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Abstract 

Algebraic codes have been traditionally studied in the setting of vector spaces over finite 

fields. The study of codes over rings was initiated in early seventies [23,24,106,107,119,120, 

132]. However, codes over rings got attention of researchers mainly after the breakthrough 

paper of Hammons et al. [58] in 1994, in which they have shown that some non-linear 

binary codes are actually the images of some linear codes over Z4  under the Gray map. 

The findings of this paper led to a lot of research in this area [19,25,30-32,35,56,67,89, 135]. 

As a result, a large number of papers were produced studying codes over Z. This quickly 

expanded to consider codes over Zm  and then onto other rings such as Galois rings and, 

in general, finite chain rings [3,4, 21,45,49,90,96,97, 130]. However, not much attention 

has been paid to codes over non-chain rings. Recently, finite polynomial rings such as 

F2  + ttF2, u2  = 0 [26, 124], F2  + vF2, v2  = v [140], lF2  + UF2  + vF2  + uvlF2, u2  = v2  = 0, 

uv = vu [138], etc., have been considered as alphabets for studying codes. Some of these 

are non-chain rings. Recently, Yildiz and Karadeniz [139] have introduced a local non-chain 

ring Z4  + uZ4, u2  = 0, and studied linear and self-dual codes over it. They have also got 

some good formally self-dual codes over this ring. The study of codes over finite rings has 

provided some codes with better parameters and such codes have also got some practical 

applications. 

In this thesis, we have explored some families of codes over some non-chain extensions 

of Z. In this context, we have introduced two new rings Z4  + vZ4, v2  = v, and Z4  + wZ4, 

= 2w, and studied linear codes over them. Further, we have done an indepth study 

of cyclic and negacyclic codes over Z4  + uZ4, u2  = 0. Finding a suitable metric for the 

codes over a given ring is an interesting problem. In view of this, we have studied codes 

over 7L4  + vZ4  with respect to Lee and Gray metrics and also derived MacWillaims type 



identities for linear codes with respect to these metrics. A non-Hamming metric, namely, 

Rosenbloom-Tsfasman (RT) metric or the p metric has also been considered in this study, 

and linear codes over Z4  + v7Z4  with respect to this metric are studied. A MacWilliams type 

identity using Lee complete p-weight enumerator is presented. A transformation to obtain 

p-weight enumerator from Lee complete p-weight enumerator is provided. 

Self-dual codes are an interesting class of codes and are closely related to design theory. 

The study of self-dual codes and their constructions is an important topic in coding theory. 

We have characterized self-dual codes over Z4  + v7Z4 , v2  = v and Z4  + wZ4, w2  = 2w and 

presented some methods for constructing self-dual and self-orthogonal codes over Z4  + vZ4  

and Z4-i-w7Z4. We have also briefly studied circulant codes and Type II codes over Z4 +wZ4. 

One of the most studied families of algebraic codes is the family of cyclic codes, which 

have a rich algebraic structure. Their structure over finite chain rings is now well known 

[45,83,84,90]. However, they have not been well explored over local non-chain rings. We 

have studied cyclic codes over the non-chain ring Z4+uZ4, u2  = 0. First we have focused on 

cyclic codes of odd length n, and obtained their structure through the factorization of —1 

over Z4  + uZ4. We have then considered cyclic codes of arbitrary lengths over Z4  + nZ4  

and presented their structure. In particular, all cyclic codes of length 2' are classified. 

Using the structure of general form of cyclic codes over Z1 + uZ4, we have obtained a 

minimal spanning set and a formula for the ranks of such codes. A necessary condition and 

a sufficient condition for cyclic codes to be free over 7Z4  + nZ4  are obtained. 

An important generalization of cyclic codes is negacyclic codes. We have characterized 

negacyclic codes of both odd and even lengths over Z4  + uZ4, u2  = 0. The complete 

classification of negacyclic codes of length 2k  over Z4  + uZ4  is given and their duals are 

determined in each case. All negacyclic codes C of length 2' over this ring satisfying 

C C A(C) and C = A(C), where A(C) is the annihilator of C, are presented. Enumeration 

of codes of a particular type has been an interesting problem in coding theory. We have 

enumerated negacyclic codes of length 2' over Z4  + uZ4. This study has further been 

generalized to negacyclic codes arbitrary even length over Z4  + uZ4. The classification of 

negacyclic codes led to some good Z4-codes via the Gray map. 
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Chapter 1 

Introduction 

The exchange or communication of information from one person to another is an activity 

that is as old as mankind. The form of exchange of information is changing with time. In 

earlier days, people used to communicate information through agents, post cards, telegrams, 

etc., and in recent years, through telephones, fax, emails, wireless networks such as infrared, 

bluetooth, wifi, mobile phones, etc. Now, with the information era at hand, the need of 

communication is more pronounced than ever. As the world becomes more connected, there 

has been a dramatic increase in the volume of data that is being captured, stored, processed 

and transmitted as digital information. This has led to an increasing demand for efficient 

and reliable systems used in the transmission and storage of digital data. The efficient, 

reliable and secure transmission of information over noisy channels are basic requirements in 

digital communication and are challenging problems. Coding theory addresses the problem 

of reliable communication in noisy channels'. It is the study of error correcting codes over 

noisy communication channels and is concerned with developing codes that can detect and 

correct errors in a digital communication and for which efficient encoding and decoding 

algorithms exist. Error-correcting codes have become part of routine and are found in all 

walks of life - ranging from basic home and office appliances like telephones, compact disc 

players, computer hard disk drives to deep space communication. They are also now used 

in essentially all hardware-level implementations of smart and intelligent machines, such 

as scanners, optical devices, and telecom equipments. Apart from this, they are also used 

'Security is the other concern which is dealt by cryptography. 
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Chapter 1: Introduction 2 

in cryptography, construction of combinatorial designs, data compression, probabilistically 

checkable proofs, DNA computing, quantum computing, etc. Hence, in barely more than 

half a century, it has seen phenomenal growth. Though coding theory has its origins in 

an engineering problem, however, the subject has been developed by using more and more 

sophisticated mathematical techniques. Owing to richness of the subject, till date coding 

theory has been a flourishing subject that benefits from techniques developed in a wide 

variety of disciplines such as combinatorics, probability, algebra, geometry, number theory, 

engineering and computer science. 

1.1 Coding Theory - Origin and Development 

Coding theory originated with the seminal paper "A mathematical theory of communica-

tion" of Shannon in 1948 [108], in which he showed that, it is possible to transmit infor-

mation through a noisy communication channel almost error free at any rate below the 

capacity of the channel. This fundamental and ground-breaking work signified the begin-

ning of the twin disciplines Information Theory and Coding Theory. However, Shannon's 

theory is probabilistic rather than constructive. That is, it does not give any information 

how one can construct the codes that achieve the channel capacity. 

At around the same time, his colleague at Bell Labs, Hamming was developing an 

error correcting scheme. He was frustrated with the computer that halts every time when 

it detects an error but could not correct it. While addressing the question that why the 

computer which could detect the errors was unable to correct them automatically, Hamming 

realized that the basic problem of error correction is to find strings over an alphabet that 

are in certain sense at a sufficiently large distance from each other. He introduced a famous 

class of single error correcting codes (named after him as Hamming codes) and defined a 

metric known as Hamming metric [57], for this purpose. This theory of Hamming is about 

the actual construction, encoding and decoding of codes and uses tools from areas such 

as combinatorics and algebra. Though, these codes did not achieve channel capacity as 

promised by Shannon, they were important as they showed a way to construct codes. In 

1949, the first multple error correcting codes (in particular, a triple error correcting binary 



3 1.1 Coding Theory - Origin and Development 

code [23, 12, 7] and a double error correcting ternary code [11, 6, 5]) were constructed 

by Golay in his single page research article "Notes on digital coding" [55]. In 1954, Reed 

and Muller introduced Reed-Muller codes (RM codes) [102] which have many algebraic 

and combinatorial properties. These were the first codes to be deployed in deep space 

communication (Mariner 9). Most of the research in coding theory since then is devoted to 

find good error correcting codes. 

A major advance in this area came when Bose and Ray-Choudhuri [27], and Hoc-

quenghem [60] independently found a large class of multiple error correcting codes called 

BCH Codes. Reed and Solomon [103] found a related class of codes for non-binary channels, 

named after them as Reed-Solomon (RS) codes which have many interesting properties. In-

spired by this advance, many other families of codes have been discovered. 

The error correcting capability of a code depends mainly on the minimum distance of 

the code. Also, for efficient transmission, a code needs to have large number of codewords. 

Therefore studying the metric and structural properties of a code becomes of paramount 

importance. Searching for the codes with good parameters is equally important. As a 

result, many families of codes have been introduced. Cyclic codes is one of the important 

class of those families. The study of cyclic codes began with two, 1957 and 1959 AFCRL 

reports by Prange [98,99]. Among all families of codes, cyclic codes are of great importance. 

This is mainly because they can be efficiently encoded and decoded. Besides this, they have 

many other interesting properties. Their rich algebraic and combinatorial structure made 

this class of error correcting codes one of the most prominent classes in coding theory. The 

well known codes BCH codes, RS codes, RM codes (Punctured), etc., are cyclic codes. 

The area of coding theory which mainly uses algebraic tools for the analysis of codes 

is known as algebraic coding. Algebraic coding has become one of the most important and 

widely applied aspects of abstract algebra. Classically, algebraic codes have been mainly 

studied in the setting of vector of spaces over finite fields. The study of codes over rings was 

initiated by Blake in early seventies [23,24]. He first studied cyclic codes over Zm  using group 

algebra approach [23], and then he focused on linear codes over Zpr [24]. Blake's work was 

extended further by Spiegel [119, 120], followed by Shankar [107], in which she proposed 

a construction of BCH codes over integer residue rings using the polynomial approach. 
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Satyanarana [106] and Wasan [132]  also studied codes over integer residue rings. However, 

the study of codes over rings got attention of researchers mainly after the breakthrough 

paper of Hammons et al. [58] in 1994, in which they have shown that some important families 

of non-linear binary codes (Kerdock and Preparata codes) with very good parameters are 

actually images of some linear codes over Z4, the ring of integers modulo 4, via a map, 

called the Gray map. The findings of this paper not only led to a new research in this 

area but also settled a long standing mystery behind the behavior of binary Kerdock and 

Preparata codes as formal duals of each other [81, Chapter 15]. Some other important 

papers on codes over Z4  produced during early nineties are [28,35,89]. 

The outcome of the paper by Hammons et al. [58] had an enormous effect on the 

coding theory community. People began to think of rings as an acceptable alphabet for 

coding theory. As a result, a number of papers were published and many properties of 

codes over some rings were established [19, 25, 30-32,47, 56, 67,90, 96, 130, 135]. Initially, 

a large number of papers were produced studying codes over Z.4  [Ii, 125-1271 but this 

quickly expanded to consider codes over ?Zm  and then to other rings such as Galois rings, 

finite chain rings, finite polynomial rings, etc [20, 101, 121]. A complete structure of cyclic 

codes of odd lengths over Z4  has been given by Pless and Qian in [96]. They have also 

studied cyclic self-dual codes over Z4  in [97]. This study has been later generalized to 

arbitrary ring of integers modulo PS, p a prime, in [31, 67]. Gupta et al. [56] studied 

linear codes over 7Z23. Norton and Slgean [90], and Dinh and Permouth [45] studied 

cyclic over a more general setting of finite chain rings. Martinez and Rüa [83,84] studied 

codes over finite chain rings in the multi-variable approach. In most of the study of cyclic 

codes, the length of the cyclic code is relatively prime to the characteristic of the ring. 

When the length of the code is not relatively prime to the characteristic of the ring, the 

corresponding cyclic codes are known as repeated root cyclic codes, and they have been 

well explored over finite fields [12,33,41,44,51,87,105,109,122,128,142] and also over some 

finite rings [3,4, 10, 21, 28, 39, 42, 44, 49, 109, 118, 123, 125, 126] in the literature. The well 

known codes such as BCH codes, RM codes and RS codes have also been generalized to 

finite rings [18, 36, 37, 58, 63, 1071. The other families of codes constacyclic, quasi-cyclic 

codes, quasi-twisted codes, etc., have also been studied over finite rings [17,38,75-78]. 



5 1.2 Motivation to our Investigations 

This study has been carried further by introducing finite polynomial rings as alphabets, 

such as 1F2 +u1F2 , u2  = 0 [26,124], 1F 2+vF2, v2  = v [140], 1F2+uF2+vF2+uvlF2, u2  = 
v2 = 0, 

uv = vu [138], IF + v1F + v21F, v3  = v [79], [114], etc. The first among them was 

the ring F2  + u1F 2 , u2  = 0 due to Bachoc [9], in which the ring was used in connections 

with modular lattices and coding theory. A further study of codes over F2  + ui?2  was done 

by Bonnecaze and Udaya in [26], in which they have not only studied cyclic codes over 

F2  + ui?2, but also got some very good codes over it. 

There are interesting connections between Z4  and F2  + ui?2. For example, both are local 

rings of order 4 but of characteristics 4 and 2, respectively. The multiplicative structure of 

both is same but not the additive one2. The ring IF2  + ui?2  has one non-zero non-unit as 

in Z4, namely u, and so a comparable Gray map was defined, where u acts 2. However, 

unlike the Gray map for Z4, this map is a linear map. The ring IF2  + uIF2  is also used 

for the construction of optimal frequency hopping sequences [126], this can be considered 

as an immediate application. This inspired the researchers to introduce new similar ring 

structures to study codes over them. There is a large number of papers in recent past in 

this direction [5,6,43, 68, 117], and as a result some very good codes with parameters better 

than the existing codes with same length and minimum distance over finite fields have been 

obtained. 

1.2 Motivation to our Investigations 

In this section, we present the work that has motivated us to study codes over some non-

chain extensions of Z4. We also present a survey of work that has been done in this 

direction. 

Codes over Z4  have always remain a topic of special interest, in spite of codes over all the 

finite rings stated earlier, due to their connections with 4-phase sequences, lattices, design 

- theory, cryptography, etc. Most of the work on codes over polynomial rings described in the 

previous section is confined to polynomial rings over finite fields. In view of this, recently, 

Yildiz and Karadeniz [139] have introduced a new ring structure Z4  + uZ4, u2  = 0, and 

2The additive structure of IF2  + UIF2  is same as IF4 
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studied linear and self-dual codes over it. They have also got some good formally self-dual 

codes over this ring. This motivated us to introduce two new ring structures Z4  + vZ4, 

v2  = v and Z4  + wZ4, w2  = 2w, and to study some families of codes over them. Further, 

we have extensively studied cyclic and negacyclic codes over the ring Z4  + u7L4 . 

Given a finite ring, finding a suitable metric for the codes over the ring is always an 

interesting problem. Algebraic codes have been mostly studied using either Hamming 

metric or its other variants like generalized Hamming metric, Lee metric, Euclidean metric, 

homogeneous metric etc. Some non-Hamming metrics like rank metric, psuedo metric, 

poset metric, rn-spotty metric, etc., have also been studied [29,52,53,61,64,73, 133]. The 

Hamming metric and its other variants are well suited for channels in which channel noise 

generates equiprobable errors. However, not all real world channels are of that nature, 

especially when the possible errors form patterns of a specific shape. In such situations, a 

non-Hamming metric, called Rosenbloom-Tsfasman (RT) metric (also known as p-metric) 

is more appropriate, and is a generalization of the classical Hamming metric [82, 104, 116]. 

In the context of coding theory, the p-metric was first introduced by Rosenbloom and 

Tsfasman [104]. An interesting point to be noted here is that while studying codes with 

respect to RT metric, the p-weight enumerators of the duals of two linear codes with 

same p-weight enumerator may be different. This is not the case with Hamming weight 

enumerator. 

Dougherty and Skriganov [501 have identified this problem and mentioned the need 

to search for more adequate definitions for weight enumerators. The problem has been 

resolved by them by considering orbits of a linear group preserving the p-weight (which is 

a method actually proposed by Skriganov in [115, Section 4.4]). Siap [111] addressed the 

same problem by defining the complete weight enumerator, which preserves the order of 

the entries of matrices. Siap [111] proved the MacWilliams identity for complete p-weight 

enumerator of a linear code in Mm3 (Fq), and later he proved the same for linear codes 

in Mmxs(R), where R = Fq [u]/(u' - a) with a E F. in [112]. Siap and Ozen [113] further 

generalized this result to linear codes in M mxs(R), where R a finite commutative ring. 

With respect to the RT metric, Ozen and Siap [9 1-93] studied the structure of linear codes 

in Mmxs(R) when R is either a finite field or Fq[u]/u8) or a Galois ring. Zhu and Xu [141] 
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defined the Lee complete p-weight enumerator and the exact complete p-weight enumerator 

of a linear code in Mm3(Z4), and also derived the MacWilliams identity for each of these 

enumerators. This inspired us to study linear codes over Z4  + vZ4, v2  = v. We have derived 

a MacWillaims type identity for linear codes over Z4  + vZ4  with respect RT weight using 

an approach similar to that of [111]. Further, we have studied linear codes Z4  + v7L4  with 

respect to Lee and Gray metrics and obtained MacWillaims identities with respect to these 

metrics. 

Self-dual codes are an interesting class of codes as they often produce optimal codes and 

have many links to the other areas of mathematics such as lattices, t-designs, Hadamard 

matrices and quantum stabilizer codes. The search for self-dual codes with good parameters 

is an interesting problem in coding theory. Self-dual codes and their constructions over 

finite fields have been studied extensively [59,69, 70, 72, 741. Recently, several construction 

methods for self-dual codes over finite rings have also been proposed [71, 721. Alfaro and 

Dhul-Qarnayn [6] proposed a more general method for constructing self-dual codes over 

and over finite chain rings, through which one can obtain the self-dual codes obtained 

y methods proposed in [69-71]. As a result many new self-dual and formally self-dual 

codes are obtained. This motivated us to characterize self-dual codes over 7Z4  + vZ4, v2  = v 

and Z4 + w7Z 4, w2  = 2w. We have proposed a construction method for constructing self-

orthogonal and self-dual codes over Z4  + v7Z4  and 7L4  + w7Z4. 

Cyclic codes are amongst the most studied algebraic codes. Their structure over finite 

chain rings is now well known [90]. As was stated earlier, there are a lot of papers in recent 

years on cyclic codes over different finite rings [5,26,43,68,96,110,114, 138]. However, cyclic 

codes over local non-chain rings are not much explored. This led us to explore cyclic codes 

over the local non-chain ring Z4  + uZ4, it2  = 0. We have explored cyclic codes and their 

structural properties over Z4  + u7Z4. 

Another family of codes that we have considered in this thesis is negacyclic codes. 

Negacyclic codes were first introduced by Berkelamp [15]. Wolfmann [134] generalized 

negacyclic codes of odd lengths to Z4. Blackford [22] extended the results of [134] to 

negacyclic codes of even length over Z4, and determined all binary linear repeated root 

cyclic codes that are Gray images of quaternary codes. Dinh and Lopez-Permouth [45] 
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studied negacyclic codes of odd length in the more general setting of finite chain rings, and 

also considered repeated root cyclic codes of length 28  over Z2m. The structure of negacyclic 

codes of length 2 over Galois rings and their complete Hamming distances were discussed 

by Dinh in [39,40]. Constacylic codes of lengths 21  and p8  over Galois extension of]F2 +u1F2, 

= 0 and Fm + ulFm, u2  = 0, respectively, have been studied by Dinh in [42,43]. We 

have classified negacyclic codes of both odd and even lengths over Z + uZ4, u2  = 0 and 

found some good Z4-codes via the Gray map. 

Recently, few researchers have also worked on some non-chain ring extensions of Z4. The 

first among them was the paper by Yildiz and Aydin [136], in which they have obtained 

some new Z4-codes as Gray images of cyclic codes over Z4  + uZ4, u2  = 0. Martinez et 

al. [86], have studied linear code over and also considered quaternary RM codes in 

2015. Luo and Udaya have studied self-dual cyclic codes over Z4  + uZ4, u2 = 0 [80]. In 

2016, Ozen et al. [94] have discussed cyclic and constacyclic codes over and obtained 

few new Z4-codes via the Gray map. The ring 24j is in fact isomorphic to . Gao et 

al. [54] have studied linear codes over Z + vZ4, v2  = v and generated many new Z4-codes 

(optimal in some cases) from the self-dual codes over Z4  + vZ4. 

Recently, in 2015, Martinez and Szabo [85] have classified all local rings of order 16 up 

to isomorphism. They have proved that there only seven local non-chain rings of order 

16. Dougherty et al. [46] have studied linear codes over these seven local non-chain rings 

and have also given the form of a generator matrix of linear codes over these rings. They 

derived MacWilliams identities and also considered self-dual codes over them. The local 

non-chain rings Z4  + UZ4, u2  = 0 and Z4  + wL, w2  = 2w, which we have used in this, are 

among them. This is the work that has been done so far on non-chain extensions of Z4. 

1.3 Objective of the thesis and our contribution 

Objective of the thesis: The objective of this thesis is to study codes over some non-

chain extensions of Z4  such as Z4  + uZ4, u2  = 0, Z4  + wZ4, w2  = 2w and Z4  + vZ4, v2  = 

and to explore their properties. By making use of their structural properties, we also aim 

to search for some optimal/good binary or Z4  codes. 



1.3 Objective of the thesis and our contribution 

Our contribution: 

• We have introduced the ring Z4  + vZ4, v2 = v, and studied codes over Z4  + vZ4  with 

respect to Lee, Gray and RT metrics and also characterized the self-dual codes over 

Z4  + v7Z4. 

. Introduced another ring Z4  + wZ4, w2  = 2w, and studied self-codes over it. Proposed 

some construction methods for self-dual codes over Z4 + wZ4. 

Cyclic codes over Z4 +uZ4, u2  = 0, are well explored. We have presented the structure 

of cyclic codes over Z4  + uZ4  and their generators. We have also obtained a minimal 

spanning set for such codes and determined their ranks. 

• Characterized negacyclic codes of even lengths (in particular of length 21c)  over Z4  + 

u7Z4, u2  = 0, and obtained their duals. Also determined a mass formula for number 

of negacyclic codes of length 2k  over Z4  + nZ4. 

Using the classification of negacyclic codes and Magma Computational Algebra Sys-

tern, we have found some new Z4-codes via the Gray map. 

1.3.1 Structure of the Thesis 

The thesis is organized as follows. 

Chapter 1 gives an introduction to coding theory and its development, and also its 

recent advances. The literature related to the topics discussed in the thesis are also covered 

here. 

Chapter 2 covers most of the preliminaries which are required to understand the con-

tent of the thesis. We have given the literature review of the topics discussed in this chapter 

at appropriate places. Section 2.2 discusses some basic and known results of algebraic codes 

over finite fields including RT metric. In Section 2.3, we discuss some local rings and their 

properties. In particular, basic properties of Galois rings are discussed. We also briefly 

discuss linear and cyclic codes over Z4. 

In Chapter 3, Section 3.2, we introduce the ring 4+vZ4, v2  = v and define a Gray map. 

Section 3.3 discusses the study of linear codes over Z + v7.Z4. MacWillaims type identities 
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for codes over Z4  + vZ4, with respect to Lee and Gray metrics, are obtained in Section 3.4, 

and with respect to RT metric, are obtained in Section 3.5. Some characterizations of self-

dual codes over Z4  + vZ4  are provided. Some constructions of self-dual and self-orthogonal. 

codes over Z4  + v7Z4  are given in Section 3.6. 

Chapter 4 covers codes over the ring Z4  + wZ4, w2  = 2w. Section 4.2 introduces the 

ring and studies linear codes over the same. Some characterizations of self-dual codes over 

Z4  +wZ4  are provided in Section 4.3. A new construction method for constructing self-dual 

codes over Z4  + wZ4  is presented. Also, circulant self-dual codes are briefly discussed. In 

Section 4.4, Type II codes over Z. + wZ4  are briefly discussed. 

In Chapter 5, we introduce the ring Z4+uZ4  and codes over it in Section 5.2. In Section 

5.3, we describe the Galois ring extension of Z4  + uZ4  and provide its ideal structure. In 

Section 5.4, we first consider cyclic codes of odd lengths and obtain their structure through 

the factorization of - 1, n an odd integer, over Z4  + uZ4. Next, the general form of the 

generators of cyclic codes of arbitrary lengths over Z4  + uZ4  is provided and the complete 

ideal structure of is obtained. In Section 5.5, a minimal spanning set for cyclic 

codes of arbitrary length over Z4  +uZ4  is obtained and formula for their ranks is determined. 

Also, we provide a necessary condition and a sufficient condition for principally generated 

cyclic codes to be free modules over Z4  + uZ4. 

Chapter 6 presents a study of negacyclic codes of both odd lengths and even lengths 

over Z4  + uZ4, u2  = 0. In Section 6.2, we discuss negacyclic codes of odd lengths over 

Z4  + nZ4  and thier properties. We classify negacyclic codes of length 2" over Z4  + nZ4  and 

derive a mass formula for the total number of negacyclic codes of length 2 k  over Z4  + u7Z4  

in Section 6.4. Further, in Section 6.5, we generalize the study of negacyclic codes of length 

2k  to negacyclic codes of any even length over Z4  + u7Z4. 

In Chapter 7 Section 7.2, we obtain the duals of negacyclic codes of length 2' over 

Z4  + uZ4, u2  = 0, and classify all negacyclic codes C of length 2k  over 7L4  + uZ4  satisfying 

C C A(C) and C = A(C), where A(C) is the annihilator of C. Section 7.3 presents a 

mass formula for the number of negacyclic codes C of length 2' over Z4  + u7Z4  satisfying 

C = A(C). In Section 7.4, we present some new Z4-linear codes which are obtained as the 

Gray images of negacyclic codes of length over Z4  + uZ4  by a computer search using 
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Magma Computational Algebra System. 

Finally in Chapter 8, we conclude the results, and give some suggestions and directions 

for further research on the families of codes studied in this thesis. 
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Chapter 2 

Basic Concepts 

2.1 Block Codes 

Coding Theory deals with the problem of detecting and correcting errors caused by noise 

during transmission of information through a communication channel (or a date storage 

device). A typical communication system may be represented by the block diagram shown 

• in Figure 2.1. 

Consider a scenario that some information is to be transmitted from a source (Si) to 

a sink (82) through a communication channel. In coding theory, we are not concerned 

about the source encoding. So we ignore the concerns of source coding, or in other, words 

presume that the information to be transmitted is already source coded. We are also not 

concerned about the modulation and demodulation in the construction of error correcting 

codes. Therefore the above communication system can be put in the form shown in Figure 

Information source (S1) I- Source encoder —s'j Channel encoder Modulator 

Channel -4--- Noise 

Information sink (S2) I-I Source decoder -1 Channel decoder Demodulator 

Figure 2.1: Block diagram of a communication system. 

13 
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Source Encoder 

Message 1 X E AIC r TCod 1 C E C 

Ak I 

Channel 
eA I 

i Noise 

I E I 
Estimaec 

stimated
] I codeword 

message iEAk [_ J c+eEATh 
Sink Decoder 

Figure 2.2: Schematic diagram of a communication system. 

2.2. 

We consider the information transmitted through the channel as a sequence of symbols 

from some finite alphabet A. Two structurally different codes that are commonly used 

for this purpose are block codes and convolutional codes. In this thesis we consider only 

block codes. To transmit the data through a communication channel using block codes, the 

information sequence is chopped into blocks of length k. These blocks of length k are called 

the message blocks. These message blocks are thus the elements of Ak. If these messages 

blocks are directly transmitted through the noisy channel, it is impossible to determine 

whether the information received is error free. So the basic idea for error correction is to 

add some extra symbols to the message blocks so that even if the information is corrupted 

during transmission, the message is still be recovered. Thus redundancy is added to each 

message block so that its length becomes n > k. These new blocks of length n are called 

codewords, and the set of all such codewords is called a block code. Thus a block code C of 

length n is a subset of A. The redundancy is added to message blocks based on proper 

rules and this process is called encoding, which is a bijective function from Av to C. We 

make another assumption that the codeword transmitted through the channel at a given 

point of time depends only upon the current message but not on the codewords previously 

transmitted. We say that an error has occurred during the transmission, if a codeword 

c E C is transmitted and a word x E A is received, and x c. To correct the errors, it 

is assumed that errors at a fewer coordinate positions of a codeword are more likely than 
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errors at a large number of coordinate positions. A distance function d(.,.), called the 

Hamming distance, is defined on AIZ, to find the error correcting capability of a code. 

Definition 2.1.1. The Hamming distance d(x, y) between any two words x = (x1, x2,.. . , x,) 

and y = (yl, Y2,. . . , y) of A' is defined to be the number of coordinate positions at which 

x and y differ, i.e., 

d(x,y)={i : 

It is easy to see that d is a metric on A. The minimum Hamming distance dH(C) of a 

code C is the smallest distance between any two of its distinct codewords, i.e., 

dH(C)= min{d(x,y) x,yEC,x/zy}. 

If a code has minimum distance dH then it can detect up to dH  - 1 errors or correct up 

to errors. 

Another important parameter of a code is the Hamming weight. 

Definition 2.1.2. The Hamming weight wt(e) of a codeword c = (e0, c1,. . . , c i) e C is 

the number of its nonzero coordinates, i.e., 

wt(c)=I{i : 

The minimum Hamming weight of a code is the smallest weight of its nonzero codewords. 

WtH(C) = min{wt(c) : 0 54 c E C} 

For x, y E Atm, d(x, y) = wt(x 
- 

y). The rate of code C is defined as 10911 10
.  For a good 

error correcting capability of a code, it needs to have a large minimum distance, and for the 

efficient transmission of information, the code should contain a large number of codewords. 

Hence for effective communication, the code C should have as large a cardinality as possible 

and minimum distance as large as possible. These are two conflicting aims. This leads us 

to the fundamental question of coding theory "What is the largest subset of An such that 

any two of its elements are at least dH  apart ?" 
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2.2 Codes over Finite Fields 

2.2.1 Linear Codes 

In classical coding theory, codes have been studied over finite fields. In fact, in most of the 

communication systems binary codes are being used. Block codes are mainly of two types, 

linear and non-linear. Though in some cases there are better non-linear codes than linear 

codes of same lengths, linear codes are used mostly in practice, because it is difficult to say 

much about the structure of a non-linear code, and linear codes are efficient to implement 

in practice. The well known codes such as Hamming codes, BCH codes, Reed Solomon 

codes, Reed Muller codes, Golay codes etc., are linear codes. 

Let lFq, q = ptm, p a prime and m a positive integer, be a finite field. A linear code C 

of length n over F. is a linear subspace of 1F. If the ]Fq-dimension of C is k, then we say 

that C is an [n, k] linear code over lFq. If an [n, k] linear code has minimum distance d, then 

we say that C is an [n, k, d] linear code. The rate of an [n, k] linear code is k/n. For linear 

codes, the minimum weight and the minimum distance coincide. So, it is relatively easy to 

find the minimum distance of the code. This is one great advantages of using linear codes. 

From linear algebra it is well known that any linear subspace of a finite dimensional 

space is completely determined by its basis. So any linear code of length n over Fq  can 

be completely determined by its basis. A k x n matrix G, whose rows form a basis for 

C is called a generator matrix of C. A message block i Fk can be encoded into the 

corresponding codeword c E F n as 

c = 

A set of coordinate positions corresponding to any k linearly independent columns of 

C is called an information set. A linear code may have more than one generator matrix. 

However, if the first k coordinate positions form an information set, then the linear code 

C has a unique generator matrix G of the form C = [Ik A], where 'k  is a k x k identity 

matrix and A is a k x (n - k) matrix, i.e., the first k columns of C are linearly independent. 

Such a generator matrix is said to be in standard form. 

For any two elements x = (x1, x2,.. . , x) and y = (yi, Y2,. .. ,y) of IF, we define 
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- 
natural inner product x y as, 

X 

= 

 Xiyi 

Two elements x, y of lFq  are said to be orthogonal if x y = 0. If C is an [n, k] linear code 

over Fq, then the set of all vectors of IF n  which are orthogonal to every codeword of C is 

called the dual of C and is denoted by C', i.e., 

C'={xelF x.c=0, VcEC} 

We know from linear algebra that C' is a subspace of Fn  of dimension n - k. Thus, C' is 

an [n, ii - k] linear code over Fq. A generator matrix H of C' is called a parity check matrix 

of C. Then it follows that GHT = 0, where HT is the transpose of H. If the generator 

matrix C of C is in standard form G = [1k , A], then it easy to deduce that H = [AT, in-k]. 

A linear code C of length n over Fq  can also be described completely by its parity check 

- matrix H, i.e., 

C = {c E 1F HcT 0} 

This leads to an important theorem given below. 

Theorem 2.2.1. [61] Let C be a linear code with parity check matrix H. Then C has 

minimum distance d if and only if every d - 1 columns of H are linearly independent. 

Further, if C C C', then C is called a self-orthogonal code, and if C = C', then C is 

called a self-dual code. If C is a self-dual code of length n, then n must be even and the 

dimension of C is 2  . 

2.2.2 MacWilliams Identity 

MacWilliams identity is one of the most celebrated results in coding theory, which shows 

that, for a given code, how to get the weight distribution of its dual. Let C be a code of 

length n over Fq, and let A2  be the number of codewords of weight i. Then, the list A2  is 

called the weight distribution or weight spectrum of C. Weight distribution of a code gives 
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useful insights about the structure of the code. We call the polynomial 

W(x, y) 

the weight enumerator of C. This can also be written as 

Wc(x, ) = E 
n_wt(c)wt(c) 

cEC 

Theorem 2.2.2. /81, Theorem 13)[Mac Williams identity] 

Wi(x,y)=Wc(x+(q—l)y,x—y). 

2.2.3 Rosenbloom-Tsfasman Metric 

In the classical coding scheme, codes are investigated with respect to the Hamming metric 

[81]. This metric is well suited for channels in which channel noise generates equiprobable 

errors. However, not all real world channels are of that nature, especially when the possible 

errors form patterns of a specific shape. In such situations, a non-Hamming metric, called 

Rosenbloom-Tsfasman (RT) metric, also known as p-metric, is more appropriate, and is a 

generalization of the classical Hamming metric [82,104,116]. 

In the context of coding theory, the p-metric was first introduced by Rosenbloom and 

Tsfasman [104]. In the context of the theory of uniform distributions, this metric was 

introduced by Martin and Stinson [82] and by Skriganov [115, 116]. We refer to [116] for 

further discussion on this topic. 

The Rosenbloom-Tsfasmann (RT) metric is defined as follows: 

Let M3 (lFq) denote the set of all matrices of order n x s over JFq. For any x = 

(x1) x2,...,x3) EMixs(]Fq)=F. Define 

WN(X) = 

{m{i I x 0,1 <i <s} if x 0 
(2.2.1) 

0 if X = 0. 
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The RT-distance or p-distance between x = (x1 , x2,... , x8), y = (yi, Y2,• . . , y8) e F1 is 

defined as dN(x, y) = WN(X 
- 

y). If X = [X1,X2,. . . ,X]T E Mnx5(]Fq) ( F>), where 

X3  = (x 1)  x321  . . . , x33) e Fs denotes the jth  row of X, then the RT-weight and RT-distance 

in M8 (JFq) are defined respectively, as 

WN(X) = wN(X) (2.2.2) 

dN(X, Y) = wN(X - Y), V X, Y E Mnxs(Fq). (2.2.3) 

One can easily check that dN is a metric on Mnxs(IB'q). For s = 1, the RT metric is just 

the Hamming metric. 

101 
Example 2.2.3. Let X = E Mnxs(lFq). Then wN(P) = wN((1, 0, 1)) + 

200 

WN((2, 0, 0)) = 3 + 1 = 4. If Y = (1, 2)T  and wN(Y) = 2 = WH(Y). 

The minimum RT-weight wN(C) and minimum RT-distance dN(C) of a code C are 

defined as follows: 

WN(C) = min{wN (X) I XE C, X 74  01 
(224) 

dN(C)=min{dN(X, Y)IX,YEC, X74Y}. 

It is easy to see that 

WH(X) <w(X) <s x wH(X) (2.2.5) 

MacWilliams Duality and Weight Enumerators in RT-metric 

For a given linear code C c Mnxs(lFq), the following set of non-negative integers 

Wr(C) = I {X E C : wN(X) = r} , 0 < r <ns (2.2.6) 

is called the p-weight (or RT-weight) spectrum of the code C. The p-weight enumerator of 

C is defined as 
ns 

Wc(z)= WT (C)zr=zwN(x). (2.2.7) 
r=O XEC 
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Now we introduce an inner product on Mnxs(lFq). First, let n = 1, and x = 

(x1, x2,.. . , x8) and y = (yi, Y2, . ,Ys) in Mi xs(IB'q). Then the inner product of x, y is 

S 

(x, y) = (y, x) = XjYs_j+1. (2.2.8) 
i= 1 

Now let X = (X1, X2,. . . , and Y = (Y1, Y2,. . . , YTh ) be two elements of Mnxs(]Fq), 

E Mi xs (]Fq), 1 < i <n. Then we define 

(X, Y) = (Y, X) = Y. (2.2.9) 

Note that the inner product defined above is different from the usual inner product defined 

earlier. The choice of this inner product is due to the following reasons. First, it leads 

to the MacWilliams identities given in [50, Theorems 3.1 and 3.2], secondly, it was shown 

in [116, Theorem 4.1] that if C is a linear MDS code with respect to the RT-metric, then 

C' (given by this inner product) is also an MDS code. In general, this theorem fails for 

other choices of inner products. For a given linear code C E Mnxs(lFq), its dual code 

C' E Mnxs(lFq ) is defined by 

C' = {Y E Mnxa (1Fq ) : (Y, X) = 0 for all X E C}. (2.2.10) 

It is obvious that C' is also a linear code, and (C')' = C. 

It is worth noting here that the duals of two codes C1, C2  may have different p-weight 

enumerators even if the p-weight enumerators of C1, C2  are same. This is not the case 

with Hamming weight enumerator. For example, consider two linear codes C1  and C2  in 

M8 (IF2) 

1 (0  
C1 

( \ 

o 

  

 
o\ 
 ,

and C2  =
i

. 

 (o   o)  (o  o) 
(2.2.11) 

0 0

\ 1'

1 0 0 0 0 1 
 

 J 
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Both codes have p-weight enumerator 

Wc1 (z) = We2(z) = 1 + z2. (2.2.12) 

The dual codes C -  and C' of C1, C2  are 

Ito o\ to i\ (1 A (1 A to i\ (1 o\ to o\ ti o\ 1 
, , , 

OO 01 11 \01 11 , OO  10 10 

and 

lb o\ ti o\ to to o\ ti (1 o'\ to ti 1 
C' ) I 

1) 1) 1) 
2 j ,  , , , ,  , 

001 00 00 01 00 01 01 01 

respectively. The p-weight enumerators for C1' and C2' turn out to be different: 

Wci(z) = 1+4z4 +2z+z2  
1 (2.2.13) 

W±(z) = 1+2z4+z3+3z2 +z 

Thus, we observe that the p-weight enumerators (2.2.12) and (2.2.13) cannot be related 

by a MacWilliams type identity. 

Dougherty and Skriganov [50] have identified this problem and mentioned the need to 

search for more adequate definition for weight enumerators in this setting. The problem 

has been resolved by them by considering orbits of a linear group preserving the p-weight 

(which is a method actually proposed by Skriganov in [115, Section 4.4]). 

Siap [111] addressed the same problem by defining the complete weight enumerator, 

which preserves the order of the entries of the matrices. We have used the same approach 

to derive MacWilliams type identity over Z4  + v7Z4, v2  = v in Chapter 3. 
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2.2.4 Cyclic Codes 

A linear code C of length n over JFq  is called a cyclic code if every left/right cyclic shift of 

every codeword of C is again a codeword in C, i.e., 

(co, ci, . . . , c,_i) E C 
,' 

(-i, CO3... , cfl_2) e C, V (co, ci, . . . , ca_i) E C 

To get an algebraic description, we associate to each codeword c = (c0, c1)  . . . , c,_ j) E C 

a polynomial c(x) = CO + c1x + + cix e Th'q [xJ. For codewords in C, we use both 

polynomial and vector notations interchangeably. Then the cyclic shift of c E C corresponds 

to xc(x) (mod xm - 1). This implies that a(x)c(x) e C for any a(x) E Fq [x]. In polynomial 

presentation, the cyclic code C is an ideal of the quotient ring Rn  = IF  q The elements of 

R are residue classes a(x)+(x-1), a(x) E Fq [xj, deg a(x) <n. For convenience, we simply 

write a(x) for the residue class a(x) + - 1) throughout this thesis. & is a principal ideal 

domain. Therefore, a cyclic code C of length n over lFq  is a principal ideal of R. Thus there 

exists a unique monic polynomial g(x) of smallest degree in C 0 such that C = (g(x)), and 

such a g(x) is called the generator polynomial of C. If g(x) = 90+91x+92x2 + . 

0, then C has dimension k and the set {g(x),xg(x), . . . ,xg(x)} is a basis for C. 

Hence, a generator matrix for C is given by 

90  gi g ... gn-k 0 g(x) 

= 
0 go  gi gn-k-1 xg(x) 

0 go ga-k 

It is easy to show, by the division algorithm, that g(x) divides xm - 1. Therefore, the 

study of cyclic codes of length ii over Fq  depends on the factorization of Xn - 1 over IFq. 

The polynomial Xn - 1 can have either repeated irreducible factors or distinct irreducible 

factors. In the literature, much attention has been given to the latter case, as they often 

produce codes with better parameters. 
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Distinct roots cyclic codes 

In this section, we consider the code length m to be relatively prime to q. It is well known 

that - 1 has distinct irreducible factors if and only if (n, q) = 1. We assume that 

(n, q) = 1 in the rest of this subsection. 

Since g(x) is a divisor of x - 1, there exist a monic polynomial h(x) E Fq [x] of degree 

k such that x - 1 = g(x)h(x). Then, g(x)h(x) = 0 in R. It follows immediately that 

c(x) E C if and only if c(x)h(x) = 0 in R. Hence C can be determined simply by the 

polynomial h(x). h(x) is called the check polynomial of C. The reciprocal polynomial 

h*(x) = x'h(x 1) of h(x) is a generator polynomial of the dual code C'. A generator 

matrix for C', and hence a parity check matrix for C, is given by 

hk hk-1 hk-2 •.. ho  0 

0 hk hk-1 . . . hi  h0  
H = 

0 hk hO 

If af - 1 has t distinct irreducible factors over lFq, then there are 2 cyclic codes of length 

m over Fq. Since the generator polynomial g(x) of a cyclic code C of length ii over IFq  is 

a factor of - 1, C can be specified by requiring that all polynomials (codewords) in C 

have certain nth roots of unity as zeros. Since (n, q) = 1, there exists a smallest extension 

field lFqm of lFq, which contains a primitive nth root of unity a. If M3(x) is the minimal 

polynomial of the nth root of unity a8, then all the roots of M8(x) are cxi, i E C8 , where C3  

is the q-cyclotomic coset mod n containing s. A q-cyclotomic coset modulo ii containing 

s is a set defined as {s,qs,q2s,. . . ,q's}, where s q1s (mod n). Thus, the roots of any 

factor of x - 1 are contained in a union of q-cyclotomic cosets modulo n. Let g(x) has 

roots {a, i e T}, where T is a union of q-cyclotomic cosets modulo ri. Then 

g(x) = lcm ET (M(x)) 
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and C can be described as 

C = {a(x) e R a(a) = 0, i E T}. 

T is called the defining set of C, and the nth roots of unity {&, I i E T}, are called the 

zeros of C. 

Theorem 2.2.4 (BCH Bound). If c is a primitive nth root of unity and the generator 

polynomial g(x) of a cyclic code C of length n over IFq  has the a - 1 consecutive powers 

b
, 

b+1
, 
 . . . , b+ö2 of c among its roots, then dH(C) > 6 . 

Repeated root cyclic codes 

Let C be a cyclic code of length n over lFq. Assume that n is not relatively prime to q, 

i.e., (n,q) 1. Then, for some odd integer m, (x - 1)Pkm 
= (Xm - 1). So the generator 

polynomial of C will have repeated roots. Such codes are known as repeated root cyclic 

codes. Repeated root cyclic codes were first considered by Berman [16] in 1967 and then 

by Massey et. a! [87], Falkner et. al [51], and Roth and Seroussi [105]. The concatenated 

construction of repeated root cyclic codes over finite fields was proved by Castangoli et. 

a! [33] and Van Lint [128] independently in 1990. They also proved that the Fepeated root 

cyclic codes are asymptotically bad. However, they are optimal in some cases, and they 

use low complexity decoding algorithms. This motivated researchers to further investigate 

this class of codes (see [122] and [142] for more information). Recently, Dinh [41] has given 

the structure of cyclic codes of length p8  over lFq  and also determined the Hamming weight 

distribution of such codes. Repeated root cyclic codes of different lengths such as 1p8, pflq, 

etc., have also been studied [12,44,109]. 

Theorem 2.2.5. [41, Theorem 6.] q-ary cyclic codes of length p8  are precisely the ideals 

((x - i)i), i = 0, 1,... ,p8, of the ring FJ1•  If the cyclic code C = ((x - i)) has q(P8 ) 

codewords, then the dual of C is C' = ((x - l)PS_i), which contains q2  codewords. 

Theorem 2.2.6. /41, Theorem 6.J A q-ary cyclic code ((x - l)i) of length p8  over lFq  is 

self-orthogonal if and only if e < i < p8 . A self-dual q-ary cyclic code of length p8  over IF 
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exists if and only if p = 2. The only self-dual 2tm -ary cyclic code of length 2 over F2m is 

((x - 1)28_1). 

Theorem 2.2.7. /41, Theorem 6.21  If C = ((x - i)i) is a q-ary cyclic code of length p3  

over Fq,  then the Hamming distance d jq(C) is determined by 

1, ifi=O, 

/3+2, 

dH(C) = (t + i)pc, if p3 - ps_k + (t - i)ps_k_i + 1 < i < p3 - sk + tp8_c_1, 

where 0 < t _<p — 1,0 < k < s—i, 

0, ifi=p3. 

2.2.5 Constacyclic Codes 

Constacyclic codes are one of the important generalizations of cyclic codes. They were 

introduced by Berlekamp in [14], and have been studied in [ii, 62,65,66, 109] , to mention 

a few. 

In this section, we briefly describe constacyclic codes over finite fields. Let A be a 

non-zero element of IFq. We define a operator T) on 1F as 

TA(vo,vl ,...,v fl_ 1) = (Av_i,vo,...,v_2), 

where (vo, Vi,. . . , v,_i) E 1F. The operator TA is called A-constacyclic shift. A linear code 

C of length n over Fq  is said to be a A-constacyclic code if for every (co , c1,. . . , c_) E C, 

the vector (Ac_1, c0,. . . , cfl_2) is also in C. In other words, TA(C) = C. For A = 1, a 

A-costacyclic code is simply a cyclic code and for A = —1, it is a negacyclic code. 

In polynomial description, a A-constacyclic code of length n over Fq  is an ideal of 

The residue class ring is a principal ideal ring and hence a A-constacyclic code of 

length n over Fq  is a principal ideal of The other things are similar to the cyclic 

code case. 
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2.3 Codes over rings 

All the rings considered in this thesis are finite commutative rings with identity. 

Let R be a finite commutative ring with identity. A linear code C of length n over R 

is a R-submodule of the R-module R. Such a submodule need not be an R-free module. 

However, there exists a minimal set of generators for C over R, known as minimal spanning 

set for C. A matrix C whose rows form a minimal spanning set of C is called a generator 

matrix for C. Since C is in general not free, the rows of C may not be linearly independent 

over R. The minimum number of generators of C is called the rank of C and is denoted by 

rank (C). The free rank of C is maximum of the ranks of R-free submodules of C. 

The Hamming weight and Hamming distance in R' are defined similarly as in the 

case of finite fields. The usual inner product of two elements u = (ui)  u21 ... , and 

v = (vi , v2,. . . , v,) of R is defined by 

U V 

= 

UV 

where the multiplication is performed using the multiplication operation of R. The dual 

(strictly speaking, the annihilator) of a linear code C of length n over R is defined by 

C'={vER'l u.v=O,VuEC}. 

As usual, C is called self-orthogonal if C c C' and self-dual if C = C'. One important point 

to be noted here is that there does not exist any self-dual code of odd length over Fq, but 

the same is not true over rings. For example, the linear code C of length 1 generated by 2 

over Z4, i.e., C = (2) is a self-dual code over Z4, as 2 E C' and JCJ = 2 = IC-'-!. 

The notion of cyclic and constacyclic codes discussed earlier over finite fields can be 

generalized to R. Thus, a linear code C over R is called a cyclic code if it is closed under 

the cyclic shifts of codewords. In polynomial representation, cyclic codes of length ii over 

R are precisely the ideals of the residue class ring . The factorization of x' - 1 plays 

a vital role in studying cyclic codes over finite rings, as it does in the case of finite fields. 
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2.3.1 Local rings 

Let R be a finite commutative ring with identity. An ideal of R is called a maximal ideal if 

it is not contained in any proper ideal of R. The intersection of all maximal ideals of R is 

called the radical of R and is denoted by Rad (R). 

Definition 2.3.1. A commutative ring with identity R is called a local ring if it has unique 

maximal ideal. 

Equivalently, R is called a local ring if R/Rad(R) is a finite field. If R has more than 

one maximal ideal, then R is called a semi-local ring. 

Theorem 2.3.2. /88, Theorem V.11  Let R be a finite commutative rings with unity. Then 

the following are equivalent: 

R is a local ring. 

R has exactly one maximal ideal. 

The non-units of R are contained in a proper ideal of R. 

The non-units of R form an ideal of R. 

For every x E R, either x or 1 + x is a unit in R, where 1 is the unity in R. 

The maximal ideal of R contains all non-units of R. 

Definition 2.3.3. A finite commutative ring with identity is called a finite chain ring if its 

ideals form a finite chain under set theoretical inclusion. 

a b c 

For example, finite fields, Galois rings and the ring of matrices 0 a d : a, b, c, d E Zpr 

00a 
are finite chain rings. 

Theorem 2.3.4. [45, Proposition 2.1] Let R be a finite commutative ring with unity. Then 

the following are equivalent: 

1. R is a local ring and the maximal ideal M of R is principal. 
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R is a local principal ideal ring. 

R is a chain ring. 

Let R be a finite chain ring and M be its unique maximal ideal. Let 'y be a fixed 

generator of M. If t is the nilpotency index of y, then we have a chain ideals of R as 

= (t) ç (t1) C C 
... 

C (y2)  C  ('y) ç (y°) = R. 

Let R be a local ring with the unique maximal ideal M. Then the residue class ring 

is a finite field, called the residue field of R and denoted by R, i.e., R 
= j. Denote the 

projection map R - by -. The image of an element a under this map is denoted by ?i. 

The map - is extended to R[x] - R[x] in the usual way. 

Theorem 2.3.5. [45, Proposition 2.2] Let R be a finite commutative chain ring, with 

maximal idea.M = ('y), and let t be the nilpotencU ofy. Then 

For some prime p and positive integers k, I (k ~: 1), JR1 = p /C
, 
 JR1  = p1, and the 

characteristic of R andR are powers of p. 

For i = 0, 1,. . . , t, I ('y = IRIt_i. In particular, JR1 = IRIt i.e. k = It. 

Definition 2.3.6. A polynomial f(x) E R[x] is said to be a regular polynomial if f(x) is 

not a zero divisor in R[x]. 

Theorem 2.3.7. [88, Theorem XIII.2] Let f(x) = a0+a1x+a2x2+ +a_1x' E R[x]. 

1. The following are equivalent: 

f(x) is a unit, 

7(x) is a unit, 

a0  is a unit and a, . . , are nilpotent. 

2. The following are equivalent: 

(a) f(x) is a nilpotent, 
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7(x)=O, 

a0, a1,.. . , a,._i are nilpotent, 

f(x) is a zero divisor, 

there is a non-zero ce in R with af(x) = 0. 

3. The following are equivalent: 

f(x) is regular, 

(ao, a1,... , a,_) = R, 

ai  is a unit for some i, 0 <i <n - 1, 

7(x) 0. 

Thus an element f(x) = fo + f ix + . + f,.x'1  E R[x] is regular if and only if fi  is a unit 

inR for somei=O,1,...,ri, if and only if, 7(x)=70+71x+ ..+7xTh0 in R[x]. In 

particular, a monic polynomial over R is a regular polynomial as its leading coefficient is a 

unit in R. 

It is known that if 1(x) and g(x) are two non-zero polynomials over R such that 

f(x)g(x) 0, then deg f(x)g(x) deg f(x)+deg g(x). If the leading coefficient of f(x) or 

g(x) is not a zero divisor in R, then f(x)g(x) 0 and deg f(x)g(x) = deg f(x) + deg g(x). 

In particular, it holds for the monic polynomials over R. It follows from this discussion 

that a polynomial f(x) over R with its leading coefficient a non-zero divisor in R cannot 

divide a non-zero polynomial of degree smaller than deg f(x). 

Theorem 2.3.8. [88, Theorem XIII. 6] If f(x) is a regular polynomial in R/x]. Then there 

is a monic polynomial f*(x)  with 7(x) = T(x). Furthermore there is a unit v(x) in R[x] 

such that f(x) = v(x)f*(x). 

The following version of the Euclidean algorithm holds true for polynomials over finite 

- commutative local rings, which appears as an exercise (Exercise XIII.6) in [88, p. 273]. 

Theorem 2.3.9. Let f(x) and g(x) be two polynomials in R[x]. If g(x) is regular, then 

there exist polynomials q(x) and r(x) such that f(x) = g(x)q(x) + r(x), deg r(x) < deg 

g(x). 
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Proof. Since g(x) is regular, by Theorem 2.3.8 there exists a monic polynomial g*(x) E R[x] - 

such that g(x) = v(x)g*(x) , where v(x) is a unit in R[x]. 

Since g*(x) is monic, by division algorithm, there exists q(x) and r(x) in R[x] such that 

f(x) = g*(x)ql(z) + r(x), where deg r(x) <deg g*(x).  On multiplying both sides by v(x), 

we get v(x)f(x) = v(x)g*(x)q(x) + v(x)r(x), from which we get f(x) g(x)q(x) + r(x), 

where q(x) = (v(x))'q'(x). 

Since g*(x)  is monic, so deg g(x) > deg g*(x),  as deg g(x) = deg v(x)+ deg g*(x).  From 

this follows that deg r(x) < deg g(x). 

Let f(x), g(x) in R[x]. The polynomial f(x) is called a divisor of g(x) if (g(x)) c (f(x) 

and a proper divisor if (g(x)) C (f(x)). A regular polynomial f(x) is a proper divisor of 

g(x) if and only if f(x) is a divisor of g(x) and 7(x) is a proper divisor of (x). The 

polynomial f(x) is called an associate of g(x) , if there exists a unit r(x) E R[x] such 

that f(x) = r(x)g(x). A non-zero, non-unit polynomial f(x) is called irreducible if f(x) 

g(x)h(x), where g(x), h(x) e R[x], then either f(x) or g(x) is a unit in R[x]. A polynomial 

is called reducible if it is not irreducible. 

Definition 2.3.10. Two polynomials f(x), g(x) € R[x] are said to be coprime if there exist 

a(x), b(x) E R[x] such that 

a(x)f(x) + b(x)g(x) = 1 , (2.3.1) 

or equivalently, 

(f (x)) + (g(x)) = R . 

Theorem 2.3.11. If f(x) and g(x) are coprime over R if and only if 7(x) and (x) are 

coprime over R. 

The Hensel's lemma guarantees that the factorization of polynomials into product of 

pairwise coprime polynomials in [x] lift to such factorizations over R. 

Theorem 2.3.12 (Hensel's Lemma). [88, Theorem XIII.4] Let f(x) E R[x] and 7(x) = 

91(x)92(x) g,.(x), where 91(x),92(x),. . . ,gr(x) are pairwise coprime monic polynomials 

over i. Then there exist pairwise coprime monic polynomials fi (x), f2(x),. . . , f(x) over 

R such that f(x) = fi(x)f2(x) • . fr(X) in R[x] and 7(x) = gi (x), i = 1,2,... ,r. 
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The irreducible polynomials play a very important role in the study of extension fields. 

Approximately the same role is played by basic irreducible polynomials over local rings. 

Definition 2.3.13. A polynomial f(x) E R[x] is said to be basic irreducible if 7(x) is 

irreducible in R[x], and basic primitive if 7(x) is a primitive polynomial in [x]. 

Now we consider the factorization of a regular polynomial over R. 

Definition 2.3.14. A polynomial f(x) e R[x] is said to be a primary polynomial if 

f(x) I g(x)h(x), for some f(x),g(x) E R[x], implies that f(x) I g(x) or f(x) I h(x)-

for some positive integer n. 

In other words, f(x) e R[x] is primary, if the ideal (f(x)) is a primary ideal of R[x]. It 

may be recalled that an ideal I of a commutative ring R' is primary if for any ideals A, B 

of R' such that AB c I, we have A c I or Bn C I for some positive integer n [7]. 

Furthermore, if f(x) E R[x] is a primary polynomial, then 7(x) = ug(x), where g(x) 

is an irreducible polynomial in [x], u is a unit in , and n is a positive integer [88]. 

Theorem 2.3.15. /88, Theorem XIII.11]] Let 1(x) E R[x] be a regular polynomial. Then 

f(x) factorizes uniquely, up to the order of factors and multiplication by units, into pairwise 

coprime primary polynomials over R. 

It follows from the above discussion that if f(x) E R[x] is a regular polynomial such 

that 7(x) factorizes into distinct irreducible factors in [x], then 1(x) factors uniquely into 

pairwise coprime basic irreducible polynomials over R. 

Galois Rings 

Galois rings are a special case of finite commutative local rings. Let q = pT, p a prime and 

r a positive integer. To study codes over ?Zq, we very often require the extensions of 7Zq  

containing primitive nth roots of unity. Galois rings provide such extensions for 7Zq. 

In general, a Galois ring is defined as a finite commutative ring with identity 1 such 

that the set of its zero divisors together with the zero element 0 is a principal ideal (p) for 

some prime number p. 
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For any given positive integer m there exists a basic irreducible polynomial/basic primi-

tive polynomial over Zq  [131]. A Galois ring of characteristic q is isomorphic to the quotient 

ring y• So one can define a Galois ring as follows: 

Definition 2.3.16. If f(x) E Zq [x] is a monic basic irreducible polynomial of degree m, 

then the Galois ring of degree m over Zq  is the residue class ring GR(q, m) =  Zqlxl  

Zq  is a subring of the Galois ring GR(q, m). GR(q, m) has characteristic q = pT and 

the cardinality qm. We have, GR(q, 1) = Zq  and GR(p, m) = the finite field of 

characteristic p with ptm elements. (p),  0 < i < r are ideals of GR(q, m), and the ideal (p 

contains all zero divisors GR(q, m). All the ideals of GR(q, in) form a chain under the set 

theoretical inclusion. Therefore GR(q, in) is a local ring with the maximal ideal (p) (in fact, 

GR(q, m) is a chain ring). The residue field of GR(q, m) is GR(q, m)/pGR(q, in) = lFm. If 

is a root of f(x), then GR(q, m) = Zq[]. Each element of c E GR(q, m) can uniquely be 

expressed as 

c = a0  + a1  + a2 2  + + am_lm_l, 

which is called the additive representation of the elements of GR(q, in). It is easy to see 

that {1, , 
2
,•  , m_1} generates GR(q, m) over Zq . Thus GR(q, in) is a free module of 

rank m. 

Fom [131, Theorem 13.91, there exists a primitive polynomial of degree m dividing 

- 1 over 7Zq . is called a primitive root if it is a root of a unique monic basic primitive 

polynomial of degree m over Zq  and dividing '"' —1 in Zq [x]. Let T = {0, 1,  

Then each element x E GR(q, m) can uniquely be expressed as 

a0 + aip + ... + ar_lpr_l 

where a0, a1, .. . ,ar_l  E T. This representation is called the p-adic representation of the 

elements of GR(q, in). An element c = a0  + a1p +... + ar _lpT_l  is a unit in GR(q, m) if 

and only if a0  =A 0. The set of all invertible elements of GR(q, m) forms a cyclic group of 

order (ptm 
- l)pm,  which is a direct product of (a) and e, where (a) is a cyclic group of 

order (ptm - 1) and c = 11 +pb: b E T}. The map - gives a bijection from T to the residue 
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- field Fr.. Under this representation of the elements of GR(q, m), the Frobenius map on 

is defined by 

C1 + a2 p + ... + ajpr_l a  

f is an automorphism of GR(q, m) that fixes ZLq  and generates the group of automorphisms 

of GR(q, m), which is a cyclic group of order m. 

Example 2.3.17. The polynomial f(x) = x4  + 4x3  + 6x2  + 3x + 1 is a basic irreducible 

polynomial over Z8  as 7(x) = x4  + x + 1 is an irreducible polynomial in 1F2[x]. Then the 

Galois extension GR(8, 4) of Z8  of degree 4 is the residue class ring The elements of 

GR(8, 4) can uniquely be expressed as 

a0  + a1 + a2e + a3  

where a0,a1,a2,a3  E 4, is a root of f(x). 

Since 7(x) is a primitive polynomial in IF2[x], f(x) is a basic primitive polynomial in 

Zs[x]. So is a primitive root. Let T = {O, . Therefore each element of 

CR(8,4) can uniquely be expressed as 

c=b0 +2b1 +4b2 +8b3  

where b0,b1,b2,b3  eT. 

Theorem 2.3.18. [31, 130] Let q = pr, where r is a positive integer and (n, q) = 1. Let 

g(x) be a divisor of XTh 
- 1 over F. Then there exists a unique monic polynomial f(x) in 

7Lq [x] such that 7(x) = g(x) and f(x) I (xm - 1) in Zq [x]. 

The monic polynomial f(x) in Theorem 2.3.18 is called the Hensel lift of the polynomial 

g(x) to ?Zq. 

For an odd positive integer n, the Hensel lift of an irreducible polynomial f2(x) E Z2[x] 

dividing x' - 1 to Z4  [x] can be obtained by the Graeffe's method [58,129],  described below. 

Let f2(x) = e(x)+o(x) , where e(x) contains only the even powers of x and o(x) contains only 

the odd powers of x. Then f(x) is obtained from the relation f(x2) = ± (e(x)2  - o(x)2), 
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where the sign + is chosen in such a way that the coefficient of the highest power of x is 1. 

This is illustrated by the following example. 

Example 2.3.19. The polynomialg(x) = x3+x+1 is an irreducible factor of x7 -1 over IF2 . 

Forg(x), we have, e(x) = 1 ando(x) = x3+x. Therefore, if f(x) is the Hensel lift of g(x) to 

Z4[x], then f(x2) = ((x3  + x)2  - (1)2) = x6 +2z4+x2 -1, and hence f(x) = x3 +2x2 +x-1. 

f(x) is a divisor of x7  - 1 in 7Z4 [x]. 

More about Galois rings can be found in [34,88, 100, 131]. 

2.3.2 Codes over 

Blake [23] initiated the study of codes over finite rings in early seventies, followed by the 

works of Speigel [119, 120] and Priti Shankar [107]. However, the study of codes over rings 

mainly got attention of researchers after the breakthrough paper of Hammons et al. [58] 

in 1994. There are many families of non-linear binary codes such as Kerdock, Preparata, 

Goethals, and Delsarte Goethals codes that have many more codewords than any known 

binary linear code of same length and minimum distance. Also, the Kerdock codes and the 

Preparata codes behave as duals of each other, just like linear codes. More precisely, the 

MacWilliams transform of the weight enumerator of one is the weight enumerator of the 

other. This mystery remained unsolved for several years until it was proved by Hammons et 

al. [58] that Kerdock, Preparata, Goethals, and Delsarte Goethals codes are in fact binary 

images of certain linear codes over Z4  under a map, called the Cray map, and Kerdock 

and Preparata codes (strictly speaking, a variant of Preparata codes [58]) are duals of each 

other as Z4  linear (cyclic) codes. The cyclic nature of Kerdock codes had already been 

shown by Nechaev [89]. In recent years, there has been a lot of investigation of codes over 

Z4  and many good binary codes have been obtained from codes over Z4  via the Gray map. 

Codes over Z4, also called the quaternary codes, are the most studied codes over finite rings. 

A linear code of length n over ?Z4  is a Z4-submodule of Z. In particular, it is an additive 

subgroup of Z'. A generator matrix of a non-zero linear code C over Z4  is permutation- 
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- 
equivalent to a matrix of the form 

(lkj  A B 

0 2I 2  2C) 

where 'ki  and 'k2  are identity matrices of orders k1  and k2, respectively, A and C are 

matrices, and B is a Z4  matrix. C is an elementary abelian group of type 4k12k2,  containing 

22k1+k2 codewords, and it is called a code of type 41c12k2  Further C is a free Z4-module if 

and only if k2  = 0. The dual code C' of C has the generator matrix 

/ _BT - CTAT CT 'n—k—k2 

2A T 21k2 0 ) 

where AT  denote the transpose of the matrix A. Further, C' has the type 4n—k1221c2 

[58, 129]. 

- For codes over Z4, several distance functions have been used. Lee and Euclidean dis- 

tances are most important among them. The Lee weight of an element a E Z4  is defined 

- by 

wtL(a) = min{a, (4 - a)}. 

Thus, the Lee weight of the elements 0, 1, 2 and 3 of Z4  are 0, 1, 2 and 1, respectively. 

One of the main reasons for using Lee weight over Z4  is that, when Z4-codes are used 

in communication, the elements 0, 1, 2 and 3 are used to represent the signal points i0  = 1, 

il 
= i, i2  = —1 and i3  = —i, respectively (as shown in Figure 2.3). The distance between 

a, b E Z4  is then defined as the half of the Euclidean distance between j' and i6, i.e., 

dL(a, b) = d(ia, b) 

The Lee weight of an element a = (a1, a2,. . . , a) E Z is defined by 

wtL(a) = wtL(a). 
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= 

Figure 2.3: Representation of Signals as elements of 7L4  

The Euclidean weight of an element a E Z4  is defined by 

wtE(a) = min{a2, (in - a)2}. 

The Euclidean weight of the elements 0, 1, 2 and 3 of Z4  are 0, 1, 4 and 1, respectively. 

The Euclidean weight of an element a = (a1, a2,. . , a) E Z is defined by 

wtE(a) = wtE(a). 

The Lee and Euclidean distances between two words x, y E are defined, respectively, 

dL(x, y)WtL(x - y) 

dE(x,y) = WtE(Xy). 

We can also see that WtL(X) = ni(x)+2n2(x)+n3(x) and WtE(X) = ni(x)+4n2 (x)-i-n3(x), 

where n(x) is the number of i's in x for i = 1, 2, 3. 

The Lee weight enumerator and Euclidean weight enumerator of a Z4-code C of length 

n are defined as 

Leec(X, Y) = X 2 wt)Ywt1(c) 
cEC 

by 

and 
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and 

E(X, Y) 
= 

X4n_wt(c)YutL(c),  

cEC 

respectively. 

Using these facts one can derive the MacWilliams identities for both Lee and Euclidean 

weight enumerators of a linear code C over Z4, and are given in the following theorem. 

Theorem 2.3.20. [129, Theorem 2.] Let C be a Z4-linear code of length n. Then 

Leeci = Leec(X + 1', X - Y) 

and 

EEc(X+Y, X — Y) 

Now we introduce an important map, called the Gray map, which establishes a relation 

- betwcn Quaternary codes and binary codes. This map opened doors to a new direction 

of research in coding theory. The map was introduced in the context of coding theory by 

- Hammons et al. [58]. In communication systems employing quadrature phase-shift keying, 

the preferred assignment of two bits to the four possible phases is the one shown in Figure 

2.4. In which adjacent phases differ by only one binary digit and the correspondence given 

as the following map: 

Definition 2.3.21. The map O : - Z defined by 0(a+2b) = (b, a+b), where a, b E Z2, 

is called the Gray map, i.e., 

0(0) = (0,0) 

(1) = (0,1) 

0(2) = (1,1) 

1(3) = (1,0). 

This map is then extended componentwise toq : -* Z. The map 7P is not a linear 

map, as (1, 1) = ib(2) I'(1) + (1) = (0,0). Therefore is also not a linear map. 0 is a 
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1 -* 01 

2 - 11 rSIII] 

3—* 10 

Figure 2.4: Gray amp 

distance preserving map from Z with Lee distance to Z with Hamming distance. 

Since the Gray map 0 is not a linear map, the Gray image C = (C) of a quaternary 

linear code C is in general not a linear code. Therefore, (C) need not have a dual. The 

Z4-dual of C is defined by C1. = (C'). We have the following diagram which need not be 

commutative 

C C = (C) 

dual .j. 

C' --* C, = 

We have the following important results [58]: 

C and C, are distance invariant. 

2. The weight distributions of C and C, are MacWilliams transforms of each other. 

A code C is called distance invariant if the Hamming weight distribution of its translates 

c + C is the same for all c G C [81]. 

Definition 2.3.22. A self-dual Z4-code C of length n is called a Type II code if the Eu-

clidean weight of every codeword of C is a multiple of 8. Otherwise it is called a Type I 

code 

Theorem 2.3.23. [13, Proposition 3.4] A Type II code of length n over Z4  exists if and 

only if ri is divisible by 8. 

Theorem 2.3.24. [61, Theorem 12.5.1] Let dE(II) and dE(I) be the minimum Euclidean 

weights of a Type 11 code and a Type I code of length n, respectively, over Z. Then 
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dE(II) 8[] + 8 and dE(I) 8[j + 8 except when n 23 (mod 24), in which case 

dE(I) 8[] +24. 

Codes satisfying the above bounds are said to be Extrernal Type II code and Extremal 

Type I code, respectively. More about self-dual codes and Type II codes can be found 

in [61,95]. 

2.3.3 Cyclic codes over 

As we have already seen in the beginning of this section that a cyclic code C of length n over 

Z4  is an ideal of Unlike over finite fields, the ring is not a unique factorization 

domain. For example, when n = 4, x4  - 1 factorizes as x4  - 1 = (x - 1) (x - 1)(x2  + 1) = 

(x - 1)(x - 1) (x' + 2x - 1) = (x + 1)(x + 1) (x' + 2x - 1) over Z4. Also a polynomial may 

have more number of roots than its degree. For example, all elements 1+ 2a, c € GR(4, m) 

are roots of x2  - 1 over GR(4, m). Therefore one must be very careful when working on 

cyclic codes over Z4, and over rings in general. As was seen earlier, x'2  - 1 exhibits distinct 

- irreducible factors over 7Z4  only when n is odd. So throughout this subsection we assume 

that n is odd. The structure of the ideals of is well studied in [96]. A few important 

results are described below. 

Theorem 2.3.25. [96, Theorem 1] Let xm - 1 = fi(x)f2(x) ... f(x) be the unique fact or-

ization of - 1 into pairwise coprime monic basic irreducible polynomials over 7Z1. Then 

every ideal of is the sum of the ideals (j(x)) and (2f(x)) , where j(x) = 

1<i<r. 

Theorem 2.3.26. [96, Theorem 2] Suppose C is a Z4-cyclic code of odd length 

n. Then there are unique, monic polynomials f(x), g(x), and h(x) such that C = 

(f(x)h(x),2f(x)g(x)), where f(x)g(x)h(x) = x - 1, and ICI = 4deg9(x)2degh(x) Further, 

when h(x) = 1, C = (f(x)) and ICI = 4m_de9f(x); and when g(x) = 1, C 2f(x)) and 

CI = 

Corollary 2.3.27. Assume that x - 1 is the product of r basic irreducible polynomials in 

Z4  [x]. Then there are 3r  cyclic codes of length n over Z4. 
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Theorem 2.3.28. [96, Theorem 3] Let a(x) = a0  + a1x + a2x2  + + a_1x'' and 

b(x) = b0  + b1x + b2x2  +••• + b_1x'' be two polynomials in Z4[x] Then a(x)b(x) = 0 if 

and only if (ao, a1,. . . , a_) is orthogonal to (b0, b1,. . , b,,_i) and its cyclic shifts. 

Let 1 *(x) denotes the reciprocal polynomial of f(x) E Z4[x]. The following theorem 

gives duals of a cyclic codes of odd lengths over 

Theorem 2.3.29. [96, Theorem 2] Let C = (f(x)h(x), 2f(x)g(x)) be a Z4-cyclic code of 

odd length n, where 1(x), g(x), and h(x) are monic polynomials such that f(x)g(x)h(x) = 

- 1, and ICI = 4deg9(x)2de9h(x) Then C-'- = (g*(x)h*(x)2g*(x)f*(x) and IC'I 
4deg f(x)2deg h(s) Further, if h(x) = 1, then C = (f(x)) and C = (g*(x)).  If g(x) = 1, then 

C = (2f(x)) and C' = (h*(x),  2f*(x)) .  

The following theorem gives self-dual cyclic codes of odd lengths over 

Theorem 2.3.30. /97, Theorem 21  Let C = (f(x)h(x), 2f(x)g(x)) be a Z4-cyclic code of 

odd length n, where f(x), g(x), and h(x) are monic polynomials such that f(x)g(x)h(x) = 

- 1, and ICI = 4deg9(x)2de9h(x) Then C is self-dual if and only if f(x) = cg*(x) and 

h(x) = 13h*(x),  where c, /3 are units. 

Example 2.3.31. /97, Exercise 7211 The polynomial x7  - 1 factorizes into the irreducible 

polynomials x - 1, x3  + x + 1 and x3  + x2  + 1 over Z2. The Hensel lifts of these irreducible 

polynomials to Z4  are g1(x) = x —1, g2(x) = x3  + 2x2  +x - 1 and g3(x) = x3  - x2  + 2x - 1, 

respectively. Therefore there are 33  cyclic codes of length 7 over Z4. These codes, along 

with their duals, are listed in Table 2.1. 

More about cyclic codes of odd lengths over Z4  can be found in [61,95,129]. 

2.3.4 Cyclic codes of even lengths over 

When n is even, polynomials over Z4  do not factor into distinct basic irreducible polyno-

mials, and so a cyclic code of even length over Z4  is a repeated root cyclic code. Also, 

when n is even, the polynomial x" - 1 does not factorize uniquely over Z4. For example, 

x4-1 = (x-1)(x-1)(x2 +1) = (x-1)(x-1)(x2 +2x-1) = (x+1)(x+1)(x2 --2x-1) over 
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Table 2.1: Z4-cyclic codes of length 7 

Code number Generator polynomials Type Dual code 

1 92(x)93(x) 4 6 

2 91(x)92(x) 
43 4 

3 91(rr)93(x) 
43 5 

4 92(x) 44 2 

5 93(x) 44 3 

6 gi(x) 46 1 
7 2g2(x)93(x) 2 25 
8 2g2(x)gi (x) 2 3 23 
9 293(x)91(x) 2 3 24 

10 292 (x) 2 4 21 
11 293(x) 2 4 22 

12 2g1(x) 26  16 
13 2 2 7  13 (self-dual) 
14 (92(x)93(x), 292 (x)91(x)) 4.21  19 
15 (92 (x)93(x), 2g3(x)gi(x)) 4•2 3 20 
16 (92(x)93(x), 2gi r)) 4.26  12 

17 (92(x)gi(x), 292(x)93(x)) 43 2 17 (self-dual) 

18 (93(x)gi(x), 292(x)93(x)) 43 . 2 17 (self-dual) 
19 (92(x)gi(x), 293(x)91(x)) 41 -21  14 

20 (91(x)93(x), 2g2(x)g1(x)) 
43 

. 2
3 15 

21 (91(x)92(x), 2g3(x)) 43.2 4 10 

22 (91(x)93(x), 292(x)) 43 
. 2' 11 

23 (92(x), 293(x)91(x)) 44 2  3 8 

24 (93(x), 2g2(x)gi(x)) 44. 23  9 

25 (g1(x), 2g2(x)93(x) 46 
. 2 7 

26 0 40 27 

27 1 47 26 

Z4. But x4  - 1 factors uniquely over Z2  as x4  - 1 = (x - 1)(x - 1)(x - 1)(x - 1). Therefore 

the structure of irreducible factors of x - 1 over Z. is different from the factorization over 

Z2  for even n. Abualrub and Ohemke [3] have proved that cyclic codes of length 2e over 

are not principally generated. They have given a structure of such codes in [4] and 

their duals in [2]. Blackford [21] has studied cyclic codes of length 2k over Z4  using discrete 

Fourier transform. Dougherty and Ling [49] have extended the results of [21] to cyclic codes 

of arbitrary even lengths over Z4. We present few important results which are required for 

latter purpose. 

Lemma 2.3.32. [4, Lemma 5, 6, 7] Let n = 2', k > 1. Then is not a principal 
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ideal ring. Furthermore, in Z4[x] 

(x+1)=2(x+1), 

x + 1 is nilpotent of nilpotency 2' 

an element f(x) Ljj a2(x - l)i is a unit if and only if ao  is a unit in Z4. 

A polynomial f(x) = >I ax in (Xn  can uniquely be written as f(x) = >i a(x— i=O

1)2. If t is the smallest non-negative integer such that at 0, then f(x) = (x - 1)th(x), 

where h(x) G Z4[x] and deg h(z) < n - t - 1. 

Theorem 2.3.33. /, Theorem 8, 9, 10] Let I be an ideal of 'j. Then I is one of the 

following: 

1. (2(x - i), 0 < m < ii, 

((z - 1)8 + 2(x - 1)th(x)), 0 < s < n — i, where h(x) is either zero or a unit in Z4[xj  (x'-1) 

((x_1)8 +2(x_1)th(x), 2(x _1)m), 1 < s < n — i, 0 < m < min{s,n/2,n—s+t}, 

where h(x) is either zero or a unit in 

The reader is referred to [2-4, 21,49] for more details cyclic codes of even lengths over 

2.3.5 Negacyclic codes over 

Let A be a unit in Z4. We recall the definition of A-constacyclic codes. A linear code 

C of length n over Z4  is called a )-constacyclic code if for every (co , c1,. . . , c,_i) E C, 

CO, . .. , c,_) is also in C, i.e., C is closed under the A-constacyclic shifts of codewords. 

When A = —1, C is called a negacyclic code. Since A is either 1 or —1 in Z4, so A-constacyclic 

codes over Z4  are either cyclic codes or negacyclic codes over 7Z. Just as in the case of 

finite fields, negacyclic codes of length n over Z4  are precisely the ideals of the residue class 

ring  Z4 (Xl 

When n is odd, there exists an isomorphism between and So, for each 

cyclic code of odd length over Z4, there is a negacyclic code of same length over Z4. However 
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this is not the case when n is even. The structure of negacyclic codes of length 2 over 

Galois rings and their complete Hamming distances were discussed by Dinh in [39,40]. We 

present below the structure of the negacyclic codes of length 2' over Z.4, which is required 

in later chapters. 

Theorem 2.3.34. [39, Theorem 6.10] The negacyclic codes of length n = 2' over Z4  are 

precisely the ideals ((x + l)i), 0 < i < 2n, of Moreover I ((x + l)) I 
22n-i 

Theorem 2.3.35. [40, Theorem 4.4, 62, 7.2] Let dH(C), dL(C) and dE(C), respectively be 

the minimum Hamming, Lee and Euclidean distances of a negacyclic code C = ((x + l)i), 

0 < i < 2n, of length n = 2' over Z4. Then 

0, ifi=2rt 

if0in 
dH(C) = 

ifn+ 1 i<n+ 
r r+1 

2r--, ifn+ 1 +> 2k_i <i<n+ 2k_3, for some1rk-1 
j=1 j=1 

0, ifi=2n 

1, ifi=0 

dL(C)= 2, if1in 

4, ifn+ 1 i<n+ 
r r+1 

2r+2, ifn+1+ in+>2c_3, for some 1< r < k — i 
j=1 j=1 
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and 

dE(C)= 

0, ifi=2n 

ifi=0 

if1<i< 

4, if+1 in 

8, ifn+1 <i<n+ 
r r+1 

2r+3, ifn+l+E2k_i<i<n+2k_j, forsome1rk-1. 
j=1 j=1 



Chapter 3 

Codes over Z4  + vZ4  

3.1 Introduction 

The work on codes over finite polynomial rings has shown that codes with better parameters 

(optimal in some cases) can be obtained over these rings and they have some practical 

importance [9, 26, 58, 138, 138]. It has already been noted that the codes over Z4  is a 

topic of special interest due to their connections with other areas of both mathematics 

and engineering. Initially, the work on codes over finite polynomial rings was confined 

to polynomial rings over finite fields. In [139], Yildiz and Karadeniz considered a new 

polynomial ring Z4  + nZ4, u2  = 0, and studied linear and self-dual codes over it. They have 

constructed some good formally self-dual codes over this ring. Inspired by this, we have 

introduced another new ring of such type R = Z4  + vZ4, v2  = v, in this chapter. This ring 

is a commutative semi-local principal ideal ring of characteristic 4 and size 16. We have 

introduced Lee weight and Gray weight for tuples over R. A Gray map on R is defined 

similarly as defined for IF2  + v1F2, v2  = v in [1401. Unlike the Gray map defined on Z4, the 

Gray map defined here is a linear map. We have obtained the MacWilliams identities for 

the Lee weight and Gray weight enumerators for codes over R. We have also considered RT 

metric and studied codes with respect to RT metric. Self-dual codes and their constructions 

over R have also been discussed. 

45 
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/\ 
(2+v) (1+v) 

(v) (2) (1+3v) 

(2v) (2+2v) 
\ / 

(0) 

Figure 3.1: Lattice diagram of ideals of Z4  + v7L4  

3.2 The ring Z4  + vZ4  

Throughout this chapter, R denotes the ring Z4  + v7Z4  = {a + vb : a, 5 E Z41, where 

v2  = v. This ring is isomorphic to the polynomial ring An element of R is a unit if 

and only if a is a unit and b is a non-unit, i.e., the units of R are 11, 3,1 + 2v, 3 + 2v}. R 

is a principal ideal ring and has 7 non-trivial principal ideals: 

(2v) = {0,2v}, 

(2+2v) = {0,2+2v}, 

(2) = {0,2,2v,2+2v}, 

(v) = {0,v,2v,3v} = (3v), 

(1+v) = {0,2,2v,1+v,1+3v,2+2v,3+v,3+3v} = (3+3v), 

(1+3v) = {0,1+3v,2+2v,3+v}=(3-+-v), 

(2+v) = {0,2,v,2v,3v,2+v,2+2v,2+3v}=(2+3v). 

Of these, (2 + v) and (1 + v) are maximal ideals. Thus R is a semi-local ring. Figure 

3.1 represents the lattice diagram of the ideals of R. 

It can easily be verified that the rings $y and are isomorphic to Z2. From the 

Chinese Remainder Theorem, it follows that R = (1 + 3v) (v). Therefore, an element 

a + vb of R can be written as a + vb = a(1 + 3v) + /3v, where a, 0 E Z4. It follows from 

this that a=aand8=a+b, and so,a+vb=a(1+3v)+(a-i--b)v. 

The main purpose of introducing R or its analogues in coding theory is to find some 
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good Z4-codes. For this we need a Gray map which preserves the distances. We define the 

Gray map on R, which is same as the Gray map defined over the semi local ring IF2  + v1F2, 

v2 =vin [140]. For any a+vbER, the Graymap:R —.Z is defined by 

b(a+vb)=(a, a+b). 

This map is then extended componentwise to : R'2  - Z'2, so that for any 

(x1,x2,. . . ) x) ER'2, 

where xi  = a + vb, i = 1, 2,... , n. 0 can easily be seen to be a Z4-module isomorphism. 

We define the Gray weight of any x E R as the Hamming weight of its Gray image i.e., 

WtG(X) = wtH(a, a + b). The Lee and Euclidean weights of any x E R are defined as the 

corresponding weights of its Gray image over Z4. That is, WtL(X) = wtL(a, a + b) and 

wtE(x) = wtE(a, a+b), where the Lee and Euclidean weights of (a, a+b) are over 7Z 4. The 

Hamming weight and distance of x E R'2  are defined in the usual way. For any x, y E R'2, 

the Hamming distance dH(x, y), the Gray distance dG(x, y), the Lee distance dL(x, y), 

and the Euclidean distance dE(x, y) between x and y are the corresponding weights of 

x 
- y, i.e., dG(x,  y) = wt(x 

- 
y), dL(x, y) = WtL(X 

- 
y) and dE(x, y) = WtE(X 

- y). The 

different weights of elements of R are shown in Table 3.1. 

3.3 Linear codes over Z4  + vZ4  

A linear code C of length n over R is an R-submodule of R'2. The dual of C is the code 

C-1-  := {x E R'2 : x y = O,Vy E C}, where x y denotes the usual inner product of x andy 

over R. Let A, B be two codes of length n over R. We define A®B = {(a, b) : a E A, b E B} 

andA+B={a+b: aEA,bEB}. 

Lemma 3.3.1. The Gray map q: R'2  - Z'2  is linear and distance preserving. 

Proof. For any x, y E R'2, it is easy to verify that q(x+y) = (x) +(y) and (sx) = sq(x) 
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Table 3.1: Weights of elements of Z4  + v7Z4  

Element x of R Gray image of x WtG(X) WtL(x) WtE(X) 

0 (0,0) 0 0 0 

1 (1,1) 2 2 2 

2 (2,2) 2 4 8 

3 (3,3) 2 2 2 

v (0,1) 1 1 1 

2v (0,2) 1 2 4 

3v (0,3) 1 1 1 

1+v (1,2) 2 3 5 

1+2v (1,3) 2 2 2 

1+3v (1,0) 1 1 1 

2 + v (2,3) 2 3 5 

2+2v (2,0) 1 2 4 

2+3v (2,1) 2 3 5 
3 + v (3,0) 1 1 1 
3+2v (3,1) 2 2 2 

3+3v (3,2) 2 3 5 

for any s e Z4. So 0 is linear. 

From the definition of Lee weight in R, 

dL(x, y) = WtL(XY) 

= WtL((X-y)) 

= WtL((X) 
- 

dL(çb(x), (y)). 

Similarly, d(x, y) = dH((x), (y)) and dE(x, y) = dE((x), (y)). Therefore q is 

distance preserving. 

It follows from the linearity of q  that, if C is a linear code of length ri over R, then (C) 

is also a linear code of length 2n over Z4. Define C1  = {a E ?22 : a + by E C for some 

b E Z} and C2  = {a + b E Z: a + by E C for some a E Z }. Obviously, C1, C2  are linear 

codes over Z4. The ring R is a Frobenius ring [135], and therefore CHCi = 16 n  [135]. The 
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• following theorem is a generalization of [140, Theorem 3.1]. 

Theorem 3.3.2. Let C be a linear code of length n over R. Then O(C) = C1  0 C2  and 

C1=IC1IIC2I• 

Proof. Since 0 is bijective, for any c' = (ai , a2, . . . , a )  a1  + b1, a2  + b2,. .. , a, + b) e 

there exists a c = (Cl, c2,. . . , cc,,) in C, where c1  = a + bv such that *(c) = c'. Also from the 

definitions of C1  and C2, we obtain that (ai, a2,..., a) E C1, (ai+bi, a2+b2,. . . , a,,+b,) E 

C2. Then it follows that (ai, a2,.. . , a,, a1  + b1, a2  + b2,. . . , a + b) E C1  0 C2. Therefore, 

(C) 9C1  ®C2. 

On the other hand, for any (a, b) E C1  0 C2, where a = (ai , a2,. . . , E C1, b = 

(b1,b2,. . . ,b) E C2, there are x = (xi,x2,... ,x) andy = (y1,y2,. . .,y) inC such that 

x=a+vs and y=b+(1+3v)t, where s,tEZ. Since Cis linear, x(1+3v)+yv= 

a + (3a + b)v e C. Therefore, (a + (3a + b)v) = (a, b) e (C). This implies that, 

C1  ® C2  c q5(C). It follows then that I(C)I = C1  0 C21 = C111C21. Since t ,  is bijective, 

JCJ = (C) = C111C21. U 

Corollary 3.3.3. A linear code C over R can be expressed as C = (1 + 3v)Ci  @ vC2. 

Proof. Let c = (Cl, c2,... , c,) e C, where ci  = a + bv. Then /(c) = (a, a + b), where 

a = (ai, a2,. . . , as), b = (b1, b2,. . . , ba). This implies that a e C1  and a + b E C2  as 

O(C) = C1 ®C2. Thus, (1 + 3v)a + v(a + b) = a+bv = c E (1+3v)Ci vC2. Therefore, 

CC(1+3v)Ci.vC2. 

For the reverse inclusion, let x = (1 + 3v)a + vb e (1 + 3v)Ci  ED vC2, where a E C1, b E 

C2. Then O(x) = (a, b) E C1  0 C2  = ç(C). Since 0 is bijective, so x E C. Therefore 

(1+3v)CjvC2  cc. Hence C = (1+3v)Ci ED vC2. 

Theorem 3.3.4. Let C be a linear code of length n over R. Then (C') = 

Proof. Let (c1) E (C -), where c1  = aj+vb1  E C'. Then cic2 = 0 for all c2  = a2+vb2  E C. 

This implies that a1  a2  = 0 and a . b + a2 . bi + b1  . b2  = 0. For any c2  E C, O(C2) E O(C) 

and c1).(c2) = (ai , ai+bi).(a2 , a2 -i-b2) = 2a1 .a2 +(ai b2 +a2 .bi+bi.b2) = 0. So, 

0(ci) E (C)'. Therefore, (C') c q(d)'. 
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On the other hand, since 0 is a module isomorphism and the Gray image g(C) of a code 

C is a Z4-code of length 2n, I(C)'i 
42m 

= IC'I = I(C')I• Hence (C') = 

U 

Theorem 3.3.5. Let C-'-  be the dual of a linear code C = (1 + 3v)Ci  vC2  of length n over 

R. Then C' = (1 + 3v)C' e vC'-, where C -  and C -  are duals of Ci  and C2, respectively. 

Further (C') = C' ® C2'. 

Proof. Let c' = a' + vb' e C'. Then for any c = a + vb E C, we have c' c = 0. This 

implies that aa' = 0 and ab' + a'b + bb' = 0, which in turn implies that (a + b) (a' + b') = 0. 

Therefore a' E C1- and a' + b' E Ci-, as c = a + vb E C, a e C1  and a + b E C2. So 

a'(l + 3v) + (a' + b')v = a' + vb' = c' E (1 + 3v) Cl' vC. Thus C' C (1 + 3v)C11-  ED vC. 

On the other hand, let c' E (1 + 3v)C1L vC2'. Then c' = (1 + 3v)a' + vb', where 

a' e C1' and b' E C. This implies that aa' = 0 for all a E C1  and bb' = 0 for all 

b E C2. From Theorem 3.3.2, it follows that (a, b) E C1  ® C2  = (C). Then there exists 

c = (1 + 3v)a + vb E C such that (c) = (a, b). We can see now that c - c' = 0. So c' E C'. 

Therefore (1 + 3v)C1' vC' C C'. Hence C-'-  = (1 + 3v)C' EE vC2'. Rest follows from 

Theorem 3.3.4. 

Theorem 3.3.6. Let dL, dG and dE be the minimum Lee, Gray and Euclidean dis-

tances of a linear code C over R, respectively. Then dL = min{dL(Cl), dL(C2)}, d = 

min{dH(Cl), dH(C2)1 and dE = min{dE(Cl), dE(C2)1, where C1, C2  are Z4-linear codes. 

Proof. Since 0 is a distance preserving map, d. = dL(cb(C)) = dL(Cl 0 C2) = 

min{dL(Cl ),dL(C2)}. Similarly, dG = min{dH(Cl ),dH(C2)} and dE = min{dE(Cl ),dE(C2)}. 

I 

3.4 The MacWilliams identities 

Let the elements of R be represented as R = {a1, a2,.. , ai6 } = {0, 1, 2,3, v, 2v, 3v, 1+v, 1+ 

2v, 1 + 3v, 2 + v, 2 + 2v, 2 + 3v, 3 + v, 3 + 2v, 3 + 3v}, where the order of elements is fixed. 
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Let I be a non-zero ideal of R. Define x: I —* C* by 

(a + by) = 

where C*  is the multiplicative group of unit modulus complex numbers. x  is a non-trivial 

character of I, and hence we have (a) = 0. 
aEl 

Lemma 3.4.1. Let C be a linear code of length n over R. Then for any d e R, 

I 

o, ifdØC' 

CEC ICI, ifdEC'. 

Proof, If d E C', then c• d = 0. Since x(°) = 11 CEcx(c d) = Cl. If d C', then 

c - d = > c2d2 0, where c (ci, c2,. . . , c) and d = (d1, d2, . . . , d). Now, 

x(c. d) ( E d) 
cEC eEC i=i 

= >ftx(cdi) 
eEC i=i 

= ft>xdi) = 0, 
i1 cEC 

as for a fixed d, the set {cd2  : c = (ci, c2, ... , c,) E C} forms an ideal of R, and there is 

at Jeast one i for which di 54 0, and for each such d2  we have E
CEC 

x(cd) = 0. Hence the 

result. 

Theorem 3.4.2. Let C be a linear code of length n over R and J(c) = 

Then E f(d) = A L f(c). 
cEC 

* 0ate2./Ji. IJ.k. 

4L 

E x(cd)f(d). 
dER 
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Proof. Since f(c) = (c. d)f(d), 
dER 

>. f(c) = x(cd)f(d) 
cEC cEC dER' 

=x(cd)f(d)+ x(cd)f(d) 
cEC dEC1 cEC dER"—C' 

= >f (d)>x(c.d)+ f(d)>x(c.d) 
d€C-'- cEC deR'—C-1- cEC 

=iCi>f(c) .  
c€C1  

Hence the proof. U 

3.4.1 Complete Lee weight enumerator 

The complete Lee weight enumerator (ciwe) of a linear code C over R is defined as 

clwec(xi , 
. xis) = x1 l( c) x 2( c ) . . . 

wt )t  . 

16 
cEC 

where Wta2  (c) is the number of a 's in c. This is a homogeneous polynomial in 16 variables 

x1, x21 ... , x16  with total degree on each term being n, the length of C. The Lee weight of 

each element of R and their corresponding variables are given in Table 3.2. 

Theorem 3.4.3. Let C be a linear code of length n over R. Then 

clwecl(xi,x2)  ... ,x16 ) = clwec(M. (x1,x2,... 

where M is an IRI x IRI matrix defined by M(i,j) = (X(aa)). 

Proof.  Let f(x) = x
wta1 (x) wta2 (x) wt416(x) 

From Theorem 3.4.2, we have 1 x2 16 

J(c) = x(cd)f(d) 
deR' 

- 

I x(c . d)XWta1l1 wta2 (d) wta16 (d) 
- 1 . x16 
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Table 3.2: Lee weight distribution of elements of Z4  + vZ4  
Element x of R Lee weight WtL(X) corresponding variable 

0 0  XI  

1 2 
2 4 
3 2 
V 1 x5  
2v 2 
3v 1 

1+v 3 
1+2v 2  Xg  

1+3v 1 
2 + v 3 
2+2v 2 
2+3v 3 
3 + v 1 Xj4 

3+2v 2 
3+3v 3 

1 1 if da 
For each a E R, let j1  = . Then Wta(d) = >I t5a,, and hence 

0 otherwise i=1 

5ai ,dE Sa2,d 
J(c) = x (E cid ) 

dERTh i1 

= [Jx(cidi)xx 2di . 
dERTh i=1 
n 

&j,d 
= 11x(cd)x1 $x2  5a2d 

'•• 

8a16,d 

i=1 d€R 

n 16 

= H>@jajj 
j=1 j=1 

16 / 16 wt(c) 

= HX(aiai)xi) 
j=1 2=1 
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Now, from the definition of complete Lee weight enumerator (ciwe), we get 

clwec±(xi , x2,.. . , x16) xrta1(c)xta2(c) ... Wt-i(c) 

cEC-1- 

= f(c) 
cEC1  

= ji(c) 
cEC 

16 / 16 wt.(c) 
1 

- H(X(aiai)hi) 
- cEC i=1 

1 
X(alaj)xj, X(a2a)x, . . . , X(ai6ai ( j=l 

)xciwec 
16 16 16 

j=1 j=1 

1 
- clwec(M (x1,x2,... x16)T) 
- 

where M = (X(ajaj)) is a matrix of order 16 x 16. . 

Permutation equivalent codes have the same complete Lee weight enumerators but 

equivalent codes may have distinct weight enumerators. So the appropriate weight enumer-

ator for studying equivalent codes is the symmetrized Lee weight enumerator (slwe) [129], 

defined as 

slwec(x, y, z, w, s) = clwec(x, Z, s, Z, y, z, y, w, z, y, w, z, w,y, z, w), 

where x represents the element of weight 0 (the element ai), y represents the elements of 

weight 1 (the elements a5, a7, a10 , a14 ), z represents the element of weight 2 (the elements 

a2, a4, a6, a9, a12 , a15), w represents the elements of weight 3 (the elements a8, all, a13, a16), 

and s represents the element of weight 4 (the element a3), as shown in Table 3.3. 

Therefore, 

slwec(x, y, z, w, s) = E Xwt0yt 1 Zwt2Wwt3Sth1t4 ,  

cEC 
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Table 3.3: Lee weights and their corresponding symmetric variables 

WtL(X) Elements of R corresponding variables symmetric variable 

0 0 XI x 
1 v, 3v, 1 + 3v, 3 + v x5, x7, xio, x14 y 
2 1, 3, 2v, 1 + 2v, 2 + 2v, 3 + 2v x2, x4, x6, x9, x 2, x15 Z 

3 1 + v, 2 + v, 2 + 3v, 3 + 3v x81  x11, x13, x16 w 
4 2 X3 S 

where 

wt0  - wtai (c); 

wt1  = wt0.5 (c) + Wta7 (C) + Wtaio (C) + wta14 (c); 

wt2 = Wta2 (C) + Wta4 (C) + Wt116 (C) + Wtag (C) + wta12(c) + wta15 (c); (3.4.1) 

wt3 = Wta8  (c) + Wtaij  (c) + Wtaj3  (c) + Wtaj6  (c); 

wt4  = Wta3 (C) 

Theorem 3.4.4. Let C be a linear code of length n over R. Then slwec± (x, y, z, w, s) = 

jjslwec(x+4y+6z+4w+s, x-2y+2w—s, x-2z+s, x+2y-2w—s, x-4y+6z-4w+s). 

Proof. The result follows from Theorem 3.4.3 and the definition of symmetrized Lee weight 

enumerator. 

The Lee weight enumerator (Leec) of a linear code C over R is defined as 

Leec(x, y) 
cEC 

Theorem 3.4.5. Let C be a linear code of length n over R. Then 

Lee(x, y) = slwec(x4, x3y, x2y2, xy3, y4) 

Proof. Let WtL(c) = wt1  + 2wt2  + 3wt3  + 4wt4, where wt1, wt2, wt3, wt4  are as in (3.4.1). 
16 

Sincen = Wtaj (C) = wto+wtl+wt2+wta+wt4, s04n—wtL(c) = 4wt0+3wt1+2wt2 +wt3. 
i= 1 
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From the definition of Lee weight enumerator, 

Leec(x, y) > 
cEC 

= >i x4wto+3wtl+2wt2+wt3yt1+2wt2+3wt3+4wt4 

cEC 

=E  x4W  (x3y)wt1  (xy)2t1)t 2  (xy3)wt3 y4wt4  

eEC 

= slwec(x4, x3y, x2y2, xy3, y4) 

Theorem 3.4.6. Let C be a linear code of length n over R. Then 

Lee±(x, y) = Leec(x + y, x 
- y) 

ICI 

Proof. From Theorems 3.4.5 and 3.4.4, we have 

Leeci (x, y) 1-slwec± (x4  + 4z3y + 6x2y2  + 4xy3  + y4, x4  + 2x3y - 2xy3 
- 

- x 2  y  2 + y4, x4  - 2x3y + 2xy3 
 - y4, x4  - 4x3y + 6x2y2  - 4xy3  + y4) 

= slwee± ((x+y)4, (x+y)3(x—y), (x+y)2(x—y)2, (x+y)(x—y)3, 
ICI 

(x—y)4) 

Leec(x+y, x — y) 

U 

3.4.2 Complete Gray weight enumerator 

The complete Gray weight enumerator (cgwe) of a code is defined in the same way as the 

complete Lee weight enumerator, i.e., 

cgwec(xi, 12, . . . , 116) > xrta1(c)xJta2(c)... 
16 

cEC 

where Wta  (c) is the number of a2  's in c. 

Theorem 3.4.3 holds for the complete Gray weight enumerator also, i.e., 

56 

U 
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cgwe±(x1,x2,. . . ,x) = j-cgwec(M. (x1,x2,., ,,x16)T),  CI 

where M is the matrix defined in Theorem 3.4.3. 

The symmetrized Gray weight enumerator (sgwe) of C is defined as 

sgwec(x, y)  z) = cgwec(x,z,z,z,y,y,y,z,z,y,z,y,z,y,z,z), 

where x represents the element of weight 0 (the element ai), y represents the elements 

of weight 1 (the elements a5, a6, a7, a10, a12 , a14) and z represents the element of weight 2 

(the elements a2 , a3, a4, a8, a9, all , a13, a15, a16). Therefore, sgwec(x, y, z) = xwt0 ywt1 Zwt2
, 
 

cEC 
where 

wt0  = wtai (c); 

wt1 = Wta5 (C) + Wta6 (C) + Wta7 (C) + Wtaio (C) + Wta12 (C) + wta14 (c); (3.4.2) 

wt2 = vita2  (c) + Wta3  (c) + Wta4  (c) + Wtas  (c) + wt 9  (c) + Wtaji  (c) 

+ Wtai3(C) + Wtai5 (C) + Wtaj6 (C). 

Theorem 3.4.7. Let C be a linear code of length n over R. Then 

sgweci(x, y, z) = sgwec(x + 6y + 9z, x+2y-3z, x-2y+z) 

Proof. The result follows from Theorem 3.4.3 and the definition of symmetrized Gray weight 

enumerator. • 

The Gray weight enumerator (Cc) of a linear code C is defined as 

G(x, y) = 

cEC 

Theorem 3.4.8. Let C be a linear code of length n over R. Then 

G(x, y) = sgwec(x2, xy, y2) 

16 

Proof. Let wt(c) = wt1  + 2wt2, where wt1, wt2 are as in (3.4.2). Since n = a2  = 

i=1 
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wto+wti+wt2, so 2n —'wtG(C) = 2wt0+wt1. From the definition of Gray weight enumerator, - 

Gc(x, y) =E 
x2Th_wtcywt 

cEC 

= 
x2wto+wt1yt1+2ut2  

cEC 

=E  x2111t0(xy)vt1y2wt2 

cEC 

= sgwec(x2, xy)  y2) 

Theorem 3.4.9. Let C be a linear code of length n over R. Then 

Gci(x,y) = Gc(x+3y,x—y) 

Proof. From Theorems 3.4.8 and 3.4.7, we have 

G±(x, y) = sgwe(x2 + 6xy + 3y2, x2  + 2xy - 3y2 , x2  - 2xy + y2) 

= sgwec±((x + 3y)2, (x + 3y)(x 
- y), (x 

- y)2) 
I C I 

= Gc(x+3y, x — y) 
ICI 

. 

Corollary 3.4.10. The Lee and Hamming weight enumerators of 4(C) over Z4  are same 

as the Lee and Gray weight enumerators of C over R. 

Examples 

Example 3.4.11. Let C be the linear code of length 2 over R generated by 

(1 3+2v 
G=I 

2 
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The Gray image of this code is a code of length 4 over Z4  and it is of type 4222.  The Lee 

and Gray weight enumerators of C are 

WL(z) = 1+12z2 +39z4 +11z6 +z8  

and 

W(z) = 1+4z+12z2 +24z3 +23z4, 

respectively. 

Example 3.4.12. The linear code C of length 4 over R generated by 

( 1+3v 1+v 3+3v 3+v 
G=I 

2+2v 2v 0 2 

is a self-orthogonal code of 32 codewords and its Gray image is also a self-orthogonal code 

of length 8 over Z4. The code C has all even Lee weight codewords and the minimum Lee 

weight of C is 4. The Lee and Gray weight enumerators of C are 

WL(z)1 + 3z4  + 19z8  + 9z12  

and 

WG(z) = 1 + 5z2  + 12z4  + 14z6, 

respectively. 

Example 3.4.13. The linear code C of length 4 over R generated by 

1 3 3+2v 1+2v 

0 2 0 2 
G= 

2v 0 0 2v 

2+2v 2+2v 0 0 

is a self-dual code of 256 codewords and Lee weights of all code words are even. The Gray 
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image of C is also a self-dual code of length 8 over Z4. The Lee weight enumerator of C is 

WL(z) = 1 + 28z4  + 198z8  + 28z12  + z16  

3.5 Codes over Z4  + v7Z4  with respect to Rosenbloom—

Tsfasman metric 

Let M n,, (R) be the set of all n x s matrices over R. Let p = (po,pi,.. . ,p-1) E Mix(R). 

Then the RT weight (p-weight) of p is defined as [104] 

WN(p) 
1max{j:pi0}+1, p0 

= 1 

10, p=O 

The p-distance between p and q is defined by 

p(p, q) = WN(p - q), 

where p, q e M13(R). The RT weight is then extended to P = (P1, P2,. . . , PI) E 

M 3(R) as wN(P) = > W\J(Pj), where P (pi,o,pi,i, . . . ,p,3_) e M13(R), 1 < i 

n. The p-distance between P and Q is p(P, Q) = WN(P - Q), where P, Q E M3(R). It 

can easily be shown that p is a metric on R, and for s = 1, the p-metric is just the usual 

Hamming metric. 

A linear code C over R is an R-submodule of M3 (R). The set of non-negative integers 

wr(C)1{PEC:wN(P)r}I, 

where 0 < r <ns, is called the weight spectrum of C, and the p-weight enumerator of C is 

defined as [111] 
ns 

Wc(z) = Wr (C)Z' = zwN(P) 

r=O PEC 
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Let p = (po,pi, . . ,P-i) and q = (qo, q, . . . , q8_i ) E M18(R). Then the inner product of 

p and q is defined by 
3-1 

(p, q) 

This is then extended to the inner product of P and Q as 

(P, Q) = Q) = pi,jqi,s-i-j, 
i=1 j=1 j=O 

where P = (P1, P2, . . . , 
p,)T, Q = (Q1, Q,. . . Q,)' E M3(R) and P = (pi,o,pi,i,. .. 

Qz = (qz,o) qz,i,... . q,3_i) E Mi>8(R), 1 < i < n. For s = 1, the inner product defined 

above becomes the usual inner product 

(p, Q) = (P, Q) = T pj,Oqj,O  

The dual of the code C is defined by C' := {Q E M 3(R) : (P, Q) = 0,VP E C}. Clearly, 

C' is also a linear code over 

It has been observed in [50] that even if the p-weight enumerators of two linear codes 

are the same, the p-weight enumerators of their duals need not be same. 

I/ \ ( \) 1(\ ( 
Example 3.5.1. Let C1  = s 

o o 2v o 
, C2  = 

0 o o 0 
I I 

\ 
) I 

0 0) \2v 0 1) 1\O 01 \0 2v 

be two linear codes over M22(R).  They have same p-weight enumerator 1 + z2. Let C11, 

C2' be the dual codes of C1, C2, respectively. Both C1' and C' contain 32, 768 elements but 

their weight enumerators are different, namely, 

W±(z) = 1 + 30z + 449z2  + 3360z3  + 28928z4, 

W±(z) = 1 + 30z + 557z2  + 5280z3  + 26880z4. 

This problem has been resolved by considering the orbits of a linear group in [50]. The 

same problem has been addressed by Siap [111] in another way by defining the complete 

weight enumerator which preserves the order of the entries of the matrices. 
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A ring of n x s matrices over R can be identified with a ring of n x 1 matrices having 

polynomial entries. We identify the set of all polynomials of degree at most s - 1 over R 

with R~I . Define : M1 3(R) -* RIx]  by 

(ao,ai , ... ,a3_i)=ao +aix+a2x2 +.••+a3_ix'. 

This map is an R-module isomorphism and can be extended to Q : M 3(R) - 

M1 
(Rx

W)
,

) by 

((P1, P2, , 
p)T) 

= (Pi(x), Pi(x),. . . , P(x)), 

where P = (Pi,o,pii) ... 7pj,81) E M1 3(R) and P(x) = . .+pi,8_ix1 E 

1 < i <ii, AT is the transpose of A. 

Let a(x) = a0  + a1x + a2x2  + - + a31x' E RIxI . Let the l (0 <1 < s - 1) coefficient 

a1  of a(x) be denoted by ci (a(x)). Then the inner product (a, b becomes 

(a(x), b(x)) = c8 _i(a(x)b(x)). 

This can be extended to the matrices P, Q e M1  ( R'x'  as 

(P, Q) = (P(x Q(x)). 

This implies that 

(P, Q) = c8 _i (P(x)Q(x)) = pi,jqi,s-i-j, (3.5.1) 
i=1 i=1 j=0 

where P (P1(x),P2(x),...,P(x))T, Q = (Q1(x) Q2(x) Q(x))T and P(x) =j,+ 

j,lX + +pj,3_1x81, Q(x) = qj,o + qj,lx + + qj3_1x 1  E '' 1 <i < n. 

Let C be a linear code over M3(R), P = (pjj)nxs E C, where 1 < i < n, 0 < j 

s - 1 and X3 = (x1,0 , Xi,i, ... ) Xi,s_i,. . . 7 Xn,0,... , x,_1). We define the complete p-weight 
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enumerator of C as 

( w(p1,0) w(p1,_1) w(pn,o) w(p,_i)\ Wc(X3) 
= 

X,8_1 ) 
PeC 

which is a polynomial in ns variables. 

3.5.1 Lee complete p-weight enumerator 

Let X?3  = (x1,0, x,j,.
.. , xi,8_i)... . x,o,. . . , x? ,8_1) and P = (Pij)nxs, where 1 < i 

0 <j <s - 1. We define the Lee complete p-weight enumerator of C over M8(R) as [141] 

( WL(p1O) WL(p1,s_1) WL(pn,O) wL(p,_1)\ Leec(X 3) 
. . . 

X,3_1 ) 
PEC 

It is a polynomial in ns variables with total degree of each term being 4ns. Note that, if we 

let s = 1 then the p-metric and inner products defined earlier are just the usual Hamming 

metric and usual inner products, respectively, and by arranging the subscripts we obtain 

the complete Lee weight enumerator of a code over R, discussed in Section 3.4.1. 

One can obtain the p-weight enumerator from Lee complete p-weight enumerator by a 

proper transformation. Siap [111] has given a transformation to obtain p-weight enumerator 

from complete p-weight enumerator of a code. The transformation we propose here is a 

generalization of the transformation given in [111]. The transformations is as follows: 

To obtain p-weight enumerator of code C, replace 

WL(p1,O) WL(pI,s_1) wL(p,,o) WL(pn,s_1) by 

1
where

wtL(p,s_1)l WtL(pi,._2)l [WtL(Pi,~-3)]  N s + (s-i) [WtL(Pi,~-1)1) + (s -2)  
[,l\ (i [WtL(Pi ,2)wtL(p ,3_2)  

___ ___  wtL(1)  

w) 

i 
wtL(pi) 

 U - I) 
( 1
- I 

1wtL(p,3_l)1 

) 
and [.1 represents the least integer function. 

Example 3.5.2. Let C 
1(0 o\ f2+2v 0\ (0 0 \ (2+2v 0 

= I I I I I I 
1\ 0  0) \ 2v 2) \2v 2v) \2+2v 0 
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be a linear code over M22(R). The Lee complete p-weight enumerator of C is 

Lee(X22) = 1 + x 0  i$0x 1  + x ox i  + x o  x o  

The p-weight enumerator of C is 

Wc(z) = 1+2z2 +z3, 

which is obtained by the transformation 

21wtL(ail)l + I0)1 (i_ 1vJtL(a1)l\
) zl I 4 I I  

where aij  is the element in the ith  column and the jth  row in a codeword of C, i = 1, 2 and 

j = 0, 1. 

The following lemma is a generalization of Lemma 3.4.1 to the present setting. 

Lemma 3.5.3. Let C be a linear code over M(R) and P, Q E M1 (a). Then 

((P, Q)) 
{ 0, ifQØC-'-  

= 
PEc C, ifQEC-  - 

Proof LetP= (P1(x),P2(x),...,P(x))T,Q = (Q1(x),Q2(x),...,Q(x))T EM nxl 

and P(x) = (Pi,o +i,lX + +p,8_1x'), Q(x) = (q,o + q j,i x +... + qj,8_x8_1)  E 

1<i<n. 

If Q E C', then (P, Q) 0. Since (0) = 1, >i€c ('(P, Q)) = C 

If Q C' then (P, Q) 54 0. From equation (3.5.1), we get that > 
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0. Now, 

f n s—i 

((P, Q)) - :x ( pi,jqi,s—i—j 

PEC PEC \ i=1 j=O 

ii s—i 

= E [I [I 
PEC i=i j=O 

n s—i 

= hIT E x(j,3j,5—i-2) 0, 
j=i j=Op,ER 

as for any fixed d E R, cd ER Vc E R, and for each such d, ErERx(cd) = 0 

Lemma 3.5.4. >aER x(ba) XWL(a) = (1 + )4°' )  (1 — x)wL(b) V b E R 

Proof. 

(1 + x)4  

(1-i-x)3(1—x) 

I (ba) XAL(a) 
= (1 + x)2 (1 - 

aER 

(1+x)(1—x)3  

if b = 0, 

if b=v, 3v, 1+3v, 3+v, 

if b=1, 3, 2v, 1+2v, 2+2v, 3+2v, 

if b=1+v, 2+v, 2+3v, 3+3v, 

if b = 2 

It follows that E.ERX() XWL(a) = (1 + - 

The following lemma is analogous to Lemma 3.5.4. 

Lemma 3.5.5. >aERX(ba) X4  (a)wtL(a) 
= (x + - y)WL(b) V b E R 

. 

U 
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Proof. 

(x+y)4  

(x + y)3(x 
- y) 

:i: (ba) X4  wL(a)wtL(a) 
= (x + y)2(x 

- 

aER 

(x+y)(x—y)3  

(x 
- 

if b = 0 

if b=v, 3v, 1+3v, 3+v, 

if b=1, 3, 2v, 1+2v, 2+2v, 3+2v, 

if b=1+v, 2+v, 2+3v, 3+3v, 

if b = 2 

= (x + - y)wL(b) 

U 

The following result is a generalization of Theorem 3.4.2 to the present setting. 

Theorem 3.5.6. Let C be a linear code over M(R) and f : M1 (R
4
IxI ) 

 - C[X 3]. 

Then >QEC' f(Q) = >IPEC f(P), where J(P) 
= ((P, Q))f(Q) 

Proof. Let J(P) 
= Q€M() ((P, Q))f(Q). Then 

= x((P,Q))f(Q) 
PEC PEC  QEM I (ff!!) 

= I x((P, Q))f(Q)+> x((P,Q))f(Q) 
PEC QeC1 PEC QCL 

= f(Q)x((P,Q))+ E f(Q)x('(P,Q)) 
QEC-'- PEC QC' PEC 

= I'I E f(Q)) + 0 (from Lemma 3.5.3) 

Therefore, >-QEC-1- f(Q) = jj >PEC 1(P). 

Theorem 3.5.7. Let C be a linear code over M 3(R). Then 

( 
1 — xi,j 

 WtL(Pi,~-1-j) 
= 

(ftiIi(1+x)4) fJj 
1, 

QEC' i=1 j=O i=1 j=O PEC i=1 j=O 
+ 23 
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s-i 
WtL( Proof. Let 1(Q) = U fi qj,j) Then from Theorem 3.5.6, we have >QEC' 1(Q) = 

i=1 j=O 

ci >IPEC J(P), where f(P) 
= >QEM() ((P, Q))f(Q). This implies that 

n s-i n s-i 

J(P) i s x(pi,-i,jqi,j) xWtL  
ij 

QEMx1(j) i=i j=O i=1 j=O 

n s-i 

QEMxi(j) i=1 j=O 

n s-i 
1I• 1I• V' wtL(q ) 
1111 L1 ij 
i=1 j=O q,3 ER 

n s-i 

= I-I [](i + x ,
)4-b0L(P_1_i)(1 - 

i=1 j=O 

Therefore, 

n s-i 

1(Q) 
= 

JJJJ(i+ x,)4_w1(P_1_3)(1_ 

QEC-'- 1C 1  PEC i=i j=O 

= (1 + 

n s-i n s-i

10 

 

=
11 ( 1 + xij 

i=i j=O PEC i=1 j=O 

. 

If we let s = 1 in Theorem 3.5.7, then we get the MacWilliams identity (Theorem 3.4.6) 

for linear codes of length n over R. 

Corollary 3.5.8 (Theorem 3.4.6). Let C be a linear code of length n over R. Then 

Lee(X, Y)=Lee(X+Y, X — Y). 
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Proof. Putting s = 1 in Theorem 3.5.7, we get 

wL(q) 
= 

1 
1 [J(1+x) (Pi)(l+x.)wt L(Pi) :: fJ 

QEC- i=1 PEC i=1 

1 
- 

X(azPz)x. 
- PEC i1 aER 

Replacing each by X4_wtL(ai)Ywtt(ai)  and each X0ti)  by 4 _wtL(q) ywtL(qi) 
, we get 

JI 4_wtL(qi )ywtL(qi) = 
1 

II :i: X(aipi)X4wtYllt) 

i=1 PEC i=1 aER 

Then it follows from Lemma 3.5.5 that 

X4 w )ywtL(Q) = JJ(x + Y)4_wti) (X - y)WtL(Pi) 

QeC1 PEC i=1 

= -- (X + y)4n_wtL(P) (X - y)WtL(P) 
- 

PEC 

Therefore, from the definition of Lee weight enumerator, 

Leec±(X, Y) = Leec(X + Y, X - Y)
ICI 

 

U 

Examples 

lb o o\ (2 0 2+2v\ 12v 0 0 
Example 3.5.9. Let C = . I I I I 

0 0) \0 2 2v ) \ 0 2v 2v) 

( 2+2v 0 2+2v\) 
I J be a linear code over M23(R). Then the Lee Complete 

0 2+2v 0 
p-weight enumerator of C is 

Leec(X23) = 1 + x 0x 2  x 1z 2  + x x 1x 2  + x 0x 2  x17 
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and the p-weight enumerator of C is Wc(z) = 1 + z4  + z5  + z6, which is obtained by the 

transformation 

3 I'-°L(2) 
1+2 

[wtL(ajl) 1   

z I 4 I I 
(i 1tut 2)1)+IwtL(aO)l (l_1wtL(i2)1\ (i{lntL(ail)l\ 

I I 4 4 I) 

where aij  is an element of it  column and j row in a code word of C, i = 1, 2 andj = 0, 1, 2. 

From Theorem 3.5.7, the Lee complete p-weight enumerator of code C' is given by 

2 2 2 2 

Leeci(X23) 
= 

[J fl(i + xj)4 > j 
(1 — xiiytL(at3_13) 

_ 
ICI   Xij i=1 j=O PEC i=1 j=O 1 + 

+ x10 )4(1 + x11)4(i + x12)4(1 + x20)4(1 + x21)4(1 + x22) 4  (i + 
0 + X10) 4 

(1— x12 '\ 4  (1— x2a \ (1— x12'\2x21'\2 x21'\ + G x20'\
+xi2) %--x2o) +x21) --xi2) \1+X2l ) \ 1+X2O ) 

(1—_x jo \ 
+ 

(1— x1\ (1— X21 
2)  

1+xio) 1+xi2) 1+x2i) 

= ((1 + xio)4(1 + xu)4(1 + x12)4(1 + x20)4(1 + x21)4(1 + x22)4  

+ (1 + xi0)2 (1 - X10 + xi1)4(1 - x21)4(1 + x20)2(1 - x20)2 (1 -  X12 )4 

(1 + x22)4  + (1 + x10 )4(1 + xi1)4(1 + x12 )2 (1 - x20)2(1 + x20)2 (1 - x12) 

(1 - x21)(1 + x21)2 (1 - x22)4  + (1 - 
x10

)2 (1 + xio)2(1 - x12) 

(1 + x12)2(1 + xi1)4(1 + x20)4 (1 + x21)2(1 - x21)2 (1 + x22)) 

' I Example 3.5.10. LetC 
ho o\ (2+2v o\ (o 0 \ 12+2v 0 

= 
. I I I I I 

\0 0) \ 0 2) \0 2vJ \ 0 2+2v 
be a linear code over M 22(R). The Lee complete p-weight enumerator of C is 

Leec(X22) = 1 + x0 4 + 4 + 4 x1. 

The p-weight enumerator of C is 1 + z2  + 2z3, which is obtained by the transformation 

2rwtt.l)1+ IwtL(ip)1 (i rwtL(afl)1\ 
zl I I I) 
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where aij  is an element ofjth  column and j1h  row in a code word of C, i = 1,2 andj = 0,1. 

From Theorem 3.5.7, the Lee complete p-weight enumerator of code C' is given by 

2 1 2 1 
1 

Leeci (X22) 
= fi fl(i + x,)4 

(1 -  xij 

) 
wtL(a,.l) 

i=1 j=O PEC i=1 \ 1 + xij 

= (1 + x10)4(1 + x11)4(1 + x20)4(1 + 

( 1 
\2 4 2 2 

(1—x11 (1_x2o'I+(1_x2o\ G x11'\x20\
+ i+)1+x2o j 1+x2o) ++xll) 1+x2o)) 

= (1 + x10 )4(1 + x)2(1 + x21)4  ((1 + x1i)2(1 + x20)4  + (1 - x1i )2(1 - 

+ (1 + x1 )2 (1 + x20)(1 - X20) + (1 - x11)2 (1 - x20)2(1 + x20)). 

3.6 Self-dual codes over Z4  + vZ4  

A code C is said to be self orthogonal if C c C' and self-dual if C = C'. A self-dual code 

is said to be free if it has a basis. 

Theorem 3.6.1. If C is a self-dual code over R, then so are O(C) and C1  and C2  over Z4. 

Proof. This follows from Theorems 3.3.4 and 3.3.5. . 

Theorem 3.6.2. A self-dual code of any length over R exists. 

Proof. Let C be a self-dual code of length n over R. We show that C can be of any length. 

Since ICIIC'I = 162 and C is a self-dual code, so IC 1 2 = 16". It implies that ICI = 16121  = 4n
, 
 

which is a positive integer for all n. This shows that there may exist a self-dual code of 

any length n over R. Furthermore, the code of length 1 generated by (2) is a self-dual code 

over R. Therefore, by taking direct products of self-dual codes of length 1 we can obtain a 

self-dual code of any length n over R. • 

Lemma 3.6.3. There is no free self-dual code of odd length over R. 

Proof. Let C be a free self-dual code of length n over R with basis A. Then ICI = 16k0
, 
 

where k0  = A. Since C is self-dual, ICI = 16. So, k0  = . Therefore n must be even. 

Hence there is no free self-dual code of odd length over R. 
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Theorem 3.6.4. The length of any free self-dual code over R is at least 8. 

Proof, From Lemma 3.6.3, there is no free self-dual code of odd length over R. Suppose 

that there is a free self-dual code of length 2 over R. Then it must contain a codeword 

(1, x), where x E R. So 1 + x2  = 0 (mod 4), which is impossible in R, since there is no 

element satisfying this relation. Therefore, there is no free self-dual code of length 2 over 

Pali 

I   
Let C be a free self-dual code of length 4 generated by C = (g 

a1  a2  a3  a4
, g2)T 

I' 

\ bi  b2  b3  b4 ) 
where a, bi  e R . Since C is free, gi, 92 are linearly independent and hence both must 

contain at least one unit in its coordinates. So after some row transformations and column 

permutations, G can be written as 
(i 0 c1 d1 

for some cj, di  E R, i = 1, 2. Now 
1 C2 d2 ) 

since C is self-dual, 1 + c + d 0, which implies that either cj2  or d is 2. But there is 

no element in R satisfying x2  = 2. So C cannot be self-dual. Therefore there is no free 

self-dual code of length 4 over R. 

Suppose that there is a free self-dual code of length 6 over R generated by a matrix 

G. After some row transformations and permutations of columns, G can be written as 

1 0 0 all  a12  a13  

= 0 1 0 a21  a22  a23  , where each aij E R, i, j = 1, 2, 3. Since C is self-dual, 

0 0 1 a31  a32  a33  

1+ 1 a =0 for i = 1,2,3, and aij = 0 fori k, i,k = 1,2,3. It implies from 

the first equation that a23  is a unit in R. Thus we get a contradiction from second equation, 

as sum of three units never zero in R. Therefore there is no free self-dual code of length 6 

over R. 

1 0 0 0 all  a12  a13  a14  

0 1 0 0 a21  a22  a23  a24  
Consider C = (gi, g2, g3, g4)T 

, where in each row 
0 0 1 0 a31  a32  a33  a34  

0 0 0 1 a41 a42 a43 a44 

one aij  is zero and rest are units in R for j = 1, 2, 3, 4 such that a1ak1 + a2ak2 + a3ak3 + 

a4ak4 = 0, for i 0 k. Such a matrix exists over R (See Example 3.6.7). Clearly, the rows 

91, g, 93, 94 of C are linearly independent, self-orthogonal and orthogonal to other rows of 
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C. So the code C generated by G is a free self-orthogonal code of length 8 over R. We know 

that IC'I = 16 4 = CI. Therefore C is self-dual. Hence the length of a free self-dual 
Ici 

code over R is at least 8. • 

Theorem 3.6.5. If C is a self-dual code of length n over R, then it must contain the 

codeword (2,2,. . . , 2) and hence (2v, 2v,. .. , 2v) and (2 + 2v, 2 + 2v, . . . , 2 + 2v). 

Proof. The ring R can be partitioned into 4 sets as A0  = {O, 2, 2v, 2 + 2v}, A1  = 11, 3, 1 + 

2v,3+2v}, Av  = {v,3v,2+v,2+3v}, A1+3 = {1+v,1+3v,3+v,3+3v}, where A1, 

i = 0, 1, v,1+3v, contains the elements a eR such that a2  = i. Let c= (c1,c2, . . . ,c,) E C 

and ni  denote the number of components of c which are from Ai  for each i = 0, 1, v, 1 + 3v. 

Since C is a self-dual code, we have (c, c) = 0 for all c E C, which implies that >J  c, = 

0. So, (c, c) = n1  + v n + (1 + 3v) n1+3V = 0. It follows then that, (ci ,c2, .... c) 

(2,2,2,...,2) = 2ni+(2v)ri+(2+2v)ri1+3 = 2(ni+vn+(1+3v) ni+3) = 0. Therefore, 

(2, 2,... , 2) e C'. Since C is self-dual, (2, 2,. . . , 2) e C. The rest follows from the linearity 

of C. 

3.6.1 Construction of self-dual codes 

Theorem 3.6.6. Let C = [I,, I An], where An  = (a12 ), be a square matrix of order n such 

that > a jj  = 1 or 3, for i = 1, 2, . . . , n. If C is a generator matrix of a free self-dual 

code C of length 2n (n is an even integer) over R, then 

I,, B ... B,, A B ...  Bn  

G, = 
n n 

Bn  B •.. I B, B ... A 

generates a free self-dual code C' of length 2kn over R, where Bn  is an all a matrix of order 

n, a a unit in R, and B is being repeated 2(k - 1) times in each row of C'. 

Proof. Let C be a generator matrix of a free self-dual code C of length 2n, where n is 

an even integer. Since C is self-dual, 1 + a, = 0 and a1ka3k = 0 for i j, 



1000 acaa 

0100 aaaa 

0010 aaaa 

0001 accc 

cacic 1000 

aaaa 0100 

aaaa 0010 

aaaa 0001 

0 a b 3 aaaa 

1110 aaaa 

b 0 a 3 cccic 

a b 0 3 aaaa 

aaaa 0 a b 3 

aaaa 1110 

aaaa b 0 a 3 

aaaa a b 0 3 

B4  A4  B4 \ 
G/=( I4 

B4  14  B4  A4 ) 
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- i,j=1,2,...,n. 

Now let G' = [g, g, ... , where g represent the rows of n x m matrices in C', 

• j = 1, 2,. . . , k, as shown above and T represents the transpose. It is clear that the rows of 

each g are independent and then so are the rows of C'. Therefore, it generates a free code, 
kn say C', of length 2kn and so JCJ 16 

Now let each row of g be g 1, 1 1, 2,. . . , n. Then g 1  . g 1+2 (k - 1)na2  + a = 

0, as n is even and 1 + a = 0. Again g 1  g 3  = 2(k - 1)na2  + > ajja8 j = 0, as 

ri is even and > a1ka8k 0 for s 1. Therefore, any row of g is orthogonal to all the 

rows of g. Similarly, we can see that the rows of g are orthogonal to the rows of g, for 

j k, as 2a + 2(k - 2)nc 2  + 2c alk) = 0. Therefore the code C' generated by C' is 

self-orthogonal. Since I (C')i = 1 
62 = 16kn 

= IC'I, C' is self-dual. • 

Example 3.6.7. Let C be the self-dual code of length 8 over R generated by 

1000 0 1+2v 3+2v 3 

0100 1 1 1 0 
G= 

0010 3+2v 0 1+2v 3 

0001 1+2v 3+2v 0 3 

Then the matrix 

with a = 1 + 2v and b = 3 + 2v, generates a free self-dual code of length 16 over R and its 

minimum Gray distance is 4. 
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The following theorem is a generalization of [71, Proposition 3.4. 

Theorem 3.6.8. Let G = (gi,g,. ,)T, where gi = (gil,gi2,. .. be a generator 

matrix of a free self-dual code C of length 2n over R. Let X E Rn such that 1 + X2 = 0, 

11 000 X\ 
and } := X gi.  Then C' = ( generates a free self-orthogonal code 

\3YYYY G) 

C' of length (2n + 4) over R, where Y = (Y1, Y2,. . . , 

Proof. Let G be a generator matrix of a free self-dual code C of length 2n. It can easily 

be seen that the rows of C' are linearly independent. So, G' generates a free code C' over 

R. Since C is self-dual, 1 + >I g = 0 and gikgjk = 0 for i j, i, j = 1,2, . . . , n. 

The first row of G' is self-orthogonal and orthogonal to other rows, as 1 + X2  = 0 and 

:= X . gi, 3Y2  + X - g j3  = 0, i = 1, 2,. . . , n. The other rows of G' are also self-orthogonal 

and orthogonal to other rows, as 4}ç2  + g = 0 and 4Yr + gj,gi, = 0 for i j, 

i, j = 1,2,. . . , n. Therefore, the code C' generated by C' is self-orthogonal. • 

1000 0 1+2v 3+2v 3 

0100 1 1 1 0 
Example 3.6.9. The matrix G = generates a free 

0010 3+2v 0 1+2v 3 

0001 1+2v 3+2v 0 3 

self-dual code of length 8 over R. 

From the above code, we can construct a self-orthogonal code over R, as follows: 

Let X=(2+v, 0, 1, 3+v, 0, 3, 0, 2v). Then clearly 1+X2 =0. Since Y2 =X.gi , 

Y = (1 + v, 3, 1 + 2v, v)T,  therefore 

1 0 0 0 2 + v 0 3 + v 1 0 3 0 2v 

3+3v 1+v 1+v 1+v 1 0 0 0 0 1+2v 3+2v 3 

G'= 1 3 3 3 0 1 0 0 1 1 1 0 

3+2v 1+2v 1+2v 3+v 0 0 1 0 3+2v 0 1+2v 3 

3v v v v 0 0 0 1 1+2v 3+2v 0 3 

generates a free self-orthogonal code of length 12. 
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3.7 Conclusion 

In this chapter, we have studied linear codes over R = Z4  + v7Z4, v2 = v. We have obtained 

a MacWillaims type identity for linear codes over R with respect to Lee, Gray and RT 

metrics. We have given a transformation to obtain the p-weight enumerator from the Lee 

complete p-weight enumerator of a code. Some characterizations of self-dual codes over 

R are provided. We have proposed a new construction method for self-dual codes over R 

and also generalized a construction method for self-dual codes over Galois rings to self-

orthogonal codes over R. 
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Chapter 4 

Self-dual codes over Z4  + wZ4  

4.1 Introduction 

Self-dual codes over finite fields have been studied extensively [59,69,70,72,74]. They are an 

interesting class of codes as they often produce optimal codes and have many links to other 

areas of mathematics such as lattices, t-designs, Hadamard matrices and quantum stabilizer 

codes [95]. The search for self-dual codes with good parameters is an interesting problem 

in coding theory. Several methods have been proposed by researchers to obtain good codes 

over finite fields, like quadratic residue codes, double circulant codes, etc. In recent years, 

the construction of self-codes over finite rings has got the attention of researchers [69-72,74]. 

In [59], Harada has introduced an easy way to generate many binary self-dual codes from 

a self-dual code of a smaller length. Kim [69] has introduced a building-up construction 

for self-dual codes over 1F2. This construction has been generalized to the codes over finite 

fields ]Fq  [70], Galois rings [71] and finite chain rings [72]. Alfaro and Dhul-Qarnayn [6] 

have proposed a more general method for constructing self-dual codes over and over 

finite chain rings, through which one can obtain the self-dual codes obtained by methods 

proposed in [69-71]. In this chapter, we introduce another new ring Z4  + wZ4, w2  = 2w 

and study linear and self-dual codes over Z4  + wZ4. 

77 
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R1  

(2, w) 

/\ 
(2) (2+ w) (w) 

(2w) 

(0) 

Figure 4.1: Lattice diagram of ideals of Z4  + wZ4  

4.2 Linear codes over Z4  + wZ4  

LetRbetheringZ4+wZ4 ={0,1,2,3,w,2w,3w, 1+w,1+2w,1+3w, 2+w,2+2w,2+ 

3w, 3+w,3+2w,3+3w}, where w2  = 2w. The units of R are {a+wb : a is a unit in Z41 

and each unit is a self-inverse. R has 7 ideals in all. Figure 4.1 presents the lattice diagram 

of ideals of R. R is a local ring of characteristic 4 with (2, w) as its unique maximal ideal. 

From the ideals of R, we can see that they do not form a chain; for instance, the ideals (w) 

and (2) are not comparable. Therefore, R is a non-chain extension of Z4. Also R is not a 

principal ideal ring; for example, the ideal (2, w) is not generated by any single element of 

R. We have ----- Z2. 
(2, w) 

We can see that R is a group ring over Z4, as the multiplicative group S = 11, 1 + w} 

of two units 1 and 1 + w of R generates R over Z4, i.e., R = Z4[S]. In other words, R is a 

free module over Z4  with S as a basis. 

As in the previous chapter, we define the Gray map on R as a map : R -* Z2 such 

that 

'I(a+wb)=(b, a+b) 

for any a+wb E R. is an analogue of the Gray map on Z4  (Definition 2.3.21). This map is 
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then extended component wise to q5: R -p Z, so that for any x = (x1, x2,. . . , x,) E R', 

(x)=(s, r+s), 

where r = (ai, a2,. .. , ar,), s = (b1, b2,.. . , b,) E Zn and x3  = a3  + wb3, j = 1,2,. .. , n. 

can easily be seen to be a Z4-module isomorphism. As noted earlier, the Lee weight and 

the Euclidean weight of any x E Rn are defined as the corresponding weights of its Gray 

image, i.e., wtL(x) = wtL(b, a + b) and WtE(X) = wtE(b, a + b). 

A linear code C of length n over R is an R-submodule of the R-module R. The dual of 

C is the code C-'-  := {x e R: x•y = O,Vy E C}, where x y denotes the usual inner product 

of x and y over R. The ring R is a Frobenius ring [135] and hence CIIC'I = IRIS [135]. 

Since the ring R is not a chain ring, it is difficult to write the standard form generator 

matrix for codes over R. However we can find a minimal set of generators for such codes. 

Theorem 4.2.1. The Gray map 0 is a linear isometry with respect to the Lee and Euclidean 

distances in R' and Z. 

Proof. Same as that of Lemma 3.3.1. . 

Theorem 4.2.2. Let C be a [n, M, d] linear code over R. Then O(C) is a [2n, M, d] 

linear code over Z4, where d is either Lee or Euclidean distance and M = C. 

Proof. The result follows from Theorem 4.2.1. • 

Theorem 4.2.3. Let C be a linear code of length ri over R. Then çb(C-'-) = q5(C)'. 

Proof. Let (c') E q5(C-'-), where c' = a' + wb' E C', and let c = a + wb E C. Now C' C = 0, 

implying that a'a = 0 and a.b'+a'b+2(b'.b) = 0. Then (c) .(c') = (b, a+b)(b', a'+b') = 

(a. a') + 2(b. b') + (a b' + a' b) = 0. This implies that (c' ) E cb(C)', as (c) E (C). 

Therefore cb(C') ç q(C)'. 

On the other hand, since 0 is a module isomorphism and the Gray image c(C) of C is a 

Z4-code of length 2n, I(C)-'-I 
= = cl = IC'I = q(C')I. Hence (C') = (C)'. • 

A map satisfying Theorem 4.2.3 is called dual preserving map [86]. Therefore 0 is 

a dual preserving map. Since R is a Frobenius ring, for any linear code C of length n, 
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CC1I = 16, and MacWilliams identities hold for a linear code C over R. First we define 

Lee weight enumerator as it was defined for a linear code over Z4 +vZ4  in Chapter 3, Section 

3.4.1. The Lee weight enumerator of a linear code C over R is a homogenous polynomial of 

degree 4n defined by Leec(x, ii) = .Iec x4n_wt)ywtL). 

Theorem 4.2.4. [86] Let C be a linear code of length n over R. Then 

Le±(x, y)=Lee(x+y, x — y). 
FCI 

Proof. We know from Theorem 2.3.20 that the MacWillaims identities hold for linear codes 

over Z4. Now from Theorems 4.2.1 and 4.2.3, we get that 

Leeci(x, y) = Lee,(C±)(x, y) 

= Lee(C)± (x, y) 
1 

— Lee (c) (x+y, x — y) 
— Ic(C)I 

= Leec(x+y, x — y) 

. 

Remark 4.2.5. One can also derive the Mac Williams identities for a linear code over R by 

defining a character on a non-trivial ideal I of R as x : I —* C such that (a + wb) = 

where a + wb E I, as was defined for linear codes over Z4  + vZ4  in Chapter 8, Section 8.4. 

The following examples are due to Martinez et al. [86]. 

Example 4.2.6. Let C be the code generated by 

1 0 0 0 2+2w 3+3w 3+3w 3+3w 

o i 0 0 3+3w 2+2w 3+3w 1+w 

o o 1 0 3+3w 1+w 2+2w 3+3w 

0 0 0 1 3+3w 3+3w 1+w 2+2w 
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Then the Lee and Euclidean weight enumerators of O(C) are given by 

WL(C) = 1 + 380? + 1920z'°  + 7168z12  + 13440z14  + 19718z16  + 13440z'8  

+ 7168z20  + 1920z22  + 380z24  + z32  

and 

WE(C) = 1 + 224? + 2176z12  + 7836z16  + 14848z20  + 17088z24  + 13056z28  

+ 6932z32  + 2560z36  + 608z4°  + 128z44  + 28z48  + z64, 

respectively. 

Example 4.2.7. Let C be the code of length 8 over R generated by 

1 0 0 0 2w 3+3w 3+3w 3+3w 

o i 0 0 3+3w 2w 1+3w 3+w 

o o 1 0 3+3w 3+w 32w 1+3w 

o o 0 1 3+3w 1+3w 3+w 2w 

Then the Lee and Euclidean weight enumerators of O(C) are given by 

WL(C) = 1 + 508z8  + 896z'°  + 10752z12  + 6272z14  + 28678z16  + 6272z'8  

+ 10752z20  + 896z22  + 508z24  + z32  

and 

WE(C) = 1 + 480z8  + 15516z12  + 34496z24  + 13638z32  + 1376z40  + 28z48  + z64, 

respectively. 
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4.3 Self-dual codes over Z4  + wZ4  

In this section, we study self-dual codes over R. 

Theorem 4.3.1. A self-dual code of any length over R exists. 

Proof. Let C be a self-dual code of length ii over R. We show that C can be of any length. 

Since CIIC'-I = 16 and C is a self-dual code, so C 2  = 16. It implies that ICI = 102 = 4" 

which is a positive integer for all n. This shows that there may exist a self-dual code of any 

length n. Furthermore, the code of length 1 generated by (2) is a self-dual code. Therefore, 

by taking direct products of self-dual codes of length 1 we can obtain a self-dual code of 

any length ii over R. • 

We note here that no free self-dual code of odd length exists over R. This is because 

of the fact that for a free self-dual code of free rank k and length n over R we have 

Cl = 16' = 16, which implies that k = 

In [48], Dougherty et al. have shown that a free self-dual code of even length and of 

length a multiple of 4 over a commutative Frobenious ring R with unique maximal ideal 

M exists if I a I = 1 or 3 (mod 4). However they have not discussed about the case = 2 

(mod 4). The following theorem shows the existence of free self-dual codes over R when 

= 2 (mod 4) over R. 

Theorem 4.3.2. The length of any free self-dual code over R is at least 8. 

Proof. We know that no free self-dual code of odd length exists over R. If there exists a 

free self-dual code C of length 2 over R, then it must contain a codeword (1, x) or (x, 1), 

where x € R. Since C is self-dual, 1 + x2  = 0 (mod 4), which is impossible in R, as there is 

no element in R satisfying this relation. Therefore, there is no free self-dual code of length 

2 over R. 

Let C be a free self-dual code of length 4 over R with a generator matrix C. After 

some row operations and column permutations on C, it can be written as G' = (91, 9 2 )T ,  

where g1  = (1,0,a11,a12 ) and 92 = (0,1,a21,a22), aij  eR, i, j = 1, 2. Since C is self-dual, 

= 
2 2  1 + a 1  + a, = 0 (mod 4) for i = 1, 2. But no two elements a, b of R satisfy this 

relation. Therefore, there does not exist any free self-dual code of length 4 over R. 
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Now let C be a free self-dual code of length 6 over R generated by 

1 0 0 all  a12  a13  

G 0 1 0 a21  a22  a23  

0 0 1 a31  a32  a33  

where a 3  E R, i, j = 1,2, 3 (if G is not in this form, we can reduce G to this form by 

elementary row operations and column permutations). Since C is self-dual, 1+a+a+a = 

0 for i = 1, 2,3. It implies that aij,  i, j = 1, 2, 3, are units. Since each row of G is orthogonal 

to other rows, we get a 1a31  + a 2a32  + a3a33 = 0 for i j, which is a contradiction, as 

the sum of three units is a unit in R. Hence there does not exist any free self-dual code of 

length 6 over R. 

Now we show the existence of a free self-dual code of length 8 over R. Let C be a linear 

code generated by 

1000 a1  a2  a3  

)T _i 

0 1 0 0 —a2  a1 0 a3  
G= (gl,g2,g3,g4 - 

o 0 1 0 a3 0 —a1  a2  

0001 0 —a3  a2  a1 , 

where a3, j = 1,2, 3,4, is a unit in R. Clearly the rows gj of C are linearly independent. 

Since the units of R are self-inverse, 1 + a + a + a 0. So, the rows gj  of C are self- 

orthogonal. Thus the code C generated by C is a free self-orthogonal code over R and 

Cl = 16. Now IC'I =  168   = 16 = ICI. Therefore C is self-dual. Hence the length of a free 

self-dual code over R is at least 8. 

Corollary 4.3.3. There exists a free self-dual code of length a multiple of 8 over R. 

Proof. By Theorem 4.3.2, there exists a free self-dual code C of length 8 over R. Hence by 

taking the direct products of C we can obtain a free self-dual code of length a multiple of 

8 over R. 
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1 0 0 0 1 1 1+w 0 

o i 0 0 3+3w 0 1 1 
Example 4.3.4. The matrix C = generates 

o o 1 0 0 3+3w 1 3 

o o 0 1 3+3w 1+w 0 3 

a free self-dual code of length 8 over R and its minimum Hamming distance is 4. 

Theorem 4.3.5. A self-dual code of length n over R contains the codeword (2w, 2w,. . . , 2w). 

Proof. The ring R can be partitioned into 3 sets as A0  = {0, 2, 2w, 2 + 2w}, A1  = 11, 3, 1 + 

w, 1+2w, 1+3w, 3+w, 3+2w, 3+3w}, A2 = {w, 3w, 2+w, 2+3w}, where A, j = 0, 1, 2w, 

contain the elements a e R such that a2  = j. Let c = (Cl, c2,. .. , c,) e C and n(c) denote 

the number of components of c which are from A, j = 0, 1, 2w. 

Since C is a self-dual code, we have c c = 0 for all c E C, which implies that C
i
2 
= 0. 

Therefore, cc = ni(c)+(2w)n2 (c) = 0. It implies that n2 (c) is even and n1(c) is a multiple 

of 4. 

Now for any codeword (c1,c2,...,c) E C, we have (c1,c2,.. . ,c) . (2w,2w,.. . ,2w) = 

(2w)ni(c) = 0, as (2w) . (unit) = 2w; (2w) . (non - unit) = 0 in R, and ni (c) is even. 

Therefore, (2w, 2w,.. . , 2w) E C'. Since C is self-dual, (2w, 2w,.. . , 2w) E C. U 

Theorem 4.3.6. If C is a self-dual code over R, then so is O(C) over Z4. 

Proof. This follows from Theorem 4.2.3. • 

Define ji: R - Z4  such that p(a + wb) = a and ii: R - Z4  such that v(a + wb) = b. 

These projection maps are linear and can be extended to RTh  component wise. It is easy to 

see that if C is a linear code over R then so are p(C), v(C) over Z4. 

Theorem 4.3.7. Let C be a self-dual code over R. Then y(C) and v(C) are self-orthogonal 

codes overZ4. 

Proof. Let C be a self-dual code over R and c1, c2  E C, where c1  = a1  + wb1, c2  = a2  + wb2. - 

Since C is self-dual, c1  c2  = 0, which implies that a1  a2  + b1  . b2  = 0 and a1  . b2  + a2  . b1  = 0. 

Now from Theorem 4.3.6, O(C) is self-dual over Z4. Then q5(ci ) . O(c) = 0 for c1, c2  E C. 

This implies that 2(b1  .b2)+c i  a2 +a1  b2 +a2  .b1  = 0, as /(a+wb) = (b,a+b). This in 
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turn implies that b1  b2  = 0 and a1  a2  = 0, as a1  b2  + a2  b1  = 0 and a1  a2  + b1  b2  = 0. 

Therefore /2(C) and v(C) are self-orthogonal codes over Z4. 

Theorem 4.3.8. The minimum Hamming distance of a free self-dual code C over R is at 

most 2  + 1. 

Proof. Let C be a free self-dual code C of free rank k over R, and let djq(C) be the minimum 

Hamming distance of C. Since C is a self-dual code, k = . Then from the Singleton bound, 

dH(C)<n—  11  +l=+l. • 

4.3.1 A construction of self-dual codes 

In this subsection we give a construction of self-dual codes over R. 

Theorem 4.3.9. Let C = [In I An], where A = (a3k), be a square matrix of order n such 

that = 1, for j = 1,2,. . . , n. If C is a generator matrix of a free self-dual code C 

of length 2n (n an even integer) over R, then 

I,, B,, •.. Bn  An  B ... B, 

Bn  In Bn  A Bn  
G, = 

7? 

... 

B7, B7, ... I,, B,-, B7, ... An  

generates a free self-dual code C' of length 2kn over R, where B7, is an all Ce matrix of order 

n, c a unit in R, and B,, is being repeated 2(k - 1) times in each row of G'. 

Proof. Let C be a generator matrix of a free self-dual code C of length 2n, where n is 

an even integer. Since C is self-dual, 1 + a = 0 and a3,a = 0 for j 1, 

j,l=1,2,...,n. 

Now let C' = [g'1  g ... 
gF]T, where g represent the rows of n x n matrices in C', 

j = 1, , k, as shown above and T represents the transpose. It is clear that the rows 

of each g are independent and hence so are the rows of C'. Therefore, G' generates a free 

kn code, say C', of length 2kn and hence JCJ =  16 
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Now let the rows of be g 1 , I = 1,2, ... , n. Then g 1 •g 5  = 1+2(k-1)na2+E 1  a = 0, 

as n is even and 1 + En a = 0. Again g 1  g = 2(k - 1)na2  + a5/a8/, = 0, as 

n is even andEn a1k a8k  = 0 for s 1. Therefore, the rows of g are orthogonal to all 

rows of g. Similarly, we can see that the rows of g are orthogonal to the rows of g', for 

j k, as 2a + 2(k - 2)nc 2  + 2a ask) = 0. Therefore the code C' generated by C' is 

self-orthogonal. Since (C')-'-I = = 6kn 
= C' is self-dual. U 

Example 4.3.10. Let C be the self-dual code of length 8 over R generated by 

1000 0 1+2w 3+2w 3 

0100 1 1 1 0 
G= 

0010 3+2w 0 1+2w 3 

0001 1+2w 3+2w 0 3 

Then the matrix C' = 

( 14  B4  A4  B4 
 \ generates a free self-dual code of length 16 

\B4  14  B4  A4 ) 
over R and its minimum Hamming distance is 4. 

4.3.2 Circulant self-dual codes 

A matrix A is said to be a a-circulant matrix generated by (a1, a2,.. . , a) if 

a1  a2  an_i a 

aa at  a_2 an_i 

An  aa_1  aa a_3  a fl_2 

aa2  cEa3  aan  a1  

and it is denoted by a - cir(ai , a2,. . . , a,). If a = 1 then An  is called a circulant matrix and 

a nega circulant matrix if a = —1. A matrix B is said to be a pure double circulant matrix 

if B = [In  I An], where In  is an identity matrix and An  is any circulant matrix generated 

by (a1,a2, ... ,a). 
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Codes generated by circulant, pure double circulant and nega circulant matrices are 

called circulant (cycic), pure double circulant and nega circulant (negacyclic) codes, re-

spectively. 

Theorem 4.3.11. No pure double circulant self-dual code exists over R. 

Proof. We know that a pure double circulant code is a free code, and there is no free self-

dual code of odd length over R. Let C be a pure double circulant self-dual code of length 

n = 2k, k> 1, generated by C = [Ik I Ak], where 

a1 a2  a3 ak-1 ak 

ak a1 a2 ak-2 ak-1 
Ak= 

a2 a3 a4 ak a1 

a3  eR, j == 1, 2, . .. , k. 
k k 

Since C is self-dual, 1 + L a 0 (mod 4), which implies that L a = 3 (mod 4). Also, 
j=1 j=1 

k k 
since any two rows of C are orthogonal, from which follows that 2 E E a3a1 = 0. It 

j=11=1, j'd 
/ 
fk \ 

2 
k fk \ 

implies that ( a3  J = > a (mod 4), which in turn implies that ( > a3 J = 3 (mod 
'j=1 / j=1  

4). But no element in R satisfies x2  = 3 (mod 4). Hence there is no pure double circulant 

self-dual code of length n over R. U 

Now we define another class of codes called formally self-dual codes. A linear code C 

over R is called a formally self-dual code if C and C' have the same weight enumerator. It is 

immediate that a self-dual code is necessarily formally self-dual but not the converse, i.e., a 

formally self-dual code may not be self-dual. It follows from Theorem 4.2.4 that, if a linear 

code C of length n over R is formally self-dual, then so is (C) over Z4. In [139], Yildiz and 

Karadeniz have extended the construction methods described in [61] to construct formally 

self-dual codes over Z4+uZ4, u2  = 0. They have also obtained some good formally self-dual 

codes over Z4  from the codes constructed by the previous methods over the ring Z4  + u7Z4. 

It can be easily seen that these construction methods can be generalized to the ring R. 
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Theorem 4.3.12. [139, Theorem 5.2] Let M be a circulant matrix over R of order n. 

Then the matrix C = [I, I M] generates a formally self-dual code over R. 

Theorem 4.3.13. /139, Theorem 5.41  Let Mn-, be a circulant matrix over R of order 

n - 1. Then the matrix 

I, M_1  

2' 

where c, 3, E R such that = ±, generates a formally self-dual code of length 2n over 

R whose Gray image is a formally self-dual code of length 4n over Z4. 

Example 4.3.14. [86, Example 3.12] Let M6  = cir(0, w, 3, 2w, 3,2) be a circulant matrix 

of order 6 over R. Then the code C = [16 I M6 ] is a formally self-dual code of length 12 

over R but not self-dual. The Gray image of C is a formally self-dual Z4-code of length 24 

and minimum Lee distance 10. 

Example 4.3.15. [86, Example 3.13] Let M5  = cir(0, w, 1, 1,2 + w) be a circulant matrix 

of order  5  over  R  and  take'y=/3-3+2w  and a-2. Then the matrix 

7  
= 

16 M5  '6 

7 

2 3+2w 3+2w 3+2w 

3+2w 

M5  

3+2w 

generates a formally self-dual code of length 12 over R, which is not self-dual. The Gray 

image of C is a formally self-dual Z4-code of length 24 and minimum Lee distance 10 and 

has a different Lee weight enumerator than the previous example. 
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4.4 Type II codes 

A self-dual code C over R is said to be a Type II code if the Euclidean weight of every 

codeword is divisible by 8, otherwise C is said to be a Type I code. 

Theorem 4.4.1. A Type II code of length n over R exists if and only if n is a multiple of 

Proof. Let C be a Type II code of length ri over R. From Theorem 4.3.6, (C) is a self-dual 

code of length 2n over Z. Since 0 is distance preserving, (C) is a Type II code over Z4. 

Conversely, let C be a self-dual code of length n over R such that n is a multiple of 

4. Then from Theorem 4.3.6, i(C) is self-dual code of length 2n over Z4. From Theorem 

2.3.23, 4(C) is Type II code of length 2n over Z. Since 0 is distance preserving, C is also 

a Type II code over R. U 

The following theorem is analogous to [137, Theorem 2.13]. 

Theorem 4.4.2. Let dE(II) and dE(I) be the minimum Euclidean weights of a Type II 

code and a Type I code of length n, respectively, over R. Then dE(II), dE(I) :~ 8[f j + 8. 

Proof. Let C be a Type II or Type I code of length n over R. Since 0 is distance preserving 

and (C) is a Z4-code of length 2n, the result follows from Theorem 2.3.24. In Theorem 

2.3.24, it is mentioned that the above result holds when the code length is not equal to 23 

(mod 24). Since (C) is of length 2n and 2n 23 (mod 24) for n > 1, so the bound for 

dE(I) does not change. • 

Codes satisfying the above bounds are said to be Extreinal Type II codes and Ext remal 

Type I codes, respectively. 

Corollary 4.4.3. If C is an Extremal Type II code over R, then so is q(C) over 7L4. 

Proof. This result follows from Theorems 4.4.1 and 4.4.2. 

The codes given in Examples 4.2.6 and 4.2.7 are extremal Type II codes over R. 



Chapter 4: Self-dual codes over Z4  + wZ4 90 

4.5 Conclusion 

In this chapter, we have studied linear codes over the rings R = Z4  + wZ4, w2  = 2w. 

Some characterizations of self-dual codes over R are provided. We have proposed a new 

construction method for constructing self-dual codes over R. Circulant self-dual codes and 

Type II codes over R are briefly discussed. 

IV 



Chapter 5 

Cyclic codes over Z4 + uZ4  

5.1 Introduction 

Cyclic codes are amongst the most studied algebraic codes because of their rich algebraic 

structure and practical importance. They have been generalized to various finite rings. 

Their structure over finite chain rings is now well known [45, 83, 84,90]. They have also 

been studied over finite polynomial rings such as ]B'2+uF2, u2  = 0 [26]; F2 +vIF2, v2  = v [140], 

F2 + 2 +v1'2 +'F2, u2  = v2  = 0, uv = vu [138], 1  [114] and (v.2,v2,uv_vu)fEq [68]. However, 

not much attention has been paid to cyclic codes over local non-chain rings. 

Recently, Yildiz and Karadeniz [139] have studied linear codes over R = Z4  + uZ4, 

it2  = 0. Yildiz and Aydin [136] have studied cyclic codes over R and have obtained some 

good linear Z4-codes which are actually the Gray images of cyclic codes of odd lengths over 

R. In this chapter, we study cyclic codes and their structural properties extensively over 

R. We first study cyclic codes of odd lengths over R. For this we describe the Galois ring 

extension of R and then cyclic codes of odd length n through the factorization of Xn - 1 

over R. We then consider cyclic codes of arbitrary lengths over R. 

In [136, Theorem 6] Yildiz and Aydin have given the structure of cyclic codes over R. 

However the structure given therein does not cover all the cyclic codes over R. We present 

here a structure of generators of cyclic codes over R that is slightly different from that 

of [136, Thereom 6], and it covers all cyclic codes over R. Using the general form of the 

generators of a cyclic code over R we have obtained a minimal spanning set and a formula 

91 



Chapter 5: Cyclic codes over Zi. + uZ4 92 

for the rank of such codes. We have also determined a necessary condition and a sufficient 

condition for cyclic codes over R to be R—free. For n = 2JC, we have shown that R is a 

local ring and determined the complete ideal structure of R. 

5.2 The ring Z4  + uZ4  

Throughout the chapter, R denotes the ring Z4  + uZ4  = {a + ub I a, b E Z41 with u2  = 0. 

R can be viewed as the quotient ring The units of R are 

1, 3, 1 + u, 1 + 2u, 1 + 3u, 3 + u, 3 + 2u, 3 + 3u 

and the non-units are 

0,2,u,2u,2+u,2+2u,3u,2+3u 

Thus an element a + ub E R is a unit if and only if a E Z4  is a unit. R has five non-trivial 

ideals in all: 

(2u) = {0, 2u}, 

(u) = {0, u, 2u, 3u}, 

(2) = {0,2,2u,2+2u}, 

(2+u) = {0,2+u,2u,2+3u} 

(2, u) = {0,2,u,2u,3u,2+u,2+2u,2-i-3u}. 

From the ideals of R, we can see that they do not form a chain; for instance, the ideals 

(u) and (2) are not comparable. Therefore, R is a non-chain extension of Z4. Also R is not 

a principal ideal ring; for example, the ideal (2, u) is not generated by any single element of 

R. Thus, the ring R is a local non-chain extension of Z4  with unique maximal ideal (2, u). 

The residue ring of R is Z. The ring R is not isomorphic to the ring Z4  + wZ4, 

= 2w discussed in Chapter 4. Though both the rings look similar in the first glance, 

there are differences between them. For example, the ring Z + wZ4  is a group ring over 
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R1  

(2, u) 

/\ 

(2) (2+u) (u) 

(2u) 

(0) 

Figure 5.1: Lattice diagram of ideals of Z4  + 'uZ4  

but R is not, as no multiplicative subgroup of units of R generates R over Z4. The lattice 

diagram of ideals of R is given in Figure 5.1. 

The Gray map on R" is defined in [139] as : R - such that 

= (, 

This is same as the Gray map defined over Z. However the Gray map on Z is non-linear 

whereas the Gray map defined on R is linear (Theorem 5.2.1). 

The Lee weight and Euclidean weight on R are defined by 

wL(a + ub) = WL(b, a + b) 

and 

wE(a+ub) = wE(b, a+b) 

where wL(b, a+b), wE(b, a+b) are the usual Lee and Euclidean weights of (b, a+b) in Z. 

These weights are then extended componentwise to R. The Lee/Euclidean weight of an 

element x e RTh is the sum of the Lee/Euclidean weights of its coordinates. The Hamming 
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weight of x E R is the number of non-zero coordinate positions in x and is denoted by 

WH(X) 

Theorem 5.2.1. [189, Theorem 2.3] The Gray map 0 is a linear isometry with respect to 

the Lee and Euclidean distances in Rn and 

Theorem 5.2.2. [86, Proposition 3.4] There is no injective Z4-linear map from R to Z 

of the form av1  + by2  '-* (a, b), where {vi, v21 is a 7L4  basis that preserves duality. 

It is to be noted from Theorem 5.2.2 that the map 0 defined on R is not a dual 

preserving map. But the same map 0 defined on (Z4  + wZ4)Th in Chapter 4 is a dual 

preserving map. This is another difference between the rings Z4  + wZ4  and R. 

A linear code C of length n over R is an R-submodule of R. C may not be an R-free 

module. We can express R as R = Z + uZ, and so a linear code C of length n over R 

can be expressed as C = C1  + uC2, where C1, C2  are linear codes of length n over Z4. 

We denote the residue field R  ofRbyR. Since {O+(2,u)}U{1+(2,u)} = R, therefore 

R IF2. The image of any element a e R under the projection map i: R -p R is denoted 

by . The map it  is extended to R[x] -4 [x] in the usual way. The image of an element 

f(x) E R[x] in [x] under this projection is denoted by 7(x). A polynomial f(x) e R[x] is 

called basic irreducible (primitive) if 7(x) is an irreducible (primitive) polynomial in [x]. 

5.3 Galois ring extensions of Z4  + uZ4  

The factorization of x' - 1 plays a vital role in the study of cyclic codes. So we first consider 

the factorization of - 1 over R. Let n be an odd integer for the rest of this section. The 

following theorem gives the Hensel's lift of a polynomial to R and also guarantees the 

existence of a primitive element over R. 

Theorem 5.3.1. Let g(x) e IF2{x] be a monic irreducible (primitive) divisor of 2r _l 
- 1 

Then there exists a unique monic basic irreducible (primitive) polynomial f(x) in R[x] such 

that 7(x) = g(x) and f(x) I (x2" ' - 1) in R[x]. 
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Proof. Let x2T_1 = g(x)g'(x) in 1F2[x]. By Hensel's lemma, there exist f(x),f'(x) e  Z4 [XI 

such that 

x21 '-1=f(x)f'(x) 

in Z4[x]  and f(s) (mod 2) = g(x), f'(x) (mod 2) = g'(x). Since Z4  is a subring of R, 

f(s) E R[x]. Also 7(x) = f(s) (mod (2, u)) = g(x) and f(s) I (2r_1 
- 1) in R[x]. • 

We call the polynomial f(s) in Theorem 5.3.1 the Hensel lift of g(x) to R. 

Since n is odd, it follows from Theorem 2.3.15 that Th 
- 1 factorizes uniquely into 

pairwise coprime basic irreducible polynomials over R. Let 

- 1 = fl(x)12(x) ... fm(x) 

be such a factorization of x - 1. Then it follows from the Chinese Remainder Theorem 

that 
R[x] R[x] 

(fl —1) = 1(f()) 

Therefore every ideal I of can be expressed as 

I = 

R[x] where I is an ideal of the ring i = 1, 2, . . . , m. 

Let us recall the Galois ring extension of Z4.  Let h(s) be a monic basic irreducible 

polynomial of degree r in Z4  [x]. Then the Galois ring GR(4, r) over Z4  is defined as the 

residue class ring The ring GR(4, r) is a local ring with unique maximal ideal (2) 

and the residue field 

Let Y = {O, 1, , 
2r_2} be the set of Teichrnüller representatives of GR(4, r), 

where is a root of a basic primitive polynomial of degree r in Z4[x]. Then each element a 

of GR(4, r) can be written as a = a0  + 2a1, where a0, a E T. This representation is called 

the 2-adic representation of the elements of GR(4, r). 

Now we define the Galois ring extension of R. Let f(s) be a basic irreducible polynomial 

of degree r in R[x]. Then the Galois ring extension of R is defined as the quotient ring 
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and is denoted by GR(R, r). If a is a root of f(x), then the elements of GR(R, r) can 

uniquely be written as m0  + m1a + m2a2  +. + mr_lar_ l , m2  E R, i = 0, 1,. . . , r - 1, i.e., 

GR(R, r) is a free module of rank r over R with a basis {1, a, a2, r_} and I GR(R, r) I = 

16r. From Theorem 5.3.5 below, it follows that the ring GR(R, r) is a local ring with unique 

maximal ideal ((2, u) + (f)) and the residue field 1F2r. Furthermore, 

GR(R, r) = GR(4,r)[u] 
GR(4, r) + uGR(4, r) 

- (u2) 

where GR(4, r) is the Galois ring of degree r over Z4. 

Therefore, an element x of GR(R, r) can be represented as x = a + ub, where a, b E 

GR(4, r). Using the 2-adic representation of a = a0  + 2a1, b = a2  + 2a3, a0, a1, a2, a3  E T, 

the element x e GR(R, r) can further be represented as x = a0  + 2a1  + ua2  + 2ua3. 

Lemma 5.3.2. A non-zero element x = a0  + 2a1  + ua2  + 2ua3  of GR(R, r) is a unit if and 

only if a0  is non-zero in T. 

Proof. Since x4  = a for every non-zero element x in GR(R, r), the result follows. . 

Thus the group of units of GR(R, r), denoted by GR(R, r)*,  is given by 

GR(R, r)* = {ao  + 2a1  + 'ua2  + 2ua3  : a0, a1, a2, a3  E T, a0  O}. 

Theorem 5.3.3. The group of units GR(R, r)*  is a direct product of two groups Cc and 

GA, i.e., GR(R, r)* = Cc x GA,  where GC  is a cyclic group of order 21 - 1 and GA is an 

abelian group of order 8'. 

Proof. Let be a primitive element of GR(R, r) and GC  = = 11, c,.. . 2?'_21. Then Cc 

is a multiplicative cyclic group of order 2' - 1. For x = a0  + 2a1  + ua2  + 2ua3  E GR(R, r)*,  

define a mapping F : GR(R, r)* Cc such that F(x) = a0. It can easily be seen that 

for any a, x, y E GR(R, r)*,  F(ax + y) = F(a)F(x) + F(y). F is obviously a surjective 

map. Therefore GR(R,r) 
Cc, where ker F = 11+ 2a1  + ua2  + 2ua3  : a1,a2,a3ker F 

Denote ker F by GA. Then it can easily be seen that GR(R, r)* Cc x GA-  Moreover 

I GR(R,r)*l = IGCHGAI = 8T(2r 
- 1). 0 
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The set of all zero divisors of GR(R, r) is given by 12a1  + ua2  + 2ua3  : a1, a2, a3  e 

which is a maximal ideal generated by (2, u) in GR(R, r). 

Now we consider the ideal structure of GR(R, r). We first prove the following Lemma. 

Lemma 5.3.4. Let f(x), g(x) C R[x]. Then f(x), g(x) are coprime if and only if their 

images 7(x), (x) are coprime in [x]. 

Proof. If f(x), g(x) are coprime, then it is immediate that 7(x) and (x) are coprime. Now 

suppose that 7(x), (x) are coprime. Then there exist a(x), b(x) E R[x] such that 

(x)7(x) + (x)(x) = 1. 

Thus there exits r(x), s(x) E R[x] such that 

a(x)f(x) + b(x)g(x) = 1 + 2r(x) + us(x) . (5.3.1) 

Multiplying (5.3.1) by 2r(x) and by us(x), we respectively get equations: 

2r(x)a(x)f(x) + 2r(x)b(x)g(x) = 2r(x) + 2ur(x)s(x) , (5.3.2) 

us(x)a(x)f(x) + us(x)b(x)g(x) = us(x) + 2nr(x)s(x) . (5.3.3) 

On adding (5.3.2) and (5.3.3), we get 

a(x)(2r(x) + us(x))f(x) + b(x)(2r(x) + us(x))g(x) = 2r(x) + us(x) . (5.3.4) 

Putting the value of 2r(x) + us(x) in (5.3.1), we get 

a(x)(1 - 2r(x) - us(x))f(x) + b(x)(1 - 2r(x) - us(x))g(x) = 1 

Therefore f(x) and g(x) are coprime. U 

The following theorem presents the ideal structure of where f(x) is a basic irre- 

ducible polynomial over R. 
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Theorem 5.3.5. Let f(x) e R[x] be a basic irreducible polynomial. Then the ideals of 

are precisely, (0), (1+ (f(x))), (2+ (f(x))), (u + (f(x))), (2u + (f(x))), (2+ u + (f(x))) 

and ((2,u) + (f(x))). 

Proof. Let I be a non-zero ideal of Let h(x) + (f(x)) E I. Since f(x) is ba- 

sic irreducible, 7(x) is irreducible in i[x]. Therefore gcd($(x),i(x)) - 1 or 7(x). Let 

gcd(7(x))i(x)) = 1. Then f(x) and h(x) are coprime in R[x], and hence there exist 

A1,A2  E R[rrj such that 

)if(x)+A2h(x)=1. 

From this follows that .X 2h(x) = 1 (mod f(x)). Thus h(x) is an invertible element of 

and sol= (1 +(f(x)))= 

Now suppose that gcd(f (x), (x)) = 7(x). Then there exist polynomials g(x), f1(x), f2(x) E 

R[x] such that 

h(x) = f(x)g(x) + 2fi(x) + uf2(x) 

and gcd(7(x),71(x)) = 1 or gcd(7(x),72(x)) = 1. It follows that h(x) + (f(x)) E 

((2, u) + (f(x))). Therefore if I 74  (1+ (f(x))), then I c ((2, u) + (f(x))). The non-

zero ideals contained in ((2, u) + (f(x))) are (2 + (f(x))), (u + (f(x))), (2u + (f(x))), 

(2 + u + (1(x))) and ((2, u) + (f(x))) itself. Therefore I is in one of the ideals (2 + (f(x))), 

(u + (f(x))), (2u + (f(x))), (2+ u + (f(x))) and ((2, u) + (f(x))). 

On the other hand, suppose h(x) + (f(x)) = ugi (x) + 292(x) + (f(x)) E I, where 

gi (x), 92(x) e R[x] and gcd(ji(x),7(x)) = 1, gcd((x),7(x)) = 1. Here we note that 

gcd((x),7(x)) = 1, gcd((x),7(x)) = 1. For if ged(Ti 74 1, then gi(x) = 

f(x)g(x) + ug(x), which implies that ugi (x) = uf(x)g(x), which in turn implies that 

f(x) divides g1(x), a contradiction. Similarly we have gcd((x),7(x)) 1. From Lemma 

5.3.4, there exist ai (x), a2(x), bi (x), b2(x) E R[x] such that 1 = gi (x)ai (x) + f(x)a2(x) and 

1 = g1(x)bi (x) + f(x)b2(x). This implies that 

ubi (x) + (f(x)) = (ugi(x) + (f(x)))(ai (x)bi(x) + (f(x))) 
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and 

2ai(x) + (f(x)) = (2g2(x) + (f(x)))(ai(x)bi(x) + (f(x))) 

Adding these two equations, we get 

2ai(x) + ubi(x) + (f(x)) = (292(x) + ugj(x) + (f(x)))(ai(x)b j(x) + (f(x))) 

This implies that 2a1(x) + ubi(x) + (1 (x)) E (292(x) + ugi(x) + (f(x))) 9 I. Therefore 

((2, u) + (1 (x))) C I. Hence the result. • 

The Galois group Ga1(GR(R, r)) of GR(R, r) is a cyclic group of order (2r 
- 1), which 

is generated by the F'robenius automorphism a of GR(R, r) defined as 

u(x) = a + 2a + ua + 2ua 

where x = a0  + 2a1  + ua2  + 2ua3  e R. The automorphism a fixes the ring R. 

Example 5.3.6. Consider the basic irreducible polynomial h(x) = x4  + 3x3  + 2x2  +1, which 

is the Hensel lift to R of the irreducible polynomial x4  + x3  + 1 E ]F2  [x]. Let be a root of 

h(x). Then 

= 3+2 2+3, 

= 

= 3 3 + 2 +, 

io 
= 3 3 +3e, 

12 = 2 2 ++1, 

~14 = 3 3+ 2+2, 

= 3 3 +2 2 +3e+3, 

= 2 3 + 2 ++3, 

= 3 2 +3, 

411 = 3 3+ 2+1, 

13  = 2 3 + 2 +e, 
15 = 1. 

LetT= 

2  + , 3 + 3, 3 + 3, 3 + + 1, 2 + + 1, 2 + 2  + , 3 + + 2e1. Then 

GR(R,4) ={ao+2a1 +ua2 +2ua3 : a E T,i =O,1,2,3} 

and I GR(R,4)I = 164. 
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Let x = a0  + a1  + a2 2  + a3 3  E GR(R, 4), ai  E R. Define a : GR(R, 4) - GR(R, 4) 

such that 

a(x) = a0  + a1 2  + a2(e2)2  + a3( 3)2. 

Clearly a is an autornorphism and a(a) = a for all a e R. So a leaves the elements of 

R fixed. Since 15 
= 1, we have 

a(x) = ao+aie2 +a2 4 -i-a3 6 , 012(x) = a0  + a1 4  + a2e8  + a3 2, 

013 (x) = a0 +a1 8 +a2 6 +a3 24  = a0  + a1e8  + a2  + a3 9  and 

0'4(x) = a0 +a1 6 +a2 2 +a3 8 = a0  + a1  + a2 2  + a3 3  = x 

Thus the order of a is 4  and a generates the cyclic group {1, a, 0' 2, 0131 = Gal(GR(R,4)) 

5.4 Cyclic codes over Z4  + 'uZ4  

Let r be the standard cyclic shift operator on R. A linear code C of length n over 

R is cyclic if r(c) e C whenever c E C, i.e., if for each (co, c1,. . . , c,_i) E C, then 

(ca_i, CO,  c1,. . . c_) E C. As usual, in the polynomial representation, a cyclic code of 

length n over R is an ideal of 

Theorem 5.4.1. A linear code C = C1  +uC2  of length n over R is cyclic if and only if Ci, 

C2  are cyclic codes of length n over Z4. 

Proof. Let c1 --uc2  E C, where c1  E C1  and c2  e C2. Then T(ci +uc2) = r(ci) +uT(c2) E C, 

since C is cyclic and r is a linear map. So, r(c1) E Ci  and T(C2) E C2. Therefore C1, C2  are 

cyclic codes. Conversely, if Ci, C2  are cyclic codes, then for any c1  +uc2  e C, where c1  E C1  

and c2  e C2, we have r(c1) E C1  and 7(c2) e C2, and so, r(ci  + uc2) = r(ci) + ur(c2) E C. 

Hence C is cyclic. 

To find the ideal structure of R[x] 
(x1)' we need to know the factorization of x - 1. Since 

R is a local ring, - 1 factors into distinct irreducible polynomials if and only if n is an 

odd integer. In the following subsection we study cyclic codes odd length n over R through 
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the factorization of - 1. Later in this chapter, we consider cyclic codes of arbitrary 

length also. 

5.4.1 Cyclic codes of odd lengths over Z4  + u7Z4  

We assume that n is odd throughout this subsection. For a finite chain ring R., it is well 

known that the ring Rlxl is a principal ideal ring [90]. However, in the present case the 

ring R is not a chain ring and the situation is not as straightforward. In fact, the ring 

(xl)  is not in general a principal ideal ring, as the next result shows. The result is a 

generalization of [136, Lemma 2.41. 

Theorem 5.4.2. The ring R, R[x] > is not a principal ideal ring. 

Proof. Consider the augmentation mapping y: -* R defined by 

y(ao-i-aix-i--'.+ an- ix')=ao  + a1  + + an_i - 

This is a surjective ring homomorphism. Consider now the ideal I = (2, u) of R, which 

we know is not a principal ideal. Let J = 'y-1(I). It is well known that the inverse image 

under a homomorphism of an ideal is an ideal. So J is an ideal of R. Now if we assume J 

to be a principal ideal, then its homomorphic image I must be principal, a contradiction. 

Hence J is not a principal ideal and R is therefore not a principal ideal ring. 

Therefore, a cyclic code of length n over R is in general not principally generated. 

In the following theorem we present the ideal structure of R,. 

Theorem 5.4.3. Let x'-1= fi (x)12(x) . . .f,(x), where f(x), i = 1,2,... ,m, are monic 

basic irreducible pairwise coprime polynomials in R[x]. Let f(x) = Then any ideal 

in Rn  is the sum of the ideals: 

(ji(x) + (x 
n 

K
U ji(X)  +  (Xn 

_ 1)) ,  

((2 + U)ji(x) + (x n - 

(2ji (x) + (x n — 1) ) 
 I 

 

(2uj,(X) + (x —1)), 

((2,u) ji  (x) + —1)). 
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Proof. Since x - 1 = fi(x)f2(x). f(x), it follows the Chinese Remainder Theorem 

R[x] M  R[x] 

(x  

Thus, every ideal I of can be written as 

J- 
 - 

m T 
I  

where Ii  is an ideal of the ring RM i = 1, 2,. . . , m. From Theorem 5.3.5, the ideals 

(1 + (f(x))), (2 + (f(x))), (u + (f(x))), (2u + (f(x))), (2 + u + (f(x))) and ((2, u) + (f(x))) 

of correspond to the ideals 

(A(X) + (
Xn _ (2ji (x) + 

- 
i)) 

KUjj(x) + (x 
- i)) (2uf() + (x —1)), 

((2 + U)ji (X) + (x —1)), ((2,u)Mx) + - 1)) 

in R, respectively. U 

Corollary 5.4.4. Let x-1= fi(x)f2(x). . . fm(X), where f(x), i = 1,2,... ,m, are monic 

basic irreducible pairwise coprirne polynomials in R[x]. The number of cyclic codes over R 

is 7 

One generator cyclic codes as nth roots of unity 

From Theorem 5.3.1, there exists a primitive nth root of unity in GR(R, r). Let 

, , be nth  roots of unity in GR(R, r). Define the minimal polynomial M (x) 

of as the monic polynomial of least degree having e as a root over R. Then a cyclic code 

C of length n over R can also be described in terms of nthroots of unity, and a cyclic code 

C can be defined as C = {c(x) E R : c(i) = 0, 1 < j k}. The generator polynomial 

g(x) of C is the least common multiple of minimal polynomials of i,  1 < j k. Then 

g(x) - 1). Hence C is a free code over R. 

The following is a straightforward generalization of [17, Proposition 2]. 
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Proposition 5.4.5 (BCH bound). Suppose that the generator polynomial g(x) of a cyclic 

code C of length n over R divides (x - 1) and has , , as roots, where is 

a primitive root of unity in a Calois ring extension of R. Then dH(C) ~! J. 

Example 5.4.6. Let be a root of the basic primitive polynomial f(x) = x4  + 33  + 2x2  +1, 

which is a factor of x15  - 1 over R. Let the generator polynomial of a cyclic code of length 

15 over R is defined as g(x) = 1cm (Mo(x),Mi(x),M2(x),M3(x),M4(x),M5(x),M6(x)), 

where M(x) are the minimal polynomials of c, j = 0, 1, 2, 3, 4, 5, 6, respectively. We have 

Mo(x) = x-1, 

Mi(x) = M2(x) = M4(x) = x4  + 3x3  + 2x2  + 1, 

M3(x)=M6(x) = x4 +x3 +x2 +x+1, 

M5(x) = x2 +x+1. 

Therefore, g(x) = x" + 2x9  + 3x8  + 3x7  + x6  + 2x4  + 3x3  + x2  + 3x + 3. The cyclic code 

C = (g(x)) is a free code of rank 4. Since g(x) has 7 consecutive roots, dH(C) ~: 8, where 

dH(C) denotes the minimum Hamming distance of C. Also, since wH (2g(x)) = 8, we must 

have dH(C) = 8. 

5.4.2 Cyclic codes of arbitrary length over Z4  + 'uZ4  

Now we consider the general form of the generators of cyclic codes of arbitrary length ii 

over R. The technique we have used here to find the generators of a cyclic code is same as 

in [136]. However the generators we have obtained differ slightly from that of [136, Theorem 

6]. 

Define IF : R —+ Z4  such that 'IJ(a + bu) = a (mod u). It can easily be seen that 

'I' is a ring homomorphism with ker W = (u) = nZ4. Extend 'I' to the homomorphism 

—+ such that 1(ao  + a1x + a2x2  + + a_ix'') = '11(a0) + W(ai)x + 

'P(a2)x2  + .. . + W(a_i)x1. 
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Let C be a cyclic code of length ri over R. Restrict 1 to C and define 

- 

{h(x) 
E 

Z4[1] 
uh(x)Eker }. 

- (x-1) 

Clearly J is an ideal of (Xn So  J is a cyclic code of length n over Z4. Similarly, the 

image of C under cI) is an ideal of 

If n is odd, then
(
Xn is a principal ideal ring and hence (C) = (g(x)) and ker 4' 

= (ua(x)) for some g(x), a(x) E Z4[x]. In [136, Thereom 61 authors have defined a cyclic 

code C as C = (g(x), ua(x)). However this does not cover all cases of cyclic codes. For 

example, if we consider the cyclic code C = (2x2  + u) of length 3 over R, then 4'(C) = (2) 

and ker 4' = (2u). But (4'(C), ker 4') = (2, 2u) = (2) C. Similarly, for even n, the cyclic 

code structure C = (gi (x), 292 (x), uai(x), 2na2 (x)) defined in [136] does not cover all cyclic 

codes. For example, if we consider the cyclic code C = (2x + n) of length 2 over R, then 

4'(C) = (2) and ker 4' = (2u). But (4'(C), ker 4') = (2, 2u) = (2) C. 

We discuss the structure of cyclic codes over R. From [5, Theorem 1], a cyclic code of 

length n over Z4  can be written as (fi(x) + 2f12(x), 2f2(x)), where f2(x) I fi(x) I Xn 
- 1 

for some f1(x), f2(x), f12(x) E Z2{x]. So 4'(C) = (fi(x) + 2f12(x), 212(1)),  where f2(x) I 

fi(x) I Xn —1 for some fi(x),12(x),f12(x) E Z2[z] and J = (f3(x)+ 2134(x), 2f4(x)). 

Moreover ker 4' = (u13(x) + 2uf 34(x), 2uf 4(x)), where f4(x) I f(x)  I Xn 
- 1 for some 

f3(x),f4(x),f34(x) EZ2[x]. Hence 

C = (fi(x) + 2f12(x) + uf13(x) + 2uf14(x) 

212(1) + uf 23(x) + 2uf 24(x) 

uf3(x)+2uf34(x) 

2uf4(x)) 

where f4(X) f3(x) fi(x)I Xn - 1 and f4(x) I f(x)  I fi(x)  I Xn 
- 1. 

Now we determine the conditions on polynomials fij i, j = 1, 2,3,4. The conditions 

we have obtained here (Theorem 5.4.8) are similar to the ones obtained in [68]. For an ideal 
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I of R, we define Tor (C) and Res (C) as follows: 

Tor (C) = 

I 
(x) 

E Z4[x] 
ug(x) E c} (xhl_1) 

______ Res (C) = {g(x)  E 
Z4  [x] 

- I 

g(x) + up(x) e C for some p(x) e 
(x-1) 

It is easy to see that Res (C) = (C) and Tor (C) = J. So we can associate four ideals to 

C as follows [68]: 

C1 = Res(Res(C)) = C mod (2, u), 

C2 = Tor(Res(C)) = {f(x) e Z2[x] 

C3 = Res(Tor(C)) = {f(x) e Z2[x] 

C4 = Tor(Tor(C)) = {f(x) E Z2[x} 

2f(x) E C mod u}, 

uf(x) E C mod 2u} and 

2uf(x) E Q. 

These all are ideals of Z2[s 

Theorem 5.4.7. Any ideal I of the nng Rn  
= 

is uniquely generated by the polyno- 

mials 

Ai(x) = fi(x) + 2f12 (x) + uf13(x) + 2uf 14(x) 

A2(x) = 2f2(x) + uf23(x) + 2uf24(rr) 

A3(x) = uf3(x)+2uf34(x) 

A4(x) = 2uf4(x) 

where C3  := (f(x)) and f 3(x) = 0 or deg f23 (x) < deg f3 (x), 1 < i, j < 4. 

Proof. Same as [117, Theorem 11. . 

Theorem 5.4.8. Let f(x), f(x) and A(x), i = 1,2,3,4 be defined as in Theorem 5.4.7 
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and I = (A j(x), A2(x), A3(x), A4(x)). Then the following relations hold in Z2[  
xl  

f4(x) f3(x) I fi(x)  I (x' - 1) and f4(X) I f(x) I  fi(x) I  (f - 1) 

1x'-1 
f2(x) f12(x) 1jy) 

f3(x) I 
x-1 (flI(X)  - f23(x)) 12(X) 

13(x) ' I f(x) 

f4(X) I 123(X) 

f4(x) I 
(Xn—,) 

 f3l (X) 

f4(x) (f24(x)— 
(x)) 

12(X f3(x) 

f4(x) I (fl2(X) - L(E) ) f34(x) 3(X) 

f4(x) I (f13(X) - - f24(x) f2(
f
X
i
)1
(x

3
)
(X)123(r)134(X)) 

f4(x) I (114(x) - 9f24(x) - 
f13(x)+f23(x)f ) 

fi(x) fa(x) 

(5.4.1) 

(5.4.2) 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(5.4.8) 

(5.4.9) 

(5.4.10) 

Proof. The result follows from [117, Proposition 1] with slight modifications in the present 

setting. 

When n is odd 

Let n be an odd integer. Then a cyclic code of length n over Z4  is principally generated. 

So (C) and ker 1 are principal ideals of and so (C) = (f i(x) + 2f2 (x)) and ker 

= (uf 3(x) + 2u14(x)), where f2(x) I fi(x)  I Xn 
- 1 and f4(x) I f3(x)  I - 1. Therefore 

C = (fi(x) + 2f2(x) + uf13(x) + 2uf14(x), uf 3(x) + 2uf4(x)). Using the technique used 

in [138, Theorem 3.2], we get the following result. 

Theorem 5.4.9. Let n be an odd integer and C a cyclic code of length ri over R. Then 

C = (fi(x) + 2f2(x) + 2uf14(x), uf 3(x) + 2u14(x)) 

where f2(x) I fi(x) - 1) and f4(x) I  f3(x)  I fi(x) I Xn 
- 1 in R. 
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When n = 

Theorem 5.4.10. The ring R 
= 

R[x]  is a local ring when n 2k  where k ~ 1. 

Proof. From the definition of , we have I is a surjective ring homomorphism. From 

Theorem 2.3.33, the ring is a local ring with the unique maximal ideal (2, x - 1. 

The inverse image of the maximal ideal (2, x - 1) is _1  ((2,  x - 1)) = (2, u, x - 1), which 

is a maximal ideal in Rn  as it contains all non-units of R. . 

Z2{x] 
_____ finite chain ring, so each ideal of We know from Theorem 2.2.5 that is a 

can be written as ((x - 1)) for 0 < s < n. Thus C3  = ((x - 1)8i), 0 < s3  n. Hence a 

cyclic code C of length 2k  over R can be written as 

C = ((x - 1)' + 2f12 (x) + u113(x) + 2nfi4(x) 

2(x - 1)82 + uf23(x) + 2uf24(x), 

u(x - 1) + 2uf34(x), 

2u(x - 1)) 

For n = 2k, the conditions on the polynomial f(x) in Theorem 5.4.8 can be put in much 

simpler form as shown in Theorem 5.4.13 using the following lemma. 

Lemma 5.4.11. In R, 

(x - 1) = 2(x -1)  n2 .  

(x - 1) is nilpotent with nilpotency 2  

an element f(x) = a3(x - l)i is a unit if and only if a0  is a unit in R. 

Proof. 1. We can show using induction on k that x' + 1 = (x + 1)Th  + 2x3 over R [4]. 

On replacing x by x - 1, we get that (x - 1) + 1 = af + 2(x - 1). This implies that 

(
X  _ I)n = 2(x — 1) 22 in R. 

2. It follows from (1) that (x - 1) = (x - 1)(x - 1) = 2(x - 1)(x - 1) = 

2(x - 1) = 0. On the other hand, for any integer 0 < s < a, we have (x - 1) = 
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2(x - 1)(x - 1)8 = 2(x - 1) 0. Thus (x - 1) is nilpotent of nilpotency index 

3n 
2 

3. Suppose that f(x) = >jI a3(x - l) is a unit in R,-, and a0  is a non-unit in R. 

Since f(x) is a unit, it is regular. Then 2uf(x) = 2uE111 a3 (x - l)i, where 1 > 

0 is the least positive integer such that a1  is a unit. This implies that 2nf(x) = 

2u(x - 1)1 jiii' a3(x - i)i, which in turn implies that 2u(x - 1)'f(x)= 2u(x - 

1) >i' a2 (x - i) -  = 0, from (1). Therefore f(x) is a non-unit, a contradiction. 

Hence a0  must be a unit in R. 

Conversely, suppose that a0  is a unit in R and 1(x) = > a3(x - l)i is a non-unit 

in R. Then f(x) E (2, u, x - 1. This implies that f(x) - a3 (x - l)i a0  E 

(2, u, x - 1), a contradiction. Therefore 1(x) is a unit in R. 

. 

In view of the above lemma, every polynomial f(x) in R[x] can be written as f(x) = 

+ 2a23  + ua33  + 2ua4)(x - l)i.  Thus the generators of an ideal I of R (cyclic 

codes over R) can be written as 

Al(x) = 

A2(x) = 

A3(x) = u(x - 1) + 2uE c(x - 

A4(x) = 2u(x - 1)8 4 

If ti, t2, t3  are smallest non-negative integers such that at,, at2, at3  are non-zero in Z2, then 

Al(x) can also be written as Al(x) = (x - 1) + 2(x - 1)t1h1(x) + u(x - 1)12h2(x) + 

2u(x - 1)13h3(x), where hi(x) = 1I a3 (x - i)ti, h2(x) = b3 (x - i)it2 and 
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h3(x) = c3(x i)2_t3  are zero or units in Z2[x} 

Let Bi(x) = (x - 1)' + 2(x - 1)u1gi(x) + u(x - 1)22g2(x) + 2u(x - 1)93(x) 

B2(x) = 2(x— 1)52  +u(x — 1)32h2(x)  +2u(x-1)33 h3(x) 

B3(x) = u(x - 1) + 2u(x - i)ksl (x) 

B4(x) = 2u(x - 1) 

where g1(x), 92(x), g3(x), h2(x), h3(x) and 13(x) are either zero or units in (XZ, ) . The 

following theorem describes the complete ideal structure of R. 

Lemma 5.4.12. ([4, Theorem 11/ and [42, Theorem 4.4]) Let 1?. be either Z4  or IF2  + uIF2, 

u2  = 0 andC be a cyclic code of length 2' overlZ. Then C = ((x_1)3+8(x_1)th(x), 8(x-

1)), 1 < s < n - 1, 0 < t < s - 1, 0 < m < T - 1 and h(x) is either zero or a znit 

in with degh(x) T — t — 1, whereT = rnin{s1 , n—s+t}, 8 = 2forZ4, and 

T= min{s, n—s+t}, 5=ufor1F2 +uF2. 

Theorem 5.4.13. Let I be a non-trivial ideal of R. Then I is one of the following: 

(I) Principal ideals: 

I=(2u(x-1)),084 <n-1. 

I=(u(x-1)3),0<s3 <n-1. 

I = (B(x)), 0 <_ s2,j2  n - 1, 0 < j min{s2,j2 } - 1. 

1= (B(x)), 1 <s1,i1,i2  <n — i, 0 < i3  < si — i. 

(II) Non-principal ideals: 

I = Bi(x), B2(x)), 0 < s1  < ii - 1,0 < 82 !~' min{,si,n - s1+i1} —1, 0 

ii n—i3Oia <j3 :5 min{s2,j2}-1,0i2 <j2 min{si,n—si+i2}—i. 

I = (Bi(x), B3(x)), 0 i < n —1, 0 < 33 min{,si,n — 81+ i2 } —1, 

0i2,i3,k3  <s3 —i and i1  sn — i. 

1 = (131(x), B4(x), 0 <_ 81 <n — i, 0< 84 < 81 — i, i3  <s4-1 and i1,i2  n—i. 
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I=(B2(x),B3(x)),082,83 n-1, 0j3 <k3 <j2 83 -1. 

1= (B2(x),B4(x)), 0< s2  < n— 1,0<84 < min{s2,j2 } —1, 0 84 —1 

and 0 ;; 32 < n - 1. 

1= (B3(x),B4(x)), 0 S3 <n — i, 0< 84 53 -1, k3  <S4 —1. 

1= (Bi (x), B2(x), B3(x)), 0< 81  <n — i, 0 < min{,si,n—si+ii }-1, 

0 < 32 7nin{si,831 n - si + i} - 1, 0 < j1 < S2 - 1, 0 <_ i2 53 - 1, 

0<i3 <k3 < rnin{s2,j2} and O<s3<si -1. 

1= (Bi (x), B2(x), B4(x)), U < si n — i, 0 <i1  s2 -1, 0< i3,j3  <84-1, 

0<i2 <n-1, 0<_j2 min{s2,n—si+i2 }—i. 

I=(Bi(x),B3(x), B4(x)),0<si <n-1,i2 <s3 <si-1,i3,k3 <84 581-1. 

1O.I—(B2(x),B3(x),B4(x)),0_<s2,s3 _<ri_1,0<_j2 _<s3-1,0_<j31 k3 <_s4. 

11. I = (B1(x), B2(x), B3(x), B4(x)), i3,j3,k3  < j2 < s3  <s1 !~, n —i, 1 < s, 

< S3 32 < 54 < S3 < S. 

Proof We present here the proofs of I (1) and 11(1). Other cases can be proved similarly. 

For I (i), if I is a principal ideal of R containing only multiples of 2u, then Tor (Tor (I)) 

is an ideal of From Theorem 2.2.5, we get that Tor (Tor (I))= ((x - 1)84), for some 

084 n-1. Thereforel= (2u(x-1)84), 0<s4 <n-1. 

For 11(1), consider the non-principal ideal I = (Bi(x), B2(x)), where Bi (x) = (x - 

1) 1  + 2(x - i)ilgi(x) + u(x - 1)i292(x) + 2u(x - i) 393(x) and B2(x) = 2(x - 1)52 + u(x - 

i)i2h2(x)+2u(x_i)33h3(x). We have I (mod u) = ((x - 1)81 + 2(x - 1)u1 9i(x), 2(x - 1)52 ) 

and I (mod 2) = ((x - 1)81 + u(x - 1)t292(x), u(x - 1)i2). Then from Lemma 5.4.12, we 

get 0 82 min{, Si,  n - s1  + i1 } - 1 and 0 <j2  < min{si, n - s1  + i2 } —1, respectively. 

Remaining conditions follow from Theorem 5.4.7. . 

5.5 Ranks and minimal spanning sets 

It may be noted here that unlike in the case of finite fields, a generator polynomial of ker 

or of 1(C) (a generator polynomial of cyclic code over Z4) may not necessarily divide 
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- 1. So a cyclic code C over R may not have a basis. However we can find a minimal 

set of generators for C. Let C = (Ai(x), A2(x), A3(x), Ai(x)), where we use the same 

notations as given in the preceding section, i.e., 

Ai(x) = fi(x) + 2f12 (x) + u113(x) + 2uf14 (x) 

A2(x) = 2f2(z) + uf23(x) + 2uf24(x) 

A3(x) = uf3(x) + 2u134(x), 

A4(x) = 2uf4(x) 

Theorem 5.5.1. Let n be a positive integer and C a cyclic code of length n over R. If 

C = (Ai(x), A2(x), A3(x), A4(x)), with s1  = deg fi(x), 82 = deg f 2(x), s3  = deg f 3(x), s'= 

min{deg f 2(x) , deg f3(x) } and s4  = deg f4(x), then C has rank n+si+s'—s2 —s3 —s4  and a 

minimal spanning set B = {Ai(x), xAi(x), . . . , x' 1Ai(x), A2(x), xA2(x),.. . , x81821A2(x), 

A3  (x), xA3  (x), . . . , x -1A3  (x), A4(x), xA4  (x),. . . , x8'_34_1A4(x) 
}. Furthermore, if f23  (x) 

0, we have ICI = 24n+s+a'-382-283—s4 and if 123(x) 0, we have ICI = 24n+s'-252-283-84 

Proof. Over finite fields, it is well known that if g(x), with deg g(x) = t, is a gener-

ator polynomial of a cyclic code of length n, then the set {g(x), xg(x), . . . , xt_lg(x)} 

spans the cyclic code. Since A2(x), i = 1, 2, 3,4, are the generators of C, the set B' 

{Ai(x), xAi(x), . . . , x 314A1(x), A2(x), xA2(x), . . . , x 2 'A2(x), A3(x), xA3(x), . 

x3 1A3(x), A4(x), xA4(x), .. . , x 4_1 A4(x)} spans C. But this is not a minimal set of 

generators. So it is sufficient to show that B spans B'. 

Let s' = deg f3(x). First we show that 2ux33_8414(x) E Span (B). Write A3(x) = 

uA(x), where A(x) is a regular polynomial in Z4[x]. Dividing x 3 _ 4 f4(x) by A(x), we 

get 2uxf 4(x) = 2uA(x) + 2um(x), where 2um(x) is either zero or deg m(x) < 83. 

If m(x) = 0, then 2ux8384f4(x) E Span (B). Otherwise, 2um(x) E C. This implies that 

14(x) I m(x), as m(x) E C4  = (f4(x)). So 84  :!~ deg m(x) <s3. Thus 2um(x) = 2uq(x)f4(x), 

where q(x) E R[x] with deg q(x) < 83 - 84. Therefore 2ux 34 f4(x) e Span (B). 

Next suppose s' = deg f2(x). Since A2(x) is not regular, it is not appropriate to take 

A2(x) as divisor in the division algorithm. However, by direct computation, we find that 
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2nxs2_84f4(x) e Span (B). Since f4(x) I 12(x), there exists q(x) E Z2[x] such that f2(x) = 

q(x)f 4(x), where q(x) = q0+qix+ +q32 _ 4 x8284. We have uq' 34 A2(x) 2uq 34 f2(x). 

This implies that uq 34 A2(x) = 2uq' 84 (qo  + qix + . . . + q32_34x82_34)f4(x), which further 

implies that 2uf4(x)x82_84 = uq;2'_ 54  A2  (x) - 2uf4  (x) q'_34  (qo + q1x + + q32_4_x32_34). 

Thus 2uf4(x)x6284  E Span (B). Similarly, we can show that x3132A2(x), x8183A3(x) E 

Span (B). So B spans B'. 

Now we show that none of the elements of the set B can be written as a linear 

combination of other elements of B. Suppose, if possible x 31 'Ai (x) = a(x)Al(x) + 

b(x)A2(x) + c(x)A3(x) + d(x)A4(x), where a(x) = ai (x) + 2a2(x) + ua3(x) + 2ua4(x), b(x), 

c(x), d(x) E R[x] with degrees less than or equal to n - - 2, 81  - 82  - 1, s1  - s3  - 1 and 

s' - 84 - 1, respectively. Then we have x 1'fi(x) = ai (x)fi (x). This is a contradiction, 

as deg x31fi(x) = n - 1 and deg ai(x)fi(x) < n - 2. So x — 'Ai(x) cannot be writ-

ten as a linear combination of other elements of B. The rest can be shown using similar 

arguments. • 

Theorem 5.5.2. Let n be an odd integer and C be a cyclic code of length n over R. If 

C = (fi(x) + 2f2(x) + 2uf14(x), uf3(x) + 2u14(x)), with deg f i (x) = k1  and deg f 3 (x) = k2, 

respectively, then C has rank n - k2  and a minimal spanning set B = {(f i(x) + 2f 2(x) + 

2uf 14(x)), x(fi (x) + 2f 2(x) + 2uf14(x)), x2(f i (x) + 2f 2(x) + 2uf 14(x)),. . . , x z_k1_1(f
1 
(x) + 

2f2 (x)+2u114(x)), u(f 3(x)+2f 4(x)), xu(fs(x)+2f4(x)), x2u(f3(x)+2f4(x)),... , xk1_k2_mu(13(x)+ 

2f4(x))}. 

Proof. The result can easily be proved using the argument used in Theorem 5.5.1. 

Theorem 5.5.3. Let C = (A1(x), A2(x), A3(x), A4(x)) be a cyclic code of length n over 

R. Then wH(C) = WH(C4), i.e., WH(C) = w jj ((2uf 4(x))). 

Proof. Let c(x) = ci(x) + 2c2(x) + uc3(x) + 2uc4(x) E C. Then 2uc(x) = 2uc0(x). This im-

plies that co(x) E C4. It is clear that wH(2uc(x)) = wH(2uc0(x)) = WH(CO(X)) < Wjj(C(X)). 

Therefore wH(C4) < wH(C). Also, since 2uC is a subcode of C, wH(C) wH(2uC). Hence 

the result. u 
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5.6 One generator cyclic codes over Z4  + uZ4  

We now consider cyclic codes over R which are principal ideals in Below we generalize 

[17, Proposition 11 for the present case and provide a necessary condition (Theorem 5.6.4) 

and a sufficient condition (Theorem 5.6.5) for the cyclic codes over R to be free. 

The following result gives a sufficient condition for a cyclic code C over R to be a free 

Z4-code. 

Theorem 5.6.1. Let C = C1  + uC2  be a cyclic code of length n over R. If C1, C2  are free 

codes over 7Z4, then C is a free Z4-module. 

Proof. Suppose that C1, C2  are Z4-free codes of ranks k1, k2, respectively. Let 

c121  . . . , ci, i } and {c21, c221 ... , c 2 } be Z4-bases of C1  and C2, respectively. Then the 

set {cii, c12,. .. , C1k1 , UC21, uc22,..., UC2k2 } spans C, as every element of C can be expressed 

as a linear combination of elements of this set. Now suppose there exist scalars a, b3  E Z4  

such that a2c12  + u b3c2  = 0. Then > a2c12  = 0 and b3c23  = 0. Since the 

elements c11, C12, . . . , Clk, are independent and so are the elements c21, c22,. . . , c 2, therefore 

a2  = 0 and b3  = 0 for all i and j. Hence C is a Z4-free module. • 

The converse of above theorem is not true in general, i.e., if a cyclic code C = C1  + uC2  

is a free Z4-module of length n over R, then C1  or C2  may not be a free code of length n 

over Z4  (see example 5.6.3). However, if C is an R-free module (code) of length n over R 

then C1  must be a free code of length n over Z4  (see Theorem 5.6.9). 

Example 5.6.2. The polynomial x7  - 1 factorizes into irreducible polynomials over IF2  as 

x7-1 = (x-1)(x3+x+1)(x3+x2 +1). The Hensel lifts ofx3+x+1 andx3+x2+1 to Z4  are 

x3+2x2+x-1 and x3 —x2 -2x-1, respectively. Therefore x3+2x2+x-1 and x3 —x2-2x-1 

are divisors o1x7  —1 over 7L1. Define C = (x3  + 2x2  + x —1) +n (x3  - - 2x —1). Then 

C is a cyclic code of length 7 over R, which is also a free Z4-module. 

Example 5.6.3. Let C = C1  + uC2  be a cyclic code of length 5 over R generated by 

g(x) = 1 + u + 2x + ux2. We can see that C is Z4-free module over R. But the cyclic 

code C1  of length 5 over Z 1  generated by g(x) (mod u) = 1 + 2x which is not a Z4-free, as 

(1+2x) t Xn —1. 
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Theorem 5.6.4. Let C be a principally generated cyclic code of length n over R generated 

by g(x) e R[x]. If g(x) I  xm - 1, then C is R-free. 

Proof. Suppose that g(x) I  x' - 1 and - 1 = g(x)h(x). Since xm - 1 is a regular 

polynomial, g(x) and h(x) must also be regular polynomials. By Theorem 2.3.8, there 

exist monic polynomials g'(x), h'(x) such that g(x) = vi (x)g'(x) and h(x) = v2(x)h'(x) and 

(x) = (x) and (a) = (x), where v1(x), v2(x) e R[x] are units. Therefore, - 1 = 

g(x)h(x) = vi (x)v2(x)g'(x)h'(x). Since - 1, g'(x) and h'(x) are all monic,we must have 

vi (x)v2(x) = 1 and f - 1 = g(x)h'(x). Let deg g'(x) = n - k. Then deg h'(x) = k. 

We have C = (g(x)) = (vi (x)g'(x)) = (g'(x)), as Vi(X)  is a unit. Obviously the set 

S = {g'(x), xg'(x),. .. , x'_1g'(x)} spans C. 

Now suppose a(x)g'(x) = 0 (mod x' - 1) for some a(x) E R[x] with deg a(x) < k. Then 

Xn 
- 1 1 a(x)g'(x), which implies that I a(x), i.e., h'(x) I a(x). Since h'(x) is monic 

polynomial of degree k, it cannot divide a non-zero polynomial of degree less than k. It 

follows that a(x) = 0. So the set S is linearly independent and thus forms a basis for C. 

Hence C is an R-free code. 

We have following converse of Theorem 5.6.4. 

Theorem 5.6.5. Let C be a principally generated cyclic code of length n over R generated 

by g(x) E R[x]. If C is R-free, then there exists a monic generator g'(x) of C such that 

g'(x) I xm - 1. 

Proof. Suppose that C is an R-free code. Since g(x) generates an R-free code, g(x) must 

be a regular polynomial. Therefore there exist a monic polynomial g'(x) E R[x] such that 

g(x) = v(x)g'(x) and (x) = (x), where v(x) is a unit in R[x]. Let the free rank of C be s 

and S = {ci,c2, . . . ,c} an R-basis of C. Then the set 
. ,} forms a basis for the 

cyclic code C over the finite field k Since C = (g(x)), so ((x)) = ((x)). Since (x) 

is monic, therefore it is the generator polynomial of C. Let deg (x) = n - k. Then the set 

{?(x), x(x), . . . , ZlC_l(X)} forms a basis for . So we must have s = k. 

Now C = (g(x)) = (g'(x)). Clearly, the elements g'(x),xg'(x),x2g'(x), . . . x''g'(x) 

span C. Also, the elements {g'(x), xg'(x),. . . , x'g'(x)} are linearly independent over 
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R; for if they are not, then they give a dependence relation among the elements 

(x), x(x),. . . , xk(x), a contradiction. Now since Xkg/(x)  is a codeword, we can 

write x" g'(x) as a linear combination of the elements x2g (x), i = 0, 1,... , k - 1. Let 

x'g'(x) = at xg'(x), which can be written as axg'(x) = 0 with aj4  = —1, or 

a(x)g'(x) = 0. Then x' - 1 1 a(x)g'(x) and since a(x)g'(x) is a monic polynomial of degree 

n, we must have x' - 1 = a(x)g'(x). Therefore, g'(x) I  x' - 1. . 

The following result follows from Theorems 5.6.4 and 5.6.5. 

Proposition 5.6.6. Let C be a principally generated cyclic code of length over R. Then C 

is free if and only if there exists a monic generator g(x) in C such that g(x) I xm - 1. Fur-

thermore, C has free rank n - deg g(x) and the elements g(x), xg(x), ..., x9 9(x)_lg(x) 

form a basis for C. 

Example 5.6.7. Consider the cyclic code C of length 7 over R generated by the polynomial 

g(x) = x3  + 2x2  + x - 1. g(x) is the Hensel lift of x3  + x + 1 E 1F2[x] to R. The cyclic code 

C = (g(x)) is an R-free cyclic code of length 7 and free rank 4. 

Theorem 5.6.8. Let C = (Ai(x), A2(x), A3(x), A4(x)) be a cyclic code of length n over 

R. Then C = (Ai(x)) if and only if fi (x) = f4(x). 

Proof. Suppose fi(x) = f4(x). Then from relation (5.4.1) of Theorem 5.4.8, we get that 

f1(x) = f2(x) = f3(x) = f4(x). Since deg f12(x), deg f34(x) < deg fi(x), from relation 

(5.4.7) of Theorem 5.4.8, we get that f4(x) I  (f 12(x)—f 34(x)). So f12(x) = f34(x). Therefore 

A3(x) = uf 3(x) + 2uf34(x) = vfi (x) + 2n112(x) = uAi(x). 

Again since deg f13(x), deg f24(x) < deg fi (x), so from relations (5.4.4) and (5.4.8) 

of Theorem 5.4.8 we get that f23(x) = 0 and f13(x) = f24(x), respectively. Therefore 

A2(x) = 2f2(x) + uf 23(x) + 2uf24(x) = 2f1(x) + 2uf13(x) = 2A1(x). Hence C = (Ai(x)). 

The converse is easy to prove. . 

In the above theorem the cyclic code C = (Ai(x)) is principally generated, however C 

may not be a free code. For example, consider the cyclic code C = (x + 1) of length 3 over 

R. Since x+ 1'fx3  —1 in R, C is not free. 
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Theorem 5.6.9. If C = C1  + uC2  is a free cyclic code over R, then so is C1  over 

Proof. From Proposition 5.6.6, if C is a free cyclic code over R with generator polynomial 

g(x), then Xn - 1 = g(x)h(x). If we can express g(x) = g'(x) + ug"(x) and h(x) = 

h'(x) + uh"(x), where g'(x), g"(x), h'(x), h"(x) E Z4[x]. Then x - 1 = g'(x)h'(x) (mod u). 

The result follows. U 

Example 5.6.10. Consider again the cyclic code C of length 7 generated by g(x) = x3  + 

2x2 +x— 1. ThenC is free overR as x3 +2x2 +x— 1 is a divisor ofx7  —1 over R. Since 

x3  + 2x2  + x - 1 is a divisor of x7  - 1 over Z4  as well, C1  is a free cyclic code of length 7 

over Z4. 

5.7 Examples 

Example 5.7.1. Consider cyclic codes of length 2 over R. We have (x - 1)2 = 2(x - 1). 

All cyclic codes of length 2 over R and their minimum Hamming distances are given in 

Table 5.1. 
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Example 5.7.2. Consider cyclic codes of length 7 over R. We have 

x7 — 1= (x— 1)(x3 -+-x+1)(x3 +x2 +1) overIF2. 

This factors are irreducible polynomials over IF2. The Hensel lifts of irreducible factors are 

91 = x - 1, 92 = x3  + 2x2  + x - 1 and g3  = - - 2x - 1, respectively. The cyclic codes 

of length 7 over R are given in Table 5.2. 

5.8 Conclusion 

In this chapter, we have studied some structural properties of cyclic codes of length n over 

the ring R = Z4  + u7Z4, u2  = 0. First we have considered cyclic codes of odd lengths over 

R and obtained their structure through the factorization of x7  - 1, n odd integer, over 

R. Next, the general form of the generators of cyclic codes of arbitrary lengths over R 

is provided and a formula for their ranks is determined. We have obtained a necessary 

condition and a sufficient condition for such codes to be free R-modules. We have obtained 

the complete ideal structure of Some examples are presented. 
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Table 5.1: Complete ideal structure of R2. 

Ideals dH(I) 
0 

((x-1)+u) 2 
((x-1)-i-2u) 2 
((x-1)+2) 2 

2 
((x-1)+2+2u) 2 
((x-1)+u+2u) 2 

((x — 1) + 2 + u + 2u) 2 
(u(x-1)+2) 2 
(n(x-1)+2u) 2 
(2(x-1)+u) 2 
(2(x-1)+2u) 2 

(2(x - 1) + u(x - 1)) 2 
((x-1), u) 1 
((x - 1), 2u) 1 

((x-1)+2, u) 1 
((x-1)+u, 2) 1 
(2(x-1), u) 1 
(2(x - 1), 2u) 1 
(u(x - 1), 2) 1 
(u(x - 1), 2u) 1 

(2, u) 1 
(x-1, 2, u) 1 

((x-1)+2+u, 2u) 1 
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Table 5.2: Non-zero cyclic codes of length 7 over Z4  + uZ4. 

Non-zero generator polynomials rank 
(2gg, u9192+2ug1, i 74j = 1,2,3 3 
(2gg, u9192+2n92), ij=1,2,3 3 
(2gg, u9192+2u), i4j=1,2,3 3 
(2gg, ng1g3 +2ug1), i  74  j=1,2,3 3 

(2gg, ug1g3 +2u93), i 74j=1,2,3 3 
(2gg, ug1g3 +2u), ij=1,2,3 3 
(2gg, u9293+2ug2), ij=1,2,3 1 
(2gg, u9293+2ug3), ij=1,2,3 1 
(2g1g, u9293+2u), i74j=1,2,3 1 

(2gg, 'ugi+2u), ij=1,2,3 6 
(2gg, u92 +2u), iLj=1,2,3 4 
(2gg, ug3 +2u), ij=1,2,3 4 

(2gg, 3u), i4j=1,2,3 7 
(2g, u9192 + 2ug1), i = 1,2,3 3 
(2g, u9192+2u92), i=1,2,3 3 
(2g, tt9192+2u), i=1,2,3 3 
(2g, ug1g3 +2ugi), i=1,2,3 3 
(2g, ugig3 +2ug3), i=1,2,3 3 
(2g, ugig3+2u, i=1,2,3 3 

(2g, u9293 + 2u92), i = 1,2,3 1 
(2g, u9293 +2u93), i=1,2,3 1 

(2g, u9293 +2u), i=1,2,3 1 
(2g, ug +2n), i = 1,2,3 6 
(2g, u92 +2n, i= 1,2,3 4 
(2g, u93 +2u), i= 1,2,3 4 

(2g, 3'u), i=1,2,3 7 
(2, u9192+2ug1) 3 
(2, u9192 +2u92) 3 

(2, u9192 + 2u) 3 
(2, u9193+2ugi) 3 
(2, u9193 +2ug3) 3 
(2, ug1g3  + 2u) 3 

(2, u9293 + 2u92) 1 
(2, u9293+2u93) 1 
(2, u9293 + 2u) 1 
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Non-zero generator polynomials rank 
(2, ug1  + 2u) 6 
(2, u92 +2u) 4 
(2, 'U93 +2u) 4 

(2, 3u) 7 

(9192 + 2g1, ug1  + 2u) 6 
(9192+2g1, u92+2u) 4 

(9192+ 2g1, 3u) 7 
(glg2+292, ugi +2u) 6 
(g1g2+292, u92 +2u) 4 

(9192+292, 3u) 7 
(9192+ 2, ugi +2u) 6 

(gg + 2, u92 + 2u) 4 

(9192 + 2, 3u) 7 
(9193 + 2gi, ug1  + 2u) 6 
(9193 +2g1, ug3  +2u) 4 

(9193+2g1, 3n) 7 
(gig3 +293, ugi+2u) 6 
(9193+2g3, u93 +2u) 4 

(9193+ 293, 3u) 7 
(gig3 + 2, ug1  + 2u) 6 
(9193 + 2, ug3  + 2u) 4 

(9193 +2, 3u) 7 
(9293+292, u92 +2u) 4 
(9293+292, ug3  +2u) 4 

0293+292, 3u) 7 
9293+293, ug2 +2u) 4 

(9293 + 293, ug3  + 2u) 4 
(9293+2g3, 3n) 7 

(9293+2, u92 +2u) 4 
(9293+2, u93 +2u) 4 

(9293+ 2, 3u) 7 
(gi -i-2, 3u) 7 
(92+2, 3u) 7 
(93 +2, 3u) 7 



Chapter 6 

Negacyclic codes over Z4 + uZ4 

6.1 Introduction 

Negacyclic codes are a generalization of cyclic codes and were first studied by Berlekamp 

[15]. There is a lot of literature available on negacyclic codes. In this chapter, we consider 

negacyclic codes over the ring R = Z4  + ttZ4, u2  = 0. In Chapter 5, we have studied cyclic 

codes over R. When the code length n is odd, there exists an isomorphism between cyclic 

codes and negacyclic codes of length n (See Theorem 6.2.3). However, the same is not the 

case when n is even. So we mainly focus on negacyclic codes of even lengths, in particular of 

length 2k,  in this chapter. We have seen in Chapter 5, Theorem 5.4.10 that for n = 2/c, the 

ring RIl is a local ring with the unique maximal ideal M with three generators 2, n and 

x - 1, i.e., M = (2, u, x - 1). The presence of three generators makes the characterization 

of cyclic codes of length n over R complicated (Theorem 5.4.13). However, the ring (s)' 

which is also a local ring, has the unique maximal ideal with two generators only (See 

Theorem 6.3.1). This motivated us to study negacyclic codes of length 2k over R. We also 

study negacyclic codes of arbitrary even length in this chapter. 

Throughout this chapter R denotes the ring i + uZ4, u2  = 0. Recall that an element 

a + ub E R is a unit if and only if a is unit in Z4. 

121 
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6.2 Negacyclic codes over Z4  + uZ4  

Let A be a unit in R and ii a positive integer. A linear code C of length n over R is said to be 

a A-constacyclic code if C is invariant under A-constacyclic shits, i.e., if (c0, c1,. . . , c,_) E C, 

then (Ac_i, CO,  C1, . . . , c_) E C. If A = —1, then C is called a negacyclic code. For A = 1 

constacyclic codes coincide with cyclic codes. 

In the polynomial representation of elements of R, a A-constacyclic code of length n 

over R is an ideal of R j,j  . In particular, a negacyclic code is an ideal of 

Theorem 6.2.1. If C = C1  + uC2  is a A-constacyclic code of length n over R, then C1  is 

either a cyclic code or a negacyclic code of length n over 7L4. 

Proof Let TA  be the A-constacylic shift operator on Rn and C a A-constacyclic code of 

length n over R. Let (ao, a1,.. . ) a,_) e C17  (b0, b1) . ... b 1) Ei C2. Then the corresponding 

element of C is c = (c0, c1, . . . , c,,) = (ao, a1,.. . , a_1) +u(bo, b1,.. . , b,_i) = (ao+ubo, a1+ 

ub1,.. . , a_j+ub_i). Since C is a A-constacyclic code, so TA(c) = (Ac_i, c0, C1, ... , c,_2) E 

C. Let A = a + u/3, where a, 3 e 7L4. Then TA(c) = (cxa_i, a0, . . . , a,_) + u((cth_i  + 

/3a_ i), b0,... , E C. This implies that (aa_i, a0,. . . , an_) E C1. Therefore C1  is a 

a-constacyclic code over Z4. Since the units of Z4  are 1 and —1, so a = ±1. Hence the 

result. • 

Corollary 6.2.2. If C is a negacyclic code of length n over R, then both C1  and C2  are 

negacylic codes over Z4. 

Proof Since A = —1, so a = —1, 3 = 0. Then we get TA(c) = (—an_i , a0,... , an_) + 

u(—b_1, b0,.. . , b,_) for some c E C, from which follows that C1  and C2  are negacyclic. • 

6.2.1 Negacyclic codes of odd lengths over Z4  + u7Z4  

For the rest of this section, we assume that n is odd. Define e REx] R[x] 
(x-.1) -* (x'+1) such that 

e(f(x)) = f(—x). It was shown in [45, Theorem 5.1] that the map e is a ring isomorphism 

when R is a finite chain ring. The result can be immediately generalized to finite local 

rings. Therefore I is an ideal of if and only if J = (I) is an ideal of Rixl 
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- 
Theorem 6.2.3. C is a cyclic code of length ri over R if and only if (C) is a negacyclic 

code over  R. 

Proof. Let T and r'  be cyclic and negacyclic shifts, respectively. Then the result follows 

from the factthateor=T'oe. . 

The following results (Theorem 6.2.4 through Theorem 6.2.13) are discussed for cyclic 

codes over R in Chapter 5, and are straightforward generalizations thereof via the isomor-

phism e defined above. So we present them here without proofs. 

Theorem 6.2.4. The ring Rn  
= 

Rx]  is not a principal ideal ring. 

Since n is odd, Xn + 1 factors uniquely into pairwise coprime irreducible polynomials 

over R. Let xm + 1 = fi(x)f2(x) . .. fm(X). Then it follows from the Chinese Remainder 

Theorem that 
R[x] 

- 

R[x] 

(x+1) 

Any ideal I of (X n can be expressed as 

I = 

where 12  is an ideal of the ring i = 1, 2, . . . , m. Therefore a negacyclic code of length 

n over R is a sum of the ideals listed in Chapter 5, Theorem 5.3.5. 

Theorem 6.2.5. The number of negacyclic codes of length n over R is T', where m is the 

number of distinct basic irreducible factors of + 1. 

The following result gives a sufficient condition for a negacyclic code C over R to be a 

free Z4-code 

Theorem 6.2.6. Let C = C1  + uC2  be a negacyclic code of length n over R. If C1, C2  are 

free codes over Z, then C is a free 7Z4-module. 

The converse of the above theorem is in general not true, i.e., if a negacyclic code 

C = C1  + uC2  is a free Z4-module of length n over R, then C1  or C2  may not be a free code 

over Z4, it is demonstrated by Example 6.2.8. 
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Example 6.2.7. The polynomial x15  - 1 factorizes into irreducible polynomials over IF2  

asx15 -1 = (x-1)(x4 +x3 +1)(x4 +x+1)(x4 +x3 +x2 +x-i-1)(x2 +x--1). The 

Hensel lifts of x4 +x3 +1, x4 +x+1, x4 +x3 +x2 +x+land x2 +x+1to Z4  are 

x4 —x3 +2x2 +1, x4 +2x2 —x+1, x4 +x3 +x2 +x+1 and x2 +x+1, respectively. Therefore 

x15 -1= (x-1)(x4 —x3+2x2+1)(x4+2x2 —x+1)(x4+x3+x2+x+1)(x2+x+1). Replacingx 

by —x, we get x'5+1 = (x+1)(x4+x3+2x2+1)(x4+2x2+x+1)(x4—x3+x2—x+1)(x2—x+1). 

DefineC = (x4 —x3 --i--x2 —x+1) +u(x4 +2x2 +x+1). ThenC is a negacyclic code of 

length 15 over R, which is also a free Z4-module. 

Example 6.2.8. Let C = C1  +uC2  be a free Z4  -negacyclic code of length 7 over R generated 

by g(x) = 2x2  + u(x3  + x + 1). Then C1  is a negacyclic code of length 7 over Z4  generated 

by g(x) (mod u) = g1(x) = 2x2. Since gi(x) 
' 
1' + 1 , so C1  is not 7Z47free. 

From Theorem 5.4.9, the general form of a negacyclic code C of length n over R is 

C = (g(x) +up(x), ua(x)), where g(x), p(x), a(x) E Z4[x]. 

Theorem 6.2.9 through Theorem 6.2.13 below are the generalizations of corresponding 

theorems in Chapter 5 to negacyclic codes of odd lengths over R. 

Theorem 6.2.9. Let C = (g(x) + 'ap(x), ua(x)) be a negacyclic code of length n over R 

with deg g(x) = k1  and deg a(x) = k2, respectively. Then C has rank n - k2  and a minimal 

spanning set B = {(g(x) + up(x)), x(g(x) + up(x)), x2(g(x) + up(x)),.•. , xm_k11(g(x) + 

up(x)), ua(x), xua(x), x2ua(x), ... , xTd1_c2_lua(x)}.  

Example 6.2.10. Consider the negacyclic code C of length 7 over R generated by the 

polynomials g(x) = x3  + (2 + u)x2  + (1 + u)x + (1 + u) and a(x) = x + 1. Then the rank of 

C is 6 and a minimal spanning set of C is {g(x),xg(x),x2g(x),x3g(x), na(x),uxa(x)}. 

Theorem 6.2.11. Let C be a principally generated negacyclic code of length n over R. Then 

C is free if and only if there exists a monic generator g(x) in C such that g(x) I  xm + 1. Fur-

thermore, C has free rank n - deg g(x) and the elements g(x), xg(x), .., ndeg 9(x)_lg(x) 

form a basis for C. 

Example 6.2.12. Consider the negacyclic code C of length 15 over R generated by the 

polynomial g(x) = x4  + 2x2  + x + 1, where g(x) is the Hensel lift of x4  + x + 1 E 1F2[x] to 
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R and g(x) I x15  + 1. The negacyclic code C = (g(z)) is an R-free negacyclic code of length 

15 and the free rank 11. 

Theorem 6.2.13. If C = C1  + uC2  is a free negacyclic code of length n over R, then so is 

C1  overZ4. 

Example 6.2.14. Consider again the negacyclic code C of length 15 generated by g(x) = 

x4 --2x2 -j--x+1. ThenC is free over R, as x4 +2x2 +x+1 is a divisor ofx15 +1 over R. 

Since x4  + 2x2  + x + 1 is a divisor of x' 5  + 1 over Z4  as well, Ci  is a free negacyclic code 

of length 15 over Z4. 

6.3 Negacyclic codes of length over Z4  + uZ4  

So far we considered negacyclic codes with the assumption that the code length n is coprime 

to the characteristic of the ring R, i.e, (n, 4) = 1 . Now we extend our study to negacyclic 

codes of length n = 2, k > 1. Then (n, 4) 74  1. Negacyclic codes whose lengths are not 

relatively prime to characteristic of R are known as repeated root negacyclic codes. 

Now we study negacyclic codes of length 2', k > 1. For the rest of this section n = 2', 

k> 1. Let R' = 
Z4[x] and R" - Z2[x] 

fl (x'+t) fl - 

Theorem 6.3.1. The ring n., 
= 

REx]  is a local ring. 

Proof. Define the map -* such that (f(x)) = fi (x) (mod u), where 

f(x) = fi (x) + uf 2(x). It is easy to verify that I is a surjective ring homomorphism. We 

have from Theorem 2.3.34 that the ring is a local ring with the unique maximal ideal 

(x+1). The inverse image of (x+1) is 1((x+1)) = (u,x+1). Suppose that y be a 

non-unit in R such that y 0 (u,x + 1). Since y is a non-unit in R, (y) is a non-unit 

in R. It follows that 1(y) e (x + 1), as (x + 1) is the maximal ideal of R'. This in turn 

implies that y E (u, x + 1), a contradiction. Therefore (u, x + 1) contains all non-units of 

R. Thus it is the unique maximal ideal of R and hence R is local. . 

Now onward, we prefer to express a polynomial in terms of x + 1, rather than in x, to 

make the computations easier in R. Each polynomial in R can uniquely be written as 
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j
n—i 
J IJ  f3 (x + 1)3, f3 E R, and such a polynomial will be denoted in the rest of this chapter 

by f(x). 

Lemma 6.3.2. In R,, (x + 1) 2x and (x + 1) is nilpotent with nilpotency 2n. 

Proof. It can easily be seen by induction on n that (x+1) = 
Xn + 1+2x'21 . Since = —1 

in R, (x+1) 2x. It follows that (x+1)2  = 0. There is nol, 0 < l< n—i such 

that (x + 1)1 = 0 in R. Now suppose (x + 1)1  = 0 for some n < I < 2n - 1. Then 

(x+1)1  = (x+i(x+1) 2x(x--1)1  = 0. Since x n2  is a unit in R, 2(x+1)' = 0. 

But 2(x+1) 0 for any 0<1' <n — i in R. So no such I exists. Hence 2n is the 

nilpotency of x + 1. . 

Lemma 6.3.3. An element f(x) = >jI a(x + l)i is a unit in Rn  if and only if a0  is a 

unit in R. 

Proof. Suppose that 1(x) = >jI a(x + l)i is a unit in J?,2  and a0  is a non-unit in R. 

Then a0  e (2, u). It follows then that f(x) a(x + 1)i  e (u, x + 1). This implies 

that f(x) is a non-unit, a contradiction. Therefore a0  must be a unit in R. 

On the other hand, suppose that a0  is a unit in R and f(x) = a(x + l)i is a 

non-unit in R. Then f(x) e (u, x + i), as (u, x + 1) is the maximal ideal of R. Also 

x+1),whichimplies that f(x)—I11 a(x+1)i=ao E(u, x+1), 

a contradiction. Therefore f(x) is a unit in R. . 

Lemma 6.3.4. In R, (x + 1) = 2 ((x + 1) 3 + i) and ((x + i)') = (2). 

Proof. From Lemma 6.3.2, we have 

(x+1)Th  = 2x 22 

= 2((x+1)-1) 

= 2((x+1)_ ()(x +1) 1 + ()(x +1) 2
2 

2 +...+(_1)) .  

It is well known that () = 0 or 2 (mod 4) for 0 < i < . Therefore (x + 1) = 

2((x+1) +1). Since (x+1) +1 is a unit in R, ((x+1)) = (2). 
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An element f(x) in R can be written as f(x) = fi(x) + uf 2(x), where f(x) E R', 

i = 1,2. Define 'P: R - Z4  such that 'P(a + bu) = a (mod u). It can easily be seen that 

'I' is a ring homomorphism with ker IF = (u) = uZ4. Extend IQ to the homomorphism 

: R - R' such that (a(x) + ub(x)) = a(x) (mod u), where a(x), b(x) e Z4[x]. Let I 

be a non-trivial ideal of R. Restrict 'f' to I and define J = {h(x) E : uh(x) E ker I}. 

Clearly J is an ideal of R'. We know from Theorem 2.3.34 that R is a finite chain ring 

with the maximal ideal (x + 1), so J = ((x + 1)) for some 0 < m < 2n - 1. There-

fore ker I = (u(x + 1)m).  Similarly, the image of I under , i.e., I(I) is an ideal of R 

and .Ti(I) = ((x + 1)) for some 1 < s < 2n. Hence I = ((x + 1) + up(x), u(x + 1)) 

for some p(x) = 7I1 p3 (x + 1)3  E Z4[x]. Since u(x + 1) = u((x + 1)8  + up(x)) E I 

and (u(x + 1)) = 0, so (x + 1)" I (x + 1). This implies that m < s. When 

= s, we get u(x + 1) E ((x + 1)8  + up(x)) = I. Therefore a non-principal ideal I 

of R has the form I = ((X+i)8+u7:p(x+1)i, u(x+1)m) , 1 s 2n —1 

and 0 < m < s—i. When m < n, I = ((X+1)3 +UEn-1
j=O Pj(X+1)j' u(x +i)m) 

((X+i)8 +u'p(x+1)i, u(x +1)m) 

If t is the smallest non-negative integer such that Pt  is non-zero, then a polynomial 

f(x) = (x + 1) + u >jI pj(X + l)i E R[x] can be represented as 1(x) = (x + 1)8  + 

u(x + 1)th(x), where h(x) E Z4[x] and deg h(x) < n - t - 1. Hence I can be written as 

I = ((x +i)8+  u(x  +i)th(x), u(x +1)m), where 1 < s < 2n— 1, 0 < t < min{m,n}, 

0 < m < s — 1 and h(x)Z4 [x]. 

Summarizing this discussion, we present the complete ideal structure of Rn  in the fol-

lowing theorem. 

Theorem 6.3.5. Let I be an ideal of R. Then I is one of the following: 

1. Trivial ideals: 

(0) or(1). 

. Principal ideals: 

(a) (u(x+1)m),O<m<2n_1 
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h(x) <n—t-1. 

3. Non-principal ideals: ((x + 1) + u(x + 1)th(x), u(x + i)m), 1 < s < 2n - 1, 0 <t < 

n — i, 0<m < s — i, h(x)EZL4[x] and degh(x) min{m,n}—t—l. 

The ideals described in Theorem 6.3.5 are not distinct. For instance, in R2, the ideals 

((z-i-l)3 -i-u) and ((x+1)3 +u(1+(x+1)) are same, as (x+ i) +u(1+ (x+ 1)) = 

((x+i)3 +u)(i+(x+1)) and (1+(z+1)) is aunit in R. Similarly, the ideals ((x+ 1)2  +u) 

and ((x + 1)2  + 3u)) are same. But the ideals ((x + 1)2  + u) and (x + 1)2  + u(i + (x + 1))) 

are distinct, as u(x + 1) is neither in ((x + 1)2  + u) nor in (x + 1)2  + u(i + (x  + 1))). 

Similarly, the ideals ((x + i) + 2u) = ((x + i) + 2u(1 + (x + 1))), as (x + i) + 2u(1 + 

(x + 1)) = ((x + i) + 2u)(1 + (x + 1)) and 1 + (x + 1) is a unit. So it is required to 

know the smallest values of T and T1  such that u(x + i)T  E ((x + i) + u(x + 1)th(x)) 

and 2u(x + i)Ti  e ((x + 1)8 + u(x + 1)th(x)), respectively, through which the repetition 

of ideals can be avoided and ideals (negacyclic codes) can be determined distinctly. For 

computing T, we follow a similar line of argument as in [39]. However, due the presence of 

zero divisors 2 and u, the results are not a straightforward generalization. 

The following theorem discusses the value of T when 1 < s < n - 1. 

Theorem 6.3.6. Let T be the smallest non-negative integer such that u(x + i)T  E I = 

((x + i) + u(x + 1)th(x)), where 1 < s < n - 1, 0 < t < ii - 1 and h(x) E 7Z 4[x]. Then 

T = s 

Proof. Let f(x) = (x+1)8 +u(x+1)th(x), so that I = (f(x)). Then uf(x) = U(X+I)s E I. 

Since T is the smallest non-negative integer such that u(x + i)T  E I, we get T < s. 

On the other hand, since u(x + i)T E I, there exists g(x) = gi (x) + u92(x) E R, where 

gi(x), 92(x) e R', such that u(x + i)T 
= f(x)g(x). This implies that 

u(x + i)T = ((x+ 1) +u(x+ 1)th(x))  (91(x) +ug2(x)) 

(x + 1)8g1(x) + u(x + 1)8g2(x) + u(x + 1)th(x)gi (x). (6.3.1) 

From equation (6.3.1), we get (x + 1)gi (x) = 0, and so gi (x) = (x + 1)2'_1(x) 
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for some 1(x) E R'. Therefore equation (6.3.1) can be rewritten as u(x + i)T = 

u(x + 1) (92(x) + (x + 1)228+th(x)l(x)), as s < n and 2n - s + t > n. This implies 

that u(x + i)T  e (u(x + 1)8). Thus s < T, and hence T = s. . 

In Theorem 6.3.6, the value of T does not depend on whether or not the polynomial 

h(x) is unit in R'. However, the same is not the case when n < s < 2ri - 1. This is another 

difference between the results obtained in here and that of [39]. 

Theorem 6.3.7. Let T be the smallest non-negative integer such that u(x + i)T  E I = 

((x + 1) + u(x + 1)th(x)), where n < s < 2n - 1 and h(x) is a unit in R. Then T = 

rnin{s, 2n - s + t}. 

Proof. Let f(x) = (x + 1) + u(x + 1)th(x). Then uf(x) = u(x + 1) E I and (x + 

1)2n_8f(x)h(x)_ = u(x + 1)2n_8+t E I. Since T is the smallest non-negative integer such 

that n(x + i)T  E I, we have T < min{s, 2n - s + t}. 

On the other hand, we can write u(x + i)T 
= f(x)g(x) for some g(x) = g(x) + ug2(x) e 

R,, 91(x),92(x) E R. This implies that u(x +1)T 

1)th(x)gi (x). This in turn implies that gi(x) = (x + 1)2 l(x) for some 1(x) E R', and so 

u(x + i)T 
= u(x + 1)892(x)  + u(x + 1)2n_8+th(x)l(x).  It follows from this that u(x + i)T  E 

(u(x + 1)mm{8 2n_3+t}). Therefore T > min{s, 2n—s+t}. Hence T = min{s, 2n—s+t}. 

. 

Theorem 6.3.7 gives the value of T such that u(x + i)T  e I only when h(x) is a unit 

in R'. If h(x) is not a unit in R', then we can have either h(x) = 2h'(x) or h(x) = 

2h1(x) + (x + 1)1 h2 (x), where h'(x), hi(x) are units in R' and h2(x) is a unit in R'. For 

example, 

h(x) = 2+ 2(x + 1) + (x + i) + 3(x + i) + 2(x + i) + (x + 1)6  + 3(x + i) 

= 2(1+(x+1) +(x+1))+(x+1)3(1+3(x+1)+(x+1)3 +3(x+1)4) 

= 2h1(x) + (x + 1)3h2(x), 

where hi(x), h2(x) are units in R' and R, respectively. 

Now we find the smallest value of T in these two cases of h(x) also. 
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Lemma 6.3.8. Let I = ((s + I) + u(x + 1)th(s)), where n < s < 2n - 1, h(s) is a - 

non-zero non-unit in R' and deg h(s) < n - t - 1. Then t < s - n. 

Proof. Since h(s) is not a unit in R, either h(s) = 2h'(x) or h(s) = 2h1(x)+(s+1)1 h2(x), 

where h'(s), hi (s) are units in R' and h2(s) is a unit in R'. We prove the two cases 

separately. 

Case (i): Let h(s) = 2W(x). Then I = (f(s)) 74  ((x + 1)8) ,  where f(s) = (s + 1)8  + 

2u(x + 1)thf(x). 

Suppose s - n < t. From Lemma 6.3.4, we have (x + 1) = 2x n2 = 2(1 + (1 + s)). So 

f(s) = 2s (x + 1) + 2u(x + 1)thF(x) 

2((x + 1) + 1)(x + 1) + 2u(x + 1)thl(s) 

= 2(s + 1)(1 + (1 + s) + (x + 1)t_3+nh(x)/) 

From Lemma 6.3.3, 1 + (1 + + u(x + 1)t_8+Thh( x )I is a unit in R. This implies that 

I = (f(s)) = (2(s + 1)) = ((x + 1)), which is a contradiction. Therefore t < s - n. 

Case (ii): Let h(x) = 2hi(s)+(x+1)1 h2(s). Then I = (f(s)) 74 ((x + 1) + u(x + 1)1+th2(s)), 

where f(s) = (x + 1)8  + u(x + 1)t(2h1(x)  + (s + 1)'h2(x)). 

Suppose s - n < t. Then f(s) = 2xii (s + 1) + u(x + 1)t(2h1(x) + (s + 1)1 h2(x)). 

This implies that uxf(x) = 2u(x + 1)_ E I. Now f(s) - ux'f (x) (x + 1)t_8+1ih1(x) 

(s + 1)8  + u(s + 1)th2(x). Since 1 - us'(s + 1)t_8+Thh1(s) is a unit in R, I = (f(s)) = 

((s + 1)8  + u(x + 1)l+th2(s)),  which is a contradiction. Therefore t < s - n. • 

Theorem 6.3.9. Let T be the smallest non-negative integer such that u(s + i)T  E I = 

((x + 1) + 2u(x + 1)th(x)),  where ii < s < 2n - 1 and h(s) is a unit in R. Then T = 

rnin{s, 3n—s+t}. 

Proof Let I = (f(s)), where f(s) = (x + 1)8  + 2u(x + 1)th(s). Then from Lemma 6.3.8, 

t < s — n. This implies that 2n—s+t < n. Now uf(s) = u(x +1)8  E I. Also, 

(x + 1)2n_sf(x) = 2u(x + 1)2n_8+th(x)  E I, which implies that x (s + 1)2 f(x)h(x) 1  = 

(s + l)2n_s+t I, s (s + i)2xu = u(x+ i) e  = 2x. Since T is the smallest 

non-negative integer such that u(x + i)T  E I, we have T < min{s, 3n - s + t}. 
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For the other half, we obtain T > min{s, 3n - s + t} using the same arguments as in 

Theorems 6.3.6 and 6.3.7. Hence T = min{s, 3m - s + t}. • 

Theorem 6.3.10. Let T be the smallest non-negative integer such that u(x + i)T  E I = 

((x + 1) + u(x + 1)t(2h1(x)  + (x + 1)1 h2(x)), where n < s < 2n - 1, hi(x), h2(x) are 

units in R and Mn, respectively. Them T = min{s, 2m - s + t + l}. 

Proof. The proof is similar to that of Theorem 6.3.9. U 

We summarize the value of T for different cases of h(x), s, and tin the following theorem. 

Theorem 6.3.11. Let 0 < T < 2n - 1 be the smallest non-negative integer such that 

u(x+ i)T  El = ((x+1)3 +  u(x  +1)th(x)),  where 0 < s < 2n— 1, h(x) E 7Z4[x] and deg 

h(x)<n—t-1. Then 

s if1<sn-1, 

2n—s+t ifn<s<2n-1, 0t<2s-2n and h(x)isaunitinR', 

s ifn<s<2n-1 andt>2s-2n, and h(x) is aunitinR, 

3n—s+t ifn<s2n-1, 0<t< 25 -3n and h(x) = 2h'(x), 

T= s ifn<s<2n-1, 2s-3n<t<s—n and h(x)=2h'(x), 

2n—s+l+t ifn<s<2n-1, 0<t<s—n,  01+t< 2s-2n 

and h(x) = 2h1(x) + (x + 1)1h2(x), 

s ifn<s<2n-1, 0t<s—n, 1+t>2s-2n 

and h(x) = 2h1(x) + (x + 1)1 h2(x), 

where h(x), hi(x) are units in R' and h2(x) is a unit in R'. 

In the following theorem we present the value of T1  for different cases of h(x), s, and t. 

Theorem 6.3.12. Let 0 < T1  < n - 1 be the smallest non-negative integer such that 

2u(x + i)Ti  E I = ((x + 1) + u(x + 1)th(x)), where 0 < s < 2n - 1, h(x) E Z4[x] and deg 
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h(x)<n—t—i. Then 

T1 = 

o ifl<s<n-1, 

o ifn < s<2n-1, O<t<s—n  and h(z)isaunitinR, 

n — s+t ifn<s<2n-1, s—n<t<2s-2n and h(x)isaunitinR', 

s — n ifn<s<2n-1, 2s-2nt<n and h(x) is aunitinR', 

2n—s+t ifn<s<2n-1, O<t<2s-3n andh(x)=2h'(x), 

s — ri ifn<s < 2n-1, 2s-3n<t<s—ri andh(x)2h'(x), 

o ifn<s < 2n-1, O<t<s—n,  01+ts—n 

and h(x) = 2h1(x) + (x + 1)1h2(x), 

1 + t — s + n ifn<s<2n-1, O<t<s—n, s—n<l+t<2s-2n 

and h(x) = 2h1(x) + (x + 1)1 h2(x), 

s — n ifn< s < 2n-1, Ot<s—n, 1+t>2s-2n 

and h(x) = 2h1(x) + (x + 1)1 h2(x), 

where h(x), hi (x) are units in R and h2(x) is a unit in R'. 

Proof. We present the proof of case (i) and the remaining cases can be proved using similar 

arguments as in Theorems 6.3.6 and 6.3.9. 

Let f(x) = (x+1)+u(x+ 1)th(x)  such that I = (f(x)), where 1<s <n — i. Then 

u(x + 1) 8f(x) = u(x + 1). Since (x + 1) = 2x and x 121  is a unit R, we get that 

u(x + 1)'xf(x) = 2u E I. Therefore T1  = 0, as T1  is the non-negative integer such that 

2u(x + i)Ti  E I. U 

Making use of Theorems 6.3.11 and 6.3.12, we can now distinguish the ideals of R. 

The following theorem gives the distinct principal ideals. 

Theorem 6.3.13. The distinct non-trivial principal ideals of R are 

1. I=(u(x+i)m), 0<m<2n-1. 
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2. I = ((x+1)+u(x+ 1)th(x)), where 1 < s <n — i, 0 < t < s — i, h(s) is either 

zero or a unit in R', and deg h(s) < s - t - 1. 

9. I = ((x + 1)8  + u(x + 1)th(x)), where n < s < 2n - 1, 0 < t < n - 1, h(s) is either 

zero or a unit in R', and deg h(s) T - t - 1. 

((x + 1)8  + 2u(x + 1)th(x)), where n + 1 < s < 2n - 1, 0 < t < s - n - 1, h(s) 

is a unit in R' and deg h(s) < T1  - t - 1. 

5. I=((x+1)8+u(x+1)t(2h1(x)+(x+1)1h2(x))),  where n+1 < s < 2n-1, 0 

t < s - n < I + t <n, hi(s), h2(s) are units in R, deg hi(s) T1  - t - 1 and deg 

h2(s) <n - t —1 - 1. 

Proof. 1. Suppose that I contains only the multiples of u, i.e., I = (uf(x)), where 

f(s) E Z4[x]. This implies that (f(s)) is an ideal of R'. So from Theorem 2.3.34 we 

get I = (u(s + 1)) for some 0 < m < 2n - 1. 

2. Let I = (f(s)), where f(s) = (x + 1)8  + u(x + 1)tg(x), 1 < s <n - 1, 0 t n - 1 

and g(x) e Z4[x]. If g(x) = 0, then I = (f(s)) = ((x + 1)8), 1 < s < n - 1. 

Let g(x) = g(x) + 2g2(x) 4  0, gi(s), 92(x) C  Z2{x]. Since 1 < s < n - 1, we have 

T1  = 0 from Theorem 6.3.12, i.e., 2u E I. This implies that 2u(x + 1)t92(x)  E I. On 

II multiplying f(s) by u(s + 1)n_8+tx92(x), we get 

u(x + 1)_8+tx22 92(x)f(x) = 2u(x + 1)t92(s), (6.3.2) 

as(s-i-1)=2x. Now 

f(s) - u(s + 1)Th_8+txg2(x)f(x) = ((x + 1) + u(x + 1)tgi(x)  + 2n(x + 1)tg2(x)) 

- 2u(s + 1)t92(x) (from 6.3.2), 

which implies that 

f(s) (i - u(x + 1)n_3+tx92(s)) = (x+ 1) +u(x+ 1)tgi(x). 
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Since 1 - u(x + 1)n_txg2(x) is a unit in R, (f(x)) = ((x + 1) + u(x + l)th(x)), 

where g(x) = h(x). When 1 < s < n - 1, from Theorem 6.3.11, T = s. Therefore 

deg h(x)s—t-1. 

 

and g(x) is either zero or a unit in R. If g(x) = 0, then I = (f(x)) = ((x + 1)), 

fl < s <2n - 1. 

Let g(x) = gi(x) + 292(x), 91(x), 92(x) E Z2[z], be a unit in R. Then gi(x) is also a 

unit in R. We first consider the case n < s < 2n - 1 and 0 < t < s - n. Then from 

Theorem 6.3.12, we have 2u E I. This implies that 2u(x + 1)t92(x)  E I. Since (x + 

1) = 2x, f(x) = 2(x +1)3_7 x + u(x+1)tgi (x)+2u(x+1)tg2(x), which implies that 

2f(x) = 2u(x+1)tgi(x). It follows from this that 2f(x)gi(x)'92(x) = 2u(x+1)t92(x). 

Now f(x)_2u(x+1)tg2(x) = (x+1)8+u(x+1)tgi (x)+2ug2(x)(x+1)1 _2u(x+1)t92(x). 

So f(x)(1 - 292(x)91(x)') = (x + 1) + u(x + 1)th(x), where h(x) = gi (x). Since 

1 + 2g2(x)gi (x) 1  is a unit in R, we gei I = (f(x)) = ((x + 1) + u(x + 1)th(x)). 

Similarly, when s - n < t < n - 1, we can see that I = ((x + 1)8 + u(x + 1)th(x)), 

where h(x) E R' is a unit. 

Now we determine the degree of h(x). From Theorem 6.3.11, we have T = 2ri - s + t 

when t < s - n, and there is no T < n such that n(x + i)T  e I when t > s - n. 

2n— s — i ift <s — n, 
Therefore deg h(s) 

I n — t — 1 ift>s — n 

Let I = (f(s)), where f(s) = (x + 1) + 2u(x + 1)tg(x), n < s < 2n - 1, 

and g(s) is a unit in R. Then from Lemma 6.3.8, we have t < s - n. From 

Theorem 6.3.12, the smallest value of T1  such that 2u(x + i)Ti  E I is T1  = 

12n—s+t ift< 2s-3n, 
Therefore I = ((x +1)8+2u(x +1)th(x)), 

if 2s — 3n < t < s — n 

where h(s) is a unit in R' and deg h(s) < T1  - t - 1. 

Let I = (f(s)), where f(s) = (x + 1) + u(x + 1)tg(x), n < s < 2ri - 1, g(x) = 

2h(x) + (x + 1)t h(x) and h'(x), h'(x) are units in R, R, respectively. Then from 
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Lemma 6.3.8, we have t < s - ii. Now let h(x) = h'21(x) + 2h'22(x), where 14(x), 

h'22(x) E Z2[x]. Since 21(x) = 2u(x + 1)t+th2(x)  E I, we get 2f(x)(h'(x))'h' 2(x) = 

2u(x+ 1)th2(x) E I. Then f(x)+2f(x)h(x)'h 2(x) = (x+1) +u(x+ 1)t(2t4(x)+ 

(x + 1)h'2(x)) + 2u(x + 1)1+th/22(x). This implies that 

f(s) (1 + 2h'(s)'h' 2(x)) = (x + 1) + 2u(s + i)t/4(X)  + u(s + 1)th1(x) 

+ 2u(x + 1)l+th2(x)  + 2u(x + 1) ' +1'22 (x) 

= (z + 1) + 2u(s + i)t/4(X)  + u(x + 1)l+th1(x) 

= (x + 1) +u(x + 1)t(2h1(x)  + (x+ 1)1h2(x)), 

where h(x) = h'1(x), h2(x) = h'21(x) are units in R''. Since i+214(x)'h 2(s) is a unit 

in R, I = ((x + 1) +u(s + 1)1(2h1(s)  + (x+ 1)'h2(s))). However, when 1+t < s—

n, from Theorem 6.3.12, we have T1  = 0, i.e., 2u E I. Then I will be one of the ideals 

discussed in Case (3). Therefore I = ((x + 1) + u(x + 1)t(2h1(s)  + (s + 1)'h2(x))), 

where 0 <t <s — n < l+t < n, hi(s), h2(x) E RZ and deg hi(s) :5 T1 —t— land 

deg h2(s)<n—t—l—i. 

. 

Using the principal ideals of R, as discussed in Theorem 6.3.13, the non-principal ideals 

of R can be described as follows: 

Theorem 6.3.14. The distinct non-principal ideals of R are 

I = ((x +i)8+u(x +1)th(x), u(x+ 1)m), where 1 < s < n — i, 0 < t < s — i, 

1 + t < m < T - 1, h(s) is either zero or a unit in R', and deg h(s) :~' in - t - 1. 

I = ((s +i)3+u(x +i)th(s), u(s+i)m), where n < s < 2n— 1, 0 < t < n — i, 

1+t <m < T—i, h(s) is either zero or a unit in R', and deg h(s) min{rn,n}—t-1. 

- 3. I = ((x +i)8+2u(x +1)th(x), u(x +i)m), where n+ 1 < s < 2n —1, 0 < t < 

s - n - 1, 1+ t < m < T - 1, h(s) is a unit in R', and deg h(s) :!~, min{m, T1 } - t - 1. 

((x + 1) + 2u(x + 1)th(s), 2u(x + 1)1, where n + i < s < 2n - 1, 0 < t 

s—n-1, 1+t < m:!~ T1 — 1, h(s) is a unit in R', and deg h(s) :~ m1 —t— 1. 
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I = ((x+1)+ u(x +1)t(2hi(x)+(x+1)1 h2(x)) u(x  +1)m),  where n+l < S 

2n - 1, 0 < t < s - n - 1, t + 1 < m < ii, hi(x), h2(x) are units in R', deg 

h1(x)<Ti —t-1, deg h2(x)<n—t—l. 

I = ((x + 1) + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), 2u(x + 1)m1), where n + 1 < s < 

2n-1, 0<t<s—n-1, deg hi(x) <m1 < min{s—n,n—s+l+t}, hi (x), h2(x) 

are units in R. 

Proof. We present the proof of (1). The proofs of the rest follow similar lines of arguments. 

When h(x) = 0, I = ((x + 1), u(x + 1)m), where 1 < s < n - 1, 0 < m < . - 1. 

When h(x) 0, from Theorem 6.3.11, the smallest value of T such that 'u(x + i) E 

(x + 1) + u(x + 1)th(x) is T = s. Since I is non-principal, we must have in < S. 

Hence I = ((x +i)8+  u(x  +1)th(x),  u(x  +1)m),  where 1 < s <n — i, 0 < t < s — i, 

1+tmT-1, and deg h(x) <m—t-1. . 

Summarizing Theorems 6.3.13 and 6.3.14 we present the complete structure of negacyclic 
- 

codes of length n over R. 

Theorem 6.3.15. Let C be a negacyclic code of length n over R. Then C is one of the - 

following: 

• Type 0: (0) or (1). 

• Type 1: (u(x +1)m),0< m <2n _i. 

• Type 2.0: ((x+1)+u(x+1)th(x)),  where 1 < s <n—i, 0< t< s—i, h(x) is 

either zero or a unit in R and deg h(x) < s - t - 1. 

• Type 2.1:((x+1)8 + u(x +1)th(x)), where ns<2n_1,0<tri_1,h(x)is 

either zero or a unit in R' and deg h(x) < T - t - 1. 

• 

h(x) is a unit in R', and deg h(x) < T1  - t - 1. 

• Type 2.3: ((x+1)8+  u(x  +1)t(2h1(x)+(x+i)1h2(x))),  where n+1 < s < 2n-1, 

0< t < s—n—i, s—n <l+t <n, hi(x), h2(x) are units in Mn, deg hi(x) T1 —t-1 

and deg h2(x) <n—t—l—i. 
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• Type 3.0: ((x + 1)8  + u(x + 1)th(x), u(x + 1)), where 1 < s < n—i, 0 < t < s—i, 

1 + t < m < T - 1, h(x) is either zero or a unit in R' and deg h(x) m - t - 1. 

• Type 3.1: ((x +1)8+  u(x  +1)th(x),  u(x  +l)m),  where n < s < 2n— 1, 0 < t < 

n — i,i+t<m<n — i,h(x) is eit her zero oraunit in R' and deg h(x) m—t—l. 

• Type 3.2: ((x + 1) + u(x + 1)th(x), 2u(x + 1'), where ii + i < s < 2n - 1, 

s - n + 1 < t < n -  1, 0 m1  T1  - 1, h(x) is either zero or a unit in R', and deg 

h(x) <n—t-1. 

• Type 3.3: ((x + 1)8  + 2u(x + 1)th(x), u(x + 1)),  where n+i < s < 2n-1, 0 < t 

s - n—i, 1+ t < m < n-  1, h(x) is a unit in R and deg h(x) min{rn, T1 } - t - 1. 

• Type 3.4: ((x + 1)8  + 2u(x + i)th(x), 2u(x + i)ml), where n < s < 2n - 1, 0 < t < 

s—n-1, i+t < in1  T1 — 1, h(x) is a unit inR' and deg h(x) :5m1 —t— 1. 

- . Type 3.5: ((x+i)8+  u(x  +i)t(2h1(x)+(x+i)1h2(x)), u(x  +i)m),  where n+1 < 

s<2n—i3O<t<s—n—is—n<t+l<m<n,hi(x), h2(x) are units in R' 

and deghi(x)Ti—t—i, degh2(x)m—t-1-1. 

• Type 3.6: ((x + i) + u(x + 1)t(2h1(x)  + (x + 1)1 h2(x)), 2u(x + i)ml), where n + 

1< s < 2n— 1,0 <t <s — n — i, 1 + t < mi T1 —i, hi(x), h2(x) are units in R', 

and deghi(z)m1 —t—i, degh2(x)n—t-1-1. 

6.4 A Mass formula for the number of negacylic codes 

of length 2' over Z4  + uZ4  

In this section, we obtain a mass formula for the number of negacylic codes of length n 

over R. The following lemmas (Lemmas 6.4.1 and 6.4.2) are used in Theorem 6.4.3 to find 

out the number of negacyclic codes of length n over R. 

aj 
Lemma 6.4.1. For 0 < a1, a2  2n - 1,E (2ri - s)22n_8_l = (2n - a1 - 1)22_a1 - (2n - 

s=a2  
2n—a2-1 a2  - 2)2  
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Proof. Let G(x) > x2'. Then G(x) = 2  a1-1-l_XS-2 
x-1 which implies that the deriva- 

s=a2 

tive of G(x) is G'(x) = 
(x_1)((2n_a1+1)x2t_a1 _(2n_a2)x2_a2_1) - (x2n_ai+1  _ 2 v — a2 \ 

. Therefore 
al 

G'(2) = (2n - a1  - 1)22 a1 
- (2n - a2 - 2)22n_a2_1, Also G(x) = implies that 

s=a 
al 

G'(x) = (2n - s)x2 '. Hence G'(2) (2n - s)22 = (2n - a1  - i)22fl—ai - 

s=a2 

(2n - a2  - 2)22n—a2-1 . 

bi 

Lemma 6.4.2. ForO < b1, b2  < 2n-1, L (2n—s—t— 1)228_t_2 = (2n—s—bi — 
t=b2  

2)22n_3_bl _1 
- (2n - s - b2 - 3)22n_s_b2 _2 

Proof. Similar to the proof of Lemma 6.4.1. • 

Theorem 6.4.3. The number of negacyclic codes of length n over R is 

11.2"+2 1 (5n-12) —(n2 +5n+4). 

Proof. Let Vj  denote the number of negacyclic codes of length n of each Type i and .Af 

denote the total number of negacyclic codes of length n over R. First we find the number 

of negacyclic codes in each case. 

Type 0: There are two trivial negacyclic codes, (0) and (1). Therefore A/0  = 2. 

Type 1: Let C = (u(x + 1)'), 0 < m < 2n - 1. Therefore the number of negacyclic 

codes of this type is Xj  = 2n. 

Type 2.0: Let C= ((x+1)9+  u(x  +1)th(x)),  where 1< s < n-1, U < t < s — i, and 

h(x) is either zero or unit in R. 

If h(x) = 0, then the number of negacyclic codes of this type is A/0 = n - 1. 
n—i s—i n—i 

Ifh(x)0, then J o=28 _t =(23 _1)=2n_2_(n_1)=2n_n_1. 
s=1 t=O 5=1 

Therefore the total number of negacyclic codes of this type is 

.Af 0  =J¼/ +' = ri —1+2 - n — 1 = 2' —2. 

Type 2.1: Let C = ((x + 1) + u(x + 1)th(x)), where n < s < 2n - 1, 0 < t < n - 1, 

and h(x) is either zero or unit in R. 

If h(x) = 0, then Ar2.1  = n. 
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2n - s + t 
If h(x) =A 0, then from Theorem 6.3.11, we have T 

I s 

12n - .s - 1 
This implies that deg h(x) min IT, n} - t - 1 

- t - 1 

Therefore 

n—i 2n-1 rs—n-1 n—i 

- 

n—t-1 + I > 22n—s+t—t-1 + E 2n—t-1 
Jv 2 i - 

t=o s=n+i L t=o t=s-n ] 
for s = n 

2n-1 

= (2 n - 1) + :: [(s - )22n_8_1 + 22n_8 
 - 1] 

2n-1 

= (2 n - 1) +E [(n - (2n - 8))22n_3 + 22n 8 
 - 11 

s=n+i 

if 0 t < 2s - 2n, 

if 2s - 2n < t < n 

if 0<t<s—n, 

if 2s - 2n < t <n 

2n—i 2n-1 2n-1 

= (2' —1) +(n+2) - 1 
s=n+i s=n+1 

= (272 
- 1) + (n + 2)(2' - 1) - ((m - 2)2n_1 

- 1) - (ri - 1) (from Lemma 6.4.1) 

= 3•2Th-2n-3. 

Thus the total number of negacyclic codes of this type is 

JV2J +JJT'1 = n+3 •2 —2n-3 = 32 —n-3. 

Type 2.2: Let C = ((x +1)3+2u(x +1)th(x)), where n+ 1 < s < 2m —1, 0 

t < s - n - 1, and h(x) is a unit in R. Then from Theorem 6.3.12, we have T1  = 

12n—s+t if 0<t<2s-3n, 
This implies that 

1¼ if 2s-3n<t<s—n 

2n - s - 1 
degh(x) < 

I  
s - - t —1 

if 0t<2s-3n, 

if 2s-3n<t<s—n 
Therefore the number of negacyclic 
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codes of this type is 

s—n—i 2n—i [2s-3n-1 —n—i 

P62 = 

2 

+ + 28_nt_i

s=n+1 t=o =n t0 t=2s-3n 

—i 2n—i 

= (2 - 1) + [(2s - 3n)22 + 22n_8 
- 1] 

s=n+i 

3n —i 2n—i 

= (2 —1) + [((n+2) —2(2n—s))22 —11 
s=n+i 

= (22_2_+1) + [(n + 2) (2 —1) _2((_1)2+1) 
_] 

52-2n-5. 

Type 2.3: Let C = ((x + 1) + u(x + 1)t(2h1(x)  + (x + 1)1h2(x))), where n + 1 < 

s< 2n-1, 0< t <s — n — i, s — n < 1 + t < n, hi(x), h2(x) are units in R, deg 

hi (x) < T - t - 1 and deg h2(x) < n - t - 1 - 1. Then from Theorem 6.3.12, we have 

1n—s+1+t if s—n<l+t <2s-2n, 
T 

= 
. Since 0 < deg hi (x) :!~ Ti - t - 1 and 

(s_n if 2s-2n<l+t<n 
s—n+ 1<l+t <n—i, we have 1> s—n+ lands < 2n-2, respectively. Therefore 

the number of negacyclic codes of this type is 

3n i s—n—i 2s-2n—t n—t-1 

= n-1—t—i + 2 s—n—t-1 n—l—t-1 

s=n+i t0 1=s—n+i 1=23-2n—t+1 
2n-2 2n—s-2 n—t-1 

+ 2' n-1—t-1 

8=n t=O l=s—n+i 

s—n-1 2s-2n—t n—t-1 2n-2 2n—s-2 n—t-1 

+ E 25-1-2t-2 + 22n—s—t-2 

s=n-f-1 t=O 1=s—n+1 1=2-2n—t+1 =In t=O l=s —n+i 

3n 

= 

s—n-1 

[(s - n - t +• 
1)22fl-5+t-2 

- 
25_n_t_i] 

s=n+i t=O 

2n-1 2n—s-2 

+ E E  (2n - s - t - [)22n_s_t_2 

t=O 
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2 3—fl—i 

[((2n - s - t - 1) - (3n - 2s - 2))22fl_8+t_2 
- 

28—n—t-1] 

s=n+i t=O 
2n-2 

+ [(2n - s - 2)22n_3_1 + 1] 
3n = T 

2 

= 
- s - 2)22n_8_1 

 - (3n - 2s - 2)23n_28_1) 
- (3n - 2s - 2) 

2n-2 
(22m_8_ -2  3n-2,q—1 23fl_28_1 

 - 
(2s 

- 1)] +E [(2n - s)22 3 - 22n_8 + 1] 

—1 
2 

[(s—n)22 '— (2-1)J + [(
n

_1)2 - (2'-4)+ (_i)J 
s=m+1 

2 

= - (2n - s)) 22n_8_1 
- - 1] + 

[(n
-3) 2 +3+ 

n] 
n 

s=n+1 
ni 

= [n(2 fl 1  - 2) - ((n - 2)2 - - - i) 2) - (2 —2) + ( - 1)] 

+ [(3)2_+3+] 

= 2-5•2+n+4. 

Type 3.0: Let C = ((x + 1) + u(s + 1)th(x), u(s + 1)m),  where 1 < s < n - 1, 

o <t < s, 1 + t < m < T - 1, h(s) is either zero or a unit in R' and deg h(s) m - t - 1. 

If h(s) = 0, then C = ((x + 1)8, u(x + 1)m),  where 1 < a < n - 1, 0 < m < a - 1. So 

.iV = s = 
(n-1)n 

Ifh(s)0,then0<degh(x)<m — t -1. Since1+tms-1,sota-2and 

then s > 2. Thus 

n—i s-2 s_i 

= 
3=2 t=O m=i+t 
n—i s-2 

= - 1) 
s=2 

= 2 n_ (n +n+2) 
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Therefore the total number of negacyclic codes of this type is 

(n-1)n +2 n _ (n 
2  +n+2) 

= 2 n _ (n + 1). 
2 

Type 3.1: Let C = ((x + 1) + u(x + 1)th(x), u(x + i)m), where n < s < 2n - 1, 

0< t < n — i, 1+ t < m < mm {T,n} —1, h(x) is either zero or a unit in R and deg 

h(x)<m—t-1. 

If h(x) = 0, then C = ((x + 1), u(x + 1)m), where 11 < s < 2n - 1, 0 < rn < n - 1. So 
2n-1 

the number of negacyclic codes of this type is .IV 1 n = n2. 

I2n—s+t ifO ts—n, 
If h(x) 0, then from Theorem 6.3. 11, wehaveT = 

(s if 9—n+1<t<n 
Since 1+t m n—i and 1+t m 2n—s+t— 1, we have t n-2 and s 2n-2, 

respectively. So the number of negacyclic codes with h(x) 0 is 

2n-2 s—n 2n—s+t-1 n-2 n—i 

= i 2' + m—t-1 

s=n t=O rn=1+t t=s—n+1Tn=1+t 
2n-2 s—n n-2 

= > - 1) + E (2n_t_1 
- 1) 

s=n t=O t=s—nH-1 
2n-2 

= [(2 - i) (s - n + 1) + (22n_8 _ 1 
 - 2) - (2n - s - 2)] 

2n-2 

[221(s—n-i-2) - (n+1)] +(n— 1) 

2n-2 
= [((n +2) - (2n - s)) 22n_5_1 

- (n + 1)] 

= (m +2) (2 —2) - (n - 1)2 n - (n + 1) (n - 1) 

= 3.2—(n2 +2n+3) 

Therefore the total number of negacyclic codes of this type is 

v3.1  =n2 +3.2—(n2 +2n+3)=32—(2n+3). 

Type 3.2: Let C = ((x + 1) +'u(x + 1)th(x), 2u(x + 1)m1), where m+1 < s < 2n— 1, 
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s - n + 1 < t < n - 1, 0 < m1  < Ti  - 1, h(x) is either zero or a unit in R' and deg 

h(x) <n—t-1. 

If h(x) = 0, then C = ((x + 1)8, 2u(x + i)ml) = (2(x + 1)8, 2u(x + i)ml), where 
2n-1 

0 < m1  < s - m - 1. So the number of negacyclic codes of this type is .iV'2 > (s - n) = 

n(n-1) 
2 

0 if0<t_<s—n, 

If h(x) 0, then from Theorem 6.3.12, T1 = n - s + t if s - n + 1 < t 2s - 2n,• 

s — n if 2s-2n+1 <t<n 

Also, s < 2n-2, as s — n + 1 < t < n — i. So the number of negacyclic codes with h(x) 0 

is 

2s-2n n—s+t-1 n—i 8—n-1 

= 2' + E  2n—t-1 

s=n+1 t=s—n+1 mj=O t=2s-2n+1 mj=O 
2n-2 n—i n—s+t-1 

• + 2n 
= 3n t=s—n+1 m1=O 

3n 
• T 23-2n n—i 

= i E 2 1( 
- s + t) + 2n_t_1(8 

 - n) 
s=n-j-1 lt=s—n+l t=2s-2n-l-1 
2n-2 n—i 

+ E E  ( fl _ S +t)2n_t_1  
t=s—n+1 

2s-2n 

= 

2n—t ((2n - s) - (n - t)) + (23Th_28 
 - 1) (s - n) 

s=n+i lt=s—n+l 
2n-2 n—i 

+ ((2n - s) - (n - t)) 
t=s—n+1 

2 

- [(2n - s) (22n_3_1  - 23 _28_1) 
- ((2n - s - 2)22n_8_1 

- (3m - 2s - 2)23n_28_1) 

2m-2 

+ (23n_23_1 
- 1) (s - n)J + E [(2n - s) (22n_8_i 

- 1) - ((2n - s - 2)22fl_8_i + 1)] 

2n-2 
= - 23_28 

- (s - n)] + E [22n_8 
 - (2n - s + 1)] 

s=n+i 
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(2-4\ (—i)\  

= (2-4)— ) 
- 

( 2 2 
- 

((+1)(+2) 3) 

- (3m2  + 6n + 8) 

12 

Therefore the number of negacyclic codes of this type is 

n(n.-1) 2 3 —(3n2 +6m+8) 
2 + 12 

Type 3.3: Let C = ((x + 1) + 2n(x + i)th(x), u(x + 1)m),  where ri + 1 < s < 2n - 1, 

0< t <s—ri—i, 1 + t < m <ri — i, h(x) is a unit in R' and deg h(x) min{m,Ti}—t- 

2n—s+t if 0<t<2s-3n, 
1. Then from Theorem 6.3.12, we have T1  = 

I s — n if 2s-3ri+i<t<s—n 

2n—s-1 if 0_<t<2s-3n, 
Therefore, deg h(x) - . So the number of 

I s — n — t — 1 if 2s-3n+1<t<s—m 
negacyclic codes of this type is 

s—n-1 

(m=l+t 

s—n n-i 2n-2 2s-3n (2n—s+t  

JV3 = 
2m—t—i + 2s—n—t-1 + 2m—t—i 

s=n+i t=o m=s—n+i I t=O  m=1+t 

n—i s—n-1 / 8—n n—i \ n-2 n—i 

+ + 2m—t-1  + 23_n_t_i) + 
m=2n—s+t+1 t=2s-3n+1 m=1+t m=s—n+i t=O m=1+t 

for s = 2n - 1 

i s—n—i 2n-2 [2s-3n 

= 
- 1) + (2n - s - 1) 2s—n—t-11  + ((2' - 1) 

s=n+1 t=O =Ln t0 

1 
1) 

+ (s —n—t-1)22 ) + 
s-n-i 

((2s_n_t i) +25_m_t_i(2n_s_ m(n- 
1)) + 2 

t=25-3n+1 ] 
2 s—n—i 2n-2 12s-3n 

= [(2m_s+l)25_n_t_1_i] + ((S _ fl _t+1)22n-8--i 1) 
=n+1 t=O Ln 

s—n-1 

I 

n(n—
+ ((2n - s + i)23_t 

- 1) +
2  

t=2s-3n+1  



145 6.4 A Mass formula for the number of negacylic codes of length 2" over Z4  + uZ4  

2 

= [(2n - s + 1)28_n 
2n-2 

- (n + 1)] + [(22n_8_1 
(2s - 3n ± 1)(n +2) 

s=n+1 

- (2s - 3n + 1)) + ((2n - s + 1) (22n_8_1 
- 1) - (2n - s - 1))] + 

n(n— 1) 

2 

= [(2n - s + 1)2 
22 

- (n + 1)] + n— (2n—s-12 
((2s - 3n ± 2)(ri + 1) 

1) 
+ 1)—(n+1))+ n(n— 

 2 
2 

= (((n+1)—(n_s))2—(n+1)) 
s=n+1 
2n-2 

+ '\ 1 + (n-s-i (((n+2) —2(2n—s))(n+1) 

) - (fl+1)) + 
n(n-1) 

2 2 

= (n +1) (2 —2) 
- ((2 -2) 2 +2) - (n +1) ( - 1)  + 2 

+ i) (2 —2) 
in ((n 

+1)(n+2)  
i) 

- (n+1)(_1)2_(n+1)(_1)+ 
n(n- 

2 

= 
2(5n+12)3(n2 +3n+4) 

2 2 

Type 3.4: Let C = ((x + 1)8  + 2u(x + 1)th(x), 2u(x + 1)ml), where n+1 < s < 2n-1, 

0 <t < s -n— 1,  1+ t < ml  <T1  —1, h(x) is a unit in R .  and deg h(x) m1  - t —1. Then 

2n—s+t if0<t<2s-3n, 
from Theorem 6.3.12, we have T1  = . Therefore, 

cs — n 1f2s-3n+1<t<s—n 

I 

2n—s-1 if 0<t<2s-3n,
deg h(x) . Since 1+ t s -n -1, wehave 

s — n if 2s-3n<t<s—n 

t < s - n - 2. So the number of negacyclic codes of this type is 

an 

= 34 

s—n-2 s—n-1 
2 + 

2n-2 r2s-3n—i 2n—s+t-1 
mi—t-1 

L 
s—n--2 s—n—i 

+  
s=n+2 t=O mi=i+t s=+1 t=O mj=i+t t=2s-3n m1+t 

= 

s—n-2 

(2 - 1) + 
2n-2 

E  
123_3n_1  

I (22n 81 
 - 1) + 

s—n-2 
(25_n_t_i  

s=n-I-2 t=O s=+1 L t=O t=2s-3n 
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2 2n-2 
= ((2_2)—(sn-1))-F [((2s - 3ri) (22._8_1 

- 1)) + (2 2n-3 
-2) 

8=fl+2 

- (2n—s-1)] 
2 2n-2 

= (2—s+n-1)+ [22Th_8_1 (2s - 3n + 2) - (s - n + 1)] 

= (2'-4) 
2n-2 2n-2 

- (s—m+1)+ 
s=n+2 

(2+1 _4) 
2n-2 

- (s—n-i-.1)-i-(n+2)(2'-2) _2(2 -'_2') 
8n+2 

= (2 4) 
(m(ri_ 1) _3) + 

(n+2) (232 —2) —2 (2  32 1 _2) 

52— 
(n2+3n+1O) 

Type 3.5: Let C = ((x+1)8 +(x+1)t(2hi (x)+(x+1)lh2(x)), U ( X +1)m), where 

n+1 < s < 2n-1, 0 <t<s—n-1, s — n < 1 + t < m < ri, h1(x), h2(x) areunitsin R, 

deg hi(x) < T - t - 1 and deg h2(x) < m - t - 1— 1. Then from Theorem 6.3.12, we have 

ln — s+l+t if s—n+1<1+t<2s-2n, 
T1 = . Ass—n+1l+tn--1,we 

Is_n if 2s-2n<l+t<n 
have s < 2n - 2. So the number of negacyclic codes of this type is 

3m 8—n-1 2s-2n—t n—i 

= 
s=n+i t=O l=5—n+i rn=1-4-t+1 

2n-3 2n—s-3 n—t-2 n—i 

+> 
t=O l=s—n+i m=l+t+1 

8—n-1 2s-2n—t n—i 

= 
ll=s—n+l s=n+i t=O m=1-l-t+i 

2n-3 2n—s--3 n—t-2 n—i 

t=0 l=3TL+i rn=l+t+1 

n—t-2 n—i 
2s•2m1t + E E 2s—n—t-1 2m—l—t-1 

1=2s-2n—t+i m=1+t+i 

21+8 2m-1—t-1 

n—t-2 n—i 
2m+77.-8—t-2 + 2m+s—n-1-2t-2 

1=2s-2n—t+1 rn=1+t+i 

2mst2 
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—2 
2 n-2 r28_2n_t n—t-2 

= -2 

 I+n-s-I ) 
 

21+Th_8_1) + (28_1_2t_2 
- 

28_n_t_1)] 

s=n+1 t=O L1=8-+1 1=28-2n—t+1 
2n-3 2n-8-3 n—t-2 

+ (22n_s_t_2 -2  I+n-3-1  

t=O 1=s—n+1 

3n 
-- s—n-2 

= [(2 (s - - t) - (28_n_t 
- 1)) + (228_s_t_2 

- (3n - 2s)28 _n_t_ 1)] 

s=fl+1 t=O 
2n-3 2n—s-3 

+ (22n_8_t_2(2 fl 
 - s - t - 3) + 1) 

t0 

2 s—n-2 

> 
(228t2 (s - n - t + 1) - (3n - 2s + 2)28_fl_t_1  + 1) 

s=n+1 t=O 
2n-3 2n—s-3 

+ E > 
(22n_s_t_2(2n 

 - s - t - 3) + i) 
s=j-1 t0 

—2 

(22n8(s _ n)_(3n _2s +2)28_n+(2n _ s +2)) 
s=n+1 
2n-3 

+ E (22n_s_t_1(2n 
- s —4) + (2n - s + 2)) 

s=ji_1 

—2 
2 2n-3 

= 
(2' (s - n) - (3n - 2s + 2)2) + E (22n_3_t_1(2n 

 - s - 4)) 

2n-3 

+ >(2n — s+ 2) 

= (2— (n+4)2 +2(n+4)) + ((n-8)2 
+12) + ((n+1)(n+2) 

- io) 
2 

+ 7ri + 22 2n_12.2+ 
2 

Type 3.6: LetC = ((x + 1) +u(x + 1)t(2h1(x)+ (x + 1)1 h2(x)), 2u(x+ 1)ml), where 

n -I -i < s < 2n— 1,0 <t <s — ri — i, s — ri <l<n—i, t+1 < rn <T1 -1, hi (x), 

- 

h2(x) are units in R', deg hi(x) m1  - t - 1 and deg h2(x) fZ n - t - 1 - 1. Then from 

n—s+l+t if 0 <  l+t < 2s-2n, 
Theorem 6.3.12, we have T1  = . So the number 

• I s—n if 2s-2n<l-I-t<ri 
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of negacyclic codes in this case is 

s—n-2 2s-2n—t 1—s+n+t-1 n—t-1 s—n-1 
= 2m+n2t-2 + E E  2m+n-1-2t-2 

s=n+2 t=O 1=s—n+2 rni=t+1 1=2s-2n—t+imj=t+i 
2n-3 2n—s-3 n—t-1 1—s+n+t-1 

+ 12 E E E 2m+n1-2t-2 

t=O 1=s—n+2 mi=t+1 

3n s—n-2 2s-2n—t n—t-1 
= -2 

 n—I—s-1  + 
ll=s—n+2 

- 
2n_1_t_1) 

=n+2 t=O 1=2s-2n—t-f 1 
2n-3 2n—s-3 

+ 
n—t-1 

-2  n— I—t-1  

_n t=0 1=s—n+2 

i s—n-2 

= [(22n_8_t_2 (s - - t -2) + 23m_28_1)  + (228_s_t_2 
-2 

 3n-2s-1  

s=n+2 t=O 

- 
23—t-1 + 

2n-3 2n—s-3 

1)] + E (22n_s_t_2(2m 
- s - t - 3) + 1) 

in t=O 

2 

s=n+2 
2n-3 

+ E  (22 (2n—s-2) - (22n_8 —4) +(2n—s-2)) 

= (\ 8 
f2 m2 1 n(n+2)) ((n_2) 2 —4— (22 

3 3 —16) 

(2n + 2)(n —4) - (2n - 3) (2n 
+ 

2) 3n(3n 
+ 

—2) 

2n n 

8 ) 2 
3n2 +18ri+56 

- --5-2+ 
- 3 12 

The total number of negacyclic codes of length n over R is obtained by summing all 

types (Type 0 through Type 3.6) of negacyclic codes over R. Hence the total number of 

negacyclic codes of length n over R is 

jV= 11.2Th+2l(5n  12)— (n2 +5n+4). 

. 
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6.5 Negacyclic codes of even length over Z4 + uZ4  

In this section, we discuss negacyclic codes of any even length over R. In [21], Blackford 

has discussed cyclic codes of length 2n over 7L4  using discrete Fourier transform approach. 

Dougherty and Ling [49] have generalized this study to cyclic codes of any even length over 

Z4  using the same approach. We use the same technique to study negacyclic codes of even 

length over R. 

Any even integer N can be written as N = ne, where n = 21 and e an odd integer. As 

usual a negacyclic code of length N over R is an ideal of RN 
: 

LetR = 

We define a mapping i : R —~ RN such that 71(E  a0,,y, E ai,zyt,..., > a_i,y1) = 
i=0 i=0 i=0 

(ao,o, a1,0, . . . ) a_i,o, a0,17  ai,i, . . . , a_ii, . .. , ao,,_i, ai,_i, . . . , ae_i,n_i). We can see that 
n-i n-i n-i 

ri(y ae_i,jyt,E ao,jyi,..., E a_2,y) = (—a._i,n_i, a0,0, a1,0)  . . . , a0,1, a1,1, . 
i=0 i=O i=0 

ae_1,1,. . . , ai,n_i,... , a_2,,_1). This shows that a negacyclic shift in RN  corresponds 

to a y-constacylic shift in R. Thus we have the following theorem. 

Theorem 6.5.1. /21, Theorem 11 Negacyclic codes of length N over R correspond to 

y-constacyclic codes of length e over Rn  i.e., RN[x) 
(x +1) ( xe_y) 

From Theorem 6.3.1, the ring Rn  is a local ring. So by Hensel's Lemma, there exist 

pairwise coprime monic basic irreducible polynomials f1(x), f2(x),. .. , f(x) in R[x] such 

that Xe 
- ,, = f1(x)f 2(x) . . fr (X). Therefore by the Chinese Remainder Theorem R,[x] = 

(xe1J) 

'' Further the ring R[xJ 
is isomorphic to GR(R,r,)[x]  where deg f(x) = Ti and e (f(x)) (f()) (X 2+1) 

i=i 

CR(R, r) = 
is the Galois ring extension of R of degree T. 

Let Sr 
 - GR(R,r)[xj s' - GR(4,r){xj and Sr" = F2r[x] We now discuss the ideal structure 
- r - (x'+i)  

of Sr. Since the ring Rn  = S1 
- GR(R,1)[x]  = R[r] the results obtained in Section 6.3 and 
- (x'+1) (x'+1) 

Section 6.4 can be straightaway generalized to Sr . 

Lemma 6.5.2. In 8,., 

(x + 1) = 2x and (x + 1) is nilpotent with nilpotency 2n. 

n—i 
an element f(x) = a(x + l)' is a unit if and only if a0  is a unit in GR(R,r). 

j=0  

(x+1)=2((x+1) +1) and ((x+1)) = (2). 
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Theorem 6.5.3. Let 0 <T < 2n - 1 be the smallest non-negative integer such that 

u(x + 1)T  E ((x + 1) + u(x + 1)th(x)), 

where 0< s < 2ri —1, h(x) e GR(R,r)[x] and deg h(x) < n - t —1. Then 

s if1<sn-1, 

2n—s+t ifn<s_<2n-1,0<t<2s-2n and h(x)isaunitinS, 

s if n < s < 2n - 1 and t > 2s - 2n, and h(x) is a unit in Se'., 

3n—s+t ifn<s< 2n -1, 0t<2s-3n and h(x) = 2h'(x), 

T= s ifn<s2n-1, 2s-3nt<s—n andh(x)=2h'(x), 

2n—s+l+t ifn<s<2n-1,0<t<s—n,0<1+t<2s-2n 

and h(x) = 2h1(x) + (x + 1)1 h2(x), 

s ifn<s2n-1, 0t<s—n, 1+t>2s-2n 

and h(x) = 2h1(x) + (x + 1)th2(x), 

where h'(x), hi (x) are units in Sr" and h2(x) is a unit in S. 

Theorem 6.5.4. Let 0 < T1  <n - 1 be the smallest non-negative integer such that 

2u(x + i)Ti  e ((x + 1)8  + u(x + 1)th(x)), 
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where 0 < s < 2n— 1, h(x) E GR(R,r)[x] and deg h(x) < n — t — 1. Then 

0 if1<sn-1, 

T1 = 

o ifn<s<2n-1, 0<t<s—n and h(x) is aunitinS, 

n — s+t ifn<s<2n-1, s—n<t<2s-2n and h(x)isaunitinS, 

s — n ifn<s<2n-1, 2s-2n_<t<n and h(x) is aunit inS,, 

2n—s+t ifn<s<2n-1, 0 < t < 2s — 3n and h(x) = 2h'(x), 

s — n ifns2n-1, 2s-3n<t<s—n and h(x)=2h'(x), 

o ifn<s<2n-1, O<t<s—n,  0<1+t<s—n 

and h(x) = 2h1(x) + (x + 1)1 h2(x), 

1 + t — s + n ifn<s<2n-1, 0<t<s—n, s—n<l+t<2s-2n 

and h(x) = 2h1(x) + (x + 1)1h2(x), 

s — n ifn<s<2n-1, 0<t<s—n, 1+t>2s-2n 

and h() = 2h1(x) + (x + 1)1 h2(x), 

where h'(x), hi (x) are units in S,'.' and h2(x) is a unit in S. 

Theorem 6.5.5. Let I be an ideal of Sr . Then I is one of the following: 

• Type 0: (0) or (1). 

• Type 1: (u(x + 0 < m < 2n - 1. 

• Type 2.0: ((x +1)3+u(x +1)th(x)), where 1 < s < n — i, 0< t < s — i, h(x) is 

either zero or a unit in Sr" and  deg h(x) < s - t - I. 

• Type 2.1: ((x +1)3+u(x +1)th(x)), where n<s< 2n_1,0<t<n_1,h(x) is 

either zero or a unit in S' and deg h(x) < T - t - 1. 

• Type 2.2: ((xi1)s+2u(x+1)th(x)), where n+i < s < 2n-1, 0 < t < s — n — i, 

h(x) is a unit in S' and deg h(x) <T1  - t - 1. 
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• Type 2.3: ((x + 1)8  + u(x + 1)t(2h1(x)  + (x + 1)1 h2(x))), where n+ 1 < s < 2n —1, 

0 <t < s—n—i, s—n < l+t < n, hi(x), h2(x) are units in Sr", deg hi(x) T1—t—i 

and deg h2(x) < n—t-1—i. 

• Type 3.0: ((x + 1)8  + u(x + i)th(x), u(x + 1)m), where 1 < s < n—i, 0 <t < s—i, 

1 + t < m <T - 1, h(x) is either zero or a unit in Sr" and deg h(x) < in - t - 1. 

• Type 3.1: ((x+i)8 +u(x+i)th(x), u(x +i)m), wheren < s < 2n— 1,0 < t < 

n — i, 1 + t < in <n — i, h(x) is either zero or a unit in Sr" and deg h(x) < m — t — 1. 

• Type 3.2: C = ((x + i) + u(x + 1)th(x), 2u(x + i)ml), where n + 1 < s < 2n - 1, 

s - n + 1 t n - i, 0 < in1  < T j  - 1, h(x) is either zero or a unit in S' and deg 

h(x) <n—t-1. 

• Type 3.3: ((x + i) + 2u(x + 1)th(x),  u(x + i)tm), where n+i < s < 2n-1, 0 < t 

s — n — i, i+t <m <n — i, h(x) isa unit in Sr" and deg h(x) :5 min{rn,Ti }—t— 1. 

• Type 3.4: ((x + 1)8  + 2u(x + 1)th(x), 2u(x + i)ml), where ii < s <2n —1, 0 <t < 

s—n-1, 1+t m1  T1 — 1, h(x) is a unit inS' and degh(x) _<m1 —t— 1. 

• Type 3.5: ((x + 1) + u(x + 1)1(2h1(x)  + (x + 1)1 h2(x)), u(x + i)m), where n+ 1 < 

s 2n -1,0<t<s — n — i, s—n<t+1<m<n, hi(x),h2 (x) are units in 8,'.' 

and degh1(x)<T1 —t—i, degh2(x)m—t-1-1. 

• Type 3.6: ((x+i)8+  u(x  +1)t(2h1(x) + (x+1)1h2(x)), 2u(x +1)ml), where n + 

i<s < 2n-1, 0 <t <s—n—i, i+t < m1 <T1 —i, hi (x), h2(x) are units inS,'! 

and deg hi(x) m1  - t -1,  deg h2(x) < n - t —1 - 1. 

6.5.1 Discrete Fourier transform 

We now define the discrete Fourier transform to study negacyclic codes of length N over 

R. Let M be the order of 2 modulo e and be a primitive eth root of unity in GR(R, M), 

where GR(R, M) is Galois ring extension of R of degree M. 
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Let a (ao,o, a0,1, . . . , ao,,_i )  a1,0, a1,1, . . . , ai,_i, . . . , ae_1,11  . . . , a_i,,_i) E RN. 

The discrete Fourier transform of a is the vector (A0, A1,, . . , A.i) E S, where Ah  = 

a(yl) = >I 0 < h e - 1, and ee' = 1 (mod n). 

Define the Mattson-Solomon polynomial of a to be A(Z) = Ae_hZ1'. Note that 

Ae  = A0. The following is the generalization of [21, Theorem 2] to the present setting. 

Lemma 6.5.6. [Inversion formula] Let a E RN and A(Z) be its Mattson-Solomon polyno-

mial. Then 

a [(1 —e' —e' (e i)e' 
= 

, y , y
2 

, . . . , y 
- ) * (A(1), A(), A( 2), . . . , A('))], 

where * is componentwise multiplication. 

Proof. Let 0<t<e-1. Then 

= Ah _ht 

0 

  

e-1 fe_i n—i 

= i ( a ye/i+iih —ht 

h=0 \i=0 j=0 I 
e-1 n-i e-1 

= 

a yei+3 

i=0 j=0 h=0 

= eye't E at,jy3  

The rest can easily be derived from the definition of the map Q. . 

Extend the automorphism on GR(R, r) defined by o'(a) = a + 2a + ua + 2ua, where 

a = a0  + 2a1  + ua2  + 2ua3  E GR(R,r), a0,a1,a2,a3  e T to Sr  by a(a) = a, a e S. 

For each Ah e S, we have A2h  = o'(Ah), where subscripts are calculated modulo e. Let 

A = {(A0, A1,. .. , k_i) E S, : A,, E Sr  with A2h = o'(A,,)}. Then it is easy to verify that 

the ring A isomorphic to EDhELSrh,  where L denotes a complete set of representatives of the 

2-cyclotomic cosets modulo e. For each e e L, let r4  denote the size of the 2-cyclotomic 

coset containing . 

The following theorem is a generalization of [21, Theorem 21. 
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Theorem 6.5.7. The map A: RN I - EL Sr  such that A(a(X)) = [A]eeL for a(X) E 

RN is a ring isomorphism. In particular, if C is a negacyclic code of length N over R, then 

C where, for each E L, C is an ideal in Sr . 

Proof. Define a map 'y: RN 1-  A such that 'y(a(x)) = (A0, A1,... , A_1), a(x) E RN. 

Let a(x), b(x) E RN. Then it is easy to see that 'y(a(x) + b(x)) = 'y(a(x)) + 'y(b(x)). It 

follows from a(x)b(x) = q(x)(xN + 1) + r(x), where q(x), r(x) E R[x] with deg r(x) < N, 

that (a(x)b(x)) = 'y(a(x)) * y(b(x)), as ye'~h is a root of xN + 1 = 0 for each h E L. So 

'y is a ring homomorphism. From Inversion Formula, if 'y(a(x)) = 0, then we get a(x) = 0. 

Therefore 'y is one-to-one. To show y is surjective, let A = (A0, A1, . . . , A_1) E A and 

A(z) = iI We show that there exists an a(x) E RN such that 'y(a(x)) = A. We 

have A() = >1h'EL >iEd2(h1 ,e) Since ° (iEcl2(h',e) = iEc12(h',e) we have 

iEc12(h',e) 
At E S1. So from Lemma 6.5.6, we get that 'y is surjective. Hence 'y is an 

isomorphism. Thus, if C is a negacyclic code of length N over R, then C C, where, 

for each EL, C is an ideal in Sr. U 

Theorem 6.5.8. The number of distinct negacyclic codes of length N over R is flEL  N, 

where N is the number of distinct ideals of Sr for each E L. 

6.6 Conclusion 

In this chapter, we have studied negacyclic codes of both odd and even lengths over the 

ring R = 7L4  +uZ4, u2  = 0. We have classified negacyclic codes of length over R. A mass 

formula for the number of negacyclic codes of length 2' over R has been derived. Further, 

we have also studied negacyclic codes of any even length over R. 



Chapter 7 

Duals of negacyclic codes over 

Z4+'uZ4 

7.1 Introduction 

Throughout this chapter, we assume that n = and R = Z4+uZ4, u2  = 0. In this chapter, 

we study the duals of negacyclic codes of length n over R. We use the same notations as 

in Chapter 6. Let g(x) = g + g1x + g2x2  + + gx' be a polynomial in R. Then the 

reciprocal of g(x) is the polynomial g*(x) = xrg(i) =g,. + gr_ix + 9r_2x2  + ... + g0x' in 

R. Let I be an ideal of R. Then the annihilator of I is denoted by A(I) and is defined as 

A(I)={g(x)ER:f(x)g(x)=0Vf(x)EI}. 

We define A(I)* as 

= {g*(x) g(x) e A(I)} 

It is well known that if C is a negacyclic code, then the dual of C is C' = A(C)*. A negacyclic 

code C is said to be self-orthogonal if C c C' and self-dual if C = C'. There are two codes 

associated with a negacyclic code C over R, namely, Tor (C)= {a E Z au E C} and 

Res (C)= {a E a + bu E C for some b E Z}. Since C is a negacyclic code over R, 

Tor (C) and Res (C) are negacylic codes over Z4. It is easy to see that Res (C) = cl(C) 

155 



Chapter 7: Duals of negacyclic codes over Z4  + u7Z4 156 

and Tor (C) = J, where (D is the projection map defined in Chapter 6, Section 6.3 and 

J = {h(x) e R : uh(x) E ker }. It follows from first isomorphism theorem that 

C1 = I(C)Mker I = Res(C)IITor(C)I. The Hamming, Lee and Euclidean distances are as 

defined on R in Chapter 5. 

7.2 Duals of negacyclic codes of length 2k  over Z4+uZ4  

In this section, we consider the duals of negacyclic codes of length n over R. First we recall 

the ideal structure of R (Theorem 6.3.15). 

Theorem 7.2.1. Let I be an ideal of R. Then I is one of the followings: 

• Type 0: (0) or (1). 

• Type 1: (u(x + i)m),  0 < m < 2n - 1. 

• Type 2.0: ((x+ 1) +u(x+l)th(x)),  where 1 < s < n — i, 0 < t < s — i, h(x) is 

either zero or a unit in R' and deg h(x) < s - t - 1. 

• Type 2.1: ((x+1)8+u(x+1)th(x)),  wheren< s < 2n— 1,0 t ri—i, h(x) is 

either zero or a unit in R' and deg h(x) < T - t - 1. 

• 

h(x) is a unit in R and deg h(x) < T1  - t - 1. 

• Type 2.3: ((x+1)8+u(x+1)t(2h1(x)+(x+1)1h2(x))),  where n+1 < s < 2n-1, 

0< t <s—n—i, s—n < l+t <n, hi(x), h2(x) are units in R", deghi(x) T, —t-1 

and deg h2(x)n—t—l—i. 

• Type 3.0: ((x+i)$+u(x1i)th(x),  u(x+i)m), where 1sn_i3O<ts_1, 

1 + t < m < T - 1, h(x) is either zero or a unit in R' and deg h(x) < m - t - 1. 

• Type 3.1: ((x+1)3 +u(x+1)th(x), u(x +i)m), where n <s < 2n— 1, 0 < t 

n - 1, 1+ t < m < n - 1, h(x) is either zero or a unit in R,,' and deg h(x) :5 m - t - 1. 



I 157 7.2 Duals of negacyclic codes of length 2' over Z4  + uZ4  

• Type 3.2: C = ((x + 1) + u(x + i)th(x), 2u(x + 1)m1), where n + 1 < s < 2n - 1, 

s - n + 1 <t < n-  1, 0 < m1  T1  -1, h(x) is either zero or a unit in R' and deg 

h(x)<n-t-l. 

• Type 3.3: ((x + 1) + 2u(x + 1)th(x), u(x + 1)m), where n+1 < s < 2n- 1, 0 < t < 

S - fl - 1, 1+ t sZ m <n - 1, h(r) is a unit in R' and deg h(x) min{m, T1 } - t - 1. 

• Type 3.4: ((x + 1) + 2u(x + 1)th(x), 2u(x + 1)m1),  where ii < s < 2n - 1, 0 < t < 

s - n - i, 1 + t <m1  Ti.- 1, h(x) is a unit inR' and deg h(x) :5 m1 -t- 1. 

• Type 3.5: ((x + 1) + u(x + 1)t(2h1(x)  + (x + 1)'h2(x)), u(x + 1)m), where n+ 1 < 

s<2n-1, 0 < t < s - n - 1 s-n<t+l<m<n, hi(x), h2(x) are units in R' 

and deg hi(x)Ti -t-1, deg h2(x)<m-t-l-i. 

• Type 3.6: ((x + 1) + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), 2u(x + i)m1), where n + 

1< s < 2n-1, 0 < t < s - n - i, i+t < m T1 -1, hi(x), h2(x) are units inR' 

and deg h1(x)m1 -t-i, deg h2(x)n-t-l-i. 

The following theorem gives the annihilators of principal ideals of R. 

Theorem 7.2.2. Let I be a non-trivial principal ideal and A(I) be its annihilator in R. 

If I- (u(x + 1)m), where 0 < m < 2n - 1, then A(I) = ((x + 1)2m, 

If I = ((x + I) + u(x + i)th(x)), where 1 < s < n -1, 0 < t <s, h(x) is either zero 

or a unit in R and deg h(x) < s - t - 1, then 

{  
A(I) 

((x + i)2Th_3  + u(x + 1)2n_ 23+th(x), when t < 2s - n, 
= 

((x + 1)2n_8  + 2u(x + 1)n_28+t(i  + (1 + x))h(x)), when t > 2s - n. 

8. If I = ((x +1)8+  u(x  +i)th(x)),  wheren < s < 2n- 1,0 < t < n - i and h(x) is 

either zero or a unit in R', then 

A(I) = 
+ + uh(x), u(x + 1)2n_8 ) , when t < 2s - 2n, 

((x + 1)2n_8  + u(x + 1)2 _ 28+th(x)), when t > 2s - 2n. 
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IfI= ((x+1)8+2u(x+1)th(x)),  wheren <S < 2n— 1,0 < t <s — n andh(x) is 

a unit in R, then 

A(I) 

I((x+1)2+n(x+i)3m_t(1+(x+1))h(x)), when2s-3nt 

<s — n, 

((x + i)n_t, u(x + 1)2n_8)
, when 0 < t < 2s - 3n. 

IfI = ((x+1) +  u(x  +1)t(2h1(x)  +(x+1)1h2(x))), wheren < s < 2n-1, 0 <t < 

s - n, 1> s - n - t and hi(x), h2(x) are units in R, then 

A(I) = ((x + i)s_t  + n(2h1(x) + (x + 1)1h2(x)), u(x + 1)2n_3). 

Proof. 1. Let 1= (u(x + 1)m) ,  1 <m < 2n - 1. 

Suppose A(I) = (g(x), u(x + 1)r),  where g(x) = (x + 1)' + uq(x), q(x) e Z4[x], 

0 < r <i. Since g(x) E A(I), g(x)u(x + i)' = 0. This implies that u(x + 1)m+i 
= 

which in turn implies that in + i > 2n. Thus 2n - m < i. No integer 1 < 2n - m 

satisfies (x + 1)' = 0, as the nilpotency of x + 1 is 2n. Therefore i = 2n - m and 

g(x) = (x + 1)2n_m  + uq(x). It can easily be seen that u e A(I). So r = 0. Therefore 

A(I) = ((x + 1)2Th_m  + uq(x), u = ((x + 1)2n_m,  u). 

2. Let I = (f(x)), where f(x) = (x + 1) + u(x + 1)t h(x), 1 < s < n - 1. 

Suppose A(I) = (g(x), u(x + 1)T), where g(x) = (x + i)i  + uq(x), q(x) E Z4[x], 0 

r <i. Since 1(I) = ((x + 1)), we have A('I(I)) = ((x + 1)21_8),  where 1' is the pro-

jection map defined in Chapter 6, Section 6.3. Thus g(x) must be of the form g(x) = 

(x+1)2?8+uq(x), where q(x) E Z4[x]. As g(x) e A(I), so f(x)g(x) = 0. This implies 

that (x+1)q(x)+(x+1)2' +th(x) = 0. Thus (x-i-1)3  (q(x) + (x + 1)2Th_ 2s+th(x)) = 0, 

as s < n. Therefore q(x) + (x + 1)2' 2 h(x) = (x + 1)2 q'(x), where q'(x) E Z4{x]. 

Since the degrees of both q(x) and (x + 1)2Th_23+th(x)  are less than 2n - s, we 

must have q(x) = 0. Therefore q(x) = 3(x + 1)2n_28+th(x)  and hence g(x) = 

(x + 1)2?3  + 3u(x + 1)2Th_28+th(x).  Also we have f(x)u(x + 1)T = 0. This im-

plies that r > 2n - s. Since there is no 1 < 2n - s such that f(x)u(x + i) = 0, we 
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get r = 2m - s. Further we can see that ug(x) = u(x + 1)2n_3 E (g(x)). So 

A(I) = (g(x)) = ((x + 1)2?_8  + 3u(x + 1)2n_2th(x)) 

= ((x + 1)2n_3  + u(x + 1)2n_25+th(x)). 

However, when t > 2s - n, we have 2m - 2s + t > m. Then 

g(x) = (x + 1)27_s  + u(x + 1)2n_2th(x) 

= (x + 1)2n_s  + 2u(x + 1)n_28+th(x)x 

= (x + 1)2n_8  + 2u(x + i)fl_28+t(i  + (1 + x))h(x) (from Lemma 6.3.4). 

Therefore A(I) = ((x + 1)2n_3  + 2u(x + i)fl_28+t(1  + (1 + x))h(x)). 

3. Let I = (f(x)), where f(x) = (x + 1) + u(x + 1)th(x), n < s < 2n - 1. Then 

(f(x))2  = 0. 

Suppose A(I) =(g(x), u(x + 1)T), where g(x) = (x + l)i  + uq(x), q(x) E Z4[xl, 

0 < r <i. Since f(x)g(x) = 0, we get ((x+1)1 +uq(x))((x+1)+u(z+1)th(x)) = 0. 

This implies that i > 2n - s, and 

(x + 1)3q(x) + (x + 1)+th(x) = 0. (7.2.1) 

Now suppose that i = 2n - s. Then from equation (7.2.1), we get 

(x + 1)8q(x) + (x + 1)2n_8+th(x) = 0. (7.2.2) 

If t > 2s - 2n, then 2ri - s + t > s. So from equation (7.2.2), we get q(x) = 

3(x + 1)27_23+th(x), as was shown in part (2). If t < 2s - 2n, then 2n - s + t < a. 

Again from equation (7.2.2), we get (x1)2n_8+t(h(x)±q(x)(x+1)22Th_t) 
= 0. Since 

h(x) is a unit, h(x) + q(x)(x + 1)28_2n_t is also a unit. Therefore (x + 1)2_3+t = 0, a 

contradiction, as 2n is the nilpotency of (x + 1). Hence in this case, i > 2n - s. So, 

to determine A(I), we consider the cases t > 2s - 2m and t < 2s - 2n separately. 
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Case (1) When t > 2s - 2n, we have q(x) = 3(x + 1)2n_28+th(x). Therefore g(x) = 

(x + 1)23  + 3u(x + 1)223+th(x). Again as was seen in part (2), r = 2ri - s. Since 

ng(x) = u(x + 1)2Th_8 E (g(x)), 

A(I) = g(x)) = ((x + 1)2n_8  + 3u(x + 1)2Th_2th(x)). 

From Theorem 6.3.12, we have 2u E A(I), as 2s - m < ri. Therefore 

A(I) = ((x + 1)2n_8  + n(x + 1)22th(x)). 

Case (ii) When t < 2s - 2n, we have i> 2ri - .s. From equation (7.2.1), we get that 

i > s - t, otherwise we get a contradiction. So we can choose i = s - t and hence 

q(x) = h(x). Therefore 

A(I) = ((x + 1)s_t  + uh(x), u(x + 1)2n_8). 

4. Let I = (f(x)), where f(x) = (x + 1)8 + 2u(x + 1)th(x), n + 1 < s < 2n - 1 and 

t < s - m. Then (f(x))2  = 0. 

Suppose A(I) = (g(x), u(x + 1)r),  where g(x) = (x+1)-i-uq(x), where q(x) e Z4[xj, 

0 < r <i. Since f(x)g(x) = 0, we have i > 2n—s and (x+1)q(x)+2(x+1) th(x) = 0, 

which implies that 

2(x + 1)xq(x) + 2(x + 1)th(x) = 0. (7.2.3) 

Now suppose that i = 2n—s. Then from equation (7.2.3), we get 2(x+1)xq(x)+ 

2(x + 1)2Th_8+th(x) = 0. It follows that q(x) = 3(x + 1)2n_23+t(l  + (x + 1))h(x) for 

t < 2s - 3ri. lit > 2s - 3n, then we get a contradiction, and hence i > 2n - s. So we 

consider the following cases. 

Case (1) When t < 2s - 3m, we have q(x) = 3(x + 1)3n_23+t(1  + (x + 1) 32  )h(x). This 

implies that g(x) = (x + 1)2Th_8  + 3u(x + i)3n_28+t(i  + (x + 1))h(x). Also we have 
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r = 2n - s and u(x + 1)2n_8  E (g(x)), as was shown in part (1). Therefore 

A(I) = ((x + 1)2n_8  + u(x + 1)3fl_23+t(i  + (x + 1) )h(x)). 

Case (ii) When 3n - 2s < t < s - n, we have i > 2n - s. So, as was shown in part 

(3), g(x) = (x+1)n_t+u(x+1)2 _8h(x). Since2n—s <n — t, u(x+1)2"- (g(x)). 

Therefore 

A(I) = ((x + 1)n_t  + u(x + 1)2Th_8h(x), u(x + 1)2Th_8) = ((x + i)n_t, u(x + 1)2n_8). 

5. Can be proved similarly. 

. 

In the following theorem we present the annihilators of non-principal ideals of R. 

Theorem 7.2.3. Let I be a non-principal ideal and A(I) be its annihilator in R. 

If I = ((x + 1) + u(x + 1)th(x), u(x + 1)m),  where 1 < s <n, 0 < t < m < s and 

h(x) is either zero or a unit in Mn, then 

A(I) = ((x + 1)2n_m  + u(x + 1)2n_m_3+th(X), u(x + 1)2n_3). 

If I = ((x+1)+ u(x +1)th(x), u(x  +1)m),  where n < s < 2n, 0 <t <n, 1+t 

m < T and h(x) is either zero or a unit in R', then A(I) = 

{ (x + 1)2m  + u(x + 1)2n_m_8+th(x),  u(x + 1)2n_8), when t > s + m - 2n, 

((x + 1 
)8_t + uh(x), u(x + 1)23), when 0 < t <s + in - 2n 

3.IfI=((x +1)3+2u(x +1)th(x),  u(x  +1)m),  where n<s2n_1,0t<s_n, 

1 + t < m < n and h(x) is a unit in R', then 

A(I) = ((x + 1)2m, u(x + 1)2n_3). 
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. If I = ((x + 1)8  + 2u(x + 1)th(x),  2u(x + 1)), where n < s < 2n-1, 0 < t <s — n, 

1 + t < m1  <T1  and h(x) is a unit in R'', then 

A(I)  I ((x + 1) -  + u(x + 1)2n_m_8+th(x), u(x + 1)2n_8), when t > + mi - 2n, 

((x + i)n_t,  u(x + 1)2n_8 ) , when t < s + m1  - 2n, 

where (x) = (1 + (x + l))h(x). 

If I = ((z + 1) + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), u(x + 1)m), where n < s 

2n -1, 0 < t < s - n, t + I + 1 < m<n and hi(x), h2(x) are units in RZ  then 

A(I) I ((x + 1)2nm  + u(x + 1)2 m_8+th2(x),  u(x + 1)2n_8), when t + 1 > s + m - 2n, 
= 

((x + 1)2n_1, u(x + 1)2n_8 ) , when t + 1 < s + m - 2n 

If I = ((x + 1)8  + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), 2u(x + 1)ml), where n < s 

2n - 1, 0 < t < s - n, t <m1  <T1  and hi (x), h2(x) are units in R, then 

A(I) = 

I 

K(x + 1)Th1  + u(x + 1)m_m1_8+t+t(X), u(x + 1)2n_8), when t + I > s + m - 

((x+1)2'1, u(x+1)2Th_ 8), when t+I< s+m1 —n, 

where i(x) = hi(x)(x + i) + h2(x)(1 + (x + 1)). 

Proof. 1. Let I = (f(x), u(x + 1)m),  where f(x) = (x + 1) + u(x + 1)th(x) and 0 < 

m<s<n-1,0<t<m-1. 

Suppose A(I) = (g(x), u(x + 1)T), where g(x) = (x + 1) + uq(x), q(x) e Z4[x]. Then 

we get g(x)u(x + 1) = O which implies that (x + l)+ = 0. Thus i > 2n - rn. We 

can see that no i <2n—m satisfies u(x +1)mg(x) = 0. Therefore i = 2n—m. We have 

g(x) E A(I), so g(x)f(x) = 0. It follows that (x + l)8q(x) + (x + 1)2n_m+th(x) = 0. 

Since 2n - m > s, we get (x + 1) (q(x) + (x + 1)2 m_8+th(x)) = 0. This implies 

that q(x) + 3(x + 1)2n_m8+th(x) = (x + 1)2Th8q(x), where q'(x) E Z4[x]. But the 

degrees of both q(x) and h(x)(x + 1)2fl_m_8+t  are at most 2n - s - 1, so q'(x) = 0. 
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Thus q(x) = 3(x + 1)2n_m_3+th(x). Hence g(x) = (x + i)i + 3u(x + 1)z_3+th(x). 

It is easy to see that 2n - s is the least positive integer such that n(x + 1)28  E A(I) 

and u(x+1)2 (g(x)), as 2n—m > 2n—s. Therefore A(I) = g(x), u(x + 1)2n_8) 

Therefore A(I) = ((x + 1)2n_m  + u(x + 1)2't_m_8+th(x), u(x + 1)2n_3). 

2. Let I = f(x), u(x + 1)m), where f(x) = (x + 1) + u(x + 1)th(x), n < s < 2ri and 

O<t<n, 1+t<in< min{s,2n—s+t}. 

Suppose A(I) = (g(x), u(x + 1)r),  where g(x) = (x + l)i  + uq(x), q(x) e Z4[x]. As 

was seen in part (1), i > 2n - m and 

(x + 1)8q(x) + (x + 1)th(x) = 0. (7.2.4) 

Suppose i = 2n - m. Then from equation (7.2.4), (x + 1)8q(x)  + (x + 1)2n_m+t 
= 0. 

If s + m - 2n < t, then q(x) = 3(x + 1)2n_m_3+th(x), which implies that g(x) = 

(x+1)2n_m+3U(x+1)2 m_ 3+th(x). If t < s+m-2n, then again from equation (7.2.4), 

(x + i)2n_m_s+t (h(x) + (x + 1)8+m_1_2nq(x)) = 0. Since h(x) + (x + 1)8+m_t_2mq(x) is 

a unit in & and 2n is the nilpotency of (x+1), so (x+1)2m_m_8+i = 0, a contradiction. 

Hence, in this case i > 2m - m. So we consider the following cases. 

Case (i) When s+m-2n < 0 < t, we have g(x) = ( X+1)2n_m+3U ( X+1)2m_m_8+th(X). 

As was seen in part (1), u(x + 1)2n_3 E A(I). Since there is no 1 < 2ri - s such that 

f(x)u(x + 1)1 = 0 and u(x + 1) 2n_3 V (g(x)), we have 

A(I) = ((x + 1)2n_m  + 3u(x + 1)2m_m_8+th(X), u(x + 1)2n_8). 

Case (ii) When t < .s + in - 2n, we have s > 2n - m + t. Rest of the proof is similar 

to that of Theorem 7.2.2 (3). 

Other parts of the theorem can be proved using similar lines of arguments. 

Theorems 7.2.2 and 7.2.3 provide the duals of negacyclic codes of length ri over R. 

We now find the structure of negacylic codes C of length n over R satisfying C C A(C) 

and C = A(C). For this we need to know the size of a negacyclic code C over R. Since 
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= I Res (C) I ITor (C) I we have to find the Res (C) and Tor (C) of a negacyclic code C over - 

R. The following theorem presents Res (C) and Tor (C) of C in each case of C as described 

in Theorem 7.2.1. 

Theorem 7.2.4. Let C be a non-trivial negacyclic code of length n over R. 

If C = (u(x + 1)m),  where 0 < m < 2n, then Res (C) = (0) and Tor (C) = ((x+i)m). 

If C = ((x + i) + u(x + 1)th(x)), where 0 < s < n - 1, 0 < t < s - 1 and h(x) is 

either zero or a unit in R',, then Res (C) = Tor (C) = ((x + 1)). 

S. IfC = ((x+1)8 +  u(x  +i)th(x)),  wheren <S < 2n-1, 0 < t < n — i and h(x) is 

either zero or a unit in R'', then Res (C) = ((x + 1)8) and Tor (C) = ((x + i)T). 

IfC=((x+1)+2u(x+1)th(x)), wheren+1<s<2n-1,0<t<s—n-1 and 

h(x) is a unit in R'', then Res (C) = ((x + 1)8) and Tor (C) = ((x + i)T).  

If C = ((x + 1)8  + u(x + 1)t(2h1(x)  + (x + 1)1h2(x))), where n + 1 < s < 2n - 1, 

0 < t < s - n - 1, s - n < I + t < n and hi (x), h2(x) are units in R', then 

Res (C) = ((x + 1)) and Tor (C) = ((x + i)T). 

IfC = ((x +1)8+  u(x  +1)th(x),  u(x  +1)m),  where 1 < s < n — i, 0 < t < s — i, 

1 + t < m < T - 1, h(x) is either zero or a unit in R'', then Res (C) = ((x + 1)8)  and 

Tor (C) = ((x+i)m).  

If C = ((x + i) + u(x + i)th(x), u(x + 1)1),  where n < s < 2n - 1, 0 < t < n - 1, 

1 + t < m < T - 1 and h(x) is either zero or a unit in R, then Res (C) = ((x + 1)) 

and Tor (C) = ((x + 1)m). 

IfC = ((x +1)s+2u(x i)th(x), u(x  +1)m),  where n+1 < s < 2n-1, 0 < t 

s—n-1, i+t < m <n—i andh(x) is a unit in R, then Res (C) = ((x+ 1)) and 

Tor (C) = ((x +i)m).  

If C = ((x + 1)8  + 2u(x + 1)th(x), 2u(x + 1)ml), where m + 1 < s < 2n - 1, 0 < t < 

s - n - 1, 1 + t < m1  T1  - 1 and h(x) is a unit in R, then Res (C) = ((x + 1)8) 

and Tor (C) = ((x + i)n+ml). 
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- 10. If C = ((x + 1) + u(x + 1)1(2h1(x)  + (x + 1)1h2(x)), u(x + 1)m), where n + 1 < s 

2n-1,0<t<s—n-1,s—n<l-j-t<rn<nand hi(x),h2(x) are units in ny 

then Res (C) = ((x + 1)8) and Tor (C) = ((x + 1)m). 

11. If C = ((x + 1) + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), 2u(x + 1)m1), where n + 1 < 

s< 2n-1, 0 <t s—n—i, s—n <l+t <n t <m1 <Tj  and hi(x), h2(x) are 

units in R',, then Res (C) = ((x + 1)) and Tor (C) = ((x + 1)m1). 

Proof. Since Tor (C) and Res (C) are negacyclic codes over Z4, using Theorem 2.3.34, we 

may assume that their generators are of the form (x + i)i, 1 < i < 2n. 

Suppose C = (u(x + 1)m),  0 < m < 2n - 1. Let Tor (C) = ((x + i)i), 1 < i < 2n. 

Then u(x +1) e C, which implies that m <i. On the other hand, since u(x  +1)m  E C, 

(x + 1) e Tor (C). From this follows that i < m. Therefore i = m. So Tor (C) = 

(( + 1)). 

Since C contains only multiples of u, Res (C) = (0). 

Suppose C = ((x + i) + u(x + 1)th(x)), 1 < s < n - 1. Then (C) = ((x + 1)8), 

where 4D is the projection map defined in Chapter 6, Section 6.3. 

Let Tor (C) = ((x + l)i), 1 < i < 2n - 1. Then u(x + i)i  E C. From Theorem 6.3.11, 

s is the smallest integer such that u(x + i) E C. Then s < i. On the other hand, 

u(x + 1)8 E C, which implies that (x + 1)8  E Tor (C). So i < s. Thus i = s and so 

Tor (C) = ((x+1)). 

Now assume that Res (C) = ((x + l)i). Then there exists some q(x) E R such 

that d = (x + l)i  + uq(x) e C. So s < i, as (d) = (x + i)i  E (C). Since 

(x + 1)8  + u(x + i)th(x) E C, we have (x + 1)8  E Res (C). This implies that i < s. 

Therefore i = s, and hence Res (C) = ((x + 1)). 

Rest of the results can be proved using similar lines of arguments. . 

The following theorem presents the size of negacyclic codes of length n over R. 

Theorem 7.2.5. Let C be a negacyclic code of length n over R. 
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If C = (u(x + 1)1), where 0 < m < 2n, then ICI = 22n_m. 

If C = ((x + 1)8  + u(x + i)th(x)), where 0 < s < n - 1 and 0 < t < s - 1, then 

Cl 
= 42n_8 

3.IfC=((x+1)+u(x+1)th(x)),wherens<2n—iandO<t<n-1,then 

{ 

 

lCl= 

22n-t if 0 < t < 2s - 2n, 

42fl_8 if t > 2s - 2n. 

IfC=((x+1)8+2u(x+1)th(x)), where n+1<s<2n-1 and O<t<s—n-1, 

then 

ICI= 
{ 2n-t if 0<t<2s-3n, 

42fl_8 if 2s-3n<t<s—n. 

IfC = ((x +1)3+ u(x +1)t(2h1(x)+(x+1)1h2(x))), where n+1 < s < 2n-1, 

0<t<s — n -1 ands—n<l+t<n, then 

Cl 

{ 22n-1—t if s - n < 1 + t < 2s - 2n, 

42fl_8 if 1+t>2s-2n. 

IfC = ((x +1)8+tt(x +1)th(x), n(x +1)m), where 1 < . n — i, 0 < t < s — i, 

1 + t < rn < T - 1 and h(x) is either zero or a unit in R',, then ICI = 24?_(m+8) 

IfC=((x+i)8 +u(x+i)th(x), u(xi1)m),  where n < s < 2n — 1, 0t<n-1, 

1 + t < m < T - 1 and h(x) is either zero or a unit in R',, then lCl = 24(m+8). 

IfC = ((x +i)8+2u(x +i)th(x), u(x+i)m), where n + 1 < s < 2n —  1,0 < t 

s - n — i, 1+ t < m < n - 1 and h(x) is a unit in R',, then ICI 24 (m+8 ) .  

IfC=((x+i)+2u(x+i)th(x), 2u(x +1)m1), where n+i < s2n-1, 0t< 

s - n - 1, 1 + t m1 - 1 and h(x) is a unit in R',, then lCl = 23n—(ml+s) 
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If C = ((x + 1)8  + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), u(x + i)m), where m + 1 <s < 

2n-1, 0t<s—n-1,  s—n<l+t<m<n and hi(x),h2(x) are units in R', 

then ICl = 24n_(m+8) 

If C = ((x + i) + u(x + 1)t(2h1(x)  + (x + 1)'h2(x)), 2u(x + 1)ml), where n + 1 < 

s < 2n-1, 0 < t < s — n — i, s—n<l+t<n, t< m<T1  and hi(x), h2(x) are 

units in Mn, then ICI = 2371_(ml+8) 

Proof. From Theorem 2.3.34, if C is a negacyclic code of length n over 7L, then C = 

((x + i)i), 0 < i < 2n and ICI = 22j• The cardinalities of Tor (C) and Res (C) can be 

computed using Theorem 7.2.4. By multiplying the cardinalities of Tor (C) and Res (C), 

we get ICI in each case. U 

The following theorem provides negacyclic codes C such that C C A(C) over R. It can 

easily be seen that all the negacyclic codes C presented in Theorem 7.2.1 satisfy C C A(C) 

except the negacyclic codes of Type 2.0 and Type 3.0. 

Theorem 7.2.6. The negcyclic codes C of length n over R satisfying C C A(C) are: 

C=(u(x+i)m), where 0m2n. 

C = ((x + 1) + u(x + 1)th(x)), where n < s < 2n - 1, 0 < t < n - 1 and h(x) is 

either zero or a unit in R',. 

C = ((x + 1)8  + 2u(x + 1)th(x)), where n + 1 < s < 2n-1, 0 < t < s - n - 1 and 

h(x) is a unit in R',. 

C = ((x + 1)8  + u(x + 1)t(2h1(x)  + (x + 1)1h2(x))), where n + 1 < s < 2n - 1, 0 < 

t < s - n - 1, s - n < I <n and hi (x), h2(x) are units in R. 

C = ((x +1)8+  u(x  +i)th(x), u(x  +1)m),  wheren <5 <2n-1, 0 < t < m < T, 

h(x) is either zero or a unit in R',, and s + m > 2n. 

C = ((x+ i) +2u(x + 1)th(x), u(x+  1)m), where n+1 < s < 2n-1, 0 < t <s — n, 

1+t<mn-1, h(x) isa unit inR, and s+m>2n. 
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C = ((x + 1) + 2u(x + 1)th(x), 2u(x + i''), where n + 1 < s < 2n - 1, 0 < t 

s — n — i, 1 + t < m1 <T1 — 1, h(x) is a unit in R', and s+mi> Ti. 

C = ((x + 1) + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), u(x + 1)m),  where n + 1 < s 

2n-1,O<t<s—n-1,s—n<1+t<m<n, hi(x),h2(x) are units in R'', and 

s+rn > 2n. 

C = ((x + 1)8  + u(x + 1)t(2h1(x)  + (x + 1)1h2(x)), 2u(x + 1)ml),  where n + 1 < s 

2n-1,0<t<s—n—i, s—n<1+t<n,t<mi<Tj,hi(x),h2(x) are units in 

R, and s + m1  > n. 

Proof. Each generator of the negacyclic code is self-orthogonal in all the above cases. In a 

non-principal negacyclic code, the two generators are orthogonal to each other only when 

s + m > 2n or s + m1  > n. . 

Now we consider the structure of negacyclic codes C such that C = A(C). Let C = 

((x + 1)8  + u(x + i)th(x)) be a such negacyclic code of length n over R. Then from Theorem 

7.2.6, n < s < 2n. Hence from Theorem 7.2.5, we have 

CI= 
{ 22n-1 if 0 < t < 2s - 2n, 

- 

24n_28 if t > 2s - 2n. 

We know that IC'I = IA(C)I and ICIIC'I = 16. So 

JA(C)I = 

if 0 < t < 2s - 2n, 

228 if t > 2s - 2n. 

Since C = A(C), JCJ = IA(C)I, which implies that t = 0 or s = n. Thus negacyclic codes of 

the form C = ((x + i) + u(x + 1)th(x))  satisfy C = A(C) when t = 0 or s = n. Further, we 

can show that there are no negacyclic codes of the forms C = ((x + i) + 2u(x + i)th(x)) 

and C = ((x + i) + u(x + 1)t(2h1(x)  + (x + 1)h2(x))) over R satisfying C = A(C). For if 

there is such a negacyclic code of the form C = ((x + 1)8  + 2u(x + i)th(x)), where n + 1 
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s < 2n - 1 and 0 < t < s - n - 1, then from Theorem 7.2.5, we have 

{  
ICI 

2n-t if O<t<2s-3n, 
= - 

2428 if t > 2s - 3m. 

This implies that 

IA(C)I = 

J23n+1 if 0 < t < 2s - 3m, 

1228 if 

Since C = A(C), ICl = A(C) 1, which implies that t = —n or s = n, which is a contradiction, 

as both cases are not possible. 

Now we see non-principal negacyclic codes C over R such that C = A(C). Let C = 

((x+1)3 + u(x +1)th(x), u(x  +1)m),  where  ns2n_1,0mT_t_1,  and h(x) 

is either zero or a unit in R, be a non-principal such negacyclic code over R. Then from 

Theorem 7.2.5, we have ICI = 24n_(m+8) , which implies that IA(C)l = 2(m+3).  This in turn 

implies that m = 2n - s. 

In the following theorem we list all negacylic codes of length n over R such that C = 

A(C). 

Theorem 7.2.7. The only negacyclic codes C of length n over R satisfying C = A(C) are: 

C u) 

C = ((x + 1) + u(x + 1)th(x)), where t > 0 and h(x) is either zero or a unit in R'. 

C = ((x + 1)8  + uh(x)), where n + 1 < s < 2n - 1 and h(x) is unit in R''. 

C = ((x + 1)8  + u(x + 1)th(x), u(x + 1)2n_8), where n < s <2n-1, 0 < t < 2n—s--1 

and h(x) is either zero or a unit in R'. 

C = ((x +1)3+2u(x +1)th(x), u(x+1)2 ), where n < s < 2m —1, 0 < t 

rnin{2n - s, s - n} - 1 and h(x) is a unit in R. 

C = ((x 1)8+ u(x +1)t(2hi(x)+(x+1)t h2(x)), u(x+1)2 ), wheren+1 < s 

2n-  1, 0 <t < s - n - 1, t + I <2n - s and hi(x), h2(x) are units in R. 
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Proof. 1. Let C = (n). Then C C A(C), as u is self-orthogonal. From Theorem 7.2.5, 

IA(C)I = 4Th• We know that ICIIC-LI = 16 n = ICHA(C)I, which implies that IA(C)I = 

4 C. Hence C = A(C). 

Let f(x) = (x + 1) + u(x + 1)th(x) and C = (f(x)). Then (f(x))2 = 

((x + 1) + u(x + 1)th(x))2 = 0, which implies that C C A(C). From Theorem 7.2.5, 

4fl This implies that IA(C) = = 4fl 
= C. Hence C = A(C). 

Same as above. 

LetC = ((x+ 1) +u(z+ 1)th(x), u(x +1)m), wheren < s < 2n-1, 0 < m < T — 1 

and h(x) is either zero or a unit in R. Then from Theorem 7.2.5, we have ICI = 

24n_(m+8),  which implies that IA(C) I = 2(m+5).  This in turn implies that m = 2n - s. 

Rest of the results can be proved similarly. . 

7.3 A Mass formula for the number of negacylic codes 

C of length 2' over Z4  + uZ4  satisfying C = A(C) 

In this section, we determine a mass formula for number of negacyclic codes C of length n 

over R satisfying C = A(C). In view of this, recall Lemmas 6.4.1 and 6.4.2. 

al 

Lemma 7.3.1. For 0 < a1, a2  <2n - 1, E (2n - s)22 ' = (2n - a1  - 1)22n_al 
- (2n - 

s=a2  

a2  - 2)22n_a2 _1 

bi 
Lemma 7.3.2. For 0 < b1, b2  < 2n - 1, L (2n - s - t - 1)22n_s_t_2 

= (2n - s - b1  - 
t=b2  

2)22n_8__1 
- (2n - s - b2  - 3)22n_s_b2 _2 

Theorem 7.3.3. The number of negacyclic codes C of length 2' over R satisfying C = A(C) 

IS 

(5. 2n+2  9  2e_n+1 + 9 
. 2' + 232 (12n - 9e - 18) + 25) /9, 

where e= [(4n— 2)/3j. 
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Proof. Let M, and M, respectively, denote the number of negacyclic codes C of length n 

satisfying C = A(C) of each type i and the total number of such negacyclic codes of length 

ri. over R. First we find the number of such negacyclic codes in each case. 

Let C = (u). Then the number of negacyclic codes C satisfying C = A(C) of this type 

isM1 =1. 

Let C = (f(x)), where f(x) = (x + 1) + u(x + 1)th(x), 0 < t < n - 1, h(x) is either 

zero or unit in R', be a principal such negacyclic code of length n over R. 

If h(x) = 0, then the number of such negacyclic codes of this type is M'2  = 1. 

If h(x) 0, then from Theorem 6.3.11, we have T = Ti. Therefore deg h(x) n—t-1. 
n—i 

So the number of negacyclic codes is M'2' = > nt1 = 
- 1. Therefore the total 

t=o 
number of negacyclic codes of this type is M 2  = M'2  + M'2' 1 + 2 n - 1 = 2 

Let C = ((x + 1)8  +uh(x), where n+1 < s < 2n— 1, h(x) is a unit in R', be a such 

negacyclic code of length n over R. Since h(x) 0, we have from Theorem 6.3.11 

that T = 2n - s. Therefore deg h(x) 2ri. - s - 1. So the number of negacyclic codes 
2n—i 

is M 3  = 
22n—s--1 = 2n-1 

- 1. 
s=n-4-1 

Let C = ((x + 1)8  + u(x + 1)th(x), u(x + 1)2n_8),  where n + 1 < s < 2m - 1, 0 < t 

2n - s - 1 and h(x) is either zero or a unit in R, be a such negacyclic code of length 

n over R. Since C is a non-principal, we have 2ri - s < T. From Theorem 6.3.11, 

I 

2n—s+t if 0<t<2s-2n, 
T = . This implies that t > 0, which further 

if t>2s-2ni. 
implies that s < 2n - 2. 

If h(x) = 0, then the number of such negacyclic codes of this type is M'4  = n - 1. 

If h(x) 0, then we have deg h(x) < 2n - s - t - 1. So the number of such negacyclic 

codes is 

2n-2 2n—s-1 2m-2 
= 

22nst1 (22n_8_1 —1) = (2_2) —(n-2) = 2 1 —n 
s=n+i t1 

Therefore the total number of such negacyclic codes of this type is M4 = 21 
- 1. 
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Let C = ((x + 1) + 2u(x + l)th(x), n(x + 1)28), where n+1 < s < 2n— 1,0 < t < 

min{2n—s, s—n}-1 and h(x) is a unit in R. As in case (4), we can see here that t> 0 

12n—s+t if 0<t<2s-3n, 
and s > , as 2n - s < T . This implies 

c s — n if 2s-3n<t<s—n 

that s < 2n - 2. We also have that deg h(x) < 2n - s - t - 1. So the number of such 
2n-2 2n—s-1 2n-2 

negacyclic codes is M 5  = 
22n—s—t-1 = (2n_s_1 

- 1) = 2_1_.+1. 
t=i a=n+i 

LetC= ((x+1)8+u(x+1)t(2h1(x)+(x+1)1h2(x)),  u(x+1)2'), where n+1 

s < 2n - 1, 0 < t < s - n - 1, s - n < t + 1 < 2n - s and hi(x), h2(x) are 

units in R. Since s — n < l+t < 2n—s, s Fr —1. omTheorem 6.3.12, 

11+n—s-1 if s—n<1+t2s-2n, 
deg hi (x) T - t - 1 and deg 

(s—n—t-1 if 2s-2n<l+t <s—n, 
h2(x) <2n - s - t - 1 - 1. So the number of such negacyclic codes is 

e 

A46 = 
1: 

a—n-1 (2s-2n —t 2n—s—t—i 

> 21—s+n-122n—s—t-1-1 + 2s_n_t_1 2n_s_t_l_i) 
E

2 

s=n+i t=O l=a—n-i--1 1=2s-2n—t+1 

2 3n-2s-2 2n—a—t-1 I 4 - 2 
+ 21s+122t—t1, where e 

= [ ] s=e+1 t0 l=s—n+1 
e 

= 

a—n—i 72s-2n—t 

( + 
2n—s—t-1 

2n_2t_1_2) 

a=n+1 t=O \1=a—n+1 1=2s-2n—t+1 

2 3n-2s-2 2n—s—t—i 

+ 
s=e+1 t0 1=a—n+1 

e 

= 

a—n-1 

(s - n - 023n28t2 + (23n_2s_t-2 
- 

28_n_t_1) 

sn+i t0 

2 3n-2s-2 

+ i 2328t2(2n 
- 2s - t - 1) E 

s=e+i t=O 
e 

= 

s—n—i 

((3n - 28 - t - 1) - (4n - 38 - 2)) 23n-2s—t-2 
- 

25—n—t-1 

s=n+1 t=O 
in  —1 2 

+ 
(3n-2s-2  

23n_25_t_2 (3n 
 - 2s - t - 1)

a=e+1  t=O 
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- 
satisfying C = A(C) 

e 

= ((232 '(3n - 2s - 1) -2  4n-3s—1 (4n  - 3s - 2)) 

2 

- (4n - 38 2) (23n_28_1  - 24 _33_1) - (28—n 
- 1)) + (23" 21(3n - 2s - 2) + 1) 

s=e+1 

2 e 

= 
((3m - 2s - 2)23n_28_1 + i) 

- 

(4n - 3s - 2)23n_28_1  - 
s=n+1 

2 C 

= 
((3m - 2s)2321  - 2  3n-2a 23n_28 + 1) 

- 

(n + 1) - 3(3n - 2s - 023n_28_2  - 28_n 

s=n+1 s=n+1 

- 
2 1(3n - 8) + 4 2 n - 4 

+(n+1) 
2Th_2 -2  3n-2e-2  

- 9 3 

- 

2 2(3n - 11) - 232e_2(9n 
- 6e - 11) 

- (2e_m+1 
 - 2) + (i - 1) 

- 

2' + 23n_2e_l(12n 
 - 9e - 18) + 25 

- 2e_?--1 Ti 

- 9 

Hence the total number of negacyclic codes C of length 2' over R satisfying C = A(C) is 

M = (5 .2  n+2  9 2e_fl+1 + 9. 2' + 23n_2e_1(12n 
- 9e - 18) + 25) /9 

4 

wheree= [(4n-2)/3j. 

Now we consider the minimum distance o negacyclic codes of length n over R. 

Theorem 7.3.4. Let dH(C), dL(C) and dE(C)  be the minimum Hamming, Lee and Eu-

clidean distances of a negacyclic code C of length n over R, respectively. Then dH(C) = 

dH(Tor (C)), dL(C) =dL(Tor(C)) and dE(C) =dE(Tor (C)). 

Proof. Let c = a + ub e C with a 0. Then uc = ua E C. This implies that a E Tor (C). 

Since dH(Tor (C)) wtH(a) WtH(UC) < WtH(C) dH(C), we have dH(Tor (C)) <WtH(C) 

for all non-zero c E C. Thus dH(Tor (C)) <dH(C). 

On the other hand, dH(C) dH(Tor (C)), as uTor (C) ç C and wtH(uTor (C)) = 

wtH (Tor (C)). Hence dH(C) = dH(Tor (C)). The remaining parts of the theorem follow by 

similar arguments. . 

R[x] Example 7.3.5. For n = 2, R2 
= (x2+1) has 24 ideals (negacyclic codes of length 2 over 

R), out of which 8 are self-dual (C*)  and 15 are self-orthogonal (Ct). They are listed in the 
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following in Table 7.1 along with their duals, size, minimum Hamming, Lee and Euclidean 

distances. 

Table 7.1: Negacyclic codes of length 2 over Z4  + u7Z4  

Negacyclic code C Annihilator A(C) Size of C dH(C) dL(C) dE(C) 

C1 =(0) C2  1 0 0 0 

C2 =(1) C1  256 1 1 1 

C3 =(u) C3 16 1 1 1 

C4 —(u(x+1)) C 2  8 1 2 2 

C5  = (u(x + 1)2) Ct 9 4 1 2 4 

C6  = (u(x + i)) C7 t 2 2 4 8 

C7 =((x+1)) C9  64 1 2 2 

C8 =((x+1)2) C8  16 1 2 4 

C9 =((x+1)3) Ct  
7 4 2 4 8 

C10 = ((x+1)+n) C16  64 1 2 2 

C11  = ((x+1)2 +u) C 1  16 1 2 4 

C12  = ((x + 1)2  + u(x + 1)) C 2  16 1 2 4 

C13 = ((x*-1)2 +u(1-i-(x-i-1))) C 3  16 1 2 4 

C14 = ((x+1)3 +u) C 4  16 1 2 2 

C15  = ((x + 1) + u(z + 1)) C 0  8 1 2 4 

C16  =((x+1)3 +2u) C0 t 4 2 4 8 

C17 = ((x + 1), u) C6  128 1 1 1 

C18  = ((x + 1)2, u) C5  64 1 1 1 
C19  = ((x + 1)2 ,  u(x + 1)) C23  32 1 2 2 

C20  = ((x + 1)2  + u, u(x + 1)) C15  32 1 2 2 

C21  = ((x + 1), u) C4  32 1 1 1 

C22  = ((x+1)3, u(x+1)) C 2  16 1 2 2 

C23  = (x + i), 2u) C 9  8 1 2 4 
C24  = ((x + 1) + 2u, u(x + 1)) C 4  16 1 2 2 

4 
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7.4 Computational Results 

We conducted a computer search to exhaustively search for all negacyclic codes of length 

2's' over R for small values of k of certain types. We also looked at their Z4-images under 

the Gray map 0 : R -* Z2, such that (ã + u) (, + ), a, e Z, defined in Chapter 

5. Clearly, the length of the image of a code of length n over R under this map becomes 2n. 

Comparing the codes we have obtained with the database of Z4-codes [1,8], we found that 

we obtained some new linear codes over Z4. They are added to the database of Z4  codes. 

We considered both the Lee weight and the Euclidean weight of the codes over Z4. In Table 

7.2, we present a subset of the new codes we have obtained so far. The minimum Lee and 

Euclidean weights are denoted by dL and dE,  respectively. In many cases Z4  images are 

cyclic. Once we obtain the Z4  image of a negacyclic code over R, we can also apply the 

well-known Gray map to obtain its binary image. We found that in many cases the binary 

images are linear. Some of them are Type II codes, which are marked with * in Table 7.2. 

7.5 Conclusion 

In this chapter, we have obtained the duals of negacyclic codes of length 2' over the ring 

R = Z4  + u7Z4, u2  = 0. We have classified negacyclic codes C of length 2" over R satisfying 

C c A(C) and the codes satisfying C = A(C). A mass formula for the number of negacyclic 

codes C of length 2/v  over R satisfying C = A(C) has been derived. A number of negacyclic 

codes over R that lead to new Z4-linear codes are obtained by a computational search that 

made use of their structural properties determined in this work. 



Table 7.2: Some negacyclic codes over Z4  + uZ4  and their Z4  images 

1- 

+ 

0 0 

C 
Cl) 
-1 

c!3 

Length ri Type/Parameters Generator Z4-Parameters Comments 

8 Ti: m = 1 n(x+ 1) [16,4721,dL  = 41 Cyclic 

8 Ti : m = 5 u(x + i) [16,4325,dE  = 8] Cyclic 

8 Ti: m = i u(x+ 1) [16,4721,dE  =4] Cyclic 

8 T2.0:s=5,h=0 (x+i)5  [16,4325,dE =4] Linear 

8 T2.0 :s = 5,t = 1,h= 1 (x+ 1)5 +u(x+ 1) [16,410 26,dE  = 41 Linear 

8 T2.1 : s = 9, t = 7, h = i (x + i) + u(z + i) [16,41214, dL = 4] Cyclic, Linear 

8 T2.1 : s = 9, t = 5, h = 1 (x + i) + u(x + i) [16,43212, dE = 81* Cyclic, Linear 

8 T2.1 : s = 10, t = 4, h = 1 (x + 1)10  + u(x + 1) [16,44210, dE = 4] Cyclic, Linear 

16 Ti : m = 1 u(x + 1)' [32,41521, dL = 4] Cyclic, Linear 

16 Ti : m = 10 u(x + 1)10  [32,46210, dE = 8] Cyclic, Linear 

16 T2.0:s = 9,h = 0 (x+ 1)9  [32,47 29,dE  = 4] Linear 
16 T2.1 : s = 17, t = 12, h = 1 (x + i)' + u(x + 1)12  [32,44227, dL = 4] Cyclic, Linear 

16 T2.1 : s = 17, t = 9, h = 1 (x + i)' + u(x + i) [32,44224, dE = 81* Cyclic, Linear 

16 T2.1 : s = 16, t = 9, h = 1 (x + 1)16  + u(x + i) [32,47225, dE = 4] Cyclic, Linear 

16 T2.1 : s = 12, t = 2, h = 1 (x + 1)12  + u(x + 1)2  [32,414212, dE = 4] Cyclic, Linear 

32 Ti : in = 24 u(x + 1)24  [64, 4824, dL = 41 Cyclic, Linear 

32 Ti : in = 24 u(x + 1)24  [64, 4624,  dE  = 81 Cyclic, Linear 

Cyclic: The Z4  image is cyclic; Linear: The binary Gray image of the code is linear 

The two negacyclic codes of length 8 and 16 of type 2.1 generated by (x + i) + u(x + i) and (x + 1)17  + u(x + 1), respectively, are 
Type 11 codes over R. They are denoted by * in above table. 



Chapter 8 

Conclusion and future scope 

The study of codes over finite fields is very old. The ring linear coding on other hand 

is rather young. Unlike the codes over finite fields, codes over rings have not been well 

established both in theoretical and practical aspects. However, some studies proved that 

the codes over rings are promising and can produce many good codes with better parameters 

than the codes over fields. 

The main purpose of this thesis is a systematic study of algebraic codes over some non-

chain extensions of Z4  and searching for good codes over them. In the first part (Chapters 

3 and 4) of the thesis, we introduced two rings structures Z4  + vZ4, v2  = v and Z4  + w7Z4 , 

w2  = 2w in coding theory, and explored linear and self-dual codes over these rings. We have 

proposed few construction methods for constructing self-orthogonal and self-dual codes over 

Z4  + 'u7Z 4  and Z4  + wZ4. In the later part of the thesis, an extensive study of cyclic and 

negacyclic codes over Z4+u7L4, u2  = 0 has been done. We obtained all cyclic and negacyclic 

codes of both odd and even lengths over Z4  + uZ4, and classified them. Using the general 

form of generators of cyclic codes over Z4  + uZ, we have given a minimal spanning set 

for a cyclic code over Z4  + u7Z4  and determined a formula for its rank. It has been shown 

that the cyclic codes and negacyclic codes of same odd lengths over a finite local ring are 

isomorphic through a mapping. So we mainly focused on negacyclic codes of even length 

over Z4  + uZ4, in particular, of length 2". A complete classification of negacyclic codes of 

length 2k  is provided. The dual of each of such negacyclic codes is obtained. This allowed us 

to list all negacyclic codes C of length 2k  over 7Z4  + uZ4  satisfying C C A(C) and C = A(C). 

177 
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We have also enumerated the total number of negacyclic codes of length 2k  over Z4  + uZ4. - 

This was accomplished by computing the total number of negacyclic codes of length 2' of 

each type. The classification of negacylic codes led to some new good Z4-codes as Gray 

images of negacyclic codes over Z4  + uZ4  via the Gray map on Z4  + u7L4. 

8.1 Scope for future research 

The following are some possible research directions for the future work that we can suggest 

on the basis of the results obtained in this thesis. 

The study of codes over these non-chain extensions of Z4  can be generalized to non-

chain extensions of 7Zq  q a prime power. This study may lead to some new codes with 

better parameters. 

As an application of the study of codes over the rings described in this thesis, DNA 

codes and quantum codes can be considered over these rings. 

Skew codes over these non-chain extensions of Z4  could be another interesting and 

challenging area. 

One can also consider the rings of the form Z4  + uZ4  + vZ4  + uvZ4, where u2  - 0, 

=0,uv=vu; u2=0,v2 = v, uv=vu and u2 =u, v2 =v, uv=vu for studying 

of codes over them. 

Most of the work carried out here is about the structural properties and enumeration 

of codes. Developing encoding and decoding algorithms for the same will be an 

interesting problem. 
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