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Abstract

This thesis presents new algorithms that endow with improved elucidation to the problem of

image restoration. In particular, five different algorithms are presented to deal with the two

subproblems of image restoration namely ‘defogging’ and ‘denoising’. All these five algorithms

utilize a fractional-order generalization of integer order derivatives in the image space during

an implementation of diffusion filtering. Several experimental results are presented in the form

of qualitative and quantitative evaluations to support the algorithms proposed in the thesis. A

detailed comparison study of some existing approaches has been carried out to highlight the

applicability and the virtue of the proposed algorithms. The proposed algorithms have many

applications in different areas such as video surveillance, traffic monitoring, healthcare imaging,

remote sensing, etc.

The thesis starts with a general introduction of the image defogging and image denoising

problems. The motivation of the proposed work is also expressed. A brief inspection of the

existing techniques related to image denoising and defogging is summed up in first chapter. Then

two different algorithms are presented to deal with the problem of image defogging/dehazing.

Each of these algorithms uses a fractional-order anisotropic diffusion model to have a refined

airlight map for restoring fog affected degraded images. First algorithm diffuses each channel of

the airlight map separately and finally these channels are fused to get a refined airlight map. In

the second algorithm, a cross-channel term is added to balance the inter-channel diffusion for
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avoiding the diffused/blended bands. This helps restore images having more than one channel

in a better and improved way. Apart from the inter-channel regularization term, the intensity

and direction of the anisotropic diffusion are controlled by a factor p, which gives better results.

To extend the study of the thesis to image denoising problem, two different algorithms are

proposed for removing additive noise from the degraded images. The third algorithm makes

use of fractional quaternion wavelet transform (FrQWT). For filtering the noisy components in

FrQWT domain, hard and semi-soft thresholdings are used. Finally, a phase regularization step

is implemented before applying the inverse FrQWT. It is worth to mention here that the pro-

posed wavelet image denoising in the FrQWT domain gives impressive results in case of additive

white Gaussian noise. The fourth algorithm uses anisotropic diffusion and wavelet transform-

based subspace decomposition. This method is directionally sensitive for better edge preser-

vation. Moreover, fractional derivatives based convolution filters are implemented in different

wavelet subbands of the noisy image which makes algorithm suitable for parallel computing.

Finally, a new diffusion coefficient known as ‘tansig’ function of fractional order gradients

is proposed to improve the accuracy and convergence of the earlier algorithms. This method

is applicable for image defogging as well as image denoising problems. The thesis is concluded

based on the work presented in the earlier chapters. Likewise, a brief description of the scope

for further study is given.
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Chapter 1

Introduction

This chapter contains a brief description about the introduction and motivation leading to the work

presented in this thesis. The introduction about the image defogging and denoising problems is given

in Section 1.1. The motivation of this work is expressed in Section 1.2. Section 1.3 gives a brief

literature review about the existing techniques for restoring digital images degraded with fog and

additive noise. Section 1.4 contains the definitions of some of the metrics used in the subsequent

chapters for having quantitative evaluation of the restored images. Finally, Section 1.5 describes the

details about subsequent chapters in brief.

1.1 General introduction

Image restoration is a well-studied problem in vision research. The goal of image restoration is to

remove or reduce unwanted details like noise, fog/haze, blurring artifacts, etc. from the degraded

images. Though in the past few decades, many methods are developed to restore the foggy/noisy

images in different conditions, however, restoration of a single foggy/noisy image is still a challenging

and amusing task. It attracts not only engineering communities, but also mathematician due to its

ill-posed nature and rich theory in terms of various mathematical tools. In general, we require a

clean image for many image processing applications such as object detection [63, 80, 115], image/video

1
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retrieval [76, 79, 139], image encryption [16, 77, 143] and remote sensing applications [31, 55, 132].

Image enhancement techniques [4, 49, 90, 114, 124, 138] can be used for increasing the visual quality

of an image, however there is a clear distinction between image enhancement and image restoration.

Image restoration is an attempt to restore an image to its ideal fidelity, such by removing scratches, blur,

haze or noise. On the other hand, image enhancement is an attempt to improve an image beyond what

the camera took, by adding color, contrast or detail that was not really there. Therefore, restoration

is a kind of inverse problem in which we need to restore images to its original form by removing the

effect of degradation operator. In this thesis, we are dealing with anisotropic diffusion-based partial

differential equations (PDEs) for restoring the images degraded with fog/haze and presence of additive

noise.

In foggy conditions, the images of an outdoor scene are generally of bad quality due to the existence

of the water droplets and dust particles resulting in reduced visibility and contrast of the scene. This

is an annoying problem, as it has a negative effect on image grabbing results, in the degradation

of the captured image. The foggy images have poor visibility, color artifacts and low contrast due

to the absorption and scattering of the atmospheric particles. The particles/water droplets in the

atmosphere are one of the main reasons for indigent clarity. These droplets reflect light which results

in the degradation of an image of the scene. This scattered light enhances whiteness in the scene which

is known as airlight. The light which is reflected from the object gets absorbed by the atmospheric

particles which further gets attenuated and decreases the visual quality of the scene. This process is

known as attenuation. It becomes important to remove the fog for the better visual quality of the

images. Here, a couple of approaches are proposed in this thesis to deal with the problem of removing

fog/haze from the digital images.

The another image restoration subproblem, we are dealing in this thesis is related to reduce/remove

additive noise from digital images. The images of real-world objects gets noisy during the time when

the images are captured or transmitted. Some camera sensors corrupts the image by introducing

random variations in the image intensity and color information. This noise may also be inherited due
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to the reasons like atmospheric turbulence, imperfections in the equipment or the medium used for

transmission process. The noise can be more intensive during the acquisition phase, if the appliances

used are having low-resolution sensors. The main objective of an image denoising process is to discard

the noise, while retaining the sharp features of the image (edges, corners, texture details, etc). Noise is

a high-frequency component, so it seems like details of the image, therefore, noise remains preserved in

the filtering process or edges become blur. Also, random and uncorrelated noises can not be compressed

easily. The removal of noise from the image is a challenging problem as there is a range of images

from smooth textures to images with innumerable edges. In the spatial domain, the problem of image

restoration is an ill-posed problem. Mathematically, it implies that the matrix which models the

noise and blur in the imaging system has eigenvalues close to zero which makes the inversion process

unstable. From the applications point of view, the removal of noise is a necessary step in many image

processing applications like pattern recognition [113], object segmentation [61, 80], image interpolation

[7, 89], image segmentation [160] and in real imaging systems [88, 105, 106, 108] which needs a clean

image for processing.

In this thesis, we have used anisotropic diffusion PDEs for restoring the images while preserving

the edges and sharp details of the images. Generally, the perception of a diffusion process is to

equilibrate concentration while generating or destructing mass [150]. It can be explicitly configured in

a mathematical form using the Fick’s law as follows:

j = −D · ∇I (1.1)

The relation between flux j and concentration gradient ∇I is characterized by a diffusion tensor D. If

j and gradient ∇I are parallel, then the diffusion is said to be isotropic one. In the case of isotropic

diffusion, the diffusion coefficient is a constant function. If the diffusion tensor D is a function of

gradients, it will be called as nonlinear isotropic diffusion. In the case of nonlinear diffusion, diffusion

takes place like linear diffusion except the region where diffusion is constrained to preserve sharp details.

In the case of anisotropic diffusion, flux j and gradient ∇I are usually not parallel. The anisotropic

diffusion-based models take into account not only the image gradients but the edge directions also.



4

The diffusion tensor constructs two eigenvectors in such a way that one eigenvector is parallel to the

image gradients and another one is perpendicular to the image gradients. Mathematically, the behavior

of diffusion which only transfers mass without creation and destruction of mass is represented by the

continuity equation.

∂tI = div(D · ∇I) (1.2)

In the case of image processing, the intensity values at some particular pixel is the concentration in

the above diffusion PDE.

1.2 Motivation for the study

Although over the past few decades, many techniques have been developed for the restoration of digital

images degraded by additive/multiplicative noise or by the atmospheric artifacts such as fog/haze.

However, several challenges still persist which remains an interesting problem for several researchers.

The study proposed in this thesis is motivated by some of these challenges.

It is still a debatable issue that out of the first-order gradient and Laplacian based filters, which

one gives more accurate and sharp details of an image. Therefore, generalization of these integer-order

derivatives may have the advantages of both of them. Hence, the work of this thesis harness the theory

of the fractional-order derivative, where the order of differentiation is considered in the interval [1, 2).

Apart from it, the design of the diffusion coefficient in the anisotropic diffusion is still a challenging

issue. To address this issue, we have designed a couple of new coefficients that are not only adaptive

but also play a significant role in the convergence of iterative schemes for solving the fractional order

diffusion PDEs.

In a nutshell, we propose five different algorithms that provide better solutions to a couple of image

restoration problems. Comprehensive experimental results are presented in the form of qualitative and

quantitative evaluations to support the efficiency and applicability of the algorithms proposed in the

thesis. Apart from that, a detailed analysis has been carried out along with the comparisons with
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some of the existing approaches to highlight the applicability and merits of the proposed algorithms.

1.3 Literature review

Image restoration is an active research area having applications in many vision frameworks such as

object detection [63, 80, 115], image/video retrieval [47, 67–69, 76, 79, 109, 110, 116, 139], image

inpainting [42] and remote sensing [31, 55, 132], etc. The work presented in this thesis for image

restoration has two different subproblems: (i) to remove the fog/haze from synthetic as well as natural

foggy/hazy images, and (ii) to remove the additive white Gaussian noise from 2D digital images. In

this section, we will present a concise survey of each of these subproblems. Here, we first follow up on

the different methods in the literature which describe the different techniques to restore foggy/hazy

and noisy images from the degraded ones.

1.3.1 Classification of image defogging/dehazing techniques

The poor vigilance and low contrast of the scene in the foggy images is caused by absorption and

scattering by the atmospheric particles. The main reason for the less visibility in the foggy images

is the particles/water droplets in the atmosphere. The water droplets absorb the transmitted light

from the scene and get attenuated. This is known as attenuation. Also, the particles scatter the

light absorbed from the scene in the atmosphere which causes additional whiteness in the scene. This

process is known as airlight map. The attenuation and airlight map depends on the depth of the

scene from the camera. The main goal of image defogging/dehazing is to restore the fog/haze from

the degraded images. In literature, many methods have been proposed to restore the foggy images.

The defogging/dehazing methods require either an airlight map or a depth map. Image defogging

techniques can be divided into the following categories.

• Histogram based methods [51, 66, 81]

• Polarization filter based methods [112, 126]
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• Markov Random field(MRF) based methods [45, 137]

• Dark channel prior(DCP) based methods [50, 57, 58, 144, 158]

• Anisotropic diffusion based methods [17, 48, 117, 123, 135, 150, 152]

• Deep learning based methods [6, 10, 86, 131, 147, 157, 169, 173]

1.3.1.1 Histogram based image defogging techniques

In literature, the traditional image restoration techniques were based on contrast enhancement. The

contrast enhancement approaches can be divided into three types (i) the histogram equalization, (ii) the

histogram modification, and (iii) the non-overlapped block adaptive histogram modification [51, 66, 81].

Histogram equalization technique was used to attain the homogeneous histogram for image restoration.

The main drawback of this global histogram equalization scheme was the destruction of occasionally

distributed pixel intensities. In the histogram modification approach, an output image is enhanced

by adjusting the vigorous range of pixel values so that the output image is visually better. The non-

overlapped block adaptive approach was based on the intensities of pixels in a particular neighborhood.

This approach has high computational complexity, thus, it was hard to implement this technique in

real-time due to storage reasons. Also, the non-overlapped block adaptive histogram modification

technique leaves blocking artifacts. To overcome these issues, Kim et al. [81] introduced a block-

overlapped histogram equalization algorithm for spatially adaptive contrast enhancement. They also

introduced a filtering technique for abolishing over amplified noise.

1.3.1.2 Polarization filter based methods

In 2000, Narasimhan and Nayar [112] developed a geometric framework for analyzing the chromatic

effects of atmospheric scattering. In the night, there can be no illumination of daylight so there will

be no airlight, so in this condition attenuation dominates. Although in dense fog/haze conditions, the

transmitted light from the scene gets attenuated which causes dominance of airlight map. However,
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in most of the situations, airlight map as well as attenuation both coexist. In [112], the chromatic

effects of scattering in the atmosphere were discussed when both airlight map and attenuation are

present together. Firstly, a simple color model for atmospheric scattering was studied which is known

as the dichromatic atmospheric scattering model. It was described that the color of a scene in bad

weather conditions is a linear combination of the direction of transmitted light and the direction of

airlight map. Then, based on the physics of scattering, several geometric constraints were derived

on scene color changes, caused by varying atmospheric conditions. Finally, using these constraints,

an algorithm was developed for computing fog or haze color, depth segmentation, extracting three-

dimensional structure, and recovering true scene colors, from two or more images taken under different

but unknown weather conditions.

In 2003, Schechner et al. [126] presented a method which was based on evidence that the light

scattered by the atmosphere particles is partially polarized. The optical filtering method was efficient

in removing fog/haze in restricted positions only. However, the method described by Schechner et al.

works well for a broad range of atmospheric conditions including low polarization. They stated that

the light ray from the source to a scatterer and the line of sight from the camera to the scatterer define

a plane of incidence. At least two images that were captured at two distinct degrees of polarization

were required for implementing the method. Their method was completely based on the polarization

of the airlight map. The airlight map was divided into two polarization parts which are parallel

and perpendicular to the plane of incidence. The parallel component was associated with minimum

observed scene radiance and the perpendicular component was associated with maximum observed

scene radiance. However, their method is less effective, when the sky illumination is dull or weather

is overcast. Moreover, stability of their method decreases when the degree of polarization of airlight

map decreases. This method may fail in case of heavy polarizations.
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1.3.1.3 Markov random field(MRF) based methods

The polarization-based methods exploited two or more images of the same scene with different degrees

of polarization. The different degrees of polarization might be obtained just by rotating the polarization

filter attached with the camera [125]. However, these methods may not be applicable when there is a

variation in the scene where the changes are faster than the rotation of filter for finding the minimum

and maximum degrees of polarization. The idea of these techniques was to accomplish the differences

in distinct images obtained using the polarization filter, which have diverse properties of the engaging

medium. The visibility enhancement induced by these methods was significant but the drawback was

that it can not handle the scene variations.

In 2008, Tan [137] introduced a method that needed only single images as input. It does not

require the multiple images or the geometrical model of the scene. This method was based on a

couple of specific perceptions. First, the images with more visibility have high contrast than the foggy

images, and second, the airlight map tends to be smooth. A cost function was defined based on

the past previous observations in the structure of Markov-random-fields (MRFs). This function can

be optimized efficiently using various techniques and the method is applicable to gray as well as color

images. Firstly, they obtained atmospheric light from input image. The light chromaticity is calculated

using the airlight map. The light color of the input image is removed using the light chromaticity.

Afterwards, the data cost and smoothness cost are determined for every pixel of the image. The data

cost is estimated from the contrast of a small patch of the image and the smoothness cost is figured

out from the distance between labels of two neighboring pixels where the labels are equivalent to the

airlight map values. The complete MRFs are developed using these data costs and smoothness costs

which are further optimized. These optimized values of the airlight map are used to determine direct

attenuation. Finally, this procedure produces an image of the scene with more intensified visibility.

In 2008, Fattal [45] also introduced a method to calculate the optical transmission for a single

input image. For this, the image is interpreted through a model that accounts for surface shading

in addition to the scene transmission. Based on this refined image formation model, the image is
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broken into regions of a constant albedo and the airlight-albedo ambiguity is resolved by deriving an

additional constraint that requires the surface shading and medium transmission functions to be locally

statistically uncorrelated. This requires the shading component to vary significantly as compared to

the noise present in the image. A graphical model was used to propagate the solution to pixels in

which the signal-to-noise ratio falls below an admissible level. The airlight color is also estimated using

this un-correlation principle. This method was passive and does not require constraints like multiple

images of the scene, any light-blocking-based polarization, any form of scene depth information, or

any specialized sensors or hardware. Fattal’s method has the minimal requirement of a single image

acquired by an ordinary consumer camera. Also, Fattal’s method does not assume the haze layer to

be smooth in space, i.e., discontinuities in the scene depth or medium thickness are permitted.

1.3.1.4 Dark channel prior(DCP) based methods

The progress made by single image haze removal methods was significant but the disadvantage of

these methods is that they rely on steady prior assumptions. Tan[137] assumed that the contrast of

the haze-free image must be higher in comparison to the initial hazy image. Consequently, the haze was

removed by maximizing the local contrast of the restored haze-free image. Also, Fattal [45] computed

the albedo of the scene and the medium transmission with the assumption that the transmission and

the surface shading are locally uncorrelated. However, this method fails when the assumptions are not

satisfied and when there is a considerable amount of haze in the images. Therefore in 2011, He et al.

[57] introduced a novel approach called a dark channel prior (DCP). This approach was based on the

local stats of an outdoor haze-free image. They discovered that in most parts of an image, there are

pixels whose intensity is very low throughout in at least one channel of an RGB image. These pixels

were termed as dark pixels. The airlight map is the main reason for the intensity of the dark pixels

in a channel of a hazy image. These dark pixels directly provide an accurate estimation of the haze

transmission. They combined a haze imaging model and a soft matting interpolation method and the

image recovered using this method was of high quality and generated a good depth map.
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This approach was physically valid and handled distant objects in heavy haze images as well. The

only limitation of this method was when the scene radiance became equivalent to the airlight map.

However, this method applies to most of the outdoor hazy images. In 2013, He et al. [58] introduced an

efficient method called as guided image filtering. It is an edge-preserving smoothing operator similar

to the bilateral filtering method [144]. The guided image filtering method preserved edges better than

bilateral filtering. Also, this method was fast and its computational complexity is independent of the

filtering kernel size. Several models were proposed by making use of DCP-based restoration of the

airlight map which includes [50, 158], etc.

1.3.1.5 Deep learning based methods

In recent times, the deep learning-based techniques are very popular in image processing and computer

vision community. Deep learning has gained much popularity in terms of accuracy when using a very

large amount of data. Deep learning techniques are a subset of machine learning techniques that

works incrementally by identifying low-level classes first and then move towards higher-level categories.

Its main application lies in image restoration, image classification, natural language processing, and

speech recognition. Deep learning-based methods overcome the shortcomings of traditional methods

by automatically learning and getting more suitable image features rather than manually setting the

parameters [86]. Big data and GPU are a must for improving the learning capacity of deep learning

methods [62]. In image processing, convolutional neural networks are the most successful and classic

network for deep learning [91]. However, in successive years, deeper neural networks are getting more

popularity and attaining intense performance for image processing problems. Karen Simonyan et al.

[29] increased the depth of neural networks to 16-19 weighted layers and the convolution filter of size

3× 3 for each layer in image recognition [131]. Following that Christian Szegedy et al. implemented a

mechanism by using a sparsely connected layer [6] instead of fully connected layers to increase the width

and depth of the neural networks [136]. Although, deep networks have attained successful applications

in image processing problems [128] it can cause exploding gradients with increased network depth [14].
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This can cause networks to block the convergence. This problem can be avoided by using normalized

initialization [157]. Although, when deeper neural networks tend to converge, networks are saturated

and degrade quickly with increasing depth of networks. The appearance of the residual network

effectively dealt with the aforementioned problems of image recognition [59]. ResNeXt method is a

tried and tested method for image classification [159]. The spatial-temporal Attention (SPA) method

is very competitive for visual tracking [174]. Residual Dense Network (RDN) is also an effective tool

for image super-resolution [173]. Furthermore, DiracNets [169], IndRNN [95] and variational U-Net

[43] also provide us with many competitive technologies for image processing. These deep networks

are also widely applied in image de-noising, which is the branch of image processing technologies. For

example, the combination of kernel-prediction net and CNN is used to obtain a denoised image [10].

BMCNN utilizes NSS and CNN to deal with image denoising [2]. GAN is used to remove noise from

noisy image [147].

1.3.2 Classification of image denoising techniques

Image denoising is a fundamental problem in image processing. In most of the cases, noise in digital

images is found to be additive in nature with uniform power in the whole bandwidth and with Gaussian

probability distribution. Such type of noise is called additive white Gaussian noise (AWGN). It is a

vigorous task to just suppress AWGN since it corrupts a significant number of pixels in an image. The

noisy image produces undesirable visual quality, it also lowers the visibility of low contrast objects.

To remove noise without excessive smoothing of important details, a denoising technique needs to be

spatially adaptive. In this thesis, techniques based on wavelet filtering and anisotropic diffusion are

considered. A brief survey of these two type of denoising techniques are given in this section.

• Wavelet transform based methods

• Anisotropic diffusion-based methods
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1.3.2.1 Wavelet transform-based methods

In recent times, wavelet transforms in frequency domain has acquired generous attention of many

researchers to deal with image analysis. Wavelet analysis is coming out as one of the biggest important

tools in signal analysis, pattern recognition, image processing, and other fields [1, 78, 108]. Wavelet

analysis provides a multi-scale signal decomposition and multi-resolution analysis which gives the

entire idea of details occurring at different locations [108]. In image/signal analysis, Gabor functions

were used extensively as filters. Gabor filters are bounded and well described using a general window

function. This important aspect paved a way for the introduction of windowed Fourier transform [52].

It opened the scope for the development of the wavelet analysis [35, 53]. Simultaneous analysis of

time-frequency details and certain desirable properties of multiresolution analysis have proved wavelet

transform as a breakthrough tool in image analysis [21, 104]. The basic idea of wavelet transforms is

to decompose an image into different frequency subspaces. Wavelets are better than other transforms

in time-frequency localization and denoising at multi-resolutions. Taking into account all the legacy,

the generalization to the complex discrete wavelet transform(CDWT) from the real-valued wavelet

transform came quite naturally [83, 97]. The real discrete wavelet transform and complex wavelet

transforms have drawbacks like a small shift in the real discrete wavelet transform signal can generate

considerable changes in the magnitude of wavelet coefficient distribution. Progressively, the dual-tree

complex wavelet transform or in short CDWT was proposed by Kingsbury [82, 84]. It was basically a

computational structure of the complex wavelet transform (CDWT) which has been used frequently in

the various image processing applications [12]. This variant conquers a couple of limitations over the

classical DWT. Firstly, the magnitudes of the transform coefficients were found to be shift-invariant as

real and imaginary parts of CDWT make an Hilbert-pair. Secondly, the advantage of having the phase

information which was not found in DWT with real mother wavelet functions. The CDWT utilizes the

property of analytic filter banks and therefore, having a representation in terms of magnitude as well

as phase information. However, the CDWT model is not found to be an ideal generalization of analytic

wavelets in the case of 2-D signals. The CDWT has very low directional selectivity and its only phase
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can cause uncertainty when converting into two directions. After that, the real and complex wavelet

transforms are extended into quaternion wavelet transform (QWT) by employing a quaternionic Haar

kernel [20].

The quaternion wavelet transform (QWT) can be considered as a novel multi-scale analysis tool.

QWT is derived from the Hilbert 2-D transform theory, which comes close to shift-invariance and

subsequently removes the mentioned limitations of CDWT [164]. In addition to shift-invariance, an

added advantage of QWT in image analysis is that it encodes image transition in an absolute 2D-

coordinates system. Soulard and Carr have proposed an effective method for texture distribution

which uses coherent multi-scale analysis derived from the phase data and magnitude information of

the QWT [134]. In their method, an overall measure of intensity from the magnitude is incorporated

in terms of the statistical deviation of the third angle of QWT phases. It is also noticed that the third

phase of quaternionic angles contains structural information that helps in improving the classification.

The fractional wavelet transform (FrWT) is defined as a generalization of the wavelet transform in

the fractional Fourier domain. In [25], a multi-scale flow estimation algorithm was given for finding

the disparity maps in between frames from a video sequence [26]. Kumar et al. [87] proposed a

new algorithm for the implementation of the FrQWT using a dual-tree computation structure. The

definition of their FrQWT was based on the 2D Fourier spectrum up to a single quadrant and fractional

Hilbert operator. The rotation by an arbitrary angle in the time-frequency plane, fractional Fourier

transform (FrFT) uniquely illustrates the information of time as well as of frequency domain. However,

the wavelet transform has a multiresolution property. The amalgamation of these two results in FrWT

which serves as a powerful tool in performing multi-resolution analysis in time as well as transformed

domains. Nowadays, subspace decomposition methods [26] play a significant role in the large scale

computations. In subspace decomposition, the different frequency parts of the initial noisy image are

denoised independently followed by their fusion.
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1.3.2.2 Image denoising using wavelet transform

Wavelets give better denoising results because of properties like sparsity and multi-resolution analy-

sis. The thresholding approach was also used for the filtration of noise from the image. Also, the

data-adaptive approaches were used to estimate the optimum value of the threshold parameter [46].

Later on, it was found that the quality of a recovered image can be improved using thresholding of

an Undecimated Wavelet Transform based methods [33]. Image denoising is based on two primary

approaches i.e. methods based on Spatial domain filtering and methods based on Transform domain

filtering.

Spatial domain filtering: In spatial domain filtering, the denoising techniques are traditional

filtering techniques that can be further categorized into linear and non-linear filtering methods. Linear

filters make edge blur and smash the sharp details of images like corners and fine lines. The linear

filtering does not perform well if the noise depends on image intensities. The Wiener filter method

requires a smooth image and needs data information of the noise spectrum [66]. This method of

computational complexity depends on the chosen window size. Thus, Donoho and Johnstone proposed

a method to overcome the instability of Wiener filtering. [40, 41]. The non-linear filters remove the

noise without determining the type of noise. The weighted median filter [162], rank conditioned rank

selection [56], and relaxed median filter [54] are the established filters that reduces the effects of the

linear filters which makes edges invisible in the recovered image.

Transform domain filtering: The non-linear thresholding based methods are the most explored

methods for image denoising. The thresholding which filters some coefficients below a fixed value and

remaining coefficients are undamaged known as hard thresholding [39]. The VISUShrink thresholding

technique is non-adaptive [41]. It depends on the number of pixels in an image thus gives a large

threshold value. This results in extremely smoothed images. SUREShrink threshold is a combination

of the VISUShrink threshold and SURE (Stein’s Unbiased Risk Estimator) threshold [41]. BayesShrink

threshold is a data-adaptive threshold and gives better performance always when compared to other
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thresholds [32, 130]. BayesShrink gives a data-adaptive threshold. Also, wavelet transforms has been

used for decomposition of images for better visual effect. The Undecimated Wavelet Transforms are

shift-invariant so it prohibits any visual artifacts in the image but it requires large computations,

hence, less beneficial for the image restoration process. The wavelet coefficients are modeled using the

technique of multi-resolution analysis at various resolutions. The performance of this method is best

but it is much more computationally expensive and complicated. There are two types of techniques

for modeling of wavelet coefficients viz. Deterministic and Statistical. The deterministic approach

uses the tree structure of wavelet coefficients at each resolution [13, 38, 101]. The statistical models

use the correlation of wavelet coefficients at different scales and local correlation of the neighborhood

wavelet coefficients. The statistical modeling based methods Marginal Probabilistic Model and Joint

Probabilistic Model are explained in [28, 103, 122, 130]. The Independent Component Analysis (ICA)

scheme gained a lot of consideration in image denoising. It denoises images [74] with Gaussian as

well as Non-Gaussian distribution. This method needed some noise-free input and at least two image

frames of the same scene. Thus, this method has this drawback of computational complexity when

compared to the wavelet transforms based approaches [64, 74].

1.3.2.3 Numerical schemes using Bernoulli and Legendre wavelets

Wavelets has many applications in numerical analysis, time-frequency analysis, optimal control and

signal analysis. Wavelets has been used for numerical solutions of ordinary differential equations,

partial differential equations, fractional partial differential equations and fractional delay differential

equations. In different differential equations, various wavelets have been used such as Legendre, Haar,

Bernoulli, Chebyshev wavelets. The fractional order can be used in the sense of Riemann Liouville,

Caputo and Grunwald Letnikov, etc. Rahimkhani and Ordokhani presented a numerical collocation

scheme using Bernoulli wavelets with fractional order defined in Riemann-Liouville sense [120]. In [60],

a numerical scheme for solving partial differential equations with Dirichlet boundary conditions is given

using Legendre wavelets. For fractional delay differential equations, an algorithm has been developed
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using Bernoulli wavelets collocation method. In [8], different numerical methods has been developed

using Haar and Legendre wavelets for elliptic partial differential equations. Jafari et al. [65] proposed

a scheme to attain the approximate numerical solutions of fractional order differential equations with

fractional order defined in Caputo sense. This method converts fractional order differential equations

into algebraic equations and expanded the solution by Legendre wavelets with unknown coefficients.

1.3.2.4 Anisotropic diffusion based methods

The existing algorithms for image denoising lacks an absolute perseverance of the sharp details of

the image. On the other hand, the partial differential equations (PDEs) based methods were capable

to preserve fine details in the smoothing process up to some extent. The scatter matrix or moment

tensor is equivalently developed by Forstner and Gulch [48] as well as by Bigun and Granlund [17]

known as structure tensor is highly beneficial in today’s image processing and computer vision tasks

such as inspecting textures, corners and T-junctions, optical flow estimation and non-linear diffusion

filtering using structure tensors. Initially, the partial differential equations (PDEs) based method used

for image denoising was the linear heat equation with the homogenous boundary conditions. The

linear diffusion filtering is a classical structure tensor that averages in a neighborhood by applying

Gaussian convolution on that specific neighborhood. The main objective of the PDEs based method is

to overcome noise while keeping the sharp features, corners, etc intact. This method is simple as well

as robust. But the main drawback of linear diffusion filtering is that it applies globally on the image

which leads to blurring and dislocation of edges and losing sharp features in the image as well.

In the last two decades, anisotropic diffusion is widely used in restoring the images [117, 152]. To

tackle this problem, Witkin introduced the scale-space representation [156], based on which Perona-

Malik [117] introduced nonlinear PDEs in the image restoration process. Perona-Malik introduced

this breakthrough with a new definition of scale-space in which diffusion was induced in such a way

that edges are preserved known as anisotropic diffusion (AD). The nonlinear PDEs have demonstrated

outstanding results in denoising and in enhancing digital images, however, they endure some severe
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flaws. Firstly, they are not as fast as the traditional methods. Secondly, the nonlinear PDEs generally

damage some features in images like the tips of cones get flattened. Also, there is no stopping time in

the case of nonlinear PDEs based methods. Anisotropic diffusion process can efficiently smooth noise

while preserving the boundaries and texture information if its crucial parameters are estimated and

applied correctly. This set defines the behavior and extent of the diffusion process.

Anisotropic diffusion is associated with the energy-consuming procedure in which the energy functional

is minimized. The resulting images of Perona and Malik anisotropic diffusion are over smoothed and

disturbs the position of edges. Rudin-Osher-Fatemi (ROF) [123] introduced an image restoration

method based on total variation. The classical ROF model maintains the sharpness of the edges,

however, it gives the staircasing effect. In literature, there are many methods for the restoration

of images. An energy functional for the multispectral images was introduced in [135]. Zhang et al

[171] introduced an inpainting model in which the p-Laplace operator was used. They compared the

physical attributes of the total variational model with the p-Laplace operator and concluded that the

anisotropic diffusion with the p-Laplace operator gives better results than the TV model [123]. The

staircasing effect is also reduced, however, edges are preserved equivalently in both of the models. In

[29], the p-Laplace diffusion was introduced with nonlinear regularization depending on the gradient

and curvature of the image. In the existing literature, a lot of diffusion equations with the p-Laplace

operator emerged which were based on the local operator of the image [36, 85, 98]. These local

operators were not so good in order to deal with the texture and the sharp details because the nature

of the sharp details is not local generally.

The structure tensor is the robust replacement of the non-linear PDEs based methods such as the

Perona-Malik model [19]. Structure tensor has many advantages than non-linear diffusion filtering and

regularized models. The non-linear techniques in literature holds for scalar and vector-valued functions,

however, structure tensor is a matrix field. The filter proposed by Perona-Malik is isotropic. For the

filter to be truly anisotropic, it should consider the direction of edges along with the edge modulus.

Thus, Weickert constructed the diffusion tensor such that the eigenvectors displays the projected edge
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structures [150]. In this case, the eigenvectors are not parallel to the edge structures which makes

this model certainly anisotropic. Structure tensors give influential information about the local image

details in comparison to the gradients. In literature, non-linear diffusion schemes based on structure

tensor have proved their convenience for strengthening the corners, valleys and in medical imaging

[7]. Black et al. [18] suggested another diffusivity function using the Tukeys Biweight concept. This

diffusion process could preserve sharp boundaries and better continuity of edges. However, there are

many limitations to the above-mentioned models. In 2001, Weickert and Scharr [153] introduced the

coherence-enhancing scheme to enhance the structures of flow or wind type. They blended the non-

linear diffusion filtering with an orientation study using the standard structure tensor matrix. The

eigenvector corresponding to the smallest eigenvalue of the structure tensor determines the coherence

orientation. Although in recent time, a handful of extensions have pursued structure tensor with tensor

regularization.

1.4 Metrics for image restoration

Efficiency of an image restoration method can be testified using a series of measures. In this thesis,

the following measures are used for checking the effectiveness of the proposed algorithms.

1.4.1 Contrast gain

The contrast gain (CG) is defined as,

CG = C̄Ir − C̄If (1.3)

where, C̄If and C̄Ir are the mean contrasts of the degraded and recovered images. The contrast of a

pixel is the ratio C(x, y) = s(x,y)
m(x,y) ,

with

m(x, y) =
1

(2p+ 1)2

p∑
k=−p

p∑
l=−p

I(x+ k, y + l)
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s(x, y) =
1

(2p+ 1)2

p∑
k=−p

p∑
l=−p
|I(x+ k, y + l)−m(x, y)|

1.4.2 Colorfulness index

The colorfulness index (CI) of a RGB image I(x, y) (having IR, IG and IB bands) is computed as

CI =
√
σ2
I1

+ σ2
I2

+ 0.3
√
µ2
I1

+ µ2
I2

(1.4)

where, σ and µ denotes the standard deviation and mean of an image, respectively. The images

I1 = IR − IG and I2 = 1
2 [IR + IG − IB] are computed using the three color bands of I(x, y).

1.4.3 Contrast-to-noise ratio

Contrast-to-Noise ratio (CNR) is estimated as,

CNR =
|Ir − Id|
σN

(1.5)

where, Ir and Id are image intensities for the images Ir and Id, respectively; and σN is the standard

deviation of the image noise.

1.4.4 Visible edges ratio

Visible edges ratio (VER) is defined as,

e =
nl − nk
nl

(1.6)

where, nk and nl are the cardinalities of visible edges in the degraded image and the recovered image

respectively.

1.4.5 Structural similarity

Structural similarity (SSIM) between two images I1 and I2 is estimated as,

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1.7)
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where,

• µx, µy are the averages of images I1 and I2 respectively.

• σ2
x & σ2

y are variances of images I1 and I2 respectively.

• σxy is co-variance of I1 and I2.

1.4.6 Mean square error

Mean square error (MSE) is defined as,

MSE =
1

MN

N∑
j=1

M∑
i=1

[Iorig(i, j)− Ires(i, j)]2 (1.8)

where, Iorig and Ires are the original and restored images respectively.

1.4.7 Peak signal to noise ratio

Peak signal to noise ratio (PSNR) is calculated as,

PSNR = 10 log10(
R2

MSE
) (1.9)

where, R is maximum intensity value in the image.

Here, for the images restored from the foggy/hazy images, the metrics Contrast Gain (CG), Col-

orfulness Index (CI), Contrast to Noise Ratio (CNR), Visible Edges Ratio (VER) and Structural

Similarity (SSIM) are used. However, for images restored using image denoising process, the metrics

Structural Similarity (SSIM), Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are

used.

1.5 Structure of the thesis

The work presented in this thesis is divided over the seven different chapters. A chapter-wise descrip-

tion of the work is given in this section.
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Chapter 1 presents a general introduction to the topic of image restoration mainly when the

degradation occurs due to additive noise and fog/haze. Apart from it, some of the preliminaries and

terminologies required in the subsequent chapters are also given. A detailed review of the existing

techniques related to these two types of image restoration problems is also summarized with a closer

insight into the existing algorithms that are intricately related to the proposed work.

Chapter 2 presents a fog removal algorithm for gray-scale images. In particular, the fractional-

order version of the Perona-Malik model is obtained by applying the calculus of the variation technique

on the equivalent functional minimization problem. The proposed algorithm uses the airlight map ex-

tracted from the foggy model as the initial image in the anisotropic diffusion process. The iterative

diffusion process improves this airlight map. The anisotropic diffusion process is generalized to the

order of any real number between [1, 2) using the Riemann-Liouville definition of the fractional-order

derivatives. The formulation of the iterative process is carried out in the spatial domain to have a

simple and computationally efficient implementation. Simulation results validate that the proposed

algorithm is outperforming a few of the existing algorithms. The comparison analysis is carried out

based on different metrics like contrast gain, colorfulness index, contrast-to-noise ratio, and visible

edges ratio.

Chapter 3 presents an algorithm for removing haze/fog from multi-channel images. Again, this

algorithm uses a fractional-order anisotropic diffusion equation. However, the p-Laplace norm of the

fractional-order gradients is used for adaptive diffusion of the local image details. Apart from it, to

deal with different channels, the diffusion equation contains a regularization term to balance the inter-

channel correlations and to evade the diffused bands in the recovered image. An iterative numerical

scheme is designed to solve the diffusion PDE of this algorithm. The results show the better perfor-

mance of this algorithm than the fractional-order anisotropic diffusion without any norm and cross

channel term. Apart from the natural images, the proposed algorithm is also tested on the synthetic
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foggy images from the benchmark data-set namely ‘SOT’ [93]. This data set containing synthetic haze

in indoor images, naturally hazed outdoor images and synthetic hazy outdoor images. The comparison

study is carried out using different metrics like contrast gain, colorfulness index, contrast-to-noise ra-

tio, and visible edges ratio. The proposed algorithm would be worthwhile mentioning in need of more

accurate image restoration.

In Chapter 4, an image denoising algorithm is proposed using fractional quaternion wavelet

transform(FrQWT). In particular, images corrupted with additive Gaussian noise are considered and

FrQWT is performed via hard and semi-soft thresholds. The thresholding on the wavelet coefficients

reveals the capabilities of wavelet transform in the restoration of an image degraded by noise. FrQWT

is simple and adaptive since the estimation of threshold parameters depends on the data of wavelet

coefficients. This technique is compared with existing methods of similar category.

In Chapter 5, an improved context-adaptive fractional-order anisotropic diffusion (FOAD) model

is proposed specifically for image denoising. The proposed FOAD model also includes a modified ver-

sion of the diffusion coefficient suggested in the Perona-Malik model. Fractional-order derivative is

applied to reduce the stair-casing effect and to preserve the fine characteristics, whereas, the improved

diffusion coefficient protects edges and corners from getting over-smoothed. A discrete wavelet trans-

form is used to decompose the image into low-frequency parts and the high-frequency components.

Fractional order anisotropic diffusion is applied on the approximation part and detailed parts in some

particular directions according to a predefined strategy. The effectiveness of this algorithm is tested

on several images with different metrics. The proposed algorithm is found to be quite effective in

removing the noise and maintaining the edges and corners.

Chapter 6 presents a new data-driven diffusion coefficient mainly for anisotropic diffusion-based

image restoration models. This diffusion coefficient is tested for the sub-problems of image denoising
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and image dehazing, showing good performance in both the cases. In the case of image denoising,

images are corrupted with additive Gaussian noise (AWGN). The fractional-order derivatives are used

in Riemann-Liouville sense which is in principle a convolution of two functions. Apart from it, a more

adaptive version of this diffusion coefficient is developed based on the local noise estimation. The

efficiency of this algorithm is tested on various noisy/hazy images. Considered images contain a lot

of edges and detailed part, however, the proposed algorithm still performs better maintaining sharp

details while removing noise and haze.

Chapter 7 has the concluding remarks of the overall work proposed in the thesis. In particular, the

advantages of the proposed algorithms together with the limitations and challenges are given. Apart

from it, several directions for the future scope of this work are also given in this chapter.
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Chapter 2

Single image fog removal algorithm in

spatial domain using fractional order

anisotropic diffusion

2.1 Introduction

In this chapter, an image defogging algorithm using a fractional-order anisotropic diffusion process is

proposed. The proposed algorithm uses the airlight map extracted from the foggy model as the initial

image in the anisotropic diffusion process. An iterative diffusion process refines this airlight map. The

anisotropic diffusion process is generalized to the order of any real number between [1, 2) using the

Riemann-Liouville definition of the fractional-order derivatives. The formulation of the iterative process

is carried out in the spatial domain to have a simple and computationally efficient implementation.

In literature, the first category of models was based on the simple image enhancement techniques

to restore the foggy images [17]. The second category of the algorithms were based on the use of

polarization filters to remove the fog effect from the images [25, 26]. In [28], the algorithm maximizes

the local contrast of the image using the Markov-Random-Field (MRF) model. The results were found

25
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impressive except few blocking artifacts around the depth discontinuities (edges). The algorithm

proposed in [6] used Independent Component Analysis (ICA). In the third category of the algorithms,

Dark-Channel-Prior(DCP) was used to address the defogging of images. Mainly, DCP depends on the

statistics of the images of an outdoor scene [10]. Recently, few algorithms use learnable filters to design

governing PDEs and associated boundary conditions [3, 19, 20]. Also, several models were proposed

using diffusion partial differential equation (PDE) for denoising of digital images [23, 34, 38].

In this chapter, the proposed algorithm refines the airlight map by using a fractional-order anisotropic

diffusion (Fr-AD) process. The Fr-AD algorithm is a generalization of classical anisotropic diffusion

(AD) [33]. Also, it is a pseudo-PDE-based algorithm between the Perona-Malik model and fourth-order

anisotropic diffusion equations [38]. The computations of the fractional derivatives are carried out in

the spatial domain instead of the existing Fourier domain-based methods [12]. Additionally, very few

parameters are selected manually in the proposed algorithm. These manually tuned parameters do

not depend on the image under restoration and remain fixed. The iterative algorithm takes the initial

airlight map as the input, and then subsequent iterations derive towards the refined airlight map. The

convergence analysis is carried out of the numerical scheme. The presented numerical results validate

a better performance of the Fr-AD over some of the existing algorithms.

2.2 Fractional order derivative

Let f(z) be an analytic function in a simple connected region of the complex z- plane C containing

origin. The fractional integral Iαz f(z) of an order α of the function f(z) is defined in [3]. The

generalization of the fractional integral can be determined by taking into account the natural n ∈ N

and real µ in the n-fold integral, and then operating the Cauchy’s formula for iterated kernel’s n − 1

times. With this process, the fractional integral operator is given by

Iα,µz f(z) =
(µ+ 1)1−α

Γ(α)

∫ z

0
(zµ+1 − ξµ+1)α−1ξµf(ξ)dξ. (2.1)
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Figure 2.1: Norm of derivatives in x and y direction on initial airlight map of Tomb image for:
(a) α = 1; (b) α = 1.4; (c) α = 1.8

where α, µ(6= −1) ∈ R.

When µ = 0, we get the classic Riemann-Liouville fractional integral. Further, Riemann-Liouville

fractional derivatives are defined using this fractional integral.

A generalized differential operator of order α resembling to the generalized fractional integral is defined

in the following manner

Dα,µ
z f(z) =

(µ+ 1)α

Γ(1− α)

d

dz

∫ z

0

ξµ

(zµ+1 − ξµ+1)α
f(ξ)dξ, 0 ≤ α < 1 (2.2)

Dα
z f(z) =

d

dz

( z−α

Γ(1− α)
∗ f(z)

)
=

d

dz

( z−α

Γ(1− α)

)
∗ f(z) (2.3)

The partial fractional derivatives with respect to x and y variables are calculated by convoluting the

initial airlight map with fixed small size matrices

 −1 1

−1 1

 and

 −1 −1

1 1

 respectively weighted

by using α and a constant viz. 0.25. The derivatives keep refining as per the refinement in airlight

map with increasing iterations. The convolution method followed here returns a central part of the

convolution that is the same size as the airlight map. Figure 2.1 illustrates the norm of the gradient

vector for different fractional orders.
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2.3 Image defogging model

In this section, the image defogging model and restoration process is discussed followed by the conver-

gence analysis of the proposed scheme. The most general model to describe an image degraded with

fog effect can be expressed as [112, 125, 140]

I0(x, y) = I(x, y)e−kd(x,y) + I∞(1− e−kd(x,y)) (2.4)

where, I(x, y) is the original image (intensity at pixel location (x, y) in the absence of fog), k is the

coefficient of the scattering related to the atmosphere and d(x, y) is the distance of the scene from

camera. The array I∞ is atmospheric light or sky intensity and I0(x, y) is the observed foggy image of

the scene. Here, e−kd(x,y) is often represented as transmission map and is given by t(x, y) = e−kd(x,y).

In clear weather conditions, we have k ≈ 0. However, k becomes non-negligible in foggy images. In

(2.4), the first term I(x, y)e−kd(x,y) is referred as direct attenuation and second term I∞(1− e−kd(x,y))

is the airlight map. The decay of the scene radiance in the medium is occurred due to the presence

of this direct attenuation term. Generally, scene color is changed due to the diversion in the airlight

map. Attenuation is a decreasing function at an exponential rate. This reduces the contrast of the

scene. The airlight map A0(x, y) produces whiteness in the scene. The equation (2.4) can be modified

as

I0(x, y) = I(x, y)
(

1− A0(x, y)

I∞

)
+A0(x, y) (2.5)

Normalization is performed on a foggy image for simulation. As effect of the fog is pure white so the

sky intensity may be taken as 1 throughout the array, and hence, (2.5) becomes

I0(x, y) = I(x, y)(1−A0(x, y)) +A0(x, y) (2.6)

To restore, I(x, y) from its degraded version I0(x, y), we need to estimate A0(x, y) accurately. The

airlight map A0(x, y) is a positive scalar map. Generally, outdoor images are colorful (contains trees,

purple red plants and blue water), hence, the assumption of using DCP is true in case of natural

images. An illustration of the proposed algorithm is given in Figure 2.2.
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Figure 2.2: An illustration of the proposed algorithm

2.3.1 Implementation

In general, smoothing is considered as one of the impressive technique that has been used in several

applications related to the restoration and enhancement of images. Here, the objective is to find a more

refined/enhanced airlight map A(x, y), so that the foggy image can be restored using the equation (5.7).

If we perform a traditional smoothing filtering approach on A0(x, y) to get A(x, y), it can contaminate

the image features like lines, edges and textures from this initial airlight map. To evade the damage,

smoothing has to be robustly controlled by the extent of smoothing and direction of smoothing. Non-

linear diffusion theory proposed by Perona and Malik [117] is a classical example of adaptive smoothing,

where the smoothing process is defined by PDEs. However, we generalize it to fractional order as the

novelty. To do this, fractional-order derivatives are included instead of an integer order derivative. Let

g be the diffusion function and t denotes the time, the anisotropic diffusion PDE for refining airlight

map is given as

∂tA = div(g(∇A)∇A) (2.7)

with A(x, y, 0) = A0(x, y) ∀x ∈ Ω and ∂nA|∂Ω=< ∇A,n > |∂Ω= 0

The equation (2.7) is associated with the energy functional:

E(A) =

∫
Ω
f(|∇A|)dΩ (2.8)
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where, Ω stands for image support and f(.) ≥ 0 is an increasing function associated with the diffusion

coefficient defined as

g(s2) =
f ′(s)

s2
(2.9)

Anisotropic diffusion is presented as an energy-consuming function that explores the energy functional

minimum. We consider the following functional defined in the space of continuous images over a

support of Ω

E(A) =

∫
Ω
f(|DαA|)dΩ (2.10)

where Dα is the fractional derivative operator defined as DαA = (Dα
xA,D

α
yA) and |DαA|=

√
(Dα

x)2 + (Dα
y )2.

We can compute the Euler-Lagrange equation for this minimization problem by taking a test function

η ∈ C∞(Ω) as follows:

Φ(a) =

∫
Ω
f(|DαA+ aDαη|)dxdy (2.11)

We obtain its derivative at a = 0 as

Φ′(0) =
d

da

∫
Ω
f(|DαA+ aDαη|)dxdy|a=0

=

∫
Ω

(
f ′(|DαA|) Dα

xA

|DαA|
Dα
xη+

f ′(|DαA|)
Dα
yA

|DαA|
Dα
y η

)
dxdy

=

∫
Ω

((Dα
x)∗(c(|DαA|2)Dα

xA)

+(Dα
y )∗(c(|DαA|2)Dα

yA))ηdxdy

(2.12)

for all η ∈ C∞(Ω), where (Dα
x)∗ and (Dα

y )∗ are adjoint of Dα
x and Dα

y , respectively. Hence, the Euler-

Lagrange equation becomes

(Dα
x)∗(c(|DαA|2)Dα

xA) + (Dα
y )∗(c(|DαA|2)Dα

yA) = 0 (2.13)

The Euler-Lagrange equation can be solved using the following gradient descent method:

∂tA = −(Dα
x)∗(c(|DαA|2)Dα

xA)− (Dα
y )∗(c(|DαA|2)Dα

yA) (2.14)
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taking initial condition as the observed airlight map A0(x, y). The solution is reached as t → ∞ but

the growth time can be stopped prior to attain the optimal trade off between fog removal and edge

preservation.

When α = 1, the equation (2.14) is absolutely the Perona-Malik equation (2.7); when α = 2 (2.14)

is absolutely the fourth order anisotropic diffusion in [166]; when 1 ≤ α ≤ 2, (2.14) leads to a “natural

interpolation” between them fulfilling the main motivation of the proposed algorithm.

2.3.2 Numerical algorithm

For practical applications, firstly assume that initial discrete airlight map A0 is of m × m pixels.

It has been sampled from its continuous version at uniformly spaced points starting at (0, 0), i.e.

A0(x, y) = A0(x∆x, y∆y) for x, y = 0, ...,m− 1. The grid size ∆x and ∆y is chosen as ∆x,∆y = 1.

Let K1 and K2 be purely diagonal operators in the spatial domain, defined by

K1 = F−1(diag((1− exp(−j2π(ω1)/m))α × exp(jπαω1/m)))

K2 = F−1(diag((1− exp(−j2π(ω2)/m))α × exp(jπαω2/m)))

where,

K∗1 = F−1(diag(conj((1− exp(−j2π(ω1)/m))α × exp(jπαω1/m)))), (2.15)

and

K∗2 = F−1(diag(conj((1− exp(−j2π(ω2)/m))α × exp(jπαω2/m)))). (2.16)

We compute the evolution of the initial airlight map A0 , along flow (2.14) work in the spatial

domain only. Moreover, we define

hxn = c(|DαAn|2)Dα
xAn (2.17)

and

hyn = c(|DαAn|2)Dα
yAn (2.18)
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The final output image is recovered using the iterative scheme un+1 = un − gn ×∆t

where,

gn = K∗1 ◦ hxn + K∗2 ◦ hyn

and ∆t = 4−α.

To summarize, the proposed fog removal approach is done in following steps.

Algorithm 1 Numerical implementation of the Fr-AD

Input: Initial airlight map A(x, y), maximum number of iterations nmax, α and ∆t = 4−α

Output: Refined airlight map Â(x, y)

1. Set n = 0, input image u0 = A(x, y), nmax and t = k∆t.
for n = 0, 1, 2, . . . , nmax, do

2. Compute D̃α
xun and D̃α

yun using (2.3).
3. Compute hxn = c(|Dαun|2)Dα

xun and hyn = c(|Dαun|2)Dα
yun as defined in equations (2.17)

and (2.18).
4. Compute gn = K∗1 ◦ hxn + K∗2 ◦ hyn
5. Compute un+1 = un − gn ×∆t

End for
6. return Â(x, y) = un

2.3.3 Analysis

The iterative scheme defined in the previous section needs to be converged for getting an enhanced

airlight map u = Â(x, y). In this subsection, we briefly describe the convergence analysis of the

scheme. The scheme defined in the Algorithm 1 converges for any choice of the initial image, if the

energy function f(|∇αu|) defined in equation (2.10) is smooth and convex [135]. Alternatively, there

exists a unique solution of the diffusion PDE given in equation (2.14) if energy function defined in

equation (2.10) is smooth and convex. From [167],the eigenvalues of the Hessian matrix of the energy

function f(|∇αu|) can be written as

λ1 =
f ′(|∇αu|)
|∇αu|

and λ2 = f ′′(|∇αu|) (2.19)

This gives λ1 = c(.). Here, the value of λ1 is positive due to our choice of the function c(s2) = s−1,

since f ′(s) = s2.c(s2). To make the anisotropic diffusion problem as a well-posed, the value of second
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eigenvalue of the hessian matrix is quite important. In this scheme, we have

λ2 =
d

ds
f ′(s) = f ′′(s) = 1 > 0

due to the choice of the edge preserving function c(s). This indicates that the Hessian matrix associated

with the integrand of energy function f is positive definite and hence the function is strictly convex.

In this case, the function f attains a unique global minima for any choice of initial image u0 = A(x, y)

which is the airlight map extracted from the degraded image.

2.3.4 Post-processing

After estimating airlight map Â, the restored image I0(x, y) can be restored as

I(x, y, c) =
(I0(x, y, c)− Â(x, y))

(1− (A(x, y)/I∞(c)))
(2.20)

where c ∈ (r, g, b). The above method can also be applied for gray-scale images. The only difference

will be the initial airlight map.

Histogram stretching is applied as a post-processing step of the proposed algorithm. The restored

image I(x, y, c) obtained from the improved airlight map may be of poor contrast. Thus, the restored

image may be visually dim because of the difference in the brightness of the scene radiance and the

atmospheric light. The later one finds a bit brighter. In general, histogram equalization is a favorite

technique for contrast enhancement. However, it may not be that worthy due to the saturated output

image of the fog removal step. Moreover, the histogram specification technique cannot be applied

due to the absence of a standard reference image. Here, we adopted the histogram stretching in our

algorithm for the task of contrast enhancement.

2.4 Results and discussions

This section presents the numerical results obtained with the proposed algorithm to enhance the digital

images degraded by the fog effect. The proposed algorithm tests the performance on seven different
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Table 2.1: Contrast gain (CG) obtained with the proposed algorithm with different fractional
orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.1078 0.1082 0.1086 0.1084 0.1086
Wheat 0.0852 0.0853 0.0854 0.0854 0.0856
Tomb 0.0891 0.0897 0.0896 0.0895 0.0893
Ny17 0.1347 0.1351 0.1352 0.1351 0.1350
Swan 0.0752 0.0753 0.0753 0.0753 0.0754
N6 0.0729 0.0732 0.0734 0.0734 0.0735
Train 0.1064 0.1067 0.1069 0.1069 0.1065

images, namely Forest, Wheat, Tomb, Ny17, Swan, N6 and Train. These images are having different

textural details and degraded with varying amounts of the fog. In this study, the fractional-order

parameter α takes a real value in the interval [1, 2). For the computational purpose, we choose

five fixed values of α = {1.0, 1.2, 1.4, 1.6, 1.8} as taken in many references [9]. It is worth to

mention that at α = 1, the proposed scheme behaves similarly to AD scheme [146]. In the existing

literature, different strategies were adopted to stop the iterative process of anisotropic diffusion. We

follow the stopping criteria as in [9]. Four different metrics contrast gain (CG), colorfulness index (CI),

contrast-to-noise ratio (CNR) and visible edges ratio (VER) are used to measure the performance of

the proposed algorithm.

The stopping criterion is chosen to be 30 iterations of the diffusion process based on all these metrics.

The proposed algorithm uses the airlight map extracted from the degraded image as the initial image

of the diffusion process. We compare the performance of the proposed algorithm with some of the

existing algorithms such as DCP-based approach [58], Kernel regression model with DCP [158], Two-

Layer Gaussian process regression (GPR) [44] and Integer order AD [146].

Table 2.1 lists the numerical results in terms of contrast gain (CG). In case of Wheat, Swan and N6

images, fractional order α = 1.8 gives the best CG value. For Forest, Ny17 and Train images, α = 1.4

is giving a slight better CG value. For Tomb image, the best CG value is obtained at α = 1.2. It is
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Table 2.2: Colorfulness index (CI) value obtained with the proposed algorithm with different
fractional orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.1178 0.1188 0.1191 0.1192 0.1192
Wheat 0.0901 0.0905 0.0906 0.0907 0.0907
Tomb 0.1340 0.1349 0.1351 0.1351 0.1352
Ny17 0.4085 0.4122 0.4136 0.4141 0.4142
Swan 0.2394 0.2410 0.2416 0.2418 0.2419
N6 0.1628 0.1643 0.1648 0.1650 0.1651
Train 0.2901 0.2931 0.2941 0.2944 0.2945

also worth to mention that the results are significantly improved with fractional orders as compared

to the case of α = 1 (AD [146]).

The numerical results in terms of colorfulness index (CI) are listed in Table 2.2. The best CI values

for all the images are obtained for the fractional orders α = 1.6 & 1.8. This is due to the textural

details of the image. Unlike the CG value, best CI values are obtained with α = 1.6 for Forest and

Wheat images. For the rest of the images, the best performance is found at α = 1.8. However, in all

these images, Fr-AD gives better results when compared to AD.

Similar types of results are obtained in case of contrast-to-noise ratio. Table 2.3 lists the values

of CNR at different fractional orders in case of all these images. It is noticeable that the best results

are obtained with fractional orders and not with α = 1.0. It is also noticeable from table 2.4 that the

FrAD-based approach gives better visible edges ratio (VER) than the AD. From these observations,

the significance of fractional order derivatives in anisotropic diffusion can be observed especially in the

restoration of fog affected images.

The performance of the proposed algorithm is compared with four different algorithms. Table 2.5

lists the results of this comparison study. We make the following remarks based on this comparison

study.

1. In case of contrast gain, the proposed algorithm performs better than other all the four algorithms
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Table 2.3: Contrast-to-noise ratio (CNR) obtained with the proposed algorithm with different
fractional orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Forest 19.9636 20.1646 22.1766 23.1968 24.2256
Wheat 5.6686 5.9215 6.8548 7.7767 7.8552
Tomb 6.0246 7.0256 7.0657 7.0689 7.0805
Ny17 5.5305 6.1981 6.2973 6.4577 6.5920
Swan 7.8502 8.1070 8.2166 8.4867 8.6664
N6 24.1493 25.1423 25.1987 25.2607 25.3376
Train 10.1965 10.5583 10.6444 10.7655 10.8092

Table 2.4: Visible edges ratio (VER) obtained with the proposed algorithm with different frac-
tional orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.2245 0.2308 0.2308 0.2326 0.2289
Wheat 0.2340 0.2372 0.2372 0.2390 0.2353
Tomb 0.0123 0.0263 0.0263 0.0170 0.0193
Ny17 0.1578 0.1586 0.1609 0.1609 0.1609
Swan 0.5390 0.5419 0.5535 0.5506 0.5506
N6 0.7825 0.7899 0.7899 0.7899 0.7895
Train 0.2061 0.2121 0.2121 0.2239 0.2239

for Forest and Tomb images. The DCP algorithm performs better than the proposed algorithm

in case of rest images. For Ny17, Swan and Train images, the proposed algorithm performs

better than the three algorithms KRM, GPR and AD.

2. The proposed algorithm performs better in case of colorfulness index for Ny17, Swan and Train

images. The KRM algorithm performs better than all algorithms for Forest, Tomb and N6

images. The GPR algorithm performs best for Wheat image.

3. In case of metric CNR, the KRM algorithm performs better for Tomb, Ny17 and Swan images.
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Table 2.5: Comparison of the results obtained with existing algorithms DCP [58], KRM [158],
GPR [44], AD [146] and the proposed algorithm

Metric Algorithm Forest Wheat Tomb Ny17 Swan N6 Train
CG DCP 0.0567 0.1628 0.0635 0.1989 0.1836 0.5418 0.3223

KRM 0.1040 0.1129 0.0756 0.1084 0.0637 0.0649 0.0967
GPR 0.0218 0.0222 0.0824 0.1139 0.0561 0.0869 0.0623
AD 0.1078 0.0852 0.0891 0.1347 0.0752 0.0729 0.1064
Proposed 0.1086 0.0856 0.0897 0.1352 0.0754 0.0735 0.1069

CI DCP 0.1529 0.1470 0.1156 0.1029 0.0965 0.0774 0.0780
KRM 1.1639 0.0736 2.4508 0.3255 0.2154 3.1454 0.1703
GPR 0.0927 0.1578 0.1252 0.3753 0.1095 0.2269 0.2156
AD 0.1178 0.0901 0.1340 0.4085 0.2394 0.1628 0.2901
Proposed 0.1192 0.0907 0.1352 0.4142 0.2419 0.1651 0.2945

CNR DCP 12.4686 5.6009 10.5319 4.5410 5.7326 9.2940 6.4906
KRM 11.7421 3.2639 15.0357 12.5265 12.6067 16.2957 7.2043
GPR 23.2975 9.6605 2.4574 7.4326 7.9742 10.4769 8.4515
AD 19.9636 5.6686 6.0246 5.5305 7.8502 24.1493 10.1965
Proposed 24.2256 7.8552 7.0805 6.5920 8.6664 25.3376 10.8092

VER DCP 0.0152 0.0012 0.0042 0.0893 0.2857 0.0573 0.0283
KRM 0.1870 0.7134 0.1583 0.3397 0.3486 0.3844 0.2925
GPR 0.0730 0.0171 0.0040 0.0674 0.4297 0.2078 0.0261
AD 0.2245 0.2340 0.0123 0.1578 0.5390 0.7825 0.2061
Proposed 0.2326 0.2390 0.0263 0.1609 0.5535 0.7899 0.2239

The proposed algorithm gives best results for Forest, N6 and Train images. The GPR algorithm

performs best for Wheat image. For Swan image, the proposed algorithm performs better than

the three methods DCP, GPR and AD.

4. The proposed algorithm gives better VER value than DCP, KRM, GPR and AD for images

Forest, Swan and N6. The KRM algorithm [158] performs better for other images. In case of

visible edges ratio, the proposed algorithm performs better than the three methods DCP, GPR

and AD for the images Wheat, Tomb, Ny17 and Train.

Based on the overall comparison of the results, the proposed algorithm is a good choice to restore the

foggy images. The computational time taken in the implementation of the proposed diffusion process

is compared with a Fourier domain-based algorithm [9]. On a single processor, the proposed algorithm



38

Table 2.6: Computational time (in seconds) obtained in Fourier domain and by the proposed
algorithm in spatial domain

Image Fourier domain [9] Proposed(Spatial)

Forest(256× 256) 2.986921 1.007776
Wheat(256× 256) 2.861586 1.012766
Tomb(256× 256) 2.936528 0.985334
Ny17(256× 256) 2.850443 1.010316
Swan(256× 256) 2.661488 0.896816
N6 (256× 256) 2.651796 0.895613
Train(256× 256) 2.980296 1.048273

takes less than half of the computational time taken by other algorithms (See Table 2.6). In the case

of multi-chip, the Fourier domain-based implementation may be a better choice. The computational

complexity of DCP method [57] is of order O(m7) [37]. This is mainly because of soft matting otherwise

without matting it is of O(m2). The complexity of the proposed algorithm Fr-AD is of order O(k ·m2)

on a m×m image with k number of iterations.

Figure 2.3 gives a qualitative representation of the results obtained with DCP, KRM, GPR and

the proposed algorithm. These qualitative results affirm that the restored images with the proposed

algorithm are visibly better than the other three existing algorithms. The results obtained with the

KRM algorithm [158] has a whiteness along the edges which is smooth in case of the results obtained

with the proposed algorithm. Hence, this apparently makes the proposed algorithm a better choice for

image restoration where the fog degrades the original images.

2.5 Conclusions

In this chapter, the issue of defogging of the digital images by using a fractional-order generalization

of the anisotropic diffusion is addressed. The quality of restored images in the proposed algorithm

depends on the diffused airlight map. The proposed algorithm diffuses airlight map visually better when
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Figure 2.3: The original foggy images are given in first column. Restored images with DCP
[58], KRM [158], GPR [44] and the proposed algorithm are shown in second, third, fourth and
fifth columns, respectively.
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Figure 2.4: The original foggy images are given in first column. Restored images with DCP
[58], KRM [158], GPR [44] and the proposed algorithm are shown in second, third, fourth and
fifth columns, respectively.
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compared to classical anisotropic diffusion. The proposed algorithm gives restored images better than

some of the benchmark algorithms based on different metrics. The computation of the fractional-order

derivatives in the proposed algorithm takes lower computational efforts when compared to a Fourier

domain-based implementation. In this chapter, five fixed values between [1, 2) are considered for

computing fractional-order derivatives. In the next chapter, the algorithm in this chapter is extended

to multichannel images with a regularization term to balance the inter-channel correlations.
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Chapter 3

Fractional order anisotropic diffusion

for defogging of RGB images

3.1 Introduction

This chapter proposes a new algorithm for removing fog from multichannel images. Here, we implement

the proposed algorithm on color(RGB) images having three channels. The fog in a scene is mostly due

to the attenuation and airlight map which decreases the quality of the image of the scene. In particular,

to enhance such images from the visual point of view, the proposed fractional-order anisotropic diffusion

algorithm includes a p-Laplace norm to remove the fog and a coupling term to model the inter-channel

correlations. The weights used in the coupling term stop the transmission of diffusion within the edges,

hence balances the inter-channel data in the overall diffusion procedure. Experimental results validate

the better performance of the proposed algorithm over some of the existing anisotropic diffusion-based

methods. The proposed algorithm is independent of the measure of fog in the images, thus images

with different amount of fog can be enhanced.

In the last two decades, anisotropic diffusion is a widely used technique in restoring the images [117,

152]. Anisotropic diffusion is associated with the energy-consuming procedure in which the energy

43
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functional is minimized. Consider the energy functional [165]

min
u
E(u) =

1

p

∫
Ω
g(|Dαu|p)dΩ (3.1)

Here, 1 ≤ p ≤ 2. Ω is the image support. The function g : [0,∞]→ R is a smooth increasing function

with g(|Dαu|) = 0 when |Dαu|= 0. In equation (5.6), umin is used to determine the image on the

compact support Ω so that the energy function E(u) has a minimum value. For p = 2 and α = 1,

equation (5.6) converts into the classical anisotropic diffusion scheme proposed by Perona and Malik

[117]. The resulting images of Perona and Malik anisotropic diffusion are over smoothed and disturbs

the position of edges. For p = 1, equation (5.6) is the classical Rudin, Osher, and Fatemi (ROF) [123]

model which maintains the sharpness of the edges, however, it gives the staircasing effect. Therefore,

to reduce the staircasing effect, appropriate values of p can be chosen. Thus considering the value

of p in the interval (1, 2) gives the diffusion in between the total variation and the more generic the

fourth-order anisotropic diffusion. An energy functional for the multispectral images was introduced

in [135]

min
u
E(I) =

∫
Ω
φ(|∇Ii|)dΩ + λ

N∑
j=1

∫
Ω

[(ωiDIj − ωjDIi)]2dΩ (3.2)

Zhang et al [171] introduced an inpainting model in which the p-Laplace operator was used. They

compared the physical attributes of the total variational model with p-Laplace operator and concluded

that the anisotropic diffusion with p-Laplace operator gives better results than the TV model [123].

The staircasing effect is also reduced, however, edges are preserved equivalently in both of the models.

In [29], the p-Laplace diffusion was introduced with nonlinear regularization depending on the gradient

and curvature of the image. In the existing literature, some diffusion equations with the p-Laplace op-

erator emerged which were based on the local operator of the image [36, 85, 98]. These local operators

were not so good to deal with the texture and the sharp details because the nature of the sharp details

is not local generally.

The fractional-order diffusion equations accommodate in between the first order TV models and the

models with the higher-order derivatives. The methods with exponent as fractional order have ap-

plications in many fields such as image inpainting [172], image denoising [34, 73, 118], enhancement
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of texture and other details [148, 149]. In addition, fractional-order derivatives have global property,

therefore they acquire not just the local property but the attributes of the whole function.

In the previous chapter, a fractional-order anisotropic diffusion algorithm for removing fog from gray

images is given. In that approach, each band/channel of the image have been diffused independently.

However, in this chapter, a regularization term is added to avoid the diffusion of different channels in

the recovered image. The weights in the coupling term stops the transmission of diffusion near edges.

This maintains the inter-channel correlations for color or multispectral images. The mathematical and

visual results show the efficiency of the proposed model irrespective of the amount of haze in outdoor

as well as indoor synthetic hazy images and naturally hazy images.

3.2 Proposed model

3.2.1 Diffusion PDE

Let I : Ω ⊂ R2 → R3 be a color (RGB) foggy image having three channels. Here, Ω is the domain of

the initial image I = (IR, IG, IB). The mathematical form of Perona-Malik anisotropic diffusion for

i = R,G,B and x ∈ Ω is

∂tI
i = div(g(|∇Ii|)∇Ii); Ii(x, 0) = Ii0(x). (3.3)

where, the rate of diffusion is controlled by the function g : R+∪0→ R+∪0 known as flux function and

I0 = (IR, IG, IB) is the initial degraded image. The channel-wise approach in Perona-Malik anisotropic

diffusion given in equation (3.3) overlooks the interchannel correlations occurring in the color images.

This leads to the diffused and blended bands in the final image. Therefore, a regularization term is

added to the right-hand side of the Perona-Malik diffusion equation to evade the diffusion of bands.

For which the coupled PDE is given as [135]

∂tI
i = div(g(|∇Ii|)∇Ii) + α

3∑
j=1

(ωi∆Ij − ωj∆Ii); i = 1, · · · , 3. (3.4)
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Figure 3.1: An illustration of the proposed algorithm

These weights are chosen in the adaptive manner as follows:

ωi = ∇ρIi0 = Gρ ∗ ∇I0
i (3.5)

where ∗ represents the convolution function and the Gaussian kernel Gρ = 1
2πρexp−(|x|2)/2ρ is used

to smooth the initial image. An interpretation of the proposed algorithm is shown in Figure 3.1.

3.2.2 Proposed model

The proposed fractional PDE for the anisotropic diffusion of color images is given as

∂tA
i = div(g(|∇αAi|p)∇αAi) + λ

3∑
j=1

(ωi∆αAj − ωj∆αAi), i = R,G,B (3.6)

together with initial condition Ai(Ω, 0) = Ai0(x, y) obtained from the ith channel of the initial airlight

map, and Ai denotes the diffused/filtered version of the ith channel of the airlight map. Here, initial

airlight map A0(x, y) is extracted from the foggy image I0(x, y) for each channel separately. A detailed

description about the relation between airlight map, foggy image and the recovered image has been

described in Chapter 2.

The energy functional for the equation (3.6) is given by

E(A) =
1

p

∫
Ω
φ(|DαAi|p)dΩ + λ

3∑
j=1

∫
Ω

[(ωiDαAj − ωjDαAi)]2dΩ, α, p ∈ [1, 2) (3.7)
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Here, g is an increasing function correlated with the diffusion coefficient function as

g(s2) =
f ′(s)

s2
. (3.8)

The adaptive factor p which depends on the local features of an image is defined as [29, 165]

p = 1 +
curvα

curvα + |DαAi|

and

curvα = divα
(

DαAi

|DαAi|

)
= (−1)α

(
Dα
x
∗
(

DαAi

|DαAi|

)
+ Dα

y
∗
(

DαAi

|DαAi|

))
where, Dα

x
∗ and Dα

y
∗ are adjoints of gradients Dα

x and Dα
y in x and y directions respectively. Now,

consider any test function ηi ∈ C∞(Ω) for each channel and then define a new function Φ(a) is defined

as

Φ(a) =
1

p

∫
Ω

(φ(|DαAi + aDαηi)|p+λ
3∑
j=1

(ωi(DαAj + aDαηj)− ωj(DαAi + aDαηi))2)dΩ. (3.9)

Then, the necessary condition to have an extremum gives

Φ′(a)|a=0 =

∫
Ω

(
φ′(|DαAi + aDαηi|p) Dα

xA
i + aDα

xη
i

|Dα
xA

i + aDα
xη

i|1−p
Dα
xη

i

)
dΩ|a=0

+

∫
Ω

(
φ′(|DαAi + aDαηi|p)

Dα
yA

i + aDα
y η

i

|Dα
yA

i + aDα
y η

i|1−p
Dα
y η

i

)
dΩ|a=0

+ 2λ
3∑
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(3.10)

After simplifying the above equation and putting a = 0, we get

Φ′(a)|a=0=

∫
Ω

[
(Dα

x)∗
(
c(|DαAi|2p) Dα

xA
i

|DαAi|1−2p

)
+ (Dα

y )∗
(
c(|DαAi|2p)

Dα
yA

i

|DαAi|1−2p

)]
ηidΩ+

3∑
j=1

2λ[ωi(DαAj)− ωj(DαAi)][ωi(Dα
xA

jDα
x
∗ + Dα

yA
jDα

y
∗)− ωj(Dα

xA
iDα

x
∗ + Dα

yA
iDα

y
∗)]ηidΩ

(3.11)

where, the function η(x, y) ∈ C∞(Ω). Also, Dα
x
∗ and Dα

y
∗ are the adjoint of functions Dα

x and Dα
y

respectively. Now, since the function η is arbitrary, we will have the Euler-Lagrange’s equations as
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follows

(Dα
x)∗
(
c(|DαAi|2p) Dα

xA
i

|DαAi|1−2p

)
+ (Dα

y )∗
(
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)
+
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x
∗ + Dα

yA
jDα

y
∗)− ωj(Dα
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iDα

x
∗ + Dα

yA
iDα

y
∗)] = 0

(3.12)

The Euler-Lagrange’s equations can be solved by using the gradient descent method and given as

∂tA
i = −(Dα

x)∗
(
c(|DαAi|2p) Dα

xA
i

|DαAi|1−2p

)
− (Dα

y )∗
(
c(|DαAi|2p)

Dα
yA

i

|Dαui|1−2p

)
−

3∑
j=1

2λ[ωi(
DαAj

DαAi
)− ωj(DαAi

DαAi
)][ωi(Dα
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jDα

x
∗ + Dα

yA
jDα

y
∗)− ωj(Dα

xA
iDα

x
∗ + Dα

yA
iDα

y
∗)]

(3.13)

An algorithmic implementation of the above procedure is summarized briefly in Algorithm 2. Here,

all the computational steps for implementing the proposed methodology are described from the view

of numerical computation.

Algorithm 2 Computational algorithm for fractional order anisotropic diffusion with p-Laplace
term

Step 1: Set input airlight map A0 as u0, k, ∆t and t = k∆t.
Step 2: Compute α -order fractional derivatives D̃α

xAn and D̃α
yAn using (2.3)

Step 3: Compute

hαx,y = (Dα
x)∗
(
c(|DαAi|2p) DαxA

i

|DαAi|1−2p

)
+ (Dα

y )∗
(
c(|DαAi|2p) DαyA

i

|DαAi|1−2p

)
Step 4: Compute sαx,y =

∑3
j=1 2λ[ωi(DαAj

DαAi
) − ωj(DαAi

DαAi
)][ωi(Dα

xA
jDα

x
∗ + Dα

yA
jDα

y
∗) −

ωj(Dα
xA

iDα
x
∗ + Dα

yA
iDα

y
∗)] as in (3.13)

Step 5: Compute gn = hαx,y + sαx,y
Step 6: Set iteration An+1 = An − gn ×∆t and set n = n+ 1; if n = k, stop; else go to 2)

3.2.3 Restoration and post-processing

After getting the diffused airlight map Ai(x, y) using the above algorithm, the final image can be

recovered as

Ii(x, y) =
(I0

i(x, y, i)−Ai(x, y))

(1− (Ai(x, y)/I∞(i)))
(3.14)

where i stands for the color channels. Since, the refined airlight map has lower contrast, therefore,

histogram stretching has been used to increase the contrast of the final image.
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3.3 Convergence analysis

The scheme defined in the Algorithm 2 converges independent of choice of the initial image, if the

energy function f(|∇αu|) defined in equation (3.7) is smooth and convex [135]. Also, if energy function

defined in equation (3.7) is smooth and convex, the diffusion PDE given in equation (3.13) will have

unique solution. From [167],the eigenvalues of the Hessian matrix of the energy function f(|∇αu|) can

be written as

λ1 =
f ′(|∇αI0|)
|∇αI0|

and λ2 = f ′′(|∇αI0|) (3.15)

This gives λ1 = c(.). Here, the value of λ1 is positive due to our choice of the function c(s2) = s−1,

since f ′(s) = s2.c(s2). To make the anisotropic diffusion problem as a well-posed, the value of second

eigenvalue of the hessian matrix is quite important. In this scheme, we have

λ2 =
d

ds
f ′(s) = f ′′(s) = 1 > 0

due to the choice of the edge preserving function c(s). This indicates that the Hessian matrix associated

with the integrand of energy function f is positive definite and hence the function is strictly convex.

In this case, the function f attains a unique global minima for any choice of initial image u0 = A(x, y)

which is the airlight map extracted from the degraded image.

3.4 Simulation and results

In this section, image restoration results are shown from numerical and visual perspectives. The

proposed algorithm is evaluated on seven indoor images having synthetic haze namely Cable, Playtable,

Kitchen, Door, Basin, Girl and Wall. The measure of fog is dense in all these images, however, the

proposed algorithm works well for all the cases. In our experimental study, we have implemented the

proposed algorithm using the fractional-order viz. α = 1.2, 1.4, 1.6 and 1.8. The proposed algorithm

is executed in the MatLab environment. To check the feasibility of the algorithm, the metrics like

Contrast gain, Visible edges ratio, Colorfulness index and Structural similarity are used for all of the
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Table 3.1: Contrast gain (CG) obtained with the proposed algorithm with different fractional
orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Cable 0.1452 0.1601 0.1949 0.2317 0.2363
PlayTable 0.1180 0.1192 0.1231 0.1285 0.1302
Kitchen 0.1225 0.1232 0.1247 0.1266 0.1271
Door 0.1376 0.1384 0.1393 0.1400 0.1401
Basin 0.1175 0.1174 0.1184 0.1196 0.1199
Girl 0.1222 0.1231 0.1250 0.1305 0.1337
Wall 0.1752 0.1764 0.1787 0.1850 0.1881

Table 3.2: Visible edges ratio (VER) obtained with the proposed algorithm with different frac-
tional orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Cable 0.0057 0.0278 0.0437 0.0933 0.0789
PlayTable 0.0704 0.0704 0.0812 0.0923 0.0812
Kitchen 0.2824 0.2907 0.2865 0.2907 0.2948
Door 0.0867 0.0923 0.0979 0.0867 0.0867
Basin 0.8279 0.8333 0.8333 0.9038 0.8333
Girl 0.2004 0.2042 0.2042 0.2042 0.2008
Wall 0.4206 0.4308 0.4264 0.4219 0.4219

images with different fractional orders. The stopping criteria is chosen as 30 iterations in this study

as no significant diffusion is noticed after the 30 iterations. Table 3.1 shows the numerical results for

the metric Contrast gain. The contrast gain should be higher for the recovered images as compared to

the foggy image. In the case of all these images, contrast gain (CG) is increasing with the fractional

orders as compared to the integer-order. Also, maximum CG is obtained with the fractional order 1.8.

The numerical results for the metric Visible edges ratio (VER) are shown in Table 3.2. The maximum

VER for images Cable, Playtable and Basin is obtained at fractional-order 1.6. For Wall image, the

maximum VER value is found at fractional-order 1.2. However, the fractional-order VER values are
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Table 3.3: Colorfulness index (CI) obtained with the proposed algorithm with different fractional
orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Cable 0.3017 0.3704 0.4769 0.5477 0.5329
PlayTable 1.1837 1.1956 1.2399 1.3171 1.6053
Kitchen 0.7750 0.7884 0.8500 0.9415 0.9649
Door 0.5865 0.5938 0.6122 0.6289 0.6323
Basin 0.2332 0.2637 0.3732 0.4061 0.5968
Girl 0.2933 0.3026 0.3348 0.4237 0.4936
Wall 0.8439 0.8657 0.9734 1.4365 1.7743

better than the integer-order in other images also. Similar results are obtained in the case of metric

Colorfulness index. Table 3.3 lists the values of CI at different fractional orders in case of all these

images. It can be noted that the fractional-order gives better results as compared to the integer-order

for all of the images.

To test the importance of the fractional orders-based diffusion and additional cross-channel term, a

comparison study is listed in Table 3.4. In this table, the results obtained with the proposed algorithm

are compared with the following four algorithms:

1. Dark channel prior (DCP) [57].

2. Fractional order anisotropic diffusion without p-Laplace term and without cross channel diffusion

(FrAD) [111].

3. Integer order anisotropic diffusion with cross channel term (ADC) as proposed in [135].

4. Fractional order anisotropic diffusion with p-Laplace norm (FrADP).

DCP performs better for Door image in case of metrics CG and VER. It can be seen that the proposed

algorithm performs better than the above listed four algorithms in case of the other three comparison

metrics. Hence, the inclusion of cross channel term with fractional order gradients is effective to remove

fog from color images. Figure 3.2 and figure 3.3 shows the visual results of the considered images. The
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Table 3.4: Comparison of the results obtained with existing algorithms DCP [57], FrAD [111],
ADC [135], FrADP and the proposed algorithm

Metric Algorithm Cable Playtable Kitchen Door Basin Girl Wall
CG DCP 0.0549 0.0898 0.0884 0.1556 0.0382 0.0935 0.0837

FrAD 0.1790 0.1160 0.0987 0.1310 0.1022 0.1173 0.1427
ADC 0.1499 0.1081 0.0772 0.1121 0.0844 0.0889 0.1054
FrADP 0.1845 0.1275 0.1260 0.1363 0.1175 0.1279 0.1767
Proposed 0.2363 0.1302 0.1271 0.1401 0.1199 0.1337 0.1881

VER DCP 0.0209 0.0306 0.2751 0.1322 0.2035 0.0422 0.2177
FrAD 0.0521 0.0571 0.1684 0.0130 0.8514 0.0199 0.2323
ADC 0.0555 0.0916 0.2237 0.0874 0.9028 0.0277 0.2788
FrADP 0.0825 0.0836 0.2419 0.0821 0.8608 0.2005 0.2366
Proposed 0.0933 0.0923 0.2948 0.0979 0.9038 0.2042 0.4308

CI DCP 0.2436 0.2334 0.0991 0.0987 0.0891 0.1470 0.0719
FrAD 0.3394 1.5538 0.6799 0.5551 0.4673 0.4363 1.1878
ADC 0.4489 0.5579 0.2177 0.2861 0.2281 0.2012 0.2766
FrADP 0.4262 1.5352 0.7976 0.6255 0.2903 0.3775 0.8546
Proposed 0.5477 1.6053 0.9649 0.6323 0.5968 0.4936 1.7743

first column shows the initially foggy image, the second column shows the recovered images using DCP

[57], third and fourth columns show the images obtained using FrAD [111] and ADC [135] respectively.

The fifth and sixth columns show the recovered images using FrADP and the proposed algorithm

respectively and the last column is the ground truth images of the considered foggy images. For the

30 iterations, we get the optimum visual and quantitative results with each fractional order on all of

the images. It can be clearly seen in the qualitatively results that the images recovered with method

ADC [135] are overly enhanced. This can be observed as there is much difference in the recovered

image as compared to the ground truth image. This is not a case with the proposed algorithm. Also,

the defoggy images using the proposed algorithm are very much similar to the respective ground truth

images. Thus the proposed algorithm has better defogging results than the other techniques.

The proposed algorithm is performed on the outdoor images also. Considered images are Forest,

Wheat, Tomb, Ny17, Swan, N6 and Train. Table 3.5 shows the results for the metric Contrast gain

(CG) with different fractional orders in range [1, 2). It can be seen from Table 3.5 that the CG value
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Figure 3.2: The original foggy images are given in first column. Restored images with DCP
[57], FrAD [111], ADC [135], FrADP and the proposed algorithm are shown in second, third,
fourth, fifth and sixth columns, respectively. The last column shows the ground truth images.



54

Figure 3.3: The original foggy images are given in first column. Restored images with DCP
[57], FrAD [111], ADC [135], FrADP and the proposed algorithm are shown in second, third,
fourth, fifth and sixth columns, respectively. The last column shows the ground truth images.
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Table 3.5: Contrast gain (CG) obtained with the proposed algorithm with different fractional
orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.1964 0.1971 0.1984 0.2005 0.2013
Wheat 0.1327 0.1333 0.1354 0.1378 0.1380
Tomb 0.1554 0.1558 0.1563 0.1596 0.1606
Ny17 0.1640 0.1648 0.1674 0.1728 0.1735
Swan 0.0894 0.0899 0.0915 0.0943 0.0950
N6 0.0819 0.0825 0.0841 0.0876 0.0826
Train 0.1139 0.1240 0.1232 0.1275 0.1394

Table 3.6: Visible edges ratio (VER) obtained with the proposed algorithm with different frac-
tional orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.7257 0.8431 0.8171 0.7748 0.8085
Wheat 0.7953 0.8871 0.8571 0.8958 0.8915
Tomb 0.2654 0.3194 0.3457 0.3767 0.4143
Ny17 0.1448 0.1495 0.1541 0.1606 0.1730
Swan 0.5623 0.5697 0.5774 0.5799 0.5848
N6 0.7925 0.7980 0.7980 0.8016 0.7995
Train 0.2031 0.2314 0.2290 0.2694 0.2928

Table 3.7: Colorfulness index (CI) obtained with the proposed algorithm with different fractional
orders α with 30 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8

Forest 0.1284 0.1298 0.1321 0.1353 0.1473
Wheat 0.1918 0.1931 0.1966 0.2023 0.2034
Tomb 0.4265 0.4270 0.4287 0.4322 0.4336
Ny17 0.4110 0.4164 0.6061 0.7092 0.9625
Swan 0.2766 0.2834 0.3566 0.5369 0.3274
N6 0.1762 0.1765 0.1786 0.1808 0.1813
Train 0.3783 0.3820 0.4083 0.4972 0.6042
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Table 3.8: Comparison of the results obtained with existing algorithms DCP [57], FrAD [111],
ADC [135], FrADP and the proposed algorithm

Metric Algorithm Forest Wheat Tomb Ny17 Swan N6 Train
CG DCP 0.0567 0.1628 0.0635 0.1989 0.1836 0.5418 0.3223

FrAD 0.1086 0.0856 0.0897 0.1352 0.0754 0.0735 0.1069
ADC 0.1059 0.0869 0.0677 0.1063 0.0569 0.0834 0.1234
FrADP 0.1094 0.1055 0.0929 0.1733 0.0908 0.0846 0.1074
Proposed 0.2013 0.1380 0.1606 0.1735 0.0950 0.0876 0.1394

VER DCP 0.0152 0.0012 0.0042 0.0893 0.2857 0.0573 0.0283
FrAD 0.2326 0.2390 0.0263 0.1609 0.5535 0.7899 0.2239
ADC 0.0566 0.1568 0.1818 0.0399 0.3604 0.3344 0.2239
FrADP 0.2686 0.5569 0.0570 0.1718 0.5643 0.7693 0.2756
Proposed 0.8431 0.8958 0.4143 0.1730 0.5848 0.8016 0.2928

CI DCP 0.1529 0.1470 0.1156 0.1029 0.0965 0.0774 0.0780
FrAD 0.1192 0.0907 0.1352 0.4142 0.2419 0.1651 0.2945
ADC 0.0382 0.0346 0.0507 0.0944 0.0326 0.0235 0.0493
FrADP 0.1360 0.1967 0.2018 0.5259 0.1396 0.1728 0.3387
Proposed 0.1473 0.2034 0.4336 0.9625 0.5369 0.1813 0.6042

is increasing with the fractional order and the best CG value is obtained at fractional-order 1.8 for

images Forest, Wheat, Tomb, Ny17, Swan and Train. For N6 image, the best CG value is obtained at

fractional-order 1.6. Table 3.6 and 3.7 shows the results for metrics VER and CI respectively. In tables

3.6 and 3.7, the fractional-order are giving the better values than the integer-order (α = 1).

Table 3.8 shows the results of the proposed algorithm compared with the methods DCP, FrAD, ADC

and FrADP. For Forest and Tomb images, the proposed algorithm performs best in case of metric CG.

DCP performs best for the rest of the images. Also, the proposed algorithm performs better than the

methods FrAD, ADC and FrADP for all of the images. For metric VER, the proposed algorithm results

are better than the results of compared methods. In the case of metric CI, the proposed algorithm

results are best than the compared algorithms for all of the considered images except for Forest image.

The visual results for outdoor hazy images are shown in Figure 3.4 and Figure 3.5.

Table 3.9 and Table 3.10 shows the computational time in seconds of existing algorithms DCP
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Figure 3.4: The original foggy images are given in first column. Restored images with DCP
[57], FrAD [111], ADC [135], FrADP and the proposed algorithm are shown in second, third,
fourth, fifth and last columns, respectively.
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Figure 3.5: The original foggy images are given in first column. Restored images with DCP
[57], FrAD [111], ADC [135], FrADP and the proposed algorithm are shown in second, third,
fourth, fifth and last columns, respectively.
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Table 3.9: Computational time (in seconds) comparison of the existing algorithms DCP [57],
FrAD [111], ADC [135], FrADP and the proposed algorithm for synthetic haze indoor images

Image DCP FrAD ADC FrADP Proposed

Cable 71.867973 2.332974 19.032299 9.618144 37.463209
Playtable 66.137749 2.357865 18.617090 9.784842 35.942652
Kitchen 60.204942 2.382506 17.098123 9.246703 35.749047
Door 63.389802 3.474613 19.682674 9.951501 40.638893
Basin 60.680395 2.332210 20.391771 10.767846 38.140616
Girl 61.929150 4.124971 14.175003 8.688140 39.909420
Wall 58.545615 3.341451 14.485783 8.500389 39.428176

Table 3.10: Computational time (in seconds) comparison of the existing algorithms DCP [57],
FrAD [111], ADC [135], FrADP and the proposed algorithm for outdoor images

Image DCP FrAD ADC FrADP Proposed

Forest 75.576042 1.007776 12.534592 9.223176 37.178636
Wheat 44.813626 1.012766 12.290939 8.385562 32.290020
Tomb 37.371847 0.985334 11.872720 9.641324 28.711996
Ny17 35.727895 1.010316 12.489287 9.884836 29.023324
Swan 39.964103 0.896816 16.719809 9.170654 28.097046
N6 45.174675 0.895613 16.068072 8.437273 36.457866
Train 44.261135 1.048273 13.414152 8.553134 31.833540

[57], FrAD [111], ADC [135], FrADP and the proposed algorithm for synthetic indoor hazy images

and outdoor hazy images respectively. It can be seen from Table 3.9 and Table 3.10 that the DCP

scheme takes longer computational time than all the algorithms. However, the proposed algorithm

takes more time than FrAD, ADC and FrADP methods which is mainly because of the additional

cross channel term and the p-Laplace norm. The computational complexity of DCP [57] is reported of

order O(m7) as per the source [37]. This is mainly because of soft matting otherwise without matting

it is of O(m2). The complexity of algorithms FrAD [111], ADC [135], FrADP and the proposed one is

of order O(k ·m2) on a m×m image with k number of iterations. We have also checked the efficiency of
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Table 3.11: Comparison of quantitative results of the proposed algorithm using metric SSIM
with existing methods DCP [57], FrAD [111], ADC [135] and FrADP

Image DCP FrAD ADC FrADP Proposed

Building 0.8200 0.6716 0.8452 0.7949 0.9153
Lady 0.6807 0.7448 0.8132 0.7563 0.8509
Light 0.8496 0.7378 0.8795 0.8152 0.9009
Pond 0.6957 0.6015 0.7424 0.7236 0.8012
Street 0.6479 0.7268 0.7830 0.7651 0.8329

the proposed algorithm using metric structural similarity (SSIM). Considered images Building, Lady,

Light, Pond and Street are from SOTS [93] dataset, where outdoor hazy images and their respective

ground truth images are available. Table 3.11 shows the quantitative results for the SSIM metric.

Figure 3.6 shows the visual results of these outdoor hazy images. It can be seen from the quantitative

results that the SSIM value is near to 1 for the proposed scheme and better than the other methods.

Also, we can see from the visual results that the image recovered using the proposed algorithm is quite

good.

3.5 Conclusions

A fractional-order method with p-Laplace anisotropic diffusion for the color (RGB) images are being

presented. It has been found that the factor p controls the diffusion of intensities and the direction also.

The fractional-order generalization of the derivatives gives a flexibility in order to get a better-recovered

image when compared to its integer-order counterpart (α = 1). Moreover, the obtained results clearly

show the importance of the additional cross channel term. Hence, the proposed algorithm is better

than the existing algorithms when the input images have more than one channel.
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Figure 3.6: (a) Hazy images; Dehazing results of (b) DCP; (c) FrAD; (d) ADC; (e) FrADP; (f)
the proposed algorithm; (g) ground truth images
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Chapter 4

Image denoising in fractional

quaternion wavelet transform domain

4.1 Introduction

In the previous two chapters, the image defogging based restoration algorithms were discussed. This

chapter presents an image denoising algorithm using fractional quaternion wavelet transform(FrQWT).

In particular, images corrupted with additive Gaussian noise are considered and FrQWT is performed

via hard and semi-soft thresholds. The thresholding on the wavelet coefficients reveals the capabilities

of wavelet transform in the restoration of an image degraded by the additive noise. FrQWT is simple

and adaptive since the estimation of threshold parameters depends on the data of wavelet coefficients.

Wavelet analysis is a popular tool to deal with image analysis for the last three decades. In image/signal

analysis, Gabor functions were used extensively as filters. Gabor filters are bounded and well described

using a general window function. This important aspect proposed a way to the introduction of win-

dowed Fourier transform [52]. It opened the scope for the development of the wavelet analysis [35, 53].

Simultaneous analysis of time-frequency details and property of multiresolution analysis have proved

wavelet transform as a breakthrough as a mathematical tool [21, 104]. In recent years, wavelet analysis
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is coming out as one of the biggest important tools in signal analysis, pattern recognition, image pro-

cessing, and other fields [108]. Wavelet transform breaks down an image into different frequency and

space sub-images, and the coefficients of these sub-images are then processed. The complex discrete

wavelet transform(CDWT) is a generalization of real-valued wavelet transform [83, 97]. The dual-tree

complex wavelet transform or in short ‘CDWT’ was proposed by Kingsbury [82, 84]. The magnitudes

of the transform coefficients found to be shift-invariant as real and imaginary parts of CDWT make an

Hilbert-pair. The CDWT is then extended to quaternion wavelet transform (QWT) by various authors

employing a quaternionic Haar kernel to overcome the low directional selectivity of CDWT [20, 164].

Soulard and Carr have proposed an effective method for texture distribution which uses coherent multi-

scale analysis derived from the phase data and magnitude information of the QWT [134]. In [25], a

multi-scale flow estimation algorithm was given for finding the disparity maps of between frames from

a video sequence [26]. Kumar et al. [87] proposed a new algorithm for the implementation of the

FrQWT using a dual-tree computation structure. The definition of their FrQWT was based on the 2D

Fourier spectrum up to a single quadrant and fractional Hilbert operator.

The thresholding based methods in addition to the wavelet transforms are the most studied methods

for image denoising. The thresholding technique filters the coefficients below a particular threshold

and remaining coefficients are unchanged. In literature, there are several adaptive and non-adaptive

thresholding based techniques [32, 39, 41, 130]. There have been two types of methods for modeling

the wavelet coefficients i.e. deterministic and statistical. The deterministic approach based methods

use tree structure of the wavelet coefficients, however, statistical approach based methods makes use

of correlation of wavelet coefficients at different scales. The Independent Component Analysis (ICA)

technique de-noises images having noise of Gaussian as well as non-Gaussian distribution. This scheme

has higher computational complexity when compared to wavelet transforms [64].

In this chapter, fractional quaternion wavelet transform (FrQWT) is proposed. The fractional wavelet

transform (FrWT) is defined as a generalization of the wavelet transform in the fractional Fourier

domain. The rotation by an arbitrary angle in the time-frequency plane, fractional wavelet transform
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(FrWT) uniquely illustrates the information of time as well as of frequency domain. However, the

wavelet transform has a multiresolution property. To be specific, FrQWT is a combination of frac-

tional domain and quaternion wavelet transform consisting of four quadratures (one real and three

imaginary components). The quadratures are organized to obtain in a 2D analytic wavelet and its

resulting FrQWT bases. A detailed experimental study is given for utility of the proposed approach.

4.2 Preliminaries

4.2.1 Discrete wavelet transform

Wavelet transform [108] can be defined as the decomposition of a signal with a family of real orthonor-

mal bases. The basis elements are formed by doing shifting of scaling function φ(x) together with scaling

and shifting of the wavelet functions ψ(x). Mathematically, the functions φj0,n(x) = 2
j0
2 φ(2j0x − n)

and ψj,n(x) = 2
j
2ψ(2jx− n) , j ≥ j0, n ∈ Z form an orthonormal basis and because of the orthonormal

property, we can express any signal f(x) ∈ L2(R) as

f(x) =
∑
n

cj0,nφj0,n(x) +
∑
j=j0

∑
n

dj,nψj,n(x) (4.1)

where,

cj0,n = 〈f, φj0〉 =
∑
x

f(x)φj0,n(x)

and

dj,n = 〈f, ψj〉 =
∑
x

f(x)ψj,n(x)

Hence, the transformed signal can be seen as a combination of the translation and the scale parameters.

The function ψ(j) is known as mother wavelet. The mother wavelet is defined as a small wave that

points out to window function and has compact support. The smaller wavelet coefficients usually

represent the noise in the image as opposed to the coefficients with a larger magnitude value which

contains more signal information than noise. By removing the noisy(smaller) coefficients and taking
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the inverse wavelet transform may head towards a reconstruction that has a reduced amount of noise.

Figure 4.1 illustrates this concept of noise removal in the DWT domain.

Figure 4.1: Wavelet based denoising: (a) Noisy image; (b) DWT of Noisy image; (c) Coefficients
after thresholding; (d) Image after denoising

4.2.2 Complex wavelet transform(CWT)

The complex wavelet transform(CWT) was introduced to overcome few limitations of DWT [12]. One

of the such drawbacks was the lack of phase information in case of real mother wavelet function.

The CWT uses complex valued filtering that disintegrates the 2-D signal into real and imaginary

components in the frequency domain. Basically, the real and imaginary components from the wavelet

coefficients are used to calculate the magnitude information and phase angle. Like the case of Fourier

representation, a mother wavelet for the CWT can be expressed as

ψc(x) = ψReal(x) + iψImag(x)

where, ψReal(x) and ψImag(x) are even and odd functions, respectively, and constitute an orthogonal

set of functions by using Hilbert transform.
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4.2.3 Quaternion wavelet transform (QWT)

The complex wavelet transform gives information about magnitude and one phase only. Thus, it

has low directional selectivity. The complex wavelet transforms are extended to quaternion wavelet

transform by using a quaternionic Haar kernel. QWT is derived from the Hilbert 2-D transform

theory, which comes close to shift invariance and removes the mentioned limitations of low directional

selectivity of CWT. A standard DWT tensor product is used to form each quaternion wavelet, together

with 1-D Hilbert transform based 1-D wavelets [24]. To be specific, the following procedure explains

the implementation of QWT.

1. Calculate Hx, Hy and Hxy on the real tensor product wavelets as follows:

Hx{ψh(x)ψh(y)} = ψg(x)ψh(y) (4.2)

Hy{ψh(x)ψh(y)} = ψh(x)ψg(y) (4.3)

HyHx{ψh(x)ψh(y)} = ψg(x)ψg(y) (4.4)

where, Hx and Hy denotes the 1-D Hilbert transform operators along the x and y coordinates,

respectively.

2. The above four wavelet components are organized in order to get a quaternion wavelet as follows

ψq(x, y) = ψh(x)ψh(y)− iψg(x)ψh(y)− jψh(x)ψg(y) + kψg(x)ψg(y) (4.5)

In general, the original image is assumed to be degraded by the presence of white Gaussian noise

having zero mean. The linearity of the QWT, the additive model of the noise remains invariant in

QWT domain also [75]. hence, the noise can be filtered out for achieving the denoising, i.e.,

wk,l(x, y) = fk,l(x, y) + ηk,l(x, y)

where, wk,l(x, y) represents noisy QWT coefficients, while fk,l(x, y) represents noise-free coefficients in

the transform domain. The term ηk,l(x, y) represents the noise components of scale k and orientation

l in the noisy image.
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4.3 FrQWT-based denoising approach

4.3.1 Definition and construction

FrQWT is defined in a similar fashion as QWT [87]. Here, we make use of fractional Hilbert operator in

place of the classical Hilbert operator to generalize the QWT in the FrQWT. The fractional quaternion

wavelet is defined as

ψH(x, y) = fH(x, y) + ifH1(x, y) + jfH2(x, y) + kfH3(x, y) (4.6)

where, the fractional wavelet components fH1(x, y) and fH2(x, y) are given as

fH(x, y) = ψh(x)φh(y)

fH1(x, y) = Hx,τ1{ψh(x)φh(y)} = cos(πτ1)ψh(x)φh(y)− sin(πτ1)ψg(x)φh(y)

fH2(x, y) = Hy,τ2{ψh(x)φh(y)} = cos(πτ2)ψh(x)φh(y)− sin(πτ2)ψh(x)φg(y)

similarly, the texture detail part fH3(x, y) is given as

fH3(x, y) = Hy,τ2Hx,τ1{ψh(x)φh(y)}

where, one-dimensional dual tree CDWT is used to compute each wavelet component. In order to derive

a fractional quaternion wavelet basis along a horizontal sub-bannd, the four wavelet components can

be utilized as given in the theory of the quaternion algebra. Similarly, the expressions for the other two

sub-bands, i.e. vertical sub-band φh(x)ψh(y) and diagonal sub-band ψh(x)ψh(y) can also be obtained

using tensor product.

A 2D implementation of dual-tree filter bank is used separately for computing the FrQWT coeffi-

cients. The details about the filter bank implementation can be found in [87]. Finally, the 2D fractional

quaternionic analytic signal of a real-valued signal f(x, y) is given as

fαA(x, y) = fH(x, y) + ifH1(x, y) + jfH2(x, y) + kfH3(x, y), (4.7)

where, the functions fH1(x, y), fH2(x, y) and fH3(x, y) are the wavelet tensor product components for

a horizontal sub-bands.
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4.3.2 Image denoising

The FrQWT provides three phases, two of which gives local displacement while the third contains the

texture information. Here, we are using thresholding on the FrQWT coefficients to remove the noise.

In addition to this, we are also using phase regularization on thresholded coefficients to further denoise

the image.

4.3.2.1 Thresholding

In general, the process of thresholding can be considered as a simple non-linear filtering operates at

one wavelet coefficient at a time [71]. Basically, thresholding is performed by comparing a coefficient

against a threshold value. In particular, it works like a high-pass filtering, i.e., if the coefficient is

smaller than the threshold, it is set to zero; otherwise kept as it is or modified. This replacement of

the small noisy coefficients by zero and inverse wavelet transform on the resulting coefficients may give

a reconstruction with the important signal properties with reduced noise. We use the two types of

thresholding mechanisms: hard and semi-soft thresholding. The hard thresholding can be achieved as
w, |w|> λ;

0, Otherwise.

The semi-soft thresholding is performed based on the following criteria:

D(w, λ) = [sgn(w)].max{0, |w|−λ}

A hard threshold can be seen as an eliminating or no-change strategy. It is more intuitively appealing.

On the other hand, semi-soft thresholding [39] use to shorten the coefficients by an amount of the

threshold, those are having absolute values above the threshold λ. In general, hard thresholding seems

like a filtering and more appealing naturally. However, the dependency on the threshold makes it a not

preferable choice. For example, a small threshold may generate a result close to the input value, but

the noise may still be present in the signal/image. The choice of a large threshold results in the loss of

texture details from the image. Figure 4.2 illustrates a flowchart of the proposed denoising scheme.
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Figure 4.2: Flowchart for denoising using FrQWT

4.3.2.2 Phase regularization

The thresholding use to be done only on the magnitude of the FrQWT coefficients. We need to perform

some regularization on the phases of the transform to utilize the information encoded with them. We

know that the three-phase angles obtained with FrQWT are separable. The shift information is encoded

with the first two phases, while the third one conceals the textural details. The first two phases found

to be shift-invariant in the QWT domain [20]. This shift theorem also holds for FrQWT domain,

especially for a local QFT analysis. Consider a small shift τ = (τ1, τ2) which translate a 2-D signal

I(x, y) to I(x− τ1, y − τ2). In the transformed domain, the following variations occur in transformed

signals.

(θ1(µ), θ2(µ), θ3(µ))→(θ1(µ)− 2πµτ1, θ2(µ)− 2πµτ2, θ3(µ))
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where, θi for i = 1, 2, 3 represents the three-phase angels of the quaternion transform in the wavelet

domain. It can be noticed down that, there is no change in the third phase angle, while the first two

phases follow the shift-invariant property. Therefore, we need to implement a regularization process

on the third phase angle to achieve the smoothness. The choice of such a regularizer becomes a typical

first-order regularizer R(θ3) = Cθ3, where C is taken as a finite matrix. One of the obvious choice of

such a matrix is the median filter [75]. This particular choice of regularizer, enforce spatial smoothness

in the transformed coefficients, which is required after the thresholding based removal of the noise from

the images. Hence, the transformed signal can be represented in the polar form with the following

expression:

wk,l(x, y) = (|wk,l(x, y)|T )eiθ1ejθ2ekCθ3

Here, the regularization of the third phase angle together with a thresholding on the magnitude of

fractional quaternion wavelet coefficients result into a perfect technique for image denoising. Moreover,

by using median filter as the regularization matrix C, smoothness of the resulting image is guaranteed.

4.4 Experiment results

A detailed experimental analysis has been carried out with eight different images. All the images were

taken of the same size and Gaussian noise with zero mean and variance of amount 0.006 and 0.01

were added to the images. We have applied a single threshold value for all the images for a particular

variance. In that context, the hard threshold value of 0.03 and 0.0001 is used for variances 0.006 and

0.01 respectively. The set of original images and the noisy images after adding the Gaussian noise are

illustrated in figure 4.3 and 4.4. The images are chosen in such a way that they are different in terms of

feature/texture details. The results obtained with the proposed (FrQWT based) approach were com-

pared with DWT(having Daubechies mother wavelet function), CDWT and QWT. The thresholding

of frequency coefficients was performed based on the semi-soft and hard thresholds strategy. PSNR

and MSE are the two measures that are used to carry out comparative analysis. The results in the
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Image Noisy DWT CWT QWT FrQWT
Cameraman 22.3843 26.7851 26.6109 28.1256 29.7794

25.9638 26.7090 28.1850 29.7973
Einstein 22.2130 27.4505 27.7502 28.3116 28.7984

26.9309 27.8547 28.3586 28.8033
House 22.2874 24.7965 26.9070 27.2739 29.1260

23.8104 26.7021 27.2512 29.1213
Campus 22.3456 25.6071 26.4631 27.5628 28.2301

24.8875 26.5900 27.3458 28.2575
MainBuilding 22.3144 25.3257 26.5237 25.6330 27.8118

24.9469 26.5612 25.9501 27.6499
Bridge 22.3679 25.2909 27.1314 26.4175 29.9000

24.3904 27.1464 26.6740 29.8958
Tower 22.1821 26.8065 27.6546 27.8078 28.3646

26.1604 27.9374 28.1626 28.3725
GoldenGate 22.2581 24.5673 26.2799 26.7928 29.0596

23.9423 26.7669 26.8157 29.0206

Table 4.1: PSNR values after denoising with different wavelets and in case of the proposed
algorithm (last column). The noisy image are created by adding Gaussian noise with variance
0.006. The two rows for each image shown the results against hard and semi-soft thresholding.

case of low variance (σ2 = 0.006) have been listed in Table 4.1. The first column describes the image,

while the second column gives the PSNR value between the original (ground truth) and their respective

noisy images. Denoising aims to increase this PSNR between the restored and original images. The

third, fourth and fifth columns represent the PSNR values between restored and original images. In

the case of the cameraman image, the performance of FrQWT was found better than other variants

of wavelet. The QWT stood second and then DWT and CDWT. However, in the rest of the images,

the performance in the increasing order can be seen as DWT, CDWT, QWT, and FrQWT. Hence

the proposed approach performed better than other schemes. In the case of Bridge and Golden-gate,

FrQWT performance is quite better than the rest. In general, a gain of PSNR about 7 units was

noticed when compared to the noisy image. The other observation can be noticed that in most of the

images, semi-soft thresholding done a better work when compared to the hard thresholding. In the

second set of images with the noise of variance 0.01, the performance of FrQWT is found better than

DWT, CDWT, and QWT in the case of all the images. The results for the same have been listed in

Table 4.2. Figure 4.5 illustrated the restored images for this set of experiments. Again, the semi-soft

scheme of thresholding performed marginally better than the hard thresholding. The PSNR gain in
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Image Noisy DWT CWT QWT FrQWT
Cameraman 20.2083 26.5807 24.6276 26.4996 29.9626

27.0448 24.9378 26.5828 29.9379
Einstein 20.0239 27.5598 25.8454 26.7576 29.0172

27.9640 25.6505 26.6252 29.0055
House 20.0822 24.7817 25.1730 25.9344 29.3464

25.3782 25.0366 26.0179 29.3203
Campus 20.4255 26.4372 23.7162 26.3957 28.5502

26.8713 24.5872 26.4811 28.5026
MainBuilding 20.2552 25.4101 23.8689 24.7237 27.8738

26.3103 24.3575 24.3521 27.8403
Bridge 20.2509 25.2627 24.8958 25.7182 30.0223

26.0559 25.3037 25.4567 30.0299
Tower 20.0127 27.3957 26.2044 26.3615 28.5953

27.3530 25.9454 26.4315 28.5740
GoldenGate 20.0323 24.7322 25.0534 25.4248 33.6949

25.1707 24.6031 25.3487 33.6891

Table 4.2: PSNR values after denoising with different wavelets and in case of the proposed
algorithm (last column). The noisy image are created by adding Gaussian noise with variance
0.01. The two rows for each image show the results against hard and semi-soft thresholding.

this set of experiments was found of the order of approximately 8.0 to 13.0, and we obtained almost

the same or better PSNR as it was found in the case of earlier experiment. In an explicit comparison

with QWT [164], gains of 2-4 decibels in PSNR are achieved which can be considered as a good sign of

improvement. In figure 4.6, the different noises are used such as salt and pepper noise, additive white

Gaussian noise of variance 0.01 and speckle noise of variance 0.04 respectively. Hence, the addition of

an increased amount of the noise does not degrade the performance of FrQWT based denoising.

4.5 Conclusions

In this chapter, removal of noise from the images has been done in the fractional quaternion wavelet

transform domain. From the experimental results, it has been observed that better denoising results

are obtained in the FrQWT domain when compared to earlier existing techniques. Further, it has been

found that the choice of hard or semi-soft thresholding depends on the image. In a few of the images,

the semi-soft threshold performs marginally better than a hard threshold. However, in a few cases, it

was found that the choice of hard threshold is better. In the next chapter, we make use of anisotropic

diffusion and wavelet transform together for image denoising.
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Figure 4.3: Ground truth images used in experimental study

Figure 4.4: Noisy images used in experimental study
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Figure 4.5: Recovered images after performing FrQWT on noisy images

Figure 4.6: Recovered images after performing FrQWT on images with different types of noise
and variance
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Chapter 5

Generalized order anisotropic diffusion

model for image denoising using

wavelet based subspace decomposition

5.1 Introduction

In this chapter, an improved context-adaptive fractional order anisotropic diffusion (FOAD) model for

image denoising is presented. The proposed FOAD model includes an improved version of Perona-

Malik diffusion coefficient. A fractional order derivative is applied to reduce the staircasing effect

and to preserve the fine characteristics, whereas, the improved diffusion coefficient protects edges and

corners from getting over-smoothed. Discrete wavelet transform is used to decompose the image into

low frequency parts, those are further enhanced using diffusion process.

The existing denoising algorithms are lacking in absolute perseverance of the sharp details of the image.

However, partial differential equations (PDEs) based methods are capable to preserve fine details in

the smoothing process up to some extent. Witkin introduced the scale space representation [156],

based on which Perona-Malik [117] and Rudin-Osher-Fatemi [123] introduced nonlinear PDEs in the

77
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image restoration process. Perona-Malik [117] introduced the non-linear operator in order to remove

the noise and to preserve the edges. However, in case of noisy signal with white noise, the noise inserts

the large oscillations of the gradient of the image. There is no stopping criteria of diffusitivity in the

case of nonlinear PDEs based methods. Weickert et al. [151] introduced an operator based on the

local variations of the gradient orientation. Considering the viewpoint of robust statistics, Black et

al. [18] suggested another diffusivity function using Tukeys Biweight concept. This diffusion process

could preserve sharp boundaries and better continuity of edges.

In literature, subspace decomposition based techniques are also used for image enhancement [175], since

there is different importance for the low frequency and high frequency components of an image. These

techniques also accelerate the solution of PDEs on parallel machines. Pu et al. [119] has shown that

methods based on fractional differential preserves low-frequency contour features in smooth regions.

They also proved that fractional differentiation retains high-frequency marginal features in regions that

particularly have large gray-level variabilities, and can also enhance the texture details in those regions

which do not have significant gray-level variabilities.

In recent times, wavelet transforms in frequency domain has acquired generous attention from many

researchers. It provides multi scale signal decomposition with multi-resolution analysis which gives

the entire idea of details occurring at different locations [104]. Nowadays, subspace decomposition

methods [175] plays a significant role in the large scale computations. In subspace decomposition, the

different frequency parts of the initial noisy image are denoised independently followed by their fusion.

In this chapter, an algorithm is designed in which fractional order anisotropic diffusion is applied in

various sub-bands of the image in wavelet transform domain. The implementation of diffusion filters

is directionally sensitive and preserves sharp details up to large extent when compared to classical

implementation. Such an implementation is carried out by designing four filters, one for each wavelet

sub-band of the image.
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5.2 Fractional order anisotropic diffusion

In general, there is no unified formula to illustrate fractional derivatives. Many mathematicians have

figured out the problem at hand from different point of view and came along various definitions

of fractional derivatives. Out of all the definitions, three definitions, namely Grunwald-Letnikov,

Riemann-Liouville and Caputo are quite popular. Since Grunwald-Letnikov definition uses only one

coefficient and is less complex, it made its way easily in this work.

aαDbf(t) = lim
h→0

h−α

b−a
h∑
i=0

(−1)if(t− ih)

(
α

i

)
(5.1)

where, α denotes the fractional order in the interval [1, 2). The integral part of b−a
h is

⌈
b−a
h

⌉
and(

α
i

)
= α!

i!(α−i)! is the binomial coefficient.

5.3 Proposed model

In imaging, the simplest model for degradation of an image I due to the additive noise η can be written

in the following form

I0 = I + η (5.2)

where, I0 : Ω→ R is a noisy image which needs to be denoised. The noise η in the above equation is

additive white Gaussian noise (AWGN). The domain of the image Ω ⊆ R2 is bounded which is usually

a rectangle in image denoising.

5.3.1 Wavelet based subspace decomposition

The noisy image I0 is firstly decomposed using a 2-D discrete wavelet transform which gives an ap-

proximation part A and three detail components H, V and D. Then, three different images are

reconstructed in the following way

IH = A⊕H; (5.3)

IV = A⊕ V ; (5.4)
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Figure 5.1: The first row shows the image decomposition using wavelet transform into A, H,
V, D parts; The second row shows the reconstructed detail parts IH , IV and ID; The third row
shows the edge details of images IH , IV and ID using Canny edge detector.

ID = A⊕D; (5.5)

where, ⊕ represents the inverse DWT operated on the two parts together while the other two parts

are totally smooth detail parts, i.e. IH is obtained using the inverse DWT on A, H and the plain V

and D parts. Figure 5.1 illustrates this on the test image Lena. Here, the main idea is to diffuse these

three parts in different direction for a better edge prevention.
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5.3.2 Direction adaptive filtering using FrAD

To restore the image I(x, y) from the degraded version I0(x, y), one needs to solve the following PDE

∂I

∂t
= div(g(|∇I|2)∇I) (5.6)

with conditions I(x, y, 0) = I0(x, y) ∀ x, y ∈ Ω and natural boundary conditions. This PDE can be

approximated using a numerical scheme based on the finite differences as given in [117]. However, we

use the following fractional order diffusion PDE

∂I

∂t
= div (g(|∇Iασ |2)∇I) (5.7)

with conditions I(x, y, 0) = I0(x, y) ∀ x, y ∈ Ω and natural boundary conditions. We can approximate

the above PDE by using the following grid based numerical scheme:

(5.8)Ik
t+1 = Ik

t + λ(cN · 5α
NI + cS · 5α

SI + cW · 5α
W I + cE · 5α

EI +

cNE · 5α
NEI + cNW · 5α

NW I + cSE · 5α
SEI + cSW · 5α

SW I)

where, the conduction coefficient is defined as

ci =
1

1 + (∇i
αI
κ̂ )2

Here, i denotes the directions viz. N,S,E,W,NE,NW,SE, SW in which the fractional order anisotropic

diffusion is being applied. The diffusion coefficients in the above equation (5.8) depend on the direction

i with following rules:

• On the approximation part A, the diffusion is applied in all the directions.

• For the updated horizontal part IH , the diffusion is applied in the perpendicular direction so the

diffusion coefficients will be cN and cS only and others will be zero.

• For the updated vertical part IV , the diffusion is applied perpendicularly and the diffusion

coefficients will be cE and cW only and others will be vanished.
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• For the updated vertical part ID, the diffusion is applied in the diagonal directions viz. NE,NW,SE, SW .

Thus, the diffusion coefficients in equation (5.8) will be cNE , cNW , cSE , cSW .

Also, κ̂ in the diffusion coefficient is the threshold parameter that controls the amount of conduction.

It is defined in the following way:

• For the first two iterations of the numerical scheme (5.8), κ̂ is normalized as n · κ where n =(
α+

α∗(α−1)
2

+1

2

)10

and κ is the parameter from the Perona-Malik scheme. After two iterations,

this parameter will behave like in Perona-Malik method.

Generally, the image gradient varies near the edges which corresponds to the high frequency compo-

nents. The low frequency part is the weak textured region where the gradient magnitude is low. The

edges and the higher gradient region can be well preserved by the fractional differential operators.

Using G-L definition, the backward difference scheme of fractional order partial derivatives of order α

on the left side of pixel (x, y) can be expressed as:

∇αxI(x, y) = I(x, y)+(−α)I(x−1, y)+(−α)
−α+ 1

2
I(x−2, y)+ · · ·+ Γ(−α+ 1)

i! Γ(−α+ i+ 1)
I(x− i, y) (5.9)

and

∇αy I(x, y) = I(x, y)+(−α)I(x, y−1)+(−α)
−α+ 1

2
I(x, y−2)+· · ·+ Γ(−α+ 1)

i! Γ(−α+ i+ 1)
I(x, y−i) (5.10)

where, Γ denotes the Gamma function. The symbol 5 in equation (5.8) specifies the nearest neighbor

differences and can be calculated by convolving the masks M,MH ,MV ,MD on the respective compo-

nents k = A, IH , IV , ID.

M =

α2−α
2 0 α2−α

2 0 α2−α
2

0 −α −α −α 0

α2−α
2 −α 8 −α α2−α

2

0 −α −α −α 0

α2−α
2 0 α2−α

2 0 α2−α
2

MH =

0 0 α2−α
2 0 0

0 0 −α 0 0

0 0 2 0 0

0 0 −α 0 0

0 0 α2−α
2 0 0
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MV =

0 0 0 0 0

0 0 0 0 0

α2−α
2 −α 2 −α α2−α

2

0 0 0 0 0

0 0 0 0 0

MD =

α2−α
2 0 0 0 α2−α

2

0 −α 0 −α 0

0 0 4 0 0

0 −α 0 −α 0

α2−α
2 0 0 0 α2−α

2

Finally, we update the denoised image using the Perona-Malik based numerical scheme (5.8) and

the final recovered image is computed as the weighted subspace fusion of the above filtered images.

5.3.3 Numerical scheme

To refine the image, we have applied the fractional order anisotropic diffusion in the perpendicular

direction to the edges. Thus, in case of the horizontal details, the diffusion is applied in the vertical

direction using the filter MH . In case of vertical details, the diffusion is performed in horizontal

direction by using the filter MV . Hence, the iterative scheme used to solve the PDE (5.6) is given as

I(x, y)
(t+1)
k = I(x, y)k(t) + λ(cN.DN + cS.DS + cW.DW + cE.DE

+cNE.DNE + cNW.DNW + cSE.DSE + cSW.DSW )

(5.11)

The modified diffusion coefficient is defined in the following way

cZ(x) =
1

1 + (xk )2
; Z = N,S,W,E,NE,NW,SE, SW

Now, to calculate the gradient matrices in horizontal, vertical and diagonal directions, the convolu-

tion masks used in the respective directions are given by MH , MV and MD respectively. The algorithm

3 gives a brief overview of the overall implementation.

In 3, the weighted average is taken by considering weights w1 = 1, w2 = 0.2, w3 = 0.2 and w4 = 0.6.

Here, weights can take any value but increasing values of the weights leads to enormous brightness or

darkness in the output image. Thus for image naturalization, the above values of weights are considered

in order to evade the excessive contrast of the recovered image.
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Algorithm 3 Computational Algorithm for image denoising

Step 1: Input I0 as the initial noisy image, λ, niter.
Step 2: Perform DWT on the initial image I0 giving the approximation part A and the detail

parts as H, V and D.
Step 3: Update the detail components as IH = A⊕H; IV = A⊕ V ; ID = A⊕D
Step 4: Apply FOAD filters M on the approximation part A producing the updated image J .
Step 5: Apply FOAD filters MH , MV and MD on the updated detail parts obtained in step 3

respectively giving the updated images JH , JV and JD.
Step 6: Perform the weighted subspace fusion of the images J , JH , JV and JD as

I =
J + (0.2)JH + (0.2)JV + (0.6)JD

2

5.4 Experimental results

In order to test the effectiveness of the proposed algorithm, we have done the evaluation on the five

test images of size 512×512 pixels namely Lena, Pentagon, Wallpaint, Boat and Pepper. The considered

images have the additive white Gaussian noise with zero mean and varying noise variances in range

0.010− 0.035 with an interval of 0.005. The performance of the proposed algorithm is compared with

the existing approaches like Gaussian smoothing, Bilateral filtering [144] and the Perona-Malik method

[117]. The metrics used to test the efficiency of the proposed algorithm are peak signal to noise ratio

(PSNR), the mean square error (MSE) and structural similarity (SSIM) as defined in Chapter 1.

To show the accuracy of the proposed algorithm in case of edge or the details perseverance, images

having horizontal and vertical edges are considered. All the existing algorithms and the proposed

algorithm are applied on these images and measured the qualitative as well as the quantitative re-

sults. Table 5.1 shows the quantitative results for the metrics PSNR, MSE and SSIM. The proposed

algorithm gives the best PSNR gain viz. 33 decibels for the horizontal and vertical details images.

The proposed algorithm gives least MSE values than the compared algorithms which shows the better

image restoration. Also, the SSIM values are 0.85 for the horizontal and vertical details. The visual

results for these detailed images are shown in Figure 5.2.

Table 5.2, Table 5.3 and Table 5.4 show the denoising results on these noisy images with different
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Table 5.1: Comparison of the average PSNR, MSE & SSIM results obtained with algorithm
Gaussian smoothing, Bilateral filtering [144], Perona-Malik [117] and the proposed algorithm
with variance 0.001

Image Sigma Noisy GS BF PM Proposed

Horizontal PSNR 20.3088 24.0754 28.1274 31.2400 33.7655
MSE 52.7529 48.9240 42.9274 35.7823 27.4966
SSIM 0.3869 0.4050 0.5672 0.6947 0.8595

Vertical PSNR 20.2818 24.0440 28.0974 31.1997 33.6415
MSE 53.2873 49.6710 43.2874 36.3621 28.0138
SSIM 0.3836 0.3974 0.5562 0.6920 0.8563

variance for the metrics PSNR, MSE & SSIM respectively. In Table-5.2, the first rows of each con-

sidered image shows the PSNR value in unit decibel for the noisy image. Similarly, the second and

third rows for each image shows the PSNR values using the methods Gaussian smoothing and Bilateral

filtering respectively. The fourth row shows the denoising results of the anisotropic diffusion based on

Perona-Malik method.

The last rows for each image shows the PSNR results with the proposed algorithm. For the Lena

image, the average PSNR value for noisy image with variance 0.010 is 17.071. The average PSNR

value for the methods Gaussian Smoothing, Bilateral Filtering [144] and Perona-Malik method [117]

are 20.9047, 19.1912 and 27.105 respectively. However, the average PSNR value of the proposed algo-

rithm is 28.5149. The average PSNR value of the proposed algorithm is greater for all the images than

the three existing algorithms. For Boat image, the average PSNR gain for the noisy image is 17.124.

The average PSNR value for methods Gaussian Smoothing, Bilateral Filtering and Perona-Malik are

20.9604, 19.8756 and 25.5791 respectively. The average PSNR gain for the proposed algorithm is

28.2173. Thus, the proposed algorithm gives an overall gain of 3 decibels than the Perona-Malik

method for the Boat image.

The PSNR values for each image with the varying variances are shown in Table 5.2. In particular, for

the variance 0.010, the proposed algorithm gives an increase of nearly 10 decibels for the recovered

image. However, the gain in the PSNR value for the other three methods is maximum of 7 decibels.
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(a) Horizontal details

(b) Vertical details

Figure 5.2: Visual denoising results of images with horizontal and vertical details (a) Noisy
image; (b) Gaussian smoothing; (c) Bilateral filtering [144]; (d) Perona-Malik [117]; (e) the
proposed algorithm

When the image is having the higher variance 0.035, the gain in the PSNR value is 13 decibels for

the proposed algorithm which is greater than the PSNR gain of all the methods Gaussian Smoothing,

Bilateral Filtering and Perona-Malik method. The proposed algorithm performs better than all these

three algorithms with an average PSNR gain of 27.5556 decibels. Also, the proposed algorithm gives

more PSNR gain of average 2.5 decibels than the Perona-Malik method which is better than the Gaus-

sian smoothing and the Bilateral filtering. Hence, the overall performance of the proposed algorithm

is better for different noise variances.

Table 5.3 shows the quantitative results for metric mean square error (MSE) for all of the images and

the noise variances. The MSE value should be less for the better performance of a method. It can be

seen from the Table 5.3 that the proposed algorithm is giving the least MSE value when compared to

the other three methods. The average MSE value for the noisy Pentagon image is 72.8941. However,

the average MSE value for methods Gaussian Smoothing, Bilateral Filtering and Perona-Malik meth-

ods are 68.0283, 61.7973 and 56.8570 respectively. The proposed algorithm gives less MSE value than
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the compared methods viz. 52.4778 which shows that the proposed algorithm is better than the other

existing methods.

Table 5.4 shows the results for the metric SSIM. SSIM should be higher and near to 1 for the structural

similarity of the original and the recovered images. The proposed algorithm gives the better SSIM

values than the compared methods. The average SSIM value for the proposed algorithm is 0.7851

for Lena image and 0.7962 for the Boat image. Perona-Malik method performs better than methods

Gaussian Smoothing, Bilateral Filtering. The increase in the SSIM value is 0.03-0.16 when compared

to Perona-Malik method. Thus, the proposed algorithm performs best when compared to the three

existing algorithms in case of all the metrics.

The visual results for the noise variance 0.015 are shown in Figure 5.3 - Figure 5.7 respectively. The

first image in each figure shows the noisy images. The second and third images shows the recovered

images using the Gaussian smoothing and the bilateral filtering method. The fourth image shows

the denoising results of Perona-Malik method [117]. The fifth image in each figure shows the images

recovered using the proposed algorithm and the last image is the respective ground truth image. It

can be seen from each of the figures that the recovered image using the proposed algorithm preserves

edges and removes noise better than other three methods. Hence, this analysis shows the proposed

algorithm performs better than the existing algorithms in case of edge perseverance as well as in case

of noise removal.

5.5 Conclusions

A fractional order anisotropic diffusion method has been developed using the wavelet transform based

subspace decomposition in order to remove the additive white Gaussian noise. The method was found

directionally sensitive in order to preserve the edges in a better way. From the experimental results, it

has been observed that the proposed algorithm over-performed with all three existing methods used

in the comparison study. Moreover, fractional derivatives based convolution filter implemented in the
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Table 5.2: Comparison of the PSNR results obtained with algorithms Gaussian smoothing,
Bilateral filtering [144], Perona-Malik [117] and the proposed algorithm with varying variances

Image Sigma 0.010 0.015 0.020 0.025 0.030 0.035

Lena Noisy 20.0653 18.3618 17.1787 16.2818 15.5679 14.9737
GS 23.8992 22.1941 21.0121 20.1221 19.3957 18.8053
BF 23.0920 20.9658 19.3870 18.1379 17.1786 16.3863
PM 27.2132 27.2118 27.1458 27.1161 27.0059 26.9286
Proposed 30.0059 29.4316 28.7680 28.2085 27.6334 27.0425

Pentagon Noisy 20.0018 18.2634 17.0301 16.1028 15.3472 14.7354
GS 23.6508 21.9712 20.7723 19.8639 19.1184 18.5120
BF 19.3748 18.3193 17.3577 16.5200 15.8029 15.1812
PM 23.6086 23.6180 23.6108 23.6101 23.6209 23.6045
Proposed 26.9572 26.6891 26.3613 25.9714 25.5803 25.1753

Wallpaint Noisy 20.1733 18.4746 17.2941 16.4010 15.6771 15.0672
GS 24.0004 22.2868 21.1058 20.2063 19.4809 18.8579
BF 24.4110 21.7795 19.9827 18.6416 17.5996 16.7604
PM 24.4310 24.3866 23.9242 23.3083 22.8488 22.3583
Proposed 27.3394 26.9876 26.5535 26.1296 25.7518 24.0602

Boat Noisy 20.1115 18.4256 17.2460 16.3420 15.6350 15.0347
GS 23.9495 22.2624 21.0726 20.1668 19.4598 18.8515
BF 24.5343 21.8062 19.9840 18.6313 17.5711 16.7267
PM 27.4148 26.4195 25.6636 25.0236 24.5364 24.0569
Proposed 29.6003 29.0407 28.4876 27.9210 27.4150 26.8395

Pepper Noisy 20.1621 18.4663 17.2726 16.3763 15.6719 15.0776
GS 23.9807 22.2823 21.0791 20.1814 19.4734 18.8799
BF 22.3272 20.5430 19.1142 17.9841 17.0626 16.3070
PM 27.6189 27.5070 27.3764 27.1944 27.0727 26.9161
Proposed 29.7989 29.0773 28.4841 27.7688 27.2514 26.7488

subspace based decomposition image which is easy to implement. The proposed algorithm can be

implemented easily on parallel chips for efficient computation.
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Table 5.3: Comparison of the MSE results obtained with algorithms Gaussian smoothing, Bi-
lateral filtering [144], Perona-Malik [117] and the proposed algorithm with varying variances

Image Sigma 0.010 0.015 0.020 0.025 0.030 0.035

Lena Noisy 51.0939 61.6988 68.2040 73.0663 77.1616 79.9997
GS 43.4090 54.4257 61.2509 66.5747 70.9836 74.0162
BF 37.8628 39.2769 42.3936 45.9277 52.1469 56.9670
PM 22.6129 29.9291 38.7897 44.1331 46.4495 49.0773
Proposed 21.3129 26.6278 30.6464 33.4016 35.7124 38.2358

Pentagon Noisy 59.0129 67.0430 72.8855 76.6868 79.6588 82.0778
GS 55.5219 63.6421 66.9998 70.9525 74.2113 76.8424
BF 52.9669 61.0734 63.8009 63.9147 63.8466 65.1814
PM 49.9857 52.6390 54.4711 57.8136 61.7573 64.4750
Proposed 42.8636 47.8729 53.5123 56.0237 57.0331 57.5613

Wallpaint Noisy 54.6510 65.3596 72.1793 76.8656 81.2895 84.5612
GS 51.4266 60.0139 66.3006 71.2677 76.1563 79.6767
BF 48.7609 58.9813 62.3142 64.9803 67.7275 70.0222
PM 48.0269 54.5534 59.0594 63.0050 66.0220 69.5165
Proposed 38.7730 46.8909 54.1603 59.9798 65.6248 68.2251

Boat Noisy 52.0104 63.2914 69.9670 75.3015 78.3225 81.4156
GS 46.5790 59.3553 63.3172 69.1534 74.9108 75.7451
BF 44.7300 56.3019 51.3005 54.7549 72.3707 61.3017
PM 33.7158 49.1827 45.0550 52.4750 55.7535 58.0517
Proposed 29.3322 37.7812 41.4907 44.7120 46.9661 48.9135

Pepper Noisy 56.9715 66.1138 72.7064 77.1338 82.4249 85.0895
GS 53.1690 59.6645 66.6145 71.3152 77.1776 79.9733
BF 48.3671 49.8659 52.2312 64.7672 62.2046 66.1371
PM 33.1250 40.4624 48.2731 54.6979 59.2250 61.2849
Proposed 30.9879 35.1705 38.5463 41.6561 45.4086 47.7725
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Table 5.4: Comparison of the SSIM results obtained with algorithms Gaussian smoothing,
Bilateral filtering [144], Perona-Malik [117] and the proposed algorithm with varying variances

Image Sigma 0.010 0.015 0.020 0.025 0.030 0.035

Lena Noisy 0.5064 0.4316 0.3807 0.3469 0.3162 0.2955
GS 0.5757 0.4991 0.4456 0.4095 0.3757 0.3534
BF 0.5231 0.5076 0.4888 0.4849 0.4690 0.5245
PM 0.7958 0.7746 0.7583 0.7457 0.7340 0.7230
Proposed 0.8342 0.8136 0.7940 0.7762 0.7544 0.7383

Pentagon Noisy 0.5696 0.4985 0.4448 0.4054 0.3750 0.3495
GS 0.6178 0.5517 0.4993 0.4603 0.4293 0.4031
BF 0.2078 0.4033 0.3707 0.2159 0.3223 0.3751
PM 0.5625 0.5335 0.5107 0.4944 0.4807 0.4695
Proposed 0.6618 0.6546 0.6441 0.6327 0.6197 0.6072

Wallpaint Noisy 0.6337 0.5634 0.5109 0.4697 0.4343 0.4087
GS 0.6881 0.6217 0.5704 0.5284 0.4929 0.4664
BF 0.3226 0.3533 0.3846 0.3331 0.3785 0.3261
PM 0.6465 0.6107 0.5804 0.5566 0.5366 0.5200
Proposed 0.7445 0.7342 0.7226 0.7081 0.6947 0.6824

Boat Noisy 0.5551 0.5523 0.4767 0.4256 0.3586 0.3327
GS 0.6226 0.6193 0.5432 0.4907 0.4195 0.3916
BF 0.6591 0.6580 0.6550 0.6584 0.6495 0.6579
PM 0.7716 0.7711 0.7424 0.7192 0.6875 0.6754
Proposed 0.8365 0.8348 0.8166 0.7834 0.7621 0.7439

Pepper Noisy 0.4894 0.4196 0.3698 0.3369 0.3106 0.2882
GS 0.5535 0.4831 0.4311 0.3958 0.3669 0.3425
BF 0.5126 0.5004 0.5169 0.5009 0.4965 0.5074
PM 0.7690 0.7493 0.7320 0.7171 0.7053 0.6942
Proposed 0.7951 0.7777 0.7589 0.7407 0.7222 0.7056
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Figure 5.3: (a) Noisy Lena image with variance 0.015; the recovered images using methods
(b) Gaussian smoothing; (c) Bilateral filtering [144]; (d) Perona-Malik [117]; (e) the proposed
algorithm; (f) ground truth image.
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Figure 5.4: (a) Noisy Pentagon image with variance 0.015; the recovered images using methods
(b) Gaussian smoothing; (c) Bilateral filtering [144]; (d) Perona-Malik [117]; (e) the proposed
algorithm; (f) ground truth image.



93

Figure 5.5: (a) Noisy Wallpaint image with variance 0.015; the recovered images using methods
(b) Gaussian smoothing; (c) Bilateral filtering [144]; (d) Perona-Malik [117]; (e) the proposed
algorithm; (f) ground truth image.
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Figure 5.6: (a) Noisy Boat image with variance 0.015; the recovered images using methods
(b) Gaussian smoothing; (c) Bilateral filtering [144]; (d) Perona-Malik [117]; (e) the proposed
algorithm; (f) ground truth image.
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Figure 5.7: (a) Noisy Pepper image with variance 0.015; the recovered images using methods
(b) Gaussian smoothing; (c) Bilateral filtering [144]; (d) Perona-Malik [117]; (e) the proposed
algorithm; (f) ground truth image.
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Chapter 6

Image denoising and defogging using

fractional gradient based improved

diffusion coefficient

6.1 Introduction

In previous chapter, the image denoising problem is dealt in various sub-bands of wavelet domain by

choosing appropriate diffusion directions. In this chapter, a new non-linear fractional order diffusion

coefficient is proposed. The proposed diffusion coefficient makes use of tansig function as the diffusion

coefficient with fractional order gradients. This diffusion coefficient along with anisotropic diffusion

of fractional order gradients is applied to image restoration problems (image defogging and image

denoising) to have improved results. The convergence of the proposed algorithm can be speed up by

modifying the tangent direction. The fractional order derivatives are used in Riemann-Liouville sense

which is just a convolution of two functions. The proposed algorithm is adapted for noisy as well as

hazy images which are corrupted due to natural or synthetic haze and additive noise.

In literature, many image filtering based methods were designed to improve noisy images corrupted

97
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under uncertain camera sensor situations. Perona and Malik defined two diffusion coefficients for edge

prevention based on gradient of an image [117]. After that, there has been many enhancements in

diffusion functions for better image restoration. Catte et al. regularized the Perona-Malik diffusion

function by smoothing the gradient by using a Gaussian kernel to get a unique solution. Later on,

this diffusion coefficient has been rectified by Whitaker et al. [154]. Authors [96] then suggested

to decrease the contrast parameter which followed by Gaussian convolution of the exponential filter

defined by [129, 145]. There has been many improvements in the diffusion coefficients for better edge

preservation and enhancement [15, 18]. In 2016, Tebini et al. [142] presented a new mathematical

model to avoid the drawbacks of existing models. This model used the tansig function to optimize the

trade-off between noise removal and edge preservation. This function is designed in order to have a

fast real-time implementation.

In hazy conditions also, the quality of outdoor images is bad because of water droplets and dust particles

in the atmosphere. The water droplets in the air scatters the light which causes poor visibility of an

image. Thus it is essential to recover the degraded images. Image defogging is also an ill-posed

problem like image denoising, thus needs to recover the haze free image from the degraded one. In

this chapter, the proposed algorithm recovers the noisy and hazy images by using tansig function as

the diffusion coefficient with fractional order smoothed gradients. Only few parameters are needed

to select manually in the proposed algorithm. The presented results validate the performance of the

proposed algorithm for image denoising and image defogging.

6.2 The proposed algorithm

6.2.1 Image denoising model

The image denoising model can be mathematically defined as

I = I0 + η (6.1)
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where, I0 is the image which needs to be restored and η stands for the additive white Gaussian noise

(AWGN). The amount of noise is dependent on image i.e. noise is higher for higher intensity values

of the noise free image. For grey images, the intensity of the pixels lies in range [0, 255], where, 0 is

the least intensity value which represents black and 255 is the highest intensity value which represents

white. It is not easy that just smoothing of noisy image will get the work done. It is needed to maintain

the sharp features of the images lost due to the presence of noise η.

6.2.2 Diffusion scheme

To restore a noise free image, we need to solve the following PDE

∂I

∂t
= div (g(|∇I|2)∇I) (6.2)

with conditions I(x, 0) = I0(x) ∀ x ∈ Ω and natural boundary conditions. This PDE can be ap-

proximated using a numerical scheme based on the finite differences as given in [117]. The conduction

coefficients defined by Perona-Malik [117] are given as

g1(|∇I|2) = exp

(
−
(
∇I
κ

)2)
or g2(|∇I|2) =

1

1 + (∇Iκ )2

The gradients in the Perona-Malik scheme are calculated in eight directions viz. N,S,E,W ,NW,SW,NE, SE

as follows:

∇NI(i, j) = I(i− 1, j)− I(i, j)

∇SI(i, j) = I(i+ 1, j)− I(i, j)

∇EI(i, j) = I(i, j + 1)− I(i, j)

∇W I(i, j) = I(i, j − 1)− I(i, j)

∇NEI(i, j) = I(i− 1, j + 1)− I(i, j)

∇SEI(i, j) = I(i+ 1, j + 1)− I(i, j)

∇SW I(i, j) = I(i+ 1, j − 1)− I(i, j)
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∇NW I(i, j) = I(i− 1, j − 1)− I(i, j)

Tebini et al. [142] provided a new non-linear diffusion function based on tansig function defined as:

(6.3)g3(|∇I|) =
1

2

[(
1 + tansig

(
− abs

(
∇I
k

)))
+

(
1 + tansig

(
− abs

(
∆I

k

)))]
However, to recover image from the noisy one, we have considered the following fractional order PDE

∂I

∂t
= div (g(|∇αI|2)∇αI) (6.4)

where, ∇αI is the fractional order gradient having fractional orders in range (1, 2). The fractional

order anisotropic diffusion have been applied with smoothed fractional order gradients and a different

fractional order diffusion coefficient as defined below:

(6.5)g(|∇I|) =

[(
1 + tansig

(
− abs

(
(∇αI)

k

)))]
where, ∇ is the gradient operator, and k is the threshold parameter which controls the diffusion process

and determines the contrast of the edges which needs to be retained. Here, the considered function is

tansig function as the diffusion coefficient with fractional order gradients. The proposed conductance

function is better than the conductance function by Tebini et al. [142] because of the following reasons:

• The proposed function contains derivatives with fractional order gradients, whereas, in Tebini

et al. [142] diffusion function, both first and second order gradients were considered.

• Tebini et al. [142] diffusion function lies in range [−1, 1], however, the proposed function range

is [0, 1] only.

• It has better convergence speed than Tebini et al. [142] diffusion function.

Figure 6.1 shows a graph of various diffusion coefficients and the proposed diffusion coefficient with

a α = 1.5. The diffusion coefficient should act in a way that most of the filtering has to be done in

the areas with small gradients. In the areas of larger gradients, filtering amount should be less. From

Figure 6.1, we can see that the proposed diffusion function converges faster than other methods. It can

be seen from Figure 6.1 that, the diffusion functions of Perona-Malik scheme and Tebini et al. method
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Figure 6.1: Diffusion functions of various models

converges very gently and it continues to perform smoothing and filters the image. However, the

proposed diffusion function reaches to zero value at a faster rate as compared to other three diffusion

functions. It implies that the diffusion process is stopped after a fix period of time and does not

over-smooth the recovered image. Thus, the proposed diffusion function preserves the edges better

than the other three diffusion functions. The proposed diffusion function smoothes the low gradient

areas rapidly and slows down the process in high gradient areas.

6.2.3 Implementation

To restore images, the proposed algorithm uses the following fractional order PDE

∂I

∂t
= div (g(|∇αI|2)∇αI) (6.6)

where, g|∇αI| is the fractional order diffusion function defined as

(6.7)g(|∇I|) =

[(
1 + tansig

(
− abs

(
|∇αi I|
k

)))]

where, i denotes the directions viz. N,S,E,W,NE,NW,SE, SW in which the fractional order anisotropic
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diffusion is being applied. The filter M∇α is used to calculate the fractional order gradients in all the

directions. The filter M∇α is the generic filter which changes based on the direction of the gradients.

M∇α =

α2−α
2 0 α2−α

2 0 α2−α
2

0 −α −α −α 0

α2−α
2 −α 8 −α α2−α

2

0 −α −α −α 0

α2−α
2 0 α2−α

2 0 α2−α
2

For example, to calculate the fractional order gradient in N direction, filter will be defined as below:

M∇αN =

0 0 α2−α
2 0 0

0 0 −α 0 0

0 0 8 0 0

0 0 0 0 0

0 0 0 0 0

The proposed diffusion function is non-linear in nature and has a threshold value of 1. It can be

customized in order to speed up the convergence by changing the tangent directions.

The scheme used to find solution of fractional order PDE given in (6.6) is same as the scheme used

in previous chapter. Only difference is that, here wavelet subbands based filtering have not been

considered. The PDE (6.6) is approximated using the following numerical scheme:

(6.8)Ik
t+1 = Ik

t + λ(gN · 5α
NI + gS · 5α

SI + gW · 5α
W I + gE · 5α

EI +

gNE · 5α
NEI + gNW · 5α

NW I + gSE · 5α
SEI + gSW · 5α

SW I)

6.2.4 Properties of flow function

The flow function φ(I) of an image f(I) is defined as

φ(I) = I · g(|∇I|)
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Figure 6.2: Flow functions of different models

where, g(|∇I|) is the diffusion function. Flow function for Perona-Malik diffusion coefficients are

defined as

(6.9)φ1(I) = I · g1(|∇I|)

(6.10)φ2(I) = I · g2(|∇I|)

The flow function of Tebini et al. method [142] is defined as

(6.11)φ3(I) = I · g3(|∇I|)

Here, the proposed flow function is defined as

(6.12)φproposed(I) = I ·
[[(

1 + tansig

(
− abs

(
(∇αI)

k

)))]]

Figure 6.2 shows the graphs for flow functions φ1, φ2, φ3 and φproposed. In function φproposed, we

have used the fractional order as 1.5. This function increases when smoothing is performed in the

smooth regions and goes on decreasing for smoothing in sharp details region. Figure 6.2 shows that

proposed flow function decreases at a faster rate than the compared flow functions.
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Table 6.1: Structural similarity (SSIM) obtained with the proposed algorithm with different
fractional orders α with variance 0.002 and 3 iterations as stopping criteria.

α = Noisy
Image

1.0 1.2 1.4 1.6 1.8

Lena 0.6895 0.9099 0.9120 0.9113 0.9118 0.9115
Stone 0.6064 0.8916 0.8926 0.8922 0.8930 0.8932
Rice 0.7495 0.9086 0.9102 0.9105 0.9108 0.9109
Sparrow 0.7074 0.9175 0.9180 0.9186 0.9193 0.9189
Tower 0.6643 0.9015 0.9029 0.9022 0.9018 0.9030
Flower 0.6590 0.9003 0.9010 0.9013 0.9015 0.9021
Average 0.6793 0.9049 0.9061 0.9060 0.9063 0.9066

6.3 Simulation results

6.3.1 Results on image denoising

In order to check the efficiency of the proposed algorithm in case of denoising, a set of test images

namely Lena, Stone, Rice, Sparrow, Tower and Flower have been considered. The considered test

images are corrupted with additive white Gaussian noise (AWGN) with a variance of 0.002. The

metrics used to testify the proposed algorithm performance are structural similarity (SSIM), Peak

signal to noise ratio (PSNR) and Mean square error (MSE). The metric values of SSIM and PSNR

should be higher for better performance of a method.

Table 6.1 shows the quantitative results of the proposed algorithm with different fractional orders

in range [1, 2]. For α = 1, this method reduce into integer order for the proposed algorithm. The

initial noisy images have an average of SSIM value of 0.6793. The proposed algorithm gives average

SSIM values in range 0.9061-0.9066, however, the integer order has a maximum average SSIM value of

0.9049. The numerical results of proposed fractional order method are better than the integer order

for each image. Table 6.2 shows the numerical results for metric PSNR. It can be seen from table 6.2

and table 6.3 that our method clearly performs better than the integer order. PSNR values lies in

range 32.3975− 32.4900 decibels. Similar results holds for metric mean square error (MSE).
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Table 6.2: Peak signal to noise ratio (PSNR) obtained with the proposed algorithm with different
fractional orders α with variance 0.002 and 3 iterations as stopping criteria.

α = Noisy
Image

1.0 1.2 1.4 1.6 1.8

Lena 27.8381 32.4145 32.4555 32.4210 32.4309 32.4371
Stone 27.1413 31.8690 32.0576 32.0712 32.2484 32.1723
Rice 28.3251 32.5054 32.5262 32.5140 32.5638 32.5976
Sparrow 28.0165 32.7333 32.7454 32.7514 32.7348 32.7525
Tower 27.9697 32.7599 32.8294 32.7694 32.8403 32.8405
Flower 27.5674 32.1032 32.1142 32.1410 32.1221 32.1208
Average 27.8096 32.3975 32.4546 32.4445 32.4900 32.4870

Table 6.4 shows the comparison of the proposed algorithm with existing methods such as Perona

and Malik [117], Guided filtering [57] and adaptive and anisotropic filtering (AAF) [142]. Figure 6.3 -

Figure 6.8 shows the visual denoising results of the proposed algorithm along with some of the existing

algorithms. The first image in each figure shows the noisy images. The second, third and fourth

images shows the images recovered using Perona and Malik method [117], Guided image filtering [57]

and adaptive and anisotropic filtering (AAF) method [142]. The proposed visual results are shown in

fifth image and the last image in each figure shows the ground truth images. From numerical as well

as visual results, it can be clearly observed that the proposed algorithm results are much better than

the existing algorithms.

6.3.2 Results on image dehazing

The proposed algorithm ia also implemented on the outdoor hazy images. The considered hazy images

are Building, Lady, Light, Pond and Street taken from SOTS data set [93]. The accuracy of the

proposed algorithm is evaluated in terms of metric like structural similarity (SSIM) and colorfulness

index (CI). The values of both the metrics must be higher for better performance. Table 6.5 shows the

SSIM results of our method with varying fractional order α in range [1, 2). The average SSIM values
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Table 6.3: Mean square error (MSE) obtained with the proposed algorithm with different frac-
tional orders α with variance 0.002 and 3 iterations as stopping criteria.

α = Noisy
Image

1.0 1.2 1.4 1.6 1.8

Lena 106.9726 11.4827 11.4170 11.4316 11.1932 11.2074
Stone 114.0656 9.5661 9.0768 9.3256 9.3067 9.2625
Rice 95.6248 13.0148 12.6933 12.4555 12.5697 12.6891
Sparrow 102.6681 12.8689 12.2561 12.1210 12.3155 11.7924
Tower 103.7801 11.5963 11.5012 11.2355 11.3656 11.5787
Flower 113.6389 12.4582 12.4238 12.3694 12.3310 12.1940
Average 106.1250 11.8311 11.5613 11.4900 11.5138 11.4540

Table 6.4: Comparison of the results obtained with existing algorithms Perona-Malik [117],
Guided Filtering [57], AAF [142] and the proposed algorithm

Metric Algorithm Lena Stone Rice Sparrow Tower Flower
SSIM Perona-Malik 0.7487 0.8014 0.7495 0.7189 0.7661 0.7491

Guided Filtering 0.8839 0.8830 0.8872 0.8838 0.8804 0.8866
AAF 0.8930 0.8894 0.8942 0.9021 0.8958 0.8914
Proposed 0.9120 0.8932 0.9109 0.9193 0.9030 0.9021

PSNR Perona-Malik 25.5408 25.8552 24.2539 25.2644 26.2466 24.9774
Guided Filtering 31.5112 31.9650 30.8569 31.4311 32.0038 31.5760
AAF 31.8731 31.3678 31.0628 31.7622 31.8947 31.8210
Proposed 32.4555 32.2484 32.5976 32.7525 32.8405 32.1410

MSE Perona-Malik 41.3766 32.0810 61.0460 40.7486 32.8500 34.5626
Guided Filtering 19.0871 14.8374 25.0184 19.8362 18.0814 18.4338
AAF 12.6724 10.3879 12.9248 13.2981 13.0648 14.2784
Proposed 11.1932 9.0768 12.4555 12.1210 11.2355 12.1940

Table 6.5: Structural similarity (SSIM) obtained with the proposed algorithm with different
fractional orders α with 3 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8
Building 0.8139 0.8148 0.8161 0.8162 0.8166
Lady 0.8585 0.8614 0.8637 0.8652 0.8657
Light 0.8159 0.8202 0.8180 0.8189 0.8197
Pond 0.8846 0.8909 0.8976 0.9042 0.9107
Street 0.8197 0.8265 0.8338 0.8409 0.8481
Average 0.8388 0.8428 0.8460 0.8490 0.8524
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Figure 6.3: Comparison of the filtering method results for the Lena image: (a) Lena noisy image;
(b) Perona and Malik based scheme [117]; (c) Guided filtering based scheme [57]; (d) Adaptive
anisotropic filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground truth
image.

Table 6.6: Colorfulness index (CI) obtained with the proposed algorithm with different fractional
orders α with 3 iterations as stopping criteria.

α = 1.0 1.2 1.4 1.6 1.8
Building 1.0478 1.0488 1.0496 1.0508 1.0512
Lady 0.2874 0.2877 0.2882 0.2885 0.2889
Light 0.8256 0.8259 0.8261 0.8264 0.8266
Pond 0.4436 0.4438 0.4442 0.4447 0.4445
Street 0.2285 0.2288 0.2290 0.2307 0.2296
Average 0.5668 0.5672 0.5674 0.5684 0.5684
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Table 6.7: Comparison of the results obtained with existing algorithms DCP [58], FrADP, AAF
[142] and the proposed algorithm

Metric Algorithm Building Lady Light Pond Street
SSIM DCP 0.8200 0.6807 0.8496 0.6957 0.6479

FrADP 0.9153 0.8509 0.9009 0.8012 0.8329
AAF 0.8067 0.8451 0.8142 0.8962 0.8261
Proposed 0.8166 0.8657 0.8202 0.9107 0.8481

CI DCP 0.2734 0.1100 0.2999 0.2117 0.0882
FrADP 0.2624 0.0506 0.2058 0.2802 0.0951
AAF 1.0074 0.2785 0.8174 0.4396 0.2169
Proposed 1.0512 0.2889 0.8266 0.4447 0.2307

of recovered images varies in between 0.8428 − 0.8524. Since these values are near to 1, we can say

that the proposed algorithm is performing good. Also, Table 6.6 shows the colorfulness index values

for all of the images. On this metric also, the proposed algorithm results are better than the integer

order. Table 6.7 shows the comparison with some of existing algorithms like Dark channel prior (DCP)

[58], FrADP, Adaptive and anisotropic filtering (AAF) [142]. For only two images namely Building

and Light, FrADP method is performing better in case of metric SSIM. However, for all of the images

proposed algorithm results are better than the existing ones with both of the metrics. Also, we can

see the visual results for all of the algorithms in Figure 6.9 - Figure 6.13. The restored images using

the proposed algorithm are very much similar to the ground truth images. Hence, from this study, the

proposed algorithm is efficient in removing noise as well as haze from various degraded images.

6.4 Conclusions

In this chapter, a new diffusion coefficient known as tansig function with fractional order gradients is

proposed. Also, a smoothed version of fractional order anisotropic diffusion is applied in order to have

a better solution. The proposed algorithm is applied on noisy as well as hazy images. The hazy images

are outdoor images whose ground truth images are also available. Also, there is no blurring artifacts

in the recovered images. The edges and other sharp details like corners are well preserved using the
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proposed algorithm.
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Figure 6.4: Comparison of the filtering method results for the Stone image: (a) Stone noisy
image; (b) Perona and Malik based scheme [117]; (c) Guided filtering based scheme [57]; (d)
Adaptive anisotropic filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground
truth image.
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Figure 6.5: Comparison of the filtering method results for the Rice image: (a) Rice noisy image;
(b) Perona and Malik based scheme [117]; (c) Guided filtering based scheme [57]; (d) Adaptive
anisotropic filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground truth
image.
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Figure 6.6: Comparison of the filtering method results for the Sparrow image: (a) Sparrow
noisy image; (b) Perona and Malik based scheme [117]; (c) Guided filtering based scheme [57];
(d) Adaptive anisotropic filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f)
ground truth image.
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Figure 6.7: Comparison of the filtering method results for the Tower image: (a) Tower noisy
image; (b) Perona and Malik based scheme [117]; (c) Guided filtering based scheme [57]; (d)
Adaptive anisotropic filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground
truth image.
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Figure 6.8: Comparison of the filtering method results for the Flower image: (a) Flower noisy
image; (b) Perona and Malik based scheme [117]; (c) Guided filtering based scheme [57]; (d)
Adaptive anisotropic filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground
truth image.
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Figure 6.9: Comparison of the filtering method results for the building image: (a) Building hazy
image; (b) DCP based scheme [58]; (c) FrADP based scheme; (d) Adaptive and anisotropic
filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground truth image.
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Figure 6.10: Comparison of the filtering method results for the lady image: (a) Lady hazy
image; (b) DCP based scheme [58]; (c) FrADP based scheme; (d) Adaptive and anisotropic
filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground truth image.
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Figure 6.11: Comparison of the filtering method results for the light image: (a) Light hazy
image; (b) DCP based scheme [58]; (c) FrADP based scheme; (d) Adaptive and anisotropic
filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground truth image.
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Figure 6.12: Comparison of the filtering method results for the pond image: (a) Pond hazy
image; (b) DCP based scheme [58]; (c) FrADP based scheme; (d) Adaptive and anisotropic
filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground truth image.
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Figure 6.13: Comparison of the filtering method results for the street image: (a) Street hazy
image; (b) DCP based scheme [58]; (c) FrADP based scheme; (d) Adaptive and anisotropic
filtering (AAF) based scheme [142]; (e) the proposed algorithm; (f) ground truth image.
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Chapter 7

Conclusions and future scope

7.1 Conclusions

This thesis introduced certain algorithms for image restoration using fractional-order anisotropic dif-

fusion to solve the image defogging/dehazing and image denoising problems. A total of five different

algorithms have been introduced based on the diffusion PDEs and the wavelet transform.

• The first algorithm addressed the issue of defogging of the digital images by using a fractional-

order generalization of the anisotropic diffusion PDE in the Cartesian space of the image. The

quality of restored images in the proposed algorithm depends on the diffused airlight map.

The proposed algorithm diffused the airlight map visually better when compared to classical

anisotropic diffusion. The computation of the fractional-order derivatives in the proposed algo-

rithm utilizes lower computational resources when compared to a Fourier domain-based imple-

mentation and restores images better.

• The second algorithm is an extension of first algorithm where a cross channel regularization

term is included in the ‘p-Laplace’ based anisotropic diffusion PDE. Again this PDE is having

fractional-order derivatives in image space. The efficiency of the proposed algorithm was tested

on the benchmark data set ‘SOTS’ containing synthetic hazy images and naturally hazed outdoor
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images. Convergence analysis has been given for both first and second algorithms.

• The third algorithm is based on removal of noise from the images in the fractional quaternion

wavelet transform domain (FrQWT). The choice of hard or semi-soft thresholding depends on

the image. In a few of the images, the semi-soft threshold performs marginally better than the

hard threshold. However, in a few cases, it was found that the choice of hard threshold is better.

• The next algorithm is directions adaptive fractional-order anisotropic diffusion method developed

using the wavelet transform, preserves the edges of the restored images in a better way. Moreover,

fractional derivatives based convolution filter implemented in the wavelet subspaces of the image

are easy to implement and also numerically efficient.

• The last algorithm proposes a ‘tansig’ function based diffusion scheme which provides impressive

restored images with faster convergence. This method is found quite effective in dehazing as well

as in denoising. Also, no blurring artifact is noticed in the recovered images.

7.2 Future directions

The work presented in this thesis can be extended in some more directions. In this section, these

potential directions are listed briefly.

• The proposed algorithms considers the fixed values of the fractional order in range [1, 2). This

fractional order can be chosen in an adaptive way depending on the local image statistics.

• Data-driven or learnable PDEs can be developed to circumvent the manually designing issue of

fractional order and give the new life for PDEs based methods in restoration (including denoising,

deblurring and dehazing).

• In second and third chapters of this thesis, the widely-used atmospheric scattering model is

used to show the fog-effect. In addition to this, there are other degradation models such as the

dual-color atmospheric scattering model and the ATF (atmospheric transfer function) model.
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Therefore, a fast and optimized method can be explored that uses multi scale information fusion

technology and machine learning technology.

• In the fourth chapter of the thesis, the value of hard and soft thresholding parameter is based on

a hit and trial way. In this thesis, the fixed values of thresholding values are taken for different

images. This parameter value can be made adaptive to have a more accurate image filtering and

to preserve the image details. A control parameter sensitivity of hard threshold can be included

for better qualitative and quantitative improvement in recovered images.
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