2013). 1 
lltl;l)://W\VW.l)011fldaryValuel)rohlenlS.conl/cOfltent/2013/l/203. 



193 

Daoyi Xua, Zhiguo Yanga, Yumei Huang, Existence uniqueness and contin-

uation theoreixis for stochastic functional differential equations, Journal of 

Differential Equations. vol 245, no. 6, (2008), 1681-1703. 

Xianinin Zhang, Xianzhen Zhang, Min Zhang, On the concept of general solu-

tion for impulsive differential equations of fractional order q E (0, 1), Applied 

Mathematics and Computation, vol. 247, (2014), 72-89. 

Shujie Yang, Bao Shi, Qiang Zhang, Complete controllability of nonlinear 

stochastic impulsive functional systems, Applied Mathematics and Coxnputa-

tion, vol. 218, (2012), 55435551. 

11751 K. Yosida, Fumictioixal Analysis, Sixth edition, Classics in mathematics, 

S pruiger-Verlag, Heidelberg, (1995). 

II. X. Zhou, Approximate controllability for a class of semilinear abstract 

equations, SIAM Journal of Control Optimization, vol. 21, (1983), 551-565. 

Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution 

equations, Computer Mathematics with Application, vol. 59, (2010), 1063-

1077. 


	TITLE
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

