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ABSTRACT 

Part of North-Western Himalaya, Which typically comprised of, Jammu and Kashmir, 

Laddakh, Himachal Pradesh, and Uttarakhand, particularly Uttarakhand, has been 

identified by several eminent seismologists as a gap area where large size 

earthquake( greater than magnitude 7) is expected. The region has 

witnessed two earthquakes having a magnitude greater than 6 in the last 25 

years ( 28th March 1999 Chamoli earthquake and 20th October 1991 Uttarkashi 

earthquake ), both having an epicenter in the Garhwal region of Uttarakhand. Several 

studies have shown that a future large earthquake in Central Himalayas can generate 

severe ground motion in the National capital region of Delhi, which is about 300 km from 

this expected source. Several densely populated cities and villages having a total 

population of several million are located between Delhi and Uttarakhand. These 

towns/cities will be severely affected by a large earthquake having an epicenter in this 

region. Using advancements in communication technology and real-time seismology, a 

project to have an earthquake early warning system for Northern India is under progress 

at the Indian Institute of Technology, Roorkee. In this project, a dense network of 84 

accelerometers has been installed, covering an area of about 100 km x 40 km in the 

Garhwal region. This network has an intermediate station to station distance of less than 

10km, and all the sensors are streaming data, which is being processed in real-time at the 

central server stationed at Roorkee. The cost of the sensor becomes one of the most 

important parameters on which the viability of an Earthquake Early Warning (EEW) 

system depends since a dense network of the sensor is required for an effective EEW 

system. Thus in this study, a detailed analysis is also performed to find out the optimum 

dynamic range of sensor that is required so that the most relevant information, EEW 

parameter, and strong motion parameters could be retrieved from the obtained ground 

motion data. In the study, it is observed that for all relevant EEW parameters, a sensor 

with ADC with the 16-Bit resolution is quite sufficient, and most of the required 

information could be retrieved from such data. This thesis describes details of the 

network, sensors, present status of development, performance of instrumentation during 

recent events and processing details. The thesis also provides details of the theoretical 

and numerical analysis done for the ADC dynamic range varying from 24-Bit to 10-Bit 

and its impact on the most relevant EEW parameter and strong motion parameters. 

https://en.wikipedia.org/wiki/Uttarakhand


A new approach for P-phase picking has also been developed in this study. The parameter 

used is ‘Damage Intensity’ which has been widely used in Japan for intensity estimation 

for UrEDAS. One of the problems faced during the testing of the EEW system was to 

eliminate far-field earthquakes. By far-field events are those events that have their 

epicenter at a large distance from the networked region. During testing, one such event 

from the Hindukush region was picked by the software. Thus it was a concern that such 

events should not be picked or, if picked, should be ignored by the EEW system. Using 

this approach, it was found that far-field earthquakes could be eliminated and were not 

picked if this approach is used. 
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Chapter 1 Introduction 

1.1 Preamble 

The Himalaya,; a landmass of approximately 2500 km, was formed due to the collision of Indian 

and Eurasian plates during the Tertiary period, which is about fifty million years old(Gansser 

1964; Molnar and Lyon-Caen 1988; Kayal 2001). The Central Himalaya is situated right in the 

middle of the Alpine Himalaya zone belt, which is the second most seismically active region in 

the world. The 800 km stretch of land mass, expanded between river Kali in the west and river 

Tista in the east in generally referred to as Central Himalayas. The Great Himalaya range attains 

maximum height in this region of the Himalayas. Few of the world-famous peaks Mt. Everest, 

Kanchenjunga, Makalu, Annapurna, Gosainthan and Dhaulagiri, are located in the region. The 

Central Himalayas, within the scope of this thesis, is generally referred to for Uttarakhand and 

Himachal Pradesh. This landmass had been created; as a result closure of the Tethys Ocean and 

the process of the collision between the Northward moving African, Arabian, and Indian plates 

with the Eurasian Plate in general and under-thrusting of the Indian plate under the Eurasian plate 

in particular (Zhao 1993; Rautela and Sati 1996; Kayal 2008). This under thrusting action results 

in subsurface internal deformations of rocks, under thrusting along detachment surface. This 

leads to an accumulation of stresses in the form of strain energy. Researchers have concluded 

that earthquakes in the Himalayan region are caused due to the release of this accumulated energy 

(Seeber et al. 1981; Kayal 2001). Continuous observation of Global Positioning System data and 

average slip deficit studies (Bilham and Ambraseys 2005; Bilham and Wallace 2007), plate 

convergence rates, and differential shortening rates also points out about continuing seismic 

activity in the Himalaya(Chen and Kao; Banerjee and Burgmann 2002; Bilham and Ambraseys 

2005; Feldl and Bilham 2006; Jade et al. 2007) 

The Himalayan belt has been witnessing a large number of earthquakes for a long time. Four 

most recent earthquakes witnessed in the last century have been reported with magnitude greater 

than eight viz.; the M 8.7 1897 Shillong(Milne 1911), M 8.5 1950 Assam (Tandon and Srivastava 

1954, 1974), M 8.2 1934 Bihar–Nepal(Tandon and Srivastava 1974), and ML 8.0 1905 Kangra 

(Gutenberg & Richter, 1954) earthquakes. However, no great earthquakes have been observed in 

the Central Himalayan region in the last few decades (Yeats and Thakur 1998). This non-

occurrence of any major seismic activity has resulted in the formation of seismic gaps, which are 

defined as the region or zones, which have accumulated stresses, but energy has not been released 

for a long time. The seismic gaps are considered potential zones for future great earthquakes 



(Khattri and Tyagi 1983). Seismologists have already forecasted the occurrence of four great 

earthquakes, having a magnitude greater than 8, in these seismic gaps (Bilham and Ambraseys 

2005), which could lead to huge damage to property and life in the region and adjoining regions 

as well. Gorkha earthquake of 2015 is one such example of a major event in the seismic gaps. 

Seismic hazard from the Himalayas and dense population in and around metropolitan cities and 

industrial hubs in Northern India has made this region vulnerable to large-scale loss of life, and 

property in case of a large earthquake. To provide housing for all the people, in fast-growing 

cities, a large number of structures and closely spaced housing complexes have been constructed. 

Due to a lack of knowledge of local masons or economic considerations, most of these structures 

are not earthquake resistant which may result in huge damage and loss of life in case of major 

earthquakes. As per Vulnerability Atlas of India, 2008 (BMTPC, 2008), the region comprising 

of Uttarakhand, Western Uttar Pradesh, eastern districts of Haryana, and National Capital Region 

(NCR), has 14,453,897 houses out of which 1,764,619 (12%) are reported under high risk, and 

12,088,013 (83.6%) were reported under moderate risk in the event of a major earthquake. 

Retrofitting such a large number of houses is an economically difficult task to achieve in the near 

future, and hence a system needs to be developed to mitigate the loss of lives in case of a major 

earthquake. 

In such a scenario, an Earthquake Early Warning (EEW) system could prove to be a boon for 

short-term earthquake disaster mitigation. An Earthquake Early Warning system is generally 

defined as a system that can process ground motion in real-time from a remote location and issue 

a warning before significant ground shaking to industries as well as to the general public. This 

can be achieved by detecting the ground motion radiating from an earthquake rupture and 

estimating the resulting ground shaking that will occur later, either at the same location or some 

remote location.  

Early warning can be described as all the actions that can be taken during the lead time of a 

catastrophic event. The lead time is defined as the time elapsing between the moments when the 

occurrence of a catastrophic event in a given place is reasonably certain, and the moment it 

actually occurs. The physical basis behind the earthquake early warning system is that the strong 

ground shaking is caused by Secondary waves (S-waves) and subsequent surface waves, which 

travel at a velocity much slower as compared to that of Primary waves (P-waves). Both P and S 

waves travel much slower than electromagnetic signals transmitted wirelessly or through cables. 

Thus, depending on the distance from the epicenter of a strong earthquake to the vulnerable urban 

area, the transmission of information and real-time analysis of the first few seconds of P-wave 

may provide warnings from a few seconds to a few tens of seconds before the arrival of S-wave 

and strong ground shaking. An EEW system needs algorithms for estimation of size and location 
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of the earthquake (maybe relatively inaccurate) from the initial few seconds of ground motion 

time history to issue the warning. Estimating the size of the earthquake and its location has to be 

performed in as little time as possible. For this initial few seconds (typically three-second 

window) of data of record, which means as soon as data is received and picked, for P phase 

should be analyzed. All the algorithms use recorded data for training the regression models. Thus 

they may not have an accuracy of one-to-one relation. Still, for all practical purposes of an EEW, 

the various regression models can be trained to provide near accurate estimation of magnitude 

and distance. 

EEW systems are operational in several countries like Japan (Nakamura 1984, 1988; Odaka et 

al. 2003; Horiuchi et al. 2005; Nakamura and Saita 2007; Hoshiba et al. 2008; Brown et al. 2009; 

Kamigaichi et al. 2009),  Taiwan(Wu and T.-LTeng 2002; Wu and Zhao 2006; Hsiao et al. 2009; 

Chen et al. 2015), Mexico (Espinosa-Aranda et al. 2009; Suárez et al. 2018), Turkey (Erdik et al. 

2003; Alcik et al. 2009), Romania (Wenzel et al. 1999; Ionescu et al. 2007), and are under 

development along the West coast of USA (Allen and Kanamori 2003; Böse et al. 2009), 

Switzerland (Cua and Heaton 2007; Caprio et al. 2011), China (Peng et al. 2011, 2017, 2019) 

and Italy (Zollo et al. 2006, 2009). 

Several studies (Bhatia et al. 1999; Singh 2002; Parvez et al. 2003; Agrawal and Chawla 2006; 

P. et al. 2010) suggest that high peak ground acceleration (PGA) of the order of more than 200 

gals can be expected in Delhi from a major earthquake in the Central Himalayas. Also, the Indian 

code of practice for seismic design, IS 1893:2016 (Bureau of Indian Standards, 2002), puts Delhi 

in seismic zone IV, which suggests PGA of 240 gals for the design of structures. The Possibility 

and relevance of getting full advantage of the EEW system in India are better in terms of possible 

lead time in comparison to most of the areas in the world. This is because, for Northern India, a 

potential source of large earthquakes are located in the Himalayas, whereas the centers of large 

population and major industrial hubs (including the capital city of Delhi) are in the plains 

adjoining the Himalayas, which are at least 150 km away from the expected potential source. As 

mentioned earlier, thick population density and poor adherence to earthquake-resistant practices 

have substantially increased the seismic vulnerability of this region (BMTPC, 2008). However, 

in the case of a large earthquake in the Himalayas, most of these places, between the central 

Himalayas and Delhi, can have a lead time varying from 30 to 70 seconds before the damaging 

S-waves arrive. If this real-time seismological information is adequately tuned to the operational 

requirements of technical systems, life and industrial loss could be significantly reduced. 



The Indian subcontinent has witnessed earthquakes greater than magnitude 8; this, in turn, has 

triggered research in the field of seismology and earthquake engineering in India(Dimri and 

Pandey 2014; Jain 2016).  

Northern India is generally defined as the state of the Northern part of India, geographically in 

includes Indus-Gangatic planes and the Himalayas, which is bounded by Central Asia and 

Tibetan Plateau. The Ministry of Home Affairs includes the states of Haryana, Himachal 

Pradesh, Punjab and Rajasthan and Union Territories of Chandigarh, Delhi, Jammu and 

Kashmir and Ladakh. Ministry of Culture, however, does include Uttarakhand but does no 

include Delhi as Northern India. 

In this study, Northern India generally means Uttarakhand, Himalayas, Haryana, Chandigarh, 

Western Uttar Pradesh, and the National Capitol Region of Delhi. 

 

1.2 Motivation 

Rautela (2015) explained how traditional knowledge and practices kept the people and property 

safe from various natural disasters in general and earthquakes in particular. This knowledge has 

declined and is lost with rapid industrialization and the migration of population from villages to 

cities. As a result population of all the adjoining cities in plains has increased many folds. A 

major (Magnitude 7 or more) or great earthquake (Magnitude 8 or more) will surely cause a large 

loss of life(H., Singh, and Prasad 2012; Rautela 2015; Rautela and Joshi 2010;; R. P. Singh, 

Aman, and Prasad 1996). The second motivation came through big advancements in 

communication technology in India. During the last about ten years, almost every city, town, and 

village of India has got mobile towers and broadband connections. The third motivation came 

from Bhuj earthquake of 26th January 2001, which caused widespread damage and resulting 

casualty at Ahmedabad, which was about 300 km from the epicentral region. Other cities of the 

state of Gujarat, which were more than 100 km, also had several deaths and injuries. An operative 

EEW system could have saved a large number of lives in Gujarat during the Bhuj earthquake. 

Research carried out all over the world on real-time seismology and the success of EEW systems 

in Japan, Taiwan and Mexico were other motivating factors. But the biggest motivating factor 

was the internal urge to work for the development of a product that will directly benefit the people 

of India. 

1.3 Research Objectives 

The main objective of the study is to develop a prototype of an Earthquake early warning system 

for Northern India and test its feasibility and potential to mitigate earthquake-related disasters 

for Indian scenarios. This objective is achieved through the following studies; 

https://en.wikipedia.org/wiki/Haryana
https://en.wikipedia.org/wiki/Himachal_Pradesh
https://en.wikipedia.org/wiki/Himachal_Pradesh
https://en.wikipedia.org/wiki/Punjab,_India
https://en.wikipedia.org/wiki/Rajasthan
https://en.wikipedia.org/wiki/Chandigarh
https://en.wikipedia.org/wiki/Delhi
https://en.wikipedia.org/wiki/Jammu_and_Kashmir_(union_territory)
https://en.wikipedia.org/wiki/Jammu_and_Kashmir_(union_territory)
https://en.wikipedia.org/wiki/Ladakh
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1) Selection of sensor: Based on connectivity capacity, latency in sending a packet, packet 

size, and dynamic range. 

2) Study region and selection of sites for sensor installation for the establishment of  EEW 

network 

3) Selection of regression algorithm and testing. 

1.4 Dissertation Outline 

The work performed under this study has been presented in this thesis in seven chapters.  

Chapter 2 presents the literature review. The literature review is divided into different sections. 

The first section describes the EEW theory behind the EEW system and different parameters 

which have been developed and tested for EEW systems across the world. This section is 

followed by the current state of the EEW system across the world and a briefs description of 

different EEW systems. 

Chapter 3, “EEW system for Northern India”, presents the reasoning behind the necessity and 

relevance of the EEW system for Northern India. It also discusses the selection of study regions 

and the selection of sites for the installation of sensors for EEW. Selection of region is broadly 

done based upon the probability of occurrence of major event and distance of the region from 

target location which is western UP and Delhi. The site selection for the installation of a sensor 

is largely a function of logistics, which included network connectivity power supply and ease of 

maintenance. 

Chapter 3, “Selection of sensor”, in this section, a detailed analysis of sensor selection is 

described. A study on the low-cost sensor, with a lower dynamic range, on different EEW 

parameters and different strong-motion parameters, is done and presented in this section. This 

chapter concludes that a low-cost sensor with a lower dynamic range can be used successfully 

for EEW. 

Chapter 5, “The Central Processing Unit”, Many regression models are available for magnitude 

estimation and EEW parameter. To select the one which gives the best result for the Indian data 

set, all available algorithms were tested, and the best one was chosen for implementation. A new 

regression model is also developed using the Indian data set only. The details of the selection of 

the regression model and its testing are presented in this chapter. 

A new pick algorithm using DI to pick the P phase onset is also evolved during this study; details 

of this algorithm and its testing are presented in this chapter.  

Chapter 6, “Summary and conclusion” this chapter summarizes the whole study, our findings 

and the future scope of the work   
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Chapter 2 Literature Review 

Dr. Cooper first conceptualized earthquake early warning through an article published in the San 

Francisco Evening Bulletin on the third of November 1868(Nakamura and Saita 2007b). At that 

time, most of the scientist and seismologist could not comprehend this idea, as it appeared 

impossible to be achieved. The whole concept was presented as follows:  

“A very simple mechanical contrivance can be arranged at various points from 10 to 100 miles 

from San Francisco, by which a wave of the earth high enough to do damage, will start an electric 

current over the wires now radiating from this city, and almost instantaneously ring an alarm 

bell, ... This bell should be very large, of peculiar sound, and known to everybody as the 

earthquake bell. Of course, nothing but the distant undulation of the surface of the earth should 

ring it. This machinery would be self-acting and not dependent on the telegraph operators.” 

Almost 100 years after this, Japan developed the first P wave earthquake early warning system, 

and it was named as Urgent Earthquake Detection and Alarm System (UrEDAS).  

Since then, a lot of development has happened, and presently most of the seismically vulnerable 

countries either have a working EEW system or, they are working to develop one for them. In 

the first section of this chapter, the current stage of various EEW system and different parameters 

that have been used is discussed. 

In the third section of the chapter, the widely used low-cost MEMS-based sensor and network 

created with a low-cost sensor have been discussed. A few of the most popular low-cost MEMS 

and their usage in different EEW and strong motion networks have also been discussed. 

2.1 EEW Parameters 

There are different parameters available in the literature for the early prediction of an earthquake 

and possible damage at the target locations. Most of these parameters use a few seconds of data 

from the start of the P-phase. The selection of the right parameter for the system can be based on 

different aspects such as  

 Regional or On-site warning system 

 Issuance of warning to society in general or industry 

 Kind of industry etc. 

The most popular of these parameters are discussed below. 



2.1.1 Predominant Period (𝝉𝒑) 

Small magnitude earthquakes are results of the small patch of rupture over the fault and generate 

high-frequency energy in comparison to the large rupture (large earthquake) over the fault results 

in the generation of low-frequency earthquake waves. Therefore the predominant period of the 

first few seconds of the P phase arrival could be correlated to the magnitude of the earthquake. 

The predominant period is calculated continuously in real-time, taking into account only the 

vertical component of the velocity sensor from each station and is defined with the recursive 

relation. (Allen and Kanamori 2003) 

𝜏𝑖
𝑝

= 2𝜋 √𝑋𝑖 𝐷𝑖⁄  

Where 

𝑋𝑖 =  𝛼 𝑋𝑖−1 + 𝑥𝑖
2 

𝐷𝑖 =  𝛼 𝐷𝑖−1 +  (𝑑𝑥
𝑑𝑡⁄ )

𝑖

2
 

𝜏𝑖
𝑝
 is the predominant period at the time i, 𝑥𝑖 is the recorded ground velocity, 𝑋𝑖  is the smoothed 

ground velocity squared, 𝐷𝑖 is the smoothed velocity derivative squared, and 𝛼 is the smoothing 

constant. Then the maximum predominant period, 𝜏𝑝
𝑚𝑎𝑥 is used for estimation of the magnitude 

of an earthquake using linear regression relationship between magnitude and𝜏𝑝
𝑚𝑎𝑥. The size of 

the time window plays a very important role in the accuracy of estimation of magnitude, and it 

has been studied that a time window of 3 seconds is found to be most economical in terms of 

magnitude estimation as well as attaining maximum lead time.  

 

2.1.2 Characteristic Period Parameter (𝝉𝒄)  

The period parameter 𝜏𝑐 is computed by  

𝜏𝑐 = 2𝜋/√[∫ �̇�2(𝑡)
𝑡0

0

𝑑𝑡] [∫ 𝑢2(𝑡)𝑑𝑡
𝑡0

0

]⁄  

Where �̇�, u is defined as the high pass filtered velocity and displacement of the vertical 

component of the seismic waveform over a fixed time window t0 (Wu and Kanamori 2008a). 

 

2.1.3 Cumulative Absolute Velocity (CAV) 

Kennedy and Reed (EPRI,1988) proposed a new EEW parameter (cumulative absolute velocity 

CAV) for the application in nuclear power plant during a study sponsored by Electric Power 
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Research Institute, Palo Alto, California. It is given as integration of absolute value of ground 

acceleration over the time history of earthquake record. The velocity content present in the 

velocity record has a direct relation with the energy associated with the earthquake waves for the 

corresponding seismic recording station.  Therefore, it can be used to estimate the damage 

potential associated with the impending earthquake. CAV is calculated as follows:  

𝐶𝐴𝑉 =  ∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑚𝑎𝑥

0

 

Where 𝑡𝑚𝑎𝑥 is the total duration of the time-history. 

2.1.4 Bracketed Cumulative Absolute Velocity (BCAV) 

CAV is not related to the arrival time of different phases of energy, but it is more sensitive to low 

frequencies (damaging) motions than high frequencies (non-damaging) motion. Therefore EPRI 

in 1991 modified the CAV calculation by eliminating the non-damaging acceleration’s values 

from the seismic trace. This was achieved by eliminating those earthquake time histories which 

have maximum acceleration below predefined threshold values, say .025 g within a selected time 

domain, only earthquake records having acceleration values more than the threshold were 

considered for calculating modified CAV values and are termed as standardized CAV (Bracketed 

Cumulative Average Velocity-BCAV). BCAV is computed as:  

𝐵𝐶𝐴𝑉 =  ∑ ∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑖+∆𝑡

𝑡𝑖

 

     max |𝑎(𝑡)|> 0.025 g 

Where 𝑡𝑖 is the time when the value of the seismic waveform is greater than 0.025g, and ∆𝑡 is 1 

second (Alcik et al. 2009) 

2.1.5 Windowed Bracketed Cumulative Absolute Velocity (BCAV-W) 

BCAV-W is modified from BCAV, where CAV is calculated for all the values of, where 

acceleration is greater than predefined values. This is performed to remove non-damaging high 

frequencies from the record. However, the problem still persisted for the sensors which were 

installed in the industrial facilities and high-rise buildings. To remove the noise from such 

buildings and also to eliminate data from small and far-field earthquakes, the BCAV is further 

modified to windowed BCAV, 

Onsite earthquake early warning systems employed in the buildings and industrial facilities 

require some improvements over BCAV due to some reasons. The main reasons are as follows  



 To remove the added BCAV values due to reasons like high noise, small earthquakes, 

and far-field events,  

 To take care of the minimum acceleration values which are proposed for the nuclear 

power plant to consider the lower acceleration level for building type structures to eliminate 

the very large peak of accelerations for near field impulse from long time earthquake motion 

with lower acceleration values. 

 To identify the short-time earthquake motions with very large peak ground 

accelerations (near field impulsive) from the long-time earthquake motions with lower 

acceleration levels (far-field). 

BCAV-W is calculated by windowing BCAV calculation on a broader window length (W) basis. 

Alcik considers window length as 8 sec to perform this algorithm on his dataset. It is calculated 

as follows (Alcik et al. 2009): 

BCAV − W =  ∑ ∫ |a(t)|dt
ti+∆t

ti

win length

W=1

 

Where, ∆t = 1 sec and maximum a(t) > minimum acceleration. Level. 

2.1.6 Low-Pass Filtered Peak Displacement (𝑷𝒅) 

Pd or low pass filtered peak displacement is defined as the peak displacement amplitude for a 

time history for the first few seconds after P arrival (Wu and Zhao 2006b). 

Wu et al., Using data from Taiwan, concluded that the peak initial displacement amplitude,Pd, 

correlates well with the peak ground-motion velocity, PGV also when Pd is found greater than 

0.5 cm, the event is most likely to be damaging. (Wu and Zhao 2006b; Wu and Kanamori 2008a)  

It was also concluded that the combination of the 𝜏𝑐 and Pd methods could provide reliable 

threshold warnings within 10 s after the occurrence of a large earthquake. 

 (Wu and Zhao 2006b) also arrived at the relationship of Pdwith the hypocentral distance R, 

magnitude M, and obtained the following regression expression: 

MPd
= A + Blog(Pd) + Clog(R) 

Wu and Zhao (Wu and Zhao 2006b) also concluded that Pd is a more physically fundamental 

parameter that is also source-dependent. 

Also, it more accurately represents the characteristics of the rupture process, and thus it is more 

in sync with the study of (Olson and Allen 2005). 

Allen and Olson have concluded that the initial characteristics of the initial few seconds of 

earthquake motion can have a great impact on the actual size of the earthquake.  
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Pd is also very suitable for the EEW system as it can give very agreeable results by using just the 

initial 3 seconds after the P-phase arrival.  

2.1.7 Squared Velocity Integral (IV2) 

.A new parameter named squared velocity integral was given and is found to be in good 

conjunction with the energy associated with the ground motion of the recording site.  This new 

parameter considers the initial portion of P-wave and S-wave and can be formulated as:   

𝐼𝑉2𝑐 =  ∫ 𝑣𝑐
2(𝑡)𝑑𝑡

𝑡𝑐+∆𝑡𝑐

𝑡𝑐

 

Where the subscript c refers to the P and S phase, 𝑡𝑐 is the corresponding first arrival, and 𝑣𝑐 is 

the particle velocity measured on the seismogram. Finally ∆𝑡𝑐 is the length of the signal along 

with analyses is performed (Festa et al. 2008). 

2.1.8 The Log-Averaged Period (𝝉𝒍𝒐𝒈) 

This parameter is based on the measurement of the frequency content of the initial portion of P-

wave like 𝜏𝑝 and 𝜏𝑐  but has improved over these two commonly used EEW parameters. 𝜏𝑝 and 

𝜏𝑐  yield correct solution only in cases where the signal has a very high signal to noise ratio and 

records are monochromatic while 𝜏𝑙𝑜𝑔 is calculated directly from the actual velocity spectra and 

therefore corresponds to the actual frequency content of the signal 

The log-average period, 𝜏𝑙𝑜𝑔 is calculated from the spectrum of the first few seconds of the 

velocity seismogram. The calculations are done as follows: 

i. Pre-specified seconds or intervals data is extracted from P phase arrival. 

ii. A Hann window is applied to this extracted data; this helps in reducing sudden end effects. 

iii. The frequency content of this new signal is then calculated by applying Fourier transform, 

and a set of power spectrum coefficients Pi(wi) are obtained. 

iv. The set of uniformly spaced Pi is resampled to get a set that is spaced every 0.1 log unit 

of frequency, between 0.1 and 10 Hz, and finally  

v. The log-average period, 𝜏𝑙𝑜𝑔 is obtained through: 

log(𝜏𝑙𝑜𝑔) =  
∑ (𝑃𝑖

∗(𝑤𝑖)log (1 𝑤𝑖⁄ ))𝑖

∑ (𝑃𝑖
∗(𝑤𝑖))𝑖

 

Where the asterisk indicates that the power spectrum is resampled according to step IV. It is 

emphasized that replacing Piwith 𝑃𝑖
∗in the above expression, and or multiplying the power 

spectrum coefficients by 1∕wiinstead of log(1∕wi) would result in an average period that is biased 



toward the highest frequencies in the spectrum. It was demonstrated  that instead of using  

approximate quantities, such as 𝜏𝑝
𝑚𝑎𝑥 and 𝜏𝑐to the exact quantity 𝜏𝑙𝑜𝑔  gives better real-time 

magnitude estimation (Ziv 2014). 

2.1.9 Root Sum Square Cumulative Velocity (RSSCV) 

The RSSCV is another EEW parameter, which is given by (Bhardwaj 2014; Bhardwaj et al. 

2016); this parameter includes the combined effect of both amplitude and time of duration. 

RSSCV is also an integral EEW parameter similar to CAV and is defined as:  

RSSCV =  √∑ vi
2

n

i=1

 

Where vi is the velocity vector, which is calculated by performing integration of strong-motion 

records for n number of samples in the selected window. RSSCV helps in enhancing the SNR 

and reduces the standard error in earthquake records (Bhardwaj et al. 2016) 

. 

2.2 EEW System Current Status 

Development in sensor technology acted as the catalyst in the research towards On-site EEW 

systems. This is because an On-site EEW system issues warning at the location of the sensor’s 

installation. This system was quite efficient to initiate automatic shutdown in the industries, such 

as nuclear power plants; however, the lead is not enough for the general public to react. In the 

last couple of decades, the development of communication systems, especially broadband 

internet, created hope towards the possible development of an effective regional EEW system. 

Several countries are tirelessly working towards the development of a regional EEW system so 

that the lead time can be increased. In this section, major EEW systems being developed or 

functional are discussed.(Santos-Reyes 2019; Allen and Melgar 2019)  

2.2.1 UrEDAS 

In General, the conventional early warning instruments (seismometers) issue the warning when 

earthquake motion (seismic acceleration) exceeds a pre-set level. For example, in 1965 in Japan, 

Alarm seismometers were installed every 20 to 25 km along the Shinkansen railway line to issue 

an alarm if the acceleration of horizontal ground motion exceeds 40 Gal (= cm/sec2). The first P 

wave earthquake early warning system UrEDAS, in contrast, first judge the devastating potential 

of an impending earthquake by observing the initial portion of P-wave in terms of magnitude and 

location and issue the warning if necessary. The UrEDAS estimates the magnitude and 
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hypocenter, depth, and epicentral azimuth of the earthquake immediately after the P-wave 

arrivals at a seismic sensor and, like other seismic observation systems, does not transmit the 

waveform to remote processing or centralized system. The first pilot test of UrEDAS was 

initiated in the year 1984, and since the year 1986, UrEDAS has deployed as an early warning 

system for earthquake-related disasters for Saiken undersea tunnel. (Nakamura 2004; Nakamura 

and Saita 2007b, c). 

2.2.2 Compact UrEDAS 

As an aftermath of the Kobe earthquake, a need for a system that could issue warnings even 

earlier than UrEDAS, which led to the development of a new system. To reduce the time for 

issuing warning, modifications were done in UrEDAS and the newly developed system was 

named Compact UrEDAS. Unlike other EEW systems, Compact UrEDAS estimated the damage 

potential of an earthquake in real-time from the earthquake ground motion; the warning is also 

issued immediately. To estimate earthquake damage potential, the power of the ground motion 

is estimated by using the inner product of the acceleration vector and velocity vector. Since this 

value could be large therefore Destructive Intensity (DI) is defined as the logarithm of the 

absolute value of this inner product as DI = log |AV|.  DI is defined as the maximum value of PI 

after the arrival of the P-phase. In terms of JMA, the intensity is expressed in terms of real 

intensity (RI) :(Nakamura and Saita 2007b; Kamigaichi et al. 2009) 

𝑅𝐼 = 𝐷𝐼 + 2.4 

And 

𝑀𝑀𝐼 =
11 

7
𝐷𝐼 + 4.27 =

11

7
𝑅𝐼 + 0.50 

 

The compact UrEDAS has been operational since 1998 for Japan railway network as an on-site 

P wave detection system.  

2.2.3 FREQL and AcCo 

It is fast response equipment and integrates the functions of UrEDAS, Compact UrEDAS and 

AcCO. It estimates earthquake parameters in one second after P-wave detection faster than 

UrEDAS, judges the dangerousness of the earthquake motion one second after detection of P-

wave faster than Compact UrEDAS, and outputs the information and alarm based on both 

acceleration and RI in real-time in the same way as AcCO does. The FREQL has the functionality 

to issue earthquake alarms based on both network warnings issued from the regional warning 



system as well as take decisions based upon The threshold value of its earthquake parameter 

based upon data from the local sensor. (Nakamura and Saita 2007c) 

AcCO or Accelerator Collector is a small and simple seismometer that is designed to records 

earthquake time history as well as to issue a warning based upon strong motion data. The 

advantage of AcCo are as follows: 

 It is a very small device, almost the size of a palmtop; thus, it is very easy to install and 

maintain. 

 It is very low in terms of initial cost as well as the cost of maintenance as compared to 

traditional seismometers or force balance accelerometers. 

 In addition to recording strong motion data, it also has the functionality to issue an on-

site warning based upon local intensity. 

 It calculated 5 HZ PGA and issues warning if this value is found to be more than 5 gals 

 Intensity scale can be chosen based upon RI MMI or PEIS.  

2.2.4 EalrmS 

California Integrated Seismic Network acronym as CISN integrated three different algorithms 

for the development of EEW, these algorithms are P phase detection, subsequent parameter 

calculation and SHAKEALERT project, and all these are collectively called EalrmS. EalrmS 

uses two basic modules waveform processing module and an event detection module. The 

waveform processing module (WP) runs simultaneously at three locations which are CALTECH 

USGS, USGS Menlo Park, and UC Berkeley. The main objective of this module is to scan for P 

phase arrival; Allen’s (Allen 1978)  short time average divided by long time average is 

implemented for detection of P phase arrival. The WP module estimates peak displacement, 

velocity and acceleration, predominant period and signal to noise ratio for a 4-second window. 

All these parameters and P phase arrival time is sent to the event detection module every second. 

The event detection module runs only at UC Berkeley. This module, in turn, estimates event 

location, estimates event magnitude and earthquake warning alert to SHAKE ALERT, where the 

decision to disseminate warning is taken. (Allen and Kanamori 2003; Allen et al. 2009) 

The most advanced version with improved modules for estimating and predicting parameters is 

called EalarmS-3 or E3 and will be used in the future for ShakeAlert (Chung et al. 2019) 

Elarms has also been tested for the region outside California, for which it has been optimized. 

With the help of simulation and recorded data, the Elarms was tested for Israel, and it was found 

that it worked fine for a sensor network in Israel. (Nof and Allen 2016) 
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2.2.5 Virtual Seismologist 

The Virtual Seismologist (VS) method is based on the Bayesian theorem in Earthquake Early 

Warning (EEW) that estimates earthquake magnitude and location using observed ground motion 

amplitudes, predefined prior information, and envelope attenuation relationships (Böse et al. 

2009; Caprio et al. 2011). The application of Bayes theorem in EEW states that the most probable 

source estimate at any given time is a combination of contributions from prior information (i.e., 

network topology or station health status, regional hazard maps, earthquake forecasts, the 

Gutenberg-Richter magnitude-frequency relationship) and the real-time streamed ground motion 

observations. VS is considered an intelligent and smart automatic system capable enough to 

imitate the work of human seismologists. Because VS is based on the prior information as well 

as the currently available real-time waveforms makes it unique, when compted with the other 

available EEW algorithms. This method can make quick, relatively accurate interpretation from 

real-time earthquake waveform using the experience and the available streamed ground motion 

data.  This method continuously updates the source estimates and predicts ground motion at each 

second due to a change in the likelihood function as the arrival of additional data.    

2.2.6 EEW system in Taiwan 

Taiwan, due to its proximity to the Circum-pacific seismic belt, is highly vulnerable to 

earthquakes and has seen massive damage due to earthquakes in the past. Central Weather bureau 

has established a real-time strong motion instrument network and has a functional earthquake 

early warning system in place. The system has the capacity to issuing a warning within 20 

seconds of the occurrence of an event of magnitude greater than 6.5. Taiwan's EEW system works 

on the P-wave method.  

(Wu and Zhao 2006b; Wu and Kanamori 2008b; Hsiao et al. 2009b, a). 

Along with the conventional strong motion instrumentation of the Central weather bureau, 

Taiwan has also installed a very dense network of low-cost MEMS-based sensors. These sensors 

are capable of sending three-axis acceleration to the remote server using TCP/IP and 

simultaneously can act as a standalone on-site earthquake early warning system. For onsite 

warnings, the system uses Pd approach for issuing earthquake warnings. (Rydelek et al. 

2007)(Wu et al. 2013; Chen et al. 2015b) 



2.2.7 PreSEIS 

PreSEIS uses three two-layer feed-forward (TLFF) Artificial Neural Network (ANN) and each 

network is used for a specific purpose. First TLFF uses the time differences (time difference in 

P-onset at the first station to the P-onset on the remaining stations in the seismic instruments 

network) to estimate the hypocentre location, second TLFF uses the hypocentre location and 

CAV of each sensor to estimate the Magnitude of an impending earthquake and, third TLFF uses 

the hypocentre location, CAV and Magnitude to estimate the rupture starting and ending location 

to know the about the rupture.   

Training of TLFF is done using some earthquake time histories whose hypocentre location, 

magnitude and rupture information is known to us. The main purpose of training this network is 

to set the weight parameters, and this is done by the backpropagation approach.(Böse et al. 2009, 

2012). 

For warning purposes, the new parameter (ground motion parameter IM) is calculated at each 

timestamp using the source parameters and site conditions and can be expressed as:  

𝐼�̂�(𝜆, 𝜃) = 𝑓(�̂�𝑛, �̂�𝑟𝑢𝑝
𝑛 , 𝑠𝑖𝑡𝑒)  

Where (𝜆, 𝜃) is the location of the site of interest for which warning needs to be issued, �̂�𝑛 is 

the estimated magnitude obtained from TLFF, �̂�𝑟𝑢𝑝
𝑛  is the distance between rupture and site of 

interest at each timestamp and, site represents site characteristic of area of interest. 

Warning of an impending earthquake will be issued if 𝐼�̂�(𝜆, 𝜃)  ≥ 𝐼𝑀𝑡ℎ𝑟𝑒𝑠 

2.2.8 Early Warning System in Fujian China 

China started the development of the EEW system for the Fujian district in 2009, Fujian which 

is one of the most important districts in China, is highly vulnerable to earthquakes originating 

from Taiwan and from the Fujian region itself. Testing has shown that for inland events, almost 

6.4 ± 0.97 seconds from the triggering of the first station, whereas for offshore earthquakes, the 

first alarms were generated almost 13.7 ± 2.9 seconds after the first trigger.  

The epicenter is estimated by solving the travel time equation once three of four stations are 

triggered, and magnitude is estimated by using Pd method. (Zhang et al. 2016) 

2.2.9 Presto 

PRESTo or PRobabilistic and Evolutionary early warning system is a software system under 

development and testing in southern Italy. As the name, “Evolutionary” suggest PRESTo uses 

the most modern algorithm for the development of EEW system, apart from estimating EEW 

parameter it also keeps on updating them as and when more records are available. Also, 
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“Probabilistic” suggests that calculations are based on probabilistic earthquake detection and the 

Bayesian approach. (Satriano et al. 2011; Cauzzi et al. 2016) 

The main functionality of PRESTo is dependent upon the following main modules:  

 Strong motion data processing and acquisition. 

 Detection of event or P phase arrival. 

 Determination of Location of the earthquake. 

 Estimation of magnitude. 

 Prediction of peak ground motion at the target location. 

The software is mostly written using C++ language and can be installed on various operating 

systems from Windows to Linux as well as mac. For the acquisition of data, the seed link format 

is used. 

For estimation of magnitude RTMag technique by Lancieri and Zollo has been implemented. It 

makes a correlation between P and S phase peak displacements, measured for the first few 

seconds of the low passed filtered signal. The relationship used is as follows:  

log 𝑃𝑑 = 𝐴 + 𝐵𝑀 + 𝐶𝑙𝑜𝑔(
𝑅

10
) 

Where,  

Pd is peak ground displacement for predefined window length after P phase arrival, two to four 

seconds window length is generally adopted.  

R is hypocentre distance, A, B, and C are regression coefficients  

2.3 Suitability of low-cost sensor for EEW and Strong motion studies 

Since last decade seismologist has started using low-cost MEMS sensor as an add-on the existing 

traditional force balance accelerometers, especially in case of creation of a dense network for 

EEW. (Tu et al. 2013; Alessandro et al. 2014; Chen et al. 2015b; Peng et al. 2019). These low-

cost sensors do come at the cost of performance in terms of dynamic range and signal to noise 

ratio, recording correct ground motion or large frequency range, and choice of such sensors is 

largely a function of research/technical requirement and availability of funds. However, for a 

large number of applications that vary from recording maximum amplitudes to strong motion 

studies, such cost-effective MEMS are quite suitable as most of these applications do not need 

very high-performing sensors(Anthony et al. 2019), which means that for most of the daily life 

engineering applications, low-cost sensors can be deployed without much hampering the quality 

of expected engineering outcome.  



In their study (Tu et al. 2013) have categorically found that for strong motion data having 

frequency more than 0.5 Hz, the velocity-time history, as well as displacement time history, could 

be extracted from low-cost MEMS without any error. 

(Picozzi et al. 2011) have also found in their study that there is no difference in response spectra 

calculated from data recorded between Guralp sensor and low-cost MEMS as long as the 

frequency is greater than .5 Hz.  

The C class sensor does have suitability and could help in creating SHAKEMAP moreover, few 

of the sensors do have the potential to be deployed into ANSS network of A and B class sensors 

for densifying the network(Evans et al. 2014). 

2.3.1 OSOP Raspberry Shake 4D 

OSOP Raspberry Shake 4D consists of a three-component accelerometer, one channel 4.5 Hz 

geophone having a vertical component, 24-bit digitizer and real-time data transmission in mini-

seed format. It also incorporates a network timing protocol for accurate timing as well as support 

external GPS, which need to be installed separately.   

(Anthony et al. 2019) in their study found that for an earthquake having a magnitude in the range 

of ML between2 - 4 and epicentral distance varying from 20 to 100 Kilometres, Raspberry shake 

will require events magnitude or order .3 higher than as compared to the broadband sensor for 

reliable calculation of event magnitude.  

One of the most important drawbacks of MEMS-based low-cost sensors is the low signal-to-

noise ratio (SNR). However, the study has suggested that for small events, there is overestimating 

of the magnitude; however, for large events having magnitude ML greater than 3 and epicentral 

distance less than 100 Kilometres, the records were extracted with high precision. It was also 

concluded that the accuracy provided by Raspberry is well with the requirement of EEW purpose, 

and this sensor is quite suitable for densifying the EEW strong motion sensor network. 

2.3.2 LIS331DLH (iPhone) Accelerometer 

LIS331DLH is a low-cost three-axis MEMS-based accelerometer that can output data with 16-

bit accuracy. It has a user-selectable range varying from ± 2g to ± 8g with a frequency range of 

.1 Hz to 1 kHz. (D’Alessandro and D’Anna 2013) Performed test for LIS331DLH by comparing 

it with the EpiSensor FBA ES-T sensor using a vibration table arrangement. A constant and 

damped sign wave with a frequency from 0.2-20 Hz was created to perform the test. The 

amplitude between 10 to 2000 mg was analyzed for all frequencies in the range. 
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In the study, it was concluded that for the frequency range which is of most importance for 

earthquake engineering LIS331DLH has shown accurate and excellent phase and frequency 

response. It was also found that LIS331DLH records slightly less amplitude of acceleration. 

It was also found that because of low SNR these sensors are most suitable to be used for strong 

motion studies for large magnitude events as compared to microseismic events.  

However, a greater advantage of this sensor is its relatively smaller size, minimal power 

requirement, and no maintenance once installed. All these make the most suitable to be used in 

smartphones and smart devices. They can also be used for densifying EEW networks.  

2.3.3 Quake-Catcher Network 

Quake-Catcher is one of its kind sensor network, in which detection and recording seismic event 

is performed by involving the general public. It used various sensors installed in smartphones, 

laptops, and other connected devices of the normal public to record and collect earthquake data. 

QCN has more than 1400 volunteers who share data from their phones, laptops, and computers. 

The whole system is developed using the Berkeley Open Infrastructure for Network Computing 

(BOINC) software for volunteer computing. Most of these sensors can have linear amplitude and 

phase response for a wide range of frequencies varying from flat to 250 Hz. (Benson et al. 2013; 

Portnoi et al. 2014; Evans et al. 2014) 

(Lawrence et al. 2014) Performed feasibility of using community-based sensor network and 

tested QCN for recording earthquakes. The study observed that QCN can determine magnitude 

with error in the range of 1 magnitude and can report an earthquake as early as 9.1 seconds from 

the start of rupture. These sensors are monitored continuously in the remote private mobiles or 

laptops and sent the triggered event to the remote central server. The MEMS sensors that have 

been used by the QCN network have improved greatly with time since the network became 

operational in 2007. The noise level of the MEMS sensor has decreased from 4 × 10−2 m/s2 in 

2008 to 2 × 10−3 m/s2 in 2010, and less than 6 × 10−4 m/s2 for the sensors. 

The ease with which these sensors can be installed makes it ideal for recording aftershocks after 

a great event as a large number of sensors can be deployed within few days to cover a large area 

and record a large amount of strong-motion data. Like for an M 7.2 earthquake that occurred in 

Darfield, New Zealand, located just northwest of the urban centre of Christchurch, it was decided 

to densify the network to record as much as data from the future aftershocks. After 11 days of 

the main event, 180 QCN sensors were installed in homes and offices in and around Christchurch 

city. The success of such type of network and the deployment of low-cost sensors will have a 



huge impact in the future of the real-time seismic network, especially strong-motion seismology 

(Cochran et al. 2009; Lawrence et al. 2014; D’Alessandro et al. 2019).  

2.3.4 Urban Seismic Network (USN) 

USN or Urban Seismic Network has been installed as a community-based network for seismic 

monitoring as a pilot study in the Acireale municipality area, Sicily, Italy. This region falls under 

one of the most seismically active regions in the world (Azzaro et al. 2013). MEMS selected for 

this study is 1044_0 (3/3/3 Phidget Spatial Precision High Resolution) produced by the Canadian 

company Phidget Inc. This device has a three-axis accelerometer along with a gyroscope and a 

magnetometer. The MEMS has a resolution in the range of ± 2g and a dynamic range in the order 

of 44dB. The system has a linear response from 0 to 497 Hz. There are roughly 200 plus devices 

connected to the central server and transmitted data through TCP/IP protocol. 

The PSD curve was drawn for the self-noise of the sensor obtained for the sensor by acquiring a 

72 hour of the signal at a size having low seismic noise. The PSD curve shows that the noise 

level of the sensor is a bit higher than the desired values as suggested by Peterson (Jon 1993); 

however, it is well within the limits required for the pilot project(Alessandro et al. 2014). 

2.3.5 GL-P2B –MEMS for earthquake early warning 

GL-P2B is a three-axis accelerometer that has an inbuilt seismic processing module; it can 

calculate EEW parameters and can transmit the information to a remote server with little latency. 

For the automatic pick of P phase, STA/LTA algorithm for Allen((Allen 1978) has been 

implemented. The whole package consists of three uniaxial MEMS, three digitizers and 

microcontrollers and other peripheral devices required for data processing and storage. 

The amplitude-frequency response of the sensor shows that it has a flat response from 0 to 80 

Hz, which is quite in agreement with A-class sensors. The laboratory test has shown that these 

sensors have a dynamic range of the order 97-99 dB. The performance of this sensor has been 

found better than sensors traditional strong-motion accelerometers like Namometrics Titan, 

RefTek RT- 147-01/3, Guralp CMG-5TC, and can be compared with EpiSensor 2. The test 

results claim that it would be suitable to call it a B class sensor and not a C class sensor. As of 

2016, ten numbers of these sensors have been installed in Liangshan Yi Autonomous Prefecture, 

Sichuan, China. The data is transmitted using mobile internet with 4g connectivity. (Peng et al. 

2017, 2019) 
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2.3.6 Palert 

Palert sensor, which is developed by San Lien Corporation Taiwan, has been used to create a 

high-density sensor network EEW in Taiwan. Palert seismic network, also known as PSN is 

being tested in Taiwan since 2010 and has more than 700 sensors. The PSN is integrated with 

Taiwan’s Central Weather Bureau seismic network (CWB-SN), which is used both for 

monitoring earthquakes and EEW in Taiwan. This integration of the traditional seismic network 

with low-most MEMS sensors is the first of its kind in the world, and it has demonstrated the 

suitability of low-cost sensors for EEW systems. The studies suggested that Palert is capable of 

providing good quality data for EW purposes, earthquake engineering, structure health 

monitoring as well can perform an on-site EEW warning system(Wu et al. 2013; Hsieh et al. 

2014; Chen et al. 2015b; Wu 2015). 

Palert can record ground motion data with a sampling frequency of 100Hz; this data is digitized 

with the 16-bit digitizer, with a resolution of ± 2g. For accuracy and time stamping of data, a 

network timing protocol (NTP) is available, which can update time from any self-configured 

server or internet. Palert can send data to 2 servers (3 in case of the latest Palert plus) 

simultaneously, data in the form of TCP/IP packet of one-second duration. Each packet is 

comprised of 100 samples of three-axis acceleration time data as well as parameters computed 

locally by Palert. Palert can also act as an on-site warning system once it is connected with a 

siren or warning assembly. The warning threshold for PGA, Pd and/or intensity can be selected 

using the software.    

Despite having a relatively low signal-to-noise ratio is has been found that data from Palert is 

suitable for P phase picking, location of the earthquake, and estimating the subsequent magnitude 

of the earthquake. Integrating PSN network with CBW-SN has not only densified the exiting 

CWB network it has also helped in the generation of PGA map with greater and more accurate 

details. (Wu et al. 2013, 2019).   
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Chapter 3 EEW System for Northern India 

As a first step towards establishing EEW System for Northern India, a network comprising of 84 

accelerometers has been installed in Central Himalayas (Uttarakhand) to provide earthquake 

early warning(Chamoli et al. 2019). This system was installed by the funding provided by the 

Ministry of Earth Sciences (MoES), Government of India, and is currently being operated by 

funds provided by the Disaster Mitigation and Management Center (DMMC), Government of 

Uttarakhand, India. The objective of the project granted by MoES was to test the feasibility and 

establish a prototype EEW system for Northern India, which was successfully concluded in 

March 2017. With the successful completion of the first phase of installation, another 85 

accelerographs were installed in the Kumaon region of Uttarakhand. This extended network was 

funded by the Government of Uttrakhand. This system, which is the first EEW system in India, 

is capable of giving warning of about 76 seconds (Bhardwaj, 2014) to Delhi in the event of an 

earthquake having a magnitude greater than six and having an epicenter in the instrumented 

region. Similarly, other important cities such as Dehradun, Haridwar, Roorkee, Muzaffarnagar, 

and Meerut lead time estimated by Bhardwaj, 2014 were 20, 22, 31, 44, 57 seconds, respectively. 

3.1. Region for EEW sensor network 

For the initial phase of installation, a region in the central Himalayas which lies between 

Yamunotri in East (31.0140° N, 78.4600° E.) and Badrinath in the west (30.7433° N, 79.4938° 

E) was selected. This region was selected because of the following two main reasons: 

 Primarily this region has been identified as one of the seismically most active regions in 

the central Himalayas. 

 Secondly, the scope of the project was to establish feasibility to issue warnings to cities 

falling in western Uttar Pradesh and NCR, which would be most affected by an 

earthquake having epicentre in the selected region. 

During the last 25 years, this region has seen two strong earthquakes, viz—Uttarkashi earthquake 

of 1991 (Magnitude 6.8) and Chamoli earthquake of 1999 (Magnitude 6.5). The selection of a 

region for the installation of sensors for the EEW network was done after considering the 

suggestions of many eminent scientists. Most of them have identified this region as a seismic gap 

where a large magnitude earthquake (Magnitude greater than 7) can occur. The studies have 

shown that a large earthquake with a magnitude greater than 7 in Central Himalayas could 

generate significant ground shaking up to the National capital region Delhi (Singh 2002; Iyengar 

and Ghosh 2004; Mittal et al. 2012, 2013c, b), which is situated at a distance of nearly 200 km 



from Main Boundary Thrust (MBT) and 300 km from Main Central Thrust (MCT). The MCT 

and MBT are the two most active thrust planes of the Himalayas. The study conducted by(Mittal 

et al. 2013a) has also estimated that for Magnitude 8.0 and 8.5 earthquakes from the Himalayas, 

the response spectrum of the postulated time history will exceed the design response spectrum 

for the zone IV at several frequencies on all soft soil sites for Delhi. Most of the thickly populated 

cities and industrial hubs in and around NCR have been mapped in zone IV as per seismic zoning 

map of India provided in IS 1893:2002. Thus a major earthquake in the central Himalayas could 

prove to be disastrous for NCR and adjoining cities. In the later stages of the research, the region 

was further extended up to Dharchula so that the Uttarakhand-Dharchula seismic gap(Srivastava 

et al.; Tandon and Srivastava 1954, 1974) can be exhaustively covered.  

Characterized by its thickly populated cities, large population, and by virtue of its proximity with 

the Himalayas, western UP and Delhi are some of the most vulnerable regions in India for 

disasters related to earthquakes originating in the Himalayas. It is because of this reason, it was 

decided that the first-ever EEW network in India must be installed in Kumaun-Garhwal 

Himalayas so that warning could be given to the whole of Western UP and the national capital 

region (NCR). Kumaun and Garhwal Himalayas are part of the central Himalayas and lie in the 

state of Uttarakhand. This region is surrounded by the international boundaries of Tibet (China) 

in the northeast and Nepal in the east. This region consists of all four Litho-tectonic subdivisions 

of the Himalayas (Valdiya 1980), viz. Tethys Himalayas, Higher Himalaya, Lesser Himalayas 

and sub-Himalayas (Shivalik). These subdivisions are further separated from each other by North 

dipping intra crustal boundary thrust. Shivalik which is comprised of Cenozoic sediments is 

youngest of all and lie at the southern end, and it reached a maximum height of 1200 meter. South 

of Shivalik is marked by Himalayan Frontal Thrust and north boundary is delimited by Main 

Boundary thrust (MBT). The region between South of Greater Himalayas and north of Shivalik 

is known as the Lesser Himalayas. This region has its boundaries marked by MBT in south and 

Main Central Thrust in north, and is comprised of mostly Meso and Neo-proterozoic period 

rocks. The region between MCT and south of the Tethys Himalayas is called Greater Himalayas 

or Himadri.  

 

3.2.  Target location 

The target cities in which warning is planned to be issued lie in Western Uttar Pradesh and the 

national capital region of Delhi, which are approximately at a distance of 100 to 300 km from 

the instrumented region. Geologically this region mostly comprises of Indo-Gangetic plains. The 

Possibility and relevance of getting full advantage of the EEW system in India are better in terms 

of possible lead time, in comparison to most of the areas in the world. This is due to the fact that, 
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for Northern India, potential sources of large earthquakes are located in the Himalayas, whereas 

the centers of large population and major industrial hubs (including the capital city of Delhi) are 

in the plains adjoining the Himalayas, which are at least 150 km away from the expected potential 

source. As mentioned earlier, thick population density and poor adherence to earthquake-resistant 

practices have substantially increased the seismic vulnerability of this region (BMTPC, 2008). 

However, in the case of a large earthquake in the Himalayas, most of these places, between the 

central Himalayas and Delhi, can have a lead time varying from 30 to 70 seconds before the 

damaging S-waves arrive. If this real-time seismological information is adequately tuned to the 

operational requirements of technical systems, life and industrial loss could be significantly 

reduced. 

3.2.1. Plains adjoining Kumaun – Garhwal Himalayas 

Morpho-stratigraphically speaking, the Indo-Gangetic plains are comprised of two units which 

are Bangar, an older upland, which is mostly free from floods, and Khadar, a comparatively 

younger lowland, which has a high vulnerability for floods. Based upon sediment characteristics 

and gradient Bangar is further divided into two divisions which are the Piedmont zone or bhabhar 

and the Varanasi plain. Bhabhar is upland adjoining shivalik and is mostly consisting of coarse 

clastic sediments of upper Pleistocene age to middle age and also consist of alluvial and colluvial. 

Most of the seasonal rivers from shivalik moves under the bhabhar and disappear, however, they 

again emerge at the end of bhabhar zone, in Varanasi plains, and result into formation of swampy 

region, which is known as tarai region. As compared to Varanasi plain bhabhar zone has a greater 

gradient and varies from 10m/km to .4m/km from North to south and its boundary is demarked 

by HFT. Important cities in which warning is to be issued in this zone are: Vikasnagar, Dehradun, 

Haridwar, Rishikesh, Kotdwar, Haldwani, Khatima,Tanakpur , Roorkee , Laksar , Kashipur , and 

Udham Singh Nagar. 

3.2.2. Western UP and Eastern Haryana 

This region is thickly populated and is bounded mostly by Yamuna and Ganga rivers, and 

sometimes it is also referred as Doab region. Most of this region is characterized by deep alluvial 

deposits, thus making it highly vulnerable to seismic hazards. The Varanasi plains have a mostly 

negligible gradient. This region is demarked by a great boundary fault in the southeast and 

Mahendragarh-Dehradun fault in the northwest. Several other small faults like the great boundary 

fault, Moradabad fault several other smaller faults and lineaments also characterize this region.  



The Ganga basin is one of the most prominent sedimentary basins of India, which forms the 

northern province of India, and is mostly covered with quaternary alluvial deposits. 

3.2.3. National capital region, Delhi 

Delhi, the national capital of India, is highly vulnerable to seismic-induced hazards not only 

because of its proximity to highly active Himalayas but also due to complex nearby tectonics and 

local site effects. This highly and thickly populated capital territory of India lies in zone IV as 

per Bureau of Indian standard, 2002, and thus is most crucial in terms of the target location for 

issuing earthquake warnings. 

Many studies have concluded that a major or great earthquake in the Himalayas could have a 

huge impact on Delhi and surrounding regions. In a study performed by Singh et al. (Singh 2002), 

a scenario for two earthquakes with magnitude 8 and 8.5 in the Himalayas was created; it was 

concluded that for such events in the Himalayas with distance more than 300 km, Delhi could 

experience peak ground acceleration of order 96 to 140 gals for rocks sites and 174 to 218 gals 

for soft soils sites(Bansal et al. 2009; Mittal et al. 2013a). 

Several studies (Agrawal & Chawla, 2006; Bhatia et al.,1999 under the GSHAP program and 

Parvez et al., 2003; Joshi & Sharma, 2011) suggest that high peak ground acceleration (PGA) of 

the order of more than 200 gals can be expected in Delhi from a major earthquake in the Central 

Himalayas. Also, the Indian code of practice for seismic design, IS 1893:2002 (Bureau of Indian 

Standards, 2002), puts Delhi in seismic zone IV, which suggests a PGA of 240 gals for a 

maximum credible earthquake. 

(Ghosh and Pal 2017) have also discussed the liquefaction hazard in NCR in case of an event. 

3.3. Selection of Site for Sensor and Type of Network 

The region selected for instrumentation, shown in Figure 3.1, is sparsely populated, and a large 

part of the area is difficult to be accessed, due to dense forests and extreme weather conditions; 

hence different kinds of connectivity options were explored.  

The most promising option explored was the use of VSAT for connectivity. The advantage of 

VSAT is that it can be installed at any location of choice and thus enabling to create a network 

of desired grid size. However latter this option was rejected because it was found that even for a 

small displacement of few millimeters VSAT could lose its connectivity with satellite and thus 

making it work all the time perfectly but not when needed, that is right during a seismic event. 

Thus, VSAT was rejected. Depending upon the availability of connectivity at different sites, it 

was decided to use two different types of network circuits.  
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The alternative was to make use of very good mobile connectivity and 4G networks. The region 

has suitable connectivity with both 3G and 4G enabled mobile networks. This type of network is 

the most economical and should suit the purpose of the EEW system. However, the kind of 

algorithm decided for EEW development, a seamless network that can provide a continuous data 

stream without delay or missing data, is required. In the initial phase of testing, it was found that 

though the connectivity was good in terms of online streaming of video and all, but there were 

huge data drops in real-time in terms of seamless, strong motion data streams. This implies that 

there would be chunks of data, either missing altogether or arriving with network-generated 

latency, which is not in sync with other sensors. This could break the continuity in data, which 

in turn will lead to errors in pick and other calculations, as the determining location of earthquake 

largely depends upon the time stamp of the real-time strong-motion time history. So, the use of 

mobile connectivity was also rejected. 



 

Figure 3.1: Selected region for instrumentation as well as the most crucial target location for 

issuing warning, the national capital New Delhi 

Thus, finally, a decision was taken to stick to the most traditional copper and optical fiber 

network. Depending upon the availability of connectivity at different sites, it was decided to use 

two different types of network circuits.  

As discussed, two modes of connectivity had been used for the development of the network of 

accelerographs in Uttarakhand. These two modes are State Wide Area Network (SWAN) and 

Virtual Private Network over Broadband (VPNoBB) through the network of Bharat Sanchar 

Nigam Limited (BSNL). SWAN is developed under the National e-governance plan of the 

Government of India. It is one of the core infrastructure components whose purpose is to create 

a dedicated Closed User Group (CUG) network in order to provide secured high-speed 
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connectivity for government functioning and provide interconnectivity to State Headquarters, 

District Headquarters, Block Headquarters. Bharat Sanchar Nigam Limited (BSNL) is an Indian 

state-owned telecommunications company headquartered in New Delhi, Delhi, India. It provides 

mobile voice and internet services through its nationwide telecommunications network across 

India. For the installation of sensors, Base Transceiver Station (BTS) of BSNL were used, and 

they have been connected to the central server using the VPNoBB circuit. 

In the first phase, overall, 84 sensors were installed in the Garhwal region of Uttarakhand. While 

in the second phase, 85 sensors were installed in the Kumaon region of Uttarakhand (Figure 3.2). 

Twenty-seven sensors from the Garhwal region and forty-two sensors from the Kumaon region 

are installed in the SWAN facility (Table 3.1 and 3.2) available in different district administrative 

offices across the state.  

Similarly, 58 sensors in the Garhwal region and 43 sensors in the Kumaon region of Uttarakhand 

are installed at the BTS of BSNL and connected through Virtual Private Network over Broadband 

(VPNoBB) with the central server (Table 3.3 and 3.4). 

 

Figure 3.2: The figure shows in the sensor network created for the EEW for Uttarakhand, India. 

 



To complete the connectivity with the central server at IIT Roorkee, 2 different circuits of Multi-

Protocol Label Switching (MPLS) Virtual Private Network (VPN) of 2 Mbps have been installed 

connecting IIT Roorkee to Dehradun, and another for redundancy has been used for connecting 

IIT Roorkee to Haridwar. One major concern is latency in the transmission, and it was found 

during real-time analysis that BSNL VPNBB and SWAN both have negligible latency. We have 

verified several times and found that the delay in transmission was never more than 500 

milliseconds. Hence, we can safely assume that the system has a latency of not more than 1.5 

seconds. The basic schematic diagram of network connectivity is shown in Figure 3.3. 

 

Figure 3.3: THE BASIC CONNECTIVITY DIAGRAM FOR VPNOBB (VIRTUAL 

PRIVATE NETWORK OVER BROADBAND) CIRCUIT FOR EEW NETWORK. (SOURCE 

BSNL) 

 

 

 

 

 

Table 3.1: EEW stations in Garhwal Region of Uttarakhand installed at SWAN facility 
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S. No. Station Code Name LATITUDE (oN) LONGITUDE (oE) 

1 AGMS Augustmuni 30.38921 79.022160 

2 BHLS Bhilangana 30.387466 78.793618 

3 BKTS Barkot 30.80851 78.20489 

4 CHMS Chamoli 30.40565 79.331700 

5 CLSS Chinyalisour 30.57477 78.33123 

6 CMBS Chamba 30.345603 78.394577 

7 DNDS Dunda 30.70922 78.34746 

8 DVLS Deval 30.05533 79.58159 

9 DVPS Devprayag 30.14488 78.604650 

10 GHTS Ghat 30.26062 79.44861 

11 GOPS Gopeshwar 30.41200 79.320500 

12 HDKS Hindolakhal 30.23185 78.60634 

13 JKLS Jakholi 30.38939 78.89825 

14 JSMS Joshimath 30.55581 79.558640 

15 KOTS Kot 30.14903 78.69557 

16 KRPS Karanprayag 30.25628 79.217060 

17 NGNS Naugaon 30.79321 78.1488 

18 PKRS Pokhri 30.34236 79.19962 

19 PORS Pauri 30.15005 78.776440 

20 PRLS Purola 30.87922 78.08595 

21 PTNS Pratapnagar 30.516371 78.492953 

22 RDPS Rudraprayag 30.30644 79.002720 

23 SRNS Srinagar 30.21578 78.769540 

24 TEHS Tehri 30.37549 78.42968 

25 TRLS Tharali 30.06428 79.51466 

26 UKMS Ukhimath 30.51326 79.0948 

27 UTKS Uttarkashi 30.73039 78.44449 

 

Table 3.2: EEW stations in Kumaon Region of Uttarakhand installed at SWAN facility. 

S. No. Station Code Name LATITUDE (oN) LONGITUDE (oE) 

1 ALMS Almora (DHQ) 29.59648 79.65726 

2 BGSS Bageshwer (DHQ) 29.82619 79.77247 

3 BHKS Bhikiyasen (BHQ) 29.6976 79.26638 

4 BMTS Bhimtal  29.56361111 79.60388889 



5 BNLS Bhanoli(THQ) 29.60229 79.83613 

6 BRKS Barakot  29.47002 80.07773 

7 BRNS Berinag (BHQ) 29.79669 80.04061 

8 BTLS Betalghat (THQ) 29.71805556 79.40611111 

9 CHKS Chaukhutia (BHQ) 30.10944444 79.51583333 

10 CHPS Champawat (DHQ) 29.34248 80.08773 

11 DCLS Dharchula (THQ) 29.84837 80.54541 

12 DHLS Dhauladevi (BHQ) 29.78777778 80.06416667 

13 DHTS Dwarahat (BHQ) 29.82277778 79.5325 

14 DIDS Didihat (THQ) 29.80297 80.24859 

15 DLCS Dhaulachina (THQ) 29.78027778 79.93222222 

16 DRIS Dhari (THQ) 29.3918 79.63657 

17 GNGS Gangolihat (BHQ) 29.67649 80.09852 

18 GRRS Garur (BHQ) 29.93527778 79.6975 

19 HLDS Haldwani (THQ) 29.22111111 79.71972222 

20 HWBS Hawal Bagh 29.80583333 79.87861111 

21 JNTS Jainti(BHQ) 29.48255 79.8242 

22 KFLS Kafligair (THQ) 29.75358 79.77444 

23 KKLS Kosia Katoli (THQ) 29.57555556 79.66527778 

24 KNDS Kanda (THQ) 29.82684 79.88181 

25 KNLS Kanalichina (BHQ) 29.6713 80.27096 

26 KPKS Kapkot (BHQ) 30.09694444 79.915 

27 KTBS Kotabagh (BHQ) 29.64305556 79.55944444 

28 LGHS Lohaghat (BHQ) 29.40406 80.08475 

29 LMGS Lamgara  29.62111111 80.00138889 

30 MNKS Munakot (BHQ) 29.56653 80.28912 

31 MNSS Munsiari 30.0663 80.2373 

32 NTLS Nainital (DHQ) 29.54416667 79.47 

33 OKKS Okhal Kanda (BHQ) 29.45416667 79.97527778 

34 PTIS Pati 29.4068 79.93801 

35 PTRS Pithoragarh (DEOC) 29.57876 80.20777 

36 RMGS Ramgarh (BHQ) 29.63916667 79.55018611 

37 RNKS Ranikhet (THQ) 29.64354 79.428 

38 SLTS Sult (BHQ) 29.83833333 79.15166667 

39 SMSS Someshwer (THQ) 29.96222222 79.83194444 

40 SYLS Syaldey (BHQ) 29.82009 79.20989 

41 TRKS Tarikhet (BHQ) 29.61308 79.40224 

42 VKBS Vikas Bhawan (BHQ) 29.60679 79.64514 
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Table 3.3: EEW stations in Garhwal Region of Uttarakhand installed at BSNL base transceiver 

station. 

S. No. Station Code Name LATITUDE (oN) LONGITUDE (oE) 

1 ADIB Adibadri 30.15881 79.22606 

2 AGMB Augustmuni 30.39938 79.037240 

3 AULB Auli 30.59547 79.569210 

4 BHIB Bhiri 30.46723 79.07929 

5 BMKB Bharamkhal 30.69592 78.30321 

6 CDPB Chandrapuri 30.42578 79.068910 

7 CHHB Chhaam 30.50235 78.37616667 

8 CMBB Chamba 30.34683333 78.39213333 

9 CMLB Chamiyala 30.47476667 78.632298 

10 CNKB Chhinka 30.41173 79.36522 

11 CYSB Chinyalisour 30.57867 78.32616 

12 DLTB Dhanaulti 30.4233504 78.24725 

13 DNTB Dhauntri 30.60465 78.5166 

14 DUNB Dunda 30.71356 78.34896 

15 GAZB Gaza 30.27053333 78.42193333 

16 GCRB Gaucher 30.28836 79.158520 

17 GDRB Ghurdauri 30.18274 78.69388 

18 GLMB Gwaldom 30.00471 79.57015 

19 GLTB Gholteer 30.30016 79.10103 

20 GNSB Ghansali 30.4259333 78.664598 

21 GOPB Gopeshwar 30.41617 79.321400 

22 GRSB Gairsain 30.05466 79.28992 

23 GYNB Gyanshu 30.73206 78.42115 

24 JKDB Jhaknidhar 30.33567 78.51143 

25 JMKB Jamnikhal 30.27085 78.60953 

26 JMTB Joshimath 30.55751 79.555930 

27 KDLB Kandikhal 30.4353 78.408768 

28 KNKB Khankra 30.24518 78.91754 

29 KNPB Karanprayag 30.26104 79.215190 

30 KNTB Kanatal 30.4015 78.35225 

31 KRKB Kherakhal 30.21816 78.915790 

32 KRSB Khirsu 30.17131 78.867840 

33 KSTB Kanskhet 30.04343 78.71263 



34 KTSB Koteshwar 30.2609 78.4898 

35 LNGB Langasu 30.29052 79.277100 

36 MDLB Mandal 30.46039 79.27483 

37 MHDB Mahidanda 30.75653 78.42993 

38 MNRB Maneri 30.74035 78.52931 

39 MORB Mori 31.01936 78.04545 

40 MTLB Matli 30.73962 78.37076 

41 NGNB Naugaon 30.78865 78.1389 

42 NNPB Nandprayag 30.33191 79.319870 

43 NRBB Narainbagar 30.14576 79.37637 

44 NTYB Nauti 30.20576 79.207070 

45 PLKB Pipalkoti 30.42883 79.427500 

46 PRLB Purola 30.8787 78.0819 

47 PTHB Paithani 30.14855 78.9854 

48 PTNB Pratap Nagar 30.4535 78.4872 

49 RCRB Ranichauri 30.3143 78.407868 

50 SKTB Srikot 30.22297 78.813350 

51 SMLB Simli 30.23256 79.255440 

52 STKB Saterakhal 30.31956 79.00459 

53 THTB Thatyur 30.4953 78.16403 

54 TLWB Tilwara 30.34307 78.974780 

55 UKMB Ukhimath 30.51229 79.09376 

 

Table 3.4: EEW stations in Kumaon Region of Uttarakhand installed at BSNL BASE 

TRANSCEIVER STATION. 

S. No. Station Code Name LATITUDE (oN) LONGITUDE (oE) 

1 ARTB Artola 29.87222 80.05361 

2 BGSB Bageshwar 29.84036 79.76943 

3 BHWB Bhawali 29.44639 79.60111 

4 BJNB Baijnath 29.90001 79.61366 

5 BKSB Bhikiasain 29.69441 79.266 

6 BLKB Baluakot 29.80227 80.43027 

7 BRCB Barecheena 29.64217 79.74789 

8 BRNB Berinag 29.77448 80.05641 

9 BSLB Basoli 29.7013 79.70272 

10 BTKB Bhatrojkhan 29.75917 79.31861 

11 BTLB Betalghat 30.07611 79.65083 

12 CBTB Chaubatia 29.61032 79.45936 
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13 CHLB Chillianaula 29.88556 79.34778 

14 DGTB Deghat 29.89835 79.22474 

15 DIDB Didihat 29.80004 80.25415 

16 DNYB Danya 29.57022 79.92536 

17 DOLB Dol 29.4885 79.75965 

18 DVDB Devidhura 29.41232 79.86496 

19 DWTB Dwarahat 29.77592 79.43246 

20 GGLB Ganai Gangoli 29.65483 80.04089 

21 GNIB Ganai 29.89191 79.35604 

22 GRMB Garampani 29.48272 79.47822 

23 HWLB Hawalbagh 29.78278 79.645 

24 JJDB Jhajjardeval 29.70278 80.23528 

25 JRSB Jaurasi 29.87945 79.27456 

26 KFGB Kafligair 29.77012 79.74629 

27 KNLB Kanalicheena 29.68713 80.27138 

28 KPKB Kapkot 29.94835 79.90192 

29 KRBB Karbala 29.5845 79.64166 

30 KSNB Kausani 29.84077 79.60422 

31 LXMB Laxmeshwar 29.70611 79.92139 

32 MCRB Machor 29.77139 79.46444 

33 MKLB Majkhali 29.865 79.76889 

34 MKTB Mukteshwar 29.58694 79.66278 

35 MNLB Manila 29.73834 79.20134 

36 MNSB Munsiari 30.07029 80.23955 

37 PDGB Pandey Gaon 29.58357 80.20271 

38 RMGB Ramgarh 29.94639 79.94361 

39 SMSB Someshwar 29.77645 79.60468 

40 SYLB Syaldey 29.83239 79.20038 

41 THLB Thal 29.83669 80.14658 

42 TRKB Tarikhet 29.61426 79.20316 

43 WDDB Wadda 29.56612 80.27734 

 

3.4. Network Time Protocol 

One of the important parameters for any successful EEW system sensor network is that all the 

components should be in sync in terms of time as calculation estimation as well as estimation of 



depth and location is directly impacted by the accuracy of the time stamp of ground motion time 

history received from sensors. Therefore, all the sensors in the network must have their clocks 

synched with the EEW server. In order to achieve this, a network time protocol server (NTP) has 

been installed in one of the computers in the VPN network. Clocks of all the sensors as well as 

of the EEW server are updated from this NTP server every 10 minutes. Thus, ensuring that all 

the components, sensors, and servers, share the same time and there is no deviation in time. The 

decision not to use INTERNET time was taken primarily to ensure a secured network and server 

in terms of cyber security. Also, it was one of the agreed-upon conditions with the government 

to keep the network not accessible from the internet.  
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Chapter 4 Sensor Selection and its Dynamic Range 

The selection of sensors for establishing a dense sensor network is one of the most crucial 

components of a successful EEW project. Since a large number of sensors need to be installed to 

create an optimized grid, the cost of the sensor plays a very important role. Apart from economic 

consideration, sensors must have some mandatory features, such as: 

 Built-in facility for network connectivity,  

 The sensor must be a single unit and easy to install and maintain,  

 Sensors should have less power requirement as sometimes in remote locations it may 

need to run on battery.  

 Packet size for data transmission must be small, as it helps in two important ways,  

o firstly with smaller data packet size, chances of data lost in transmission reduce 

in a substantial way,  

o secondly, smaller packet sizes are created faster as well as communicated faster, 

thus reducing latency of the system, which is of paramount importance for the 

EEW system. 

 The dynamic range of the sensor should be such that minimum information is lost. 

The price of a sensor is, most of the time, governed by its dynamic range. Hence, it becomes 

necessary to identify an optimum dynamic range required for the development of a network when 

hundreds of sensors need to be installed. In this study, the effect of dynamic range on different 

earthquake early warning parameters and strong motion characteristics has been studied. 

 

4.1      Methodology and Procedure: 

It is an established fact that as the dynamic range of the sensor increases, its price as well as 

operational cost increases. Also, for the EEW network, a large number of sensors need to be 

installed, which means that the economic feasibility of the project will play an important role in 

taking it through. This is the reason why a lot of studies have been going around the world about 

the suitability and testing of low-cost MEMS-based accelerometers. Some of these studies have 

been discussed in chapter 1, section 3. A number of EEW systems are either operational or under 

development based upon low-cost accelerometers. This provides the motivation to perform a 

study to test the optimum sensor dynamic range, which is required so that maximum information 

could be extracted from time history data from the sensor. The idea behind this study was to 



theoretically analyze the possibility of an EEW network using low-cost MEMS sensors as well 

as to test the suitability of valuable strong-motion ground data to be received through such 

instrumentation.  

To perform this study, earthquake records from Kik-Net and the K-net database of Japan have 

been used. In Kik-net & K-net database, data is available in the form of numerical counts as 

received from the ADC. A scale factor is provided, multiplying which to the counts gives the 

acceleration value. The numerator of the scale factor represents the full-scale range of the 

instrument, whereas the denominator represents the maximum count that can be obtained from 

ADC. As an example, for a 24-bit ADC maximum count that could be obtained is 223, which is 

equal to 8388608. To obtain value in acceleration unit (gal), the scale factor is multiplied by the 

numerical count. If this sensor's maximum scale range is +/- 2000 gal (or 2g), then this scale 

factor would be 2000/8388608. This means the resolution of this sensor would be 2.3842 x 10-04 

gal. Now, if this sensor ADC is converted to 23 bit, ADC means the denominator will become 

222 (or 4194304), and the scale factor will be 2000/4194304. This gives a resolution of 4.7684 

x10-04 gal. It can be seen from this example that a reduction of 1 bit in ADC causes a reduction 

of resolution by half of the original value. Following the same logic, a 16-bit sensor would 

provide a resolution of 0.0610 gals. The 24-bit data from the Japanese dataset has been used in 

this study. The earthquake records available from the dataset were modified by reducing the 

resolution of ADC numerically and used for the analysis. The procedure used for reducing the 

resolution is explained as follows: 

 In this study, it has been assumed that the counts coming from ADC only contains data 

(free from noise). 

 In the first step, the value of the denominator is modified by a factor of 2 bits using a bit-

shift operator in MATLAB thus converting it to 24 bit to 22 bit. This converts the scale 

factor from 2000/8388608 (i.e., 2.3842 x10-04 gal) to 2000/2097152 (i.e., 9.5 x 10-4 gal), 

considering sensors scale range is 2000 gals.  

 In the next step, the counts obtained from ADC, as time history, were modified by 

applying the same bit-shift operator by the factor of 2 bits.  

 In this way, the scale factor and the data received are both now converted to 22 bit. 

Dynamic range is roughly approximated as 6-dB per bit; thus, a 24 bit ADC has a dynamic 

range of approximately 144-dB (6x24), and 22-bit ADC has a dynamic range of roughly 

equal to 132-dB. 

 Now, multiplying the modified scale factor with modified time history (in counts) a new 

time history will be obtained in terms of gals, which will be approximately the same as 

the original history but with lesser resolution.  
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 Repeating the above steps again, multiple time histories can be obtained with different 

resolutions. For this study, the time histories used are 24 bit (original time history), 22 

bit, 20 bit, 18 bit, 16 bit, 14 bit, 12 bit, and 10 bit. 

 The EEW parameters and strong motion parameters were calculated using each time 

history and compared. 

The Program for shifting bit and analysis is developed in MATLAB 2016A. Since MATLAB 

uses a big-endian schema to convert data from higher bit to lower bit, the right bit shift method 

is used.  

Hence this study examines the impact of reduction of each bit from the ADC (or reduction in 

resolution of the sensor) on various EEW and strong motion parameters. The observations and 

outcomes of the study are discussed further in this chapter. 

4.2 Effect on Magnitude using PD or MPD 

PD is defined as high pass filtered peak displacement for a predefined window length. For this 

study, PD is calculated for a window length of 3 seconds. The data is high passed using a fourth-

order Butterworth filter with a cut-off frequency at 0.075Hz. 

To examine the impact of shifting bit on value of PD, 8 different time histories of 24, 

22,20,18,16,14,12, and 10-Bit (Figure 4.1 to 4.8) were obtained from each time history of 24 bit 

by applying the method explained above.  

P-phase in records was picked manually. The time histories were double integrated using the 

trapezoid method to obtain displacement time history. The maximum value or peak value of 

displacement of the first 3 seconds is then extracted, which is defined as PD. Mpd was then 

calculated for all the cases, and error in magnitude estimation with respect to 24-bit record data 

is analyzed. 

Following observations were made for 750 records for earthquakes having a magnitude greater 

than five and epicentral distance between 10 and 30 kilometers. 

The Figure4.1 and results detailed above indicate that as the resolution decreases, there is a 

definite drop in accuracy with which MPD is estimated, but the difference is of the order of 0.01 

up to 16 bit and then increased by one and more units when resolution is further decreased up to 

10 Bit.  

 



 

Figure 4.1 : Difference in magnitude estimation using PD calculated for time histories at different 

ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data. 

 

Figure 4.2 to 4.8 shows the histogram for the difference in MPD estimation for different resolution 

time histories.  

For 22 Bit data or for PD Calculated with 22-Bit data, the maximum difference in MPD estimated 

is found to be 0.064 and minimum difference 2.4x10-7, with a median at 0.000445. It is also 

observed that most of the estimations are well with in difference of -0.01 to 0.01. 

Similarly, for 20 Bit data or for PD calculated for 20-Bit time history, the maximum difference 

in MPD estimation is around 0.269, and the minimum difference is 6.9x10-7, with a median at 

0.00203. The result, as can be seen in Figure4.1, there is a very small or negligible difference 

between the estimated magnitude from 24-Bit and 20-Bit data time histories. It can be observed 

from figure 4.3 that most of the estimations are well with in difference of -0.05 to 0.05. 

For PD calculated for 18-Bit time history, the maximum difference in MPD estimation is around 

0.649, and the minimum difference is 1.09 x 10-5, with a median at 0.0083. The result, as can be 

seen in Figure4.1, there is a very small or negligible difference between the estimated magnitude 

from 24-bit and 18-bit data time histories. It can be observed from above Figure 4.4 that most of 

the estimations are well with in difference of -0.2 to 0.2. 

For 16-Bit data or for PD calculated for 16-Bit time history, the maximum difference in MPD 

estimation is around 2.379, and the minimum difference is 9.56x10-05, with a median at 0.0338. 

It can be observed from above Figure 4.5 that most of the estimations are well with in difference 

of -0.4 to 0.4. 

Thus it can be safely assumed that for all practical purposes of EEW, the error up to 16-Bit data 

is quite suitable and thus can be safely used for the purpose of EEW. 
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Figure 4.1: Number of records vs difference in MPD estimation for 22 Bit converted record 

 

Figure 4.2: Number of records vs. change difference in MPD estimation for 20 Bit converted 

record. 



 

Figure 4.3: Number of records vs. difference in MPD estimation for 18-Bit converted record. 

 

Figure4.4: Number of records vs. difference in MPD estimation for 16-Bit converted record. 

 

For 14-Bit data or for PD calculated for 14-Bit time history, the maximum difference in MPD 

estimation is around 3.69, and the minimum difference is 6.9x10-04, with a median at 0.1278. It 

can be observed from above Figure 4.6 that most of the estimations have an error of the order 

difference of -1 to 1. 
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Figure 4.5: Number of records vs. change difference in MPD estimation for 14-Bit converted 

record. 

For 12 Bit data or for PD calculated for 12 Bit time history, the maximum difference in MPD 

estimation is around 4.915, and the minimum difference is 1.43x10-03, with a median at 0.4458. 

It can be observed from the above Figure4.7 that most of the estimations are well with in 

difference of -3 to 2. It would be appropriate to infer that the data beyond this limit is not at all 

suitable to be used for the purpose of EEW, as with this order of error, there are fair chances of 

false warning, and this will lead to a faulty system.  

 

Figure 4.6: Number of records vs. change difference in MPD estimation for 12 Bit converted 

record. 

For 10-Bit data or for PD calculated for 10 Bit time history, the maximum difference in MPD 

estimation is around 5.9, and the minimum difference is 1.3x10-03, with a median at 1.3295. It 

can be observed from figure 4.8 that most of the estimations are well with in difference of -5 to 

1. This is almost certain at this stage that the data is not suitable for the purpose of EEW. 



 

Figure 4.7: Number of records vs. change difference in MPD estimation for 10 Bit converted 

record. 

From figure4.1 to 4.8, it can be inferred that up to 16-bit data, there is an acceptable error in 

magnitude estimation, whereas below 16 bit the error is too large, and thus the data below 16 bit 

is not suitable for EEW purposes. Thus with this study, it can be safely concluded that for MPD 

estimation, the data beyond 16-Bit is not found suitable to be used for the EEW purpose.  

4.3 Effect on magnitude estimation using τc 

In figure 4.9, the error in magnitude estimation using τc (Mτc) has been shown. From the figure 

it can be seen that even up to 10-Bit data, the median error in the estimated Mτcvalues is of the 

order 1 Unit. However, the maximum value of median error is a little high even at 18-Bit or 16-

Bit data. The data from figure 4.10 suggests that for 16-Bit data, the maximum error in magnitude 

estimation is as large as ~3 units, however, the median error is of the order 0.03 only. Thus it is 

evident from the figure that magnitude estimation using τc is quite sensitive as the resolution is 

decreased from 24-Bit to 16-Bit and further deteriorates as it reaches 10-Bit.  It can also be 
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inferred that, as the resolution of data is reduced, the error is more distributed, and thus chances 

of false estimation are high. 

 

Figure 4.8: Difference in magnitude estimation using Tc, calculated for time histories at 

different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data. 

 

From Figure 4.10, for 22-Bit converted data, it can be seen that the error in magnitude estimated 

is almost in the range of -0.02 to +0.02. The median error, as observed in Figure 4.9, is of the 

order 0.0005 unit only. Thus there is not much error in the estimation of magnitude  

 

Figure 4.9: Number of records vs. change in MTC estimation for 22-Bit converted record. 

 

In figure 4.11, the error in magnitude estimation for 20-Bit converted data has been shown. It is 

evident from the figure that for most of the records, the error in estimation in well with in -0.05 

to +0.05 units. Also, the median error for the 20-Bit record is 0.0023 units only. Whereas, from 

figure 4.9, the maximum error is only 0.36 units. 



 

Figure 4.10: Number of records vs. change in MTC estimation for 18-Bit converted record 

. 

In Figure 4.12 it can be seen that the error in magnitude estimation for 18-Bit converted data is 

almost in the order of 0.2 units only. The median error is also of the order 0.0097 units. However, 

the maximum error is one unit. 

 

Figure 4.11: Number of records vs. change in MTC estimation for 18-Bit converted record. 

 

For 16-Bit records, the median error in magnitude estimation is of the order 0.036 units only. 

However, the maximum error is almost of the order of 3 units. This suggests that the error is now 

distributed to the larges range. However, most of the errors are within the range of -0.5 to +0.5.  
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Figure 4.12: Number of records vs. change in MTC estimation for 16-Bit converted record. 

 

For 14-Bit converted data, as can be seen from figure 4.9 and figure 4.14, the error is more 

distributed, and it can be observed that most of the records have an error of the order one units, 

and also the distributed in a larger range. The median error is also of the order 0.139 units, and 

the maximum error is in the vicinity of 3 units. This clearly indicates that the Tc is quite sensitive 

as the data the ADC resolution is decreased. Thus it can be inferred that data below 16-Bit is not 

suitable for the EEW system if τc is to be used as a parameter. 

 

Figure 4.13: Number of records vs. change in MTC estimation for 14-Bit converted record. 

 

The error in magnitude estimation for 12-Bit and 10-Bit is discussed in Figure 4.15 and Figure 

4.16, respectively. The error for 12-Bit converted data is even more distributed, and the error for 

most of the records is of the order two units. The error in 10-Bit converted data has median values 



of 0.8. However, the error for most of the records is in the order of 3 units. Thus it can be 

concluded that the 12 or 10-Bit data is not at all suitable for EEW purposes. 

 

Figure 4.14: Number of records vs. change in MTC estimation for 12-Bit converted record. 

 

Figure 4.15: Number of records vs. change in MTC estimation for 10-Bit converted record. 

4.4 Effect on Spectral Acceleration: 

Spectral acceleration is an important strong-motion parameter that has been used by researchers 

and academicians for quite a long time. It is also one of the most important parameters for 

structure engineers as, unlike Peak Ground Acceleration (PGA) or intensity of an earthquake at 

a place, the spectral acceleration relates to the actual acceleration as is felt by a structure 

corresponding to its natural frequency. Thus it is very useful and has found its inculcation in 

various standard codes for structure design(Freeman 2007). 

The study on change in spectral acceleration is done because SPA is one of the most important 

parameters for structure point of view. Though spectral acceleration is not directly related to 

EEW. The network which is created for EEW serves another important purpose that is the 

collection of strong-motion data. Thus this study was performed to determine the suitability of 
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the strong motion data collected from the EEW network, comprising of low-cost MEMS sensors, 

for other engineering practices, especially structural engineering, as well. 

 

Pseudo Acceleration Spectrum and Pseudo Velocity Spectrum have been calculated by solving 

the equation of motion for different periods and damping values using the Newmark Linear 

method. The method has been implemented using MATLAB. 

To study the impact of lower bit data in spectral acceleration, time histories of actual 24-bit data 

and corresponding converted time histories have been used. For analysis of spectral acceleration, 

the following representative periods have been used. The periods were selected so that an analysis 

could be done for the presentative period. The periods are selected with an objective to have a 

well distributed and selected set of the period covering the whole spectrum. 

Also, the most common damping values that are used by structure engineers viz 2%,5% and 10% 

have been used for the analysis. 2% damping corresponds to damping of steel, 5% for RCC  and 

soil in general considered to has damping of 10 %. 

Table 4.1 : Representative periods used for the analysis of Spectral Acceleration values 

Periods used 

0(PGA) 0.03 0.05 0.1 0.2 0.3 0.5 0.74 1 2 3 4 5 7 10 

4.4.1. Effect on Spectral Acceleration for 5% damping 

The results obtained are shown in the Figures from 4.17 to 4.23, represent a change in the spectral 

acceleration values for the converted time histories from 22-bit to 10 bit, with respect to 24-bit 

data.  Results plotted in Figures 4.17 to 4.23 are corresponding to 5% damping, and values are 

represented in percentage change with respect to the value for 24-Bit actual time history value. 

Figure4.17 represents the spectral acceleration values for zero periods or PGA values.. As is 

evident from the figure, for 22-Bit converted data, there is a maximum variation of 0.0045 % 

with a median value of 0.00060. The 75th percentile value is at 0.0011, and the 25th percentile 

value of 0.00025. It is clearly indicated from the above values that there is practically no change 

in the values of SA for a zero period when data is converted from 24-Bit to 22-Bit. 

It is also evident from Figure4.17, that as the data is converted from 24-Bit to 10-Bit, there is a 

definite increase in the error with respect to original data. But the error is very small, and it 

reaches a median value of just 2% for 10-Bit data. Thus it would be correct to infer that for 

measuring or estimating PGA, there with up to 12 or 10-Bit accuracy is also suitable. 



 

Figure 4.16: DIFFERENCE in Spectral Acceleration, calculated for time histories at different 

ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and Zero 

period or PGA. 

 
The Figure4.18, explains the change in the error in SA for 0.03 second and 5% damping, with a 

decrease in Bit from 24-10Bit. Here also, it can be seen that the maximum error in the estimation 

of SA value when the bit is reduced from 24-Bit to 22-Bit is 0.0039 %, with a median value at 

0.00075. The 75th percentile value is 0.00178, and the 25th percentile is at 0.00029. 

For 0.03 second period also the median value for 10-Bit data is only 2.7 %. It can be inferred that 

a lot of information could be retrieved for this period also even if ADC resolution is as low as 

10-Bit. 

 

Figure 4.17:Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.03 second 

period. 
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Figure4.19, explain the change in SA value for 0.05 second period and 5% damping.  The median 

value for 22-Bit is 0.000843 with the maximum value of 0.0144. The 75th percentile value is 

0.00178 and 25th percentile value is 0.000379. It can also be seen from the figure that up to 12-

Bit the error in SA value is less than 1%. 

 

Figure 4.18:Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolutions varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.05 second 

period. 

 

Figure4.20, explain the change in SA value for 0.1 second period and 5% damping. For 22-Bit 

data, the maximum error is 0.0135%, and the median value is 0.0010. It is also evident from the 

figure that up to 12-Bit, the error is of the order 1% only.  

 

Figure 4.19: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.1 second 

period. 



 

In Figure4.21, the error in percentage for 0.2 second period is explained. It is evident from the 

Figure that for 22-Bit data, the maximum error is 0.0127% whereas, the median value is at 

0.0011. The 75th percentile value is at 0.0021, and the 25th percentile is at 0.00067. It is also 

evident that up to 14-Bit, the error is of the order 1% only. 

 

Figure 4.20: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.2 second 

period. 

 

Figure4.22, explains the change in error for 0.3 second period. For 22-Bit data the maximum 

error is 0.021%, and the median value is at 0.00134%. The 75th percentile is at 0.0024, and the 

25th percentile is at 0.00068%. It is also evident that up to 12-Bit, the error is of the order 1~2%. 

 

Figure 4.21: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.3 second 

period. 
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Figure4.23, explains the error in SA values for 0.5 second period and 5% damping. The 

maximum error is 0.052%, and the median is 0.0015. The 75th percentile is at 0.00329, and the 

25th percentile is at 0.00074%. It is also evident that for up to 12-Bit data, the error is of the order 

1~2% only. 

 

Figure 4.22: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.5 second 

period. 

Figure 4.24 demonstrates the error in SA values for 0.74 second period. The maximum value of 

error is 0.0914%, and the median value is 0.0021%. The 75th percentile is at 0.0047, and the 25th 

percentile value is at 0.00086%. Up to 12-Bit data, the error is in the range of 1~2%.  

 

Figure 4.23: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.74 second 

period. 



Figure4.25, demonstrates the error in the SA value for 1 second period. The maximum error is 

0.215%, and the median value is at 0.0026%. The 75th percentile is at 0.007, and the 25th 

percentile is at 0.001%. For up to 14-Bit data the errors are less than 1%, whereas, for 10-Bit data 

also the error is of the order 10% only. 

 

Figure 4.24: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 1 second 

period. 

Figure4.26, explains the error is SA value for 5% damping and for period of 2 seconds. The 

maximum error for 22-Bit data is 0.438%, and the median value is at 0.0058. It is also evident 

from the figure that for up to 14-Bit, the error is of the order 1% only. However, the 10-Bit data 

has an error with a median value of 77%. 

 

Figure 4.25: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 2 second 

period. 



55 

 

 

Figure 4.26: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 3 second 

period. 

 

Figure4.27, explains the error in SA value for 3 second period and 5% damping. It is evident 

from the figure that for up to 14-Bit data, the error is of the order 1~3 percent only. However, 

errors in 12 and 10-Bit data with median values of 25 and 197%. 

 

 

Figure 4.27: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 4 second 

period. 

 
Figure4.28, explains the error in SA values with respect to actual 24-Bit data for 5% damping 
and for 4 second periods. Here it is seen that up to 14-Bit of data, the error is of order 4-5% 
and less than 1% for data up to 16-Bit. However, beyond 14-Bit, the error is too large. 



Figure4.29 explains the error in SA values for 5% damping and 5 second period. Here also, it is 

evident that for up to 14-Bit, the error is about 10%, but the median error is of order 1.7% for 16-

Bit data. 

 

Figure 4.28: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 5 second 

period. 

 

Figure 4.30 shows error for 5% damping and 7 second period. It can be inferred from the figure 

that for up to 16-Bit data, the error is well within 2~3 %. However, for 12 and 10-bit data, the 

error is substantially of higher order. Which perhaps makes it not suitable to be used for such a 

large period. 

 

Figure 4.29: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 7 second 

period. 
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Figure4.31, shows an error for 5% damping and a period of 10 seconds. It is observed that for 10 

second period, the error in data up to 16-Bit is of the order of 5-6%. However, the error is 14-Bit 

and above is too large and would not be good enough got extracting useful information 

 
Figure 4.30: Difference in Spectral Acceleration, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 10 second 

period. 

4.4.2. Effect on Spectral Acceleration for 2% damping 

Figure4.32, shows change in spectral acceleration at 2% damping and for period zero or PGA. It 

is evident from the figure that for upto 10-Bit data the median error is 2.7%. Whereas up to 16 

bit the error is well below 2%. 

 
Figure 4.31: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and Zero period 

 



Figure4.33, demonstrates the error in SA values for period 0.03 and damping 2%. Here it is 

evident from the figure that the error is of the order 5% for 10-Bit data. Whereas, below 10-Bit 

data, the error is minimal and is of the order of less than 2%. For 16-Bit and more, the error is 

well below 0.08%. 

 

Figure 4.32: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.03 period 

 

Figure4.34 shows error in SA values for 0.05 second period with respect to the 24-Bit data. Here 

it is evident from the figure that for 10-Bit data, the median error is less than 5%. Whereas, for 

16-Bit data, the error is very small or negligible 

 

Figure 4.33: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.05 period 
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Figure4.35, explain the effect of SA values for 0.1 second period and 2 % damping. It is evident 

from the figure that error is well within 2% for data less than 12-Bit. For 16-Bit data, the error is 

less than 0.1%. 

 

Figure 4.34: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.1 second period 

 

Figure4.36, explain the error for 0.2 second period and 2% damping. It is evident from the figure 

that the error is well within 2% for 12-Bit data. Even for 10-Bit data, the error is of the order 

~6%. However, for 16-Bit, the error is less than 0.1%. 

 
Figure 4.35: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.2 second period 

 



Figure4.37, explain the error for 0.3 second period. As is evident from the figure, the error is less 

than 0.5% for 16-Bit data and above.   

 

Figure 4.36: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.3 second period 

 

Figure4.38, demonstrates the error in SA value for 0.5 second period and 5% damping. It can be 

inferred from the figure that for 12-Bit and more resolution data, the error is less than ~2% and 

is even less than 0.6% for 14-Bit and more.  

 

Figure 4.37: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.5 second period 

 

Figure4.39, explains the error in the SA value for 0.74 seconds. It is evident that median error is 

even less than 0.8% for data more than 14-Bit resolution. For 16-Bit resolution, the median error 

is less than 0.2%. 
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Figure 4.38: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.74 second period 

 

Figure4.40, demonstrates the error in SA acceleration for 1 second period and 2% damping. It is 

evident from the figure that for 14-Bit and 16-Bit data, the median error is even less than 1% and 

0.2%, respectively. 

 

Figure 4.39: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 1 second period 

 

In Figure4.41, it is evident that for a period of 2 seconds, the median error is of the order 2% for 

14-Bit data and is even less than 0.5% for 16-Bit data.  



 

Figure 4.40: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 2 second period 

 

Figure4.42 shows error in SA values for 3 second period and 2% damping. It is evident from the 

Figure that for 16-Bit data and above, the error is even less than 1%. 

 

Figure 4.41: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 3 second period 

 

For 3 second period, there is a certain increase in error as Bit is further decreased beyond 14-Bit. 

However, for 16-Bit and more, the error is still less than ~1% (Figure 4.43).  

From Figure4.43, it can be inferred that data at 16-Bit has a median error of the order ~1%. 

Whereas, for 12 and 10-Bit, the error is too large to be useful. 
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Figure 4.42: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 3 second period 

 

Figure 4.43: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 5 second period 

 

From figure 4.45, it can be inferred that for 7 second period, and 2% damping, the data for 16-

Bit resolution and more still have an error of the order ~3%. 



 

Figure 4.44: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 7 second period 

 

Figure4.46, for data of 16-Bit resolution and more, the median error is still less than 7% 

 

Figure 4.45: Difference in Spectral Acceleration at 2% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 10 second period 

 

4.4.3. Effect on Spectral Acceleration for 10 % Damping. 

In this section, the effect of lowering the Bit is discussed for 10 % damping.  

In Figure4.47, the change in SA values, for 10% damping and corresponding to zero period or 

PGA is discussed. All changes or errors are with respect to the 24-Bit original data and 

corresponding converted data to respective bits. It is evident from the figure that even for 10-Bit 

data, the median error is only of order 2%. 
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Figure 4.46: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0 second period 

 

Figure4.48 shows the error with respect to 0.03 seconds and 10% damping. All errors are with 

respect to 24-Bit unchanged actual time history. Here it is observed that for up to 10-Bit, the 

median error is only 2%. The median error for 216-Bit data is as low as 0.048%. 

 

Figure 4.47: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.03 second period 

 

Figure4.49 show the error for 0.05 second period and 10% damping. It is observed from the 

Figure that error up to 12-Bit data is nearly equal to ~1%. Whereas for 16-Bit data, the median 

error is as low as 0.063%. 



 

Figure 4.48: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.05 second period 

 

Figure4.50, show the error for 0.2 second period and 10% damping. It is evident from the figure 

that for data up to 14-Bit, the median error is ~0.3%. For 16-Bit data, the median and maximum 

errors are 0.08% and 1.46%, respectively. 

 

Figure 4.49: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.1 second period 

 

In Figure4.51, the error for period 0.2 seconds and damping 10% is demonstrated. For up to 12-

Bit, the median and maximum error are of the order ~1.4% and ~16%. Whereas for the 16-Bit 

record, the mean error is 0.09%, and the maximum is 0.25%.  
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Figure 4.50: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.2 second period 

 

The Figure4.52 shows the error in SA values for a 0.3 second period and 10% damping. All errors 

are with respect to original 24-Bit data. Here it is evident that for the 16-bit record, the mean 

error is 0.1 %, whereas the maximum error is 5.8%. The median and maximum error below 16-

Bit data is a little over the higher side. 

 

Figure 4.51: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.3 second period 

 



In Figure4.53, the error is SA values for 0.5 second period, and 10% damping is compared with 

respect to original 24-Bit data. Here it is evident that for 16-Bit data, the median and maximum 

errors are 0.1% and 6.5%.  

 

Figure 4.52: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.5 second period 

 

In Figure4.54, the error in SA values for 0.74 second period is shown. Here also it is evident that 

for up to 16-Bit data, the median and maximum error are of the order 0.1% and 5% only. 

However, for 12-Bit and less, the median and maximum errors are both on the higher side. 

 

Figure 4.53: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 0.74 second period 

 

In Figure4.55, the error in SA values for 1 second period is discussed. It is evident from the figure 

that for 1 second period, for up to16-Bit data, the median and maximum error are of the order 

0.2% and 15% 
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Figure 4.54: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 1 second period 

 

Figure4.56 represents the change in SA values for 2 second period. It is evident from the figure 

that for 16-Bit data, the median error is still less than 0.45 %.  

Figure 4.57 represents the error for 2 second period and damping 10%. Here also it is observed 

that the median error is less than ~ 1% for data more than 16-Bit. 

Figure 4.58 shows the error in SA values for 4 second period. It is evident from the figure that 

for 16-Bit and more data, the median error is still of the order ~1%.  

Figure 4.58 shows the error in SA values for 4 second period. It is evident from the figure that 

for 16-Bit and more data, the median error is still of the order ~1%.  

 



 

Figure 4.55: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 2 second period 
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Figure 4.56: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 3 second period 

 

Figure 4.57: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 4 second period 

 



 

Figure 4.58: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 5 second period 

 

Figure 4.59: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 7 second period 
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Figure 4.60: Difference in Spectral Acceleration at 10% damping, calculated for time histories 

at different ADC resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data 

and 10 second period 

4.5 Effect on Fourier spectrum or Fourier amplitude. 

For most engineering applications the earthquake data is converted from the time domain to 

Frequency-Domain. The method of converting data to an alternate frequency-domain is known 

as Fourier Transform. The Fourier transform is derived from the Fourier series, and it is 

established that all the periodic functions can be represented as the sum of sine and cosine 

functions.  The Fourier transform in generally expressed in the form of a complex number for 

each frequency.  The norm of the complex number is called amplitude for the corresponding 

frequency or Fourier spectrum. The square of Fourier spectrum is also known as power spectrum.  

In this analysis, the error in Fourier amplitude of converted time histories, with respect to original 

24-Bit data, has been calculated. Important frequencies, shown in table 2, which have been 

derived from the important time periods from table 1 have been considered for analysis. 

Table 4.2 Representative frequencies used for analysis of Fourier Amplitudes. The frequencies 

are corresponding to the periods used for spectral acceleration analysis 

Frequency(Hz) 

25 20 10 5 3.33 2 1.35 1 .5 .33 .25 .2 .14 .1 

4.5.4. Effect on Fourier amplitude 

In Figure4.62, Change in Fourier amplitude corresponding to the 25 Hz frequency has been 

shown for all seven groups of converted time histories viz. 22-Bit, 20-Bit, 18-Bit, 16-Bit, 14-Bit, 

12-Bit and 10-Bit.  

The median error for 22-Bit is 0.002%, and the maximum error is 0.139%. Also, the 75th 

percentile value is 0.004, and the 25th percentile value is 0.001 %. 



Also, up to 16-Bit, the median error is of the order 0.179 %, and the maximum error is also 

11.62% 

 

Figure 4.61: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 25 Hz 

frequency. 

 

Figure4.63 show the error for 20 Hz data. It can be seen from the figure that the median error for 

22-Bit data is0.002%, whereas the maximum error is 0.139% only. The 75th and 35th percentile 

values are 0.0038 and 0.001 % only. 

For 16-Bit data, the median error is 0.16% and has a maximum value of 11.49 %. The 75th and 

25th percentile values are at 0.3 and 0.07%. 

 

Figure 4.62: Difference in Fourier amplitude, calculated for time histories at different adc 

resolution varying from 22-bit to 10-bit with reference to original 24-bit data and 20 hz 

frequency. 
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In Figure4.64, the error corresponding to frequency 10 Hz has been discussed. The median and 

maximum error for 22-Bit data are 0.002 and 0.07%, respectively. The 75th percentile error value 

is at 0.003, and the 75th percentile error value is at 0.001%. 

For 16-Bit data, the median error is 0.16% and has maximum values of 4.8 %. The 75th and 25th 

percentile values are at 0.29and 0.09%. 

 

Figure 4.63: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 10 Hz 

frequency. 

 

Figure4.65, the error in Fourier amplitude with respect to 5 Hz frequency are shown. Here the 

median error for 22-Bit data is 0.0022%, and the maximum error is 0.11%.  

For 16-Bit data, the median error is 0.185% and has maximum values of 4.05% %. The 75th and 

25th percentile values are at 0.32 and 0.092%. 



 

Figure 4.64: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 5 Hz 

frequency. 

 

In Figure4.66, the error in Fourier amplitude for 3.33. Hz are shown. The median and maximum 

error corresponding to 22-Bit data are as 0.002 and 0.15% only.  

For 16-Bit data, the median error is 0.2% and has maximum values of 7.3 %. The 75th and 25th 

percentile values are at 0.39 and 0.09%. 

 

Figure 4.65: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 3.33 Hz 

frequency. 

 

In Figure4.67, the error in Fourier amplitude for 2.Hz have been discussed. The median and 

maximum error corresponding to 22-Bit data are as 0.003 and 0.13% only.  

For 16-Bit data the median error is 0.25% and has maximum values of 20.11 %. The 75th and 

25th percentile values are at 0.57 and0.119%. 
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Figure 4.66: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 2 Hz 

frequency. 

 

In Figure5.68, the error in Fourier amplitude for 1.35 Hz are shown. The median and maximum 

error corresponding to 22-Bit data are as 0.0043 and 0.43%, respectively.  

For 16-Bit data the median error is 0.33%, and the 75th and 25th percentile values are at 1.01 and 

0.13%. 

 

Figure 4.67: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 1.35 Hz 

frequency. 

 



The error corresponding to the 1 Hz frequency in Fourier amplitudes are given in Figure4.69. It 

is observed that the median error corresponding to 22-bit data is 0.055 whereas the maximum 

error is 0.69%.  

For 16- Bit data, the median and maximum error are 0.44%, and the maximum values are at 

~125%. The 75th percentile and 25th percentile values are 1.5 and 0.165%, only 

 

Figure 4.68: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 1 Hz 

frequency. 

 

In Figure4.70, the error corresponding to frequency 0.5 Hz has been discussed. The median and 

maximum error for 22-Bit data, are 0.06 and 2.8 %, respectively. The 75th percentile error value 

is at 0.06, and the 25th percentile error value is at 0.004%, respectively. 
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For 16-Bit data, the median error is 1.21%. The 75th and 25th percentile values are at 6.54 and 

0.286.

 

Figure 4.69: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.5 Hz 

frequency. 

 

The error corresponding to the 1 Hz frequency in Fourier amplitudes are given in Figure 4.71. It 

is observed that the median error corresponding to 22-bit data is 0.035% whereas the maximum 

error is ~10%.  

In the case of 16-Bit data the median error is ~3%. The 75th and 25th percentile values are 

also14.51 and 0.58%, respectively. 

 

Figure 4.70: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.33 Hz 

frequency. 



 

The error corresponding to the 0.25 Hz frequency in Fourier amplitudes are given in Figure4.72. 

It is observed that the median error corresponding to 22-bit data is 0.052 whereas the maximum 

error is 0.11.96%.  

For 16- Bit data, the median and maximum error are ~5%, and the maximum values is at ~2000%. 

The 75th percentile and 25th percentile values are 25.30 and ~1%, respectively.  

 

Figure 4.71: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.25 Hz 

frequency. 

 

For 0.2Hz Frequency, the following observations are made.  

Median and maximum error corresponding to 22-Bit data are 0.084 and 26.6%, respectively. 

For 16 Bit data, the median error is of the order ~7%, whereas 75th and 25th percentile values are 

37.0 and 1.42%, respectively.  
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Figure 4.72: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.2 Hz 

frequency. 

 

For 0.14 Hz Frequency, the following observations are made.  

Median and maximum error corresponding to 22-Bit data are 0.14 and 37.6%, respectively. 

For 16 Bit data, the median error is of the order ~12%, whereas 75th and 25th percentile values 

are ~61 and 2.44%, respectively.  

 

Figure 4.73: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.14 Hz 

frequency. 

 



Figure4.75, the error for Fourier amplitudes with respect to 24-Bit original data has been 

discussed. It is evident from the Figure that for 16-Bit data, the median error is of the order 20%. 

The 75th percentile and 25th percentile are at 93.12 and 4.69 %, respectively.  

 

Figure 4.74: Difference in Fourier Amplitude, calculated for time histories at different ADC 

resolution varying from 22-Bit to 10-Bit with reference to original 24-Bit data and 0.75 Hz 

frequency. 

 

From above analysis that now frequency noise is added as we keep on decreasing the sensor 

dynamic range. Thus it may be concluded that data for higher frequencies can be extracted with 

greater accuracy as compared to the low-frequency data.  
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Chapter 5 Central Processing unit 

The central processing unit is the heart of the whole EEW system; this is an engine that performs 

all the tasks that are related to EEW. The main components of the central server are as follows; 

 Hardware, which includes high computing workstation or server and networking 

equipment. 

 A software program that can receive data from different sensors located at a remote 

location. 

 Modules for picking of earthquake trace, in case of an event, from an otherwise 

continuous data stream 

 Module for estimation of magnitude and location from the set of available triggered 

streams 

 Module for taking decisions and dissemination of warnings to the target users 

The central processing unit or earthquake early warning server comprises of high computing 

server, which should be able to handle data traffic from 100 plus sensors simultaneously. For the 

software part, it was decided to use EARTHWORM software. The earthworm is an open-source 

platform that is currently maintained by Instrumental Software Technologies, Inc. Earthworm 

serve is one of the most widely used worldwide for seismic data processing. Earthworm can be 

configured and compiled for most of the operating systems like Solaris, Centos, Macosx, Redhat, 

Ubuntu, and Windows. (Johnson et al. 1995) 

(Https://isti.com/products/eq-monitoring-seismic-software/earthworm/).  

In this study point source approach has been used as following rupture or waiting for rupture 

could lead to loss of very important initial seconds and thus losing the cause of such 

system.(Minson et al. 2018). Though an event could be more characterized if the initial 10 

seconds data is analyzed (Melgar and Hayes 2019). 

This chapter deals with the details of the Earthworm software used for the development of the 

EEW system in India. The first section gives details of the central server and modules of 

Earthworm, which have been used for EEW, the second section deals with the Network used for 

communication of data from the sensor to the central server. In the third section, the details of 

the decision-making module have been discussed.  

5.1. Central Processing Unit and Decision Making 

All sensors have been connected to the central server located at IIT Roorkee by using the 

Earthworm platform through a Virtual private network over broadband (VPNoBB). The 

Earthworm has been developed by USGS(Johnson et al. 1995) and is widely used for the real-

time processing of seismic data. It is an open-source program where various modules have been 



developed by a number of seismologists worldwide, and since the program is open source, need-

based custom modules can be developed in-house. Using this functionality of Earthworm central 

server has been configured, and the EEW system for India has been developed by using and 

modifying the already available program as per our need and requirement.  

The decision to choose Earthworm was taken considering the following main design criteria: 

The modules developed for performing each task are independent and can function in isolation 

both in terms of hardware and software. This implies that different modules can be modified and 

more functionality can be added without affecting the overall system configuration and 

processing. 

The modules in particular and Earthworm as a whole is system independent, which implies that 

different modules can be run in a different types of computer systems, and all these systems can 

be connected together, where they can act as a part of a whole integrated single system, in spite 

of having different software hardware and geographical location. 

Another added advantage is that data acquisition modules, data formatting modules, data sharing 

modules are readily available. So even if in the future a variety of other sensors are needed to be 

added, the module performing the EEW task could run without any major change. 

A data acquisition program, name palert_svr, to receive data in real-time from the sensors is 

already available in the Earthworm version 7.7.  For the processing of data, a high-pass filter 

with a cut-off frequency of .075 Hz has been implemented to filter the data in real-time. The 

module for picking of the earthquake, named pick_ew, has been modified by (Chen et al. 2015a), 

which is the one used for this EEW system. The modified module has two additional parameters 

for acceleration and velocity threshold.  These new parameters are very helpful in removing 

spikes created by noise. Threshold values for these parameters can be fixed for each of the sensors 

in the configuration files. Apart from picking the earthquake, this module also calculates peak 

displacement (Pd), peak velocity (Pv) and peak acceleration (Pa) of P-waves for a 3-second time 

window.  Another module which is also developed in Earthworm, then estimates the epicentral 

distance, focal depth, and size of an earthquake. If all the parameters are satisfied, it creates an 

earthquake report file. To take decision for issuing a warning for this EEW installation, if the 

weighted average of estimated magnitude, from at least four stations, is found to be greater than 

6, the report files are created, and simultaneously a script is also triggered, which in turn activate 

all the siren connected to the EEW server. While other reports for which estimated magnitude is 

lesser than 6, files are created, but no script is triggered to activate the siren. The magnitude 

estimation is a continuous process that is continued even after the creation of the first report. As 

soon as the new station is picked, both epicentre and weighted magnitude are estimated, and a 

file with a new estimated magnitude is created and sirens can be triggered. With the addition of 
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more stations, both epicentre and magnitude estimation is found to improve.  For the purpose of 

future testing and archiving of data, the Winston server is used. 

A Graphical User Interface (GUI) was developed using PyQt4, a Qt application framework in 

Python. This GUI contains two main components: a map display of the region monitored and a 

countdown timer to display the estimated time remaining before the arrival of a detected 

earthquake. The map is displayed using Leaflet JS, a JavaScript library for interactive maps.  

The GUI continuously monitors the system drive for the report files that are created in the event 

of a detected earthquake. Each such report contains information about the sensors triggered due 

to the earthquake and the estimated epicentre location with respect to the triggered stations. So 

the epicentre location will be updated with the creation of every report. The triggered stations are 

then plotted on the map display after every new report. The map displays the current estimated 

position of the P-wave and S-wave as concentric circles based on the velocity models proposed 

by (Kanaujia et al. 2015). The estimated position of the seismic waves is updated every 1/10th 

of a second. The countdown timer displays the time remaining till the estimated earthquake 

reaches the user’s location. The time remaining is calculated using the distance between the 

user’s location and the epicentre location of the earthquake. After an earthquake reaches the 

user’s location, the timer is reset to zero, and the GUI goes back to monitoring the system drive 

for any new event.  The figure 5.1, show one example of the GUI. 

 

Figure 5.1: Figure shows the outcome of the warning display of Early Warning Display Program 

during simulation of 29th November 2015 Chamoli earthquake of magnitude 4. In the picture, 

blue dots are the sensors picked, innermost red circle is the estimated epicentre, red circle is S-



wave envelop, blue circle is P-wave envelop, the hut in the centre of map is target location, in 

this case New Delhi. 66.04 is the expected time of S-wave arrival at the target location in seconds. 

 

5.2. Decision Making, Warning dissemination, Simulation and 

Performance 

The module for estimation of epicentre uses the Geiger's method (Chen et al. 2015a) with grid 

search, using a half-space velocity model in which velocity increases linearly with depth. A 1-D 

velocity model has been proposed for the region around Tehri in the Garhwal Himalayas 

(Kanaujia et al. 2015). This study is based on the travel time inversion of 145 local earthquakes 

with an azimuth gap less than equal to 180 degrees and travel-time curves of crustal phases. 

Based on this study, P &S wave velocity model has been used for this module to estimate 

epicentral distance and focal depth. This velocity model is shown in Table 2 and Figure 5.2. 

 

Figure 5.2: P and S wave velocity model derived from Kanaujia et al. (2015) 

 

Table 2: Velocity model used for the estimation of epicenter and depth. (Kanaujia et al. 2015) 

 

 P-wave velocity model S-wave velocity model 

Boundary of shallow and deep 

layers                                     

46 km 46.0 km 

Initial velocity in shallow 

layer                                     

4.42 km/s 2.4100 km/s 

Gradient velocity in shallow 

layer                                   

0.08522 0.0533 

Initial velocity in deep layer                                        8.34000 km/s 4.8600 km/s 

Gradient velocity in deep layer                                       0.00457 0.0023 
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For estimation of magnitude, the Pd method has been used. Pd is defined as the peak amplitude 

of the initial P-phase displacement. There are three different simple linear regression models 

available in the literature(Wu and Zhao 2006b; Hsiao et al. 2011; Kuyuk and Allen 2013), which 

were tested for strong motion data for earthquakes that originated in the central Himalayas (data 

was obtained from www.pesmos.in). These three models are 

MPD = 4.748 +1.371* log (PD) +1.883* log(RH)     (Wu et al., 2006)  --equation(5.1) 

MPD = 3.905 +2.198* log (PD) +2.703* log(RH)   (Hsiao et al., 2011)    --equation(5.2) 

MPD = 5.39 +1.23* log (PD) +1.38* log(RE)   (Kuyuk et al., 2013)  --equation(5.3) 

Where RH is hypocentral distance in kilometre, RE is epicentral distance in kilometre and PD is 

maximum displacement, in centimetre, of the 3-second window from P-onset. We have used 73 

earthquake records from 27 earthquakes of magnitude 3.5 to 6.8 with an epicentral distance of 

less than 100 km for this analysis. The earthquakes used are shown in Figure number 5.3, and 

the result of this analysis is shown in Figures 5.4, 5.5 and 5.6. The results shown in Figure 5.4-

5.6 are estimated MPD from each record and the average MPD of a particular earthquake using 

all the available records. 

 

Figure 5.3: The figure showing epicentres of earthquakes that have been used for validation of 

the regression model for estimation of magnitude of earthquake. Modified after map obtained 

from http://bhukosh.gsi.gov.in 

http://www.pesmos.in/
http://bhukosh.gsi.gov.in/


 

 

Figure 5.4: Estimated MPD and error in estimation with respect to actual magnitude using Wu et 

al., 2006. 
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Figure 5.5: Estimated MPD and error in estimation with respect to actual magnitude using Hsiao 

et al., 2011. 

 



 

In figure 5.4, 5.5 and 5.6 the dots represent MPD estimated from individual records, and the star 

represents average MPD from all the records available for that particular earthquake below 100 

km epicentral distance. 

 

 

 

 

Figure 5.7:Average error in estimated Mpd with magnitude using Wu et al., 2006 (Solid line), 

Hsiao et al., 2011 (Dotted line) 
 

 

Figure 5.7 shows an error in the estimation of MPD with respect to the actual magnitude of the 

earthquake. From these figures, it can be concluded that the regression model suggested by Wu 

et al., 2006 and Kuyuk et al., 2013 (Equation 1 and 3) has much less error with an increase in 

magnitude for this dataset. Figure 5.7 has been derived from figure 5.4 to figure 5.6. Hence it 

was decided to use Wu et al., 2006 regression model for the current installation of the EEW 

system for Northern India. One example of this regression model is also shown in Figure 5.8 for 

the data recorded by the EEW network. The regression model will be revised in the future with 

the availability of more data from the networked region in order to make it more suitable for 

Northern India.  

 

Figure 5.6: Estimated MPDand error in estimation with respect to actual magnitude using 

Kuyuk et al., 2013. 
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Figure 5.8: Acceleration, velocity and displacement time history of 29, November 2015 

earthquake having magnitude 4 from station Chinka which was located at 13 km from estimated 

epicenter. Asterisk denotes the point of P-Onset and diamond shows the maximum displacement 

of 3 sec window from P-Onset (Pd). Magnitude estimated by EEW system, for Pd equal to 0.0264 

cm, calculated at this station was 3.45. 

 
 

5.2.1. Simulation and Testing  

With the help of the TANKPLAYER module available in the standard Earthworm package, old 

recorded data can be re-run in the Earthworm installation. The data is streamed with a timestamp 

and precisely in the same manner as it would have been received from the installed sensor in 

real-time. The TANKPLAYER reads the waveform data from the recorded tank files and then 

passes it to shared memory. The rest of the processing from this stage onwards is exactly the 

same as it is on the real server. Thus by re-running recorded data from multiple earthquakes, the 

pick parameter, as well as the regression model used, can be tested and modified. Whenever some 

stations were not picked during a real event, the records from the event were rerun through 

TANKPLAYER to adjust the pick parameters for those stations. For example, in the event of 29th 

November 2015, Chamoli earthquake of magnitude 4.0, two stations UKMB (Ukhimath) and 

KKHR (Kherakhal), were not picked and thus were not shown in the initial report created by the 

system. Later while re-running the recorded data, the pick parameters were readjusted. After 

changing the pick parameters for these two stations, records were again rerun, and in the 

subsequent report, both the stations were picked correctly.  

The selection of data for the testing purpose has been one of the major tasks for us due to the 

unavailability of sufficient strong motion data from India as a whole and for the networked region 



in particular. Moreover, since we are using relatively low-cost sensors, it was decided to use data 

with similar quality. As Taiwan is also using the same sensor for the EEW network and they have 

a good repository of recorded data, data from Taiwan was used to test the configuration of the 

system and algorithms.  

In order to test the configuration of the EEW server, records having an epicentral distance less 

than 50 km from 10 earthquakes of magnitude greater than four were used. Records consist of 3 

larger earthquakes having magnitude 5, 5.5 and 6. The waveforms were passed to the earthworm 

installation using TANKPLAYER. In the first and second report which is generated when at least 

5 and 10 valid triggers are available respectively, the system is able to estimate the magnitude 

and epicenter with an error which is well within limits for all practical purpose for EEW. The 

magnitude five earthquake was estimated as 4.8, the magnitude 5.5 earthquake was estimated as 

5.4, and a magnitude six earthquake was estimated as 6.2 in the first report. Though the error in 

estimation reduces when data from more sensors are available, but considering the importance 

of every second, we assume that the first or second report can be used for issuing a warning with 

little deviation in the estimation. 

Shake table tests were also performed to test the working of the system. A set of 10 sensors were 

mounted on the top of the shake table, and each sensor was configured with latitude/longitude 

such that all sensors would fall in the circumference of a circle of radius 40 km, 45 km, and 50 

km. Since all the sensors would be triggered almost at the same time, it can be assumed that the 

epicenter should be estimated right at the center of the circle.  The shake table was then excited 

with the data for 1999 Chamoli earthquake. In each test, it was found that in the first file itself, 

the epicenter was estimated precisely at the center of the circle. There was an error in the 

estimation of magnitude, but that was because the algorithm for estimation has been designed to 

work for the first few seconds of the P-wave, whereas the shake table is designed for replicating 

strong-motion part of the time history and hence could not reproduce the initial phase (P-phase) 

of earthquake motion correctly.  

A schematic diagram of the whole EEW process is shown in figure  
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Figure 5.9 : A schematic diagram to show the EEW process being developed for EEW for 

Northern India. 

 

5.2.2. Performance of the EEW system during recent earthquakes 

Since the installation of the network, we have been able to record almost all the earthquakes in 

the region. The major events that we have been able to record are following   

 12-May-2015 Nepal earthquake of magnitude 7.3 was recorded at five stations. As it was 

the initial phase of installation and we had very few sensors connected to the central 

server, thus data was recorded at five stations only. 

 26-Oct-2015 Hindukush, M 7.5, earthquake is recorded at 31 stations  

 25-Dec-2015 Hindukush, M 6.5, earthquake is recorded at 30 stations.  

The first earthquake recorded by this network, having an epicenter in the instrumented region, 

was recorded on 18-July-2015. This was a small earthquake of magnitude 4.3, and epicenter was 

located in the Chamoli district of Uttarakhand. During this event, data from 4 sensors that were 

near the epicenter were streamed to the central server and were picked successfully by the EEW 

server. As it was the initial phase of the installation of sensors, very few sensors were streaming 

data to the central server. Thus the report file was not generated for this event, but the following 

observations were made: 

 India Meteorological Department (IMD) reported the origin time of the earthquake as 

23:48:07 UTC  

 The first sensor of the EEW network was triggered at 23:48:14 UTC. This station was at 

25 km from the epicenter reported by IMD. 

 Three more sensors were triggered between 23:48:16 and 23:48:18. Further, adding 10 

seconds for processing, analysis, and dissemination of warning, a warning could be issued 

at 23:48:28. 

 A seismometer (not from this network) installed at IIT Roorkee also recorded the 

earthquake and reported the P-wave arrival time as 23:48:35 UTC and S-wave arrival 

time as 23:48:50 UTC at IIT Roorkee.  

It is evident from this observation that a warning time of 22 seconds could be achieved for IIT 

Roorkee for this case. 

Later, two more small earthquakes which had their epicenters within the instrumented region 

were also recorded. The first earthquake on 29th November 2015 was of magnitude 4, having an 

epicenter at Chamoli, and another earthquake on 25th September 2016 was of magnitude 3.7, and 

epicenter was at Uttarkashi. The epicenter and Peak Ground Acceleration (PGA) recorded for 

these two events at various stations is plotted in Figure 5.10 and Figure 5.11.  
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Figure 5.10: Estimated epicenters and recorded peak ground accelerations (PGA) in gals for 

29/11/2015 Chamoli Earthquake of magnitude 4 

 



 

Figure 5.11 : Estimated epicentres and recorded peak ground accelerations (PGA) in gals 

for25/09/2016 Uttarkashi Earthquake of magnitude 3.5 

 
The report was created only for the first earthquake. No report was created for the second 

earthquake as very few sensors were triggered due to the low intensity of shaking. The 

observations made from the report of the first earthquake are as follows.  

 The report estimated epicenter at 30.4863N, 79.3448E, whereas IMD has reported 

epicenter at 30.6N, 79.6E.  

 Depth is estimated correctly in the report generated. The depth is estimated as 10 km in 

the report, and the same was reported by IMD. 

 The report is created after 13.49 seconds of the estimated origin time of the earthquake, 

11 seconds after the first station was picked, and ~2 seconds after the seventh and last 

station, in the report, was picked. 

 Magnitude estimation is not correct; the report estimated 2.7, whereas IMD reported it to 

be 4.  This is largely because of the fact that the regression model to estimate magnitude 

(MPd) using Pd used by us agrees well for the large magnitude earthquakes. The MPd 

estimated for the smaller events shows deviation from actual magnitude however, for 

large events, this estimate is much more accurate (Hsiao et al., 2011). However, for the 

Indian dataset, this was not found to be the situation for the model suggested by Hsiao et 

al., 2011 (Figure 2b and 3). Figures 2a, 2c and 3 suggest that model suggested by Wu et 
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al., 2006 and Kuyuk et al., 2013 are much more accurate at higher magnitudes compared 

to Hsiao et al., 2011 for the Indian dataset. 

 An acceleration, velocity, and displacement time history for station CNKB (Chinka), 

which was nearest to the epicenter is shown in Figure 5. This figure explains the basic 

concept on which the EEW system for India has been developed. In this figure, the Pd for 

the first 3-second window after P onset was calculated to be .0264 cm and the magnitude 

was estimated to be 3.45. Seven more stations were triggered by the earthquake. 

The network recorded a magnitude 5.5 earthquake on 6th December 2017. The EEW system 

worked perfectly as expected. The following observations were made:- 

 The event was recorded by 30 stations. 

 The magnitude was estimated 4; however, IMD reported it to be 5.5. USGS reported it to 

be 5.1 

 The epicenter estimated by the EEW system was 30.634°N 79.09°E which is almost 

similar to the epicenter estimated by the USGS, which was 30.634°N 79.160°E. IMD 

reported epicenter at 30.4°N 79.1°E. 

 The seismometer located at Roorkee recorded S-wave arrival time at 15:20:32 UTC; 

however, a warning from the EEW server was issued at 15:20:04 UTC. This earthquake 

reaffirms the possible lead time that could be achieved for Roorkee, which is 

approximately 25 seconds. 

 Figure 5.12 shows the PGA recorded for the various station and the estimated epicenter 

for this earthquake. 



 

Figure 5.12: 6/12/2017 Rudraprayag earthquake of magnitude 5.5 

 

Two large earthquakes of magnitude 6.5 and 7.5 having an epicenter in the Hindukush region 

were also recorded by the network. However, these earthquakes were at a distance of more than 

800 kilometers from the networked region; thus level of ground shaking was too small. As a 

result, no station was triggered. Hence the details of those earthquakes are not discussed in this 

work. 

 

 
 

5.3  New approach for P phase picking using Damage Intensity. 
One of the primary tasks for any successful earthquake early warning system is to correctly pick 

the onset of the P-phase of the earthquake, in real-time from otherwise streaming noise. There 

are plenty of algorithms available for picking of onset of P-phase of earthquake record(Saragiotis 

et al. 2002; Gentili and Michelini 2006; Ross and Ben-Zion 2014; Ait Laasri et al. 2014; Chi-

Durán et al. 2017; Wang and Zhao 2017; Zhang et al. 2018; Zhu et al. 2018, 2019). The most 

popular and used algorithm out of these many algorithms works on the concept of change in the 

ratio of short-time average (STA) and long-time average (LTA) of the data stream(Allen 1978, 

1982). This algorithm was found to be quite robust and readily used in most of the EEW networks 
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as the STA shows a sharp rise as soon as P-phase arrives in the time history while the change in 

LTA is much slower(Satriano et al. 2011; Chen et al. 2015). Due to this reason, the ratio also 

shows a sharp change with the arrival of the P-phase, which helps in the detection of the start of 

seismic record by the computer program. Although this is one of the most trusted algorithms 

around the world for the detection of P-phase arrival, this also cannot have a 100% success rate. 

This is due to the inherent uncertainties, errors, ambient noise, etc., in the time history at the site 

of installation of sensor and equipment itself.  

As discussed in earlier chapters, while developing the EEW system for northern India, the 

installation of strong motion sensors was carried out at the office of district/sub-divisional 

administration or BTS of BSNL. Most of the BTS is located in crowded places, and similarly, 

the administrative offices t are severely crowded during office hours. Due to this, there was 

always a possibility of noisy zero line in the time stream sent by these sensors to the central 

processing unit. This in return, poses the possibility of missing the correct position of onset of P-

phase in the data stream and hence miscalculation of peak displacement (Pd) in the first 3-5 

seconds (as setup in EEW system) from the onset of the P-phase. As discussed earlier, the most 

reliable algorithms for regional warning rely on the estimation of earthquake magnitude using 

Pd. Due to this fact, while working on the EEW system for northern India, it was thought to adopt 

some other methodology for detection of the onset of P-phase, as discussed in Chapter 2. Hence, 

in this study, a new algorithm is developed for detection of the P-phase arrival using change in 

damage intensity (DI) rather than the change in the ratio of STA and LTA of the acceleration 

time history. DI has been widely and effectively used in Japan to estimate the intensity of 

earthquake(Nakamura 2004; Nakamura and Saita 2007)(Nakamura 2011).  

5.3.1. Methodology 

 As discussed in the previous section, the focus of this chapter is to explain the requirement, 

methodology, and results of the developed algorithm that can be used in real-time at the server 

end for the detection of P-phase arrival using DI. DI is defined as the logarithmic of the dot 

product of acceleration and velocity and can be expressed mathematically as in Equation 5.4. 

𝐷𝐼 =  𝑙𝑜𝑔(𝑎. 𝑣)     ----- Equation 5.4 

𝐷𝐼 = 𝑙𝑜𝑔(𝑎𝐸𝑊. 𝑣𝐸𝑊 + 𝑎𝑁𝑆. 𝑣𝑁𝑆 + 𝑎𝑈𝐷 . 𝑣𝑈𝐷) ----- Equation 5.5 

Where, 𝑎 is acceleration in cm/s2, and 𝑣 is the velocity in cm/s which can be extended as shown 

in Equation 5.5 where subscript EW denotes East-West component, NS denotes North-South 

component, and UD denotes vertical component. Performing the dimensional analysis of DI 

gives dimensions as L2T-3, which are similar to the dimension of work done per unit time by unit 



mass; in other words, power transferred per unit mass. As soon as seismic waves arrive at a 

location, DI shows a steep increase in its values, as shown in Figure 5.13. Figure 5.13 shows a 

typical trend shown by smoothened DI curve for with the onset and progress of the seismic event. 

It can be clearly seen that as soon as the P-wave arrives, DI started increasing steeply and then 

drops. DI show another steep rise with the onset of S-wave. It has been seen that the rise of DI 

with the onset of P-wave can be easily marked, although S-wave arrival may not be so much 

distinguishable in some of the cases. Due to this, it was found to be a useful parameter that can 

be used as a tool for the detection of P-wave arrival for EEW systems. The development of the 

algorithm was carried out in two phases. In the first phase, recorded data has been used to develop 

a suitable algorithm that can be used for P-wave detection in an EEW system effectively. In the 

second phase of development, recorded data has been simulated as real-time data for the purpose 

of testing and optimizing the algorithm. 

In further sections, the development of various logic that can be used for P-wave detection, the 

details of the processing of data, simulation of recorded data as real-time data for testing, and 

further results and comparison are discussed in detail.  

 

Figure 5.13 : Plot of DI corresponding to a time history of a seismic event of Magnitude 5.7 

recorded at AOMH 05 (Kik-Net) on 15/07/10 at 03:33 AM. 

 

5.3.2. Development of Pick algorithm using recorded data 

For the initial development of the algorithm, around 1000 records were used, which were 

obtained from the Kik-Net dataset. These earthquake records are chosen such that they may 

contain records from magnitude 3 to magnitude 9, epicentral distance more than 10 km, and peak 

ground acceleration less than 30 gals. Low-intensity records are considered as they will have a 
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low signal-to-noise ratio, and hence if the algorithm works well for such cases, it will work fine 

for higher intensity records where the signal-to-noise ratio is much higher. Like the earthquake, 

the records used in this study are from the Kik-Net dataset, which provides the raw records for 

the sites. These raw records need to be converted from “counts” format to “gals” as per the 

conversion factor provided by the agency in the metadata of the record. Further, the acceleration 

time history obtained need to be processed by performing the baseline correction, which was 

performed using Equation 3.3. 

 

 

 

 

 

 

 

For picking P arrival, three algorithms have been tested for DI, which are as follows: 

1. Zero crossing or the first time when log(𝑎. 𝑣) crosses zero line 

2. Continuous Rise: When there is a constant rise in the value of log(𝑎. 𝑣) for a predefined 

number of instances. 

3. Lastly, calculating standard short time average and longtime average on log(𝑎. 𝑣). 

ZERO CROSSING 

It has been noticed that vales of DI increase as soon as P-onset arrives or P-phase strikes that 

instrument or station, before p-onset values of DI is a function of noise and is most of the time 

found to be less than zero. It may reach larger values or may have values greater than zero if 

there is too much noise in the instrument. Also, being a logarithmic function by virtue of its 

property, it is non-continuous and cannot be defined. But as soon as it crosses the zero line or 

becomes positive from negative, it is found to be the point or time of P-Onset.  It can 

mathematically be expressed as follows:                            

𝑓(𝑥) < 0 𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒             𝑥: {𝑛𝑜𝑖𝑠𝑒} 

𝑓(𝑥 ) 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑                𝑥: {0} 

𝑓(𝑥) > 0 𝑜𝑟 +                             𝑥: {𝑃 − 𝑜𝑛𝑠𝑒𝑡} 

Thus we if we keep on calculating values of DI in a moving window of three or four seconds, as 

soon as this values increases and becomes positive, that point may be defined as a point of P-

Onset. 

Continuous Rise: 



Another method, which is tested for estimation of P-onset, is the constant rise algorithm. During 

evaluation and testing of zero-crossing method, it was noticed that there were some events, 

especially stations where there is substantial noise, station crosses zero lines even for nonevent 

data. Thus a new algorithm of the continuous rise was evolved. In this algorithm, DI is 

continuously monitored, and whenever a rise in the value of DI is found, it is checked if the rise 

in the values is for a pre-defined number of samples or not( in our case, we tested for 15 number 

and 20 numbers). 

  Pseudo code : 

                               Loop:: 

                                  { 

      If  Xn+1>Xn 

    c=c+1; 

        if c>P;    “in our case  

                                                       pick_channel() 

                                                          else 

      Continue; 

                                  } 

 

Using above mentioned pseudo code, if a number or continuous rise were found to be more than 

15-20, the start of a rising point is assumed to be a P-onset point.  With this algorithm, the 

successful picking was found to be improved as compared to Zero crossing.  

STA/LTA using DI: 

In this approach standard Allen algorithm is used with a difference that instead of acceleration 

amplitude from sensor values of DI is used for calculation of STA/LTA. The window for STA is 

taken as 0.2 seconds, whereas the window of LTA is taken for 1 second. 

In this approach, the dot product of acceleration and velocity is taken for a moving window, and 

3 seconds and l𝐨𝐠 (𝒂. 𝒗) is calculated once the ratio of the average of 15 samples in case of data 

at 100 SPS and the average of 45 samples has been found to be mostly at the P-phase onset.  

Figure 1, shown below, explains the working of the algorithm for picking the P phase using DI 

as parameters.  The earthquake was recorded by the Chinka station from the EEW network that 

has been installed for the EEW system for Northern India. The record is from a small earthquake 

of magnitude 4.3, and the record was re-run to replicate the scenario and analyze the algorithm. 

In Figure 1.a, we can see the total time history recorded, and asterisk (*) shows where the 

algorithm has estimated the p-phase onset.  

Figure 1.b shows the  
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Figure 5.14: The figure representing the application of DI for picking P phase data 

 

5.3.3. Testing of the algorithm: 

The algorithm was implemented after rigorous testing using 3164 earthquake records from the 

Kik-Net database. To download the records, filters for epicentral distance and PGA were applied 

so that the data can be obtained in a wide range of PGA and epicentral distance. The selected is 

grouped and analyzed as per the following conditions: 

– PGA less than 30 gals from any epicentral distance (1096 records) 

– PGA greater than 50 gals and epicentral distance between 50 to 100 km (834 records) 

– PGA greater than 50 gals and epicentral distance between 100 to 200 km (792 records) 

– PGA greater than 50 gals and epicentral distance more than 200 km (442 records) 

The purpose of grouping the data is to check the effectiveness of the algorithm for records with 

different intensity and epicentral distances.  

The data thus selected has been parsed in the packets of 1 second for the analysis. The steps 

involved in the analysis are explained below: 



1. Data in the packets of the 1-second moving window has been parsed. Baseline correction 

and high pass filter at the cutoff frequency of 0.075 Hz have been applied for each packet. 

This has been done to ensure the processing to be as similar as in the case of real-time 

data. 

2. Velocity is calculated by numerical integration for each packet. 

3. The maximum value of DI of 1-sec window data is considered as DI. 

4. The window is shifted with 1 sample, and the above steps are repeated. 

5. Smoothing is performed using box-car function (window length may be chosen as per 

requirement). For records having PGA smaller than 30 gals, a smoothing window equal 

to the sampling frequency has been selected for the testing of the algorithm. For example, 

if the sampling frequency is 100 samples per second, then the smoothing window is 

considered for 100 samples. For other cases, having PGA greater than 50 gals, the 

algorithm was tested for three different windows viz. FS, FS/2, and FS/4 (where FS is 

sampling frequency in samples per second). 

6. Further, two filters are applied to check the change in DI. These filters are; 

– The number of continuous increasing steps  should be more than 25 

– The difference between the initial point, from where continuous increasing steps 

are counted, and the final point (up to where DI is found to be increasing 

continuously) should be more than 2. 

7. P-phase is picked as soon as a threshold value in step 6 is achieved. 

The P-phase picked by the program is checked manually for each record, and a pick is considered 

to be correct if it occurred at ± FS/4 samples from the manual pick. The results of the testing of 

the algorithm are summarized below. 

• For the dataset having PGA < 30 gals, analysis was performed using the smoothing 

window of FS, and an accuracy of 93% was found with respect to manual pick. 

• For a dataset having PGA > 50 gals and epicentral distance between 50 km to 100 km 

(834 records), the results of the analysis for different smoothing windows is as follows;  

– For FS , accuracy = 97% 

– For FS/2, accuracy = 96.3% 

– For FS/4, accuracy = 93.3% 
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• For a dataset having PGA > 50 gals and epicentral distance between 100 km to 200 km 

(792 records), the results of the analysis for different smoothing windows is as follows 

– For FS , accuracy = 93% 

– For FS/2, accuracy = 90% 

– For FS/4, accuracy = 79% 

• For a dataset having PGA > 50 gals and epicentral distance between 100 km to 200 km 

(442 records), the results of the analysis for different smoothing windows is as follows 

– For FS , correct pick = 65.4% 

– For FS/2, correct pick = 58% 

– For FS/4, correct pick = 40.7% 

Considering the results discussed above, it can be concluded that the probability of missing the 

P-phase is very high for the earthquakes which are coming from a far distance. The most 

interesting thing to note in such cases is that the algorithm missed the whole record completely, 

as shown in figure 5.15. With increasing epicentral distance, it was found that the probability of 

picking the earthquake record decreases below 50 %. This is a favorable aspect of the algorithm 

while being used for EEW. This is due to the fact that the EEW system for India has been 

designed to issue a warning for earthquakes that are occurring inside or close to the network 

region. Northern India experiences long-duration shaking for the earthquakes coming from the 

Hindukush range in Afghanistan-Pakistan border; however they are not damaging. These 

earthquakes are missed by the algorithm in real-time, and no warning had been issued. Hence in 

this manner, the algorithm also works as a filter in identifying the near field earthquakes, which 

could be much more damaging.  



 

Figure 5.15: The figure gives an example of a candidate record for which event was not picked 

for a far-field earthquake. 

 

The reason for the missing of far-field earthquakes by the algorithm is the slope of DI as soon as 

P-wave arrives. Comparing the slope between near-field earthquake DI (figure 5.16) and far-field 

DI (figure 5.15), it can be concluded that the slope of near-field DI is much steeper. This can also 

be interpreted as the change in DI is much quicker in near-field earthquakes in comparison to 

far-field earthquakes. 

 

Figure 5.16: Successful pick using DI for near field event 
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One of the events, having a magnitude of 7.5 and epicentre in Hindukush, which occurred on 26-

Oct-2015, was recorded at 31 stations by the current EEW network for Northern India. For this 

event, a report file was generated, though the epicentre was almost ~700 kilometres away from 

the network. 10 of the 31 stations were triggered and thus a report file was generated to issue a 

warning. However, since the peak ground displacement was too small and thus the magnitude 

estimated was too small to cross the warning threshold of 6, and thus, no warning was issued. 

However, this event led to the development of a new algorithm using which far filed events could 

be filtered.  

The recorded data from the same earthquake was again run in the server using TANK files, and 

it was found that using DI not even a single station was triggered, and all of the 31 stations were 

filtered.  

  



Chapter 6 Conclusion and Results 

One of the prime objectives of this study was to test and confirm the feasibility of a successful 

EEW system for Northern India. Before the beginning of this study, a target region was already 

identified for instrumentation, as is discussed in chapter 3. The sensors were installed in the 

identified region, and the Earthworm platform was chosen for data processing and decision-

making modules. The primary reason for choosing Earthworm was its readiness for the 

development of required modules without much getting into the details of data communication 

and other software and hardware-related programming. With the virtue of its design, the 

Earthworm has functionality that required modules can be developed or changed as per the 

requirement of the system, without much affecting the performance and functioning of the other 

modules.  

As discussed after much deliberation and testing, a dedicated leased-line-based VPN is selected 

for communication of data from sensors to the central server, located at IIR Roorkee.  In order to 

have all the clocks in sync with each other, an NTP server is also installed. The NTP server was 

also required as it was a mandate from the government to keep the network isolated from the 

Internet backbone.  

6.1. EEW System for Northern India 

The instrumentation has been created targeting the earthquakes expected between Chamoli and 

Uttarkashi District of Uttarakhand and between MBT and MCT. For any earthquake with an 

epicenter in this region and magnitude greater than 6, a warning can be issued to all the adjoining 

cities and towns of Uttarakhand, Western Uttar Pradesh and Delhi. The current study lacks an 

example of major or large earthquakes, as the current network has not recorded or observed any 

major event since its installation, however with the help of figure 5.4, 5.5, and 5.6, it can be 

inferred that the model used for estimation of magnitude works better as magnitude reaches 6. 

This property of the regression model is also mentioned by Hsiao et al., 2011. Thus the testing 

of the system with recorded data has shown that the developed system has the potential to provide 

early warning in case of a large or major earthquake. The EEW system has been tested, and 

performance is being monitored continuously. Though to have a comprehensive EEW system for 

Northern India, a large part of the central Himalayas needs to be networked by sensors.  

In the current phase, the sirens to issue warnings have been installed only in the hostels of IIT 

Roorkee and some of the test users in district administration of Uttarakhand that includes 

government colleges, District magistrate offices, police stations, and government hospitals, along 

with few governments identified test users.  
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6.2. Sensor Selection 

As discussed in chapter 3 and Chapter 4, a dense network is required for the functioning of a 

successful EEW system, and thus a study was performed to test and validate the suitability of 

low-cost MEMS-based sensors. It is a well-known fact that the cost of the sensor becomes high 

with an increase in the dynamic range. Thus to theoretically test the impact of lowered dynamic 

range in the estimation of various EEW parameters and strong motion parameters have been 

studied in this study. The methodology and detailed findings are discussed in chapter 4. 

 

6.2.1 Effect on Magnitude using PD or MPD. 

The results indicated that as the resolution decreases, there is a definite drop inaccuracy with 

which MPD is estimated. However, the drop in accuracy is of the order of 0.01 unit up to 16-Bit 

data, and thus, it can be safely assumed that sensors with up to 96dB are suitable for all practical 

purposes of EEW.  

 For 22 Bit data or for PD Calculated with 22-Bit data, the maximum difference in MPD 

estimated is found to be 0.064 and minimum difference 2.4x10-7, with a median at 

0.000445.  It is also observed that most of the estimations are well within the difference 

of -0.01 to 0.01. 

 Similarly, for 20 Bit data or for PD calculated for 20-Bit time history, the maximum 

difference in MPD estimation is around 0.269, and the minimum difference is 6.9x10-7, 

with a median at 0.00203. There is a very small or negligible difference between the 

estimated magnitude from 24-Bit and 20-Bit data time histories.  

 The results show that for 16-Bit data also the maximum difference in MPD estimation is 

around 0.649, with a median at 0.0083. Thus this time history is also suitable for the 

estimation of magnitude using PD. 

However, below 16-bit and lower resolution of ADC the error in the estimation of magnitude is 

high with a median value of 1.3, and more thus is not suitable for the purpose of magnitude 

estimation and EEW system.  

PD is extensively used for the estimation of magnitude for the EEW system, and the developed 

EEW system for Northern India also used the same PD algorithm is being used. This study has 

justified that for the estimation of Mpd, the low-cost MEMS are quite suitable and can be used for 

the establishment of low-cost sensor networks for EEW systems.  



6.2.2 Effect on magnitudes using τc or Mτc 

In this study, the estimation of the magnitude using τc has been found very sensitive as the ADC 

resolution is decreased from 14-Bit to 10-Bit. It has been observed that the maximum error in 

magnitude estimation is as large as three units for 16-Bit data.  

 For 22-Bit converted data, it can be seen that the error in magnitude estimated is almost 

in the range of -0.02 to +0.02. 

 For 22-Bit records, the error in estimation is well within -0.05 to +0.05 units. 

 18-Bit converted data is almost in the order of 0.2 units only. The median error is also of 

the order 0.0097 units. However, the maximum error is 1 unit. Thus it appears that as the 

bit is being lowered, the maximum error is getting increased.  

 For 16-Bit records, the median error in magnitude estimation is of the order 0.036 units 

only. However, the maximum error is almost of the order of 3 units. This suggests that 

the error is now distributed to the larges range. However, most of the errors are within 

the range of -0.5 to +0.5.  

 

From the above-mentioned observation, it is evident that though the median values of error 

is not too much, however, the large maximum error suggests that the error is more distributed 

in the large range and thus changes of getting false or erroneous magnitude estimation is more 

in case of magnitude estimation using τc 

6.2.3 Effect on Spectral Acceleration 

To access the impact of low resolution data in strong motion parameters, a study has been 

performed to analyze the impact on spectral acceleration. Pseudo Acceleration Spectrum and 

Pseudo Velocity Spectrum have been calculated by solving the equation motion for different 

periods and damping values using the Newmark Linear method. To study the impact, 15 

important periods from .03 seconds to 10 seconds have been used. The impact has been studied 

for three damping ratios which are 2 percent, 5 percent, and 10 percent.  

 

Results and observation for 5 percent damping:  

 For the Zero period, it is also evident from the results that as the data is converted from 

24-Bit to 10-Bit, there is a definite increase in the error with respect to original data. But 

the error is very small, and it reaches a median value of just 2% for 10-Bit data. Thus it 

would be correct to infer that for measuring or estimating PGA, therewith up to 12 or 10-

Bit accuracy is also suitable. 

 For 0.03 second period also the median value for 10-Bit data is only 2.7 %. It can be 

inferred that a lot of information could be retrieved for this period also even if ADC 

resolution is as low as 10-Bit. 
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 For 0.05 and 0.1 seconds periods also the error in 12-Bit data is also found to be as low 

as 1%. 

 For a 0.2 second period, the error becomes more than 1% for 14-Bit data, and it is also 

observed that as the period increases, the sensitivity towards lowered dynamic range also 

decreases.  

 For 0.5 second, 0.74 second, and 1 second also the error is of the order 1~2% only for 

data up to 14 Bit resolution. 

 For larger periods, the error in SA values increased as the dynamic range of the sensor 

data is further reduced. However, it has been observed that even for the largest period of 

10 seconds also the error is of the order 5~6 %.  

Thus it can be safely inferred that for SPA values also the data from low-cost MEMS could 

be used for all practical engineering applications without losing much information.  

 

Results and observation for 2 percent damping: 

For 2% damping, it has been observed that the sensitivity for lowering dynamic range is more 

as compared to 5% damping.  

 For period zero or PGA. It is observed that for 10-Bit data, the median error is 2.7%. 

Whereas up to 16 bit the error is well below 2%. Thus for estimation of PGA values, 

the low-cost MEMS with a dynamic range as low as 10-Bit can be used.  

 For period 0.03 and damping 2%. The error is of the order 5% for 10-Bit data. 

Whereas, below 10-Bit data the error is minimal and is of the order of less than 2%. 

For 16-Bit and more, the error is well below 0.08%. 

 For 0.1 second period, the error is well within 2% for data less than 12-Bit. For 16-

Bit data, the error is less than 0.1%. 

 For a 0.2 second period, the error is well within 2% for 12-Bit data. Even for 10-Bit 

data, the error is of the order ~6%. However, for 16-Bit, the error is less than 0.1%. 

 The error in SA acceleration for 1 second period, for 14-Bit and 16-Bit data, the 

median error is even less than 1% and 0.2%, respectively. 

 For a period of 2 seconds, the median error is of the order 2% for 14-Bit data and is 

even less than 0.5% for 16-Bit data. 

The error in SA values increased as the resolution is reduced from 24-Bit to 10-Bit data, and the 

error is more prominent for larger periods. However, it has been observed that for data up to 16-

Bit, for all important periods can be retrieved without much error or for all practical civil 

engineering applications.  



Results and observation for 10% percent damping: 

The observation similar to 2% damping and 5% damping have been found for 10% damping 

as well.  

 For PGA or period, the error in SA values is of the order 2% for 10-Bit time history. 

 It is observed that for 0.03 second period, up to 10-Bit, the median error is only 2%. The 

median error for 16-Bit data is as low as 0.048%. 

 For 0.05 seconds, it is observed that error up to 12-Bit data is nearly equal to ~1%. 

Whereas for 16-Bit data, the median error is as low as 0.063%. 

 The median and maximum error for 0.2 second period for data up to 14-Bit the median 

error is ~0.3%. For 16-Bit data, they are 0.08% and 1.46%, respectively. 

 The median and maximum error in SA values for 1 second period, for up to16-Bit data, 

are of the order 0.2% and 15% 

It has been observed that for larger periods, the error with lower values of dynamic range 

does increase for 10% damping; however, for all practical engineering applications, the 

dynamic range up to 16-Bit is found to be suitable.  

6.2.4 Effect on Fourier spectrum or Fourier amplitude. 

 For estimating error in Fourier amplitudes, 14 frequencies each corresponding to the 

important periods used for Spectral acceleration have been used to perform the analysis. 

Change in Fourier amplitude corresponding to all the fourteen frequencies has been shown 

for all seven groups of converted time histories viz. 22-Bit, 20-Bit, 18-Bit, 16-Bit, 14-Bit, 12-

Bit, and 10-Bit.  

 For the 25 Hertz frequency, the median error for 22-Bit is 0.002%, and the maximum 

error is 0.139%. Also, the 75th percentile value is 0.004, and the 25th percentile value is 

at 0.001 %. Also, up to 16-Bit, the median error is of the order 0.179 %, and the maximum 

error is also 11.62% 

 For 20 Hz data median error for 22-Bit data is 0.002%, whereas the maximum error is 

0.139% only. The 75th and 35th percentile values are 0.0038 and 0.001 % only. For 16-

Bit data, the median error is 0.16% and has a maximum value of 11.49 %. The 75th and 

25th percentile values are at 0.3 and 0.07%. 

 For 10 hertz frequency, the median and maximum error for 22-Bit data are 0.002 and 

0.07%, respectively. The 75th percentile error value is at 0.003, and the 25th percentile 

error value is at 0.001%. For 16-Bit data, the median error is 0.16% and has maximum 

values of 4.8 %. The 75th and 25th percentile values are at 0.29and 0.09%. 
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 For Fourier amplitude with respect to 5 Hz, the median error for 22-Bit data is 0.0022%, 

and the maximum error is 0.11%. For 16-Bit data, the median error is 0.185% and has 

maximum values of 4.05% %. The 75th and 25th percentile values are at 0.32 and 0.092%. 

 Corresponding to Fourier amplitude for 3.33 Hz the median and maximum error 

corresponding to 22-Bit data are as 0.002 and 0.15% only. For 16-Bit data, the median 

error is 0.2% and has maximum values of 7.3 %. The 75th and 25th percentile values are 

at 0.39 and 0.09%. 

 For 0.14 Hz Frequency, the following observations are made. Median and maximum error 

corresponding to 22-Bit data are 0.14 and 37.6%, respectively. For 16 Bit data, the median 

error is of the order ~12%, whereas 75th and 25th percentile values are ~ 61 and 2.44%, 

respectively. 

 For Fourier amplitudes for 0.1 Hertz frequency corresponding to 16-Bit data, the median 

error is of the order 20%. The 75th percentile and 25th percentile are at 93.12 and 4.69 %, 

respectively.  

 

 

 

6.3. New Pick Algorithm using DI 

A new pick algorithm has been developed and discussed in this study in chapter 5. The new 

algorithm uses damage index (DI), which is defined as the vector product of velocity and 

acceleration. Though DI has been used by Japan for estimation of intensity for the Onsite EEW 

system, in this study, the same approach has been used for event detection or P phase picking. It 

is observed that using this approach and different combinations of smoothing filters, far-field 

events which were not supposed to be considered for EEW purposes can be avoided. Following 

observations have been made regarding the same: 

 The DI can be used with accuracy for real-time detection of P phase  

 For soothing window equal to the sampling frequency, the accuracy of pick increase 

substantially. 

 If a smoothing window equal to sampling frequency is used, the far-field events having 

epicentral distances more than 300 kilometers could be filtered. 

 Recording of the 25th October 2015 Hindukush earthquake has confirmed that far fields 

events can be filtered if the above-mentioned approach is used. 

6.4. Future scope of work 

In this study, the feasibility of having an EEW system for Northern India has been performed 

and successfully demonstrated. However, because of the non-availability of earthquake records, 

soil profiles etc., there is an unlimited scope for future research.  



First and foremost, a similar feasibility analysis or extension of this research needs to be done 

for other parts of the country, special Himachal Pradesh, Jammu and Kashmir, Laddakh, and the 

North-Eastern region of India. All these regions have a peculiar terrain as well as geotectonic 

features and thus require a thorough study for a successful EEW system.  

Apart from the estimation of magnitude for issuing earthquake early warning, in order to have a 

comprehensive EEW system, prediction of ground motion must also be incorporated. When more 

data would be recorded by this network and once more accurate ground motion prediction 

equation, after further soil testing, would be available for the target locations, real-time intensity 

prediction at target places will also be included for this EEW system. This task would remain as 

one of the most important parts of the future scope of this project. 

The current regression model has been created with three-second data of the initial P-phase; the 

advantage of using a small time window is that it helps in saving few seconds of time, which is 

very crucial for an EEW system. However, to achieve better accuracy larger time window should 

be tested, and a new regression model with larger window length data should also be developed 

in the future. 

One of the most important research which is yet to be completed is in the field of local site 

condition because as local site effects are not known or are not available, a lot of site-specific 

hazards cannot be estimated and thus cannot be mitigated. Knowledge of site-specific hazards is 

important in order to predict actual ground motion(Kumar et al. 2015, 2016). 
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