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= unit vector of electric field

= time dependent amplitude of wave funetion
= pradius of Bohr orbit

= denote constants in Bq (14.3) and(15,3)
= nonlinear mode coupling coeffiecient

= loss coefficlent

= confocal parameter of ecavity resonator

= Birefringence of crystal

= used to denote a constant in Eq (14.3)

= magnetic induction or flux density

= mismatch gradient

= veloeclity of light = 3 x 10' m loﬁl

= Capacltance

= used to denote a constant in Eq (14.3)

= gpacing between resonator mirrors

= plezo-electric tensor coefficlent of third rank
= electric displacement vector

= denote constants in BEq (14.3) and (15.2)
= angle of beam divergence

= alectronic charge = 1.6 x 10%° coulomb

= a superscript denoting extra-ordinary ray
= glectric field strength (volt/m or em)

= used to denote a constant in By (14.3)

= Mtuutyotwuagsﬂxlbn
rationalized mks unit)

= relative ttivity or dielectrie constant at
the sig and idler frequency

= G/C, = nonlinear coefficient
= amplitude of the forece function
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= multiplying factor in Fig 19(a)

= phase angle in Art ©

= complement of angle ® between the wave
vector and optie axls

= gonductance (Art 9)

= gain constant (Np/m or em)

= Aw/w,, fractional deviation of frequeney

= Planck's econstant (upon 27)

= Hamiltonian

=

= a subseript for idler wave

= @lectric field intensity

= subseripts with a tensor or veetor

= An/no, fractional deviation of refractive index
= a coefficlent (vide Eq 3.1)

= a coefficient (vide Eq 3.1)

= yave vector

= a constant in Bq (4.1)

= wn/e = yave mumber

= gusceptibility (Polarizability)

= gusceptibility tensor of third rank

= length of the crystal

= goherence length of signal wave

= goherence length for a pencil of signal rays

= loss by reflection in mirror (also ®, end 5,
are used in Bq 17.11)

= wavelength in free space
= wavelength at degenerate frequency
= goefficient of dielectric modulation

= gubseripts with w and P to denote
Fourier component

Vit



Vil
damping rate (Art 10)

refractive index

refractive index of the extra-o pump wave
propagating at an angle & with the ¢ axis

electron density

1/ > = yaves per meter or centimeter(fl or cil)
angular frequency

frequeney of pump, signal and idler modes

a superseript to denote ordinary ray

a subseript to denote degenerate condition
polarization vector

electric power (watts)

momentunm in Eq (4,1)

electric charge, coulomd (Art 10)

quality factor of resonator at the
signal and idler frequenecy

quality factor at the degenerate frequency

an integer denoting the number of nodes{Bg 17.,13)
radius vector in cartesian coordinate
electro-optic tensor coefficient (Art 2)

ratio of ordinary snd extra-ordinary refractive
indices at frequency w

reflectivity of the dielectric (multilayer)
film on mirrors

reflectivity of mirror 1 at frequency vy

radial distance from the beam axis

increment (or decrement) rate of the
field amplitude

wvave funetion or probability anplitude

= normalized frequency deviation § Art 10)

time (sec)
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R
= normalized time variable
= time period (see)
= angle between the wave vector and optic axis
= phase angle in Art 10
= phage matching angle at the degenerate frequency
= phase matching angle ®r any ratio of w'fwi

= time (or space) dependent electric field
= element of volume
= yvelocity of propagation

= radius of the pump, signal and idler beams
at the waist

= beam radius at the waist at the degenerate
frequeney.



ABSTRACT

DHAR CHOUDHURY NIRMAL KUMAR § Parametric Process due to

Nonlinear Interaction of Laser Beams with Uniaxial Crystals.
Phe.D. September 1968; Department of Electronics and Communication
Engineering, University of Roorkee. Supervisor : Dr. A.K. Kamal

Parametrie amplification and oscillation due to
nonlinesr interaction of laser beams with uniaxial crystals
have been nown for sometime. Technical data required for
the design of these devices are still wanting. The scope of
this thesis conecerns with the formulation and evaluation of
Design Data of Mechaniecally Tuned Parametric Amplifiers and
Optieal Generators.

Design data on parametric amplifiers and tunable
oseillators using the three types of nonlinear uniaxial
erystals, KDP, ADP and LiNbO,, were calculated by digital
computer. Five laser frequencies from 3164 R to 5761 2
are taken for ealculation of the phase-matehing angles
in KDP and ADP drystuls, both at the degenerate frequencies
and when ¥(=aw/w,) changes from O to 0.4 . Phase matching
angles have also been calculated for LiNbO4 corresponding
to four laser pump frequenclies from §300 3 to 11,523 io
The refractive index data of KDP and ADP used were derived
by the computer from the equations by Zernike. These data
wvere then used by the computer to derive the phase mateh
angles from the equation

n®(e} = n° [ 1+(r?=1) sinaﬂ-&



xi
o attempt was made to approximate the equation, which may result
in difference between theoretical prediction and experimental
results. The eurves bomoona>vmmlnmn
shoving a minimum at amttho-iddhotmmnbr/\p
considered. This indicates that employing pump sources of
shorter wave-lengths are preferable. Because of larger warlation
in refractive indlces, Lilib0,, espeelally in shorter wvave-
lengths show greater angular spread A8 for a given L)e

From the plotted graphs for each of these cases,
one can determine the phase matehing angles corresponding
to any pump frequency and any signal-toe-idler frequency
ratio. Design Tuning curves are given from whieh one ean
readily find the V& ratio (or ¥) as the erystal is rotated
avay from the degenerate angle 6, The mismateh gradients
(dk/49) are derived vherefrom the power changes caused by
divergence of laser beams can be readily estimated.

Laser beams are essentially Gaussian in the trans-
versal direction. The simpler theories of parametrie prc;u-m
originated by plane waves are extended %o Gaussian distribution
by adopting a simplified concept. 3tationary modes of pulsed
oseillations are considered in Febry-Perot resonators with
plane parallel mirrors having mirror loss-coefficlents
ranging from 0,01 to 0.l « The Q=values of resonators wvith
cavity length l=lem are obtained for different values of
»p and Y+ These Qevalues are used to estimate tho coefficlent
of dlelectric modulation m and consequently the thresghold of
punp power required to excite oseillation in these resomators,

from Eguations
n> 2/(egep)?

Ep=mgng/2 X
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All these are programmed seriatim in digital computer. A set
of computed values are given for R=0.99(1 percent loss
coefficient) of plane parallel mirrors spaced 1 em apart.
For a KDP erystal at the degenerate wavelength AQ-IgOG u
and beam radiun,gbtl mm of plane waves,

Qou 4.419110‘

m = 4,496 x 107
B, = 12,66 KVeﬁl

I. = 0,317 mﬁz

P

Pp = 10 KW

The pump threshold increases as one tunes off the degenerate
frequency. Graphical plots are given from which one can readily
find out the single-pass parametric gain of amplifiers consisting
of KDP, ADP and LiNbOa for any intensity Ip of the exeliting
laser pump source and any ratio of the signal and idler
frequeney. As an illustration, the g values with !p-lﬂo KVeil
mm%hmmMMMHWWmeﬂm&«hd
at A,=1s06 u t0 1415 Np ci" at Aj=2,3 u. The corresponding
signal-power gain are 24 and 4.7 db. The g values reduce with
tuning off the degenerate frequency.

CW oseillations caused by well-defined pump beams
from CW gas lasers are considered in the lowest modes of
confocal type resonators containing ILiNbO4 erystals in the
foeal region. Beam radii at the beam walst are caleculated
from the equation Y =by\,/2m for two typieal values of
confocal parameter b°-1 and 5 em at five laser frequencies.
These are then utilized to estimating the power required of



the pump source. At the degenerate frequency
] a o1
Py = g o G

As an illustration, the pump power required of an Argon~ion
(5145 R) laser in order to commence parametriec oseillation
in a confoeal resonator with b =1 cm and econtaining LiNbO,
erystal ]»1 em, is 5,27 mW at the degenerate wavelength
Po®1403 U, -The threshold level rises to 8,87 mW at Y =0.4 .
In CW parametric amplifiers much smaller gains in
idler modes are avallable, If houlo cmy the beam radli are
$=7,33 x 10° en® at 70,936 u and 3=3.66 x 10° ea®
for Y 0«1 and %-hm ue With a pump power of 10 mW
(x’usm g}, the idler-to-signal powsr ratlo Piu)/P.(u)
1s 2.15 x 10° in a 1=1 em long erystal. The corresponding
ratio for ogeillator is 7.73 x lﬁau
The threshold pump power, power gain and other
useful design data for mechanically tuned CW oscillator/
amplifier with LiNbOg erystal are evaluated by computer
at five pump frequencles and given in Tabular form. MKS
system of units is used in this Thesis.

it



INTRODUCTION <

Consequent on the development of Lasers the Nonlinear
Interaction of light with matter has become an extremely important
topie. It is now possible to have monochromatic light of
exeoedingly high intensity in the order of Mi/en, At sueh
high order of intensity, the nonlinear properties of materials
make substantial eontribution to be useful in the development
of optieal sources, nonlinear devices and systems.

Nonlinear properties of materials have been known
during the last seventy years. The nonlinear permeability of
ferromagnetic materials or the familiar BE hysteresis loop
leads to considerable heat generation in electrical machinery.
Modulation end demoduletion of radio waves are obtained from
nonlinearity in devices. Parametrie amplification of miecrowaves,
although of recent origin, utilizes the basie nonlinearities
in certain materials. Nonlinearities in plasme has during the
current years offered the scope of gigantie power generation
and other applications. |

The classical Maxwell's equation

D = c¢(B)E 0 Bw DR

were applied to some nonlinear problems in 1800, Optical
properties of erystals were explained by Lorentz and Drude
by a model in which electrons were assumed to execute harmonie
vibrations in en electromagnetie field. But they did not
consider the anharmonicity of the slectron oselllator caused
by the guadratie coulomb forces. '

Thomson considered the response of an electron in
an electromagnetic wave and obtained the dispersion relation



due to emission of light from the induced dipoles. The
Lorentz foree on the oseillating electron induces a dipole
moment at the second harmonic frequency and 1s directed
along the direction of propagation., The second harmenic
intensity is much smaller than the fundamental, For small
field intensities this nonlinearity is absolutely negligible
at optical frequencies.

The diffused wave by each elementary oscillator
interferes in a destructive manner. The ecoherence and
intereference of the scattered radiation are important in
nonlinear dispersion. One ¢an deseribe them by nonlinear
polarization and studying its characteristies. The spatial
variation of the nonlinear polarization (1) caused by
waves wy and ﬁh is determined by the factor 1(K,+K)r. When
'féﬁliﬁmh, the nonlinear waves at the sum or difference
fr.qnanmy'qsuuigqa emanating from each element of volume,
produce coherence or phase matehing.

Power in laser beams has been measured by Kamal and
Subramanian (2) by utilizing the de polarisation in a nonlinear
medium owing to the incident beam. The q: polarisation 1is
given by

F= Géfalgcan 2¢

where EC 1g the intensity to be measuredj Xp is the polarisation
coefficient and © the angle between the incident polarisation
and the crystal x -~ axis. The power meter developed 1s based

on a cylindrical quartz rod partially cnvolapod by a pair of
concentric eleetrodes having the shape,S =F cos ©, and placed
perpendicular to the x-axis.
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Advantage of the nonlinear polarization at the md~

frequency is taken in the generation of seeond and third

harmonie. The paremetrie process on the other hand uses

the nonlinear polarization at the difference frequency.

The seeond and third harmonie generators work at a few

spot frequencies whereas optical perametrie generators

have been tuned continuously through the visible and

neer infrared frequencies., Excltation of parametriec

action in unisxial erystals necessitate in general

pump power of the order of megawatts. Such power can

only be delivered by solid state pulsed lasers, such

as the ruby laser (6940 A) or na>* glass laser (1,06 u)

Focusing of beams by confoecal resonator considerably

reduces the power requirement. Confoecal resonators

eontaining unboa erystals have been exeited by CW

gas lasers such as the Argon-lon (5145 A) laser.



CHAPTER I

REVIEW OF BARLIER WORK

This chapter purports a review of the nonlinear
phenomena in dielectric media originated by concentrated
high pover laser beams. Atomic origin of nonlinear suscep-
tibility due to strong electro-magnetic field is examined
both from the classical and the guantum mechanical model.
Theoretical caleulation is made of the magnitude of nonlinear
suseeptibility and compared with experimental results.
Propagation of waves is deseribed by combining Maxwell's
equations with P'P, Coupling of the fundemental mode with
its second harmonic or of the signal and idler with the
pump mode during their transit through the nonlinear
lossless dielectric is examined through two coupled=wave

equations.

Erovicy
The original experiments of Franken and his colleagues(3)

successfully demonstrated the second harmonic generation (SHG)
of coherent light. The electric field from a ruby laser
(6940 ) having an output of one joule in one half millisee
was projected on the front surface of a erystalline quartz
plate. About 18° of the ruby radiation power was estimated as
converted to second harmonic at 3470 2‘

A measure of the further progress in this field is
the experiment of Terhune et al (4) with a one MW giant ruby
laser. A 15 em foeal length lens was employed to coneentrate



the laser radiation in the cerystal. Second harmonic
conversion efficiency as high as 20 per cent was achleved
in ADP crystal.

Parametric amplification and generation of optiecal
frequencies 1s of comparatively recent origin. Nonlinear
uniexial erystals, the KDP, ADP and LiNbOg have been utilized
for this proeess. Tuning of the oseillator around the
degenerate frequency has been achleved by three different
methods

l. rotation of the erystal
2. temperature tuning
3. electro-optic tuning

2, Nonlinear Dielectric Materials

Many crystalline dielectries exhibit nonlinear
phenomena of sufficient magnitude to render them suitable
for optical harmonie and parametric generation of coherent
light. Amongst these KDP (Potassium dihydrogen phosphate,
type 22m), ADP (Ammonium dihydrogen phosphate, type 42m)
and LiNbO, (Lithium metaniobate, type 3m) have been widely
accepted for SHG and Parametric processes. Materlals like

GaAs, In8b, etec. are under study.

The material for production of optical harmonie
must be relatively transparent to the fundamental and the
desired harmonics besides, the symmetry properties of the
erystal also needs conslderation. Let us express the optical
polarization P in the form

P = 260(7‘1-13 - T2E2+ ,XSES)

2.1
E=T cos wt W)

ot



where X 1fgsYg are the dieleetric susceptibility tensor,
The nonlinear tern Gufgfl produces the seeond harmonie and
d=¢ polarigation components,

Flaw) =¢ghocos 2wt
- G,T,l:

0f course, the nonlinear susceptibility S is a tensor of
the third renk.
The general expréssion for polarization is

¥

" [13:*‘”‘15113‘:*“713&; Iki].

+ their derivatives which are small |  (2.2)
The nonlinear second order polarization is th\u
Fli(r,t) = 26 ¢ Xy By (r,0)E (2, 8) - (2.9)
The factor 2 1is _ineludqd so as to conform to common usage.

The eleectrlie field and the nonlinear polarization is expandable
in Fourier series(S) as

E(ryt) = By(o,r) + iZE( .r)m[i(k,mpt):[ (2.4)
P(r,t) = P g (0yr) + iZ'ﬁi(u yrlexp (lugt) PRy Tﬂ.s)
From (2.,3) and (2.4), we get

Fyew) =G% 5 ¢ By B (wexplazicr) L (246)

This nonlinear polarization at 2w due to the fundamental
v will be responsible for second harmonie generation. At the



difference frequency \r, = W=V
Fyiwy) = 36, g + Byl IBECw, Joxp [1 0k K )r] (2.7)

If one of these electric field is a d.c. field, one
finds the well-known linear electro-optic effect, that is the
effeet in which the ordinary optical polarizability of a medium
is modified by a strong d.c. electriec field.

Filite) = 46 g ¢ (o) (w dexp(ik r) (2,8)

The susceptibility tensor fiﬂ is found to heve an intimate
relationship with the electroptic tensor which is denoted here
by Tyqe Bass (6) has derived the relation for the d.c. suscep-
tibility

4n = "ﬂ-’; md
where n 1s the ordinary index of refraction. The equation
provides a method for experimental determination of the seecond
order nonlinear susceptibility.
The third-rank tensor vanishes for any system with eentre
of inversion. The tensor elements in erystals without inversion
symnetry have in general the same form as the nonvanishing

elements of the plezo-electrie tensor "d". For example in KDP
or ADPy the erystal symmetry leaves only three nonvanishing
components d,,y 4,4 and deg (Appendix 1). Here Volgt notation
is used. The measured (approx.) values of the nonlinear
susceptibility are dgg=1.26 x 1'%, d,,=0.6 x 1'% Wwolt.
Crystals with an inversion symmetry do not generate
second harmonic, slthough generation of third harmonie (THG)
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is possible. Non-gymmetry may however be indueced in these
erystals by the application of a strong d.c, electrie field.
Marker at el (7) have observed production of optieal third
harmoniec in ealeite, isotropic liquids and in cubic erystals.

_ In a classical model for ealenlating linear polarigzation
of a medium, Drude and Lorentz postulated the electrons as
harmonieally bound partiecles. Actually the valence elsetrons
are loosely bound by the Coulomb field and the anharmonicity
of the electron oseillator should be taken into aeccount for
caleulation of nonlinear polarization.

Let us consider the motion of a one~dimensional
anharmonie oseillator with damping, and subjected to two
fields of frequencies #w;, Wy and wave vectors K,,K, and
propagating in the z direetion. 5

% +ix + -g: 332 = gao[zle:p 10k, 3owy ) +Epexp 1 (kpz-unt)] (3.1)
First linear approximation gives

x(v,) = *;M[B,m :I.(kln-v,ﬂ]
Putting the value of x> in Bq (3.1) and equating the Q

coefficients of the Fourier terms, the various dipole
moments (e.x) become

Plug=wy tup) = %ﬂ,ﬁo 1 (leggmigt)]
Flwymug=y) = "ﬁ% A Oy (@
- 3 S
Plwg=2wy) = W,ﬂn t(kﬂﬁ)_]

vhere Dy = uﬁqq-iv’ s §=1,2

“)

‘n



g =

From the last one of these equations, the nonlinear
suseeptibility causing the seeond harmonic generation

is
3
[ - :
af‘") & Mﬂ T (3.3)

The ratio of the nonlinear polarization at the second
harmonie frequeney and the linear polarization at the
fundemental is

%t?-]ﬁyﬁy (344)

This ratio 1s 6f the order of B/2B,, where E, 1s the atomic
field on en eleetron (8), Sinee £,=3 x 10° volt/em, ve obtain,
even for an extreme field intensity E=2 x m‘ volt/em (power-
density of 79 x 10° watts/en®) at the focus of & Qeswitched
laser, /28, & 3 x 10°, Inspite of this small order of the
harmonie polarization, experimenters have detected (9) the
third harmonic ultraviolet radiation. A typical ruby pulse ..
laser of 1 joule contains 4 x 10°® photons and third hermonte
conversion effieleney of 1:10%° provided about 10° photons
at »=2313 2 vhich are readily detectable with optiecal
instruments.

Let us have an estimate of the nonlinear susceptibility
from the classieal By.(3.3)

3 / Eg 33
g ) N .
f(aﬂ'} -_)u—. = '—e.? )1,5'%‘ {m 2
o A

2¢,(eka)
For values N, = 2.6 x 10%° E%e = 1.6 x 16 coulomb, _(M?.!',\‘Q
"'ﬂm"‘““u""mmﬂuiﬁmontnu \

X (2w) & 26,1 x 152 Wvolt 1
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This figure compares favourably with the experimental

values of nonlinear susceptibility in the optieal region.
A similar computation of the linear susceptibility ylelds,

Xw) = N ea fc B, = 1.57 M/volt

In these computations we have assumed that none of the
fundamental or harmonic frequencies is close to the atomie
respnance frequency, in the event of which the ratio in
Eq (3.4) increases by a factor v/t

If the atom is at a centre of symmetry the nonlinearity
from the dipole torm5x® vanishes, but it may originate in
nigher order miltipole terms like Sx°.

4+ Quentum Hechanicel Zreatment

Investigation on the atomic origin of nonlinear
polarization from guantum mechanical consideration has
been conducted by a few workers in this field. The most
intensive end interesting one is the 'Three Field Theory*
by Armstrong and Coauthors (10). Here we shall adopt a
simplified procedure following Framken and Ward (11),

For an isolated atomle system the Hamiltonian may
be written es

o = é + (4.1)
Let this be subjected to a perturbing electric field,

E(t) = E eos wt. The perturbarbation Hamiltonian in dipole
approximation is given by WY aaer s e ?

| gAY
Hgng @ X E cos vt = i[m*(iﬁl*-m(-iwﬂ (442)
and the wave fumction \Fn -.nq?n m(.ﬁ"')
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Putting this in the Schrddinger wave equation
1hoY /ot = CHg iy o) Y (4.3)

The dipole moments at the fundamental and harmonie

frequencies become i
e ¥N e Y0ox) g (B [wrdeg + wdogleos vt (4ud)

2 a, VKJ(’A‘:E

QV(:} \“\"3 = E‘P * () (u)m‘:’ (wexpliv, &) + c.c. Stopos o
2w 'ﬂ\,"!\

-ﬁ fo")u‘mm“'ﬂuw cos 2 wt I“ﬁ.g..) ﬁ
Qﬁ:)\ﬂ‘&:,zw = ;: EO!J gn(BeX) g (Bex) o [W *
't:..wﬁ-“m 1‘“ 2vt (4

For an approximate ecomparison of the polariszation, we may
consider the states m and n very close so that Vo ™o =V *
We may also congider that the matrices (E.x) is simply Ex
i.,e. a secalar quantity. Then

!hrl-lxm‘wu/-mdn-a,nm'n,ﬁ(ﬂwv.)wimlt.
the ratio of the moments at 2w and w is ml.

If w(w,y we have from By (4.4,445,4.6),

Flw) = # = ’.;ﬁ.;:n- B€anal )
o
Fiaw) = % 2efegedd (4.7

m.gﬁ.iﬁ!“

e p)

",
This about 15° for & = 2 x 10® volt/n. We may alse obtain an



idea of the order of nonlinear susceptibility from the
approximation of quantum mechanical derivations. From

Eq (4.7)

2 |
X(aw) = 3-‘-—:!-6!:1 = 3.4 x 157 Wvolts

This may be compared with the measured nonlingar suscepti-
bility
Ggg(2w) = 1.2 x 15°° Wvolt for KDP

+

Interaction of ctromagnetic Rad
ith Nonlinear Dleleetric lMedly

Consider a nonlinear lossless dielectric medium (n = 1)
traversed by two laser-waves with frequenecles vy and e
These two waves will generate nonlinear polarization at sum
and difference frequencies (wg=w,iw,)e Maxwell's equations
in «the medium can be written for each frequency as

ﬁx'ﬂnafg
72T =R

where D= eoe"
Be= p.'E (?)&"1)

Then vz ¥ -e'eﬁx}ﬁ: Dat (6.1)

: (7
The solution of the inhomogeneous equation in en infinite,

anisotropie dielectrie medium are linearly polarised plantvaves,
the amplitudes of which are slowly varying functions of dlstance
along the direetion of propagation. The nonlinear polarization

'!“‘nr.t ('I') ereated by the other two waves atvlandu.dl.l
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mmutﬁththamutwrztunhtuamtmd
to and in phase and a component parallel to but 90° out of
phase with Bgs The component in phase with the field T stores
an energy.

»
H(l.‘!)at = 4he (B3P M(wg) |

per unit volume, The out-of-phase components does work on
tho_matsnﬁo

'
HEBiat = g, Py

Nonlinear polarigation with a 90° lead in phase does
work on the wave and hence increases its intensityj if it
has a phase retardstion of 90°, the work dome is negative
and the wave at wy will decrease in amplitude.

One can restrict himself only to three waves. Although
initially several other waves may be ereated, only those with
Ak=0 will continue to grow. Begause of severe mismateh in a
dispersive medium, other waves will quickly dissipate their
energye

6+ Second Larmonic Generation

Let us consider the simplest case of SHG in an anistropie
medium traversed by two waves, that is a second harmonie g =2W,
interacting with the fundamental Wy W,

From Maxwell's equations (5.1) the growth rate of the
eleetric field due to nonlinesr polarization P'C is deseribed

by
ﬁ(v,,r) = l'—e:kﬂg.,r)m(-upﬂ (6.1)



Considering only the frequency component w, in Eq (2.4)
and (2.5), one obtains from (6,1) the coupled wave
equations

£% W) = 1%}afmm\.m-«ﬁ,tmﬁ&mmwz

+3,ew) -1cgz-)ﬁn(m.w,wﬁltwﬂk(u)e;pmma (645

vhere the momentum mismateh Ak = tﬂ-ﬁr From permutation
synmetry relations

With exact phase-mateh between the fundamental and the
second harmonie, k,=2k,, a large second harmonic generation
is possible. Assuming that the fundamental intensity remesins
fairly undepleted, and that the second harmonie grows from
gero at r=0, we have from (6.,2)

lﬂﬂw} = By (wy0) tanh gr

(6.4)
l,_('ﬂ = By (wy0) sech gr
where the gain constant
g "%ﬂiﬁi‘"ﬂ“;"&“nﬂ (645)

The amplitude of the two waves plotted as a funetion of the
distanee r 1s shown in Fig. 6,1. With the growth of the second
harmonic the amplitude of the fundamental decreases. The
eoherent length is defined by

1y = § = TR GeyeT (646)
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45 18 the index of refraction in the medium at » the free "
gpace wavelength of the incident laser beams After travelling
the coherent length J the emergent light should eontain
about 76 per cont of the fundamental power. Although sueh a
large power eonvorsion is pérdicted by the theory, beam
divergonce and other factors limit this figure to less than
30 per conts

0f the various teehniques used for increasing the

ecoherence length, the most ingeniocus one has been the
utilization of the birefringence of uniaxial nonlinear
erystals. For ingtance, in KDP crystal the ordinery
refractive index n® at w equals n® at 2wifor the direction
of propagation 50° (matehing angle) with the erystallographic
Zeaxis, If we take n = 1e8,X = 5 x 1522 Wvolt, & = 207 volt &
wnghamamvotmﬂmnm
laser, ) =6940 %, we caleulate J, = 0433 em end s gain
‘.a’dl,

Juperfoct Matoldng s AKX £ Q

If the fundamental beam is assumed to remain undepleted,
Bg (6+2) may be integrated

Bytaw) = 1g Ty (w) [l | (647)

This indieates a perlodic varistion of the amplitude of the
second harmonic with erystal length L. Pige 642, due to
Mayker at el (12) eclearly demonstrates this periodie variation
in intensity at the exit surface of the erystal.



Kleinman (13) has evaluated the square of the funetion
within the perenthesis of BHq (6.7)s The average is

S
= 3'«;011“»' for L)Aoope thick erystal

where the coherent length is defined as
o '/'3'25 ' (6.8)
(= R@e,

A® measures the deviation of the beam from the matehing
direction ©,+ Henee from (6.8) the second harmonic intensity
become for a laser intensity I,

(a) Zhin Crvatel
P= Eﬁ- j(’lnlg (6.2)

[+
(b) Ihick crvstal
P= ?;i'-fﬁ I{ ddeh (6.10)

The average harmonie power is proportional to Ig and varies
as ] in thick erystals. In Q=switehed laser the conversgion
efficiency 1s appreciable, and hence depletion of the
fundamental power ecannot be neglected. If this is taken
into aecount, the dependence of P is found (14) to be
proportional I;‘n- For a laser intensity of 10° ﬁﬂ,

Bg (6+410) prediets a conversion efficlency of about

2.5 per cent in a 5 em long erystal at 0,347 u second
harmonic.

The theory of harmonic generation in beams of finite
divergence due to Kleinman predicts small conversion
efficiency. It was generalized by Akhmanov at el. For
large eonversion effieieney (15). The dependence of

16
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conversion efficiency on the ineldent power for different
values of mismeteh gradient (Fig 6.3) econ be ealeulated.
mmmdammmumm-dm
studles show large conversion effieiency, For unfocused
’mmuur‘tn:-mmmmmnmu
(15) ave P(2v) = 25 to 30 W, P(3w) = 8 to 10 W and
Plaw) = 3 o 4 N,

In the experiments of Terhune and Coworkors, more than
20 por cont of the fundemcatal power from a glent ruby laser
was eonverted to second harmonie. The beam was slightly
focused and aligned along the phase matehed direction (50°
with the seaxis) of a K0P erystal, Using this phase matehing
m,mndmnmumn;mue
mﬁnommwwmmtu&w-dm
erystalse Saturation in the conversion efficiency way be
aseribed to bean divergence, double refraction ete. whieh
cause the power of thc lascr beam end the second harmonie
to propagate slong slightly different paths, The effect
of doudble refraction ean be reduced by affeeting phase=
nmnunmio'ﬂth-m.nﬂn

7. EPacagetris Amplification and Sullorsonie Genaratlion
mmumwnsm-«un

mmuaanMn’MMu
perametric genoration. Let us eonsider the propagation of
e signal frequency w, and an idler m't("“'p"'s'l.
generated in the anisotropiec mediuz through nonlinear
interaction, Substitution of T from (247) in (S.1) leads
to coupled wave equations, wileh under phase-matehed



econdition become

45 (v,) = 1('2_::&,(«,_.',,-',3 8 By (w)Ey(w) (7.1)

The subseript 1 with w should not be confused with that
with B, When the waves are phase-matched, !, = KoK It
iz essential in optical parametrie generators that both
the frequeney tuning p bl A and momentum matehing

(or phase=mateching) are simultaneously satisfied. Combining
the two equations of (7.1),

* _ k "
5- (wg) = ('G':?i)]\'l:! (w,)

If we regard the pump amplitude I’ as conptant, we get

f,l'(n,) = 5wy

(7.2)
ﬁlhﬂ = :’Nwi)
where the gain constant or the eoupling parameter g is given by
g= ﬁ?h:‘}*]-c-? | (7.3)
Solution of (7.2) is
I;(v‘.,r) = Bg(w,y0) cosh gr
By(wgyr) = i(v;h')’!:(w',e) sinh gr (7.4)

These equations reveal the growth of the gignal and idler
frequencies, the pump frequency supplying -the
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requisite power. It can be shown that Manley -Rowe relations,
well known in the theory of mierowave parametric amplifiers,
are obeyed.

Figs 7.1 shows the schematie of a travelling wave
parametric amplifier where phase matching and consequent
tuning off the degenerate frequency may be obtained by
rotation of the erystal (16). A lithium metaniobate parametrie
oseillator has been tuned continuously through the infared
by Clordmaine and Miller (17). They have employed variation
of erystal temperature to obtain phase matehing at 90° with
the optiec axis for different ratios of Vg end vy This
parametrie oscillator was pumped by e 7 KW, 5200 i second
harmonie rediation from a neodymium-doped GI.W‘ laser,
Energy conversion efficiencles of the order of 0.2 per
cont were obtalned.

Parametric amplifiers and oseillators employing KDP and
ADP erystals have been worked by Aklmanov and his
colleagues (18). Continuous tuning is achieved through
rotation of the erystal about the optie axis. At the
phage=matched angle the frequency eondition 1s also
similtaneously met with, It is to de noted that the
optical resonator must be simultaneously resonant to
signal end idler frequencles, but relatively transparent
to the pump frequency 2w, where L is the subharmonie
or degenerate frequency.

Recently the method of electro-optic tuning (19) has
also been suceessfully achieved for continuous tuning of
mma parametric oscillator.
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It is evident that parametriec oseillation will not
be initisted until the gaim in the nonlinear medium overcomes
the resonator and bulk erystal losses. Thus the punp power
must exceed a threshold lovel, whiech in pulsed lasers may
be seweral hundred Kwatts. Pump power may be considerably
reduced by using confoeal resonator. Only a few m-watts of
exeiting power from CW gas lasers have been found fo cause
oselllation in LiNbOg with confocal resonator. The same
conditions apply to parametrie amplifiers as well, in the
sense that there is no amplification of the signal and
idler waves until the pump power is above the threshold.
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This chapter is devoted to the examination of
parametric oscillation in two « resonant cireult coupled
by a nonlinear capaeitance, periodic variation of whiech
is caused by a pump voltages Such a system bear strong
analogy with the parametric oscillation exeited in nonlinear
erystals by laser fields The three frequencies are related
by Wy = wytugy Wy = W, (1+7), wy = W (1=7)y vhere w, = t,/l
end is a small faction, The conditions of oseillation
are derived and the "stabllity zones" of oseillation
calculated by digital computez,

Ereview of Analoglcal Treatnment.

Harmonie Generation in Nonlinear eireuits has been
known through several decades, but the phenomenon of
subharmonic generation is of recent origin, linear differen-
tial equations of the form

£+5% + wix = F, cos wt (8.1)

will have the solution whose period is T = 2 /w and is the
same as of the foreing funectionj in other words, if the
unforeed linear system has no periodie solution, then there
ean never be an isolated periodic solution of any period
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except 27/w. In nonlinear systems on the other hend, isolated
periodic solutions may exist whose least period is an integral
miltiple n.27/w of the period 27/w of the foreing function,
For instance nonlinear differential equations of the forn

% +Xf(x)d + Wiz = F, cos wt (8.2)

may have solutions of period nT where the integer n is
greater than 1, This phenomenon is lmown as "Subeharmonic
Resonance™ and the solutions describe sub~hormonies of
order n.

Little research has thus far been done on the generation
of powerful coherent infrared radiation. Ciant laser
frequencies along with their SHG and THC work mostly in the
visible and ultraviolet region. Since molecular vibrational
frequencies lie in the infrared, the coherent infrared
generators, if developed will exert exceedingly strong
resonant interaction on substances. Ciordmaine & Miller (17)
and Miller & Nordland (21) have utilised the parametriec
process in Lithium metaniobate LilbO,, for design of
continuously tunable coherent infrared generators/
amplifiers. Akhmanov and Coworkers (22) have employed
the same process in KDP and ADP, Sub=harmonic frequency
generation may be viewed as a special degenerate parametric
process wherein the signal, idler and the pump frequencies
ere related through the expression w, = v, = w/l. Para~
metric down conversion and the consequent generation of
coherent optical frequencies utilizes the phenomenon of
nonlinear coupling in dielectric erystals like KDP, ADP

llidu.boau
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The following embodies an examination and discussion
of the phenomenon of subharmonie resonance in a typical lumved
nonlineayr cirecults The process of subharmoniec generation in
these parametrically exeited systems is more or less identical
vith those in nonlinear materials containing three colinear
phase~matched modes, whose frequencles are related by the
equation \r.wt = w,q Time variations of the amplitudes in
the former is analogous to the amplification of waves in
space by nonlinear interaction, As pointed out by Louilsell
at el (23), the parametric equations in the time domain
have the same form as the corresponding spatial equations in
the nonlinear dielectric material. Despite these close
analogles, however, there is an important difference that
optical subharmonic (or paramctrie) generators require
"optieal tuning® as well satisfying the requirement
KoK, = !p where K's represent the wave numbers A simplified
theory of parametric amplification and osclllation in

nonlinear material is given in Appendix II.

Let us consider two resonant cavitles coupled by a
nonlinear ecapaecitance of the form

C(t) = Gy[1 + € conlu t+d)] (941)

The time variation in the capaeitance 1s affected by a pump

source of frequency x, = Wy tige The phase and amplitude of
the pump is such as to cause parametric oseillation/amplifi-
eation in the eireuit. Frequencies of the resonant modes,
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Wy and Wpy are related to the degenerate frequency Vg by
Wy = Wy (1+7) § wy = w(1=Y) (2.2)

where Y 1s a small fraction, Oseillation/amplification in

this system is analogous to those in nonlinear erystals to

be econsidered in detall in subsequent chapters. The eircuit

in Fig.9,X a) may therefore be considered as an electrical
aﬁuinlont of the optical parametric generators. Following
Louisell (24) the coupled wave equations of this parametrically
exclited system may be written as

o %, ginexp(iv, t)
Tt geigemiiv,
* (9.3)

'? = Yogliy + “gyliyexp(=iuyt)
vhere 0411 = 171(1 + n'::)
Wy AC
X i (+i7) (9.4)
12 = m‘-’]t?ﬂ exp(+
2 _
“a1 "1;(';;@ exp(=i#)

To remove the time varying mrﬁeiontm, let

u, = Ul-(t)m(ivll)

(9.5)
n; = B;(t)up(-tv,t)
‘@ resulting equations for mode amplitudes are
. o
TeU vy 0y = X5
(9+6)

THUg= (gt pe) Uy =g,
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Solution of (9.6) vary as exp (st) where

s = =} [1(wysuy) =(%)1+%0)]
] (80t ed] + gy tivy=hy) o]

(9:7)

Growing oscillations will only occur, if the square-root-term
is larger than the decaying terms, i.e., if

%1g%ey = (%yetin) (ptivg)

or, dlﬁd‘;l ‘-& (9.8)

In terms of the nonlinear coefficient, €= AG/C,,

A 2
9
% T o

At the degenerate frequency Wy = Vg =W, the conductance
G = woc./q', should satisfy the relation
v, AC

GS-a— (9.10)

This may be compared with the derivations in Appendix III,

Rariodic Solutlon : Dogenerate Case

The equivalent lumped eireult is shown in Fig. 9.1(b).
The system differential equation is

:3 +'§;'&% + "g(l"%f cos wpt)q =0

Putting Q = x(%) exp(~tt/2), i= G/C,

ik au i é-s:fi%f .



and replaeing t by the normalized independent variable
T= wmm, one obtains the Mathieu Equation,

ﬁ + (B+ceos 20x =0 (1041)
In the first unstable zone w’ = ng while in the second
ﬂh = ‘bq

Following Whittaker, the quasi-periodic solution of (10.1)
for small values of / may be written for the first unstable
zone ag
x = (exp n7)L(7)
£(T)= nin{t-o)d-a’eol(al‘-e)‘rb'.in(at-ﬂ

+asene

With the result (2§),

ns= -&esm% €slmtuu--¢nn

o? = 1+hccos20rsh X(~1+he0s40)
8y = ghasin20+eces (10.2)

bg = ‘ﬂwﬁeﬂwﬁﬁ ces

The boundaries of the first unstable region is obtainable

from the second of Equation (10.,2) by putting =0 and -¥/2,
Thenyto the first approximation,

S=lsde (10.3)

the nonlinear coeffielent ¢/l causing small detuning. These
are the transition curves separating the reglons of stability
and instability in the (o®y¢) plane, Within the unstable zone,

that is the zone of possible parametrie oselllatlon, we have

26
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from the first of equations (10.2)

n=%csin 20
The charge Q = £f(Dexp [{)I-E.)ﬁ
For sustained osecillation of the charge

n = 5/2v,

Thus é-:teunm
or 533;-4-?;@

or ¢ = -Hnﬂ' . (10.4)

This may be compared with (9.10)s Thus in the neighbour-
hood of parametric resonance c-’ = 1, the eircuit sees a negative
conductance given by the above equation, ® is the phase of the
stable oscillation.

With the help of a digital computer, the values of cos28
(and hence 8) for different values of o~ and ¢ have been computed
as shown in Table IV.l (Appendix IV). These © values have been
used to compute the values of u and the coefficlients ag,bg (sq.m.g
Higher coefficients ns,b5 are comparatively less significant
and hence not shown, It is observed that the presente of detuning
displaces the phase at the stable point by a small degree.

The oseillatory condition is given by Eq (10.4). The values
of u are given in Table IV.1l, so that the stability of osecil-
lation and hence the values of G regquired to substain oseil-
ation may be ascertained.

Results of analysis by analogue computer of subharmoniec
generation relating to the first unstable region is shown in

’
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Figs 10.1. Large build up of amplitude at the subharmonie

resonance (w’/t) is markedly visible in the traece at the
bottomy o = 046, ¢ = 0.8 where the nonlinearity is i thin
the unstable zaoney vide k (1&;‘)1



Five laser frequencies m‘mih B‘ng are
taken for ecalculation of the phase matching angles in
KDP and ADP erystals, both at the degenerate frequencies
and when Y(=sw/w,) changes from 0 to O«d. Phase matehing
mhcmmw,mmtdtttmmmha
from 5300 A to 11,523 1. The refractive index data of
KDP and ADP used are those obtained by computer from
the equations by Zernike. Tabular values are given and
graophs plotted from which one can readily find the phase
matehing anglex corresponding to any pump frequency eand
any signal-to-idler frequeney ratio in KDP, ADP or m,.
Design Tuning curves given for each case show the values of
>\‘ and Ay as one rotates the erystal awvay from the degenerate
angle ’a"

Mismateh gradients (dk/d0) are derived wherefrom the
power changes QM by divergence of beams can be readily
estimated. -

Breview of the Parametric Frocegs

Although studies have &cn made on the second and
Third Earmoniec Ceneration of optical frequencies, compara-
tively less investigation seems to have been directed
towards resonant nonlinear interactions in the infrared
region, The second and third harmonic generators and
amplifiers work at a few spot frequencies l.e. the harmonic
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frequencies of fixed ultranarrow lessr frequencies. The problenm
of achieving cohorent optical oscillators, that could be tuned
continuously over the ultraviolet, entire visible and near
infrared froquencies pose an exeiting proposition,

in effective method of obtaining "Tunabdle Oscillators
at optical frequencies™ is to employ the phenomenon of parametris
interaction of eoherent light waves in a nonlinear transparent
dielectric medium. Powerful coherent beam of light from a laser
is made to act as the pump wave. Power from the pump wave flow
by nonlinear coupling to the signal and idler frequencies,
according to Manley-ilowe relationship. The three constituent
frequsncies are related by

vy = Wty (11.1)

This is the energy conservation equation, as would be clear
by multiplying through out by the Planck's eongstant. The two
coupled wave equations at the signal and idler freguencioes

may be written (vide Eq 7.1) as

e SR SR
B - Tt A, T

vhere the coefficient of dielectric modulation m is given

w.
2 ;
m= 1-5]; {11,3)

It is ovident from (11,8) that the interaction is maximum

wvhen
!’ u"lot‘ (11,4)

{11.2)
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This is the econdition of phase matehing or the law of

mouentun congervation. Thus for parametric generation
of coherent light it is not only necessary to have the
"optical tuning” of resonators By (11.1), but also to
satisfy "wave tuning™ or phase matohing of the wave
vectors (Bq 11.4)s The latter condition 13 also called
the "synehronism eondition™, Combining the two equations
of (11.2), we obtain

Py, oo

The solutions are
| 2,(r) = 5 (o)expler)
By (r) = B (o)oxpler)

vhere the gain constant or growth rate

e ) o

For oscillation, tha galn constant must overcome the losses
in the eirecuit.

Fige(1l,1) shows one scheme of achieving pareametrie interaction
in negative uniaxial erystals. Eere the pump wave is extra-
ordinery while the signal and the 1dler waves are ordinary
all coupled together and propagating as one collinear beam
wmmunmounnm»mm-.
Rotation of the erystal adout the direection of the pump

wave vill generate new pairs of Ag @d ’go Besides mechanicel
tuning, whieh is scrieved by rotation of the nonlinear crystal,
two other types of tuning have been successfully tried.



These are

1. temperature tuning (17), and
2.+ tuning with electro-optic effect (19).

Because of the superiority of mechanical tuning, elaborate
design data for this system have been worked out in this
thesls.
12, Negative Unigxial Crystalg s Wave Jurfaces

As i3 known from studies of crystallography, the veloeity
normal surface in wniaxial negative crystals is an oblate
ellipsoid of revolution about the sz-axis with an inscribed
sphere. Figs 12.1 shows a section through the principal plane.
The vibrations, or the plane of polarization of the ordinary
rays are in the equatorial direction (plane) while in the
extra~ordinary rays these are in the meridional directionj
these directions are shown bdydots and dashes in the Figure,

The second order susceptibility tensors, which are the
same 28 the plezo~electric tensor coefficients, are given in
Appendix I for three types of erystals, KDP, ADP and mm,..
These are the erystals which are todate usable for parametric
generation of optical frequencles.

If the pump beam propagates in the zx plane as an extra-
ordinary wave at a phase-matehed angle o“ with the optie z-axia,
the polarization components of the ordinary waves are

(a) In K0P and ADP
Py =2 o145
{b) In mﬁ
Py 2 <otg () ()% | vay 0]
8 G, (24, ) K783
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In order to deternine the angle at which phase matehing of

the three collinear constituent waves occur, 1t is neeessary
to determine the angular variation of refractive index of
the extra~ordinary rays.

In uniaxial erystals, the wave normal surface for the
ordinary rays 1s a sphere

n°(8) = n°(o)

For the extra-ordinary rays the surface is an oblete ellipsold
of revolution about the optie axis. The Fresnel equation for
this extra-ordinary wave normal surface in anisotropie crystals
ls

Ln'm]' '[n'{o)j""" ’&,cmoﬂ (12,1)

vhere © is the angle of the wave vector K with respeet to
the optie axis, Note from Fig. 12,1 that

n® = n®(0)
From By (12.1),
=¥
1°(0) = n°[1+(r"~1)s1n%) (12,2)
where the ratio riw) = -2:-"'-
n~(90)

Further simplifiecation of BEq (12,1) is possible.
Itthomplmtﬁn;-oam angle & 1s taken

o " [w »;i-‘-g-ﬂ‘u-'l (12.3)
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or, B, [1+{ll-‘9)§:- 1}-1::"]*

e
n®(0) (%]

-Hmig-:.}m’l

(n%)

(] @
- 1o A L (12,0

Here the zero within parentheses means @#=0, Putting bire-
fringence B=n®(0)-n®, the resultant equation is

2, . 3. 20)nbean® 2
n®0) %) 2

= 2o o ;.5.;,].,,:.
or a0 = o0 aaeRyataty]
= gy [2"-5(3+Dratny | (12.5)

Either the exact equation (12,2) ecould be used to compute

the extra~ordinary refractive indeg at an angle ® from the
s-axls, or the approximate equation (12.5) where ¥ is the
mﬂmtdthomh&-!t@hgémmmmm-
mate eguation (1245) should be used only when sin # are
small, i.e., when the mmntj.on.‘u nearly at right angles
to the optic axls. I

Subharmonie generation is a speelal degenerate case of the
general perametric process where u.w,-!l-v/a. The phase
matehing angle at the subharmonic frequeney V,=1/A, will
be designated by 859 measured from the optie axis. Usually
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for parametrie generation of optical frequencies, the
monoehromatie coherent light beam from a laser is used

to function as the pump energy and is made to propagate
through the erystal as extra-ordinary wvaves. The generated
subhapmonies are ordinary reys. At the degenerate frequency,
we have from (1l.1) and (11.4)

o = 22 4 n®(@)= n°®
Here n® is atw,udn“h for w,

This equation may be satisfied in negative uniaxial erystals
where the refractive index surface is a prolate ellipsoid
of revolution inseribed in a sphere Figes 13.1s For ealculation
of 8,y we need determining the direction of the ellipse
at wiich the extra-ordinary refractive index n®(2w,) equals
the ordinery refractive index n°(w,)s This is done with
the help of Eg (12.2).

Phase matching angles 8, at the degenerate frequency
have been calculated for a few laser pump frequencies in
the three types of crystals. These are tabulated in Table 13.1.
As subharmonic generation 1s & special degemerate case of
general parametric process, these values will be again
seen in the general Tables for phase mateching angles.
The first row for eack pump frequency in the general
Tables show the value of LR These values are also plotted
and shown in Pig. 13,2 (a) to (e¢) for the three types of
erystals, KDP, ADF and LiNbOge Any slight deviation in the
values in the Table and the Fig. are due to the small,
but negligible, difference between the measured and computed
values of refractive indices of the nonlinsar erystals.



f _ ! 9, (deg)
’ (] 0,2 V (el 1 -
i Pp(A) Poth) i AL L KDP ! ADP} LiNbOg
(a) 3,164 6,328 15,802 56412 57477 "
(o) 4,332 8,664 11,542 42.78 43,38 -
(a) 5,300 10,600 9,434 41,37 41.57  83.91
(£) 6,943 13,886 7,201 46,66 47.12 52,27

(a) He = Ne gas laser, second harmoniec j (b; Ruby laser second
harmonie § (e) A difference frequency ; (d) N glass laser,
second heormonic ;5 (e) He - Ne gas laser, second harmonie j

(f) Ruby laser B.l radiation § (g) He =~ ﬁe gas laser.
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Pattern of the curves between x,mdﬂohdlﬂn,
although in Lilib0y, it 1s more shallow and spread out.
Because of its larger refractive index values, mw,
covers on extended range of wavelengths. These curves
also indicate that mechanical tuning of this type of
parametric oseillators will be easier at (shorter) pump
vave-lengths where the gradient AO,/A) is steepj in other
words, employing pump sources having frequencies around
the cusp of the curve may better be avoilded.

In order to obtain parametrie oscillations at optiecal
frequencies, it is essential to have not only "Optical
tuning® of the resonators, but also to satisfy matehing
between the wave veetors. Optical and wave tuning must
be simultaneously satisfied in order to design coherent
light generators that are continuously tunable over a
band of optical frequencies. The energy conservation
equation (11,1) may be writtea as

)\' a
-8 =1 c—é (14.2)
™ *
From the momentum conservation equation (1l.4),
nj(e) = °¢-;§(n:-n§) (14.2)

Equations (14.1) and (14.2) are used to compute the extra-
ordinary refractive index n®(8), that will satisfy the two
matehing conditions. These values are then used in the
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following equation to caleulate sind, and eonsequently Sy
the phase matehing angle for different pairs of /\' and N
or ratios x'/ N

n:(q) = n;[].-t(r’—l}dnﬂﬂ]_i (12.2)

Here the superseripts e and o refer to extra-ordinary and
ordinary waves. The subseripts p, s and 1 refer to the pump,
signal and idler waves respectively. Computations of n®(s)
and sin® were entirely programmed on and executed in digital
computer.

Refractive index data of Lithium metaniobate used are those
measured by Boyd at el (26). The values of refractive index
vary to some extent depending on the preparation, In addition
to variation with temperature, it has been observed in phase-
matehed nonlinear optical measurements that the refractive
index varies from sample to sample. These variations are
related to the inereasing purity of nmh erystals sinee
the original measurement in multidomain material (27).
Indices of refraction for the ordinary rays at thd signal
and idler frequenecles in KDP and ADP were computed by
Digital Gomputer from the following empirieal equation (28)

T _
o = e = +;3. (14.3)
vhere frequency Vsl/»(efi'), Values of the constants AyB,C,D, mnd =

as given in ref (28) for the ordinary and extra-ordinary rays
in XKDOP and ADP, were used in computation.



TABLE 14.1 PHAS

HARA

s MATCH]
METR’

G ANGLES FOR
(C ACTION IN XKDP A

D AD

. 0 8, (deg}
o - V,
s |7 [ Tad Ty —?w—"T:r
. T 1 |
0 €328 6328 15,802 86,12 57,77
.l 5753 70831 17,383 55,80 57,45
3164 .2 5273 W0 18,963 56,40
o3 4868 9040 20,543 §3,36 54,96
4 4820 10,546 22,123 5l.34 52,91
0 6943 6943 14,401 51,04 52,18
.l 6313 7715 15,841 50.82 51,95
3472 .2 5786 8680 17,281 50415  51.29
3 5341 9920 18721 49,12  850.22
4 4960 11,673 20,161 47.65 48,80
0O 8664 B664 11,542 42,78 43,38
+1 7876 9626 lﬂ,“ﬁ 42,71 43.24
4332 .2 7220 10,830 13,880 42,80 43,05
o3 6664 12,377 15,004 42,20  42.78
4 6188 14,440 16,158 41,90  42.54
0 10,600 10,600 9434 41.37 41,87
1 9636 11,777 10,377 41,42  4L62
§300 .2 8833 13,250 11,321 41,50 4182
3 8154 15,143 12,263 41.95 42,24
4t 7571 17,666 13,208 42,67 43,06
0 11,522 11,522 8679 41,97 42,29
o1 10,474 12,802 9647 42,08 42,40
5761 .2 9602 14,401 10,414 42.41 42,77
.3 8863 16,460 11,282 43,07  43.50
4 8230 19,208 12,181 44.27  44.%0



TABLE 14.2

40

w 0,2 o
%(l\ Y SR NA&) .;1 0),(deg)
(eml)
]
0 10,600 10,600 9434 83,91
el $63 11,777 10,377 80426
500 .2 8833 13,250 | 76,62
.3 8154 15,143 12,263 71.41
e 7571 17,666 208 66,45
0 §22 11,52 8679 66,51
Q100474 12,802 9547 65,90
571 o3 g602 14,401 10,414 64,98
.3 8863 16,460 11,289 62,32
.4 8230 19,203 12,181 59,12
© 13,886 13,886 7201 52,27
1 22,620 15,430 7924 52,00
6943 .2 11,671 17,357 642 51480
»3 10,681 1837 9362 50,97
oy do18 23,143 10,082 49,71
0 23,046 23,046 4339 44,56
1l 20,980 25,606 4773 44.85
11,623 .2 29,205 28,807 5208 45,27
3 17,727 32922 5641 \
4 16,461 38,410 6075 47,33
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The phase matehing angles , thus computed are given in
Tables 14,1 and 14.2 for KDP, ADP and Lilib0, respectively.
All the computed matehing angles are not given in these
Tabless For this, graphs are plotted for different pump
wavelengths and materials in Flg, 14,1 to 14.7. From these
curves, one may determine the matching angles for any pair
of values of Vg and Vg

It may be observed from these figures for matehing
angles that while the general pattern is the sane, the slope
of the V,/V, and sin®e (or sin®#) is higher in KOP and ADP
for a given pump wave-length. At >§-o.sa uy the average slope
is 2,8 in LiNb0, and 180 in ADP, Henee the matching angles
are limited within a small pegion in KDP and ADP, Shorter
pump wavelengths reduces the slope in a given naterial;qln
KDP the average slope is 4.6 for zp-0.315 u and 20 for
%FSQ.GES ue In L&!boa especlally for shorter pump wavelengths
phase matehing over a large deviation angle from 8, is possible.
For instance, with a pump wavelength of 0.53 uy matching in
LdNbUa is possible from 84 to 60 degy an angular spread of
24 deg, whereas the corresponding angles in KDP are 41,37
to 42 deg, a spread of hardly 0.6 dege. If a pump source of
the shortest possible wavelength of 0.316 u is used in KDP
the angles range from 56,12 to about 51 deg.

It 1s interesting to note that the mateching angle
Gn is 84 deg for %pHO.BB u in Liﬂhoa. This has a definite
advantage.
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15 Desien Tuning Curves

The design tuning curves for parametric oscillations
utilizing the three nonlinear dielectric erystals, KDP, ADP
and LiNbOy are contdined in Fige 18.1 to 15,7« These have
been plotted from the values obtained with the help of digitel
computer. It is observed that for shorter pump wavelengths, She
traces are practically straight lines in all the three crystals;
thet 1s (4v)2 bears a linear relationship vith sin®d, ss is
predicted by the approximate equation (15,3) given later, It
may also be noted that with s pump vavelength) w3164 £, tne
whole range of visible wavelengths may be covered by parametriec
tuning of KDP or ADP» Using a pump source »,=8300 f, a portien
ormmmmummawmmormm,. Because
of large negative birefringence of u.no,, phase matehing over
a wide range of optical wavelengths is possible. For this
erystal the matehing angle 9,784 deg at the degenerate
frequency \,=0434 cii', Stnee 1t is almost st right angles
to the optie axis, the pump and the signal waves closely
interact,

It may be observed that the Figures 18.1 =~ 15.7 contain
signal wavelengths () which lie between the pump and the
corresponding degenerate frequency. In fact the signal and
idler waves are interchangeable and either v' or 4 frequencies
could be picked up as both are tuned in the optical resonator,
In other words, the region of wavelengths between the subharmoniec
and the upper limit vhere idler absorption commences could
also be covered provided the erystal 1s transparent in this
region and the resonators are of adequate size and reflectivity
to contain them, For example when 7,-0.53 Uy the oseillator



could be tuned at least theoretically over the entire
band of wavelengths from 0.83 = § u. Miller and Nordland (21)
tuned 1t from 0.68 to 2434 u, i.e, 70§ of the theoretical
ranges | .

It may be noted that because of the larger variation
of refractive indices in LiNbOy, the anguler spread is highev
for a given change in wavelengbh. The following comparison
would illustrate

)\’u) AX(A) 8(deg)

KDP 3164 1508 4,78
ADP 3164 1808 4,86
LiNDO, 5300 1767 7.28

Furthermore, the nonlinear susceptibility of Ltllbo' is
at least an order of magnitude larger than thogse of KDP
or ADP. For instance,

L4NB0, 5 dgy = 1449 x 152 w/volt
KDP  , dgg ™ 1257 x 10%2w/volt(r=6328 1)
ADP 4 dgg = 0.57 x 15*2 w/volt

As will be shown later, this results in a large reduction
in the threshold pump power in mbﬁ’ paranetric amplifiers
or osclllators,

An analytic expression for the frequency changes
obtainable in parametrie process may be deduced as follows.
For small deviations from the subharmonic (degenerate) frequenecy,
the signal and idler frequencies may be expressed by

= +
Vg =W, Sw

vy = "-S' (15,1)
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Hence wtw, = 2w, (as before at the degenerate stage)
From Bq (11.4) one obtailns

&h‘ﬂ) wE’ .'..Ifal
e e c
Expressing the refractive indices of the signal and idler

vaves by the Taylor expansion series, and retaining only three
terms, we have,

202 (8) = a0+ swu{-:;-nm‘]
R S T

Here n) 1s the ordinary index of refraction at Vo and the
derivatives give dispersion of this index at the degenerates
frequency w . Since v twy = ¥, and v =v, = 2%w

v, [0 (#)-nl ] = 238 o o) e 0%0) (5

._’ ﬂ
oy (502 a[. (#)en_ |
et 3
=} o
. o 3 (n®(#) ]
%Gﬁ O‘ Y, )

= Dy [n3(#)ng | (15.2)
were oy w YR

Eq (15.,2) shows that there will be two frequencies, one above
and another below the degenerate frequency \)os These obviougdly
correspond to the signal and idler frequencies. Substituting
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the approximate expression for n®(d) from Bq (12.5),

[ smu’ = nl@..-gu.;? sin’p |

where An = n:to}-l:. Ususlly sn will be found iuntim
Putting another constant
u (D 4ile)
M . "‘ n:
2
[5V(M] = b, [sneA stn’y | (15,3)

Thus (5V)2 varies linearly vith sin®f, provided sinf is small,
¢V has been computed for one such case and compared with the
accurate values ealculated from (12.2). This is done in order

to examplify the magnitude of error in Eq (15,3} and also to
assess the regime of its applieation for ealculation of the

frequency devistion %V,
For LANBO at ) =053 u, n;-c.m and n:lo)m.- At the
degenerate frequency ), =9434 ofi* () =1.06 u) nd=2,233,
Therefore

An = 1;10}1: = 0,001

riw) *l:/l':to} = 1,04166
B = np(o)=ny = =0,003
Henee Ay = =0,08740
v uuumm&mﬁuun
or un'a,,-?i-mum

or #, = 83.87 deg
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This h slightly lower than the value in Table 14.2, because
of the approximation in Ay¢ For a graphiesl plot of n° versus
v around the degenerate frequency \)on D434 i", wve compute

(3550'}90 =6 x 1%

(%:) =2 x 16“’.-"
S Dy = 136 x 10° (e5)

So (5V)% 1,96 x 107(8,74981n8-0,1) (15.4)

The results are plotted in Fig. 15.,4(c) beside the more accurate
values from (12,2)s In the figure (2V)2 instead of (5V)2 ave
written. The linear relationship between (V)2 and sin®f may
be noted. The slope of the straight line (full line) between
(2)2 and sinF obtained from (15.,4) is 1,178 x 10%:E%, This
may be compared vith the slope (1,03 & 0,02) x 10%6E° of the
experimental ond 1,17 x 10° of the theoretieally computed
plots obtained by Miller and Nordlend (215- The slope of the
dotted line computed by (12,2) is 1.02 x 10% and sgrees
excellenfly well with the figure (1.03 & 0.,02) x 108652 1n
the experiment of the above authors. The differences between
the theoretical values from Eq (12,2) and (15,4) are due to
the approximations involved in the latter, and also due to
the inaccuracy in the calculation of the derivatives in the
denominator of Dln

Bquation (15,3) when applied to ealeulate (/)% for [/
falrly large values of sinf yeilded enormously large errors l
and hence were not used in other cases. The design curves in
Fige 14.1 to 14,7 and 15,1 to 15,7 are those computed from
Eq (1242) with digital computer.
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TABLE - 15,1 v i
| 15,1  Credient (2//0) 1n LiNbOg for »;=0s53 u, y=0434 oii*

o) J 2R o ~(27/:0)
- oil degl | eit radl
9636 11,777 943 36 2,10 x 10?
8833 13,260 1827 246 1.4
8281 14,722 2641 285 1,29
7910 16,060 3288 21 1:m
7571 17,666 3774 201 1,15
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Curves have also been plotted between AVe A® and between
Ale A6 80 @as to directly obtain the frequency or wave-length
deviations Figs 158 and 15,9 . An approximate equation fop
the slope of the AN eAf eurve may be derived., From Bq (15.3)

2 = eghhuinag
or %é-%nl (15.5)

Table 15,1 shows the gradient of the AJe.9 curve caleulated
mmMcmuhmw.mathh
’p™0+83 ue In this case Dy = 1,36 x 10%5%, 4, = «8,700 x 1%,

Comparison of these slopes with the slope of the trace
for ;6300 (R)in Fig.15,8(c), wWill revesl that these values
are highers This is because of the epproximations contained
in By (15.5). Nevertheless, the general trend is the same,
The approximate curve takes off with an infinite slope at
AV=0 and then gradually stoops downwards.

It would be apparent from Figs 15,8 and 15,0 that
larger angular spread and consequently superior mechanical
tuning is achieveable by using pump sources having shorter
wavelengths, Threshold of pump power required will alse be
reduced, which is a distinet advantage,

16+ Hismatch Gradient
nunhm-nmmmtmmmom
musmm.muh,mommul,m
umw&,mmmmmmfummz

of signel rays.
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Hore 1t is assumed that the erystal is thick, 1 L., o
that the anisotropy in the erystal is of a small order of
magnitudes Kleinman (13) has evaluated the effective coherence
length for the penecil of rays having an angular spread as

.ﬁg AL (16,1)
! | (v )¥ o
where (s) = _’L*’_w.n
Sinee, a/e = v’il’( &'/O). ve have

4

(2) & (v w, ) _
’ -,?-«ﬁ.u | (18,2)

At the degenerate frequeney w,,

()
° '“F’i. (369

Thus the signal power is inversely proportional to the mismateh
gredient m"/u)..h. These have been calculated for the erystals
KDPy ADP and LiNbOge Tabular values may be seen in the last
colums of Table 18,1 = 16,3 o The (a'lm.- values from whieh
the mismateh gradient have been evaluated are shown in the
fourth columns of these Tablas.

It wvill be observed from these Tables that veriations
htm&mﬁﬁnﬂiucﬂﬁqim-ﬂhnmmmm
gradient reach constant values &t higher signal frequenciesy
this is espeeially noticeable at longer pump wavelengths that
mmtbomuottuo.-)\,mhm- 13,2
Beeause of their comparatively larger refractive indices,
variations in the mismatch nmmtmm.gmmmw,.
finee these changes are elearly nummumw,.m



a0

V_(eR j¢ o
o ) { d.fl lﬁl d.i]" ot radt
6328 0 7437 1.463 83,8
3164 5753 1 7440 1,469 84.2
5273 2 7o44 1.477 B4,6
15,802 ofi* 4868 3 7466 1.821 87.1
4520 o 8400 1,588 91.0
6943 0 7.58 1.371 7846
2472 6313 o1 7.69 1,391 79.7
5786 2 7.8 l.411 80.8
14,401 eB* 5341 3 7,83 1,417 81,2
4960 ol 7.9 1,489 81.9
8664 0 8405 1,167 66,9
4332 % 7876 o 7490 1,146 65,6
7220 «2 7.78 1.128 64.6
11,542 ot 6664 3 765 1.109 63,5
6188 o 7+50 1,087 62,3
8300 % 10600 0 7.35 «871 49,9
9434 it 7871 4 7+35" 87" 49,9
s71® 11,822 0 7.2 786 45,0
8679 o' 8230 v 7.3" 788" 45,0"

* The values are same for all the ratios of AV/ v between
0 and 0.4 and thereafter.
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TABLE 16.2
_ 2
o) 2Ry |9 =any ‘ ) x 10% () x 10
P B ( & -] el'l
; H deg . 1 »
L ]
\’.(lil) i ‘ el degt ‘ il radt
! 1 1 i |
6328 ) 785 1,559 80,3
a6a X 5783 .1 7,93 1,575 90.2
5273 .2 8,00 1.588 91,0
15,802 cii- 4868 .3 8.15 1.618 92,7
4520 .4 8,65 1.718 98.4
6943 0 8.2 1.484 85,0
3472 § 6313 ol 8,26 1.495 85.6
14,401 o5l 5341 .3 841 1.522 87.2
4960 o4 8.5 1,538 83,1
8664 0 8.96 1.30 74.5
4332 § 7876 o1 8.73 1,266 72,5
7220 .2 8,40 1.231 70,5
11;5“! ﬁl Bm '3 Ba“ 1-195 68&5
6188 4 840 1.160 66,6
5300 § 10,600 0 8.10 4960 5640
9636 ol 8,05 955 54,7
9434 g1 8833 .2 8,00 054" 54,6
5761 § 11,522 0 8,01 .873 50,0
10,474 .1 7499 871 49.9
8679 2602 .2 7.96 .e68" 2.7

# The values are the seme for all the ratios of AY Vo
between 0.2 and 0.4 and thereafter.
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TABLE 16,3
gu‘m ¢ 08 atlions
1Y (gm x w* F @, x 10°
P ha(R) J = A Oy
v, (e%) y =1 resl dogt | ei* ot
deg
="
10,600 040 3.96 +468 26.8
5300 1 9636 0s1 4.9 »581 33,3
8833 0.2 6.95 «824, - 47.2
0434 o 8154 043 9420 1,090 6244
7571 0vd 11,47 14360 7749
11,522 0.0 10.95 1.194 8.4
se1L % 10,474 0.1 11,12 1,212 69,4
9602 0.2 11,62 1.267 72.6
8679 cit 8863 0.3 12,47 1,360 7749
8230 0ud 13,80 1.472 84.3
13,886 0.0 18,70 1,240 710
6943 & 12,620 0e1 13,90 1.258 721
11,571 0.2 14,10 1.276 73.1
7201 oAl 10,681 043 14.28 1,292 7440
9018 0ed 14,45 1,307 74,9
1,523 23,046 040 14,1 . 769 44,06
4330 oii* 16,461 0.4 14,1 769" 44,06"

% The values are the same for all the ratios of A\)/vc
in between snd thereafter.
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80 at shorter pump wave-lengths, the mismateh gradient as
l.mm&f&v\).hmmmtmlnnCt 16,1 . Notice
from the trage for %’Ithtifthodmmtho
signal power was solely due to the increase in the mismateh
gradient, we could define a bandwidth for the parametriec
oseillators The 3 db pover reduction occurs at AV/), = 0.2

or at %.lﬂ.ﬂlnth)’llo.ﬂuinmlbo'.

Mulmth].“hhmalnmﬂ-wm
These are shown in Table 16.4



ZABLE 18,4 Coherence length,
for beam divergence

a4

in KDP, ADP and erystals
angle A =0, = 4,36 x r

B 1 oed oo e b, "
XDP [ ADP LiNbO,
6328 6328 04109 0103
3164 5273 7910 Oe111 0.103
4520 10,546 0,110 0,108
6943 6943 0.117 0,108
3472 5786 8880 0.118 0.108
4960 11,573 0,118 04118
8664 8664 0.137 0.123
4332 7220 10,830 04145 0,133
6188 14,440 04161 04150
10,600 10600 0.184 0+167 0,342
9836 11,777 0.185 0.168 0.278
5300 8833 13,280 04188 0172 0,198
8154 15,143 0,193 0,176 04154
7671 17,666 0,201 0,183 0.128
11,822 11,522 0.204 02183 0.134
104474 12,803 04205 04185 0,133
5?61 9008 M,.wl 0.“ '0;18@ 0';129
8863 16,460 0.214 0,193 0.124
8230 19,203 0.222 0.201 0.119
ngm 13,886 - - 0,129
6943 11,571 17,357 - - 0,128
9918 23,143 - - 0,134
23,046 23,046 - - 04208
ll.m 19,803 23990? - . 0.318
15,48’1 38,.‘10' - - 0,227




17.1

CEAPTER 1Y
QFTICAL CAVITY RESONATOR

This chapter is devoted to obtaining a relation between
the resonator losses and the gain in the nonlinear medium.
Consequently an expression is derived relating the coeffiecient
of dielectric modulation m with the resonator Q. By digitael
computer Q values are computed for different mirror reflectivity.
Three types of media, tThe KDP, ADP and Lthoa are covered. Threshold
values of m required to overcome the resonator losses are computed
therefrom. Bgam widths of the resonant fundamental mode at the
foecal region of confoecal resonator are computed for twe values

of confocal parameter.

As stated in Article 11, nonlinear parametric oscillation
will occur when the growth rate g, Eq (11.6) 1s greater than zero;
that is when exp (gl) > 1« The distance d between the mirrors of
the resonator is related to the optical length of the cavity by
the expression

i q = oS (17.1)

vhen reflection losses on the surface of the two mirrors are
taken into account, the modified condition for the growth
rate g evidently 1s

for the signal, 31<ui)n,Cuii-:p(¢LJz:1

for the idler , Ry (wy JRg (wy Jexp(gl) 2 1
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where 1 1s the length of the erystal. Sinee g is small, gl
is a small gquantity. The two inequalities above may be
sinmplified and written as

nlw,m,w,)mw 23
Ry (wy )Rg(wy )(1vgl) 2 1

The quality factor § of the optical cavity resonator with
plane parallel mirrors having coefficient of reflection
n,.(t,_) at v,.(ns.l?.ll is defined by

= ' (17.2)
Y TRt )

k 4!
B, (v, )Ro(w el > -Q;l
Ry (v MRy (g Jed, 2 %"

In many practical situation, lali'uj_) = %('1) = l.
Therefore, the condition of osecillation may be simply

o Eld!
()2 > J?'a:a (17.4)

or gl 7 2L

(17.3)

expressed as

vhere the round-trip power loss 2L = 1-R° ® 2(1=-R),
At the degenerate frequency, one finds from (17.4)

%}5 z 'P (17.6)

When the space between the mirrors is filled with the
dielectric material, il.e. if we assume ] = 4, we obtain



a7

from Eq (11.6), (1711) and (l?c‘)’

S
or B (3:3-1-)*

At the degenerate frequency Vg

iz -t (17.7)

The condition m = 2/Q, specifies the minimm values of m, needed
for commencement of parametrie oseillation. The analysis follows
the derivation by Akhmanov and Khokhlov (22) and (20). A complete
theory of the parametric process is given in Appendix II.

(17.6)

It may be vorthvhuo digressing for a while and compare
some of the above results with those obtained in Chapter II for
subharmonic generation in parametrieally excited nonlinear systems.
The condition of self oseillation in the neighbourhood of the
subharmonic frequency in a resonant eircuit with a tin-d_-pondcnt

capacitance of the form
C= c°[ 1 *A%;-wn v’t-_] (92.1)
was found to be
LAC . >
w2 %
or ;2 % (9.9)

where ¢ =AG/C, is the nonlinear coefficient, This coefficient
is analogous to the coefficient of dielectric modulation in



nonlinear material given by 28

¢=c,(1em mﬁv-’h-gﬂ] (17.8)

The two equations (17,7) and (9.9) are identical. They differ
in that whilec 19 in the time domain, m is in the space of the
nonlinear materials This is another instance proving the equi-
valence of the coupled wave equations (9.3) in the time domain
and (11.2) in space. In fact one is convertible to the other
by interchanging t with r/e.

The stability analysis of the exponential growth of the
signal and idler amplitudes need not be separately carried out
"in space. By an analytical treatment similar to that for the
Mathieu equation in Art 9 (CH II), it is possible to determine
the regions in the analogous ‘D = Ak plane where parametric
oseillation will occur. In fact the curve separating the
unstable from the stable regions in the lP =Ak plane is
identical with that in the analogous ¢ =c# plane (CHeII).

It is observed that for the same detuning in a lossy medium
larger pump pover is needed. Again, for greater mismatehy
evidently, higher pump exeitation is called for parametrie
oseillation, V

Heverting to the original discussion, the minimum
values of m required to induce parametrie oscillation in Kop,
ADP and LiNBO,, may be caleulated from Eq (17.6). From these
threshold values of t.hl dielectric modulation, we may compute

the smallest growth rate possible in parametrie oscillstion
in nonlinear material.
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Assuming that m(klk..) = 1, we obtain from (17.4) & (17.6)

g q-;::‘l)* - %ﬂg&)* (17.9)

At the degenerate frequency

e

If in By (17.4) the value of @ is substituted from
Eq (17,2) the resultant egquation is

g2%> [1-2%(w,)) [1-8%(wy )] (17.10).

This expression obviously equates the gain in field
strength with the round trip reflection losses in the dielectrie
layers of the mirror, Bulk losses in the crystal are neglected(30),

By digital computer the quality factor Q of cavity
resonators containing nonlinear erystals KDP, ADP and u.m,
have been caleulated. Values Hr a few typical combinations of
>\. and >\1 and at different pump wave-lengths are given in
Table 17,1 and 17,3, It may be noticed that there is » substantial
rise in § values in resonators having mirrors of higher reflee-
tivity. As one tunes off the degenerate frequencies Qg and N
changes are relatively small, If the variations in refractive
index with frequeney could be ignored, the quality factor of
a resonator of a given reflectivity and having the same material
would be inversely proportional to the pump wavelengthy i.e.
would be larger at shorter pump wvave~lengths. This is another
advantage of using high frequency pump source. Of course attaining
high coefficient of reflection and simultaneous resonance at the
signal and idler frequencies with & given Y is more difficult
at shorter pump wave lengths.
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TABLE 17.2 values for ditferent uﬂeeuvi

-
Nolu) !
- S 5]
: Q210 l Q10
e o, <
4] 7.881
#1 Bnm
0.,633 2 9.879
e 10,40
«d 1l.22
0 7.234
™ 3 7972
0.694 2 8.711
3 D454
odk M
0 5,774
1 6362
0.866 2 6,962
«3 7542
o 8.134
& =
1.06 -2 5.2
3 Ge
t o
1.15 :a 5,199
3 54642
o4 6.085
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28 : 3 "Tlt 3 N h =1
rgt0) 3 R = 0.90 R =095
5 s 6
Q x10 Iqi:m q,m' Qyx10
_‘
0 6,963 6,963 1,357 1.387
a 7.682 6.253 1.497 1.219
1.06 2 8,407 54542 1.638 1,080
+3 9,437 4,550 1.839 887
h -4 9.881 4,127 1.925 +804
0 6.393 6.393 1.246 1.246
ol 7,049 5.741 1.374 1,119 3,382 2,758 6.731 5.481
1,15 2 74710 5,086 1.502 <991 3,699 2,440 7.961
.3 8.376 4,437 1.632 4,019 2,129 7.998 4.236
o 0,051  3.787 1.764 .738 4,343 1.817 B.642 3,616
R 2 0  5.281 §.281 1.029 1,029 2,534 2,534 5,042 5,042
ol 5,828 4,742 1.135 024 2,795 2,275 5.561 4.527
1,39 o2 6.366 4,202 1.241 .819 3,085 2,018 6,078 4.012
.3 6,909 3,663 1.346 ,714 1,757 6.597
.4 7.456 3,124 1.453 .609 3.577 1.499 7.119 2,983
0 3,138 3,138 611 811 1.506 1.506 2,996 2,996
i 3,462 2,813 .675 548 1.661 1.350 3,305 2.686
2.3 .2 3,786 2,487 .738 +485 1.816 1.198 3,614 2.375
3 4,112 2,158 .B801 -421 1.973 1,096 3.926 2.061
o 4,437 1.827 .865 <356




R = 0,95

'n:m“

R'O-?ﬁ
m x 17

1,303
12310
1,330
1,367
1.423

5,293
5.320
5.403
54580
5.780

5,817
5,846
5,938

6,102
6,356




TABLE 17.5 Threshold values of m for different
reflectivity of mirrors in
lel Fe Perot Resonztor
od wvith !.BP, d =] en.

\ () : R = 0,90 R=0.95 ] R =0,08 R = 0,99
A
. m x 10° m x 10° o x 157 mx 107
0 2,515 1.’9% 5,242
o1 2.528 1. 54269
0,633 .2 2,667 1,317 5361
«3 2,638 1.354 6,498
o 2,747 1.410 5.726
0 2,766 1.419 5.763
ol 2,77 1,426 5.792
0.604 .2 2,823 1.448 5.883
3 2,901 1.488 64046
o4 3,022 1,681 6.208
0 3.464 1.778 7,219
- | 3.482 1.787 7257
0.,866 .2 3. 538 1.8186 7374
3 3,637 1,867 T«581
4 3,798 1.946 7,905
0 4,266 2.184 8,869
el 4,278 2.1958 8,917
1,06 2 4,348 2+231 0.063
- | 4e474 2.296 2,325
ol 4.67T1 2.397 9.7386
0 4,635 2.379 2,661
ad 4,660 2.391 2.713
1.156 2 4.738 2,431 9.875
«3 4,876 2.502 10,18

o8 5,004 2,614 10.62
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The threshold values of the ecoeffiecient of modulation
m for the different values of § in Table 17.1 to 17.3 are given
in tabular form in Table 17.4 to 17.6. Sinee nm 1s inversely
proportional to Q, reduetion in m oecur in high Q resonators
or mirrors having high reflectivity. Beecause of comparatively
greater (-values in resonators using LiNbO 2 the m values for
a given pump wavelength are lower. In sddition X in mm is
about ten times higher. It would therefore be desirable to uu
1.‘.!'!;:)a for the design of a parametric osclllator pumped
preferably by a shorter vavelength source. It is further
interesting to note that, as one tunes the oseclllator off
the degenerate frequency, the value of m rises, calling
thereby larger pump power.

Lonfocal Regonator

The merits inherent in confoeal resonator offer the
pogsibility of CW parametric action vhen exeited by CW gas
lasers. In a confoecal spherieal system the diffraction losses
Sd are orders of magnitude less than for plane parallel mirrors.
This is because of greater concentration of the field along
the mirror: axis (31). For a given reflector loss 8’ and
reflector radius ay Q is maximum as a funetion of the
confoeal spacing b when ., is a definite fraetion (32) of
e I a2/bA = 1, 8/ Sp ® 0sl. This ratio decreases with
inereasing a>/bAs The optimization, however, requires values
of b that are impracticably larges Since for the dominant
TBigo mode 34 1s of the order of 10% for o2/b) = 1, we may
ignore the diffraction loss in comparison with S' whieh
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horthoomefl?- Consequently we may write

= - AR

!homrunmtorbuqmtomnpdn‘dm
the mirrors. It is defined by

i»L=g (17,12)

where y  is the beam radius at the waist which in a confoeal
system oceurs in the foeal region (33), The maltiple layers

of the dielectrie coating on the mirror surfaces are coincident
with the phase fronts of the resonator modes, both the signal
end the idler waves being simultaneously resonant in the lowest
2ode.

The resonant mode frequencies are given by

R 229 + (aene) (17,13)

MQtnmmmmmmmbarermufm

axial standing-wave pattern (q+1 is the number of half wave
lm-).nmnmmmmhn.mmmhm
(ise, m=0, n=0) By (17,13) yields

Dby = 9402
Rl =gy
the subseripts refer to the signal and idler modes,
By digital computer beam widths have been calculated for
two values of econfoeal papamoter, These are given in Table 17.7
for a LiNDO, filled econfoeal cavity. As is clear from (17.12) the

boam diameter shrinks with shopter spacing of the spheriecal
mirrors.

(17.14)



37 confocel cavily resonstor Filled vith ﬁﬁj—l 68
Y (u)l , l s _hn'i‘ uu L bQ-s “cm*
' e SRS :
S ’,{fzm‘ | o2 x 105 x 10 !,f;;m* !f:w‘
: { {en™) ' (en®) __1 en) ' (em?) ! (en®) | ?mai
0 7335 7335 +3667 + 3867 23567 .1833
.1 6647 -8168 3665 <3324 4084 .1833
Los .2 6074 9218 <3661 3037 ~4609 1831
4 L5168 1.237 -3645 <2584 <6187 .1823
0 .7552 7552 +3776 377 3776 1888
o1 .6847 8413 <3775 +3424 +4206 1887
1,08 o2 .6257 9492 “3771 ~3128 4746 .1885
.3 5746 1.090 -3763 L2873 5449 .1881
.4 5324 1.274 ~3755 +2662 6372 1878
0 8228 .8228 4114 4114 ~A114 2087
ol <7462 .9163 +4113 3731 4582 2056
1115 .2 cm 1.-0“ -.._.-ﬂn .3‘11 im mm
.3 6280 1185 4105 -3140 5927 2082
ol 5812 1.389 ~4098 2906 ~6945 2048
0 9960 9960 +4980 4980 4980 2490
.1 +9034 1.109 +4979 ~4517 -5547 2489
1.39 .2 ~8263 1.252 +4978 +4132 26259 <2489
'3 ~7614 1,436 +4976 3807 7182 ~2488
4 7055 1.684 .4972 3528 8419 .2426
I 870 .8384 7598 <9350 i
- s == 2118 s34 e 108 4253
L 3 - [ 3 o
od 1.186 2,898 «8398 5928 1.439 «4199

5 em are simply five times the values for b _=1 em.



SUAPTER. Y
EQWER_ CONSIDERATION

From the results on § and m values in Chapter IV,
we calculete by digital computer the threshold levels of
mmnou:,ummummrl,mnn
wvaves, As the power involved are enormous, these are
strietly sppliecable to the design of pulsed parametric
oseillators and amplifiers. Use of focused beans considerably
reduces the povers Beam widths of the lowest resonant TEi,,
modes as calculated in Chapter IV are employed to compute
the threshold level. vutamw,mmmr,u
several m¥ from 1.03 u to 2,3 u and hence within the
range of CW gas lasers.

Single-pass parametric amplifier gain is caleulated
mmmmnm;-tmﬁuvhiehmmmm
mtmgmuqnmumum;orm.mumbo,
for any pump intensity at any frequency., Power ratio
Py(Q)/Pyl0) 1s ealeulated both for plane waves and for
focused Gaussian beauns.

ipeabold Pumo Power in Pulsed Papr erdg
oaclillator with Plane Parallel Sesonato:

In Article 17 we had considered a cavity resonator
and derived the condition of osecillation by eguating the
round-trip loss of the signal and idler to the one-way gain
assuming that the pump signal traverses the resonator only
onces The cavity i: resonant simultaneously to the signal
and idler modes, but transparent to the pump mode.
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Trangverse intensity distributions of laser beans are
essentially Gaussian. The beam contracts to a minimum
ﬂMrl]‘ttthbmm:tuhmmemt
is plane. This aspect will be considered in later secfions.

Initially, we imagine the nonlinear uniaxial ecrystal
of length ] to be located in a small region along the axis
of the mirrors wvhere the wave-fronts are effectively parallel
and planer (Fig. 17.l). We consider only the lowest order
or the fundamental TEM - modes of the signal and idler,
as higher order modes will not be phase-matched with the
pump mode. The fundamental mode frequencies m\)-qdut,
where 41 is the distance between the plane mirrors and
q an integer. In the following, we derive in a very simplified
manner, an expression for the pump power required to induce
parametrie oscillation in a resonant cavity. We assume
plane waves of uniform cross section over the interacting
region and that the beam radii are related by y3 = i -
although the latter stipulation may appear redundant.

The minimum pump power needed to excite oseillation
in a plane parallel Febry-Perot Cavity resonator may be
estimated from the condition

n = 2/(3,9,)% (17.6)

Here m means the minimum quantity of modulation thet must
be caused by the pump intensity in the nonlinear materials.
Since m = afx’/e s Ve obtain for the pump field

o 0

5 = gt (18,1)
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Taking the appropriate coefficients of susceptidbility tensor
X from Art 12, we obtain

(a) TPor K0P & ADE
o
By= &3' {18.2)

(b)  Por LNNO,

b o

Bpeause of the absence of any exact value of these tensor
coefficients; only approximate values have beon taken as
used in computation of l’- The values (MKS units/volt)
are

(8) For X, 4y, =60 x W
(b) For AW, 4y =56 x W2
(e) Por  LINBO,, 4, = 6.6 x 10°2

'mmorn,mmmmoorq,mm
reflectivity of the plane parallel Febry~Perot cavity
resonator using the three unlaxial erystals have been
computed by the help of digital computer. The walues of
R chosen for computation are the same as in Tables 17.
The computed values of § and m at different frequencies
in the three types of crystels are given in Table 17.1 =
lf.ﬂa!houm-mﬂuvumuorl,msmnrmh
values of R in Tables 18,1 = 18,8 .

!h-thnahoummtonutyxpmmhmtu
obtained from the equation

I’-GF.GI'



2
For the parametric process under consideratlon /

| I, = b endo)e? (1844)
= 1,326 x WS(0)ET  watts F°
Pp= g Genp 058

= 4,16 x fn;(a;ﬁ watts

The l’ values ealculeted above together with the appropriate
values ngtﬁt) at different phase matching angles of the three
types of crystals were fed to the digital computer. The
threshold pump power, thus computed, are shown in Table 18,1 =
18,3, Bq (18,4) may be expressed more converbntly in terms

of the loss coefficients. From Eq (III.1l), the pump field

', = %;%)i (12.8)

Substituting this in (18,4) and writing n, for n;_m, ve
have for the pump intensity

I, = #¢en ]
= Z5h % n a0, (18.6)
= 3,38 x w‘(‘)'(n.,n.ny\,ﬁi watts B

A's are the free space wavelength of the oseillating modes.
Substituting for g from Bq (17.4), the power vequired in the
exeiting laser beam with radius ,u. is

Py? -eﬂ#(n'nﬂ &ﬁ)&ﬁ)’ (18.7)

2 423 x W0 an 0 ) EHE  vatts



TABLE 18,1 Threshold pump field

Ep(volt oil) and punp intensity I hratt: )

for Parametrie Oselllation in a cavity Resonato® with KDP.
Mirror spacing d = 1 emj R,(w) = Ry(w) =R

-

~

T

: 2

W0 B —— T R = Q:.QQ R = 0,99
- {8y, x 107} T, x 10 spzm!pl x 10 51—“5 x 10 1:19

5.797 5720 2.975 1770 12,08 ‘-919 6.072 7;372
5,849 6.842 3,001 1.801 12,19 6.126 T+506
0,833 6.004 72156 3.081 1.900 12,51 3.134 6,288 7.915
6,286 7.915 3226 2.084 13.10 3.438 G585 2.682
Ge720 0.063 3.449 2,384 14.00 3,932 7.039 9,830

6.783 9.188 3.481 2+420 l4.14 3,992 7.108 10,08

6,838 9333 3.508 2.458 14,25 4,053 7416 10.24

0.694 7.010 9.813 3.597 2.583 14,61 4,263 7.341 10,76
7.312 10,69 3752 2.814 15.286 4,643 7,659 11.72

T7«7756 12,00 3.920 3.185 16,21 5,253 8.143 13,26

9.65 18,54 4,954 4,881 20.12 8,083 10,11 20.34

9.71 18,77 4.985 20424 8.155 10.17 20,59

0.866 2.90 19.49 4,980 54133 20,63 84467 10.37 21,38
M®0.22 20,77 5,243 54470 21.29 0022 10.70 22.78

10,68 22,69 5480 5.977 22.23 9,859 11.18 24,90

12,00 28,956 6+203 7+625 25,18 12.58 12,66 31.76

12.14 29,19 6.229 7.688 25,03 12.68 12,71 32,03

1,06 12,27 29.84 6.297 7856 25.58 12,96 12,85 32.73
12,80 30,94 62413 84145 26,04 13,44 13.09 33,24

12,80 32,44 64568 8.543 26,66 14,09 13.40 35,82

12,97 33.25 6.654 8.756 27.03 14,44 13,58 36.48

13.00 33.44 6,672 84807 2710 14.53 13,62 36,69

1.15 13.11 33.98 6,726 8.951 26,93 14,76 13.73 37,29
13.27 34,80 6.808 9,163 27.65 15.11 13,869 38,16

13,47 35.84 64,910 9,436 28.08 15,57 14,10 39,31

L



TABLE 18,2 Threshold pump field Ep(volt e@') and pump intensity

ip(wa.tta. oii®)

for Parsmetric oscillation in a cavity Resonator with ADP.
Mirror spacing dalmgnl(wj nngiw)-n

s

I S L LT e ek T  —
u i
o ‘B’xlo i'Ll!:plel)slpxli)’Lpr Ipxlo prm I. = 3
6.156 7+651 3.159 2.015 12,83 3.324 64447 8.397
G« 209 7786 3.186 2.051 12.94 8,382 6503 Ba.544
0.633 64372 £.207 3.27C 2.161 13.28 32564 Ga674 9,003
€.665 8,980 S.421 24365 15.89 3.9802 5.981 0.857
T«114 10,26 3,651 24699 14,82 4,452 72452 11.24
7.220 10,81 3,706 26767 15,04 4,564 7562 11.53
7.279 10,68 3.735 2,813 15.17 4,640 7.624 11,72
0.694 7.458 1l.22 3,827 2954 15.54 4,873 7.812 12,30
T.776 12,20 3.989 3.218 16.20 5,299 8.144 12,38
8,256 13,76 4,237 3.624 17.20 5,979 8,647 15,10
10,33 21,44 5,303 5,644 21.53 9,310 10.82 23,51
10,40 21,71 5,335 5,714 21.67 D.426 10,89 23,80
0.866 10.59 £2.561 5435 5927 22.27 0777 11,09 24,70
10.92 £3.94 5.604 6304 10,40 1l.44 26426
11.39 26,09 5.849 6871 23.75 11.33 11.93 25,63
13,02 33,86 6,677 E«216 2‘?.12 14,70 13.63 37.14
13,06 34,08 6708 8,974 27.22 14,80 13,68 37.38
1.06 13.20 34,83 6« 775 $.172 27.51 15,13 13,83 358.20
13.43 36,02 G891 $.488 27.98 15,686 14,06 39.53
12.85 37.58 7107 G.5883 28.87 16.33 14,51 41,23
13,91 38.65 7«144 10.13 28,01 16,79 14,58 4240
13,95 38,84 74162 10.23 29,08 16,87 14,62 42,61
1.15 14,05 30.42 7213 10.33 28,29 17.13 14,72 15,24
14.21 40,27 7295 10,60 29,63 17.49 14,88 44,18
14,40 41,33 7«390 10,88 30,02 17986 15,08 45,33




TABLE 18.3 Threshold pump field Kp(volt m]‘) and pump intensity I_(watts %) T
for parametric oscillation in a cavity Resonator with 21%0 {2
Mirror spacing d = 1 em § Rl(v) = Ba(v) = R

% A= w ! R = R=0
)\o'i“‘J a’xmfz x 10 prm,il 110 Ep:r. leO Bpxmgil xma
5,459 »8824 24801 2,324 1.138 3.834 «5717 «9682
5.637 +9087 2.841 2,392 l.154 3,946 « 5801 » 0966
1.06 5.697 «9627 2.924 2.536 1.187 4,181 « 5965 1.056
6,165 1,131 3.164 2,978 1.285 4,911 «5458 l.241
6,461 1.243 3,314 3.272 1.346 50398 «8766 1.363
G421 1.218 3,295 3.208 1.338 54294 8726 1.337
6.482 1l.243 3.327 3.272 1.351 50399 8780 1.363
1,15 6.631 1,300 3.402 8.424 l.382 5,650 +6946 1l.427
6,965 1.438 3.575 3.787 1.452 G247 « 7300 1.577
7480 1.660 3.839 4,373 1.559 T+215 « 7833 l.822
8,933 20349 1584 6.186 1.862 10,20 «9159 2.577
9,008 2.388 4,622 6.292 1.878 10,38 «2435 2.620
1.39 9.210 2,487 4,725 64877 1.919 10,88 »9648 2.739
9,522 2.689 4,885 7.028 1.984 11.89 9971 2.928
10,08 2,993 5.171 7.883 24100 13,00 1,055 3.284
16.48 7.880 8,458 20,75 3,435 34.24 1.726 84640
16,47 7.871 8,456 20.72 3432 34,18 1.725 8.632
2.3 16,58 7.970 8.506 20,99 34455 34,63 1.737 84746
16.81 84199 8,629 21,59 3504 35.61 1.761 8,991

16.99 8.363 8,716 22,02 3.541 36,32 1.780 9.171
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where 2L = 1-R 1s the loss in the resonator during "a round
trip" of the signal and idler modes.

An alternative approach leading to the estimation
of the threshold pump intensity required for exeiting
oscillation in a ecavity resonator with plane parallel
mirrors is given in Appendix III.

It is observed from the Table 18.1-3 that the minimum
pump power required deereases with inereasing | or reflee~
tivity of the resonator, Furthermore, the pump power
required is about two orders of magnitude lower in LilbO,
for the same mirror reflectivity. This 1s evident from
BEq (18,7) where it is shown that the minimum pump power
1s inversely proportional to % Thus considerable
advantage may be derived by using high § resonator with
LiNb0, erystals. _

It may also be observed that the threshold power
for sustaining the oseillation inmml as one tunes
the oscillator off the subharmonie frequency. Again, the
use of higher frequency pump source yields an advantage.

It is evident from Table 18,1 = 18,3 that the pump
power is significantly high and beyond the limits of CW
pover from gas lasers. (nly pulsed solid state lasers
can meet such pover muimﬁ. Furthermore, beams from
these pulsed lasers diffuse enough to elevate the
threshold.

Divergent Deang

Parametriec oseillation in a Febry-Perot cavity
considered above requires a pump intensity significantly

higher than the minimum wvalues shown in Tables 18,1 = 18,3
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This higher threshold occurs because of slight mismateh
introduced by beam divergence.

The frequency offset due to nismateh of the oscillating
modes in the resonator is

AW =W, - hr“ﬂt“)

Mov..lndu“mthtnmmtmuuorm _
unperturbed modes and v..-mﬂ and u“*m are the oscillation
frequencies (30). The modified phase mismateh is

Ak = 1. - (I“#!lo}

For the optimum case of exact phase matehing, Ak'=0, of the
two modes, Aw=0 and the threshold is, as stated before,
identical with the minimum value prediected by Eq (18.7).
Then it can be shown that the pump intensity when Ak® % 0
inereases by the factor

(xty/2)2

sint(ax"1/2)

The maximum possible mismateh is (k' l-m-m and hence the
threshold level of pump power h:muu'iy a factor of

1.24 maximum.

It may be interesting to compare this derivation with those
derived by Kleinman for second harmonie generation with
slightly divergent beams(13). The threshold pump power in
Table 18,1 = 18,3 should thegefore be increased by a factor
of 1.24 in order to estimate the minimum requirement.
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L USC &G0 ] 04 !

L rars
confoca

With a Febry-Perot type of cavity resonator vith |
plane parallel mirrors, the pump power required to exeite
osclllatory modes with common radius X, is given by
By (18.7)s As an illustration (34), eonsider a cavity
of length ] = 1 mn with loss 2L = 0,01 (1 percent) and
containing modes of radius ¥,=1 mn at ) =1 u. Using
KDP erystal (f= 0,85 x 102 W/yolt) the threshold pump
pover predicted by (18.7) is about 200 KW. This power
is immensely high for a CW oseillator, We, therefore,
consider eonfocal type of cavity eontaining foecused
beams interacting with a thin slab of uniaxial nonlinear
material inside the cavity. The oseillating modes Vg
and w; (note that the subseript o has been dropped)
are simultaneously resonant and are phase mateched, such
that the dieleetriec planes on mirror surface are
coincident with the spheriecal phase planes of the
resonator modes. The pump, as before, is assumed to
traverse the resonator only onee and emerge undepleted.
The focized beams are matched in the optimum condition
sueh that their widths conform (34),(35) to the relation,

' ; o 2'-:' (18.8)
The threshold pump power for parametric oseillation
in this optimum situation is from Eq (II.7)

Py = a0 @2Rnd e
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wvhere the beam widths y's are determined by the econfoeal

parameter b, according to the equations (see By 17.,12)
b\ A
‘h‘ﬂ"";"}'} (18.10)
and {-;lm-: ( all at the beam waist )

Mhﬂ.

E A
)‘l'ﬂ?' N Ty

ng = 0, (1=5), #; = n (1)

and from (By (11.4) for phase matehing 'u' & 0 (1e75)

sance G = 0l

Substitution of this in (18.9) ylelds

€ 8 ¥E
Pp = grpa ) (% of i ()
Ve may write (18,9) in the form
2 ;#
b .l!-;? - (18,12)

where E= ﬁ-—-ﬁ.—;! (18,13)

At the degenerate frequency
c @
’p'l’rﬁ": ,
2
.Wt
Let us estimate the punp power requirement of a CW oseillator
uﬂu-mm.mmmmmmu

qmuthomzuormmwtbc-lm; thus let
D=l eme Then with KDP erystal 32=10%® at ) e1 ue
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TABLE 18,4 Threshold Pump Power (Eq 18,12) in LiNbO,
Parametric Oscillator with confocal resonator.
by=k=1 em. 2L=10" mks/volt, for values of

!i; ]a‘ in Table 17,7

~ .
A () | Ex10 P_(mv)
. } (MKs/wett) ) P
0 5,567 54271
ol 5,464 5,478
1,03 o2 54321 5,987
«3 5,089 64981
.4 4,709 8,870
0 5,208 5,801
ol 5,112 6,030
1,06 02 4,976 6+594
3 4,709 7769
o4 4,398 9.782
0 3778 8,718
sl 3,738 8.986
1,15 2 3,685 2.705
3 3,514 11.34
b 3,207 14,22
0 1,958 20,35
«1 1.944 20,91
1.39 2 1,018 22,58
3 1,893 2581
ot 1.829 31,10
0 .583 114.9
ol 520 116,0
2,3 «2 +600 121.5
«3 «616 132.4
ol +655 147.7

* The threshold power will inerease by a factor of 2 if
X ig reduced by 1//2 to account for the longitudimal

modes.

|057603

ROORKEE.
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From (18,12) the threshold pump power for 2L 1g
computed as 2.5 watts, Although this is within the range
of a Clyeligelie type CW laser, (%'-lﬂqitlltuutblr
high for a Argon-ion laser at yo.m::.uamw,
erystal is used instead, the pump power exeiting oscillation
uu'mmmurwmuv.!ﬂthm”
¥W/volt)s CU¥ power upto 1 watt is available from argoneion
CW laser. '

Threshold pump pover of the exeiting CW laser beam
udum"mhrﬂ&ulbO'Mhﬂmh
Table 18.4 o

Eqwer Galn in Ontlcal Parametric Azplifisr

To date no systematic theory seem to have emorged
vith vhich ono cen reasonably estimate the pover of the
signal or idler wave in an optical parametric process. The
beam used as pump souree is not a ray of Mght without
divergences Within the narrow pemeil of rays the phase Ak
is not zero through the crosse-seetion of the beam, Ag
a result the signal power is lower than the value of
Akw0 along the beam axis. %e shall derive expressions
for the power gain in an optiecal parametric amplifier
in an ideal condition (Lk=0) and in & practical situation
vhere due to beam divergence Ak # 0,

The coupled wave equations describing the growth of
the signal and idler waves in a nonlinear medium pumped by
a strong laser source are from (11,2)
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;;; i #:. o’ lokr
e

where Ak = "%-!'-!1 y 1s the phase mismateh, Combining the
two equations,

—.;l-i'—mﬁ"h,(m -ti.nkz;l

m‘-i&k# gal =0 (19.2)

where g 1s the gain constant given in Eq (11.6)

(18.1)

Assuming that (1&5) is a small quantity

€ = Hugnyky)¥ (1.6)
The roots of the differential operator in (19.2) are
145 2 [P0 "
writing g' = [sn-(?)a]}i (19.3)
the selution of (19,2) is
Bylr) = (A,08'Fap 58Tt ekn/2 (19,4)

Here g' is the growth rate modified by the beam divergence.
To determine the constants, we put the boundary conditions



at r=0, This leads to

Ay = #[B t0)eghm ik B} (0)] = 482, (0)
and Ay = i[l.“)*w'l;“’] + w'l.(ol

Hence

By(r) ={B,(0)cosh ¢'re| o ke 57 (0)+48¥3, (0) | stnn gr | o 4T/2
l:(r} -{l;hhnh g'w[hkﬁ.(o)‘ﬁ(e)]m ;'r}

(19,8)
The influence of the beam divergence and the econsequent phase

mismateh are contained in the exponential factor exp(iikr/2)

and in g'. It would De exceedingly difficult to find an exact
mdyt:lc expression for the average of the terms involving Ai

80 as to account for the variation of Ak across the beam section.

The growth rate g' in divergent beams is lowver then the
unmodified ge Bquation (19.3) suggests that there will be no
parametric amplifieation until the pump intensity is sufficiently
high such that g)>Ak/24 In the ideal case (Ak=0) g is only
required to be greater than zero for amplifieation,

Kepfect matching LJ=0

When the three waves are parfsctly matehed Eq (19.5)
becones

Bglr) = B (0)eosh n-i?'h.lito) einh gr
B;(!) = B;(o)mh n-ohk‘x.(o) ginh gr (10.8)
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With a signal input By0) at r=0, the idler field grovs
from zero, so that By(e) # O, but Ej(8) = 0, Then

E(r) = Eg(o)ecosh gr

B (r) = hklx.(u)sinh or (19.7)

or E (r) ‘-i(vk'-::}*l.(ﬂ)ﬂnh gr

Power in the travelling signal and idler waves are given by
Pg(l) = P_(0)eosh® g1

Wy :
Py (1) -{;’.;:)P.(amnha a (19,8)
where 1 is the length of the erystal, and Pglo) 1s the initial
signal power at r=0, The eoherence length for the waves is

defined by

Al=¢ =f%(;‘§)* (19.9)

At the degenerate frequency
g = 172}1;/»,:;2'"

fiere X 1s the tensor a;.d s 8584, see By (II.3) in Appendix II,
"d" 1s the plezoelectric tensor coefficient. Thus Eq (19.8)
become

Py (L) = p,(e)mh‘u/;.)

(19,10)

Py(d) = (win./w.ni}!"(o}ainhaw;.)

The values of the gain constant g or the reeiproecal of the eoherence

length, are computed from Eq (19.9) at a few subharmonie frequenciles
These are given in the first three columns of Table 19.1, for the



TABLE 19.1 Siugla-Pua'Parmtric gain Bq (19.9) and (19.10) at the subharmonie

frequency for a 1 cm long crystal. E, = 100 kv cil,

83

[ g g I P, (L)/P_ (o) P_(1)/P_(0)
M €u) - 1 g'? s g'®
° I:‘“I ) - _ : (ab)
i —

KDpP ADP :!Lima i KDpP _i ADP mea I KDP H ADP uﬂwa
sm -33 nm .- .113 um ta 041
«6943 =28 «+ 263 - +081 071 +33 «33
.886.4 .396 ﬁm - nm -03‘ ul? al?
1.08 + 156 « 146 3. 46 025 022 252 «08 .08 24
l.1522 + 146 «136 2.94 =022 -018 88.9 «04 04 19.5
1.3886 - - 2.12 = - 17.0 . - 12.5
2:“ - » 1,15 = e 2:,02 =~ - 4.7

* KDP  dy, = 0.6 x mﬂ MKS unit/volt
ADP  dyy = 0.56 x 1022 uxs wnit/velt
LiNbO, 2d,¢ x 122 x 1572 uKs unit/volt
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threo crystals pumped by a laser field £ =100 kv ot
(about 20 M oi® in KDP and ADP, and 30 Md ¢i® in LiNDOg).
Bq (19.10) indicates that under perfect phase matched
condition the signal intensity grows exponentially with
erystal length. Furthermore, larger growth rate and hence
larger power gain for a given length of erystal and pump
pover are obtainable from um:o,. For instance, with
8,210 kv ¢ the pover gain in a 2 mm thick LiNbly
erystal is 1.6 db at 7\,:1.06 u the corresponding ecoherence
length L, is 2.0 mas In KDP the pover gain, vith £;=100 kv oRt
and } = 1 em, 1s 0,41 db and J_ = 3 om at % = 6328 R, In
order to facilitate design work, the g values are plotted
as a function of pump intensity in Fig. 19.1. From these
eurves, the galn constant may be found for any material
at any laser frequency by simply multiplylng the values
in Fig. 19.1 (a) by the factor F.

19.2 Imperfect matchng AK £ 0

Due to finite width of the beam, Ak £ 0 , execept
along the axial line of the beam. We envision that the laser
beam has a small but definite angular width . Then from
g (19.5)

l.(r) = [umh s‘r-&hinh ;’r] E.(G)tuhh (19,11)
E;(r) = tg'k;-:)*.m g'r L’.(a):i‘m'/’

The second term inside the paranthesis of the first equation
mey be treated as negligible. Further the gain constant g' may
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also be agsumed eonstant. For small values of phase mismateh

e' = e[1-dgh®] = ¢[1-42 /13,0%]
where 12, is the eoherent lemgth st the dogenerate frequency
aecording to the definition adopted in By (18,1)« For numerieal
values of dgont reference may be made to Table 16.4 « Thus
for ],'«,].”h, we may find en expression for the average fleld
as follows :

Ala

CottiM/2) = 2 [oxp[11(aK/a0) 9/2 ] a8

-Al2

A2
(dx/a0
= Mg[m(u dx/ ).m?]’ 78
sin L(d¥de) A/4
W LCL v o
msﬂ" I’
- )
mwh
liere (ﬁ/ﬂ)o = (NM)% as per definition (ref,13) adopted
in Eq (1643)« Thus Eq (19.11) yield
sin(1/1°
l.u) = l.(o)m.h g'l » -%ﬁl
Vieon

B (L) = -“ﬁ% -:-:)*l.{a)unh g'l :'%i

The expressions for power are

Pg(l) = P (o)eost® g3 “—"-%ﬂ

)
h
Py(d) = (ﬁ ':':)P'(Olltnh’ g';—%

According to this equation the power gain is reduced by the
factor tu'Q/L:oh)/M:‘h)'- Boams from solid stote lasers
exhibit substantial divergence and hence account for low
paramefric gain,
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19,3

For small gain in single-pass parametric amplifier
Eq (19,10) for plane waves may be approximated by

P (L)=P (o) = P (o) Q/).',Ja

P Q) = }:'»!V' "E;Pl(ﬂml)a
As an i1llustration, let us take the experiment by Wang
and Racketti (14). They used second harmonie (J\’-aﬂ'b %)
of a ruby laser, Py=2 MW, and an input signal »=6328 %
Pg(0)=8,2 mW. With an ADP erystal 1=8 cm they obtained
P4(1l) = 1.2 mW. From Fig. 18,1, we observe for
I =2 ¥d ¢E° and A %6940 R that g/F = 0,005 Np o}, and
F = 0,713, for ADP at Y =0.006 . (% = 7660 %).
Consequently gl = 0.542. Hence from (19.8) we caleculate
a gignal power gain of 1.2 db and an idler power of
2+6 mWs The agreement between the theoretical predication
and experimental result is good, considering especlially
the maemqu involved in the value of X used.
In the above treatment we have assumed plane waves,
“he fleld amplitude is uniform along the beam
"he widths of the three beams as the same.

(19,13)

The radial variation in the transverse electriec
field of = Gaussian beam in the near field of the TEM“
mode is represented by

By (por) = "to""fgfﬁ (2041)
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vhere '!o is the amplitude at and P is the radial distance
from the centre of the beam. Consequently, the gain aleng
the transverse direction will be also of the form

i '°sfa/ﬁ | (20.2)
From Eq (19.13)
‘:ﬂ‘“f‘”%ﬁ"‘fﬂf “:-‘}Hnﬁ"n’.,;.:fi‘fg o e
21pdp

fod - G Ehado

Writing ;gqtz-v’)r/q (see Bq II.11), and substituting
for P from equation

P = i'C-‘cnr_[_fl’,

one obtainsg

fl-%.’. ; 1;: h}xu-r')-,l e T'-,:E-

' 2
K= g m . (18,13)

After simplifieation,
Py = K=nrp (o) Ao

sufcgi

Pg(L)=Pglo) = K(1+1)%p P (0) Ml

205 +L)

The J values are computed at different frequencles for the three
types of erystals and given in Table 20,1. The power ratio

The constant

(20,3)
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TABLE 20,1 Computed values of E(MKS/watt) Bq (18.13) for
different materials and at different frequencies

W |y E x 10° £ x 10° E x 107
KDP ADP TANbO,
0 648418 €,0089
ol 6.7806 5.9674
L6328 .2 6.6372 5.8369
3 6,3864 5,62€8
ol 5.0518 543409
0 8008 4 43774
1 4,9776 4,3489
6043 .2 4,8834 4,276
3 4.7304 4,1433
o 4,5294 3,977
ot ° 2,4828 241454
21 2.4756 2,1409
8864 .2 2,457 2,1268
.3 2.4324 2,1098
q‘ 20-4133 2.0981
= 0 | 54567
ol 5.464
1,03 2 54321
3 5,089
™ «4 44709
0 1.5876 143576 5s208
o1 1.5018 1.3621 5.112
1,06 o2 1.6051 103746 4,976
.3 1.6326 1, 4025 4,709
vd 1.6884 1.4555 4,398
0 1.3872 1,194 94775
| Wl 1.3939 141998 34738
1,15 o2 1e4157 1.2198 3,685
o3 1.4579 1.2591 3,514
4 1.5320 1,3299 3,207
KDPy dy, = 046 x W= /ol

ADPy  dyo ® 0456 x 1022 w/volt
LiNb08d, . = 13,2 x 1012 w/vort
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Piu.)/P.(a) for LiNb0, smplifier are given in Table 20,2 .

As an example, let us take the case of CW parametrie
amplification in a LiNDO4 erystal 1 = 1 cm, excited from a
argon-ion gas laser Pp = 10 m¥W. The input signal is
P (o} = 1 mW, », = 1,03 Uy ¥ = Oule The beam radii for
b, = 10 en aro|]a = 6,65 x 18° um‘ ']g = 3,66 x 10° en®,
From Table 18,4, K = 5.56 x 157 ¥/watts. Thus the idler
power for V= 0.1 is according to Eq(20.3)y Py = 2.15 x 10®
watts (see Table 20.,2).

The above deseription pertains to travelling wave
parametric amplification. If a resonant ecavity containing
nonlinear meterial is employed, parametric osclllation may
oeeur when the minimum gain exceeds the reflectlon and
propagation losses. A cavity resonator will also cause
a much lower threshold for gain.

vain ol rarametric Ogcillatc
degonant Confocal Cavity

A parametric oseclllator with a confoeal resonant cavity
will have better gain. Inside the cavity the signel and idler
electric fields are in the lowest modes with beam radii
My and,]a. These will mix with the pump field in a mode of
rndius{xb to cause increments in the signal and idler fields
through the nonlinear coupling coefficient. With this mode
coupling taken into aecount, the spatial rate of growth of
the signal and idler frequencies become (see Bq II.12)

- KA .oﬁ_‘ﬁg .E:..,i s
: Efiétl @i____ly*g al ]5

(21,1)



TABLE 20.2 Single-pass parametric gain of mrbox amplifier,
Eq (2043), for confoeal parameters b, = 1 am,
erystal length 1 = 1 emy pump power Pp = 10 mW,

Ao{u) et Pi (J.,)/P’(o)
0 2,530 x 10%
3 2,146

1.03 .2 1,749
o3 1,349
oA 0,962
0 2,290 x 1%
ok 1,048

1.06 o2 1.573
o3 1,206
o 0.872
0 1.527 x 15%
o 1.308

1.15 «2 L0777
o3 0,828
o 0,509
0 64550 x 107
o | 5,607

1,39 o2 2,640
3 3,678
ol 2,739

" 0 1:16 X 155
sl 1,014

803 02 0.853
ol 0.712
“; 0'583

92
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We assume that the field is independent of r, For small gain
the ineremental power gain in the idler mode can be written
as

= Wﬂéﬂw
- ’”%%‘oﬁ‘# bt Eyof “J;BP /ﬁf ar

2 ;;Pis = 271,C] (1-{'% é‘ﬁ.ﬂ) x

uﬁ%ﬁi"ﬁ%w ot 4

-tp,r,ri)*u-n-%?{
= (EPgP,P )*u-mzfzﬁ

W.’,}' l*(""f} (;!5;‘.)*

Integration of which will yield, with P' = P‘, and vhen P
within the braces are regarded as constant,

&1-:" = -(F,J*u-mﬂi*; (21,3)

Power gain Pih' caleulated from this equation for LiNDbOg
parametric oseillator are shown in Table 21.1. Gouparinon of the
figures in this Table with the corresponding values in Table 20,2

3
&8

(21.2)

o

g? pi
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TABLE 21,1 Power Gain APi/P’ of LiNbO; Parametrie
Oseillator Bq (21.3) with different
confocal parameter bQ. Crystal length
i =1 cm § Pump power 10 mWe

it
! (AP /P.) x 307
OB L L
t § bO = 1 ¢m } bo = 5 onm .! bo = 10 em
0 2,755 1,232 + 871
el 2¢4%4 1.003 « 773
1.03 2 2,110 » 044 «607
»3 1.757 «785 «555
o4 1.380 «622 » 240
Q 2,626 1,174 «B30
ol 20330 1,042 « 737
1.06 2 2,011 « 808 +636
o3 1,665 «745 « 526
4 1.324 « 592 «419
0 24142 958 « 677
ol 1.908 « 853 +603
1.156 2 1.668 o741 o
3 1.378 »616 436
4 1,008 «491 « 347
0 1.402 «627 2443
«1 1.2E81 +» 559 3956
1.39 2 1.087 + 486 « 344
3 «210 o411 +» 290
a4 0742 t332 . .
0 -590 1264 1187
ol « 531 237 + 168
3'3 02 ¢438 0209 .143
3 « 403 » 180 « 127

o4 « 341 «152 +108
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and also comparison of (21,3) with (20,3) will reveal that
the amplifier gain is approximately square of that of
oscillator, Hence for small gains (o { gl (1), an oseillator
{(with cavity resonator) offer higher gain for the same
pump power. In other words, threshold of pump power 1is
attained at a lower level in osclllators.



2e

3.

4.

The ealculated values of phage matching angles are in
excellent agreement with the experimental results. The
factors that contribute to the prediction accuracy are

2 3 the use of exact eguation (12,2) ' o
b) and putting the calculation on the digital eomputer

Thohp - G° eurves are conecave in shape, suggesting the
merits of pump sources with shorter wavelengths. The
curve for Liuhﬁa i3 more spread outj consequently
mechanieal tuning by rotation of the erystal 1s more
converient with this type of erystal,

The phase mateh angle is about 90° at the degenerate
wvavelength ), = 103 u. Propagation at right angles to
the optiec axis minimizes the disadvantages of double

refraction and beam divergence.

The desipn tuning curves for shorter pump wavelengths

are straight linesj that is (ﬁv)g bear linear relationship
vith sin®fs A pusp wavelength ), = 3472 % may initiate
parametrie gain in KDP or ADP in the wavelength range

of 0,45 to 15 us In Lylib0y with ), = 5300 2 mechaniesl

tuning may cover the range 0.65 to 2.5 u.

The Q-values of optical resonators (d = 1 emy; R = 0,95) is
about lﬂs at 1 ue As Q is inversely proportional te the mirro:
losses, reduction of the losses from 5 to 1 percent raises
the (=values 5 times. The corresponding threshold
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.
values of m are about 2 x 10° and 4 x 107, The m values
show slight rise with increase in y. Consequently the

threshold level of pump inereases as one tunes away from
the degenerate position.

Pump power required in exciting parametric oseillation
in resonators with plane parallel mirrors is enormous,
Pulsed solid state or glass lasers, having a few hundred
EW of power are capable of sueh action. Use of focused
beams reduces the poﬁnr econsiderably. The pump power
for a confoeal resonator b, = 4 = 1 emy and containing
LiHbBa is only 5.8 nW at ho = 1,03 u. Althouzsh the
saving in pump power is enormous, the resulting power
gain Pi(;)/P'(o) is also proportionately depleted.
This 1s because the power gain is proportional to Pp.
The single-pass parametrie gain in Liﬂhos amplifier

at 1.06 u are

Resonator PE P: (1)/p I(o}
1. Plane parallel 30 KW 252
d=1len J=1ecn
2, Confoeal 10 md 2.3 x 5%
b, =d = 1 em,
ld=1en

The simplified theory and its extension to the
travelling wave mode form the basls of ealeulation
of power by the digital computer.
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The subjeet of parsmetric amplification and

generation of optical frequencies is replete with

potentiality and more research need be done on

a) covering wider bandwidth with fewer resonators.

b) combining the three methods of optical tuning,
viz. the mechanical tuning, temperature tuning,
electro-optie tuning, and

e¢) improving the power conversion efficlency.



AFFENDIX I

Plezoelectric Tensor Coefficients and
Polarization of KDP,ADP and I.il!‘lf;t)3 erystals

KDP and ADP s (Class dom)
0 0 dl4 0 0
Yg3*d444= 0 0 o o dyy O

0 0 0 0 0 dgs

Px = geﬁ‘]ﬂ!y':
Py =894 48,8,
Fg =2 ‘o436 xEy

Iilb0s 3 (Class 3 m)

0 0 0 0 gﬁu _gdm
Fag=dqy==dpy 45 0 20, o0 o
Q1 dy dy O o o

Py = 26, [24) BB ~ 22988y |
P"zéoi%*%*w;’
Pl - aéo :,431': ¥ dsl@ 2 4”32:’



Appendix 1L
Theory of Parametrle Amplification and Oseillation in a
Cavity Resonator eontaining Nonlinear Material.

Let us consider a cavity resonator containing a thin
slab of uniaxial ecrystal of length 1. We consider the fundamental
TEHDQ modes. The eavity is resonant simultaneously at the mode
frequencies \J' and Vg, but is transparent to the pump mode Vp,
The stationary field inside the cavity may be expressed by

B = ar‘raarﬂ[‘:
5, = 50 (08" /4 (IL,1)
E = ;1u1{g);fa£!f

where the subseript o denotes field amplitude at the axis of
the Gaussian beam, and a are unit vectors. In the above we have
omitted the terms like oxp(uikpr) because of the assumption of
perfect phase matching. Owing to nonlinear eoupling the field
amplitude veries slowly at a rate described by u,(t) and u, ().

Extending Bq (9.6) for Jumped circuit to the present
problem, the coupled mode amplitude equations may be written

au :
3“ - qii“l - Xggts
®

% . . (II .2)
= “1a%s = “1aWy

If we envision that perturbation of the cavity fleld is
caused by modulation of the disleetric constant is.8¢ by m
which is varied harmoniecally in time (Eqe 17.8),



we find

L ;' Bgy AV L (v B vYtEgE; av

oku = -jg. (11,3)

L 'I L
Vg E‘E’ dav 'n E‘E'_ av

Here the integration in the numerator 1s over the volume Vm
of the material, while in the denominator 1t 1s over the
cavity volume V.« Writing 4V =1r . 2“fdf y and considering
only the situation of small galn 1.9.,3. and Ei approximately
independént of r, one obtains from (II.1l) and (II.3)

=]

. ]_f_Eané Eaxp[-f(2+2-+é)j 21pdF
" B 't7:

(m (2PNl )2nap

d is the spacing between the cavity mirrors, and ) 1is the

length of the crystal, Performing the integration and assuming
the optimum value for,gb (18.8), one finds

](E
Hgg 1R -—331- (11.4)

We also note that the cavity loss coefficient

w .

ok

O(’s = E: ’ 14 ® 31'1 (11.5)
a k.d

-e s "257 ’ qi "gt"

The condition for osclillatlon is from (II.2)

K.
°<'si“is z “héxii (11.6)
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Therefore
X
-Eé;' 2 --L-; (I1.7)
(Glc'i) ‘ﬁ. (Q’Q")

At the degenerate frequency of the cavity modes with Gaussian

distribution, ¥ = W+ Hence

f;?}z &' (I1.8)

Thls expression is valid for plane waves as well.

As pointed out by Louisell et al. the parametric equations
in the time domain have the same form as the corresponding spatial
equations. Henee, the spatial equivalents of (II.2) are (36)

L
Eﬂ' g1y = %gg¥s

" : (I1,9)
L ‘ .
%’ e TL T LM

where the coeffielents X are 1/c times the coefficlents in
Equation (II.3) in the time domain and the integration is over
the sectional area of the beams, Hence for the propagating
mode the galn evefficlent is

= = («lio‘;l)*

"
or g" = (—ﬂ)in (II.10
Cgly po )

or g" = goﬁ

X
vhere B = (-e:%ﬁfsw (II.11)
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From (II1,9) the travelling-wave parametric equations for a

single pass through the nonlinear material inside the resonant
cavity may be wvritten as

;¢
d—“ﬁ;—'—) = -uuf-,‘,«ﬁ :.-:)*u, (11,12)

Power in a mode is given by

Py = *E'c:mii;l“ila
ap a
o4 = = doegnd vy

Substituting for du,_ldr from (II.12)

#_1%:&[;“_79)#] ﬁ‘ sn‘l)i ™
or 25“ W,P.P‘)*(l-zt)-m) (II,13)

This gives the spatial rate of growth of the idler mode as
1t propagates during one trevel through the nonlinear material
inside the resonant eavity. A similar equation exists for the
signal mode. Sinece the gain eqcmcient is assumed small

Eq (II.13) may be integratéd by regarding P, and Py on the
right side as substantially constant,



APPENDIX IIL
Threshold Pump Intensity in Parametric Oscillation :

Plane Waves.

The minimum growth rate when equated to the losses by
reflection on the surfaces of the two mirrors of a Febry-Perot
Cavity resonator containing the nonlinear material is given by

g2 a“i‘:n (17.4)

From Art llg - " *
g = *[——-—lﬁ-‘ﬁ———] (11.6)
eoo(k,k,)eostkikp)
= 3| & )’ -‘-Lgﬁw b ]*
or, 1&(3‘;;: ¥ | (II1,1)

If we assume thet the field amplitude 1s constant along the
radial direction, we have for the pump intensity

I, = 1.326 x 133 @ watts &2  (III.2)

S & = 17245 ( ;*x* (I11.3)

"pns’“i.

Substituting from (17.4)
| i o’ g
Ip = 1.344 x lﬂ4fn'n1nphihi)§%zaﬁ (1I1.4)

All the parameters are in MKS units. Thus, for a given material,
the threshold pump power ig inversely proportional to the
squape of the susceptibility coefficlent and to Q of the
resonator. Considerable advantage 1s thus derived by using
L1Hh03 erystal in high ¢ resonator.
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