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ABSTRACT 

Water is one of the essential components of our environment. Therefore, proper planning and 

management are essential to achieve sustainable utilization. Changes in climate and land use have 

significantly altered the hydrological cycle which in turn has affected the water resources. Due to 

increased uncertainty in both climate and land-use change projections, improved knowledge of 

watershed hydrology and resource availability are indispensable for current and future policy 

formulation and sustainable development of the water sector. 

The present study has been carried out to ascertain the availability of water and its distribution under 

the impact of climate change projection and anthropogenic intervention in the Kharun watershed, 

India. This study investigated the changes in water balance components under varied land use and 

climate change projections over the Kharun watershed.  Kharun watershed lies in the tropical region 

of central India. Trend changes in meteorological parameters of the past and the future constituted 

the climate change aspect of the study. The land use land cover (LULC) change dynamics constituted 

the anthropogenic intervention aspect of the study. Keeping into account the changes in climatic 

conditions and land change patterns, a hydrological impact assessment was carried out over the study 

area. 

Trend analysis is one of the most significant tools to analyze the global warming problem as it 

quantifies the past and future changes in meteorological and hydro-climatological parameters. In the 

present study, trend detection was carried out for two metrological parameters namely, long term 

temperature (maximum, minimum and mean) and precipitation using regression analysis and 

Modified Mann-Kendall (MMK) test. The magnitude of change was estimated using the Sen’s slope 

estimator over 22 grids in and around the study area. Cumulative sum (Cusum) and sequential  

Mann-Kendall (SQMK) test was used to identify the climatic shift (change per year) over the 

meteorological time series. Significant findings of the study stated an increase in average maximum 

temperature during summer (0.19⁰C), post-monsoon (0.21⁰C), and winter (0.61⁰C) seasons. A 

significant reduction in average yearly minimum temperature (-0.68⁰C) was also observed. The 

annual precipitation decreased by almost 210 mm over 115 years.  

Similar statistics were computed over 23 indices of meteorological extremes derived from long term 

precipitation and temperature time series. Out of these 23 indices, five were proposed in the study 
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based on the precipitation intensity indices suggested by India Meteorological Department (IMD). 

Long term trend changes in these indices were computed for both historical as well as future periods.   

For reproduction of meteorological parameters in order to study changes in extreme value indices in 

the future, regional climate model (RCMs) were evaluated. Four RCMs were identified as the most 

suitable models to determine future times series data of precipitation and temperature (maximum 

and minimum) for the study viz. CCCma, CSIRO, MIROC5 and NorESM. The distribution mapping 

technique was used to remove systematic biases present in the data. MMK test statistic was used to 

evaluate the presence of any trend while the magnitude of the trend was quantified using Sen’s slope 

estimator over the entire period (2011-2100) and for three climate periods, namely CC1 (2011-2041), 

CC2 (2041-2070) and CC3 (2071-2100). These tests were applied over two scenarios viz. RCP 4.5 

and RCP 8.5.  

After the computation of long term variation in meteorological extremes, it can be inferred that the 

gap between the minimum and maximum temperature is increasing over the study period at an 

average rate of 0.09⁰C/decade (4.6%), which explains the increasing trend in Diurnal Temperature 

Range (DTR). This precisely precedes the fact that the days are getting hotter, and the nights are 

getting colder and its effects can be seen over the rainfall intensities in the region. As per the results 

obtained, there is a reduction observed in the number of light rainy days (-10.2%), moderate rainy 

days (-17.8%) in contrast to heavy and heavy rainy days (-25.5 and -18.4%). The number of 

cumulative dry days in the study area has also increased by 19.5%, which explains the reduction in 

rainy days. The overall result indicates an increase in DTR in the future along with an increase in 

days with heavy rainfalls in the case of both scenarios for the study area. 

Evaluation of land use land cover is critical and must be monitored to assess the impact on the 

environment. For this purpose, LULC mapping was carried out for the region using satellite 

imageries (LANDSAT 5, 7, and 8), remote sensing (RS), and geographical information system (GIS) 

tools.  The LULC maps were classified into six different classes namely water bodies, urban areas, 

agricultural land, barren land, mixed forest, and sand/open rocks. Significant findings in the study 

state a decrease in vegetation (agricultural land and mixed forest) in the region due to the rise in the 

urban area and barren land. After the analysis of historical trend patterns in LULC, the land use land 

cover map for the near future (2030) was projected using the CA-Markov model. The model was 

validated and simulated with the classified LULC map of 2015. The projected LULC map of 2030 
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indicated the continuation of the same trend of the past. These future projections indicate the 

expected changes in the near future. Therefore, the LULC changes concerning different classes in 

the near future will help in cautioning the concerned authorities for proper planning and management 

of the study area.   

In order to investigate the effect of land use land cover change and historical and future climate 

variability on water availability of Kharun watershed, Soil and Water Assessment Tool (SWAT), a 

semi-distributed hydrological model was calibrated and validated for the area. Parameters namely 

Baseflow Alpha Factor (ALPHA_BF), Plant uptake compensation factor (EPCO), and Deep aquifer 

percolation fraction (RCHRG_DP), were found to be the most sensitive parameters for the Kharun 

watershed. For monthly simulations, the values of Coefficient of determination (R2), Nash-Sutcliffe 

efficiency (NSE), and Percent bias (PBIAS) were found to be 0.84, 0.8, and -9.4% during calibration, 

and 0.85, 0.79 and -9.2% during validation respectively. The results indicated a very good model 

performance for Kharun watershed. Based on these results, it is concluded that the SWAT model 

can be successfully employed for the hydrological simulation purposes over Kharun watershed. In 

order to compute the hydrological components under the dynamics of land use land cover and 

climate change, 29 simulations were carried out under different variations of land use and climate 

parameters. Results indicated that the increase in settlement (urban and barren land) for real estate 

development, accompanied by a decrease in vegetation (agricultural land and mixed forest), has 

resulted in an increased water yield but the evapotranspiration (ET) reduced due to reduction of 

vegetation. It is observed that ET reduced with time due to a decrease in vegetation, earlier it used 

to be 326.71 mm in 1990 but it declined to 298.39 mm during the projected the year of 2030.  Due 

to an increase in overland flow, the water yield increased from 781.58 mm in 1990 to 881.84 mm in 

the projected the year of 2030. During the last two decades (2010-2030), LULC change increased 

water yield by 45.88 mm and accounted for 5.48% of the total change (881.84 mm). 

Moreover, ET decreased by 4.19% in the same duration. Reduction in precipitation was observed 

for both RCP scenarios in the period CC1 (2011-2040) by -16.83% for NorESM and by -16.29% for 

MIROC5. The simulation result suggests that the evapotranspiration (ET) in the region is going to 

increase between 2011 and 2100 but when compared to IMD simulation as a reference, it was 

observed that the ET has decreased. The maximum change in ET was obtained in CC3. For RCP 

4.5, it was 3.99% (MIROC5) and for RCP 8.5, it was 7.26% (MIROC5). While the minimum change 
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in ET was observed in CC1. The maximum increase in water yield was observed in CC3, 37.36% 

for CSIRO (RCP 4.5), and 77.10% for CCCma (RCP 8.5).  

In summary, the study provided a scientifically essential and practically relevant approach towards 

identifying the historical climate variability and hydrological assessment under land use and climate 

change scenarios considering representative climate models output, in contributing to water 

resources planning and management in the context of a small tropical watershed. 

Keywords: Climate change; LULC; SWAT; MMK; Extreme value indices; SQMK; Cusum; Water 

balance components; CA-Markov model 

  



v 

 

ACKNOWLEDGEMENT 

I wish to express my deep sense of gratitude to my supervisor Dr. Deepak Khare, Professor, 

Department of Water Resources Development and Management, Indian Institute of Technology 

Roorkee, for his invaluable guidance, thought-provoking discussions, and untiring efforts 

throughout this work. His timely help, encouragement, constructive criticism and painstaking efforts 

made it possible to present the work carried out by me in the form of this thesis. Prof. Khare taught 

me how to respond positively to comments in research and publication and taught me to channel the 

same positivity towards different aspects of life. 

I am thankful to Prof. Ajit Kumar Chaturvedi, Director, IIT Roorkee; Prof. M. L. Kansal, Head, 

Department of WRD&M; Prof. S. K. Mishra, Department of WRD&M & Internal Member (SRC); 

Dr. R. D. Garg, Department of Civil Engineering & External Member (SRC); and other faculty 

members at IIT Roorkee, for providing support, constructive suggestions and boosting morale during 

the study period. 

 I thankfully acknowledge the moral and technical support received from my mentors and friends, 

Dr. Santosh Pingale, Dr. Brij Kishor Pandey, Dr. Tesfa Worku, Dr. Santosh palmate, Dr. Sushil Kr. 

Himanshu, Dr. Amrit Upadhyay, Dr. Subash Rai, Dr. Shailendra Kr. Kumre and Mr. Radha Krishan. 

A special thanks go to my fellow researchers and lab mates in the Dept. of WRD&M namely,  

Ms. Tanmoyee, Ms. Sakshi, Ms. Osheen, Mr. Deen Dayal, Mr. Sabyasachi, Mr. Gagan, Mr. Ishan, 

Mr. Praveen and Mr. Rahul. A wholesome thanks goes to my fellow friends in Azad Bhawan,  

Mr. Abhishek, Mr. Phani, Mr. Dinesh, Mr. Shishant and Mr. Rajesh; I would also like to 

acknowledge my empathetic friends in IIT Roorkee who treated me just as I was part of their family, 

Dr. Aditya, Dr. Ashu and Mrs. Preeti, Dr. Hitesh and Dr. Shambhavi, Dr. Prateek and Mrs. Purnima, 

Mr. Gopal and Mrs. Deepmala and Mrs. Ruchi. A shoutout goes to “KGP K Boys” for their constant 

encouragement and friendly support. 

It will be unjust on my part to bind in words the spirits of unparalleled sacrifices made by my parents, 

Mr. Dilip Kumar Chandrakar and Mrs. Manju Chandrakar, for their blessings and moral support. I 

want to thank my elder brother Mr. Piyush Chandrakar and my sister in law Mrs. Ankita Thawani 

for their unconditional love and support. My life and my work would not have taken shape as it is 

now, without the involvement of the love of my life and soon to be my wife Ms. Pooja Bhatt.  She 

is the driving force of my life and always keeps me motivated. I also feel obliged to my family 



vi 

 

members who have always supported me spiritually throughout writing this thesis and my life in 

general. 

I thankfully acknowledge the financial support received from the Government of India through the 

MHRD fellowship during the period of study. The scholarship provided by the ‘American 

Geophysical Union’ and IIT Roorkee to attend the AGU Fall Meeting 2018. 

Further, my humble thanks are due to all those who, in any manner, directly or indirectly, put a 

helping hand in every bit of completion of this research work. 

 

                                                                                             

        (Ayush Chandrakar) 

 

  



vii 

 

TABLE OF CONTENTS 

ABSTRACT ...................................................................................................................................... i 

ACKNOWLEDGEMENT ............................................................................................................... v 

LIST OF TABLES ........................................................................................................................ xiii 

LIST OF FIGURES ....................................................................................................................... xv 

LIST OF ABBREVIATIONS AND SYMBOLS ......................................................................... xix 

CHAPTER 1 

INTRODUCTION ......................................................................................................................... 1 

1.1 GENERAL............................................................................................................................... 1 

1.2 BACKGROUND OF THE STUDY ........................................................................................ 2 

1.2.1 Long Term Effects of Climate Change over Water Resources........................................ 2 

1.2.2 Effects of Land Use/Land Cover Change due to Anthropogenic Activities .................... 3 

1.3 PROBLEM IDENTIFICATION ............................................................................................. 3 

1.3.1 Research Gaps .................................................................................................................. 4 

1.3.2 Research Objectives ......................................................................................................... 4 

1.3.3 Methodologies ................................................................................................................. 5 

1.4 STRUCTURE OF THESIS ..................................................................................................... 5 

CHAPTER 2 

LITERATURE REVIEW ............................................................................................................. 9 

2.1 GENERAL............................................................................................................................... 9 

2.2 DETECTION OF LONG TERM CHANGES IN METEOROLOGICAL VARIABLES .... 10 

2.2.1 Rainfall .............................................................................................................................11 

2.2.2 Temperature .....................................................................................................................13 

2.3 CLIMATE MODELS AND ASSESSMENT OF ITS OUTPUT .......................................... 15 

2.3.1 Global and Regional Climate Models ..............................................................................16 

2.3.2 Climate Model Selection .................................................................................................20 

2.3.3 Bias Correction on Climate Model Outputs ....................................................................22 

2.4 ASSESSMENT OF LAND USE/LAND COVER (LULC) CHANGES .............................. 24 

2.4.1 Use of GIS and RS for LULC by Different Methods .................................................... 24 

2.4.2 Use of Different Methods/Models for LULC Prediction .................................................27 

2.5 HYDROLOGICAL MODEL ................................................................................................ 28 



viii 

 

2.5.1 Soil and Water Assessment Tool (SWAT Model) .......................................................... 29 

2.5.2 Adaptation and Application of SWAT Model ................................................................ 29 

2.5.3 Impact Assessment on Water Availability Employing SWAT ....................................... 32 

2.6 CONCLUDING REMARKS ................................................................................................. 37 

CHAPTER 3 

STUDY AREA .............................................................................................................................. 39 

3.1 GENERAL ............................................................................................................................. 39 

3.2 STUDY AREA DESCRIPTION ........................................................................................... 39 

3.2.1 Topography .................................................................................................................... 39 

3.2.2 Climatology .................................................................................................................... 41 

3.2.3 Land use/Land Cover Distribution ................................................................................. 42 

3.2.4 Soil Types and Their Distribution .................................................................................. 42 

3.3 DATA COLLECTION AND PROCESSING ....................................................................... 44 

3.3.1 Hydro-Meteorological Data ........................................................................................... 44 

3.3.2 Soil Map ......................................................................................................................... 45 

3.3.3 Digital Elevation Model ................................................................................................. 45 

3.3.4 Observed Discharge ....................................................................................................... 46 

3.4 CONCLUDING REMARKS ................................................................................................. 46 

CHAPTER 4 

SHIFT AND TRENDS IN METEOROLOGICAL VARIABLES .......................................... 49 

4.1 GENERAL ............................................................................................................................. 49 

4.2 MATERIALS AND METHODS ........................................................................................... 51 

4.2.1 Description of Study Area and Data Used ..................................................................... 51 

4.2.2 Methodology .................................................................................................................. 51 

4.2.2.1 Identification of shift .............................................................................................. 53 

4.2.2.2 Identification of trend ............................................................................................. 54 

4.2.2.3 Magnitude of trend (Sen’s slope) ........................................................................... 56 

4.3 RESULTS AND DISCUSSIONS .......................................................................................... 56 

 Preliminary Analysis ...................................................................................................... 56 

 Elementary Statistics of Grids ....................................................................................... 59 

 Change Point Detection ................................................................................................. 61 



ix 

 

 Trend Statistics .............................................................................................................. 61 

4.3.4.1 Trend statistics of maximum (TX), minimum (TN) and mean (TXN) temperature.

 ............................................................................................................................................61 

4.3.4.2 Trend statistics of precipitation (PCP) ....................................................................62 

4.3.4.3 Trend statistics  of extreme value indices ...............................................................65 

4.4 CONCLUDING REMARKS ................................................................................................ 86 

CHAPTER 5 

CLIMATE MODELS AND FUTURE TREND ANALYSIS ................................................... 89 

5.1 GENERAL............................................................................................................................. 89 

5.2 MATERIALS AND METHODS .......................................................................................... 90 

5.2.1 Description of the Study Area and Data Used ............................................................... 90 

5.2.2 Methodology .................................................................................................................. 91 

5.2.2.1 Identification of trend and its magnitude ................................................................92 

5.2.2.2 BIAS correction of RCM outputs ...........................................................................92 

5.3 RESULTS AND DISCUSSIONS ......................................................................................... 94 

5.3.1 Selection of Representative Grids ................................................................................. 95 

5.3.2 Trend Statistics of Extreme Value Indices .................................................................... 96 

5.3.2.1 Climate projections under RCP 4.5 ........................................................................96 

5.3.2.2 Climate projections under RCP 8.5 ......................................................................104 

5.4 CONCLUDING REMARKS .............................................................................................. 113 

CHAPTER 6 

LAND USE/LAND COVER DYNAMICS AND FUTURE PREDICTION ......................... 115 

6.1 GENERAL........................................................................................................................... 115 

6.2 MATERIALS AND METHODS ........................................................................................ 117 

 Description of the Study Area ..................................................................................... 117 

 Field Data Collection ................................................................................................... 117 

 Remote Sensing Data ................................................................................................... 118 

 Methodology ................................................................................................................ 118 

6.2.4.1 Image Preprocessing .............................................................................................119 

6.2.4.2 Image classification and LULC class distribution ................................................120 

6.2.4.3 Accuracy assessment ............................................................................................121 



x 

 

6.2.4.4 Change analysis .................................................................................................... 121 

6.2.4.5 Future prediction of LULC using Markov Chain model and Cellular Automata 122 

6.3 RESULTS AND DISCUSSIONS ........................................................................................ 122 

6.3.1 Land Use/ Land Cover Map Development .................................................................. 122 

6.3.2 Accuracy Assessment .................................................................................................. 126 

6.3.3 LULC Change Detection ............................................................................................. 126 

6.3.4 Prediction of Future LULC and Change Detection From 1990 To 2030 .................... 129 

6.3.5 Causes of LULC Change Dynamics ............................................................................ 132 

6.3.6 Implication of LULC Change Dynamics ..................................................................... 133 

6.4 CONCLUDING REMARKS ............................................................................................... 134 

CHAPTER 7 

HYDROLOGICAL SIMULATION UNDER LULC AND CLIMATE CHANGE 

SCENARIOS .............................................................................................................................. 137 

7.1 GENERAL ........................................................................................................................... 137 

7.2 MATERIALS AND METHODS ......................................................................................... 140 

7.2.1 Description of the Study Area ...................................................................................... 140 

7.2.2 Data Used During Processing ...................................................................................... 140 

7.2.2.1 Spatial data ........................................................................................................... 140 

7.2.2.2 Hydro-meteorological data ................................................................................... 142 

7.2.3 Hydrological Modelling Using SWAT ........................................................................ 142 

7.2.3.1 Model equations ................................................................................................... 143 

7.2.4 SWAT Model Setup ..................................................................................................... 146 

7.2.4.1 Watershed delineation .......................................................................................... 146 

7.2.4.2 Hydrological Response Units (HRUs) ................................................................. 147 

7.2.4.3 Uncertainty and sensitivity analysis ..................................................................... 148 

7.2.4.4 Model performance evaluation ............................................................................ 149 

7.3 RESULTS AND DISCUSSIONS ........................................................................................ 150 

7.3.1 Model Sensitivity Analysis .......................................................................................... 150 

7.3.2 Calibration and Validation of SWAT Model ............................................................... 152 

7.3.3 Model Application Under Land Use and Climate Change Scenarios .......................... 153 

7.3.3.1 Impact of LULC change over water balance components ................................... 154 



xi 

 

7.3.3.2 Impact of climate change over water balance components ..................................157 

7.3.4 Adaptation and Coping Strategies Towards Climate Change ..................................... 171 

7.4 CONCLUDING REMARKS .............................................................................................. 176 

CHAPTER 8 

SUMMARY AND CONCLUSIONS ........................................................................................ 179 

8.1 SUMMARY......................................................................................................................... 179 

8.2 CONCLUSIONS ................................................................................................................. 180 

8.2.1 Shift and Trends in Meteorological Variables ............................................................. 180 

8.2.2 Climate Models and Future Trend Analysis ................................................................ 181 

8.2.3 Land Use/Land Cover Dynamics and Future Prediction ............................................. 182 

8.2.4 Hydrological Simulation Under LULC and Climate Change Scenarios ..................... 182 

8.3 RESEARCH CONTRIBUTIONS ....................................................................................... 184 

8.4 RESEARCH LIMITATIONS ............................................................................................. 184 

8.5 SCOPE FOR FUTURE STUDIES ...................................................................................... 185 

REFERENCES ........................................................................................................................... 187 



xii 

 

  



xiii 

 

LIST OF TABLES 

Table 2.1 Observation of precipitation trends. .................................................................................12 

Table 2.2 Land Use/Land Cover change dynamic classification techniques. ..................................26 

Table 2.3 Land Use/Land Cover change, future prediction models in different parts of the world. 28 

Table 2.4 Application of SWAT model in different categories. .......................................................31 

Table 2.5 Studies related to climate change impact and anthropogenic activities on water availability 

using SWAT. ..................................................................................................................35 

Table 3.1 Characteristics of various seasons in the study area. ........................................................42 

Table 3.2 Description of soil types found in Kharun watershed. .....................................................44 

Table 4.1 List of indices used for the analysis. .................................................................................52 

Table 4.2 Classification of precipitation intensity and temperature aberrations as per IMD guidelines.

 ........................................................................................................................................57 

Table 4.3 Elementary statistics of annual rainfall (1901-2015), annual averaged maximum (TX), and 

minimum (TN) temperature (1951-2014). ......................................................................60 

Table 4.4 Change (shift) years obtained from Cusum and SQMK tests. ..........................................61 

Table 4.5 MMK statistics (Z) temperature extreme indices over the Kharun watershed (1951-2014).

 ........................................................................................................................................71 

Table 4.6 ROC for temperature extreme indices over the Kharun watershed (1951-2014). ............72 

Table 4.7 MMK statistics (Z) of precipitation extreme indices over the Kharun watershed (1901-

2015). ..............................................................................................................................73 

Table 4.8 ROC for precipitation extreme indices over the Kharun watershed (1901-2015). ...........74 

Table 4.9 MMK statistics (Z) of precipitation extreme indices over the Kharun watershed before 

shift (1901-1958). ...........................................................................................................79 

Table 4.10 ROC of precipitation extreme indices over the Kharun watershed before shift (1901-

1958). ..............................................................................................................................80 

Table 4.11 MMK statistics (Z) of precipitation extreme indices over the Kharun watershed after shift 

(1958-2015). ...................................................................................................................81 

Table 4.12 ROC of precipitation extreme indices over the Kharun watershed after shift (1958-2015).

 ........................................................................................................................................82 

Table 4.13 Results of Z, p-value, β and ROC of TX, TN, TXN and PCP over the study area. .......84 

Table 4.14 Results of Z, p-value, β, and ROC of all the indices over the study area. ......................85 



xiv 

 

 

Table 5.1 Description of the RCMs used in the study. .................................................................... 92 

Table 5.2 MMK statistics (Z) of indices based on temperature for RCP 4.5. .................................. 98 

Table 5.3 MMK statistics (Z) of indices based on precipitation for RCP 4.5.................................. 99 

Table 5.4 MMK statistics (Z) of indices based on temperature for RCP 8.5. ................................ 107 

Table 5.5 MMK statistics (Z) of indices based on precipitation for RCP 8.5................................ 108 

Table 6.1 Detailed description of the acquired satellite imageries. ............................................... 118 

Table 6.2  Detailed description of land use/land cover types. ....................................................... 121 

Table 6.3 Distribution of classes between 1990 and 2000. ............................................................ 123 

Table 6.4 Distribution of classes between 2005 and 2015. ............................................................ 124 

Table 6.5 Kappa statistics (Kp) of all the classes for LULC maps between 1990 to 2015. ........... 126 

Table 6.6 Area statistics of the simulated (2015), classified (2015), and the projected (2030) 

LULC(s). ...................................................................................................................... 131 

Table 7.1 Characteristics of gauging site. ...................................................................................... 148 

Table 7. 2 Range of performance evaluation during calibration and validation. ........................... 150 

Table 7.3 Description and ranking of the most sensitive parameters. ........................................... 151 

Table 7.4 Minimum (Min.), maximum (Max.), and the fitted values of sensitive parameters. ..... 151 

Table 7.5 Values of model performance parameters at the outlet. ................................................. 153 

Table 7.6 Land use/land cover distribution of the years 1990, 2000, 2010 and 2030. .................. 155 

Table 7.7 Average annual water balance components under 1990, 2000, 2010, and 2030 LULC.156 

Table 7.8 Percent changes in water balance components of all simulation scenarios w.r.t. baseline.

 ...................................................................................................................................... 161 

  



xv 

 

LIST OF FIGURES 

Figure 1.1 Illustration of chapter wise structure of the thesis.. ...........................................................7 

Figure 3.1 Index map of the study area. ...........................................................................................40 

Figure 3.2 Slope map of the study area. ...........................................................................................41 

Figure 3.3 Spatial distribution of soil types in the study area. ..........................................................43 

Figure 3.4 Selected grids in and around the study area. ...................................................................45 

Figure 4.1 Departure of minimum/maximum temperature from normal is +1⁰C to -1⁰C, where TX is 

the daily maximum temperature, and TN is the daily minimum temperature. ...............57 

Figure 4.2 Figure showing long term variation of different rainfall intensities (IMD specified). ....58 

Figure 4.3 Detection of climatic shift using (a) Cumulative sum and (b) SQMK test. ....................61 

Figure 4.4 MMK trend statistics of maximum temperature (TX). ...................................................63 

Figure 4.5 MMK trend statistics of minimum temperature (TN). ....................................................63 

Figure 4.6 MMK trend statistics of mean temperature (TXN). ........................................................63 

Figure 4.7 MMK trend statistics of precipitation (PCP). ..................................................................63 

Figure 4.8 Linear trends of TX, TN, and TXN at a yearly and seasonal time scale. ........................64 

Figure 4.9 Linear trends of PCP at a yearly and seasonal time scale. ..............................................65 

Figure 4.10 Linear trends for pre-defined extreme value indices of long term temperature series. .68 

Figure 4.11 Linear trends for pre-defined extreme value indices of long term precipitation series. 69 

Figure 4.12 Linear trends for proposed extreme value indices of long–term precipitation series. ..70 

Figure 4.13 Spatial distribution plot of MMK test for all the indices between 1901-2015 (for 

precipitation) and 1951-2014 (for temperature). ............................................................75 

Figure 4.14 Linear trends for pre-defined extreme value indices of long term precipitation series, 

both before and after shift (the year 1958). ....................................................................77 

Figure 4.15 Linear trends for proposed extreme value indices of long term precipitation series, both 

before and after shift (the year 1958). .............................................................................78 

Figure 5.1 Variation of MMK ’Z’ values of the grids. .....................................................................95 

Figure 5.2 Linear trends for extreme value indices of long term temperature series for all climate 

periods for RCP 4.5. .....................................................................................................100 

Figure 5.3(a) Linear trends for extreme value indices of long term precipitation series for all climate 

periods for RCP 4.5. ...................................................................................................101 



xvi 

 

Figure 5.3(b) Linear trends for extreme value indices of long term precipitation series for all climate 

periods for RCP 4.5. .................................................................................................. 102 

Figure 5.4 Spatiotemporal changes (%) in average precipitation based indices for RCP 4.5 of four 

RCMs (CCCma, CSIRO, NorESM, MIROC5).. ......................................................... 103 

Figure 5.5 Spatiotemporal changes (%) in average temperature based indices for RCP 4.5 of four 

RCMs (CCCma, CSIRO, NorESM, MIROC5).. ......................................................... 104 

Figure 5.6 Linear trends for extreme value indices of long term temperature series for all climate 

periods for RCP 8.5. ..................................................................................................... 109 

Figure 5.7(a) Linear trends for extreme value indices of long term precipitation series for all climate 

periods for RCP 8.5. .................................................................................................. 110 

Figure 5.7(b) Linear trends for extreme value indices of long term precipitation series for all climate 

periods for RCP 8.5. .................................................................................................. 111 

Figure 5.8 Spatiotemporal changes (%) in average precipitation based indices for RCP 8.5 of four 

RCMs (CCCma, CSIRO, NorESM, MIROC5).. ......................................................... 112 

Figure 5.9 Spatiotemporal changes (%) in average temperature based indices for RCP 4.5 of 4 RCMs 

(CCCma, CSIRO, NorESM, MIROC5).. ..................................................................... 113 

Figure 6.1 Conceptual framework behind causes, effects, and impacts of land use/land cover 

changes. ........................................................................................................................ 117 

Figure 6.2 Flowchart showing general methodology for LULC classification and prediction. .... 119 

Figure 6.3 Percent of land distribution for various classes between 1990 and 2015. .................... 124 

Figure 6.4 Land use/land cover maps of Kharun watershed between 1990 and 2015. .................. 125 

Figure 6.5 Demi-decadal percent change in LULC classes from 1990 to 2015. ........................... 127 

Figure 6.6 Percent change in LULC classes with reference to 1990. ............................................ 128 

Figure 6.7 Decadal percent change in LULC classes from 1990 to 2015...................................... 128 

Figure 6.8 Percent change in LULC classes with reference to 2000. ............................................ 129 

Figure 6.9 Percent of land distribution for various classes for projected LULC (2030). .............. 131 

Figure 6.10 Simulated LULC map of the projected year 2030. ..................................................... 132 

Figure 6.11 Conceptual linkage of cause and consequence of LULC change. .............................. 134 

Figure 7.1 Framework of impact assessment on water availability due to land use and climate change 

scenarios. ...................................................................................................................... 139 

Figure 7.2 Spatial data (DEM, soil map, land use map, and slope map) used for hydrological 

modeling. ...................................................................................................................... 141 



xvii 

 

Figure 7.3 Detailed framework for SWAT model setup, calibration, and validation.....................146 

Figure 7.4 Description of stream networks, outlets, gauging site, and sub-watershed of Kharun 

watershed. .....................................................................................................................147 

Figure 7.5 Calibration plot of simulated and observed discharge at the outlet. .............................152 

Figure 7.6 Validation plot of simulated and observed discharge at the outlet. ...............................153 

Figure 7.7 Flowchart illustrating 29 simulations under varying land use and climate change 

scenarios. .......................................................................................................................154 

Figure 7.8 Comparison of decadal changes in evapotranspiration due to LULC change. .............156 

Figure 7.9 Comparison of decadal changes in water yield due to LULC change. .........................157 

Figure 7.10 Comparison of precipitation variation of observed precipitation (IMD) with the RCM 

data during the baseline period (1981-2010). ...............................................................158 

Figure 7.11 Variation in precipitation of climate periods: CC1 (2011-2040), CC2  (2041-2070) and 

CC3 (2071-2100) for RCP 4.5. .....................................................................................159 

Figure 7.12 Variation in precipitation of climate periods: CC1 (2011-2040), CC2  (2041-2070) and 

CC3 (2071-2100) for RCP 8.5. .....................................................................................159 

Figure 7.13 Comparison of projected average monthly precipitation (RCP 4.5). ..........................160 

Figure 7.14 Comparison of projected average monthly precipitation (RCP 8.5). ..........................160 

Figure 7.15  Comparison of simulated annual average precipitation (PCP) of climate periods with 

respect to simulated baseline (IMD) data. ....................................................................162 

Figure 7.16 Comparison of simulated annual average Evapotranspiration (ET) of climate periods 

with respect to simulated baseline (IMD) data. ............................................................162 

Figure 7.17 Comparison of simulated annual average Water Yield (WYLD) of climate periods with 

respect to simulated baseline (IMD) data. ....................................................................163 

Figure 7.18 Sub-watershed wise variation of water balance components during the baseline period 

(1981-2010). .................................................................................................................164 

Figure 7.19 Sub-watershed wise variation of simulated precipitation during all climate periods for 

RCP 4.5. ........................................................................................................................165 

Figure 7.20 Sub-watershed wise variation of simulated precipitation during all climate periods for 

RCP 8.5. ........................................................................................................................166 

Figure 7.21 Sub-watershed wise variation of simulated evapotranspiration during all climate periods 

for RCP 4.5. ..................................................................................................................167 



xviii 

 

Figure 7.22 Sub-watershed wise variation of simulated evapotranspiration during all climate periods 

for RCP 8.5................................................................................................................... 168 

Figure 7.23 Sub-watershed wise variation of simulated water yield during all climate periods for 

RCP 4.5. ....................................................................................................................... 169 

Figure 7.24 Sub-watershed wise variation of simulated water yield during all climate periods for 

RCP 8.5. ....................................................................................................................... 170 

Figure 7.25 Change in mean annual temperature of watershed averaged considering RCMs output 

ensemble for RCP 4.5. ................................................................................................. 172 

Figure 7.26 Change in mean annual temperature of watershed averaged considering RCMs output 

ensemble for RCP 8.5. ................................................................................................. 172 

Figure 7.27 Change in total annual precipitation of watershed averaged considering RCMs output 

ensemble for RCP 4.5. ................................................................................................. 173 

Figure 7.28 Change in total annual precipitation of watershed averaged considering RCMs output 

ensemble for RCP 8.5. ................................................................................................. 173 

  



xix 

 

LIST OF ABBREVIATIONS AND SYMBOLS 

S. NO. Abbreviation Description 

1 Alpha_bf  Baseflow Alpha Factor 

2 AMC  Antecedent Moisture Condition 

3 ANN  Artificial Neural Network 

4 AR5  Assessment Report 5 

5 BIOMIX Biological mixing efficiency 

6 CA  Cellular Automata 

7 CDF Cumulative Distribution Function 

8 CH_K2  Effective hydraulic conductivity in main channel alluvium 

9 CMIP  Coupled Ocean-Atmosphere Model 

10 CN  Curve Number 

11 CN2 SCS runoff curve number  

12 CORDEX  Coordinated Regional Downscaling Experiment 

13 Cusum Cumulative Sum 

14 DEM  Digital Elevation Model 

15 DTR Diurnal Temperature Range 

16 EPCO Plant uptake compensation factor 

17 ERDAS  Earth Resource Data Analyzing System 

18 ESCO  Soil Evaporation Compensation Factor 

19 ETM  Enhanced Thematic Mapper 

20 FAR  False Alarm Ratio 

21 GCM  Global Climate Model 

22 GCMs  Global Climate Models 

23 GDP Gross Domestic Product 

24 GHGs  Green House Gases 

25 GIS  Geographic Information System 

26 GPS  Global Positioning System 

27 GW_DELAY  Groundwater Delay Time 

28 GW_REVAP  Groundwater Revap Coefficient 

29 GWQMN Water depth (threshold) in shallow aquifer for return flow to occur 



xx 

 

30 HRUs  Hydrological Response Units 

31 IMD  India Meteorological Department 

32 IPCC  Intergovernmental Panel on Climate Change 

33 IWRM  Integrated Water Resources Management 

34 km  Kilometer 

35 LANDSAT  Land Satellite 

36 LHOAT Latin Hypercube One Factor At a Time 

37 LULC  Land Use Land Cover 

38 MCA  Multi-Criteria Analysis 

39 MCM  Million Cubic Meters 

40 mm  Millimeters 

41 MMK Modified Mann-Kendall 

42 MSL Mean Sea Level 

43 NASA  National Aeronautical and Space Administration 

44 NSE Nash–Sutcliffe Efficiency  

45 OLI_TIRS Operational Land Imager and Thermal Infrared Sensor 

46 PBIAS  Percent Bias 

47 PET  Potential Evapo-transpiration 

48 R2  Coefficient of Determination 

49 RCHRG_DP Deep aquifer percolation fraction 

50 RCM  Regional Climate Models 

51 RCP  Representative Concentration Pathways 

52 RMSE  Root Mean Square Error 

53 ROC Rate of Change 

54 RS Remote Sensing 

55 SCS  Soil Conservation Service 

56 SLSUBBSN  Average slope length 

57 SOL_AWC  Available Water Capacity 

58 SOL_BD Moist Bulk Density 

59 SOL_K  Saturated hydraulic conductivity 

60 SOL_Z  Soil depth 



xxi 

 

61 SQMK  Sequential Mann-Kendall 

62 SRTM Shuttle Radar Topography Mission  

63 SUFI  Sequential Uncertainty Fitting 

64 SURLAG  Surface runoff lag coefficient 

65 SWAT  Soil and Water Assessment Tool 

66 SWAT-CUP  SWAT Calibration and Uncertainty Programs 

67 TM Thematic Mapper 

68 TN, Tmin Minimum Temperature 

69 TX, Tmax Maximum Temperature 

70 TXN, Tmean Mean Temperature 

71 WMO  World Meteorological Organization 

 

 

 

 

 

 

 



1 | P a g e  

 

CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

Availability of fresh water is indispensable in the socio-economic development and 

preservation of a healthy environment. It is impossible to imagine the development of any country 

without access to adequate water for various purposes (viz., drinking, irrigation, environment 

and ecosystems). In the recent past, there is a remarkable change in nature on the global discussion 

of issues of climate change and land use/land cover (LULC) change and its effect on water resource 

availability. These issues, in particular, are disturbing the sustainable development planning and 

management of water resources. Water resources are vital for the agricultural sector, power 

generation, ecosystem and human health; moreover its requirement is raising day by day with 

population growth. However, an increase in water demand is anticipated, but changes in the 

environment and its impacts on humans and other ecosystems are locally unpredictable. Therefore, 

it is crucial to plan and manage water resources, considering the anthropogenic effect and 

environmental changes. Climate projections for the 21st century indicate that rising temperatures and 

changing precipitation regimes are likely to affect the hydrological cycle and water resources 

availability. Assessment of water resources availability under climate change impact and 

anthropogenic activity at a regional and global scale has always been an intriguing issue to the 

hydrologic research community in the recent past. It is essential to assess the exact knowledge of 

water availability for policymakers to accomplish sustainable development and management for 

providing various adaptation strategies.  

Global Climate Models (GCMs) are the essential tools and sole means to detect and evaluate the 

climate change impact. GCMs have been developed to assess the current climate as well as to project 

the future climatic conditions at the synoptic scale (300 to 450 km spatial resolution). Moreover, 

GCMs accuracy decreases by increasing finer resolution, which is not suitable to evaluate significant 

impact studies at the local scale. It is a complex numerical model to formulate the global climate 

system. However, due to climate change, the temperature is rising and altering the frequency and 

intensity of precipitation extreme values, which advances the flood and drought events. In the recent 

past, many studies indicate that global warming has reduced water availability in many regions. 

Moreover, water is the basic need for development at a regional or local scale, but its availability 
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influenced by many factors, including hydro-meteorological and climate variability and 

anthropogenic activities. This study aims to identify the contribution of climate change, human 

intervention and its combined effect on the future projection of water resources of a tropical 

watershed.  

1.2 BACKGROUND OF THE STUDY 

The impact of climate change and anthropogenic activity on climatological parameters influence the 

hydrological processes and water resources availability. Under global warming, the occurrence of 

extreme events is altered, which causes water scarcity and hurdles in sustainable development. In 

the recent past, many studies indicated that global warming had altered water availability in many 

regions of India. Many researchers and the scientific community have proved that global warming 

is caused by rising greenhouse gas (GHGs) concentrations and it is the primary reason for the rise in 

temperature and. Under projected climate change, extreme events (flood and drought) usually will 

rise across most of the Indian River. In India, during the monsoon season, floods are the most 

vulnerable natural disasters and affect the settlement as well as cropland. In the recent past, many 

researchers highlighted the climate change impact on Indian rivers (Gosain et al. 2006; 

Mall et al. 2006; Pandey et al. 2017). 

1.2.1 Long Term Effects of Climate Change over Water Resources 

The mean annual precipitation in India is about 1170 mm, and it varies from 100 mm (Rajasthan) to 

11000 mm (Meghalaya). Most of the rainfall occurs in monsoon season. Moreover, the average 

surface runoff estimated to be about 1869 billion cubic meters from rainfall and snowmelt. It is 

expected that water demand will increase around two times (552 to 1050 billion cubic meters) by 

2025 from 1997 (Chatterjee et al. 2014). Climate change and climate variability are altering the 

intensity and frequency of extreme events. Instrumental and proxy observations indicate global 

warming due to the emission of greenhouse gases, particularly in the last four-five decades of the 

20th century. Mearns et al. (2001) indicated that the surface temperature is rising in the global 

hydrological cycle which will alter the frequency and intensity of annual precipitation and weather 

extreme. It is expected that a change in annual precipitation will likely increase flood magnitude and 

frequency (Bhaskar et al. 1997). 

Moreover, change in climatic conditions and LULC dynamics will affect the surface discharge, water 

yield and water availability, particularly on catchment or basin scale (Rai et al. 2017). Gosain et al. 
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(2011) simulated the runoff of 12 Indian River basins under climatic conditions of a different 

scenario. Authors presented the worst affected two river basins (Krishna and Mahanadi), one is under 

droughts and others concerning floods under climate change effect. Narsimlu et al. (2013) assessed 

the impact of climate change on water availability of the Upper Sind River Basin and found that the 

mean annual runoff would increase by 94% at the end of the 21st century. 

1.2.2 Effects of Land Use/Land Cover Change due to Anthropogenic Activities 

Large scale deforestation, expansion of urbanization and industrialization due to increasing 

Population growth contributes to global warming. Moreover, increasing urbanization and population 

alter the ecological system, environment, groundwater recharge, surface water flow, water demand 

for agriculture, power generation and other purposes. Human interference and GHGs emission are 

the driving forces behind climate change (Zakaria et al. 2004). Increasing population and their 

livelihood demands exert the pressure on existing LULC resources. Thus, it is vital to monitor the 

information about the dynamics of LULC along with population growth and rising requirement. In 

central India, due to the rising population, there is a continuous over-exploitation of natural resources 

such as the expansion of cropland at the cost of deforestation and subsequent urbanization from 

cropland and deforestation. Due to the modification of LULC, many problems generated, such as 

deficit in soil moisture, high rate of soil loss, depletion of groundwater level and scarcity of water 

demand. Thus, it is crucial to assess the dynamics of LULC for long term land resources planning 

and management for decision-makers. Currently, there are many tools such as remote  

sensing technologies available to assess and develop the LULC map 

(Nagarajan et al. 1998; Wakode et al. 2013; Samal et al. 2015;). Jaiswal et al. (1999) suggested that 

geospatial tools and remote sensing data, along with topo sheets obtained from the Survey of India, 

are appropriate tools to analyze and mapping to LULC. Mondal et al. (2015) examined part of the 

Narmada River Basin in Madhya Pradesh, India considering different GHGs emission scenarios and 

show that the rise in precipitation will increase soil erosion.  

1.3 PROBLEM IDENTIFICATION 

In recent times, various literature from worldwide indicates climatic change, and anthropogenic 

activities are significantly affecting the water resources availability at regional and basin scale. In 

India, water resources demand has already raised manifold in the field of agriculture, ecological life, 

power generation, domestic and industries due to rapid growth in population. In the current scenario, 

a rise in temperature, change in cropping pattern, overexploitation of groundwater and stream water 
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has dramatically altered the hydrological cycle and precipitation rate in many climatic zones and 

water availability of river basins in India. In terms of climate impact on the agriculture field, many 

crops such as rice, wheat, maize and sorghum are the worst hit by extreme weather conditions. 

Considering food security, climate change affects 4-9% per year production on a different crop, and 

15% to India’s Gross Domestic Product (GDP) (Mall et al. 2006b). Therefore, it is vital to assess the 

water availability under the climate change and dynamics of LULC for long term strategic planning 

and sustainable development of a region or basin for the country. 

1.3.1 Research Gaps 

An increased concentration of GHGs and anthropogenic activities are expected to change the 

climatic conditions causing a rise in temperature and change in precipitation frequency and intensity. 

The following research gaps are summarized:  

1. In most of the studies, annual average precipitation and mean temperature were considered 

for trend detection; extreme values are rarely considered to measure the climate change 

impact. Additionally, very few studies were focused on periodicity rather than trend and 

shifting.  

2. There are limited studies based on the selection of best suitable GCMs/RCMs, considering 

the six climatic variables. To project the future climate and water availability, it is vital to 

identify representative climate models for the region.  

3. Due to mismatches between hydrological model requirements and GCMs ability, it is not 

suitable to couple hydrological models with crude spatial resolution GCMs output to assess 

the impact studies at the local scale. To bridge the gap between GCMs output and 

hydrological model inputs, RCMs with finer resolution have been used in the study.  

4. There are very few studies available to project the trend pattern of water yield and 

evapotranspiration in a tropical watershed. 

1.3.2 Research Objectives 

The general aim of this study is to evaluate the water availability under climate change impact, and 

LULC Change, on Kharun watershed, a relatively small watershed in the tropical region of central 

India. The following specific objectives are outlined in the present study:  

i. To analyze the historical trends, shifting (change year), and periodicity of climatic variables 

such as precipitation and temperature of Kharun watershed. 
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ii. To evaluate the pattern of trends for precipitation and temperature in the future using 

Regional Climate Model (RCM) data.  

iii. To assess the pattern of LULC and project the near future LULC changes.  

iv. To estimate the changes in the hydrological response under the dynamics of LULC and 

projection of virtual water for three climatic periods of the 21st century under climate change 

scenarios. 

1.3.3 Methodologies 

In order to achieve objectives, statistical analysis and hydrological modeling approaches were 

considered in this study. Identification of long term changes in meteorological parameters such as 

temperature and precipitation, as well as an assessment of changes in meteorological extremes 

(proposed by ETCCDMI), have been done considering various parametric and non-parametric tests. 

While few indices based on various rainfall intensities were proposed in the study. Modified Mann-

Kendall (MMK), Sen’s slope test, and linear regression were employed to detect the presence of 

trend and to quantify its magnitude. To identify the climatic shift in the meteorological series, 

Sequential Mann Kendall (SQMK) and Cumulative Sum (CUSUM) test were used. For future 

climate projection, Regional climate model (RCM) data was used, it was corrected for all the 

systematic biases using the technique of distribution mapping and the above mentioned parametric 

and non-parametric tests were applied over the corrected data to determine the changes in future 

trend patterns. LULC classification was carried out by unsupervised classification, whereas LULC 

for the near future were simulated by Markov and Cellular Automata (CA). The hydrological model, 

Soil and Water Assessment Tool (SWAT) was calibrated and validated using SWAT-CUP at a 

monthly time step applying a multisite calibration approach. The calibrated model was used to 

evaluate the water balance components under climate and LULC change. 

1.4 STRUCTURE OF THESIS 

The outline of the chapters and framework of objectives are as follows:  

Chapter One explains the background and importance of the subject in the context of climate 

change's impact on water availability. This chapter also identifies the specific objectives considering 

the research gaps based on previous studies over central India.  

Chapter Two presents the review on the assessment of climate change at a regional and local scale, 

including the studies based on trend detection and identification of change year. Studies based on 
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global climate models (GCMs) and regional climate model (RCMs) outputs were considered in this 

literature review chapter. This chapter includes the assessment of previous studies of land use/ land 

cover mapping and future projection by geospatial tools. Moreover, this chapter covers the 

hydrological modeling studies based on a different hydrological model, especially SWAT. 

Chapter Three covers information about the study area. Kharun watershed is located in 

Chhattisgarh state, Central India. Additionally, this chapter describes the information about data 

collection, such as the distribution of LULC, soil type etc. 

Chapter Four Discuses long term trend and shifting year of precipitation and temperature 

(maximum, minimum, and mean) detection along with detection of a trend in meteorological 

extremes using various parametric and non-parametric tests. The spatial and temporal distribution 

of climatic parameters were also plotted using geospatial tools. 

Chapter Five covers the trend of meteorological extremes for the future at representative 

concentration pathways (RCPs) 4.5 and 8.5. Techniques of BIAS correction of the RCMs as well 

also discussed in this chapter. Along with the identification of trends for the entire period (2011-

2100), trends for three distinct climate periods were also identified, namely CC1 (2011-2040),  

CC2 (2041-2070) and CC3 (2071-2100). 

Chapter Six describes the change in the LULC pattern for the last 25 years (1990 to 2015), both 

decadal as well as demi decadal changes were discussed in this chapter. The technique of 

unsupervised classification was used to classify the classes. The classifications were verified with 

ground truth data points observed during the site visit. This chapter also discusses the projection of 

the LULC map for 2030 by Markov and Cellular Automata (CA-Markov) approach. 

Chapter Seven includes the hydrological model (SWAT) setup for Kharun watershed. Model 

calibration and validation were performed by using SWAT-CUP (SWAT Calibration and 

Uncertainty Programs) based on monthly time-setup. The sequential uncertainty fitting algorithm 

version 2 (SUFI-2) of SWAT- CUP was applied with multiple sets of SWAT parameters to assess 

the performance of the model in terms of coefficient of determination (R2), Nash–Sutcliffe 

Efficiency (NSE) and Percent BIAS (PBIAS). The calibrated model was used to simulate the 

response of Kharun watershed under climate change scenarios and LULC dynamics. Future 

projection (2011-2100) of hydro-meteorological components were assessed using representatives 
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RCM outputs, under moderate and high emission scenarios (RCP 4.5 and RCP 8.5), for three climatic 

periods (CC1: 2011-2040,  CC2: 2041-2070,  CC3: 2071-2100).  

Chapter Eight discusses the summary and important conclusions drawn from the study. 

Additionally, the chapter also focuses on the limitation and future scope of the study. 

The overall structure (chapter-wise) of the thesis has been illustrated in Figure 1.1. 

 
Figure 1.1 Illustration of chapter wise structure of the thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 GENERAL 

In the rainfall dependent agrarian countries of the globe, productivity is insufficient, erosion and 

degradation of natural resources are intensive, which has worsened the livelihoods and condition of 

the people. Since the natural resources are depleting, the concept and idea of watershed management 

is considered as a relief for rainfall dependent agriculture. As indicated by Intergovernmental Panel 

on Climate Change Fifth Assessment Report (IPCC AR5), the current global average temperature 

increased by 0.85⁰C from 1880 to 2012, and by the end of the 21st century, it may rise by 2⁰C  

(IPCC 2013). The increase in global temperature due to the emission of greenhouse gases and 

anthropogenic activities has induced higher evapotranspiration rates that alter the rainfall rate 

globally. Change in temperature influences the hydrological process and hydrological events such 

as floods and droughts (Mishra and Nagarajan 2013). In order to get a better understanding of the 

hydrological process, many hydrological tools have been used to assess the water balance under 

climate change scenarios. 

This chapter mainly focuses on a rigorous review of available literature related to the present study. 

Based on the proposed main objectives for this study, a literature review has been addressed in the 

following sections. The first section presents a review related to climatic variability and changes. It 

also includes trend analysis of rainfall and temperature and different approaches used to manage 

climatic variability. Section two details the various uses and practices of the climate model and 

assessment of their inputs. Section three illustrates the various issues related to the assessment of 

LULC changes, the uses of Geographic Information System (GIS) and Remote Sensing (RS) for 

LULC changes using different methods and application of different methods and models for future 

LULC changes prediction. Section four includes hydrological modeling approaches such as the 

SWAT model, application of the SWAT model, and LULC change dynamics implication on surface 

runoff process as well as various adaptation and coping measures undertaken across the globe. 

Finally, concluding remark from the reviewed literature is presented. 
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2.2 DETECTION OF LONG TERM CHANGES IN METEOROLOGICAL VARIABLES 

Long-term average increase and decrease in values of temperature and precipitation time series 

constitute the trend change. It is the oscillation in time series. In the recent past, many researchers 

have analyzed the trend of hydro-climatic variables. Numerous studies have been carried out in the 

past at regional as well as local scale to examine the trend periodicity and change point in climatic 

variables such as precipitation and temperature. Also, several types of research related to  

long-term trend detection of hydrological and climatic variables have conducted studies using 

various parametric and non-parametric techniques (Parida 1999). Parametric techniques are based 

on the hypothesis that the long-term time series data with normal distribution follows the error. It 

used to quantify the data variations. Therefore, compared to the non-parametric technique, the 

parametric technique is more powerful to check the trend test, based on the notion that the  

time-series data is both independent as well normally distributed. When the long-term series data 

variables and the errors do not follow the normal distribution, re-sampling time series analysis is 

used to test the level of significance at various significance levels. 

Non-parametric techniques are usually employed to identify the monotonic trends in the long series 

of hydrological, environmental, and climatic data. It does not quantify the size of the trend as well 

as quantifies the change. As compared to parametric techniques, the reason for applying the non- 

parametric statistical techniques is believed to be more appropriate for non-distributed available data 

which is commonly encountered in the hydro-meteorological long term series data and the test has 

less sensitive to unexpected disruptions due to not homogeneous long term time series  

(Tabari et al. 2011). 

Some of the parametric techniques are (I) t-test (Longobardi and Villani 2010), it is used to assess 

and test the slope of the linear regression coefficient, and if it considerably differs from zero value, 

it indicates the presence of the trend of linearity. Hence, the slope sign coefficient shows either a 

positive or negative time series trend. (II) Analysis of variance (Diaconis and Efron 1985) and  

(III) Linear regression. Some of the non-parametric techniques which are applied to test trends of 

long term series are (I) Mann-Whitney test (II) Mann-Kendall test (MK test), (III) Wilcoxon Signed 

Rank test, (IV) Anderson-Darling test (Anderson 1952) (V) Cohen’s Kappa (Smeeton 1985; Parida 

1999), (VI) Kandall’s tau (Kendall 1975)  and (VII) Spearman’s rho (SR). However, the MK test is 

popularly used in order to assess the trend of long-term time series climatic variables. It confirms 

either positive or negative trends at a given statistical significance level. This section covers the 
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review of previous works regarding the assessment of long term change in rainfall and temperature 

time series using different tools and approaches.  

2.2.1 Rainfall 

Rainfall is the most prominent component of the hydrological cycle; hence, it is very crucial to know 

about its variability and intensity. The vast agrarian economy of India is mainly dependent on rainfall 

for irrigation purposes. Therefore, information related to rainfall variability and intensity in time and 

space is necessary for better planning and development of appropriate policies and strategies for the 

country. In many parts of the world, various studies have been undertaken based on climatic 

variables trend change detection (Kampata et al. 2008; Byakatonda et al. 2015). Some of the studies 

related to precipitation trends have been summarized in Table 2.1, while detailed explanations about 

various researches have been described below.  

Xu et al. (2003) observed the monotonic long-term trends and step change in rainfall data time series 

over Japan, by using parametric method (student t-test) and nonparametric methods (Mann-Kendall 

and Mann-Whitney test). The limitation of the study is that in this investigation, only 46 rain gauges 

were used with long data records. Results specify that although many shift changes occurred in Japan 

but the time series did not display significant evidence of monotonic trends during the previous 

century. However, magnitude outcome indicates that if the step change extents up to one or two times 

of the standard deviation of the time series, the previous fifty years of the record together with five 

years or more of new data will be obtainable for detecting the probable trend. This decision may be 

helpful for the revealing step changes in the regions where the rainfall has near-normal distributions. 

Xu et al. (2010) investigated the trend detection on rainfall and streamflow over the Naoli River 

basin, northeast China. Rainfall and streamflow data of 160 climatological stations were chosen for 

the study. Results suggested that from 1951 to 2000, overall rainfall increased in the southern regions 

and declined in the northern stretch. Partal and Kahya (2006) studied the long term trend in average 

annual monthly Turkish rainfall data series using Mann- Kendall and Sen’s slope test. The 

autocorrelation method is applied to determine the significant level in the outcome of the Mann 

Kendall test. In this study, 96 rainfall stations are used, which reflect the turkey regional hydro-

climatic conditions. The study concludes that rainfall trend detection results give some significant 

trends in September, January, and February, and the average annual. However, outputs of trend 
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analysis confirm the decrease in average annual rainfall in the western and southern parts of turkey 

and also in coasts of the black sea.  

Basistha et al. (2008) evaluated the spatial trends of precipitation over India for 133 years (1872-

2005) using the MMK test. The outcomes show falling trends of precipitation in North India (except 

Punjab, Haryana, West Rajasthan and Saurashtra) and increasing trends in south India (except Kerala 

and Maharashtra). Further, the MMK test and PMW test were used to detect the shift in rainfall 

patterns from the year 1901 to 1980. The increasing trend of rainfall was found up to the year 1964 

and decreasing trend during the year 1965-1980. The year 1964 was observed as the year of most 

probable annual and seasonal change in rainfall in the region. 

De and Rao (2004) have assessed the rainfall trends for major Indian cities, namely, Ahmedabad, 

Bangalore, Chennai, Hyderabad, Jaipur, Kanpur, Kolkata, Lucknow, Mumbai, Nagpur, New Delhi, 

Patna, Pune, and Surat, with more than one million population. The significant increasing trends 

were identified over annual and monsoon time series of rainfall over the four metro cities viz. 

Mumbai, Chennai, New Delhi and Kolkata. 

Table 2.1 Observation of precipitation trends. 

Author’s 

Name 
Regions Data used Methods Results obtained 

 

Lázaro et 

al. (2001) 

 

A semi-arid area in 

South East Spain   

31 years 

(1967 to 

1997) 

Sen’s slope 

estimator, 

Thom test 

cumulative 

sums of 

deviations 

(CSD) and 

MT test  

Annual as well as monthly 

rainfall has been lower than the 

average with 36% inter-annual 

variability and up to 20.7% inter-

annual variability, respectively.  

 

Boyles and 

Raman 

(2003) 

 

North Carolina, 

USA 

50 years 

(1949 to 

1998) 

Long-term 

linear time 

series slope 

Precipitation during the winter 

season shown an increasing trend 

and shown a decreasing trend 

during summer in the given 

periods.  

Da Silva 

(2004) 
North East Brazil 

78 years  

(1913 to 

1990) 

MK test 
The decreasing trend has shown 

in rainfall. 

Longobardi 

and Villani 

(2010) 

 

Campania region, 

Southern Italy  

81 years 

(1918 to 

1999) 

MK test and 

Student’s  

t-test 

Annual and seasonal rainfall has 

shown a decreasing trend except 

for the summer season.  
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Garbrecht 

et al. 

(2004) 

 

Grate plain of 

USA  

71 years  

(1930 to 

2001) 

Moving 

average 

techniques  

Positive slope (upward trend of 

precipitation has been indicated). 

Modarres 

and da 

Silva 

(2007) 

Arid and Semi-

Arid region of Iran  

40 years 

(1959 to 

1999) 

Mann-

Kendall 

trend test  

High variability in precipitation, 

increasing, and decreasing (up 

and down oscillation) trend has 

been observed. 

Some’e et 

al. (2012) 
28 stations  

40 years 

(167 to 

2006 

Mann-

Kendall 

trend test  

Downward trend (negative) of 

annual rainfall with magnitude 

and intensity ranged from 2.53 

mm/annum to 3.43 mm/annum. 

Mondal et 

al. (2015)  
Orissa  

40 years 

(1971 to 

2010) 

Mann-

Kendall 

trend test  

An increasing trend of monthly 

rainfall has been shown during 

Jan, May, Sept, Oct, and Nov. 

whereas, a decreasing trend of 

monthly rainfall with a parallel 

decrease of Sen’s slope has 

shown during Feb, Mar, Apr, Jul, 

Aug and Dec.  

Pingale et 

al. (2014) 

 

Rajasthan 

109 years 

(1904 to 

2012) 

Mann-

Kendall 

trend test  

During the study periods, up and 

down oscillation of mean and 

extreme events of rainfall was 

observed.  

(Garbrecht 

et al. 2004) 

Great plains of 

USA 

1992 to 

2001 

Moving 

average 

method  

(11 years) 

Insignificant or no changes were 

observed during the summer 

season, while during winter and 

spring months, the annual rainfall 

has been increased.  

 

 

Cheung et 

al. (2008) 

 

 

Ethiopia  

42 years 

(1960 to 

2002) 

Regression 

and 

t-test 

statistics 

From June to Sep., precipitation 

has shown a declining trend for 

Southern Blue Nile, Omo-Ghibe 

Rift valley, and Baro-Akobo. 

However, a decreasing trend is 

not necessarily indicated at the 

regional level.  

2.2.2 Temperature 

In recent experience and recently as well, climate change is recognized as the global agenda tied 

with growth, food security, and poverty. Overall production, employment contribution, and export 

earnings are significantly dependent on the agricultural sector; therefore, the country can be 

considered prone to climate change; events like recurrent drought, frequent flooding, and increasing 

temperature are commonly experienced. 
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Recently, it is evident that the global temperature has shown an increasing trend, though the 

magnitude and intensity are variable in different regions and seasons. According to  

Solomon et al. (2007), in an IPCC report, in the late 19th century, there has been a continuous rising 

in surface temperature by 0.6 ± 0.2⁰C and increased by 0.2 to 0.3⁰C in the last two and half decades 

and hence rainfall amount of the globe has declined. Different scholars in their observation in many 

parts of the world confirmed that in the last 20th-century global climate has been changed  

(Kenabatho et al. 2012). Nicholls and Collins (2006), reported that the annual average maximum 

temperature rises at the rate of 0.6⁰C for Australia. Likewise, the annual minimum temperature 

increased by about 1.2⁰C during the year 1950 to 2004.   

Kruger and Shongwe (2004), observed the spatial and temporal trend of the average temperature of 

Africa from 1960 to 2003. The trend of mean seasonal temperature has shown variable throughout 

the mentioned periods with maximum and minimum mean temperature was recorded for autumn 

and spring, respectively. Evans and McCabe (2010), observed using the evaluation of the regional 

climatic model using weather forecast model in order to simulate the south-eastern part of Australia's 

climatic condition during the periods of 1984 to 2010 and confirmed in the report average 

temperature of the area was continuously rising.  

Tabari and Talaee (2011), reported that during the periods of 1966 to 2005, there had been a rising 

trend of maximum and minimum temperature of Iran during the summer season. , Keller (2009) 

found in his study that the temperature of Ethiopia has increased by about 0.2⁰C/decade.  

Fazzini et al. (2015), reported that during the year 1981 to 2010, the average temperature has 

increased by about 1.1⁰C (which is 0.04⁰C/year). Ezber et al. (2007) used a statistical and numerical 

modeling technique to temperature data in urban, suburban and rural areas to find the urbanization 

effect on the climate of Istanbul. The MK test was used to determine the significance of trends and the 

years in which changes were started. The effect of urbanization on climate was studied using a 

mesoscale atmospheric model. Both the statistical and atmospheric models have found significant 

warming in the atmosphere over the urbanized area. The MK test found a significant positive trend 

in the average monthly minimum temperature over urban and rural areas. The seasonal analysis 

shows that the effect of urbanization was more pronounced in the summer season. The significant 

changes in temperature were observed in the year 1970 and 1980 due to dramatic increase in 

population. 



15 | P a g e  

 

Arora et al. (2005) detected the temporal trends of temperature at both annual as well as seasonal 

scale, by employing the MK test statistics at regional as well as country level. It was found that the 

increase in annual average, average maximum, and average minimum temperatures were at a rate of 

0.42, 0.92 and 0.09⁰C per 100 years respectively. In the case of a regional basis, stations present in 

southern and western India show an increasing trend of 1.06⁰C and 0.36⁰C per 100 years, 

respectively, while North Indian plains stations show a decreasing trend of 0.38⁰C per 100 years. 

The seasonal average temperature increased by almost 0.94⁰C per 100 years for the post-monsoon 

season and during the winter season, it increased by 1.1⁰C per 100 years. 

Jhajharia and Singh (2011) observed declining trends in the daily diurnal temperature range (DTR). 

DTR is the difference between the maximum and minimum temperatures over some time. In the 

study, DTR was assessed at four stations in northeast India for almost all time scales. Results showed 

that there was a significant increase in DTR trends for the annual time scale, for both pre-monsoon 

and monsoon, and the months May to November apart from October. Significant rising trends in 

DTR are observed at three stations in October and the monsoon and post-monsoon seasons. Four 

sites showed significant increasing trends for Tmean in monsoon and post-monsoon seasons. 

However, post-monsoon changes for Tmax and Tmin were more than the monsoon season, indicating 

an element of a seasonal cycle. Significant decreasing trends in the sunshine duration were 

noticed at annual, seasonal (winter and pre-monsoon), and monthly (January–March) time scales.  

2.3 CLIMATE MODELS AND ASSESSMENT OF ITS OUTPUT 

Based on an analysis of thousands of studies in the recent past, many researchers from several 

research communities across the globe have assessed that most of the aspects of life form on planet 

Earth are affected by global warming. The assessment of climate change impacts on hydrology and 

water resources availability is usually evaluated by deriving the scenarios (Pandey et al. 2017). 

Moreover, these scenarios based on the emission of greenhouse gases scenarios (GHGs) for changes 

in climatic inputs for the hydrological model, these varied scenarios of the future greenhouse gas 

emission act as an input for its evaluation. The world’s socio-economic projections form the basis 

for the development of emission scenarios. Climate model output at different emission scenarios is 

required to assess and predict future water availably. 

2.3.1 Global and Regional Climate Models 

As confirmed by the previous researches, the climate is altering very rapidly and the rate of change 

of climatic parameters is going to increase in the future which will further worsen the living 
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conditions. To assess the futuristic projection and impact, the scientific community and research 

institute develop the mathematical model named Global climate model (GCM). Global climate 

models (GCMs) represent the coupling of atmosphere, oceans, sea ice and land surface and have 

substantial potential for assessment of climate change. GCMs are the models for the evaluation of 

climate change based on the emission of greenhouse gas concentration. GCMs grids data are 

available at a coarse resolution so it is not able to predict the most crucial features reliably at local 

and regional impact analyses. 

Moreover, various climate change prediction models are available for the assessment and modeling 

of climate change. The greenhouse effects are included in all of these models, which are based on 

physical laws, the phenomenon of atmospheric and oceanic effect (WMO report survey). Global 

climate model is represented as GCM, while RCM means the regional climate model, whereas MHM 

is the macro scale land-surface hydrological model, the macro scale water balance model is denoted 

by MWB and the catchment scale hydrological model is denoted by CHM  

(Xu and Singh 2004). These models are useful to assess, model and simulate the future climate 

change scenarios either at the global or regional level. 

In order to analyze local and regional climate impact study, it is required to downscale the GCM 

data at coarser resolution to finer resolution. To solve this problem, two downscaling techniques viz., 

dynamic and statistical downscaling have been proposed. Transforming coarser scale information to 

finer scale and making it available is downscaling. Therefore, downscaling methods available in the 

literature vary from the secure rule-based method to sophisticated modelling of the spatial dynamics 

downscaling. In general, the downscaling techniques can be classified as the dynamic downscaling 

technique and the statistical downscaling technique. Both techniques have their weaknesses and 

strengths but are complementary. 

Dynamic downscaling or regional climate modeling (RCM) is the methodology to scale the coarser 

GCM data grid into the local data grid at finer resolution by applying the complex algorithms. 

Dynamic downscaling can be further subdivided into one-way nesting and two-way nesting  

(Anandhi and Nanjundiah 2014). RCMs represent the tropical cyclones, extreme events, etc. and 

very useful in the study on regional climate change. 

Statistical downscaling techniques based on the development of a statistical (linear or nonlinear) 

relationship between regional-scale climate variables and local hydrologic variables. In order to 
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calibrate the statistical downscaling model, observed or reanalysis climate data required. There are 

many advantages of statistical downscaling methodologies over dynamical downscaling approaches 

such as low cost, rapid assessments of regional climate change impacts. Statistical downscaling is 

the process of empirical relationships that transform large scale features of GCM (predictors) to 

regional-scale climate variables (predicted). The statistical regression model is the most popular 

model among the other statistical downscaling methods, which are employed to estimate a linear and 

nonlinear relationship between the predictor directly and predicted. It is now widely conceived that 

long term climate change will impact water resources availability and it might become to manage 

available resources across the globe. The agriculture, urban sector and hydropower production are 

the primary sectors that are affected by climate change (IPCC 2013). 

According to Wilby and Harris (2006), the uncertainty is related to the downscaling method, global 

climate model (GCM) structure and climate change scenario (which is associated with future 

civilization). With this point of view, several studies have tried to address the anomalies mentioned 

above. McAlpine et al. (2007) reported the impact of regional climate change on the vegetative cover. 

They found significant changes in regional climate, with a shift from humid and colder conditions 

to warmer and drier conditions, particularly in southeast Australia. These changes in Australia’s 

regional climate advocated that land cover change is probably a contributing factor to the observed 

trends in temperature and rainfall at the regional scale. Kay et al. (2009) studied the impact of climate 

change on flood frequency over two river basins in England. The authors used four scenarios (A1F1, 

B2, B1 and A2) of five GCMs to estimate GCM uncertainty using the delta change downscaling 

approach. They reported that the majority of the uncertainty is due to climate modeling, i.e., selection 

of GCM and RCM structures. Other research studies have also investigated the different arrangement 

of above-stated sources of uncertainty, the work by Wilby and Harris (2006) examined the climate 

change based on the comparative study of one conceptual model and two physically-based models. 

They reported that the difference in structure complexities of models might play a vital role in the 

assessment of model outcomes.  

To explore climate change modeling and the use of General Climate Models (GCMs) with different 

downscaling methods, the following research has been discussed. Loaiciga et al. (1996)  have studied 

the necessary process of the hydrological cycle and examined the current predictive capability of 

GCM that simulate the regional and local hydrologic regime under global warming. This study 

suggests that GCM is used on a large scale. The climate change effect on meteorological parameters 
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using the Canadian Climate Centre General Circulation Model (CCCGCM) and the University of 

British Columbia (UBC) watershed model for two hydro-meteorologically different watersheds was 

studied by Loukas and Quick (1996). Other meteorological variables (like cloud cover, albedo, wind 

speed, evaporation etc.) were also considered along with precipitation and temperature in the 

hydrologic model to the study climate change. Kondratyev and Cracknell (2017) reviewed some 

of the priority areas in the context of global climate change in Japan. Authors discussed global 

climate change and a particular emphasis was given to the water cycles and global energy. The 

author suggested that considerations of process, which are overcoming the current uncertainties of 

numerical climate models, climate prediction and modelling. 

Matondo and Msibi (2001) had presented a case study of assessment of water resources and 

hydrology under the changing climate in Swaziland at the country level. The WatBall hydrologic 

model and General circulation model (GCM) were used to assess the water resources i.e. streamflow 

and found that the WatBall model is suitable for assessing the climate change impact on water 

resources. First, the climatic parameters were derived from selected GCMs (i.e., precipitation, 

temperature and potential evapotranspiration). Streamflow was predicted from the WatBall model 

using GCMs output for the year 2075 under changing climate scenarios. Also, streamflow was 

predicted considering the effects of population increase and agricultural activities on water resources 

considering climate change impacts. Various adaptation strategies were suggested to cope with 

climate change. This study did not consider the combined effects of population increase, expanded 

high growth of industries, commercial activities and land-use change on water availability. This 

study assesses water resources on the country level, which could not represent the accurate picture 

of climate change at the local level. 

Xu et al. (2006) reviewed the different existing techniques for assessing water availability in 

changing the climate. Climate change impact on hydrological regimes was identified both for 

process research for water and catchment management strategies. It was concluded that climate 

change-related studies include: 1) Use of GCMs data to provide future climate scenarios under 

different GHG emission, 2) Use of downscaling techniques (both dynamic downscaling method and 

statistical methods) to downscale the GCM output to the local scales for hydrological models, and 

3) Use of hydrologic models to simulate the effects of climate change. The authors suggested that 

climate change models should represent the land-surface process in the prediction of future climate 

change. They also found that results should be simulated at local sites or regions using RCMs.  
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Caramelo and Manso (2007) analyzed the spatial and temporal behavior of winter precipitation using 

principal component analysis (PCA).  The monthly observed data from 34 weather stations and a 

subset of daily precipitation used. The first three PCs represent the winter precipitation pattern. So, 

the data of these three stations were further analyzed. The precipitation variability was assessed using 

PCA for winter precipitation. Parekh and Suryanarayana (2012) studied the impact of climatological 

parameters on crop yield using neural network fitting and extended their studies to other 

climatological variables to understand the effect of various parameters overproduction of wheat. 

Ojha et al. (2010) formulated the downscaling model by using the Linear Multiple Regression 

(LMR) and Artificial Neural Networks (ANN) methods to downscale the GCM precipitation for 

Pichola lake area in Rajasthan, India. Predictor variables data are taken out from; NCEP (National 

Centers for Environmental Prediction) reanalysis dataset, 1948-2000 years, and replications from 

CGCM3 (Canadian Coupled Global Climate Model, third-generation) for scenarios A2, B1, A1B 

and COMMIT for 2001-2100 years. In this study, the cross-correlations are utilized to check the 

consistency of the GCM predictor variables. The downscaling outcome demonstrates that 

precipitation is expected to rise in the future for A2 and A1B situations, while, it is minimum for 

COMMIT and B1 scenarios. Ghosh (2010) reported that at a local and regional scale, the 

hydrological parameter could be downscaled by using GCM (General Circulation Model) outputs. 

In this study, SVM (Support Vector Machine) technique was used to downscale the predictor 

variable and also to develop the best relationship between the predictor and predicted variables. 

During the calibration and validation process in the SVM model, the values of specific parameters 

need to be fixed; for this purpose PGSL (Probabilistic Global Search Algorithm) technique is used 

to give the optimum output. By this, the obtained relationship between large scale predictor variables 

and local scale predicted variables is used to calculate the climate scenarios for multiple GCMs. This 

multiple GCMs provides the uncertainty condition and that outcome has to be further modified by 

the averaging method. Overall, the performance of the model is evaluated by comparing the earlier 

developed SVM based downscaling models. 

Yang et al. (2012) evidence the potentiality in downscaling extreme precipitation, evaporation, and 

temperature in South China using, SDSM (statistical downscaling method). They downscaled the 

large scale GCM output to regional scale in direction to inquire abou t  the spatial- temporal 

changes in extreme precipitation, evaporation, and temperature over the Dongjiang River basin for 

the period of 2010 to 2099 under H3A2 and H3B2 radiation scenarios. The consequences for 
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downscaling extreme temperature events would be more substantial from 2010 to 2099 for both 

scenarios. Nevertheless, the projections of change in extremes precipitation and pan evaporation 

were not coherent. Therefore, the performance evaluation of the SDSM shows good results in case 

of extreme temperature and evaporation while in case of extreme precipitation model performance, 

not as much satisfactory. 

Hassan et al. (2012) applied the SDSM (Statistical Downscaling Model) to downscale precipitation 

from the GCMs into a fine-scale. Single gauge station data of Kurau River located in Malaysia are 

used as input in the SDSM model. The study evidence that the SDSM model can perform well during 

the calibration and validation process. For the future (2010-2099), models determine that there is a 

rise in the sum of mean annual precipitation, and the study area becomes drizzlier.  

Duhan and Pandey (2013) studied three downscaling methods least square support vector machine 

(LS- SVM), artificial neural network (ANN) and multiple linear regression (MLR) to formulate the 

downscaling model for the future projections of average minimum and maximum air temperature 

for the central region of India. The A2 emission scenario from CGCM3 (Canadian Coupled Global 

Climate Model) is used in this study during the period 2001 to 2100. The reason being, to evaluate 

the analytical performance of MLR, ANN and LS-SVM models is to downscale the future 

temperature. This study revealed that the calibration and verification outcome of the models are 

good, but the performance of LS-SVM is outstanding as compared to MLR and AAN model. 

2.3.2 Climate Model Selection 

Evaluation of future projection of climate change impact is very important for the human and natural 

systems. For the future projection of climatic variables in different scenarios, climate models have 

been introduced (Meehl et al. 2007). Climate models are based on mathematical and physical 

principles that are capable of reproducing the present and future climatic parameters. They provide 

reasonable confidence in producing future climatic conditions by using the numerically coupled 

Atmospheric Ocean General Circulation Model (AOGCM) (Moss et al. 2010; Su et al. 2013). 

For impact studies, climate models output being used. The impact of climate change on climatic 

variables has been assessed by many researchers ( Chen et al. 2012; Camici et al. 2013; Haddeland 

et al. 2014; Miao et al. 2014; Mondal et al. 2014; Niraula et al. 2015). For certain impact studies of 

climate change, it is necessary to evaluate the model with observed datasets, and model output 

should perform close to the observed data. The study based on GCM climatic variables has been 
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examined for future projection for 2046-2065 and 2081-2100 time slice. Model results for 

Malaprabha catchment, India indicated that there is no significant change in rainfall for the future 

(Mehrotra et al. 2013). Climate impact on agriculture and crop production can also be carried out 

using GCM output (Mall et al. 2006a). 

Several studies have been carried out for inter-comparison of the model output with observation 

(Perkins et al. 2007; Errasti et al. 2011; Kodra et al. 2012; Fu et al. 2013b; Anandhi and Nanjundiah 

2014). The output of GCMs is very uncertain, so it is required to compare them with the past data 

and apply bias correction (Ojha et al. 2012). The performance of 10 GCM models for simulating the 

summer monsoon rainfall variation over the Asian-western pacific region assessed by  

Kang et al. (2002). Johnson and Sharma (2009) used a variable convergence score (VCS) 

methodology which is based on the coefficient of variation. The authors used this methodology to 

evaluate the eight different variables from nine GCM output for two emission scenarios for Australia. 

This skill score methodology can be used to evaluate any GCM in any region.  

Radić and Clarke (2011) evaluated 22 GCMs for North America using several statistical parameters. 

Evaluation has been carried out by comparing the model output with reanalysis data for  

period 1980-99. 

Frei et al. (2003) conducted daily precipitation simulation for European Alps by using five regional 

climate models. Model evaluation using the climatic statistics is important than mean values. Several 

recent studies are using climatic indices and the probability density function (PDF) for examining 

the best (Frei et al. 2003; Perkins et al. 2007; Radić and Clarke 2011; Ojha 2013; Anandhi and 

Nanjundiah 2014; Parth Sarthi et al. 2015). Perkins et al. (2007) carried a model evaluation for 12 

regions of Australia using Probability density function (PDFs). Evaluation of model on study area 

has been performed considering daily simulation data of maximum temperature, minimum 

temperature and precipitation. There are many approaches to compare the simulated or model output 

with observed values or reanalysis values.  Teng et al. (2012) analyzed the datasets from 10 GCM for 

Australia. After bias correction, data were used for runoff evaluation using the hydrological model. A 

very popular model Taylor diagram has been used for several studies based on the correlation 

coefficient and root mean square error (RMSE) and variance ratio to compare the model output 

with observed values (Li et al. 2014).  
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(Fennessy 1994) Conducted the sensitivity experiment of the observed seasonal Indian Monsoon 

with the GCM model output considering the changes in vegetation, soil moisture, and cloudiness. For 

the evaluation of 10 atmospheric variables over India, the VCS method was used by Ojha et al. 

(2012). VCS curve generated for quantifying the variable performance for different GCMs  

(Ojha et al. 2013). Das et al. (2012) investigated about six conventional models from 

Intergovernmental Panel on Climate Change (IPCC), Second, Third and Fourth Assessment Report 

- SAR, TAR and AR4 respectively. These models have been considered for the performance 

evaluation of a model for the Gangetic West Bengal region of east India. In the results, it has been 

found that the MICRO, Japanese model is the best model for the region. GCM ranking of India 

region carried out using multi-criteria analysis by (Raju and Kumar 2014). The authors used the five 

performance indicators for the evaluation of eleven GCMs. The study carried at 73 grid points of 

2.5⁰ × 2.5⁰ resolution covering the whole of India. The entropy method used for weight the 

performance indicator, and for removing the systematic bias, nested bias correction has been used 

(Ojha et al. 2013; Raju and Kumar 2014) 

In this study, Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report (AR4) 

of global climate model output datasets are evaluated using RMSE and skill score for the Indian 

region considering six climatic variables. Ranking of the model has been carried out for each climatic 

variable using Akaike Information Criteria (AIC) and combined ranking using Multi-Criteria 

Analysis (MCA) method. This study has been carried for monsoon (June to October), non-monsoon 

(January to May, November, December), and annual (January to December) basis. The Indian 

monsoon season has an enormous socioeconomic impact on the development of the country. 

Variation in monsoon rainfall affects the flood, drought, agriculture, and economy of the country. 

There are several factors viz. Indian Ocean Dipole (IOD), El Ni˜no-Southern Oscillation (ENSO), 

and sea-surface temperature (SST) responsible for the inter-annual variation in Indian monsoon 

(Srinivas et al. 2013). 

2.3.3 Bias Correction on Climate Model Outputs 

The GCMs are used for the projections of future climate change caused by natural variability or 

anthropogenic activities (IPCC 2007a). Regardless of numerous efforts to improve the capability of 

GCM’s in order to simulate historical climates, the usage of bias correction methods is quite essential 

to perform impact assessment studies of climate change for more improved projections  

(Gan et al. 2016; Vallam and Qin 2017). The significance of bias correction methods has been 
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detailed in the special report produced by IPCC (Seneviratne et al. 2012). In estimating probable 

hydrologic impacts of climate change (Arnell 1999),  a suitable bias correction has been applied to 

projected temperature and precipitation for error-free estimation of projections. Dettinger et al. 

(2004) carried out the climate change impact assessment study in the Sierra Nevada of California to 

study the climate change impact on river flow by using bias-corrected on GCM projected temperature 

and precipitation data.  

Several bias correction methods have been used in the past in order to improve the regional climate 

downscaling model. Lynch and Arcsym (2000) examined the impact of climate change on the 

seasonal carbon cycle in the Alaskan region through a process of dynamical downscaling approach 

in which linear bias correction (LBC) method was constructed for an RCM by adding projected 

changes of specific humidity and temperature in GCM simulation to reanalyze climate. Also, a 

similar technique was adopted by Sato et al. (2007) to examine the effect of global warming on 

regional rainfall over Mongolia. The bias correction has also been applied to correct the projected 

wind speed temperature, geopotential height, specific humidity, and sea surface temperature. The 

results reveal that the rainfall intensity predicted with new method has been closer to observations 

than the traditional method, Patricola and Cook (2010) also employed a similar method as applied 

by Sato et al. (2007). The climatological LBCs in the above mentioned studies maintain deviations 

on the seasonal time scales but eliminate the diurnal and synoptic effects. Huang et al. (2011) 

proposed a complicated bias correction method for hurricane simulation. The bias correction 

developed by Holland et al. (2010) maintained the diurnal, synoptic effect and the inter-annual 

variation in the LBC by correcting GCM climatological mean bias with six-hourly, National Center 

for Atmospheric Research (NCAR) reanalysis data and GCM output. They recommended that the 

dynamical downscaling prediction with GCM bias correction can generate realistic tropical cyclone 

frequency because the bias correction reduced the impracticable high vertical wind shear over the 

tropical Atlantic. Huang et al. (2011) proposed a statistical regression model between GCM and 

reanalysis data to reduce the GCM climatological bias, and the bias corrected GCM output data have 

been used to force an RCM to predict winter precipitation over the western United States. Several 

studies are carried out worldwide to determine the changes in mainly temperature and rainfall and 

also other climatic parameters its connection with climate change. 
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2.4 ASSESSMENT OF LAND USE/LAND COVER (LULC) CHANGES 

During the past few decades, LULC changes detection was employed by using conventional 

techniques, which is time-consuming and tedious as well as cost-ineffective methods. However, due 

to the advancement of technology and innovations of powerful computers, Remote Sensing (RS) 

and Geographic Information System (GIS) software are recognized as excellent tools in the study of 

LULC dynamics (Mishra and Nagarajan 2010). Remotely sensed data could be employed for several 

applications in the area of LULC dynamics, water resources management, catchment management 

and other many more analysis throughout the globe. 

In the last few decades, due to anthropogenic effects, LULC dynamics are significantly under 

pressure. Therefore, it is essential to detect LULC changes starting from the microscale to larger 

catchment for effective and sustainable management. To this effect, remotely sensed satellite data 

are necessary to assess natural resources and observing the changes in the time series results derived 

from the integration of RS and GIS, which are substantially crucial in the planning and monitoring 

of resources based activities. Therefore, the focus of this section is on the assessment of historical 

LULC change dynamics studies and LULC's future prediction.  

2.4.1 Use of GIS and RS for LULC by Different Methods 

In most parts of the globe, land cover classes are dynamic. Under this situation, the availability of 

accurate and significant data related to land and other natural resources (such as land cover class 

data, Landsat images, GIS, and satellite remote sensing) is significantly important to take action. 

The dynamics of land cover classes from one class to other classes, and hence mapping of land cover 

dynamics establish the baseline to predict future LULC class dynamics, current natural resources 

management and other reclamation practices. The dynamic component of mapping is helpful to 

indicate the dynamics of the LULC change in the catchment. In order to identify LULC change 

dynamics from satellite imagery, various studies have been undertaken using different methods. The 

change of LULC dynamics is a locally influential and significant ecological and environmental trend  

(Burns et al. 2007; Samal et al. 2015). Some scholars across the globe have conducted various studies 

in order to evaluate the reliability of change dynamic detection techniques to recommend significant 

methods for LULC change dynamic detection; essential studies are presented in subsequent sections. 

Mendis and Wadigamangawa (1996) detected LULC changes by using the existed and use survey 

data for the year 1983, Thematic Mapper (TM) data for the year 1992, an aerial photograph of the 
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year 1994 for Nilwala River watershed in Sri Lanka. The maximum likelihood classifier was 

employed in order to classify Thematic Mapper image of band combination 3, 5, and 7. The focus 

of this study was to explore the dynamics of LULC classes due to the application of the Nilwala 

Ganda Flood Protection Scheme. The results revealed that plantations had replaced cultivation. 

Kucukmehmetoglu and Geymen (2008) explored the land-use dynamics using Landsat imagery for 

the year 1990 to 2005. Application of RS and GIS techniques were employed to assess the water 

resources of Istanbul (Turkey). Using this technique, the impacts of urbanization on water resources 

of Istanbul city was carried out. When classifying the images, the main focus was settlement areas 

and changes of respective settlement areas were analyzed. However, this study ignored the 

association between land-use change dynamics, temperature and rainfall of urban areas to explore 

the water resources in considering the climate changes and variability scenario. 

Balamurugan et al. (2014), assessed LULC change dynamics for the coastal area of Odisha state 

using RS and GIS for the period 1990 to 2014 and explored various land use classes such as 

settlement areas, farmland, water bodies, and forestland in order to create RS and GIS database. This 

study arrived at a conclusion in which settlement areas and industrial growth expansion were 

identified whereas a continuous decline of forest resources has been observed. Prakasam (2010) 

detected the LULC changes in Kodaikanal, Western Ghats (Tamilnadu), India, for noticing changes 

during the period of 1969 to 2008 (40 years) by using Landsat satellite data and performing 

supervised classification techniques. 

Given the above studies undertaken in various parts of the world, it can be concluded that several 

techniques and methods are available for LULC classes’ exploration and classification. Generally, 

some of the most essential LULC dynamics classification methods are presented in Table 2.2. 
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Table 2.2 Land Use/Land Cover change dynamic classification techniques. 

Authors and Year Title of work Major Findings 

Meshesha et al. 

(2016) 

 

LULC change 

dynamics using RS 

and GIS in the 

Beressa watershed, 

Ethiopia 

Farmland was expanded at the rate of 

71.6 ha/year, while settlement areas expanded 

by about 16.8 ha/year in the last three decades 

(1984 to 2015). Whereas, forestland was 

reduced at the rate of 5 ha/year while water 

bodies have reduced at the rate of 

0.03 ha/year in the first periods (1984 

to1999). The alarming rate in the growth of 

the population is the responsible factor for the 

alteration of LULC. 

Asres et al. (2016) 

Analyses of LULC 

changes in the upper 

Blue Nile Basin 

Highland 

Watersheds.  

Interpolation of Landsat imageries for 1973, 

1986, 2000, and 2013 have been done using 

GIS and RS. The results showed that at the 

expense of pastureland and forestland, 

cultivated land was increased.   

Minale and Rao 

(2011) 

 

 

Impacts of LULC 

change in the 

catchment of Gilgel 

Abbay, Lake Tana, 

on climate 

variability.  

GIS and RS tools were used in order to assess 

the trend of change detection in LULC. The 

results revealed that forestland (72.3%), glass 

land (55%), wetlands (47.2%), and lake areas 

(6.3%) had been altered into farmland and 

settlement areas.  

Lin et al. (2007) 

 

 

LULC classes 

dynamics impact on 

hydrology and the 

pattern of LULC in 

the Wu-Tu 

watershed and 

Northern Taiwan.  

Employed an integrated approach in which is 

used to integrate the LULC model and 

hydrological model to explore the future 

influence of LULC dynamic scenarios on 

hydrology as well as the future land use 

pattern. It confirmed that variability, 

distribution, intensity as well as magnitude in 

future hydrological components were 

substantially affected by LULC changes 

particularly the runoff process.   

Kiran (2013) 

 

 

GIS and RS tools 

have been employed 

to identify the LULC 

dynamics of 

Mahananda 

catchment of West 

Bengal. 

The results revealed that due to anthropogenic 

effects, coverage of dense forest reduced 

continuously from 58% -33% jus with eight 

years (1990 to 2000). 

 

Jat et al. (2009) 

 

RS and GIS-based 

urbanization 

assessment and 

watershed 

degradation. 

RS and GIS techniques have been employed 

to verify the condition of two urbanized sub-

watersheds over 29 years (1977 to 2005). The 

study indicated that significant alteration had 

been found in essential watershed 

characteristics consequently to the decline of 
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its health. In this, regards RS and GIS tools 

are essential RS, and GIS tools are convenient 

for such studies. 

2.4.2 Use of Different Methods/Models for LULC Prediction 

In the past few decades, many researchers have used different methods to predict future LULC 

change dynamics based on historical maps and Landsat imagery (Kuemmerle et al. 2006). The 

magnitude of LULC change dynamics in response to an alarming rate of population growth, and 

consequently to the environment merit detail explorations of these alterations are necessary. Land-

use models are the primary focus in the LULC. In the last few decades, many researchers created a 

vast set of operating models, which is crucial in the future, LULC prediction. However, models are 

useful not only in assisting the consideration of future land-use change dynamics, analysis of 

scenarios using land-use models but also is used to assist planning the land use and policy 

formulation as well (Samal et al. 2015). In general, land use prediction model is grouped into three 

main classes, and these are statistical as well as empirical models like Markov chains and regression 

model (Hu and Lo 2007); Cellular Automata (CA) model (Mitsova et al. 2011); Agent-based model 

as well as system dynamic; integrated model like conversion of land use and its effects (CLUE) 

(Kamusoko et al. 2009). 

 Kamusoko et al. (2009) forecasted future LULC change dynamics for Zimbabwe. The results 

indicated that barren land continuously increasing and a risk to the sustainability for the community 

up to 2030.  Zhu et al. (2015) explored the influence of preserving farmland policies on urban sprawl 

as well as food availability in many parts of China. The results derived a conclusion that future urban 

land use could further expand, consequently would result in negative impacts on future land and 

other natural resources. Guan et al. (2011) identified a decrease in farmland and forest area; 

consequently, the settlement area could be increased for the period 2015 to 2042 in the Saga area of 

Japan. Relevant studies on the Markov chain model to predict future LULC change are presented in 

Table 2.3. 
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Table 2.3 Land Use/Land Cover change, future prediction models in different parts of the 

world. 

Authors and year 
Title and Study 

area 
Methods Major finding 

Kamusoko et al. 

(2009) 

 

 

Sustainability of 

rural area under 

tension in  

Zimbabwe- 

Simulation of LULC 

dynamics prediction 

of Bindura district 

MC automata 

model 

The MC automata model has 

employed to simulate future 

LULC dynamics to 2030. 

Prediction results revealed that 

woodland areas are continuously 

decreasing, whereas, increasing 

trend of barren land was 

observed.  

 

Memarian et al. 

(2012) 

 

Validation of CA-

MCM for 

Simulation of LULC 

dynamics in the 

Langat Basin of 

Malaysia 

CA-MCM 

validation has 

done using 

validation 

metrics 

CA-MCM has applied and due to 

uncertainties of the source data, 

showed poor performance was 

observed for LULC changes.  

Mitsova et al. 

(2011) 

 
 

A CA- model of 

LULC changes to 

integrate 

urban growth with 

open space 

conservation 

CA-MCM Using the model LULC changes 

was developed in the process of 

integration, the preservation of 

environmentally most sensitive 

areas into projections of urban 

expansion both at the regional 

and national level. The scenarios 

of baseline data is a continuation 

of the present patterns.   

Al-sharif and 

Pradhan (2014) 

 
 

Monitoring and 

forecasting LULC 

an integrated MCM 

and CA in the GIS 

tool for the Tripoli 

Metropolitan City  

Integrated 

Markov chain 

and cellular 

automata 

CA-MCM has been used in the 

process of simulating and 

predicting quantitative LULC 

changes. 

The results of the study obtained 

acceptable model performance 

and it signifies rapid urban sprawl 

consequently remarkable 

reduction of agricultural lands.   

2.5 HYDROLOGICAL MODEL 

Hydrological models are the tools that provide an understanding of active interactions between 

climatic parameters and land-surface hydrology. Moreover, available water and atmospheric 

temperature affect the hydrological cycle and water budget components. Thus, it is vital to select a 

suitable hydrological model to assess the dynamic interaction between climatic parameters and 
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surface hydrology. It is also helpful in assessing the climate change impact on regional water 

availability and cropland productivity. To date, several models have been developed to estimate the 

peak flow for the design of several hydraulic structures, irrigation and drainage system.  

2.5.1 Soil and Water Assessment Tool (SWAT Model) 

According to Arnold et al. (1998), SWAT is a semi-distributed, physical algorithm developed in 

order to estimate runoff and sediment in daily and monthly time step at catchment level. The 

catchment of an area is divided into the smaller watershed and sub-watershed level using 

Hydrological Response Units (HRUs) based on different situations viz., soil type, slope classes and 

land use classes used to allow an acceptable and high level of detail simulation.  Different inputs like 

rainfall, topography, LULC map, soil texture and properties are some of the required data used to 

calculate sediment yield and runoff generation using curve number equation (Abbaspour et al. 2007; 

Ghani and Azamathulla 2014). The necessity to assess sediment yield, runoff, and to develop 

management practices in the smaller and larger watershed and the catchment resulted in the 

development of SWAT (Guy et al. 1987; Arnold et al. 1998; Gassman et al. 2007; Ghani et al. 2008). 

Weather, land management, plant growth, water movement, hydrology, sediment movement and 

stream routing are some of the major components included in the SWAT model. The interface of 

SWAT is compatible with ArcGIS (ArcSWAT) which has been developed to use the geodatabase 

approach. Various types of techniques have been developed to support the implementation of the 

SWAT model simulation. For instance, the interactive SWAT software (i-SWAT), conservation 

reserve program decision support system (CRP-DSS) which was established by Kumar et al. (2006), 

and generic interface program (i-SWAT) (Abbaspour et al. 2007), that is important for choice of 

automates parameter and aggregation for continuous iteration of SWAT model calibration and 

simulation. Presently ArcSWAT 2012 is compatible with ArcGIS 10.2.2 interface. 

2.5.2 Adaptation and Application of SWAT Model 

Following SWAT model development, in order to obtain further improved and accurate prediction 

of specific process improved SWAT models have been adjusted. SWAT-G (river basin scale model 

developed for functioning daily), Extended SWAT (ESWAT), soil, and integrated model (SWIM) 

are some examples of the model. A physical-based model (Arnold et al. 1998;  

Lenhart et al. 2002), which have been established to forecast the influence of management practices 

in the small (meso) to large (macroscale) basins scale level accurately. According to  
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Lenhart et al. (2002), SWAT 9.2 was modified to predict flow characteristics due to changes in 

percolation, interflow and hydraulic conductivity. 

SWAT model simulates the watershed system based on how concurrent watershed processes are 

presented in the model, as well as how well the watershed to be defined by input parameters in the 

model. Many of the erosion, runoff, sediment and flow models need the watershed to be subdivided 

into sub-watershed scale or meso (smaller). Even though the size of watershed implication on the 

homogeneity, the assumption of each of watershed is homogeneous, and parameters represent the 

entire meso and sub watershed. According to Singh et al. (2004)  and Tripathi et al. (2006), size 

reduction with an increasing number of subwatershed, affect model simulation results on the runoff 

process and sediment yield reduction of the whole watershed. 

Several studies have been undertaken using the SWAT model by various researchers in different 

ways for different purposes. Tripathi et al. (2006), used SWAT to simulate the runoff process as well 

as sediment yield generation for smaller Nagwan watershed in the eastern part of India using 

generated rainfall data. It confirmed that the ability of the SWAT model to simulate and evaluated 

satisfactorily for generated rainfall during the periods of 18 years. Study by Van Liew et al. (2007), 

in the USDA ARS on experimental watersheds, applied SWAT in the process of simulating the 

influence of subdivision of watershed on simulated water balance components (surface runoff 

process, sediment yield, and evapotranspiration, and percolation loss). The results of the study 

confirmed the perfect water balance for the experimental watershed. 

Rosenthal et al. (2013), in their study, found that the various properties of watershed related to the 

runoff process and sediment yield generation affected by the size of watershed. In order to relate the 

channel hydraulic properties to the size of the watersheds; therefore, the authors derived different 

parameters. On the contrary, Kuhnle et al. (1996), used SWAT to simulate runoff generation and 

sediment yield generation from Goodwin Creek watershed. Results confirmed that numbers, 

including watershed and sub-watershed size, do not have any implication on runoff volume. 

However, the response of annual sediment yield for the watershed subdivision was sensitive. 

Easton et al. (2010), in order to forecast runoff generation as well as sediment loss in Ethiopia, Blue 

Nile Basin of Ethiopia, modified SWAT model has developed. Using daily water balance, the model 

used to simulate the excessive runoff process from the landscape. The spatial and temporal 
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distribution erosion from the landscape is therefore, simulated successfully. As can be seen in Table 

2.4, SWAT has been used for different applications in different parts of the globe. 

Table 2.4 Application of SWAT model in different categories. 

Researcher/s 

(year) 

Broad 

application 

category 

Study area Major findings/Remarks 

 

Gebremicael et al. 

(2013) 

 

Runoff process 

and sediment 

yield fluxes 

In the Blue 

Nile Basin, 

Ethiopia  

SWAT has been applied to analyze the 

influences of land use dynamics on 

sediment yield and runoff. Calibrated 

and validated results indicated that 

SWAT and LULC dynamics detection 

are reliable with the assumption; 

therefore, LULC dynamics have been 

the primary cause for the runoff process 

and sediment yield generation in the 

Blue Nile basin. This finding has a 

substantial contribution to water 

resources management.  

Rosenthal et al. 

(2013) 

 

GIS linkage 

with SWAT  

 

Lower 

Colorado River 

Basin 

Urbanization significantly affects the 

downstream flow; therefore, the SWAT 

model underestimates the extreme 

events.  

 

Kuhnle et al. 

(1996) 

 

Surface runoff 

process and 

sediment yield 

generation  

Northern 

Mississippi, 

USA 

(Goodwin 

Creek 

Research 

Watershed) 

For daily and annual runoff and 

sediment yield, the reliable result was 

obtained for multiple sub watershed and 

sub-basin. 

Chu and 

Shirmohammadi 

(2004) 

 

Surface and 

sub-surface 

runoff and 

sediment yield  

Maryland 

(Warner Creek 

watershed) 

SWAT model result on a monthly basis 

for sediment yield and flow was poorly 

simulated. 

Alibuyog et al. 

(2009) 

 

Runoff process 

and sediment 

yield generation  

Manupali 

River 

subwatershed 

and test 

watersheds, 

Philippines  

SWAT has applied in the process of 

modeling the outcome of land-use 

dynamics in the Philippine watersheds. 

Results from simulation indicated that 

LULC changes significantly affects 

runoff and sediment yield (conversion 
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of pasture, forest and grassland to 

agricultural land resulted in increased in 

runoff generation, increased sediment 

yield and in reverse decreased in base 

flow). 

 

Santhi et al. 

(2008) 

 

Surface runoff 

variation  

Ohio and 

Arkansas 

White River 

Basin, U.S. 

Spatially and temporally distributed 

calibration and validation at sub-

watershed and stream gauges level 

respectively reasonably good for a 

spatiotemporal hydrological pattern for 

larger river basin scale. 

Pisinaras et al. 

(2010) 

 

 

Management 

scenario 

Kosynthos 

River 

Watershed,  

N-E Greece  

The validated and calibrated results 

were used to test the implication of 

various LULC changes on the runoff 

process and sediment yield generation.  

It is a very flexible and reliable 

technique for water and related 

decision-making. Therefore, if the 

SWAT model is calibrated correctly 

and validated used for successful 

testing of various management 

scenarios. 

 

Bharati and 

Jayakody (2011) 

 

Water balance  

Gorai River 

catchment, 

Bangladesh  

They concluded that the significant 

change in the LULC classes 

significantly affect runoff and sediment 

yield  

 

Khoi and Suetsugi 

(2014) 

 

Climatic data 

effects 

Dak Bla River 

central 

Vietnam  

Land use/cover dynamics, as well as 

changes of climate on surface runoff 

process, sediment yield and water 

balance component, are affected by 

each other. Nevertheless, the 

components of subsurface flow are 

more response to LULC change than 

climate change. Significant results to 

plan rainfall-runoff and sediment 

management for data-scarce regions/ 

areas. 

2.5.3 Impact Assessment on Water Availability Employing SWAT 

Several hydrological models have been utilized in the past for computation of water availability and 

water deficits for present and future scenarios (Saulnier et al. 1997; Minale and Rao 2011; 
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Azamathulla and Zahiri 2012; Huong and Pathirana 2013). In general, hydrological models 

represent the dynamic cycle of water balance components (precipitation, evapotranspiration, surface 

water, groundwater recharge percolation and water utilization by vegetation). Jha et al. (2004) 

examined the climate change impact on discharge using RCMs output in the Upper Mississippi 

River Basin. A hydrological model, SWAT were calibrated and validated against measured 

discharge utilizing observed climate data from the U.S. Environmental Protection Agency Better 

Assessment Science Integrating Point and Nonpoint Sources (BASINS). Model outputs were 

evaluated based on an annual scale considering the observed climate series as the lateral boundary 

condition in RCM. Impacts of climate change on water availability and other hydrologic components 

were evaluated by driving SWAT with current and future scenario climates. Results indicated that a 

21% increase in future precipitation simulated by the RCM produced 18%, 51%, 43%, and 50% 

increase in snowfall, surface runoff, groundwater recharge and net water yield, respectively in the 

Upper Mississippi River Basin. 

Matondo et al. (2004) expected the increasing greenhouse gas effect which raises the temperature by  

1-3.5⁰C, resulting in a change in precipitation by ±20%. The impact of anticipated global warming 

will strike nearly all the sectors of human endeavor. However, this study was to evaluate the impact 

of climate change on water resources availability for Swaziland. The computation of the impact of 

climate change on hydrology and water resources in Swaziland was implemented in three watersheds 

namely: Mbuluzi, Komati and Ngwavuma. The gaps in discharge data have been filled by applying 

rainfall-runoff modeling techniques (Panchal et al. 2013). MAGICC-model was applied to simulate 

the climate parameters for Swaziland given the baseline scenarios. 

Moreover, three GCMs were used to project the temperature and precipitation changes for Swaziland 

for the year 2075. The model was calibrated and results indicate that there is an annual streamflow 

change of ±5% in the Komati watershed and ±2% in the Mbuluzi watershed given climate change 

scenarios. Projected results indicate a negative annual streamflow change ranging from 4% to 23% 

in the Ngwavuma watershed under climate change scenarios. 

Dibike and Coulibaly (2005) noted that global warming has significant impact on local and regional 

hydrological regimes, which will, in turn, affect ecological, social and economic systems. However, 

a more steady precipitation series of future climate scenarios can be derived from GCM outputs 

using downscaling techniques. The downscaled data is used as input to two different hydrologic 
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models to simulate the corresponding future flow regime in the Chute-du-Diable and Saguenay 

watershed, Canada. Moreover, the water availability impact analysis was carried out with the 

downscaled precipitation and temperature time series as input to the two hydrological models advise 

an overall rising trend in average annual river flow and reservoir inflow. Fischer et al. (2007) 

investigated the climate change impact on irrigation demand for regional and local scale considering 

with and without mitigation of greenhouse gases emission. Future regional and globally irrigation 

water demands were calculated as a function of both projected irrigated land and climate change and 

simulations were performed from 1990 to 2080. Future trends for extents of farmland, irrigation 

water use, and withdrawals were calculated, with specific care given to the implications of climate 

change mitigation. Renewable water-resource availability was calculated under present and future 

climate scenarios. Results advise that mitigation of climate change may have substantial convincing 

effects compared with unmitigated climate change. Moreover, mitigation measures can cut down the 

impacts of climate change on farmland water demands by about 40% or 125–160 billion cubic meters 

(BCM) equated with unmitigated climate. 

Guo et al. (2008) examined the occurrence and damages of the flood in 1990 due to climate change 

in the Poyang Lake basin in China. In order to evaluate these issues, it was crucial to get information 

about climate variability, land-use and land-cover changes in the area impact the yearly and seasonal 

fluctuations of basin hydrology and streamflow. Moreover, this study is crucial for long-term 

planning for LULC to protect water resources and to effectively handle floods in the Poyang Lake 

basin and lower basins. Additionally, it is also crucial for ecological and socio-economic 

implications for the area. Franczyk (2000) investigated the climate changes effect on the hydrology 

of the Pacific Northwest during the 21st century. Several GCMs were used to simulate the output, 

and simulated temperature and precipitation indicate the higher projection. In the last 30 years, due 

to sudden growth in urbanization, there is a change in climate and LULC alter the surface runoff and 

water availability. A combining of global warming and LULC change for 2040 with the semi-

distributed, ArcView SWAT hydrological model was used to evaluate the changes in mean runoff 

depths in the 2040s (2030–2059) from the baseline period (1973–2002) at the monthly, seasonal, and 

annual scales. Climate model ECHAM5 outputs were downscaled for the region and it was noticed 

that the region would experience an increase of 1-2°C in the average annual temperature and a 2% 

increase in average annual precipitation from the baseline period. 
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Liu et al. (2011) investigated the climate change impact on streamflow in the Yellow River Basin. 

A semi-distributed hydrological model (SWAT) is calibrated and validated with records at 

Huayuankou, Lanzhou, and Huaxian hydrological stations. Outputs from climate model HadCM3 

were downscaled with SDSM and delta statistical approach to generate the daily temperature and 

precipitation data from 1961 to 2099. In order to get the change in runoff due to climate change, 

hydrological model SWAT was used. In results, it is noticed that annual mean maximum and 

minimum temperature may rise by 5°C in the 2080s, and annual precipitation would increase by 54 

mm to 150 mm. Additionally, raising streamflow in spring and summer can help in crop growth, and 

raising annual precipitation and runoff can facilitate water demand stress to some degree in the 

Yellow River Basin. 

Due to the scarcity of observed data and heterogeneousness of the system, discharge, and soil loss 

evaluation in river basin or catchment is one of the most ambitious tasks in water resources studies 

(Sinha 2015). However, SWAT is a semi-distributed and physical model that can simulate the 

discharge as well as soil loss for the catchment. SWAT is a physically-based model. It requires 

specific information about the topography, vegetation, land management practices, hydro-

meteorological data (precipitation, maximum & minimum temperature, relative humidity, wind 

speed, solar radiation), soil physical properties in the catchment. The physical processes associated 

with water movement, sediment movement, crop growth, nutrient cycling, etc. are directly modeled 

by SWAT using these input data The SWAT model is designed to assess streamflow and sediments 

from the individual watershed (Table 2.5). 

Table 2.5 Studies related to climate change impact and anthropogenic activities on water 

availability using SWAT. 

Authors 

(Year) 
Study Area 

Hydrological 

Model 
Major Finding /Remarks 

Murty et al. (2014) 
Ken Basin, India 

(Area 28574 km2) 
SWAT 

SWAT applied for Ken River 

basin 

Water balance components 

calculated (1985-2009) 

Gessesse et al. (2015) 
Modjo Watershed, 

Ethiopia 
SWAT 

Climate and LULC change 

Sediment loss and transport 

estimation 

Characterization of runoff 

estimation 
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Heo et al. (2015) 

Neches River (Area: 

2221 km2), Eastern 

Texas (US) 

SWAT 

Climate and LULC change 

considered 

Water budget components 

evaluated 

Liu and Lu (2015) Changle River basin SWAT 

Nutrient and Pollution 

estimation 

 Application of Best 

Management Practices 

(BMPs) 

Singh et al. (2015) 

Satluj River Basin 

(48598 km2) and 

Tungbhadra River 

Basin (14429 km2), 

India 

SWAT, 

SWAT-CUP 

Model uncertainties with 

streamflow (peak and low 

flow) 

Separation of sequential peak 

and low flow using 

multicriteria evaluation 

Temperature and snowmelt 

identified as sensitive 

parameters in the region 

Chattopadhyay and 

Jha (2016) 

Haw river (4000 

km2), North Central 

Carolina (U.S.) 

SWAT 

SWAT model calibrated and 

validated 

Water balance components 

evaluated due to climate 

variability 

Pandey et al. (2017) 
Armur watershed, 

Narmada River, India 
SWAT 

SWAT applied for Armur 

watershed 

Water balance components 

computed for baseline 

 (1961-1990) and future 

climate scenarios (2071-2100) 

Positive changes in annual 

average temperature and 

rainfall in future projection 

Marhaento et al. 

(2017) 

Samin river basin 

(278 km2), Indonesia 
SWAT 

LULC changes and climate  

 change considered 

Ratio of surface runoff to 

streamflow increase 

Ratio of base flow to 

streamflow and lateral flow to 

streamflow decrease 

Omer et al. (2017) Hutuo River, China SWAT 

Integrated effect of 

Anthropogenic and climate 

change 

Climate change and LULC 

change reduced the runoff 

Proposed framework for 
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sustainable development cause 

of runoff uncertainties 

Trang et al. (2017) 

3S transboundary 

The river basin 

(Sekong, 

Sesan, Srepok), of 

countries (Laos, 

Vietnam, and 

Cambodia) 

SWAT 

Climate study under    

RCP 4.5 and RCP 8.5.

Discharge and nutrient 

increase in the wet season and 

decrease in the dry season 

2.6 CONCLUDING REMARKS 

In recent studies, long term changes in time series of climatological and hydrological data have 

received immense interest. Different aspects of climate change impact and effect of the 

anthropogenic intervention on hydrology were discussed worldwide. Long term changes in any 

historical series often occur in the form of shifting (change year) and trends. Moreover, the trend in 

precipitation, temperature and other hydro-meteorological parameters were identified, applying 

various parametric and non-parametric tools. Furthermore, climate variability and land-use changes 

identified for abrupt shifts and trends. In this manner, it was hard to separate and measure the 

individual impacts of various land-use changes inside the catchment areas based on observed 

hydrological response evidence. 

Many researchers found reasonable uncertainty in projections of future climate change and its 

impacts on hydro-meteorological responses, particularly on regional or basin scale. The spatial 

resolution of the climate models is too coarse to simulate the impact of global change on the local 

scale. The major hurdle in the case of evaluation of the effects of future projection of climate on 

water balance components is the uncertainties in global climate models and its scenarios. Based on 

the research above discussed, plenty of work has been carried out to simulate the hydrological 

response considering different scenarios of General Circulation Models output. Therefore, the 

performance of GCMs is still required to assess for a particular region.  Based on the research 

discussed above, climate and hydrological model was selected to project the water balance for 

tropical river basin of central India. 

 

 



38 | P a g e  

 

Based on the literature review, the following research gaps were identified which were further 

established as the objectives of the present study:  

1. Study of extreme values are rarely considered to measure the climate change impact. 

Moreover, very few studies focused on trend and shifting 

2. There are limited studies based on the selection of best suitable GCMs/RCMs, 

considering the six climatic variables.  

3. It is not suitable to couple hydrological models with crude spatial resolution GCMs 

output to assess the impact studies at the local scale. To bridge the gap between 

GCMs output and hydrological model inputs, RCMs with finer resolution have been 

used in the study.  

4. There are very few studies available to project the trend pattern of water yield and 

evapotranspiration in a tropical watershed. 
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CHAPTER 3 

STUDY AREA 

3.1 GENERAL  

The detailed description of the study area and data collection are presented in this chapter. This 

chapter covers the general aspects of location, extent, topography, climate, drainage, soil, agriculture 

and hydrological issues over the study area. In other parts of the chapter description of data collection 

and processing are discussed. 

In this research, Kharun watershed - a tropical river watershed of central India has been considered 

for long term trend analysis of climatic variables, change detection in land use/land cover (LULC), 

and hydrological modeling to evaluate the water availability in the watershed. Comprehensive 

descriptions of the study area have been mentioned in the given sections. 

3.2 STUDY AREA DESCRIPTION 

Kharun watershed, considered in the present study, is at the heart of Chhattisgarh and passes directly 

through the state capital. Kharun River is the major tributary of the Seonath River, which is a major 

tributary of Mahanadi River. The index map showing the study area and its cutoff from Mahanadi 

River are shown in Figure 3.1. Kharun River originates at Petechua in Balod district and 

 lies between the geographical coordinates of 20° 33′ 30″N – 21° 33′ 38″ N latitude and  

81° 17′ 51″ E – 81° 55′ 25″ E longitude. It can be seen from Figure 3.1 that the study area exhibits a 

flat topography and does not have much elevation difference throughout its stretch. The total length 

of the river is 164 km and its catchment area is approximately 4191 km2. 

3.2.1 Topography 

The study area exhibits a relatively flat topography ranging from 212 to 453 m above sea level. The 

study area lies in the state of Chhattisgarh, which is the most populated state in India, with a 

population of 25.5 million. Being the primary producer of steel and power, it is considered to be the 

fastest-growing state of India. The state is enclosed by six other states, namely Orissa, Madhya 

Pradesh, Uttar Pradesh, Jharkhand, and Telangana. Speaking of physiographic characteristics, 

almost two-third of the area is broad and fertile, suitable for cultivation. The southern part of the 

study area has a forest cover. While the Northcentral part of the watershed is heavily urbanized due 

to the presence of state capital in that region. 
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Figure 3.1 Index map of the study area. 

The digital elevation model (DEM) of Kharun watershed is also given in Figure 3.1, which depicts 

that the elevation gradually declines from South to North. The highest elevation is towards the 

Southern part of the watershed and is about 453 m, while the Northern part has the least elevation in 

the watershed, which is about 212 m. The slope distribution of the Kharun watershed is shown in 

Figure 3.2. 
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Figure 3.2 Slope map of the study area. 

3.2.2 Climatology 

The climate in and near the watershed is tropical. Because of its proximity to the tropic of cancer, 

the area is quite hot and humid. Kharun watershed experiences extreme temperature variation 

throughout the year. Summer temperatures can go as high as 46⁰C in May, while in winter, the 

temperature is moderately low, 9⁰C recorded in January. The study area receives an average of 1,292 

millimeters of rainfall, much of it (almost 85%) is received in the monsoonal period (late June to 

September) (Chandrakar et al. 2017). The significant share of rainfall is due to the south-west 

monsoon, while a minor share is of retreating monsoon due to cyclonic depression in the Bay of 

Bengal. For climate, the study area can be considered to have four seasons, as described in  

Table 3.1, along with the maximum/minimum temperature in a day and cumulated precipitation in 

those seasons. 
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Table 3.1 Characteristics of various seasons in the study area. 

S. No. Season Months 
Max. /Min. 

temp. (⁰C) 
Precipitation (mm) 

1 Monsoon June -September 43/22 1099 

2 Post-monsoon October-November 34/16 64 

3 Winter December – February 25/8 35 

4 Summer March-May 46/30 94 

3.2.3 Land use /Land Cover Distribution 

The vast majority of the land in the study area can be categorized as cultivable land, vegetation  

(or mixed forest), barren land, sand and open rocks, water bodies and urban settlement. Almost 76% 

of the area in Kharun watershed can be characterized as cultivable land, which is more than  

two-thirds the total area of the watershed, hence it is the most dominant class. The Indian cropping 

season is primarily classified into two seasons (i) Kharif (June to October) and (ii) Rabi (October to 

March). Paddy is grown in almost entire cultivable land of the study area during the Kharif season, 

while lintels and wheat are grown in some parts of the area during Rabi season. Apart from the 

cultivable land, almost 4% of the area can be characterized as an urban settlement, which is 

expanding at a decent pace due to the presence of state capital in the watershed. A sudden surge in 

the emergence of barren land has been observed, and currently, it is around 11% of the total study 

area, owing to the conversion of agricultural land into real estate properties because of massive 

urbanization of the area in recent years. Almost 6% of the area is covered by vegetation, while water 

bodies (including ponds, lakes, and river stretch), sand, and open rocks span over 3% of the total 

study area. 

3.2.4 Soil Types and Their Distribution 

Soil can be described as a composite of various minerals and organic matters, which differ from their 

parent constituents concerning their color, texture, consistency, structure, and other such 

characteristics. A clear understanding of the soil properties in the region is one of the primary aspects 

which is quite essential when it comes to hydrological modeling of the watershed. Soil characteristics 

and properties in any area are mainly dependent on its relief, which majorly influences the variation 

in soil formation. The soil around the Kharun River is very fertile and is quite suitable for agricultural 

practices. The spatial distribution of the soil types in the region are shown in  

Figure 3.3. 
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Figure 3.3 Spatial distribution of soil types in the study area. 

The study area has mainly three different types of soils, i.e., Vertisols (32.9%), Inceptisols (21.3%), 

and Alfisols (45.5%). Apart from these three soil types, a tiny percentage of Mollisols (0.3%) are 

also found in the region. The description of various soil types that are found in the Kharun watershed 

is listed in Table 3.2.  

Since mass agricultural practices are prevalent in the study area, erosion of soil is a common 

phenomenon because of the loosening of topsoil. Soil erosion is quite severe in the plains regions of 

the Kharun watershed. Severe erosion also occurs throughout the river in the lower plains.  
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Table 3.2 Description of soil types found in Kharun watershed. 

S. No. Soil type Code 
Local 

name 
Suborder Description Area (%) 

1 Vertisols ert Kanhar Invert 

Soils having swell- shrink 

type clays, having more than 

30% clay up to 0.5 to  

2 m depth, lithic / paralithic 

contact. 

22.9 

2 Inceptisols ept Matasi Inception 

Soils representing an early 

stage in soil formation and no 

spodic, argillic, nitric, 

petrocalcic, plinthite, but have 

a cambic-B horizon. 

11.3 

3 Alfisols alf Dorsa Pedalfer 

Soils of the humid and sub-

humid regions, high base 

status (>35%), and having 

ochric epipedon. 

65.5 

4 Mollisols oll -NA- Mollify 

Dark color, high base (>50%) 

soils of grassland vegetation 

with a mollic epipedon that is 

no hard and massive when 

dry. 

0.3 

3.3 DATA COLLECTION AND PROCESSING 

Hydro-meteorological and spatial data have been collected from the India Meteorological 

Department (IMD) Pune, India Water Portal (Indian Meteorological Datasets), and other resources. 

3.3.1 Hydro-Meteorological Data 

Daily temperature (minimum and maximum) and precipitation values were extracted using 1⁰ × 1⁰ 

and 0.25⁰ × 0.25⁰ gridded datasets, respectively, which was provided by IMD, Pune (Pai et al. 2014). 

The study of climate change demands long term data series, keeping that in view, precipitation data 

of 115 years (1901-2015) was considered for the study at 0.25⁰ × 0.25⁰ scale. However, due to the 

unavailability of data for temperature for the entire period, 64 years (1951-2014) were considered 

for the evaluation of trends in temperature extremes (minimum and maximum). Moreover, as the 

temperature data provided by IMD was at 1⁰ × 1⁰ scale, it was further resampled and interpolated 

using kriging (Gaussian process regression), which is an advanced geospatial procedure for 

interpolation of spatial data and was resampled at 0.25⁰ × 0.25⁰ (Pai et al. 2014). Generally, 

resampling reduces the accuracy of the data. Nevertheless, as the study area has flat topography with 

the absence of any hilly region in the watershed, such technique can be used without altering the 
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data.  In order to encompass the entire study area, 22 grids were identified in and around the 

watershed, as it is clear from Figure 3.4.  

 
Figure 3.4 Selected grids in and around the study area. 

3.3.2 Soil Map 

The soil map for the study area at a scale of 1:25,00,000 was obtained from NBSSLUP (National 

Bureau of Soil Survey and Land Use Planning), Nagpur. It has been carefully scanned and exported 

to ArcGIS 10.2.2 environment. For the study area, three distinct soil types were traced and the 

polygons representing different soils were filled with different colors for their identification. The 

detailed description of the spatial variation of soil in the study area is already represented in Figure 

3.3. 

3.3.3 Digital Elevation Model 

The Shuttle Radar Topography Mission (SRTM) data are digital elevation on a horizontal grid 

spacing of 30 m resolution. The elevation of Kharun watershed varies from about 212 m to 453 m 
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from mean sea level (MSL) by Digital Elevation Model (DEM). Southern parts of the catchment 

have the highest elevation ranges (Kharun watershed) and the lower range is located towards the 

Northern part of the catchment area, respectively. In the study area, the DEM, of 30 x 30 m pixel 

size was loaded to the system in an Arc Info grid format. The DEM properties were set up to verify 

the projection and the horizontal and vertical units of measure were verified. The DEM is acquired 

to generate the drainage network for the study area. 

3.3.4 Observed Discharge 

Observed discharge and sediment data are necessary for evaluating the hydrological model. 

Discharge data of Kharun watershed have been collected to calibrate and validate the model. For 

Kharun watershed, discharge data for 27 years was acquired from Patherdihi Gauge discharge site 

of Central Water Commission (CWC) on Kharun river located at Latitude 21⁰ 20ˈ 28ˈˈ N and 

Longitude 81⁰ 35ˈ48ˈˈ E near village Kumhari. 

3.4 CONCLUDING REMARKS 

To investigate the long term changes in the hydrological balance of an area (basin/watershed), it is 

essential to know about the history, climatology, topography and demography of that area. Kharun 

watershed was opted for the present study. The study area of Kharun watershed is vital as the state 

of Chhattisgarh was formed in the year 2000. Raipur, the capital city of Chhattisgarh, lies within the 

watershed, and the Kharun River bisects the capital due west of the city. Massive urbanization and 

industrialization have been observed after the formation of Chhattisgarh state. Due to real estate 

development, forest areas and agricultural land have given way to residential and industrial 

complexes. These extensive development and urbanization have altered the hydrological balance in 

the region. To investigate the extent of imbalances caused by the alteration in the hydrological 

balance, this study was carried out in one of the major watersheds in the tropical region of 

Chhattisgarh.   

In this research, investigations on the climatic variables have been made over Kharun watershed to 

understand the relationship between spatial scale severities of climate change on water availability. 

Analysis of the trend and periodicity of precipitation and temperature and selection of climate model 

for hydrological studies have been done for the study area. Kharun watershed was selected for trend 

analysis of climatic variables and evaluation of water balance components at different emission 

scenarios. Kharun watershed was considered as a study area to demonstrate the application of 
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integrated hydrological modeling with changing climate scenarios. Salient features of the selected 

study area are described briefly, which includes the location map, topography, climatology, LULC 

distribution, and soil map. The spatial, non-spatial and meteorological data have also been briefly 

described and presented in subsequent chapters. 
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CHAPTER 4 

 SHIFT AND TRENDS IN METEOROLOGICAL VARIABLES 

4.1 GENERAL 

Numerous studies in the past have proved that planet Earth is warming day by day and at a faster 

rate in the past few decades (IPCC 2007a; Tilman et al. 2011a). For decades, the prime focus was 

centered around the study of climate change using mean values of meteorological data, while very 

few studies have highlighted changes in climate extremes (Shrestha et al. 1999; Zhang et al. 2013;  

Patel et al. 2018). Since the issue of climate change has become quite conspicuous, studies related 

to historical climate change has advanced immensely in recent years, especially for temperature and 

precipitation (Klein Tank and Können 2003; Muller 2007; UN Habitat 2011; Pingale et al. 2014; 

Sun et al. 2016; Pandey and Khare 2018). With the due acceleration of the global hydrological cycle 

ignited due to climate warming, incidences of extreme events (precipitation and temperature) have 

increased worldwide (Zhao et al. 2014). This exceedance in climatic extremes has significantly 

caused damage to ecology, infrastructure and agricultural sector (Pavan et al. 2008; Marengo et al. 

2010;  Penalba and Robledo 2010). As a result of which various studies have been carried out in 

many regions around the world in order to bring attention towards extreme weather, its causes and 

effects (Rusticucci and Barrucand 2004; Alexander et al. 2006; Min et al. 2011; Sun et al. 2016;  

Zhou et al. 2016). Extreme weather and its societal and ecological impacts have grabbed attention 

in many areas across the globe, such as in North America (Kunkel 2003), Central America  

(Aguilar et al. 2005), Middle East (Zhang et al. 2005),  Western and Southern Africa  

(New et al. 2006), in various European countries like Germany and Greece  

(Trömel and Schönwiese 2007; Kioutsioukis et al. 2010) and in Asian countries like China  

(You et al. 2011; Liang et al. 2011; Fu et al. 2013b; She et al. 2015), Nepal (Shrestha et al. 2017) 

and India (Kothawale et al. 2010; Pingale et al. 2014). It was observed globally that increasing trends 

of temperature and precipitation extremes are present in most of the study areas, but downward 

trends were observed in Germany, while there was no significant trend observed in parts of Africa.  

With a rapid rise in urban influx in major cities of Asia (especially in developing countries), rapid 

industrialization to fulfill the demographic demand accompanied by climate change has resulted in 

occurrences of the off-seasonal unusual climatic phenomena. Speaking of South-East Asian 

countries, China as a whole experienced increasing trends of precipitation extremes, but decreasing 



50 | P a g e  

 

trends were observed in northern, northeastern and central China (Zhai et al. 2005;  

Wang et al. 2014; Li et al. 2015). Study was carried out to compute the trends and observe the 

changes in daily temperature and precipitation extremes (in terms of extreme weather indices) over 

the Koshi river basin (Ganges sub-basin, shared among China, Nepal, and India). It was observed 

that the intensity and frequency of weather extremes (both temperature and precipitation) have 

increased over the Indo-Gangetic plains (Shrestha et al. 2017). Statistically significant trends of 

precipitation (in terms of extreme weather indices) were observed in South-western Ghats, India 

(adjacent to Bangladesh) (Iskander et al. 2014). 

Although studies were carried out over very large areas, further analysis of the variations in 

meteorological extremes (precipitation and temperature) over a small watershed (Kharun River) 

forms the primary objective of this study. In the present study, 18 extreme precipitation and 

temperature indices out of 27 were considered for the study. These extreme indices were generated 

by the joint WMO Commission for Climatology (CCl) /World Climate Research Program (WCRP) 

Climate Variability and Predictability (CLIVAR) project’s Expert Team on Climate Change 

Detection, Monitoring and Indices (ETCCDMI) (http://etccdi.pacificclimate.org/list_27_indices), 

which is a widely used methodology. Additionally, five more indices were proposed in the study, 

which is based on the precipitation intensity indices suggested by IMD. 

In this chapter, outcomes of the study regarding long term trend changes in meteorological extremes 

have been discussed, along with that the methods, results, and implication of trend changes of 

extremes before and after the climatic shift have also been discussed. This study was carried out over 

22 grids in and around the Kharun watershed. Long term data series of temperature (1951-2014) and 

precipitation (1901-2015) were considered to determine the variability of different extreme indices 

using parametric and nonparametric techniques. Cumulative sum (Cusum) and sequential  

Mann-Kendall (SQMK) test was applied to identify the climatic shift (change year) and to analyze 

the variation of climatic extremes Modified Mann-Kendall (MMK) was applied over the data series. 

Along with the MMK test statistic, Sens’ slope estimator was applied to determine the magnitude of 

change for the study period. After this rate of change was calculated to quantify the extent of change, 

this study was conducted with the main objectives of spatiotemporal analysis of climatic parameters 

(rainfall and temperature) and the impact of variation in climatic extremes on crop production using 

various analysis techniques. 

http://etccdi.pacificclimate.org/list_27_indices
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4.2 MATERIALS AND METHODS 

4.2.1 Description of Study Area and Data Used 

Detail description of the study area and the data used for the study have been already discussed in  

Chapter 3. 

4.2.2 Methodology 

Three different datasets, namely precipitation (1901-2015), minimum and maximum temperature 

(1951-2014), were used to identify long term changes in the meteorological extremes for all the grids 

(22 in number). To identify the trend statistics for extremes values indices in question, first of all, 

linear regression was administered over various indices computed from precipitation (PCP), 

maximum temperature (TX), and minimum temperature (TN) time series (Sharma et al. 2016). To 

have a precise idea about the trend displayed by various indices, the Modified Mann Kendall test 

(MMK) was applied. Statistic Z (obtained by MMK) was tested for significance of trend at the 

threshold level of 1.96 for a positive trend and -1.96 for negative trends (5% significance level). The 

magnitude of trend statistics was quantified using Sen’s slope estimator, which is a tool to determine 

the variability of time series data. To know about the influence of trends shown by various indices 

over the study area, the spatial plot was obtained using an inverse distance weighted interpolation 

(IDW) technique. 

For the purpose study, 23 indices were carefully selected for the study. Out of the five indices (*) 

were proposed in the present study based on the precipitation intensity indices suggested by IMD to 

have a better understanding of variation in extremes, as shown and are presented in Table 4.1. Since 

the indices were developed by ETCCDMI and climatic conditions of North America (precisely 

Canada) were considered while deciding the temperature and precipitation thresholds.  In this study 

climatic condition of India was considered while allotting threshold values. Upper and lower 

threshold values for temperature were defined as average temperatures of MAMJ (March, April, 

May, June) and average temperatures of NDJ (November, December, January), respectively. The 

average of daily rainfall between JJAS (June, July, August, and September) was considered to define 

daily precipitation thresholds. As per IMD, a day is considered as wet if it receives precipitation of 

2.5mm or more, so this value was taken into account while computing indices this criterion was kept 

in mind while formulating different indices (Table 4.1). 
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Table 4.1 List of indices used for the analysis. 

S. No. Index ID Index name Description Units 

1 TN10P Cool nights Percentage of days when TN < 10th percentile % 

2 TX90P Hot days Percentage of days when TX > 90th percentile % 

3 TX10P Cool days Percentage of days when TX < 10th percentile % 

4 TN90P Warm nights Percentage of days when TN > 90th percentile % 

5 TR 
Number of tropical 

nights 
Annual count when TN > 24⁰C 

Days 

6 SU 
Number of summer 

days 
Annual count when TX > 40⁰C 

Days 

7 WSDI 
Warm spell duration 

indicator 

Annual count of days with at least 6 consecutive days 

when TX > 90th percentile Days 

8 CSDI 
Cold spell duration 

indicator 

Annual count of days with at least 6 consecutive days 

when TN < 10th percentile Days 

9 DTR 
Diurnal temperature 

range 
Monthly mean difference between TX and TN ⁰C 

10 RX1day 
Max. 1-day 

precipitation amount 
Monthly maximum 1-day precipitation 

mm 

11 RX5day 
Max. 5-day 

precipitation amount 
Monthly maximum consecutive 5-day precipitation 

mm 

12 PRCPTOT 
Annual total wet-day 

precipitation 
Annual total PRCP in wet days (RR≥2.5mm) 

mm 

13 R95pTOT Very Wet days Annual total PRCP when RR>95th percentile mm 

14 R99pTOT Extremely Wet days Annual total PRCP when RR>99th percentile mm 

15 SDII 
Simple daily intensity 

index 

Ratio of annual total  precipitation and  number of wet 

days in a year Days 

16 CDD Consecutive dry days Maximum number of consecutive days with RR<2.5mm Days 

17 CWD Consecutive wet days 
Maximum number of consecutive days with RR 

>=2.5mm Days 

18 RW Wet days Days with minimum precipitation of 2.5mm or more Days 

19 *RL Light rainy days Days with precipitation between 2.5 to 7.5 mm  Days 

20 *RM Moderate rainy days Days with precipitation between 7.6 to 35.5 mm  Days 

21 *RRH 
Rather heavy rainy 

days 
Days with precipitation between 35.6 to 64.4 mm  

Days 

22 *RH Heavy rainy days Days with precipitation between 64.5 to 124.4 mm Days 

23 *RVH 
Very heavy rainy 

days 
Days with precipitation between 124.5 to 244.4 mm  

Days 

Where, TX and TN refer to maximum and minimum temperature, respectively. 
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4.2.2.1 Identification of shift 

4.2.2.1.1 Cumulative Sum (Cusum) technique 

In order to find the climatic shift in the long-term series of precipitation data (1901-2015), the Cusum 

test was applied over the data series. In case of such historical datasets, the mean hence, statistic S 

is given as: 

 t mS x x                                                     (4.1) 

where Xt is the data point in the series and Xm is the mean 

Change in the local mean is identified by the change in the slope of the Cusum chart, where a positive 

slope indicates rainfall above average and contrariwise in case of negative slope (Mansell 1997). 

The turning point of the slope signifies the change (shift) point of the data series. 

4.2.2.1.2 Sequential Mann-Kendall (SQMK) test 

The identification of shift in the time series of rainfall data using SQMK test comprises of four key 

steps: 

1) Comparison of the values of Pj mean time series (j = 1, ..., n) with Pi (i = 1, …, j - 1). At every 

comparison step, the number of events where Pj > Pi is summed up and is given by nj. 

2) Compute the test statistic t by: 

1

j

j jt n                                                          (4.2) 

3) Compute the mean and variance of the statistic t by: 

      
( 1) ( 1)(2 5)

( ) , ( )
4 72

j j

j j j j j
E t Var t

  
                               (4.3) 

4) Computation of sequential progressive value Zt by: 

( )

( )

j

t

j

t E t
Z

Var t


                                                                (4.4) 

Similarly, the backward progressive sequential statistic (Z’t) is computed, and the shift is identified 

at the intersection of statistic Zt and Z’t.  
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4.2.2.2 Identification of trend 

4.2.2.2.1 Linear regression 

Linear regression is one of the few renowned methods to detect the linear trend in any data series 

(Mirza et al. 1998; Jain et al. 2013; Rahmani et al. 2015). A Regression line was drawn for both 

before (1901-1958) and after (1958-2015) shift periods. According to the null hypothesis, the slope 

is zero; on the contrary, the alternative hypothesis suggests that the slope is a non-zero value. In any 

regression line β refers to the slope while intercept is denoted by λ, as shown in Eq. 4.5 

y x                                                              (4.5) 

To quantify the extent of trend, the slope of linear regression for all the indices was fitted to their 

respective time series. 

4.2.2.2.2 Modified Mann-Kendall (MMK) test 

In order to detect the trend in any time-series data, the following procedure is followed: 

By assuming that the time series data is independent, the MK statistic S can be computed as: 

1

1 1

( )
n n

j k

i j i

S sign x x


  

                                            (4.6) 

where n is the size of the sample, Xi and Xj are denoted as the sequential data points at ith and jth 

terms: 
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                        (4.7)                                                  

When n=18 the behavior of statistic S is more or less Gaussian, mean E(S) and Variance Var(S) of 

statistic S are described as:   

( 1)(2 5)
( ) 0 , ( )

18

n n n
E S Vars S

 
                                         (4.8) 

However, if the existence of ties is found in the data series, Var(S) can be readjusted as: 

1
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                         (4.9) 
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The variables q and tp in the above equation are respectively, the counts of tied groups and counts of 

data values in the pth group. The standardized test statistic 'Z’ is computed by the following formula: 

1
0

( )

0 0

1
0

( )

mk

S
if S

Var S

Z if S

S
if S

Var S

 
 

 
 

  
 
 
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                                          (4.10) 

 If Zmk is positive, there is a presence of a positive trend, whereas there is a negative trend if Zmk is 

negative. 

Since there it is a prerequisite for MK trend statistic that there must be no correlation present in the 

data series, if there is any trace of correlation present, pre-whitening of data series should be done to 

make it fit for analysis. In such cases, Modified Mann Kendall (MMK) can be used since it removes 

the effect of all autocorrelation coefficients (Hamed and Rao 1998). In the analysis Var(S) is 

modified as Var(S)* and is given as: 

( )* ( )
*

n
Var S V S

n
                                                     (4.11) 

where n* is the effective size of the sample, the ratio n/n* is calculated from the following equation: 
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                        (4.12) 

where n is the actual tally of observations, and ri = lag-i is the significant autocorrelation of rank i 

of time series. Var(S) (Eq. 4.9) gets replaced by Var(S)* (Eq. 4.11) after its computation. Lastly, the 

MK statistic Z was tested for the significance of trend at threshold levels of 1.96 for positive trend 

and -1.96 for negative trends (5% significance level). 

4.2.2.3 The magnitude of trend (Sen’s slope) 

Sen’s method was used to compute the magnitude of the trend in various extreme value indices. It 

is a widely used method to determine the magnitude of the trend in time series data (Jain and Kumar 

2012; Duhan and Pandey 2013). Firstly, slopes (Ti) of entire data pairs are computed by: 
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where xj and xk refer to the data entries at time j and k (j>k), respectively. The median of these N 

value of Ti is termed as Sen’s estimator of slopes and is computed by: 
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N NT T
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     … if N is even                                     (4.14)  
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          … if N is odd                                      (4.15)  

A Positive value of β signifies an upward trend, while negative values represent a negative trend  

(Shukla and Khare 2011; Pingale et al. 2014). The  rate of change (ROC) or in other words change 

in magnitude (Gocic and Trajkovic 2013) can be calculated by an elementary formula given by: 

100N
ROC

X

 
                                                     (4.16) 

where N is the length of the period, and X̅ is the simple mean of the observations. 

4.3 RESULTS AND DISCUSSIONS 

 Preliminary Analysis 

Before the assessment of trends in meteorological (precipitation and temperature) extremes, 

variations in various classifications of precipitation intensity as well as day to day temperature 

aberrations, in meteorological parlance were computed based on IMD guidelines (Table 4.2). Linear 

trends in long term precipitation (PCP) and temperature variations for the study area are presented 

in Figure 4.1 and Figure 4.2, respectively. Figure 4.1 shows the yearly temperature aberrations for 

the study area. From Figure 4.1(a), it can be inferred that the maximum temperature (TX) over the 

study area between 1951 and 2014 has increased considerably. It should also be noted that departure 

from the normal was towards the negative half for most of the period, while in recent years, it has 

shifted towards the positive half. Similarly, Figure 4.1(b) depicts that minimum temperature (TN) 

during the investigation period has decreased further in recent years, as signified by the departure of 

values from the normal. It can be seen from Figure 4.2(a) that the annual precipitation over the region 

has decreased considerably over the past years which accounted for an increase in days having no 
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rain (Figure 4.2b), which in turn has resulted in decrease in rainy/wet days and days of heavy rain 

(Figure 4.2). Days with heavy rains have increased slightly (even though it is not that prominent), as 

visible from Figure 4.2(e), which may be due to recent rapid climate change over the globe.  

Table 4.2 Classification of precipitation intensity and temperature aberrations as per IMD 

guidelines. 

Parameter Description 

No rain Precipitation amount realized in a day is 0.0 mm 

Rainy/Wet Day Precipitation amount realized in a day is 2.5 mm or more 

Heavy rain Precipitation amount realized in a day is between 64.5 to 124.4 mm 

Very Heavy rain Precipitation amount realized in a day is between 124.5 to 244.4 mm 

Normal Departure of minimum/maximum temperature from normal is +1⁰C to -1⁰C 

 

 
Figure 4.1 Departure of minimum/maximum temperature from normal is +1⁰C to -1⁰C, 

where TX is the daily maximum temperature, and TN is the daily minimum temperature. 
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Figure 4.2 Figure showing long term variation of different rainfall intensities  

(IMD specified). 
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 Elementary Statistics of Grids 

Primary statistical constraints (mean, standard deviation (SD), coefficients of variance (Cv), 

skewness (Cs), and kurtosis (Ck)) were computed for annual precipitation (1901-2015) and 

temperature (1951-2014) for all the grids. Average annual precipitation varied between 1160 

mm/year (Grid-A7) and 1367 mm/year (Grid-A13). Annual averaged maximum temperature (TX) 

varied between 31.8-32.4⁰C across all the grids. Similarly, the variation of minimum temperature 

(TN) was in the range of 19.8-20.5⁰C. Standard deviation (SD) for annual precipitation varied 

between 245-338 mm (grids 7 and 15, respectively). Similarly, the standard deviation of annual 

averaged TX and TN varied between 0.43-0.47⁰C and 0.37-0.40⁰C respectively, as shown in Table 

4.3. A very small variation in the values may be due to the proximity of the grids and relatively less 

elevation difference among them.  

The skewness (Cs) measures the asymmetry in frequency distribution around the normal, which 

varied between -0.04-0.58, -0.14-0.03 and 0.03-0.19 in case of annual average precipitation, TX and 

TN respectively. Positive values of Cs signify that the values of the parameters in question are 

asymmetric and are inclined towards the right of a mean for almost all the grids.  The kurtosis (Ck) 

measures whether data series is peaked or flat relative to a normal frequency distribution, it varies 

between -1.43-0.48, -0.05-0.26 and -0.40--0.23 for annual average precipitation, TX and TN 

respectively. Cv is the ratio SD over the mean of data series. Cv varied between 21-27, 1.34-1.46 and 

1.8-2.0 for annual average precipitation, TX, and TN, respectively, as shown in Table 4.3. 
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Table 4.3 Elementary statistics of annual rainfall (1901-2015), annual averaged maximum (TX), and minimum (TN) 

temperature (1951-2014). 

Statistics Coordinates Elevation Mean SD Cv  Cs Ck 

Grid index Lat. Long. (m) PCP TX TN PCP TX TN PCP TX TN PCP TX TN PCP TX TN 

Grid-A1 20.50 81.25 391 1301.87 32.32 19.82 292.62 0.46 0.38 22.48 1.42 1.94 0.52 0.02 0.19 0.24 0.26 -0.34 

Grid-A2 20.75 81.25 321 1273.45 32.38 19.91 306.56 0.46 0.38 24.07 1.41 1.93 0.40 -0.01 0.17 0.05 0.22 -0.39 

Grid-A3 21.00 81.25 288 1184.57 32.44 20.53 269.60 0.46 0.39 22.76 1.41 1.90 0.44 -0.03 0.14 0.48 0.19 -0.23 

Grid-A4 21.25 81.25 284 1218.46 32.44 20.52 265.96 0.46 0.38 21.83 1.41 1.83 0.25 -0.03 0.16 0.19 0.19 -0.29 

Grid-A5 21.50 81.25 311 1161.42 32.40 20.51 258.23 0.46 0.37 22.23 1.43 1.80 0.25 -0.01 0.14 -0.18 0.11 -0.32 

Grid-A6 21.75 81.25 311 1163.79 32.36 20.29 264.05 0.46 0.37 22.69 1.43 1.84 0.58 0.02 0.13 0.43 0.16 -0.36 

Grid-A7 21.75 81.50 288 1160.73 32.44 20.05 245.64 0.46 0.39 21.16 1.43 1.96 0.44 -0.03 0.07 0.29 0.06 -0.29 

Grid-A8 21.50 81.50 291 1171.63 32.44 20.05 252.46 0.46 0.39 21.55 1.43 1.96 0.33 -0.03 0.07 -0.15 0.06 -0.29 

Grid-A9 21.25 81.50 286 1285.99 32.39 20.06 284.62 0.47 0.38 22.13 1.44 1.90 0.47 0.03 0.11 0.03 0.06 -0.35 

Grid-A10 21.00 81.50 302 1227.51 32.42 20.06 291.10 0.47 0.38 23.71 1.45 1.88 0.14 -0.01 0.13 -0.19 0.01 -0.39 

Grid-A11 20.75 81.50 316 1214.49 32.44 19.81 271.28 0.47 0.40 22.34 1.46 2.01 0.14 -0.04 0.03 0.03 -0.05 -0.29 

Grid-A12 20.50 81.50 362 1288.47 32.44 19.82 291.20 0.47 0.39 22.60 1.46 1.95 0.43 -0.04 0.09 0.25 -0.05 -0.36 

Grid-A13 20.50 81.75 395 1367.65 32.32 19.81 332.49 0.45 0.40 24.31 1.41 2.01 0.25 -0.02 0.03 0.01 0.08 -0.29 

Grid-A14 20.75 81.75 305 1355.44 32.27 19.84 328.30 0.45 0.38 24.22 1.41 1.93 0.22 -0.05 0.12 -0.15 0.04 -0.40 

Grid-A15 21.00 81.75 303 1281.30 32.22 19.90 338.47 0.46 0.39 26.42 1.42 1.97 0.25 -0.07 0.07 -0.43 0.01 -0.36 

Grid-A16 21.25 81.75 294 1248.48 32.25 19.90 303.65 0.44 0.39 24.32 1.37 1.97 0.16 -0.08 0.07 -0.29 0.09 -0.36 

Grid-A17 21.50 81.75 280 1196.85 32.13 19.87 302.15 0.44 0.38 25.25 1.37 1.93 0.38 -0.09 0.13 -0.15 0.08 -0.39 

Grid-A18 21.75 81.75 240 1188.73 32.01 19.83 329.78 0.44 0.38 27.74 1.38 1.92 0.05 -0.10 0.16 0.05 0.08 -0.40 

Grid-A19 21.75 82.00 254 1177.50 32.17 20.00 295.90 0.43 0.39 25.13 1.35 1.95 0.22 -0.14 0.13 -0.43 0.09 -0.39 

Grid-A20 21.50 82.00 273 1180.37 31.98 20.00 311.91 0.43 0.39 26.42 1.34 1.95 0.43 -0.13 0.13 -0.14 0.11 -0.39 

Grid-A21 21.25 82.00 266 1265.67 32.22 20.29 316.23 0.46 0.38 24.98 1.42 1.86 0.07 -0.07 0.13 -0.40 0.01 -0.33 

Grid-A22 21.00 82.00 277 1304.28 31.79 20.29 312.65 0.43 0.39 23.97 1.34 1.93 -0.04 -0.13 0.10 -0.36 0.13 -0.27 

Where SD refers to the standard deviation, Cv, Cs, Ck are coefficients of variation (in percentage), skewness and kurtosis respectively, 

PCP, TX, and TN refer to precipitation, maximum, and minimum temperature.
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 Change Point Detection 

The shift year for long-term PCP data was identified as of 1958 (Figure 4.3). Almost all the grids 

displayed shift year of 1958 (Figure 4.3 (b)) in case of SQMK test statistics, while majority of the 

grids displayed the shift year of 1961 in case of Cusum test (Figure 4.3 (a)) as shown in Table 4.4, 

but for the ease of the analysis year 1958 was considered as the shifting year due to widespread 

industrialization in and around the study area during that year. 

 
Figure 4.3 Detection of climatic shift using (a) Cumulative sum and (b) SQMK test. 

Table 4.4 Change (shift) years obtained from Cusum and SQMK tests. 

 Cusum SQMK 

Change year 1961 1962 1964 1957 1958 

 

Grids 

6,7,10,12, 

13,14,15, 

17,21,22 

3,5,8,18 1,4,9,11, 
16,19,20 

 

1 2,3,4,5,6,7,8,9,10, 

11,12,13,14,15,16, 

17,18,19,20,21,22 

 Trend Statistics 

4.3.4.1 Trend statistics of maximum (TX), minimum (TN), and mean (TXN) temperature.   

Modified Mann-Kendall (MMK) test statistic was applied for the entire data series to define the trend 

by implementing a two-tailed hypothesis at a 5% significance level. Long term trends in the study 

area for maximum, minimum, and mean temperatures during 1951-2014 at 5% significance level 

are presented in Figures 4.4, 4.5, and 4.6 respectively, while the results of their linear trends are 

represented in Figure 4.8. A slight increase in average yearly maximum temperature was observed 

(Figure 4.8a). The maximum temperature (TX) increased in all the seasons except the monsoon 

season (Figure 4.7). Significantly negative trends were observed across all grids in case of minimum 

temperature (TN) for yearly scale (Figure 4.5a). Similarly, significant negative trends were observed 

across all grids for the monsoon, post-monsoon and winter season (Figure 4.5), while no significant 
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trend was observed during the summer season (Figure 4.5b). The same can be confirmed from Figure 

4.8 that shows negative trends for yearly averaged minimum temperature for all the time scales.  In 

case of yearly mean temperature (TXN), only two grids showed significant decreasing trends for 

yearly time scale while only one grid showed significant decreasing trend during monsoon period 

(Figure 4.6), while none of the grids showed any significant trend during summer, post-monsoon 

and winter seasons (Figure 4.6). These results match the patterns of linear trends, which show a 

significant negative trend during the yearly and monsoon period (Figure 4.8), the negative trend 

during summer and winter seasons (Figure 4.8), and no trend during the post-monsoon period 

(Figure 4.8n). 

4.3.4.2 Trend statistics of precipitation (PCP) 

Modified Mann-Kendall (MMK) test statistic was applied to identify the trends in precipitation over 

the whole data series by implementing a two-tailed hypothesis at a 5% significance level and the 

results are presented in Figure. 4.7. The results of the linear trends are presented in Figure 4.9. Few 

of the grids showed a significantly decreasing trend in case of precipitation for yearly time scale  

(Figure 4.7a) as well during the summer and monsoon season (Figure 4.7), while no significant trend 

was obtained during the post-monsoon and winter season (Figure 4.7). The linear trends also showed 

a significant decrease in annual rainfall over the entire study period (Figure 4.7a) also rainfall has 

reduced during summer, monsoon and post-monsoon season (Figure 4.7) while there is a very slight 

increase in rainfall during the winter season (Figure 4.9).  
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Figure 4.4 MMK trend statistics of 

maximum temperature (TX). 

 

 

 
Figure 4.5 MMK trend statistics of 

minimum temperature (TN). 

 

 
Figure 4.6 MMK trend statistics of mean 

temperature (TXN). 

 

 
Figure 4.7 MMK trend statistics of 

precipitation (PCP). 
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Figure 4.4 Linear trends of TX, TN, and TXN at a yearly and seasonal time scale. 
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Figure 4.5 Linear trends of PCP at a yearly and seasonal time scale. 

4.3.4.3 Trend statistics of extreme value indices  

Modified Mann-Kendall (MMK) test was applied over different meteorological extreme indices 

using two-tailed hypotheses at a 5% significance level. MMK test statistic was applied initially over 

all the indices for all the grids, both pre-defined and over the proposed indices. Before the 

computation of trend through MMK and determination of its magnitude, the slope of linear 

regression for all the indices was fitted over their respective time series to visualize the extent of the 

trend (Figures 4.10, 4.11, and 4.12). Also, the p-value for each index was computed and fitted in the 

linear regression plot that itself describes their trend significance. After analyzing Figures 4.10, 4.11 

and 4.12, it can be seen that index TX10P, TX90P, TN90P and SU (Figure 4.10) exhibited  

non-significant trend, but the main observation is that even though very marginally, but the number 
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of summer days (SU) per year has increased. Index TN10P and TR showed a significant decreasing 

trend for almost all the grids.  Very few grids showed a significant decreasing trend for WSDI and 

CSDI. Similarly, for indices computed from precipitation data (Figure 4.11 and 4.12 respectively), 

only RVH (Figure 4.12b) exhibited a non-significant trend, but it can be seen that the number of 

very heavy rain days (RVH) in a year has increased in recent years. Index CWD, RW, RL and RM  

(Figure 4.11) showed a significant decreasing trend, while all other indices showed a significantly 

increasing trend (Figures 4.11 and 4.12 respectively). 

The results obtained from MMK test statistics for indices computed from TX and TN, and their 

respective rate of change (ROC) are shown in Tables 4.5 and 4.6. The indices representing warm 

nights (TX10P) and hot days (TX90P) did not show any significant trend. Index of cool nights 

(TN10P) showed a significantly decreasing trend, none of the grids with maximum ROC  

of -35.4%. Few of the grids showed a significantly increasing trend for warm nights (TN90P), with 

a maximum ROC of 34.1%. Almost all the grids exhibited a predominantly decreasing trend for the 

number of tropical nights (TR), with a maximum ROC of -41.6%. There was no significant trend 

observed for the number of summer days (SU), but a ROC of 1.3% signifies that even though it 

might be less, but there is an increase in SU. Speaking of warm and cold spell duration index  

(WSDI and CSDI, respectively), both WSDI and CSDI showed a significantly increasing trend for 

very few grids. The maximum ROC for WSDI was found out to be 37.3%, while there was no 

quantifiable rate observed for CSDI. Index for Diurnal temperature range (DTR) showed a 

significantly increasing trend for most of the grids, with a maximum ROC of 6%.  

The results of Indices computed from long term precipitation time series and their respective ROC 

are shown in Tables 4.7 and 4.8. There was a significantly increasing and decreasing trend that was 

observed for maximum 1-day precipitation (RX1day) at few grids, similar was the case for maximum 

5-day precipitation (RX5day), with maximum ROC’s of -43 and -24.7% respectively. An index 

representing annual wet day precipitation (PRCPTOT) showed a significantly decreasing trend for 

almost all the grids, with a maximum ROC of -33.8%. Indices for very wet days (R95TOT), 

extremely wet days (R99PTOT), simple precipitation intensity index (SDII) and consecutive wet 

days (CWD) showed significantly decreasing trend for few grids, while very few of the grids showed 

a significantly positive trend for these indices, with ROC’s of -29.5, -37.5, -26.8 and -40%, 

respectively represent a quantifiable change in the indices. An index representing consecutive dry 

days (CDD) showed a significantly increasing trend for almost all the grids, with a maximum ROC 
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of 30.9%. As for the indices which were proposed in the study, almost half of the grids showed a 

significantly decreasing trend for number of wet days (RW), light rainy days (RL), moderate rainy 

days (RM) and rather heavy rainy days (RRH) in a year, with maximum ROC’s of -30.6, -57, -31.7 

and -49.8%. Few of the grids showed a significant increasing trend for the index of heavy rainy days 

(RH), which is quite a definite outcome; a maximum ROC of 89.4% further complimented it. Index 

for very high rainy days (RVH) did not show any significant trend; neither any change in its rate was 

observed. 

Spatial distribution plot of MMK test statistics for all the indices over study area is shown in  

Figure 4.13 was made using an inverse distance weighted interpolation (IDW) technique using 

ArcGIS 10.2.2 to have a better understanding of variations of trends among different grids. 
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Figure 4.6 Linear trends for pre-defined extreme value indices of long term temperature 

series. 
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Figure 4.7 Linear trends for pre-defined extreme value indices of long term precipitation 

series. 
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Figure 4.8 Linear trends for proposed extreme value indices of long term precipitation series. 
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Table 4.5 MMK statistics (Z) temperature extreme indices over the Kharun watershed (1951-2014). 

Indices TX10P TX90P TN10P TN90P TR SU WSDI CSDI DTR 

Grid-A1 -0.33 -1.51 -2.18 1.18 -2.72 0.45 1.08 1.32 2.00 

Grid-A2 -0.12 -1.55 -1.76 1.56 -3.43 0.40 1.86 1.37 1.90 

Grid-A3 -0.28 -1.59 -2.06 1.65 -3.66 0.05 1.42 1.36 2.14 

Grid-A4 -0.28 -1.59 -2.06 1.65 -3.66 0.05 1.42 1.36 2.14 

Grid-A5 -0.12 -1.59 -2.04 1.46 -2.96 0.11 0.72 1.41 1.69 

Grid-A6 -0.18 -1.33 -2.35 1.48 -2.85 0.13 0.96 1.96 1.85 

Grid-A7 -0.38 -1.39 -2.52 1.84 -3.94 0.12 1.57 2.30 2.12 

Grid-A8 -0.38 -1.42 -1.91 1.43 -2.86 0.12 1.57 2.30 2.12 

Grid-A9 -0.22 -1.19 -2.52 1.84 -3.94 0.26 0.64 1.44 1.44 

Grid-A10 -0.30 -1.21 -2.26 1.64 -3.50 0.43 0.79 1.70 1.86 

Grid-A11 -0.37 -1.52 -2.35 1.74 -3.54 0.50 0.86 1.57 2.17 

Grid-A12 -0.37 -1.52 -1.97 1.42 -3.54 0.50 0.86 1.57 2.17 

Grid-A13 -0.34 -0.89 -1.97 1.32 -3.44 0.04 1.36 0.68 1.30 

Grid-A14 -0.39 -0.93 -2.21 1.87 -3.07 0.11 1.22 0.87 1.52 

Grid-A15 -0.53 -0.83 -2.30 1.87 -3.31 0.18 1.22 0.87 1.78 

Grid-A16 -0.53 -0.83 -2.30 1.87 -3.31 0.18 1.22 0.87 1.78 

Grid-A17 -0.49 -0.88 -2.07 1.23 -2.33 -0.40 1.85 0.15 1.26 

Grid-A18 -0.48 -0.85 -2.01 1.32 -2.84 -0.15 2.47 0.15 1.45 

Grid-A19 -0.57 -0.94 -4.20 1.55 -2.53 -0.09 2.23 0.23 1.75 

Grid-A20 -0.56 -1.05 -2.49 1.36 -3.15 -0.29 1.72 0.05 1.19 

Grid-A21 -0.74 -1.02 -1.91 1.60 -2.64 -0.32 1.91 0.05 1.47 

Grid-A22 -0.77 -0.72 -4.64 1.76 -2.49 -0.56 1.63 0.05 1.70 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Table 4.6 ROC for temperature extreme indices over the Kharun watershed (1951-2014). 

Indices TX10P TX90P TN10P TN90P TR SU WSDI CSDI DTR 

Grid-A1 -3.6 -26.3 -23 18.6 -33.9 0.6 22.5 0 6 

Grid-A2 0 -24.4 -27.2 20.7 -36.4 0 30.6 0 4.9 

Grid-A3 -4.1 -25.5 -29.3 20.9 -39.4 0 37.3 0 5.2 

Grid-A4 -4.1 -25.5 -29.3 20.9 -39.4 0 37.3 0 5.2 

Grid-A5 0 -25.5 -24.4 20.9 -28.8 0 21.6 0 4.3 

Grid-A6 0 -23.5 -27.7 21.9 -35.7 0 20.3 0 4.7 

Grid-A7 -5.3 -23.4 -28.5 24.7 -41.6 0 36.4 0 5.2 

Grid-A8 -5.3 -21.3 -22 20.4 -27.2 0 36.4 0 5.2 

Grid-A9 0 -21.2 -28.5 24.7 -41.6 0 15.6 0 4.2 

Grid-A10 -3.3 -21.1 -27.8 24.2 -34.9 1.3 16.9 0 4.8 

Grid-A11 -5.7 -22.6 -27 26 -40.9 1.3 17.2 0 5.4 

Grid-A12 -5.7 -22.6 -22 20.5 -40.9 1.3 17.2 0 5.4 

Grid-A13 0 -21.3 -22 20.3 -25.1 0 14.3 0 3.9 

Grid-A14 -3.6 -19.1 -27.5 28 -31 0 26.3 0 4.6 

Grid-A15 -5.9 -20.3 -31.5 28 -37.6 0 25.8 0 5.1 

Grid-A16 -5.9 -20.3 -31.5 28 -37.6 0 25.8 0 5.1 

Grid-A17 -5.6 -20.2 -25.5 18.1 -20.8 0 23.6 0 3.6 

Grid-A18 -6.9 -18.6 -28.2 22.9 -27.7 0 27.2 0 4.2 

Grid-A19 -8.5 -19.3 -32.9 31.4 -36 0 24.4 0 4.8 

Grid-A20 -7.9 -20.4 -27.4 25.8 -16.3 0 14 0 3.4 

Grid-A21 -11.1 -25 -29.6 28.7 -23.8 -1.5 19.9 0 4.2 

Grid-A22 -9.4 -21.4 -35.4 34.1 -35 -3 16.4 0 4.9 

Where ROC is the rate of change. 

Figures in bold specify values with significant trend statistics at a 5% significance level. 
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Table 4.7 MMK statistics (Z) of precipitation extreme indices over the Kharun watershed (1901-2015). 

Indices RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

Grid-A1 -0.65 -0.27 -2.56 -2.25 -2.11 -2.05 0.09 1.99 -0.84 1.96 -1.06 -2.49 -2.25 -0.14 

Grid-A2 -1.29 -0.86 -3.50 -3.56 -2.18 -3.00 -1.09 2.46 -3.55 0.22 -2.00 -2.36 -2.58 -0.69 

Grid-A3 -1.32 0.37 -2.26 -3.29 -2.86 -3.16 2.95 0.45 0.78 1.77 1.06 -2.89 -2.44 -1.11 

Grid-A4 -0.01 0.47 -2.10 -0.24 0.34 1.77 -1.64 1.98 -4.65 -3.35 -3.97 0.02 0.74 -0.28 

Grid-A5 1.59 1.72 -1.21 1.13 1.52 3.93 -3.51 3.51 -2.46 -2.12 -3.06 0.44 1.32 0.57 

Grid-A6 2.99 2.88 0.12 2.20 2.68 3.86 -3.50 3.29 -6.63 -7.35 -4.73 1.67 3.81 0.62 

Grid-A7 0.06 0.17 -2.81 -0.57 0.36 -0.18 -1.71 2.52 -3.01 -1.98 -4.31 -0.39 0.05 0.04 

Grid-A8 1.99 0.29 -2.05 -0.39 1.17 -0.07 -1.39 1.58 -2.64 -1.86 -3.42 -0.82 -0.06 0.51 

Grid-A9 -0.39 0.56 -1.42 -1.51 -1.21 -1.48 1.61 -0.68 -1.39 0.05 -0.52 -1.98 -0.60 -0.31 

Grid-A10 0.38 0.27 -2.88 -1.19 -0.42 -1.09 0.74 2.61 -2.08 0.30 -2.13 -1.28 -1.64 -0.34 

Grid-A11 -1.52 -0.01 -1.69 -0.94 -0.79 -1.00 1.05 0.05 -0.71 0.98 -1.27 -1.34 0.09 -0.24 

Grid-A12 -0.56 -0.48 -2.25 -1.61 -1.02 -0.86 -2.30 1.74 -2.97 -0.89 -2.41 -1.83 -1.74 -0.10 

Grid-A13 0.64 0.04 -1.96 -1.05 0.07 0.20 -1.32 1.68 -2.63 -0.64 -2.88 -2.12 -0.72 0.47 

Grid-A14 0.56 0.25 -2.28 -0.59 0.13 0.80 -1.53 2.49 -4.69 -2.29 -3.32 -1.65 -0.03 0.20 

Grid-A15 -0.96 -1.53 -3.26 -2.67 -1.92 0.80 -2.15 1.47 -8.68 -2.63 -3.55 -2.57 -1.18 -0.73 

Grid-A16 -1.40 -1.16 -3.66 -2.57 -1.53 -1.72 -1.32 1.18 -4.21 -1.29 -2.28 -3.28 -0.28 -1.23 

Grid-A17 -1.79 -2.33 -4.69 -3.29 -2.67 -2.24 -1.07 -0.17 -3.63 -0.05 -1.94 -3.59 -0.93 -1.27 

Grid-A18 -1.50 -1.72 -5.49 -1.72 -1.03 -0.40 -2.67 2.52 -5.96 -2.69 -3.24 -2.35 -1.02 -0.25 

Grid-A19 -2.39 -2.69 -4.03 -3.16 -3.08 -2.57 -1.69 2.43 -2.84 -1.17 -1.92 -1.60 -4.86 -0.14 

Grid-A20 -1.87 -2.28 -3.31 -2.20 -2.47 -1.10 0.86 2.67 -4.17 -2.81 -3.36 -1.53 -2.05 -0.35 

Grid-A21 -1.47 -0.84 -2.85 -2.43 -1.71 -1.81 0.86 2.67 -4.18 -4.08 -1.83 -2.96 -0.62 -1.01 

Grid-A22 -0.99 -0.58 -3.07 -1.73 -1.23 -1.03 -0.77 2.76 -4.97 -2.75 -3.79 -2.19 -0.13 -0.59 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Table 4.8 ROC for precipitation extreme indices over the Kharun watershed (1901-2015). 

Indices RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

Grid-A1 -6.5 -2 -17.4 -15.8 -8.8 -12 0 17.1 -3.9 11.1 -6.2 -23.4 0 0 

Grid-A2 -12.1 -7.5 -27.3 -21.7 -15.3 -13.7 0 20.7 -14.8 0 -15.6 -19 0 0 

Grid-A3 -16.2 4 -16.5 -23 -20.6 -26.8 27.1 5.1 9.4 30.9 11.8 -44.3 0 0 

Grid-A4 -0.2 4.4 -12.7 -1.2 2.4 7.3 0 17.5 -22.3 -22.2 -24.3 0 0 0 

Grid-A5 17.2 15.6 -9.3 8.3 17.4 18.1 -40.8 30.9 -28 -37.4 -30.7 0 0 0 

Grid-A6 26.7 24.1 1 19.5 24.9 35.6 -28.6 30.2 -30.6 -57 -31.7 20.3 67.2 0 

Grid-A7 0.7 1.7 -15.2 -4 3.1 -1 0 22.8 -16 -13.2 -22.3 0 0 0 

Grid-A8 17.5 2.1 -15.7 -2.8 8.6 -0.5 -13.9 9.2 -16.4 -8.9 -22.5 0 0 0 

Grid-A9 -5.9 5 -10.7 -10.3 -9.4 -7.3 0 -4.8 -4.9 0 0 0 0 0 

Grid-A10 4.2 2.3 -18.4 -9.3 -3.4 -7.3 0 9.7 -11 0 -16.5 0 0 0 

Grid-A11 -14 -0.1 -12 -7.6 -6.9 -6.3 0 0 -3 8 -6.3 0 0 0 

Grid-A12 -5.5 -5.8 -20.4 -13 -10.3 -6.4 -30.2 12.6 -16.8 -6.1 -17 -19.2 0 0 

Grid-A13 8.2 0.5 -18.6 -8.6 0.9 1.1 -13.6 18.7 -15.2 -5 -23 -21 0 0 

Grid-A14 7.1 1.6 -17.7 -4.9 1.7 5.3 -12.9 22.6 -19.9 -21.8 -23.7 -18.2 0 0 

Grid-A15 -13.1 -15.1 -33.2 -23.4 -16.8 5.3 -13.9 12.5 -21.8 -15.4 -22.4 -29.5 0 0 

Grid-A16 -19.8 -12.7 -28.6 -19.4 -16.1 -12.6 0 9.5 -18.5 -11.5 -17 -40.8 0 0 

Grid-A17 -33.8 -23 -30.5 -25.9 -27.7 -18.2 0 0 -16.9 0 -12.8 -49.8 0 0 

Grid-A18 -21.8 -19.1 -26.8 -14.6 -11.8 -2.4 -25 20.6 -27.6 -25.9 -26.9 -31.8 0 0 

Grid-A19 -43 -24.7 -33.8 -29.5 -37.5 -18.4 0 16 -15.1 -6.9 -12.8 0 89.4 0 

Grid-A20 -29.9 -23.8 -31.2 -19.8 -29.1 -7.6 0 20.6 -23.4 -25.1 -16.3 0 0 0 

Grid-A21 -28.1 -11.6 -29.5 -26.4 -25.9 -16.4 0 20.6 -15.8 -6.7 -12.4 -47.6 0 0 

Grid-A22 -13.6 -8 -27.3 -18 -13.4 -6.7 0 30.4 -23.3 -18.1 -24 -27.9 0 0 

Where, ROC is the rate of change. 

Figures in bold specify values with significant trend statistics at a 5% significance level. 
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Figure 4.9 Spatial distribution plot of MMK test for all the indices between 1901-2015  

(for precipitation) and 1951-2014 (for temperature). 

 

 

 

‘Z’ values 



76 | P a g e  

 

After the computation of MMK trend statistics for indices derived from precipitation, the longtime 

series of precipitation was divided into two independent time series based on the computed shift year 

(the year 1958), as discussed in section 4.3.3. MMK test statistics and their respective ROC were 

computed for the indices obtained using precipitation data (both before and after the shift).  

The results for MMK and ROC before the shift period are represented in Tables 4.9 and 4.10, 

respectively. Very few grids showed a significantly increasing trend for Indices RX1day, RX5day, 

R95TOT, R99TOT, SDII, and RH with maximum ROC of 33.8, 36.4, 24.1, 20.47 and 70% 

respectively. Few of the grids showed a significantly decreasing trend for CWD, RW, RL, and RM 

with maximum ROC of -28.8, -23.98, -34.92, and -34.13%, respectively. Only one grid exhibited a 

significantly increasing trend for PRCPTOT and a decreasing trend for index CDD, with maximum 

ROC of 20.14 and -25.23%, respectively, while RRH and RVH did not show any significant trend 

for any grid. 

 For the results of MMK and ROC after the shift period, represented in Tables 4.11 and 4.12 

respectively, very few grids showed significantly increasing trend for RX1day, RX5day, R99TOT, 

CDD and RH with maximum ROC of 41.4%, 33.2, 35.5, 36.6 and 88%.  Index PRCPTOT, SDII, 

CWD, RW, RM showed a significantly decreasing trend for few grids, with maximum ROC of -

33.88, -23.1, -40.19, -27.7 and -37.8 % respectively. At very few grids significantly decreasing trend 

was observed for R95PTOT, CWD and RRH, while a significantly increasing trend was observed 

for CDD, with maximum ROC of -31.82, -40.19, -60 and 36.6% respectively.  As for the index 

RVH, one grid exhibited a significant trend, but the ROC was non-measurable.
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Figure 4.10 Linear trends for pre-defined extreme value indices of long term precipitation 

series, both before and after shift (the year 1958). 

 



78 | P a g e  

 

 
Figure 4.11 Linear trends for proposed extreme value indices of long term precipitation 

series, both before and after shift (the year 1958). 
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Table 4.9 MMK statistics (Z) of precipitation extreme indices over the Kharun watershed before shift (1901-1958). 

Indices RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

Grid-A1 3.03 2.60 0.90 0.76 1.64 1.00 -0.22 -0.85 0.14 0.48 0.54 0.35 -0.34 1.29 

Grid-A2 0.92 1.91 0.20 0.12 0.73 -0.06 0.35 -0.44 0.68 1.06 0.24 0.40 -0.58 -0.01 

Grid-A3 1.73 2.46 1.18 1.03 1.21 -1.16 2.11 -2.08 1.84 1.92 1.07 -0.30 0.00 1.26 

Grid-A4 -0.41 0.83 1.47 1.72 0.85 3.30 0.07 -0.20 -1.58 -2.39 -1.07 1.60 1.65 -0.08 

Grid-A5 2.47 3.31 0.40 2.23 3.09 2.84 -1.98 0.46 -3.43 -3.70 -2.67 0.63 3.19 0.06 

Grid-A6 1.36 1.69 0.65 1.15 1.19 1.84 -1.07 0.55 -1.52 -2.81 -0.76 0.49 1.28 -0.01 

Grid-A7 -1.00 0.31 -0.76 -0.76 -1.02 -1.68 -0.09 0.00 0.71 -2.62 -1.25 -0.31 -0.56 -0.15 

Grid-A8 -0.82 0.59 -0.50 -0.50 -0.41 -1.50 -0.38 -0.32 1.08 3.68 -0.52 -0.04 -0.50 -0.13 

Grid-A9 -0.32 1.19 1.61 0.84 0.05 0.62 2.52 -1.28 1.06 0.03 1.89 -0.64 1.57 -0.18 

Grid-A10 1.93 1.38 1.60 1.92 1.52 1.83 0.13 0.00 0.09 0.36 -0.81 0.36 1.10 0.90 

Grid-A11 1.04 -0.26 0.78 0.32 0.37 1.27 -0.24 -0.36 -0.33 -2.12 1.56 0.46 0.47 0.68 

Grid-A12 1.54 0.95 0.53 0.99 1.56 1.30 -1.78 -0.45 -1.40 -0.91 -1.53 0.43 1.23 0.29 

Grid-A13 1.36 1.15 0.93 0.60 0.99 0.49 0.17 -0.43 1.40 0.99 0.77 1.16 -0.10 1.11 

Grid-A14 2.01 1.13 1.33 1.24 1.32 3.29 -0.67 -1.32 0.81 1.11 -0.07 0.68 0.27 1.34 

Grid-A15 1.98 1.35 0.54 1.33 1.50 3.29 -3.02 -1.13 -0.64 -1.17 -0.69 -0.55 3.12 1.26 

Grid-A16 -0.09 1.65 1.00 0.97 0.81 0.17 0.40 -0.87 0.54 0.88 -0.57 -0.47 1.66 0.37 

Grid-A17 1.21 1.71 0.30 2.02 1.39 1.97 -2.22 -0.42 -3.00 -1.23 -2.71 -0.18 2.79 0.02 

Grid-A18 1.17 1.20 -1.10 1.13 2.01 2.16 -1.95 -0.76 -3.22 -2.16 -3.88 -0.82 1.09 0.49 

Grid-A19 0.28 2.10 1.29 2.01 0.58 1.18 -0.01 -1.34 0.68 -0.26 0.70 0.90 0.87 0.92 

Grid-A20 1.17 2.57 2.27 2.78 1.43 3.08 0.95 -0.63 -0.16 -1.54 -0.11 1.22 2.81 0.57 

Grid-A21 0.34 1.99 1.46 1.40 0.70 0.83 0.95 -0.63 -0.55 0.34 -0.29 0.48 2.34 -0.48 

Grid-A22 0.91 1.31 0.63 1.31 1.07 1.58 0.12 0.25 -1.07 -0.80 -1.00 1.07 0.65 0.79 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Table 4.10 ROC of precipitation extreme indices over the Kharun watershed before shift (1901-1958). 

Indices RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

Grid-A1 26.67 21.63 7.65 8.36 12.92 7.53 0.00 -12.53 0.00 0.00 3.47 0.00 0.00 0.00 

Grid-A2 12.11 18.55 1.44 2.02 3.57 -0.49 0.00 -5.56 3.97 13.44 0.00 0.00 0.00 0.00 

Grid-A3 20.72 25.96 10.73 6.20 11.48 -11.72 18.24 -25.23 21.74 48.71 12.07 0.00 0.00 0.00 

Grid-A4 -5.16 11.93 7.52 9.85 9.80 16.36 0.00 -2.50 -9.58 -23.96 -8.32 27.56 0.00 0.00 

Grid-A5 26.99 31.32 3.38 20.06 30.27 20.47 -28.84 2.76 -23.93 -34.92 -26.14 0.00 87.06 0.00 

Grid-A6 20.62 21.45 5.31 10.52 11.86 12.52 -12.35 5.17 -9.84 -24.48 -5.63 0.00 0.00 0.00 

Grid-A7 -15.04 4.24 -6.27 -7.18 -8.65 -11.42 0.00 0.00 4.83 19.34 -6.97 0.00 0.00 0.00 

Grid-A8 -13.21 6.77 -3.37 -4.51 -4.75 -11.43 0.00 -3.51 4.76 20.92 0.00 0.00 0.00 0.00 

Grid-A9 -8.62 15.34 9.19 5.28 0.92 4.65 22.55 -17.67 4.27 0.00 8.72 0.00 38.47 0.00 

Grid-A10 28.52 17.94 7.21 11.53 16.01 10.77 0.00 0.00 0.00 0.00 -4.93 0.00 0.00 0.00 

Grid-A11 9.11 -2.93 7.00 1.70 3.74 9.15 0.00 -5.02 0.00 -16.50 11.40 0.00 0.00 0.00 

Grid-A12 20.18 12.92 3.91 11.49 16.04 12.61 -23.82 -5.45 -10.16 -8.05 -11.84 0.00 0.00 0.00 

Grid-A13 23.87 16.81 8.86 5.97 12.51 3.65 0.00 -3.94 7.66 11.55 9.26 0.00 0.00 0.00 

Grid-A14 33.83 15.14 10.17 12.65 19.17 8.69 0.00 -10.74 3.94 8.75 0.00 0.00 0.00 0.00 

Grid-A15 32.26 17.41 5.61 13.81 19.44 8.69 -14.83 -15.20 -3.04 -9.80 -6.71 0.00 0.00 0.00 

Grid-A16 -2.13 22.84 8.05 9.66 10.82 1.34 0.00 -11.22 2.59 12.34 0.00 0.00 0.00 0.00 

Grid-A17 19.38 23.01 1.99 15.09 18.38 14.43 -28.37 -5.47 -16.42 -12.40 -25.11 0.00 72.50 0.00 

Grid-A18 17.74 15.02 -7.43 11.29 19.19 14.21 -23.74 -9.52 -21.65 -18.02 -34.13 0.00 0.00 0.00 

Grid-A19 3.68 27.80 11.23 8.62 5.61 7.99 0.00 -15.47 4.23 0.00 4.61 0.00 0.00 0.00 

Grid-A20 18.05 36.37 20.14 24.12 15.34 18.39 0.00 -6.86 0.00 -10.69 0.00 19.72 70.01 0.00 

Grid-A21 6.90 25.19 10.06 10.90 11.90 7.69 0.00 -6.86 -2.10 0.00 0.00 0.00 0.00 0.00 

Grid-A22 12.86 18.67 5.87 12.87 12.20 9.68 0.00 2.13 -7.35 -5.55 -7.64 18.37 0.00 0.00 

Where, ROC is the rate of change. 

Figures in bold specify values with significant trend statistics at a 5% significance level. 
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Table 4.11 MMK statistics (Z) of precipitation extreme indices over the Kharun watershed after shift (1958-2015). 

Indices RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

Grid-A1 -0.07 -0.11 -1.29 -0.64 0.11 -1.56 0.20 -0.13 0.06 2.35 -0.66 -1.44 -0.22 0.26 

Grid-A2 -0.08 -0.16 -1.73 -0.90 -0.47 -1.56 0.32 -0.84 -1.27 1.97 -1.60 -0.80 -0.42 -0.28 

Grid-A3 0.37 0.75 -0.31 -1.66 -0.91 -2.33 1.14 -0.94 1.30 1.28 2.54 -3.32 -0.79 -0.39 

Grid-A4 0.06 1.18 -0.34 -0.24 0.56 -0.18 0.72 0.13 -0.62 1.29 -0.49 -0.57 0.42 -0.14 

Grid-A5 -0.36 1.01 0.93 0.16 -0.65 -0.91 1.36 0.07 1.60 1.67 1.16 0.56 -1.70 0.30 

Grid-A6 3.51 3.18 0.92 1.76 2.09 2.35 -1.17 1.47 -1.71 -3.07 -1.79 0.53 3.19 0.41 

Grid-A7 1.36 1.23 0.17 1.26 1.72 1.60 -0.26 0.49 -1.76 -1.27 -1.92 0.01 1.15 0.32 

Grid-A8 1.49 0.91 0.58 1.15 1.11 1.02 0.45 -0.04 -0.87 -0.03 -1.40 0.36 -0.44 1.03 

Grid-A9 2.36 2.11 0.09 0.47 1.37 0.59 -0.61 0.14 -1.28 -1.12 0.22 -0.73 -0.74 1.11 

Grid-A10 0.64 0.00 -2.31 -1.93 -1.03 -2.21 -0.45 -1.06 -1.29 0.50 -0.30 -2.22 -2.28 -0.62 

Grid-A11 1.06 1.15 -1.44 0.09 0.72 -0.22 -0.15 -1.62 -0.99 0.55 -2.30 -0.58 0.27 1.00 

Grid-A12 0.19 0.56 -0.94 -0.34 0.15 -1.22 -0.44 -0.89 0.00 3.28 -1.10 -0.03 0.13 -0.07 

Grid-A13 2.11 1.33 -1.03 0.89 2.43 2.02 -1.63 3.98 -6.96 -2.90 -19.58 0.01 1.05 0.61 

Grid-A14 3.58 3.05 -1.30 0.63 2.43 1.69 -0.82 2.23 -4.92 -2.33 -4.30 -1.08 0.77 0.71 

Grid-A15 0.51 -0.46 -2.01 -1.60 -0.28 1.69 -1.72 -0.01 -2.52 -0.62 -2.06 -1.32 -0.78 0.76 

Grid-A16 2.86 1.42 -0.42 0.55 1.77 1.09 -3.00 0.30 -2.16 -1.67 -1.64 -0.97 0.30 1.96 

Grid-A17 -0.25 -0.93 -2.04 -1.62 -0.93 -1.58 0.19 -0.08 -2.01 0.12 -1.71 -1.78 -1.82 1.37 

Grid-A18 -1.10 -1.31 -3.98 -2.68 -1.27 -2.27 -0.07 0.22 -0.95 0.92 0.19 -2.11 -1.53 -0.32 

Grid-A19 0.90 -0.53 -1.33 -0.18 0.60 -0.19 -1.30 0.26 -1.71 -0.06 -2.72 0.24 -1.53 1.07 

Grid-A20 0.30 -1.36 -1.56 -0.04 0.16 0.34 -2.44 1.03 -2.22 -1.59 -2.99 -1.04 -0.11 0.12 

Grid-A21 0.81 1.09 -0.43 0.62 1.02 0.70 -2.44 1.03 -1.88 -1.46 -1.41 -0.26 1.55 2.07 

Grid-A22 1.33 0.82 -0.32 0.52 1.36 0.60 -0.91 0.60 -1.89 -0.63 -1.61 -0.35 2.43 1.05 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Table 4.12 ROC of precipitation extreme indices over the Kharun watershed after shift (1958-2015). 

Indices RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

Grid-A1 -0.89 -1.06 -10.56 -6.62 1.34 -11.99 0.00 -1.41 0.00 18.96 -6.25 -23.45 0.00 0.00 

Grid-A2 -1.28 -2.87 -12.57 -10.14 -7.73 -12.15 0.00 -12.35 -8.02 19.07 -20.16 0.00 0.00 0.00 

Grid-A3 5.65 9.72 -4.18 -19.46 -8.85 -23.00 0.00 -21.33 18.99 29.95 31.81 -60.02 0.00 0.00 

Grid-A4 1.57 17.87 -5.10 -1.54 4.89 -0.93 0.00 1.40 -4.58 0.00 -4.48 0.00 0.00 0.00 

Grid-A5 -3.67 13.15 13.02 2.22 -7.42 -7.16 21.32 0.00 17.29 24.81 13.32 0.00 0.00 0.00 

Grid-A6 39.43 28.46 14.34 25.28 35.56 32.11 0.00 17.45 -16.01 -31.41 -22.40 0.00 88.95 0.00 

Grid-A7 18.90 14.98 2.41 14.13 16.60 13.27 0.00 6.09 -13.62 -13.48 -17.05 0.00 0.00 0.00 

Grid-A8 22.77 11.21 7.71 12.75 14.56 9.07 0.00 0.00 -6.68 0.00 -13.96 0.00 0.00 0.00 

Grid-A9 32.70 33.19 1.15 5.54 16.07 5.94 0.00 1.81 -8.76 -10.69 0.00 0.00 0.00 0.00 

Grid-A10 7.98 -0.12 -30.71 -23.75 -14.69 -21.72 0.00 -8.60 -11.05 0.00 0.00 -53.01 0.00 0.00 

Grid-A11 17.02 18.22 -9.93 0.65 9.56 -1.22 0.00 -15.77 -7.90 4.37 -16.28 0.00 0.00 0.00 

Grid-A12 3.14 10.09 -11.65 -3.66 1.91 -10.63 0.00 -12.45 0.00 21.58 -12.76 0.00 0.00 0.00 

Grid-A13 36.64 22.71 -11.71 10.11 31.71 16.92 -26.35 36.60 -27.70 -29.97 -37.80 0.00 0.00 0.00 

Grid-A14 41.45 32.48 -17.08 6.21 29.05 14.17 0.00 30.29 -26.60 -25.34 -33.40 -18.78 0.00 0.00 

Grid-A15 10.26 -6.00 -32.92 -20.64 -2.92 14.17 -25.62 0.00 -21.91 -5.22 -27.07 -28.44 0.00 0.00 

Grid-A16 39.65 30.22 -6.65 4.88 19.73 9.82 -21.99 2.27 -17.17 -20.44 -17.11 0.00 0.00 0.00 

Grid-A17 -4.08 -10.75 -28.37 -19.57 -16.55 -14.30 0.00 0.00 -17.23 0.00 -17.85 -34.44 0.00 0.00 

Grid-A18 -24.97 -25.09 -33.88 -31.82 -24.13 -20.38 0.00 2.03 -10.73 14.23 0.00 -55.29 0.00 0.00 

Grid-A19 12.85 -7.67 -19.73 -2.25 9.15 -1.79 -19.62 3.27 -18.51 0.00 -32.01 0.00 0.00 0.00 

Grid-A20 3.49 -20.52 -18.83 -0.99 2.27 3.77 -40.19 13.82 -22.27 -18.92 -18.94 0.00 0.00 0.00 

Grid-A21 22.01 28.99 -7.38 12.26 25.99 10.99 -40.19 13.82 -18.57 -14.05 -22.15 0.00 0.00 0.00 

Grid-A22 29.31 17.03 -5.58 8.54 22.37 5.71 -14.00 9.82 -13.58 -7.46 -20.32 0.00 0.00 0.00 

Where, ROC is the rate of change. 

Figures in bold specify values with significant trend statistics at a 5% significance level. 

 

 



83 | P a g e  

 

Significant negative trends were observed in minimum temperature (TN) over the study area, 

accompanied by an increasing trend maximum temperature (TX), as shown in Table 4.13. It can also 

be inferred that the average yearly maximum temperature increased by 0.15⁰C over 64 years  

(1951-2014). An increase in average maximum temperature was observed during summer (0.19⁰C), 

post-monsoon (0.21⁰C), and winter (0.61⁰C) seasons. Significant reduction in average yearly 

minimum temperature (-0.68⁰C) was observed over the study area, a similar reduction in average 

minimum temperature during summer (-0.39⁰C), monsoon (-0.60⁰C) and post-monsoon  

(-0.32⁰C) season. The most significant reduction in average minimum temperature was seen during 

the winter season (-1.10⁰C). Similar trends were also observed in case of averaged mean temperature 

with the reduction in averaged mean temperature for all the seasons. It further supports the argument 

of global warming (Linden 2007; Sun et al. 2016) with a more precise explanation that the days are 

getting hotter and the nights are getting colder. Various studies around the world have also supported 

such arguments (Alexander et al. 2006; Marengo et al. 2010; Sun et al. 2016).  

The effects of these anomalies in long term temperature trends can be subsequently seen over 

precipitation. The annual precipitation seems to be decreasing over the study area by almost 210 mm 

over 115 years. Since the monsoon season receives a significant share of rainfall (almost 90-95%) 

annually, the significant effect of this change can be seen in monsoon season as one of the grids 

showed a reduction of almost 222 mm of rainfall during the monsoon season during the entire study 

period. Similar trends were also seen for summer (16.85 mm), post-monsoon (3.26 mm), and winter 

(2.69 mm). 
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Table 4.13 Results of Z, p-value, β, and ROC of TX, TN, TXN, and PCP over the study area. 

 Parameters Seasons  Z p-value Sen's slope (β) ROC (%) Magnitude 

TX 

Yearly 0.46 0.64 0.00 0.46 0.15 

Summer 0.62 0.54 0.00 0.49 0.19 

Monsoon -0.69 0.49 0.00 -0.53 -0.17 

Post-monsoon 0.37 0.71 0.00 0.70 0.21 

Winter 1.11 0.27 0.01 2.18 0.61 

TN 

Yearly -4.61 0.01 -0.01 -3.41 -1.10 

Summer -1.59 0.11 -0.01 -1.74 -0.56 

Monsoon -4.38 0.00 -0.01 -2.51 -0.81 

Post-monsoon -1.06 0.29 -0.01 -1.80 -0.58 

Winter -3.69 0.01 -0.02 -8.66 -2.80 

TXN 

Yearly -2.15 0.03 -0.01 -1.23 -0.40 

Summer -1.12 0.26 0.00 -0.96 -0.31 

Monsoon -2.10 0.04 -0.01 -1.43 -0.46 

Post-monsoon 0.15 0.88 0.00 0.42 0.14 

Winter -0.80 0.42 0.00 -1.41 -0.45 

PCP 

Yearly -2.79 0.01 -3.06 -16.76 -5.42 

Summer -2.21 0.03 -0.32 -56.15 -18.15 

Monsoon -2.68 0.01 -3.36 -21.57 -6.97 

Post-monsoon -1.85 0.06 -0.05 -5.93 -1.92 

Winter -1.52 0.13 -0.03 -9.97 -3.22 

Where Z is the MMK trend statistics, β is the Sen’s slope, 

Figures in bold specify significant values at 95% confidence (5% significance) level. 

Significant negative trends were observed in the case of index TN10P, TR, PRCPTOT, RW, RL, 

RM, RRH, and RH for the entire study period (Table 4.14). From these results, it can be inferred 

that there is a reduction in the percentage of cool nights (-27.3%), which explains that even though 

the minimum temperature in the region has decreased, the number of days with lesser temperatures 

has reduced. The number of tropical nights (TR) in a year has also reduced significantly (-33.9%). 

It seems to reduce with an average rate of 4.20 days/decade. Also, the gap between the minimum 

and maximum temperature seems to be increasing over the study period at an average rate of  

0.09⁰C/decade (4.6%), which explains the increasing trend in the Diurnal Temperature Range 

(DTR). It further supports the argument of global warming (IPCC 2007b; Sun et al. 2016) with a 

more precise explanation that the days are getting hotter, and the nights are getting colder, but 

overall, there is an increase in the mean temperature. The annual precipitation seems to be decreasing 

over the study area along with the reduction in annual total wet day precipitation, almost 242 mm  

(-20.2%) over 115 years. The number of wet days and extremely wet days have also reduced by  
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-17.1 (1 day/decade) and -4.5% (1.18 days/decade), respectively. It was also observed that there was 

reduction observed in the number of light rainy days (-10.2%), moderate rainy days (-17.8%), rather 

heavy and heavy rainy days (-25.5 and -18.4%). The number of cumulative dry days in the study 

area has increased by 19.5%, which in itself explains the reduction in rainy days. As the trend 

statistics of temperature and precipitation extremes tend to get severe after shift (as discussed in the 

results above), the phenomenon due to the variation in these extreme indices will have a more 

adverse effect on the study area. 

Table 4.14 Results of Z, p-value, β, and ROC of all the indices over the study area. 

Indices Z p-value β ROC (%) 
Overall 

change 

Decadal 

change 

TX10P (%) -0.42 0.67 -0.03 -5.9 -2.21 -0.35 

TX90P (%) -1.15 0.25 -0.14 -24.0 -9.02 -1.41 

TN10P (%) -2.43 0.02 -0.15 -27.3 -9.89 -1.55 

TN90P (%) 1.58 0.12 0.13 22.9 8.48 1.32 

TR (days) -3.32 0.00 -0.42 -33.9 -26.91 -4.20 

SU (days) 0.26 0.79 0.01 0.8 0.69 0.11 

WSDI(days) 1.27 0.20 0.06 26.5 3.86 0.60 

CSDI (days) 0.62 0.53 0.00 0.0 0.00 0.00 

DTR (⁰C) 1.82 0.07 0.01 4.6 0.57 0.09 

RX1day (mm) -0.70 0.48 -0.06 -6.2 -6.61 -0.57 

RX5day (mm) -0.16 0.87 -0.02 -1.0 -1.75 -0.15 

PRCPTOT (mm) -3.01 0.00 -2.11 -20.2 -242.22 -21.06 

R95PTOT (mm) -1.76 0.08 -0.76 -11.3 -87.48 -7.61 

R99PTOT (mm) -0.78 0.43 -0.12 -4.5 -13.59 -1.18 

SDII (days) -0.96 0.34 -0.01 -4.3 -0.75 -0.07 

CWD (days) -1.42 0.15 -0.01 -11.9 -1.10 -0.10 

CDD (days) 3.36 0.00 0.16 19.5 17.97 1.56 

RW (days) -3.5  0.00 -0.10 -17.1 -11.76 -1.02 

RL (days) -5.47 0.00 -0.02 -10.2 -2.61 -0.23 

RM (days) -3.12 0.00 -0.05 -17.8 -5.96 -0.52 

RRH (days) -2.65 0.01 -0.01 -25.5 -1.53 -0.13 

RH (days) -1.72 0.09 0.00 -18.4 -0.39 -0.03 

RVH (days) -0.48 0.63 0.00 0.0 0.00 0.00 

Where Z is the MMK trend statistics, β is the Sen’s slope, 

Figures in bold specify significant values at 95% confidence (5% significance) level 
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4.4 CONCLUDING REMARKS 

The ecosystem and landscape change mainly influence long term changes in meteorological 

distribution. However, changes in precipitation rate and temperature are the main causes of climate 

change, which drastically varies the flow in the river. For the planning and management of water 

resources, it is quite essential to understand the distribution and variability of meteorological 

parameters. 

Trend analysis is one of the most significant tools to analyze the global warming problem that 

quantifies the past and future changes in meteorological, hydro-climatological parameters. In this 

chapter, trend detection has been carried out for long term temperature (maximum, minimum, and 

mean) and precipitation data by applying regression analysis, MMK test, and the magnitude of 

change has been found out using Sen’s slope estimator over 22 grids in and around the study area. 

Apart from finding the nature and extent of trend (using MMK and Sen’s method respectively), the 

magnitude of changes was also computed to quantify the change in terms of the respective units of 

the parameters. Similar statistics were also performed over 23 indices of meteorological extremes 

computed from long term precipitation and temperature time series, 18 extreme precipitation and 

temperature indices out of 27 developed by ETCCDMI (as discussed in section 4.1) were considered 

for the study. Additionally, five more indices were proposed in the study, which is based on the 

precipitation intensity indices suggested by IMD. Also, Cumulative sum (Cusum) and sequential 

Mann-Kendall (SQMK) test were applied to identify the climatic shift (change year) over the 

meteorological time series 

The significant findings of the study state that there is an increase in average maximum temperature 

during summer (0.19⁰C), post-monsoon (0.21⁰C), and winter (0.61⁰C) seasons. Significant reduction 

in average yearly minimum temperature (-0.68⁰C) was observed over the study area, similar 

reduction in average minimum temperature during summer (-0.39⁰C), monsoon (-0.60⁰C) and post-

monsoon (-0.32⁰C) season. The most significant reduction in average minimum temperature was 

seen during the winter season (-1.10⁰C). The annual precipitation seems to be decreasing over the 

study area by almost 210 mm over 115 years. Similar trends were also seen for summer (16.85 mm), 

post-monsoon (3.26 mm), and winter (2.69 mm). 

After the computation of long term variation in meteorological extremes, it can be inferred that the 

gap between the minimum and maximum temperature seems to be increasing over the study period 
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at an average rate of 0.09⁰C/decade (4.6%), which explains the increasing trend in Diurnal 

Temperature Range (DTR). This precisely explains the fact that the days are getting hotter, and the 

nights are getting colder and its effects can be seen over the rainfall intensities in the region. As per 

the results obtained, there was reduction observed in the number of light rainy days (-10.2%), 

moderate rainy days (-17.8%), rather heavy and heavy rainy days (-25.5 and -18.4%). The number 

of cumulative dry days in the study area has increased by 19.5%, which in itself explains the 

reduction in rainy days. As the trend statistics of temperature and precipitation extremes tend to get 

severe after shift (as discussed in the results above), the phenomenon due to the variation in these 

extreme indices will have a more adverse effect on the study area. 

The findings in this study provide a new understanding of extreme events trend evaluation that could 

probably the cause of flood and drought in the area. This will help in short or long term planning 

and development in water resources of the region. This information can also assist in managing the 

agriculture water supply and in updating the engineer and stakeholders for decision making.  
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CHAPTER 5 

CLIMATE MODELS AND FUTURE TREND ANALYSIS 

5.1 GENERAL 

Global Climate Models (GCMs) are based on numerical and physical principles aimed at 

reproducing the present and future meteorological parameters. It provides considerable confidence 

in producing future climate conditions by using the numerically coupled Atmospheric Ocean General 

Circulation Model (AOGCM) (Moss et al. 2010; Su et al. 2013). Several inter-comparison studies 

have been done between model outputs and observed data all over the world  (Perkins et al. 

2007; Errasti et al. 2011; Kodra et al. 2012; Fu et al. 2013a; Anandhi and Nanjundiah 2014). 

However, the GCMs output is very uncertain due to the initial condition, boundary condition, model 

structure, and emission (Ojha et al. 2012). The performance of 10 GCM models for simulating the 

summer monsoon rainfall variation over the Asian-western pacific region was assessed by  

Kang et al. (2002). Johnson and Sharma (2009) used a variable convergence score (VCS) 

methodology based on the coefficient of variation to evaluate the eight different variables from nine 

GCM outputs for two emission scenarios for Australia. Radić and Clarke (2011), evaluated 22 GCMs 

for North America using several statistical parameters. An evaluation has been carried out by 

comparing the model output with reanalysis data for the period 1980-99. 

Frei et al. (2003) investigated daily precipitation simulation for European Alps by using five regional 

climate models. There is a number of recent studies based on indices and probability density function 

(PDF) to identify the best model (Frei et al. 2003; Perkins et al. 2007; Radić and Clarke 2011; 

Ojha et al. 2013; Anandhi and Nanjundiah 2014; Parth Sarthi et al. 2015). Perkins et al. (2007) 

conducted a model evaluation for 12 regions in Australia using probability density function (PDFs). 

Evaluation of the model in the study area has been performed considering daily simulation data of 

maximum temperature, minimum temperature and precipitation. There are many approaches to 

compare the simulated or model output with observed values (when data are available) or reanalysis 

values (for poorly gauged regions with missing or no observed data). For impact studies of climate 

change, it is necessary to evaluate the model with observed datasets, and the model output should 

be close to the observed data.  
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The  resolution of the GCM’s is very coarse, even though there are methods to bring down the 

resolution of the GCM’s (like statistical and dynamic downscaling), in some cases synthetic time 

series of weather data have been produced using stochastic weather generator (Wang and Ding 2003; 

Dibike and Coulibaly 2005; Vallam and Qin 2017). However, even then, those methods are quite 

cumbersome and involve a high level of skill set and heavy types of machinery to process huge 

amounts of data. Hence, to address this anomaly Regional Climate Model (RCM) can be used, which 

is produced by dynamic downscaling of GCM data to simulate regional climate  

(Graham et al. 2007a; Kumar et al. 2013; Varikoden et al. 2018). These are various projects in 

existence which have been established to provide high-resolution regional climate change scenarios, 

which are specific to particular area, RCM’s are developed and produced by research institutes that 

are well capable of handling such big data and have sufficient computational capacity and technical 

expertise (Sanjay et al. 2017; Singh et al. 2017; Sanjay 2018; Varikoden et al. 2018). 

Before the application of RCM data, it needs to be corrected of all the errors, which is referred to as 

BIAS correction (Lafon et al. 2013; Duhan and Pandey 2015). There are eight different methods for 

BIAS correction of RCM data, such as linear scaling, quantile mapping, power transformation, 

distribution mapping etc. as suggested by Teutschbein and Seibert (2012). In this study, the RCM 

data have been corrected for all the systematic biases using the distribution mapping technique, based 

on the application of the technique adopted by many researchers in the past (Lafon et al. 2013; 

Bhavani et al. 2017). Apart from the process of selection of RCM data for the study, the trend 

analysis of future predicted data has been carried out in this chapter. The magnitude of the trend was 

found out using Modified Mann Kendall (MMK) and the magnitude of the change was quantified 

using Sen’s slope estimator. These test statistics were performed over the meteorological extreme 

indices, which have already been thoroughly discussed in the previous chapter. 

5.2 MATERIALS AND METHODS 

5.2.1 Description of the Study Area and Data Used 

Detail description of the study area and the data used for the study have been already discussed in 

Chapter 3. 
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5.2.2 Methodology 

Three different datasets, namely precipitation, minimum, and maximum temperature, were used to 

identify long term changes in the meteorological extremes for all the grids (22 in number) for the 

future (2011-2100). To identify the trend statistics for extremes values indices in question, first of 

all, linear regression was administered over various indices computed from precipitation (PCP), 

maximum temperature (TX), and minimum temperature (TN) time series (Sharma et al. 2016). To 

have a precise idea about the trend displayed by various indices, the Modified Mann Kendall test 

(MMK) was applied. Statistic Z (obtained by MMK) was tested for significance of trend at a 

threshold level of 1.96 for a positive trend and -1.96 for negative trends (5% significance level). The 

magnitude of trend statistics was quantified using Sen’s slope estimator, which is a tool to determine 

the variability of time series data. For the study, 23 indices have opted, the details of which have 

been discussed in section 4.2.2 along with the statistics for trend analysis. Apart from determining 

the trend and its magnitude for the entire period of the future (2011-2100), three different climate 

cycles were identified in the future climate period and trends of all the parameters were computed 

for these three distinct periods also, the series was divided equally as CC1 (2011-2040),  

CC2 (2041-2070) and CC3 (2071-2100).  

As the resolution of the GCM data is very coarse, RCM data was obtained from the Coordinated 

Regional Climate Downscaling Experiment (CORDEX) archive on a daily scale for the years 2005 

to 2100. The CORDEX-RCM data has a very fine spatial resolution of the order of 0.2⁰ - 0.5⁰, varying 

from model to model. Four RCM’s were selected based on an extensive literature review to obtain 

meteorological parameters (precipitation, minimum and maximum temperature) for the future 

(2005-2100) time scale and also for representative concentration pathways (RCPs) 4.5 and 8.5 

scenarios. RCP 2.6 was not considered, as the study was primarily focused towards the changes in 

extreme climatic conditions of the future, and the effect of RCP 2.6 is quite insignificant towards the 

study, as many reports have suggested in the past. The description of the selected RCM’s is 

represented in Table 5.1. 
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Table 5.1 Description of the RCMs used in the study. 

S. No. RCM's Resolution / Data period Preferred Model name 

1 NCC-NorESM1-M 0.44⁰ × 0.44⁰ (2006-2100) NorESM 

2 CCCma-CanESM2 0.44⁰ × 0.44⁰ (2006-2100) CanESM2 or CSIRO 

3 QCCCE-CSIRO Mk3.6 0.44⁰ × 0.44⁰ (2006-2100) CSIRO  MK3.6 or CSIRO 

4 MIROC-MIROC5 0.44⁰ × 0.44⁰ (2006-2100) MIROC5 

Before the application of data for trend analysis of meteorological extremes, the RCM data was 

corrected for systematic errors (biases). These biases may be present in the raw RCM data due to the 

limited spatial resolution, various simplified physical and thermodynamically processes, different 

numerical schemes and also due to insufficient knowledge about climate system processes  

(Hay et al. 2002; Teutschbein and Seibert 2012; Lafon et al. 2013). Hence, it is essential to perform 

the bias-correction of raw climate data for future periods. There are various measures for BIAS 

correction of RCM data such as linear scaling, quantile mapping, power transformation, distribution 

mapping etc. (Teutschbein and Seibert 2012). In this study, distribution mapping has been used for 

BIAS correction of RCM outputs. 

5.2.2.1 Identification of trend and its magnitude 

To identify the trends, the Modified Mann Kendall test (MMK) was applied. Statistic Z (obtained 

by MMK) was tested for significance of trend at a threshold level of 1.96 for a positive trend and  

-1.96 for negative trends (5% significance level), the details of which have already been discussed 

thoroughly in sections 4.2.2.2 and 4.2.2.3, respectively.  

5.2.2.2 BIAS correction of RCM outputs 

The process of Bias correction applies a transformation algorithm to correct RCM outputs. To 

evaluate the biases in the control period (or baseline) of the RCM climate variable, a simple approach 

is adopted; RCM variables are compared with the observed climate variables. This approach is also 

applied to correct the baseline as well as RCP scenarios. In this study, dynamical downscaled GCMs 

output (RCM data) of driving representative GCMs were selected with the integration of the 

hydrological model. The RCM data from Coordinated Regional Downscaling Experiment 

(CORDEX) was used to assess the climate projections over the river watershed under IPCC AR5, 

representative concentration pathways (RCPs) 4.5 and 8.5 scenarios. The CORDEX-RCM outputs 

represent a daily average at the spatial resolution of 0.44⁰ x 0.44⁰ (50 km x 50 km approximately) 

for regional climate impact studies. However, these outputs are not being used directly for 
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hydrological models to assess the local scale studies because of systematic biases. These biases are 

the results of imperfect conceptualization, discretization while downscaling and spatial averaging 

within grid cells (Graham et al. 2007b). Therefore, distribution mapping (a BIA correction approach) 

was applied to precipitation and temperature series to remove the inherent systematic biases. The 

baseline for the observed series was considered as 1971-2000 and IMD gridded data at  

0.25⁰ x 0.25⁰ scale. 

5.2.2.1.1 Distribution mapping 

BIAS correct method of distribution mapping was used to correct the raw RCM output variables for 

the study. The idea behind distribution mapping is to alter the distribution function of the raw climate 

variables (RCM data) so that it would fit with the observed distribution function of the observed data 

by developing a transform function (Teutschbein and Seibert 2012). Gamma distribution (Eq. 5.1), 

as well as Gaussian distribution (Eq. 5.2), are found to be best suited to correct the RCM outputs. 
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where the terms α and β are the shape and scale parameters respectively (Lafon et al. 2013; 
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where the terms μ and σ are the location and scale parameters respectively  

(Teutschbein and Seibert 2012; Christensen et al. 2013). 

Initially, the development of cumulative distribution functions (CDFs) was done for observed series 

as well as for the baseline RCM outputs. CDFs were developed for all days of their respective 

months. After the development of CDFs, the baseline simulated CDF was shifted to observed CDF 

(Teutschbein and Seibert 2012). Hence, similar CDFs were used to correct baseline as well as future 

projected series. Gaussian CDFs transfer for precipitation is given by Eq. 5.3 and Eq. 5.4. 

    ' 1

, , , ,| , | ,bl G G bl bl m bl m obs m obs mP d F F P d                                       (5.3) 

    ' 1

, , , ,| , | ,bl G G rcp rcp m rcp m obs m obs mP d F F P d      
                              (5.4) 
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Whereas, Gaussian CDFs transfer for temperature is given by Eq. 5.5 and Eq. 5.6 

    ' 1 2 2

, , , ,| , | ,bl G G bl bl m bl m obs m obs mT d F F T d        
                             (5.5) 

    ' 1 2 2

, , , ,| , | ,rcp G G rcp rcp m rcp m rcp m rcp mT d F F T d      
                             (5.6) 

where the terms F and F-1 are the CDF and its inverse of CDF, respectively. Gamma CDF (FG) was 

used in the case of precipitation time series, whereas for temperature time series Gaussian CDF (FN) 

was used (Teutschbein and Seibert 2012; Lafon et al. 2013). 

During the BIAS correction of the precipitation and temperature time series, cumulative distribution 

function (CDFs) were developed for both observed series (1981-2010) as well as baseline RCM 

output series (1981-2010) for all days of corresponding month and baseline simulated CDF shifted 

to the observed CDF. Therefore, the same CDFs was used for the 

correction of baseline and future projection, namely CC1 (2011-2040), CC2 (2041-70) and  

CC3 (2071-2100). It is an assumption that bias correction approaches are stationary, which indicates 

correction algorithm and parameterization are applicable for future scenarios as well. 

5.3 RESULTS AND DISCUSSIONS 

In this study, trend statistics of extreme value indices for the future (2011-2100) were evaluated over 

22 grids in and around the study area considering two distinct scenarios (RCP 4.5 and RCP 8.5). 

First of all, the Regional Climate Model (RCM) data were acquired. Four representative models 

were selected for this study to have a better understanding of the future patterns of extreme value 

indices. The idea behind choosing more than one model for the study was to have a better 

understanding of future trend patterns. After the selection of the RCM’s, the models were corrected 

for all the systematic biases using the distribution mapping technique. After the process of selection 

of RCM data and removal of all the systematic biases from the data, Modified Mann Kendall (MMK) 

was applied over the data to check the presence of any trend at 5% significance level, while the 

magnitude of trend change was quantified using Sen’s slope estimator. 

The whole time series (2011-2100) of precipitation, temperature (minimum and maximum) was 

further split into three distinct climate periods of 30 years each viz. CC1 (2011-2040),  

CC2 (2041-2070) and CC3 (2071-2100). Over each climate period, MMK and Sen’s slope estimator 
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statistics were applied to check the presence of trends and to quantify the change for all the extreme 

value indices. The results of which have been presented in the subsequent sections. 

5.3.1 Selection of Representative Grids 

The study was conducted over two scenarios (RCP 4.5 and RCP 8.5) for 92 years (2011-2100) over 

22 grids in and around the study area. Since, it was quite cumbersome to show the results of each 

grid, the results of only two representative grids among the 22 grids were shown for the entire study 

period, and the result of a single grid was shown for various climate periods. The question might 

arise as to why only two grids of the possible 22 were chosen for the representation purpose. As the 

study area exhibits a relatively flat topography with the absence of any hills or deeps valleys, such 

practice can be adopted for the study area. The idea behind choosing only a few grids for representing 

the whole area is also justified by Figure 5.1 that shows minimal variation among the MMK ‘Z’ 

statistics across the grids for all the indices. 

 
Figure 5.1 Variation of MMK ’Z’ values of the grids. 
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5.3.2 Trend Statistics of Extreme Value Indices 

Modified Mann-Kendall (MMK) test was applied over different meteorological extreme indices 

using two-tailed hypotheses at a 5% significance level over the entire study period (2011-2100) and 

for different climate periods CC1, CC2 and CC3. The results of all the indices for scenarios  

RCP 4.5 and RCP 8.5 have been discussed in subsequent sections, along with the results of the 

spatial distribution of temporal changes (in percentage) of indices based on temperature and 

precipitation time series. Linear trends for all the climate periods have also been represented to 

understand the behavioral pattern of trends in different climate periods. 

5.3.2.1 Climate projections under RCP 4.5 

MMK results of all the indices for scenarios RCP 4.5 are represented in Tables 5.2 and 5.3 for all 

study periods. Linear trends of extreme value indices considering long term temperature and 

precipitation series for the three climate periods (CC1, CC2, and CC3) have been represented in 

Figures 5.2, 5.3(a), and 5.3(b). Also, the results of the spatial distribution of temporal changes (in 

percentage) of indices based on temperature and precipitation time series are represented in Figures 

5.4 and 5.5 respectively.  

Upon the analysis of the results, it was observed that almost all the grids exhibited more or less 

similar results in the case of MMK trend statistics. Hence only the results of any two representative 

stations have been displayed. A significant increasing trend was observed in the case of index 

TX10P, TN10P, TR, SU and DTR, while significant decreasing trends were observed in the case of 

TX90P, TN90P, and WSDI for all the RCMs with few exceptions. Non-significant trends were found 

to exist in the case of TN10P (MIROC5), SU (CCCma and MIROC5), and WSDI (CSIRO, MIROC5 

and NorESM) while index CSDI did not show any significant trend for any RCMs. Conflicting 

results were observed in the case of index SU, where CSIRO showed a significant increasing trend 

while NorESM showed a significant decreasing trend. Significant increasing trends were observed 

for indices RX1day, Rx5day, PRCPTOT, R95TOT, R99PTOT, SDII, RW, RL, RM, RRH, RH and 

RVH in case of all the RCMs except in the case of index RL, where NorESM did not show any 

significant trend and for RM where CSIRO and MIROC5 did not show any significant trend. 

Whereas, no significant trend was observed in the case of index CWD as represented in Tables 5.2 

and 5.3. 
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As for the climate periods, significant increasing trends were observed during all three climate 

periods for all the RCMs in the case of TX10P and TR. Significant increasing trends were observed 

in the case of TN10P for the period CC1 (CCCma and CSIRO), CC2 (CSIRO and NorESM) and 

CC3 (CCCma, CSIRO and NorESM). Similar trends were observed for index SU, where significant 

increasing trends were observed for the period CC1 (CCCma and CSIRO), and period CC3 

(CCCma), conflicting results were obtained for index SU (NorESM) that displayed significant 

decreasing trend for period CC3. Significant decreasing trends were observed for index TX90P and 

TN90P; a point of observation was that almost all the RCMs predicted the significant decreasing 

trend for both the indices for only period CC3, while only a few RCMs predicted decreasing trends 

for periods CC1 and CC2. Only CSIRO predicted the significant decreasing trend for period CC3 

for index WSDI, while no trend was observed for any other period. Similarly, no significant trend 

was observed for index CSDI. Indifferent results were observed for index DTR, where significant 

increasing trends were observed for climate period CC1 (CCCma), while significant decreasing 

trends were observed for period CC3 (MIROC5 and NorESM) as represented in Table 5.2. 

From Table 5.3, it can be observed that no significant trends were observed for all the indices in 

climate periods CC1 and CC2 with few exceptions. Such as a significant increasing trend was 

observed in case of R95PTOT for period CC2 (MIROC5), RW for period CC1 (NorESM0 and CC2 

(MIROC5), RL for period CC1 (CSIRO and NorESM), RRH for period CC2 (CSIRO) and RH for 

period CC1 (CSIRO). The conflicting result was obtained for index RH for period CC1, where 

CCCma showed a significant decreasing trend. For period CC3, significant increasing trends were 

observed for RX1day, RX5day, PRCPTOT, R95PTOT, R99PTOT, SDII, RRH, and RH for all 

RCMs. For index RVH, models MIROC5 and NorESM showed a significant increasing trend.   

Significant decreasing trends were observed for index CWD (CCCma), CDD (CSIRO and 

NorESM), and RM (CCCma).  

Linear trends of all the extreme value indices considering long term temperature and precipitation 

series have been presented in Figures 5.2, 5.3(a) and 5.3(b) for different climate periods, which 

further justify the trend results obtained in the study. The spatial distribution of temporal changes 

(in percentage) in precipitation and temperature-based indices for RCP 4.5 are shown in Figures 5.4 

and 5.5, respectively. 
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Table 5.2 MMK statistics (Z) of indices based on temperature for RCP 4.5. 

Entire period (2011-2100) 

RCM's Grids TX10P TX90P TN10P TN90P TR SU WSDI CSDI DTR 

CCCma 
Grid-A6 7.08 -6.45 4.78 -1.78 5.12 1.20 -3.05 0.05 3.85 

Grid-A16 9.02 -7.00 4.11 -3.74 4.70 0.60 -4.65 0.23 2.13 

CSIRO 
Grid-A9 6.43 -3.65 7.10 -4.18 5.08 4.60 -0.50 0.10 2.41 

Grid-A13 5.55 -4.22 6.59 -3.39 6.00 4.52 0.89 -0.06 2.21 

MIROC5 
Grid-A12 6.78 -2.45 -0.48 -2.69 7.24 0.05 0.80 -0.14 7.13 

Grid-A13 6.67 -3.89 -0.69 -2.88 8.86 0.07 1.39 0.17 2.30 

NorESM 
Grid-A14 5.33 -4.81 4.59 -2.12 4.68 -3.11 1.32 0.45 4.80 

Grid-A16 6.35 -4.85 5.34 -1.60 3.86 -3.51 0.25 0.38 4.50 

Climate periods (CC1, CC2, CC3) 

Periods RCM's TX10P TX90P TN10P TN90P TR SU WSDI CSDI DTR 

CC1 

CCCma 2.98 -0.06 2.77 -2.34 5.58 1.99 0.99 0.52 2.49 

CSIRO 3.25 -0.73 3.75 -0.54 1.38 2.80 -1.18 0.02 -0.20 

MIROC5 2.10 -1.68 0.73 -2.02 3.57 0.14 0.24 -0.23 -1.27 

NorESM 2.50 -2.26 1.01 -0.84 3.95 -0.44 -0.74 -0.25 -0.86 

CC2 

CCCma 2.10 -3.27 0.89 -2.05 2.12 1.90 0.51 1.11 0.89 

CSIRO 2.45 -1.97 2.24 -0.34 2.11 0.90 -0.31 -0.42 -0.50 

MIROC5 2.44 -1.05 -1.16 -0.55 3.21 0.32 0.04 -0.16 -1.76 

NorESM 2.27 -1.71 2.34 -1.43 4.48 -0.26 -0.24 -0.86 -0.68 

CC3 

CCCma 5.85 -3.70 6.47 -3.73 3.28 4.24 -0.92 0.16 1.83 

CSIRO 6.78 -4.67 6.96 -3.25 4.90 0.20 -3.43 0.05 -1.19 

MIROC5 6.00 -2.70 -1.32 -2.52 6.51 -0.76 1.25 0.22 -7.80 

NorESM 4.60 -4.95 4.15 -1.71 3.48 -3.70 1.49 0.42 -5.32 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Table 5.3 MMK statistics (Z) of indices based on precipitation for RCP 4.5. 

Entire period (2011-2100) 

RCMs Grids RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

CCCma 
Grid-A6 2.02 3.44 1.83 5.83 2.23 5.75 -1.65 -1.57 2.41 -0.11 3.04 1.50 4.07 2.28 

Grid-A16 0.97 1.92 5.30 4.40 2.29 3.66 -0.59 -2.22 0.18 2.32 -0.82 3.04 1.66 2.12 

CSIRO 
Grid-A9 4.81 6.45 3.14 4.90 4.86 4.42 -0.92 -1.98 1.74 -0.81 0.90 1.39 3.41 3.88 

Grid-A13 3.70 4.79 2.69 4.06 4.02 3.50 0.02 -1.96 2.15 1.32 0.19 2.64 4.47 2.80 

MIROC5 
Grid-A12 3.58 2.68 4.69 6.12 5.43 6.21 0.93 -1.96 2.39 4.49 0.82 3.18 2.83 4.84 

Grid-A13 3.12 2.71 4.24 3.89 3.19 4.19 -0.51 0.00 3.44 0.99 1.79 3.44 2.62 2.87 

NorESM 
Grid-A14 2.29 3.26 5.07 4.60 3.22 3.85 0.95 -3.29 3.04 -0.48 0.81 5.54 3.22 2.45 

Grid-A16 3.09 2.80 4.83 6.76 3.78 3.37 0.11 -6.69 3.15 0.00 2.51 3.87 1.66 2.86 

Climate periods (CC1 , CC2, CC3) 

Periods RCMs RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

CC1 

CCCma -0.88 -1.32 -1.69 -1.50 -1.03 -0.14 -0.58 0.16 -1.23 0.14 -1.72 0.48 -3.05 0.97 

CSIRO 0.86 0.61 0.50 0.86 1.14 0.43 0.23 -0.87 0.39 2.19 -0.29 0.41 2.40 -1.00 

MIROC5 -0.43 0.29 1.03 1.93 0.04 0.32 -0.35 0.75 1.05 0.65 1.24 0.16 0.57 -0.31 

NorESM 0.14 1.03 0.68 0.50 0.18 0.00 0.63 1.17 2.02 3.11 0.56 1.21 0.45 1.42 

CC2 

CCCma -1.32 -0.95 -1.28 -1.00 -1.45 -0.43 -1.12 -0.96 -1.00 -0.10 -1.52 -0.29 -0.42 -0.85 

CSIRO 0.32 1.43 1.43 1.64 1.21 1.43 1.14 -0.66 0.50 0.22 -0.38 1.98 1.20 0.45 

MIROC5 1.50 1.00 1.93 2.10 1.27 0.89 1.28 -0.05 2.80 0.10 0.93 0.94 0.86 1.34 

NorESM 0.86 1.68 1.21 0.75 0.50 0.71 0.65 0.25 1.88 1.17 1.38 1.31 1.26 0.72 

CC3 

CCCma 1.97 4.34 5.12 4.42 2.82 4.19 -2.18 -0.86 -1.66 -0.58 -2.51 1.64 4.25 1.53 

CSIRO 3.17 2.45 2.02 3.18 3.43 2.82 -0.57 -2.81 1.01 0.11 0.02 2.56 3.79 0.65 

MIROC5 2.97 2.44 4.14 3.84 2.98 4.56 -0.61 -0.11 3.29 0.65 1.47 3.53 2.67 2.60 

NorESM 1.99 3.17 4.89 4.42 2.96 3.96 1.01 -3.36 2.75 -0.87 0.60 5.56 3.12 2.25 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Figure 5.2 Linear trends for extreme value indices of long term temperature series for all 

climate periods for RCP 4.5. 
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Figure 5.3(a) Linear trends for extreme value indices of long term precipitation series for all 

climate periods for RCP 4.5. 
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Figure 5.3(b) Linear trends for extreme value indices of long term precipitation series for all 

climate periods for RCP 4.5. 

From the results discussed above and from Figures 5.4 and 5.5, some inferences were drawn for the 

study area. An increase in the percentage of a number of cool days (TX10P) will be observed in the 

future, along with an increase in cool nights (TN10P), tropical nights (TR), and summer days (SU). 

Significant reductions were observed in hot days (TX90P), warm nights (TN90P) and warm spell 

duration indicator (WSDI). Also, a significant increase in the Diurnal Temperature Range (DTR) 

was observed which shows that there will be an increase in the difference of maximum and minimum 

temperature over the region. An increase in DTR seriously affects rainfall intensities, as discussed 

in the previous chapters. It was also justified by the results obtained for different rainfall intensities, 

days with heavy rain (RH), very heavy rain (RVH) might increase as per the study. The study also 

suggested that there will be an increase in total wet-day precipitation (PRCPTOT), along with very 

wet days (R95PTOT) and extremely wet days (R99PTOT) for the study area. Also, the consecutive 

wet days (CWD) might decrease in the future which explains that even though there will be more 
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rainfall in the future the amount of that rain will be received in lesser number of days, hence the 

variability in rainfall days will be less and the intensity of rainfall might increase. 

 
Figure 5.4 Spatiotemporal changes (%) in average precipitation based indices for RCP 4.5 of 

four RCMs (CCCma, CSIRO, NorESM, MIROC5). 
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Figure 5.5 Spatiotemporal changes (%) in average temperature based indices for RCP 4.5 of 

four RCMs (CCCma, CSIRO, NorESM, MIROC5). 

5.3.2.2 Climate projections under RCP 8.5 

In similar lines, studies for RCP 8.5 have been performed as made for RCP 8.5. MMK results of all 

the indices for scenarios RCP 8.5 are represented in Tables 5.4 and 5.5 for all study periods. Linear 

trends of extreme value indices considering long term temperature and precipitation series for the 

three climate periods (CC1, CC2 and CC3) have been represented in Figures 5.6, 5.7(a), and 5.7(b). 

Also, the results of the spatial distribution of temporal changes (in percentage) of indices based on 

temperature and precipitation time series are represented in Figures 5.8 and 5.9 respectively.  

The analysis of the results showed that almost all the grids exhibited more or less similar results in 

the case of MMK trend statistics. Hence only the results of any two representative stations have been 

displayed. A significant increasing trend was observed in the case of index TX10P, TN10P, TR and 

SU, while significant decreasing trends were observed in the case of TX90P, TN90P, and DTR for 

all the RCMs with few exceptions. Non-significant trends were found to exist in the case of WSDI 

and CSDI for all RCMs. Few exceptions were found in the MMK statistics values of different RCMs; 

in the case of index DTR CCCma and CSIRO showed a significant increasing trend while MIROC5 
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and NorESm showed a significant decreasing trend. Significant increasing trends were observed for 

all indices based on precipitation for all RCMs except for index CDD, CWD and RL. Significant 

decreasing trends were observed in the case of CDD for all RCMs except CSIRO, while no 

significant trend was observed for CWD for all RCMs. Also, for index RL, only CSIRO showed a 

significant increasing trend, while for index RM, MIROC5 and NorESM showed a significant 

increasing trend. 

For the climate periods, significant increasing trends were observed during all three climate periods 

for almost all the RCMs in the case of TX10P, TN10P, TR, and SU. Significant decreasing trends 

were observed for index TX90P and TN90P for few models in period CC1 and CC2 and all RCMs 

in CC3. Only CCCma predicted a significant increasing trend for period CC1 and CC2 for index 

WSDI, while no trend was observed for CC3. No significant trend was observed for index CSDI. 

Conflicting results were observed for index DTR, where significant increasing trends were observed 

for climate period CC3 (MIROC5), while significant decreasing trends were observed for the period 

for MIROC5 and NorESM. While significant decreasing trends were observed for CC1 (CSIRO) 

and CC2 (MIROC5) as represented in Table 5.4. 

It can be seen from Table 5.5 that significant increasing trends were observed for few RCMs in the 

case of the index of Rx1day, RX5day, PRCPTOT, R95PTOT, R99PTOT, SDII, RW and RH for 

climate period CC1 and CC2. No significant trends were obtained for index CWD and CDD for all 

the RCMs. For index RL, a significant increasing trend was obtained for CC1 (NorESM), while a 

significant decreasing trend was observed for period CC2 (CCCma). For index RM significant 

increasing trend for CC1 while a significant decreasing trend was observed for period CC2 

(NorESM). A significant increasing trend was observed for period CC1 (MIROC5), while no trend 

was observed for period CC2. No significant trend was observed in the case of RVH for period CC1 

and CC2. For period CC3, significant increasing trends were observed for RX1day, RX5day, 

PRCPTOT, R95PTOT, R99PTOT, SDII, RW, RRH, and RH for all RCMs. For index RVH, model 

CCCma showed a significant increasing trend.   Significant decreasing trends were observed for 

index CDD for all RCMs except CSIRO. Conflicting results were obtained in the case of index RM, 

where CCCma showed a significant increasing trend while MIROC5 showed a significant increasing 

trend. To justify the results linear trends have also been represented in Figures 5.6, 5.7(a), and 5.7(b).  
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Linear trends of all the extreme value indices considering long term temperature and precipitation 

series have been presented in Figures 5.6, 5.7(a) and 5.7(b) for different climate periods, which 

further justify the trend results obtained in the study. The spatial distribution of temporal changes 

(in percentage) in precipitation and temperature-based indices for RCP 8.5 are shown in Figures 5.8 

and 5.9, respectively. 
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Table 5.4 MMK statistics (Z) of indices based on temperature for RCP 8.5. 

Entire period (2011-2100) 

RCM's Grids TX10P TX90P TN10P TN90P TR SU WSDI CSDI DTR 

CCCma 
Grid-A6 7.70 -8.25 8.55 -3.89 9.57 2.40 0.84 0.13 0.99 

Grid-A16 7.69 -8.05 7.63 -3.78 9.45 2.31 0.77 0.05 2.41 

CSIRO 
Grid-A9 7.53 -7.55 8.02 -6.02 6.44 7.28 -0.63 0.15 3.55 

Grid-A13 9.86 -7.42 2.20 -6.36 6.72 5.83 -0.18 0.14 -3.00 

MIROC5 
Grid-A12 9.74 -8.33 3.37 -2.97 9.55 2.57 1.17 0.25 -6.98 

Grid-A13 14.67 -7.81 3.84 -3.87 8.89 2.47 0.86 0.12 -9.98 

NorESM 
Grid-A14 8.95 -6.19 7.94 -6.21 7.28 0.53 2.25 0.13 -6.15 

Grid-A16 8.97 -6.02 7.76 -6.20 8.67 1.67 1.50 0.26 -5.52 

Climate periods (CC1 , CC2, CC3) 

Periods RCM's TX10P TX90P TN10P TN90P TR SU WSDI CSDI DTR 

CC1 

CCCma 2.91 -2.57 2.97 -2.30 2.84 2.06 2.57 -0.40 -1.15 

CSIRO 2.38 -0.93 3.01 -1.04 1.02 1.75 0.36 0.18 -2.79 

MIROC5 2.27 0.02 0.50 -4.96 2.79 5.93 0.83 -0.17 -1.39 

NorESM 2.52 -1.75 1.99 -2.05 4.40 1.09 -0.41 -0.03 0.24 

CC2 

CCCma 3.00 -1.71 6.24 -1.89 3.37 2.95 2.40 -0.10 0.21 

CSIRO 3.39 -4.19 4.16 -1.98 2.86 -0.46 -0.90 -0.55 -0.18 

MIROC5 3.69 0.19 0.34 -3.01 2.98 6.23 1.37 -0.51 -2.12 

NorESM 3.05 -1.15 2.23 -2.70 4.26 2.11 -0.88 -0.53 0.27 

CC3 

CCCma 9.53 -9.88 8.62 -3.63 7.35 2.45 0.75 0.18 1.26 

CSIRO 8.11 -7.65 7.40 -5.26 5.05 11.08 -1.26 0.46 2.67 

MIROC5 9.20 -8.29 2.83 -2.31 7.36 2.13 0.97 0.28 -6.22 

NorESM 8.62 -5.95 7.24 -5.71 8.77 1.03 1.27 0.30 -5.85 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Table 5.5 MMK statistics (Z) of indices based on precipitation for RCP 8.5. 

Entire period (2011-2100) 

RCMs Grids RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

CCCma 
Grid-A6 3.49 3.76 4.11 4.72 4.47 4.50 0.77 -3.76 1.74 1.15 -1.15 3.00 4.45 3.89 

Grid-A16 4.04 3.18 2.89 4.34 4.39 4.53 -1.20 -2.75 0.70 1.32 2.20 2.52 2.48 3.67 

CSIRO 
Grid-A9 4.85 2.56 3.81 4.13 3.21 4.03 -0.15 -0.94 2.27 1.60 -0.38 3.50 3.61 1.47 

Grid-A13 4.38 2.77 3.72 4.21 4.46 4.23 -0.40 -1.16 2.32 2.69 -0.40 3.72 3.60 0.47 

MIROC5 
Grid-A12 5.14 6.30 5.17 5.81 7.22 6.05 0.93 -3.94 4.40 1.76 4.44 4.14 4.58 4.19 

Grid-A13 5.70 4.85 5.71 7.78 6.05 7.39 0.39 -4.24 5.23 1.70 3.36 4.12 5.99 5.52 

NorESM 
Grid-A14 4.31 5.19 4.22 4.98 4.12 4.92 0.69 -1.11 1.96 -1.84 0.49 2.69 3.49 2.56 

Grid-A16 6.29 7.47 3.48 3.81 10.58 4.76 -0.32 -4.31 2.85 0.11 2.62 3.06 3.28 2.69 

Climate periods (CC1 , CC2, CC3) 

Periods RCMs RX1day RX5day PRCPTOT R95PTOT R99PTOT SDII CWD CDD RW RL RM RRH RH RVH 

CC1 

CCCma 2.00 2.00 2.49 1.53 1.61 1.50 0.00 -0.59 0.50 -0.87 -0.13 0.63 0.84 1.31 

CSIRO 2.17 0.46 1.64 1.57 2.82 1.39 0.86 0.12 2.33 0.83 2.03 1.46 1.17 1.43 

MIROC5 0.82 0.18 1.99 1.71 0.75 1.16 0.07 0.29 2.85 0.44 2.50 2.31 0.11 0.11 

NorESM 1.46 1.53 0.75 1.71 1.86 2.32 0.64 -0.16 3.77 4.49 -4.06 -0.13 1.98 0.34 

CC2 

CCCma -0.29 0.36 -0.43 0.07 0.07 1.00 -1.58 1.36 -1.06 -2.81 -1.11 0.36 -0.09 -0.50 

CSIRO 2.43 1.43 1.57 1.21 2.55 1.18 -0.14 0.02 2.11 0.75 1.11 1.22 1.04 -0.10 

MIROC5 2.16 2.32 2.64 2.53 2.43 2.39 0.72 -0.16 1.97 1.87 1.55 1.87 2.08 1.47 

NorESM 1.96 2.18 1.29 2.18 2.28 2.82 0.68 0.80 -1.58 -1.83 -3.26 0.35 2.06 1.12 

CC3 

CCCma 3.45 3.04 2.49 3.88 3.39 4.30 -1.29 -2.87 0.23 1.65 -2.40 3.30 1.67 2.65 

CSIRO 4.80 2.40 3.71 4.06 3.07 3.96 -0.24 -0.94 2.16 1.52 -0.60 3.42 3.50 1.58 

MIROC5 3.55 2.74 4.77 5.22 3.72 3.37 0.42 -4.47 6.50 0.94 4.18 3.28 3.29 1.87 

NorESM 2.74 2.78 3.82 4.33 3.44 5.01 -0.14 -2.31 2.82 -1.29 1.35 3.64 3.03 1.10 

Figures in bold specify significant values at 95% confidence (5% significance) level. 
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Figure 5.6 Linear trends for extreme value indices of long term temperature series for all 

climate periods for RCP 8.5. 
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Figure 5.7(a) Linear trends for extreme value indices of long term precipitation series for all 

climate periods for RCP 8.5. 
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Figure 5.7(b) Linear trends for extreme value indices of long term precipitation series for all 

climate periods for RCP 8.5. 

From the results discussed above for RCP 4.5, RCP 8.5, and from Figures 5.8 and 5.9, some 

inferences were drawn for the study area. Similar patterns of trends were observed for both the 

scenarios with a higher rate of change (in terms of percentage) in the case of RCP 8.5 as compared 

to RCP 4.5. An increase in the percentage of a number of cool days (TX10P) will be observed in the 

future, along with an increase in cool nights (TN10P), tropical nights (TR), and summer days (SU). 

Significant reductions in hot days (TX90P) and warm nights (TN90P) will be observed in the future. 

Also, a significant decrease in the Diurnal Temperature Range (DTR) was observed which explains 

that there will be a decrease in the difference of maximum and minimum temperature over the region. 

The trend for DTR in the case of RCP 8.5 had a stark contradiction with the results of RCP 4.5. 

However, even though all but one model predicted a decrease in DTR values, overall understanding 

points towards an increase in DTR in the future. It was also justified by the results obtained for 

different rainfall intensities, days with heavy rain (RH), very heavy rain (RVH) might increase as 
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per the study. The study also suggested that there will be an increase in total wet-day precipitation 

(PRCPTOT), along with very wet days (R95PTOT) and extremely wet days (R99PTOT) for the 

study area. Also, the consecutive dry days (CDD) might decrease in the future which may sound 

contradictory. Since the PRCPTOT is increasing dramatically, an increase in wet days (RW) along 

with days with heavy rainfalls (RRH, RH and RVH) sounds logical. 

 
Figure 5.8 Spatiotemporal changes (%) in average precipitation based indices for RCP 8.5 of 

four RCMs (CCCma, CSIRO, NorESM, MIROC5). 



113 | P a g e  

 

 
Figure 5.9 Spatiotemporal changes (%) in average temperature based indices for RCP 4.5 of 

four RCMs (CCCma, CSIRO, NorESM, MIROC5). 

5.4 CONCLUDING REMARKS 

For reproduction of meteorological parameters to study changes in extreme value indices in the 

future, regional climate model (RCMs) were evaluated in the study. Four RCMs were identified as 

the most suitable models to determine future times series data of precipitation and temperature 

(maximum and minimum) for the study viz. CCCma, CSIRO, MIROC5 and NorESM. The technique 

of distribution mapping was used to remove systematic biases that may be present in the data. MMK 

test statistic was used to evaluate the presence of any trend while the magnitude of the trend was 

quantified using Sen’s slope estimator over the entire period (2011-2100) and for three climate 

periods, namely CC1 (2011-2041), CC2 (2041-2070) and CC3 (2071-2100). These tests were 

applied over two scenarios viz. RCP 4.5 and RCP 8.5. The overall result indicated an increase in the 

Diurnal Temperature Range (DTR) in the future along with an increase in days with heavy rainfalls 

in the case of both scenarios for the study area. 
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CHAPTER 6 

LAND USE/LAND COVER DYNAMICS AND FUTURE 

PREDICTION 

6.1 GENERAL 

Rapid changes in land use/land cover (LULC) have been a significant concern of the 21st century, 

which has a direct impact on the survival of humanity. LULC change can be defined as the change 

in the biological and physical characteristics of the land. Primary reasons for these changes are due 

to various factors such as degradation of land, rise in urban settlement, deforestation, excessive 

agricultural practices as well conversion of forests and cultivable land into the urban or industrial 

lands (Tilman et al. 2011b; Setiawan and Yoshino 2012; Samal and Gedam 2014;  

Meshesha et al. 2016). In the recent past, dynamics of LULC have been investigated by many 

researchers across the globe using Remote Sensing (RS) and Geographic Information Systems (GIS) 

techniques (Weng 2002; Xiao et al. 2006; Schilling et al. 2009; Rozenstein and Karnieli 2011;  

Saadat et al. 2011; Khare et al. 2014). 

Despite being a challenging task, the use of multi-temporal satellite images for the detection of 

LULC changes is quite common (Fan et al. 2008; Iqbal and Khan 2014; Qiang and Lam 2015). 

Change detection techniques have been used for various evaluations such as quantification of 

changes in urban settlement (assessment of urban sprawl), monitoring of changes in forest cover, 

assessment of changes in cultivable land, etc. (Rao and Pant 2001; Dinor et al. 2005;  

Kabba and Li 2011; Iqbal and Khan 2014; Niraula et al. 2015). The driving force behind LULC 

change is various environmental and development policies.  

The conversion of LULC to meet increasing demographic demand such as conversion of forest area 

into agricultural to barren and subsequently into urban land results in soil erosion accelerated rate of 

surface runoff and depletion of groundwater level (Bishaw 2001; Ghani et al. 2010; Iqbal and Khan 

2014; Kumar et al. 2017). Their combined effects, as well as mutual interaction among these 

anomalies, may result in land degradation in any area (Messinger 2003; Thormann et al. 2004; 

Niezgoda and Johnson 2005). According to a study by Piao et al. (2007), the annual river discharge 

across the globe has increased, and the land use land change is responsible for approximately 50% 

of this increase. The primary factor behind an increase in surface runoff is the change in vegetation 
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and evapotranspiration that further emphasizes the point that climate change and anthropogenic 

activities are the primary cause of land degradation leading to the increase in surface runoff. Farley 

et al. (2005) found that higher rates of evapotranspiration are directly related to the presence of 

denser forests in the region as compared to the presence of crunches or grasslands which directly 

influences water availability in the region for direct drainage. DeFries and Eshleman (2004) found 

that LULC change plays a pivotal role in impact studies of water quality and quantity. Hence, there 

is an urgent need to understand the changes in land use patterns and its impact on hydrology and 

water resources management. The conceptual framework behind causes, effects and impacts of land 

use/ land cover changes represented in Figure 6.1. 

The increasing population was the main reason behind choosing Kharun watershed, which is part of 

the newly created state of Chhattisgarh in 2000. Increase in population growth has resulted in urban 

area expansion, mass industrialization and has also altered the traditional irrigation practices to meet 

the food demand of the growing population. Moreover, the government plans to include several 

villages nearby the capital city of Raipur (which lies in the watershed) for expansion. Several policies 

and plans have been executed to develop New Raipur is the state capital, which is approximately 10 

km away from the existing city. However, in several cases, it has been observed that the 

policymakers often neglect these implications of land use land change over the region.  

Keeping these points in view, the present study was conducted over the region of Kharun watershed. 

The primary objective of this chapter is to evaluate the LULC changes based on satellite-based 

remote sensing data and to generate the projection of LULC changes in the near future, using  

CA-Markov based model. Land-cover changes were investigated based on the temporal series of 

remote sensing multispectral satellite images of Landsat. The chapter presents the (i) identification 

of classes and distribution percentages of LULC; (ii) estimate the percentage changes in LULC of 

area between 1990 and 2015 at decadal and demi decadal-scale and quantify the rates of change; (iii) 

accuracy assessment of classified LULC; (iv) applying CA-Markov to predict LULC allocations in 

the near future of year 2030. 
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Figure 6.1 Conceptual framework behind causes, effects, and impacts of land use/land cover 

changes. 

6.2 MATERIALS AND METHODS 

 Description of the Study Area  

A detailed description of the study area already been discussed in Chapter 3. 

 Field Data Collection 

Field visits were carried out in order to collect several ground truth points for the study area. During 

the field, data were collected from different locations to validate the detailed image. Ground truth 

points and their respective locations were recorded using Global Positioning System (GPS). 

Historical land cover data was assessed by interviewing the local population. Based on the interview 

and data collection, the study area was classified into five categories, viz. water bodies, urban area, 

and agricultural land, mixed forest, barren land, and sand/open rocks. The purpose of collecting the 
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ground truth points was to improve the accuracy of the LULC classification. For ground navigation 

during field visits, google maps were used. 

 Remote Sensing Data 

For the study, satellite imageries were download from the United States Geological Survey (USGS) 

based website http://earthexplore.usgs.gov. The detail of satellite data is presented in Table 6.1. 

Historical satellite images from 1990 to 2015 having a uniform resolution of 30m were acquired in 

order to understand the LULC change dynamics for the study area. Keeping in view the clarity of 

the satellite images, images with not more than 10% of cloud cover were selected and downloaded 

from the website. The study area shared parts of 2 satellite imageries (path-row 142-45 and 142-46). 

Based on the availability LANDSAT 5 Thematic Mapper (TM) images for the years 1990, 1995, 

2005 and 2010, LANDSAT 7 Enhanced Thematic Mapper (ETM) image for 2000 and LANDSAT 

8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) for 2015 were chosen. The 

obtained LANDSAT images were also corrected to remove the presence of any cloud cover in the 

images before further processing. 

Table 6.1 Detailed description of the acquired satellite imageries. 

S. No. Images Resolution Sensor Path Rows Acquisition date 

1 Landsat5 30 m x 30 m TM 142 45 and 46 2/5/1990 

2 Landsat5 30 m x 30 m TM 142 45 and 46 19/11/1995 

3 Landsat7 30 m x 30 m ETM 142 45 and 46 15/12/2000 

4 Landsat5 30 m x 30 m TM 142 45 and 46 19/11/2005 

5 Landsat5 30 m x 30 m TM 142 45 and 46 19/12/2010 

6 Landsat8 30 m x 30 m OLI_TIRS 142 45 and 46 23/12/2015 

 Methodology 

Landsat satellite images are used to classify land use. All six images (1990, 1995, 2000, 2005, 2010 

and 2015) were classified by employing supervised classification algorithm in this area. It is one of 

the most popular classification methods, which is usually suitable in the identification of a few 

classes. Geospatial tools ERDAS Imagine-2014 and ArcGIS 10.2 were used to process and prepare 

the LULC map. The overall methodology is given in Figure 6.2. 

http://earthexplore.usgs.gov/
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Figure 6.2 Flowchart showing general methodology for LULC classification and prediction. 

6.2.4.1 Image Preprocessing 

Before the pre-processing of the satellite images, individual bands were stacked, and the resulting 

satellite images were mosaicked for each path-row combination. Owing to the systematic mistakes 

and inaccuracy of the sensors, the pre-processing of the satellite imageries is an essential step in the 

land use mapping. Radiometric and geometric corrections were applied over satellite images to 

preprocess. Radiometric correction is applied over images from different periods to match their 

histograms, while in order to co-register the satellite images so that they can overlap perfectly 
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geometric correction is used. This is important because some of the essential methods are based on 

the comparison of the two images from different periods, e.g., supervised classification.  

Before the analysis, the data was processed in ArcGIS10.2 and ERDAS IMAGINE 2014 

environment. After the preliminary agreement that confirmed the correction of satellite images, a 

subset of the image was extracted that include area of interest (Kharun watershed). Satellite images 

of the extracted area are required radiometric correction for gain and bias correction before LULC 

classification. In this correction, digital number (DN) derived from the images is converted to the 

spectral radiance at the sensor by data calibration (Shalaby and Tateishi 2007; Hua et al. 2012). 

 

 
( )

MAX MIN

TOA MIN MIN

MAX MIN

L L
L DN QCAL L

QCAL QCAL


   


                   (6.1) 

where LTOA is the solar irradiance at the top of the atmosphere, LMAX and LMIN represent the 

maximum and minimum value, QCALMAX and QCALMIN are the maximum and minimum DN values  

(255 or 1). Moreover, the LMAX and LMIN are the gain and offset respectively available from the 

header file of the image. 

Precise per-pixel registration of satellite data is a primary requisite of the change detection study, 

absence of which can result in the overestimation of the actual result (Dewan and Yamaguchi 2009). 

For change detection pixel by pixel analysis is carried out, anymiss-registration that is more than a 

single pixel can introduce anomaly in the result. To avoid this issue, the root-mean-square error 

(RMSE) between two dates must not exceed 0.5 pixel (Pandey and Khare 2017). In this study 

geometric correction was carried out using ground control points (GCPs) from topographic maps 

with a scale of 1:250,000 to geocode the image. The RMSE between the two images was found to 

be less than 0.5, which is acceptable. 

6.2.4.2 Image classification and LULC class distribution 

In order to perform the classification, a supervised classification method was applied in the ERDAS 

Imagine 2014 (a geospatial data processing tool). The ambiguous area and location in classification 

were recoded by taking help from topography map, ground truth points and by google map. There 

were six types of LULC identified in the study area, as (1) Water Bodies (2) Urban area  

(3) Agricultural land (4) Mixed Forest (5) Barren Land and (6) Sand and Open Rocks, description 

of these categories are given in Table 6.2. 
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Table 6.2  Detailed description of land use/land cover types. 

S. No. LULC classes Description 

1 
Water bodies 

(WB) 

Areas that have surface water. It includes ponds, streams, rivers, 

lakes, marshland and riverine vegetation found along riverbank and 

streams 

2 
Urban area 

(UA) 

Urban and rural settlements, along with the areas having manmade 

constructions like roads, bridges, parking lots etc. 

3 
Agricultural 

land (AL) 
Land allotted for crop cultivation both annual and perennial crops 

4 
Mixed forest 

(MF) 

Area covered with dense/sparse natural forest and the areas having 

vegetative cover apart from agricultural land 

5 
Barren land 

(BL) 

The area with very little or no vegetation cover on the surface of the 

land. It consists of vulnerable soil to erosion and degradation. It also 

includes bedrock, which is unable to support cultivation. 

6 
Sand and open 

rocks (SR) 

The area with exposed rocks (due to quarrying) and the river sand 

(in the river floodplain 

6.2.4.3 Accuracy assessment 

In order to assess the accuracy of each LULC class, the kappa coefficient was used in this study. The 

efficiency of LULC classifications using the kappa coefficient is assessed by the equation below  

(Eq. 6.2). 

:
1

E
p

E

Kappa coeffiecient K  







                        (6.2) 

where observed accuracy is denoted by o and the expected accuracy is denoted by E. 

6.2.4.4 Change analysis 

Once the images have been classified, and the accuracy of the classification is found to be 

satisfactory, change analysis is carried out considering classified images of any two different periods. 

In this study, the extent of change in the land use type between two periods was estimated.  

The change in the magnitude of different LULC classes was performed using both ArcGIS10.2.2 

and ERDAS IMAGINE 14 and finally using the following equation (Eq. 6.3). 
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                         (6.3) 

where At1 is the area of LULC types at the initial time, At2 is the area of LULC types at the final 

time, ΔA (%) = percentage change in the area of LULC classes type between initial time At1 and 

period At2. 
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6.2.4.5 Future prediction of LULC using Markov Chain model and Cellular Automata 

A hybrid model of Markov Chain and Cellular Automata (CA-Markov) was opted in this study for 

the prediction of future LULC imagery. In order to predict a particular class, the Markov model 

considers both past changes as well as the rate of change. The initial state and the transition  

(or change) matrix is the primary requirement of the model. The transition matrix is defined as the 

matrix change matrix of the class developed during the conversion of LULC classes from one state 

to another (Halmy et al. 2015) given by Eq. 6.4 
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where L denotes the transition probability of ith and jth state. The primary condition behind the  

Eq. 6.4 is that it should satisfy the equation below (Eq. 6.5). 

1

1 0 1
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ij ij

j

L L


                                                  (6.5) 

After obtaining the primary matrix and the change matrix (Lij) for the Markov model, the Markov 

forecast model is given as:  

1 (0)

n

n n ij ijL L L L L                                                 (6.6) 

where Ln is the transition probability at any given time, Lo is the primary matrix (Guan et al. 2011; 

Halmy et al. 2015). 

Finally, in order to predict the future LULC of the study area, the output of the change matrix 

(obtained from the Markov chain) was used in the Cellular Automata (CA) model. 

6.3 RESULTS AND DISCUSSIONS 

6.3.1 Land Use/ Land Cover Map Development 

Red, blue, green (RBG) and Near Infra-Red (NIR) bands were used for this study. These bands were 

stacked according to the standard color composite. For the sake of the analysis and ease, false-color 

composite (FCC) using bands 2, 3 and 4. From the studies carried out in the recent past, it was 

observed that to meet the food demand of the growing population, agricultural land has increased, 
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which has resulted in the reduction of forest areas (Lambin et al. 2003). Moreover, it was further 

observed due to an increase in urban migration and to settle the increased urban influx in urban areas, 

agricultural and forest areas have been converted into urban settlements, which has also resulted in 

an increase in the barren land in many parts of the globe. To assess the variation in the land use type 

in the study area, LULC maps were developed using supervised classification for the years 1990, 

1995, 2000, 2005, 2010 and 2015. Six LULC classes were identified to represent the area in the best 

possible way; the statistics (percent land share) for each year are represented in Figure 6.3. 

Distribution of different classes developed for the year 1990-2015 has been represented in Table 6.3 

and Table 6.4. The land use and land cover maps of the study area between 1990 and 2015 is 

represented in Figure 6.4. Accuracy of the developed maps was also evaluated using the kappa 

coefficient with the help of ground truth points obtained during the field survey, as shown in  

Table 6.4. 

Based on the statistics it was observed that there is an overall increase in the urban area from 0.23% 

(1990) to 3.54% (2015) as well as in the proportion of barren land from 2.45% (1990) to 11.34% 

(2015) due to mass urbanization of the study area. From the field survey, it was also found that many 

farmers have sold their agricultural land for much higher profits near the urban settlement for real 

estate development. Hence, an increase share of barren land can be seen in recent years in the form 

of fallow land. As a result of an increase in the urban area and barren land, the subsequent reduction 

in agricultural land from 85.6% (1990) to 76.4% (2015) was observed along with a reduction in a 

mixed forest from 8.67% (1990) to 8.71% (2015). Due to increased quarrying in the region, the area 

described as sands and open rocks have increased from 1.19% (1990) to 1.82% (2015). 

Table 6.3 Distribution of classes between 1990 and 2000. 

CLASS 

1990 1995 2000 

Area Area Area 

Sq. km. % Sq. km. % Sq. km. % 

Water bodies 78.53 1.89 103.38 2.49 114.44 2.76 

Urban area 9.41 0.23 12.04 0.29 12.27 0.30 

Agricultural land 3553.0 85.6 3546.9 85.4 3509.5 84.5 

Mixed forest 360.09 8.67 335.24 8.07 265.15 6.39 

Barren land 101.98 2.46 105.44 2.54 201.79 4.86 

Sand and open rocks 49.31 1.19 49.31 1.19 49.00 1.18 
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Table 6.4 Distribution of classes between 2005 and 2015. 

CLASS 

2005 2010 2015 

Area Area Area 

Sq. km. % Sq. km. % Sq. km. % 

Water bodies 75.81 1.83 62.23 1.50 47.56 1.15 

Urban area 23.64 0.57 82.68 1.99 147.16 3.54 

Agricultural land 3516.9 84.7 3379.0 81.4 3173.8 76.4 

Mixed forest 142.74 3.44 283.99 6.84 237.28 5.71 

Barren land 325.64 7.84 284.08 6.84 470.94 11.34 

Sand and open rocks 67.53 1.63 60.31 1.45 75.59 1.82 

 

 

 
Figure 6.3 Percent of land distribution for various classes between 1990 and 2015. 
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Figure 6.4 Land use/land cover maps of Kharun watershed between 1990 and 2015. 
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6.3.2 Accuracy Assessment 

In order to measure the accuracy of the supervised classification, random control (representative) 

points were generated across each LULC map. Once these points were randomly generated, they 

were cross-checked with the reference GCPs collected during the field visit. Almost 350 GCPs were 

collected during the field visit. Moreover, the help of Google Earth in association with ERDAS 

imagine 2014 was also taken to verify the reference GCPs recorded using Global Positioning System 

(GPS). These control points were used for computing the accuracy of the LULC maps. The 

population error matrix of the LULC maps was used to generate accuracy statement statistics. The 

average overall accuracy was computed from observed accuracy (o) and the expected accuracy 

(E), as described in Eq. 6.2. 

Around 180 random points were generated for each year (1990-2015). The location points of 2015 

were collected by using the geographical positioning system (GPS) tool. The overall accuracy of all 

the LULC maps and Kappa statistics (Kp) of each class are presented in Table 6.4. From the Kappa 

statistics, it can be inferred that the overall accuracy for all the maps is between 78 - 87%, varying 

between different classes, which itself suggests that the maps have been classified satisfactorily. 

Table 6.5 Kappa statistics (Kp) of all the classes for LULC maps between 1990 to 2015. 

Accuracy type  LULC classes  1990 1995 2000 2005 2010 2015 

Kappa coefficient 

(%age) 

Water bodies 79 82 79 83 84 83 

Urban area 85 81 80 82 83 86 

Agricultural land 80 83 81 81 83 87 

Mixed forest 81 84 84 81 85 86 

Barren land 82 85 85 82 84 84 

Sand and open rocks 83 83 84 78 84 85 

6.3.3 LULC Change Detection 

Decadal, as well as demi-decadal change detection of LULC, was carried out to analyze the extent 

of change in land use and land cover of study area between 1990 and 2015. In order to have a better 

understanding, percent change in between two consecutive periods was computed along with percent 

change between two time periods keeping the base year of 1990 as constant, as shown in Figures 6.5 

and 6.6, respectively. From Figures 6.5 and 6.6, it can be observed that the urban area has increased 

for each period but it increased by almost 250 % (59.03 km2) between 2005 and 2010, which was 

most among all five years. Also, not much change was observed between 1990 and 2000, after which 

the urban area seems to increase rapidly. Between 2010 and 2015, the percent change was around 
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75% (64.47 km2), even though the land area that has changed between 2010 and 2015 is more the 

percent change compared to 2005-2010 is less, which goes to explain that the rate of change has 

reduced in this period. A similar pattern of change was observed for barren land in the study area, 

with a maximum increase seen between 2010 and 2015 (65.78%). The percent change of barren land 

between 2005 and 2010 was -12.76% (-41.56 km2). This may be due to massive real estate 

development and urban land expansion in the study area during that period, which turned 

barren/fallow land to urban land. Also, it was observed that agricultural land reduced continuously 

throughout the study period along with the mixed forest.  Only exception was seen in the period of 

2005 and 2010 when the share of mixed forest increases by almost 98% (141.24 km2) due to massive 

afforestation drives and people awareness in the region but it again reduced by 16.45% (46.71 km2) 

giving way to more of agricultural and urban land. The percent share of water bodies has also reduced 

in the study area. 

 
Figure 6.5 Demi-decadal percent change in LULC classes from 1990 to 2015. 

As for the percent change in LULC classes with reference to the year 1990 as shown in Figure 6.6, 

it can be observed that the urban area has increased gradually since 1990 to 2015 from 27.9% 

between 1990 and 1995 to 1463% between 1990 and 2015, which is massive given a span of just 25 

years. The percent share of barren land has also increased in the same manner, from 3.4% between 

1990 and 1995 to 361.8% between 1990 and 2015. On the contrary water bodies, agricultural land 

and mixed forest have reduced gradually in the period. This clearly indicates that the floral region is 

giving way to urban settlement and barren land. 
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Figure 6.6 Percent change in LULC classes with reference to 1990. 

Decadal changes of LULC classes between 1990 and 2015 indicate a spike in the percent change of 

urban area (573.82%) between 2000 and 2010 while increment was also observed between 1990 to 

2000 and 2010 to 2015 as shown in Figure 6.7. Patterns similar to demi decadal changes were 

observed with an increase in barren land, sands, and open rocks accompanied by a decrease in water 

bodies, agricultural land and mixed forest. 

 
Figure 6.7 Decadal percent change in LULC classes from 1990 to 2015. 

Not much abrupt changes were observed in the different classes between 1990 and 2000, but sudden 

changes in all the classes of the LULC maps were observed post-2000. The watershed lies in the 

state of Chhattisgarh (as discussed in Chapter 3), it received full statehood in the year 2000. The 

significant chunk of the urban area shown in various LULC maps is of Raipur city (Capital of 
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Chhattisgarh), and hence, due to massive urbanization owing to the fact the state capital was in 

Kharun watershed itself, this phenomenon of a sudden rise in an urban area can be explained. The 

percent change in different LULC classes with reference to the year 2000 was also computed as 

shown in Figure 6.8, which also shows that there is a gradual reduction in water bodies, agricultural 

land and mixed forest while there are a notable increase urban area and barren land. The urban area 

in the region increased by almost 1100% between 2000 and 2015, while barren land increased by 

almost 135% between that period. 

 
Figure 6.8 Percent change in LULC classes with reference to 2000. 

6.3.4 Prediction of Future LULC and Change Detection from 1990 To 2030 

Before the detection of changes in LULC distribution for the future, it is quite vital to know about 

the trend pattern of the past and present LULC changes. The information about the LULC pattern 

and the driving forces that are responsible for the change should be known before planning or 

execution of any policies in that region. By utilizing the knowledge of historical LULC changes, a 

change model of LULC can be developed in order to project the future map-making certain 

assumptions. In the present study, a combination of Cellular Automata and Markov Chain  

(CA-Markov) the model has been used for prediction of future LULC. The CA-Markov model is 

based on the transitional probability matrix. The reason behind using an integrated model was that 

the Markov model, which is a widely used model for future projection only provides the magnitude 

of change and does not provide direction of change. Hence, Cellular Automata (CA) model was also 
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incorporated with the Markov model since it provides the direction of change through spatial 

modeling (Petit et al. 2001). 

Based on socio-economic information and land use planning of Kharun watershed from 1990 to 

2005, three transition rules were opted for prediction of future LULC map of the year 2030. The first 

transition rule states that the factors which might influence the current LULC characteristic should 

not fluctuate considerably during the prediction of future LULC. The second rule considers speedy 

growth, which is based on the assumption that the LULC area changes rapidly while considering 

population growth, per capita living space, and floating population to meet the needs of the future 

scenario of 2030. The third rule ascertains ecological and farmland security, which means basic 

cropland and forestland cannot be converted into other categories and is considered as restricted 

area. By considering these three transition rules, LULC for the year 2030 was computed by applying 

the CA-Markov approach. 

Initially, the model was validated by simulating the LULC distribution map of the year 2015, LULC 

maps of the year 1990 and 2005 were used for validation. Once the LULC map of 2015 was 

simulated, it was compared with the original classified LULC map as shown in Table 6.6. From the 

table, it can be observed that there is a close association between the classified and the simulated 

LULC of the year 2015 which gives further agree to the validation. The only notable anomaly found 

in the simulated LULC was that it slightly over predicted the class of water bodies (1.15% in 

classified, 3.20% in simulated). The projected LULC for the year 2030 indicates that there will be 

further increase in the urban area of the region, from 3.54% in 2015 to 6.73% in 2030. Also, the 

barren land in the area will further increase along with an increase in the water bodies. The projection 

for the year 2030 also indicated towards a further reduction in agricultural area from 76.43% in 2015 

to 71.15% in 2030, while a slight decrease in the mixed forest was also observed. The percent land 

share of each class for the year 2030 is represented in Figure 6.9. 
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Table 6.6 Area statistics of the simulated (2015), classified (2015), and the projected (2030) 

LULC(s). 

CLASS 

Initial  

LULC (1990) 

Final  

LULC (2005) 

Classified  

LULC (2015) 

Simulated 

LULC(2015) 

Projected 

LULC (2030) 

Area Area Area Area Area 

Sq. km. % Sq. km. % Sq. km. % Sq. km. % Sq. km. % 

Water bodies 78.53 1.89 75.81 1.83 47.56 1.15 132.87 3.20 104.16 2.51 

Urban area 9.41 0.23 23.64 0.57 147.16 3.54 193.08 4.65 279.57 6.73 

Agricultural 

land 
3552.96 85.57 3516.92 84.70 3173.75 76.43 3099.26 74.64 2954.39 71.15 

Mixed forest 360.09 8.67 142.74 3.44 237.28 5.71 224.64 5.41 215.23 5.18 

Barren land 101.98 2.46 325.64 7.84 470.94 11.34 438.90 10.57 557.16 12.42 

Sand and open 

rocks 
49.31 1.19 67.53 1.63 75.59 1.82 63.53 1.53 41.74 1.01 

 

 
Figure 6.9 Percent of land distribution for various classes for projected LULC (2030). 

Apart from the change in the magnitude of different LULC classes, one more critical aspect is the 

direction in which the change is happening. As discussed earlier the principal motive behind 

adopting an integrated model of CA-Markov was to get an understanding of the change in magnitude 

spatially as to how these changes in LULC class have taken place. The simulated LULC map for the 

projected the year 2030 is represented in Figure 6.10. As discussed earlier that the model was slightly 

over predicting the water body class for the simulated map of 2015 obtained from the LULC map of 

1990 and 2015. Similar pattern has been observed for the simulated LULC map of the projected the 

year 2030, where the presence of blue pixels (representing water bodies) can be observed in certain 

places that belonged to some other class in previous LULC images. Besides the slight over prediction 

of water bodies, upon visualization, it can be said that the simulated LULC map for the projected 
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the year of 2030 is in accordance with the LULC maps of the past and such maps should be taken 

into account for the planning and also for the execution of policies in the future. 

 
Figure 6.10 Simulated LULC map of the projected year 2030. 

6.3.5 Causes of LULC Change Dynamics 

Several natural and anthropogenic activities are the major causes of LULC change dynamics across 

the globe (Meyer and Turner 2003), having said that the extent of occurrence might differ from place 

to place. Population growth is one of the reasons for LULC change dynamics, but it cannot be stated 

with full authority that it is the sole reason for the change. Barbier and Burgess (1996) found out 

about the positive effects of population growth on the availability of resources. But, for a country 

like India, there is an immense pressure exerted over natural resources due to booming population 

growth and its implication can be seen in the form of erosion and soil degradation  

(Tripathi et al. 2004; Mondal et al. 2014). Natural causes such as climate change, as discussed in the 
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previous chapter, that have altered the rainfall intensities over the study area may worsen the 

situation of erosion in the study area. As for land degradation due to anthropogenic activities in the 

study area, the rate of LULC change has increased after the year 2000 (declaration of Chhattisgarh 

state). Since, the state capital lies in the Kharun watershed, the nearby areas of the city are giving 

way for further real estate development to accommodate the migrating population seeking 

newer/better job opportunities and livelihood. Mass migration towards the urban pockets of the study 

area may result in further change in land area in the region. In addition to his, a shortage of land 

resources might result in the conversion of cultivable (agricultural) land in the urban (paved) area 

and also to meet the food demand of growing population existing forest cover might give way to 

agricultural land. 

6.3.6 The implication of LULC Change Dynamics 

The gradual change in historical LULC classes is not susceptible to soil erosion and land degradation. 

However, rapid changes in LULC classes results in expansion of paved area (due to urbanization), 

and increase in barren and agricultural land which give rise to urban flooding and high level of soil 

erosion, particularly over the land surface without any vegetative cover (Schilling et al. 2009; 

Meshesha et al. 2016). Based on the historical classified images between 1990 and 2015 it can be 

inferred that there is a rise in urban area accompanied with the barren land for real estate 

development, upon analyzing the maps it was observed that the areas near the river banks are heavily 

urbanized (reduction in water bodies class) which will further deteriorate the riverfront in the study 

area. The conversion of lands with vegetation (mixed forest and agricultural land) into paved areas 

resulted in reduced infiltration and increased overland flow, which may become a root cause of urban 

flooding in the region. Also, an increase in barren land due to a reduction in vegetative cover will 

result in accelerated soil erosion in the region. The shifting of classes with vegetative cover into 

barren land is the primary source of intensive erosion, siltation in the river, floods and other  

water-borne diseases. 

Rapid changes in LULC classes over the region can have severe implications in the region, the LULC 

changes in the region direct the attention towards increased urban settlement in the region along with 

intensive cropping to fulfill the food requirement of the population. Massive urbanization in the 

region results in the loss of biodiversity as well as degradation of existing land, a further increase in 

the migration towards the region exerts stress on policymakers to meet the needs of the increased 

population. Intensive cropping results in soil nutrient depletion of the agricultural fields which might 
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decrease crop productivity in the near future which will result in food insecurity in the region if the 

demands are not adequately met. A clear understanding of the implication of LULC dynamics can 

be achieved by referring to Figure 6.11 that details the conversion pattern of various LULC classes 

in the region and their further implications. 

 
Figure 6.11 Conceptual linkage of cause and consequence of LULC change. 

6.4 CONCLUDING REMARKS 

Proper planning and policy making of any region requires a robust understating of LULC distribution 

for that area. The selective and micro information not only allows efficient land utilization 

management but also plays a vital role in future planning. In general, most of the towns and cities 

have altered their landscapes due to the increasing population in a haphazard and unplanned manner. 

So, in order to achieve sustainable development in any area, it is essential to understand the changing 

LULC patterns with time. By utilizing the knowledge of the present LULC scenario and learning 

from the mistakes in the past, one can hope for proper planning and sustainable development in the 

region. To achieve sustainable development, concerned agencies must provide a planning model so 

that the existing land can be utilized appropriately without damaging the natural vegetation. 

However, these types of planning models can only be conceptualized once the existing LULC 

changes and patterns are known. Keeping this view, the study of LULC change dynamics was carried 

out for the study area (Kharun watershed). LULC mapping was carried out for the region by using 

satellite imageries (LANDSAT 5, 7, and 8) by application of RS and GIS tools such as ERDAS 

Imagine and ArcGIS 2012.  The LULC maps were classified into six different classes namely water 
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bodies, urban areas, agricultural land, barren land, mixed forest and sand/open rocks. The changes 

between different classes between 1990 and 2005 were evaluated at decadal as well as the demi-

decadal level. Significant findings in the study stated that there is a decrease in vegetation 

(agricultural land and mixed forest) in the region, giving rise to an urban area and barren land. After 

the analysis of historical trend patterns in LULC, the LULC map for the near future (2030) was 

projected using the CA-Markov model. The model was validated and simulated with the classified 

LULC map of 2015. The projected LULC map of 2030 indicated the continuation of the same trend 

of the past. The model slightly over predicted the water body class for the simulated map of 2015 

obtained from the LULC map of 1990 and 2015. Similar pattern were observed for the simulated 

LULC map of the projected the year 2030. The overestimation may due to different various sources 

of uncertainties such as input parameters, model processes and prediction uncertainties. If we add 

more number(s) of LULC periods data, these uncertainties may be reduced in future. These future 

projections indicate the expected changes in the near future. These LULC changes with respect to 

different classes in the near future will caution the concerned authorities for proper planning and 

management of the study area.   
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CHAPTER 7 

HYDROLOGICAL SIMULATION UNDER LULC AND CLIMATE 

CHANGE SCENARIOS  

7.1 GENERAL 

In order to fulfill the water demand of the domestic, agricultural, and industrial sectors, it is 

mandatory to know the availability of water in that region. Understanding the current situation of 

water resource availability in the region and its variation due to historical physiographical and 

climate changes helps in sustainable planning and development. Enough shreds of evidence have 

been published in the past that directs attention towards the phenomenon of climate change and its 

implication over the hydrology and water resources (Ficklin et al. 2009; Liu et al. 2015;  

Niraula et al. 2015). Various studies have concluded that the significant factors that influence the 

climate system or effect global warming in one form or other are anthropogenic activities and 

emission of Green House Gases (GHGs) (Graham et al. 2007a; Zhu 2012; Omer et al. 2017;  

Veettil and Mishra 2016). Increasing the concertation of GHGs in the atmosphere rapidly modify 

the magnitude and frequency of hydro-climatic parameters. The projection of water availability on 

regional hydrology depends upon land use/land cover (LULC) and principal climatic variables 

(precipitation and temperature) from the regional climate model (RCMs).  

In many parts of the globe, there has been a drastic change in the LULC classes for the last few 

decades and hence, change in the hydrological and ecological behavior of the area  

(Bronstert et al. 2002; Samal and Gedam 2012; Thakkar et al. 2017a). Due to human-made and 

natural activities, the change of runoff and water yield are very significant, a significant role in these 

changes is of LULC change dynamics and climate change on the overall hydrological conditions 

(Ficklin et al. 2009; Samal and Gedam 2014; Wu et al. 2016). Hence it becomes vital to know about 

the implication of changes in hydrology due to the combined effect of LULC and climate change  

(Srivastava et al. 2012; Zahabiyoun et al. 2013; Niraula et al. 2015; Thakkar et al. 2017b;  

Zope et al. 2017). Also, in order to project the changes in various hydrological components or other 

words changes in the water balance components, it is essential to know  

about the historical changes in climate and land use individually (Behera and Panda 2006;  

van Griensven and Meixner 2006; Khoi and Suetsugi 2014; Trang et al. 2017).  
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However, minimal studies are available that have studied water availability in a region by 

considering both LULC change dynamics and the effect of climate change. Moreover, hydrological 

simulation is not possible without a calibrated hydrological model set up for the region. In order to 

calibrate the model, many hydrological parameters cannot be measured directly in the field but must 

be obtained through a model calibration process. Model calibration is thus an essential task to obtain 

the optimal parameter values, which match simulations with observations as closely as possible. As 

already have been discussed in the earlier section, there are very few studies based on an assessment 

of hydrological responses under the dynamics of LULC and climate change over tropical watersheds. 

Keeping this issue in mind, hydrological impact assessment under land use and climate change 

scenarios were carried out over a tropical watershed (Kharun). Hence the aims of the study presented 

in this chapter are:  

(A) Setup the semi-distributed hydrological model (SWAT) and check the suitability of the model 

over Kharun watershed. 

(B) Computation of LULC change impact on water availability under constant climatic conditions. 

(C) Evaluation and assessment of hydrological components (precipitation, evapotranspiration, and 

water yield) under future scenarios from 2011 to 2100 under IPCC AR5 representative 

concentration pathways (RCPs), moderate emission scenario (RCP 4.5) and high emission 

scenario (RCP 8.5). 

The overall framework of the study detailing the SWAT model setup, description of LULC maps 

and climate data and impact assessment on water availability due to land use and climate change 

scenarios are represented in Figure 7.1. 
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Figure 7.1 Framework of impact assessment on water availability due to land use and climate 

change scenarios. 
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7.2 MATERIALS AND METHODS 

7.2.1 Description of the Study Area 

Kharun (a tropical watershed) was chosen for determining the hydrological response simulation 

under different land use and climate change scenarios, the details of the study have already been 

discussed thoroughly in Chapter 3. 

7.2.2 Data Used During Processing 

7.2.2.1 Spatial data 

Various types of spatial data are used as input for the simulation of the SWAT model. Spatial data 

that were used for SWAT model simulation in this study are: 

(a) Digital Elevation model (DEM): DEM is the 3D representation of the study area’s terrain. In the 

present study, a DEM of 30m resolution was used, it was provided by Shuttle Radar Topographic 

Mission (SRTM). The projection of DEM used in the study had a projection system of 

WGS_1984_UTM, Zone_44N. 

(b) Soil Map: The digital soil map of the entire Earth was provided by Food and Agricultural 

Organization (FAO). The soil map was acquired at a scale of 1:5,000,000. The details of the soil 

types found in the study area have been discussed in Chapter 3. 

(c) Land use map: The LULC data is essential for hydrological modeling. The LULC of an area is 

one of the significant factors which affect water yield, evapotranspiration and erosion in the 

watershed. For calibration and validation of the SWAT model the LULC map of 2010 was used. 

While LULC maps of 1990, 2000, 2010, and 2030 were used for computing water balance 

components for each LULC. All LULC maps (1990, 2000 and 2010) were developed using 

supervised classification and projected (2030) using CA-Markov model, as discussed in  

Chapter 6. 

The distribution of different elevation, slope, land use classes, and soil map of Kharun watershed are 

presented in Figure 7.2. 
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Figure 7.2 Spatial data (DEM, soil map, land use map, and slope map) used for hydrological 

modeling. 
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7.2.2.2 Hydro-meteorological data 

(a) Discharge data: In order to calibrate and validate the modeled output, actual/observed data are 

required. Discharge data of Kharun watershed have been collected to calibrate and validate the 

model. Discharge data for 27 years was acquired from the Patherdihi Gauge discharge site of the 

Central Water Commission (CWC) on Kharun River. Further details of the data and location of 

the gauging site have been discussed in Chapter 3. 

(b) Weather data: Gridded datasets of precipitation with high resolution (0.25⁰ × 0.25⁰) and 

resampled daily gridded datasets of temperature at the resolution of 0.25⁰ × 0.25⁰ were used for 

the study. The data were acquired from the India Meteorological Department (IMD), the details 

of which, as well as the resampling technique, have been described thoroughly in Chapter 3. 

(c) Regional climate data: To compute the variation in water balance components in the future, data 

of the Regional Climate Model (RCM) was used in this study. The spatial resolution of each 

RCM was 0.4⁰ × 0.4⁰.  

7.2.3 Hydrological Modelling Using SWAT 

In the present study, Soil and Water Assessment Tool (SWAT) was used to simulate the water 

availability in the study area. SWAT is a semi-distributed, physically-based hydrological model 

operated at a daily or monthly time step (Arnold and Allen 1996; Neitsch et al. 2011). SWAT model 

possesses the ability to simulate crucial hydrological processes like past, present, and future hydro-

climatic changes. In the SWAT model, changes in hydro-climatic futures can be simulated, 

considering different climate and land-use projections (Ullrich and Volk 2009). 

For hydrological response, the model divides the main watershed into small sub-watersheds and  

sub-watersheds into small hydrological response units (HRU) connected through the drainage 

network (Green et al. 2006; Golmohammadi et al. 2017). HRU is the lumped unit that comprised of 

the unique combination of LULC, soils and slope area that allows routing of flows to the downstream 

sections (Neitsch et al. 2011). Spatial data and the hydro-meteorological data are the primary inputs 

of the SWAT. Hydro-meteorological inputs include climatic data such as precipitation, temperature 

(minimum and maximum), relative humidity, wind speed and solar radiation  

(Arnold et al. 1998). As discussed briefly in section 7.2.2.1, Digital elevation Model (DEM), Soil 

map, LULC map and slope map are spatial inputs that are required for hydrological modeling using 

SWAT (Singh et al. 2005; Arnold et al. 1998; Neitsch et al. 2011; Worku et al. 2017). The first step 
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in determining hydrological responses of a watershed is the delineation of the watershed in order to 

identify the watershed features such as gradient and slope length, characteristics of stream networks 

etc. The delineation of the watershed was done using the ArcSWAT interface (incorporated in 

ArcGIS 10.2) using DEM. 

7.2.3.1 Model equations 

For the process of simulation of the hydrological cycle, the water balance equation used in the SWAT 

model is given as (Wang et al. 2014a): 

0

1

( )
t

t day surf a sweep gw

i

SW SW R Q E W W


                                  (7.1) 

In which  SWt means the final soil water content in mm; whereas, SW0 means the initial soil water 

content in mm; time is represented by t in days; while Rday means precipitation volume in specific 

days of i in mm; the volume of runoff in specific day I is represented by Qsurf in mm; the volume of 

evapotranspiration happening in specific day i is represented by Ea (mm); Wsweep means the 

percolated water amount into the vadose zones through soil in day i in mm; Wgw represent volume 

of return flow volume in day i in mm. 

Water yield  

Water yield can be defined as the aggregated sum of water that leaves the Hydrological Response 

Unit (HRU) and enters the principle channel at a particular time step. For sustainable water resource 

management, one of the most crucial parameters that need to be evaluated is the water yield. Water 

yield within a watershed can be evaluated as (Wang et al. 2014a): 

yld surf gw lat lossW Q Q Q T                                                   (7.2) 

where Wyld is the water yield in mm; Qsurf refers to the surface runoff in mm; Qlat denotes the lateral 

subsurface flow in mm; Qgw is the groundwater contribution to streamflow (baseflow) and Tloss is 

the overall transmission loss (mm) in the channel due to transmission through the bed. 

Surface Runoff 

Three different options are present to predict the runoff process from the Hydrological Response 

Units (HRUs). Amongst them, the SCS curve was employed to predict runoff from daily rainfall, as 

per USDA-SCS 1972. SWAT being a comprehensive model have been used in various studies across 
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the globe to estimate runoff processes (Alibuyog et al. 2009; Sajikumar and Remya 2015a;  

Uniyal et al. 2015). Hence, in this present study, the simulation of surface runoff processes and 

estimation of peak runoff of HRUs were done in the SWAT model. In this study, SCS-CN was used 

to estimate runoff and is given by: 
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a
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
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 
                                                          (7.3) 

In which, Qsurf shows the volume of runoff depth in mm; while effective precipitation (mm) is 

represented by P; initial water abstraction (mm) is represented by Ia; maximum potential retention is 

represented by using S. However, water abstraction initially Ia is a function of optimum potential 

retention S. Hence, 

aI S
                                                                  (7.4) 

where λ is a constant, its value lies between 0.2-0.5. In the present study, the value of λ was 

considered as 0.2. 

Hence, Initial abstraction (Ia) can be rewritten as: 

0.2aI S
                                                                   (7.5) 

Rearranging Eq. 7.3 based on Eq. 7.4, we have: 
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                                                             (7.6) 

The runoff occurs when the amount of precipitation exceeds 0.2 times the maximum potential 

retention (P > 0.2S). Generation of runoff depends upon various watershed characteristics such as 

the slope of the catchment, soil types, land-use practices, topography and also upon maximum 

potential retention. Hence, the maximum potential retention (S) is correlated with the curve number  

(a dimensionless parameter) moreover, is given as: 

25400
254S
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                                                          (7.7) 
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Once, the SWAT is modeled, calibrated and validated it yields various water balance components 

such as infiltration, percolation, evapotranspiration etc.  

Base Flow 

Groundwater contribution to streamflow or base flow is defined as that portion of streamflow that 

the stream sustains in the lean periods (between precipitation events). Groundwater flow is fed to 

the streams by delayed pathways. Baseflow is also denoted as groundwater recession flow,  

low-water flow, fair-weather runoff etc. The base flow can be estimated as (Schilling et al. 2009): 

    . .

1. . 1gw gwt t

gwj gwj rchrgQ Q e W e
    

                            (7.8) 

where Qgwj means the groundwater flow (mm/day) in the main channel on any day j; αgw is the base 

flow recession constant; Wrchrg is the amount of recharge (mm/day) that might enter the acquirer. 

Lateral Subsurface Flow  

Streamflow contribution that generates below the surface is called as lateral subsurface flow or 

interflow. Lateral subsurface flow is estimated simultaneously with redistribution in the soil profile. 

For each soil layer, to predict the lateral subsurface flow, a kinematic storage model is used. The 

model also keeps into account the variation in different soil parameters such as soil conductivity, 

slope, and soil water content. The later subsurface flow or in many cases the interflow is given as 

(Heuvelmans et al. 2004): 
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where Qlat is the lateral subsurface flow in mm/day; Sv is the volume of soil water drained per unit 

area of saturated thickness in mm/day; SC is the saturated hydraulic conductivity in mm/hr; L is the 

length of the flow; α is the slope of land; θd is the drainable porosity; CN is the curve number of soil 

is discussed above. 

Potential Evapotranspiration (PET) 

Potential Evapotranspiration (or PET) is defined as the rate of evapotranspiration (ETo) of a large 

area that occurs over a uniformly covered area having a vegetative cover with an unlimited water 

supply. It is based on the assumption that there will be no effect of micro-climatic processes like the 

effect of heat-storage or advection. PET can be estimated by three methods in the SWAT model, 
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namely the Hargreaves-Samani  method (Hargreaves and Samani 1985), Priestley-Taylor method 

(Priestley and Taylor 1972), and Penman-Montieth method (Monteith 1965). 

7.2.4 SWAT Model Setup 

7.2.4.1 Watershed delineation 

The first step in the simulation of hydrological processes using SWAT is the delineation of a 

watershed using DEM. It is necessary because the delineation process provides specific sub-

watershed and watershed. In order to delineate the watershed, the DEM was imported into the 

ArcSWAT environment using ArcGIS 10.2. Watershed delineation comprises five primary steps, 

which include DEM setup, inlet, and outlet definition, the definition of stream, watershed outlet 

selection, definition, and calculation of each sub-watershed and watershed parameters, as shown in 

Figure 7.3.  

 
Figure 7.3 Detailed framework for SWAT model setup, calibration, and validation. 

In the present study total, 27 sub-watersheds were delineated that are represented in Figure 7.4. Also, 

the reach of the river, as well as the location of modelled outlet and the location of Patherdihi gauging 

site, have been shown. 
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Figure 7.4 Description of stream networks, outlets, gauging site, and sub-watershed of 

Kharun watershed.  

7.2.4.2 Hydrological Response Units (HRUs) 

After the watershed delineation, Hydrological Response Units (HRUs) are generated. The HRUs 

may be defined as a cohesive unit made from the combination of land use, slope, and soil type of the 

region. The purpose of HRUs is to set up various soil layers, LULC map and soil maps into the 

SWAT project. Almost 100 % (99.07%) of the simulated area overlapped with the actual area, as 

represented in Table 7.1. As discussed earlier, the SWAT model employs LULC and soil data to 

determine HRUs of each sub-watershed. LULC categories (obtained by supervised classification) 

were used and a soil lookup table was used to identify various soil types. Reclassification of slope, 

soil and LULC maps were carried out. The different threshold for various parameters was considered 

for the study such as 20% for LULC, 10% for soil and 20% for slope. The determination of threshold 

values was based on multiple HRU delineation methods. The delineation process subdivided the 

watershed into 27 sub-watersheds as shown in Figure 7.4, and these sub-watersheds were further 

divided into 1124 HRUs for modeling purposes.  
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Table 7.1 Characteristics of gauging site. 

Gauging Site Latitude Longitude 
Actual Area 

(km2) 

Simulated 

Area (km2) 

Difference in 

Area (%) 

Patherdihi 21⁰ 20’ 28’ N 81⁰ 35’48” S 4191 4152 0.93 

7.2.4.3 Uncertainty and sensitivity analysis 

A hydrological model should be capable of sufficiently predicting water balance components and to 

determine whether that hydrological model is robust or not, sensitivity analysis is carried out along 

with model calibration and validation. The purpose of carrying out sensitivity analysis is to  

know-how about the influence of various parameters over the predicted model. In the present study, 

the method of Latin Hypercube One Factor At a Time (LHOAT) was used for sensitivity analysis 

(Morris 1991) using SWAT-Calibration Uncertainties Program (SWAT-CUP). It is a widely used 

tool for the sensitivity evolution of a model that can also assess model calibration and parameter 

uncertainty (Van Liew et al. 2007; Narsimlu et al. 2015; Dakhlalla and Parajuli 2016).  

Sequential Uncertainty Fitting Version 2 (SUFI-2) algorithm was used for the analysis and 

determination of uncertainties related to model calibration and validation and to identify the most 

sensitive input variables for the watershed (Abbaspour 2015). The value of r-factor as well as  

p-factor was used to assess the degree of uncertainty and goodness fit. P-factor is assessed by 

estimating the percentage of observed and simulated values bracketed by 95% prediction 

uncertainty. While the value of r-factor is assessed using an average thickness of percentage 

prediction uncertainty band (95ppu) and standard deviation of predicted and observed data  

(Abbaspour et al. 2007). The value of the p-factor lies between 0-100%, while the value of the  

r-factor is between zero and infinity (0 - ∞). The simulation correction is judged by the values of  

r-factor and p-factor that corresponds to the actual/observed and simulated/measured data. Hence, 

in order to evaluate the capability of the model calibration process and to evaluate the extent to which 

the simulated results deviated from these values, the r-factor and p-factor are employed. 
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7.2.4.4 Model performance evaluation 

In the present study, model performance was evaluated using the coefficient of determination (R2) 

and Nash-Sutcliffe efficiency (NSE) and Percent BIAS (PBIAS). 

 In general, the model is acceptable if the Coefficient of determination (R2) is higher than 0.5, and 

calculated as: 
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                                 (7.10) 

where the term Oi is ith observed value, Oavr is the average observed value of total periods; Pi means 

the ith modeled value and Pavr   represents the average modeled value of the total periods. 

According to Pandey et al. (2017), Nash-Sutcliffe efficiency (NSE) ranges from -∞ to 1, where 1 

indicates perfect simulation against observed value. NSE was adopted as the parameter for the model 

evaluation in this study because it is known for its applicability and reliability in hydrological 

modeling (Tantawy et al. 2007; Legates and Mccabe 2013). 
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Percent Bias (PBIAS) indicated the underestimated or overestimated observed variable. 
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                                           (7.12) 

where Qo and Qs represent the observed discharge and simulated discharge respectively. 

In order to evaluate the performance of the calibrated and validated SWAT model, statistics of 

evaluation parameters in hydrology for the monthly time step are given in Table 7.2. 
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Table 7.2 Range of performance evaluation during calibration and validation. 

Model 

used 

value Rating 

performance 

Modeling stages Reference 

 

 

 

 

 

 

 
SWAT 

R2 

>0.5 Very good Calibration and validation (Moriasi et al. 2007) 

<0.5 Unsatisfactory Calibration and validation (Moriasi et al. 2007) 

NSE 

≥0.65 Very good Calibration and validation (Saleh et al. 2000) 

0.54 to 0.65 Adequate Calibration and validation (Saleh et al. 2000) 

>0.50 Satisfactory Calibration and validation (Saleh et al. 2000) 
PBIAS 

<10% Very good Calibration and validation (Van Liew et al. 2007) 

<10% to <15% Good Calibration and validation (Van Liew et al. 2007) 

<15% to <25% Satisfactory Calibration and validation (Van Liew et al. 2007) 

>25% Unsatisfactory Calibration and validation (Van Liew et al. 2007) 

7.3 RESULTS AND DISCUSSIONS 

7.3.1 Model Sensitivity Analysis 

After the SWAT model setup that includes delineation of the watershed, generation of HRUs, and 

writing of input table using meteorological and spatial data, the SWAT run was executed. However, 

before the interpretation of the modeled results, it is mandatory to know about the most sensitive 

parameters that may affect the runoff generation in the model (Kannan et al. 2007; Chapi et al. 2015). 

For this purpose, a sensitivity analysis was performed. During the sensitivity analysis, the value 

range (Minimum, maximum and fitted value) of different parameters was identified using the SWAT 

user’s manual (Neitsch et al. 2011; Abbaspour 2015). As discussed earlier, the LHOAT technique 

was adopted for performing one-at-a-time sensitivity analysis (van Griensven et al. 2006;  

Green and van Griensven 2008). For this purpose, 27 hydrological parameters were selected initially, 

out of which 15 parameters were found to be most sensitive and their values were adjusted based on 

an acceptable agreement between observed and simulated values. The ranking and description of the 

most sensitive parameters have been represented in Table 7.3. In this table, the parameter with the 

least rank is the most sensitive parameter and vice-versa. The list of sensitive parameters along with 

their minimum, maximum and fitted value has been represented in Table 7.4. 
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Table 7.3 Description and ranking of the most sensitive parameters. 

Rank Parameter Name Definition 

1 V__ALPHA_BF.gw Baseflow alpha factor (days) 

2 R__EPCO.bsn Plant uptake compensation factor 

3 R__RCHRG_DP.gw Deep aquifer percolation fraction 

4 R__SOL_Z(..).sol Maximum rooting depth of soil profile 

5 V__GW_DELAY.gw Groundwater delay (days) 

6 R__ESCO.bsn Soil evaporation compensation factor 

7 R__BIOMIX.mgt Biological mixing efficiency 

8 V__GWQMN.gw 
Threshold depth of water in the shallow aquifer required for 

return flow to occur (mm) 

9 R__SURLAG.bsn Surface runoff lag time 

10 R__SOL_BD(..).sol Moist Bulk Density 

11 R__CH_K2.rte Effective hydraulic conductivity in main channel alluvium 

12 R__SOL_AWC(..).sol Available water capacity of the soil layer 

13 R__GW_REVAP.gw Groundwater "revap" coefficient. 

14 R__CN2.mgt SCS runoff curve number  

15 R__SOL_K(..).sol Saturated hydraulic conductivity 

Table 7.4 Minimum (Min.), maximum (Max.), and the fitted values of sensitive parameters. 

S. No. Parameter Name Change type Min. Max. Fitted value 

1 ALPHA_BF.gw Replace 0 1 0.69 

2 EPCO.bsn Relative 0 1 0.36 

3 RCHRG_DP.gw Relative 0 1 0.35 

4 SOL_Z.sol Relative 0 3500 1606.5 

5 GW_DELAY.gw Replace 0.34 3.46 2.76 

6 ESCO.bsn Relative 0 1 0.9 

7 BIOMIX.mgt Relative 0 1 0.94 

8 GWQMN.gw Replace 0 2 1.11 

9 SURLAG.bsn Relative 0.05 24 0.79 

10 SOL_BD(..).sol Relative 0.9 2.5 1.9 

11 CH_K2.rte Relative 0.01 500 209.51 

12 SOL_AWC.sol Relative 0.11 0.23 0.23 

13 GW_REVAP.gw Relative 0.02 0.2 0.18 

14 CN2.mgt Relative -0.3 0.1 -0.27 

15 SOL_K.sol Relative 0 2000 70 
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7.3.2 Calibration and Validation of the SWAT Model 

Both graphical, as well as statistical tests, were carried out during the calibration of the model. For 

calibration and validation, the entire discharge data series 27 (1987-2014) series was broken into 

three parts. The first three years (1987-1990) was opted for the warmup period of the SWAT model. 

For the calibration of the SWAT model, data from 1990 to 2005 (15 years) were considered, while 

the rest of the data was used for validation. Calibration of the model was performed by automatic 

calibration technique using the Sequential Uncertainty Fitting Version 2 (SUFI-2) Algorithm in  

SWAT-CUP 2012 version of 5.1.6.2. The most sensitive parameters (Table 7.3) were calibrated with 

500 combinations of 3 iterations between 1990 and 2005. Validation of the model was done similarly 

by using the outputs from the calibration process. The results of the calibration and validation of the 

model have been represented in Figure 7.5 and Figure 7.6 respectively. Upon visual interpretation 

of the results, it can be inferred that there is a close match between the observed discharge data at 

the outlet and the simulated/modeled discharge obtained from the SWAT model. It can be observed 

that the peaks are matching perfectly in almost all the years barring few exceptions, which further 

suggests that the model can very well estimate the peak floods in the region. Also, it was found that 

for almost all the years, the peaks representing the simulated discharge are taller than the peaks 

representing the observed/actual discharge, although it is quite similar. Hence, it can be inferred that 

the model is slightly over-predicting the streamflow in the watershed. 

 
Figure 7.5 Calibration plot of simulated and observed discharge at the outlet. 
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Figure 7.6 Validation plot of simulated and observed discharge at the outlet. 

Apart from the visual interpretation of the observed and simulated discharge, the model performance 

was evaluated based on p-factor, r-factor, coefficient of determination (R2), Nash-Sutcliffe 

efficiency (NSE), and Percent BIAS (PBIAS) as shown in Table 7.5. As per Moriasi et al. (2007), if 

the value NSE and R2 is greater than 0.65 (Table 7.2), it confirms that the model performance is very 

good. It also suggests that if the value of PBIAS is less than 10%, the model performance is very 

good. The values obtained for each model performance parameter are well within the acceptable 

range which itself explains that the model has a strong predictive capability. Hence, depending upon 

the calibration and validation results of the SWAT, it can be concluded that the SWAT is applicable 

over Kharun watershed. 

Table 7.5 Values of model performance parameters at the outlet. 

S. No. Evaluation Duration p-factor r-factor R2 NSE PBIAS (%) 

1 Calibration 1990-2005 0.23 0.32 0.84 0.8 -9.4 

2 Validation 2006-2014 0.18 0.35 0.85 0.79 -9.2 

7.3.3 Model Application Under Land Use and Climate Change Scenarios 

In this study, the effects of LULC and climate changes on water balance components were evaluated 

by comparing the SWAT outputs of 29 simulations. Four simulations were performed under the 

dynamics of LULC (1990, 2000, 2010, and 2030), whereas 25 runs were conducted under different 

climatic conditions (Figure 7.7). Two GHGs scenarios (RCP 4.5 and RCP 8.5) from four climate 

models (representative RCMs) were selected to assess the climate change impact over the study area. 
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Figure 7.7 Flowchart illustrating 29 simulations under varying land use and climate change 

scenarios. 

7.3.3.1 Impact of LULC change over water balance components 

The calibrated SWAT model was used to simulate the impact of LULC change over water balance 

components. As discussed earlier, the water balance components of the Kharun watershed were 

simulated under four different land-use periods, 1990, 2000, 2010, and predicted land use 2030. 

LULC class distribution and changes are given in Table 7.6. Based on the analysis it was observed 

that not much changes were observed between 1990 and 2000, the only significant difference was 

the increase in land share of water bodies which increased from 75.83 km2 (1.89%) to 114.44 km2 

(2.76%), while the share of barren land nearly doubled from 101.98 km2 (2.46%) to 201.79 km2 

(4.86%). However, in the next decade, things seemed to deviate from their natural course. The share 

of water bodies reduced from 2.76% to just 1.5% (62.23 km2), and agricultural land reduced from 

3509.5 km2 (84.5%) to 3379 km2 (81.4%). These changes in the share of water bodies and 

agricultural land were the result of a rise in urban areas from 12.27 km2 (0.30%) to 82.68 km2 
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(1.99%). Similar trends were also seen between 2010 and projected the year of 2030, where there 

was a further reduction in agricultural land and mixed forest accompanied by an increasingly urban 

area and barren land. These changes are a result of extensive real estate development in the study 

area due to the declaration of the state of Chhattisgarh, details of which have been discussed briefly 

in Chapter 6. 

Table 7.6 Land use/land cover distribution of the years 1990, 2000, 2010 and 2030. 

CLASS 

1990 2000 2010 2030 

Area Area Area Area 

Sq. km. % Sq. km. % Sq. km. % Sq. km. % 

Water bodies 78.53 1.89 114.44 2.76 62.23 1.50 104.16 2.51 

Urban area 9.41 0.23 12.27 0.30 82.68 1.99 279.57 6.73 

Agricultural land 3553.0 85.6 3509.5 84.5 3379.0 81.4 2954.39 71.15 

Mixed forest 360.09 8.67 265.15 6.39 283.99 6.84 215.23 5.18 

Barren land 101.98 2.46 201.79 4.86 284.08 6.84 557.16 12.42 

Sand and open rocks 49.31 1.19 49.00 1.18 60.31 1.45 41.74 1.01 

Impact study of LULC change dynamics on hydrological components was carried out by utilizing 

various LULC scenarios. The results indicated that, over time, there is an increase in water yield 

while there is a reduction in Evapotranspiration (ET). The change in LULC influence the surface 

properties such as curve number (CN) values and evapotranspiration properties. Change in surface 

parameter values due to changed LULC is the root cause of change in the water balance components. 

In order to compute the LULC change impact only, the period of climate data has been fixed for the 

simulation. In this study, fixed climatic period data from 1990 to 2010 has been considered to 

simulate the SWAT model for impact assessment study considering LULC change. The average 

annual values of water balance (water yield, actual evapotranspiration) are given in Table 7.7. Water 

yield includes surface runoff, groundwater, lateral flow as well as transmission losses in the channel 

(Eq. 7.2). Table 7.6 indicates that increase in settlement (urban area and barren land) and a decrease 

in vegetation (agricultural land and mixed forest), which results in increased water yield and reduces 

ET. Based on the interpretation of results, it can be observed that ET reduced with time due to a 

decrease in vegetation, earlier it used to be 326.71 mm in 1990, but it declined to 298.39 mm during 

the projected the year of 2030. Similarly, the increase in paved area and flat surfaces due to the 

increase in urban areas and barren land due to urbanization resulted in increased runoff and decreased 

groundwater storage, which leads to an increase in overland flow. These changes in overland flow 

are directly reflected over the water yield which increased from 781.58 mm in 1990 to 881.84 mm 
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in the projected the year of 2030 which further supports the argument. The average annual values of 

evapotranspiration and water yield of sub-watershed due to LULC change are shown in Figure 7.8 

and Figure 7.9, respectively. During the last two decades (2010-2030), LULC change increased 

water yield by 45.88 mm and accounted for 5.48% of the total change (881.84 mm). Moreover, ET 

decreases by 4.19% in the same duration. 

Table 7.7 Average annual water balance components under 1990, 2000, 2010, and 2030 

LULC. 

LULC Precipitation (mm) ET (mm) Water Yield (mm) 

1990 1115.04 326.71 781.58 

2000 1115.04 318.47 810.93 

2010 1115.04 311.44 835.96 

2030 1115.04 298.39 881.84 

 

 
Figure 7.8 Comparison of decadal changes in evapotranspiration due to LULC change. 
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Figure 7.9 Comparison of decadal changes in water yield due to LULC change. 

7.3.3.2 Impact of climate change over water balance components 

7.3.3.2.1 Precipitation projection under RCP scenarios 

Precipitation is the critical component of hydrological modeling along with the temperature. To 

model any hydrological process, it is mandatory to know about the precipitation characteristic of a 

region since it is the only source of water availability in most of the regions. Hence, the variability 

of precipitation over Kharun watershed was estimated to know about the effects of climate change 

in the region. Detail discussion about the historical trends and long term changes in precipitation 

have been discussed in Chapter 4, while the variation in rainfall trends in the future has been 

discussed in detail in Chapter 5. For a hydrological simulation of Kharun watershed due to climate 

change, observed dataset (IMD precipitation) was compared with the simulated precipitation values 

obtained from four Representative Climate Models (RCMs), namely CCCma, CSIRO, MIROC5 and 

NorESM. The comparative result of precipitation variation of observed precipitation (IMD) with the 

simulated RCM data during the baseline period (1981-2010) has been represented in Figure 7.10. It 

was found that the average annual precipitation for different RCMs was 1004 mm (CCCma), 1237 

mm (CSIRO), 1089 mm (MIROC5), and 1316 mm (NorESM) while the actual average annual 

precipitation as per IMD was 1151 mm for the region. MIROC5 was found to produce the closest 

result with a minimum difference of 5.6%, while the maximum difference was seen in the case of 

NorESM (-11.6%) regarding IMD data. To have a better understanding Figure 7.10 can be referred 

which shows the comparison of precipitation variation of observed precipitation data (IMD) with 

the simulated RCM data for the baseline period of 1981-2010. 
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Figure 7.10 Comparison of precipitation variation of observed precipitation (IMD) with the 

RCM data during the baseline period (1981-2010). 

Apart from the comparison of observed precipitation of IMD datasets and simulated precipitation 

from the four RCMs for the baseline scenario, future climate projections in the case of RCP 4.5 and 

RCP 8.5 were also compared. Three distinct climate periods of 30 years each were chosen for the 

purpose, namely, CC1 (2011-2040), CC2 (2041-2070) and (2071-2100). Prima facie, it was observed 

that the average annual precipitation is increasing with the increase in time for all the RCMs in both 

the RCP projection. For example, in the case of RCP 4.5 for RCM MIROC5, the annual average 

precipitation in CC1 was 1201 mm and 1536mm in CC3, while for the IMD baseline scenario, it 

was 1151 mm. Also, the notable point is related to this observation was that the average annual 

precipitation of MIROC5 during baseline (1981-2010) was 1089 mm. Hence, it can be inferred that 

the annual average precipitation in the case of MIROC5 increased by almost 10% in CC1 and by 

41% in CC3. Similar patterns were observed for CCCma, CSIRO, and NorESM (Figure 7.11) and 

all the RCMs of the RCP 8.5 scenario (Figure 7.12). Hence, it can be inferred that the average annual 

precipitation for the region is on the rise with passing time. It also signifies that the average annual 

precipitation during period CC1 is less as compared to the baseline period, but increased 

progressively in the periods CC2 and CC3. Variation in average monthly precipitation was also 

computed for the climate periods (CC1, CC2 and CC3) for all the RCMs under RCP 4.5 and  

RCP 8.5, the results have been represented in Figure 7.13 and Figure 7.14 respectively. 
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Figure 7.11 Variation in precipitation of climate periods: CC1 (2011-2040), CC2  

(2041-2070) and CC3 (2071-2100) for RCP 4.5. 

 
Figure 7.12 Variation in precipitation of climate periods: CC1 (2011-2040), CC2  

(2041-2070) and CC3 (2071-2100) for RCP 8.5. 
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Figure 7.13 Comparison of projected average monthly precipitation (RCP 4.5). 

 
Figure 7.14 Comparison of projected average monthly precipitation (RCP 8.5). 

7.3.3.2.2 Temporal changes in water balance components 

As discussed in the previous section, 25 SWAT simulations were carried out to determine the 

temporal changes in water balance components over Kharun watershed. For this purpose, SWAT 

simulation was carried out over the calibrated SWAT model initially using IMD data (1981-2010) 

as a baseline. Before this 24 SWAT simulations were carried out for the future climate periods, i.e., 

CC1 (2011-2040), CC2 (2041-2070), and CC3 (2071-2100) considering both RCP 4.5 and  

RCP 8.5 scenarios. The results of the water balance components obtained from SWAT simulation 

of the baseline period were compared with the results of water balance components obtained for 

each climate period for all the RCMs (CCCma, CSIRO, MIROC5 and NorESM). The percent change 

in water balance components of all future climate simulations scenarios (CC1, CC2 and CC3) 
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concerning the baseline scenario (IMD) have been represented in Table 7.8 and their variations can 

be seen visually from Figure 7.15 (precipitation), Figure 7.16 (evapotranspiration) and Figure 7.17 

(water yield). 

It was observed that concerning the simulation under IMD, climate scenarios of the CSIRO model 

resulted in an increase in almost all of the hydrological components during all three climate periods 

and both RCP scenarios. The overall finding of the results suggested that there is a temporal increase 

in all the three water balance components in both RCP scenarios. In RCP 4.5, the maximum increase 

in precipitation was observed in CC3 (29.02%) of the CSIRO climate model. Similarly, in RCP 8.5, 

the maximum increase was found in CC3 (56.02%) of the CCCma model. For both RCP scenarios 

reduction in precipitation was observed in period CC1 (2011-2040) by -16.83% for NorESM and by 

-16.29% for MIROC5. The simulation result suggests that the evapotranspiration (ET) in the region 

is going to increase between 2011 and 2100 but when compared to IMD simulation as a reference, 

it was observed that the ET has decreased. The maximum change in ET was obtained in CC3. For 

RCP 4.5, it was 3.99% (MIROC5) and for RCP 8.5, it was 7.26% (MIROC5). While the minimum 

change in ET was observed in CC1. The maximum increase in water yield was observed in CC3, 

37.36% for CSIRO (RCP 4.5), and 77.10% for CCCma (RCP 8.5). 

Table 7.8 Percent changes in water balance components of all simulation scenarios w.r.t. 

baseline. 

Climate models 
CC1 CC2 CC3 

PCP ET WYLD PCP ET WYLD PCP ET WYLD 

  RCP 4.5 

CCCma -5.05 -25.39 3.29 11.20 -22.96 25.58 14.08 -27.56 24.82 

CSIRO 10.51 -11.73 19.92 24.83 -3.22 36.66 29.02 0.63 37.36 

MIROC5 -0.26 -12.26 4.40 -8.94 -8.70 -9.12 25.75 3.99 34.92 

NorESM -16.83 -11.28 -19.36 -6.29 -8.04 -5.74 12.28 1.03 16.82 

  RCP 8.5 

CCCma 0.87 -23.41 10.91 -4.05 -25.69 4.79 56.02 -14.53 77.10 

CSIRO 15.68 -3.83 23.88 47.30 0.08 67.39 27.44 6.62 32.63 

MIROC5 -16.29 -15.94 -16.73 14.07 -7.60 23.14 33.24 7.26 41.48 

NorESM 2.58 -8.34 7.25 14.86 -1.48 21.65 37.87 3.92 49.48 
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Figure 7.15  Comparison of simulated annual average precipitation (PCP) of climate periods 

with respect to simulated baseline (IMD) data. 

 
Figure 7.16 Comparison of simulated annual average Evapotranspiration (ET) of climate 

periods with respect to simulated baseline (IMD) data. 
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Figure 7.17 Comparison of simulated annual average Water Yield (WYLD) of climate 

periods with respect to simulated baseline (IMD) data. 

To have a better understanding of temporal variations of water balance components over Kharun 

watershed due to climate change, spatial maps were plotted. Figure 7.18 shows the spatial variation 

of water balance components across all watersheds in the Kharun watershed during the base period 

(1981-2010), considering IMD data for the simulation. Similarly, temporal variations of all the water 

balance components were also plotted, Figure 7.19 and Figure 7.20 shows the variation of 

precipitation across all the sub-watershed of all four climate models for all the three climate periods 

(CC1, CC2 and CC3) for RCP 4.5 and RCP 8.5 respectively. Similarly, the sub-watershed wise 

variation of evapotranspiration of all the climate models for all three climate periods for RCP 4.5 

and RCP 8.5 is presented in Figure 7.21 and Figure 7.22 respectively. Also, Figure 7.23 and  

Figure 7.24 presents the sub-watershed wise variation of water yield of all the climate models for all 

the three climate periods for RCP 4.5 and RCP 8.5, respectively. 
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Figure 7.18 Sub-watershed wise variation of water balance components during the baseline 

period (1981-2010). 

Based on the analysis of Figures 7.19 - 7.24, it is observed that the sub-watersheds present in the 

southern part of the Kharun watershed are bound to receive lesser rainfall (precipitation) as compared 

to the northern reaches of the watershed for both RCP scenarios (RCP 4.5 and RCP 8.5). As a result 

of which there will be more water yield in the northern sub-watersheds of the region, as signified by 

Figure 7.23 and Figure 7.24. It was also observed that there is a temporal increase in all the water 

balance components across most of the sub-watersheds.  
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Figure 7.19 Sub-watershed wise variation of simulated precipitation during all climate 

periods for RCP 4.5. 
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Figure 7.20 Sub-watershed wise variation of simulated precipitation during all climate 

periods for RCP 8.5. 
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Figure 7.21 Sub-watershed wise variation of simulated evapotranspiration during all climate 

periods for RCP 4.5. 
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Figure 7.22 Sub-watershed wise variation of simulated evapotranspiration during all climate 

periods for RCP 8.5. 
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Figure 7.23 Sub-watershed wise variation of simulated water yield during all climate periods 

for RCP 4.5. 
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Figure 7.24 Sub-watershed wise variation of simulated water yield during all climate periods 

for RCP 8.5. 
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7.3.4 Adaptation and Coping Strategies Towards Climate Change 

According to IPCC AR5, the global climate has changed and will keep on changing with the passing 

time. Its impact can be seen over precipitation, temperature, and other water balance components. 

However, the trends may differ from region to region as the variation in orography and circulation 

pattern differs locally. Due to anthropogenic activities and increased GHGs concentration, the 

surface temperature of the earth and the rate of precipitation is fast changing. An adverse effect of 

climate change is affecting global food security, water availability and ecosystem. To minimize this, 

it is vital to reduce the emission of GHGs concentration in the atmosphere. Moreover, proper 

adaptation and coping strategies may prevent or reduce the adverse effect of climate change. Overall, 

the present study suggests that change in climate will continue and might accelerate in the future, 

despite differences in the underlying expectations regarding economic development (scenario 

storylines) and model uncertainty. 

Furthermore, Representative Concentration Pathways (RCP), moderate (RCP 4.5) and high  

(RCP 8.5) were considered from latest greenhouse trajectories of IPCC AR5 to assess the 

vulnerability within the area i.e. Kharun watershed. An ensemble of global climate models of the 

watershed indicates that annual mean temperature most likely to rise from 1.98⁰C (RCP 4.5) to 

3.18⁰C (RCP 8.5) by the 21st century (Figure 7.25 and Figure 7.26). Precipitation in the watershed 

may increase by about 23% (RCP 4.5) to 35% (RCP 8.5) in the next 100 years (Figure 7.27 and 

Figure 7.28). Moreover, extreme events of precipitation in the late 21st century can be observed from 

the ensembles of RCMs output. There is enough evidence that the expected changes in climate 

positively affect water resources and agriculture. There is a need to propose adaptation and coping 

strategies in water resources and extreme events (flood) for the watershed.  

Therefore, it can be summarized that the vulnerability considering the various sources of uncertainty 

such as RCPs and RCMs. They will undoubtedly affect the future climate in the watershed in the 

following ways:  

 The temperature will increase up to 3.5⁰C under high GHGs concentration. 

 Increase in temperature will stimulate the evapotranspiration and contribute to the 

intensification of the hydrological cycle.  

 A rise in temperature will affect food production and uncertainty in crop yield.  

 It is most likely that the increase in total precipitation will continue.  
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 During the mid of the 21st century, extreme values will frequently occur which will trigger 

flooding and soil erosion on a massive scale. 

 
Figure 7.25 Change in mean annual temperature of watershed averaged considering RCMs 

output ensemble for RCP 4.5. 

 
Figure 7.26 Change in mean annual temperature of watershed averaged considering RCMs 

output ensemble for RCP 8.5. 
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Figure 7.27 Change in total annual precipitation of watershed averaged considering RCMs 

output ensemble for RCP 4.5. 

 
Figure 7.28 Change in total annual precipitation of watershed averaged considering RCMs 

output ensemble for RCP 8.5. 
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are available. The basic principles and elements of adaptation strategies are (Kelly and Adger 2000; 

Nyong et al. 2007; Adger 2007; Epule et al. 2017): 

1. Assessment and development of flood management, including risk analysis and environmental 

and social impact assessment;  

2. Provide warnings of the flood to the general public and civil defense in advance;  

3. Monitor the hydrologic regime and related climate factors, especially in the region most likely 

to suffer from the adverse effects of climate change  

4. Develop long-term strategies and practical implementation programs for agricultural water 

use under scarcity conditions with competing demands for water;  

5. Land management techniques and amendment in policy to manage the natural vegetation and 

expansion of urbanization;  

6. Crop substitution to reduce dependence on irrigation or to increase water availability. Some 

crops use less water or are more resistant to heat, so they cope better with dry conditions than 

others. Also, the choice of crops may contribute to adaptation in terms of “evapotranspiration 

management,” in particular for rain-fed agriculture. In regions, a large proportion of the water 

that falls as precipitation is evaporated and transpired again by the vegetation. Through the 

appropriate selection of crop types, evapotranspiration from agriculture may be reduced, 

which could lead to increased runoff and a generally enhanced availability of water for other 

crops or purposes.  

7. Changes in farming systems to make them more resilient against higher variability in climatic 

conditions. Diversification of production may thus be a way for farmers to increase their 

management flexibility and adaptive capacity. Also, organic farming approaches may 

enhance the capacity of agricultural soils to perform under changing and more adverse 

climatic conditions.  

8. Changes in land use and landscape management may help conserve water, for instance, 

replacing arable land by grassland. To reduce the sensitivity of farming systems to flood 

damage, a change of land use in flood risk areas might be necessary. For instance, crop 

farming in flood risk areas may be replaced by extensive grassland management.  
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9. Initiate case-studies to establish whether there are linkages between climate changes and the 

current occurrences of droughts and floods in certain regions.  

10. Furthermore, an integrated approach called Integrated Water Resources Management 

(IWRM) tool might be proposed to maximize economic and social welfare equitably without 

compromising the sustainability of vital ecosystems under climate change as suggested in 

many studies (Al Radif 1999; Shah and Koppen 2006; Mersha et al. 2016). It is defined as a 

process which promotes the coordinated development and management of water, land and 

related resources in order. However, the potential impacts of climate change and increasing 

climate variability needs to be sufficiently incorporated in the IWRM plans. IWRM is an 

excellent tool for coping with natural climate variability and the prerequisite for adapting to 

the highly uncertain consequences of global warming and associated climate change. The 

research community needs to introduce the concept and basic overview of IWRM tools in 

the adaptation of climate change impact and recommend it as a potential tool for 

implementation. IWRM seems to provide more flexibility and adaptive capacity than 

conventional water resources management approaches. As such, IWRM has to deal with  

all-natural resources, not only water but also soils, surface water and groundwater, water 

quantity, quality as well as ecological aspects of water. 

In general, water resource management uses both an analytical framework, explicitly identifying the 

components and different steps in the analysis process, and a computational framework, establishing 

a capacity for data processing and quantitative comparison of alternatives. Based on scenarios for 

climate change, demography, economic development, and spatial planning, projections of the water 

demand for irrigation, drinking water supply, industrial water supply and environmental 

requirements are made.  

Moreover, agriculture may benefit from adaptation measures taken in the water management sector. 

A need for further research exists both with respect to the integrated impacts of CO2 increase and 

climate change on farming systems and with respect to adaptation strategies that can improve the 

sustainability and resilience of farming systems under more variable climatic conditions. Issues for 

research include spatial resolution in vulnerability mapping, technological and management-based 

adaptation measures. 
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7.4 CONCLUDING REMARKS 

This study investigated the effect of dynamics in LULC change and the effect of considerable 

historical and future climate variability on water availability of Kharun watershed as it plays a crucial 

role in the sustainable development of water resources planning and management. To mimic the 

watershed characteristic, it was essential to calibrate the model. The following conclusions can be 

drawn from the study presented in this chapter: 

 Parameters, namely Base Alpha Factor (ALPHA_BF), Plant uptake compensation factor 

(EPCO), and Deep aquifer percolation fraction (RCHRG_DP), were found to be the most 

sensitive parameters for the Kharun watershed. 

 For monthly simulations, the values of R2, NSE, and PBIAS were found to be 0.84, 0.8 and 

-9.4% during calibration, and 0.85, 0.79 and -9.2% during validation, respectively. The 

results indicated satisfactory model performance for Kharun watershed. Based on these 

results, it was concluded that the SWAT model could be successfully employed for the 

hydrological simulation purposes over Kharun watershed. 

 In order to compute the hydrological components under the dynamics of LULC, fixed 

climatic period data from 1990 to 2010 was considered to simulate the impact of LULC 

change for 1990, 2000, 2010, and 2030. Results indicate that an increase in settlement (urban 

and barren land) for real estate development, accompanied by a decrease in vegetation 

(agricultural land and mixed forest), resulted in an increase in the water yield but the 

evapotranspiration (ET) reduced due to reduction of vegetation. It was observed that ET 

reduced with time due to a decrease in vegetation, earlier it used to be 326.71 mm in 1990 

but it declined to 298.39 mm during the projected the year of 2030.  Due to an increase in 

overland flow, the water yield increased from 781.58 mm in 1990 to 881.84 mm in the 

projected the year of 2030. During the last two decades (2010-2030), LULC change increased 

water yield by 45.88 mm and accounted for 5.48% of the total change (881.84 mm). 

Moreover, ET decreased by 4.19% in the same duration. 

 For both RCP scenarios, reduction in precipitation was observed in period CC1 (2011-2040) 

by -16.83% for NorESM and by -16.29% for MIROC5. The simulation result suggests that 

the evapotranspiration (ET) in the region is going to increase between 2011 and 2100 but 

when compared to IMD simulation as a reference, it was observed that the ET has decreased. 

The maximum change in ET was obtained in CC3. For RCP 4.5, it was 3.99% (MIROC5) 
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and for RCP 8.5, it was 7.26% (MIROC5). While the minimum change in ET was observed 

in CC1. The maximum increase in water yield was observed in CC3, 37.36% for CSIRO  

(RCP 4.5) and 77.10% for CCCma (RCP 8.5). 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

8.1 SUMMARY 

The present research has been carried out to ascertain the water availability and its distribution under 

the impact of climate change and anthropogenic interventions in Kharun watershed, India. Water is 

the most crucial aspect of human life and is affected the most due to change in the climate. Climate 

change intensifies the process of hydrological cycle which subsequently has severe effects on the 

intensity and frequency of extreme events. Increased evaporation, sea-level rise, prolonged droughts 

and unpredictable precipitation are just a few results of climate variability that directly affect the 

water availability in any region. The change in meteorological distribution influences the ecosystem 

and landscape change and will continue to do so in the near future. However, the root cause of 

variation in precipitation rate and temperature in Kharun watershed is the rapid urbanization of the 

region and climate change. For future planning and management of the available water resources, it 

becomes quite essential to have a clear understanding of the distribution and variability of 

meteorological parameters. 

To investigate the long term changes in the hydrological balance of an area (basin/watershed), it is 

essential to know about the history, climatology, topography and demography of that area. Kharun 

watershed was opted for the present study. Raipur, the capital city of Chhattisgarh, lies within the 

watershed, and the Kharun River bisects the capital due west of the city. Massive urbanization and 

industrialization have been observed after the formation of Chhattisgarh state. Due to real estate 

development, forest areas and agricultural land have given way to residential and industrial 

complexes. These large scale development and urbanization have altered the hydrological balance 

in the region. To investigate the extent of imbalances caused by the alteration in the hydrological 

balance, this study was carried out in one of the major watersheds in the tropical region of 

Chhattisgarh. 
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8.2 CONCLUSIONS 

The salient findings and conclusions drawn from the present study are discussed below. 

8.2.1 Shift and Trends in Meteorological Variables 

The ecosystem and landscape change mainly influence long term changes in meteorological 

distribution. However, changes in precipitation rate and temperature are the main causes of climate 

change, which drastically varies the flow in the river. For the planning and management of water 

resources, it is quite essential to understand the distribution and variability of meteorological 

parameters. Trend detection was carried out for long term temperature (maximum, minimum, and 

mean) and precipitation data by applying regression analysis, MMK test, and the magnitude of 

change has been found out using Sen’s slope estimator over 22 grids in and around the study area. 

Apart from finding the nature and extent of trend, the magnitude of change was also computed to 

quantify the change in terms of the respective units of the parameters. Similar statistics were also 

performed over 23 indices of meteorological extremes computed from long term precipitation and 

temperature time series, 18 extreme precipitation and temperature indices out of 27 developed by 

ETCCDMI were considered for the study. Additionally, five more indices were proposed in the 

study, which is based on the precipitation intensity indices suggested by IMD. Also, the Cumulative 

sum (Cusum) and sequential Mann-Kendall (SQMK) test were applied to identify the climatic shift 

(change year) over the meteorological time series. 

1. Significant findings of the study state that there is an increase in average maximum 

temperature during summer (0.19⁰C), post-monsoon (0.21⁰C), and winter (0.61⁰C) seasons. 

Significant reduction in average yearly minimum temperature (-0.68⁰C) was observed over 

the study area, similar reduction in average minimum temperature during summer (-0.39⁰C), 

monsoon (-0.60⁰C) and post-monsoon (-0.32⁰C) season. The most significant reduction in 

average minimum temperature was seen during the winter season (-1.10⁰C). The annual 

precipitation seems to be decreasing over the study area by almost 210 mm for 115 years. 

Similar trends were also seen for summer (16.85 mm), post-monsoon (3.26 mm), and winter 

(2.69 mm). 

2. After the computation of long term variation in meteorological extremes, it can be inferred 

that the gap between the minimum and maximum temperature seems to be increasing over 

the study period at an average rate of 0.09⁰C/decade (4.6%), which explains the increasing 

trend in Diurnal Temperature Range (DTR). This precisely explains the fact that the days are 
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getting hotter, and the nights are getting colder and its effects can be seen over the rainfall 

intensities in the region. As per the results obtained, there was reduction observed in the 

number of light rainy days (-10.2%), moderate rainy days (-17.8%), rather heavy and heavy 

rainy days (-25.5 and -18.4%). The number of cumulative dry days in the study area has 

increased by 19.5%, which in itself explains the reduction in rainy days. As the trend statistics 

of temperature and precipitation extremes tend to get severe after shift (as discussed in 

Chapter 4), the phenomenon due to the variation in these extreme indices will have a more 

adverse effect on the study area. 

8.2.2 Climate Models and Future Trend Analysis 

For reproduction of meteorological parameters to study changes in extreme value indices in the 

future, the Regional Climate Model (RCMs) was evaluated in the study. Four RCMs were identified 

as the most suitable models to determine future times series data of precipitation and temperature 

(maximum and minimum) for the study viz. CCCma, CSIRO, MIROC5 and NorESM. The technique 

of distribution mapping was used to remove systematic biases that may be present in the data. MMK 

test statistic was used to evaluate the presence of any trend while the magnitude of the trend was 

quantified using Sen’s slope estimator over the entire period (2011-2100) and for three climate 

periods, namely CC1 (2011-2041), CC2 (2041-2070) and CC3 (2071-2100). These tests were 

applied over two scenarios viz. RCP 4.5 and RCP 8.5.  

For the study area, it was observed that the annual rainfall in the future would increase by almost 

29% (especially in period CC3). Also, a reduction in the number of CWD (10%) accompanied by 

an increase in CDD (-17%) was observed for the future, which further emphasizes the point of 

increase in high-intensity rainy days (RRH by 51%) in the future. A similar phenomenon was 

observed for both the scenarios (i.e., RCP 4.5 and RCP 8.5). The study also suggested that climate 

change will have considerable effects on the region. In the future, the nights will become warmer 

(increase in TR by 81%), and the days will get hotter (increase in SU by 6%) while the DTR will 

increase by almost 2.6% in the future for both RCP scenarios. The overall result indicated an increase 

in the Diurnal Temperature Range (DTR) in the future, along with an increase in days with heavy 

rainfalls in the case of both scenarios for the study area. 
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8.2.3 Land Use/Land Cover Dynamics and Future Prediction 

The study of land use/land cover (LULC) change dynamics was carried out over the Kharun 

watershed. LULC mapping was carried out for the region by using satellite imageries (LANDSAT 

5, 7, and 8) by application of RS and GIS tools such as ERDAS Imagine and ArcGIS 2012.  The 

LULC maps were classified into six different classes namely water bodies, urban areas, agricultural 

land, barren land, mixed forest and sand/open rocks. The changes between different classes between 

1990 and 2015 were evaluated at decadal as well as the demi-decadal level. Significant findings in 

the study stated that there is a decrease in vegetation (agricultural land and mixed forest) in the 

region, giving rise to the urban area and barren land. In 25 years (1990-2015), the urban area 

increased by almost 1450%, which is very high for an agricultural watershed, also in that period, the 

land share of agricultural land and mixed forest depleted by approx. 20% and 50%, respectively. 

This clearly indicates that the floral region is giving way to urban settlement and barren land. 

After the analysis of historical trend patterns in LULC, the LULC map for the near future (2030) 

was projected using the CA-Markov model. The model was validated and simulated with the 

classified LULC map of 2015. The projected LULC map of 2030 indicated the continuation of the 

same trend of the past.  It was found that the urban areas in the region will increase by almost 47.36%, 

while the agricultural land will further deplete by 7.5%, and the mixed forest in the region will shrink 

by 10% in the near future. These future projections indicate the expected changes in the near future. 

Therefore, the LULC changes concerning different classes in the near future will caution the 

concerned authorities for proper planning and management of the study area.   

8.2.4 Hydrological Simulation Under LULC and Climate Change Scenarios 

This study investigated the effect of dynamics in LULC change and the effect of significant historical 

and future climate variability on water availability of Kharun watershed as it plays a crucial role in 

the sustainable development of water resources planning and management. To mimic the basin 

characteristic, it was essential to calibrate the model. The following conclusions can be drawn from 

the study: 

1. Parameters, namely Baseflow Alpha Factor (ALPHA_BF), Plant uptake compensation factor 

(EPCO), and Deep aquifer percolation fraction (RCHRG_DP), were found to be the most 

sensitive parameters for the Kharun watershed. 
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2. For monthly simulations, the values of R2, NSE and PBIAS were found to be 0.84, 0.8 and  

-9.4% during calibration, and 0.85, 0.79 and -9.2% during validation, respectively. The 

results indicated satisfactory model performance for the basin. Based on these results, it was 

concluded that the SWAT model could be successfully employed for hydrological simulation 

purposes over Kharun watershed. 

3. In order to compute the hydrological components under the dynamics of LULC, fixed 

climatic period data from 1990 to 2010 was considered to simulate the impact of LULC 

change for 1990, 2000, 2010, and 2030. Results indicate that an increase in settlement (urban 

and barren land) for real estate development, accompanied by a decrease in vegetation 

(agricultural land and mixed forest), resulted in an increase in the water yield but the 

evapotranspiration (ET) reduced due to the reduction of vegetation. It was observed that ET 

reduced with time due to a decrease in vegetation, earlier it used to be 326.71 mm in 1990 

but it declined to 298.39 mm during the projected the year of 2030.  Due to an increase in 

overland flow, the water yield increased from 781.58 mm in 1990 to 881.84 mm in the 

projected the year of 2030. During the last two decades (2010-2030), LULC change increased 

water yield by 45.88 mm and accounted for 5.48% of the total change (881.84 mm). 

Moreover, ET decreases by 4.19% in the same duration. 

4. For both RCP scenarios, reduction in precipitation was observed in period CC1 (2011-2040) 

by -16.83% for NorESM and by -16.29% for MIROC5. The simulation result suggests that 

the evapotranspiration (ET) in the region is going to increase between 2011 and 2100 but 

when compared to IMD simulation as a reference, it was observed that the ET has decreased. 

The maximum change in ET was obtained in CC3. For RCP 4.5, it was 3.99% (MIROC5) 

and for RCP 8.5, it was 7.26% (MIROC5). While the minimum change in ET was observed 

in CC1. The maximum increase in water yield was observed in CC3, 37.36% for CSIRO  

(RCP 4.5) and 77.10% for CCCma (RCP 8.5). 

5.   To address the issue of hydrological imbalance due to LULC and climate change in the 

study area, Kharun watershed some adaptation and coping strategies were proposed. These 

measures included land management techniques, crop substitution (to reduce dependency on 

irrigation) and alteration in farming systems, changes in land use, and landscape management 

to help conserve water and Integrated Water Resources Management (IWRM) techniques. 

IWRM techniques, with the help of localized case studies, might help in ensuring proper 

water usability for the social and economic development of the study area. 
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8.3 RESEARCH CONTRIBUTIONS  

The research contributions of the present study are summarized below: 

1.   Historical trends in meteorological parameters (precipitation and temperature) along with the 

trends of various extreme value indices over Kharun watershed were evaluated using MMK, 

and their trends were quantified using Sen’s slope estimator. Apart from the existing 18 (out 

of 23) indices, an additional five (5) extreme value indices were proposed in the present study 

to determine the variation in various rainfall intensities due to climate change. Detection of 

climate shift in the region was carried out using Sequential Mann-Kendall (SQMK) and 

Cumulative Sum (CUSUM) test statistics. 

2. Future trends ever in extreme value indices based on precipitation and temperature were 

evaluated using Regional Climate Models (RCM). BIAS correction was applied over the 

RCMs using distribution mapping techniques. 

3.  LULC mapping was carried out using the Landsat TM, ETM and OLI_TRS satellite images 

utilizing geospatial tools viz. GIS and ERDAS Imagine. The development in the different 

classes of LULC was evaluated from 1990 to 2015. Understanding of trend patterns was 

demonstrated and predicated for the year 2030 using the CA-Markov model. 

4.  Development of model setup (SWAT) for Kharun watershed and its calibration using 

 SWAT-CUP. Projection of water balance components (precipitation, evapotranspiration, 

and water yield) was investigated by integrating bias-corrected climate data with the 

calibrated model under high and moderate emission scenarios from 2011 to 2100 as well 

under LULC changes. To estimate the changes in the hydrological response under the 

dynamics of LULC and projection of virtual water for three climatic periods of the 21st 

century under climate change scenarios. Adaptation and coping strategies were suggested in 

the study area. 

8.4 RESEARCH LIMITATIONS 

Limitations of the present study are given below: 

1. Only four climate models were considered to predict long term trend changes and for the 

projection of water balance components in the present study. 
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2. No change in the soil layer and LULC were considered over the long term period in the 

projection of water availability. 

3. In general, adaptation provides an essential strategy to reduce negative consequences. 

Therefore, it does not imply that the proposed adaptation can overcome all climate change 

effects. 

4. During the hydrological modeling of Kharun watershed, small structures along the river have 

been neglected due to the unavailability of proper data. 

5. Combined effect of LULC change and climate change could not be analyzed in the present 

study. 

8.5 SCOPE FOR FUTURE STUDIES 

There are few limitations in the study which can be overcome shortly listed as:  

1.   In order to reduce the uncertainty in the future projection of hydrological components, some 

more climate models and projections may be considered in the study to reduce the 

uncertainty.  

2.   Due to the unavailability of proper data, the effects of the minor hydraulic structure were not 

considered in the present study, which may be considered in future studies.  

3. CA-Markov model was used for future land use prediction, other methods such as  

multi-layer perceptron neural network, logistic regression, or modified machine-learning 

procedures can be adopted to have a better understanding. 

4.  To set up the model, limited SWAT parameters were considered in the study that may be 

extended in the future study.  

5.  Since the soil loss data was not available for the study area, the study of sediment yield in the 

watershed could not be done. Future studies can be conducted over the study area by treating 

it as an ungauged watershed. 
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