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The Karakoram and Himalayan (KH) cryosphere (in terms of snow and glaciers) plays a 

significant role in managing the ecosystem and supporting livelihood and economic 

development. The KH region experiences large variations in snow cover and glaciers in a 

warming environment. The potential adverse effect of changing cryosphere causes a cascading 

implication on water availability and generates a condition of water stress in the future. Other 

than this, the change in water storage with increasing temperature can create drought-like 

conditions and affect people living in the region. Therefore, monitoring cryospheric changes and 

their interaction with climate are essential to understanding present climate sensitivity and future 

water availability. The melting of the cryosphere provides water for the region where the 

livelihood of millions of people depends upon meltwater of snow and glacier during the summer 

season. However, the continuous monitoring of snow cover at a large spatial extent is challenging 

due to harsh climatic conditions and rugged topography. For this, the use of remote sensing 

presented a great advantage in snow cover monitoring.  

This thesis uses satellite observations for spatio-temporal snow cover monitoring at basinal and 

regional scales. The cloud blocks are the major limitation of optical remote sensing data that 

hinders the original snow cover information in the high-mountain terrains. To overcome this 

limitation, a spatially distributed cloud removal methodology is developed to ensure that all the 

necessary physical-based considerations and topographical variations are correctly incorporated 

in the method. This non-spectral sequential methodology includes a combination of multi-sensor 

data, temporal filter, nearest neighborhood filter, zonal snowline filter, and multiday-backward 

replacement filter. The cloud-gap-filled snow cover outcomes are validated with a direct and 

indirect approach to assess the accuracy of the methodology over the Chenab River basin. The 

results suggested that the spatially distributed cloud removal methodology can bridge the gap 

between regional observation-based snow cover and cloud blocks. After analyzing the 

methodology performance, the snow cover distribution is assessed at spatio-temporal scale along 

with topographical parameters. Further, we have established a relationship between snow cover 

and essential climatic drivers.  

After developing a cloud removal methodology, the snow cover distribution and trends have been 

carried out over the KH region. The methodology-related uncertainties are quantified for 

understanding the exact error inherent in the cloud gap-filling approach. The cloud-gap-filled 

Snow Cover Area (SCA) is compared with Landsat-8, and the relationship with in situ 

observations (snowfall and temperature) is also examined. Then, the Snow Cover Day (SCD) 

and nine snow cover timing indices have been assessed to explore the snow cover characteristics. 



ABSTRACT 

 Page II of XXIV  

The interconnection between SCA and meteorological variables is evaluated, suggesting a higher 

correlation with temperature as well as shortwave radiation. Other than this, a sensitivity analysis 

is performed, indicating a higher sensitivity with radiations towards SCA than other selected 

variables. 

On the other hand, we have explored the variation of energy balance components and then 

measured the point-scale Surface Energy Balance (SEB) for the Phuche glacier, upper Ganglass 

catchment, Ladakh range. The meteorological variables are recorded at 5600 m a.s.l., altitude, 

which is mounted at the ridge of the glacier. And the point-scale SEB ablation is validated with 

the stake measured total melt. Despite this, we have also quantified the point-based and glacier-

wide Mass Balance (MB) calculated using the stake measurement for Phuche and Khardung 

glaciers, Ladakh range during 2014–2017. The Equilibrium Line Altitude (ELA) and 

Accumulation Area Ratio (AAR) are calculated to assess the year-wise glacier changes for the 

hydrological year. The result suggests that the Khardung glacier experienced 3.7 times more mass 

loss relative to the Phuche glacier. In the glacier mass variation, the cold-arid region is considered 

because this region comes under climatic zone (western Himalayas) where mass variation is large 

and the majority of the glaciers (~79%) of this region have a smaller surface area (< 0.75 km2), 

and only 4% of glaciers are > 2 km2. Due to the smaller glacier area and scarce precipitation, we 

have selected these two glaciers to understand the glacier's direct response to climate fluctuation. 

It was noted that the small size glaciers are a good indicator of climate change.  

Another objective of this thesis is to present the water storage change over the major river basin 

of India in order to assess the water availability and water stress in the future. We have used the 

twin satellite gravimetric data to analyze the total water storage change, groundwater recharge 

and also quantify the condition which causes drought. The total water storage change and 

groundwater recharge are measured over the Ganga River basin from 2003 to 2016. In this study, 

various groundwater recharge estimation methods are applied and validated with the in situ 

observational well. And the best-fitted recharge method with higher accuracy is used to establish 

the link between the recharge change and hydrometeorological variables. The relationship of 

ground recharge with other factors (total withdrawal, irrigation-based groundwater abstraction, 

population density (domestic factor), and overall water stress) are established to conclude the 

exact picture of groundwater reduction. 

Further, a new drought index is developed to map the drought occurrence and severity that 

incorporate meteorological and hydrological conditions in drought identification. The generated 

index is applied over the Indus, Ganga, and Brahmaputra river basins. Results are compared with 
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the past drought occurrence and other well-established drought indices. The model output 

suggested that the index has the capability to map the agricultural, meteorological, and 

hydrological droughts to a broader area.  

The last component of the study in this thesis presents a comprehensive approach for predicting 

the discharge over the Sutlej River basin using different Long Short-Term Memory (LSTM) deep 

learning models. The combination of best-suited variables (climatic and SCA) is selected based 

on their correlation and recursive feature elimination techniques. After finalizing the dataset, the 

hyperparameter tuning was done and set the best parameters to enhance the model performance. 

We have compared five different LSTM model architectures over the selected dataset. The 

bidirectional LSTM (BLSTM) outperformed other LSTM architectures during the training and 

testing stages. Further, we have also compared the normal BLSTM with Principle Component 

Analysis (PCA)-based BLSTM models over the study area. The PCA-based BLSTM performed 

well during the training stage, and this model was further used for forecasting the discharge over 

the other selected gauging sites.  

To derive the snow cover and glaciers changes, we have used a methodology to connect the 

cryosphere changes with the spatial extent and climatic interaction. We have utilized remote 

sensing data; however, the in situ observation is used to calibrate and validate the obtained 

results. The cloud removal methodology development and their variation with terrain parameters 

are presented in objective-1. The snow cover distribution and their trend are discussed in 

objective 2.1. In comparison, the glacier energy balance and mass balance variation are quantified 

in objective 2.2. And water storage change, recharge modeling, and identification of drought 

occurrence in objective 2.3. Finally, the discharge prediction model is developed in objective 3. 

Overall, the outcomes and model development in this thesis is likely to be important for the 

research community to understand the snow cover and glacier variation in the present and their 

implication on discharge in the future. This thesis can also be a benchmark for modelers working 

in the high-mountain region and facing challenges in terms of cloud blocks. The present work 

also produces a solution for the drought modeling (hydrological and meteorological) which can 

be mapped using the remote sensing-based index. In a broader context, the results of this thesis 

can be used for predicting the snow cover changes and their interaction with climate change. It 

also helps to manage the water availability and even reduce the condition of water stress in the 

future by designing laws by the decision-maker for balancing the ecosystem.  

Keywords:  Basin; Drought; Climate change; Energy balance; Glacier; Himalayas; Mass 

balance; Recharge; Remote Sensing; Snow cover variability; Water resources.  
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1.1. INTRODUCTION 

The Hindu-Kush Himalayas (HKH) is the major source of water in South and South East Asia 

(Arfanuzzaman 2018). The water originate by snow, glacier and rainfall, which fed the major 

river system in Asia. About 1.9 billion population living in downstream as well as mountainous 

regions depend upon these rivers for irrigation, hydropower energy, drinking water etc. (Shrestha 

et al. 2015). The availability of water is under threat due to rapid increase of population, which 

placed a greater demand of water resources (Cosgrove and Loucks 2015). The climate change 

affect the snow cover, river flows as well as hydrological cycle in long term (Zhu and Ringler 

2012). The change in hydrological cycle may affect the rainfall pattern, cause extreme 

precipitation events and drought conditions, which in turn affect the hydrological, agricultural 

and economic planning of the country (Jain and Singh 2020). Therefore, the spatio-temporal 

cryosphere monitoring and modelling is needed to understand the changing pattern and their 

related implication. 

The changing pattern of snow cover and glaciers in the warming climate poses a serious concern 

for water resource management and the people living in the area, mainly fed by the snow and 

glacier meltwater in the summer season (Nie et al. 2021). This snow and glacier melting may 

contribute to immediate river discharge and also have the potential for groundwater recharge 

(Vuille et al. 2018). This is why snow cover and glacier mass changes are much more of a concern 

in the Karakoram and Himalayan (KH) region, at least from a water availability perspective. The 

KH region comprises the world’s largest ice cover outside the polar regions, which lies in the 

low-latitude and high-altitude (Bolch et al. 2012a). Apart from this, the KH region is considered 

a natural “climate meter” to understand the sensitivity of climate change (Davaze et al. 2020). 

Therefore, any significant change in snow and glacier lies in this region would modify the water 

resources and affect the water needs of millions of population in Asia (Immerzeel et al. 2010).  

According to the International Panel on Climate Change (IPCC) 5th Assessment Report (AR5), 

the glacier retreat and permafrost thaw decrease the stability of the high mountainous slopes and 

increase the number of glacier lakes as well as their area in recent decades. They have also 

concluded that the glacier and snow cover changes have contributed to the localized decline in 
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agricultural yield in the HKH and the tropical Andes region. Wood et al. (2020) have also 

revealed that the glacier and snowpack loss threaten the seasonal melt contribution to the water 

supply and domestic water resources. By combining knowledge obtained from published 

literature on glacier and snow cover and the sensitivity of the KH region, we have selected the 

KH region to analyze the spatiotemporal distribution of cryosphere and their contribution to total 

water availability change. For this, the different datasets and approaches are utilized by analyzing 

the various characteristics of the cryosphere in the recent period.  

1.2. IMPORTANCE OF SNOW COVER AND ITS CHANGING PATTERN 

Snow cover is a significant component for understanding the earth’s climate system and 

hydrological modelling. The change in Snow Cover Area (SCA) tends to affect the runoff volume 

and early onset of the melt season (Singh and Bengtsson 2004; Singh et al. 2006). The variability 

of SCA is a great interest in the context of climate change (Barnett et al. 2005; Yeo et al. 2017).  

As a change in climate directly altered the snow cover pattern, Snow Cover Days (SCDs), 

snowmelt and further affected the drought characteristics. According to the IPCC, it was 

observed that the snow cover extent was decreasing due to a warmer temperature (Bates 2009). 

In addition, the temperature increase in the future decade was expected due to global warming, 

which may project the water scarcity condition. Thus, considering the present and future snow 

cover variability, the investigation of spatio-temporal change in SCA is crucial for proper water 

resource management and policy adaptation. 

The changing pattern of snow cover in the KH region was analyzed by many authors using remote 

sensing data (Hall and Riggs 2007; Liang et al. 2008; Jain et al. 2008; Xu et al. 2017; Chen et al. 

2020). Similarly, numerous authors have experienced a higher glacier melting in different 

glaciers come under the KH region (Dobhal et al. 2013; Sharma et al. 2016; Vijay and Braun 

2016; Bolch et al. 2017; Lin et al. 2017; Tawde et al. 2017; Maurer et al. 2019; Muhammad et 

al. 2019a; Soheb et al. 2020; Mandal et al. 2020). In this regard, many authors were observed, 

the snow cover variation over the Indian Himalayan region (Atif et al. 2015; Kumar and Kumar 

2016; Murtaza and Romshoo 2017; Singh et al. 2018b). However, few researchers have reported 

about the temperature, precipitation, snowmelt, and river discharge other than the SCA variability 

(Tahir et al. 2011, 2015; Mishra et al. 2014b). The reported studies show both increasing and 

decreasing trend of SCA in different parts of the Himalayas (Mishra et al. 2014a; Tahir et al. 

2015; Kour et al. 2016a; Kumar and Kumar 2016) whereas stable or increasing trend in 

Karakoram region (Hewitt 2005; Tahir et al. 2011, 2016; Bolch et al. 2017). It was also observed 

that the rapid change in SCA over the high altitude region that directly influences the snow cover 
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dynamics. The heterogeneous change in SCA offers an opportunity to observe snow cover 

dynamics in the basinal scale (Figure 1.1). The SCA information on the basinal scale may provide 

a better understanding of climate change impact on cryosphere.  

 

Figure 1.1. Map of five major river basins of High Mountain Asia. Pie charts indicate the 

mean annual contribution of snow, ice, and rainfall to runoff above 2000 m in the major river 

basins. This map is obtained from the National Snow and Ice Data Center (NSIDC) (Source: 

https://nsidc.org/nsidc-monthly-highlights/2018/07/remote-sensing-maps-birth-water-high-

asia). 

For mapping and monitoring of SCA variation, continuous snowfield observation was important. 

The in-situ observation failed due to complex topography over the HKH region. Therefore, the 

majority of stations were installed lower than 2200 m altitude (Anjum et al. 2019). The satellite-

based remote sensing data is a good alternative source for spatio-temporal monitoring of SCA. 

A summary of snow cover variation observed using remote sensing data in the HKH region and 

its sub-region/basin is illustrated in Table 1.1. 

https://nsidc.org/nsidc-monthly-highlights/2018/07/remote-sensing-maps-birth-water-high-asia
https://nsidc.org/nsidc-monthly-highlights/2018/07/remote-sensing-maps-birth-water-high-asia
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Table 1.1 Review on snow cover changes using remote sensing data over the Himalayan 

region. 

S.No Location Data used Duration Reference 

1 Hindu-Kush Himalayas MODIS 2002-2010 (Gurung et al. 2011b) 

2 Tibet (Qinghai-Xizang) SMMR 1951-1997 (Qin et al. 2006) 

3 Tibet Plate MODIS  2000-2006 (Pu and Xu 2009) 

4 China SMMR 1978-1987 (Xiao et al. 2007) 

5 Tibetan Plateau MODIS 2000-2009 (Zhang et al. 2010) 

6 Tibetan Plateau SMMR; 

MODIS 

1997-2011 (Shen et al. 2015) 

7 Giligit, Hunza, Astore MODIS 2000-2012 (Tahir et al. 2016) 

8 Swat basin MODIS 2002-2004 (Dahri et al. 2011) 

9 Brahmaputra, Indus, 

Ganga, Amudarya,Syr 

Darya, Mekong 

AVHRR, 

MODIS 

1961-1990; 2001-

2010 

(Savoskul and 

Smakhtin 2013) 

10 Astore, Gilgit, Hunza, 

Jhelum, Kabul, Swat, 

Shigar, Shyok 

MODIS 2001-2012 (Hasson et al. 2014b) 

11 Indus, Ganga, 

Brahmaputra 

MODIS 2000-2011 (Singh et al. 2014) 

12 Brahmaputra, Ganga, 

Indus, Yangtze, Yellow 

MODIS 2000-2008 (Immerzeel et al. 

2010) 

13 Brahmaputra MODIS 2000-2010 (Mukhopadhyay 

2012) 

14 Gangotri glacier IRS-LISS Mar-Nov 2000 (Gupta et al. 2005) 

15 Sutlej MODIS; 

IRS, 

WiFS, 

AVHRR 

2000-2004 (Jain et al. 2008) 

16 Ganga, Sutlej, Chenab, 

Indus 

AWiFS 2004-2007 (Kulkarni et al. 2010) 

17 Beas basin AWiFS 2004-2005 (Negi et al. 2009) 
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18 Siachen, Gangotri 

glacier 

ERS-1/2 

ENVISAT 

1996-2004; 1996-

2007 

(Kumar and 

Venkataraman 2011) 

19 Alaknanda, Bhagirathi, 

Yamuna sub-basin 

AWiFS 2004-2012 (Rathore et al. 2015) 

20 Jhelum MODIS 2005-2009 (Sharma et al. 2013) 

21 Sutlej basin MODIS  2000-2009 (Mir et al. 2015) 

22 Bhaga Basin MODIS 2001-2012 (Snehmani et al. 

2016) 

23 Kashmir MODIS  2000-2016 (Shafiq et al. 2018) 

1.3. INFLUENCE OF WATER AVAILABILITY CHANGE 

The water cycle describes the circulation of water from Earth’s surface to the atmosphere and 

back again (Figure 1.2). This system, governed by energy from the sun, is a continuous exchange 

of moisture between the oceans, the atmosphere, and the land. Therefore, studying each 

hydrological component and influence of energy fluxes is needed to understand the changing 

pattern over the region due to the warming climate. In this thesis, we have analyzed these 

variables over the KH region. 

 

Figure 1.2. Water cycle illustrating the ocean, land, mountains, and rivers returning to the 

ocean. Processes labeled comprise precipitation, condensation, evaporation, 

evapotranspiration, radiative exchange, surface runoff, groundwater and streamflow, 

infiltration, percolation, and soil moisture. This diagram is obtained from NASA Earth 
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Science: Water Cycle (Source: https://science.nasa.gov/earth-science/oceanography/ocean-

earth-system/ocean-water-cycle/). 

About one third of the world’s population depends upon the largest freshwater reservoirs 

(Glaciers + Ice caps) on the Earth during the summer season (Brown et al. 2010). Changing patter 

of snow and glacier can exert a substantial influence on climate by interacting with the 

atmosphere through a range of feedback mechanisms (Hock 2005). Glacier melt contributes to 

the discharge of major rivers system (Bajracharya and Shrestha 2011) and feeds endorheic lakes 

on the HKH region (Bajracharya and Shrestha 2011). The changing pattern of glaciers might also 

increase the risk of water availability in future and also be responsible for new glacier lake 

generation and then may alter into Glacial Lake Outburst Flood (GLOF) in future (Ashraf et al. 

2012). As a result, the changes in glacier mass are the direct or indirect, influences the water 

availability of the region and may cause water stress in near future. Other than this, the water 

availability change can also be quantified by continuous monitoring of ground water recharge 

and even from total water storage changes. Several authors measured the total water storage 

change and groundwater recharge on different basins or sub-basins of Indian major rivers 

(Sakthivadivel 2007; Shah 2008; Mukherjee et al. 2015; CGWB 2017; Prasad and Rao 2018; 

Senthilkumar et al. 2019; Bhanja et al. 2019). On the other hand, the change in total water storage 

not only impacted the water availability but also caused the drought-like condition. To model the 

drought occurrence and measure their severity, specialized drought indices have been developed 

recently, such as Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano 

et al. 2009), Vegetation Drought Response Index (VegDRI) (Brown et al. 2008), Total Storage 

Deficit Index (TSDI) (Yirdaw et al. 2008), Standardised Precipitation Index (SDI) (Nalbantis and 

Tsakiris 2009), Multivariate Standardized Drought Index (MSDI) (Hao and AghaKouchak 

2013), Standardised Groundwater level Index (SGI) (Bloomfield and Marchant 2013), etc.   

1.4. STREAMFLOW PREDICTION AND THEIR IMPORTANCE 

River discharge is the end product of all the hydrological regimes of a river basin and also one 

of the significant steps for managing water resources. The measured river discharge can be a 

proxy method for estimating the snow and glacier melting, which also helpful for providing the 

necessary information relate with the global temperature rise. Therefore, the monitoring and 

prediction of river discharge at basinal scale is needed to forecast. However, the field based river 

discharge monitoring and prediction at continuous time scale may be hampered by the terrain 

properties of Himalayan region as well as the harsh climatic condition. Apart from this, different 

hydrometeorological variables are used to estimate the amount of river discharge. Therefore, the 
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machine learning based river discharge prediction at high temporal scale encode the domain 

knowledge and predict according. Several methods and techniques have been employed for the 

prediction of various applications based on the dependent and independent variables (Callegari 

et al. 2015; Kan et al. 2017; Kratzert et al. 2018, 2019; Le et al. 2019; Fan et al. 2020; Lin et al. 

2020; Thapa et al. 2020b). However, the advantage of the Long Short-Term Memory (LSTM) 

deep neural networks on spatial and temporal prediction was previously noted by many authors 

(Gauch et al. 2020; Hussain et al. 2020; Liu et al. 2020; Zhang et al. 2020; Ajayi et al. 2021; Yao 

2021). 

1.5. RESEARCH QUESTIONS 

 What is the distribution of snow cover in the KH region? Can the remote sensing data 

capture the changing snow cover pattern at a large spatial and temporal scale? Do the snow 

cover of the KH region declining or progressively increasing? How does the snow cover vary 

from 2000 onwards? 

 How do the Himalayan glaciers behave in response to concerning climatic variability? 

Is the Himalayan glacier retreating or advancing? What are contributing variables responsible 

for the glacier mass loss? Are any significant changes in small size glaciers observed in the 

past period? Is any significant change in small glaciers causes imbalance for local 

communities? 

 What are the implication of snow and glacier changes on runoff on a seasonal time 

scale? What are the possible changes observed in the total water storage change and also in 

groundwater recharge? Is the natural and human-made groundwater storage change to further 

contribute to drought occurrence? May the remote sensing-based drought indices be able to 

capture both hydrological and meteorological droughts? 

 What is the possible model for river discharge prediction? Is any model available that can 

have the capability for long-term or short-term forecasting? Which model architecture is 

suited for the selected region in order to predict discharge? Do the developed model is able 

to perform well for the study location? 

1.6. RESEARCH AIM AND OBJECTIVES 

This thesis aimed to quantify the snow cover variation, glacier mass changes, and their linkage 

with meteorological and hydrological variables as well as explain their implication on water 

availability. It also includes the development of a cloud removal methodology that improves the 
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estimation by filling the cloud gap with temporal and topographical information. The thesis also 

comprises a new drought index that can monitor hydrological and meteorological induced 

droughts. This thesis also contains a prediction model development for river discharge using 

machine learning and deep learning approaches at high temporal resolution. To pursue this 

overarching aim, we have addressed the following research objectives: 

1. Development of an effective methodology for monitoring the Spatio-temporal pattern of snow 

characteristics 

2. Analyzing the changing pattern of snow cover as well as glaciers and its implication on water 

availability in a warming climate 

2.1. Assessment of snow cover dynamics and its sensitivity with hydrometeorological 

factors 

2.2. Quantify the glacier energy and mass balance using the meteorological and glaciological 

methods 

2.2.1. Modeling of glacier energy and mass budget of the Phuche glacier, Cold-arid 

Himalayan region, Ladakh range, India 

2.2.2. Estimation of glaciological based mass balance and its interrelationship with 

climate drivers over the Phuche and Khardung glaciers, Cold-arid Himalayan 

region, Ladakh range, India 

2.3. Monitoring of water availability change and their impact on extreme event occurrence 

2.3.1. Quantify the combined effect of hydrometeorological and anthropogenic factors 

on groundwater recharge as well as their variability over the Ganga River basin 

2.3.2. Drought characterization using the Combine Terrestrial Evapotranspiration 

Index over the Indus, Ganga, and Brahmaputra River basin 

3. Predicting the river discharge using the machine and deep learning approaches in order to 

assess the downstream impacts of hydrological changes on ecosystems 

1.7. THESIS STRUCTURE 

The whole thesis is organized into nine chapters. A brief description of each chapter is 

summarized below: 
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Chapter 1: This chapter includes the general introduction of research and its importance on a 

global scale. It also presents the varying pattern of snow cover and glaciers with supporting 

literature. The implication of cryosphere changes and their related problems are highlighted. It 

also includes the importance of machine learning for river discharge prediction at the basinal 

scale. This chapter concludes the gap in the literature,  research questions, and related objectives. 

Chapter 2: This chapter comprises a development of a non-spectral sequential composite 

methodology for cloud gap filling for daily time series data over the Chenab River basin. The 

effectiveness of the methodology is calibrated and validated with direct and indirect methods and 

associates uncertainty. The variation of snow cover with topographical parameters is discussed. 

This chapter also includes the spatio-temporal distribution of climatic variables and association 

with snow cover change.  

Chapter 3: In this chapter, the snow cover variability and its trend are quantified at monthly, 

seasonal, and annual scales over a large spatial extent of the KH region. The snow cover days 

and other snow cover timing indices are quantified. The influence of forcing climatic and 

radiative fluxes on snow cover variation is established, and their sensitivity in each region is also 

discussed.  

Chapter 4: This chapter analyses the surface energy balance components and mass change at 

point scale over the Phuche glacier, Ladakh range. The energy balance components are collected 

from Automatic Weather Station (AWS) data located at 5600 m a.s.l. The outcomes of the surface 

melting are validated with stake measurements and compared with the help of other studies. 

Chapter 5: This chapter describes the Mass Balance (MB) measurement using a glaciological-

based method over the Phuche and Khardung glaciers, Ladakh range. The elevation-based MB 

distribution, shift in Equilibrium Line Altitude (ELA), Accumulation Area Ratio (AAR) at 

annual time scales are estimated. This chapter compares two glaciers MB lying in the same 

climatic zone and includes the possible reasons for their contrasting MB.  

Chapter 6: This chapter illustrates the quantification of groundwater recharge using different 

methods over the Ganga river basin. The performance of the methods is analyzed with the 

observation wells data. It also comprises the impact of climatic variability, and anthropogenic 

activities for the possible changes in groundwater recharge. 

Chapter 7: This chapter describes the development of a new drought index for examining the 

drought occurrence and their severity of the Indus, Ganga, and Brahmaputra River basins. This 
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new index is compared with preexisting drought indices as well as in situ data over the region. 

The relationship between the new drought index and hydrometeorological variables 

(precipitation, potential evapotranspiration, and land surface temperature) is analyzed.  

Chapter 8: This chapter includes the development of a discharge prediction model using the 

machine and deep learning techniques over the Sutlej River basin. Five different LSTM 

architectures are implemented, and the best-suited model is considered for time series prediction. 

Also, the best-suited LSTM model is compared with the Principle Component Analysis (PCA)-

based LSTM model. The aim is to ensure the model's reliability and performance for the study 

area.  

Chapter 9: This chapter summarises the new research contribution from this thesis for the 

cryospheric studies and their related implication. The conclusion of chapters 2 to 8 is described 

with the necessary limitation of the research. It also includes the direction of future research 

based on the outcomes of the thesis. 
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2.1. INTRODUCTION 

The mountain ranges of the Himalayan region are a great climatic barrier between India and its 

neighbors (Burbank et al. 2012; Singh et al. 2014), which is mainly known for its frozen 

freshwater in the form of glaciers and seasonal snow cover (Gao et al. 2019). This region receives 

a constant supply of fresh water for downstream livelihood from seasonal snowmelt in spring 

and autumn (Barnett et al. 2005), while peak glacier melts occur during the summer months and 

peak rainfall runoff occurs in the monsoon season (Immerzeel et al. 2009; Zhang et al. 2019a). 

Several studies have suggested a changing areal extent of seasonal snow cover, which further 

influences the melt-runoff (Bookhagen and Burbank 2010; Mukhopadhyay 2012; Thapa et al. 

2020a).  

Many authors have highlighted the snow cover variability over the Himalayan region (Hasson et 

al. 2014a; Rathore et al. 2018a; Singh et al. 2018a). However, some researchers have also 

reported about the change in temperature, precipitation, snowmelt, and river discharge apart from 

the Snow Cover Area (SCA) variability (Tahir et al. 2015; Snehmani et al. 2016; Azmat et al. 

2017; Butt et al. 2019). They reported both increasing and decreasing trends of SCA in different 

parts of the Himalayas, whereas a stable or increasing trend has been noted in the Karakoram 

region (Hewitt 2005; Tahir et al. 2016; Lin et al. 2017). It was also observed that the rapid change 

in SCA over the high-altitude region may be affecting glaciers along with the hydrological 

behavior of the basin (Singh et al. 2019). Therefore, the continuous monitoring of snow cover 

distribution at the regional and global scale is not only essential for managing water resources 

but is also significant for understanding the influence of climatic variability and environmental 

conservation.  

In the Himalayan region, a limited number of in situ observations are present for continuous 

snowfield measurement due to the complex topography. Therefore, satellite-based snow cover 

retrieval approaches offer a viable option to overcome this limitation. Several researchers have 

monitored SCA changes from Thematic Mapper (TM), Landsat Multispectral Scanner System 

(MSS), and Satellite Pour l’Observation de la Terre (SPOT) data (Dorothy K. Hall et al., 1995; 

Kumar and Kumar, 2016). However, many studies revealed limitations of these sensors, 
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including small swath, band resolution, and error in the spatio-temporal estimation of SCA 

(Dankers and De Jong 2004; Kulkarni et al. 2006). Contrary to this, several authors have used 

MODIS (Moderate Resolution Imaging Spectroradiometer) Snow Cover Products (SCPs) for 

daily to monthly SCA monitoring, which shows higher accuracy in certain parts of the world 

(Hall and Riggs 2007; Liang et al. 2008; Jain et al. 2008; Xu et al. 2017). However, the high 

cloud contamination in the MODIS SCP is a significant problem in many applications. Hence, 

there is a need to improve MODIS SCPs using cloud gap-filling approaches before use in SCA 

characterization. Several authors have developed numerous methodologies for the removal of 

cloud pixels from the data based on spatial, temporal, and topographical information (Wang et 

al. 2008; Gafurov and Bárdossy 2009; Parajka et al. 2010; Marchane et al. 2015; Li et al. 2019a; 

Chen et al. 2020). 

2.2. RESEARCH QUESTIONS 

 What are the essential requirements in cloud removal methodology development- How 

are the cloud blocks removed in each sequential step? Is the information filled at cloud pixel-

accurate?  

 What are the snow cover characteristics over the study region- What are the snow pattern 

in time series analysis? Can any shift in snow cover accumulation or melting be observed in 

the study area? 

 What role does the topography play in snow cover variation of a region - How important 

is the topographic information supporting the snow cover distribution across the basins? Does 

the change in topographic parameters play a significant role in varying snow cover patterns? 

 What are the controlling factors that impact the snow cover pattern of a region- Are the 

climatic variables really influential on the selected region, or are radiative fluxes more 

prevailing? 

2.3. OBJECTIVES 

 Development and implementation of cloud removal methodology to generate daily snow 

cover using the remote sensing data  

 Analyzing the spatio-temporal distribution of SCA and its trends using different snow cover 

time-series indices  
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 Investigation of long-term snow cover characteristics and their changing pattern irrespective 

of different topographic parameters (elevation, aspect, and slope).  

 Establishing the linkage between SCA and essential climatic variables and assessing their 

contribution to snow cover change 

2.4. STUDY SITE 

Chenab River is a fourth-order basin of the great Indus River system, located in the foothills and 

very high rugged mountains of the western Himalayas. The major part of the basin lies in the 

Indian Territory, whereas its lower part and outfall (into the Indus basin) are situated in Pakistan. 

In India, this river passes through two states, i.e., Himachal Pradesh and Jammu & Kashmir, 

covering an area of about 7,873 km2 and 22,323 km2, respectively. The upper part of the basin 

lies between Zanskar and the Pir Panjal ranges, whereas the lower part in Dhauladhar and the 

outer ranges of the Himalaya (Singh et al. 1997). However, the Chenab basin contributed 

approximately 50% of the total water supply by snow and glacier melt (Muhammad et al. 2019b).  

The Chenab River formed on the confluence of two streams, namely Chandra and Bhaga at 

Tandi, located in the Lahaul-Spiti district of Himachal Pradesh, India (Figure 2.1). These streams 

arise from snowfields on the opposite sides of the Baralacha Pass at an elevation of ~4900 m 

a.s.l. (Singh et al. 1997). It is elongated in shape and covers an area of 30,370 km2. The total 

length of the river is about 974 km (Luqman et al. 2018), and it feeds several irrigation canals. 

The elevation of the basin varies widely from about 242 to 7066 m a.s.l., with an average of 2900 

m a.s.l. However, the river gradient is very steep at its source and gradually decreases 

downstream. Additionally, the land use pattern of the basin involves forest and agriculture at an 

elevation of about 2500 m a.s.l., whereas higher elevation exists subalpine and alpine conditions 

(Rao et al. 1997). The basin covers 2645 km2 glaciers area, which mainly starts from ∼4000 m 

a.s.l. altitude (RGI Consortium 2017). Furthermore, the Chenab basin lies in the boundary 

between two large-scale circulation patterns, i.e., the western disturbances and the Indian summer 

monsoon system  (Shekhar et al. 2010). Additionally, this basin is not only controlled by 

precipitation but the change in temperature also. The climate of this basin varies from hot and 

moist tropical in the lower valley to cold temperature at about 2000 m a.s.l. (Rao et al. 1997). 

Therefore, we have selected this basin to understand the variability of meteorological variables 

and the conflicting signal of climate change.  
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2.5. DATASETS 

2.5.1. MODIS SNOW COVER PRODUCTS 

In the present study, the MODIS daily SCPs version 6 (V6) of Terra (MOD10A1) and Aqua 

(MYD10A1) were utilized over the study area from 1 January 2001 to 31 December 2017. We 

have selected the latest version of MODIS SCPs rather than the old existing one (Version 5) 

because Zhang et al. (2019) found that V6 has higher accuracy than that of V5. The datasets were 

obtained from the National Aeronautics and Space Administration (NASA) Earth data gateway 

customize service (https://search.earthdata.nasa.gov) with sinusoidal projection at 500m grid 

resolution. The Chenab basin comes under the MODIS tile number h24v05, i.e., horizontal 24 

and vertical 5. For the observation period, a total of 6144 images for Terra and 5645 for Aqua 

were utilized, while 65 and 15 images for Terra and Aqua were missing, respectively. Detailed 

information of MODIS SCPs retrieved snow mapping algorithm is available at Riggs et al. 

(2016). 

These data sets contain seven parameters (Normalized Difference Snow Index [NDSI] snow 

cover, raw NDSI, basic QA, algorithm flags QA, snow albedo, orbit pointer, and granule pointer) 

in Hierarchical Data Format (HDF). The NDSI snow cover parameter of both sensors was used 

for snow cover mapping and monitoring. For this, we have used the global value of the NDSI 

threshold 0.4, which is still recommended (Riggs et al. 2016, 2017). The mean yearly percentage 

of the total geographical area, estimated for three new classes (i.e., cloud, snow, and no-snow) 

obtained from 9-standard MODIS classes (NDSI snow cover, Missing data, No decision, Night, 

Inland water, Ocean, Cloud, Detector saturated and Fill). Overall, the mean cloud cover 

percentage of the total basin area in Aqua (54.9%) is accounted 20.9% higher than the Terra 

(45.4%) during the study period (Figure 2.2).  

2.5.2. LANDSAT-8 OLI SATELLITE IMAGES  

Due to scarcity of ground observation, numerous authors have used different high-resolution 

satellite data for validating the cloud gap-filled MODIS SCPs over various regions of the 

Himalayas (Hasson et al. 2014a; Stillinger et al. 2019). Therefore, we have considered the 

Landsat-8 Operational Land Imager (OLI) images to validate the MODIS SCPs over the study 

period (2013–2017). A total of 47 cloud-free images were acquired (Path-147 and Row-38) from 

the United States Geological Survey (USGS) EarthExplorer, which is available at 30m grid 

resolution and 16-day temporal scale (Table 2.1).  
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Figure 2.1. (a) Chenab River basin and its location in India that represents the altitude 

variation, drainage pattern, and glaciers boundary, (b) hypsometry curve of the basin and 

glaciers area, and (c) mean monthly total precipitation and air temperature of ERA-5 

reanalysis data extracted over the study area. 

Figure 2.2. Mean yearly percentage of the total geographical area is calculated for cloud, 
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snow, and no-snow classes during 2001–2017 for MOD10A1 (lower group) and 2002–2017 

for MYD10A1 images (upper group). 

Table 2.1. Details of the used Landsat-8 OLI data for validating the daily cloud-free MODIS 

SCA from October 2013 to September 2017. 

Year Date of image acquisition (DD/MM/YYYY) 

2013 18/04/2013; 20/05/2013; 05/06/2013; 25/09/2013; 27/10/2013; 28/11/2013 

2014 
15/01/2014; 16/02/2014; 20/03/2014; 21/04/2014; 07/05/2014; 08/06/2014; 

10/07/2014; 11/08/2014; 28/09/2014; 30/10/2014; 15/11/2014; 01/12/2014 

2015 
18/01/2015; 23/03/2015; 24/04/2015; 27/06/2015; 30/08/2015; 15/09/2015; 

01/10/2015; 17/10/2015; 02/11/2015; 04/12/2015 

2016 
05/01/2016; 22/02/2016; 26/04/2016; 12/05/2016; 13/06/2016; 03/10/2016; 

19/10/2016; 06/12/2016 

2017 
23/01/2017; 24/02/2017; 12/03/2017; 13/04/2017; 15/05/2017; 04/09/2017; 

20/09/2017; 06/10/2017; 22/10/2017; 07/11/2017; 09/12/2017 

2.5.3. ERA5-LAND REANALYSIS DATA 

ERA5 is a fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) 

re-analysis (ERA5)-Land is a global reanalysis dataset covering a period from 1981 to the present 

at 0.1º × 0.1º grid resolution (~9 km) with a monthly temporal scale. ERA5-Land provides a 

consistent view of the water and energy cycles at a surface level during several decades (C3S 

2019). The performance of ERA-5 datasets was evaluated against the observed gridded datasets 

from the India Meteorological Department by Mahto and Mishra (2019). They have reported that 

the ERA-5 performed better than other reanalysis products, and it can be used for hydrological 

modeling in India. In this study, the total precipitation (𝑃𝑡), air temperature (𝑇𝑎), wind speed (𝑢), 

and net shortwave radiation (SWN) were acquired to identify the influence of these variables on 

the spatial and temporal SCA over the Chenab basin during the two separate periods, i.e., 1981-

2017 and 2001-2017. 

2.5.4. DIGITAL ELEVATION MODEL (DEM) 

In this study, the void-filled Shuttle Radar Topography Mission (SRTM) Digital Elevation Model 

(DEM) version 3.0 (∼90 m spatial resolution) (Jarvis et al. 2008) was used to assess the 

topographical effect on SCA variation. The SRTM DEM was interpolated to the MODIS SCPs 

spatial resolution of 500 m using the bilinear interpolation technique (suggested by Lopez-
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Burgos et al., 2013). Vertical absolute and relative height error of the DEM is described to be 

less than ±16 m and ±6 m, respectively; the circular absolute and relative geolocation error are 

±20 m and ±15 m, respectively, at a 90% confidence level (Rabus et al. 2003; Farr et al. 2007).  

2.6. METHODOLOGY 

2.6.1. CLOUD REMOVAL METHODOLOGY 

To overcome the cloud gaps in the daily MODIS SCPs, we have selected and applied rigorous 

non-spectral cloud removal techniques over the extracted study area (Figure 2.3). The 

implemented methodology is a combination of high accuracy (> 90%) cloud reduction methods 

that are introduced (Gafurov and Bárdossy 2009; Wang et al. 2014) and partially adopted by 

(Parajka et al. 2010; Paudel and Andersen 2011; Hasson et al. 2014a; Tran et al. 2019). These 

studies presented effective cloud removal techniques with the consideration of topographic and 

seasonal variability over the different regions.  However, these studies include numerous cloud-

gap filling steps in which each successive step reduced more cloud coverage, but it introduced a 

high probability of information loss (Gafurov and Bárdossy 2009; Hasson et al. 2014a). 

Therefore, we have produced a trade-off between cloud removal and information loss while 

considering the composite methodology of five different methods. The brief description, 

theoretical accuracy, and functionality as discussed below. 

The first step merged the MODIS Terra and Aqua images of the same day in order to minimize 

the short-term persistent cloud cover. We have replaced the cloud pixels of the Terra image with 

the same-day cloud-free pixels of the Aqua image by considering the Terra snow product as a 

primary image. Because it has experienced relatively less cloud coverage and higher accuracy 

than the Aqua product (Hall et al. 2019). This step preferred more accurate and adequate snow 

cover than both observations (Terra and Aqua). This may occur due to a short time difference 

(~3 – 4 hours at the Equator) between these two sensors (Gafurov and Bárdossy 2009).  

The second step comprises the replacement of present-day cloud pixels with a combination of 2-

successive images (two forward and two backward). As for the temporal filling, three different 

temporal iterations were applied sequentially for snow and land pixels. In the first iteration, if 

both backward (t – 1) and forward (t + 1) images observed the same class (snow or no-snow) for 

the corresponding cloud pixel of the present image, then the cloudy pixel is replaced by that class. 

Besides, the second iteration applies a similar logic using images (t – 1) and (t + 2) followed by 

the third iteration using images (t – 2) and (t + 1). Here, we assumed that no snowmelt or snowfall 

occurred during the spans of different temporal iterations (Lopez-Burgos et al. 2013). Moreover, 
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the probability of rapid snowmelt is low because the present-day cloudy pixels limit the incoming 

shortwave radiation and diffuse the longwave radiation (Gafurov and Bárdossy 2009). However, 

these assumptions show significant disagreement in the transitions zones as well as the 

transitional period. These changes are mainly attributed to the varying sun solar angle (Järvinen 

and Leppäranta 2013; Kahl et al. 2019), wind blow (Mott et al. 2018), and avalanche events 

(Valero et al. 2018). These sub-daily variation effects are not considered for this step due to the 

unavailability of sub-daily scale observation.  

In the third step, the particular cloud cover pixel was replaced by the information from the eight 

nearest neighbor pixels, elevation, and aspect of the surrounding pixel. This method is explained 

by Gafurov and Bárdossy (2009) and modified by Lopez-Burgos et al. (2013). For the spatial 

filtering, we have considered the two iteration processes sequentially for a 3 × 3 moving window 

in order to reduce the cloud cover. Also, numerous studies have suggested that this window size 

is optimal for cloud gap-filling (Gurung et al. 2011a; Brooks et al. 2018; Chen et al. 2020). The 

first iteration removes a cloudy pixel; if any of this direct laying eight neighboring pixels covered 

by snow and their elevation is lower than the cloudy pixel with the same orientation, the cloudy 

pixel is assigned as snow pixel. Also, if five out of eight neighboring pixels of the cloudy pixel 

shows snow/no-snow and a cloud pixel elevation is higher/lower from the minimum/maximum 

adjacent snow/no-snow elevation, then the cloudy pixel is reclassified as snow/no-snow pixel.  

In the fourth step, the regional snowline mapping approach (Parajka et al. 2010) utilizes the 

aspect-wise elevation information to correctly identify the snow/no-snow pixels. For this, the 

cloudy pixels are assigned as snow or no-snow-based on their elevation, which is compared with 

the mean elevation of all the snow (𝜇𝑠
ℎ) or no-snow (𝜇𝑛𝑠

ℎ ) pixels in each aspect. The assumption 

of this filter is that at least 70% cloud-free pixel (Gafurov and Bárdossy 2009) are present in a 

particular aspect; otherwise, this step will be skipped. In this approach, if the elevation of the 

cloudy pixel is above the 𝜇𝑠
ℎ classified as snow and elevation is below the 𝜇𝑛𝑠

ℎ  assigned as no-

snow. However, there will be no change in cloud pixels between the 𝜇𝑠
ℎ and 𝜇𝑛𝑠

ℎ  because the 

maximum uncertainty occurred in this transitional zone (Wang et al. 2009).  

Although most of the cloud pixels were eliminated using the steps mentioned above, the 

remaining cloud pixels were removed using a multi-day backward replacement method (Wang 

et al. 2014). In this approach, the cloud pixels on a current-day image were replaced by the cloud-

free pixels of the previous day and continued until all the cloud pixels were removed. However, 

if the cloudy pixels are replaced by cloud-free pixels of more extended previous day images 

(cloud persistent continue), then the uncertainty of those pixels is increased. Overall, the 
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sequence of each subsequent step was considered based on their accuracy and their assumptions 

for cloud removal. Moreover, the combination of these steps was applied, and their outcomes 

were validated with the accuracy assessment methods. 

2.6.2. VALIDATION OF METHODOLOGY AND THEIR ACCURACY ASSESSMENT 

The best way to validate the composite cloud removal methodology was based on the in situ 

measurement or ground truth data. However, the unavailability of continuous records and scarce 

measurement locations limit the validation with observatory data in the Chenab basin. Therefore, 

the adopted methodology was validated with the indirect method suggested by Gafurov and 

Bárdossy (2009) as well as high-resolution satellite data (Figure 2.3). 

In an indirect approach, a total of 186 images (157 belongs to Terra and 29 belongs to Aqua) 

with less than 2% cloud cover from standard MODIS SCPs during 17 years study period were 

utilized and filled with other dense cloud covered images. Then the cloud-free images were 

considered as a ‘ground truth’ observation for the corresponding cloud-filled images. Numerous 

authors have considered different sets of images for validation (Parajka and Blöschl 2008; Paudel 

and Andersen 2011; Dariane et al. 2017). Based on this, we have selected a large number of 

images to understand the accuracy of the composite methodology. However, the accuracy 

assessment results may depend on the selection of the cloud-free images and their number in each 

month because the snow cover condition varies in each month of the year. After applying the 

composite cloud removal methodology to the artificially generated cloud-covered images and 

comparing them with the corresponding cloud-free images. However, the first step (the 

combination of Terra and Aqua SCPs) was not validated because the cloud cover differences 

between these two satellite images were very low within a day (Gafurov and Bárdossy 2009). 

Further, the accuracy of the methodology was calculated by assessing the number of pixels 

reclassified correctly (snow to snow and no-snow to no-snow) and the number of pixels that were 

misclassified (snow to no-snow and no-snow to snow pixels). Additionally, the overall accuracy 

was estimated by the percentage of correctly reclassified pixels to the total reclassified pixels in 

each image.  

Second, the validation method based on the high-resolution satellite data, the Landsat-8 OLI 

images, was used to extract the snow region for 2013–2017. A total of 47 images of the different 

months were considered for the area comparison with corresponding cloud-free MODIS images. 

Therefore, the binary snow cover maps were generated based on the reflectance bands (band 3 

and 6) of the Landsat satellite data with a threshold of NDSI [(band3 – band6)/ (band3 + band6)] 
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> 0.4 and the reflectance in band 5 (near-infrared) was > 0.11 for avoiding the water body. Then, 

we have extracted the common snow-covered region from both datasets (MODIS and Landsat 

images) and compare them. Moreover, the relative error and Mean Absolute Difference (MAD) 

between these two datasets were calculated in order to assess the agreement (Hasson et al. 2014a). 

2.6.3. SNOW COVER INDICES 

To investigate the snow cover change, one of the most popular indexes, i.e., Snow Cover 

Duration (SCD), was derived using the generated MODIS daily cloud-free images over the study 

period. The SCD is widely used in several studies to understand interannual variations. 

Additionally, some other indexes were estimated from the daily snow cover timing, utilized by 

Dariane et al. (2017). The indexes were extracted by plotting the daily time series of SCA over 

the basin from 1 September to 31 August. Hence, for the Chenab basin, a total of 16 timing snow 

curves were obtained, one for each year. However, a five-day moving average of daily SCA was 

used to reduce the short-term snow cover variation. The detail of the indexes used in this study 

(Figure 2.4) was explained as follows: 

 Snow Accumulation Onset Day (SAOD): Considered as the day number from which snow 

accumulation started. The SAOD is estimated when the SCA exceeds 15% and remains above 

15%. However, the shift in SAOD mainly occurred due to the precipitation and temperature 

changes.  

 Snow Melt Ending Day (SMED): Considered as the day number that snow storage in the study 

area is depleted. This index is calculated when the SCA goes under 15%. The SMED is 

dependent on the amount of snow stored in the winter season, variability in solar radiation, 

and the 𝑇𝑎 during the summer season.  

 Accumulation-Ablation Period (AAP): Considered as the difference between the SAOD and 

SMED period. It denotes the period of hydrological processes (snowfall and snowmelt) 

carried out in the basin.  

 Maximum snow cover (MSC): Considered as the maximum extent of snow cover observed in 

a year. This index was mainly used to indicate the snow storage in the basin for that particular 

year.  

 Maximum Snow Cover Day (MSCD): Considered as the day in which MSC occurred. 

 Snow Accumulation Period (SAP): Considered as the period from SAOD to the MSCD.  

 Snow Melt Period (SMP): Considered as the period between the MSCD and SMED. SMP 

indicated the time is taken by the snow stored in the basin to be depleted.  
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  Snow Accumulation Slope (SAS): Considered as equal to the ratio of MSC to SAP. SAS 

denotes the rate at which snow accumulation reached its maximum extent (i.e., the slope of 

the rising limb). 

 

Figure 2.3. Overall workflow of the methodology and analysis structure. 

 

Figure 2.4. Conceptual diagram showing the snow cover timing and defined snow indexes 

using daily cloud-free SCA between 1 September 2007 (day-1) and 31 August 2008 (day-366). 
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 Snow Melt Slope (SMS): Considered as the ratio of maximum snow cover extent (MSC) to 

the corresponding SMP. SMS was defined as a melting rate (i.e., the slope of the falling limb). 

2.6.4. STATISTICAL ANALYSIS 

For the statistical analysis, the non-parametric Mann-Kendall (MK) trend (Mann 1945) and Sen’s 

slope estimator method (Sen 1968) were applied in monthly, seasonal, and annual time-series 

data of SCA and meteorological variables. Sen’s slope provides the rate of change over time-

series data, whereas the MK test includes the monotonically increasing or decreasing trend. These 

trend detection methods are widely accepted in hydrology and meteorology time-series studies 

(Hamed 2009; Deng et al. 2018b). The relationship of SCA with climatic variables was 

performed based on the Pearson correlation coefficient (R). Moreover, the daily MODIS SCA 

was classified into four seasons, i.e., December, January, and February (DJF), March, April, and 

May (MAM), June, July, and August (JJA), and September, October, and November (SON) to 

characterize the snow cover distribution in seasonal scale. Figure 2.3 shows the graphical 

representation of the overall workflow followed, including the cloud gap-filling composite 

methodology and the relationship between SCA and climatic variables. 

2.7. RESULTS  

The present study produced cloud-free daily snow cover imageries using standard MODIS daily 

SCPs (Terra and Aqua) from 2001–2017. Here, we have used preexisting techniques by 

considering only higher accuracy (> 90%) for cloud removal. Besides, the obtained results were 

validated by simulating the Gafurov and Bárdossy (2009) method and Landsat-derived snow 

cover extent. Then, the generated cloud-free images were used to monitor the snow cover 

variability, dynamics, and its linkage with meteorological variables. 

2.7.1. VALIDATION OF THE CLOUD-FREE MODIS SNOW COVER PRODUCT  

Firstly, the accuracy assessment was analyzed over 186 cloud-free MODIS images (157 for Terra 

and 29 for Aqua) by the indirect method. Several authors previously used the adopted 

methodology for accuracy assessment. The minimum, maximum, and mean accuracy achieved 

on images were 84.1%, 98.2%, and 93.1%, respectively, for the 157 Terra images, and 81.3%, 

97.1%, and 91.3%, respectively, for the 29 Aqua images. The overall mean accuracy of the 

selected images (186 images) indicated higher efficiency in step-2 while lower in step-5 (Table 

2.2). This may have occurred due to the longer time of backward image involvement, which 

increased the persistent cloud days and produced uncertainty of the land features. 
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Table 2.2. Accuracy assessment of 186 images calculated for each step (from step 2 to 5) of the 

cloud removal methodology. 

Steps Minimum Maximum Mean Standard deviation Kappa coefficient 

2 89.1 98.3 94.2 1.21 0.91 

3 86.3 96.6 93.3 1.65 0.86 

4 84.3 97.6 94.1 1.78 0.83 

5 81.2 94.5 89.8 1.61 0.81 

The mean monthly accuracy of the selected images and their deviation were analyzed using the 

adopted methodology. The results indicate that the efficiency starts decreasing from January 

(94.3%) and attains its minimum in July (90.5%) (Figure 2.5a). This may occur due to the 

variability of SCA being lower in the winter period compared to other seasons (Gutzler and 

Rosen 1992). However, a lower accuracy was also observed in the transitional months, i.e., June, 

July, October, and November, compared to other months. Similar results have been demonstrated 

by Li et al. (2019) over the Tienshan Mountains using snow depth data. Moreover, a higher 

deviation was highlighted in July (1.9%). This is possibly due to the monsoonal period that may 

create a higher variation. The overall mean efficiency was obtained by about 92.8 ± 1.6%, with 

a kappa coefficient of 0.85 over the study period. 

 

Figure 2.5. (a) Mean monthly accuracy of MODIS SCA using indirect method and (b) relative 

error between MODIS and Landsat SCA over the study area from 2001 to 2017. The vertical 

line and bars represent the deviation and number of images, respectively, used for accuracy 

assessment. 

The second approach of cloud-free MODIS data validation included the area comparison 

between MODIS cloud-free images and Landsat snow cover extent over 2013–2017 (47 images). 

Validation results show that the Mean Absolute Difference (MAD) between Landsat and MODIS 
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SCA was approximately 2.4%, while the relative error ranged from –0.3% to 39.2%, with an 

average of 9.2% (Figure 2.5b). The estimated results indicate that the MODIS snow cover 

attained maximum overestimation in August (32.9%) and minimum in March (0.0%). Several 

authors have also reported an overestimation of MODIS snow cover with Landsat in different 

regions (Tang et al. 2012; Hasson et al. 2014a). However, the underestimation was only slightly 

observed in January (0.1%). Besides, the MODIS cloud-free snow cover showed a higher 

correlation (R = 0.99, p < 0.001) with Landsat data under clear sky conditions. 

2.7.2. EFFECTIVENESS OF THE METHODOLOGY 

In this study, the effectiveness of individual steps was analyzed over the 17 years of data in order 

to demonstrate the amount of cloud removal and associated uncertainties. In standard SCPs, the 

percentage of cloud cover was higher in July and August and lowered in October and May (Figure 

2.6). This higher cloud obstruction might have occurred due to the influence of the southwest 

summer monsoon, while the minimum obstruction may have been caused by the transition of the 

season (Padma Kumari and Goswami 2010). The mean cloud cover percentage of the basin area 

in standard MODIS Aqua was 20.9% higher than Terra; however, the mean SCA of Aqua was 

30.6% less than Terra SCP. This may have occurred due to the diurnal cycle of cloud cover that 

varies as well as increases throughout the day (Shang et al. 2018).  

In the first step, the combination of Terra and Aqua snow products reduced the mean cloud cover 

from ~45.4% (Terra) and ~54.9% (Aqua) to 33.9% (combined products) of the total geographical 

area. However, the mean SCA was increased from 14.5% (for Terra) and 11.1% (for Aqua) to 

16.2%. Overall, a five-step composite methodology reduced mean cloud cover by 33.9% (step-

1), 20.4% (step-2), 13.4% (step-3), 8.3% (step-4) and ~0.0% (step-5). However, the mean SCA 

also progressively increased by 16.2%, 21.3%, 25.1%, 28.5%, and 33.6% in each subsequent 

step. However, in the last step, 30 previous-day images were used to remove almost all cloud 

pixels for the whole study area. This step removed the mean cloud cover from 8.3% (fourth step) 

to 5.1% (using first previous-day), 2.2% (using second previous-day), 1.8% (using third 

previous-day), and ~0.0% (using 30 previous-day images). This step considerably increased the 

mean SCA during the snow accumulation (December to March) and had no significant changes 

in the ablation season (July to September). The performance of each subsequent step (from 1 to 

5) for cloud removal was observed on a randomly selected date (12 March 2012), as shown in 

Figure 2.7. The standard Terra SCP observed 94.1% cloud cover (Figure 2.7a), whereas the Aqua 

satellite observed 99.9% of cloud coverage (Figure 2.7b) after a time difference of ~3-hour. 
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Figure 2.6. Month-wise progressive improvement was obtained in five different consecutive 

steps. The mean change in SCA and cloud cover percentage in each step are presented of the 

total study area during 2001-2017. 

 

Figure 2.7. Cloud cover percentage of the randomly selected image and produced daily cloud-

free image after implementation of the five steps on 12 March 2012. (a) Terra; (b) Aqua; (c) 

Combination of Terra and Aqua images; (d) Adjacent temporal combination; (f) Nearest 

neighborhood; (e) Regional mean snow line; and (g) Multi-day backward replacement. 

Obliviously, this percentage change in cloud cover reflects the continuous cloud movement 

dynamics. The implementation of the first step (combine of Terra and Aqua) removed 0.1% cloud 
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cover from Terra and 5.9% from Aqua, while a total of 94.0% cloud cover remained (Figure 

2.7c). The second step removed 63.0% cloud cover, while 31.0% remained (Figure 2.7d). 

However, the cloud coverage for the previous two and the next two days was observed at 13%, 

71%, 19%, and 46%, respectively. The third step removed 14.7% cloud cover, and 16.3% 

remained (Figure 2.7e). Although this step removed less cloud cover, however, it should still be 

considered in the part of methodology due to high accuracy and further minimizes the overall 

error. Many authors reported that the neighboring pixels method attains low error (Gafurov and 

Bárdossy 2009; Tran et al. 2019). The fourth step, based on a regional snow line, removed 14.1% 

cloud cover, and 2.2% remained (Figure 2.7f). Finally, the last step removed the remaining 2.2% 

cloud cover using a multi-day backward replacement approach (Figure 2.7g).  

2.7.3. UNCERTAINTY ASSOCIATED WITH CLOUD GAP-FILLING TECHNIQUES 

In this study, the standard MODIS SCPs were used as observational data; however, all 

observational data have some inherent uncertainty. These inherent uncertainties are usually 

associated with the larger solar zenith angles, which can reduce the accuracy of the product (Li 

et al. 2016). Additionally, there are other uncertainties associated with the cloud gap-filling 

algorithm because of the different band considerations in Terra (band 6) and Aqua (band 7) for 

the NDSI algorithm (Hall and Riggs 2007). Moreover, the MODIS snow product has an 

advantage for large areas; however, the accuracy of the single-pixel can be influenced by 

different variables, i.e., acquisition angle, acquisition time, topographic effect, and land cover 

(Matiu et al. 2020). These factors lower the accuracy, especially at the start and end of the snow 

season. Therefore, the last multi-day backward replacement filter was used to provide reasonable 

estimation when averaged over the more extended periods. Hence, special consideration should 

be given to the daily value of snow cover pixels during the monsoon season. 

2.7.4. SNOW COVER VARIABILITY 

After a satisfactory assessment of the methodology efficiency, the generated new daily cloud-

free MODIS snow cover images were used to understand the intra-annual and inter-annual 

variability of snow cover over the Chenab basin. Daily distributions of the SCA for each date 

from 1 January 2001 to 31 December 2017, depicting the annual cycle, are shown in Figure 2.8. 

The sequence of daily images indicates that the major snowfall events and growth/shrink of 

snowfall period over one year change from decade to decade. It also suggests that the snow cover 

extent is highly variable within the observation period, further leading to a shift in the snowfall 

season.  
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Figure 2.8. Daily cloud-free snow cover area of the Chenab basin from 1 Jan 2001 to 31 Dec 

2017. 

 

Figure 2.9. Mean annual and monthly minimum and maximum SCA of each year over the 

Chenab basin from 2001 to 2017. 

The annual evolution of snow cover during 2001–2017 was analyzed for the entire basin (Figure 

2.9). The mean yearly SCA was 33.6% of the total geographical area. The mean annual minimum 

and maximum SCA were observed in 2016 (27.0%) and 2015 (37.5%), respectively. The 
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maximum SCA mostly occurred in February except for the years 2001, 2006, 2007, 2009, and 

2017, while the minimum SCA was mostly observed in August except in 2011. Previous studies 

have also suggested that the maximum and minimum SCA occurred in February and August, 

respectively, for the western Himalayas (Kripalani et al. 2003; Kour et al. 2016b); thus, this 

coincided with our results. Also, Dimri et al. (2015) have reported that the major snowfall events 

occur during December, January, and February were mainly influenced by the western 

disturbances over the Himalayas. In general, if the maximum SCA occurred in January, this 

would likely result in a higher rate of melting due to increasing the ablation period and directly 

contributing to the river system (Barnett et al. 2005). 

For the observation period, the mean monthly SCA was more persistent in February (58.2%), 

followed by January (54.5%), and March (54.0%); while the minimum SCA was observed in 

August (6.2%), followed by July (10.1%), and September (13.9%). The transitional months of 

September, October, and November showed the highest inter-annual SCA variability with a 

Coefficient of Variance (CV) of 0.27, 0.30, and 0.29, respectively, whereas March (CV = 0.07) 

and April (CV = 0.07) experienced the least variability and were relatively stable. 

To evaluate the significant change in snow cover trend, a non-parametric MK and Sen’s slope 

test were performed on monthly, seasonal, and annual time scales in three separate periods, i.e., 

2001–2017, 2001–2009, and 2009–2017 (Figure 2.10). It should be noted that a statistical trend 

for a shorter period than these should be treated carefully. Although the result shows an 

increasing trend of SCA for the periods 2001–2017 and 2001–2009, it has been slightly 

decreasing since 2009 and was statistically insignificant. Therefore, an insignificant increasing 

trend of SCA was observed at a rate of 0.25 % yr−1 for the entire period. Moreover, the SCA 

increased or was stable from January to April during each selected period. This may indicate that 

the snow accumulation period has changed or is shifting in terms of the seasonal snow cover 

(Singh et al. 2019). The reduction in mean annual SCA was increased by ~6.8% during 2001–

2009; however, recently, it was decreased by ~1.5% of the total basin area during 2009–2017. 

Moreover, the maximum SCA was reduced (about 10.2%) in SON and was increased (about 

1.5%) in DJF during 2009–2017. 

2.7.5. SNOW COVER DEPLETION CURVE INDEXES 

The Snow Depletion Curve (SDC) was used to extract the different indexes for the entire basin 

to understand the properties of the snow accumulation- ablation season. Results indicate that the 



CHAPTER 2: DEVELOPMENT OF AN EFFECTIVE METHODOLOGY FOR MONITORING 

THE SPATIO-TEMPORAL PATTERN OF SNOW CHARACTERISTICS 

Page 29 of 254 

MSC trend was decreasing (−0.12 % yr−1) for the entire area. Moreover, the SAP was shortened 

(−1.44 day  yr−1), resulting in a stable or no trend of the SAS, which is the ratio of MSC to SAP. 

 

Figure 2.10. Trend analysis of the mean monthly, seasonal, and annual SCA of the Chenab 

basin during three distinct periods: 2001 to 2017, 2001 to 2009, and 2009 to 2017. 

 

Figure 2.11. Spatial distribution of SCD anomalies (deviation from the mean of the 2001–2017 

period) per year and mean SCDs over the Chenab river basin from 2001 to 2017. 

In contrast, SMP was elongated by about one day per year with decreasing SMS (–0.004). 

However, the MSCD was shifting backward at the rate of about one day per year. The trend of 

SAOD indicated that the snow accumulation started one day earlier, while that of the SMED 
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showed that the average snowmelt season ended one day earlier in each year. Overall, the AAP 

indicated a decreasing trend at the rate of –0.92 day yr−1; however, the SAP decreased, and SMP 

increased at the rates of –1.44 and 1.19 day yr−1, respectively. All indexes showed insignificant 

trends (p < 0.05) during the study period. 

2.7.6. SNOW COVER DAYS (SCDS) 

The pixel-wise SCDs for each year were calculated based on cloud-free daily snow cover images. 

The average SCD of the basin was ~122 days during the study period. A 17-year mean SCD was 

classified into six subsequent classes (Figure 2.11). The SCD of less than 60 days covered the 

majority of the basin, ~45.0%, which was considered unstable SCA. The other classes, such as 

60–120, 120–180, 180–240, and 240–300 days, occupied areas of about 8.4%, 11.3%, 14.6%, 

and 10.5%, respectively. However, the majority of mountain peaks and glaciers were covered 

with SCDs above 300 days, with an area of 10.5%. In addition, more SCD values were observed 

in the higher elevations of the basin (above 5000 m a.s.l.), which received higher snowfall 

compared to the lower reaches. This region attains most of the Chenab basin glaciers, which have 

relatively persistent snow compared to the mid-lower and lower elevations. This indicates that 

the SCD was minimum for areas near 2200 m elevation, and the duration of snow cover became 

shorter. The spatial distribution of SCD anomalies (deviation from the 17-year mean) of each 

year is illustrated in Figure 2.11. We observed a relatively shorter SCD than the total mean in 

2001, 2002, 2003, 2016, and 2017, particularly in 2016 (23 days). In contrast, 2004, 2010, and 

2013 were stable, with the SCD being close to the mean. However, the rest of the years were 

considered longer than the mean of the SCD, especially in 2015, which indicated that the SCD 

was 15 days longer than the mean. Randhawa et al. (2016) have found that the SCA reduced 

significantly during 2015–2016 in comparison to 2010–2014 in almost all basins of the Himachal 

Pradesh, western Himalayas.  

2.7.7. SNOW COVER INFLUENCE BY TOPOGRAPHIC PARAMETERS  

The topographical effect on SCA variations was investigated over six different elevation bands 

(elevation-wise), eight aspect classes (aspect-wise), and five slope classes (slope-wise) over the 

entire time series of data (Figure 2.12). For this, the classified areas for each elevation zone were 

21.5% for 0–1000 m a.s.l., 13.9% for 1000–2000 m a.s.l., 14.2% for 2000–3000 m a.s.l., 16.3% 

for 3000–4000 m a.s.l., 22.3% for 4000–5000 m a.s.l., and 11.7% for elevations over 5000 m 

a.s.l. of the total basin area, for which the mean SCA values were about 1.6%, 14.7%, 41.9%, 

65.5%, and 84.6%, respectively (Figure 2.12a). Additionally, elevations above 4000 m a.s.l. 
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covered 34% of the basin area, which included 97.5% of the core glacier area within the basin. 

However, the SCA for the period 2001–2017 showed an increasing trend at the rate of 0.78% 

yr−1, whereas a decreasing trend (−1.36 % yr−1) in SCA was observed during 2009–2017 for 

the elevations above 4000 m a.s.l. This decreasing trend of SCA in higher altitudes could have 

led to the negative glacier mass balance (Singh et al. 2019) and an increase in streamflow (Lutz 

et al. 2014) in the recent decade. However, the overall SCA showed a decreasing trend from 

September to January, whereas an increasing trend was experienced from April to August, which 

is statistically insignificant above 4000 m a.s.l. It should be noted that the elevation zones 

between 4000 and 5000 m and above are likely to be most sensitive to climate change as most of 

the glaciers exist at these elevations, and a significant amount of snow cover remains throughout 

the year. Therefore, this change in SCA at higher elevations could have a major impact on glacier 

mass balance and regional water storage. 

 

Figure 2.12. Mean SCA distribution from 2001 to 2017 in classified: (a) Elevation; (b) Aspect 

and (c) Slope of the Chenab basin. 

The SCA dependency on aspect-wise varied from location to location because precipitation was 

influenced by the function of aspect and prevailing wind direction. Therefore, the aspect values 
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were classified as 7.3% for north (337.5–22.5°), 10.8% for northeast (22.5–67.5°), 10.7% for east 

(67.5–112.5°), 13.6% for southeast (112.5–157.5°), 17.5% for south (157.5–202.5°), 15.9% for 

the southwest (202.5–247.5°), 12.5% for the west (247.5–292.5°), and 11.7% for northwest 

(292.5–337.5°) of the total basin area (Figure 2.12b). It was found that the north and south 

directions experienced the maximum and minimum SCA in each month, respectively, with the 

highest occurring in February and lowest in August. By combining the elevation and aspect 

information, it can be concluded that aspect is not a strong limiting factor for snow persistence 

in the higher regions during the winter season. However, snowmelt becomes more relevant when 

the climatic condition is changed or if solid precipitation is weaker in the higher elevations. The 

slope orientation of the basin has a relatively larger area in the south and southwest, and higher 

SCAs in the north (40.0%), northeast (35.0%), and northwest (38.9%) during all seasons were 

observed. 

For quantitative snow cover distribution, the slope of the basin was classified into five different 

categories, i.e., 0–10°, 10–20°, 20–30°, 30–40°, and above 40°, which covered areas of 20.9%, 

20.9%, 29.3%, 22.1%, and 6.8% of the total basin area, and mean SCA was observed at 17.5% 

29.8%, 36.0% 42.1%, and 53.8% respectively (Figure 2.12c). The basin experienced a maximum 

and minimum SCA above 40º and 10–20º, respectively, in all months; however, it was highest 

in February and lowest in August. This could be related to the solar radiation being the largest 

and smallest on steep south-facing and north-facing slopes, respectively. However, the flatter 

terrain of lower elevations receives more solar radiation than the steeper slopes. Therefore, the 

SWN can be influenced by the change in slope and direction, which tends to change in snowmelt 

(Seyednasrollah and Kumar 2014). 

2.7.8. RELATIONSHIP OF SCA WITH CLIMATIC PARAMETERS  

To investigate the possible mechanism of snow cover variability, the linkages between the snow 

cover and climatic variables, i.e., 𝑇𝑎, 𝑃𝑡, SWN, and 𝑢, were analyzed. The climatic variables were 

explained in two ways. First, the long-term spatiotemporal trend of 𝑇𝑎 and 𝑃𝑡 were analyzed 

during 1981–2017 to understand the decadal changes, which further linked to regional-scale 

climate variability. Second, the relationship between SCA and the climatic variables was 

established using Pearson’s correlation coefficient and regression analysis.  

2.7.8.1. Temperature and precipitation analysis (1981–2017) 

The Annual trend of 𝑇𝑎 and 𝑃𝑡 were assessed for 1981–2017. Results showed a significant 

increase in mean annual 𝑇𝑎 at the rate of 0.023 ℃ yr−1, while 𝑃𝑡 decreases at the rate of –5.88 
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mm yr−1 (Figure 2.13c). The maximum and minimum temperatures were observed in 2016 (5.19 

°C) and 1997 (2.66 °C), respectively, with a mean value of 3.86 °C. Relatedly, 2007, 2010, and 

2016 were the warmest year in the Hindu-Kush Himalayan region for the period of 1901–2014 

(Ren et al. 2017; Wester et al. 2019). Similarly, the mean maximum and minimum of 𝑃𝑡 were 

observed in 1994 (1978.4 mm) and 2016 (1007.7 mm), respectively, with a mean value of 1452.8 

mm. Previous studies have reported that the snow/ice cover area decreased by 0.9% over the 

Himalayan region between 1990 and 2001 (Menon et al. 2010) due to aerosols. This reduction in 

snow cover can be supported by our study of the previous decade (1990–2001) that a decrease in 

𝑃𝑡 (–60.5 mm yr−1, p < 0.05) due to a rise in 𝑇𝑎 (0.049 ℃ yr−1) over the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. Spatiotemporal pattern of a) mean annual air temperature and its trend (b); c) 

total yearly precipitation and its trend (d); and e) linear relationship between annual 

temperature and precipitation, derived from gridded data during 1981–2017. 
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Additionally, the spatial distribution of 𝑇𝑎 (Figure 2.13a) and 𝑃𝑡 (Figure 2.13b) were observed 

using MK and Sen’ slope test. As identified visually, the rate of change in 𝑇𝑎 and 𝑃𝑡 varies from 

location to location. Bhutiyani et al. (2007) have reported that the northwest Himalayan region 

shows a significant rise in 𝑇𝑎 by about 1.6°C during the last century (1901-2001) and winter 

warming at a faster rate. Also, Jaswal and Rao (2010) have highlighted that a significant increase 

in the maximum 𝑇𝑎 over the Kashmir region and the minimum 𝑇𝑎 over the Jammu region during 

1976–2007. Furthermore, in this study, the 𝑃𝑡 decreases in the southeast region of the Chenab 

basin with an increase in 𝑇𝑎. However, both 𝑃𝑡 and 𝑇𝑎 were increased in the northwest region 

with statistically significant values.  

2.7.8.2. Impact of climatic variables on SCA (2001–2017) 

The linear relationship between SCA and climatic variables were performed on seasonal and 

annual data for the period 2001–2017 (Figure 2.14). Results indicate that the SCA has an inverse 

relation with 𝑇𝑎 and a direct relationship with 𝑃𝑡. Additionally, the mean monthly and annual 𝑇𝑎 

of each year shows an increasing slope except for the MAM and JJA. However, with a higher 

increase in 𝑇𝑎, the snow cover in later (SON) decreased further. Another effect is that the liquid 

𝑃𝑡 increased because because 𝑃𝑡 occurred as rain in higher 𝑇𝑎 conditions; therefore, the SCA 

dynamics were affected. Moreover, the present study suggested that the rate of SCA attains a 

higher positive value in MAM compared to DJF. While the 𝑇𝑎 rate increases in DJF as compared 

to MAM (decreasing). This may be occurred due to a shift in the seasonal cycle of climatic 

variables. A similar pattern was observed by numerous authors (Singh et al. 1997; Kour et al. 

2016a; Anjum et al. 2019). 

However, these trends are represented for a shorter period of time which cannot fully explain the 

SCA expansion. Winter 𝑃𝑡 and 𝑇𝑎 may be considered as key factors for the increasing SCA trends 

in the Chenab basin and should be studied using more reliable high-altitude data. Also, Rathore 

et al. (2018) have observed a rising trend of snow cover in all basins of the western and west-

central Himalayan regions during 2004–2014, and Negi et al. (2017) have reported that the winter 

(November to April) mean 𝑇𝑎 was decreasing, and the number of snowfall days was increasing 

insignificantly in the northwest Himalayan region from 2001 to 2014. Furthermore, Gurung et 

al. (2011) have shown that snow cover trends for the western Himalayan region were positive for 

all seasons from 2000 to 2010.  
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Figure 2.14. Linear variation of mean seasonal and annual SCA, air temperature, and 

precipitation from 2001 to 2017 over the Chenab basin. 

 

Figure 2.15. Spatial pattern of annual (a, b) precipitation and its trend, (c, d) mean air 

temperature and its trend, (e, f) wind speed and its trend, (g, h) net shortwave radiation and its 
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trend, (i) mean SCA, (j) mean annual SCD, (k) SCD standard deviation, and l) SCD trend 

during 2001-2017. 

To evaluate the response of SCA and SCD with the climatic variables and energy flux, the spatio-

temporal patterns of 𝑃𝑡, 𝑇𝑎, 𝑢, and SWN were assessed over the Chenab basin for the period 

2001–2017 (Figure 2.15). Results showed an increasing trend of 𝑃𝑡 with a rate of 21.2 mm yr−1 

for the entire basin. Besides, 𝑃𝑡 was found to increase less in the high mountain regions. This 

result is in good agreement with Dahri et al. (2016) and Rizwan et al. (2019). However, the 𝑢, 

𝑇𝑎, and SWN rate were also substantially increasing for the low to medium clusters. The analysis 

demon-strates that the Pt and SWN were increasing in the northeastern region of the basin; 

however, for 𝑇𝑎 and 𝑢 decreasing trends were observed. In contrast, a decreasing trend of 𝑃𝑡 and 

SWN were observed in the central part of the basin along with the increasing trend of 𝑇𝑎 and 𝑢.  

Additionally, the increasing 𝑇𝑎 reduces the SCDs and increases its deviation, which further leads 

to an earlier onset of snowmelt. This result was previously explained by Rathore et al. (2018b) 

over the Chenab basin. Also, Shafiq et al. (2018) have reported that the maximum and minimum 

𝑇𝑎 was decreased while the 𝑃𝑡 was increased in the Kashmir valley located in the northwest 

region of the Himalayas. Furthermore, the SCA variation was influenced by the energy and the 

mass fluxes of the underlying surface. The regions with higher SCA reflect more solar energy 

with less absorption, which decreases the SWN over the area. Therefore, the SWN was higher in 

the snow-free region and lowered in the snow cover. Additionally, the small cluster of SWN was 

increasing over the region, whereas SCDs decreased. This may have occurred due to the spatial 

heterogeneity of the SCA and SCDs that varied from location to location. However, the 

increasing u also helped to increase the mass fluxes, i.e., sensible and latent heat. Moreover, it 

may have affected the amount of sublimation/re- sublimation in the snow-covered region. 

Overall, the changing trends of these climatic variables help in understanding the influence of 

snow cover distribution and the onset of snowmelt. The inter-relationship between SCA, 𝑃𝑡, 𝑇𝑎, 

𝑢, and SWN were calculated using Pearson’s correlation coefficient for the period 2001–2017 

(Figure 2.16). Results indicate that the 𝑃𝑡 shows a significant positive correlation with the SCA 

for all the months except JJA over the basin. This may be because the basin is predominantly 

influenced by the ISM, which is active during JJA and attains a majority of 𝑃𝑡 in the form of rain 

(Dahri et al. 2016). Similarly, a significant negative correlation was observed between SCA and 

𝑇𝑎 throughout all months except for DJF. In these months, the 𝑇𝑎 shows a low variation (almost 

negative) as compared to the SCA. Additionally, the SWN was also found to be less negatively 

correlated with the SCA for the JJA; otherwise, it showed a significant negative correlation for 
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the rest of the months. This can be evidence of the fact that the SWN usually reaches its maximum 

from June to July. However, the SCA started decreasing from June and reached a minimum value 

in August, which may have resulted in a poorer correlation. However, 𝑢 showed a significantly 

positive correlation with the mean SCA for the period June–November. Overall, the annual SCA 

shows a significant positive correlation (p < 0.05) with Pt and 𝑢, and a negative correlation (p < 

0.01) with 𝑇𝑎 and SWN over the basin. These interrelationships help to identify the contributing 

factors controlling the spatial and temporal distribution of the SCA. Therefore, further study is 

recommended to determine exact processes that could contribute to an increase in SCA across 

the basin. 

Figure 2.16. Seasonal Pearson correlation coefficients between SCA, air temperature (𝑻𝒂), 

precipitation (𝑷𝒕), wind speed (𝒖), and SWN over the Chenab basin from 2001 to 2017. 
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2.7.9. SENSITIVITY ANALYSIS 

The sensitivity analysis was performed by developing a multiple linear regression model between 

dependent, i.e., SCA, and independent variables, i.e., 𝑃𝑡 and 𝑇𝑎 during 2001–2017 for the entire 

basin. The model showed a higher correlation (R = 0.81, p < 0.001) between the used variables. 

The 𝑃𝑡 and 𝑇𝑎 were altered by ± 30% and ± 2ºC, respectively. Results showed that the snow 

cover response to the warming temperature (± 2ºC), reduces the SCA by ∓ 11%. In general, the 

snow cover showed a higher sensitivity to the 𝑇𝑎, which means that the small changes in 𝑇𝑎 

generate significant variation in the SCA. This obtained result was also highlighted by Rathore 

et al. (2018b) and Kour et al. (2016). They also found a strong connection between the 𝑇𝑎 and 

SCA variability over the Chenab basin. Our result indicates that the increasing Pt (in this case ± 

30%) had little effect on the snow cover change (± 6%); however, a strong influence occurred 

during the snow accumulation season. A similar result was demonstrated by Brown and Mote 

(2009) over the Northern Hemisphere. Overall, this analysis suggests that the SCA is more 

sensitive to 𝑇𝑎; however, is less susceptible to 𝑃𝑡 during the melt season for the selected 

observational period. 

2.8. DISCUSSION 

Information on spatial distribution and temporal dynamics of snow cover is crucial for 

understanding the hydrological system within the Chenab basin. In comparison to other regions 

in the same latitude, the Chenab basin in the western Himalayas is influenced by both 𝑃𝑡, i.e., 

ISM in summer and Mid-latitude Westerlies in winter (Shekhar et al. 2010). Furthermore, this 

region has the potential to be the “home to the largest capacity of hydropower project[s]” among 

all the basins in India (Thakur and Asher 2015). Therefore, seasonal snow cover monitoring at 

the basin scale is crucial in order to measure the water availability from snowmelt in the summer 

season. Thus, a reliable estimate of the spatio-temporal snow cover trend and its response to 

future climatic change is needed. However, ground observations are rare and temporally limited 

in the high mountainous region of the Chenab basin. The high temporal resolution of the MODIS 

instrument can overcome this limitation and provide an excellent opportunity to study the snow 

cover variability. The snow cover result of MODIS data was previously validated over different 

parts of the world (Hall and Riggs 2007; Gafurov and Bárdossy 2009) within Hindu-Kush 

Himalayas (Forsythe et al. 2012; Hasson et al. 2014a), and also in the western Himalayas (Jain 

et al. 2008; Chelamallu et al. 2014). 
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The higher accuracy (> 90%) methods were combined, and composite methodology was used to 

remove the cloud cover and maintain the overall accuracy of the selected MODIS snow product. 

The validation of the methodology suggested that the applied method substantially eliminated 

the cloud cover with high efficiency over the study area. However, it was also observed that the 

cloud gap-filling technique was unable to completely remove the clouds from the snow product 

because of the persistent cloud being longer than the temporal window size, as well as because 

of more significant cloud cover extent (Hasson et al. 2014a). Therefore, the results suggest that 

the cloud percentage was higher during JJA. A similar pattern of higher cloud cover in the melt 

season compared to that of the accumulation season was reported by Maskey et al. (2011) over 

the central Himalayas. Therefore, the adopted methodology was limited during the respective 

season, especially for the high mountain glacierized region during the melt season. Still, the 

overall performance of the methodology was satisfactory in that the importance of gap-filling of 

cloud cover was highlighted, along with an improvement of SCA.  

The variability of the SCA on the Chenab basin was characterized by seasonal and annual 

changes, which varied with different elevation, slope, and aspect. The study shows that the snow 

cover has a heterogeneous distribution over the Chenab basin, with more variation in the 

northeastern region and less snow cover in the western region of the basin. The snow cover extent 

significantly decreased in the NH, especially in spring (Yeo et al. 2017). Satellite records indicate 

that during 1967–2012, the SCA reduced considerably, and the most significant change occurred 

in June (IPCC 2013). Rathore et al. (2018a) have also highlighted the higher variability of snow 

cover at the sub-basin scale in the Indus, Chenab, Sutlej, and Ganga basins during the 

accumulation period rather than the ablation. The overall trend of snow cover shows an 

increasing trend over the basin. However, Sahu and Gupta (2020) have also reported the SCA 

shrinking at the rate of 0.12% per year over the Chandra basin during 2001–2016. This 

inconsistency in results may be due to the temporal change in the MODIS snow product (8-day 

MOD10A2). Additionally, Kour et al. (2016) have demonstrated that the SCA was significantly 

increased due to a significant increase in snowfall and a decrease in 𝑇𝑎 during 2000-2013. The 

linear relationships between the SCA with the topographic parameters suggested that the SCA 

trend decreased in September–January for elevations above 4000 m a.s.l., while it increased in 

April–August. This pattern also was demonstrated by Kour et al. (2016b). Additionally, the SCDs 

and nine snow indexes showed significant shifting movement in and shortening of the snow 

accumulation period over the basin. An early snow melting was also reported by Ayub et al. 

(2020) over the upper Indus basin.  
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Generally, the large interannual variability in snow cover in the Chenab basin is the more striking 

feature (Kour et al. 2016a; Rathore et al. 2018a), as well as its linkage with climatic variables 

and energy fluxes necessary for the future prediction and policy adaptation. This analysis shows 

that the region has experienced an increasing trend of SCA with a statistically significant increase 

in 𝑃𝑡 and 𝑇𝑎 during 1981–2017.  In addition, there is a high positive correlation observed between 

the SCA and 𝑃𝑡, and a negative correlation with the 𝑇𝑎. The NW Himalayan region reported a 

substantial rise in air temperature by about 1.6°C during the last century (1901–2001) and winter 

warming at a faster rate (Bhutiyani et al. 2007). IPCC (2013) have reported that the mean annual 

𝑇𝑎 of the Northern Hemisphere during 1983–2012 was considered as the warmest 30-year period 

of the last 1400 years, and the results of this study agree. Investigation at similar latitudes with 

longer records of 𝑃𝑡 (Rizwan et al. 2019) and 𝑇𝑎 trend (Bhutiyani et al. 2010) was observed. 

Additionally, results showed a significantly negative correlation of 𝑇𝑎 with the SCA. SWN 

directly affects the melt recharge and evaporation, which influences the forest cover and 

hydrological system (Seyednasrollah and Kumar 2014). Overall, our findings suggest that the 

SCA over the basin is highly variable and is influenced by climatic variables as well as energy 

fluxes. Future research on the Chenab basin may focus on the effect of changing SCA on 

snowmelt and streamflow efficiency and timing. This information could be helpful for informing 

water resource management if the SCA and SCD decrease. 

2.9. CONCLUSIONS 

The spatial characteristics and temporal dynamics of snow cover distribution were examined on 

the daily MODIS snow cover products (MOD10A1 and MYD10A1, version 6) in the Chenab 

basin for the period 2001–2017 to understand the present state of the snow-cover regime. The 

period of the dataset is relatively short for the robust conclusion related to the long-term SCA 

changes and their behavior. Nevertheless, the data provide insight into the shortcoming changes 

in the SCA and assist in the continuous monitoring of hydrological processes. Results showed 

that the obtained cloud-free SCA observed ~92.8 ± 1.6%, with a kappa coefficient of 0.85 over 

the study period using the indirect method (Gafurov and Bárdossy 2009). Additionally, the direct 

comparison between Landsat and MODIS SCA showed an overestimation (9.3%). However, a 

higher correlation (R = 0.99, p < 0.001) was observed with MODIS SCA under clear sky 

conditions. Moreover, the effectiveness of the methodology in each subsequent step indicates 

that the mean cloud cover percentages were removed by 33.9%, 20.4%, 13.4%, 8.3%, and ~0.0%, 

respectively, and the mean SCA increased about 16.2%, 21.3%, 25.1%, 28.5%, and 33.6% 

respectively.  
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Therefore, after a satisfactory assessment of methodology efficiency and its uncertainties, the 

daily cloud-free snow cover images were used for intra- annual and inter-annual variability of 

snow cover over the Chenab basin. Results demonstrated an increasing trend of SCA for the 

period 2001–2017 (at a rate of 0.25 % yr−1), while the rate has been slightly decreasing since 

2009 with statistically insignificant values. Furthermore, the SCD and nine other indexes were 

derived from the SDCs to evaluate the snow cover characterization, indicating that the SAP was 

shortened while the SMP was elongated by about one day per year. Moreover, the relationships 

between SCA and topographic parameters indicated that the overall SCA showed a decreasing 

trend from September to January and an increasing trend from April to August above 4000 m 

a.s.l. However, these trends were statistically insignificant. The maximum and minimum SCA 

for all months were experienced in the north for the high-altitude/latitude (4000 m.a.s.l. and 

above) and south in lower-altitude/latitude (1000–2000 m.a.s.l.), respectively. An insignificant 

decreasing trend was observed in the elevations of 4000–5000 m a.s.l. (–1.36 % yr−1) and above 

5000 m a.s.l. (–1.19 % yr−1) during 2009–2017, compared to the 2001–2009 period. This 

indicates that the snow accumulation period has changed or is shifting in terms of the seasonal 

snow cover during the recent decade. 

The linear relationship between SCA and climatic variables, as well as energy fluxes, were 

established to identify the possible influence of snow cover distribution and the onset of 

snowmelt. The analysis demonstrated that the 𝑃𝑡 and SWN were increasing in the northeastern 

region of the basin; however, the 𝑇𝑎, and 𝑢 shows a declining trend. In contrast, a decreasing 

trend of 𝑃𝑡 and SWN were observed in the central part of the basin, whereas the increasing trend 

of 𝑇𝑎 and 𝑢. Overall, the annual SCA shows a significant positive correlation (p < 0.05) with 𝑃𝑡 

and 𝑢, and a negative correlation (p < 0.01) with 𝑇𝑎 and SWN over the basin. Furthermore, a 

sensitivity analysis was performed, suggesting that the SCA is more sensitive to 𝑇𝑎; however, is 

less susceptible to 𝑃𝑡 during the melt season for the selected observational period. 

It should be noted that 17 years of long-term MODIS information is not sufficient for statements 

about climate change. Most of the snow cover trends were statistically insignificant during the 

study period. Therefore, a longer time series of data would be needed to obtain a more definitive 

conclusion about the spatiotemporal patterns of snow cover and its relationship with climate 

change. Therefore, quantifying the effects of the climate variables on snow cover is an 

extraordinary challenge for further studies. Overall, it is concluded that the spatio-temporal 

characteristics of MODIS SCPs play an essential role in snow cover characterization. Our results 
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also highlight the potential importance of climatic variables on the snow cover distribution for a 

proper understanding of the hydrological system. 
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3.1. INTRODUCTION 

Snow cover extent and its characterization over the Karakoram and Himalayan (KH) region play 

a significant role in managing water resources as well as understanding regional climate change 

(Gurung et al. 2011a). Changing SCA can affect river runoff and long-term seasonal freshwater 

supply (Mukherji et al. 2019). Therefore, the quantification of these changes is crucial to protect 

and restore the KH region by promoting the sustainable use of the ecosystem. Reliable estimation 

of snow cover is hindered in terms of data availability over the complex terrain of the KH region 

(Waqas and Athar 2019; Xue et al. 2019). Long-term snow cover observations are only available 

from a limited number of weather stations due to the harsh climatic conditions and high 

maintenance costs. Therefore, comprehensive knowledge of the spatio-temporal snow cover 

variability over the KH region can be achieved by using remote sensing data and applying 

advanced modeling techniques at a regional scale.  

Over the past few decades, many researchers have examined the changing pattern of SCA from 

high to low spatial resolution satellite data (Landsat Multispectral Scanner System (MSS) and 

Thematic Mapper (TM), Linear Imaging Self-Scanning System (LISS) III, LISS IV, Advanced 

Wide Field Sensor (AWiFS) and Satellite Pour l’Observation de la Terre (SPOT) data) (Hall et 

al. 1995b; Negi et al. 2009; Kulkarni et al. 2011; Kumar and Kumar 2016). On the other hand, 

several studies revealed that the small swath, low temporal and spectral resolutions, and 

associated error in the estimation of snow cover limit the use of these sensors (Dankers and De 

Jong 2004; Kulkarni et al. 2006). Also, different studies have utilized daily to monthly MODIS 

(Moderate Resolution Imaging Spectroradiometer) snow products, which shows higher accuracy 

relative to the ground observation in different parts of the world (Hall and Riggs 2007; Liang et 

al. 2008; Jain et al. 2008; Xu et al. 2017; Chen et al. 2020). However, the utility of the MODIS 

data was affected by the presence of cloud blocks, which causes a significant discontinuity in 

long-term snow cover monitoring, especially in the winter and summer-monsoon seasons.  

To resolve the cloud problem, numerous methodologies were developed for cloud removal over 

the MODIS snow cover products using spatio-temporal pattern and topographical information 



ANALYSING THE STATUS AND FUTURE CHANGES OF THE CRYOSPHERE AND ITS 

RELATION WITH CLIMATE CHANGE FOR THE HIMALAYAN REGION 

Page 44 of 254 

(Parajka and Blöschl 2008; Wang et al. 2008; Gafurov and Bárdossy 2009; Gafurov et al. 2015; 

Li et al. 2017, 2019a). Some studies were also conducted based on multisensor combination 

approaches which utilize daily MODIS data with cloud transparency of passive microwave data, 

i.e., Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) (Gao et al. 

2010; Huang et al. 2014). These methods displayed less accuracy in the dense forest cover areas 

(Hall et al. 1982; Foster et al. 1995). Therefore, in this study, we have utilized a composite 

methodology of five methods, i.e., MODIS Terra and Aqua combination, temporal filter, spatial 

nearest neighbor filter, regional snowline filter, and multiday backward replacement filter – for 

accurate measurement of daily snow cover variability over the KH region.  

3.2. RESEARCH QUESTIONS 

 What are the snow cover characteristics in the KH region- How is the snow cover 

distribution changed from monthly to seasonal and seasonal to annual for the selected period? 

Is any significant trend of SCA? 

 What are the contributing factors responsible for snow cover variability- What are the 

forcing mechanism that causes perturbations in regional-scale snow cover signal? Can certain 

variables play a direct or indirect role in controlling the seasonal variability over the region? 

 What is the role of topography and climatic condition of a region play- How important 

is the topographic and climatic information supporting the snow cover across the KH region? 

Does the change in topographic and climatic variables play a significant role in varying 

spatial patterns of snow cover? 

 What are the more dominant factors that influence the snow cover pattern of a region- 

Are the climatic variables the main contributor or the energy fluxes on the selected region? 

3.3. OBJECTIVES 

 Implementation of cloud removal methodology and analyzing their accuracy over daily time 

series snow cover products using the satellite remote sensing data  

 Analyzing the changing pattern of SCA and its trends at different spatial and temporal scales 

over the KH regions 

 Assessing the snow cover characteristic calculation by SCD, and snow cover timing indices   

 Establishing the relationships between SCA and hydrometeorological variables to understand 

the influencing variables on SCA over the study area 
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3.4. STUDY AREA 

The KH region lies between 26.7  and 37.3°N and 72.4 and 95.5°E, in the Hindu-Kush Himalayan 

region. Primarily, it is recognized as the most significant frozen reservoir of freshwater in the 

form of perennial snow cover and glacier ice outside the Polar Regions. Consequently, the water 

availability in these regions substantially influences the upstream and downstream livelihood. 

The KH region includes 20,812 glaciers, which cover 37,824 km2 area out of the total area of 

~7,13,907 km2 (Cogley 2011). This region comprises parts of India, Pakistan, Nepal, Bhutan, 

and China and contains many of the tallest mountain systems in the world.  

 

Figure 3.1. Location map of the Karakoram and Himalayan (KH) region showing major rivers 

and altitude variation using Global Digital Elevation Model (GDEM) of Shuttle Radar 

Topography Mission (SRTM) v 3.0 at 90-m grid resolution along the region. Abbreviations 

stand for Jammu & Kashmir (J&K), Himachal Pradesh (HP), and Uttarakhand (UK). 

Based on the climate and geographic location, the region is divided into four parts, i.e., the 

Karakoram (KK), Western (WH), Central (CH), and Eastern Himalayas (EH), covering an area 

of 56,487, 2,10,389, 2,80,635, and 1,66,397 km2 respectively previously expressed by Bolch et 

al. (2012) (Figure 3.1). These regions are characterized based on their terrain properties and 

global atmospheric circulation pattern. Moreover, the areas are primarily nourished by two 

sources of precipitation, the Mid-Latitude Westerlies (MLW) and the Indian Summer Monsoon 

(ISM). The MLW precipitation greatly influences the KK and WH regions during the winter and 
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spring seasons, according to ~60–70% of the total precipitation annually (Shrestha et al. 2015). 

In comparison, the ISM has a higher impact on the EH and CH region during the summer. The 

monsoonal precipitation decreases while moving from the east (∼1071 mm annual precipitation 

in the Brahmaputra basin) to the west (∼423 mm in the Indus basin) in the Himalayan region 

(Immerzeel et al. 2010). Changes in these two precipitation regimes with respect to intensity and 

frequency cause serious concern regarding the water resources of the downstream region. 

3.5. DATA USED 

3.5.1. MODIS SNOW COVER PRODUCTS 

This study utilizes the daily MODIS snow cover products of Terra (MOD10A1) and Aqua 

(MYD10A1) level-3 global version 6 (V6) over the KH region from 1 October 2000 to 30 

September 2019 (19 hydrological years) (Riggs et al. 2016). The latest version of the MODIS 

products (V6) was used instead of the previous version 5 (V5). Zhang et al. (2019) found that V6 

products have higher accuracy than V5. These snow products are freely available from the 

National Aeronautics and Space Administration (NASA) with 500-m grid resolution on the Earth 

data gateway customizable service (https://search.earthdata.nasa.gov)  

Daily snow products are retrieved using the snow cover detection algorithm, beginning with the 

MOD10_L2 and MYD10L2 products in the MODIS snow product series (Riggs et al. 2016). The 

snow cover map of each product was reclassified into three new classes, i.e., 1 (i.e., snow cover 

conditions), 0 (i.e., snow-free conditions), and 2 (i.e., missing land information conditions). For 

snow, if the Normalized Difference Snow Index (NDSI) percentage value is greater than 40 and 

less than or equal to 100, then the land pixel is reclassified as “snow or 1.” When the NDSI value 

is greater than or equal to 0 and less than or equal to 40 as well as inland water, the pixel value 

is treated as “no-snow or 0.” The rest of the pixels were considered “cloud or 2.” Here, we have 

used an NDSI value greater than 40%, as suggested for snow cover mapping (Riggs et al. 2017). 

The KH region covers 14 MODIS tiles with numbers h22v05, h22v06, h23v05, h23v06, h24v05, 

h24v06, h25v05, h25v06, h26v05, h26v06, h27v05, h27v06, h28v05 and h28v06. This study 

utilized the Terra data from 1 October 2000 to 30 September 2019 and Aqua data from 4 July 

2002 to 30 September 2019. A few images were found to be missing in both the products during 

the study period; therefore, the data gaps were replaced by their corresponding MODIS images 

(i.e., Terra images were replaced by Aqua or vice versa). We have assumed that the missing 

images of the non-Aqua period (in Terra) were replaced by 100% cloud-covered images. The 

spatio-temporal distribution of cloud cover in MODIS products was mapped (Figure 3.2), 
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illustrating a higher cloud cover percentage in Aqua as compared to Terra of the total 

geographical area. The cloud cover percentage varied from region to region; the minimum value 

was observed in CH, and the maximum value was observed in EH.  

 

Figure 3.2. Comparison between spatial mean cloud cover day of (a) MOD10A1 (from 1 

October 2000 to 30 September 2019) and (b) MYD10A1 (from 1 October 2002 to 30 September 

2019) along with temporal mean monthly cloud cover percentage of the total geographical 

area of (c) MOD10A1 and (d) MYD10A1 products in different sub-regions of the Karakoram 

and Himalayas (KH). KK: Karakoram; WH: Western Himalayas; CH: Central Himalayas; 

EH: Eastern Himalayas. 

3.5.2. LANDSAT 8-OLI DATA 

To assess the reliability of the cloud-gap-filled MODIS snow product, we utilized the Landsat-8 

Operational Land Imager (OLI) data between 2015 and 2016. Several researchers have already 

used the Landsat data to validate the MODIS dataset where the ground observations are rare 

(Hasson et al. 2014a; Tran et al. 2019). For this, 19 cloud-free images were selected with less 

than 5% cloud cover from the United States Geological Survey (USGS) EarthExplorer 

(http://earthexplorer.usgs.gov/) with a spatial and temporal resolution of 30 m and 16 days, 

respectively (Table 3.1). 
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Table 3.1. Description of the selected Landsat-8 OLI data for validating the cloud-filled 

MODIS SCA from 2015 to 2016 over the Karakoram and Himalayan (KH) region. 

Region Row Path Date 

Karakoram (KK) 149 035 31/10/2015, 02/12/2015, 19/01/2016, 10/05/2016 

Western Himalayas (WH) 147 038 01/10/2015, 04/12/2015, 22/02/2016, 26/04/2016, 

12/05/2016, 03/10/2016, 19/10/2016 

Central Himalayas (CH) 142 040 01/12/2015, 17/12/2015, 03/02/2016, 22/03/2016 

Eastern Himalayas (EH) 139 041 28/12/2015, 14/02/2016, 17/03/2016, 21/10/2016 

3.5.3. MODIS LAND SURFACE TEMPERATURE (LST) PRODUCTS 

The standard monthly LST of MOD11C3 (Terra) and MYD11C3 (Aqua) products level-3 

version 6 (V6) were utilized with a spatial resolution of 0.05° × 0.05° during 2000–2019 (19 

hydrological years) for assessing the impact of surface temperature (𝑇𝑆) on SCA variation. The 

data can be downloaded from https://search.earthdata.nasa.gov. The monthly LST values were 

retrieved from the average of four LST images (i.e., two images for Terra and two for Aqua, both 

day and night) of the corresponding month. Wan (2014) found that V6 LST products are much 

better than the previous V5. 

3.5.4. NOAH LAND SURFACE MODEL (LSM) DATA 

The NOAH LSM level-4 monthly version 2.1 is a NASA Global Land Data Assimilation System 

(GLDAS) (Rodell et al. 2004) data product available at a grid resolution of 0.25º × 0.25º from 

2000 to the present. It provides a consistent view of surface energy and water balance at the 

surface level from the past several decades (Rui and Beaudoing 2018). It is forced with a 

combination of model and observation data (Beaudoing et al. 2020). In this study, data on 

monthly Relative Humidity (RH), wind speed (𝑢), albedo, sensible heat (𝐻𝑠), latent heat (𝐻𝑙), 

ground heat flux (𝐻𝑔), net shortwave radiation (SWN), and net longwave radiation (LWN) were 

acquired between October 2000 and September 2019 to identify the changing pattern of these 

variables over the KH region. Data were retrieved from https://search.earthdata.nasa.gov.  

3.5.5. ERA-5 DATA 

ERA5 is a fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) 

re-analysis (ERA5) global climate and weather data, currently available from 1950 onwards and 

split into two separate periods in Climate Data Store entries, i.e., 1950–1978 and 1979 onwards 

https://search.earthdata.nasa.gov/
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at a grid resolution of  0.25º × 0.25º with an hourly and monthly time scale (ECMWF 2019). 

ERA5 shows many improvements over the ERA-Interim reanalysis (Hoffmann et al. 2019), and 

it is also better than the other reanalysis products, as demonstrated in a study carried out by Mahto 

and Mishra (2019) over India. In this study, long-term monthly total precipitation (𝑃𝑡) and air 

temperature (𝑇𝑎) were acquired to quantify the trend of these variables over the KH region in two 

separate hydrological periods, i.e., 1979–2019 and 2000–2019. The data can be downloaded from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-

means?tab=form. 

3.5.6. IN SITU OBSERVATION DATA 

Daily climatic variables, i.e., air temperature (maximum and minimum) and snowfall, were used 

to analyze the relationships between MODIS snow cover and in situ data from 1 January 2013 to 

31 December 2016. The data were obtained from the Snow and Avalanche Study Establishment 

(SASE), Chandigarh, India, Chandigarh, India, at Patsio observatory, located at 3800 m a.s.l. The 

site is characterized by a dry atmosphere with relatively low precipitation and cold temperature 

(Sharma and Ganju 2000).  

3.5.7. TOPOGRAPHIC DATA 

The Global Digital Elevation Model (GDEM) version 3.0 was acquired from the Shuttle Radar 

Topography Mission (SRTM) at 90-m spatial resolution (Jarvis et al. 2008) to assess the 

influence of topographical parameters (i.e., elevation, aspect, and slope) on SCA variation. The 

DEM was resampled at a 500-m resolution using the bilinear interpolation technique (Lopez-

Burgos et al. 2013) to match the spatial resolution of MODIS products. 

3.6. METHODOLOGY 

3.6.1. COMPOSITE METHODOLOGY FOR CLOUD REMOVAL 

A composite methodology for cloud-gap-filling in the MODIS snow cover products that 

incorporates methods with accuracy > 90%, was introduced and applied by numerous authors for 

cloud block removal (Gafurov and Bárdossy 2009; Parajka et al. 2010; Paudel and Andersen 

2011; Hasson et al. 2014a; Wang et al. 2014; Jing et al. 2019; Tran et al. 2019). A five-step 

sequential non-spectral methodology was applied to mitigate the cloud gap in the MODIS snow 

products. The significance of using this composite methodology is that it includes all the 

necessary information about snow cover formation.  
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The first step includes merging twin satellite (Terra and Aqua) snow cover by assuming no 

snowfall or snowmelt occurred for a ~3-4 hours time difference at the Equator. Therefore, as 

long as a satellite captured (treated Terra as a base image) a pixel as snow or no-snow, then the 

cloud pixel will be replaced by the corresponding cloud-free pixel of the Aqua image. The 

equation is for this is as follows: 

𝑖𝑓 (𝑀(𝑥,𝑦,𝑡)
𝑇 = 𝑐𝑙𝑜𝑢𝑑) =

{
 𝑖𝑓 (𝑀(𝑥,𝑦,𝑡)

𝐴 = 𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤);  𝑡ℎ𝑒𝑛 𝑀(𝑥,𝑦,𝑡)
𝐶𝐵 = 𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤 

𝑖𝑓 (𝑀(𝑥,𝑦,𝑡)
𝐴 = 𝑐𝑙𝑜𝑢𝑑);    𝑡ℎ𝑒𝑛 𝑀(𝑥,𝑦,𝑡)

𝐶𝐵 = 𝑀(𝑥,𝑦,𝑡)
𝑇                   Eq. 3.1  

Where 𝑀(𝑥,𝑦,𝑡)
𝑇   and 𝑀(𝑥,𝑦,𝑡)

𝐴   are the Terra and Aqua images respectively; 𝑀(𝑥,𝑦,𝑡)
𝐶𝐵  is the combined 

product (Terra and Aqua) and (𝑥, 𝑦, 𝑡) represents the spatial location (𝑥, 𝑦) of the present (𝑡) 

image. 

In the second step, the present-day cloud pixel was assigned as snow (or no-snow), if the 

preceding and succeeding two days images were acquired as pixels of snow (or no-snow). The 

equation for the given method is as follows: 

𝑖𝑓 (𝑀(𝑥,𝑦,𝑡)
𝐶𝐵 = 𝑐𝑙𝑜𝑢𝑑)

= {

𝑖𝑓 (𝑀(𝑥,𝑦,𝑡+1)
𝐶𝐵  𝑎𝑛𝑑 𝑀(𝑥,𝑦,𝑡−1)

𝐶𝐵 = 𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤);  𝑡ℎ𝑒𝑛 𝑀(𝑥,𝑦,𝑡)
𝐴𝐷 = 𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤

𝑖𝑓 (𝑀(𝑥,𝑦,𝑡+1)
𝐶𝐵 = 𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤 𝑎𝑛𝑑 𝑀(𝑥,𝑦,𝑡−1)

𝐶𝐵 = 𝑐𝑙𝑜𝑢𝑑);  𝑡ℎ𝑒𝑛 𝑀(𝑥,𝑦,𝑡)
𝐴𝐷 = 𝑐𝑙𝑜𝑢𝑑 

𝑖𝑓 (𝑀(𝑥,𝑦,𝑡+1)
𝐶𝐵 = 𝑐𝑙𝑜𝑢𝑑 𝑎𝑛𝑑 𝑀(𝑥,𝑦,𝑡−1)

𝐶𝐵 = 𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤);  𝑡ℎ𝑒𝑛 𝑀(𝑥,𝑦,𝑡)
𝐴𝐷 = 𝑐𝑙𝑜𝑢𝑑 

  

Eq. 3.2 

Where 𝑀(𝑥,𝑦,𝑡+1)
𝐶𝐵  and 𝑀(𝑥,𝑦,𝑡−1)

𝐶𝐵  shows the first day forward and backward from the image, 

respectively and 𝑀(𝑥,𝑦,𝑡)
𝐴𝐷  is an adjacent temporal image. A similar logic was applied for t + 1 and 

t – 2 as well as t + 2 and t – 1 images.  

The third step assigned the cloud grid as snow or no-snow based on the eight nearest neighboring 

pixels and their topographical information (altitude and aspect) of the surrounding pixel. For this, 

a 3 × 3 moving window of two sequential iteration processes was considered for spatial filtering. 

In the first iteration, the cloud pixel is assigned as snow when any of the surrounding eight 

neighboring pixels were captured as snow by satellite, and their elevation is less than the cloudy 

pixel with the same aspect. In contrast, if five out of eight cloud neighboring pixels are snow/no-

snow and cloud elevation is higher/lower than the elevation of minimum/maximum adjacent 
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snow/no-snow pixel, then the cloud pixel is assigned as snow/no-snow in the second iteration. 

The final generated product of this step is defined as 𝑀(𝑥,𝑦,𝑡)
𝑁𝑁 . 

In the fourth method, the snowline/no-snowline threshold is utilized to classify the cloud pixel 

correctly. For this, the primary condition was that the present image must have at least 70% 

cloud-free pixels; otherwise, the method will be skipped. If the elevation of a cloud pixel was 

higher than the threshold, then the pixel was assigned as snow; otherwise, it was considered no-

snow when it was below the threshold of the particular region. The final product of this step is 

denoted as 𝑀(𝑥,𝑦,𝑡)
𝑆𝐿 . 

In the last method, the remaining cloud grid pixel was eliminated by multiday backward 

replacement images. The primary assumption for this method was that there is no snowmelt or 

snowfall in the present-day image. The current-day cloud pixel was filled with the preceding 

day’s cloud-free pixels, and this continued until all the clouds in the image were removed. When 

the ground pixel has continuous cloud persistence, the cloud grid was assigned as a cloud, which 

enhances the uncertainty of that particular pixel. The method is explained by the following 

equation: 

𝐼𝑓(𝑀(𝑥,𝑦,𝑡)
𝑆𝐿 = 𝑐𝑙𝑜𝑢𝑑) =    𝑖𝑓 (𝑀(𝑥,𝑦,𝑡−𝐾)

𝑆𝐿 = 𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤); 𝑡ℎ𝑒𝑛 𝑀(𝑥,𝑦,𝑡)
𝐹 =

𝑠𝑛𝑜𝑤 𝑜𝑟 𝑛𝑜 − 𝑠𝑛𝑜𝑤         Eq. 3.3 

Where 𝑀(𝑥,𝑦,𝑡)
𝐹  indicates the final product of the applied methodology. K is the multiday previous 

day image or iteration of the approach (K = 1, 2, 3…). Overall, the sequence and importance of 

the adopted methodology were explained by Dharpure et al. (2020) over the Chenab basin and 

validated with direct and indirect methods. 

3.6.2. ACCURACY ASSESSMENT AND VALIDATION 

The validation of the cloud-gap-filled methodology is commonly carried out using ground truth 

data; however, this region has limited continuous records and scarce measurement locations and 

covers a broad geographical area. Therefore, the composite methodology was validated with the 

high-resolution satellite data and measured climatic data (snowfall and temperature).  

In the first method, 19 Landsat-8 images were utilized for area-based comparison with cloud-

gap-filled MODIS images between 2015 and 2016. The Landsat obtained snow cover was 

classified into a binary map based on the information acquired from reflectance bands (band 3 

and 6). A NDSI [(band3-band6)/(band3+band6)] threshold of > 40% and near-infrared 
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(reflectance band 5) > 11% were considered for generating the binary snow cover map. The 

overlap region in each dataset was extracted and compared based on the relative error 

(𝑀𝑂𝐷𝐼𝑆𝑆𝐶𝐴 − 𝐿𝑎𝑛𝑑𝑠𝑎𝑡𝑆𝐶𝐴) and Mean Absolute Difference (MAD) [∑ 𝑎𝑏𝑠(𝑀𝑂𝐷𝐼𝑆𝑆𝐶𝐴 −

𝐿𝑎𝑛𝑑𝑠𝑎𝑡𝑆𝐶𝐴)/number of images]. For the second approach, the in situ measured monthly 

snowfall and mean air temperature were used to relate the MODIS SCA percentage over the 

Patsio observatory (western Himalayas) from 1 January 2013 to 31 December 2016. For MODIS 

SCA estimation, a 5-km buffer zone was generated over the same location.  

3.6.3. SNOW COVER INDICES 

To understand the interannual variation, the SCD and nine other snow cover timing indices 

(derived from daily snow cover time series) were estimated during 2000–2019. The time series 

curve was extracted by plotting the daily SCA from 1 September to 31 August (Figure 3.3), which 

can be used to characterize snow cover, previously applied by Dariane et al. (2017). In the KH, 

19 snow cover time series curves (for each hydrological year) were obtained with a five-day 

moving average for removing the short-term variation in SCA. A brief description of each index 

is given below: 

● Snow Accumulation Onset Day (SAOD) and Snow Melt Ending Day (SMED): The SAOD is 

the day when the snow accumulation started, and SMED is the day when the pixel is no 

longer covered by snow. For this, we have estimated a 25th percentile value of daily SCA for 

each region, i.e., 36.9%, 9.4%, 5.4%, and 5.9% for the KK, WH, CH, and EH region, 

respectively, during the observational period. If the daily SCA is above the 25th percentile 

value and remains continuous for the period, that particular date is denoted as SAOD, whereas 

if the SCA falls below the 25th percentile value for the region, then the date is known as 

SMED. The changes in SAOD and SMED between years are mainly due to tvariation in 

precipitation, temperature, and solar radiation. The difference between SAOD and SMED is 

denoted as the accumulation-ablation period (AAP).  

● Maximum Snow Cover (MSC) and its Day (MSCD): The maximum snow cover observed in 

each hydrological year is defined as MSC, and the day on which MSC occurred is denoted 

the MSCD. These indices are used to quantify the highest snow cover over the study area in 

a particular year.  

● Snow Accumulation Period (SAP) and Snow Melt Period (SMP): SAP is a period between 

the day of snow accumulation onset and maximum snow cover, while the difference between 

the day of maximum snow cover and the melting end day is considered the SMP.  
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●  Snow Accumulation Slope (SAS) and Snow Melt Slope (SMS): The rates of snow cover 

accumulation and melt are computed as MSC divided by the SAP and SMP during each 

hydrological year, respectively.  

 

Figure 3.3. Pictorial representation of the snow cover time series and derived snow indices 

based on daily SCA in the western Himalayas (WH) from 1 September 2001 (Day 1) to 31 

August 2002 (Day 366). 

3.6.4. STATISTICAL ANALYSIS 

The spatio-temporal trends were analyzed using the non-parametric Sen’s slope (Sen 1968) and 

Mann-Kendall (MK) (Mann 1945) trend test for the SCD, snow cover-derived indices, climatic 

and energy fluxes over seasonal, semi-annual, and annual scales at a 95% confidence interval. 

Pearson’s correlation coefficient (R) was also used to analyze the interrelationships of all 

variables. Additionally, the performance of estimated cloud-free MODIS SCA relative to 

Landsat-8 OLI was analyzed based on bias [(𝑀𝑂𝐷𝐼𝑆𝑆𝐶𝐴 − 𝐿𝑎𝑛𝑑𝑠𝑎𝑡𝑆𝐶𝐴) × 100/𝐿𝑎𝑛𝑑𝑠𝑎𝑡𝑆𝐶𝐴] and 

Root Mean Square Error (RMSE). The annual Relative Change Ratio (RCR in %) [(slope/mean) 

× number of years × 100] was estimated based on slope and mean SCA values during the study 

period (Baniya et al. 2018).   
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3.6.5. SENSITIVITY ANALYSIS 

The sensitivity of SCA to climatic variables and energy fluxes was examined to determine the 

response of snow cover change with a potential indicator. The choices of these variables were 

based on the key properties of snowpack related to the snow cover onset timing and the amount 

of accumulated snow. To analyze the sensitivity of climatic variables (𝑇𝑎 and 𝑃𝑡) and energy 

fluxes (SWN, LWN, 𝐻𝑠, and 𝐻𝑙) on SCA, we first standardized ([
𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
] ) all the 

selected variables, and then generated a multivariant linear regression model over the sub-regions 

of KH. 

3.7. RESULTS 

3.7.1. VALIDATION OF CLOUD-GAP-FILLED MODIS SNOW PRODUCTS 

To test the performance of the composite methodology, we used a two-step approach to validate 

the cloud-gap-filled SCA against high-resolution satellite data as well as meteorological data. In 

the first approach, 19 cloud-free Landsat-8 images were selected at different locations of the KH 

region and used to validate the area-based comparison between Landsat-8 and cloud-free MODIS 

SCA for the period 2015–2016. The results demonstrated that the MODIS SCA was highly 

correlated (R = 0.98, p < 0.001) with the Landsat-8 under the clear sky condition (Figure 3.4a). 

The MAD between these two datasets was ~5.5%, while the relative error varied from 0.9 to 

20.8. However, MODIS SCA was overestimated compared to Landsat-8.  

The second approach was carried out by establishing a relationship between cloud-free SCA and 

in-situ observations (snowfall and air temperature) from 1 January 2013 to 31 December 2016 

(Figure 3.4b). The results demonstrate that the mean monthly SCA and snowfall were highly 

correlated (R = 0.84, p < 0.001). The in situ measured snowfall was maximum in February and 

minimum in August. This snowfall pattern may have been caused by the influence of westerlies 

in the Patsio location (WH), which receives higher snowfall in the winter months (December to 

April). On the other hand, the observed air temperature shows a significant negative correlation 

(R = –0.85, p < 0.001) with SCA. The lowest temperature was observed in January, while the 

highest was in July, followed by August over the Patsio location.  
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Figure 3.4. (a) Comparison between MODIS SCA and Landsat-8 snow cover and (b) 

relationship of mean monthly SCA with in situ snowfall and air temperature over the Patsio 

observatory, western Himalayas. 

3.7.2. SNOW COVER VARIABILITY 

The accuracy of the composite methodology for cloud-gap-filling was evaluated and suggested 

that the estimated SCA was well matched with satellite as well as meteorological data. After 

analyzing the performance of obtained results, we present the snow cover distribution at monthly, 

seasonal, and annual scales, derived from daily cloud-gap-filled SCA over the KH region from 1 

October 2000 to 30 September 2019. The monthly snow cover distribution exhibited a large 

heterogeneity in temporal scale over the region (Figure 3.5), with higher SCA mainly 

concentrated in the KK and reduced SCA in the EH. The snow accumulation started from October 

onwards and reached its maximum in February for the KK, WH, and CH and in March for the 

EH region. The melting of snow starts from June onwards with the gradual rise in temperature, 
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and snow cover attained maximum ablation in August. The minimum SCA was observed in 

August for KK and WH and in July and June for the CH and EH region, respectively. Apart from 

this, the regions with the earliest snow accumulation onset eventually become the latest areas to 

melt off. Therefore, there is still scattered snow cover in July and August for the higher mountain 

areas, particularly the glacier accumulation region of the KH. The results also indicate that the 

variability of SCA was higher from October to December over the entire region and increased 

from KK to the EH region with a Coefficient of Variation (CV) varied from 13.3% to 55.6%, 

respectively. 

The mean monthly SCA trend of the KK increased for all months except in December, May, 

August, and September during the observation period (Figure 3.5a). Similarly, the WH region 

showed an increasing monthly trend in SCA throughout the months except for December and 

January (Figure 3.5b), and the CH region experienced an increasing SCA trend in all months 

except September to November (Figure 3.5c). In the EH region, the mean monthly SCA shows 

a declining trend for all months, except for a slightly increasing trend from December to March 

(Figure 3.5d). Overall, the mean monthly SCA shows an increasing trend in the accumulation 

months (February and March) while decreasing in the ablation months (August and September) 

in all regions. 

The mean annual SCA distribution over the sub-regions of KH was determined, indicating that 

the KK region shows maximum SCA in 2004/05 and a minimum in 2000/01 (Figure 3.5a). In 

contrast, the WH received maximum and minimum annual SCA in 2018/19 and 2000/01, 

respectively (Figure 3.5b). The CH attained maximum mean annual SCA in 2014/15 and 

minimum in 2015/16 (Figure 3.5c). In the EH region, the minimum and maximum SCA were 

observed at the start (2000/01) and end (2018/19), respectively (Figure 3.5d) of the observational 

period. Further, the overall mean annual SCA trend was increasing over the KK, WH, and CH 

with a rate of 0.05, 0.11, and 0.02 % yr−1, respectively, whereas a decreasing trend (–0.06 % 

yr−1) was observed in the EH region during the study period; however, none of these trends were 

significant at p < 0.05. Overall, the KK and WH regions follow a similar pattern for SCA over 

the observational period, whereas the distribution of SCA in the CH region was qualitatively 

similar to the pattern of the EH region.  

To examine the heterogeneity in SCA, we divided the whole hydrological period into two parts, 

i.e., 2000–2008 and 2008–2018. The year 2018/19 was not considered because it was an 

exceptional year, according to Randhawa and Gautam (2019). The distribution of SCA and its 

trend over these two separate periods were evaluated and compared with the whole study period 
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(2000–2019) (Table 3.2). The mean annual SCA from 2000 to 2019 shows an almost identical 

increasing trend from 2000 to 2008, except in the EH region. However, a decreasing trend of 

SCA was observed since 2008/09 in all regions with a maximum in the WH, which is statistically 

significant at p < 0.05, and a minimum in the CH (not significant). Additionally, the RCR shows 

the highest change in the WH and lowest in the KK region during 2008–2018. The RCR of SCA 

in the WH was the opposite in 2008–2018 compared to 2000–2008. 

 

Figure 3.5. Time-series of monthly and yearly SCA in percentage over the a) Karakoram (KK), 

b) Western Himalayas (WH), c) Central Himalayas (CH), and d) Eastern Himalayas (EH). 

The bar graph illustrates the mean monthly SCA trends (non-significant at p < 0.05) for the 

period 2000–2019.   

Pixel-wise mean monthly and annual SCD, and their standard deviation (SD), were derived for 

each hydrological year across the KH region (Figure 3.6). The mean and SD attain minimum and 

maximum values in June, July, and August (JJA) and December, January, and February (DJF), 

respectively. The mean monthly spatial distribution of SCD was evaluated over the KH region. 
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The SD in the interannual variation of SCD displays a heterogeneous pattern similar to the 

spatially distributed mean, with relatively larger values in the KK and WH. A positive trend of 

SCD was observed in the KK, WH, and some locations of the CH region, whereas a negative 

trend was found in the EH region. This increasing trend indicates that the SCD was widened over 

the observation period for the KK and WH. Our results demonstrate that most of the area has 

come under no-SCD change, which indicates that SCD neither widened nor shortened for that 

region.  

Table 3.2. Mean annual SCA and non-parametric Sen’s slope and Mann-Kendall (MK) trend 

test with Relative Change Ratio (RCR in %) of SCA in three different hydrological periods 

over the Karakoram and Himalayan (KH) region and its sub-regions. The bold values indicate 

a significance level at p < 0.05.  

 Karakoram 

(KK) 

Western 

Himalayas 

(WH) 

Central 

Himalayas 

(CH) 

Eastern 

Himalayas 

(EH) 

Karakoram-

Himalayas 

(KH) 

2000–2019  

Mean 52.4 30.5 12.6 10.2 26.4 

Slope 0.05 0.11 0.02 –0.06 –0.00 

RCR 1.63 7.16 3.64 –10.72 –0.18 

2000–2008 

Mean 52.4 30.0 12.3 10.6 26.3 

Slope 0.11 0.68 0.04 0.33 0.21 

RCR 1.93 20.37 3.07 27.79 7.23 

2008–2018 

Mean 52.4 30.6 12.4 9.7 26.3 

Slope –0.44 -0.80 –0.13 –0.24 –0.42 

RCR –8.37 –26.30 –10.84 –24.32 –16.06 

SCD anomalies play a significant role in global-scale atmospheric circulation over seasonal to 

annual scales. Therefore, we calculated the inter-annual SCD anomalies for each hydrological 

year from 2000 to 2019, indicating a more positive value in 2018/19 and a negative value in 

2017/18 (Figure 3.7). The upper reaches of the CH region experienced higher positive values (> 

50 days) in 2014/15 and negative values in 2015/16. Moreover, the year-to-year SCD variation 

in the KK was almost positive or stable from 2000–2019 except for 2000/01, 2006/08, 2010/12, 
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and 2017/18. These positive anomalies in the KK suggest that the number of consecutive wet 

days increased over time.  

 

Figure 3.6. Mean seasonal and annual Snow Cover Day (SCD) (left), Standard Deviation (SD) 

(middle), and SCD trend (right) over the Karakoram and Himalayan (KH) region from 2000 

to 2019 hydrological year.   

3.7.3. SNOW COVER METRICS  

In addition to SCD, the nine other snow cover timing indices were mapped in each hydrological 

year through a five-day moving average of daily SCA over the sub-regions of KH to comprehend 

the properties of snow accumulation and melt period (Table 3.3). The results highlighted that the 

SAOD was shifted later by about one day per year in each region, and the mean onset day was 

about 4, 6, 12, and 20 October for KK, WH, CH, and EH, respectively during 2000–2019. The 

MSC shows an increasing trend in all the regions except in the CH, and its mean value decreased 

from KK to the EH region. The MSCD shifted forward for the KK, WH, and EH at an average 

rate of one day per year. In comparison, the MSCD moved backward with an approximate trend 
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of two days per year in the CH. The SAS shows a positive trend over the KK and WH and a 

negative trend for the CH and EH. The SAP was narrowed for the KK, WH, and EH, while it 

widened for CH. Furthermore, the SMP increased for KK and WH while it was decreased for the 

CH and EH region. In contrast, the SMS was also decreased by an amount of -0.003 per year in 

the WH. The SMED shows a mean snowmelt season end one day prior in each year over the EH, 

while it was delayed by one day in the other regions. In contrast, the AAP was widened over the 

KK and WH and shortened for CH and EH. 

Table 3.3. Sen’s slope and the mean value of snow timing indices in the Karakoram and 

Himalayas (KH) sub regions during 2000–2019. All trend slopes are not significant at p < 0.05. 

Region Karakoram Western Himalayas Central Himalayas Easter Himalayas 

Indices Trend (Sen's slope) 

SAOD 0.31 0.64 1.40 0.33 

MSC 0.13 0.12 –0.06 0.30 

MSCD –0.32 –0.12 1.67 –0.64 

SMED 0.58 0.88 0.80 –0.76 

AAP 0.50 0.60 –0.65 –0.90 

SAP –0.63 –0.67 0.45 –0.62 

SMP 0.87 1.00 –1.10 –0.25 

SAS 0.005 0.005 –0.004 0.002 

SMS –0.011 –0.003 0.001 0.004 

 Mean annual 

SAOD 34 (4 October) 36 (6 October) 42 (12 October) 50 (20 October) 

MSC 81.6 69.2 35.6 26.6 

MSCD 165 (12 February) 164 (11 February) 168 (15 February) 159 (6 February) 

SMED 300 (27 June) 304 (1 July) 285 (12 June) 273 (31 May) 

AAP 266 269 243 223 

SAP 131 129 127 109 

SMP 135 140 117 114 

SAS 0.78 0.56 0.32 0.28 

SMS 0.66 0.50 0.32 0.25 
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Figure 3.7. Spatial patterns of annual Snow Cover Day (SCD) anomalies during 2000–2019 

over the Karakoram and Himalayas (KH) region were obtained by subtracting long-term 

annual SCD mean from individual hydrological year SCD. 

3.7.4. INFLUENCE OF METEOROLOGICAL VARIABLES ON SCA 

3.7.4.1. Contribution of climatic variables and energy fluxes 

The climatic variables (𝑇𝑎, 𝑇𝑆, RH, 𝑢, albedo, and 𝑃𝑡), as well as energy fluxes (SWN, LWN, 𝐻𝑠, 

𝐻𝑙, 𝐻𝑔, and net energy (𝐸𝑛𝑒𝑡) fluxes) were examined from 2000 to 2019 to determine whether 

the variables showed any evidence of changes related to snow cover. The mean monthly variation 

of climatic variables and energy fluxes were assessed over the study area. The climatic variables 

suggest that the 𝑇𝑎 was directly proportional to the 𝑇𝑆 and RH, while it was inversely proportional 

to u and albedo. Other than that, the KK region experienced the highest seasonal variation in 

energy fluxes and the EH region had the lowest variability throughout the months. The annual 

temporal and spatial (Figure 3.8) trends of climatic variables and energy fluxes were assessed 

during 2000–2019. The results show a significant increasing trend of 𝑇𝑎, 𝑇𝑆, 𝑃𝑡, and 𝐸𝑛𝑒𝑡 while 

the other variables show a significantly decreasing trend at any particular location. The 

distribution of 𝑃𝑡 implies an increasing trend on the windward side of the mountain, whereas it 

decreases on the leeward side of the mountain. Our results also indicate that the albedo and 𝑃𝑡 
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have a direct relationship with each other; when the albedo increases then 𝑃𝑡 also increases, and 

vice versa. Similarly, a significant decreasing trend of 𝑢 was observed over the selected region. 

Also, small pockets of SWN show an increasing trend; on the other hand, at the same location, 

the LWN was decreasing, which indicates that SWN and LWN have an inverse relationship with 

each other. Moreover, the 𝐸𝑛𝑒𝑡 showed a positive trend in the eastern part of the KK region and 

a negative trend in the western region, which indicates less energy available for melt on the 

western side. The RH shows a decreasing trend in most CH and EH regions while increasing in 

the KK and some parts of CH. However, the higher SCA was mainly concentrated on the upper 

reaches (snow region) rather than in the lower reaches of KH, indicating the SWN, 𝐻𝑙, and 𝐻𝑔 

were significantly increasing in the snowy region, which can contribute to SCA change. It was 

also noted that the variation of 𝑃𝑡 and LWN was higher (showing an increasing trend) in the no 

snow/little snow areas. 

3.7.4.2. Relationships between SCA and climatic variables along with energy fluxes 

Pearson's correlation test was applied to establish the statistical relationships between mean 

annual SCA and climatic variables (𝑇𝑎, 𝑇𝑆, 𝑃𝑡, RH and 𝑢) as well as energy fluxes (albedo, SWN, 

LWN, 𝑅𝑁, 𝐻𝑙, 𝐻𝑆, 𝐻𝑔 and 𝐸𝑛𝑒𝑡) over the KH region (Figure 3.9). The results demonstrate that 

the SCA shows a strong positive correlation with albedo and a negative correlation with 𝑇𝑎 and 

𝑇𝑆. Among the other climatic and heat flux variables, 𝑃𝑡 and RH were positively correlated with 

SCA over all regions while 𝑇𝑎, 𝑇𝑆, SWN, 𝑅𝑁, 𝐻𝑆, and 𝐸𝑛𝑒𝑡 show an inverse relation over the KK, 

WH, and CH regions. In the EH region, almost all the essential climatic variables and energy 

fluxes showed an insignificant correlation with each other (except for 𝑇𝑎). Moreover, in the EH 

region, the 𝑇𝑠 was negatively correlated with 𝑃𝑡, RH, u, SWN, and LWN. Similarly, the albedo 

was negatively correlated with SWN, 𝑅𝑁, 𝐻𝑆, and 𝐸𝑛𝑒𝑡 over the selected regions. On the other 

hand, the positive correlation of 𝐻𝑙 with SCA was much stronger in the CH region. Overall, our 

results indicate that the decreasing pattern of SCA or the prolonged melting period significantly 

impacted the snow accumulation and decreased surface albedo, which can absorb higher solar 

radiation on the surface and vice versa. Therefore, the results suggest that the changing pattern 

of SCA is closely linked with these variables, while SCA characteristics varied from location to 

location. 
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Figure 3.8. Spatial trend of climatic variables and energy fluxes over the Karakoram and 
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Himalayan (KH) region from 2000 to 2019. The trend indicates Sen’s slope value, and black 

dots represent the significance level at p < 0.05. 

 

Figure 3.9. Relationships of SCA, climatic variables, and energy fluxes over the a) Karakoram 

(KK), b) Western Himalayas (WH), c) Central Himalayas (CH), and d) Eastern Himalayas 

(EH) for the period 2000–2019. 
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3.7.4.3. Long-term air temperature and precipitation variation (1979–2019) 

To examine the long-term climatic variability and its trend over the region, we analyzed 𝑇𝑎 and 

𝑃𝑡 during hydrological years 1979–2019. This long-term analysis will help to determine a 

relationship between the short-term and long-term responses of the forcing variables. The 

temporal trend analysis of these variables was performed using linear regression, demonstrating 

that the 𝑃𝑡 slope indicates a declining trend in all regions except CH whereas 𝑇𝑎 shows an 

increasing trend for the whole KH region. Apart from this, the spatial distributions of 𝑇𝑎 and 𝑃𝑡 

and their trends  were quantified using Sen’s slope and the MK trend test over the region (Figure 

3.10).  

 

Figure 3.10. Spatio-temporal variation of mean yearly air temperature (𝑻𝒂) and precipitation 

(𝑷𝒕) with their trend (Sen’s slope) and trend significance level (black dot) over the Karakoram 

and Himalayan (KH) region from 1979 to 2019 (Source: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-

monthly-means?tab=form). 

The mean annual 𝑇𝑎 was highlighted by the 0ºC isotherm that separated temperatures above and 

below 0ºC (Figure 3.10a). The highest 𝑃𝑡 was found on the eastern side of the KH region with an 

overall significant decreasing trend (Figure 3.10c). A hotspot region in the WH was identified 

that indicates a significant decreasing trend of 𝑃𝑡, whereas an increasing trend was found for 𝑇𝑎. 

The results also demonstrate that the trend of 𝑇𝑎 was significantly increasing over the whole KH 

region with a higher positive value in the eastern KK and western and northern WH, and a slightly 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form
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lower positive value in the lower reaches of CH. Additionally, a small pocket of increasing 𝑃𝑡 

trend was found over the lower portion of the CH region with a slightly less positive trend in 𝑇𝑎. 

Overall, this variability of long-term 𝑇𝑎 and 𝑃𝑡 helps in understanding the homogeneity and 

heterogeneity of climatic variables on SCA. 

3.7.5. SENSITIVITY ANALYSIS OF SCA 

For the sensitivity analysis, the selected independent and dependent variables were standardized, 

and then multivariate linear regression models were generated at an annual time scale during 

2000–2019 (Figure 3.11). Our results suggest that the 𝑇𝑎 is a more significant climatic contributor 

than 𝑃𝑡 to SCA change for each region except KK. In the radiation components, SWN shows the 

largest proportion of the variance against LWN except for the EH region. Similarly, the 𝐻𝑠 

showed higher sensitivity than 𝐻𝑙 over KK and CH, whereas in the WH and EH regions, the 

sensitivity of 𝐻𝑙 was higher relative to 𝐻𝑠. After analyzing the strength of all the variables, 

statistics suggest that the whole KH region experienced higher sensitivity towards SWN, with 

the maximum in the CH region and the minimum in the EH region. 

3.8. DISCUSSION 

The spatio-temporal variation of SCA in the KH region is essential to understanding the land-

atmosphere interaction and its implications for local water availability. This region is considered 

one of the more climate-sensitive regions across the world that directly or indirectly influences 

the livelihoods of millions of people (Choudhury et al. 2021). The monitoring of SCA in the KH 

region is mainly hindered by the limited availability of continuous in situ records and by cloud 

obstruction in the optical remote sensing data. The in situ-based constraint was resolved by the 

use of MODIS snow cover products that provide data at a larger spatial and fine temporal scale. 

The presence of clouds in the snow cover products was also managed by implementing a five-

step composite methodology. Several authors have previously developed and implemented this 

approach for cloud-gap-filling within the study region (Paudel and Andersen 2011; Hasson et al. 

2014a) and its vicinity (Gafurov and Bárdossy 2009; Huang et al. 2017; Li et al. 2019b). Our 

results on cloud-gap-filling showed higher accuracy with high-resolution satellite data as well as 

in situ observation. In this Himalayan context, many authors have used satellite and field 

observations to assess the performance of the cloud removal approach (Jain et al. 2008; 

Chelamallu et al. 2014; Muhammad and Thapa 2020). In our study, the comparison of MODIS 

products with Landsat data shows overestimation, consistent with the findings of prior studies 

(Tang et al. 2012; Hasson et al. 2014b; Muhammad and Thapa 2020).  
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Figure 3.11. Sensitivity analysis of SCA in terms of climatic variables (𝑻𝒂 and 𝑷𝒕) and energy 

fluxes (SWN, LWN, 𝑯𝒍, and 𝑯𝒔) over the a) Karakoram (KK), b) Western Himalayas (WH), 

c) Central Himalayas (CH), and d) Eastern Himalayas (EH).  

Several inherent uncertainties in MODIS snow cover retrieval mainly occurred due to the larger 

solar zenith angles, which reduce the accuracy of the snow cover products (Li et al. 2016). On 

the other hand, the band consideration in Terra (band 6) and Aqua (band 7) for the NDSI 

calculation show higher accuracy in Terra than Aqua (Hall and Riggs 2007). Therefore, in the 

first step, the combination of Terra and Aqua can contribute some uncertainties in the cloud-gap-

filling. Additionally, uncertainties are linked with the absolute validation of cloud-gap-filling 

snow cover products that indicate ~ 90% accuracy under clear sky conditions (Klein and Barnett 

2003; Hall and Riggs 2007). The correct estimation of snow cover under thick canopies is a major 

limitation of optical sensors (Simic et al. 2004). Still, this limitation was slightly reduced in the 

high mountainous region and glacier terrain. In these regions, the errors are likely to be highest 
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in the transitional period (accumulation and ablation). Therefore, we have considered all-terrain 

information for reducing uncertainties in the region and enhancing the accuracy of the 

methodology.  

The mean annual SCA trend was increasing for the entire region (KK, WH, and CH) except for 

the EH, during 2000–2019. Many authors have worked on basin- or local-scale SCA estimation, 

which shows a similar increasing trend over the KK region (Hasson et al. 2014a; Singh et al. 

2014; Tahir et al. 2016; Bilal et al. 2019; Choudhury et al. 2021). This increasing trend of SCA 

might be the reason for positive mass balance (MB) in the glaciers of the Karakoram region, as 

illustrated by numerous authors (Gardelle et al. 2012, 2013; Mukhopadhyay and Khan 2014; 

Mukhopadhyay et al. 2015; Negi et al. 2020). Additionally, Farinotti et al. (2020) revealed that 

the KK glaciers were experiencing positive mass gain, and their terminus was even advancing 

due to the surging of the glacier.  

Similarly, several authors have investigated the increasing snow cover pattern over the WH 

region at different spatial scales, i.e., regional (Zhang 2015; Shresth Tayal 2017; Sood et al. 2020; 

Choudhury et al. 2021), basin  (Kulkarni et al. 2010; Snehmani et al. 2016; Dharpure et al. 2020b) 

and local (Kour et al. 2016b; Shafiq et al. 2018). On the other hand, some studies at a finer scale 

have documented decreasing SCA in the CH region (Paudel and Andersen 2011; Singh et al. 

2014), which is not consistent with our findings; this may be due to the difference in spatial scale. 

Also, a decreasing SCA trend was observed over the EH, which was previously monitored and 

explained by several authors (Singh et al. 2014; Barman and Bhattacharjya 2015; Basnett and 

Kulkarni 2019; Maurer et al. 2019).  

Our findings for the KK region not only illustrate the higher SCA but also indicate that the snow 

accumulation onset was shifted one day later with an increasing snow melting period. This 

indicates that the amount of snowfall was higher than the rate of melting; therefore, the region 

depicted mass gain or nearly stable conditions. Farinotti et al. (2020) observed that the KK region 

experienced an increased snowfall in the accumulation zone with higher surface albedo and even 

a reduction in net energy available for the melt. Our findings for the WH region highlighted an 

increasing trend of snow accumulation onset time, whereas the snow melt period was enlarged 

during the study period. This may have occurred due to the higher snow melting rate under the 

influence of rising temperature in the WH region (Shekhar et al. 2010). In the CH and EH regions, 

the snow accumulation onset was shifted forward, whereas the snow accumulation period was 

positive for CH and negative for EH. In addition, the snow melting period was shortened for both 

CH and EH regions. Paudel and Andersen (2011) reported a peak snow period delayed by 6.7 
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days per year and peak snowfall over the Trans-Himalayan region of Nepal (CH) during 2000–

2010. Panday et al. (2011) found that the late melt onset of the CH contributed to the shortening 

of the melt period in 2003 and 2005. They also demonstrated that the EH region in Nepal and 

Bhutan showed an earlier melt onset than the CH, WH, and KK regions.  

Reliable quantification of forcing variables and their mechanisms is needed to understand the 

interaction of the atmosphere and microclimatic condition with changing SCA. Therefore, we 

used climatic variables and energy fluxes over the KH region. The climatic variables show that 

the precipitation followed an increasing trend over the whole region during 2000–2019, with the 

maximum slope in CH and the minimum in KK, whereas the temperature trend of the KH region 

was significantly increasing. Our findings are consistent with previous studies over the KH 

region (Gautam et al. 2013; Sabin et al. 2020). This increasing trend of precipitation causes a 

significant increase in wet days and an increase in wintertime precipitation which further results 

in increasing SCA. In contrast, the association of SCA with the radiative forcing variables 

illustrates that the SWN was the main contributor to the net energy available for melt. The higher 

SWN was observed in the CH, which is consistent with the findings of Amatya et al. (2015), 

whereas SWN was slightly lower in the KK region. Bonekamp et al. (2019) found that the melt 

in KK was controlled by the SWN while LWN dominates the energy balance in the Langtang 

region (CH). In terms of spatial variability, we found that the significant increasing trends of 

SWN, 𝐻𝑙, and 𝐻𝑔 in the snowy region whereas 𝑃𝑡 and LWN increased in the non-snowy region. 

This pattern was also noticed by some other authors (Amatya et al. 2015; Patel et al. 2021b). 

By combining it with the published literature, our results suggest a broad picture of snow cover 

variability. These records of snow cover change indicate that the majority of the SCA trend was 

increasing over the KH and its sub-regions (except for the EH region). Also, SCA increased 

where precipitation increased in the coldest region (KK), whereas it decreased where 

precipitation decreased in the warmest region (EH). A more detailed investigation in future 

research will be needed in the KH region, focusing on basin-wide SCA characterization and its 

modeling for streamflow prediction. This study would be helpful not only for continuous SCA 

monitoring but also for establishing the relationship of SCA with the direct or indirect dependent 

variables.  

3.9. CONCLUSIONS 

This study examined the spatio-temporal snow cover variability using daily MODIS cloud-gap-

filled SCA over the KH region during 2000–2019. The results revealed that the maximum SCA 
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was mainly concentrated on the KK region, while the minimum occurred in the EH region. The 

annual SCA trend was increasing for each region except for the EH during 2000–2019, but these 

trends were not significant at p < 0.05, whereas it showed a significant declining trend over the 

entire region and its sub-regions for the period 2008–2018. The mean monthly SCA increased in 

the accumulation months (February and March) and decreased in the ablation months (August 

and September) over the region. The results also highlighted that the snow accumulation onset 

and melt periods were shifted one day later for all regions except the EH. Due to the shrinking 

of SCA, the flow of rivers originating from the KH region is likely to be reduced during the 

summer season, which may affect the socio-economic condition at the higher altitudes in terms 

of vegetation cultivation, tourism, and apple farming.  

In relation to this, the annual 𝑇𝑎 and 𝑃𝑡 trends were evaluated, which indicate an increasing trend 

of annual 𝑃𝑡 during 2000–2019 with a maximum slope in the CH region and a minimum  slope 

in the KK region. The annual 𝑇𝑎 shows an increasing trend for the study period, with a higher 

rate in EH and a lower rate in WH. Our results also indicate that the temperature (𝑇𝑎 and 𝑇𝑠) and 

𝑃𝑡 from the selected climatic variables and SWN from radiative fluxes were mainly responsible 

for the changing pattern of SCA over the KH region. Overall, we conclude from this study that 

the SCA of the KH region is highly variable from location to location. Even the influence of 

climatic variables and energy fluxes related to SCA change may vary with the snowy or non-

snowy region. Therefore, a reliable estimation of SCA and its relationship with these forcing 

variables will help in providing a better understanding of future water supply and its management 

in the upstream and downstream regions.   
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4.1. INTRODUCTION 

Glaciers are retreating in most of the world’s mountainous regions and higher latitudes due to 

global climatic fluctuation (Marzeion et al. 2015; Ebrahimi and Marshall 2016). In response, the 

reshaping of the freshwater stored glacier may occur, which influences the regional water supply 

(Radić and Hock 2011) and changes the timing of streamflow around the year (Dadic et al. 2008). 

On the other hand, the snow and glacier melt in the Himalayan region is a lifeline for the upstream 

and downstream population. Many studies have reported a mass loss (Banerjee 2017; Murtaza 

and Romshoo 2017; Bandyopadhyay et al. 2019) and a changing pattern of snow cover or 

snowfall (Ahmad et al. 2018; Basnett and Kulkarni 2019; Dharpure et al. 2020b) over the 

Himalayan region. The variation in snow and glacier extents causes a significant influence on the 

basin, mainly dependent upon meltwater originating from snow and glacier during the summer 

season. 

However, the weather data from high elevations of the Himalayas and trans-Himalaya is seldom 

available. Given the scarcity of such data sets, the climatic forcing on glacier changes is often 

studied by extrapolating available low elevation climate data using elevation-dependent or 

standard relations. Besides, the complex topography of this high-mountain region ensures many 

topo-climatic zones with varying characteristics (Khan et al. 2017). A significant difference in 

near-surface temperature lapse rates in different climate regimes of the Himalayas with distinct 

seasonal variations was reported across the Himalayas (Heynen et al., 2016; Pratap et al., 2019). 

Therefore, a reliable estimation of glacier mass variation and their response to future climatic 

change over the Himalayan region is required, which causes a significant impact on regional 

water availability and also help in understanding the physical processes of the glacier and climate 

variability (Oerlemans et al. 1998; Oerlemans and Klok 2002). 

Earlier, the comprehensive Surface Energy Balance (SEB) was used to quantify the glacier-

climate interaction (Hoinkes 1954); though, this method was substantially improved afterward. 

Then, the improved SEB method was applied by various researchers worldwide (Ayad Ali Faris 

Beg et al., 2016; Pellicciotti et al., 2005). Previously, many studies were conducted on the glacier 
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SEB in high mountain Asia (Acharya and Kayastha, 2018; Patel et al., 2021). Glacier SEB studies 

in the Ladakh range, the Karakoram region, and the eastern Himalayas are unavailable. On the 

other hand, a study conducted by Wani et al. (2021) over the upper Ganglass catchment uses the 

meteorological observation collected through Automatic Weather Station (AWS) installed at a 

lower elevation (4727 m a.s.l.) to quantify the point-based SEB. However, extrapolating low 

altitude station data does not provide complete insight into the glaciers above the ~5300 m a.s.l. 

(Schmidt and Nüsser 2017). 

Therefore, we analyzed the SEB of Phuche glacier, upper Ganglass basin, Ladakh range to 

estimate the glacier surface mass balance. The study includes the meteorological observation 

recorded at 5600 m a.s.l. to substitute the lack of physical-based energy balance measurement 

over this range. This study also bridges the gap of mass balance study and their interaction with 

climatic response over the cold and arid region of the Himalayas. The monthly, annual, and 

seasonal variations of SEB components at point location were analyzed to understand the 

distribution of each component, their characteristics, and their controlling processes in glacier 

mass balance estimation. 

4.2. RESEARCH QUESTIONS 

 What are the radiative and energy fluxes of the cold-arid region glacier that vary- How 

are the radiation and turbulent heat fluxes changed at different temporal scales? Are any 

significant changes in the fluxes noticed for the selected region? 

 How does the glacier mass balance vary at point-based energy balance measurement- 

What are the forcing mechanism that causes perturbations in glacier surface melting and mass 

balance? Can certain energy balance variables play a direct or indirect role in controlling the 

seasonal glacier melting of the study region? 

 How are the glacier energy and mass balance variation of the studied glacier related to 

other glaciers across the catchment? Is any relation found in the mass variation of cold-

arid region glaciers? What is the implication of higher glaciers melting over the region?  

4.3. OBJECTIVES 

 Analyzing the meteorological observation at 5600 m a.s.l. using physical-based energy 

balance measurement  
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 Investigating a long-term field measured Surface Energy Balance components at monthly, 

annual and seasonal scale 

 Assessing the glacier surface melting and mass balance to understand the controlling 

processes in glacier mass variation 

4.4. STUDY AREA 

The study site lies in the Ladakh range of the trans-Himalaya at 5600 m a.s.l. elevation (34° 16' 

39.40"N, 77° 33' 35.34"E) in the north of the Leh city, Union Territory of Ladakh, India (Figure 

4.1). 

 

Figure 4.1. Location map of the (a) cold-arid region with glacier boundaries, different ranges, 

and AWS location and (b) upper Ganglass catchment with the Phuche glacier, AWS, and stake 

location overlay on a composite satellite image (Source: Landsat-8). (c-d) represent 
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hypsometry distribution of Phuche glacier and upper Ganglass catchment and (e-f) indicate 

the AWS location and glacier terminus field photographs. 

This region is less influenced by the Indian Summer Monsoon (ISM) precipitation due to the 

higher ranges of the Himalayas (Wani et al. 2020). 79% of the glaciers located in the Ladakh 

range are < 0.75 km2, and approximately 4% of the glacier have > 2 km2 which mainly occupy 

the high elevation region above 5300 m a.s.l (Schmidt and Nüsser 2017). Glaciers in the region 

are experiencing mass loss, and individual glacier cover area has reduced by 17–22% since 1969 

(Schmidt and Nüsser 2017). This region's aridity index and temperature range classify the trans-

Himalaya as a cold-arid desert.  

The cold-arid region of Ladakh experiences a comparatively higher temperature lapse rate 

ranging from 8 to 10 °C km−1 during summer months (AMJJA) as compared to the monsoon-

dominated region (3.5 – 5.5 °C km−1), espousing the regional differences in the meteorological 

forcing on the high elevation cryospheric systems (Thayyen et al. 2013). The region is 

characterized by strong land-atmosphere interactions, a rarefied atmosphere, and intense 

incoming solar radiation (Wani et al. 2020). This cold-arid region covers a significant portion of 

the upper Indus River basin with large snow and glacier extent in the Suru, Zanskar, and Shyok 

river basins. It contains steep mountain slopes and valley bottom, which were filled with glacio-

fluvial deposits (Jowhar 2001; Wani et al. 2020). 

The AWS site is located 35 km in north away from Leh city. The base camp to reach this site is 

established at South Pullu, (4700 m a.s.l.), 25 km from Leh town en route to Khardung-La (Pass). 

The study site lies within the snow cover area and close to the high elevation margins of the 

Phuche glacier. The Phuche glacier is a small cirque-type glacier that is 1.3 km long and covers 

an area of 0.58 km2. The elevation of the Phuche glacier ranges from 5400 to 5745 m a.s.l. The 

drastic mass loss of smaller glaciers may create a warm hotspot that can imbalance the ecosystem 

and affect this region's water supply. The meltwater of this glacier is a part of the headwater zone 

of Leh stream, which is the primary water source for the Ganglass village and Leh city 

downstream. These headwater zones are also considered the recharging zone of the groundwater 

in the Ganglass catchment.  
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4.5. DATA AND METHODS  

4.5.1. METEOROLOGICAL DATA COLLECTION AT 5600 m a.s.l. 

A Campbell Scientific CR1000 AWS has been installed at a high altitude (5600 m a.s.l. on the 

ridge of Phuche glacier) of the cold-arid region in the Ladakh range for weather monitoring. The 

station is equipped with sensors that record data on a half-hourly interval, including global 

radiation (Incoming-shortwave (SWI) and outgoing-shortwave radiation (SWO)), albedo (α), net 

radiation (𝑅𝑛), air temperature (𝑇𝑎), barometric pressure (𝑃𝑎𝑡𝑚), Relative Humidity (RH), wind 

speed (u), and direction (WD) from 1 October 2012 to 30 September 2017 (five hydrological 

years). Detailed descriptions of installed sensors and their specification are listed in Table 4.1. 

The measurement error in AWS collected data was removed before analyzing the components, 

if any is available. These errors are associated with the ill-functioning of the sensor and vary with 

the sensor accordingly. Then, the corrected variables were analyzed on an hourly, daily, and 

monthly basis.  

Table 4.1. Measurement specification of AWS installed near Phuche glacier at 5600 m a.s.l. 

Meteorological data Symbol (unit) Make 
Initial 

height (m) 

Stated 

accuracy 

Air temperature Ta(°C) Rotronics-5600-0316-1 2.0 ±0.2 °C 

Relative humidity RH(%) Rotronics-5600-0316-1 2.0 ±1.5 % 

Wind speed u (ms−1) RM Young 05103-45 5 + base* ±0.3 ms−1 

Wind direction WD (°) RM Young 05103-45 5 + base* ±0.3 ° 

Solar radiation Rn(Wm−2) Kipp & Zonen (NRLite) 2.5  

Shortwave/albedo SWI, SWO (Wm−2) Kipp & Zonen (CMP6) 2.5  

Atmospheric pressure Patm(hpa)   ±0.3 hpa 

Precipitation Gauge  Geonor   

Data platform  Campbell CR1000   

*Base height = 1.5m 

For winter precipitation, we attempted to measure the precipitation using the Geonor 

precipitation gauge; however, it failed to achieve good results due to technical snags and harsh 

weather conditions. Therefore, we have utilized the empirical relationship of snow thickness and 

density to calculate the accumulated snow water equivalent. These components were measured 

through a field survey carried out in May. Snow thickness was monitored using the network of 
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snow-stakes installed over the glacier, and their snow density was estimated by digging the snow 

pit near the AWS site. 

4.5.2. DATA PROCESSING 

After eliminating the measurement error, the abrupt spike in the AWS dataset was removed, and 

then it was filled with linear interpolation. The half-hourly shortwave radiation (SWI, SWO) 

measured using Kipp & Zonen (CMP6) was carefully processed. The computed 𝑅𝑛 and total 

energy was dominated by the change in shortwave radiation. For this, we have considered a cut-

off of 5 W m-2 for night-time data of incoming and outgoing solar radiation, which is set to be 

zero. The collected data indicate that the SWO sometimes shows a higher value than SWI during 

morning and evening. This occurs because the solar angle at that time was low due to the poor 

cosine response of the upward-looking sensor (SWI) (Nicholson, Prinz, Mölg, and Kaser, 2013). 

However, the SWO sensor mostly receives isotropic radiation; therefore, the SWO was relatively 

less sensitive than SWI towards uncertainties caused due to poor cosine response (van den Broeke 

et al. 2004). In this study, we have re-analyzed the SWI from raw SWO and with estimated 

accumulate albedo (𝛼𝑎𝑐𝑐), as given by Equation 4.1. 

𝛼𝑎𝑐𝑐 =
∑ 𝑆𝑊𝑂 (𝑟𝑎𝑤)24

∑ 𝑆𝑊𝐼 (𝑟𝑎𝑤)24
                                               Eq. 4.1  

The reflected radiation (SWO) was sometimes higher compared to incoming radiation during the 

daytime. These higher values may have occurred because the incoming radiation sensor was 

covered with snow due to heavy snowfall.  In this case, the incoming radiation was estimated 

through reflected radiation which is divided by considering the maximum realistic value of snow 

albedo (0.9) (Oerlemans and Klok, 2002, Favier et al. 2004). Figure 4.2a and Figure 4.2b show 

the raw data associated with error values and the corrected values of incoming and outgoing 

radiations, respectively.  

The minimum, maximum, and mean temperature was recorded at a half-hourly interval, further 

used to generate daily, monthly, and annual temperature (minimum, maximum and mean). 

Similarly, the half-hourly recorded RH and 𝑢 were converted into daily, monthly, and annual 

time scales. Positive Degree Day (PDD) and Freezing Degree Day (FDD) were calculated by 

measured hourly temperature. PDD and FDD were estimated by averaging the hourly positive 

and negative temperature by considering base temperature as zero, respectively, expressed by 

Equations 4.2 and 4.3: 
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𝑃𝐷𝐷 =  
∑ 𝑇𝑗

24
𝑗=1

24
 , ( 𝑇𝑗 ≥ 0)     Eq. 4.2 

𝐹𝐷𝐷 =  
∑ 𝑇𝑗

24
𝑗=1

24
 , ( 𝑇𝑗 < 0)      Eq. 4.3 

Where 𝑇𝑗 is the positive temperature in hour j 

The specific humidity was estimated using the 𝑇𝑎 and RH measurement as described in Equation 

4.4: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 (𝑔 𝑘𝑔−1) = 1000 [0.622
𝑒𝑎

𝑃𝑎𝑡𝑚
]  Eq. 4.4 

Where saturated vapor pressure (𝑒𝑠) = 6.112 × 𝑒𝑥𝑝
(

17.67×𝑇𝑎
243.5+𝑇𝑎

)
 and  (𝑒𝑎) = (𝑒𝑠 × 𝑅𝐻)/100.  

The surface temperature (𝑇𝑠) is a significant variable to quantify the turbulent heat fluxes on the 

glacier surface. The half-hourly observation of solar radiation, 𝑇𝑎, RH and 𝑢 were used for 

estimating the 𝑇𝑠, discussed by Fujita and Ageta (2000). The 𝑢 was measured at 6.5 m height 

above the surface, it is required to convert at 2 m for energy fluxes caculation. This height (6.5 

m) was converted at 2 m using the logarithmic wind profile function, explained by Bastiaanssen 

et al. (1998). 

 

Figure 4.2.  A scatter plot of half-hourly values of incoming versus outgoing solar radiation 

(a)raw data and (b) after error correction data. 
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4.5.3. SURFACE ENERGY BALANCE (SEB) MODELING 

The modelling of SEB components was carried out by the calculation of energy fluxes directed 

towards the glacier surface that is considered to be positive, and when it goes upward from the 

surface, then it becomes negative. If we assume that if there is no significant horizontal energy 

transfer over a unit glacier volume and for a unit of time, then the SEB was calculated at the snow 

surface, can be expressed by (Equation 4.5) (Oke 1987):  

𝐹𝑠 = 𝑅𝑛 + 𝐻𝑠 + 𝐻𝑙 + 𝐻𝑔 + 𝑃               Eq. 4.5 

Where 𝑅𝑛 is the combination of net shortwave and net longwave radiations, 𝐻𝑠 and 𝐻𝑙 are the 

sensible and latent energy fluxes, respectively. 𝐻𝑔 is the ground heat flux, and P is the supplied 

heat from precipitation, which is small enough to be neglected. 𝐹s is the total energy available at 

the glacier surface. The radiation and energy fluxes were measured in W m−2. 

Measurement of energy fluxes at the glacier surface has been carried out daily during the summer 

season between May and September to understand the melting pattern around the selected year. 

𝐻𝑠 and 𝐻𝑙 were carried out by the bulk aerodynamics methods (Oke 1987; Azam et al. 2014), 

calculated by Equations 4.6 and 4.7:  

𝐻𝑙 =  𝜌𝑎 
𝐿𝑠𝑘2𝑢(𝑞−𝑞𝑠)

(𝑙𝑛
𝑧

𝑍0𝑚
)(𝑙𝑛

𝑧

𝑍0𝑞
)

(∅𝑚∅𝑣)−1     Eq. 4.6 

𝐻𝑠 =  𝜌𝑎 
𝐶𝑝𝑘2𝑢(𝑇𝑎−𝑇𝑠)

(𝑙𝑛
𝑧

𝑍0𝑚
)(𝑙𝑛

𝑧

𝑍0𝑇
)

(∅𝑚∅ℎ)−1     Eq. 4.7 

Where 𝜌𝑎 is the air density (in 𝑘𝑔 𝑚−3) from the following equation (𝜌𝑎 =  
𝑃𝑎𝑡𝑚

𝑅𝑎𝑇𝑎
, where 𝑅𝑎 = 

specific gas constant (for dry air) and 𝑃𝑎𝑡𝑚 = Atmospheric pressure (in hPa) at AWS). 𝐿𝑠 is the 

Latent heat of sublimation (2.834 × 106 𝐽𝑘𝑔−1),  𝑧0𝑇, 𝑧0𝑞, and 𝑧0𝑚 are the surface roughness 

parameters for temperature, humidity, and momentum, respectively. 𝐶𝑝 denoted as specific heat 

capacity (for air at constant pressure) (𝐶𝑝 = 𝐶𝑝𝑑(1 + 0.84𝑞) with 𝐶𝑝𝑑 = 1005 𝐽𝑘𝑔−1𝐾−1, the 

specific heat capacity (for dry air at constant pressure)). k is the von Korman constant (k = 0.4), 

𝑞 and 𝑞𝑠 are the mean specific humidity of the air and surface, respectively, calculated based on 

Equation 4.4. The non-dimensional stability functions of momentum (∅𝑚), heat (∅ℎ) and 

moisture (∅𝑣) is given by 𝑅𝑖𝑏. Where 𝑅𝑖𝑏 is the bulk Richardson number that described the 

stability of the surface layer, that relates the effects of buoyancy to mechanical forces (Moore, 

1983), expressed by Equation 4.8. 
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𝑅𝑖𝑏 =  
𝑔 (𝑇𝑎−𝑇𝑠)(𝑧−𝑍0𝑚)2

𝑇𝑎𝑢2(𝑧− 𝑍𝑜𝑇)
     Eq. 4.8 

Where 𝑔 is the acceleration of gravity (𝑔 = 9.8 𝑚𝑠−2). Stability of the Surface Boundary Layer 

is measured by bulk Richardson number 𝑅𝑖𝑏. Sometimes very high and low values of 𝑅𝑖𝑏 were 

observed. These high and low values gave rise to a huge fluctuation in 𝐻𝑠 and 𝐻𝑙 values. 

Therefore, the lower and upper limits were fixed by calibrating the 𝑅𝑖𝑏 to remove all the possible 

outliers (extreme and sudden high or low values of 𝐻𝑠 and 𝐻𝑙) in the values, as explained in 

Equations 4.9 and 4.10. An agreement with −0.40 < 𝑅𝑖𝑏 < 0.23 was achieved and selected for 

final 𝐻𝑠 and 𝐻𝑙 calculations (Denby and Smeets, 2000, Favier et al., 2011). 

𝑖𝑓 𝑅𝑖𝑏 > 0 (𝑠𝑡𝑎𝑏𝑙𝑒):  (∅𝑚∅ℎ)−1 = (∅𝑚∅𝑣)−1 = (1 − 5𝑅𝑖𝑏)2    Eq. 4.9 

𝑖𝑓 𝑅𝑖𝑏 < 0 (𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒):   (∅𝑚∅ℎ)−1 = (∅𝑚∅𝑣)−1 = (1 − 16𝑅𝑖𝑏)0.75   Eq. 4.10 

4.5.4. CALCULATION OF TOTAL ABLATION (MELT) 

An energy balance model based on the physical condition was applied to quantify the surface 

melt by assessing the radiation and energy fluxes that transfer to and from the glacier surface. 

When the surface temperature is equal to 0°𝐶 any surplus energy is assumed to transform the 

glacier surface layer into the melt. The sublimation/re-sublimation process is another way of 

glacier mass loss/gain. The melt occurs when the positive surface energy is available, whereas 

the negative sign indicates the loss of energy at the glacier surface (Hock 2005), as follows 

(Equation 4.11): 

Melt (m w. e. ) =
𝐹s

Lf×𝜌𝑤
                                                  Eq. 4.11 

Where 𝜌𝑤 = 1000 𝑘𝑔𝑚−3 (water density) and Lf = latent heat of fusion/melt (Lf = 3.34 ×

105𝐽𝑘𝑔−1). 𝐹s = total energy is available for glacier melt, and it occurs when the surface 

temperature is at 0°C. Sublimation is derived from the 𝐻𝑙 when it is negative (energy going away 

from the surface), by Equation 4.12 as given below: 

Sublimation (m w. e. ) =
𝐻𝑙

Ls×𝜌𝑤
                                       Eq. 4.12 

Where Ls = latent heat of sublimation (Ls = 2.834 × 106𝐽𝑘𝑔−1) and 𝐻𝑙 is the latent heat. To 

estimate the total ablation, the estimated melt is added with the sublimation and subtracted with 

the re-sublimation of the study site. 
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4.6. RESULTS 

4.6.1. METEOROLOGICAL VARIABLES  

4.6.1.1. Air temperature 

The minimum, maximum, and mean 𝑇𝑎 were recorded from AWS to capture the seasonal and 

annual variations during the observational period (2012–2017). Results of mean daily 

temperature suggested that the prolonged sub-zero mean temperature was noted over the location, 

varied from September to May (Figure 4.3). During the observational period, the daily mean 

minimum and maximum 𝑇𝑎  were measured as 14.2 and –29.8 °C, respectively, with a mean 

value of –7.8°C. The inter-annual daily temperature variation was higher in 2016/17 and lower 

value attained in 2014/15. This finding was consistent with the observation of Soheb et al. (2020) 

over the Stok Glacier, Ladakh range. 

The positive mean temperature was mainly found in two months, i.e., July and August; however, 

November to April experienced lower temperatures (less than –10 °C) (Figure 4.4). A similar 

temperature pattern was observed by Soheb et al. (2020) over the Stok glacier and reported by 

Azam et al. (2014) for the Chhota Shigri glacier, western Himalayas. Our findings also 

highlighted January as the coldest month (–20.7° C), whereas July was the warmest month 

(2.4°C). The linear trend of mean monthly 𝑇𝑎 was increasing for each month except March and 

June, while an overall increasing trend of mean annual temperature was observed during the 

observational period. A similar declining trend of temperature from June to September since 

2006 onwards was demonstrated by Koul et al. (2016). This trend thereby results in slow glacier 

melting and permafrost growth in the upper reaches (Wani et al. 2021). On the other hand, the 

mean annual temperature was maximum in 2015/16 and minimum in 2012/13 (Figure 4.4). It 

was also found that the period from 2012 to 2015 experienced lower temperature from the mean, 

and it increased about 13.0% in 2015/16 followed by 8.1% in 2016/17 relative to the previous 

period. This increase in temperature was previously illustrated by several authors (Ren et al. 

2017; Wester et al. 2019). 

The seasonal and annual temperature information was incomplete without estimating PDD and 

FDD to understand the temperature forcing on the surface melt of the study area (Figure 4.5). 

Results demonstrated that the region experienced PDD for six months (May–October), with the 

maximum in July and August (JA). The combined PDD of JA varied from 157 to 225 °C with 

lower annual PDD in 2014/15 (176.7 °C) and higher in 2015/16 (375.2 °C).  
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Figure 4.3.  Dark black line indicates the daily variation of mean temperature, and the shaded 

gray color represents the diurnal range of temperature for five hydrological years from 2012 

to 2017. 



ANALYSING THE STATUS AND FUTURE CHANGES OF THE CRYOSPHERE AND ITS 

RELATION WITH CLIMATE CHANGE FOR THE HIMALAYAN REGION 

Page 82 of 254 

 

Figure 4.4. Mean monthly and annual distribution of air temperature (𝑻𝒂), Relative Humidity 

(RH) and specific humidity for the study period (2012–2017) 

Figure 4.5. Monthly variation of Positive Degree Day (PDD) and Freezing Degree Day (FDD) 

during 2012–2017.  
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The mean annual PDD during the observation period was 267.5 °C. Besides, the FDD was 

extended throughout the year, with the highest value in January and the lowest in July. The annual 

FDD was ranged from –4036 °C (2013/14) to –3546 °C (2016/17) with a mean of –3789.2 °C. 

The linear trend of PDD and FDD increased with a rate of 8.4°C and 121.4°C yr−1, respectively. 

The overall pattern and trend of PDD and FDD indicate an increase in positive temperature with 

declining in freezing temperature, resulting in a higher amount of melting over the study area. 

4.6.1.2. Relative humidity  

Other than temperature, RH is one of the influential variables at a higher elevation to determine 

the arid characteristics of the region. A significant day-to-day variation of RH was observed 

throughout the year. During the observational period, the RH range 50–80% covers a maximum 

percentage of days (55%) followed by 35% days in < 50% RH, and only 10% of the days come 

under > 80% RH (Figure 4.6). The mean monthly value of RH characterized the seasonal 

variation of RH, showing maximum in August (63.5%) and minimum in November (45.9%) 

(Figure 4.6). However, a consistent high mean monthly RH was observed from February to 

August, varying from 60.3 to 63.5%. In the daily analysis, the minimum and maximum value of 

RH varies from 0.2 to 100%, with a mean value of 57.6%. And, the mean yearly trend obtained 

from linear regression was declining over the entire observational period. This decreasing trend 

of RH will further be responsible for the changing rainfall pattern and cloudy conditions (Pratap 

Singh 2005). 

Afterward, the mean monthly pattern of specific humidity was calculated to better understand 

the total water vapour content in the air (Figure 4.4). Results indicate that July and August have 

the highest water vapour content in the air, with a specific humidity of 5.4 g kg−1 while 

December and January record the lowest value at 0.8 g kg−1. The seven consecutive months 

(October to April) received an average water vapour content of 1.3 g kg−1, which was changed 

to 4.2 g kg−1 during May–September. This indicates that the higher moisture influx was 

concentrated during summer (May – September) compared to the winter season (October – 

April). However, this region experienced higher precipitation during winter with shallow 

temperatures in the range of –29 °C. In comparison to this, the western Himalayas (monsoon 

region) have specific humidity between 10.9 g kg−1 during summer months (May – October) 

and 4.1 g kg−1 for winter months (November to March) (Thayyen and Dimri 2018). Combining 

our results and monsoon region analysis made it clear that this distinct pattern of specific 

humidity in the summer and winter mainly occurred due to the aridity classification. 
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Figure 4.6. Daily variation of mean RH as shown in dark black and shaded gray represents 

the minimum and maximum range of RH during 2012–2017. 
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4.6.1.3. Wind speed and direction 

Figure 4.7.  Daily variation of mean wind speed shown in dark black and shaded gray color 

represents the diurnal range of wind speed during 2012–2017. 
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The half-hourly observation of u and WD was undertaken to understand the wind regimes that 

regulate moisture transportation, cloud formation, the occurrence of precipitation, and surface 

energy balance (Figure 4.7). The analysis was performed for both day (07:00–18:00 hours) and 

night (19:00–06:00 hours) and the summer and winter periods. It was noted that the orographic 

processes influence wind regime with anabatic flows attaining a higher speed during daytime 

than night-time. A similar pattern of wind regime and their observation was matched with Singh 

et al. (2007) over the Gangotri Glacier, central Himalayas. 

 

Figure 4.8. Wind direction and speed from half-hourly data for day-time (07:00–18:00 hours) 

and night-time (19:00–06:00 hours) as well as for summer (April–September) and winter 

(October–March) seasons. 

The daytime wind is dominated by SSE mainly through the local valley (upper Ganglass), and 

during nighttime southern wind dominates, blowing directly from the main Indus valley (Figure 
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4.7). The seasonal analysis indicates that the southern winds dominate the study area during 

summer and winter periods; however, the 𝑢 was higher in the winter relative to the summer 

season. This finding was consistent with other authors (Azam et al. 2014; Soheb et al. 2018). 

During the five observational periods, the monthly maximum 𝑢 ranged from 14.3 to 19.2 m s-1, 

reaching the ‘near gale’ class in the Beaufort scale. And, the average 𝑢 was varied from 3.5 to 

4.9 m s-1, which is of the 'gentle breeze' category. Apart, 'light breeze', 'Gentle breeze', 'moderate 

breeze', and fresh breeze conditions prevail for about 26%, 45%, 21%, and 5% of days, 

respectively, while the calm and light air classes of Beaufort scale do not cover the study site in 

annual scale. The annual distribution of 𝑢 indicates an increasing trend at the rate of 0.24 m s-1 

yr-1 for the entire observational period (Figure 4.8). This suggests that the rising pattern of 𝑢 may 

cause a significant impact on turbulent heat fluxes (sensible and latent heat) over the region 

(Acharya and Kayastha 2018). 

 

Figure 4.9. Mean monthly variation of SWN, LWN, Albedo and 𝑹𝒏 over the period 2012–2017. 

4.6.1.4. Shortwave radiation  

The monthly, seasonal, and annual distribution of shortwave radiation (SWI and SWO), α, and 

their net shortwave radiation (SWN: SWI – SWO) were quantified for the observation period to 
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understand the variation of radiation forces on the glacier surface melt. The daily variation of 

SWI shows higher variability compared to SWO in all the hydrological years. This higher 

variability in SWI is mainly influenced by the presence of cloud cover and terrain properties. 

Apart, the variability in SWO was higher in 2016/17 and lower in 2012/13.  

In the monthly analysis, the SWI was peaked in May with a mean value of 356.1 W m-2, and a 

lower value of 170.0 W m-2 was observed in December. The SWO was maximum in May (238.7 

W m-2), and a minimum value was recorded in August (76.6 W m-2). This indicates that the higher 

SWI was trapped in the surface, and less radiation reflects during the summer season. This 

finding was consistent with other authors (Favier et al. 2011; Patel et al. 2021a). The higher 

absorption of radiation is mainly owing to the reduced albedo due to snow aging and even 

exposure of ground surface in some years. Our findings also include that the α was higher in 

April (0.72) and lower in August (0.28) (Figure 4.9). 
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Figure 4.10. Daily mean variation of incoming and outgoing shortwave radiations. 

The SWN was calculated from corresponding SWI and SWO, which shows the daily value at the 

study site ranged from 9.0 to 416.3 W m-2 with an average of 122.2 W m-2 over the study period. 

The annual SWN was minimum in 2014/15 (98.6 W m-2) and maximum in 2015/16 (153.9 W m-

2) with an average value of 122.2 W m-2. However, the SWI and SWO were highest in 2016/17, 

whereas the lowest value was attained in 2014/15 and 2012/13, respectively. The linear trend of 
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SWI, SWO, and SWN increased with a rate of 18.5, 7.0, and 11.0 W m-2 yr-1, whereas α shows a 

declining trend (–0.90 % yr-1) over the whole observation period. This indicates that this region 

may experience less snow accumulation or snowfall amount during the study period. Our 

findings suggest that the observation period has two consecutive years in which one attain the 

highest and the other received the lowest value. By combining 𝑇𝑎, α, and 𝑅𝑛 for the period 

2015/16, we can conclude that due to an increase in 𝑇𝑎 (–9.1 °C) it affects the α (0.49) and causes 

an adverse effect on 𝑅𝑛 (108.0 W m-2). This indicates that this region is highly driven by 

temperature variation and radiation fluxes. Several authors explained similar observations 

(Meena et al. 2015; Shafiq et al. 2016; Wani et al. 2021). 

4.6.1.5. Atmospheric pressure 

 

Figure 4.11. Mean monthly variation of atmospheric pressure over the period 2012–2017. 

The 𝑃𝑎𝑡𝑚 was recorded by AWS from 1 October 2012 to 30 September 2015, which can be used 

for 𝐻𝑠 and 𝐻𝑙 calculation. The mean daily 𝑃𝑎𝑡𝑚 ranged from 496.1 to 521.9 hPa with a mean 
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value of 512 hPa (Figure 4.11). On a daily variation, the year 2012/13 experienced some data 

gap over the study site.  

The mean monthly analysis indicates that the 𝑃𝑎𝑡𝑚 starts decreasing from October onward and 

attains minimum value in February (502.6 hPa), then suddenly it starts increasing till September 

with a maximum value in August (512.7 hPa). Our result also illustrates that the Coefficient of 

Variation (CV) was highly variable in February (CV = 0.63) followed by January (CV = 0.58) 

and lower value attained in September (CV = 0.07) followed by August (CV = 0.08). This 

indicates that the CV was higher in the months where 𝑃𝑎𝑡𝑚 was lower (January and February) 

than other months. 

The lower 𝑃𝑎𝑡𝑚 controlled the 𝑢  and WD of a region (NCERT 2020). This resultant observation 

was well-matched with the 𝑢 of the study site, which was highest in February (4.9 m s-1) and 

lowest in August (3.5 m s-1). In the yearly analysis, the mean 𝑃𝑎𝑡𝑚 during 2012/13, 2013/14, and 

2014/15 were 511.2, 511.1, and 512.0 hPa, respectively. The yearly variation of 𝑃𝑎𝑡𝑚 was not 

much change relative to monthly variation. 

4.6.1.6. Net radiation 

After analyzing the variation of radiation fluxes, the 𝑅𝑛 was measured over the study site, which 

indicates that the mean daily 𝑅𝑛 ranges from –88.3 to 184.6 W m-2 with a mean of 20.1 W m-2 

over the study period (Figure 4.12). The 𝑅𝑛 value starts positive from May onwards, attains its 

maximum value during August (84.5 W m-2), and further decreases until November. The other 

remaining months show negative 𝑅𝑛 with a maximum in January (–6.5 W m-2) and a minimum 

in March (–0.5 W m-2) with an average of –3.1 W m-2. This positive 𝑅𝑛 indicates that these 

particular months may be able to contribute to surface melt over the region. The mean annual 𝑅𝑛 

shows an increasing trend with a rate of 2.4 Wm-2 yr-1 for the study period with maximum value 

in 2015/16 followed by 2013/14, and the minimum value was received in 2014/15 (Figure 4.13).  

Our findings suggest that the observation period has two consecutive years in which one attain 

the highest and the other received the lowest value. By combining 𝑇𝑎, α, and 𝑅𝑛 for the period 

2015/16, we can conclude that due to an increase in 𝑇𝑎 (–9.1 °C) it affects the α (0.49) and causes 

an adverse effect on 𝑅𝑛 (108.0 W m-2). This indicates that this region is highly driven by 

temperature variation and radiation fluxes. Several authors explained similar observations 

(Meena et al. 2015; Shafiq et al. 2016; Wani et al. 2021).  



ANALYSING THE STATUS AND FUTURE CHANGES OF THE CRYOSPHERE AND ITS 

RELATION WITH CLIMATE CHANGE FOR THE HIMALAYAN REGION 

Page 92 of 254 

 

Figure 4.12. Daily mean variation of net radiation of the given hydrological year. 
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4.6.2. TURBULENT HEAT FLUXES 

The turbulent heat fluxes (𝐻𝑠  and 𝐻𝑙 ) were measured from hourly to monthly and then yearly 

scales (Figure 4.13). Our finding illustrates that the mean monthly distribution of heat fluxes 

follows an opposite pattern; however, a higher value attains during May–November.  

 

Figure 4.13. Mean monthly and inter-annual distribution of 𝑹𝒏, 𝑯𝒍, 𝑯𝒔 and 𝑭𝒔 over the study 

site for the period 2012–2017. 

 

Figure 4.14. The inter-annual variation of melt, sublimation/re-sublimation, SMB, WMB, and 

overall annual mass balance of the study site during 2012-2017. 

The maximum value of 𝐻𝑠  was observed in August, and the minimum was attained in January. 

In contrast, the 𝐻𝑙  was highest in January, and the lowest value was observed in July for the 

entire observational period. The estimated 𝐻𝑠  and 𝐻𝑙  patterns were matched with the 

observations of  𝑇𝑎  and u of the study site. Our finding revealed that the 𝑇𝑎  was higher in July 
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followed by August, and even u was lower during these months. And, the obtained monthly 

pattern of 𝐻𝑠  and 𝐻𝑙 were well matched with the observation of many authors carried out over 

the Himalayan region (Amatya et al. 2015; Acharya and Kayastha 2018; Patel et al. 2021a). Other 

than this, the yearly analysis suggests that the 𝐻𝑙  shows a declining linear trend with a rate of –

0.1 W m-2 yr-1, while 𝐻𝑠  indicates no change over the study period. This means the turbulent heat 

flux was not significantly changed as compared to radiation components. The value of 𝐻𝑙  was 

negative or nearly zero throughout the temporal analysis. This means the study site was mainly 

influenced by the process of sublimation rather than re-sublimation. Wani et al. (2021) have also 

highlighted a similar observation over the South-Pullu region, Ladakh. 

4.6.3. ACCUMULATED WINTER PRECIPITATION 

The continuous monitoring of precipitation at this higher elevation is difficult; therefore, the 

accumulated snow water equivalent-based measurement was performed in May every year from 

2012–2017. In the snow water equivalent measurement, the winter snow accumulation was 

measured through the stake measurement. It was multiplied with snowpack density estimated by 

digging a snow pit for snow density measurement close to the AWS site. The estimated winter 

precipitation was minimum (589 mm w.e.) in 2013/14 and maximum (980 mm w.e.) in 2016/17 

with a mean value of 734 mm w.e. Our findings also indicated that the winter precipitation shows 

an increasing trend at the rate of 98.2 mm w.e. yr-1. However, the mean winter precipitation 

recorded at Leh station was 47.5 mm w.e. (Thayyen et al., 2020). This indicates that the steep 

precipitation gradient may exist between the valley bottom and mountain ridge, which play a 

critical role in the region's hydrological and cryospheric system response. Even though this 

region is devoid of significant monsoon incursions, occasional high-intensity rainfall events in 

summer were reported by Thayyen et al. (2013). However, there was less evidence suggesting 

that such extreme events impacted the AWS site at 5600 m a.s.l. High precipitation gradient 

between these two closely placed valley bottom station and overlooking ridge station at 5600 m 

a.s.l. suggest that the mountain slope mainly controls the cooler temperature along the mountain 

ridge. It plays a significant role in assessing the precipitation amount at the higher altitude of the 

cold-arid region. 

4.6.4. NET ENERGY  

By the summation of radiations and energy fluxes over the study site, as result, the obtained total 

surface melt (𝐹𝑠) was used to quantify the SEB from 2012 to 2017 (Figure 4.14). Only positive 

melt heat flux was considered, which mainly occurred in the summer period with the prevailing 
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melting condition all the time. The average 𝐹𝑠 was 209.7 W m-2 with a maximum (358.8 W m-2) 

in 2015/16, and a minimum (85.1 W m-2) was observed in 2014/15 (Figure 4.14). In the summer 

season, the mean value of 𝑅𝑛, 𝐻𝑠 and 𝐻𝑙 were 43.7, 29.7 and –34.8 W m-2, respectively, which 

indicate that the 𝑅𝑛 and 𝐻𝑠 were the main contributor to the total energy available for melt.  

 

Figure 1.15. Mean diurnal variation of climatic and meteorological variables at 5600 m a.s.l 

elevation for the period 2012–2017. 

The contribution of 𝑅𝑛 was higher as compared to other fluxes for the study site. A similar 

observation was illustrated by many authors (Aizen et al. 2002; Zhang et al. 2013; Sun et al. 

2014; Acharya and Kayastha 2018; Soheb et al. 2018). However, the total surface melt and 

contribution of each variable were changing during the winter season, as the region was 
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experiencing a low temperature, which resulted in a negative value. The positive melt flux was 

converted into melt (mm w.e.), indicating that the average melt rate for the observational period 

was 11.1 mm w.e. d−1.  

4.6.5. SUBLIMATION/RE-SUBLIMATION 

The sublimation/re-sublimation of the study site was calculated using the daily computed 𝐻𝑙 . 

The positive value of 𝐻𝑙  resulted in the re-sublimation process, while sublimation occurred when 

the 𝐻𝑙  was negative. The sublimation process occurred throughout the year, with a higher value 

observed in summer and a lower was received in the winter. In contrast, the re-sublimation 

process only occurs in the winter season. This observation shows that the region was highly 

exposed to radiation and caused a significant loss on the surface (Wani et al. 2021).  

During the observational period, the mean surface mass loss was 162.2 mm w.e. through 

sublimation, while a negligible amount of mass gain (1.3 mm w.e.) was observed through re-

sublimation. Both sublimation and re-sublimation were found maximum in 2015/16, while 

2013/14 and 2014/15 were experienced the minimum sublimation and re-sublimation, 

respectively (Figure 4.14). The linear trend of sublimation and re-sublimation were increasing 

with a rate of 3.32 mm w.e. yr−1 and 0.08 mm w.e. yr−1, respectively. This indicates that both 

the processes witnessed an increasing trend for the selected period; however, the rate of re-

sublimation was relatively less increasing than sublimation, which means the glacier loses its 

mass at a higher rate than mass gain.  

4.6.6. DIURNAL VARIABILITY  

The mean diurnal variation (half-hourly values) of 𝑇𝑎 , RH, u, α, SWI, SWO, and 𝑅𝑛  were 

quantified for the study period, indicating that the distribution of 𝑇𝑎 , SWI, SWO, α, and 𝑅𝑛  

follow a similar pattern (Figure 4.15). Diurnal temperature variation shows that maximum 

temperature was often observed around 14:00 hour, and the minimum was around 06:00 hour. 

Results demonstrate that all the radiations intensity increases with the increase in daylight hours, 

and it reaches a maximum at noon (12:00 hour) then starts decreasing till 19:00 hour. It was also 

noted that the radiation was negative or nearly zero between 19:00 hour and 06:00 hour.  This 

occurred due to the Earth’s rotation, resulting in a change in solar angle with daylight hours. 

These results were agreed with Al-Hilphy et al. (2014). 
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Figure 4.16. Comparison of meteorological, radiation, and energy fluxes components for the 

two extreme periods, i.e., 2014/15 (minimum mass loss) and 2015/16 (maximum mass loss) 

during the observational period.  

 

Figure 4.17. Validation of SEB computed ablation and stake no. PCA4 measured surface 

ablation. 
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During diurnal analysis, 𝑇𝑎  and all radiative fluxes were positive and follow a similar trend; 

however, radiation attains its peak at noon, two hours before the 𝑇𝑎 . This finding was conceded 

with Azam et al. (2014). The daily variation of SWI, SWO, α, and 𝑅𝑛 were also related with the 

change in cloud cover amount and their formation. A similar observation was illustrated by many 

authors (Cawkwell and Bamber 2002; Qian et al. 2007). The RH of the study site shows an almost 

consistent pattern throughout the day, which was similar to Soheb et al. (2017). On the other 

hand, u was maximum in the afternoon time (16:00 hour), and then it decreased while moving 

forward. The higher u in the afternoon is a common phenomenon for the valley region, as 

illustrated by other authors (Klok et al. 2005; Schaefer et al. 2020). As a consequence of an 

increasing u the 𝑇𝑎  of the region was deficit during the mid-afternoon.  

4.6.7. MASS BALANCE 

The year-wise mass balance was measured by adding the summer mass balance (SMB) and 

winter mass balance (WMB) of the region (Figure 4.14). Our result reveals that the selected 

glacier was losing its mass for the entire observational period except for the year 2014/15, which 

experienced a slightly balanced condition (–0.03 m w.e.). This may have occurred because this 

year has lower temperatures and higher precipitation as compared to other years. The region 

experienced a higher mass loss in 2015/16 (–1.83 m w.e.) followed by 2012/13 (–1.21 m w.e.), 

while the loss was comparatively less (–0.12 m w.e.) during 2016/17. This highest mass loss may 

have occurred due to higher annual temperatures. Besides, this region receives a higher amount 

of precipitation during winter but is not able to compensate for the melting caused during the 

summer season. Our finding was well-matched with the observation highlighted by Soheb et al. 

(2020) for the Stok glacier. Similarly, the year 2013/14 received comparatively lower winter 

precipitation (588 mm w.e.) and relatively lower summer temperature, which may change the α 

and reduces the excessive melting; therefore, the study site witnessed moderate mass loss. 

Overall, the obtained mass balance result concludes that the precipitation occurred during the 

winter season and temperature variation in the summer season were the main contributor that 

influences the glacier surface and regime of the mass loss/gain for the observational period. 

4.6.8. COMPARISON BETWEEN 2014/15 AND 2015/16 

The maximum (2015/16) and minimum (2014/15) melting years were considered to quantify the 

driving factors that cause the higher/lower glacier melting over a certain period of time (Figure 

4.16). Results demonstrate that the RH and specific humidity almost follow a similar pattern in 

both the year while 𝑇𝑎 and 𝑇𝑠 experienced a higher value in 2015/16 relative to 2014/15. The 
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monthly distribution of RH suggests a higher value in 2014/15 than in 2015/16. Apart, it was 

also observed that the 𝑇𝑠 was consistently zero with higher specific humidity in the summer 

season for the period 2015/16. 

Our findings also indicate that in 2015/16, the Phuche glacier witnessed positive or zero 

temperatures (𝑇𝑎 and 𝑇𝑠) for a longer period (June to September) than 2014/15 (3 months, i.e., 

July to September). On the other hand, the 𝑅𝑛 and turbulent heat fluxes (𝐻𝑠  and 𝐻𝑙 ) were higher 

in 2015/16 in comparison to 2014/15 by a mean difference of 42.17 W m-2, 9.0 Wm-2, and –1.72 

Wm-2, respectively. Our findings illustrate that in 2015/16, the melting period was large, starting 

from May to the end of September and attaining maximum value during July.  

The maximum change in these two consecutive years was mainly occurred in 𝑅𝑛 component due 

to a change in α. This variation in α was predominately driven by the change in temperature. The 

increase in 𝑅𝑛 further contribute to the variation of total surface energy available for melt (𝐹𝑠). 

The monthly variation of 𝐹𝑠 was nearly similar with the 𝑅𝑛 while the loss caused by sublimation 

was almost consistent in both the year. Overall, the comparison of these two extreme years 

suggests that the maximum melting in 2015/16 was mainly dominated by the change in α cause 

due to the higher positive temperature for a longer period. 

4.6.9. VALIDATION 

The observed glacier melting from the SEB components was validated with the total melting 

measured on stake PCA4. This stake was mounted on the glacier surface, which is near the AWS 

location. The first observation of snow stake starts from 30 May 2017 to 15 September 2017 with 

an interval of 10-15 days. Then, the density of accumulated snow was measured on 30th May 

2017, which varied from 0.46 to 0.62 g cm−3 with a mean value of 0.53 g cm−3. And, the total 

thickness was melted at a stake of about 219.0 cm during the observation period. The observed 

total melting at glacier surface using stake measurement was 1188.7 mm w.e. while the SEB 

measured total melting was 1437.5 mm w.e., showing a difference of 248.8 mm w.e. for the 

selected period. On the other hand, the sublimation was observed on the snow/ice surface that 

accounts for 168.1 mm w.e. loss (13.2% of the total melt), and the re-sublimation was observed 

about 0.9 mm w.e. Result indicates that the sublimation consumes higher latent heat compared 

to the melting of the glacier; therefore, this higher sublimation used to perverse the glacier surface 

from high melting. The computed ablation using the SEB model was validated with the stake 

PCA4 measured ablation, suggesting a higher correlation of 0.91 at p < 0.01 for the period (Figure 

4.17). This higher correlation between these two ablation rates indicates that the used model was 
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robustness and their results measured a reliable mass balance across the glacier. The computed 

ablation (SEB) was overestimated by 8.6% than the measured ablation (Stake-based). Similarly, 

many authors have reported an overestimation of SEB against the stake measured ablation (Hay 

and Fitzharris 1988; Acharya and Kayastha 2018; Liang et al. 2018). 

4.7. DISCUSSION 

4.7.1. COMPARISON BETWEEN THE MEASURED MASS BALANCE AND OTHER 

STUDIES OF THE SAME REGION 

The impact of climatic variables on the glacier mass balance has already been analyzed over the 

Himalayan glaciers (Mandal et al., 2015; Soheb et al., 2020; Sun et al., 2014) at regional and 

basinal scale; however, it is still not well understood for cold-arid region glacier (Leh - Ladakh 

range). A study carried out by Wani et al. (2021) suggested that the temperature and delay in 

snow occurrence as well as elongated snow cover period in the upper Ganglass catchment, 

Ladakh are the influential drivers that controlled the SEB of the region. Therefore, we have 

addressed this topic by analyzing the surface melting through the AWS collected meteorological 

variables on the Phuche glacier (Ladakh range), and field monitored snow depth variation using 

the SEB model in detail. On the basis of data availability, an enlarged length of the study period 

(from 2012 to 2017) was considered to compare the computed surface melting.  

By comparing both the results, our finding added a value point in the previous study that the 

surface melting of this region was related to the summer temperature and changing α. This 

variation in the analysis may occur because we have taken the AWS data of the glacier area; 

therefore, it is more efficient to explain the condition of glaciers located in the cold and arid 

region. Apart from this, a study performed at the Stok glacier lies in the same region (Ladakh) 

by Soheb et al. (2020) based on the traditional mass balance approach indicated that the glacier 

witnessed a mass loss for the whole study period from 2014–2019 except in 2018/19.  They have 

also witnessed that the year 2015/16 experience higher mass loss as compared to other years. 

This observation was well-matched with our findings. It indicates that somehow in 2015/16, any 

critical variation in a climatic variable may result in higher mass loss during the period. Allen et 

al. (2016) have also indicated that 2016 was the 37th consecutive year of alpine glacier retreat 

across the world based on preliminary data.  
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4.7.2. COMPARISON OF SEB COMPONENTS WITH OTHER GLACIERS IN THE 

HIMALAYAN REGION 

This section compared the observed SEB components and their mass balance with other 

previously published literature on the glacier mass balance of the Himalayan region. As per the 

previous studies (Zhang et al. 2013; Azam et al. 2014; Acharya and Kayastha 2018; Patel et al. 

2021a), the 𝑅𝑛 shows the highest contribution in 𝐹𝑠 which was mainly controlled by the α and 

terrain properties. The present result also illustrates that the 𝑅𝑛 and 𝐻𝑠 were the main contributor 

in the total energy in the 𝐹𝑠, whereas the 𝐻𝑙 was the greatest energy loss which produces a loss 

in double through latent heat and by process of sublimation. A similar contribution of 𝐻𝑙 was 

revealed by Mölg and Hardy (2004). Numerous authors have also highlighted that the variation 

of 𝑅𝑛 was highly dominant by the SWN under the clear sky condition during the summer season 

(Kayastha et al. 1999; Acharya and Kayastha 2018). Our findings also suggested that the obtained 

SWN shows an inverse relationship with α.  

Over the study area, the precipitation during the summer season often occurs in liquid form; 

therefore, the α value becomes constant or slightly reduced over the time span. However, when 

the precipitation occurred in solid during the winter season, then the α abruptly changed and 

control the SWN for melting. Several authors have also experienced similar patterns over the 

high mountain glaciers (Klok and Oerlemans 2002; Paul and Kotlarski 2010). Our results also 

included that the region experienced negative 𝐻𝑙 throughout the year, further exaggerated the 

amount of sublimation over the glacier surface. This observation was previously highlighted by 

Sun et al. (2014) over the Laohugou glacier No.12, western Qilsian mountains. They have 

indicated that the 𝐻𝑙 was negative in the entire summer season (June – September) while slightly 

positive value exist two days of July (2 and 3) for the year 2011. Similarly, Aizen et al. (2002) 

and Liu et al. (2010) indicate that the 𝐻𝑙 was found negative during their observational period for 

Xixibangma Glacier, and Keqicar Glacier located in the South-central Tibetan Plateau and 

Southwest of the Tianshan, respectively. Our result also concluded that the region was 

predominately influenced by sublimation rather than the re-sublimation process. Similarly, 

numerous authors have experienced that the High-Mountain Asia glaciers mainly dominate by 

the process of sublimation (Aizen et al. 2002; Zhang et al. 2013; Sun et al. 2014). 
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4.7.3. ASSESSING THE IMPLICATION OF MASS BALANCE ON THE SOCIO-

ECONOMIC DIMENTION 

By gathering all the information related to the mass balance of this catchment and even in the 

Himalayan region, we can conclude that the glaciers were losing their mass at a significant rate, 

which varies from location to location. In the broader concept, the study region comes under the 

Indus basin, predominately driven by summer snow and glacier melt. With this higher mass loss 

in the glaciers of the Indus basin, the streamflow was mainly influenced, which further generate 

the probability of an extreme event occurs if any abrupt changes may happen in the precipitation. 

Many studies were carried out that indicate the higher melting of the glacier can possibly be a 

reason for the occurrence of extreme events (Bhambri et al. 2018; Sattar et al. 2019). On the other 

hand, in the long-term aspect, the changing pattern of mass balance over the Himalayan glacier 

is able to create a water stress-like condition in the near future. This water stress largely impacted 

the livelihood of upstream and downstream population, tourism of mountainous region as well 

as the apple farming. Many reports and articles have previously dragged the attention of the 

research community worldwide over the mass balance of Himalayan glaciers and their 

implication on billions of population (Bajracharya and Shrestha 2011; Mukherji et al. 2015; 

Shrestha et al. 2015). Therefore, a necessary preventative measure will be designed by the 

decision-maker to sustain, restore, and balance the ecosystem. 

4.8. CONCLUSIONS 

In the cold-arid region of the Ladakh range, a first-ever longest meteorological dataset was 

recorded at 5600 m a.s.l. from 2012 to 2017. The present study aimed to provide an insight into 

the SEB components and their computed mass balance. Windy weather with low 𝑇𝑎 and RH were 

found in the winter period while a warm 𝑇𝑎 and higher RH with slightly lower u were noticed 

during the summer season (from June to September). However, the annual 𝑇𝑎 and u show an 

increasing linear trend with a declining RH over the study period.  

An energy balance model relay on the physical condition of the region was applied in order to 

comprehend the melting processes in the Phuche glacier based on their forcing variables (climatic 

and energy fluxes).  The SWN was higher in summer relative to the winter season, and the annual 

distribution of SWN was minimum in 2014/15 (98.6 W m-2) while maximum in 2015/16 (153.9 

W m-2) with an average value of 122.2 W m-2. Similarly, the highest value of 𝑅𝑛 was observed 

in 2015/16 followed by 2013/14 while lowest in 2014/15. On the other hand, the snow depth 

estimated winter precipitation was minimum (589 mm w.e.) in 2013/14 and maximum (980 mm 
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w.e.) in 2016/17 with a mean value of 734 mm w.e. Our results conclude that the SWN, 𝑅𝑛 and 

sublimation/re-sublimation shows an increasing trend with varying rates while α and 𝐻𝑙 indicate 

a declining trend, and no trend was observed in 𝐻𝑠. In the summer season, 𝑅𝑛 and 𝐻𝑠 were the 

main contributor in the total energy available for melt (𝐹𝑠). 

Our findings suggest that the region witnessed a higher loss in 2015/16 (–1.8 m w.e.) followed 

by 2012/13 (–1.2 m w.e.), while the loss was comparatively less (–0.1 m w.e.) during 2016/17. 

Among five consecutive years of observation, this study highlights the importance of summer 

temperature and winter season precipitation on glacier mass balance. Winter precipitation plays 

an important role in maintaining the α and compensating for the summer melting. The computed 

SEB ablation was validated with stake measured total melting, indicating a correlation of 0.91 at 

p < 0.01 between them.  

Further, a comparison of estimated SEB with other glaciers of the same catchment and 

Himalayan region was carried out, suggesting that the SWN is the major energy source that 

controlled the surface melt. Our results indicated that the region was predominately influenced 

by sublimation than the re-sublimation process, which was well-matched with the other 

observations carried out over the High Mountain Asia. The comparison and validation of mass 

balance suggest that the obtained results are reliable as well as able to predict the future water 

supply and their management. In the future, a more detailed investigation of glacier mass loss 

and its implication on socio-economic aspects is needed. Also, a necessary preventative measure 

and appropriate law will be designed by the decision-maker to sustain and restore the ecosystem. 
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5.1. INTRODUCTION 

The Karakoram and Himalayan (KH) region is an essential freshwater reservoir stored in the 

form of snow and glaciers (Frey et al. 2014; Azam et al. 2018). The meltwater of Himalayan 

glaciers provides water for millions of people for their livelihood and agriculture purposes 

through major and sub-major rivers (Immerzeel and Bierkens 2012). Therefore, the changing 

pattern of glaciers not only influences the socio-economic aspect but also affect the demographic 

growth and create mismanagement in the ecosystem. Most KH glaciers have witnessed mass 

wasting and higher retreat in the past several decades (Bolch et al. 2012b; Kääb et al. 2012; 

Gardelle et al. 2013; Patel et al. 2021a). This change in glacier mass is mainly attributed by the 

climate fluctuation; consequently, the river runoff changes and further contributes to global sea-

level rise (Richardson and Reynolds 2000; Radić and Hock 2011; Bolch et al. 2012b). In contrast, 

recent studies on Karakoram glaciers indicate a stable or advancing condition in the past few 

years (Bhambri et al. 2019; Farinotti et al. 2020b). Based on the importance of Himalayan 

glaciers and their varying pattern of Mass Balance (MB),  a reliable estimation of glacier MB at 

the local scale is required to understand the water resources response with short-and long-term 

climate fluctuation.  

The continuous monitoring of MB in Himalayan glaciers through in situ observation was rare 

(Soheb et al. 2020). However, the data collection and glacier change detection using ground 

observations have increased in recent years over the Himalayan region (Cogley 2011; Mandal et 

al. 2020). Especially in the Western Himalaya (WH), many glaciers were explored for a short-

and long-term glacier characteristics estimation through the glaciological method (Azam et al. 

2016; Singh et al. 2018c; Pratap et al. 2019; Mandal et al. 2020; Patel et al. 2021c). However, 

glaciers are still not well studied in the Ladakh range in terms of glaciological and meteorological 

observations, limiting scientific research at the glaciological front. In addition, only a few studies 

were available on the Rulung (Shrivastava et al. 1999) and Stok glaciers (Soheb et al. 2020) of 

the cold-arid region.  
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Based on these knowledge gaps over the region, we have selected two different glaciers of the 

cold-arid region for MB estimation to understand their response to climate change. This region 

consists of a glacier with a smaller surface area and receives less precipitation than other regions. 

These small glaciers are vital in maintaining the agricultural activities and socio-economic 

development of the region (Nüsser et al. 2012). Moreover, in the low precipitation year, the 

meltwater from snow and glaciers becomes a significant source of water for nearby areas 

(Thayyen and Gergan 2010). 

5.2. RESEARCH QUESTIONS 

 Why is the study of cold-arid region glaciers important? How is the glacier changed at 

different temporal scales? Is any significant change in glacier mass balance identified for the 

selected region? What are the distribution of glacier mass balance and their relation with 

climate variation? 

 What are the characteristics of the surface mass balance of glaciers in the cold-arid 

region? How are the glacier physical and atmospheric processes controlling the mass 

balance? How does the locale scale glacier mass balance vary?  

 Are traditional glacier mass balance able to simulate the locale scale glacier mass 

balance evolution? What is the significant change in glacier mass balance at different time 

scales? Is the glacier of the cold-arid region losing its mass for the past period? What is the 

possible implication of negative glacier mass balance on the region?  

5.3. OBJECTIVE 

 Quantification of glacier mass balance using the traditional technique at different temporal 

scales over the glaciers of the cold-arid region 

 Assessing the glacier area changes, seasonal and annual MB, Accumulation Area Ratio 

(AAR), and shift in Equilibrium Line Altitude (ELA) with respect to time  

 Analyzing the contributing factor that are responsible for contrasting  glacier mass balance at 

same climatic zone 

5.4. STUDY AREA 

The Phuche and Khardung glaciers are located in the Ladakh range of the trans-Himalayan region 

(Figure 5.1). The Ladakh range is sandwiched between the Himalayan and Karakoram ranges 
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with high altitude glaciated region of India. It consists of almost 5000 glaciers, covering an area 

of 3187 km2 and a volume of 816 km3 (Koul et al. 2016). However, the majority of the glaciers 

(~79%) of this region have a relatively smaller surface area (< 0.75 km2), and only 4% of glaciers 

are greater than 2 km2. Due to the smaller glacier area and scarce precipitation, we have selected 

these two glaciers to understand the direct response to climate fluctuation. The small size glaciers 

are a good indicator of climate change (Koul et al. 2016). 

 

Figure 5.1. (a) Location map of the cold arid region with important locations are indicated 

over the Shuttle Radar Topography Mission (SRTM) void filled 90-m Digital Elevation Model 

(DEM) (https://earthexplorer.usgs.gov/), (b) Map of Phuche and Khardung glaciers with AWS 

location overlay on Landsat-8 composite image of (20 September 2017 with path 147 and row 

036), and (c-d) indicate the location of ablation/accumulation stakes in each elevation band of 

the glaciers. 

The Phuche and Khardung are cirque types with 1.3 km and 1.2 km long, covering an area of 

0.62 km2 and 0.56 km2, respectively. These glaciers lie at 34° 17’ 4.5” N and 77° 33’ 48.12”E. 

The Phuche glacier is extended from 5400 to 5745 m a.s.l. while the Khardung glacier from 5320 

to 5580 m a.s.l. with similar Northeast (NE) orientation. The headwater of the Phuche glacier 
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emerges in the Leh nallah, whereas the headwater of the Khardung glacier falls in the Shyok river 

basin. The meltwater of the Phuche glacier is the primary source of water for Leh city and the 

livelihood of nearby villages. To access this glacier, the south Pullu is the base camp around 25 

km from Leh town on route to Khardug-La. The Phuche glacier is accessed by a trek of around 

7 km through a gently sloped de-glaciated valley, while the Khardung glacier is accessed from 

the Nubra side after Khardung-La. Moreover, the nearest airport from the selected glacier is at 

Leh (30 km), and most of the assistance, including medical assistance, can be accessed by Border 

Road Organization (BRO)/Army Transport Control Post (TCP) at South Pullu.  

5.5. DATA AND METHODS  

5.5.1. DATA COLLECTION AND PROCESSING 

The annual and seasonal (winter (October to April) and summer (May to September)) MB of the 

Phuche and Khardung glaciers were estimated for three hydrological years (2014–2017) using 

the glaciological method. For this point-scale analysis, the stakes were emplaced in a vertical 

hole drilled up to 1-2 meters into the glacier surface using the steam drill machine during the 

ablation period (generally the end of September). Then, the stake locations were monitored using 

Global Positioning System (GPS), and next year in ablation month, the same stake locations were 

measured. The snowpack thickness change (∆ℎ) was calculated by subtracting the stake height 

of the present year from the previous year. Then, the ∆ℎ was multiplied with density to calculate 

the annual MB (𝑏𝑎). If the ∆ℎ is positive, then the firn density (measured through snow-pit) was 

multiplied with ∆ℎ to calculate the 𝑏𝑎. On the other hand, when the ∆ℎ was negative, then we 

considered the density of ice (900 kg m-3), previously used by many authors (Azam et al. 2012; 

Wagnon et al. 2013; Soheb et al. 2020). The fresh snow and firn density were measured at the 

various sites on the glacier surface during the ablation period. Their mean value was used in the 

MB estimation for a particular year. During the study period, the mean snow and firn densities 

were 210 and 493 kg m−3 for the Phuche and 223 and 520 kg m−3 for the Khardung glaciers, 

respectively. 

For seasonal analysis, the winter MB (𝑏𝑤) was measured by estimating the snowpack thickness 

and their density during the winter season (generally the end of May). The winter snowpack 

thickness was estimated for each stake on the glacier surface, and the mean snowpack density 

was calculated by digging various snow-pits across the glacier. The mean snowpack density was 

measured about 437 kg m−3 for the Phuche and 427 kg m−3 for the Khardung glaciers. After 

estimating the 𝑏𝑤, the measured 𝑏𝑎 were used to obtain the summer MB (𝑏𝑠) at point-scale. The 
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progressive thinning of the seasonal snowpack and ice melt in each stake was monitored at an 

interval of 15–20 days during ablation season (May to September) over the Phuche and Khardung 

glaciers (Figure 5.2 and 5.3). The progressive melting of snowpack indicates that how 

accumulated snow melted during the ablation months (From May to September). If the winter 

snowpack is melted early during the ablation period, then the probability of higher mass loss. 

This early melting of snowpack exposed the glacial ice surface for a longer period, which 

contributed to the prolonging melting of the glacier (Ryan et al. 2019).  

And, this type of condition mainly occurred due to the less snowfall that occurred during the 

winter period. In this study, we have observed that the snowmelt end date in 2015, 2016, and 

2017 was approximately 01 September 2015, 15 July 2016, and 22 August 2017 for the Phuche 

and 20 August 2015, 14 July 2016, and 8 August 2017 for the Khardung glacier, respectively 

(Figure 5.2 and 5.3). Our analysis illustrates that, in the year 2016, the snowmelt end date was 

earlier for both the glaciers, which shows higher melting of ice during 2016 than other years.  

Figure 5.2. Progressive thinning of seasonal snowpack and ice melt in each stake from 2014 

to 2017 ablation season (May to September) for the Phuche glaciers.  
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For glacier-wide MB estimation, the elevation range of the selected glaciers were  divided into 

20 m intervals. The MB is estimated at each elevation zone by multiplying the mean MB of stakes 

lies in the particular elevation zone with their corresponding zone area. Then, the summation of 

measured MB in each elevation zone was then divided by the total glacier area to obtain the 

glacier-wide MB.  It can be expressed by Equation 5.1. 

𝐵𝑎 =  
∫ 𝑏𝑎 × 𝑑𝐴

𝐴
      Eq. 5.1 

Where 𝐵𝑎 is the glacier-wide MB balance in m w.e., 𝑏𝑎 is the mean specific MB in m w.e., 𝑑𝐴 

is the area of elevation zone in km2, and 𝐴 is the total area of the glacier in km2. 

 

Figure 5.3. Progressive thinning of seasonal snowpack and ice melt in each stake from 2014 

to 2017 ablation season (May to September) for the Phuche glaciers.  

Further, the year-wise ELA position was mapped by establishing the relationship between annual 

MB and elevation. When the mass balance value starts moving towards the positive, the mean 

elevation of a particular elevation zone was considered ELA of that year.  
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Figure 5.4. Field photographs of (a) Terminus of the Phuche glacier, (b) Location of AWS, 

(c) Terminus of the Khardung glacier, (d) Supraglacial stream in the Phuche glacier, and e) 

Measurement of fresh snow thickness and density during 9–15 September 2017.  

 

Figure 5.5. Schematic representation of annual positive (left) and negative (right) mass 

balance and insight processes on a glacier surface.  

The shift in ELA helps in understanding the glacier movement and their health for the study 

period. Even the position of ELA was used to quantify the AAR of a glacier by dividing the area 
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above ELA (accumulation area) with the total glacier area. Some of the field photographs of the 

Phuche and Khardung glaciers were taken during 9–15 September 2017, as shown in Figure 5.4. 

The pictorial representation of annual positive and negative MB through stake measurement is 

illustrated in Figure 5.5. Firstly, we understand the insight processes working on the glacier 

surface when the 𝑏𝑎 was positive. Initially, snow stakes were mounted into the glacier surface at 

the end of the ablation period, used as a reference year (𝑡0) with a reference height of 𝑧0. Then, 

in the winter season, the snow is accumulated, and it reaches till 𝑧𝑤 at 𝑡𝑤. The amount of snow 

gained over the glacier surface (ℎ𝑤) is measured by subtracting the 𝑧𝑜 from 𝑧𝑤, which is positive. 

The height change (∆ℎ𝑤) is multiplied with mean snow density (𝜌𝑤) measured through snowpits 

to calculate 𝑏𝑤. The 𝑏𝑤 illustrate the amount of snow water equivalent accumulated between 𝑡0 

and 𝑡𝑤. While, in the summer season, the snow surface is melted and the height of the stake 

reached at 𝑧𝑠 at 𝑡1. The difference between the stake height of the winter (∆ℎ𝑤) and the summer 

(∆ℎ𝑠) seasons provide the net height (∆ℎ𝑎) for the 𝑏𝑎. If the winter accumulation is higher with 

lower summer melting, then the 𝑏𝑎 was positive because the snow accumulation can able to 

compensate for the snow melting during the summer season for a particular year. On the other 

hand, if the summer melting was higher than the winter accumulation and not able to compensate 

for the mass loss caused in the summer season, then the 𝑏𝑎 becomes negative for the glacier.  

5.5.2. SATELLITE DATA 

We have acquired Landsat-8 Operational Land Imager (OLI) Collection 2 Level 2 products for 

the ablation month of the year (15 September 2015, 17 September 2016, and 20 September 2017) 

during the study period. This data is downloaded free of cost from the United States Geological 

Survey (USGS) EarthExplorer (https://earthexplorer.usgs.gov/). A detailed description of the 

product can be found in Data Format Control Book (DFCB) (Engebretson 2020). The cloud-free 

Land Surface Temperature (LST) band 10 product was utilized over the study region of path 147 

and row 36. The standard LST product is provided in Digital Number (DN) stored in a 16-bit 

unsigned integer format. It is converted into degree centigrade (°C) using the scaling factor 

provided by the USGS (https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-

science-products), given by Equation 5.2.  

LST (°C) =  (0.00341802 × LST_band10 +  149.0) − 273.15   Eq 5.1 

https://earthexplorer.usgs.gov/
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
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5.5.3. METEOROLOGICAL VARIABLES 

The meteorological variable, i.e., air temperature (𝑇𝑎) was obtained (2m  height from the surface) 

from the Automatic Weather Station (AWS) of data platform Cambell CR1000 installed at a high 

altitude (5600 m a.s.l.) of the Phuche glacier. The AWS was placed on the ridges of the Phuche 

glacier and equipped with various sensors, which recorded data on a half-hourly basis. However, 

we have considered the data acquired from Phuche AWS, as there was no AWS functional at the 

Khardung glacier, and both glaciers are close to each other with an aerial distance of ~2.5 km. A 

similar consideration of station data based on aerial distance was used by numerous authors 

(Azam et al., 2014; Soheb et al., 2020) in order to assess the changing pattern and their response 

to glacier MB change. The half-hourly interval data of the meteorological variables were 

converted into monthly and annually Positive Degree Day (PDD) and Freezing Degree Day 

(FDD) from 2014 to 2017.   

Figure 5.6. Point-wise annual glacier mass balance of the Phuche and Khardung glaciers for 

the period 2014–2017. 
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5.6. RESULTS 

5.6.1 POINT-WISE GLACIER MASS BALANCE 

The point-wise annual MB (𝑏𝑎) measurement was mapped at different glacier altitudes for the 

observational period. The glacier MB shows higher melting at the lower altitude for the Phuche 

(< 5400 m a.s.l.) and Khardung (< 5320 m a.s.l.) glaciers. In contrast, the 𝑏𝑎 was nearly equal in 

the upper reaches, i.e., > 5500 m a.s.l. and > 5400 m a.s.l. for the Phuche and Khardung glacier, 

respectively. The mean 𝑏𝑎 for the Phuche glacier varied from –0.09 (2016/17) to –0.98 (2015/16) 

m w.e. with an average of –0.39 m w.e. (Table 5.1).  

However, the higher (–0.11 m w.e.) and lower (–1.40 m w.e.) MB was observed in 2016/17 and 

2015/16, respectively, with a mean value of –0.56 m w.e. for the Khardung glacier (Table 5.1). 

The relationship between 𝑏𝑎 and altitude shows a significant positive correlation (p < 0.01) for 

the entire study period over the selected glaciers (Figure 5.6). This means that the MB is 

increasing while moving from lower elevation to higher elevation. During the 2015/16 periods, 

all stakes show a negative MB for both the glaciers and a comparatively higher mass loss was 

found in the Khardung than the Phuche glacier. Also, the maximum mass loss was observed in 

the lower elevation range, i.e., 5300–5400 and 5280–5320 m a.s.l. for the Phuche and Khardung 

glaciers, respectively. The steep slope was observed in 2014/15 for the Phuche and 2015/16 for 

the Khardung glacier; however, both years show a positive and negative MB for the selected 

glaciers, respectively. This indicates that the steep slope may have been responsible for less 

variability in the glacier MB change. 

Annual vertical mass balance gradients (𝑑𝑏𝑎 𝑑𝑧⁄ ) were calculated in each hydrological year 

using all available stakes of the selected glaciers. The minimum 𝑑𝑏𝑎 𝑑𝑧⁄  was found in 2014/15 

(0.18 m w.e. (100 m)-1) for the Phuche (Table 5.1) and 2015/16 (0.26 m w.e. (100 m) -1) for the 

Khardung glacier (Table 5.1). However, the maximum 𝑑𝑏𝑎 𝑑𝑧⁄  was witnessed during 2016/17 in 

both the glaciers. The mean vertical MB for the Phuche and Khardung glaciers over the entire 

study period was found to be 0.31 and 0.30 m w.e. (100 m) -1, respectively.  

The understanding of vertical MB gradient is an essential factor for analyzing the climate setting 

of a glacier (Oerlemans 2001), which is controlled by the change in air temperature at a different 

elevation. The observed mean gradient was lower than the other glacier of the same ranges (Stok 

glacier (0.61 m w.e. (100 m) -1) (Soheb et al. 2020). A study over the Chhota Shigri glacier 

suggests a vertical mass balance gradient of 0.68 m w.e. (100 m)–1 (Mandal et al. 2020). Also, 



CHAPTER 5: ESTIMATION OF GLACIOLOGICAL BASED MASS BALANCE AND ITS 

RELATIONSHIP WITH CLIMATE DRIVERS IN PHUCHE AND KHARDUNG GLACIERS  

Page 115 of 254 

the vertical gradient of the Mera glacier, Nepal Himalayas was 0.46 m w.e. (100 m)-1 calculated 

by Sherpa et al. (2017), which is nearly equal to the Khardung and Phuche glaciers. On the other 

hand, many other Nepal Himalayan glaciers, i.e., Pokalde (1.16 m w.e. (100 m)-1), West Changri 

Nup (1.49 m w.e. (100 m)-1), Rikha Smba Dhaulagiri (1.48 m w.e. (100 m)-1) and Yala glacier 

(1.04 m w.e. (100 m)-1) were reported a higher vertical gradient (Stumm et al. 2020; Wagnon et 

al. 2021) than the Mera glacier (0.46 m w.e. (100 m)-1) and this studied glaciers. Similarly, the 

vertical gradient of the Patsio glacier was 0.47 m w.e. (100 m)-1 (Angchuk 2021), which is close 

to the studied glaciers as well as the Mera glacier. A lower vertical gradient at the Khardung and 

Phuche glaciers could be occurred due to continuous snow accumulation on the glacier surface 

during the summer season, which significantly influences the ablation (Sherpa et al. 2017).  

Table 5.2. Annual and seasonal point-scale and glacier-wide mass balance (m w.e.), dba/dz (m 

w.e. (100)-1), ELA (m a.s.l.), AAR (%) and density (kg m-3) for the Phuche and Khargung 

glaciers during 2014–2017. 

 Phuche glacier Khardung glacier 

 2014/15 2015/16 2016/17 Mean 2014/15 2015/16 2016/17 Mean 

ba (m w.e.) –0.09 –0.98 –0.09 –0.39 –0.17 –1.40 –0.11 –0.56 

bw (m w.e.) 0.66 0.67 0.97 0.77 0.72 0.72 0.85 0.76 

bs (m w.e.) –0.75 –1.65 –1.06 –1.16 –0.89 –2.12 –0.95 –1.32 

db/dz 0.18 0.36 0.38 0.31 0.28 0.26 0.36 0.30 

Ba (m w.e.) 0.15 –0.79 0.13 –0.17 –0.22 –1.46 –0.20 –0.63 

Bw (m w.e.) 0.67 0.67 1.03 0.79 0.71 0.68 0.77 0.72 

Bs (m w.e.) –0.52 –1.47 –0.90 –0.96 –0.93 –2.14 –0.97 –1.35 

ELA (m a.s.l.) 5470 No ELA 5490 – 5510 No ELA 5490 – 

AAR (%) 93.8 0.0 89.2 – 9.8 0.0 15.1 – 

 Mean density measurement ablation month (September) (in kg m-3) 

Fresh snow 200 100 330 210 200 200 270 223 

Firn 500 440 540 493 500 – 540 520 

Ice 900 900 900 900 900 900 900 900 

 Mean snowpack density during winter month (May) (in kg m-3) 

Snowpack 390 430 490 437 390 430 460 427 
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5.6.2. GLACIER-WIDE SEASONAL MASS BALANCE  

During the study period, the glacier-wide seasonal MB was measured over the Phuche and 

Khardung glaciers to analyze the MB distribution at the seasonal scale and their contribution to 

annual MB change. Results demonstrated that the glacier-wide winter MB (𝐵𝑤) of the Phuche 

glacier was almost similar (0.67 m w.e.) for 2014/15 and 2015/16 with a maximum value (1.03 

m w.e.) attained in 2016/17 (Table 5.1). While, in the Khardung glacier, the 𝐵𝑤 was minimum 

(0.68 m w.e.) in 2015/16, and the maximum value (0.77 m w.e.) was observed in 2016/17 (Table 

5.1). The mean 𝐵𝑤 of the Phuche and Khardung glaciers were 0.79 and 0.72 m w.e., respectively. 

It was noted that the winter precipitation over this range was comparatively lower than the other 

regions of the western Himalayas. Similarly, Soheb et al. (2020) have witnessed the mean winter 

MB was 0.71 m w.e. during 2011–2019 for the Stok glacier. On the other hand, the Chhota-Shigri 

glacier of the western Himalayas observed a mean winter MB of 1.11 m w.e. for the same 

observational period (2014–2017), demonstrated by Mandal et al. (2020). The glacier-wide 

summer MB 𝐵𝑠 of both the glacier attain a higher negative value in 2015/16, whereas it was 

lowered in 2014/15 for the observational period. The mean annual 𝐵𝑠 was –0.96 m w.e. for the 

Phuche and –1.35 m w.e. for the Khardung glacier from 2014 to 2017. On the other hand, 

Angchuk (2021) has revealed a mean summer MB of –1.49 m w.e. for the Patsio glacier, western 

Himalayas, during the same observational period. Similarly, Mandal et al. (2020) have 

demonstrated that the mean summer MB was –1.54 m w.e. for the Chhota-Shigri glacier of the 

western Himalayas during 2014–2017. Also, a study conducted by Soheb et al. (2020) over the 

same region glacier (Stok glacier) suggested that the average MB in the summer season was –

1.17 m w.e. between 2011 and 2019.  

The glacier-wide annual MB (𝐵𝑎) distribution was maximum in 2015/16 and nearly equal for the 

rest of the years (2014/15 and 2016/17) for both the glaciers. Our findings revealed that the winter 

accumulation in 2015/16 was less than other years, and the summer period mass loss attained 

higher value for both the glacier, which means the lower winter accumulation is not able to 

compensate for the amount of melting caused in the summer season. Apart, the summer mass 

loss in the Phuche glacier was higher in 2016/17 (–0.90 m w.e.) than in 2014/15 (–0.52 m w.e.), 

on the other hand, the 𝐵𝑎 of the same period was slightly higher in 2016/17 (–0.15 m w.e.) 

compared to 2014/15 (–0.13 m w.e.). This 𝐵𝑎 variation occurred due to the winter precipitation, 

which was higher in 2016/17, easily compensating for the summer mass loss and stabilizing the 

glacier condition. Therefore, we can conclude that the 𝐵𝑎 of both the glaciers were highly 
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dependent upon the winter accumulation and summer mass loss, which was mainly dominated 

by the change in temperature for a particular year.  

5.6.3. GLACIER-WIDE ANNUAL MASS BALANCE  

The 𝐵𝑎 is one of the ways to understand the changing pattern of a glacier with respect to time 

which provides insight into the glacier-climate interaction. Therefore, this study includes annual 

MB measurement using the traditional stakes and snow pits-based observations for the Phuche 

and Khardung glaciers during 2014–2017 (Figure 5.6). For measurement, the start and end of the 

season in every year were demarcated as the day when the MB was maximum (end of winter) 

and minimum (end of the summer) to quantify the winter and summer MB from the time series 

data (Figure 5.7).  

 

Figure 5.7. Seasonal, annual, and yearly cumulative mass balance of (a) Phuche glacier and 

(b) Khardung glacier for the period 2014/15–2016/17. 

The measured annual MB of the Phuche glacier was ranged from –0.79 to 0.15 m w.e. with a 

mean of –0.17 m w.e. for the whole observational period. A slightly positive or balanced 

condition of annual MB was observed for 2014/15 and 2016/17 (Table 5.1). A similar positive 

MB of 2014/15 was observed by Angchuk (2021) over the Patsio glacier, western Himalayas. In 

contrast, the yearly MB of the Khardung glacier was varied from –1.46 to –0.20 m w.e. with an 

average of –0.63 m w.e. (Table 5.1). However, a relatively less negative MB was found in 

2016/17 for the Khardung glacier. Angchuk (2021) has revealed a positive or stable MB was 

observed during 2016/17. Both glaciers witnessed high inter-annual variability with maximum 

mass loss in 2015/16, and the minimum was observed in 2016/17. A similar higher mass loss 

was illustrated by Soheb et al. (2020) over the Stok glacier using the glaciological method. Also, 

Angchuk (2021) has reported a higher negative MB in 2015/16 over the Patsio glacier, western 

Himalayas. Numerous authors have worked on the MB of the western Himalayan glaciers 

suggesting a higher mass loss during 2015/16 (Soheb et al. 2020; Mandal et al. 2020). The inter-
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annual mass variation of the Khardung glacier was relatively more mass loss (3.7 times) than the 

Phuche glacier.  

On the other hand, the Khardung glacier was experienced negative MB throughout the 

observational period whereas, in the Phuche glacier, only 2015/16 attained negative MB, and the 

other years (2014/15 and 2016/17) experienced positive at the glacier surface. A similar slightly 

positive MB of the Patsio glacier during 2014/15 was illustrated by Angchuk (2021). On the 

other hand, both the glaciers follow a declining pattern with a higher cumulative mass loss was 

observed in the Khardung (–1.88 m w.e. yr−1) relative to the Phuche glacier (–0.52 m w.e. yr−1) 

during the observational period (Figure 5.7).  

5.6.4. ELA AND AAR 

The annual MB were utilized to measure the year-wise ELA and AAR to understand the glacier 

response with climate variation in term of glacier areal changes (Figure 5.8). The yearly 

distribution of ELA suggests that in 2014/15, the ELA was shifted towards the accumulation and 

attained the maximum elevation in 2016/17(~5590 m a.s.l.) for the Phuche glacier. While the 

ELA was relatively less shifted in 2014/15 (5500 m a.s.l.) to 2016/17 (~5480 m a.s.l.) for the 

Khardung glacier. However, both the glaciers witnessed no ELA in 2015/16 because of the higher 

mass loss in each elevation zone. Soheb et al. (2020) have revealed that 2015/16 experienced a 

higher value of ELA, whereas it was lowest in 2014/15 over the Stok glacier, western Himalayas. 

Similarly, Angchuk (2021) has demonstrated that the ELA was maximum in 2012/13 (5366 m 

a.s.l.) followed by 2015/16 (5354 m a.s.l.) for the Patsio glacier from 2010 to 2017. 

The AAR measurement of both the glacier highlighted that the Phuche glacier witnessed a higher 

Accumulation zone (AAR > 50%) for the entire observational period except for 2015/16. While, 

in the Khardung glacier, the AAR was less than 20% for the whole observation period with zero 

AAR in 2015/16. Overall, a larger accumulation zone was demarcated in the Phuche glacier 

rather than the Khardung glacier. This suggests that the Khardung glacier experienced a higher 

variability in terms of MB, ELA, and AAR, which means this higher interannual variability in 

the glaciers may be attributed to the effect of climate variation and anthropogenic activities. A 

combined effect of climate change and anthropogenic activities was highlighted by Bhutiyani 

(2014) over the north-western Himalayas.  
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5.6.5. INFLUENCE OF TOPOGRAPHICAL PARAMETERS ON MASS BALANCE 

Figure 5.8. Elevation-wise glacier area distribution with its year-wise Equilibrium Line 

Altitude (ELA) and Accumulation Area Ratio (AAR) for the (a) Phuche and (b) Khardung 

glaciers during 2014/15–2016/17. 
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Figure 5.9. Elevation-wise glacier summer, winter, and annual mass balance variation in the 

Phuche and Khardung glaciers for the period 2014/15–2016/17. 

The MB was measured at 20 m a.s.l. altitude interval from 2014 to 2017 over both the glaciers. 

Results demonstrate that the average annual MB was initially negative in the snout, then started 

increasing while moving towards the higher elevation and experienced nearly zero MB at the 

elevation range of 5580–5600 m a.s.l. for the Phuche glacier (Figure 5.9). On the other hand, the 

Khardung glacier has witnessed a negative value in the terminus and attained the highest negative 

value at 5320–5340 m a.s.l. (Figure 5.8). Then, the mean annual MB starts following a similar 

increasing pattern till 5520–5540 m a.s.l. and attain an almost uniform pattern in the 

accumulation zone of the glaciers.  

Also, the mean annual MB distribution of the Khardung glacier shows a negative value in each 

elevation zone over the selected period. This throughout negative MB in the mean annual pattern 

may be occurred due to the exceptional mass loss in 2015/16. A similar higher melting of snow 

and glaciers in 2015/16 was illustrated by several authors (Randhawa et al. 2016; Blunden and 

Arndt 2017). This means the glacier experienced higher glacier mass loss which was not 

compensated with the winter accumulation; therefore, this glacier witnessed negative mass 

throughout the surface. A similar effect of summer MB on annual MB measurement was noticed 

by Soheb et al. (2020) over the Stok glacier, Ladakh range. 

In the Phuche glaciers, the mean annual distribution shows positive MB above 5580 m a.s.l. and 

if we remove the outlier year (2015/16), then the mean annual MB of the Khardung glacier start 

positive from 5480 onwards. It was noticed that in the Phuche glacier, the aspect above the 

mentioned elevation was mostly the south quadrant (South, Southeast, and Southwest), while the 

Khardung glacier was mainly dominated by the North quadrant aspect (North, Northeast, and 

Northwest). Therefore, it was observed that the higher mass loss in the Khardung may 

predominately be driven by the aspect, as the south quadrant responds in less glacier melting than 

in the North quadrant. Numerous researchers have previously explained the theory of aspect-

wise glacier melting (Das and Sharma 2019; Hugonnet et al. 2021; Wan et al. 2021).  

On the other hand, the coefficient of variation for both the glaciers was quantified at each 

elevation interval during the observation period. Our findings suggest that the coefficient of 

variation value was higher at 5580–5600 m a.s.l. for the Phuche glacier, while in the Khardung 

glacier, it attained in the upper reaches of the glacier (from 5540 to 5620 m a.s.l.). The obtained 

observation pattern was well-matched with the finding of McGrath et al. (2018). Which slightly 
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increases across the glaciers during the summer season. Our finding also illustrates that the lower 

elevation of the Phuche glacier experienced higher melting than the Khardung glacier for the 

summer season. While the winter season receives mass accumulation across each elevation with 

higher heterogeneity in Khardung relative to Phuche glacier.On the other hand, the coefficient of 

variation for both the glaciers was quantified at each elevation interval during the observation 

period. Our findings suggest that the coefficient of variation value was higher at 5580–5600 m 

a.s.l. for the Phuche glacier, while in the Khardung glacier, it attained in the upper reaches of the 

glacier (from 5540 to 5620 m a.s.l.). The obtained observation pattern was well-matched with 

the finding of McGrath et al. (2018). Which slightly increases across the glaciers during the 

summer season. Our finding also illustrates that the lower elevation of the Phuche glacier 

experienced higher melting than the Khardung glacier for the summer season. While the winter 

season receives mass accumulation across each elevation with higher heterogeneity in Khardung 

relative to Phuche glacier. 

5.7. DISCUSSION 

5.7.1. ESTABLISHING RELATIONSHIP BETWEEN MB AND DEGREE DAYS 

 

Figure 5.10. Month-wise Positive Degree Day (PDD) and Freezing Degree Day (FDD) over 

the Phuche glacier from 2014 to 2017. 

The inter-annual PDD and FDD were plotted monthly to quantify the temperature forcing on the 

surface melt for the selected study area. The PDD and FDD were measured over the Phuche 
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glacier during the study period (Figure 5.10). The region experienced PDD for six months (May–

October), with the maximum in July and August (JA). A similar PDD was observed by (Kayastha 

et al. 2003; Wiltshire 2014) over the Hindu Kush, Karakoram, and Himalayan regions. The 

combined PDD of JA varied from 157 to 225 °C with lower annual PDD in 2014/15 (176.7 °C) 

and higher in 2015/16 (375.2 °C). It was also noted that the slight increase in temperature might 

result in substantially higher PDDs and then potentially affect the melt of the region (Jury et al. 

2019). The higher PDD indicates that, the higher negative glacier MB was closely related to the 

PDD pattern over the selected region. The glacier melt is directly proportional to the PDDs, 

which means this higher mass loss during 2015/16 may be induced due to higher PDDs during 

the period. While lower PDDs in 2014/15 may be responsible for the positive mass balance of 

the Phuche glacier.  

On the other hand, the FDD was extended throughout the year, with the highest value in January, 

and the lowest was experienced in July. The maximum FDD was found in 2014/15 (–3860.9 °C), 

whereas the minimum value was observed during 2016/17 (–3546.5 °C) followed by 2015/16 (–

3578.1 °C). The value of FDD was closely related in 2015/16 and 2016/17; however, the MB 

was found positive in 2016/17 for the Phuche glaciers. The FDD and PDD result also illustrates 

that the year 2016/17 has a lower PDD and higher FDD value than 2015/16, which may be 

responsible for positive mass balance. Overall, the monthly and inter-annual variation of PDD 

and FDD was closely linked with the mass balance change during the observational period. 

Therefore, we can conclude that the changes in the Phuche glacier mass balance may be attributed 

by the change in temperature that causes a direct implication on freezing and melting of the 

glacier surface.  

5.7.2. OTHER FACTORS INFLUENCING THE MB 

The MB of the selected glaciers shows a contrasting pattern during the period except 2015/16. 

This contrasting behavior of MB may be attributed to the location of the glaciers, elevation 

variation, and human intervention. The geographical location of the Khardung glacier was close 

(distance from road) to Khardung-la road, which is the gateway of Shyok and Nubra valleys, and 

a large number of heightened vehicle activity has taken place in this region. An increase in the 

number of vehicles and tourists over the Khardung la pass may be responsible for the higher mass 

loss of the Khardung glacier than the Phuche glacier. However, these two glaciers were close to 

each other with an aerial distance of ~2.5 km; therefore, the climatic condition may be similar at 

both glaciers.  
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Figure 5.11. Spatial distribution of Land Surface Temperature (LST) acquired from Landsat-

8 OLI for (a) 15 September 2015 (b) 17 September 2016, and (c) 20 September 2017 over the 

study region. 

 

Figure 5.12. Annual foreign and home tourists of the Leh city, collected by the government of 

Ladakh from 1985 to 2017 (Source: https://leh.nic.in/tourism/). 

To better understand human interaction and vehicle movement, the LST of Landsat 8-OLI were 

acquired to quantify the spatial temperature variation over the road (a buffer of 20m drawn) from 

https://leh.nic.in/tourism/
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South Pullu to the snout of the Khardung glacier (Figure 5.11). Result demonstrates that the mean 

LST value across the road buffer was increasing from 2014/15 (17.3 °C) to 2016/17 (18.7 °C). 

Results also demonstrate that the LST was slightly lower in 2015/16 (18.4 °C) than 2016/17. This 

means the LST of the road buffer was relatively higher during 2015/16, which may become a 

contributing variable for glacier MB change. And, this LST variation might occur due to 

increased transport movement or the change in climatic variables. A similar pattern of glacier 

mass loss in the high transport region was demonstrated by Dhungel et al. (2018).  

The higher value of LST over the road buffer may be attributed to the presence of a large number 

of vehicles which causes emission and is then responsible for higher glacier melting. A similar 

higher glacier melting impact by anthropogenic activities was illustrated by Marzeion et al. 

(2014). Apart from this, the number of tourists in Ladakh was increased over the past few 

decades, monitored by the Government of Ladakh. The observation of total tourists (Foreign+ 

home) indicates that the number of tourists started increasing from 2003 (above 30,000) and 

attained maximum value in 2017 during 1985–2017 (Figure 5.12). The pattern suggests that the 

number of foreign tourists consistently increased over the observational period while home 

tourists suddenly increased from 2010 onwards. Therefore, the total number of tourists shows an 

increasing trend from 1985 to 2017. Overall, the surface temperature variation and increase in 

tourism indicate that this might be another reason for the glacier mass loss after winter 

precipitation and rise in summer temperature. A necessary preventative measure is needed to 

develop for regulating the vehicle movement in the Khardung-la pass in order to maintain the 

ecosystem and environmental balance. 

In addition, the elevation ranges of the Khardung glacier were lower than the Phuche glacier. 

Also, the Khardung glacier mainly lies in the North quadrant aspect (North, Northeast, and 

Northwest), whereas the Phuche glacier comes under the south quadrant. It was noticed that the 

North quadrant-based aspect glacier melted faster than the south quadrant glacier (Wan et al. 

2021). Similarly, numerous researchers have previously explained the theory of aspect-wise 

glacier melting (Das and Sharma, 2019; Hugonnet et al., 2021).  

5.7.3. COMPARISON OF MB WITH OTHER STUDIES 

In this section, we have tried to compare the glacier MB pattern of the selected glaciers with 

other glaciers lies in the same catchment or the similar Himalayan zone (western Himalayas). 

The MB of the western Himalayan glacier was well explored with various MB estimation 

methods, including traditional, geodetic, and remote sensing-based approaches. In the Ladakh 
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range, two major studies based on glaciological methods were conducted by Soheb et al. (2020) 

and Shrivastava et al. (1999) over the Stok and Rulung glaciers during 1978–2019 and 1980/81 

respectively. Authors have found that the glaciers were experiencing mass loss except in 2018/19; 

in that year, the MB witnessed a balance condition for the Stok glacier. However, they have also 

revealed a higher glacier mass loss in 2015/16 which was consistent with our observation for the 

Phuche and Khardung glaciers.  

On the other hand, many other glaciers have experienced a similar mass loss during 2015/16 

using the traditional MB method in the vicinity of western Himalayas (Mandal et al. 2016; 

Angchuk 2021). Other than the traditional method, numerous other glacier MB methods also 

witnessed similar glacier loss for the period 2015/16 (Tawde et al. 2017; Kumar et al. 2018, 2019; 

Negi et al. 2020; Patel et al. 2021a). This higher mass loss during 2015/16 was mainly attributed 

to the summer air temperature and winter precipitation. Many authors have demonstrated that the 

year 2015/16 received less snowfall and experienced less snow cover area for the period 

(Randhawa et al. 2016; Dharpure et al. 2020b). Also, Blunden and Arndt (2017) have noticed 

that 2016 was the 37th consecutive year of alpine glacier retreat across the world based on 

preliminary data.  

Therefore, it was clear that the selected glaciers of the cold-arid region have witnessed a similar 

influence of climatic drivers on glacier MB, which means that the rise in temperature can 

influence the glacier MB in the future. For this, a detailed investigation of small/large glacier MB 

is required to understand the changing pattern and their influence on river runoff. Also, a 

necessary preventative measure will be designed and applied by the stakeholder to manage the 

water resource and reduce the water stress in the near future. 

5.8. CONCLUSIONS 

In the cold-arid region of the Ladakh range, this is the first study to analyze glacier MB using the 

glaciological method over the Phuche and Khardung glaciers for three hydrological years (2014 

to 2017). The present study aimed to provide an insight into the stake-based glacier MB 

estimation and also analyze the influence of climate drivers on glacier MB. Results demonstrate 

that the annual MB of the Phuche glacier was ranged from –0.79 (2015/16) to 0.13 m w.e. 

(2016/17) with a mean of –0.17 m w.e. for the study period. While the yearly MB of the Khardung 

glacier was varied from –1.46 (2015/16) to –0.20 m w.e. (2016/17) with an average of –0.63 m 

w.e. Our finding also revealed that the glacier MB of the Khardung glacier was 3.7 times more 

mass loss than the Phuche glacier.  
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Other than this, the seasonal glacier MB was assessed for both the glacier between 2014 and 

2017. The observation of seasonal MB suggested that the winter MB of the Phuche glacier was 

almost similar (0.67 m w.e.) for 2014/15 and 2015/16 with a maximum value (1.03 m w.e.) 

attained in 2016/17. While, in the Khardung glacier, the winter MB was minimum (0.68 m w.e.) 

in 2015/16, and the maximum value (0.77 m w.e.) was observed in 2016/17. It was also noted 

that the winter accumulation in 2015/16 was less than in other years; however, the mass loss was 

higher in summer, which indicates that the lower winter accumulation is not able to compensate 

for the amount of melting caused in the summer season. Apart, the ELA of the Phuche glacier 

was maximum shifted (~5490 m a.s.l.) towards the accumulation with low AAR (89%) during 

2016/17. While, in the Khardung glacier, the maximum ELA shift was measured during 2014/15 

at 5510 m a.s.l. with lower AAR (10%) for the entire period. It was also found that the year 

2015/16 had no ELA for both the glacier due to higher summer mass loss.  

After analyzing the seasonal, annual MB, the influence of air temperature (PDD and FDD) and 

other factors on MB variation were quantified to better understand the forcing variables in MB 

change. The result indicates that the maximum PDD was mainly concentrated in JA, and their 

combined values varied from 157 to 225 °C. The PDD was lower in 2014/15 (176.7 °C) and 

higher in 2015/16 (375.2 °C). While, the FDD was carried out throughout the year with maximum 

value in January, and the minimum was experienced in July.  By combining the PDD and FDD, 

we can conclude that the changes in the Phuche glacier mass balance may be attributed by the air 

temperature variation, which directly or indirectly influences the glacier MB change. 

On the other hand, the other contributing variables and their relation with glacier MB change 

were identified using the LST over the road buffer and by the number of tourists who visited 

Ladakh over the past period. Results demonstrate that these variables were also interconnected 

with glacier MB variation. And, these variables might be the reason for the contrasting behavior 

of the Khardung and Phuche glaciers MB for the studied period.   

Overall, this study concludes that the selected glaciers of the cold-arid region have witnessed the 

influence of climatic drivers on glacier MB, which means that the temperature rise can impact 

the glacier MB in the future. A more detailed investigation of glacier MB and its implication on 

socio-economic aspects is required. Even a locale scale vehicle movement and their influence on 

glacier MB need to be studied in the future for designing the rules and regulations for the vehicles 

in Khardung-la pass. Also, a necessary preventative measure and appropriate law will be 

designed and applied by the decision-maker stakeholder to manage the water resource and reduce 

water stress in the near future.  
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6.1. INTRODUCTION 

The Ganga River basin sustains one of the densest global populations (~10% of the global 

population), the basin has serious water stress and quality problems from the past few years 

(Mukherjee et al. 2018). It has a serious problem with water stress and quality (IITs 2015). About 

77% of the population is concentrated on the plain that supports extensive irrigated agriculture 

land, as ~85% of the rainfall accounts for 3–4 months of monsoon period (June to September) 

(Chaturvedi and Srivastava 1979). In addition, irrigation is being practiced using surface and 

groundwater during the dry months over the region, which led to a decrease in groundwater level. 

Moreover, the Ganga river is considered as a perennial river that sustains by groundwater 

discharge (as base flow) during the dry and non-monsoon periods (IITs 2015; Mukherjee et al. 

2015; MacDonald et al. 2016) with its maximum flows in the monsoon season that contributes 

for an increase in overland flow ( > 70% from rainfall) (Eriksson et al. 2009). Therefore, it is a 

major challenge to quantify the Groundwater Recharge (GR) and discharge over the densely 

populated region. 

Various studies were carried out over different parts of India to estimate GR (Sakthivadivel 2007; 

Shah 2008; Mukherjee et al. 2015; CGWB 2017; Prasad and Rao 2018; Senthilkumar et al. 2019; 

Bhanja et al. 2019). For example, Mukherjee et al. (2015) suggested that GR rates show a higher 

unevenness in the diverse regions of India. They indicated that the overall GR shows a higher 

variability in the parts of India. Moreover, a rapid change in GR was reported in the GRB (Anand 

et al., 2018; Bons, 2018; Chaturvedi and Srivastava, 1979; IIT, 2015; World Bank, 2011) and its 

sub-basins (Kumar and Seethapathi 2002; Rajmohan and Prathapar 2013). Also, Vat et al. (2019) 

have highlighted that the ecological health of the GRB had deteriorated significantly due to high 

pollution, river modifications, flow regime changes, high levels of water abstraction, and 

hydropower generation. Therefore, an accurate estimation of the GR rate is essential for efficient 

and sustainable groundwater resource practices. 

Quantification of GR is estimated using various approaches (de Vries and Simmers, 2002; 

Petheram et al., 2002; Scanlon and Cook, 2002), i.e., direct measurement, water-balance 

methods, Darcian approaches, tracer techniques, and empirical methods. The problem 
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encountered in each method was addressed by several authors (Gee and Hillel 1988; Allison et 

al. 1994; Stephens 1994; Kumar 1997). Additionally, Petheram et al. (2002) provide a review of 

various recharge estimation techniques applied in Australia. Also, Sophocleous (1991) discussed 

the soil water balance (SWB) approach and water table fluctuation (WTF) method to estimate 

the water recharge and its major uncertainties. The SWB method for recharge estimation has 

large data demands, and their reliability depends on how accurately the values of the variables 

are measured. For measuring the groundwater storage changes, the in situ measurement is 

expensive and not continuously available at a large spatial scale. Therefore, remote sensing data 

acquired from the Gravity Recovery and Climate Experiment (GRACE) satellite enable the 

estimation of groundwater storage at a large and continuous scale all around the world (Rodell et 

al. 2007). Recently, a few attempts have been made to estimate regional-scale GR rates using 

GRACE data (Henry et al. 2011; Gonçalvès et al. 2013; Ahmed and Abdelmohsen 2018; Wu et 

al. 2019). The obtained groundwater storage (GWS) changes can be used for average GR 

estimation based on an empirical approach of the WTF method (Henry et al. 2011). Nevertheless, 

GR is also often quite challenging or is difficult to be accurately estimated; therefore, more than 

one method should be used to verify the results (Sumioka and Bauer 2003).  

6.2. RESEARCH QUESTIONS 

 How does the total water storage behave in response to change in surface or sub-surface 

water? Is the groundwater recharge of Indian major river basins increasing or decreasing? 

What are the contributing variables responsible for the groundwater recharge change? 

 Which model of groundwater recharge estimation is best? Do the gravimetric observation 

able to quantify the recharge accurately? Is the measured recharge well matched with the 

field observations? 

 How the mapping of groundwater recharge at a varying spatial scale behaves with the 

contributing variables? Is groundwater recharge affected by changing climatic variables? 

Does the human intervention also impact the change in groundwater recharge? 

6.3. OBJECTIVES 

 Analyzing the spatio-temporal distribution of GRACE derived Groundwater Storage 

Anomaly (GWSA) and its trend at a seasonal and annual scale  

 Quantification of groundwater recharge using a remote sensing-based, water balance 

approach and empirical equation-based approach 
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 Establishing linkage between estimated GR and water fluxes components (P, ET, runoff, and 

SM) 

6.4. STUDY AREA 

The Ganga basin is one of the most populous (about 440 million people) river systems in the 

World (Anand et al. 2018). The basin is situated in the northern part of the country and lies 

between latitude 21º 32’ 8.6” – 31º 27’ 36.2” N and longitude 73º 14’ 33.4” – 90º 53’ 18.9” E, 

over an area of 10,86,000 km2 (Figure 6.1). 

  

Figure 6.1. Location map of the Ganga river basin and its tributaries along with varying 

elevation. The point location shows the spatial distribution of observational wells collected 

from the Central Ground Water Board. 

The basin outspreads in four countries, i.e., India (79%), Nepal (14%), Bangladesh (4%), and 

China (3%). In India, it covers an area of 8,61,452 km2, which is nearly 26% of the total 

geographic area of the country (India-WRIS 2012). The Ganga basin originates in the Himalayan 

Mountains at the snout of the Gangotri glacier at an elevation of ~7000 m a.s.l. The confluence 

of the Bhagirathi River and Alaknanda Rivers joins in the town of Devprayag, then officially 

called the Ganga River. The main tributaries of the Ganga River are the Yamuna, the Ramganga, 

the Gomti, the Ghaghra, the Sone, the Gandak, the Kosi, and the Mahananda. And, it flows for 

about 2,510 km, generally southeastward, through a vast plain to the Bay of Bengal.  
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The main source of water in the Ganga River is a surface runoff generated by precipitation 

(~66%), base flow (~14%), glacier melt (~11.5%), and snowmelt (~8.5%). The basin received 

84% of total rainfall during the monsoon season (June to October). Though, the monsoon season 

accounts for 75% of the rain in the upper basin and 85% of the rain in the lower basin (Shrestha 

et al. 2015). The elevation range varies from sea level to the highest mountain peak (~8850 m 

a.s.l) in the world.  

6.5. DATA USED 

6.5.1. GRACE TERRESTRIAL WATER STORAGE ANOMALY 

In this study, 168 monthly solutions of GRACE Terrestrial Water Storage Anomaly (TWSA) 

data (level-3 RL-05, special harmonics) with 1° × 1° grid resolution were obtained from three 

research agencies, i.e., Center for Space Research (CSR), NASA Jet Propulsion Laboratory 

(JPL), and the German Research Centre for Geosciences (GFZ). Seventeen months of images 

were missing in the datasets that were replaced by the mean value of sequent months (before and 

after) (Long et al. 2015; Yang et al. 2017). Further, an average TWSA of the three data centre’s 

solutions (JPL, GFZ, and CSR) were used to reduce the gravity field noise (Sakumura et al. 2014; 

Xiao et al. 2015). This data was used for GWSA and GR estimation over the GRB between 

January 2003 and December 2016 (14 years). The TWSA comprises the GWSA, Soil Moisture 

Storage Anomaly (SMSA), Canopy Water Storage Anomaly (CWSA), Snow Water Equivalent 

Anomaly (SWEA), and Surface Water Storage Anomaly (SWSA) (Thomas et al. 2017) is 

expressed by Equation 6.1.   

𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴 = 𝐺𝑊𝑆𝐴 + 𝑆𝑀𝑆𝐴 + 𝐶𝑊𝐴 + 𝑆𝑊𝐸𝐴 + 𝑆𝑊𝑆𝐴   Eq. 6.1 

6.5.2. GLDAS LSM OBSERVATION DATA 

The Global Land Data Assimilation System (GLDAS) data integrates the hydrological 

components obtained from the ground and satellite-based observation with fine spatial and 

temporal resolution (Rodell et al. 2004). This data comprises four Land Surface models (LSM) 

data, i.e., the Community Land Model (CLM2.0) (Dai et al. 2003), Variable Infiltration Capacity 

(VIC) (Liang et al. 1994), Noah (Chen et al. 1996; Ek et al. 2003), and Mosaic (Koster and Suarez 

1996) at 1°x1° grid resolution. In this study, a Total Water Storage (TWS) was estimated for each 

LSM by the summation of SMS, SWE, and CWS at a monthly scale. And, the average of four 

TWS datasets was used to estimate the monthly 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆 with minimum bias (Feng et al. 2013; 

Yang et al. 2017). None of these LSMs dataset includes GWS and SWS (Dai et al. 2003; Rodell 
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et al. 2004). Nevertheless, there might be a contribution of other sources of SWS (reservoirs, 

canal, tank, ponds, etc.) in groundwater recharge, which can be ignored, accounting for a 

relatively small proportion of TWS changes (Rodell et al. 2009). Many studies neglected the 

SWS changes for GWS estimation (Moiwo et al., 2009; Rodell et al., 2009, 2007; Strassberg et 

al., 2007; Tiwari et al., 2009). The estimated 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆 was converted into anomalies 

(𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴) with the same consideration of GRACE data (baseline period of January 2004 to 

December 2009). The monthly GWSA was obtained by subtracting the 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴 with 

𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴 through rearranging the Equation 6.1. GLDAS has been used in many studies to 

isolate the GWSA from the GRACE derived TWSA in different regions of the world (Leblanc et 

al., 2009; Rodell et al., 2009, 2007; Tiwari et al., 2009).  

6.5.3. ERA-5 REANALYSIS DATA 

The European Centre for Medium-Range Weather Forecasts ReAnalysis version 5 (ERA-5) Land 

is a monthly global reanalysis data (1981–present) available at 9 km spatial resolution and free 

to download from the Climate Data Store (https://doi.org/10.24381/cds.68d2bb30). In this study, 

we have acquired monthly P, ET, runoff and 𝑇𝑎 for understanding the hydroclimatic variability 

as well as GR estimation over the GRB from 2003 to 2016. The performance of ERA-5 datasets 

(P, ET, SM, runoff, and 𝑇𝑎) was evaluated against the observed gridded datasets from the India 

Meteorological Department by Mahto and Mishra (2019). They have reported that the ERA-5 

performed better than other reanalysis products, and it can be used for hydrological modeling in 

India. Likewise, Albergel et al. (2018) also revealed that ERA-5 has a consistent improvement 

over ERA-Interim products.  

6.5.4. GROUNDWATER LEVEL MEASUREMENTS  

The groundwater level (GWL) data were acquired from the Central Ground Water Board 

(CGWB, India) from January 2003 to December 2016. CGWB records the GWL data four times 

in a year, such as a winter (January), pre-monsoon (April/May), monsoon (August), and post-

monsoon (November) (CGWB 2017). In this study, we have used a total number of 167 wells 

over the GRB for validating the estimated GR from six different methods.  

https://doi.org/10.24381/cds.68d2bb30
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6.6. METHODOLOGY 

6.6.1. ESTIMATION OF GR 

6.6.1.1. Henry and Wu methods 

In this study, we have used GRACE-derived GR estimation methods discussed by Henry et al. 

(2011) and Wu et al. (2019). The conceptual diagram of these two methods is shown in Figure 

6.2. The GR from the Henry (𝑅𝐻𝑒𝑛𝑟𝑦) method was estimated by subtracting the trough (𝑆𝐵) of 

GWSA from peak (𝑆𝑃) value in each year. In contrast, the GR from the Wu  (𝑅𝑊𝑢) was assessed 

by the summation of net recharge (𝑅𝑆) and the recharge that balances discharge (𝑅𝐷). Generally, 

the 𝑅𝑊𝑢 of each year was calculated through the antecedent recession curve. It is the difference 

between the peak (𝑆𝑃) of GWSA and the extrapolated value from antecedent recession curve to 

the time of the peak (𝑆𝐿). The estimated 𝑅𝑊𝑢 from Wu method can be represented by the 

following Equation 6.2: 

𝑅𝑊𝑢  =
∆𝐺𝑊𝑆𝐴

𝛥𝑡
 =

𝑆𝑃− 𝑆𝐿

𝛥𝑡
= 𝑅𝑆 + 𝑅𝐷     Eq. 6.2 

The primary assumption of the Henry method was that the unrealized recession is negligible, 

while the Wu method estimates and corrects for it episode by episode (Nimmo et al. 2015).   

6.6.1.2. Soil water balance (SWB) approach  

The Soil Water Balance (SWB) approach has been widely used for GR estimation (Rushton and 

Ward 1979; Sophocleous 1991; Dripps and Bradbury 2007; Demlie 2015). This method is to 

estimate the temporal and spatial distribution of GR (𝑅𝑆𝑊𝐵) in the GRB for the period 2003-

2016. The month-wise 𝑅𝑆𝑊𝐵 is estimated using the following Equation 6.3: 

𝑅𝑆𝑊𝐵(𝑡) = 𝑃(𝑡) − 𝐸𝑇(𝑡) − 𝑅𝑢𝑛𝑜𝑓𝑓(𝑡) − ∆𝑆(𝑡)    Eq. 6.3 

Where t is the specific time, P is the precipitation, Runoff is the total surface and sub-surface 

drainage, ET is evapotranspiration, and ∆S is the change in soil water storage in the unsaturated 

zone. The 𝑅𝑆𝑊𝐵
𝑁  is estimated for the monsoon season by considering the assumption, i.e., if the 

P > ET, then residual water (P-ET-R) that enters the soil reservoir will cause an increase or 

decrease in the water level. Although, if the residual water is higher than the positive change of 

soil water (assume that GWL will not change if ∆S is negative), then we subtract ∆S from residual 

water, and the remaining water considered as a 𝑅𝑆𝑊𝐵. 
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Figure 6.2. The conceptual diagram of  Henry and Wu methods to show the GWSA from 

08/2005 to 01/2007 for estimating GR. (Note: 𝑺𝑨 is the peak in the previous year (2005), 𝑺𝑩 is 

the trough of decline and 𝑺𝑷 is the peak of the rise in the next year (2006). The solid line is the 

antecedent recession curve that indicate the best-fit of GWSA as a function of time between A 

and B. Furthermore, 𝑺𝑳 is the GWSA extrapolated from antecedent recession curve to the time 

of the peak. The dashed line is the unrealized recession from 𝑺𝑩 to 𝑺𝑳. 

6.6.1.3. Groundwater storage change (GWSC) approach  

The GR from GRACE derived GWSA (𝑅𝐺𝑊𝑆𝐶) were acquired by assuming that the total water 

storage change (TWSC) is equal to the incoming and outgoing water fluxes. Also, Syed et al. 

(2008) have demonstrated that the difference between the incoming (P) and outgoing (ET and 

Runoff) water fluxes, i.e., residual water content is equal to satellite estimated TWSC. It can be 

represented by the following Equation 6.4. 

𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐶(𝑡) = 𝑃(𝑡) − 𝐸𝑇(𝑡) − 𝑅𝑢𝑛𝑜𝑓𝑓(𝑡)      Eq. 6.4 

For TWSC estimation,  𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐶(𝑡) = 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴(𝑡) − 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴(𝑡 − 1)  

The 𝑅𝐺𝑊𝑆𝐶 obtained by combining the equations 6.3 and 6.5 (discussed in next section 6.6.1.2), 

expressed by Equation 6.4. 

𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐶  (𝑡) = 𝑃(𝑡) − 𝐸𝑇(𝑡) − 𝑅𝑢𝑛𝑜𝑓𝑓(𝑡) = 𝐺𝑅𝑆𝑊𝐵(𝑡) + ∆𝑆(𝑡)  Eq. 6.5 
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Where, 𝐺𝑅𝑆𝑊𝐵 is corresponding to 𝑅𝐺𝑊𝑆𝐶 and ∆𝑆 is equal to the change in GLDAS TWSA 

(𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐶(𝑡) =  𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴(𝑡) −  𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴(𝑡 − 1)). The 𝑅𝐺𝑊𝑆𝐶 can be calculated by 

rearranging the Equation 6.5, expressed by Equation 6.6.   

𝑅𝐺𝑊𝑆𝐶(𝑡) = 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐶(𝑡) − 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐶(𝑡) = 𝐺𝑊𝑆𝐴(𝑡) − 𝐺𝑊𝑆𝐴(𝑡 − 1) Eq. 6.6 

Where 𝑅𝐺𝑊𝑆𝐶 can be either positive or negative. The summation of positive 𝑅𝐺𝑊𝑆𝐶 were 

considered for recharge estimation during the monsoon period (June to September). 

6.6.1.4. Kumar and Seethapathi method 

An empirical relationship between GR and P was developed by Kumar and Seethapathi (2002) 

for the upper Ganga canal system. It was derived by fitting the estimated values of GR and the 

corresponding values of P in the monsoon season through the non-linear regression technique, 

expressed by Equation 6.7: 

𝑅𝐾𝑢𝑚𝑎𝑟 = 0.63(𝑃 − 15.28)0.76     Eq. 6.7 

Where, 𝑅𝐾𝑢𝑚𝑎𝑟 is the GR from precipitation (inch), and P is the mean precipitation in monsoon 

season (inch). In this study, we have used this empirical relationship for 𝑅𝐾𝑢𝑚𝑎𝑟 estimation over 

the GRB from 2003 to 2016.  

6.6.1.5. Rainfall infiltration factor (RIF) method 

The rain-fed GR was estimated using the Rainfall Infiltration Factor (RIF) (CGWB 2017) for the 

monsoon period over the GRB. It states that the GR (𝑅𝑅𝐼𝐹) is a product of rainfall infiltration 

factor (f) and P, which can be expressed by Equation 6.8: 

𝑅𝑅𝐼𝐹 =  𝑓 × 𝑃      Eq. 6.8 

The value of 𝑓 ranged from 0.08 to 0.25, with a mean value of 0.165 (for the unconsolidated 

formation of alluvium soil). The major portion of the GRB comes under the Alluvium soil 

(CGWB 2017); therefore, the mean value (0.165) of 𝑓 is adopted for 𝑅𝑅𝐼𝐹 estimation during 

2003-2016.  

6.6.2. RECHARGE ESTIMATION USING GROUNDWATER LEVEL DATA 

The WTF method is generally used for groundwater storage or recharge estimation based on 

groundwater levels data (Sophocleous 1991; Healy and Cook 2002; Heppner and Nimmo 2005). 
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The GR (𝑅𝐺𝑊𝐿) can be calculated by multiplying the water-table rise (Δℎ) (assume that the 

rainfall is the key parameter for recharging the aquifer) over a specified period of time (Δ𝑡) with 

the specific yield (𝑆𝑦) by following Equation 6.9: 

𝑅𝐺𝑊𝐿  =  𝑆𝑦  ×
𝛥ℎ

𝛥𝑡
      Eq. 6.9 

When ∆h is equal to the difference between the peaks of the rise and low point of the extrapolated 

antecedent recession curve at the time of the peak (extrapolation method), then the WTF method 

produces the total recharge. When ∆h is the difference in heads between two points in time, the 

WTF method produces a value for net recharge (no extrapolation) (Healy and Cook 2002). In 

this study, we have estimated the 𝑅𝐺𝑊𝐿 based on pre-monsoon and monsoon GWL data (used for 

Δℎ estimation). Also, a constant 0.044 value of 𝑆𝑦 was used over the entire GRB for 𝑅𝐺𝑊𝐿 

estimation, reported by Bhanja et al. (2016). Many studies have been used as a constant 𝑆𝑦 for 

the entire region (Rodell et al. 2009; Panda and Wahr 2016; Mukherjee et al. 2018).  

6.6.3. STATISTICAL ANALYSIS 

To identify the trend in the GR and hydroclimatic variables, a nonparametric Mann-Kendall 

(MK) (Mann 1945) and Sen’s slope (Sen 1968) methods were applied to the annual and seasonal 

data during 2003-2016. The Pearson’s correlation coefficient (𝑅) was also used for analyzing the 

dependency of each parameters. In addition, standard anomalies were calculated for the GR and 

hydroclimatic variables by using the following Equation 6.10: 

𝑧 =  
𝑥−𝜇

𝜎
      Eq. 6.10 

Where z is the standard anomaly, x is the annual variable, μ is the mean of the variable during 

the study period, and σ is the standard deviation. Additionally, the performance of GR acquired 

from different methods was analyzed with 𝑅𝐺𝑊𝐿 based on bias [(estimated - 

observed) ×100/observed], Root Mean Square Error (RMSE), and an overall score. The score 

(out of 10) is assigned for each method based on the following Equation 6.11, suggested by 

Graham et al. (2019).  

𝑆𝑐𝑜𝑟𝑒 = [𝑅 + {1 −
𝑎𝑏𝑠(𝑏𝑖𝑎𝑠)

𝑅𝐴𝑁𝐺𝐸
} + {1 −

𝑅𝑀𝑆𝐸

𝑅𝐴𝑁𝐺𝐸
}] ×

10

3
    Eq. 6.11 

Where RANGE is the maximum range (difference between the maximum and minimum values) 

of the estimated 𝑅𝐺𝑊𝐿 during the study period. 
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6.7. RESULTS AND DISCUSSIONS 

6.7.1. GRACE-DERIVED GROUNDWATER STORAGE ANOMALY 

The monthly comparison of various GRACE TWSA products (Figure 6.2a) and GLDAS models 

(Figure 6.3b) was extracted over the GRB from 2003 to 2016; the overall results were consistent 

(Figure 6.3a,b). Besides, the estimated mean water storage components were used to understand 

the seasonal and annual patterns of the datasets. It indicates that the seasonality between 

𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴 and 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴, generally, increases from May to September and start decreasing 

during the rest of the year. Despite that, a shift in peak and trough months were observed in 2013 

(2-months) and 2016 (1-month). This shift may be occurred due to the poor timing of simulated 

soil-water storage changes (Grippa et al. 2011; Henry et al. 2011; Ndehedehe et al. 2016; Wu et 

al. 2019). Moreover, the time-series of spatial mean monthly GWSA were derived based on the 

difference between 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴 and 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴 (Figure 6.3c). The GWSA pattern was similar 

to the 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴 and 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴, with a maximum in September and a minimum in May. 

However, the seasonality in GWSA was apparently weaker than that of the 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴. 

Observed pattern agreed with the reported literature in all around the world (Rodell and 

Famiglietti 2001; Lettenmaier and Famiglietti 2006; Swenson and Wahr 2006; Strassberg et al. 

2007; Wu et al. 2019). 

The trend of 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴, 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴, and GWSA were estimated over the GRB at annual, 

monsoonal, and non-monsoonal periods (Figure 6.4). 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴 shows a significantly 

decreasing trend at the rate of 1.68 (p < 0.001) for monsoon and 1.65 cm yr−1 (p < 0.01) for the 

annual period (Figure 6.4a).The annual trend of 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴 was declining with time at the rate 

of 0.18 cm yr−1, but statistically insignificant (Figure 6.4b). The mean annual GWSA showed a 

decreasing trend, with a rate of 1.39 cm yr−1 (p < 0.001) (Figure 6.4c), which is concurred with 

estimates from previous studies (MacDonald et al. 2016; Mukherjee et al. 2018; Bhanja et al. 

2020). For example, Bhanja et al. (2020) have revealed that the GWS diminishing (at rates of > 

0.4 km3 yr−1) in the Ganges-Brahmaputra river basin based on in situ observations for the period 

2003–2014. The overall GWSA shows a significant decreasing trend, besides; it shows an 

increasing trend (1.25 cm yr−1) in recent years (2013–2015) for the monsoon period. The similar 

patterns of GWSA were reported by Panda and Wahr (2016b),  Bhanja et al. (2017), and Bhanja 

et al. (2018) through in situ measurement. In addition, the correlation coefficient between the 

mean annual 𝐺𝑅𝐴𝐶𝐸𝑇𝑊𝑆𝐴 with 𝐺𝐿𝐷𝐴𝑆𝑇𝑊𝑆𝐴 and estimated GWSA were 0.53 and 0.97, 

respectively, at p < 0.05. 
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Figure 6.3.  Monthly time-series of a) GRACE TWSA products with their combined mean; b) 

GLDAS TWSA of LSM datasets with their combined mean, and c) estimated GWSA and its 

standard deviation (gray shadows).  

Figure 6.4. Boxplot of the mean annual and seasonal of a) GRACE TWSA, b) GLDAS TWSA, 

and c) GWSA with its trend over the Ganga river basin from 2003 to 2016. 
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6.7.2. ESTIMATION OF GR 

6.7.2.1. Basin-wide spatial GR rates 

The basin-wide spatial distribution of estimated GR was demonstrated over the GRB for the 

period 2003-2016. For this, the GR obtained from Henry, SWB, GWSC,  Kumar, RIF methods 

along with in situ based GR (𝑅𝐺𝑊𝐿) were used to assess the changing pattern of recharge during 

the observation period (Figure 6.5). Result indicates that the higher value of mean annual 𝑅𝐻𝑒𝑛𝑟𝑦 

was identical with the 𝑅𝐺𝑊𝑆𝐶 over the southeastern part of GRB. While the 𝑅𝐾𝑢𝑚𝑎𝑟 and 𝑅𝑅𝐼𝐹 

shows similar pattern over the northern part of the basin. Similarly, the higher value of GR has 

obtained in the upper part of the Ganga basin lies in the Indian territory (Bhanja et al. 2019). The 

𝑅𝑆𝑊𝐵 was not capturing the similar distribution as of other methods. The spatial trend of the 𝑅𝑅𝐼𝐹 

shows a similar decreasing pattern with the 𝑅𝐺𝑊𝐿 over the central part of the GRB. Therefore, 

this region comes under the semi-critical to over exploited classes based on groundwater stress 

categorization presented by CGWB (2017).  In the western region of the basin, the majority of 

observations wells location shows a positive trend over the study period which was comparable 

with the 𝑅𝐾𝑢𝑚𝑎𝑟 and 𝑅𝑆𝑊𝐵. Similar spatial trend of GR have been reported by Bhanja et al. 

(2018a) over India by in situ measurement.  

6.7.2.2. Basin-wide mean GR rates 

The GR was estimated using six different approaches, i.e., Wu, Henry, SWB, GWSC, Kumar, 

and RIF methods over the GRB in each year from 2003 to 2016. All the methods estimate net 

recharge for the monsoon period (June to September) except the Wu method that determines total 

recharge for the annual scale. The annual 𝑅𝑊𝑢 was estimated (discussed in section 6.6.1.2) over 

the GRB in each subsequent year from 2003 to 2016. For this, the monthly time-series of GWSA 

were used to draw a fitted linear line from 𝑆𝑃(t-1) of the previous year to the trough 𝑆𝐵(𝑡) of the 

current year. Then, the linear line of the recession curve was extrapolated upto the 𝑆𝑃(t) of the 

current year. 

Afterward, the 𝑅𝑊𝑢 was estimated by subtracting the extrapolated low value 𝑆𝐿(𝑡) of the 

recession curve from the 𝑆𝑃(t) value of GWSA in the current year (Figure 6.6a). In Table 6.1, 

 𝜎𝐺𝑅 represents the standard deviation of monthly GWSA that is used for annual GR estimation, 

and N is the number of sampling points used to fit the antecedent recession curve. The number 

of measurements in each recession curve was ranged from 7 to 9, with an average of 8 during the 

observation period, except in 2003 (5-observations) (Table 6.1).  
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Figure 6.5. The mean annual GR and its trend of Henry, SWB, GWSC, Kumar, RIF methods 

along with in situ GR over the Ganga river basin from 2003 to 2016.  

In 2003, we considered data from January onwards for recharge calculation. The R2 ranged from 

0.80 to 0.98, with an average of 0.92 (Table 6.1; p < 0.01) (number of measurements in each 

recession curve), which indicates the best fitting curve of the data. The 14-year average of the 
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𝑅𝑊𝑢 was estimated at 24.4 ± 3.5 cm yr−1, which ranged from 18.6 to 32.3 cm yr−1. It indicates 

that the inter-annual variation of 𝑅𝑊𝑢 with an insignificant increasing trend (0.03 cm yr−1). 

Nevertheless, a consistent decreasing trend of GWSA (1.39 cm yr−1) was observed during the 

observation period, which is much smaller than the maximum (7.8 cm) and larger value relative 

to the minimum (–19.2 cm) mean annual amplitude of GWSA. Therefore, it will be unable to 

mask the seasonal changes in GWSA (Wu et al. 2019). Besides, the 𝑅𝑊𝑢 estimated from the 

difference between the peak and the extrapolated recession at the time of peak, thus, the 

decreasing trend of GWSA does not affect the difference between 𝑆𝑃(𝑡) and 𝑆𝐿(𝑡). The 𝑅𝐻𝑒𝑛𝑟𝑦 

rate was estimated based on the difference between 𝑆𝑃(t)  and 𝑆𝐵(t) value of GWSA in each year 

for the period 2003-2016 (Table 6.1). A 14-year average of 𝑅𝐻𝑒𝑛𝑟𝑦 was 16.1 ± 2.9 cm yr−1 that 

varied from 10.9 to 21.2 cm yr−1. A declining trend of 𝑅𝐻𝑒𝑛𝑟𝑦 was observed at the rate of -0.09 

cm yr−1 with insignificant.  

Table 6.1. The variables used in estimating the GR from GWSA over the GRB from 2003 to 

2016. 

Year 
𝑺𝑷 

(cm) 

𝑺𝑩 

(cm) 

𝑺𝑳 

(cm) 

𝑹𝑯𝒆𝒏𝒓𝒚  

(𝒄𝒎 𝒚𝒆𝒂𝒓−𝟏) 

𝑹𝑾𝒖  

(𝒄𝒎 𝒚𝒆𝒂𝒓−𝟏) 

𝝈𝑮𝑹 

(𝒄𝒎 𝒚𝒆𝒂𝒓−𝟏) 
N 𝑹𝟐 

2003 17.8 -2.1 -6.6 19.9 24.4 7.1 5 0.83 

2004 8.5 -2.4 -14.2 10.9 22.8 5.0 8 0.94 

2005 10.4 -5.5 -12.8 15.9 23.1 6.2 9 0.80 

2006 11.7 -5.9 -16.1 17.6 27.8 6.0 8 0.98 

2007 9.5 -5.0 -12.8 14.5 22.3 4.9 8 0.94 

2008 7.9 -10.6 -17.7 18.5 25.6 5.7 8 0.91 

2009 2.4 -9.9 -17.0 12.3 19.4 4.6 9 0.90 

2010 2.1 -14.3 -23.3 16.4 25.4 5.5 9 0.94 

2011 9.3 -11.9 -23.1 21.2 32.3 6.9 7 0.96 

2012 5.0 -12.3 -19.7 17.4 24.7 6.0 9 0.93 

2013 1.5 -14.6 -20.7 16.1 22.2 5.4 8 0.92 

2014 0.8 -11.8 -17.8 12.6 18.6 4.3 7 0.95 

2015 1.1 -15.7 -26.9 16.8 28.0 6.1 8 0.91 

2016 -10.7 -26.4 -35.6 15.7 25.0 6.8 9 0.94 

Mean    16.1 24.4  8.0 0.92 
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Figure 6.6. The monthly time series of a) GWSA and its antecedent recession curve, b) water 

flux components, and c) GWSC used for GR estimation over the Ganga river basin between 

January 2003 and December 2016.  

The 𝑅𝑆𝑊𝐵 rate was calculated at a monthly scale by applying the SWB approach from 2003 to 

2016 (Figure 6.6b). The mean monthly P, ET, runoff, and ∆𝑆 were analyzed for monsoon period 

(June to September) recharge estimation. P shows the incoming water flux towards the ground 

represented by positive, whereas other outgoing water fluxes (ET, runoff, and ∆𝑆) shown as 

negative. The 𝑅𝑆𝑊𝐵 rates varied from 4.5 to 15.1 cm yr−1, with a mean value of 11.7 ± 3.1 

cm yr−1. The 𝑅𝑆𝑊𝐵 shows a decreasing trend at the rate of 0.10 cm yr−1 with statistically 

insignificant. 

Moreover, the monthly time series of GWSC was examined using equation 6.4, which indicates 

that the positive values are recharge of water towards the ground, while negative values as the 

deficit of water or discharge (Figure 6.6c). Overall, the maximum 𝑅𝐺𝑊𝑆𝐶 (~96%) was observed 

from June to August, with the highest value in July. The mean annual 𝑅𝐺𝑊𝑆𝐶 varied from 12.1 

(2004) to 20.2 cm yr−1 (2011), with a mean value of 15.8 ± 2.7 cm yr−1, which indicates that 
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the interannual variation in net recharge. There was no significant trend observed during the study 

period, however, 𝑅𝐺𝑊𝑆𝐶 shows a decreasing trend with a rate of 0.25 cm yr−1. 

The 𝑅𝐾𝑢𝑚𝑎𝑟 rate was estimated using the Kumar method, established by the empirical 

relationship between P and GR for the monsoon period. The annual 𝑅𝐾𝑢𝑚𝑎𝑟 ranged from 14.7 

(2014) to 23.7 (2008), with an average of 18.7 ± 3.2 cm yr−1. Furthermore, RIF method was 

also used to estimate annual 𝑅𝑅𝐼𝐹 explained by CGWB (2017). This method primarily considered 

the monsoonal precipitation and infiltration factor. It indicates that the 𝑅𝑅𝐼𝐹 varied from 14.1 to 

20.9, with an average of 17.1 ± 2.4 cm yr−1. The 𝑅𝐾𝑢𝑚𝑎𝑟 and 𝑅𝑅𝐼𝐹 were experienced a 

decreasing trend over the time with a rate of 0.06 and 0.04 cm yr−1, respectively.  

Overall, all the adopted methods demonstrated a decreasing trend of GR in the GRB during the 

study period, except in the Wu method. The inter-annual variation of GR was analyzed for each 

method over the study area for the 14-years (2003–2016). The mean annual GR were 24.4, 16.1, 

11.7, 15.8, 18.7, and 17.1 cm yr−1 or 23.5, 15.5, 11.3, 15.2, 18.0, and 16.5% of monsoonal 

averaged precipitation (~103.9 cm) assessed by Wu, Henry, SWB, GWSC,  Kumar, and RIF 

methods, respectively. The observations were consistent with  Bhanja et al. (2018a), who also 

found a rapid decline in recharge rates over the GRB. The results suggested that the SWB 

estimated GR was less than the other recharge estimation methods due to the preferential flow 

path recharge mechanism, which was not captured by the SWB method (Demlie 2015). In 

contrast, the estimated GR from the Wu method was higher than the mean recharge of other 

methods. This may be occurred because of the 𝑅𝑊𝑢 considered the annual recharge in term of 

net recharge and recharge that compensate the discharge while the other methods accounts the 

monsoon net recharge as annual GR. Though, each method has its own consideration, procedure, 

and uncertainties for the GR estimation using different datasets. 

6.7.3. VALIDATION OF ESTIMATED GR WITH IN SITU MEASUREMENT   

The 𝑅𝐺𝑊𝐿 were estimated over the 167 locations lies under the GRB. The estimated 𝑅𝐺𝑊𝐿 were 

used to assess the grid-wise performance of six selected methods for the period 2003-2016. 

Observed mean 𝑅𝐺𝑊𝐿 varied between 15.3 and 21.7 cm yr−1,  with an average of 18.1 cm yr−1. 

The 𝑅𝐺𝑊𝐿 shows a decreasing trend at the rate of 0.02 cm yr−1 during the study period. In Table 

6.2, we have found that Wu, Henry, SWB, GWSC,  Kumar, and RIF methods show all the GRB 

bias of 34.5%, 8.6%, –21.1%, 6.6%, –16.3%, and –20.6%, respectively for the observation 

period. We observed that the precipitation dependent methods show underestimation with the 

𝑅𝐺𝑊𝐿 while the GRACE based methods were experiencing an overestimation. The maximum 
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over and under estimation were found in Wu and SWB methods, respectively. While all the 

methods were highly correlated (p < 0.05) with the 𝑅𝐺𝑊𝐿, varied from 0.64 (SWB method) to 

0.77 (Kumar and RIF methods), except for Wu method, i.e., 0.30. Based on the overall score, the 

result indicates that the Kumar method outperformed the other selected methods for the GRB 

(Table 6.2). The better performance of the Kumar method is to simulate the GR can be attributed 

to the improved precipitation product taken from ERA-5. The significant improvement in the 

horizontal and vertical resolution of precipitation can result in a better estimation of GR from 

other methods. A previous study revealed that the ERA-5 precipitation was found under- and 

over-estimation in different parts of India (Mahto and Mishra 2019). Also, the GRACE based 

Henry and GWSC methods presented a good overall score of 7.14 and 7.26, respectively, with a 

significant positive correlation. Henry et al. (2011) found the average annual net recharge using 

the GRACE based WTF method was very similar to the recharge estimated from historical wells 

observations. Similar to the 𝑅𝐺𝑊𝐿, in GRB, all the methods shows a consistent decreasing trend 

except for SWB during the observation period. The observed 𝑅𝑆𝑊𝐵 shows a relatively less 

increasing trend (0.03 cm yr−1) with statistically insignificant. Overall, the result concluded that 

the rainfall dependent method, i.e., Kumar was well performed than other methods in terms of R 

and overall score. Although, the GRACE based Henry method outperformed than the GWSC and 

Wu methods based on R, bias and overall score.    

Table 6.2. Statistical results of the correlation coefficient, bias, root mean square error 

(RMSE), overall score, and p-value of the six selected GR estimation methods against in situ 

based estimated recharge. 

Methods R Bias RMSE Score p-value 

Wu 0.30 34.5 8.25 3.18 0.306 

Henry 0.68 8.6 3.38 7.14 0.007 

SWB 0.64 -21.1 4.17 6.54 0.013 

GWSC 0.67 6.6 3.10 7.26 0.008 

Kumar 0.77 -16.3 3.22 7.48 0.001 

RIF 0.77 -20.6 3.43 7.35 0.001 

6.7.4. IMPACT OF CLIMATIC VARIABLES ON GR 

The GR is mainly influenced by how precipitation enters and is retained in the soil layer. High-

intensity precipitation alters the soil structure as well as soil porosity, which further reduces the 

infiltration capacity of the soil layer. Consequently, it reduces the GR and increases the surface 
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water runoff; therefore, it is essential to understand the changing pattern of these variables that 

influence the GR (Owuor et al. 2016). However, it is difficult to comprehend the hydro-physical 

properties of soil, i.e., soil structure, grain size, porosity, etc. Therefore, we quantify the 

variability of P, runoff, ET, and SM content relative to the GR for the period of 2003-2016. The 

GRB is subjected to differential precipitation rates and patterns in Spatio-temporal variation for 

the study period. The mean annual P varies from 111.9 to 147.4cm, with an average of 129.1 ± 

13.8cm from 2003 to 2016. The GRB received the highest P rate (~81%) during the monsoon 

(June to September) while the smallest (1.7%) in the post-monsoon (November to December) 

season. The minimum and maximum mean monthly P were observed in December (1.1cm) and 

July (36.0cm) during the study period. The annual P rate is unevenly distributed in all across the 

basin, with its trend ranging from 8.33 to –5.5 cm yr−1, with a mean value of –1.34 cm yr−1. A 

study carried out by Bhanja et al. (2020) reported that the Ganga and Brahmaputra river basins 

experienced a long-term decreasing trend from 1961 to 2014 using rain gauge measured 

precipitation. The spatial distribution of P and runoff shows a higher value in the northeastern 

part of the basin; on the other hand, this region attains a significant declining trend. However, the 

lower value of these variables was observed in the western region of the GRB with a significant 

increasing trend (Figure 6.7).  

Figure 6.7 shows that the amount of P, runoff, and GLDASTWSA increases with time in the 

northeastern part of the basin; however, the groundwater storage decreases. This may occur due 

to the high anthropogenic activities as well as climate change (Abeysingha et al. 2016). Also, the 

precipitation intensity increased over the region (Shrestha et al. 2015), which may influence the 

soil hydro-physical properties (Owuor et al. 2016) and further lead to high surface runoff with 

low GR rate. Anand et al. (2018) suggested that the maximum flow in the GRB generated by the 

precipitation. Besides, many studies demonstrated that the GRB experiencing a groundwater 

withdrawal through intensive pumping of groundwater for irrigation and other purposes 

(Famiglietti et al. 2011; Feng et al. 2013; Abeysingha et al. 2016; Asoka et al. 2017; Anand et al. 

2018; Bons 2018). Similarly, the annual mean 𝑇𝑎 ranged from 20.4 (2013) to 21.8 °C (2010), 

with an average of 21.0 ± 0.43 °C. However, the mean annual ET for the observation period was 

74.9 ± 2.7 cm, which varied from 70.9 (2012) to 80.4 cm (2015). The mean annual 𝑇𝑎 and ET 

trends were increasing at the rate of 0.006 ± 0.02 °C and 0.08 ± 0.37 cm, respectively. Likewise, 

the spatial trend of both variables (𝑇𝑎 and ET) illustrated an increase in the northeastern while 

decrease in the western region of the GRB. Mean monthly 𝑇𝑎 range from 11.9°C (January) to 

27.4°C (May), while the ET varied from 3.0cm (January) to 10.0cm (September).  
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Figure 6.7. Mean annual and its trend of precipitation (a, b), runoff (c, d), evapotranspiration 

(e, f), air temperature (g, h), 𝑮𝑳𝑫𝑨𝑺𝑻𝑾𝑺𝑨 (i, j), and GWSA (k, l) over the Ganga river basin. 

Figure 6.8. Inter- annual (a) -monsoonal (b) variation of precipitation and air temperature; c) 

annual GR rates estimated through Wu, Henry, SWB, GWSC, Kumar, and RIF methods.  
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Furthermore, there are no significant long-term trends observed in the GR for the period 2003-

2016. The inter-annual and monsoonal variation of P along with 𝑇𝑎 were examined by their linear 

relationship with GR (Figure 6.8a, b). The results demonstrated that the mean annual P was 

experiencing a similar pattern of monsoonal P with a minimum in 2014 and a maximum in 2008. 

This pattern mainly occurred because the Ganga basin received ~81% of P in the monsoon period. 

A similar distribution of precipitation has been observed by Shrestha et al. (2015) over the Ganga 

basin. Conversely, the observed 𝑇𝑎 in annual and monsoonal scale shows a varying distribution 

with minimum in 2013 and 2008, respectively. While the maximum 𝑇𝑎 was observed in 2010 for 

annual and 2009 for monsoonal period. The statistical analysis indicates that the monsoonal P 

play a significant role in annual GR over the basin while the 𝑇𝑎 was significantly changing 

throughout the year that losses the water flux in the form of ET. Many similar studies have also 

reported the dominance of recharge by precipitation (Sheffer et al. 2010; Min et al. 2015; 

Turkeltaub et al. 2015). 

The standardized anomalies for each of the water flux components and estimated GR were 

generated for the period 2003–2016 to reduce the spatial bias and random fluctuation in data 

(Figure 6.9). These indicators help in comparing the hydrometeorological variables with GR. 

After the bias correction through the standardized anomaly, the estimated GR methods were 

highly correlated with the water fluxes (Figure 6.8). The results indicate that 2003, 2008, 2011, 

and 2013 were identified as extremely wet years, while 2004, 2006, 2009, 2014, and 2015 were 

relatively dry years. Observed results are consistent with the findings by several authors (Chen 

et al. 2014; Goldin 2016; Nandargi and Shelar 2018; Bhanja et al. 2019; Dharpure et al. 2020a). 

However, the negative anomalies of ET progressively increase from 2013 to 2015, with a 

maximum in 2015.  

Pearson’s correlation test was applied between the hydroclimatic variables (P, ET, runoff, SM, 

and 𝑇𝑎) and estimated GR (through different methods) for monsoonal and annual scales to 

indicate the degree of linear association between them (Figure 6.10). Accordingly, almost all the 

hydrometeorological variables were found to be significantly correlated with the estimated GR, 

except in ET (all the methods) and ΔS (except for 𝑅𝑅𝐼𝐹  𝑎𝑛𝑑 𝑅𝐾𝑢𝑚𝑎𝑟) over the monsoon period. 

The low correlation between estimated GR and ET may occur due to these methods only 

constituting precipitation components in the recharge calculation. However, each method was 

highly correlated with the other at p < 0.01.  
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Figure 6.9. Standardized anomalies of annual a) estimated GR using different methods and b) 

water fluxes with air temperature over the GRB from 2003 to 2016. 

 

Figure 6.10. Correlation coefficient of estimated GR with hydroclimatic variables for a) 

monsoon and b) annual period over the Ganga river basin. 

The highest positive correlation was obtained with P and runoff for all the methods except the 

Wu method over the annual period. This positive correlation is found to be a natural principle in 

many hydrogeological studies (Zomlot et al. 2015). 
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The observed 𝑇𝑎 showed a negative correlation with each GR calculation method, while, ET was 

positively correlated with GR methods. This result suggested that the high ET might contradict 

with the maximum GR of the aquifer, while the low value will cause an increase in GR. A similar 

finding have been reported previously (Richard et al. 2015; Rukundo and Doğan 2019). Syed et 

al. (2008) have also reported a positive correlation with P (incoming water flux) and a negative 

relationship with ET and runoff (outgoing water fluxes) against GR. The selected hydroclimatic 

variables (P, ET, Runoff, and ΔS) found to be directly proportional with each other except for 

𝑇𝑎. Similar, positive correlation of P, ET and SM have been demonstrated by the Wang et al. 

(2018). They have also revealed that these three variables attain strong correlation with R = 0.897 

between SM and ET, R = 0.894 between ET and P, and R = 0.795 between SM and P.  However, 

these relationships will help to identify the aquifer factors that can control the spatial and 

temporal distribution of recharge. Therefore, a further study is recommended to determine the 

exact processes, which may contribute to an increase in recharge across the basin.  

6.7.5. IMPACT OF OTHER FACTORS ON GR  

As earlier, we have noticed that the precipitation-dependent methods found well correlated with 

the observation wells along with higher inter-annual variability were observed over the GRB. 

The GRB attains highly fertile sedimentary formations that facilitate both direct and indirect 

recharge (Bhanja et al. 2019). The higher agricultural-based groundwater withdrawal in the GRB 

may lead to a decrease in water storage. The decreasing water storage resulted in increased 

recharge by generating more recharge space. However, the unconsolidated formation of the basin 

leads to a non-homogenous recharge rate throughout the basin. Therefore, in this study, we have 

quantified the other factors that influencing the groundwater variability. 

The spatial distribution of total withdrawal, irrigation-based groundwater abstraction along with 

population density (domestic factor), and overall water stress against GR were analyzed over the 

GRB (Figure 6.11). Results demonstrated that the major portion of the GRB lies under Indian 

territory was experiencing the higher groundwater abstraction through irrigation. According to 

the World Resource Institute (WRI), the northwestern part of the GRB comes under extreme 

water stress. This stress may be created because of the higher withdrawal of irrigation along with 

domestic factors (for population livelihood). Cao and Roy (2018) have highlighted that the total 

area under wells and tube-well irrigation enlarged from 14.5 million ha to 16.3 million ha 

between 2004 and 2014 in Uttar Pradesh, India. Shamsudduha et al. (2012) have demonstrated 

that the extensive abstraction of groundwater for irrigation of rice crops in South Asia may lead 

to lowering of groundwater table in the shallow aquifers of the Ganges-Brahmaputra Basin. 
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Besides, the widespread evidence of groundwater withdrawal for a growing population has been 

shown by CGWB (2011) over the metropolitan area of India, such as Ahmedabad, New Delhi, 

and Lucknow. Moreover, the high intensity of rainfall will be responsible for increased runoff 

that leads to a decrease in GR (Patel et al. 2020), much of which can attribute to the higher 

proportion of impermeable surfaces associated with urbanization.  

 

Figure 6.11. (a) Total withdrawal (Source: Gassert et al., 2014), (b) Percentage of area 

equipped for irrigation with groundwater (Source: Siebert et al., 2010), (c) Population density  

(Source:  Dobson et al., 2000) and Water stress (Source:  Gassert et al., 2014) over the Ganga 

river basin. 

6.7.6. ASSOCIATED UNCERTAINTY AND SENSITIVITY ANALYSIS 

A number of uncertainties in GR estimation were demonstrated for the adopted methods, which 

will help in understanding the sources of errors and level of accuracy. Firstly, the major 

uncertainty in satellite-based GR (𝑅𝐺𝑊𝑆𝐶, 𝑅𝐻𝑒𝑛𝑟𝑦, and𝑅𝑊𝑢) estimation comes under the 

consideration from input variables (GRACE TWSA and GLDAS models) used. The GRACE-

derived GWSA is associated with the uncertainties related to the simulation of GLDAS soil 

moisture (CLM, MOSAIC, NOAH, and VIC) and GRACE signal-processing techniques 

(Shamsudduha et al. 2012). In addition, the uncertainty associated with not considering a surface-
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water-storage change that presenting a source of error in GWSA. Secondly, the GWL offered a 

high accuracy for GR estimation, however, a reliable estimation of  𝑆𝑦 (determined from long-

term pumping test data) required to reduce the associated uncertainties. In this study, we have 

used a constant 𝑆𝑦 (0.044) for the GRB because of unavailability of pumping test data. On the 

other hand, 𝑆𝑦 is not constant for the entire region but varies as a function of depth to the water 

table (Childs 1960); therefore, this will account for uncertainty. Lastly, the other methods, i.e., 

𝑅𝑅𝐼𝐹, 𝑅𝐾𝑢𝑚𝑎𝑟, and 𝑅𝑆𝑊𝐵 have empirical relationship between GR, P and other driving 

components (Bonsor et al. 2017). Therefore, the highly accurate P and other water fluxes (ET, 

runoff, and SM) data are required for GR modeling. On the other hand, the accurate measurement 

of the infiltration factor is needed to reduce the possible uncertainty in the RIF method (CGWB 

2017). Additionally, a major limitation of 𝑅𝐾𝑢𝑚𝑎𝑟 is that the mean annual P above 38.84 cm must 

be considered for GR estimation. 

The sensitivity of GR to change in P, ET, runoff, and SM were conducted using the SWB 

equation from 2003 to 2016. All the variables were altered by ±2 cm to identify the possible 

changes in GR. When P is increased by 2 cm, the value of GR increases by 66% from the 

reference GR. With an increment of ET by 2 cm, the decreased in GR value by 37%. A similar 

decrease in GR (value by 37%) is observed with an increase of 2 cm in runoff and SM. Overall, 

it was found that the GR is more sensitive to P as compared to ET, runoff, and SM. Many studies 

highlighted similar results in different region (Mechal et al. 2015; Condon and Maxwell 2019). 

6.8. CONCLUSION 

The Ganga river basin is a major river system of India, which irrigates large tracts and supports 

livelihood. This basin depends on the perennial river system and groundwater; therefore, 

different methods were used to estimate the GR. The analysis of GR with remote sensing-based 

SWB approach along with empirical relation (between P and GR) were used over the GRB for 

the period 2003-2016.  

The result of this study suggested that the GWSA shows a significant decreasing trend with a 

rate of 1.39 cm yr−1 for the study period. The overall estimated GR were 24.4, 16.1, 11.7, 15.8, 

18.7, and 17.1 cm yr−1 or 23.5, 15.5, 11.3, 15.2, 18.0, and 16.5% of monsoonal averaged 

precipitation (~103.9 cm) assessed by Wu, Henry, SWB, GWSC,  Kumar, and RIF methods, 

respectively. Also, the basin-wide spatial distribution of GR indicates that the higher value of 

mean annual 𝑅𝐻𝑒𝑛𝑟𝑦 was identical with the 𝑅𝐺𝑊𝑆𝐶 over the southeastern part of GRB.  

Additionally, the estimated GR was validated with in situ GWL data, which showed a high 
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correlation and varied from 0.64 (SWB method) to 0.77 (Kumar and RIF methods), except for 

the Wu method, i.e., 0.30. The result also concluded that the rainfall-dependent method (Kumar 

method) was well performed than other methods in terms of R and overall score. Although, the 

GRACE-based Henry method outperformed the GWSC and Wu methods based on R, bias, and 

overall score. 

The study also assessed the impact of water fluxes change on the GR, which indicates that a 

decreasing trend of P and runoff with a progressively increasing trend of ET and 𝑇𝑎 in the 

northeastern part of the basin. Moreover, the impact of other influencing factors was also 

assessed, which characterized that the GRB lies under low to extreme water stress regions. The 

observed result established that the GR is affected by both climate change and anthropogenic 

activities in the GRB for the observational period. Likewise, a Pearson’s correlation test was 

applied between the water balance components (P, ET, runoff, SM and 𝑇𝑎) and estimated GR 

(through different methods), which suggested that almost all the hydrometeorological variables 

were found to be significantly correlated with the estimated GR, except in ET (all the methods) 

and ΔS (except for 𝑅𝑅𝐼𝐹  𝑎𝑛𝑑 𝑅𝐾𝑢𝑚𝑎𝑟) over the monsoon period. The uncertainty of the different 

methods and sensitivity of water fluxes were analyzed to identify the level of accuracy in the GR 

methods. The sensitivity analysis reveals that the GR is more sensitive to P rather than ET, runoff, 

and SM. Overall, this study concluded that the higher impact of climatic variability and 

anthropogenic activities in the form of irrigation and urbanization might alter the GR.   
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7.1. INTRODUCTION 

Drought is one natural disaster that brings long and short-term socioeconomic losses to millions 

of people worldwide compared to any other form of natural disaster (i.e., floods, tropical 

cyclones, tornados, earthquakes, etc.) (Hagman 1984; Wilhite 2000; Sinha et al. 2019). All across 

the world, drought-related calamities have intensified with varying severities due to the impact 

of climate change over the past few decades (Allen et al. 2011). The occurrence of drought is 

interconnected with the scarcity of water that often aggravates the severity of each other. It can 

also trigger major hindrances for the population from scarcity to migration and displacement. 

According to United Nations, water scarcity alone could affect some of the regions up to 6% of 

their GDP by 2050 due to mass migration and dismissing of resources. As per the United 

Nations/World Bank High-Level Panel on Water 2018, 40% of the world’s population is affected 

by water scarcity, with almost 700 million people at risk of being displaced due to drought by 

2030. A single drought year can destabilize the several years of social-economic development 

particularly in terms of vulnerability to livelihoods. In India, the climatology of drought events 

over 130 years (1875–2004) of meteorological time series data shows that the frequency of 

drought occurrence has increased after 1965 (Shewale and Kumar 2005). Drought in the Indian 

region can be monitored from the progress of onset and withdrawal of southwest monsoon 

(NRAA 2009). Several studies have shown that precipitation is the main variable determining 

the onset, duration, intensity, and end of droughts (Chang and Kleopa 1991; Heim Jr. 2002). 

Some of the studies have been linked the droughts in the Indian continent with El Niño Southern 

Oscillation (ENSO) (Gadgil et al. 2003; Ashok et al. 2004; Kumar et al. 2006; Mishra et al. 2012). 

Therefore, comprehensive policies and innovative approaches at a global, national and local scale 

need to be developed to make water management more disaster-resilient. 

Due to the complex phenomena of drought and their involvement with various hydrological and 

climatological processes, various indices evolved over time for drought monitoring (Heim Jr. 

2002). Numerous specialized drought indices have been developed recently, such as 

Standardized Precipitation Evapotranspiration Index (SPEI: Vicente-Serrano et al., 2009), 

Vegetation Drought Response Index (VegDRI: Brown et al., 2008), Total Storage Deficit Index 
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(TSDI: Yirdaw et al., 2008), Streamflow Drought Index (SDI: Nalbantis and Tsakiris, 2009), 

Multi-variate Standardized Drought Index (MSDI: Hao and AghaKouchak, 2013), Standardized 

Groundwater level Index (SGI: Bloomfield and Marchant, 2013), Catchment Land Surface 

Model (CLSM) based Groundwater Drought Index (GWI) (Li and Rodell 2015), GRACE derived 

Drought Severity Index (DSI: Zhao et al., 2017), GRACE derived GRACE Groundwater Drought 

Index (GGDI: Thomas et al., 2017), GRACE derived Water storage deficit index (WSDI: Sun et 

al., 2018) and Combined Climatologic Deviation Index (CCDI: Sinha et al., 2019). Among the 

wide list of drought indices, the Palmer Drought Severity Index established by (PDSI: Palmer, 

1965), Standardized Precipitation Index (SPI: McKee et al., 1993), and Standardized Runoff 

Index (SRI: Shukla and Wood, 2008) are widely used for drought characterization over the past 

few decades (Hayes et al., 2011).  Drought–prone areas can be identified based on moisture index 

which is computed using the data of annual precipitation and water need (PET: Potential 

Evapotranspiration) (Thornthwaite and Mather 1955). Reconnaissance Drought Index (RDI) was 

also proposed to incorporate cumulative precipitation and evapotranspiration  (Tsakiris and 

Vangelis 2005; Tsakiris et al. 2007). 

While most of the indices modeled the drought based on model simulations or land Surface states 

and fluxes observations, only a few are depend on remote sensing techniques. Indeed, until the 

launch of Gravity Recovery and Climate Experiment (GRACE) satellites in 2002 (Tapley et al., 

2004), the drought monitoring was only restricted to agricultural droughts based on the 

vegetation indices using remote sensing techniques (Bhuiyan et al., 2006; Kogan, 1997; Singh et 

al., 2003). However, recently the direct Terrestrial Water Storage (TWS) observation from 

GRACE (Yirdaw et al. 2008; Agboma et al. 2009; Long et al. 2013; Girotto et al. 2017) or its 

deviation from the climatologic mean (Thomas et al. 2014; Zhao et al. 2017a, b) have been used 

for drought identification and characterization. Several preexisting drought indices were 

available, but still, considerable debate on the performance and effectiveness of each index in 

terms of drought events monitoring and its applicability for practical purposes exists. Therefore, 

it is necessary to formulate a holistic drought index that incorporates all meteorological, 

agricultural, and hydrologic droughts over large regions with varied climatic conditions. This 

will further contribute to the drought event identification, monitoring, characterization, and its 

severity assessment, improving the preparedness and preventive measure of resource 

management on the local scale. 

In India, a majority of the earlier studies mainly concentrate on drought characterization (Bhalme 

and Mooley 1980) others were case studies of particular drought years, i.e., 1987, 2002, 2004, 

and 2009 (Krishnamurti et al. 1989; Gadgil et al. 2003; Sikka 2003; Francis and Gadgil 2010). 
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Further, these studies were predominantly based on rainfall data only (Guhathakurta 2003; Pai et 

al. 2011) and revealed less information about the state of land water storage. Furthermore, the 

drought assessment in India mostly concentrated on quantifying the agricultural and economic 

losses. Therefore, the spatio-temporal drought characterization is not assessed at a basinal scale 

using a holistic representation of drought (DACFW 2016). In India, the drought management 

system majorly focused on the relief-based approach rather than preparedness and prevention by 

evaluating the water stress conditions. Thus, holistic development of indices for drought 

monitoring would be needed over a large scale. 

7.2. RESEARCH QUESTIONS 

 What are the factors that cause drought-like conditions over the study region? How can 

the monitoring of drought occurrence be done using the remote sensing approach? Is any 

model available that can easily identify meteorological and hydrological droughts? 

 What is the major requirement for the development of new drought measurement 

indices? What are the advantage and limitations of a new index? Do the index outcomes 

match with the published literature or field observation? 

 How are the drought indices related to the hydro-climatological condition of a basin? 

Any significant relationship was established between them? 

7.3. OBJECTIVES 

 Development of a new drought index using the gravimetric and satellite observation over the 

three major river basins (Indus, Ganga, and Brahmaputra) 

 Identification of drought events, their patterns, and trends using derived index (Combined 

Terrestrial Evapotranspiration Index)  

 Comparing between new drought index and other recently used drought indices like WSDI, 

GGDI, CCDI, and SPEI 

 Assessing the influence of climatic variables on the drought occurrence in order to understand 

the physical condition for drought event 



ANALYSING THE STATUS AND FUTURE CHANGES OF THE CRYOSPHERE AND ITS 

RELATION WITH CLIMATE CHANGE FOR THE HIMALAYAN REGION 

Page 156 of 254 

7.4. STUDY AREA 

7.4.1. GEOGRAPHICAL AREA  

The drought characterization is assessed of the three major river basins, originating from the 

Hindu-Kush Himalayan (HKH) region, i.e., the Indus, the Ganga, and the Brahmaputra river 

(IGB) basins (Figure 7.1). The geographical area of IGB basins lies between Latitude 21º and 

37º N and Longitude 66º and 97º E with a total area of about 26.45 × 105 km2, covering an area 

of 33.3 % of the HKH (Bajracharya and Shrestha 2011). A detailed description of each basin is 

given in Table 7.1. The study area comprises a diverse geographical landscape.  

The Himalayan Mountain range varies from the north to the northeastern part of India. It includes 

the highest mountain peak in the world, i.e., Mount Everest, K2 (also known as Mount Godwin-

Austen), and Kangchenjunga, the first, second, and third Mountain peaks, respectively. The Great 

Northern Plains (i.e., Indo-Gangetic plains) is situated south of the Himalayas, which is one of 

the most fluvial systems in the world (Banerjee and Kumar 2018). These river basins encompass 

the part of five countries, i.e., India, Nepal, Pakistan, Bhutan, and Bangladesh. The Indus River 

merges into the Arabian Sea, whereas the Ganga and Brahmaputra River fall into the Bay of 

Bengal. 

Table 7.1. A detailed description of the Indus, Ganga, and the Brahmaputra river basins. 

Basin Area 
Area in 

HKH 

Number of 

glaciers 

Population in 

2015   

(Million) 

Total irrigated 

area in 2005  

(Million ha.) 

Indus 1,116,086 555,450 18,495 268.42 25.29 

Ganga 1,001,019 244,806 7,963 580.09 29.58 

Brahmaputra 528,079 432,480 11,497 68.07 2.03 

Total 2,645,184 1,232,736 37,955 916.58 56.90 

7.4.2. CLIMATE 

The climate of the IGB basins is mainly dominated by the East Asian and Indian monsoon 

systems and the Westerlies. The East Asian and Indian Summer Monsoon system mainly 

influences the eastern part of the Himalayas. In these regions (Eastern part of the Himalayas), 

most precipitation occurs during the monsoon period of June to September, and orographic 

effects intensify the north-south gradient in precipitation (Galewsky 2009). However, in the 
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western part of the Himalayas, the westerlies precipitation has become increasingly important. 

In the Hindu Kush and Karakoram, precipitation is more equally divided over the year due to the 

influence of both the westerlies in the winter and the Indian monsoon systems in the summer 

(Bookhagen and Burbank 2010). In the Karakoram and at the western margins of the upper Indus 

basin, most precipitation occurs during the winter period (Wijngaard et al. 2017). The complex 

topography of the Himalayan region introduces the altitude-dependent climatic variability 

ranging from semi-tropical to semi-arctic (Bahadur 1993). Many studies have documented that 

the temperature has increased in the upper part of the Ganges basin (Nepal) (Shrestha et al. 2000) 

and Brahmaputra basin (Bongartz et al. 2007), whereas in the Indus Basin, both increasing and 

decreasing temperature trends were observed since the 1960s (Archer and Fowler 2006). 

Wijngaard et al. (2017) investigated the influence of climate variability on extreme hydrological 

events. Furthermore, the climatic extremes were projected to increase in magnitude towards the 

end of the 21st century in the IGB basins. 

 

Figure 7.1. Location map of the study area, which includes area equipped for irrigation (AEI) 

of 2005 (data: http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm) and 

observation wells  (CGWB 2016) over the Indus, Ganga, and Brahmaputra river basins. The 

bar graph represents the population density map from 2000 to 2020 with five years of the time 

interval in each river basin (https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-

density-rev11/data-download). 

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/data-download
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/data-download
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7.5. DATASETS UTILIZED 

7.5.1. GRACE TERRESTRIAL WATER STORAGE ANOMALIES (TWSA) 

GRACE is a twin satellite launched on 17 March 2002 in collaboration with the US-German 

space agencies (NASA-GFZ), continuously monitors variation in the Earth’s gravity field 

(changes in mass) on monthly time scales with unprecedented accuracy (Tapley et al. 2004a; 

Famiglietti and Rodell 2013). The GRACE data provides a solution for eliminating atmospheric 

inundations and oceanic influences (Flechtner et al. 2007). The processed GRACE monthly mass 

grids land data is freely available and provided by the GRCTellus (source: 

https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/).  

We utilized 151 monthly solutions of GRACE data (level-3 RL-05, special harmonics) with 1° ×

1° spatial resolution obtained from three research agencies, i.e., Center for Space Research (CSR) 

at the University of Austin/Texas, NASA Jet Propulsion Laboratory (JPL) and the German 

Research Centre for Geosciences (GFZ) for TWSA change between January 2003 and December 

2016 (14 years). To enhance the accuracy of GRACE data, various filters were applied, such as 

de-striping filter, Gaussian filter, and special harmonics filter (Landerer and Swenson 2012). The 

17 months of datasets were missing during the study period; the missing images of a particular 

month were replaced by the mean values of sequent months (before and after) (Long et al. 2015; 

Yang et al. 2017).  

The mean TWSA was used by averaging the three data centre’s solutions (JPL, GFZ, and CSR) 

for reducing the noise in the gravity field (Sakumura et al. 2014; Xiao et al. 2015) (Figure 7.2). 

The anomalies in the GRACE TWSA were computed using the baseline period (January 2004 to 

December 2009) because no missing datasets were found during this period. The total GRACE 

errors (measurement and leakage errors) are calculated over the Indus, Ganga, and Brahmaputra 

river basins to be 7.47, 7.07, and 7.02 cm, respectively (Wahr et al. 2006; Wiese et al. 2016). The 

TWSA includes the Groundwater Storage (GWSA), Soil Moisture Storage (SMSA), Surface 

Water Storage (SWSA), Snow Water Equivalent Anomaly (SWEA) (Thomas et al. 2017) is given 

in Equation 7.1.  

𝑇𝑊𝑆𝐴𝑡 = 𝑆𝑀𝐴𝑡 + 𝑆𝑊𝐴𝑡 + 𝑆𝑊𝐸𝐴𝑡 + 𝐺𝑊𝐴𝑡    Eq. 7.1 

 

https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
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7.5.2. GLDAS OBSERVATION 

 

Figure 7.2. Mean monthly comparison of each GRACE TWSA product (CSR, GFZ, and JPL) 

and its combined mean over the a) Indus, b) Ganga, and c) Brahmaputra river basins. 

Figure 7.3. Comparison of GLDAS TWSA models (NOAH, MOSAIC, CLM, and VIC) and 

estimated mean measured by averaging the four products.  
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GLDAS is a joint project designed by NASA, the National Oceanic and Atmospheric 

Administration (NOAA), and the National Centers Environmental Prediction (NCEP) by 

integrating the hydrological components obtained from the ground and satellite-based 

observations with fine spatial and temporal resolutions (Rodell et al. 2004). The details of the 

data products are described by Rui and Beaudoing (2018). The GLDAS data comprises four Land 

Surface models (LSM) data, i.e., the Community Land Model (CLM2.0) (Dai et al. 2003), 

Variable Infiltration Capacity (VIC) (Liang et al. 1994), NOAH (Chen et al. 1996; Ek et al. 2003), 

and Mosaic (Koster and Suarez 1996). 

For monthly TWS data through GLDAS, a summation of monthly Soil Moisture (SM) layer, 

Snow Water Equivalent (SWE), and the Canopy Water Storage (CWS) from four LSM datasets 

were used from 2003 to 2016. A comparison between each LSM model was established, as shown 

in Figure 7.3. The average of four LSM datasets was used to estimate the monthly TWS with 

minimum bias (Yang et al. 2017). A similar approach was adopted by other authors (Huang et 

al. 2015; Xiao et al. 2015; Ahmed and Abdelmohsen 2018; Wu et al. 2019). None of these LSMs 

datasets includes groundwater storage  (Dai et al. 2003; Rodell et al. 2004). We neglect Surface 

Water Storage (SWS) in surface reservoirs such as rivers, lakes, dams, etc., which is not modeled 

in GLDAS, and assume it is likely a minor component in this region. Numerous studies are 

neglected the surface water storage changes for GWS estimation (Yeh et al. 2006; Rodell et al. 

2007, 2009; Strassberg et al. 2007; Moiwo et al. 2009; Tiwari et al. 2009). The GLDAS TWS 

was converted into anomalies with the same consideration of GRACE data (baseline period of 

January 2004 to December 2009). The GWSA is obtained by subtracting the model-based 

𝑇𝑊𝑆𝐴𝐺𝐿𝐷𝐴𝑆 anomalies from the GRACE obtained 𝑇𝑊𝑆𝐴𝐺𝑅𝐴𝐶𝐸 (Sun et al. 2019) using equation 

7.1.  GLDAS has been used in numerous studies to isolate the GWSA from the GRACE derived 

TWSA in different regions of the world (Andersen et al. 2005; Leblanc et al. 2009; Matthew 

Rodell et al. 2007; Matthew Rodell,Velicogna, and Famiglietti 2009; Tiwari, Wahr, and Swenson 

2009).  

7.5.3. TROPICAL RAINFALL MEASURING MISSION (TRMM)  

The Tropical Rainfall Measuring Mission (TRMM) 3B42 daily research Version 7 (TRMM-

3B42-V7) precipitation data at 0.25º × 0.25º spatial resolution were used over the IGB river 

basins during 2003–2016 (Huffman et al. 2018). This product is designed for global precipitation 

analysis, and its algorithm combines several instruments (Huffman et al. 2007). Several authors 

have compared the TRMM data with observational data and reported good accuracy worldwide 

(Jia et al. 2011; Yang et al. 2017; Khan et al. 2018).  
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7.5.4. POTENTIAL EVAPOTRANSPIRATION (PET)  

The daily global Potential Evapotranspiration (PET) with a spatial resolution of 1° × 1° datasets 

were used from 2003 to 2016. This data is generated from climate parameters, i.e., extracted from 

Global Data Assimilation System (GDAS) analysis fields. The National Oceanic and 

Atmospheric Administration (NOAA) generates the GDAS data every 6 hours and provides it 

freely on the USGS website https://earlywarning.usgs.gov/fews/product/81. The daily PET is 

calculated on a spatial basis using the Penman-Monteith equation (Shuttlewor 1992; Allen et al. 

2006). The monthly and yearly PET was obtained using the accumulation of daily data. 

7.5.5. STANDARDIZED PRECIPITATION-EVAPOTRANSPIRATION INDEX (SPEI) 

Table 7.2. Detailed descriptions of each dataset used in this study from 2003 to 2016. 

Data used Variables Agencies/Model (version) 
Spatio-temporal 

resolution 

GRACE 

 

TWSA 

(CSR, GFZ, JPL) 

CSR (RL05) 1º × 1º, Monthly 

GFZ (RL05) 1º × 1º, Monthly 

JPL (RL05) 1º × 1º, Monthly 

GLDAS 

 

TWSA 

(Mosaic, NOAH, 

VIC, CLM) 

MOSAIC (V001) 1º × 1º, Monthly 

NOAH (V001) 1º × 1º,  Monthly 

VIC (V001) 1º × 1º, Monthly 

CLM (V001) 1º × 1º, Monthly 

TRMM Precipitation 3B42v7 0.25º × 0.25º, Daily 

SPEI SPEI SPEIbase v2.4 1º × 1º, Monthly 

GDAS 
Potential 

Evapotranspiration 
SPEIbase v2.4 1º × 1º, Daily 

MODIS 
LST MOD11C3 v6 0.05º × 0.05º, Monthly 

LST MYD11C3 v6 0.05º × 0.05º, Monthly 

The SPEI is the global drought monitor gridded datasets, provided by the Spanish National 

Research Council (CSIC) at time scales between 1 and 48 months with a 1° × 1° spatial 

resolution. The calibration period for the SPEI is from January 1950 to December 2010 

(http://sac.csic.es/spei/). Currently, the SPEI is based on the Thortnthwaite equation for 

estimating potential evapotranspiration. This study used the one-month time-scale of SPEI data 

with an updated version (SPEIbase v2.4). 

https://earlywarning.usgs.gov/fews/product/81
http://sac.csic.es/spei/
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7.5.6. MODIS LAND SURFACE TEMPERATURE (LST) 

The monthly MODIS LST products (MOD11C3 and MYD11C3) version 6 (day & night) have 

been used during 2003–2016. The LST products are freely available and downloaded from the 

EARTHDATA website (https://search.earthdata.nasa.gov/). The LST values in the products are 

derived by averaging the values from the corresponding month of daily (LST) images.  The 

spatial resolution of products is 0.05° ×  0.05° with contaminated less cloud cover. The accuracy 

of data was validated using in situ measurements across the world (Wan 2014; Duan et al. 2019). 

The combination of day and night products was used to estimate the mean monthly LST of a 

corresponding month. The LST was reconstructed below the cloud cover pixel by averaging a 3-

by-3 filter. A detailed description of all the datasets used in this study is shown in Table 7.2. 

7.5.7. GROUND WATER LEVEL DATA 

The groundwater levels of the IGB river basins (India part only) were acquired from Central 

Ground Water Board (CGWB 2016). The water levels of the observed well were analyzed from 

2003 to 2016. The CGWB records the data during January (Post Rabi), April/May (Pre-

monsoon), August (Monsoon), and November (Post Kharif) over the country. The groundwater 

level (GWL) monitoring by the State governments and archived by CGWB for assessment of 

groundwater resources. However, most of the GWL data is incomplete for each well in the 

database (block-wise data in a district) during the study period. The number of observational 

wells varies from district to district in the state. Therefore, we have analyzed the district-wise 

mean GWL data (i.e., all available wells in a district).  

Total 253 observations GWL were used for in situ groundwater storage anomaly. In this study, a 

fixed mean specific yield (𝑆𝑦) values were used over the IGB river basins (Indian part: Indus 

Basin = 0.095; Ganges Basin = 0.044; Brahmaputra Basin = 0.087) for groundwater storage 

(GWS) estimations (Bhanja et al., 2016). Since this 𝑆𝑦 value of each basin is not based on field 

methods in the study area, it should be regarded as a source of uncertainty (Henry et al. 2011). 

Some studies have used a uniform specific yield value (0.12) in the whole study region to change 

groundwater levels to groundwater storage (Rodell et al. 2009; Panda and Wahr 2016). The 

specific yields were generated using long-term pumping test data conducted over the years (GEC 

2017). The GWS has been observed by multiplying  𝑆𝑦 and groundwater head (∆ℎ) at all the well 

locations (Thomas et al. 2017). The ∆ℎ was calculated as per the procedure given by Bhanja et 

al. (2016). The GWS anomaly was calculated after subtracting mean GWS values (2004 to 2009) 

for comparing GRACE TWSA from all the individual observation data. The in situ groundwater 

https://search.earthdata.nasa.gov/
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drought index (IGDI) was calculated using the in situ GWS anomaly, suggested by Thomas et 

al. (2017). 

7.6. METHODOLOGY 

7.6.1. COMPUTATION OF COMBINED TERRESTRIAL EVAPOTRANSPIRATION 

INDEX (CTEI) 

In this study, a novel index was developed, i.e., Combined Terrestrial Evapotranspiration Index 

(CTEI), to accurately characterize drought occurrences by integrating the contribution of 

precipitation and PET anomalies as well as the TWSA over the three major river basins of the 

Himalayas. In contrast, several GRACE based indices were developed to describe the 

characteristics of water storage change in multi-temporal scales, e.g., the GRACE Groundwater 

Drought Index (GGDI) (Thomas et al. 2017), Water Storage Deficit Index (WSDI) (Sun et al. 

2018) and the Combined Climatologic Deviation Index (CCDI) (Sinha et al. 2019). The GRACE-

derived TWSA comprises the total water storage change within the vertically integrated water 

storage columns. It comprises surface, sub-surface, and groundwater storage variations.  

The recently developed CCDI includes all the aspects of meteorological, agricultural, hydrologic, 

and human-induced drought occurrences. However, the main limitation of the CCDI is that its 

calculation is based only on precipitation and TWSA data. It does not consider the other drought-

influencing variables, i.e., temperature, evapotranspiration, wind speed, and soil water holding 

capacity. Therefore, the motivation of developed indices is to integrate the contribution of 

hydrologic flux, i.e., precipitation, PET, and the hydrological storage conditions (the Terrestrial 

Water storage Anomalies) for assessing the drought conditions and identification of occurrences.   

For the PET calculation, the Penman-Monteith (PM) equation (Allen et al. 2006) and the 

Thornthwaite equation (Thornthwaite and Mather 1955) are two representative methods which 

is based on physical principles (changes in available energy, humidity, and wind speed) and air 

temperature respectively. In this study, the PET was calculated using the PM based equations 

that is adopted by the International Commission on Irrigation and Drainage (ICID), the Food and 

Agriculture Organization of the United Nations (FAO), and the American Society of Civil 

Engineers (ASCE) as the standard procedure for computing PET. With a value for PET, the 

difference between the precipitation P and PET for the month 𝑖 is calculated using Equation 7.2 

(Vicente-Serrano et al. 2010). 

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖      Eq. 7.2 
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Where D is the differences between the P and PET of each month. The differences anomaly (DA) 

was calculated using the following Equation 7.3 (Sinha et al. 2019):  

𝐷𝐴𝑖 = 𝐷𝑖 − 𝐷𝜇    Eq. 7.3 

A monthly differences anomaly (𝐷𝐴𝑖) time series is computed as the deviation of monthly 𝐷𝑖 

values from its mean 𝐷𝜇 (e.g., an average of January 2004 to December 2009) and TWSA is 

acquired directly from GRACE satellite solutions. The climatology of 𝐷𝐴 and TWSA are 

computed based on the GRACE deficit approach, discussed by Thomas et al. (2014). The 

climatology of 168 months (January 2003 to December 2016) was computed for the 𝐷𝐴 and 

TWSA time series in the study region by averaging the 𝐷𝐴 and TWSA values respectively of 

each month (e.g., all January in the 14 year record are averaged) (Thomas et al. 2017; Sinha et 

al. 2019). In this study, the monthly climatology was used to remove the influence of seasonality 

in 𝐷𝐴 and TWSA (Zhang et al. 2014). The monthly climatology of 𝐷𝐴 and TWSA were 

subtracted from each month of 𝐷𝐴 and TWSA respectively to obtain the residual in 𝐷𝐴 and 

TWSA time series. Both the residual were added to obtain the Combined Water Storage 

Anomalies (CWSA), which represents the net deviation in the volume of water storage based on 

seasonal variability. Finally, we normalize the CWSA by removing the mean CWSA𝜇 and 

dividing by the standard deviation CWSA𝜎, expressed by Equation 7.4 where  

𝐶𝑇𝐸𝐼 =  
𝐶𝑊𝑆𝐴𝑖− 𝐶𝑊𝑆𝐴𝜇

𝐶𝑊𝑆𝐴𝜎
     Eq. 7.4 

CTEI represents the normalized net deviation in water storage volumes. The combined observed 

water storage anomalies and deficits over the IGB river basins as shown in Figure 7.4.  

The severity of the drought events is calculated as a product of mean negative values (deficits) 

of CTEI and the duration (number of months) of a particular drought event persists (Yevjevich 

1969; Thomas et al. 2014; Sinha et al. 2016, 2019). The drought severity is a dimensionless value 

because CTEI does not have any unit. Once the onset and termination of a drought event are 

identified, the severity for an event is calculated using the following Equation 7.5. (Thomas et 

al. 2014):  

𝑆(𝑡) =  �̅�(𝑡) × 𝑇(𝑡)      Eq. 7.5 

Where 𝑆 is the severity, �̅� represents the mean negative values of CTEI, 𝑇 total duration of the 

drought events, and t denotes the occurrence of the specific drought events.  
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Figure 7.4. Combined observed water storage anomalies and deficits over the a) Indus; b) 

Ganga and Brahmaputra river basins. Red lines indicate the mean monthly CWSA; blue lines 

show the monthly climatology; purple-shaded area shows the water storage deficits 

(differences between the total anomalies and climatology of each month), and the blue-shaded 

area represents the ±𝟏𝝈 of residual time series. 

7.6.2. TREND ANALYSIS 

Mann-Kendall (MK) (Mann 1945) and Sen’s slope (Sen 1968) trend test non-parametric (i.e., 

distribution-free) methods were used to assess the monotonic trend (linear or non-linear) 

significance and their magnitude at defined confidence interval. These methods were widely used 

in hydro-meteorological time series data (Hamed 2008; Li et al. 2015; Deng et al. 2018a, b). 

Sen’s slope test was used to detect the trend on CTEI, temperature, precipitation, and PET on 

monthly and annual time series data. The calculated MK Z-statistics value indicates an increasing 

(Positive Z-value), decreasing (negative Z-value), or no trend (zero z-value) in the time series 

data. In this study, the null hypothesis is rejected if |𝑍| > 2.576 at the 1% significance level, if 

|𝑍| > 1.96 at the 5% significance level and if |𝑍| > 1.645 at the 10% significance level were 

used. 
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7.7. RESULTS 

To characterize the drought event, the potential of CTEI was developed based on the statistics 

obtained from GRACE TWSA, P, and PET over the IGB basins during 2003–2016. Results 

derived from CTEI mainly focus on assessing drought events and their severity in the major river 

basin. The performance and effectiveness of the methodology were validated with groundwater 

observation wells to monitor drought events accurately. Estimated CTEI drought events were 

compared with the existing drought indices for the same study period. Moreover, the correlation 

between CTEI and other derived drought indices was mapped to understand the best-fitted 

method for drought event identification. Furthermore, the spatio-temporal and the graphical 

interrelationship between CTEI and climatic variables (e.g., precipitation, PET, and LST) were 

analyzed to assess the changing variable pattern and their influence on drought events. 

7.7.1. ASSESSMENT OF CTEI 

The integration of precipitation, PET, and GRACE TWSA was used to develop a new index 

called CTEI. The IGB basins have diverse in terms of their area, topography, climate, culture, 

and livelihood. The basins are one of the most densely populated regions of the world, and the 

groundwater extraction rate is greater than 85%, mainly used for irrigation purposes (Mukherjee 

et al. 2015). A monthly scale of CTEI was mapped to characterize the drought events that occure 

from 2003 to 2016. A detailed analysis of CTEI was assessed to estimate the drought events, 

duration, peak month of the drought, severity, and total deficit (Table 7.4).  The drought periods 

were identified if the CTEI value was negative continuous for three or more months. Figure 7.5 

demonstrates the surplus (positive) and deficit (negative) water on monthly (left) and 3-month 

(right) moving average value of CTEI from 2003 to 2016. The monthly values of CTEI show a 

high frequency of fluctuations in time series data. Therefore, the centered 3-month simple 

moving-average technique was used for smoothing the data. The impact of drought on a 

particular month is influenced by water availability in the previous and next months of the year. 

Therefore, these three monthly average CTEI shows fewer identified drought events than one-

month CTEI value (Figure 7.5).  

The Indus river basin was identified ten drought periods based on monthly CTEI (Figure 7.5a). 

Two severe drought events were monitored in the Indus basin, i.e., May 2009 – August 2010 (14 

months) and October 2015 – December 2016 (14 months), with the severity of –8.82 and –11.55, 

respectively. The highest peak month was observed in December 2016, with a magnitude of –

1.90. The total water deficit of drought events in 2004, 2009, 2012, 2013, 2014, 2015, and 2016 
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were –23.46, –59.48, –21.43, –33.84, –41.10, and –94.72 cm with a duration of 8, 14, 4, 8, 9 and 

14 months, respectively (Table 7.4). The water deficit in 2004 was almost the same as in 2012, 

while the duration of the drought month was double in 2004, showing the severity of the drought 

was higher in 2012; however, the drought in 2004 was prolonged. These results are consistent 

with the reported results by several authors in the region (NRAA 2009; Rathore et al. 2013; PMD 

2015; Torres 2015; Kothawale and Rajeevan 2016; Young et al. 2019). The drought events and 

total water storage deficit was increased during the study period. The time series of CTEI show 

a significantly decreasing monthly trend with a value of –0.006 month−1. 

 

Figure 7.5. Monthly (left: a, b, c) and an average of three-month CTEI (right: d, e, f) over the 

three major river basins, i.e., Indus, Ganga, and the Brahmaputra. Blue lines: CTEI; Thick 

red dash lines: trend line; Red dash lines: 95% prediction band of CTEI; Orange bands: major 

drought events that exhibit negative CTEI for periods of three or more months.  

The Ganga River basin has experienced eight drought events during the study period, illustrated 

by CTEI in Figure 7.5b. One was observed as the longest hydrological drought event for 18 

months (July 2015 – December 2016), while the second and third were around 11 (April 2014 – 

February 2015) and 10 (October 2009 – May 2010) months, respectively. The highest severity 

occurred in September 2016, with a CTEI of –1.71. The total water storage deficit was about –

278.64 cm (Table 7.4). The results are consistent with several studies over the region (NRAA 

2009; Rathore et al. 2013; Torres 2015; Kothawale and Rajeevan 2016; Young et al. 2019). 

Apart, the total water storage deficit was higher (~ –43.30 cm) with a shorter duration (May 2012 

– August 2012). The mean monthly trend of CTEI shows a decreasing trend (–0.011 month−1) 

with statistically significant at p < 0.05. 
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In the Brahmaputra river basin, three out of ten drought events were observed the most prolonged 

drought about 16 months (September 2015 – December 2016), for 12 months (October 2012 – 

September 2013), and for 11 months (September 2014 – July 2015), respectively. It was observed 

that one month of surplus water storage interrupted the long drought events from May 2011 to 

August 2015 (a total of about six months of surplus water during the period). The largest peak 

severity was observed in August 2016, with a magnitude of –2.31. Kothawale and Rajeevan 

(2016) reported that the year 2003, 2005, 2006, 2009, 2010, 2011, 2013, 2014, and 2016 were 

the deficit year over North-East India based on summer monsoon (June to September). The 

monthly time series of CTEI represents a significant decreasing trend with a value of –0.011 

month−1. 

Table 7.4. Summary of identified drought events using monthly CTEI values over the IGB 

river basins. 

Time period 
Duration 

(months) 

Peak 

CTEI 

Peak 

month 
Severity 

Total deficit 

(cm) 

Indus river basin 

2004.02 – 2004.09 8 -1.10 Jul 2004 -4.16 -23.46 

2008.09 – 2008.11 3 -0.23 Oct 2008 -0.64 -3.01 

2009.05 – 2010.06 14 -1.53 Aug 2010 -8.82 -59.48 

2011.12 – 2012.03 4 -0.47 Feb 2012 -1.02 -6.47 

2012.04 – 2012.08 4 -1.37 Jul 2012 -3.08 -21.43 

2012.10 – 2013.01 4 -0.30 Jan 2013 -0.77 -8.04 

2013.03 – 2013.05 3 -0.73 May 2013 -1.07 -8.80 

2013.09 – 2014.04 8 -1.05 Sep 2013 -3.38 -33.84 

2014.06 – 2015.02 9 -1.59 Aug 2014 -4.96 -41.10 

2015.11 – 2016.12 14 -1.90 Dec 2016 -11.55 -94.72 

Ganga river basin 

2008.01 – 2008.03 3 -0.08 Feb 2008 -0.18 -1.77 

2009.02 – 2009.09 8 -1.44 May 2009 -4.87 -56.53 

2009.11 – 2010.08 10 -1.41 May 2010 -6.70 -80.43 

2011.01 – 2011.05 5 -0.52 Mar 2011  -1.33 -14.90 

2012.05 – 2012.08 4 -1.84 May 2012 -3.30 -43.30 

2012.10 – 2013.05 8 -0.53 Oct 2012 -2.76 -37.41 

2014.04 – 2015.02 11 -1.35 Jul 2014 -7.53 -98.87 

2015.07 – 2016.12 18 -1.71 Sep 2016 -21.23 -278.64 
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Brahmaputra river basin 

2006.07 – 2006.10 4 -1.21 Aug 2006 -2.73 -21.05 

2009.03 – 2009.07 5 -1.12 Jun 2009 -2.70 -23.74 

2009.09 – 2010.03 7 -1.14 Sep 2009 -2.90 -22.65 

2011.04 – 2011.06 3 -0.62 Apr 2011 -1.24 -11.57 

2011.08 – 2011.10 3 -0.85 Oct 2011 -1.49 -11.96 

2011.12 – 2012.08 9 -0.97 May 2012 -2.85 -24.17 

2012.10 – 2013.09 12 -1.12 Sep 2013 -7.25 -63.62 

2013.11 – 2014.07 9 -1.34 Apr 2014 -4.82 -44.01 

2014.09 – 2015.07 11 -2.05 Jul 2014 -8.26 -63.83 

2015.09 – 2016.12 16 -2.31 Aug 2016 -16.39 -129.74 

7.7.2. COMPARISON BETWEEN CTEI AND OTHER EXISTING DROUGHT INDICES 

A well-defined preexisting drought indexes were derived over the subjected basins, and outcomes 

were compared with the CTEI index for the study period (Figure 7.6). Three drought indexes 

(WSDI, GGDI, and CCDI) were derived using GRACE satellite data, while the SPEI were used 

precipitation and evapotranspiration. The monthly value of WSDI, GGDI, CCDI, and SPEI is 

demonstrated through a dashed line, and the CTEI is represented through a solid line (Figure 

7.6). The observed result of CTEI and its response to the climatic anomalies reasonably agrees 

with preexisting indices. SPEI is the most important indices used for drought characterization as 

it is more sensitive to precipitation and evapotranspiration rates; consequently, high-frequency 

variations are observed in their time series. It is also important to recognize that the CCDI and 

CTEI demonstrated an almost similar pattern in their magnitude. However, the CCDI 

incorporated the impact of precipitation, whereas the CTEI uses the climatic water balance 

(differences between the Precipitation and PET) (Thornthwaite 1948) along with total water 

storage.  

The spatial correlation was observed between CTEI and the other four drought indices over the 

three basins from 2003 to 2016 (Figure 7.7). The mean correlation between CTEI and GGDI 

varies from 0.99 to –0.18, with a mean value of 0.55 (Figure 7.7a). The spatial pattern illustrates 

a very heterogamous pattern in the region. A significantly higher correlation was observed in the 

Ganga (R = 0.92, p < 0.01) followed by the Indus (R = 0.86, p < 0.01)  and the Brahmaputra (R 

= 0.85, p < 0.01)  basins (Table 7.5). The correlation was measured slightly lower than the other 

GRACE-derived drought index, which may be the GGDI uses groundwater storage, computed 

using GLDAS data (Thomas et al. 2017). The correlation was measured between CTEI and 
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WSDI, varying from 0.99 to 0.18, with a mean value of 0.90 (Figure 7.7b). Similarly, the 

estimated correlation between CTEI and CCDI ranged from 0.99 to –0.17, with a mean value of 

0.96. The correlation of CTEI with CCDI and WSDI was higher than other indexes, which may 

be these indexes were computed from the GRACE TWSA data (Sun et al. 2018). Further, the 

correlation of CTEI with SPEI varies from 0.87 to –0.57, with a mean value of 0.39. The SPEI 

indicates a significant correlation over the Indus (R = 0.07, p < 0.01), and no significant 

correlation was found in the Ganga and Brahmaputra basins (Table 7.5).  

Table 7.5. Mean annual Pearson’s correlation coefficient (Bold format represents the 

significant value at p < 0.01) matrix of drought indices for the IGB river basins. 

 CTEI GGDI WSDI CCDI SPEI IGDI 

Indus river basin 

CTEI 1.00      

GGDI 0.86 1.00     

WSDI 0.95 0.96 1.00    

CCDI 0.97 0.88 0.96 1.00   

SPEI 0.70 0.44 0.60 0.69 1.00  

IGDI 0.77 0.90 0.88 0.73 0.48 1.00 

Ganga river basin 

CTEI 1.00      

GGDI 0.92 1.00     

WSDI 0.98 0.96 1.00    

CCDI 0.98 0.93 0.99 1.00   

SPEI 0.42 0.34 0.35 0.44 1.00  

IGDI 0.57 0.45 0.57 0.60 0.60 1.00 

Brahmaputra river basin 

CTEI 1.00      

GGDI 0.85 1.00     

WSDI 0.97 0.90 1.00    

CCDI 0.98 0.87 0.98 1.00   

SPEI 0.34 -0.09 0.25 0.32 1.00  

IGDI 0.49 0.30 0.43 0.49 0.28 1.00 
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Figure 7.6. Comparisons between monthly CTEI and four other drought indices (WSDI, 

GGDI, CCDI, and SPEI) over the a) Indus, b) Ganga and, c) Brahmaputra river basins. 

 

Figure 7.7. Pearson’s correlation of mean annual CTEI with a) GGDI, b) WSDI, c) CCDI, 

and d) SPEI indices over the IGB river basins. 
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The estimated correlation of SPEI was lower because it may not include the total water storage 

and depends only on the climatic water balance (Vicente-Serrano et al. 2009). The relationship 

was also estimated between the CTEI and IGDI over the IGB basins from 2003 to 2016 (Table 

7.5). A significant correlation was observed between CTEI and IGDI about 0.77 at 𝑝 < 0.01 in 

the Indus basin, whereas it was insignificant in the Ganga (R = 0.57) and Brahmaputra (R = 0.49) 

basins. A similar relationship was observed between GRACE-based and in situ GWS anomalies 

in the northwest India aquifer (Long et al. 2016), the Indian state of Punjab (Panda and Wahr 

2016), and the entire India (Bhanja et al. 2016). 

7.7.3. COMPARISON OF CTEI WITH GROUND OBSERVATION DATA 

The validation between remote sensing-derived results and in situ observation is essential to 

improve the effectiveness of algorithms or indices associated with the data retrieval (Bhanja et 

al. 2016). The proposed CTEI was compared with generated IGDI over the Indian part of the 

IGB river basins. The IGDI was computed using the dense networks of in situ observation wells. 

The performance of CTEI shows a good correlation with in situ data on a basinal scale. The mean 

annual trend of CTEI shows a significant decreasing trend in the Indus (–0.093, p < 0.01), Ganga 

(–0.139, p < 0.01), and Brahmaputra (–0.142, p < 0.01) river basins. Similarly, the IGDI shows 

a significant decreasing trend in the Indus (–0.056, p < 0.01) while an insignificant decreasing 

trend in the Ganga (–0.019) and Brahmaputra (–0.049) basins (Figure 7.8). The relationship 

between GRACE-derived GWSA and observational wells data was demonstrated by Bhanja et 

al. (2016) over India. Several studies show that the GRACE-based and ground-based 

observations found good agreement over different parts of the world (Long et al., 2016; Panda 

and Wahr, 2016; Matthew Rodell et al., 2007; Scanlon et al., 2012; Shamsudduha et al., 2012; 

Strassberg et al., 2007; Swenson et al., 2006). Our results show that both the indices (CTEI and 

IGDI) exhibit well match in the three river basins.  

7.7.4. INFLUENCE OF CLIMATIC VARIABLES  

Precipitation and temperature are the most influential climatic variables responsible for 

generating the condition of natural drought on a global scale. The increasing human-induced 

activities are accountable for declining the groundwater and changing the climatic parameters. 

The mean annual trend of rainfall shows decreasing in the Ganga (–0.13 cm yr−1) and 

Brahmaputra (–1.14 cm yr−1)) basins whereas an increasing trend in the Indus (0.87 cm yr−1) 

basin. The southwest monsoon rainfall in northeast India has decreased significantly since 1950, 

reported by Guhathakurta et al. (2015). However, the PET was increasing in the Ganga (1.01 cm 
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yr−1, p < 0.05) and Brahmaputra (0.66 cm yr−1) basin but decreasing in the Indus (–0.05 cm 

yr−1, p < 0.05) basin. Similarly, the LST was insignificantly increasing with a rate of 0.07, 0.02, 

and 0.02 °C yr−1 for the Indus, Ganga, and Brahmaputra basins, respectively. Panda and Wahr 

(2016) reported groundwater storage depletion, which constitutes almost 90% of the TWS loss, 

is mainly influenced by the rise in temperatures since 2008. 

 

Figure 7.8. Comparison between the GRACE-derived CTEI and in situ based IGDI averaged 

over the (a) Indus (b) Ganga (c) Brahmaputra river basins from 2003 to 2016. 

The relationship was established between annual CTEI and the estimated anomaly of LST, 

precipitation, and PET in each river basin during the study period (Figure 7.9). The anomaly was 

generated by subtracting the mean value (from 2004 to 2009) from each year to match the 

GRACE-derived CTEI value. A qualitative assessment of the drought/non-drought distribution 

indicates the interrelationship of these three crucial climatic parameters with CTEI. The 

interconnection of CTEI with climatic variables is more noticeable in the Brahmaputra, followed 

by the Ganga and the Indus basins. A negative precipitation anomaly was associated with positive 

LST and PET in 2004, 2009, and 2016 over the Indus basin, which CTEI successfully recorded 
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(Figure 7.9a). Similar climatic conditions were observed in the Ganga basin for drought years 

2006, 2009, 2010, 2012, 2014, and 2015 (Figure 7.9b). In the Brahmaputra basin, the drought 

years 2006, 2009, 2011, and 2013 to 2016 were strongly associated with the CTEI and climatic 

variables (Figure 7.9c). The low precipitation with high PET and LST have strongly supported 

the observed drought years. 

India has experienced four major droughts in 2004, 2009, 2014, and 2015 (NRAA 2009; Rathore 

et al. 2013; Kothawale and Rajeevan 2016). These droughts were severely affecting the various 

sectors and overall economic development of the country. Similar drought years were observed 

by Panda and Wahr (2016) in the Ganges basin that occurred due to anthropogenic groundwater 

withdrawals that sustain rice and wheat cultivation. Preethi et al. (2011) have reported the 

severity of drought events in 2009 due to the Indian summer monsoon deficit and link with the 

El Nino condition. Similar observation by the Indian Central Ground Water Board (CGWB 

2011), the groundwater table declined in the northwest and north India from 2006 to 2008. The 

GWS depleted (derived from GRACE data) at the rate of 1.25 and 2.1 cm yr−1 has been observed 

in the Ganga basin and Punjab state (Indus basin) from January 2003 to May 2014 (Panda and 

Wahr 2016). 

The interrelationship of the CTEI with PET and LST shows a significant negative correlation in 

the IGB basins (Table 7.6). A maximum negative correlation was observed in the Ganga, 

followed by Brahmaputra river basins. Similarly, a significant positive correlation was observed 

between the CTEI and precipitation over the Brahmaputra basin, and no significant correlation 

was observed in the Indus and Ganga basins. The interrelation between climatic variables was 

also observed. Precipitation shows a significant negative correlation with PET and LST in the 

Ganga basin. In the Brahmaputra basin, a significant negative correlation was observed between 

precipitation and PET  and an insignificant with LST. 

Table 7.6. Mean annual correlation coefficient (bold format shows the significant value at 

p<0.05) matrix of CTEI with climatic parameters over the IGB river basins.  

 Indus River basin Ganga River basin Brahmaputra River basin 

 P PET LST CTEI P PET LST CTEI P PET LST CTEI 

TRMM 1.00    1.00    1.00    

PET -0.49 1.00   -0.58 1.00   -0.67 1.00   

LST -0.13 0.50 1.00  -0.62 0.45 1.00  -0.51 0.39 1.00  

CTEI 0.27 -0.67 -0.54 1.00 0.40 -0.80 -0.63 1.00 0.56 -0.72 -0.63 1.00 
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Figure 7.9. Mean annual anomalies of CTEI and other climatic variables (LST, precipitation, 

and PET) over the a) Indus, b) Ganga and, c) Brahmaputra river basins. 

7.8. DISCUSSIONS AND CONCLUSION 

The new CTEI index combines GRACE TWSA and the deviation of precipitation and PET from 

normal climatological conditions. To establish the efficiency and applicability of the index, the 

three major river basins (Indus, Ganga, and Brahmaputra) were selected over the Himalayan 

region. The selected basins are most important in terms of socioeconomic regions among the 

world’s productive ecosystems. Further, the drought severity events are closely linked with food 

production and livelihood. The CTEI has the capability to correctly identify the drought events 

over the river basins through a comprehensive concept based on the hydrological and 

climatological conditions. Results comprise the temporal drought variability and intensity in the 

IGB basins with its implication for better understanding the actual drought condition and severity 

level. The estimated drought events correspond well matched with the historical reported events 

in the basins from 2003 to 2016. Besides, a few more drought events were characterized by CTEI, 

which was not yet reported due to capturing the multi-dimensionality of droughts, requiring 
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exhaustive measures. As drought event recognized by the CTEI endorsed as the low precipitation 

and high PET conditions for the study area. This condition further corroborates the hydro-

climatological supported occurrence of drought.  

A comparison of CTEI and other commonly used drought indices in spatial and temporal scales 

was used to highlight their fundamental difference. Result demonstrates that CTEI were highly 

correlated with the CCDI and WSDI over the basin. However, the difference between these two 

indices would be more prominent when analyzed over a small region with diverse hydro-

climatological conditions and the contribution of precipitation easily identified. Because the 

precipitation shows a non-uniform and heterogeneous pattern that varies from location to 

location. The reason for the relatively low correlation of CTEI with other indices is that the new 

indices represent both the natural and human-induced drought occurrences. In contrast, other 

indices manifest meteorological conditions and other climatological conditions. 

Furthermore, CTEI, a GRACE-based index, accounts for the surface and subsurface water 

column anomalies, which help to understand the availability of groundwater. The computation 

of SPEI allows a basic water balance calculation to scale the intensity of the drought. The SPEI 

uses monthly precipitation and PET data to identify and monitor the drought conditions and their 

associated impacts (Vicente-Serrano et al. 2009; Gautam and Bana 2014).  Hence, SPEI can be 

considered to be somewhat similar to CTEI. However, it does not incorporate the contribution 

from the storage components in their computation, which is critical while assessing the drought 

events. Instead, CCDI is computed using precipitation and the number of water balance 

parameters. Therefore, it also explains why CTEI is highly correlated with CCDI compared to 

other indices. Consequently, it is suggested that the new CTEI could serve as a potential and 

complementary metric for drought identification and characterization. 

The requirement of a new index is mainly related to a question of its efficiency over the other 

existing indices. About this, we need to acknowledge the parameter required to understand the 

drought's intensity, behavior, severity, and occurrence. In this regard, previously existing 

GRACE-derived drought indices incorporated the precipitation and the vertical land water 

column information to characterize drought. However, drought occurrence is mainly driven by 

natural and human-induced driving factors. Existing indices would be able to quantify the natural 

drought associated with precipitation and global warming. However, the formulation of CTEI 

with a holistic consideration of water balance components, precipitation, and PET has been 

considered to improve the accuracy of drought identification. The main objective of developing 

this index is to incorporate the climatological and hydro-meteorological responsible factors for 
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holistic drought monitoring over a large spatial and temporal scale. The selection of drought 

index by stakeholders mainly depends upon the geographical coverage, climatic conditions, and 

objective associated with the drought index. However, the CTEI will be particularly beneficial 

for drought assessment on a larger scale. Nonetheless, at the small scale, the choice of drought 

index may vary with the stakeholder as this index may not work for the smaller area (limitation 

of GRACE data < 2, 50,000 km2). 

CTEI has several advantages over the existing drought indices. It is a simplistic computation 

index, which reduces intensive numerical modeling & simulation and calibration & 

parameterization. The major contribution is to determine the intensification of drought by virtue 

of a reduction in precipitation and increase in PET, probably due to climate change and the 

growing demand for freshwater, which increases the stress on the groundwater resources. As the 

GRACE, observation is highly efficient for representing column land water storage variation in 

monthly time scale. Hence, the utilization of GRACE observation in CTEI can implicitly account 

for the natural and human-induced effect on drought assessment. 

Overall, the CTEI is an innovative, effective index and observes potential results. Furthermore, 

the ease of computation and availability of datasets utilized in the public domain communicates 

the universal applicability of the proposed index. The result demonstrates the proposed index's 

ability to illuminate extreme climatic events and their comprehensive monitoring over local-

regional-global scales. The study area has diverse climatic conditions and heterogeneous rainfall 

patterns; it is essential to employ the CTEI to quantify climatological and hydro-meteorological 

drought related to its integral deviation. This methodology presented here is expected to improve 

the drought characterization and monitoring for disaster management programs.  
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8.1. INTRODUCTION 

Forecasting river discharge is a significant driver linked with the planning and operation of the 

water resource systems (Alizadeh et al. 2017; Chang and Guo 2020). The changing river 

discharge pattern not only impacted agriculture but also affected the livelihood of millions of 

populations. Therefore, a reliable prediction model needs to be developed for short-term and 

long-term streamflow events monitoring. The Long Short-Term Memory (LSTM) deep neural 

network model has been widely used for time series forecasting in several fields, such as runoff 

simulation (Callegari et al. 2015; Kan et al. 2017; Kratzert et al. 2018, 2019a; Le et al. 2019; Fan 

et al. 2020; Liu et al. 2020; Thapa et al. 2020), wind speed forecasting (Altan et al. 2021), drought 

prediction (Zhang et al. 2020; Dikshit et al. 2021), sea surface temperature (Zhang et al. 2017), 

weather forecasting (Hewage et al. 2020), water breakthrough prediction (Bai and Tahmasebi 

2021), and stock prediction (Liu and Wang 2018; Lu et al. 2020; Rasheed et al. 2020). For 

example, Kratzert et al. (2019b) have found that the LSTM achieved better results of regional 

rainfall-runoff modelling against the multiple locally and regionally existing benchmark 

hydrological models. Also, Fan et al. (2020) investigated the runoff simulation using LSTM, 

Artificial Neural Network (ANN), and Soil & Water Assessment Tool (SWAT) model using 

meteorological variables. The performance of the LSTM model scored best in comparison to 

ANN and SWAT. Similarly, Thapa et al. (2020) have compared the result of the LSTM model 

with Nonlinear Autoregressive Exogenous (NARX), Support Vector Regressor (SVR), and 

Gaussian Process Regression (GPR) models over the Langtang basin in the Himalayas. They 

have also suggested that the LSTM outperformed other snowmelt-driven streamflow prediction 

models. 

Numerous deep neural network-based prediction models exist; however, selecting a best-suited 

model for the study area is needed. Many studies have proven that the LSTM networks can 

predict reliable hydrological processes (Gauch et al. 2020; Zhang et al. 2020). Different 

environmental processes require hydrological components and discharge information at various 

time scales (Gauch et al. 2020). For example, hydropower generation projects may require 

discharge information daily or weekly (as input) into their reservoir. At the same time, we 
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consider the flood forecasting model that needed data at hourly or daily scale. Several studies 

have predicted the discharge using the deep learning approach at a daily scale in a different 

location (Hussain et al. 2020; Liu et al. 2020; Ajayi et al. 2021; Yao 2021).  

In the Indian Himalayas, the application of deep neural networks on a  basinal scale is less studied 

due to the scarce discharge locations and rugged terrain of the Himalayan region. However, the 

many regions of the Himalayas experienced several extreme events that affected the lives of 

millions of populations and infrastructure (Dale et al. 2017; Zhang et al. 2020). Therefore, a high-

performance streamflow/river discharge prediction model is required at high temporal resolution 

in order to measure the implication on the ecosystem and even have the capability to fill the 

inconsistency in time series data. On the other hand, a comparison between different architectures 

of LSTM was established, and the best suitable model was selected in different regions 

(Althelaya et al. 2018; Cao et al. 2018; Wang et al. 2019; Rasheed et al. 2020). A similar approach 

of best model selection over the Himalayan region needs to be studied; therefore, five different 

LSTM architectures were applied, and their accuracy is being tested over the study region. Before 

selecting the best model for discharge prediction, a significant step is to select multiple sets of 

forcing variables that directly or indirectly contribute to river discharge change. Chollet and 

Allaire (2018) have also pointed out that picking the correct network architecture is more an art 

than science. Ideally, all the models should be able to process all forcing variables together to 

combine and correlate information across products and obtain better estimates of the true 

meteorological conditions (Kratzert et al. 2021).  

8.2. RESEARCH QUESTIONS 

 Is it possible to forecast discharge using the machine learning model, and if so, to what 

extent? Does the prediction model have the capability to incorporate all the necessary 

physical conditions into the model? Is the performance of the prediction model satisfactory? 

 What type of deep learning and machine learning model are suitable for prediction. 

What is the performance of different LSTM forecasting models? Which kind of machine 

learning model is best suited for discharge prediction? 

 Does the use of PCA-based prediction improve the model performance? Does the 

machine learning-based models outperform PCA-based? Is the best-suited model able to 

predict the short and long-term discharge over the region? 
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8.3. OBJECTIVES 

 Quantification of contributing variables and selection of best-suited variable combination for 

discharge prediction 

 Implementation of different LSTM architecture and identification of best-suited model for 

the study area 

 Comparison between the best selected LSTM model and PCA generated prediction to analyze 

the suitable forecasting model and their reliability with time 

8.4. STUDY AREA 

 

Figure 8.1. (a) Location map of the Sutlej River basin in India and its altitude variation using 

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model Version 3.0 (DEM V3.0) 
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(∼90-m spatial resolution). The basin boundary includes discharge sites, streams, glacier 

boundaries, and sub-basins represented up to the discharge sites (Bhakra, Kasol, Suni, and 

Rampur). (b) Hypsometry of the basin along with glacier areas, and (c) mean monthly 

distribution of rainfall and snowfall as well as air temperature measured through ERA-5-Land 

reanalysis data. 

The Sutlej River originates from the Mansarovar-Rakastal lakes of the Tibetan plateau at an 

elevation above 4500 m a.s.l. and flows in the west and southwest direction while entering 

Himachal Pradesh, India (Singh et al. 2014). The study area of the basin is considered up to 

Bhakra dam with an outlet point of 76° 26’N and 31° 25’E (Figure 8.1a). The basin area lies 

between 76° 15′ – 79° 12′E and 30° 53′ – 33° 09′ N, covering an area of 26,158 km2 and 21,845 

km2 area under Indian territory and lies between 76° 15′ – 79° 08′E and 30° 53′ – 33° 09′N. It 

covers parts of Simala, Kullu, Mandi, Bilaspur, and Solan districts of Himachal Pradesh. The 

basin has an elevation range from 415 to 6735 m a.s.l. based on SRTM DEM Version 3.0 (DEM 

V3.0) (∼90-m spatial resolution). The majority of basin area (~66%) come under the elevation 

zone (above 4000 m a.s.l.), and even ~1084 km2  glacier area estimated from Randolph Glacier 

Inventory (RGI 6.0) (RGI Consortium 2017) also exist in the same elevation zone. Therefore, the 

area above 4000 m a.s.l. is crucial for discharge prediction, as it contributes to melting in the 

summer season and feeds the basin population. (Figure 8.1b). This region is also characterized 

by a steep slope, dissected topography with high relief features.  

The basin experiences a diverse climate variation ranging from tropical and warm temperate (in 

the lower part of the basin) to very cold (in the upper part of the basin). In the uppermost of the 

basin, the climate is characterized by the frozen area similar to the Polar regions (Mir et al. 2015). 

This uppermost region is predominantly nourished by western disturbances originating from the 

Mediterranean Sea (Dimri and Mohanty 2007). However, the lower portion of the basin receives 

rain, while the middle part of the basin is influenced by liquid and solid precipitation (Mir et al. 

2015). The higher value of snowfall occurs between December and April, whereas the rainfall is 

mainly received from June to September. Apart from this, this region attains both types of 

precipitation throughout the year (Figure 8.1C). 

Apart from the geography and climate of the basin, this region contains the second-highest 

gravity dam of Asia, which is constructed at Bhakra in Himachal Pradesh which is the terminus 

of the river (Mir et al. 2015). The other hydropower projects are the Sunni Dam Project of 1080 

Mega Watt (MW), Rampur Hydro-electric Power Project (RHEP) of 412 MW, and Nathpa 

Jhakari Hydro-Electric Power Project (NJHEP) of 1500 MW. This basin identified hydropower 
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potential as 9,22,675 MW (Singh et al. 2014). Therefore, the meltwater of snow and glacier 

during the summer season is essential not only for hydropower generation but also for sustaining 

the ecosystem.  

8.5. DATA USED 

8.5.1. MODIS SNOW COVER PRODUCTS 

In this study, the MODIS daily snow cover products version 6 (V6) of Terra (MOD10A1) and 

Aqua (MYD10A1) were utilized over the study area from 1 October 2000 to 30 September 2019. 

The datasets are freely available at the National Aeronautics and Space Administration (NASA) 

Earth data gateway customize service (https://search.earthdata.nasa.gov) with 500 m grid 

resolution and sinusoidal map projection. The Sutlej basin is covered in MODIS single tile with 

tile number h24v05 (i.e., horizontal 24 and vertical 5). A total of 6873 out of 6939 (66 images 

missing) images of Terra and 6374 out of 6390 (16 images missing) of Aqua were utilized during 

the observation period. While a total of 66 and 16 images of Terra and Aqua were missing for 

the entire period, respectively. All the missing images in each product were filled with the 

corresponding product. However, in the non-Aqua period, missing images were considered 100% 

cloud cover during the day. A detailed description of snow cover products generation could be 

found in Riggs et al. (2016). 

 

Figure 8.2. Mean yearly Cloud Cover Day (CCD) of the (a) Terra (MOD10A1) and (b) Aqua 

(MYD10A1) snow cover products, estimated over the Sutlej River basin from 2000 to 2019. 

The datasets were stored in Hierarchical Data Format (HDF) with seven different parameters 

https://search.earthdata.nasa.gov/


ANALYSING THE STATUS AND FUTURE CHANGES OF THE CRYOSPHERE AND ITS 

RELATION WITH CLIMATE CHANGE FOR THE HIMALAYAN REGION 

Page 184 of 254 

(Normalized Difference Snow Index [NDSI] snow cover, raw NDSI, basic QA, algorithm flags 

QA, snow albedo, orbit pointer, and granule pointer). For this study, the NDSI snow cover 

parameter was used for both the snow products for SCA analysis. For this, we have used the 

global value of the NDSI threshold 0.4, as suggested (Riggs et al. 2016, 2017). The new images 

were generated from 9-standard MODIS classes (NDSI snow cover, Missing data, No decision, 

Night, Inland water, Ocean, Cloud, Detector saturated, and Fill), then reclassified into three new 

classes, i.e., no-snow, snow, and cloud. The mean Cloud Cover Day (CCD) of Terra and Aqua 

was 143 and 175, respectively, which is 18% higher in Aqua than the Terra images of the total 

geographical area (Figure 8.2).  

8.5.2. ERA5-LAND REANALYSIS DATA 

ERA5-Land is a global reanalysis dataset with a series of improvements that enhances the 

accuracy of the datasets and their applicability for all types of land cover monitoring. It is 

available from 1981 to the present on a regular latitude/longitude grid of 0.1º × 0.1º (~9 km) with 

an hourly and monthly time scale. ERA5-Land provides a single simulation with a consistent 

view of the water and energy cycles at a surface level (C3S 2019). Many authors have already 

used the ERA-5 over the Himalayan region (Bandyopadhyay et al. 2019; Yi et al. 2020; Patel et 

al. 2021a). In this study, we have utilized hourly data of snowfall, total precipitation, air 

temperature (𝑇𝑎) and dew point temperature (𝑇𝑑) at 2m, surface temperature (𝑇𝑠), and wind speed 

(𝑢10) at 10-m (assessed from U and V components). The derived variables such as rainfall (total 

precipitation – snowfall) and relative humidity (RH: estimated from 𝑇𝑎 and 𝑇𝑑) variables were 

also used to develop a discharge prediction model over the Sutlej River basin.  

The hourly data of selected variables were obtained from 1 October 2000 to 30 September 2019 

(19 hydrological years), available at Coordinated Universal Time (UTC) zone, which is 05:30 

hours lag from the Indian Standard Time (IST) zone. Therefore, we marked 00:00 hour (UTC) 

as 05:30 hour (IST) and then converted the entire data into the IST zone. After converting UTC 

into IST, we have generated a daily time scale data from 00:30 hour to 23.30 hour (IST) for daily 

analysis. The hourly accumulated total precipitation and snowfall were taken from ERA5-Land  

between 1 October 2000 and 30 September 2019 (Table 8.1). These data are produced by 

accumulating the value from the beginning (01:00 hour UTC) to the end (00:00 hour UTC) of 

the forecast.  

For this study, we have first converted the hourly accumulated value into hourly (next – previous 

hour) to analyze the variation in the IST zone. We have accumulated the hourly data to generate 
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the daily total precipitation and snowfall by considering the above criteria for UTC to IST 

conversion. The convention for accumulations used in ERA5-Land differs from ERA5, and a 

detailed description is available at  

https://confluence.ecmwf.int/pages/viewpage.action?pageId=197702790. Further, all 

hydrometeorological variables were interpolated into 500-m grid resolution to match the 

resolution of MODIS snow products using the bilinear interpolation technique.  

8.5.3. FIELD MEASURED DISCHARGE DATA 

A long-term daily discharge observation (1964 – 2012) over the Sutlej River basin was collected 

and supplied by Bhakra Beas Management Board (BBMB). The data was measured at four 

gauging stations, i.e., Bhakra, Kasol, Suni, and Rampur. The discharge observations were taken 

from the National Institute of Hydrology (NIH), Roorkee. The data is available for a period of 

12 years (from 2000 to 2012) at Kasol, Sunni, and Rampur and for six years (2000 – 2006) at 

Bhakra (Table 8.1). This daily time step data was utilized for training and testing the model.  

Table 8.1. A detailed description of the dataset used in this study for developing a time series 

forecasting model. 

Dataset Variables/location Spatial 

resolution 

Temporal 

resolution 

Period Source 

MODIS 

 

MOD10A1 500 m Daily 2000–

2019 

National Snow 

and Ice Data 

Center MYD10A1 500 m  Daily 2002–

2019 

ERA5-

Land 

Snowfall (𝑃𝑠), Total 

precipitation (𝑃𝑡), Air 

temperature (𝑇𝑎), Dew 

point temperature (𝑇𝑑), 

Surface temperature (𝑇𝑠), U 

and V components of wind 

speed at 10 m 

9 km  Hourly 2000–

2019 

Copernicus 

Climate Data 

Store 

Discharge 

Bhakra -- Daily 2000–

2006 

Bhakra Beas 

Management 

Board 

(BBMB) 

Kasol, Sunni, and Rampur -- Daily 2000–

2012 

https://confluence.ecmwf.int/pages/viewpage.action?pageId=197702790
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8.6. METHODOLOGY 

This section comprises a detailed methodology to develop a discharge prediction model over the 

Sutlej River basin. The study includes remote sensing and reanalysis data to quantify the forcing 

climatic variables and their influence on discharge prediction. For this, a hierarchical 

methodology was developed, including cloud-gap filling in snow products, selecting contributing 

variables, analysing the sensitivity of hyperparameters, implementing different LSTM model 

architectures, and then finally predicting the river discharge for the study site. Also, we have 

predicted the time series daily discharge from 2012 to 2019 over the basin. All the selected 

datasets were split into training and testing. The first 80% of the data were used for the model 

generation, and the remaining 20% were used for validation purposes. A detailed description of 

the methodology is given below: 

8.6.1. CLOUD REMOVAL METHODOLOGY 

The presence of cloud cover hindered the daily MODIS snow products as a limitation of optical 

sensors. Many sequential composite methods were used to estimate snow under the cloud pixel 

(Gafurov and Bárdossy 2009; Parajka et al. 2010; Paudel and Andersen 2011; Hasson et al. 2014; 

Wang et al. 2014; Tran et al. 2019). In the present study, we have applied five steps sequential 

composite methodology for cloud removal. These are 1) combination of Terra and Aqua snow 

products, 2) short term temporal filter (2-days), 3) 8-nearest neighbourhood spatial filter, 4) 

regional snowline filter, and 5) multiday backward temporal filter. The selection of the methods 

and their sequence is based on the accuracy and its consideration, described in (Dharpure et al. 

2020, 2021). Several studies have utilized the Snow Cover Area (SCA) as one of the main input 

variables for snowmelt-driven discharge hydrology (Kumar et al. 2013; Callegari et al. 2015; 

Thapa et al. 2020). The topographical information (elevation, slope, and aspect) was utilized in 

the nearest neighbour and regional snowline filters, extracted from Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model Version 3.0 (DEM V3.0) (∼90-m spatial resolution) 

(Jarvis et al. 2008). The DEM was resampled at the MODIS grid resolution (500-m) using the 

bilinear interpolation technique (Lopez-Burgos et al. 2013). 

8.6.2. SELECTION OF INPUT VARIABLES FOR MODEL GENERATION 

All the essential climatic variables were selected for the discharge prediction over the study area. 

To quantify the best suitable variables, different approaches were applied, which will improve 

the performance of the model and to understand the association between input and output 

variables. For this, we have used correlation and Recursive Feature Elimination (RFE) techniques 
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for selecting the variables.  

8.6.2.1. Correlation 

A cross-correlation between all independent (𝑇𝑎, 𝑇𝑠, 𝑢,  RH, snowfall, rainfall, and SCA) and 

dependent (discharge) variables were measured at a daily time scale to assess the best-suited 

variables for the discharge prediction over the selected gauging discharge sites (Figure 8.3).  

 

Figure 8.3. Correlation map depicts the interrelation between daily climatic (air and surface 

temperature: 𝑻𝒂 and 𝑻𝒔, wind speed: 𝒖, relative humidity: RH, snowfall, and rainfall), SCA 

with discharge in the (a) Bhakra, (b) Kasol, (c) Suni, and (d) Rampur discharge sites during 

2000–2012. 

Result demonstrates that the 𝑇𝑎, 𝑇𝑠, 𝑢, RH and rainfall were directly correlated with discharge, 

whereas snowfall and SCA follow a negative correlation. Many authors illustrated a similar 

discharge relation with these variables over the Himalayan region (Banerjee et al. 2021; Thapa 

et al. 2021). The temperature (𝑇𝑎 and 𝑇𝑠) was highly correlated with discharge, while snowfall 

was less correlated relative to other variables. It indicates that any significant change in 
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temperature causes a direct impact on discharge. However, the less correlation of snowfall with 

discharge may have occurred because snowfall is an event that appears to have a dampening 

effect on discharge for about 5-7 days (Larsen 2017). The obtained result illustrates that the 𝑇𝑎 

and 𝑇𝑠 were strongly correlated with each other. Gómez et al. (2021) have suggested that if any 

variable shows a higher correlation to each other, then any variable can be taken for further 

consideration. Therefore, we have selected 𝑇𝑎, RH, 𝑢, rainfall, and SCA for further model 

development. 

8.6.2.2. Recursive Feature Elimination 

After correlation-based feature selection, an RFE technique was used to rank all the variables 

and then select the best-suited variables with less Mean Absolute Error (MAE). This method can 

be applicable for categorical and regression data, used by many authors (Chen and Jeong 2007; 

Mathew 2019). In this study, we have a time series regression data of different variables (𝑇𝑎, RH, 

u, rainfall, and SCA) from 2000 to 2012. For this, selecting the best subset of features (1 to N 

where N is the number of features) was done using RFE for different supplied estimators 

(Gradient Boosting and Random Forest). The selection of N features from the model was 

performed by fitting the time series data. The robust features were selected from each model by 

determining it either coefficient or feature essential attribute of the fitted model. For estimating 

the MAE of each selected model, the cross-validation technique was performed over the whole 

time series data by splitting (6 splits) it into the training and testing in a forward-chaining fashion, 

as described by Arize and Nogueira Rios (2019).  

Table 8.2. Five generated models (based on the selection of features) and their mean MAE 

(standard deviation) using gradient bossing and random forest repressors applied on Recursive 

Feature Elimination (RFE) and cross-validation techniques. 

Model No. of selected variables Gradient Boosting  Random Forest 

Model-1 𝑇𝑎 89.9 (14.4) 104.9 (14.9) 

Model-2 𝑇𝑎 and RH 85.5 (15.9) 91.6 (15.2) 

Model-3 𝑇𝑎, RH, and SCA 85.5 (15.5) 89.4 (13.9) 

Model-4 𝑇𝑎, RH, rainfall, and SCA  85.2 (14.8) 88.3 (13.5) 

Model-5 𝑇𝑎, RH, 𝑢, rainfall, and SCA 84.9 (15.5) 87.4 (13.7) 

Initially, we start cross-validation with a training set that includes the minimum number of 

observations needed to fit the model. Afterward, we progressively changed our train and test set 
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with each iteration and then measured the MAE of the model. When we increase (1 to N) the 

number of optimal features, the mean MAE starts increasing (at one) and becomes constant or 

no significant change after four selected features, as given in Table 8.2. If the MAE of the 

eliminated feature is flat or does not change significantly, their influence in the model is less. 

Based on MAE, the 𝑢 was eliminated and 𝑇𝑎, RH, rainfall, and SCA were considered for further 

discharge prediction. And the model-4 and model-5 data were used for developing the prediction 

model. 

8.6.3. BASIC LONG SHORT-TERM MEMORY (LSTM) ARCHITECTURE 

LSTM neural network is an upgraded version of Recurrent Neural Network (RNN) and is more 

efficient than the standard version of RNN. LSTM can solve long-range dependencies by a 

sequence of input and output pairs introduced by Hochreiter and Schmidhuber (1997). The main 

advantage of LSTM has improved the problem of exploding or vanishing gradients in the back-

propagation step (Kratzert et al. 2019b). A typical architecture of the LSTM neural network is 

shown in Figure 8.4. It comprises three types of gates, i.e., forget gate, input gate, an output gate, 

and one cell state or memory cell for controlling the flow of information. The data can be added 

or modified in the memory cell via this specific structure of gates. However, the basic LSTM 

network was enhanced by storing or neglecting the cell information via forget gate, introduced 

by Gers et al. (2000). 

 

Figure 8.4. Repeating module of standard Long Short-Term Memory (LSTM) neural network. 

The forget gate includes the previous LSTM output (ℎ𝑡−1) and the current input (𝑥𝑡) with bias 

(𝑏𝑓), which passes through a nonlinear sigmoid activation function. The value of forget gate 

output (𝑓𝑡) produces a binary vector, indicating one as new information that keeps in the cell state 

while a zero is completely forgotten. The 𝑓𝑡 can be achieved by following Equation 8.1. 
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𝑓𝑡 =  𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓      Eq. 8.1 

Then, updating or omitting the new information in the cell state was performed by passing the 

previous (ℎ𝑡−1) and current (𝑥𝑡) input information from the two nonlinear functions, i.e., sigmoid 

and hyperbolic tangent function (tanh). The sigmoid layer (𝑖𝑡)  decides which new information 

will be ignored or updated in the cell state based on 0 and 1 while the tanh layer used for providing 

the weights based on the level of importance (-1 to 1) called 𝑔𝑡 cell state. It can be expressed by 

Equations 8.2 and 8.3.  

𝑖𝑡 =  𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖      Eq. 8.2 

𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑛[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑛     Eq. 8.3 

To update the current cell state (𝑐𝑡), the output of sigmoid (𝑖𝑡) and tanh (𝑔𝑡) vector was multiplied 

element-wise and then added with the multiplicative output of 𝑓𝑡 and previous cell state (𝑐𝑡−1), 

expressed by Equations 8.4.    

𝑐𝑡 =  𝑐𝑡−1 ⨀ 𝑓𝑡 + 𝑔𝑡 ⨀ 𝑖𝑡      Eq. 8.4 

To estimate the current output (𝑜𝑡), the previous (ℎ𝑡−1) and current (𝑥𝑡) input information was 

passed through the sigmoid function to decide which parts of the cell state make it to the output, 

expressed by Equation 8.5.  

𝑜𝑡 =  𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜     Eq. 8.5 

The updated current cell state (𝑐𝑡) was passed from the tanh function, and the obtained vector 

was element-wise multiplied (⨀) with current output (𝑜𝑡), which produce current hidden output 

(ℎ𝑡), expressed by Equation 8.6.  

ℎ𝑡 =  𝑜𝑡 ⨀ 𝑡𝑎𝑛ℎ (𝑐𝑡)      Eq. 8.6 

Where 𝑊 is the adjustable weight metrics and 𝑏 is the adjustable bias vector for the forget, input, 

and output gates. ⨀ indicates the element-wise multiplication. 𝜎(∙) and 𝑡𝑎𝑛ℎ(∙) are the logistic 

sigmoid and hyperbolic tangent functions, respectively. The final output of the layer of the LSTM 

is obtained through Equation 8.7. 

𝑦 =  𝑊𝑑ℎ𝑛 + 𝑏𝑑      Eq. 8.7 



CHAPTER 8: PREDICTION OF DAILY DISCHARGE USING LONG SHORT-TERM 

MEMORY (LSTM) NEURAL NETWORKS, SUTLEJ RIVER BASIN (WESTERN HIMALAYA) 

Page 191 of 254 

Where y is the final discharge, ℎ𝑛 is the output of the last LSTM network obtained from equation 

8.6, 𝑊𝑑 and 𝑏𝑑 are the weight matrix and bias vector of the dense layer, respectively. 

8.6.4. DESCRIPTION OF DIFFERENT LSTM MODEL ARCHITECTURE 

LSTM model includes different structures to forecast the spatial and temporal time series data, 

for example, single layer (Vanilla), multilayer (stacked), and bidirectional LSTM (BLSTM). The 

major difference between these models is the varying hidden layer, i.e., if the hidden layer is 

single, then it is denoted as vanilla LSTM (VLSTM) model while more than one hidden layer 

was stacked, then it is denoted as stacked LSTM (SLSTM). And the bidirectional model follows 

a two-layered model in which one layer performed operation in the forward direction of the data 

sequence and another layer applied operation in the reverse direction of the data sequence, and 

then the final output was generated by combining both interpretations (Althelaya et al. 2018). 

This bidirectional model is an extended variation of RNN proposed by Schuster and Paliwal 

(1997).  

Other than this, two well renowned LSTM models (CNN and ConvLSTM) were mainly designed 

for sequence prediction in two-dimensional spatial data. However, it can be modified for 

univariate/multivariate time series forecasting data. These two model structures mainly differ by 

their inputs, in which the CNNLSTM model can interpret each subsequence of two-time steps 

and provide a time series of interpretations of the subsequences to the LSTM model to process 

as input. The input data can then be reshaped to have the required structure [samples, 

subsequences, timesteps, features]. While, ConvLSTM layer expects input as a sequence of two-

dimensional images (rows and columns); therefore, the shape of input data must be [samples, 

timesteps, rows, columns, features]. More detailed information on the CNNLSTM and 

ConvLSTM were discussed by  Donahue et al. (2017) and Shi et al. (2015). In the present study, 

we have used five different LSTM model structures to quantify the best-fitted model over the 

selected basin. 

Moreover, the value of multiple input variables was presented an extensive range that affects the 

learning skills and the convergence of the LSTM network during training. Therefore, for efficient 

learning and faster convergence, input and target variables normalized between 0 and 1, without 

any changes in the shape of original variables. The normalized procedure is given by Equation 

8.8: 

𝑥𝑛 =  
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
      Eq. 8.8 
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Where, 𝑥 is the original vector, 𝑥𝑛 is the normalized vector, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the minimum 

and maximum values of vector 𝑥, respectively.  

8.6.5. PRINCIPAL COMPONENT ANALYSIS  

PCA is the statistical approach that will help to reduce the covariance amount in the set of 

variables. Suppose a set of orthogonal vectors is found in the test space; in that case, the original 

data of M dimensional space is projected into the N dimension sub-space expended by this set of 

orthogonal vectors (M > N). This projection coefficient comprises a new features vector which 

helps in completing the dimensionality reduction. The PCA identifies the principal directions 

from which the data start varying to the maximum. This principal direction helps for obtaining 

the features having higher discriminative and can give useful information about the data patterns 

(Rasheed et al. 2020). In this study, the model-5 dataset was selected and converted into the 

standardized format (
𝑥−𝜇

𝜎
, where x is the sequence of data, μ and σ is the mean and standard 

deviation of the sequence) before applying the PCA. We have selected the three principal 

components to analyze the variation in model accuracy by dimensionality reduction.  

8.6.6. OPEN-SOURCE SOFTWARE USED 

This study was carried out using python programming language version 3.7.6. open-source 

software, i.e., Scientific Python Development Environment (Spyder) 4.0.1. We have installed 

different libraries in the software such as WhiteboxTools v1.4.0 (Lindsay 2020) and Gdal v3.2.0 

(Warmerdam and Rouault 1998) for spatial data pre-processing and Numpy (Van Der Walt et al. 

2011), Pandas (McKinney 2010), Scikit-Learn (Pedregosa et al. 2011) for data management, and 

Matplotlib v3.1.1 was used for preparing the graphs (Hunter 2007). We use the Deep-Learning 

frameworks TensorFlow (Abadi et al. 2016) and Keras (Chollet 2016). 

8.6.7. PERFORMANCE METRICS 

The model performance was tested based on the Root Mean Square Error (RMSE) and Nash-

Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970) statistical approaches. These methods are 

widely used to evaluate the machine learning model (Fan et al. 2020). The RMSE value equals 

zero, indicating the perfect match of predicted values with observed values while NSE values 

vary from –∞ to 1. The RMSE value should be small or near zero for reliable model performance 

and the NSE value close to one. The following Equations 8.9 and 8.10 are used for estimating 

the statistical matrices as follows: 
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𝑅𝑀𝑆𝐸 =  √
∑ [𝑦𝑜(𝑡)−𝑦𝑝(𝑡)]2𝑛

𝑡=1

𝑛
     Eq. 8.9 

𝑁𝑆𝐸 = 1 −
∑ [𝑦𝑜(𝑡)−𝑦𝑝(𝑡)]2𝑛

𝑡=1

∑ [𝑦𝑜(𝑡)−𝑦𝑜]2𝑛
𝑖=1

      Eq. 8.10 

Where 𝑦𝑜 and 𝑦𝑝 are observed and predicted discharge at time 𝑡.  𝑦𝑜 and 𝑦𝑝 represent the average 

observed and predicted discharge at time 𝑡. n indicates the total number of observations. 

8.6.8. EFFECT OF HYPERPARAMETERS ON MODEL PERFORMANCE 

The accuracy of the prediction model was significantly affected by the selection of 

hyperparameters such as activation function, number of LSTM layers, hidden units, loss function, 

learning rate, optimization algorithm, batch size, dropout rate, and time steps. Several authors 

previously discussed the dependency of hyperparameters on model prediction (Kratzert et al. 

2018, 2019b; Fan et al. 2020; Thapa et al. 2020). Therefore, we have performed a test to quantify 

the best suitable hyperparameters using the model-4 dataset and applied them to the VLSTM 

model over the Rampur discharge site.   

Table 8.3. Performance of the different activation functions and their estimated mean 

(standard deviation) of NSE and RMSE during the training and testing stages for ten iterations 

(repeating model).  

Activation functions 
Training Testing 

NSE RMSE NSE RMSE 

elu 0.78 (0.00) 120.9 (0.3) 0.85 (0.00) 112.4 (1.4) 

relu 0.78 (0.00) 119.5 (1.2) 0.86 (0.01) 108.4 (2.4) 

selu 0.78 (0.00) 119.9 (1.0) 0.85 (0.01) 112.7 (2.9) 

sigmoid 0.74 (0.00) 129.4 (1.0) 0.81 (0.01) 128.1 (1.8) 

softmax 0.75 (0.00) 127.3 (0.3)  0.83 (0.00) 121.6 (0.5) 

softplus 0.76 (0.00) 125.7 (1.1)  0.84 (0.01) 118.7 (3.0) 

softsign 0.78 (0.00) 119.5 (0.5)  0.86 (0.00) 108.6 (1.9)  

tanh 0.78 (0.00) 120.5 (0.4)  0.86 (0.00) 111.2 (1.6) 

The LSTM model obtained the current hidden out, by passing the current cell state through the 

tanh activation function. However, many other activation functions can use at a place of tanh 

function. Here, we have applied the most significant nonlinear activation functions for evaluating 

the model performance. Our results suggested that the softsign activation function 
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[𝑓(𝑥) = 𝑥/(1 + |𝑥|)] performed well in training and testing than other activation functions 

(Table 8.3). Lin and Shen (2018) have revealed that the softsign function is similar to the tanh, 

but it has a relatively slow and soft saturation, making it more robust to avoid vanishing gradients.  

Further, we have varied the LSTM layer from 1 to 6 based on the model-4 dataset using SLSTM 

neural network. Results demonstrate that the shallow LSTM network (single layer) was 

performed well compared to the deep neural network (Figure 8.5a). Thapa et al. (2020) have also 

concluded that the shallow LSTM model with a single hidden layer achieved superior results 

than the deeper LSTM models with multiple hidden layers. Then, we have also altered the 

number of hidden units in the LSTM layer (number of LSTM units per time step) to evaluate the 

effect of forecast outcomes. Results suggested that the higher NSE was found in the 50 hidden 

units, and it varies with other hidden units (Figure 8.5b). Another parameter of interest in 

establishing a model structure is the learning rate and the number of epochs applied on VLSTM 

using the model-4 dataset. The NSE value was found maximum in 0.005 learning rate compared 

to the other learning rate (Figure 8.5c). It was also seen that this learning rate (0.005) was able to 

produce higher loss between observed and predicted data in starting and then converges down 

when the number of epochs was increased. Our results also revealed that the smaller value 

(0.0001) of the learning rate could make the model's training process slower, and the curve of 

loss function becomes smother. A similar pattern of small learning rate was found by Le et al. 

(2019). We have also increased the number of epochs from 20 to 180 (Figure 8.5d). The results 

revealed that the 160 and 180 epochs were found higher NSE during the testing stage; therefore, 

180 epochs were selected for further model evaluation. 

In the VLSTM model, we have applied seven different optimization algorithms other than 

Adaptive moment (Adam) using the model-4 dataset. However, one more optimization algorithm 

(Ftrl) was not considered because of their lower NSE value over the study area. Thapa et al. 

(2020) have compared the different optimizers and suggested that the Adadelta shows higher 

RMSE than other optimizers. Our results indicate that the Adam optimizer found higher NSE, 

followed by Nadam and Adamax (Figure 8.5e). Then, the RMSE value was measured by varying 

the dropout rate from 0.0 to 0.2 with an interval of 0.05. Our observation suggests a higher NSE 

in 0.0 or no dropout rate while it started decreasing when the dropout rate was increased (Figure 

8.5f). This pattern indicates that the dropout rate and NSE value were inversely proportional to 

each other.  

Further, the batch size of model prediction was analyzed over the VLSTM and model-4 dataset, 

as this parameter greatly influences the speed of the convergence of the training network. Many 
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authors have recommended a batch size of 32 (Bengio 2012; Thapa et al. 2020); however, we 

have tested different batch sizes and found a minimum error in value 8 (Figure 8.5g). And the 

time steps of the prediction model were varied from 1 to 15 days, and observed a higher NSE in 

10-days time steps (Figure 8.5h). Based on the RMSE and model performance, we have set 50 

hidden units, 0.005 learning rate, 180 epochs, softsign activation function, Adam optimizer, 0.0 

dropout rate, eight batch size, and 10-day time steps for different model structures.  

 

Figure 8.5. Hyperparameter tuning of the LSTM model and their performance are measured 

through NSE based on the observed and predicted discharge during the testing period using 

the model-4 dataset over the Rampur discharge site. 
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8.7. RESULTS  

8.7.1. TEMPORAL VARIABILITY OF ESSENTIAL CLIMATIC VARIABLES 

The meteorological variables were acquired hourly and converted into daily, monthly, and yearly 

time scales over the Sutlej River basin. The diurnal variation of 𝑇𝑎 and 𝑇𝑠 was minimum in 6:30 

and 5:30 hours, while the maximum value was observed in 14:30 and 13:30 hours, respectively. 

Similarly, 𝑢 was higher in the daytime compared to nighttime; however, RH shows an inverse 

pattern as of 𝑢. The mean monthly and yearly distribution of the selected variables (𝑇𝑎, RH, 

rainfall, snowfall, and SCA) were measured upto the Bhakra discharge site from the 2000 to 2019 

period (Figure 8.6). The selected variable shows a heterogeneous pattern for the studied period. 

The mean monthly 𝑇𝑎 was positive from May to September, with the highest value attained in 

July and lowest in January (Figure 8.6a). The RH shows a higher value in monsoon (June to 

September) and a lower in the winter period (December to February) (Figure 8.6b). Similarly, 

rainfall mainly occurs during the monsoon period (Figure 8.6c), and snowfall receives throughout 

the year, with a maximum in January (Figure 8.6d). For further detailed analysis, the spatio-

temporal distribution of SCA was monitored to map the monthly and yearly pattern of snow 

cover. The spatial distribution of SCA was maximum in February, and a minimum extent was 

observed in August. The temporal pattern of SCA shows a higher value from January to April 

and a lower value in July and August over the basin (Figure 8.6d). The spatial distribution of 

Snow Cover Day (SCD) anomalies also represented that the year 2000/01 was found a higher 

negative, and a higher positive value was noticed in 2018/19. 

The monthly statistical value (minimum, maximum, mean, and standard deviation) and Sen’s 

slope of meteorological variables along with SCA were estimated. The trends of the selected 

variables were not statistically significant at p < 0.05. The 𝑇𝑎 shows a positive trend from 

February to May as well as September during the study period. The rainfall and snowfall 

decreased during March and April, while SCA showed a declining trend in December and 

January. On the other hand, the monthly rainfall trend was positively correlated (0.69) with the 

discharge trend; however, 𝑇𝑎 and SCA trend was correlated with discharge at a delay of one 

month. Results also demonstrate that the region experienced higher discharge when the rainfall 

was increased in the monsoon season. This means the discharge variability is highly dependent 

on the rainfall amount and their intensity, as they contribute to both direct and rainfall-induced 

snow melting to the river discharge. 

Further, the annual trend of snowfall, rainfall, and SCA was found increasing but not significant 
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at p < 0.05 (Table 8.4). In comparison, the 𝑇𝑎 shows a declining trend for the study period, which 

is also not statistically significant (p < 0.05). This indicates that the precipitation in the form of 

liquid and solid was increased for the study area.  

 

Figure 8.6. Heat map of (a) Air temperature (𝑻𝒂), (b) Relative Humidity (RH), (c) Rainfall, (d) 

Snowfall, and Snow Cover Area (SCA) in the Sutlej River basin (upto Bhakra discharge site) 

during the hydrological year of 2000–2019.   

However, the discharge was found a decreasing trend for Rampur and Sunni, whereas it was 

increasing in the Kasol and Bhakra locations. Overall, by the findings, we can conclude that the 

selected locations were experiencing a declining discharge with higher groundwater withdrawal. 
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The decreasing discharge trend also causes a significant implication on hydropower generation 

projects and the livelihood of the people living in the upstream and downstream regions. 

Therefore, reliable model development for discharge prediction is needed over the selected 

region to manage the future water resources.  

Table 8.4. Sen’s slope (in per year) of the meteorological variables along with discharge data 

over the different discharge sites. All trends are not significant at p < 0.05. 

 
𝑻𝒂 

(℃ ) 

Snowfall 

(𝒎𝒎 ) 

Rainfall 

(𝒎𝒎 ) 

SCA 

(%) 

𝒖 

(𝒎 𝒔−𝟏 ) 

RH 

(% ) 

Discharge 

(𝒎𝟑𝒔−𝟏 ) 

 2000–2006 

Bhakra –0.05 30.06 8.21 1.07 –0.01 1.02 11.87 

 2000–2012 

Kasol –0.05 7.67 5.22 0.71 –0.01 0.40 2.02 

Sunni –0.05 7.90 4.99 0.74 –0.01 0.39 –0.98 

Rampur –0.06 8.71 2.67 0.81 –0.01 0.39 –1.85 

 2000–2019 

Bhakra –0.03 1.49 6.38 0.16 0.00 0.14 - 

Kasol –0.02 1.50 4.67 0.19 0.00 0.10 - 

Sunni –0.02 1.70 4.33 0.19 0.00 0.11 - 

Rampur –0.01 1.99 3.07 0.25 0.00 0.11 - 

8.7.2. SELECTION OF BEST SUITED LSTM MODEL 

The daily discharge to the Sutlej basin (upto the Rampur location) was simulated using various 

deep learning models. A network of different LSTM models was attempted to predict the daily 

discharge and assess how accurate the model can able to predict. The optimal model has higher 

NSE and lower RMSE in both the training and testing periods. In this study, a combination of 

datasets taken in model-4 (𝑇𝑎, RH, Rainfall, and SCA) was utilized in all LSTM model 

architectures to select the best mode of prediction. For comparison, we have measured the mean 

NSE and RMSE of each model in both training and testing stages against observed discharge 

data among ten repetitions (Table 8.5). The models were performed differently during the 

training and testing stages. The SLSTM performed well during the training, whereas BLSTM 

was better during the testing stage. The observed RMSE in the testing stage varied between 98.3 

and 134.6, with the maximum value in CNNLSTM while relatively lower in the BLSTM 

followed by VLSTM.  
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Table 8.5. Performance statistics of LSTM model architectures in one-day ahead prediction of 

discharge using model-4 data. The value represents the mean (standard deviation) of the NSE 

and the RMSE during the training and testing stages of the selected LSTM architectures. 

LSTM types 
Training Testing 

NSE RMSE NSE RMSE 

Vanilla 0.81 (0.01) 110.7 (1.6) 0.88 (0.02) 101.6 (6.4) 

Stack 0.88 (0.03) 87.7 (9.3) 0.81 (0.02) 126.7 (6.0) 

Bidirectional 0.83 (0.01) 110.7 (2.0) 0.90 (0.01) 98.3 (3.2) 

CNN 0.85 (0.02) 98.4 (6.1) 0.79 (0.01) 134.6 (3.3) 

Conv 0.82 (0.01) 108.0 (2.6) 0.86 (0.01) 110.1 (5.4) 
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Figure 8.7. Scatter plot of the normal BLSTM during (a) training and (b) testing stages and 

PCA-based BLSTM during (c) training and (d) testing of the observed and predicted discharge 

over the Rampur discharge site from 2000–2012 period. 

A different method based on their evaluation criteria suggests that BLSTM and VLSTM show 

higher NSE relative to other LSTM architectures during the testing period. However, the SLSTM 

and CNNLSTM experienced higher NSE during the training period. The higher value of NSE 

indicates that the predicted discharge was well-matched with the observed discharge. By 

combining the present output and previously published information, we can conclude the 

BLSTM and VLSTM are best suited for the Sutlej River basin. As per the LSTM architectures, 

the VLSTM uses a single hidden layer, while the BLSTM has the capability to process 

information at the present movement based on both past and future information. This 

characteristic of BLSTM can optimize the edge position and also have the anti-noise ability.  

8.7.3. COMPARISON BETWEEN NORMAL BLSTM AND PCA-BASED BLSTM 

The predictability performance of the BLSTM model and the n-dimensional reduction-based 

prediction model was tested for better discharge forecast modelling. The result over the training 

and testing stages represents that both the prediction model have the capability to simulate the 

future streamflow. It can be seen that the NSE for the normal BLSTM was 0.83 (Figure 8.7a) 

and 0.90 (Figure 8.7b) during the training and testing stages, respectively, while PCA-based 

BLSTM was 0.99 (Figure 8.7c) and 0.76 (Figure 8.7a) in training and testing periods, 

respectively. The NSE of the training period is more important than the testing period to better 

understand the performance of the prediction model. Another reason for considering the training 

NSE is that 80% of the study data was used to train the model, whereas only 20% of data was 

used for testing. Therefore, we have selected the PCA-based BLSTM for predicting the discharge 

data over the basin. 

This higher reliability of the prediction model through PCA-based BLSTM was investigated by 

the effect of dimension reduction, and it also decreased computational complexity. However, the 

input of the data-driven model (normal BLSTM) was selected based on human knowledge. The 

obtained result based on NSE shows that the PCA-based BLSTM was performed well and has 

the applicability for matching the extreme events of the daily discharge. Therefore, we have 

concluded that the PCA-based BLSTM is the best-suited model for short-term discharge 

forecasting over the selected basin. 
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8.7.4. DAILY DISCHARGE PREDICTION BASED ON PCA BLSTM 

The daily distribution of discharge prediction was analyzed using the PCA-based BLSTM model 

for four discharge sites (Bhakra, Kasol, Sunni, and Rampur) (Figure 8.8). This variability of 

discharge prediction at each site will help to understand the performance of forecasted data for 

shorter (2000–2006) and longer periods (2000–2012). The result at each gauging station was 

plotted for training and testing, then predicted from 2012 to 2019. In the training set, all the 

locations were showing a higher accuracy in the prediction with the maximum value of NSE in 

Rampur, while a lower value was observed in Kasol.  

 

Figure 8.8. Performance of the PCA-based BLSTM model over the (a) Bhakra, (c) Kasol, (c) 

Sunni, and (d) Rampur. Cyan, pink and yellow colors represent the training, testing, and 

predicted stages of the model.  
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However, the testing period for all the locations experienced a relatively lower NSE than the 

training period. This may have been occurred due to the short period of the dataset for testing. 

This higher accuracy in Rampur may be occurred because of the input variables, which show a 

higher correlation with discharge than other selected locations.  

8.8. DISCUSSION 

The Sutlej River basin is the home for the highest potential hydropower generation project 

relative to other basins of Indus River systems. To sustain these hydropower projects, continuous 

monitoring, modelling, and prediction of discharge are needed at a higher temporal scale. 

Therefore, a prediction model was developed using machine learning approaches at a daily time 

scale. To quantify the best suitable prediction model for river discharge modelling, a direct 

comparison of five LSTM model architectures (Vanilla, Stacked, Bidirectional, CNN, and Con 

LSTM) has been carried out to assess their reliability based on the performance metrics. The 

performance of the LSTM model was high as compared to other existing models, described and 

compared by many authors (Fan et al. 2020; Thapa et al. 2020). And several authors have used 

different measures to evaluate the performance (Nourani et al. 2014; Yaseen et al. 2015; Hussain 

and Khan 2020). Apart from this, numerous authors have utilized the LSTM model for 

streamflow/river discharge forecast at various time scales (Kratzert et al. 2018; Thapa et al. 2020; 

Yao 2021). 

The outcomes of this study revealed that the 𝑇𝑎 and SCA trend was correlated with a delay of 

one month with discharge. Verdhen et al. (2013) have noticed that the melting of SCA in a 

warming climate impacted the discharge one month ahead. It was also seen that the discharge 

was higher in the monsoon season when the amount of rainfall was mainly dominant in the basin. 

The rainfall concentration only contributes to river discharge but also indirectly influences the 

rainfall-induced snow melting. Numerous authors have already noticed that rainfall-induced 

snow melting causes a significant change in streamflow (Zhang et al. 2011; Tang et al. 2019). 

This region also experienced an increasing precipitation trend in terms of snowfall and rainfall, 

but statistically insignificant at p < 0.05. A similar pattern of higher rainfall was observed by 

other authors (Singh et al. 2014; Gupta et al. 2020). However, discharge of the region shows a 

decreasing trend which means there may be an increase in groundwater due to the infiltration 

capacity of a region (Askar 2013). Patel et al. (2021) have highlighted that this region may have 

positive glacier mass change or other hydrological factors enhancing the groundwater of this 

region. Many authors also noticed that this region is over-exploited by the groundwater 

abstraction for agricultural purposes (Kaur and Kumar 2014; Sidhu et al. 2021). 
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After analysing the climatic condition of the basin, the selection of the best suitable model for 

discharge prediction was made. The first 80% of the data were used for the model generation, 

and the remaining 20% were used for validation purposes. Based on the RMSE, a higher value 

was obtained in the CNNLSTM model, while a lower value was found in BLSTM followed by 

VLSTM. The higher RMSE of CNNLSTM was well-matched with an observation of other 

authors (Bryant 2020; Cao et al., 2018). Similarly, Ma et al. (2019) have observed that the 

CNNLSTM was better performed in the spatial analysis, and BLSTM had higher accuracy for 

the temporal analysis. Hewage et al. (2020) have compared the BLSTM with other machine 

learning techniques and found that the model shows the more accurate result of rainfall for long-

term forecasting. Also, Wang et al. (2019) have highlighted that the Bidirectional achieve the 

best accuracy and the relative error is 40% lower than the VLSTM. 

Then, the results of normal BLSTM were compared with the PCA-generated BLSTM discharge 

over the Sutlej river basin. Results indicate that the PCA-based BLSTM received higher NSE 

than normal BLSTM during the training period; however, the NSE was relatively lower in the 

testing period. Many authors have revealed that the higher NSE in the training period is 

important, because the prediction model needs to be trained and then tested (Vu et al. 2016; Lin 

et al. 2021). Therefore, the NSE of the training period needs to be considered for the high-

performance prediction model. Many authors have shown that the PCA-based LSTM provides 

better results with other comparable LSTM models (Liu and Wang 2018; Rasheed et al. 2020). 

The present finding is well-matched with Rasheed et al. (2020). It was noticed by several authors 

that the impact of input variables and a short period of testing influences the accuracy of the 

prediction model (Arahal et al. 2002; Ding et al. 2018). Afterward, the PCA-based BLSTM 

model was used to predict the daily discharge over the four discharge locations during training 

and testing, showing that the discharge outcomes at the Rampur location outperformed other 

locations.  

Overall, our findings suggest that the discharge of the Sutlej river basin was mainly controlled 

by 𝑇𝑎, rainfall, SCA, and RH. Additionally, the BLSTM model performed well compared to other 

LSTM architecture, while the comparison between normal BLSTM and PCA-based BLSTM 

shows higher accuracy in PCA-based BLSTM. This selected prediction model can forecast future 

changes in the discharge over the Sutlej River basin at a daily time scale. The outcomes of this 

study could be helpful for managing the water resources and also have the potential to forecast 

the upcoming disaster over the region.  
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8.9. CONCLUSIONS 

A daily discharge prediction is significantly needed for the Himalayan terrain to map and monitor 

the extreme events that affect the infrastructure and cause ecological imbalance. To address this, 

we have applied five different LSTM models over the Sutlej River basin from 2000 to 2012 and 

then predicted for 2012–2019. Initially, the contribution of essential climate variables on 

discharge was quantified based on correlation and RFE techniques. Results demonstrate that Ta, 

RH, Rainfall, and SCA were the main contributing variables than others. Afterward, the tuning 

of hyperparameters was performed at 180 epochs, eight batch sizes, ten lag times, 0.0 dropout, 

Adam optimizer, and softsign activation function, which enhances the accuracy of the prediction 

model. Then, the selected input variables with hyperparameters values were implemented in the 

model for reliable prediction of discharge in both training and testing periods. Based on NSE and 

RMSE, we have concluded that BLSTM shows higher accuracy than other selected models for 

Rampur discharge location. After analyzing the best-suited LSTM model, the PCA-based model 

was analysed, and results were compared with the normal BLSTM. The outcomes suggest that 

the PCA-based BLSTM outperformed normal BLSTM. 

Moreover, a daily discharge prediction for all four locations was carried out for training and 

testing, which shows that the Rampur gauging station model performed better than other 

locations for the testing period. Overall, this present study can convey that the developed 

prediction model outperformed for the location where the correlation coefficient of input 

variables was higher and has a sufficient dataset available for testing. This model can bridge the 

gap between daily discharge prediction and their influence on extreme events at a temporal scale.  
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9.1. ORIGINAL RESEARCH CONTRIBUTION 

A central theme of this thesis is to provide reliable monitoring and modeling of cryosphere 

changes and their implication on the water availability of the region. For quantifying the snow 

cover changes, a large part of the problem stems from the limitation of cloud cover that produces 

a discontinuity in spatial and temporal scale for long-term snow cover monitoring. Therefore, a 

sequential non-spectral composite methodology (five successive steps) was applied to remove 

cloud obscuration. The cloud gap-filled SCPs were validated with the indirect method as well as 

high-resolution satellite data (Landsat-8). Results indicate that the cloud removed SCPs show an 

overall efficiency of 92.8 ± 1.6% by an indirect approach, while an overestimation (9.3%) was 

observed between Landsat and MODIS SCA along with a higher correlation (R = 0.99, p < 

0.001). This composite methodology was calibrated and validated over the Chenab river basin 

and then applied to the KH region. In the KH region, the cloud-gap-filled SCA was compared 

with Landsat-8 and then established the relationship with in-situ observations (snowfall and 

temperature). The annual SCA shows an increasing trend for the entire KH except in the eastern 

Himalayas. The snow cover day and nine snow cover timing indexes were assessed to understand 

the snow cover characteristics. The relationship between SCA and meteorological variables was 

established, suggesting a higher correlation between temperature and shortwave radiation. The 

sensitivity test was performed to examine the potential contributors in snow cover variability. 

After analyzing the snow cover distribution and their characteristics, the glacier energy and mass 

balance were measured over the glaciers of the cold-arid region. This region is mainly selected 

for glacier changes estimation because the glaciers of the region cause a significant concern 

towards the water supply and their associated future streamflow. The SEB components were 

measured point-scale over the Phuche glacier, upper Ganglass catchment, Ladakh range. The 

meteorological data were recorded at 5600 m a.s.l., indicating that air temperature and wind speed 

show an increasing linear trend with a declining RH for five consecutive years (2012–2017). The 

region witnessed a higher negative MB during 2015/16 (–1.8 m w.e.) followed by 2012/13 (–1.2 

m w.e.), while the loss was comparatively less (–0.1 m w.e.) during 2016/17. The point-scale 

SEB ablation was validated with the stake measured total melt, indicating a higher correlation 

(R2 = 0.91) between them for the period 2016/17. Also, we have estimated glacier MB from the 

glaciological method over the Phuche and Khardung glaciers during 2014–2017. A maximum 
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mass loss was observed during 2015/16 for both the glaciers, while a positive MB was found in 

2014/15 and 2016/17 for the Phuche, and a negative MB was observed during the entire study 

period of the Khardung glacier. 

Further, an imperative technique was developed that enables comprehensive identification and 

monitoring of drought over a large spatial extent. The CTEI identifies the occurrence of drought 

over the three major river basins, namely the Indus, Ganga, and Brahmaputra (IGB), originating 

from the Himalayas. The performance and accuracy of the proposed drought index (CTEI) were 

validated with the IGDI, which was derived from groundwater observation wells. Results 

illustrate an enhanced understanding of holistic conditions of drought compared to pre-existing 

drought indices. Other than this, we used six different methods to estimate the GR rate over the 

Ganga river basin from 2003 to 2016. The mean annual GR rates estimated from Wu, Henry, 

SWB, GWSC, Kumar, and RIF methods were 24.4, 16.1, 11.7, 15.8, 18.7, and 17.1 cm yr−1 or 

23.5, 15.5, 11.3, 15.2, 18.0, and 16.5% of monsoonal averaged precipitation (~103.9 cm) 

respectively. The nonparametric trend test analysis of estimated GR shows a decline with 

statistically insignificant. The spatial distribution of GR indicates that the eastern region of the 

basin attains higher GR other than the western part. 

Moreover, a prediction model was developed for the Sutlej river basin, which used five different 

LSTM architectures during 2000–2012. For this, we have first selected the best-fitted input 

variables based on correlation and RFE techniques, showing Ta, RH, rainfall, and SCA were the 

main influencing variables than other. The BLSTM model performed well compared to other 

selected LSTM models in both training and testing. Further, the normal BLSTM was compared 

with PCA-based BLSTM that outperformed from normal BLSTM. Therefore, the PCA-based 

BLSTM model was implemented for four gauging stations and predicted discharge during 2012–

2019. 

9.2. FUTURE RESEARCH DIRECTION 

Overall, the presented studies prove the potential of various remote sensing and field-collected 

data for monitoring and modeling cryospheric processes in one of the world’s major freshwater 

reservoir regions. It also addresses the contributing variables and their changing pattern with 

respect to time. The study includes the various model development in order to provide reliable 

outcomes from the study and further generate an error in the observation. These outcomes could 

be used to understand the potential importance of climatic variables on the snow cover 

distribution and glacier mass balance changes that cause regional water availability and 



CHAPTER 9: CONCLUSIONS AND RESEARCH CONTRIBUTION 

Page 207 of 254 

imbalance in the ecosystem. Furthermore, a reliable prediction of streamflow/river discharge is 

needed to quantify the future implication on the ecosystem and also have the capability to fill the 

inconsistency in time series data. 
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