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ABSTRACT 

In real-world applications, a speech signal from the uncontrolled environment is often 

accompanied by various degradation components along with the actual speech components. 

- The degradation components include background noise, reverberation and multi-talker 

speech. These unwanted interferences not only degrade perceptual speech quality and 

intelligibility which creates listening problem for human, but also give poor performance in 

automatic speech processing tasks like speech recognition, speaker recognition and hearing 

aid systems. Therefore, de-noising of corrupted single-channel speech has become a very 

necessary and important aspect for research in academia and industry. 

The presently available single channel noise reduction methods include spectral 

subtraction, Wiener filter, minimum mean square error estimation (MMSE) and p-MMSE, 

log-MMSE, KLT, PKLT etc. These methods are applicable for specific environment of 

speech signal. Some of these perform better for one particular types of noise whereas others 

are suitable for other types of noise. Considering the limitations of these methods, different 

categories of speech signals have been treated separately. Based on this, the objectives of the 

- present research work have been formulated as: (1) design of a suitable method for 

enhancement of mixed noisy speech of very low (Negative) input SNR conditions; (2) design 

and development of a suitable method for suppression of non-stationary noise in single-

channel speech signal; (3) analysis and development of a suitable method for suppression of 

combined effect of background noise and reverberation; and (4) design and implementation of 

phase based single-channel speech enhancement technique. The mentioned objectives have 

been accomplished as follows: 

In the first objective, single-channel speech enhancement based on modified Wiener gain 

function using Wavelet Packet Transform (WPT) is proposed for suppression of noise from 

multiple sources in both the low (negative) and high SNR speech signal ranging from -15 dB 

to +15 dB. The method includes steps as (1) decomposition of speech signal upto 3 d  level to 

get speech signal in eight different bands; (2) the FFT of these bands is computed to get the 

wavelet packet soft threshold which is applied on the above FFT output; (3) the WP soft 

threshold is also used to determine the modified gain function; (4) finally to get the processed 

output speech, the IFFT of the product of the modified Wiener gain function and WP 

thresholded FFT output is computed. The overlap-add method is used to get the end 

reconstructed speech signal. 
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The performance of this proposed method is compared with other existing speech 

enhancement methods evaluating their performance parameters such as MSE, SNR, MOS, 

PESQ and SII. The dataset of low SNR ranging from -15 dB to +15 dB having mixed noise is 

used for performance evaluation of the implemented methods. The results show the 

improvement in terms of speech quality and intelligibility parameters. Proposed method gives 

highest improvement in comparison to other single-channel speech enhancement methods for 

all input SNR levels with various noise types. 

To overcome the problem of using true speech or true noise in binary mask based methods 

of speech enhancement, a fuzzy mask is proposed here under second objective. It is based on 

soft and hard wavelet packet threshold. The method includes steps as (1) decomposition of 

speech signal upto 3'' level to get speech signal in eight different bands; (2) the FFT of these 

bands is computed to get the wavelet packet soft and hard threshold which is applied on the 

FFT output; (3) in this procedure, the modified Wiener gain function determined similarly as 

above is applied to get the denoised speech signal in frequency domain at first stage; (4) in 

second stage, fuzzy mask is applied on the output of first stage for further enhancement; (5) 

finally to get the processed output speech, the IFFT of the product of the fuzzy mask and WP 

soft and hard thresholded FFT output is computed. Again, the overlap-add method is used to 

get the end reconstructed speech signal. 

Here again, the performance of this proposed method is compared with other existing 

speech enhancement methods comparing their performance parameters such as SNR, MOS, 

PESQ and STOI. The dataset of low SNR ranging from -15 dB to +15 dB having non-

stationary noise is used for performance evaluation of the implemented methods. The results 

obtained from proposed method are much better than other existing single-channel speech 

enhancement methods. 

Most of the above implemented algorithms are used for speech enhancement of noise and 

reverberation separately and they do not work effectively in case of their combination (i.e. 

reverberation with noise). To suppress the combined effect of early and late reverberations 

with various types of noise, a binary reverberation mask is implemented here for the 

fulfillment of the third objective. 

In this proposed method signal-to-reverberant ratio (SRR) is calculated as a limit for ideal 

reverberant mask (IRM). The amplitudes with SRR greater than a preset threshold (i.e. -5dB) 

are used for reconstruction of dereverberated speech, while amplitudes with SRR values 

smaller than the threshold are eliminated. The construction of the SRR criterion assumes a 

priori knowledge of the input reverberant and target signal. Threshold values varying from 



0dB to -90dB are analyzed for selection of IRM limit T. Finally, the dereverberated speech 

signal is constructed by multiplying noisy speech with reverberant mask. 

The proposed reverberant mask based speech enhancement method is compared with 

other existing speech enhancement methods in terms of speech quality and intelligibility 

measure parameters such as PESQ, CD, SNR and MSE. The maximum improvement in 

reverberated noisy speech is obtained by proposed method in terms of speech quality and 

intelligibility at all input SNR levels ranging from -25 dB to -5 dB. 

Most of the noise reduction algorithms perform the modification in amplitude only, while 

phase remains unchanged or discarded in the process of speech enhancement. Recently, it has 

been found that quality and intelligibility both can be improved upto a significant level by 

using either phase of speech signal only or phase with amplitude. Hence, signal phase ratio 

based single-channel speech enhancement method is implemented in fourth objective for 

further improvement in noisy speech signal which considers the phase of the noisy speech 

signal in processing. The phase ratio of noisy speech to noise signal is used in the phase based 

method. In this method two gain functions Gi and G2 are developed for correction in noisy 

phase by suppressing the noise coming from angles between 0 to ±7t/2 and ±2r/2 to ±ir, 

respectively. For the reconstruction of speech spectrum, both gains are multiplied together 

and lower values of the phases are neglected for getting desired speech spectrum. Results are 

compared with other phase based methods (such as phase spectrum compensation (PSC), 

exploiting conjugate symmetry of the short-time Fourier spectrum and STFT-phase for the 

MMSE-optimal) and are analyzed in terms of speech quality, intelligibility measures (like 

SNR, SSNR, SIG, SII, BAK, OVL, and PESQ, etc.), informal subjective listening tests and 

spectrogram analysis. The performance measure parameters show that the proposed phase 

ratio based implemented method provides more effective improvement in noisy speech in 

comparison to other phase based speech enhancement methods. 

Implemented algorithms are evaluated for various languages i.e. Hindi, Kannada, Bengali, 

Malayalam, Tamil, Telgu, and English. Indian language database used for evaluation are 

taken from lilT-H Indic Speech Databases which was developed at Speech and Vision Lab, 

IiIT-Hyderabad for the purpose of building speech synthesis system among Indian languages. 

The speech data were recorded by native speakers of each language. The recording was done 

in a studio environment using a standard headset microphone connected to a Zoom handy 

recorder. A set of 1000 sentences were selected for each language. These sentences were 

selected to cover 5000 most frequent words in text corpus of the corresponding language. The 

NOIZEUS database of clean and noisy speech was used for English language sentences. This 



database basically contains 30 IEEE sentences which were produced by three male and three 

female speakers in groups. The real-world sources of background noise at different SNRs 

were taken from AURORA and NOISEX-92 databases, respectively which include suburban 

train noise, babble, car, exhibition hall, restaurant, street, airport and train-station as noise 

sources. 

In the nut shell, it can be said that the present work is an effort to determine suitability of 

various single-channel speech enhancement techniques to get the maximum speech quality 

and intelligibility. 
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CHAPTER 1: INTRODUCTION 

This chapter gives an overview of single-channel speech enhancement techniques and 

performance evaluation parameters. The sources of background noise that degrade the 

speech quality and intelligihilily of speech signal are also introduced. State qf the art for the 

- single-channel speech enhancement is then discussed. The outline of thesis is also described 

at the end of this chapter. 

1.1 Overview 

Speech is the most desirable form of communication among human beings. The 

communication between speaker and listener is very easy and accurate if they communicate in 

a quiet environment. However, the information may be lost or degraded if the speaker and 

listener are at a distance and in noisy environment. In a highly non-stationary noise 

environment, a speech signal may be degraded upto that level from where the recognition of 

desired speech is very difficult. Hence, an effective algorithm is required to reduce the 

background noise and distortions for getting the desired speech signal. The process of 

background noise suppression from noisy speech signal is called the speech enhancement" 

[1]. Research on speech enhancement was started with two patents given by Schroeder which 

can be traced back to 40-45 years ago [2]. Schroeder gave the analog implementation of 

spectral magnitude subtraction. Since then, the noise reduction or suppression of uncorrelated 

additive background noise has become an area of active research [3-4]. Over the years, 

researchers have presented a number of algorithms for the enhancement of noisy speech 

signal. Yet, due to complexities in speech signal and presence of highly non-stationary 

background noise poses a considerable challenge in speech signal enhancement for 

communication systems. 

Speech enhancement methods can be classified into two main groups i.e. single and 

multi channel. For single-channel speech enhancement methods, only one microphone is used 

for signal input and it is multi-channel, if input is taken through more than one microphone. In 

real-time applications like automatic speech and speaker recognition, teleconferencing 

systems, mobile communication and hearing aids etc, normally single-channel signal is used. 

Since, single-channel speech enhancement methods have only one sensor for the observation 

of degraded speech and do not exploit any spatial information for the received noisy speech 

signal. It is difficult to design an efficient single-channel speech enhancement method which 

improves both quality and intelligibility of noisy speech signal [3]. The main advantage of 

designing a single-channel method is that they are simple and less expensive than multi- 



channel speech enhancement systems. The different properties of speech and uncorrelated 

background noise are used in single-channel speech enhancement methods. The performance 

of these methods usually depends on level of background noise distortion in noisy speech. 

Since these methods assume the noise to be stationary signal during speech intervals, their 

performance is not satisfactory when applied in highly non-stationary noise environments. 

A general schematic illustrating addition of background noise is shown in Fig. 1 .1, 

where noisy speech signals are generated by combination of surrounding noise and clean 

speech signals. The speech enhancement algorithms are used for suppressionlreduction of the 

additive surrounding noise. 

I Background 
additive noise 

Reverberation - Reflections o 
original signal against walls, 

objects. 

f\ 

Noisy 
speech 

Fig. 1.1: Basic overview for addition of noise with speech signal. 

Noise can be defined as an unwanted signal and there are many forms of noise. One of 

the most common sources of noise is the background noise, which is always present in 

different degrees in any location apart from a soundproof room. Operating a hands-free 

mobile phone in a car can be affected by at least three types of background noise, namely 

wind, road as well as engine noise. Other examples of noisy speech inputs are found in pay 

phones in noisy environments such as food courts and bus terminals, voice communication 

systems in cockpits. cellular phones in machine rooms, etc. A second source of noise is 

channel noise which affects both digital and analogue transmissions and therefore degrades 

the resulting speech at the receiver end. A third type of noise is quantization noise which 

results from an over compression of speech signals. Other noise types include, but are not 

limited to, competing speakers as well as echoes and reverberations which are delayed 

versions of a speech signal. Different types of noise require different noise models and their 

own unique set of solutions. 
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The general schematic of a speech enhancement system is shown in Fig. 1.2. Most of 

the speech enhancement algorithms use noisy speech phase straightway with modified speech 

magnitude. Here, noisy speech is first divided into short speech frames by using windowing 

and then its Discrete Fourier Transform (DFT) is computed. The noise is estimated next and 

then it is subtracted from the noisy speech. Now, inverse-DFT is computed using earlier 

phase. Finally, denoised (desired) speech is reconstructed using overlap-add method. 

Phase 

Noisy Windowing 
speech and DFT 

Noise I Noise 
L 11)1 1 ana 

H 
De-noised 

estimation subtraction 
Overlapp- speech 

Add 

Fig. 1.2: Overview of any common speech enhancement system. 

The speech production process starts by a series of muscular movements of the vocal 

tract where vocal tract is excited by the puffs of air released from the lungs. The excitation 

given to vocal tract can be classified into two groups i.e. impulse train generator and random 

noise generator [12]. These two generators are responsible for giving voiced and unvoiced 

speech, respectively. The voiced region has higher signal energy in comparison to unvoiced 

region i.e. high and low signal-to-noise ratio (SNR) regions, respectively. This SNR 

difference between regions plays a crucial role in perception [13]. The most significant 

regions are around the instants of glottal closure which are perceptually much significant [14-

15]. There is big difference in speech characteristics at high and low signal-to-noise ratio 

(SNR) levels. The variations of speech characteristics with respect to time i.e. non-stationary 

and highly non-stationary, is also important for speech enhancement. Since speech is a more 

complicated and highly non-stationary signal, the perceptual aspects are usually not 

considered in presence of noise at low input SNR level [16]. 

With the ever increasing power and falling cost of digital signal processors and the 

availability of cheap memory chips, the use of speech processing systems for voice 

communication and recognition tasks is becoming more and more common. One outstanding 

example of a voice communication product is the cellular radio telephony system. Numerous 

examples of voice recognition products include hands-free input systems for voice dialling, 

voice activated security systems, automatic speech and speaker recognition, hearing aid 

devices for impaired people, etc. speaking is arguably a more natural way of communicating 

with a machine than typing. It is more efficient and faster if the recognition is accurate. As the 

presence of noise significantly degrades the performance of speech coders and voice 
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recognition systems, it is therefore imperative to incorporate single-channel speech 

enhancement as a pre-processing step in these systems. Since most of the single-channel 

speech enhancement methods are based on modification in speech amplitude only and 

unaltered or noisy speech phase is used at time of reconstruction of processed speech. 

1.2 Single-Channel Speech Enhancement: State of the Art 

The active research in speech enhancement can be traced back to 1950s. Initial traces of 

the work appeared in the year 1949 when N. Wiener proposed study of extrapolation, 

interpolation and smoothing of stationary time series signals in the Cambridge, MIT Press. It 

is known as Wiener filtering or linear MMSE [236]. 

The theme of single-channel speech enhancement came into existence, way back in late 

70s. Pioneering efforts in this regard were made by J. S. Lim [32, 36] in 1978 and M. R. 

Sambur [56] introduced the adaptive noise cancelling for speech signals in the IEEE 

Transaction of acoustic speech and signal processing. In 1979, J. S. Lim proposed a method 

again for speech enhancement and bandwidth compression of noisy speech signals [16]. The 

spectral subtraction method of speech enhancement was introduced in 1979 by S. F. Boll [17] 

and remains one of the most widely used ways of reducing additive noise. A gain function 

was introduced by M. Berouti et al. in 1979 [18] to overcome the problem of residual broad-

band noise after processing in spectral subtraction. McAulay and Malpass in 1980 [239] 

observed that spectral subtraction performs poorly when there is no speech present and they 

introduced a two-state model for speech presence. Using a Gaussian model for the noise, they 

derived an expression for the probability of speech presence based on the true (or "a priori") 

SNR and the ratio of noisy-signal to noise power (the "a postiori" SNR). The efforts in 

development of enhancement system for speech processing made the pace in the era of 80s 

when Ephraim and Malah proposed an optimal MMSE estimation of the short-time spectral 

amplitude (STSA). Its structure is the same as that of spectral subtraction but, in contrast to 

the Wiener filtering motivation of spectral subtraction, it optimizes the estimate of the real 

amplitude rather than complex spectral amplitudes. Central to their procedures is the estimate 

of SNR in each frequency bin for which they proposed two algorithms: a maximum likelihood 

approach and a "decision directed" approach which they found to perform better. The 

maximum likelihood (ML) approach estimates the SNR (or "a priori" SNR) by subtracting 

unity from the low-pass filtered ratio of noisy -signal to noise power (the "a postiori" or 

"instantaneous" SNR) and half-wave rectifying the result so that it is non-negative. The 

decision-directed approach forms the SNR estimate by taking a weighted average of this ML 
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estimate and an estimate of the previous frame's SNR determined from the enhanced speech. 

The weights used were 0.02 and 0.98 respectively. Both algorithms assume that the mean 

noise power spectrum is known in advance [22]. Subsequently in 1985, Ephraim and Malah 

[23] introduced an improved version of their procedure which minimized the mean square 

error of the log-spectrum, rather than that of the power spectrum itself. They reported that this 

gave noticeably lower background noise levels without introducing additional distortion. 

Later in 1989 Ephraim et al. [240], put forward an HMM to model the speech but 

represented each state's output distribution using a mixture of LPC spectra rather than the 

conventional MFCC coefficients. It presented an approximate method of training the states 

which is supplemented by an exact method that gives an improvement in performance. G. S. 

Mallat discussed wavelet representation based theory for multi-resolution of speech signal 

decomposition [142]. In 1992, P. Lockwood et al. proposed a nonlinear spectral subtraction 

method which was basically a modification of the method proposed by author [18] by making 

the oversubtraction factor frequency dependent and the subtraction process nonlinear. Larger 

values are subtracted at frequencies with low SNR speech, and smaller values are subtracted 

at frequencies with high SNR speech. Based on Ephraim and Malah noise suppressor [22], 0. 

Cappe proposed a method for elimination of the musical noise phenomenon [154] in 1994. A 

method utilizing time-frequency filtering for suppression of low residual noise was introduced 

by G. Whipple [156]. P. Scalart and J. Vieira-Filho [3] in the year 1996 suggested a modified 

speech enhancement method based on a priori signal-to-noise estimation technique to remove 

the musical and residual noise. Z. Goh, et al. [157] has proposed post-processing method for 

suppressing musical noise generated by spectral subtraction in the year 1998. J. Hansen and 

B. Pellom introduced an effective quality evaluation protocol for speech enhancement 

algorithms for further noise reduction in the same year. B. Sim and Y. Tong gave a 

parametric formulation of the generalized spectral subtraction method for low residual noise 

reduction [234]. 

In 1999 P. Satyanarayana [14] studied short segment analysis for single-channel speech 

enhancement and suppression of low residual noise. [241]. U. Mittal and N. Phamdo [241] in 

2000, proposed an approach to deal with colored noise for speech enhancement using the 

Rayleigh Quotient method. H. Gustafsson et al. [19] in 2001, reported a modified spectral 

subtraction using reduced delay convolution and adaptive averaging. In the same year, J. 

Jensen and J. H. Hansen [215] presented a constrained iterative sinusoidal model for speech 

enhancement. In 2002, S. Kamath and P. C. Loizou [5] proposed a multi-band spectral 

subtraction method for enhancing speech corrupted by colored noise while R. Martin [210] 



suggested a speech enhancement method using MMSE short time spectral estimation with 

Gamma distributed speech priors. Y. Hu and P. C. Loizou [20] in 2003 introduced a 

generalized subspace approach for enhancing speech corrupted by colored noise while F. 

Jabloun and B. Champagne [21] incorporated the human hearing properties in the signal 

subspace approach for speech enhancement in the same year, In 2004, a speech enhancement 
- 

method [33] based on wavelet thresholding using multitaper spectrum was proposed by Y. Hu 

and P. C. Loizou. A speech Enhancement method using non-causal a-Priori SNR Estimator 

was introduced by I. Cohen [235]. In 2005, P. C. Loizou [24] suggested speech enhancement 

based on perceptually motivated Bayesian estimators of the magnitude spectrum for 

maximum noise suppression. R. Martin proposed statistical method for the enhancement of 

noisy speech [170]. Relaxed statistical model for speech enhancement and a priori SNR 

estimation was given by I. Cohen [176]. C. H. You et al. proposed 3-order MMSE spectral 

amplitude estimation for speech enhancement [209] while T. Lotter and P. Vary illustrated 

speech enhancement by MAP spectral amplitude estimation using a super-Gaussian speech 

model [211]. 0. D. Deshmukh and C. Espy-Wilson gave speech enhancement using auditory 

phase opponency model [27]. P. C. Loizou et al. in the year 2005, implemented subspace 

based algorithm for noise reduction in cochlear implants [37]. Modified spectral subtraction - 

method for enhancement of noisy speech was suggested by P. Krishnamurthy and S R M 

Prasanna [130]. Ghanbari Yasser and Mohammad Reza Karami [136] in 2006 illustrated a 

new approach for speech enhancement based on the adaptive thresholding of the wavelet 

packets. S. Rangachari and P. C. Loizou proposed a noise-estimation algorithm for highly 

non-stationary environments [150]. In the same year, C. Plapous et al. suggested an improved 

signal-to-noise ratio estimation for speech enhancement [174]. In 2007, 0. D. Deshmukh et 

al. [25] discussed speech enhancement using the modified phase opponency model. Yu. 

Guoshen et al. illustrated audio signal denoising with complex wavelets and adaptive block 

attenuation [129] for highly noisy speech while J. S. Erkelens et al. proposed minimum mean-

square error estimation of discrete Fourier coefficients with generalized Gamma priors for 

speech enhancement [213] in 2007. 

Anthony P. Stark et al. [52] in 2008 studied about doise driven short-time phase 

spectrum compensation procedure for speech enhancement while K. Wojcicki and K. K. 

Paliwal suggested a speech enhancement method by exploiting conjugate symmetry of the 

short-time Fourier spectrum for speech enhancement [53]. In the same year, C. Breithaupt and 

R. Martin proposed parameterized MMSE spectral magnitude estimation for the enhancement 

of noisy speech [214]. In 2009, G. Kim [38] discussed an algorithm that improves speech 
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intelligibility in noise for normal-hearing listeners while J. Ma et al. suggested an objective 

measure for predicting speech intelligibility in noisy conditions based on new band-

importance functions [88]. In the same year, S. So et al. proposed a method based on Kalman 

filter with phase spectrum compensation algorithm for speech enhancement [223]. In 2010, C. 

H. Taal et al. proposed a novel approach on predicting the difference in intelligibility before 

and after single-charmel noise reduction [78] while C. Christiansen, et al. predicted speech 

intelligibility based on an auditory preprocessing model [79] and Bin Zhou proposed an 

improved wavelet-based speech enhancement method using adaptive block thresholding 

[131]. Gibak Kim and P. C. Loizou studied for improving speech intelligibility in noise using 

environment-optimized algorithms [181]. In the same year 2010, Gibak Kim and P. C. Loizou 

illustrated a new binary mask based on noise constraints for improved speech intelligibility 

[182]. In the year 2011, S. Jørgensen and T. Dau predicted speech intelligibility based on the 

signal-to-noise envelope power ratio after modulation-frequency selective processing [76] and 

C. H. Taal et al. proposed an algorithm for intelligibility prediction of time-frequency 

weighted noisy speech [80]. K. Paliwal et al. studied about the role of modulation magnitude 

and phase spectrum towards speech intelligibility [127] while C. Breithaupt and R. Martin 

analyzed for the decision-directed SNR estimator in speech enhancement with respect to low-

SNR and transient conditions [166]. In the same year 2011, G. Kim and P. C. Loizou 

introduced a gain-induced speech distortions and the absence of intelligibility benefit with 

existing noise-reduction algorithms in journal of the Acoustical Society of America [177]. In 

2012, K. Wojcicki and P. C. Loizou introduced a channel selection method in the modulation 

domain for improved speech intelligibility in noise [128]. Tahsina Farah Sanam and Celia 

Shahnaz illustrated for the enhancement of noisy speech based on a custom thresholding 

function with a statistically determined threshold [133]. In the same year 2012, F. Chen and P. 

Loizou [178] studied about the impact of SNR and gain-function over- and under-estimation 

on speech intelligibility. In the year 2014, J. Jensen and C. H. Taal suggested the speech 

intelligibility prediction based on mutual information [86] and Yu Chengzhu et al. evaluated 

the importance of time-frequency contributions to speech intelligibility in noise [185]. In the 

same year 2014, Yanna Ma and Akinori Nishihara proposed a modified Wiener filtering 

method combined with wavelet thresholding multitaper spectrum for speech enhancement 

[179]. 

Study about reverberation suppression in noisy speech started with effort made by 

Oppenheim et al. in 1968 [242] who observed that the residual signal following linear 

prediction analysis contains peaks corresponding to the excitation events in voiced speech 
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together with additional peaks due to the reverberant channel and dereverberated speech were 

synthesised using the processed residual and the all-pole filter. In 1979, Neely and Allen 

[243] investigated about the homomorphic inverse filtering for dereverberation where the 

impulse response was decomposed into a minimum phase component and an all-pass 

component. Mourjopoulos et al. [244] in year 1994 proposed a single-channel least squares 

inverse filters for speech dereverberation. This requires extremely long inverse filter and 

results in large processing delay. In 2000, B. Yegnanarayana and P. Satyanarayana Murthy 

[45] studied about the enhancement of reverberant speech using LP residual signal. In 2001, 

K. Lebart and J. Boucher [44] suggested a new method based on spectral subtraction for 

speech dereverberation. B. W. Gillespie et al. [192] proposed a method for speech 

dereverberation via maximum-kurtosis subband adaptive filtering in 2001. E. A. P. Habets 

analyzed single-channel speech dereverberation based on spectral subtraction in 2004 [194]. 

M. Wu and D. Wang [43] in 2006 built a two-stage algorithm for one-microphone reverberant 

speech enhancement. In the year 2007, N. D. Gaubitch and P. A. Naylor illustrated 

spatiotemporal averaging method for enhancement of reverberant speech [193]. In 2008, E. A. 

P. Habets et al. [190] suggested for temporal selective dereverberation of noisy speech using 

one microphone. H. W. Lollmann and P. Vary [195] in the year 2009 proposed a blind 

speech enhancement algorithm for the suppression of late reverberation and noise. E. A. P. 

Habets et al. illustrated about late reverberant spectral variance estimation based on a 

statistical model in 2009 [196]. In the same year, J. S. Erkelens and R. Heusdens studied 

about single-microphone late-reverberation suppression in noisy speech by exploiting long-

term correlation in the DFT domain [197]. K. Kokkinakis and 0. Hazrati in the year 2011 has 

been proposed a channel-selection criterion for suppressing reverberation in cochlear implants 

[206]. 

Exhaustive study of available literature provides a deep insight into the work carrying 

out in the field of single-channel speech enhancement. Most of the previous researchers have 

studied for speech quality improvement with the use of speech amplitude in speech 

enhancement techniques. Very few algorithms are reported for intelligibility improvement. In 

this thesis, single-channel speech enhancement techniques are proposed for highly non-

stationary noise with low and high input SNR of noisy speech signals. Furthermore, in this 

thesis, the designed speech enhancement methods are also tested for mixed noise types and 

reverberation conditions and phase is considered for speech enhancement in place of 

amplitude based methods. 
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1.3 Performance Evaluation Parameters for Speech Enhancement Methods 

The rapid increase in usage of speech processing algorithms/techniques in multi-media 

and telecommunications applications raises the need for evaluation of speech for its quality 

and intelligibility. Accurate and reliable assessment of speech quality is thus becoming vital 

for the satisfaction of the end-user or customer of the deployed speech processing systems 

(e.g., cell phone, speech synthesis system, etc.). Assessment of speech quality can be done 

using subjective listening tests or using objective quality measures. Subjective evaluation 

involves comparisons of original and processed speech signals by a group of listeners who are 

asked to rate the quality of speech along a pre-determined scale. Objective evaluation 

involves a mathematical comparison of the original and processed speech signals. Objective 

measures quantify quality by measuring the numerical "distance" between the original and 

processed signals [89, 100-109]. 

The various parameters used for performance evaluation of single-channel speech 

enhancement methods are presented below: 

1.3.1 Perceptive evaluation of speech quality (PESQ) 

The perceptual evaluation of speech quality (PESQ) measure, described in [89], was 

selected as the ITU-T recommendation P.862 [90] replacing the old P.86 1 recommendation 

- [91]. The latter recommendation proposed a quality assessment algorithm called perceptual 

speech quality measure (PSQM). The scope of PSQM is limited to assess distortions 

introduced by higher-bit speech codecs operating over error-free channels. The final PESQ 

score is computed as a linear combination of the average disturbance value dym  and the 

average asymmetrical disturbance value dasmas  follows: 

PESQ= a0  + ai .dsym  + a2.das;m (1.1) 

Where, a0  = 4.5, and a1  = —0.1 and a2  = —0.0309. 

The weighting of the additive frequencies is called average symmetrical dm  and 

asymmetrical d,,sym disturbance which are generally introduced by the codec. The range of the 

PESQ score is 0 to 4.5. However, for most of the cases output range will be a MOS-like score, 

i.e., a score between 1.0 and 4.5. High correlations (p > 0.92) with subjective listening tests 

were reported in [35] using the above PESQ measure for a large number of testing conditions 

taken from mobile and voice over Internet Protocal (VoIP) applications. The PESQ can be 

used reliably to predict the subjective speech quality of codecs (waveform and CELP-type 

coders) in situations where transmission channel errors, packet loss or varying delays are 



present in the signal. It should be noted that the PESQ measure does not provide a 

comprehensive evaluation of telephone transmission quality or other communication systems, 

as it only reflects the effects of one-way speech or noise distortion perceived by the end-user. 

Effects such as loudness loss, side tone and talker echo are not reflected in the PESQ scores. 

Higher value (approx 4) of PESQ shows for maximum speech enhancement. 

1.3.2 Mean opinion score (MOS) 

The most widely used direct method of subjective quality evaluation is the category 

judgment method in which listeners rate the quality of the test signal using a five-point 

numerical scale, with 5 indicating "excellent" quality and 1 indicating "unsatisfactory" or 

"bad" quality. This method has been recommended by the IEEE subcommittee on subjective 

methods [92] as well as by ITU [93-94]. The measured quality of the test signal is obtained by 

averaging the scores obtained from all listeners. This average score is commonly referred to 

as the Mean Opinion Score (MOS). 

Table 1.1: Rating scale for MOS. 

Rating Speech quality Level of distortion 

5 Excellent Imperceptible 

4 Good Just perceptible, but not annoying 

3 Fair Perceptible and slightly annoying 

2 Poor Annoying, but not objectionable 

1 Bad Very annoying and objectionable 

The MOS test is administered in two phases: training and evaluation. In the training 

phase, listeners hear a set of reference signal that exemplify the high (excellent), the low (bad) 

and the middle judgment categories. This phase, also known as "anchoring phase", is very 

important as it is needed to equalize the subjective range of quality ratings of all listeners; that 

is, the training phase should in principle equalize the "goodness" scales of all listeners to 

ensure, to the extent possible, that what is perceived "good" by one listener is perceived 

"good" by the other listeners, too. A standard set of reference signals need to be used and 

described when reporting the MOS scores [92]. In the evaluation phase, subjects listen to the 

test signal and rate the quality of the signal in terms of the five quality categories (1-5) shown 

in Table 1.1. 
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1.3.3 Short-time objective intelligibility (STOI) 

The STOI is based on short-time segments i.e. 386 ms. This short segment is taken in 

order to get maximum correlation with subjective speech intelligibility. The STOI varies in 

between 0 and 1, where, 0 and I show the lowest and highest improvement in speech 

intelligibility, respectively. The intelligibility measure is defined as linear correlation 

coefficients between clean and enhanced time-frequency (TF) unit which is given by eq. (1.2) 

[80]. 

E(Xk Xk )(Xk _7Xk) 
n 

d fl k = 

IE(Xk  _Xk) 
\ln 

In the equation (1.2), Xk  (n) and Xk  (n) are the clean and enhanced signal respectively. 

The overall average of intelligibility measure from all bands and frames are given from 

equation (1.3). Where, N is the total number of frames and K is the number of one-third 

octave bands. The STOI is computed as [80]: 

STOI =---- d fl ,, 
NKN,K 

(1.3) 

1.3.4 Speech intelligibility index (Sil) 

This type of intelligibility measure depends on SNR values. The fraction of input SNR 

is calculated using eq. (1.4) [95]. 

min(SNR k'  SNRk) 
JSNR k = SNRk if SNR k SNR 1, (1.4) 

0 else 

Where, SNRk is the ratio of output SNR in band k to noise spectrum. The lowest SNR is 

SNRL  and JSNRk  is bounded within 0 to 1. Here, 0 and 1 indicate the lower and higher 

improvement in speech intelligibility, respectively. Weighted average is calculated across all 

bands for getting Sli in eq. (1.5). 

K WkxJSNRk 
k=I 

k=I 

(1.2) 

(1.5) 
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1.3.5 Distortion rating measures 

Basically two types of distortions are considered in speech enhancement such as speech 

and noise distortion. If distortions are created by speech signal alone called speech distortions 

and distortions created by noise only are called noise distortions in the processed speech. 

Generally, the speech enhancement techniques/algorithms degrade the speech signal while 

suppressing the background noise in low SNR conditions. This situation of speech 

enhancement technique/algorithm complicates the intelligibility evaluation since it is not clear 

whether listeners rate their overall speech intelligibility on the speech distortion component, 

noise distortion component or both. The uncertainty that the individual listeners place 

different weight on the signal and noise distortion components introduces additional error 

because of variation in the listeners' ratings, which consequently decreases the reliability of 

the rating. These concerns were addressed by the ITU-T standard (P. 835) [96] that was 

designed to lead the listeners to integrate the effects of both signal and background noise 

distortion in making their ratings of overall quality [97]. The methodology proposed in [96] 

reduces the listener's uncertainty by requiring him/her to successively attend to and rate the 

waveform on the speech signal alone, the background noise alone, and the overall effect of 

speech and noise on quality. More precisely, the ITU-T P.835 method instructs the listener to 

successively attend to and rate the enhanced speech signal in terms of the five quality 

categories shown in Table 1.2. 

Table 1.2: Rating scale for BAK, SIG and OVL measures. 

Rating BAK SIG OVL 

1 Very conspicuous, very intrusive Very unnatural, very Bad 

degraded 

2 Fairly conspicuous, somewhat Fairly unnatural, fairly Poor 

intrusive degraded 

3 Noticeable but not intrusive Somewhat natural, Fair 

somewhat degraded 

4 Somewhat noticeable Fairly natural, little Good 

degradation 

5 Not noticeable Very natural, no Excellent 

degradation 
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The background noise distortions alone using a five-point scale of background 

intrusiveness (BAK) 

The speech signal alone using a five-point scale of signal distortion (SIG) 

The overall (OVL) effect using the scale of the Mean Opinion Score - 

[1bad, 2=poor, 3=fair, 4=good, 5=excellent]. 

1.3.6 Mean square error (MSE) 

The magnitude spectrum of clean speech is estimated from noisy speech spectrum by 

minimizing mean-square error between the magnitude spectra of clean and estimated speech. 

The lower value i.e. approx to 0, means maximum improvement in speech quality and quality 

decreases as MSE increases. The eq. (1.6) for measuring MSE is given as: 

E E[X(n. k)I - (n, k)IY (1.6) 

Where, E (error) is difference between clean and estimated spectrum of speech, 

X(n, k) is clean speech spectrum and fQn, k) is estimated speech spectrum. 

1.3.7 Signal -to- noise ratio (SNR) 

The common definition of SNR is the ratio of power of the processed output signal to 

the noise signal power. For calculating the SNR of the processed speech signal output to the 

noise is given in eq. (1.7) as: 

r 21 
i(x I 

SNR=10Io
1 
0[-J 

 ] 

(1.7) 

Where, X and D indicates the processed output signal and noise signal, respectively. 

The calculated SNR is measured in decibel (dB). The higher value of SNR i.e. about 10dB 

shows good quality of speech signal. 

1.3.8 Segmental SNR (SNRseg) 

The segmental signal-to-noise ratio can be evaluated either in the time domain or 

frequency domain. The time-domain measure is perhaps one of the simplest objective 

measures used to evaluate speech enhancement or speech coding technique/algorithm. For 

this measure to be meaningful, it is important that the original and processed signal be aligned 

in time. The time domain segmental signal-to-noise ratio (SNRseg), given in eq. (1.8) is 

defined as [98]: 
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Nm+n-1  
10 M-1 

(X(n))'
n=Nm SNR =- log 0  N+1 seg lvi m=0 

Nm+
(X(n) 

n=Nm 

(1.8) 

Where, X(n) is the original (clean) signal, X(n) is the corresponding enhanced speech, 

N is the frame length and Mis the number of frames in the signal. 

1.3.9 Frequency weighted segmental SNR (fw-SNRseg) 

The frequency - weighted segmental SNR is calculated using the eq. (1.9) [99] 

k (X(n,k))2  
W(n, k) 10 

(X(n, k) - X(n, k))2  (1.9) 
fln=0 k 

W(n,k) 
n=l 

Where, k is the number of band, n is the total number of frame and the critical-band 

magnitude of the clean signal is X(n, k) at ih  frequency band at the kth  frame. The X(n, k) is 

the corresponding enhanced speech signal. In the given eq. (1.10) W(n,k)is the weight 

function and p is the power exponent which varies according to speech. The weighting 

function is given as: 

W(n,k)=X(n,k)" (1.10) - 

The lower value i.e. approx to 0, means minimum improvement in speech quality. The 

quality of speech increases as value of fw-SNRseg increases. 

1.3.10 Cepstrum distance (CD) 

A linear prediction coefficients (LPC) based cepstrum distance measure is introduced as 

an effective evaluation measure, not only for coding distortion but also for other nonlinear 

distortion such as quadratic and logarithmic distortion. The LPC cepstrum distance CD is as 

in eq. (1.11) [100]: 

CD = 10/log 10. /2(x(n)_(n))2  
n=1 

(1.11) 

Where, x(n) and .(n) are LPC cepstrum coefficients of input and output signal, 

respectively and p is the maximum order of the coefficients. The lower value (approx 0) of 

CD means maximum improvement in speech quality. The speech quality decreases as value 

of CD increases. 
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1.3.11 Weighted spectral slop (WSS) metric 

Weighted differences between the spectral slops in each band, was proposed by Denis 

H. Klatt [108]. This measure was designed to penalize heavy differences in spectral peak 

(formants) locations while ignoring other differences between the spectral such as spectral tilt, 

overall level, etc. Those differences were found to have little effect on ratings of phonetic 

distance between pairs of synthetic vowels. This measure is computed by the spectral slop of 

each band. A first-order differencing operation is used to compute the spectral slops as given 

in eq. (1.12) and (1.13), respectively: 

X(n) = C (n +1) - C (n) (1.12) 

X(n) = C; (n +1) - C; (n) (1.13) 

Where, C(n)andC;(n) denote the original (clean) and enhanced critical-band spectra, 

respectively, expressed in dB. The X(n) and X(n) are the original (clean) and enhanced 

signals, respectively, of the kth band. The differences in spectral slops are then weighted 

according to, first, whether the band is near a spectral peak or valley and, second, according to 

whether the peak is the largest peak in the spectrum. The weight for bank k, denoted as W(k) 

in eq. (1.14), is computed as follows: 

W(n) =__________________________________ 

+ C <  - C, (n)] [K10 + Cl,,c.  - C (n)] 
(1.14) 

Where, C.  is the largest log-spectral magnitude among all bands, is the value of 

the peak nearest to band n, and K , Kl,,c. are constants which can be adjusted using 

regression analysis to maximize the correlation between the subjective listening tests and 

values of the objective measure. The WSS measure is finally computed by eq. (1.15) [108]: 

- L 
d 5  (C,C) = W(n) (X(n) - X(n)) 

k=1 
(1.15) 

Where, divss  is shown for calculated WSS values. The lower value (approx 0) of WSS 

means maximum improvement in speech quality. The increasing trend of WSS indicates 

degradation in speech quality. 

1.3.12 Itakura saito (IS) 

Initially, this IS measure was used successfully in speech recognition for comparing a 

reference power spectrum R(w) against a test spectrum X(w) according to eq. (1.16) [109]: 

d1  (X(n),R(n)) = 'j 
[R(n) "R(n) 
____ - log dn 

2[X(n) X(n))] 
(1.16) 
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Owing to its asymmetric nature, the IS measure is known to provide more emphasis on 

spectral peaks than spectral valleys. A Bayesian estimator based on the Itakura-Saito (IS) 

measure was considered in [24, 110] between the estimated X and true X short-time power 

spectra at the nth frequency bin and given by eq. (1.17) as: 

x2 (X2 
d1(X2, x2 ) =__10 

 - 2 ) I-i (1.17) 

Where, dis  is shown for calculated IS values. The lower value (approx 0) of IS means 

maximum improvement in speech quality. The speech quality decreases as value of IS 

increases. 

1.4 Objectives of the Present Work 

As mentioned in the preceding sections, most of the single-channel enhancement 

techniques/algorithms process degraded speech for achieving improvement either in quality or 

intelligibility but do not improve both. Also, most of the existing speech enhancement 

techniques/algorithms do not perform equally well at both low and high SNR levels of noisy 

speech signals of any types of noise conditions. 

In practical environment, there are various sources of noise which are responsible for 

degradation of speech signal. The additive background noise may be of any SNR level i.e. 

higher, medium and lower. Due to wide range of requirements of speech enhancement 

applications and limited performance of the available speech enhancement algorithms, there is 

a need to develop other methods/techniques which may prove to be robust in many noisy 

environment conditions. If generated background noise is highly non-stationary and of very 

low SNR level then the speech enhancement method must be very effective for noise 

reduction or suppression and give the processed speech of good quality and intelligibility. 

Considering all the aspects above, the objectives of the present work has been formulated as 

below: 

Design and development of a suitable algorithm for enhancement of single-channel mixed 

noisy speech of very low (Negative) SNR. 

• Design and development of algorithm for suppression of non-stationary noise for single-

channel speech signal. 

• Design and development of algorithm for suppression of combined effect of background 

noise and reverberation. 

• Design and implementation of phase based single-channel speech enhancement technique. 
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• Evaluation of the performance of proposed algorithms in comparison to existing speech 

enhancement algorithms. 

- 1.5 Structure of the Thesis 

The work presented in this thesis is organized in different chapters. The brief 

descriptions about these chapters are presented as following: 

Chapter 2 discusses the importance of gain functions in single-channel speech 

enhancement methods. The description of the proposed modified Wiener gain function is 

given next. Further, the computed performance parameters are presented in tabulation form 

and their graphical and bar chart representation is given next. 

Chapter 3 presents the description of wavelet packet transform (WPT) based fuzzy mask 

method for the enhancement of non-stationary and highly non-stationary noisy speech. Then 

the results and their comparative analysis are presented. 

Chapter 4 describes the details about the reverberant mask criterion selection based 

method for the enhancement of noisy speech degraded by reverberation and sources of 

background noise both. A novel algorithm which was developed here for suppression of both 

reverberation and noise was discussed next. Thereafter, the comparison of the performance of 

the proposed algorithm with other speech enhancement algorithm discussed. 

Chapter 5 introduces the concept of phase in speech enhancement process. In this 

chapter, a method based on phase of speech and noise is proposed and its details are 

discussed. The performance of proposed method is compared with other phase based method 

in terms of their quality and intelligibility measures. 

In Chapter 6, conclusions and future scope of the work is reported. This covers the 

findings of this research work with an emphasis to extend research work in future. 
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CHAPTER 2: SUPPRESSION OF MIXED NOISE 

This chapter presents the research work done for improving quality and intelligibility both by 

suppressing multiple noise sources under very low input SNR conditions. It starts with the 

discussion of database generation of mixed noise sources and thereafter the proposed 

Wavelet Packet Transform based modfled  Wiener Gain method is introduced for suppression 

of mixed background noise sources. The results of this method for low SNR input Hindi and 

English speech signals are discussed at the end 

2.1 Overview 

The enhancement of multiple noise mixed speech signal can be done effectively and 

relatively easily, if the speech signals are collected simultaneously over two or more spatially 

distributed microphones. In such a case one could exploit the delay in speech signals 

produced by an individual at different microphone locations. The delays obtained for speakers 

become all the speakers cannot be placed at same location, simultaneously. The problem of 

enhancing speech degraded by multiple additive background noise and speech environment is 

a challenging task when only a single-channel is available for recording. Algorithms that use 

the spectral characteristics rely on the estimation of pitch of individual speaker and using this 

- information, the speech of the desired speaker is enhanced by retaining only pitch and 

hannonic components while ignoring the remaining spectral components [114, 115]. Since 

speech energy of a particular speaker is concentrated at the pitch and harmonics, speech signal 

corresponding to the speaker is synthesized using amplitudes of short time spectrum at 

different harmonics that is at different frequencies [116-118]. But, it is generally difficult to 

obtain the pitch of an individual speaker from the multi-speaker signal. Alternatively, the 

algorithm that uses excitation information of speech relies on time-delay between the 

microphone signals and excitation characteristics of individual speaker for speech 

enhancement. The basis for this method is that, the relative positions of significant excitation 

in the direct component of the speech signal remain unchanged at each of the microphone for 

a given speaker. By estimating time delays and using the knowledge of excitation source 

characteristics, a weight function is derived for each speaker to identify the speech component 

of desired speaker relative to other speaker [119-123]. The high values of weight function 

indicate the temporal regions where the corresponding speaker's speech is predominant. 
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2.2 Single-Channel Speech Enhancement Methods 

Most widely used speech enhancement methods are spectral subtraction based methods 

[16-17, 32, 34], Wiener method [3], and gain based method like MMSE STSA [22], log-

MMSE [23], p-MMSE [24] etc. In addition the modulation channel selection based methods 

[124-129] are also used for improving both intelligibility and quality. These methods are 

explained in details as below: 

2.2.1 Spectral subtraction method 

The spectral subtraction method has been proposed by Berouti et al. in 1979 [17, 32, 

34]. It is very popular method for reducing the effect of background (additive) noise. It is 

based on a simple principle that the spectrum of clean signal can be obtained by subtracting 

estimated noise spectrum from the noisy speech spectrum. In this method noise is considered 

as additive type. If a clean speech signal X (n) corrupted by background additive noise 

D(n) then the equation of noisy speech signal Y(n)is expressed as: 

Y(n) = X(n) + D(n) (2.1) 

The Discrete Short-Time Fourier Transform (DSTFT) of the corrupted speech signal 

Y(n,k) is given as: 

Y(n, k) = X(n, k) + D(n, k) (2.2) 

Where, Y(n,k), X(n,k) and D(n,k) are the Fourier transform of windowed noisy 

speech, clean speech and noise signal, respectively. Now, aim is to calculate the clean 

spectrum of speech signal. The estimated speech signal obtained from calculated clean 

spectrum has estimation error that produces musical noise in the estimated speech signal. 

2.2.2 Amplitude spectral subtraction method 

It is the basic spectral subtraction method for noise reduction from noisy speech signal. 

The noisy speech signal can be given as [18]: 

Y(n) =X(n) + D(n) (2.3) 

After taking Fourier transform of both sides of eq. (2.3), get eq. (2.4) 

1'w ") =X(e'') + Dw (eiw) (2.4) 

20 



Where, Yw(ew ) Xw (eJw) and Dw(eiw)are  noisy speech, clean speech and noise signal 

respectively and w is given for windowing. Multiplying both sides by their complex 

- 
conjugates as: 

Y(e' 
)2 

= X(ew )2 + D(e') 2 + 2X(e.1w 
) ID(e' )j cos(Dq) (2.5) 

Where, Dq is the phase difference between speech and noise. Now, taking expected 

value of both sides and get: 

E{Y(e" 
2 

= E{Ix(e 
2 + E(D(e" 

2 
 + 2E{X(e )}E{D(e' )}E{cos(Dq)} (2.6) 

In the eq. (2.6) reasonable assumptions are made: Noise and speech magnitude spectrum 

values are independent of each other. The phase of noise and speech are independent of each 

other and of their magnitude and it is assumed that E{cos(Dq)}0, now eq. (2.6) is given as: 

Xw (eJw) = 1w (e v )_ Dw (eiw) (2.7) 

The magnitude spectrum of the noise is averaged during speech inactive periods and 

clean speech spectrum is estimated by subtracting the average spectrum of noise from each 

segment of noisy speech spectrum. 

2.2.3 Power spectral subtraction method 

In power spectral subtraction it is assumed that E{cos(Dq)}=O. Put this value in eq. 

(2.4) and get eq. (2.8) and (2.9) as [17]: 

E{Y(e') 2  } = E{X(e 
2 
 E{D(eI 2  } 

(2.8) 

X,(e') = Yw(e ) - E{Dw (eJw)) (2.9) 

The power spectrum of clean speech is obtained by subtracting power spectrum of noise 

from the power spectrum of the noisy speech in the current frame. The power spectrum of 

noise is estimated during speech inactive periods. 

2.2.4 Multi-band spectral subtraction method 

A multi-band spectral subtraction approach takes into account the fact that colored noise 

affects the speech spectrum differently at various frequencies. This method outperforms the 
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standard power spectral subtraction method resulting in superior speech quality and largely 

reduced musical noise [5]. The clean speech spectrum is given in eq. (2.10) as: 

X(e') 2 = V(eJW) 2  a D(e1 2 (2.10) 

Where, a is over-subtraction factor which is a function of segmental SNR. 

2.2.5 Scalart power spectral subtraction method 

In this type of spectral subtraction Scalart used a priori SNR criteria to estimate the 

noise spectrum. This apriori SNR is given in eq. (2.11) as [3]: 

E{X(eJw ) 
2  

SNRrso 
- 

- (211) p 
E{D(e')j} 

Now, the noise suppression function is given as: 

!SNR 
G= I (2.12) 

1+ SNRprIo  

The noise spectrum is estimated by using eq. (2.12), and this noise spectrum is 

subtracted from noisy speech spectrum to obtain clean speech spectrum. 

2.2.6 Parametric spectral subtraction method 

A parametric formulation of the basic spectral subtraction is given as [234]: 

Xw (eiw) = A(Yw (eJw))_B(E{Dw (e)w)}) (2.13) 

Where, A and B are parameters in the parametric formulation. If A=B=1, then the eq. 

(2.13) becomes as eq. (2.9). The clean speech spectrum is obtained by using eq. (2.13) and 

another set of values are taken as A=1, B = noise subtraction factor [234]. 

2.2.7 Reduced delay convolution - spectral subtraction method 

In this type of spectral subtraction, reduced delay convolution and adaptive averaging is 

used for noise-reduction. In this method a filter gain is used for calculating clean speech [19]. 

Xw (eiw) =G(Yw (eiw) (2.14) 

In eq. (2.14) G is a non-causal filter, it is phase shifted to obtain causality and to avoid 

circular effect. 

2.2.8 Wiener filtering method 

The aim of Wiener filter is to minimize the mean square error between the desired signal 
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(clean signal) and the estimated output. In the Wiener filtering, it is assumed that the spectral 

property of speech is uncorrelated with the spectral property of noise. The Wiener filter is 

obtained by minimizing the eq. (2.15) [3]. 

e=E[X_] (2.15) 

Where, X is desired speech and I is estimated output. The distortions introduced by this 

method were suppressed by using priori information of the signal and based on the priori 

information MMSE based methods were proposed for speech enhancement. 

2.2.9 MMSE-speech presence uncertainty (MMSE-SPU) estimation method 

Minimum Mean Square Error under Speech Presence Uncertainty estimator is an 

efficient algorithm that is named as MMSE-SPU which has been proposed by Ephraim and 

Malah in 1984 [22]. It is an optimal magnitude spectrum estimator like Wiener filtering. An 

efficient spectral gain is calculated by using a priori SNR. This MMSE-SPU algorithm is 

motivated by the fact that speech might not be present at all time and frequencies. Therefore, 

a two state model was introduced which was based on speech presence and speech absence 

frames in noisy speech signal. This is given as: 

XN = E(XNYN,H)P(HYN) (2.16) 

Where, XN  is desired speech, XN  is estimated output and YN is noisy speech. 

P(H' ) denotes the conditional probability that speech is present in frequency bin N and 

hypothesis is given as H". A priori SNR can be estimated recursively (frame-wise) using the 

"decision-directed" approach. It is noted that when a priori SNR is estimated using the 

"decision-directed" approach, the enhanced speech has no "musical noise". 

2.2.10 log-MMSE method 

Log-spectrum based minimum mean square error has been derived by Ephraim and 

Malah from the basic concept of MMSE [13]. The log-MMSE algorithm assumes a Gaussian 

model for the complex spectral amplitudes of both speech and noise. It gives the optimum 

results of the log-spectrum of the clean speech signal. A priori SNR is estimated from the 

"Decision-directed" approach. In this approach distortions are minimized by using log 

estimator as mentioned in eq. (2.17): 

e=E[ (1oxI-1og YI (2.17) 
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Where, X is desired speech and I is estimated output. 

2.2.11 p-MMSE method 

The auditory masking effects are generated due to squared-error cost function used in 

traditional MMSE method. To overcome the problem of spectral peaks which takes account 

of auditory masking effects, p-MMSE estimator is used. To estimate clean signal x, the 

postulate-MMSE estimator is defined as in eq. (2.18) [24]: 

5MMSE(y)(y;p ,.2 
ost post p (2.18) 

Where, p (XY;P U2  )is the conditional distribution of X given Yunder the x 
xly post post 

distribution and noise variance o2  specified as parameter. 

2.2.12 Cohen-MMSE method 

The non-causal estimator is used for the a priori SNR. This estimator effectively 

discriminates between speech onsets and noise irregularities and minimizes the conditional 

expected value of the distortion measure. The clean speech signal is estimated by applying a 

spectral gain function to the noisy speech signal which is given in eq. (2.19) [235]. 

Xw (eJw) =G(,y)(Yw (eJw) (2.19) 

Where, andy are a priori and a posteriori SNRs, respectively. 

2.2.13 KLT subspace method 

It is a generalized subspace approach in which pre-whitening is used for enhancing 

speech signal corrupted by coloured noise. In this approach, clean speech is estimated by 

cancelling the noise subspace signal from the noisy subspace signal. A non-unitary transform 

is used to project the noisy signal on to a signal-plus-noise subspace and a noise subspace 

[20]. 

2.2.14 PKLT subspace method 

It is a perceptually motivated subspace approach which incorporates human hearing 

properties for enhancing speech signal. The enhancement of corrupted speech is performed by 

assuming that the clean component is concentrated in signal subspace, while the noise 

occupies the noise subspace. The noise reduction is obtained by removing the noise subspace 

and by removing the noise contribution in the signal subspace. Thus, a key issue in 

developing a subspace-based model is to select the optimal rank that will reconstruct the 
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enhanced signal in an optimal way. The Eigen value Decomposition (EVD) of the noisy 

speech is given as [21]: 

R = R + RDD (2.20) 

Where, R, R, and RDD  denote noisy speech matrix, clean speech covariance metric 

- and noise autocorrelation matrix. 

2.3 Proposed Wavelet Packet Transform Based Modified Wiener Gain Method 

The WPT based modified Wiener Gain method is proposed here for suppression of 

mixed noise of low SNR. The process of enhancement starts with the decomposition of 

received noisy speech input and given in Figure 2.1. Procedure used for the proposed speech 

enhancement method is described in following steps: 

Step 1: Generation of mixed noisy single-channel speech of low input SNR. 

Step2: Input speech decomposition by using Db10 mother wavelet packet upto 3Id  level. 

Step3: The decomposed noisy speech signal is reconstructed into eight energy bands. 

Step4: After reconstruction, FFT is applied to all eight reconstructed signals. 

Step5: The soft WP threshold function is applied in first stage of the noise reduction process. 

Step6: After applying soft WP threshold function in first stage, the processed speech signal is 

given to second stage of modified Wiener Gain function to calculate the gain function. 

Step7: Noisy speech signal is multiplied with Modified Wiener gain function for second step 

noise reduction. 

Step8: An enhanced speech spectrum is recovered by applying Inverse - FFT and overlap-add 

method. 

Now, all processed signals of given eight energy bands of input speech are added to get the 

desired speech signal. 
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Fig. 2.1: Block diagram of proposed WPT modified Wiener gain based speech enhancement 
method. 
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2.3.1 Mother wavelets and decomposition levels 

The transform of a signal is just another form of representing the signal. It does not 

change the information content present in the original signal. The Wavelet Packet Transform 

(WPT) provides a time-frequency representation of signal [141]. It was developed to 

overcome the shortcoming of Short-Time Fourier transform (STFT), which can also be used 

to analyze non-stationary signals. While STFT gives a constant resolution at all frequencies, 

the WPT uses multi-resolution technique by which different frequencies are analyzed with 

different resolutions [142]. 

There are number of basic functions that can be used as the mother wavelet for WPT. 

Since the mother wavelet produces all WP functions used in the transformation through 

translation and scaling, it determines the energy bands of decomposed speech signal into 

approximate and details coefficients. Therefore, the details of the particular application are 

taken into account for getting maximum energy of the decomposed signal. Further, the 

appropriate mother wavelet must be chosen in order to use the WPT effectively. The 

commonly used wavelet functions are: Haar, Daubechies, Symlets, Coiflets, Meyer, Monet 

and Mexican Hat etc. 

The Haar wavelet is one of the oldest and simplest wavelet functions. The Daubechies 

wavelets are the most popular wavelets. They represent the foundation of wavelet signal 

processing and are used in numerous applications. These are also called Maxflat wavelets as 

their frequency response has maximum flatness at frequencies 0 and r. This is a very 

desirable property in some applications. 

The Haar, Daubechies, Symlets, and Coiflets are orthogonal wavelets. These wavelets 

along with Meyer wavelets are capable of perfect reconstruction. The Meyer, Monet and 

Mexican Hat wavelets are symmetric in shape. The wavelets are chosen based on their shape 

and suitability for analyzing the signal in a particular application [143-147]. The Daubechies 

family wavelets are written as Db 'N', where 'N' is the order and Db the "surename" of the 

wavelet. Figure 2.2 illustrates the various wavelet functions of the members of the wavelet 

family [146-149]. 

By hit and trial method, the optimum level of maximum wavelet level decomposition 

(i.e. third) is decided which improves the speech quality and intelligibility to a better level. 

Decomposed levels of given input speech are obtained with application of various Wavelet 

families. 
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Fig. 2.2: Waveforms of various wavelet function of wavelet family [146-149]. 

The features of decomposed levels are available in the form of approximated and detailed 

coefficients. Figure 2.3 and 2.4 illustrates the 3' level decomposition of the WT and WPT, 

respectively. A third level of decomposition is used for getting eight energy band of the input 

speech. 
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Various mother wavelets are analyzed and compared with each other to obtain the best 

suitable mother wavelet for decomposition of speech signal. The block diagram illustrated in 

Figure 2.5 is used for the evaluation of the different mother WP. Various mother wavelets are 

considered at WP decomposition step and coefficients of WP decomposed levels of noisy 

speech signal corrupted by different types of noise like babble. pink, Volvo car and white (at 

different levels of SNR) are given to threshold function (described in section 2.3.2) for getting 

the denoised speech spectrum and enhanced speech signal is recovered by applying inverse 

WPT to this spectrum. 

D1 1  

b2 
D3 

Wave let D4 
Noisy 

Packet De AlJ 
Speech composition A2 

AA 

WPSoft D4 
Threshold Al 
Function A21 

A3 

A4 

Inverse 
Wavelet 

Enhanced 
Packet 

Transform 
Speech 

Fig. 2.5: Block diagram of the WPT based speech enhancement method. 

The effectiveness of different mother wavelets used for reduction of noise (babble. pink 

Volvo car and white noise) is measured in terms of Perceptive Evaluation of Speech Quality 

(PESQ), Cepstrum Distance (CD) and output SNR. The computed values of these quantities 

for different types of noise with varying SNR levels of noisy speech signals and different 

types of mother wavelets are presented in Tables 2.1 to 2.4. The observation on these values 

indicates that the Daubechies family is found to provide promising results. Among the 

Daubechics family the Db1O wavelet performs well for all input SNR levels of noisy speech 

signals. Hence. Daubechies wavelet DblO at 3rd , level is selected for signal decomposition in 

different applications here. 

Table 2.1 shows the results for babble noise. The maximum PESQ and output SNR 

values are obtained for Db1O mother wavelet in comparison with other mother wavelets: 

whereas. minimum values of CD is obtained for DblO at all input SNR levels. This illustrates 

that better quality improvement in noisy speech for Db1O mother wavelet in case of babble 

noise. For direct illustration of the performance, the graphical and bar graph representation of 

these values for different types of mother wavelets for babble noise are presented in Figures 

2.6 and 2.7, respectively. 
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Table 2.2 shows the results for pink noise. These results illustrate the better quality 

improvement in noisy speech for Db 10 mother wavelet in case of pink noise also. The 

graphical and bar graph representation of these values for different types of mother wavelets 

for pink noise are presented in Figures 2.8 and 2.9, respectively. These again illustrate the best 

performance of Db 10 mother wavelet. 

Table 2.3 and 2.4 show the results for Volvo car and white noise. The graphical and bar 

chart representation for direct illustration of their comparative performance is shown in 

Figures 2.10 to 2.12. Here again Dbl0 mother wavelet produces the best results. 
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Table 2.1: Analysis for babble noise 
Input SNR 10 5 -5 -10 -15 -20 -25 
PESQ values 
Dbl0 3.6105 3.4464 3.1367 2.9939 2.8698 2.6521 2.4869 
Db40 2.82 2.76 2.15 2.4 2.2407 1.9848 1.8659 
Sym13 3.1 3.06 2.62 2.6638 2.3972 2.2011 2.0809 
Syrn21 2.7 2.7 2.8841 2.622 2.339 2.0793 1.9746 
Coif5 2.72 2.7 2.4 1.9 2.4393 2.2643 2.15 
Bior3.1 3 3.06 2.66 2.6926 2.4549 2.274 2.2669 
Cepstrum Distance values 
Db10 1 1.2 2.24 2.75 3.8 3 2.3 
Db40 2.5065 2.9905 4.3204 4.16 4.74 5.31 5.7 
Sym13 2.303 2.8386 4.1903 4.8784 5.5348 6.1966 6.7894 
Sym21 2.3343 2.863 4.276 4.9566 5.5526 6.2128 6.8659 
Coif5 2.3423 2.8584 4.2079 4.8318 5.89 6.66 7.3 
Bior3.1 2.75 2.0329 2.7848 4.1 4.48 4.67 5 
Output SNR values 
Db10 15.3455 8.2506 6.8818 2.04 2.6981 1.5922 0.9351 
Db40 11.3537 6.2048 1.7779 1.2518 0.5266 0.2361 -2.2088 
Syrn13 11.9388 5.596 1.8805 0.9121 0.6194 0.4907 -2.0434 
Syrn21 2.2647 2.1548 2.0424 0.6981 0.6718 0.2056 -2.0128 
Coif5 9 5.6 2.1561 1.6369 0.6767 0.1271 -0.5041 
Bior3.1 9.4 2.4559 1.61 0.7096 0.3663 0.1197 -0.2138 

Table 2.2: Analysis for Pink noise 
Input SNR 10 5 -5 -10 -15 -20 -25 
PESQ values 
Dh10 3.66 3.356 3.0823 2.951 2.78 2.5384 2.4128 
Db40 2.85 3.1653 2.6999 2.4576 2.1588 1.8621 1.5501 
Sym13 3.13 3.261 2.9264 2.6594 2.4295 2.1462 1.9496 
Svrn21 3.4056 2.82 2.8139 2.5739 2.3092 1.997 1.7723 
Coif5 2.45 2.26 1.86 1.55 1.52 1.1 0.5 
Bior3.1 2.7 2.54 2.0292 2.08 2 1.77 1.9 
Cepstrurn Distance values 
Db10 1.54 2.8 3.4 4.2 4.8 5 5.31 
Db40 4.1 4.54 5.57 6.08 6.4 6.6 6.53 
Syrn13 2.94 4.2 4.48 5 5.6 5.89 5.95 
Sym2l 4.4976 5.3662 6.5035 6.7259 7.0012 7.3175 7.4943 
Coif5 3.6 4.29 5 5.5 5.89 6 7.447 
Bior3.1 3.2694 4.54 4.93 5.44 5.7 6 6.2 
Output SNR values 
Db10 13.0353 9.4925 6.244 3.826 2.6414 0.2506 -1.5848 
Db40 6.7003 4.2073 3.904 3.5401 0.5299 -0.7995 -5.354 
Syrn13 6.0036 5.934 2.3727 2.051 0.3936 -0.3993 -3.7899 
Sym21 6.724 3.4303 2.1878 2.0789 0.4451 -0.5524 -5.5344 
Coif5 7.3699 7.1293 4.3775 3.3048 2.4323 -0.4987 -4.54 
Bior3.1 6.0148 3.0023 1.728 1.5354 0.3795 0.2043 -4.0623 
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Fig. 2.10: Variation of parameters with Input SNR in Volvo car noise. 
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Table 2.3: Analysis for Volvo Car noise. 
Input SNR 10 5 -5 -10 -15 -20 -25 
PESQ values 
Db10 4.6 4.2368 3.9382 3.72 3.52 3.52 3.2 
Db40 4.2323 4.1281 3.7872 3.5369 3.3426 3.098 2.8389 
Sym13 3.76 3.52 3.16 2.68 2.36 2 2 
Sym21 4.2314 3.92 3.6 3.24 3.12 3.1321 2.8427 
Coif5 3.72 3.24 3.04 2.32 1.96 1.56 1.64 
Bior3.1 3.7977 3.7836 3.12 3 2.92 2.6 2.4 
Cepstrum Distance 
Db10 0.64 1.08 1.92 2.16 2 2.32 2.48 
Db40 1.08 1.68 2.4 2.84 3.12 3.52 3.92 
Sym13 1.4494 1.9874 2.9536 3.2043 3.5113 3.9219 4.4289 
Sym21 1.4332 1.9853 3.0368 3.2988 3.6207 4.099 4.5478 
Coif5 1.72 2.28 3.28 3.64 4 4.44 4.4375 
Bior3.1 1.4834 1.6577 2.52 2.48 2.88 3.48 3.96 
Output SNR 
Db10 19.7162 16.1441 12.9289 10.1066 6.821 5.7453 2.9897 
Db40 13.6 15.6805 10.689 6.5237 3.1052 2.1434 1.155 
Sym13 10.4681 7.997 7.7373 4.4315 3.8627 3.4895 1.4803 
Sym21 9.608 7.8315 4.7685 4.547 4.018 1.3146 1.2076 
Coif5 15.8298 15.6771 9.5449 9.1344 6.7668 4.0843 2.888 
Bior3.1 12.3183 11.4222 4.7113 3.9343 2.906 2.7062 1.5782 

Table 2.4: Analysis for White noise. 
Input SNR 10 5 -5 -10 -15 -20 -25 
PESQ values 
Db10 3.5534 3.3751 3.0405 2.8707 2.6006 2.3985 2.45 
Db40 3 2.92 2.52 2.25 2.2837 2.0146 1.7323 
Sym13 2.86 2.7 2.3 2.35 2.05 1.78 1.55 
Sym21 3.4627 3.2785 2.9217 2.7068 2.4676 2.1827 1.8135 
Coif5 2.3 2.05 1.7 1.5 1.34 1.2 0.94 
Bior3.1 3.03 2.8 2.6 2.35 1.95 1.9 1.88 
Cepstrum Distance 
Db10 2.24 3.2 3.68 4.32 4.88 5.6 6.48 
Db40 3.68 4.64 5.52 6 7.015 7.76 8.24 
Sym13 4.24 5.28 5.84 6.4 7.2204 7.4307 7.5266 
Sym21 3.76 4.32 4.48 5.44 5.84 6.4 7.12 
Coif5 4.24 5.36 6.08 7.0175 7.92 8.24 9.04 
Bior3.1 3.2 4.3567 4.96 5.6 6 6.32 6.96 
Output SNR 
Db10 14.7145 10.6956 6.8557 5.7119 4.6537 3.0067 0.2942 
Db40 6.3147 5.2437 4.4711 2.8684 2.5447 0.7121 -1.1963 
Sym13 10.8549 10.1112 5.2745 4.529 4.2274 2.4819 -0.3069 
Sym21 13.6167 7.0146 4.684 3.7217 2.9885 2.3818 -0.6571 
Coif5 10.5273 7.2272 6.4173 5.444 2.7268 1.2108 -0.4603 
Bior3.1 12.4235 9.7846 5.8369 4.0406 0.5442 0.3871 0.1947 
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2.3.2 Determination of soft WP threshold function 

A noisy single channel Hindi speech signal is modelled as the sum of the clean Hindi 

speech and two real non-stationary additive background noise for low SNR. This noisy speech 

is given in eq. (2.21) as: 

Y(n)=X(n)+D1 (n)+D,(n) (2.21) 

Where, Y(n), X(n) and D (n) denote frames of noisy speech, clean speech and additive 

background noise, respectively. The Discrete Short-Time Fourier Transform (DSTFT) of the 

corrupted speech signal is given in eq. (2.22) as: 

Y(n, k) = X(n, k) ± D1  (n, k) + D, (n, k) (2.22) 

For decomposition, DblO mother wavelet packet transform is used upto 3'd  levels. After 

getting eight band wavelet packet coefficients, soft WP threshold function is applied in first 

stage of noise reduction. The soft threshold is defined as: 

JY_sgn(Y) ifI1>T 

if IYl<T 
(2.23) 

Where, Y represents the WP coefficients of decomposed noisy speech and t, T are 

threshold limits which are given as: 

med yI) 
t = 

0.6745 
for hardthreshold (2.24) 

T =t1j2 log(fl for soft threshold (2.25) 

The desired speech signal obtained by using this function is utilized for further noise 

reduction in proposed WPT Modified Wiener gain function based speech enhancement 

method. 

2.3.3 Gain functions and effects 

Most of the single-channel speech enhancement algorithms such as Wiener, SS, 

MMSE-SPU, log-MMSE, p-MMSE etc., use gain functions for noise reduction. For the noise 

reduction or suppression, a gain function is multiplied with noisy speech spectrum. The gain 

reduction value depends on estimated ratio from noisy speech and calculated noise in frame. 

The range of gain function varies in between 0 to 1. The applied gain value will be low i.e. 
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near to 0 if estimated ratio is high and vice-versa. If the ratio is very high then the effect of 

gain reduction will be very low. 

In prior studies of speech enhancement, Wiener gain function has been used for the 

noise reduction due to its easy implementation and requirement of less computation [150]. It 

is necessary to know the effectiveness of gain function for the improvement in quality and 

intelligibility of speech. A gain function may create distortion in enhanced speech if it is not 

well designed. Since speech intelligibility is reduced if a gain function generates the distortion 

in the processed speech. 

From the literature, it is confirmed that maximum improvement in quality and 

intelligibility is obtained by Wiener gain function but it also generates some distortion in the 

processed speech [150]. Hence, a modified Wiener gain function is proposed in this work. 

The performance of this proposed method is measured in terms of fw-SSNR and speech 

intelligibility index (Sil). 

The process starts with the noisy speech input dataset and each noisy speech sentence is 

segmented into 20ms frames and 50% overlap between adjacent frames [150]. Hanning 

window is applied on each speech frame and a modified gain function is obtained by using 

eqs. (2.26) to (2.30). 

The background noise spectrum Drr  is estimated by using Rangachari and Loizou 

method [150]. The noise spectrum DaT  is estimated as: 

D T  (n, k) = aç  (n, k) D(n - 1, k) + (1 - a5  (n, k))IY(n,  k)12 (2.26) 

Where, a5  is a frequency-dependent smoothing factor. This smoothing factor is 

calculated as per following eq. (2.27): 

a5 - ad + (1 ad  )p(n, k) (2.27) 

where, ad  is a constant and a5  takes values in the range of ad  :!~ a :5 1. The p(n, k) gives the 

speech - presence probability value as suggested by Rangachari and Loizou [150]: 

p(n, k) = ap p(n -1, k) + (1 - a)I(n, k) (2.28) 

Where, a,, is smoothing constant. The I(n, k) is either taken as 1 or 0 for speech presence or 

speech absence, respectively. 

- y=min((Y/D, 20) (2.29) 

The gain function G is estimated as 
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G = max(0, (1-1.3)! r) (2.30) 

Where, Y is the noisy speech. The y is calculated minimum value from noisy speech 

and estimated noise spectrum. 

A modified Wiener gain function is applied at the second stage of the proposed speech 

enhancement method. For the calculation of denoised speech spectrum, a gain factor G is 

required to be multiplied with the speech signal X1  given in eq. (2.23). 

The enhanced speech signal thus can be obtained as mentioned by eq. (2.31): 

,k =G *Xl (2.31) 

Where, k and X1  are denoted as enhanced speech and first stage speech spectrum, 

respectively. 

The effect of modified Wiener gain function G (defined in terms of fw-SSNR and Sil 

parameters) on speech enhancement is presented in Table 2.5 along with the effect of other 

gain functions for the babble noise for English language. 

Table 2.5: Results for gain functions. 

Gain function Modified 

£rameter-...z 
Wiener Spectral Sub. MMSE-SPU log-MMSE p-MMSE 

Wiener gain 

fw-SSNR 7.54893 7.44161 6.96737 7.27897 7.03386 9.63616 

SII 0.07621 0.08837 0.04723 0.07354 0.09404 0.47239 

The gain functions give different values of fw-SSNR and Sli, which show that all gains 

are not equally useful for speech enhancement. It is observed from the table that MMSE-SPU 

and p-MMSE gain functions give less improvement in processed speech signal whereas the 

modified Wiener gain function gives maximum improvement. 

2.3.4 Results and discussion 

Hindi language speech patterns have been taken from International Institute of 

Information Technology Hyderabad (lilT-H) Indic speech database [138] as clean speech 

dataset. The lilT-H indic speech database contains common Indian languages like Hindi, 

Kannada, Bengali, Malayalam, Tamil, Telgu and Marathi and each language has 1000 clean 

speech sentences. These 1000 sentences per language are selected to cover 7000 most 

frequent words in text corpus of the corresponding language. These texts are taken from 

Wikipedia articles on Indian languages. The text data is made available in IT3 (a 
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transliteration scheme) as well as in Unicode (UTF-8 format). The noise dataset are taken 

from NOIZEX-92 database [139] for generating mixed noise signals for analysis. The clean 

speech patterns of Hindi language have been added with noise sources and speech sentences 

of NOIZEUS database to generate the dataset for analysis purpose here [140]. The sampling 

frequency of original speech sentences is 16 kHz. The NOIZEUS clean speech database 

contains 30 IEEE sentences which have been produced by three male and three female 

speakers [140]. The input dataset are generated as making combinations like f16 + babble + 

NOIZEUS speech, machinegun + pink + NOIZEUS speech, and factoiy floor + white+ 

NOIZEUS speech mixed with Hindi speech patterns. The generated dataset have been used 

for evaluation of speech enhancement methods. 

Distortions introduced by noise-suppressive gain functions during the process of 

processing the noisy speech, degrade its quality and intelligibility at low SNR noise 

conditions. In this section, the proposed speech enhancement algorithms is analyzed and 

compared with previously discussed methods such as Wiener, spectral subtraction, MMSE-

SPU, p-MMSE, Iog-MMSE, ICS and IdBM. The performance measures such as output SNR, 

fw-SSNR, PESQ, CD and Sil have been used for comparison. Comparative evaluation of the 

results indicate that the effectiveness of the proposed WPT modified Wiener gain method for 

improvement in both quality and intelligibility over unprocessed speech stimuli at all input 

noisy speech of low SNR levels. The mixed noise patterns (i.e. f16 + babble + NOIZEUS 

clean speech, machinegun + pink + NOIZEUS clean speech and factory floor + white + 

NOIZEUS clean speech) are used for comparative evaluation of speech enhancement 

methods. The obtained results for these different groups of signals using different speech 

enhancement methods are given in Tables from 2.6 to 2.10. 

The output SNR values under mixed noise environment for Hindi speech are presented 

in Table 2.6. The tabulation values are represented in graphical form in Figures 2.14 and 2.15. 

An observation on Figure 2.14 and 2.15 illustrates that for low SNR speech (-15dB to -5dB). 

The performance of Wiener method (in terms of SNR improvement) is better among all the 

existing speech enhancement methods whereas for higher SNR speech signals (0dB to 50), 

spectral subtraction method gives better results. The MMSE based methods produce the poor 

output SNR comparatively. The Wavelet based methods (i.e. soft, hard, ICS and IDBM) 

perform better than the above methods. Among these, the hard wavelet threshold function 

based methods provides maximum SNR value (6.2080 dB) at 5dB input SNR. It is, however, 

found that although the hard wavelet threshold function based method gives the maximum 

output SNR but it is relatively poor to the proposed method. 
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The output SNR given by proposed method is maximum (13.641 dB) at +5 dB input 

SNR which is shown in case of factory floor and white noise mixed environment. The 

maximum output SNR in Machinegun + Pink+ NOIZEUS speech+ Hindi patterns and F 16 + 

Babble + NOIZEUS speech+ Hindi patterns are 9.4900 and 7.4173 dB, respectively. The 

maximum improvement obtained by proposed WPT modified Wiener Gain method is 

obtained for all input SNR levels. Results show that the maximum speech quality and 

intelligibility can be obtained by proposed method in mixed noise environment. 

Table 2.6: Output SNR values. 

Noise 
s ources 

SNR 
Input 

Wiener  
Spectral 
Sub. 

p- 
MMSE 

log- 
MMSE SOFT HARD ICS IDBM 

Proposed 
Method 

-15 -2.3280 -6.3402 -2.7278 -1.4599 0.1074 0.1227 -0.341 1.7234 1.9144 

F16 + Babble+ 
-10 -1.7747 -3.9115 -3.2184 -1.6779 0.3564 0.3975 0,4341 1.9081 4.9554 

NOIZEUS 

speech+ Hindi 
-5 -0.4984 -1.2080 -1.2184 -1.0523 1.1027 1.1781 1.6116 2.1099 5.0651 

patterns 

0 0.5938 0.9557 0.9455 0.3557 2.9073 3.0064 2.3550 2.2943 8.7918 

5 0.9135 3.6325 2.9951 1.2099 6.0987 6.2080 2.7208 2.3954 7.4173 

-15 -0.7753 -5.0933 -1.7526 -1.6779 0.0951 0.1188 -0.340 1.9557 5.1966 

Machinegun+ -10 -0.1275 -4.3398 -1.8198 -1.4599 0.3175 0.3849 0.4341 2.1763 6.5033 
Pink+ 

NOIZEUS -5 1.3932 -0.2685 -1.0912 -1.0523 1.0053 1.1570 1.6116 2.3215 6.5157 

speech+ Hindi 

patterns 0 3.2380 3.2606 0.7479 0.3557 2.7176 2.9725 2.3550 2.3828 6.9647 

5 3.2257 6.0620 4.4728 1.2099 5.8121 6.1535 2.7208 2.4372 9.4900 

-15 -0.3544 -0.8270 -1.8356 -0.8670 0.0914 0.1186 0.2282 1.8533 2.5929 

Factory floor 

+White+ 10 -0.2839 -0.6202 1.6846 -0.7145 0.3095 0.3840 1.2293 2.0681 3.7844 

NOIZEUS 
-5 0.3937 -0.0985 0.3967 0.2028 0.9900 1.1596 2.5925 2.2488 9.4924 

speech+ Hindi 
0 0.4275 2.1069 1.8154 0.8680 2.6975 2.9735 3.9886 2.3678 9.6020 patterns 

5 0.4498 4.5250 3.7515 0.9420 5.7831 6.1485 4.8562 2.4343 13.641 
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Table 2.7: fw-SSNR values. 

Noise 
SNR Wiener Spectral p- log- SOFT HARD ICS IDBM Proposed 

Sources Input 
Sub. MMSE MMSE Method 

-15 5.0571 3.1652 4.0320 3.6735 

-10 6.0642 3.5508 4.9666 4.7690 

-5 7.0349 4.3527 5.7113 5.7564 

0 7.8101 5.3783 6.8051 6.5908 

5 8.5420 6.2126 7.6541 7.4505 

-0.748 -0.147 5.5686 5.3070 10.5472 

-0.446 0.1070 6.3331 6.3098 11.5256 

0.1922 0.7147 7.1150 7.9000 12.6038 

1.3700 1.8111 7.8795 9.6244 13.7704 

3.1060 3.4668 8.5125 11.0828 15.2217 

-15 5.8261 3.6454 4.5390 4.3748 0.0777 0.8930 6.1386 5.6329 11.1857 

-10 7.0447 3.8034 5.5766 5.4821 

-5 8.1942 4.2869 6.5798 6.5276 

0 8.9267 5.3417 7.5296 7.6897 

5 9.7453 6.5323 8.1045 8.4328 

-15 4.4029 3.4376 4.8502 4.5135 

Factory floor+ -10 5.5310 4.4487 5.6798 5.5474 

White± 

NOIZEUS 
-5 6.6120 5.2682 6.8295 6.7192 

speech+Hindi 
0 7.4657 6.2192 7.5922 7.7587 

patterns 

5 8.4698 7.3728 8.6906 8.3784 

0.6654 1.4324 6.9527 7.0784 12.1470 

1.6390 2.3279 8.0529 8.6422 13.1690 

3.0707 3.7346 9.2448 10.6607 14.5452 

5.0220 5.7362 10.407 12.7112 16.1519 

0.1634 1.0884 4.9541 5.5395 11.0368 

0.6235 1.5122 5.9086 6.7019 11.9830 

1.3315 2.2791 6.9053 8.6436 13.0345 

2.7032 3.6208 8.1404 10.5455 14.2575 

4.5114 5.5029 9.3946 12.3724 15.7827 

F16+ Babble+ 

NOIZEUS 

speech+ H mdi 

patterns 

Machinegun+ 

I'm k+ 

NOIZEUS 

speech+I-lindi 

patterns 

In Table 2.7, fw-SSNR values are given at various level of input SNR for different 

speech enhancement methods. The Figures 2.16 and 2.17 present the graphical and bar chart 

representation of the values given in Table 2.7. These results shows that the Wiener method 

gives better results in comparison to spectral subtraction. p-MMSE. log-MMSE, SOFT, 

HARD but results given by above methods are not better than the ICS, IDBM and proposed 

methods. The maximum value of fw-SSNR for ICS, IDBM and proposed methods are 10.407, 

12.71 and 16.1519, respectively. Among these three, the performance of proposed method is 

superior to other speech enhancement methods. The higher value of fw-SSNR (about 16) 

shows good improvement in quality of enhanced speech while lower values (less than 10) 

show less improvement in quality of speech. 
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In Table 2.8, PESQ values are illustrated for Hindi speech signal in mixed noise 

environment. In comparison, Wiener method is best in terms of PESQ parameter than existing 

speech enhancement methods (such as spectral subtraction, p-MMSE, log-MMSE, SOFT, 

1-lARD) but the results given by Wiener method are poor to ICS. IDBM and proposed 

methods. The performance given by proposed method is much better than the existing speech 

enhancement methods. The PESQ parameter value (3.7283) obtained by proposed WPT 

modified Wiener based speech enhancement method is highest in mixed noise. 1-lere, figures 

2.18 and 2.19 present the graphical and bar chart representation of the values given in Table 

2.8. The comparison given in these figures also illustrates that the proposed method gives 

better performance in comparison with existing speech enhancement methods at all input 

SNR levels and for all types of noise. The maximum PESQ values obtained by proposed 

method indicate for the maximum speech quality and intelligibility improvement. 

Table 2.8: PESQ values 

Noise SNR Wiener Spectral p- log- SOFT HARD ICS IDBM Proposed 
+ Sources Input Sub. MMSE MMSE Method 

-15 1.4113 0.7360 1.1122 0.8631 0.6088 0.5178 1.6374 2.1603 2.9461 
F16+ Babble+ 

NOIZEUS 
-10 1.7369 1.2246 1.6300 1.5443 0.6570 0.6227 1.9248 2.4629 3.1161 

speech+ Hindi -5 1.9502 1.5909 1.9117 1.9385 0.9095 0.8751 2.0734 2.7196 3.3128 

patterns 
0 2.0538 1.9101 2.1188 2.0642 1.1928 1.1543 2.2435 2.9735 3.4904 

5 2.1666 2.1459 2.2772 2.1359 1.5488 1.5081 2.3775 3.2065 3.6692 

-15 1.7724 0.7781 1.0428 0.9297 0.3475 0.3362 2.0334 2.4390 3.0693 
Mach inegu n+ 

-10 2.1900 1.2577 1.7752 1.7312 0.6439 0.6150 2.3538 2.6606 3.2843 
Pin k+ 

NOIZEUS -5 2.3156 1.5517 2.1287 2.0665 1.0599 1.0054 2.6068 2.9464 3.4962 

speech+ Hindi 0 2.4644 1.9179 2.3978 2.2364 1.5037 1.4469 2.8100 3.1747 3.6290 
patterns 

5 2.3163 2.2206 2.5526 2.4324 1.9344 1.8887 3.0038 3.4010 3.7283 

-15 1.2016 0.5885 1.3526 1.2638 0.5855 0.4971 1.6822 2.3729 2.9461 
Factory floor+ 

-10 1.5249 1.0285 1.6659 1.5962 0.8421 0.7599 1.9231 2.6667 3.1161 
White+ 

NOIZEUS -5 1.8298 1.4618 1.9585 1.9130 1.1432 1.0697 2.1347 2.9649 3.3128 

speech+ Hindi 0 1.9031 1.8881 2.1148 2.0634 1.5136 1.4554 2.3160 3.1514 3.4904 
patterns 

5 2.0063 2.1964 2.3665 2.0749 1.9444 1.8910 2.4765 3.4042 3.6692 
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Table 2.9, illustrates the output Cepstral Distance (CD) values for all levels of input 

SNR in mixed noise environment. The lower value of CD shows better speech enhancement. 

Wiener method is much better than other existing speech enhancement methods since the 

minimum value given by Wiener method is 4.1148. The minimum value given by Wiener 

method shows maximum improvement in speech quality but this is again poor to ICS, IDBM 

and WPT modified Wiener gain based proposed method. Among these methods, the proposed 

method gives minimum value of CD (2.4343) and hence maximum improvement in speech 

quality and intelligibility. The value of CD parameter obtained by proposed method is lower 

in comparison to other speech enhancement methods for all types of mixed noise. This shows 

that the output speech signal has maximum improvement in quality and intelligibility. The 

graphical and bar chart representation for direct illustration of their comparative performance 

is shown in Figures 2.20 and 2,21. 

Table 2.9: Cepstral Distance measure values. 

Noise SNR 
Wiener  

Spect. p- log- 
SOFT HARD ICS IDBM 

Proposed 
Sources Input Sub. MMSE MMSE Metho1 

-15 6.3712 8.9649 6.4998 6.8541 8.9740 8.1510 5.7062 6.6023 3.8327 
F16+ Babble+ -10 5.7469 8.3147 5.7121 6.0816 8.8841 8.0589 5.1584 6.0197 3.5062 

NOIZEUS - - 5.0810 7.7327 5.2491 5.3721 8.6720 7.8635 4.5837 5.1234 3.1802 
speech+ Ilindi 

0 4.5786 6.9332 4.6580 4.7810 8.3275 7.6145 4.1056 4.0709 2.8688 
patterns 

5 4.1148 6.2579 4.2262 4.3377 7.8272 7.2667 3.7389 3.4918 2.4457 

-15 6.9649 9.2130 6.9907 7.2290 8.7038 7.7673 6.2689 6.7802 3.7350 

Machinegun + 
.10 6.3223 8.6247 6. 15 62)  6.4585 8.6388 7.6427 5.6466 6.0449 3.4162 

Pink+ NOIZEUS 
-5 5.6094 8.1748 5.4169 5.7169 8.4468 7.4515 4.9943 5.2407 3.0929 

speech +Hjfl(11 
0 4.9475 7.2596 4.8335 5.006() 8.1577 7.2002 4.3914 4.3674 2.8114 

patterns 

5 4.3986 6.3997 4.3537 4.5193 7.6599 7.0104 3.8266 3.5898 2.4343 

-15 6.9740 7.4833 6.8650 7.0829 8.9829 7.6844 6.4056 6.9002 3.8550 
Factory floor + 

White+ -10 6.3688 7.0698 6.2460 6.5174 8.8797 7.6085 5.8588 6.3690 3.5749 

NOIZEUS -5 5.7123 6.5540 5.5772 5.8053 8.6688 7.4638 5.1973 5.4502 3.2958 

speech 0 5.0298 5.9057 4.9941 5.1695 8.2869 7.2162 4.5903 4.6898 3.0416 

5 4.4418 5.1847 4.4824 4.6432 7.8035 7.0270 3.9377 4.1103 2.7106 
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Fig. 2.22: Variation of SIl values with different speech enhancement methods and mixed noise. 

SIl parameter is used to measure the intelligibility of speech signal. The range of SIl is 

from 0 to I scale. Where, 0 shows the lower intelligibility and near to I for maximum 

intelligible speech. The output SIl values for mixed noise case are illustrated in Table 2.10 for 

Hindi speech. The maximum SII value of 0.4442 is obtained in machinegun + pink noise 

mixed environment at +5 dB input SNR. This maximum improvement in SI1 parameter is 

given by proposed WPT modified Wiener Gain method in comparison to commonly used 

speech enhancement methods and hence maximum speech intelligibility is achieved by 

proposed method in low SNR noise conditions. 

Table 2.10: Speech Intelligibility Index (SI!) values. 

SNR Spect. 
I Noise Wiener 

p- log- Proposed 
SOFT HARD ICS IDBM 

Input Subt. MMSE MMSE Method 
Types 

F16 + Babble + 
NOIZEUS speech 5dB 0.1499 0.1854 0.1676 0.1485 0.3444 0.3549 0.1779 0.4618 0.4942 
+ Ilifl(li patterns 

Machinegun + 
Pink+ NOIZEUS 
speech+ Hindi 5d13 0.2391 0.2633 0.1731 0.1972 0.4118 0.4292 0.3129 0.4618 0.4942 
patterns 

Factory floor + 
White+ NOIZEUS 5dB 0.1979 0.2568 0.2356 0.2069 0.4220 0.4407 0.3044 0.4618 0.4942 
speech + Hindi 
natterns 
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Figure 2.22 shows the comparative analysis of various speech enhancement methods in 

terms of Sli at 5dB SNR of mixed noise. In this comparison, all speech enhancement methods 

show less improvement in speech intelligibility index than proposed WPT modified Wiener 

Gain method. Hence, it is concluded that the proposed method is very much effective for 

improving quality and intelligibility in low SNR mixed noise environment. 
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Figure 2.23 shows the comparative analysis of spectrograms for Hindi speech at 5dB 

SNR of mixed noise sources i.e. white + factory floor + NOIZEUS speech + Hindi speech. In 

spectrogram comparison, all speech enhancement methods representing musical noise in the 

spectrogram except proposed WPT modified Wiener Gain method. Hence, it is clear that the 

proposed method is very much effective for improving quality and intelligibility in low SNR 

mixed noise environment and removes musical noise effectively. 

2.4 Summary 

In this chapter, WPT modified Wiener Gain method is proposed for suppression of 

mixed noise of low SNR. The noisy dataset of mixed noise of low SNR range from -15 dB to 

5 dB are generated for evaluation of the proposed speech enhancement method. The 

performance of proposed method is compared with other commonly used speech 

enhancement methods such as Wiener, SS, p-MMSE, log-MMSE, soft and hard WP threshold 

function ICS, IDBM and results show the improvement in terms of speech quality and 

intelligibility parameters i.e. Sli, CD, PESQ, fw-SSNR and SNR. The WPT modified Wiener 

Gain method shows maximum improvement in comparison to other speech enhancement 

methods at all levels of input SNR. 
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CHAPTER 3: SUPPRESSION OF HIGHLY NON-STATIONARY NOISE 

This chapter describes the work related to suppression of residual noise and speech distortion 

in highly non-stationary low SNR noise environments. It starts with some background for 

requirement of efficient speech enhancement algorithms for suppression of highly non-

stationary noise. Then, the solution to overcome the limitations of traditional speech 

enhancement methods in the presence of highly non-stationary noise is suggested Next, 

author 's contribution is explained with supporting results which are given by WPTfuzzy mask 

based proposed speech enhancement method that efficiently work in the environments of non-

stationary noisy speech of low and high input SNR. 

3.1 Overview 

The highly non-stationary noise is encountered in many environments, such as stations, 

theatres, airports, vehicles, factories, cafeterias, bars, streets, etc. The denoised speech is 

obtained with the application of enhancement methods to noisy observations. The spectral 

subtractive, mask based methods and statistical model-based conventional approaches for 

noise suppression are based on assumption of stationary noise condition and they do not 

consider the environment of non-stationary and highly non-stationary noise. These 

conventional approaches have limited application in the area of noise suppression. High 

residual noise or high speech distortion are introduced in the processed speech spectrum if the 

signal power spectrum and the noise power spectrum are estimated under the assumption of 

stationary noise condition. Furthermore, in the mask based approaches clean speech signal 

information is used for noise suppression which is not possible for real-world applications 

because of non-availability of clean speech signal. Hence, the problem of enhancing speech 

degraded by highly non-stationary noise is a challenging task in real world applications. 

3.2 Enhancement Techniques for Highly Non-Stationary Noise Environments 

Single-channel speech enhancement algorithms are generally based on short-time 

spectral attenuation (STSA). The example of STSA based speech enhancement methods are 

spectral subtraction method (proposed by Berouti et al. [18]) and MMSE based short-time 

spectral amplitude estimator (proposed by the Ephraim—Malah [22]). But these conventional 

approaches work on the assumption of stationary noise condition. Some modifications in the 

basic suppression rules have been proposed by few researchers in order to overcome the 

problem of assumption of stationary noise signal [18, 151-152, 158], but these techniques 

only reduce the "musical" noise (i.e. pure tones or isolated peaks in the residual noise) but do 
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not eliminate it completely. The complete elimination of "musical" noise phenomenon is 

only obtained by a crude overestimation of the average noise spectrum and as a consequence, 

the short-time spectrum is attenuated more than it would be necessary: Due to this fact, 

audible distortions in the audio signal can be generated [153]. Cappe analyzed the behaviour 

of Ephraim and Malah estimator [154] and demonstrated that a priori SNR follows the shape 

of a posteriori SNR with a delay of one frame. This bias is due to the use of the speech 

spectrum estimated at the previous frame to compute the current a priori SNR. Since the gain 

depends on a priori SNR, it does not match with the current frame and thus it degrades the 

performance of the noise suppression system. Two-Step Noise Reduction (TSNR) technique 

has been presented by Cyril Plapous et al. [155] to refine the estimation of a priori SNR which 

suppresses these drawbacks while maintaining advantages of the decision-directed approach, 

like the highly reduced musical noise effect. This technique suffers from a delay of one frame 

in first step which is removed by the second step of TSNR algorithm. However, it has not 

been much effective in real world noise environments. 

The algorithm described by Whipple utilizes a simple 2D analysis of magnitude 

spectrograms to fmd energy bursts that are localized in time and frequency [156]. Such bursts 

are replaced with zero energy to suppress the musical noise. Another similar approach for 

processing of a 2D spectrogram has been described by Goh et al. [157]. The local variance of 

coefficients is used for detection of musical noise, and a median filter is used to repair regions 

detected as musical noise. In the work of Linand Gourban et al. [159], a non-adaptive 2D 

smoothing of a magnitude spectrogram is used to detect speech/noise regions by applying a 

magnitude threshold. The spectrogram for regions that are classified as noise is time-

smoothed with a box filter. The speech regions are processed by the Epraim-Malah method 

[22]. The algorithm by Soon et al. [160] uses a 2D Fourier transform applied to a matrix of 

time-domain STFT (short-time Fourier transform) windows, which is equivalent to applying 

1-dimensional DFT to every row of a complex spectrogram. This allows to effectively 

analyze the time correlations of STFT coefficients, but it doesn't exploit the frequency 

correlation of spectrograms effectively. To alleviate this problem, the application of above 

explained algorithms [156] is suggested as a post processing step and adaptive 2D 

spectrogram smoothing based algorithms achieves effective reduction of musical noise 

artifacts with minimal damage to the target signal [161-162]. Thomas Esch and Peter Vary 

described a post processing method for the spectral weighting gains to suppress musical noise 

[163]. This post filter adaptively smoothens the weighting gains over frequency based on soft-

decisions of a low SNR detector and gives minimum residual noise in the processed speech. 
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From the literature, it is clear that most of the speech enhancement algorithms [151-

178] estimate processed speech signal by multiplying magnitude of noisy speech signal with 

calculated gain function. However, a number of studies have analyzed that gain function 

based approaches generate residual noise in the processed speech and distort the speech [6, 

165-178]. A detailed study done by P. C. Loizou and G. Kim illustrates the reasons why 

current speech enhancement algorithms do not improve speech intelligibility [35]. Based on 

these reasons, a modified Wiener filtering method combined with wavelet thresholding 

multitaper spectrum has been developed by Yaima Ma and Akinori Nishihara for suppression 

of speech distortions [179]. These types of algorithms can be described in two stages as 

shown in Figure 3.1. The application of gain function at the first stage is followed by binary 

mask decision [128] at the second stage. The first stage of gain reduction depends on 

calculated SNR from estimated noise spectrum and noisy speech spectrum in each band. The 

value of gain reduction is a ratio calculated from each band. The gain reduction has a range 

from 0 to 12 dB in applications like hearing aids. The speech frames with high a-priori SNR 

give high gain (about to 1) where as a low value (about to 0) of a-priori SNR in speech 

frames has low gain. Since noise and speech signals spectrally overlap, the concept of gain-

reduction is not much beneficial for speech intelligibility improvement. Speech distortion is 

introduced by gain-reduction process. To overcome this distortion, second stage is introduced 

as a binary mask for further smoothing of the distorted speech signal. 

Enhanced 
U I LL.y IVI I\ L/L.,IIJII Noisy Apply Gain 

H  

Speech Function G 
for suppression of 

Speech 
sDeech distortions 

Fig. 3.1: Block diagram of signal-processing stages used in single-channel speech 
enhancement. 

Most of the two stage type speech enhancement methods use clean stimuli database for 

calculating the threshold level in binary mask or take a fixed value of SNR as threshold to 

overcome speech distortions and residual noise [180-185]. The clean stimuli and noise 

database used in gain functions and calculation of the mask limits are not practically 

available. None of the techniques were evaluated for both quality and intelligibility 

improvement at lower and higher levels of input SNR (such as -15 to 15 dB). Typical 

approaches to binary mask estimation use low-level features and bottom-up techniques. One 

reason that estimation techniques focus on the low-level features is that the Ideal Binary Mask 

(IdBM) itself is defined based on the local SNR at the Time-Frequency (T-F) unit level. 
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In this Chapter, a description for mask estimation is presented which is based on fuzzy 

mask function and WPT. The goal of the present study is to improve the quality and 

intelligibility both at lower and higher levels of input SNR varying from -15 dB to +15 dB 

and to reduce the distortions introduced by gain function. Hard and soft wavelet packet 

threshold values are used as lower and higher limits, respectively in the fuzzy mask for 

getting maximum resolution. In this proposed approach, a modified Wiener gain function is 

used at first stage and at second stage wavelet packet threshold values are used in the fuzzy 

mask for further improvement in speech. 

3.3 WPT Fuzzy Mask Based Speech Enhancement Method 

The hard and soft WP threshold based fuzzy mask method is proposed for suppression 

of highly non-stationary noise in speech signal. The noisy input speech signal is applied to 

WPT for decomposing the input noisy speech signal into various energy bands and after 

decomposition into energy bands and reconstruction into signals a modified Wiener gain 

function is applied for noise suppression. The modified Wiener gain function has already been 

explained in Chapter 2. Further, the processed speech is given to fuzzy mask function for 

suppression of gain induced speech distortions and reconstruction of denoised speech signal is 

performed at last. Details of all these processes as applied in the present approach are 

described in two steps. Gain function is applied in its first stage and in second stage a fuzzy 

mask is used for further improvement in speech. These steps are explained in detailed in 

following sections. 

3.3.1 Modified Wiener gain function for noise suppression 

In practical environment, the background noise level and characteristics are constantly 

changing. Good estimation of the speech signal is required to alleviate the distortion caused 

by speech enhancement algorithms. Among the numerous techniques that were developed, the 

Wiener filter can be considered as one of the most fundamental speech enhancement 

approaches, which has been delineated in different forms and adopted in various applications 

[22-24]. Where, it is very necessary to use an effective gain function to overcome the noise 

and distortions. With this aim, a modified gain function is used for noise reduction: 

Let us consider an additive noise model 

Y(n) = X(n) + D(n) (3.1) 



Where, Y ( n), X (n) and D ( n) denote discrete-time signals of noisy speech, clean 

speech and noise, respectively. The discrete short-time Fourier transform (DSTFT) of the 

corrupted speech signal x(n), is given as: 

Y(n, k) = X(n, k) + D(n, k) (3.2) 

After experimentation in Chapter 2, it was found that the Db 10 mother WPT is much 

suitable for speech signal decomposition in comparison to other mother wavelets. Hence, in 

this Chapter Db10 is applied for decomposition of input noisy speech signal. Decomposition 

levels provide significant information to avoid unreasonable maximum level values. Eq. 2.7 is 

used for selection of WP decomposition level which is mentioned in Chapter 2. According to 

this equation, 3rd  level is more suitable for decomposition of input speech signal. The fuzzy 

mask based proposed method use Db10 mother WP with 3fl1  level decomposition of input 

speech signal to reduce the highly non-stationary noise and gain-induced speech distortions. 

A modified gain function G ( n, k) is multiplied with the noisy speech for getting the 

first stage denoised speech. Now, denoised speech signal can be expressed by eq. (3.3): 

X1 (n,k)=G(n,k)*Y(n,k) (3.3) 

The processed speech X1  (n, k) is used in fuzzy mask for reduction of gain-induced 

speech distortions for further enhancement. 

3.3.2 Fuzzy mask function 

The prior research have suggested that the quality and intelligibility are improved by 

using true speech x ( n) spectrum or true noise spectrum in binary mask for estimating 

enhanced speech spectrum [181-185]. Here, true speech means the clean speech that is used 

for generating noisy speech by mixing noise and true noise means the noise which is used for 

constructing the noisy speech signal. In practical environment only a noisy speech signal is 

available i.e. clean speech signal and true noise signal are not available. This makes 

estimation of mask a different task. To overcome the problem of using true speech or true 

noise in a binary mask, a fuzzy mask is proposed here which is based on soft and hard wavelet 

packet threshold. Figure 3.2 shows the block diagram of proposed method used in de-noising 

of noisy speech spectrum. 
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Following steps are used for estimating hard and soft WP threshold values in the proposed 

fuzzy masking approach: 

Step I. Decomposition of input noisy speech signal using Db1O mother WP transform upto 3rd 

levels. 

5tep2. Reconstruct wavelet packet coefficients of the decomposed signal into eight noisy 

speech energy bands. 

5tep3. Perform FFT of noisy speech bands. 

5tep4. Estimate the processed speech spectrum X1 (n,k) by using a modified gain function 

G(n,k) 

Step5. Limits a and b are computed by using eq. (3.4) to (3.6) where a, and b are hard and soft 

WP threshold limits [179]. 

a = 

median (jfC, (n,k) j)  

0.6745 

T =aJ2. log(X1  (n, k)) 

b=a+T 

(3.4) 

(3.5) 

(3.6) 

Step6. These parameters are used in fuzzy mask function in eq. (3.7). 

13 X1 (n,k)<a 

2 
i, (n, k) — a 

)2,  

f(X1 (n,k);a,b)= 
/ 2 

1-21 
X1(n,k)—b 

b—a 

1, 

a+b 
k) b 

X1 (n,k)>b 

(3.7) 

Step7. The desired speech spectrum coefficients are obtained by using fuzzy mask function. 

Step8. Inverse-FFT and over-lap add method is applied to reconstruct the processed speech 

signal of each energy level. 

Now, all processed signals of all eight energy bands of input speech signal are added to get 

the desired speech signal. 
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3.3.3 Results and discussion 

The clean English speech input dataset are taken from NOIZEUS [140] corpus. The 

real-world sources of background noise are taken from AURORA [204] and NOISEX-92 

[139] databases. These datasets have suburban train noise, babble, car, exhibition hail, 

restaurant, street, airport and train-station noise. These various types of noise are used for 

generation of noisy input speech. 

The distortions introduced by noise-suppressive gain functions degrade the quality and 

intelligibility of the processed speech. In this section, performance of the proposed speech 

enhancement method is analyzed and compared with given speech enhancement methods 

such as Wiener, spectral subtraction, MMSE-SPU, p-MMSE, and log-MMSE in terms of 

output SNR, PESQ, MOS, and STOI parameters. Comparative evaluation of the results 

indicate the effectiveness of proposed method for improvements in both quality and 

intelligibility over unprocessed speech stimuli at all input noisy speech SNR levels from - 

15dB to 15dB. The results obtained are illustrated in Table 3.1 to 3.4. 

The Figures 3.3 and 3.4 represent the graphical and bar chart representation of values 

given in Table 3.1. An observation on Table 3.1 and Figures 3.3, 3.4 indicates that for low 

input SNR (-15dB to -5dB) the performance of Wiener method in terms of SNR improvement 

is better among all the existing speech enhancement methods whereas for higher input SNR 

(0dB to 5dB), spectral subtraction method gives better result. 

The MMSE based methods produce the poor output SNR comparatively. The minimum 

improvement is obtained by MMSE-SPU algorithm since the output SNR decreases rapidly 

with increasing input SNR (output SNR from -0.9161 dB to -7.1942 dB with input SNR from 

-15 dB to 15 dB, respectively) which shows that the gain function used in the algorithm is not 

much effective in reducing noise and hence much noise is left in processed speech. All these 

methods (such as Wiener, spectral subtraction, MMSE-SPU, p-MMSE, and log-MMSE) 

perform poorer than the proposed method. The output SNR obtained by aforementioned 

methods are decreasing with increasing input SNR but for the proposed method the output 

SNR values are increasing with increasing input SNR. The maximum output SNR values 

given by proposed method are 21.1661, 19.9634, 20.4319 and 20.3651dB SNR at 15 dB input 

SNR in babble, pink, f-16 and white noise. From this comparison, it is illustrated that 

proposed method outperforms the other existing methods and hence maximum improvement 

in speech quality and intelligibility is achieved. 

68 



Table 3.1: Output SNR Score in presence of various noise types. 

Noise Input Wiener Spec. MMSE- p- log- Fuzzy Proposed 

Type SNR(dB) Sub. SPU MMSE MMSE Mask Method 

-15 -1.6248 -3.0628 -0.9161 -2.6807 -1.4685 1.2639 1.2876 

-10 -0.8606 -1.6308 -0.3830 -1.3025 -0.6867 3.0527 3.8137 

-5 0.1228 0.4497 -0.2623 0.3705 0.6201 5.1278 7.3879 

Babble 0 0.3655 2.7938 -1.1846 2.3972 0.6598 6.5880 11.3732 

5 0.5560 4.7733 -1.9024 4.0540 1.1075 7.2565 15.4439 

10 0.5152 7.7444 -3.9847 6.1688 1.0174 7.5013 18.8483 

15 0.5334 10.5792 -7.1942 8.5556 0.8708 7.5798 21.1661 

-15 -0.2943 -0.3913 -0.4945 -1.3664 -0.7095 0.7116 0.3442 

-10 -0.5045 -0.7419 -0.4192 -1.6068 -0.7159 2.4417 1.7663 

-5 -0.4067 -0.9633 -0.9239 -0.9312 -0.8058 4.7528 4.6866 

Pink 0 -0.1184 -0.2859 -0.7880 0.4606 0.0055 6.4175 8.5616 

5 0.2040 2.3865 -0.7660 2.1988 0.6066 7.1917 12.6826 

10 0.2726 4.3463 -2.7544 4.1307 0.6461 7.4785 16.6544 

15 -0.0466 7.8992 -4.6816 5.1177 0.5309 7.5798 19.9634 

-15 -0.9183 -1.3101 -1.1139 -3.1839 -1.8632 0.6527 0.1501 

-10 -0.6528 -1.8024 -1.5140 -3.7675 -2.2559 2.3379 2.1643 

-5 0.1031 -0.4786 -0.7188 -1.1627 0.2874 4.6648 5.5853 

f-16 0 0.7172 0.8981 0.8761 1.5892 1.1103 6.3936 9.5105 

5 1.4096 2.7942 0.4943 3.1153 1.6383 7.2097 13.5659 

10 1.4223 5.1909 -0.7133 4.0056 1.7299 7.5037 17.3403 

15 1.3144 8.1706 -3.8082 5.9823 1.6504 7.5905 20.4319 

-15 -3.5186 -6.4321 -1.6131 -3.7496 -2.3578 0.8345 1.0934 

-10 -2.6637 -4.4210 -1.5610 -2.5652 -1.7333 2.8686 3.4797 

-5 -1.3864 -2.4705 -1.1013 -0.7980 -1.0125 5.1418 6.8096 

White 0 -0.7655 0.8868 -1.1623 0.9690 -0.1488 6.6421 10.4854 

5 -0.3111 2.9205 -1.6204 2.4689 0.4242 7.2645 14.1393 

10 -0.2424 5.8020 -2.7799 4.3175 0.4384 7.4796 17.5540 

15 -0.1393 9.3381 -4.6100 6.8198 0.0872 7.5686 20.3651 
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The PESQ parameter values computed for given speech enhancement methods is 

presented in Table 3.2. The graphical and bar chart representation for direct illustration of 

their comparative performance is shown in Figures 3.5 and 3.6. From these Figures and Table 

3.2, it is observed that the maximum distortion is created by MMSE-SPU algorithm since this 

speech enhancement method shows the lowest PESQ values (1.6866, 2.0838. 2.1753 and 

2.0375 in babble, pink, f-16 and white noise) at 15 dB input SNR. From the comparison, it is 

also indicated that fuzzy mask method obtains better results for all input SNR levels. The 

other speech enhancement methods (such as Wiener, spectral subtraction, MMSE-SPU, p-

MMSE, log-MMSE) give poor results and hence lower improvement in processed speech 

signal. These speech enhancement methods are also compared with WPT fuzzy mask based 

proposed method in terms of PESQ parameter. The proposed speech enhancement method 

shows maximum improvement as compared to all other speech enhancement methods in 

terms of speech quality and intelligibility parameters at all levels of input noise SNR. There is 

a continuous improvement in quality with increasing input SNR and hence lowest distortion is 

observed in the processed speech. 

Table 3.2: Output PESQ Scores in presence of various noise types 
Noise In put . Spec. MMSE - log- Fuzzy Proposed 
Type SNR(dB) 

Wiener 
Sub. 

p-MMSE 
MMSE Mask Method 

-15 1.6813 1.5545 1.6855 1.5092 1.6339 1.8998 1.6827 
-10 1.2301 1.8331 1.1190 1.1982 1.0858 1.1307 1.9930 
-5 2.3253 2.2233 2.2648 2.2230 2.3977 2.3704 2.3979 

Babble 0 2.4117 2.3960 2.2959 2.5898 2.3786 2.6224 2.6431 
5 2.4556 2.5635 2.2339 2.7121 2.4321 2.8979 2.9202 
10 2.4778 2.9118 1.9946 2.9200 2.4919 3.2468 3.1957 
15 2.4817 3.0776 1.6866 3.1323 2.5006 3.5100 3.5268 

-15 

-10 
-5 

Pink 0 
5 
10 
15 

1.5915 

1.8897 
2.1771 
2.3073 
2.3950 
2.4417 
2.4504 

0.9638 
1.4961 
1.7567 
2.0649 
2.3414 
2.5315 
2.9180 

1.6875 
1.9001 
2.1956 
2.4186 
2.4062 
2.2094 
2.0838 

1.7086 
1.0717 
2.1434 
2.4377 
2.5792 
2.7298 
2.8261 

1.6284 
1.9326 
2.2461 
2.4747 
2.5010 
2.5007 
2.5126 

1.3499 
1.6963 
2.0692 
2.4059 
2.7077 
3.0604 
3.4330 

1.8913 
1.9710 
2.4822 
2.5647 
2.7096 
3.0641 

3.4792 
-15 1.7929 0.1580 1.6276 1.6818 1.5438 1.5779 1.8377 
-10 2.0629 0.8926 2.0570 2.1260 2.0221 1.8788 2.1461 
-5 2.2578 1.5944 2.3126 2.3953 2.4124 2.1102 2.5267 

f-16 0 2.3951 1.9427 2.4149 2.5471 2.5103 2.3990 2.6166 
5 2.5349 2.3752 2.4099 2.7067 2.5639 2.6909 2.7586 
10 2.5443 2.6817 2.4094 2.8097 2.6527 3.0820 3.1069 

15 2.5516 2.8651 2.1753 3.0056 2.6527 3.4409 3.4295 
-15 1.9357 1.1429 1.7455 1.8185 1.7558 1.3015 1.9772 
-10 2.1643 1.6273 2.1424 2.1893 2.1331 1.4821 2.4001 
-5 2.2787 1.8394 2.2899 2.3608 2.3651 1.7697 2.4608 

White 0 2.3462 1.9940 2.3712 2.4956 2.4590 2.0927 2.5662 

5 2.3701 2.2662 2.3036 2.4989 2.4056 2.4269 2.5078 

10 2.3897 2.5622 2.2053 2.6343 2.4185 2.7546 2.8388 
15 2.3922 2.8059 2.0375 2.9020 2.3681 3.1114 3.2036 
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The MOS scores are presented in Table 3.3 and Figures 3.7 and 3.8 present the 

graphical and bar chart representation of the values given in Table 3.3 at different input SNR 

levels and various types of noise. The MOS rating lies in between 0 and I where 0 stands for 

lowest and 1 for highest improvement in speech intelligibility. By comparing the MOS scores 

of existing speech enhancement methods, it is observed that Wiener method shows better 

results for low input SNR values only (i.e. -5 to -15 dB) while spectral subtraction shows 

better results for higher input SNR (i.e. 0 to 5 dB). The MMSE-SPU method shows 

distortions in the processed speech which results in lowest MOS values at all levels of input 

SNR. Since the proposed method gives highest MOS scores 0.7182, 0.7050, 0.6911,0.6252 in 

babble, pink. f-16 and white noise, respectively; hence, the maximum improvement and 

lowest distortion is observed in processed speech. The performance of proposed method is 

increasing with increasing input SNR levels (from -15 to +15 dB). 

Table 3.3: MOS Scores inpresence of various noise types. 
Noise Input Wiener Spec. MMSE p- log- Fuzzy Proposed 
Type SNR Sub. - MMSE MMSE Mask Method 

(dB) SPU 
-15 0.3398 0.2703 0.2839 0.2866 0.2783 0.3112 0.3436 
-10 0.3674 0.3020 0.3465 0.3612 0.3406 0.3486 0.3752 
-5 0.3871 0.3661 0.3744 0.4088 0.4030 0.3969 0.4175 

Babble 0 0.4062 0.4026 0.3808 0.4495 0.3987 0.4579 0.4634 
5 0.4164 0.4428 0.3682 0.4819 0.4109 0.5344 0.5409 

10 0.4217 0.5385 0.3255 0.5409 0.4251 0.6380 0.6228 
15 0.4226 0.5876 0.2840 0.6039 0.4272 0.7190 0.7182 
-15 0.2739 0.2305 0.2841 0.2865 0.2777 0.2529 0.2923 
-10 0.3247 0.2648 0.3112 0.3382 0.3160 0.2851 0.3418 
-5 0.3572 0.2922 0.3607 0.3509 0.3706 0.3378 0.3835 

Pink 0 0.3832 0.3370 0.4078 0.4122 0.4209 0.4049 0.4356 
5 0.4024 0.3905 0.4049 0.4468 0.4273 0.4807 0.4812 
10 0.4131 0.4348 0.3634 0.4868 0.4272 0.5839 0.5835 
15 0.4152 0.5403 0.3403 0.5138 0.4301 0.6921 0.7050 
-15 0.2968 0.2093 0.2776 0.2835 0.2692 0.2725 0.3052 
-10 0.3367 0.2275 0.3357 0.3477 0.3299 0.3082 0.3596 
-5 0.3730 0.2742 0.3843 0.4025 0.4064 0.3449 0.4107 

f-16 0 0.4024 0.3175 0.4069 0.4387 0.4295 0.4033 0.4473 
5 0.4356 0.3980 0.4058 0.4804 0.4429 0.4761 0.4947 

10 0.4380 0.4737 0.4057 0.5091 0.4659 0.5889 0.5963 
15 0.4398 0.5249 0.3568 0.5661 0.4659 0.6943 0.6911 
-15 0.3164 0.2395 0.2909 0.3001 0.2921 0.2494 0.3275 
-10 0.3548 0.2776 0.3507 0.3595 0.3490 0.2636 0.3668 
-5 0.3772 0.3028 0.3796 0.3948 0.3957 0.2938 0.4027 

White 0 0.3916 0.3254 0.3971 0.4260 0.4172 0.3418 0.4281 
5 0.3968 0.3747 0.3824 0.4268 0.4048 0.4097 0.4289 
10 0.4012 0.4425 0.3626 0.4611 0.4078 0.4936 0.5174 
15 0.4018 0.5080 0.3324 0.5356 0.3964 0.5977 0.6252 
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Short-time objective intelligibility (STOI) is a parameter for speech intelligibility 

measure and the range of STOI is in between 0 to 1. The increment in STOI values indicates 

improvement in quality and intelligibility of the noisy speech signal. By comparing the output 

SNR values of previously given speech enhancement methods in Table 3.4, it has been 

observed that Wiener method shows better results for low input SNR values (i.e. 5 to -15 

dB) only and spectral subtraction for higher input SNR (i.e. 10 to 15 dB). The MMSE-SPU 

method does not give better STOI scores and hence results are not considered satisfactory. 

Table 3.4: Output STOI Scores in presence of various noise types. 

Noise 
Type 

Input 
SNR 
(dB) 

Wiener Sp ec . 
Sub. 

MMSE 
- 

su 
p- 

MMSE 
log- 

MMSE 

Fuzzy 
Mask 

Proposed 
Method 

-15 0.7402 0.6216 0.7296 0.7372 0.7099 0.5803 0.7546 
-10 0.7651 0.6940 0.7845 0.7815 0.7747 0.6933 0.7990 
-5 0.7990 0.7590 0.8021 0.8063 0.8109 0.7873 0.8195 

Babble 0 0.8147 0.7921 0.7950 0.8164 0.8201 0.8487 0.8476 
5 0.8235 0.8181 0.7966 0.8325 0.8303 0.8861 0.9026 
10 0.8123 0.8499 0.7779 0.8532 0.8281 0.9120 0.9300 
15 0.8119 0.8820 0.7218 0.8759 0.8166 0.9288 0.9472 

-15 0.5776 0.4200 0.6284 0.6347 0.5756 0.4957 0.6410 
-10 0.6521 0.5092 0.7108 0.7201 0.6772 0.5834 0.7211 
-5 0.7411 0.6052 0.7757 0.7630 0.7595 0.6820 0.7851 

Pink 0 0.7848 0.6945 0.8163 0.8078 0.8151 0.7634 0.8227 
5 0.8006 0.7601 0.8187 0.8159 0.8193 0.8315 0.8292 

10 0.8181 0.7980 0.8093 0.8369 0.8154 0.8796 0.8890 
15 0.8214 0.8442 0.7891 0.8375 0.8221 0.9183 0.9359 

-15 0.6237 0.3430 0.6827 0.6900 0.6243 0.4650 0.6980 
-10 0.7072 0.5169 0.7612 0.7691 0.7393 0.5665 0.7694 
-5 0.7701 0.6624 0.8097 0.7976 0.7971 0.6691 0.8111 

f-16 0 0.8027 0.7255 0.8257 0.8067 0.8185 0.7685 0.8390 
5 0.8282 0.7815 0.8197 0.8033 0.8224 0.8455 0.8625 
10 0.8295 0.8336 0.8242 0.8313 0.8312 0.8926 0.9172 
15 0.8393 0.8591 0.7987 0.8542 0.8371 0.9274 0.9564 

-15 0.6624 0.5091 0.6425 0.6490 0.5920 0.4851 0.6669 
-10 0.7290 0.6048 0.7216 0.7124 0.6966 0.5720 0.7302 
-5 0.7440 0.6503 0.7566 0.7527 0.7465 0.6483 0.7611 

White 0 0.7701 0.6819 0.7765 0.7742 0.7679 0.7243 0.7861 
5 0.7873 0.7273 0.7980 0.7991 0.7921 0.8007 0.8040 
10 0.8122 0.7919 0.7761 0.8037 0.7936 0.8631 0.8783 
15 0.8055 0.8400 0.7671 0.8441 0.8024 0.9066 0.9291 

78 



I 

C) 9 

0.8 
- - 0. 

0.6 
0 .5  

0.4 

4k 4 

Babble Noise 

-15 -IC) -5 0 5 IC) 15 

Input SNR 

Pink Noise 

-15 -10 -5 0 5 10 15 

Input SNR 

F- i 6 Noise 

• \Viener 

- Spec. Sub. 

rvIMSE-SPI.T 

p-I'vIt1 SE 

log-]\/II\4SE 

Fuzz)' Mask 

Proposed Pvlethocl 

• Wiener 

- Spec. Sub. 

a. 1IvISE-SPLJ 

P-M1I SE 

log-N'II\'iSE 

—rn--Fuzzy Mask 

Proposed rvlethod 

I 
C).9 - 

0.8 - - 

-r 0.. 

0.6 

0. 

0.4 

I 
C).9 
0.8 

C-D 0 . 7  
F- 
CD (.).6 

0.5 
0.4 

C).3 

• \Vieiier 

- Spec. Sub. 

a. IvHvISE-SPLJ 

p-N11\ISE 

I log-MI\'ISE 

- Fuzzy ) Ia sk 

Proposed Method -15 -1() -5 () 5 10 15 

Input SNR 

\Vlute Noise 

1 • \Viener 
C).9 Spec. Sub. 

0.7  

0.6 

0 4 —Fiizzv Mask 

-15 -IC) -5 0 5 IC) 15 ---Proposed Method 

Input SNR 

Fig. 3.9: Output STOI Scores in presence (a) babble (b) pink (c) £16 (d) white noise. 

79 



Babble Noise 
I 

II - 

0.8 Spec. Sub. 
. 0.6 IVII\iSE-SPJJ 
F- 

0.4 m p-T\iISE 

0.2 m 1og-]\1I\ISE 

Fuzzy Iask 
-15 -10 -5 () 5 l(.) 15 Proposectiviethod 

Input SNR 

Pink Noise 
I - • 'Wiener 

U.S - Spec. Slit). 

t II i 
10 15 Proposed rvletliocl 

Input SNR 

F-I 6 Noise 
- - Wiener 
I 

- Spec. Sub. 
0 .

8 I\II\ISE-SPIJ T I II I .T\fl\/ISE QA 

0.2 • log-]\•IINISE 

0 U E I - Fxiz--\7 iNIask 
lU 15 Proposed IvIethod 

III1)Ut SNR 

\Vhi(e Noise 
I 

06 

10 IS 

Iiiput SNR 

Fig. 3.10: Representation of results in bar chart for STOI scores. 

1iJ  

- \Vieiier 

- Spec. Sub. 

- IN1I\ISE-SPL' 

- P-]N11\TSF 

- log-IN lINISE 

- Fuzzy Is.iask 

Pioised Iviethod 



The existing speech enhancement methods obtained improvement in STOI with 

increasing input SNR from -15dB to 15dB but not more than the fuzzy mask method and 

proposed method. The maximum STOI value (0.9472, 0.9359, 0.9564 and 0.9291) for babble, 

pink, f-i 6 and white noise, respectively) is obtained by WPT fuzzy mask based proposed 

method at 15 dB input. The STOI values obtained for proposed method are consistently 

increasing with increasing input SNR levels and for all noise types. For direct illustration of 

the results, the graphical and bar chart representation of the values given in Table 3.4 are 

presented in Figures 3.9 and 3.10. 

Both, the clean (true) and desired speech signal (processed) are played back through 

simulation in Matlab and it is observed that they are generating almost the same voice. All 

performance measure parameters illustrate that the performance of proposed WPT Fuzzy 

mask method is comparatively better for all noise conditions and input SNR levels. 

Experiments have also been performed for Indian languages such as Bengali, Kannada, 

Malayalam and Hindi. These results are given in appendix A and B. The results given in these 

appendixes are in favour of the proposed method. The maximum improvement in 

performance parameters are shown by WPT Fuzzy mask based proposed method. 

3.4 Summary 

A WPT Fuzzy mask based method has been proposed here for suppression of highly 

non-stationary noise sources of low SNR input noisy speech. This fuzzy mask replaces the 

need of true speech or noise signal with the use of WP soft and hard threshold. The noisy 

dataset of SNR range from -15 dB to 15 dB are generated for comparative analysis. The 

performance of proposed method is compared with other available speech enhancement 

methods and results show the improvement in terms of speech quality and intelligibility 

parameters. The WPT Fuzzy mask method gives maximum quality and intelligibility 

improvement when compared to other speech enhancement methods at all levels of input 

SNR. 
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CHAPTER 4: COMBINED SUPPRESSION OF NOISE AND REVERBERATION 

This chapter presents the research work for single-channel speech enhancement by combined 

suppression of reverberation and noise. It starts with overview of reverberation suppression. 

Thereafter discussion about the methodology of the algorithms for their suppression is 

presented Thereafter, approach to the problem is discussed The performance of the 

proposed reverberant mask based speech enhancement method is compared with other 

existing methods in terms ofperformance measure parameters. 

4.1 Overview 

Reverberation is one of the most common phenomenon which affects the quality and 

intelligibility of speech communication systems. In reverberation, delayed copies of the 

speech acoustic waveform, called echoes, are added to the direct speech. The received signal 

over a distant microphone or uncontrolled environment generally consists of direct sound, 

reflections that arrive shortly after the direct sound (known as early reverberation), and 

reflections that arrive after the early reverberation (known as late reverberation) etc. The 

combination of the direct sound and early reverberation is sometimes referred as the early 

sound component [41]. The early reverberation components enhance both audibility and 

intelligibility of direct speech but they also produce spectral distortions called 'coloration'. In 

contrast to early reverberation, late reverberation impairs speech intelligibility [43]. 

Enhancement of reverberated speech signals has gained considerable research interest 

recently, as they can be used in many emerging communication applications such as hands-

free communication, voice control, and hearing aids. Reverberated speech signals collected by 

microphones degrade the performance of communication systems: for example, the 

recognition accuracy of voice control system is decreased with decreasing the speech quality! 

intelligibility. 

Berkley was the first researcher to propose the perception of reverberated speech in two 

parts: coloration and echo [186]. He further mentioned that the coloration correlates with 

room spectral deviation a and echo correlates with T60. Based on these findings, Allen [187] 

proposed that the quality of reverberated speech can be estimated by 

P =  P.  - 460 (4.1) 

Here, P is the subjective preference; P and c is defined for the maximum possible 

preference and the room spectral variance, respectively. The 7 is defined as the 
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Reverberation Time (RT) which is required for reflections of a direct sound to decay by 60 dB 

to the level of the direct sound. 

Room spectral variance a is determined by Signal-to-Reverberant Ratio (SRR). The a 

increases monotonically as SRR decreases and saturates to a fixed value when SRR drops 

below 0 dB [188]. When SRR is larger than 0 dB, reverberation effect is mainly due to the 

early reflections of room impulse response (RIR) and thus coloration is more pronounced. 

Because the total energy of all the reflections is similar everywhere in a room and the direct 

path energy depends mainly on the distance dsm  between the sound source and microphone, 

spectral variance a is also determined by the distance dsm  In order to preserve speech quality, 

it is required to reduce both spectral deviation a and reverberation time T60, corresponding to 

reduced coloration (also termed as short term reverberation) and echo (also termed as long 

term reverberation). 

Several enhancement methods have been developed for enhancement of single-channel 

reverberant speech. These methods are categorized into short and long-term dereverberation 

methods. This is due to the fact that the two types of reverberations demonstrate different 

characteristics and is difficult to remove both at the same time. A two stage method 

eliminating coloration and echo separately is usually used [43, 189-199]. Few algorithms are 

reported in the literature for suppression of short and long term reverberations. Some of these 
- 

are described as below: [189-199]. 

4.2 Reverberation Suppression 

4.2.1 Short-term dereverberation 

Most of the short term dereverberation methods rely on Linear Prediction (LP) analysis 

[192]. A speech signal x(n) can be predicted by its past components p such as: 

X(n) =[X(n - l),X(n —2) ...............  X(n 
- p)] as: X(n) = _aT X(n —1) + e(n) (4.2) 

Here, a = [a1, a2. .............. a 
]T  comprises the Linear Prediction Coefficients (LPC), e(n) 

is the prediction error, and p the prediction order. 

Let, the prediction error vector of reverberated speech be denoted as 

e1  ={e(n1),e(n1  +1) ............. e(n1  + L _1)]T and the prediction error vector of enhanced speech 

as = [ê(n1),ê(n1  + 1)............,e(n1  + L - 1)]T• Early dereverberation methods correspond to 

different methods of attaining e, from ê,. For example, Gillespie et al. [192] and Gaubitch et 
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al. [193] proposed kurtosis maximization and LP residual averaging methods for short-term 

dereverberation, respectively. Wu et al. [43] and Habets et al. [190] applied these schemes as 

the first part of their two stage dereverberation methods. 

Gaubitch et al. [193] proposed to average the LP residual between neighboring larynx 

cycles in voiced speech based on the following phenomena: some random peaks appear in LP 

residual of reverberated speech, while the main features of clean speech LP residual between 

consecutive larynx-cycles change slowly. The smoothed LP residual for larynx cycle 1 can 

be represented as: 

2F+1 =1 +1 
1 F 

We1 (4.3) 

Here, e11  is the LP residual of larynx cycle / + i of the reverberated speech, I the identity 

matrix and W a diagonal weighting function. The F is the number of frames used for 

smoothing. To further eliminate reverberation in unvoiced speech segments and utilize past 

correct larynx-cycle frames, a l,tap FIR inter larynx filter j,  is trained by 

minimizing gT e1 —e(n,)H2.  The minimizing filter k, is used to update a smoothed inter larynx 

filter only in voiced speech segments with smoothing factor y 

= (n_) ± (1— (4.4) 

The smoothed filter is applied to both voiced and unvoiced segments of speech. The 

drawback of these methods is that the previous described methods were not effectively 

working for long term reverberation. To overcome the long-term reverberation, some methods 

were introduced as explained below. 

4.2.2 Long-term dereverberation 

Long-term reverberation demonstrates similar characteristics as noise. The late 

reflection part of RIR is often modeled as an exponentially damped Gaussian noise process. 

Late reverberation is often treated as additive noise, so that denoising methods such as 

spectral subtraction [18] and MMSE estimation [22] can be used for dereverberation. When 

spectral coefficients of clean speech and noise are modeled as independent complex Gaussian 

random variables, spectral subtraction is a maximum-likelihood (ML) estimation of the 

spectral variance of clean speech. On the other hand, the MMSE method is a Bayesian 

estimation of the magnitude and phase spectrum of clean speech. Estimation of late 
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reverberation spectral variance (LRSV) is a key problem. Several LRSV estimation methods 

have been developed recently. They can be classified into two categories: estimation based on 

a statistical model [194-196] and estimation based on a weighted sum of past DFT 

components [43, 189], [197]. 

Recently, developed spectral subtraction based reverberant speech enhancement 

methods plays an important role in the enhancement of reverberant speech. The spectral 

subtraction based enhancement methods aims at the suppression of late reverberation to 

improve speech intelligibility [41, 44]. There is another class of excitation source information 

based reverberant speech enhancement algorithms which primarily aim to emphasize the high 

Signal to Reverberant Ratio (SRR) regions relative to the low SRR regions of the reverberant 

speech signal in the temporal domain [45-46]. The basis for the temporal processing 

technique is that in case of reverberant environments, the excitation source signal of voiced 

speech segments contains the original impulses followed by several other peaks due to multi-

path reflections. Consequently, dereverberation is achieved by attenuating the peaks in the 

excitation sequence due to multi-path reflections, and synthesizing the enhanced speech 

waveform using the modified excitation source signal and the time-varying all-pole filter with 

coefficients derived from the reverberant speech. The high SRR regions are emphasized by 

deriving the weight function to modify the excitation source characteristics at fine and gross 

levels [45]. However, until now there are no practical and robust dereverberation techniques 

available mainly because, the degradation is non-stationary, correlated with the signal and 

cannot easily be modeled for combined suppression of reverberation and noise sources. High 

performance and innovative algorithms are needed for joint noise and reverberation 

suppression to restore high quality speech inputs for communication systems. 

4.3 Reverberation Modelling 

Basically, two types of modelling are used for generation of reverberant speech signal. 

These are classified as time domain methods and statistical modelling methods. The 

description of these methods is given as follows: 

4.3.1 Time domain 

In a reverberant room, the reverberated speech Z(n) results from the convolution of the 

clean speech signal X(n) and the room impulse response (RIR) h(n) as 

Q-I 
Z(n) = h(i)X(n —1) 

=0 
(4.5) 

Uvi 



Where, Q is the length of h(n). Figure 4.1 depicts a representative RIR generated by 

using eq. (4.5), which is called as image method [199]. The RIR can be partitioned into three 

components: the direct signal, early reflections, and late reflections. The direct signal is the 

strongest impulse corresponding to the direct path from the speech source to the listener. 

Early reflections are the impulses that arrive within 50 ms after the direct signal. Early 

reflections are known to cause short-term reverberation or "coloration" effects. Early 

reflections boost the energy of the direct signal as well as emphasize modulation frequency 

content around 4 Hz [200], and they have minimal effects on intelligibility. Late reflections, 

in turn, which arrive at time intervals greater than SUms post the direct impulse, smear the 

speech signal and can severely reduce signal quality and intelligibility. Late reflections cause 

long-term reverberations or echoes. 
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Fig. 4.1: Waveform of a representative room impulse response. 

4.3.2 Statistical domain 

• Moorer [201] reported that the convolution of a clean speech and a Gaussian noise 

modulated by exponentially decaying envelope will generate natural reverberation effect. 

- Based on this phenomenon. Polack [202] proposed a model for modelling the RIR as the 

product of a stationary noise process and an exponentially decaying envelope as: 
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h(t)=b(t)e', t>O (4.6) 

Here, b(t) is a zero-mean Gaussian stationary noise and the exponentially decaying 

parameter A are linked to reverberation time (RT) through eq. (4.7): 

T60 
(4.7) 

Where, T60  is defined as the RT required for reflections of a direct sound to decay by 60 

dB below the level of the direct sound. Because RT is frequency dependent, the statistical 

model in eq. (4.8) can be implemented in each acoustic frequency bin k as: 

hk (f)=hk(t)e''. t~!O k. k=l ..............  k (4.8) 

Where bk  (t) is band pass Gaussian noise in the k" bin. 

The above mentioned model works well when the distance between source and 

microphone is larger than the critical distance. Critical distance is defined as the source-

microphone distance at which the energy of direct path and the energy of all reflections are 

equal. When source-microphone distance is smaller than the critical distance, Habets [196] 

proposed a more accurate model as: 

Ib,(i), i<T,. 
hk (!)= 

Tr  
(4.9) 

Were. b, (i) and b (I) are two separate zero mean Gaussian noise processes; Tr  is a time 

constant chosen so that b,(t)-" only contain the direct path component and hr (t)- 'contains 

all reflections of RIR. 

4.4 Reverberant Mask Based Method 

Reverberant mask based method is proposed for combined suppression of reverberation 

and noise. A channel selection criterion based on SRR of the individual channel is used for 

calculation of reverberant mask. The involved steps are illustrated in Figure 4.2. 
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The amplitudes with SRR greater than a preset threshold (i.e. -5dB) are used for 

reconstruction of denoised speech, while amplitudes with SRR values smaller than the 

threshold are eliminated. The SRR reflects implicitly the ratio of the energies of the signal 

originating from the early (and direct) reflections and the signal originating from the late 

reflections. The construction of the SRR criterion assumes a priori knowledge of the input 

reverberant and target signal. Threshold values varying from 0dB to -90dB are analyzed for 

selection of ideal reverberant mask (IRM) limit T. Enhanced speech signal is constructed by 

multiplying noisy speech with reverberant mask. The suppression of combined effect of 

reverberation and noise (i.e. -25 dB to -5 dB) is carried out for single-channel speech 

enhancement. The block diagram of the proposed method is given in Figure 4.2 which 

illustrates all steps involved for the suppression of combined effect of all types of noise and 

reverberation. The processing of speech enhancement starts with the generation of noisy input 

speech database. 

4.4.1 Database 

The test samples of English language are taken from the Institute of Electrical and 

Electronics Engineers (IEEE) database of NOIZEUS [140, 203] and the AURORA noise data 

base [204]. Each sentence of NOIZEUS database is a combination of 7-12 alphabets and there 

are 72 lists of 10 sentences each, which have been produced by a single talker. The sampling 

rate was 16 k}-Iz at time of recording. The MATLAB (2014a) software is used for program 

implementation of proposed algorithm. The effect of varying multitalker babble noise with 

different SNR threshold has been taken in this study. The reverberated speech signal with 

additive noise is divided into frames for performance evaluation of the proposed method. One 

frame is 20ms of the speech and 50% overlap is used in between successive frames. 

4.4.2 Signal model 

In an acoustic environment reverberation and noise sources are present which degrade 

the actual speech signal. A noisy speech signal which is corrupted from reverberation and 

stationary, non-stationary noise is defined by eq. (4.10) such as: 

Y(n) = Z(n) + D(n), nE[0,N— 1], (4.10) 

Where, N is frame index number. The noisy speech signal Y(n) is comprised of 

reverberated speech signal Z(n), stationary and non-stationary noise D(n). Reverberated 

speech Z(n) results from the convolution of the clean speech signal X(n) and the room 



impulse response (RIR) h(n). To generate reverberant signals, clean signals are convolved 

with real room impulse response which are recorded by Vanden Bogaert et al. with 

reverberation time T6o=1.Os and direct reverberant ratio is -0.49 dB [205]. In Vanden Bogaert 

setup im distance has been used between the single source signal and the microphone. The 

multi-talker babble noise is added to the reverberant signals at 0dB, 5dB, 10dB and 15dB 

SNR with varying threshold from -23 dB to 0 dB. This reverberant speech signal with noise 

signal served as the target signal for Mean Square Error (MSE) measurement. 

4.4.3 Reverberant mask calculation 

The speech enhancement techniques which are based on maximum selection criterion 

take erroneously peaks of amplitudes during the gaps of unvoiced segments of the utterance. 

Due to this reason, the vowel and consonant are smeared and make it difficult for the listener 

to identif' the words. In the proposed method, the amplitudes corresponding to the direct 

sound and early reflections have been taken and the amplitudes corresponding to the late 

reflections and various additive noise have been discarded. The SRR is used for amplitude 

selection, which selects the frame that has amplitude value more than the preset threshold. 

Here, a range of different threshold values are considered for testing that varies from -23 dB 

to 0 dB so that maximum speech quality and intelligibility can be achieved. In this method, 

noisy speech signal is divided in frames of 20 ms noisy speech signal with 50% overlapping 

between frames by using Hanning window. In the frequency domain, DFT decomposes the 

signal into n frequency channels, where, n is the frame index which is selected based on the 

SRR. This SRR is computed as [206]: 

SRR(n,k) = 101og10 
IX(n, k)I 2 (4.11) 

Where, X(n, k) and z(n, k) denote the clean and reverberant signals, respectively, n 

corresponds to the time-frame index, and k defines the frequency or channel index. Higher 

value of SRR will give the direct signal amplitude (and early reflections) for generation of de-

reverberated signal. In contrast, a small SRR value will give the reverberant energy. The sum 

of the energies from early reflections will give denoised speech. Now, the overlap-masking 

effect is minimized by removing the reverberant energy residing in the gaps of different 

speech frames. The denoised speech signal is calculated by multiplying the reverberant signal 

with ideal reverberant mask (IRM) function. The IRM function is based on SRR and preset 

threshold value. It takes 1 when SRR is greater than prescribed threshold (T) and shows zero 



if SRR is less than threshold (T). The de-reverberated speech signal is obtained as shown in 

eq. (4.12): 

X(n, k) = Y(n, k) * IRM(n, k), (4.12) 

The IRM is given in eq. (4.13) 

11.......SRR(n,k) > Threshold(T) 
IRM(n,k) 

otherwise 
(4.13) 

Overlap-add method and Inverse FFT is applied on processed speech spectrum to find 

the denoised speech signal in time domain. 

4.4.4 Results and discussion 

The AURORA noise database [204] and reverberation of speech signal are used for the 

performance evaluation of the implemented methods. The multi-talker babble noise and 

reverberation signal are mixed with clean speech signal for generating noisy input speech. 

Table 4.1 illustrate the SNR improvement with variation of threshold values from 0 dB 

to -90 dB. For the analysis four levels (0, 5, 10 and 15dB) of input noise SNR are used and 

mixed with reverberated speech. From the Table, it is found that the output SNR becomes 

approximately constant when threshold value is set below -70 dB. The same conclusion is 

drawn from the Table 4.2 in variation of MSE values. The MSE values become approximately 

constant when threshold value is set below -70 dB. The cut-off threshold value is obtained 

from these results and it is found that the maximum improvement in reverberated noisy 

speech environment is obtained at -5dB threshold (T). 

The output SNR given by different speech enhancement methods are compared with 

proposed method in Figure 4.3. The proposed method gives maximum SNR (5.9 dB) 

improvement in comparison to other speech enhancement methods such as MMSE, 

logMMSE, pMMSE, Spectral Subtraction and Wiener method. The pMMSE method shows 

minimum improvement in output SNR (3.1dB). Figure 4.4 illustrates the MSE values 

obtained from processed output speech signal. The minimum MSE value is obtained for 

proposed method in comparison to other speech enhancement methods. Figures 4.3 and 4.4 

illustrate that the proposed method gives maximum improvement in speech quality in 

comparison to existing speech enhancement methods. 
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Table 4.1: Output SNR values with variation of input noise SNR and threshold values. 

Threshold S+N(OdB) S+N(5dB) S+N(10dB) S+N(15dB) 

o -20.3 -27.9 -33.94 -37.6 

-5 -11.7 -18.8 -24.1 -26.44 

-8 -0.82 -7 -15.4 -19 

-10 1.54 4.63 6.83 6.4 

-15 3.17 7.1 9.6 11.32 

-20 3.82 7.83 10.0 11.57 

-30 5.13 9.0 10.63 11.79 

-40 6.6 9.94 11.19 11.94 

-50 8.0 10.8 11.67 12.08 

-60 9.3 11.45 11.98 12.17 

-70 10.7 11.93 12.1 12.19 

-80 11.5 11.98 12.13 12.19 

-90 11.6 11.99 12.13 12.19 

Table 4.2: Output MSE values with variation of input noise SNR and threshold values. 

Threshold S+N(OdB) S+N(5dB) S+N(1OdB) S+N( 15dB) 

0 0.0228 0.0184 0.0151 0.0222 

-5 0.0218 0.0159 0.0121 0.0209 

-8 0.0215 0.0147 0.0106 0.0206 

-10 0.0218 0.0135 0.0096 0.0205 

-15 0.0206 0.0117 0.0077 0.0201 

-20 0.0200 0.0101 0.0069 0.0196 

-30 0.0162 0.0078 0.0056 0.0155 

-40 0.0114 0.0061 0.0041 0.0108 

-50 0.0084 0.005 0.0032 0.0084 

-60 0.0051 0.0045 0.0030 0.0052 

-70 0.0053 0.0045 0.0029 0.0048 

-80 0.0043 0.0045 0.0029 0.0037 

-90 0.0042 0.0045 -- 0.0029 0.0036 

The PESQ values computed from speech signal given by various speech enhancement 

methods is given in Table 4.3. For direct interpretation of the results given in Table 4.3, the 

graphical and bar graph representation of the speech enhancement methods (log-MMSE. p- 

MMSE, MMSE, spectral subtraction and Wiener) for different types of mixed noise are 

presented in Figures 4.5 and 4.6. 
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Wiener and spectral subtraction methods obtained the maximum PESQ values than 

other existing speech enhancement methods at all noise sources and input SNR levels but 

these speech enhancement methods are inferior to proposed method. The maximum PESQ 

values (3.0659, 2.864 1, 2.6112, 2.3759, and 2.1906) for -5. -10. -15. -20 and -25 dB input 

SNR levels, respectively are provided by proposed method. Since, the maximum PESQ 

values are given by proposed method hence it results in maximum quality and intelligibility 

improvement in processed speech. 

Table 4.3: PESQ scores in reverberation condition. 

Noise Types Enhancement Techniques PESQ 

-5 -10 -15 -20 -25 
log-MMSE 2.1676 1.8356 1.5905 1.3440 1.0751 

Reverberation + p-MMSE 0.9854 0.3448 0.6554 0.3286 0.3126 

Babble Wiener 2.3672 1.9566 1.8550 1.6701 1.5180 
MMSE 2.2137 1.9104 1.7599 1.3934 1.0462 

Spectral sub 2.1904 1.7972 1.4384 0.9406 0.6061 
Proposed method 2.3538 2.1889 1.9834 1.8244 1.6987 

log-MMSE 2.0154 1.6723 1.5449 1.4590 1.4132 
p-MMSE 0.9996 0.6905 0.4257 0.4623 0.4630 

Reverberation+ Wiener 2.4156 2.1180 1.9778 1.7468 1.6612 
Pop Music MMSE 2.3403 1.9484 1.7709 1.5985 1.2230 

Spectral sub 2.0594 1.8465 1.4637 0.9515 0.3823 

Proposed method 3.0659 2.8641 2.6112 2.3759 2.1906 

log-MMSE 2.1506 1.9256 1.7537 1.6989 1.5302 

Reverberation+ p-MMSE 0.9895 0.7448 1.0114 0.9777 0.8514 

Restaurant Wiener 2.4108 2.2613 1.9726 1.7775 1.6469 

MMSE 2.3388 2.2600 1.8659 1.5832 1.2471 

Spectral sub 2.2379 1.8774 1.4880 1.2344 0.8345 
Proposed method 2.5046 2.2852 2.1121 1.9329 1.6865 

log-MMSE 2.3856 2.1236 1.8751 1.6452 1.5514 

Reverberation + p-MMSE 0.9279 0.6747 0.8491 1.0593 0.8192 

Exhibition Wiener 2.6743 2.4085 2.1916 1.9271 1.7671 

MMSE 2.5058 2.1417 1.8827 1.6182 1.4338 

Spectral sub 2.2129 1.9737 1.7409 1.4215 1.1908 

Proposed method 2.7390 2.4769 2.2463 2.0383 1.7918 

95 



Rev erbera tioii-1--B a bble 

-2(I) -25 

•c 1.5 

I i 

- 

Input SNR 

• log-NIJ\ISE 

- p-1v1KiSE 

. 'Wiener 

N1IiSE 

I Spectral sub 

40 Proposed method 

Rev eiberatioii± PC)!) 

-25 
Input SNR 

• 1og-Tvfl1SE 

- i711''!5E 

Wiener 

M4SE 

Spectral sub 

Proposed method 

Rev erbeii tjC,1I-I--Restaurajlt 

CIO 

U 
-5 -10  

I111)Ut SNR 

• log-I\'11\1SE 

-  i)i1\1SE 

A Wiener 

NIIvISE 

1 Spectral sub 

• Proposed method 

Reverberatioit-+-Exjübition 
31 

• log-I\II\'ISE 

- p-"111SE 

\\T jj  

NI Iv! SE 

Spectral sub 
(-) 

---- PrC)pC)Sed ilIethc)d 

Input SNR 

Fig. 4.5: Variation of results between PESQ scores and input SNR. 

96 



Reverberation-I-Babble 
2.5 

:T iJ L?'iI 
-20 -25 

II1lYLLt SNR 

Reverberation-I-- Pop 
3.5  
2.5 

1.5 

0. 

-S -10 -15 -20 -25 
Input SNR 

Reverbeiatioii-+-Restauraiit 
3 - 

-2(.) -25 
IIl1)Ut SNR 

Reverl:ei ;iti..,ii±Exlijbition 

2.5 

0 LW I 1T 
-5 -I') -15 

Input SNR 

Fig. 4.6: Variation of results between PESQ scores. 

'V 

- log-IVITYISE 

- p-TvINTSE 

- \Viejier 

- rvIIvISE 

- Spectral sub 

- Proposed method 

- log-ITv1SE 

- j)-T/II\/ISE 

- \Vieiier 

- K'fl\•4SE 

- Spectral sub 

- prope'sed method 

- log-]\II\'ISE 
- 1)-IVIPVISE 

\k'ieixer 

- NITvISE 

- Spectral sub 
Proposed muetliod 

- log-NI NISE 

- p-NINISE 

- \\iejier  

- PvHvISE 

- Spectral sub 

- Proposed method 

97 



Table 4.4 presents the values of CD at various levels of input SNR in presence of 

reverberation and different types of noise (i.e. babble, pop music. restaurant and exhibition). 

Results obtained by Wiener method are better to other existing speech enhancement methods. 

The CD values given by Wiener method are 4.4733. 4.9254, 5.39 10, 5.5810 and 6.2071 at -5, 

-10, -15, -20 and -25 dB input SNR, respectively but Wiener method performs inferior to the 

proposed speech enhancement method. The CD values (4.4359. 4.8991, 5.2019, 5.4335 and 

5.4520 at -5, -10, -15. -20 and -25 input SNR, respectively) given by proposed method are 

lower than the Wiener method hence the proposed method is superior than other existing 

speech enhancement methods including Wiener method. The Figures 4.7 and 4.8 present the 

graphical and bar chart representation of the values given in Table 4.4 to clearly indicate the 

above observations. 

Table 4.4: Cepstrum Distance values in reverberation condition 

Noise Types Enhancement 
Techniques 

Cepstrum Distance 

-5 -10 -15 -20 -25 
log-MMSE 4.5921 4.9528 5.4306 6.1142 6.7387 

Reverberation+ p-MMSE 8.2647 8.6265 8.8290 8.8998 8.9039 
Babble Wiener 4.4733 4.9254 5.3910 5.5810 6.2071 

MMSE 5.4830 6.2020 7.1333 7.7539 8.6447 
Spectral sub. 5.6965 6.3803 7.0233 7.6207 7.9614 

Proposed method 4.4359 4.8991 5.2019 5.4335 5.4520 

log-MMSE 5.2935 5.7240 6.2458 6.7787 7.3119 
p-MMSE 7.5246 7.8952 8.0725 8.1274 8.1438 

Reverberation+ Wiener 5.1802 5.6672 6.0720 6.1722 6.5200 
Pop Music MMSE 6.4523 7.4001 8.0207 8.4666 8.8016 

Spectral sub. 7.0658 7.6249 8.2241 8.5619 8.6890 
Proposed method 5.0162 5.5138 5.9538 5.9862 5.9638 

log-MMSE 4.8125 4.7132 4.8997 5.1571 5.6619 
Reverberation+ p-MMSE 8.1935 8.5898 8.8087 8.89100 8.8966 

Restaurant Wiener 3.9227 4.3357 4.9270 5.4738 5.8093 
MMSE 5.5893 6.4502 7.4589 8.0319 8.5047 

Spectral sub. 5.0776 5.8999 6.3150 6.713.3 7.2347 
Proposed method 4.4982 4.9467 5.2900 5.33 74 5.3237 

log-MMSE 5.7104 6.2065 6.6398 7.2652 7.8753 
Reverberation+ p-MMSE 8.0783 8.4198 8.5976 8.6747 8.7115 

Exhibition Wiener 5.5191 6.1476 6.3742 7.1502 6.5564 
MMSE 6.6778 7.3998 7.8321 8.1800 8.3435 

Spectral sub. 7.7872 8.3901 8.9271 9.2187 9.3881 
Proposed method 5.2649 6.0708 6.2453 6.3502 6.2115 
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Thus it is summarized that, all the results given in Tables (from 4.1 to 4.4) and 

Figures(from 4.3 to 4.8) show that, the proposed method gives maximum speech 

enhancement than those obtained by log-MMSE, p-MMSE, MMSE, Wiener and spectral-

subtraction methods. 

4.5 Summary 

Reverberant mask criterion based method is proposed for combined suppression of 

reverberation and highly non-stationary noise of low SNR. Threshold values from 0 to -90 dB 

are used for analysis and -5 dB is selected as trade off in ideal reverberant mask selection. The 

performance of proposed method is compared with other existing speech enhancement 

methods. Reverberant mask based proposed method gives maximum improvement at all 

levels of input SNR. 
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CHAPTER 5: PHASE BASED SPEECH ENHANCEMENT 

This chapter describes the importance of phase in single-channel speech enhancement 

methods. It starts with some background of phase estimation and its use in speech 

enhancement by considering altered speech phase and without changing in speech amplitude. 

Then, the description of some important phase based speech enhancement method is 

presented. In addition to this the proposed phase ratio based speech enhancement method is 

introduced and compared with other phase based speech enhancement methods. 

5.1 Overview 

Nowadays, speech enhancement algorithms are implemented for many communicating 

electronic gadget such as smart phones and hearing aids etc. As these devices are often used 

in noisy environments and therefore, recent research addresses robustness in non-stationary 

noise, e.g. babble of low signal-to-noise ratios etc. Though phase is usually considered to be 

insignificant for human perception as compared to amplitude, this is true only for high SNR 

(>5 dB) while for lower SNRs phase leads to the speech distortion. However, the phase 

enhancement is much more difficult and complex than amplitude based speech enhancement. 

Typical speech enhancement methods modify only the magnitude spectrum and keep 

the phase spectrum unchanged. The ignorance of phase spectrum is direct result of studies 

undertaken in the 1980s which showed that the phase spectrum provide no perceptual 

difference in the enhanced signal [47, 207-208]. Wang and Lim [47] have done experiments 

in which they investigated the importance of phase estimation in speech enhancement. They 

synthesized noisy speech by taking the amplitude and phase from signals with different SNR 

and observed that improving the noisy spectral amplitude is more important for the signal 

quality than improving the noisy spectral phase and on the basis of this fact it was concluded 

that clean speech phase estimation is unimportant in speech enhancement, and until today 

most of the researcher estimate the clean speech amplitude only, while keeping the noisy 

phase unaltered. 

In amplitude estimators, the speech spectral amplitude is altered while the noisy phase 

is left unchanged [322-323, 209-214]. Moreover, in common speech enhancement techniques, 

like sinusoidal modelling etc., it has been proposed to combine improved spectral amplitudes 

with the noisy STFT phase [215]. Despite the general trend of neglecting STFT phase 

estimation, Paliwal et al. argue that, potentially, the role of the phase in speech enhancement 

has been underestimated in the past [51] and showed that if the segment overlap and the 

length of the Fourier transform are increased, the impact of the clean speech phase is larger 
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than observed by Wang and Lim [47]. Thus, the speech phase can indeed be beneficial for 

design of speech enhancement method. While Paliwal et al. proposed methods for speech 

enhancement that involve modification of complex spectral coefficients [51], the direct 

estimation of the clean spectral phase is considered a difficult task and only few proposals 

exist [51, 216-224]. For instance, Griffin and Lim proposed to estimate the spectral phase by 

iteratively analyzing and synthesizing the signal starting from the spectral amplitudes [216]. 

However, approach was computationally complex and requires knowledge of the clean speech 

spectral amplitudes. 

Now, it has been proved that speech phase has much importance in speech enhancement 

process [51]. It could not be neglected where speech quality and intelligibility is very 

necessary. Some effective phase based speech enhancement approaches are given in 

following section with detailed description. 

5.2 Speech Enhancement Methods Using Phase 

Despite the use of phase for other speech processing applications (such as features for 

automatic speech recognition (ASR) [218-220] or speaker identification [222]), phase 

information has only been used in few methods for single-channel speech enhancement. The 

phase based speech enhancement techniques (i.e. phase spectrum compensation (PSC) [52, 

223], exploiting conjugate symmetry of the short-time Fourier spectrum [53] and STFT-phase 

for the MMSE-optimal spectral amplitude estimation [50]) are described below. 

5.2.1 Phase spectrum compensation (PSC) 

Phase Spectrum Compensation (PSC) utilises the synthesis procedure (i.e. IFFT and 

overlap-add reconstruction) which is commonly used in speech enhancement methods where 

an enhanced waveform is required for playback. Since the incoming speech signal is real-

valued, the DFT coefficients are conjugated symmetric. The PSC controls the amount of 

reinforcement or cancellation that occurs during synthesis by adding a noise-weighted anti- 

symmetry function A (k) to the noisy speech signal in the complex frequency domain [52]: 

Y, = Y' + A' (5.1) 

For the frequencies having low noise magnitudes, the anti-symmetry function causes 

little change to the original signal. For high noise components however, the anti-symmetry 

function causes the conjugate pairs to cancel during the synthesis stage. Whilst PSC has 
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shown promising improvements in human intelligibility, it requires reconstruction in the time 

domain which is unnecessary and sometimes undesirable for speech applications. 

- 5.2.2 Exploiting conjugate symmetry of short-time Fourier spectrum 

This method is based on analysis modification synthesis (AMS) framework where a 

real-valued noisy speech signal is used at analysis stage, and therefore, its discrete short-time 

Fourier transform (DSTFT) is a conjugate symmetric, i.e., Y(n,k)—Y(n,N_k). In this 

approach, emphasis is given to the degree to which the conjugates reinforce or cancel by 

altering their angles. Thus, the changed phase spectrum is computed as following. 

The noisy complex spectrum is offset by an additive real-valued frequency-dependent 

A(k)function [53]: 

A (n, k) = Y(n, k) + A(n, k) (5.2) 

Where, A(k) should be made anti-symmetric about F3  / 2 (half the sampling rate) to 

achieve the cancellation effect. Here, anti-symmetric A(n, k) function is given as: 

1+2 0:!gk<N/2 

N/2:!~K:!~N-1 
(5.3) 

Where 2 is a real-valued constant and N is the length of frequency analysis assumed to 

be even. A  (n, k) is used to compute the changed phase spectrum through a four-quadrant 

version of the arctangent function as: 

LYA(n,k)=arctanm {YA(n,k) 

Re{YA(n,k)} 
(5.4) 

Where, Im{s }and Re {. }denote imaginary and real operators, respectively. This 

changed phase spectrum is a pseudo-phase spectrum. The pseudo-phase spectrum is 

recombined with the noisy magnitude spectrum to produce a modified complex spectrum 

X A  (n, k) 
= k)le''" (5.5) 

In the synthesis stage, Inverse-DSTFT is used to convert frequency-domain frames, 

X A  (n, k) to time-domain representation and time-domain enhanced signal is reconstructed by 

employing overlap-add procedure. 
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5.2.3 MMSE-optimal spectral amplitude estimation based on STFT-phase 

In this method clean speech amplitude was estimated with the use of STFT phase. This 

was based on minimization of the mean squared error between the compressed clean speech 

amplitudes A8  and the estimator for compressed amplitudes A [20]. A compression factor 

fi <1 allows emphasizing estimation errors of low amplitudes, and for /3 - 0 a logarithmic 

spectral amplitude estimator was approximated [224, 214]. The A° is given as [50]: 

A 
(5.6) 

= f apA1R4(ar,q$Y,q$S)da 
- 

Using Bayes' theorem it is given as 

00 
J (a,q 8 )da 

= - (5.7) 00 
S (r, Ø ØS)PA,ØS (a,  Ø )ds 
-o 

As in [211-214], the real and imaginary parts of the complex noise spectral coefficients 

are independent and Gaussian distributed. Thus, the conditional probability density function - 

(PDF) of the noisy coefficients was obtained if the speech coefficients are given. This PDF is 

obtained as: 

- ___________________ 

r ( r 2  +a2  —2arcos(q5 _Øs)J (5.8) 

To model the PDF of the speech spectral amplitudes by using X -distribution with shape 

parameter i, the X -distribution is a special case of the generalized Gamma-distribution 

[213]. The X-distribution is defined as 

pA(a)= 2 (Ja21exi(_4a2J (5.9) 

Now, inserting eq. (5.9) and (5.8) into eq. (5.7) [26] to get eq. (5.10) and the actual 

estimator as: 
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(E(A,8  ~r, Oy, Os ))fl 

(5.10) 

J~I + fi)
t F(2p) D.(2)(0) ) 

Where, D is the parabolic cylinder function and is the a-priori SNR. This method 

was not investigated for low input SNR and highly non-stationary noise. 

5.3 Proposed Phase Ratio Based Single-Channel Speech Enhancement Method 

Despite the original statement made by Wang and Lim in 1982 [47], and the recent 

findings in [211-214], researchers have so far been unable to develop an appropriate method 

for estimating either the noise or speech phase spectrum. Motivated by the lack of suitable 

solution, the contributions contained in this chapter include a signal phase ratio based method 

for single-channel speech enhancement. The proposed approach is described in subsequent 

sections. 

5.3.1 Signal model and notation 

Let us consider noisy speech is an additive superposition of noise over clean speech as 

expressed in eq. (5.11). 

Y(n) = X(n) + D(n) (5.11) 

Where, Y(n), X(n) and D(n) denote for the noisy, clean and noise signals in discrete- 

time domain, respectively. Now, discrete short-time Fourier transform (STFT) of the 

corrupted speech signal Y(n) is given by eq. (5.12) as: 

Y(n, k) = (5.12) 

Where, k denotes the kth  discrete-frequency of N uniformly spaced frequencies and 

w(n) is function of analysis window. Hanning window with frame length of 240 samples 

were used in speech processing and 8 kHz sampling frequency with 50 percentage 

overlapping. 

Now eq. (5.11) can be represented as: 

Y(n, k) = X(n, k) ± D(n, k) (5.13) 
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Where, Y(n, k), X(n, k) and D(n, k) are the STFT of the noisy, clean and noise signals, 

respectively. The representation of eq. (5.13) in terms of STFT magnitude and STFT phase 

spectrum of noisy speech signal is given as in eq. (5.14). 

Y(n, k) =IY(n,  k)Jej ZY(n,k) (5.14) 

Where, jY(n, k)I and LY(n, k) are magnitude and phase spectrum, respectively. 

With the aim of speech enhancement, a signal phase ratio based approach is 

implemented for speech enhancement where noisy speech phase is altered. In this method two 

gain functions are used for speech phase enhancement. The procedure of the phase ratio based 

proposed approach is shown in Figure 5.1 and it is explained in section 5.3.2. 

5.3.2 Signal phase ratio based approach 

For the speech phase enhancement, a phase ratio based algorithm is implemented and 

evaluated. In this method, phase ratio is calculated from noise and noisy speech. The values of 

all constants are determined in such a way as to maximize speech intelligibility. The two gain 

functions G1  and G2  are calculated for suppressing noise coming from angles 0 to ±ir/2 and 

±ir/2 to ±,t, respectively. Phase ratio based single-channel speech enhancement method has 

mainly three steps: 

Step 1: Calculation of phase ratio 

Step2: By using phase ratio find out G1  and G2  for correcting phase to suppress noise coming 

from anglesO to ±7t/2 and ±ir/2 to ±ic, respectively. 

Step3: extracting correct phase by usingG = G1  .G2  by using eq. (5.15) to (5.18). 

For calculating phase ratio, the angle of STFT noise and noisy spectrum is calculated as 

given in eq. (5.15) and (5.16): 

PD(n,k)=LD(n,k) (5.15) 

P(n,k) = LY(n,k) (5.16) 

= 2P),(n,k)+(1-2)PD(n,k) (5.17) 

Phase Ratio (n,k) = P,D(n,k)/(PD(n,k) * P1,(n,k) + ) (5.18) 
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Fig. 5.1: Block diagram of the phase ratio based single-channel speech enhancement method. 
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Where, D  (n, k), and P (n, k) give angle of noise and noisy spectrum, respectively. The 

combined angle PyD of noise and noisy signals are measured by using eq. (5.17) and eq. 

(5.18), respectively. The forgetting factors 2, and are held to a fixed value 0.65 and 101 12, 

respectively. These factors are used to control the noise part so that distortions are reduced in 

processed speech [11]. 

Now, to cancel the noise signals coming from angles 0 to ±7t/2, gain functions 

G1  and G2 , for correcting phase to suppress noise coming from angles 0 to ±ir/2 and ±ir/2 to 

±it, respectively are calculated by using eq. (5.19), and (5.20), respectively. 

G1  (n, k) =1—Phase Ratio (5.19) 

10.05, f' < lu 

G2  (n,k) (5.20) 
Otherwise  

Where, p is constant value of -0.3 for suppressing noise coming from angle more than 

±ir/2 [11]. Final filter G is calculated by using eq. (5.19) and (5.20). 

G(n,k)=G1 (n,k)*G2 (n,k) (5.21) 

The corrected phase spectrum is calculated by using eq. (5.21) and (5.14). 

YG  (n, k) = Y(n, k) * G(n, k) (5.22) 

The enhanced single-channel speech SG(n,k)is  calculated by using eq. (5.22) and 

(5.14) as given in eq. (5.23). 

XQ (n,k) =IY(n,k)eJzYG (ii.k) 
(5.23) 

The inverse STFT is used to get the processed speech signal in time-domain. Now, 

overlap-add method is employed for the reconstruction of enhanced single-channel speech 

signal. 

5.3.3 Results and discussion 

For evaluating speech enhancement algorithms, NOIZEUS clean speech database is 

used which have been recorded from six speakers (three males and three females) [140]. This 

database comes with various additive non-stationary noise types and noisy speech at different 
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SNR levels (i.e. -25, -20, -15, -10, -5, 0, and 5 dB). The noise sources which are used for 

evaluation are such as M109 or Tank, Buccaneer or Jet cockpit, Leopard or Military vehicle 

and babble. 

Table 5.1: Performance Measure in terms of PESQ. 

Noise Enhancement PESQ 
Type Techniques 

Noise Levels -25 -20 -15 -10 -5 0 5 

MMSE-Phase 2.3824 2.5737 2.7683 2.9503 3.1763 3.4931 3.7218 
KLT 0.9386 0.8479 0.8283 1.6447 1.8966 2.2526 2.5489 

Babble PKLT 0.9204 0.7014 0.8279 0.5738 1.7319 2.0773 2.3854 
SPEC SUB 1.1121 1.0317 1.0722 1.7488 2.0126 2.2108 2.5457 
PSC 1.0320 1.1335 1.0831 1.8500 2.1949 2.4392 2.6529 
MMSE 1.0404 0.9857 0.9372 0.9501 2.0885 2.3563 2.5993 
Conjugate Sy. 1.0689 1.0585 1.0650 1.0176 2.0122 2.2667 2.5169 
Proposed 2.9880 2.9445 3.0260 3.2159 3.4261 3.6514 3.8392 

MMSE-Phase 2.3935 2.6221 2.7992 3.0517 3.3396 3.5614 3.7149 

KLT 1.1191 1.2645 1.5544 1.7355 2.2567 2.6292 2.9324 
M109or PKLT 0.2427 0.2639 1.2399 1.6989 1.9391 2.2960 2.6749 
Tank SPEC SUB 1.3193 1.5293 1.6361 2.0088 2.3070 2.5421 2.9918 

PSC 1.0432 1.5671 1.9427 2.2405 2.4796 2.7189 3.0327 
MMSE 1.5515 2.0061 2.0957 2.3288 2.5331 2.8158 3.1586 
Conjugate Sy. 0.9598 1.2590 1.9038 2.2003 2.4561 2.6840 2.9996 
Proposed 2.9256 2.9556 3.0970 3.3529 3.5553 3.7170 3.8485 

MMSE-Phase 1.3427 1.5198 1.5137 1.7438 2.0286 2.2436 2.3748 

KLT 1.5804 1.4979 1.3545 1.4836 1.8854 2.2775 2.5758 
Buccaneer PKLT 0.4302 0.7221 0.5649 1.0303 1.5401 1.7814 2.1788 
or Jet SPEC SUB 1.2275 1.2522 1.2282 1.5148 1.7529 2.0793 2.3909 
cockpit PSC 1.3383 1.4264 1.3301 1.3739 1.9478 2.2565 2.5172 

MMSE 1.5610 2.5710 2.6100 2.0100 2.0173 2.3047 2.5723 
Conjugate Sy. 1.4720 1.5519 1.4404 1.4623 1.9905 2.1931 2.3999 
Proposed 2.9023 2.9103 2.9755 3.1527 3.2694 3.4286 3.5949 

MMSE-Phase 1.9425 1.9606 1.9030 2.0829 2.1940 2.3014 2.3840 
KLT 1.1809 1.3340 1.4920 1.9840 2.4359 2.8298 3.1533 

Leopard PKLT 0.2414 1.3075 1.0639 1.4822 2.0397 2.4686 2.8744 

or SPEC SUB 1.4400 1.5734 1.8982 2.1804 2.4441 2.7325 3.2315 
Military PSC 1.7358 2.0645 2.3577 2.6116 2.8852 3.1841 3.3863 
vehicle MMSE 1.8631 2.1654 2.4530 2.7656 3.0043 3.2989 3.5926 

Conjugate Sy. 1.6592 1.9390 2.2476 2.5270 2.7846 3.0481 3.2257 
Proposed 3.0517 3.1183 3.3168 3.6045 3.7758 3.9399 4.0637 
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Tables 5.2 to 5.5 present the results of performance parameters PESQ, fw-SSNR. WSS 

and OVL. respectively. Figures 5.2 to 5.9 present the graphical and bar chart representation of 

the values given in Tables 5.2 to 5.5. respectively. 

The PESQ values are given in Tables 5.2. The MMSE-Phase based method outperforms 

the existing speech enhancement methods such as spectral subtraction, Conjugate Symmetry, 

MMSE. PSC, KLT and PKLT. The maximum PESQ values obtained by MMSE-Phase based 

method are 2.3824. 2.5737, 2.7683, 2.9503. 3.1763, 3.4931 and 3.7218 at -25, -20, -15, -10, - 

5. 0 and 5 dB, respectively. But here the results given by this method are not better than the 

proposed phase based speech enhancement method. 

The maximum values of PESQ is obtained by the proposed method which are 3.0517. 

3.1 183. 3.3 168, 3.6045, 3.7758, 3.9399, and 4.0637 at -25, -20. -15. -10. -5.0 and 5 dB input 

SNR levels, respectively. Hence, the maximum improvement in speech is obtained by signal 

phase ratio based proposed method. The comparative graphical and bar chart representation 

for direct illustration of their performance is shown in Figures 5.2 and 5.3. 

Table 5.3 illustrates the fw-SSNR values at various input SNR levels for different noise 

types. In case of babble noise, MMSE-Phase method outperforms spectral subtraction, 

Conjugate Symmetry, MMSE, PSC. KLT and PKLT. The KLT method gives the lowest 

performance at all input SNR levels and noise types. The maximum value by MMSE-Phase 

and KLT is 15.884 and 10.044 at 5dB input SNR, respectively for military vehicle noise. In 

comparison, the signal phase ratio based proposed method ( fw-SSNR 18.582) outperforms 

MMSE-Phase based method, spectral subtraction, Conjugate Symmetry, MMSE, PSC, KLT 

and PKLT methods (giving fw-SSNR as 15.884. 10.397, 10.505. 11.664, 9.8543, 10.044 and 

8.7544. respectively). 

Thus, the signal phase ratio based proposed method produces maximum speech 

enhancement. The graphical and bar chart representation of these values are illustrated in 

Figures 5.4 and 5.5 for direct interpretation of the above observation. 
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Table 5.2: Performance Measure in terms of fw-SSNR. 

Noise Enhancement Frequency Weighted SSNR 
• Type Techniques 

Noise Levels -25 -20 -15 -10 -5 0 5 

MMSE-Phase 3.5273 4.7565 6.1965 8.1271 9.6345 11.305 13.189 

KLT 0.3222 0.5855 0.8925 1.6416 2.7685 4.8097 7.1844 

Babble PKLT 0.5954 0.7380 0.9482 1.7446 2.8360 4.9762 6.9008 

SPEC SUB 1.4591 1.7560 2.1691 2.6552 3.6928 5.0067 8.2673 

PSC 1.6212 1.9657 2.5086 3.2495 4,0552 5.2823 7.1401 

MMSE 1.1695 1.5165 1.9593 2.6409 3.9313 5.6793 7.5121 

Conjugate Sy. 0.9833 1.2214 1.7036 2.4445 3.5514 5.1996 7.2665 

Proposed 9.9469 10.846 11.762 12.903 14.104 15.333 16.748 

MMSE-Phase 3.7851 4.9114 6.2514 7.9152 9.4426 11.334 13.512 

KLT 1.9202 2.1493 2.5165 3.0599 4.7705 6.8869 9.0349 
M109or PKLT 1.5156 1.7187 2.0165 2.5880 4.0885 5.7733 8.0204 
Tank SPEC SUB 2.8886 3.1926 3.5460 4.1088 5.5284 6.7455 9.9780 

PSC 3.1657 3.4685 4.0035 4.7791 6.0122 7.7986 9.8633 

MMSE 3.4339 3.7248 4.1888 5.0660 6.4864 8.4310 10.513 

Conjugate Sy. 3.4323 3.6751 4.1784 4.7766 5.9948 7.4724 9.5593 

Proposed 9.5644 10.552 11.610 12.646 13.604 14.919 16.318 

MMSE-Phase 3.1091 4.1551 5.0649 6.3712 7.6279 9.1008 10.829 

KLT 0.9752 1.1059 1.4889 2.0083 3.2265 4.7707 6.5053 

Buccaneer PKLT 1.5671 1.7012 1.9382 2.3724 2.9859 4.2075 5.3372 
orJet SPEC SUB 1.3405 1.4366 1.6210 2.1611 2.9158 4.2932 5.9777 
cockpit PSC 2.0987 2.1626 2.3398 2.8479 3.8510 5.1390 6.8470 

MMSE 1.4906 1.5767 1.8769 2.4747 3.5319 5.3996 6.9037 

CorijugateSy. 1.3322 1.3658 1.4674 1.8102 2.5568 3.7894 5.2167 

Proposed 9.9394 10.702 11.651 12.391 13.102 13.918 15.086 

MMSE-Phase 5.0510 6.6879 8.0063 9.9031 11.754 13.678 15.884 

KLT 2.0546 2.3855 2.7340 3.9979 5.3810 7.8376 10.044 
Leopard PKLT 0.0945 1.2357 1.6055 2.5475 4.1049 6.4193 8.7544 
or SPEC SUB 33.2312 3.6135 3.9685 4.4602 5.4305 7.2698 10.397 
Military PSC 3.1980 3.9762 4.8725 5.8203 7.0390 8.4264 9.8543 
vehicle 

MMSE 3.8835 4.5870 5.2133 6.4568 7.9655 9.7882 11.664 

Conjugate Sy. 3.2498 3.878 1 4.7533 5.9420 7.2585 8.9965 10.505 

Proposed 10.128 11.197 12.469 13.944 15.368 16.751 18.582 
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The variation of WSS with input SNR levels is illustrated in Table 5.4. The graphical and bar 

chart representation for direct illustration of their performance is shown in Figures 5.6 and 

5.7. The MMSE-Phase based method outperforms to existing speech enhancement methods 

such as spectral subtraction. Conjugate Symmetry, MMSE, PSC, KLT and PKLT methods. 

The lowest performance is given by spectral subtraction method. The other existing methods 

also give poor performance in comparison to the proposed method. The minimum value of 

WSS is 14.4586 at 5 dB input SNR level for proposed method which results in maxinuim 

speech enhancement. At all input SNR levels, the minimum values of WSS are obtained by 

proposed method which indicates the maximum suppression of noise and improvement in the 

speech quality. 

Table 5.3: Performance Measure in terms of WSS. 

Noise Enhancement WSS 
Type Techniques 

Noise LeveIs- -25 -20 -15 -10 -5 0 5 
MMSE-Phase 67.9852 62.0664 54.7294 46.7552 40.0040 34.5434 29.5462 
KLT 121.3283 117.4654 114.4330 102.7649 89.0387 72.7817 62.6379 

Babble PKLT 97.4068 96.2676 93.6595 84.8683 72.9789 59.8312 50.4380 
SPEC SUB 129.3368 125.6523 119.0640 110.2210 98.5172 87.2732 69.3789 
PSC 120.0904 115.4200 109.0679 100.2740 88.5606 75.3503 63.9619 
MMSE 127.0232 123.8617 116.4540 106.3762 92.6271 81.0146 71.4111 

Conjugate Sy. 93.3738 91.9290 89.1098 82.6612 72.3165 62.4125 52.5151 

Proposed 54.4779 50.1016 44.8156 37.1932 31.8529 24.6646 19.6877 

MMSE-Phase 66.7720 61.9093 58.0951 47.2683 42.0446 37.5644 32.3064 

KLT 137.6189 137.3932 132.4593 119.3720 99.4317 79.1611 64.7961 

M109or PKLT 100.2506 98.7130 92.7143 79.7230 65.1467 52.6999 41.6770 

Tank SPEC SUB 133.2038 130.5794 121.0903 110.8230 93.5196 79.8651 63.4469 
PSC 121.4662 117.3131 109.6984 98.2452 83.6718 68.4479 55.6452 

MMSE 110.2545 105.4071 97.7061 86.6748 75.6126 62.7963 50.4232 

Conjugate Sy. 91.6034 89.2146 83.9034 75.4857 64.5922 53.8724 42.9048 

Proposed 64.73335 57.3459 49.6683 41.2609 35.2530 28.1324 21.8501 

MMSE-11'hase 62.2532 58.0021 57.0966 51.6070 45.5851 40.1528 36.3499 

KLT 171.0636 167.4567 161.1343 150.6597 130.788 111.217 91.5862 

Buccaneer PKLT 106.6629 103.5043 100.1480 89.2949 76.5075 63.3130 54.6485 

or Jet SPEC SUB 140.8174 138.9545 135.5267 127.4261 116.384 102.857 89.5121 

cockpit PSC 137.9379 136.6822 133.2392 125.6793 114.115 101.478 89.1987 

MMSE 110.7734 110.4905 108.1185 100.3574 90.4451 79.2963 69.8801 

Conjugate Sy. 91.5691 90.8474 89.0236 84.63 15 76.2368 67.4235 58.7509 

Proposed 55.2276 52.1525 49.3513 43.9642 38.1284 32.2926 26.1241 
MMSE-Phase 61.3296 55.8793 45.3908 36.7490 28.8412 23.1471 19.2922 
KLT 95.7167 87.9608 83.7462 76.9802 68.2710 58.4352 45.0863 

I.eopard or PKLT 80.4575 79.2520 76.7726 70.3466 61.8777 47.5845 36.2147 
Military SPEC SUB 98.1188 93.9264 87.5414 82.4838 73.0006 60.3028 45.7017 
vehicle PSC 103.6240 97.2185 89.2340 79.3934 67.4311 55.1597 45.7826 

MMSE 82.4947 77.0706 69.4333 60.4101 51.1064 41.4909 34.9684 

Conjugate Sy. 74.9725 70.8043 66.3962 58.5295 49.2674 40.1795 32.6572 
Proposed 54.8275 48.7972 40.5751 29.8282 22.5407 18.3344 14.4586 
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The overall performance of the existing speech enhancement methods is compared in 

Table 5.5 at different input SNR levels for various noise types. The comparative graphical and 

bar chart representation for direct illustration of their performance is shown in Figures 5.8 and 

5.9, respectively. The MMSE-Phase based method shows maximum speech enhancement 

than spectral subtraction, Conjugate Symmetry, MMSE, PSC, KLT and PKLT methods but 

do not give better enhancement than the proposed signal phase ratio based method. The PKLT 

method obtains the lowest speech enhancement for babble. M 09 and leopard noise types. 

The conjugate symmetry method gives better results in buccaneer noise. The proposed speech 

enhancement method gives maximum values of OVL score at all input SNR levels and for all 

noise types. 

Table 5.4: Performance Measure in terms of OVL. 

Noise Type Enhancement OVL 
Techniques 

Noise Levels -* -25 -20 -15 -10 -5 0 5 

MMSE-Phase 1.4432 1.7346 2.0731 2.5876 2.9959 3.4178 3.8830 

KLT 1.0000 1.0000 1.0000 1.0006 1.3420 1.8510 2.2864 

Babble PKLT 1.0000 1.0000 1.0000 1.0000 1.2332 1.6715 2.0604 

SPEC SUB 1.0305 1.0664 1.1231 1.2775 1.5246 1.8327 2.5094 

PSC 1.0414 1.1016 1.2349 1.4287 1.6376 1.9658 2.2448 

MMSE 1.0000 1.0000 1.0062 1.1605 1.4205 1.7669 2.1371 

Conjugate Sy. 1.0000 1.0000 1.0032 1.1679 1.3722 1.7593 2.2368 

Proposed 3.0773 3.2788 3.5288 3.8333 4.1006 4.3684 4.7272 

MMSE-Phase 1.4944 1.6896 2.0995 2.5508 2.9813 3.4018 3.8360 

KLT 1.2616 1.2436 1.3218 1.5047 1.9613 2.4210 3.0175 

M109or PKLT 1.1842 1.1736 1.2442 1.3528 1.6724 2.0870 2.5293 

Tank SPEC SUB 1.3106 1.4147 1.4598 1.5851 1.9213 2.1991 3.0296 

PSC 1.5934 1.6653 1.8026 1.9606 2.2870 2.7102 3.1137 

MMSE 1.5027 1.5776 1.6123 1.8130 2.1592 2.6188 3.0820 

Conjugate Sy. 1.7125 1.7720 1.8718 1.9958 2.2660 2.6071 3.0945 

Proposed 2.9577 3.2717 3.5787 3.8685 4.0715 4.3219 4.7228 

MMSE-Phase 1.1097 1.4125 1.6203 1.9925 2.3257 2.7026 3.0380 

KLT 1.0000 1.0000 1.0485 1.0798 1.3424 1.6314 1.9630 

Buccaneer PKLT 1.1546 1.1600 1.1879 1.2173 1.2784 1.4422 1.6738 

oriet SPEC SUB 1.0000 1.0000 1.0000 1.0442 1.1480 1.4993 1.8742 

cockpit PSC 1.2689 1.2712 1.2970 1.4123 1.5930 1.7811 2.0683 

MMSE 1.0000 1.0182 1.0956 1.1978 1.3786 1.7037 2.0896 

Conjugate Sy. 1.0000 1.0000 1.0000 1.0000 1.1138 1.3759 1.6008 

Proposed 3.1630 3.2842 3.5323 3.7790 3.8517 4.0150 4.2413 

MMSE-Phase 1.9481 2.3358 2.6000 3.0592 3.5233 4.0600 4.6420 

KLT 1.1370 1.1968 1.2617 1.6613 2.0477 2.6696 3.2904 

Leopard or PKLT 1.0000 1.0000 1.0868 1.2742 1.6136 2.1312 2.6941 

Military SPEC SUB 1.5636 1.6655 1.7347 1.8468 2.0170 2.5574 3.2884 

vehicle PSC 1.6481 1.8266 2.0915 2.3646 2.6850 3.0254 3.1658 

MMSE 1.7530 1.8953 2.0483 2.3932 2.7493 3.0929 3.4642 

Conjugate Sy. 1.6736 1.7842 1.9876 2.2589 2.6146 2.9464 3.1730 

Proposed 3.0102 3.3067 3.5807 4.0672 4.4429 4.7340 5.0000 
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Fig. 5.9: Bar chart representation of OVL scores at various input SNR levels. 
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Spectrogram of the output speech signals are presented in Figure 5.10. These are 

obtained at -5 dB SNR level in presence of babble noise. In Figure 5.10, Spectrograms are (a) 

clean speech, (b) noisy speech, and from (c) - (j) denoised speech signals obtained by speech 

enhancement methods such as (c) for MMSE-Phase. (d) for KLT, (e) for PKLT. (0 for 

spectral subtraction, (g) for PSC. (h) for MMSE. (i) for Conjugate Symmetry. (j) for proposed 

method, respectively. An observation in Figure 5.10 illustrates that. the proposed method does 

not give more distortions and impulses in output spectrogram, whereas all other methods do 

so. This indicates that the proposed method effectively reduces the background noise from the 

noisy input speech signal. Hence. the maximum speech quality and intelligibility is achieved 

by proposed method than those obtained by existing phase based speech enhancement 

methods. 
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Fig. 5.10: Spectrograms of (a) clean speech. (b) noisy speech (babble noise at -5 dB input 

SNR), and enhanced output signal given by speech enhancement methods such as 

(c) MMSE-Phase, (d) KLT. (e) PKLT, (f) spectral subtraction. (g) PSC. (h) 

MMSE, (i) Conjugate Symmetry, (j) proposed method. 

5.4 Summary 

Signal phase ratio based speech enhancement method is proposed for removing noise 

from noisy speech signal and improving in speech intelligibility. In this phase based single-

channel speech enhancement method, two gain functions G1  and G2  are calculated for noise 

suppression. The performance of proposed method is compared with existing phase based 

speech enhancement methods. The comparative results indicate the better performance of 

proposed phase based speech enhancement method. 
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CHAPTER 6: CONCLUSIONS AND SCOPE FOR FUTURE WORK 

This chapter describes conclusions and future scope of the research work The major 

contributions of present thesis are summarized in this chapter while few contributions for 

future research are listed in section of scope for future work 

6.1 Conclusions 

In this thesis, an attempt has been made to design and evaluate the new speech 

enhancement algorithms applicable for single-channel speech. These algorithms have been 

focused for getting speech of good quality and intelligibility. With above consideration, the 

following issues of single-channel speech enhancement have been addressed in this thesis. 

. Enhancement of mixed noisy speech of very low (Negative) SNR. 

Enhancement of speech in non-stationary noise case. 

Suppression of combined effect of background noise and reverberations. 

Enhancement of speech considering the phase effect. 

In this thesis, different methods have been designed and implemented to solve the speech 

enhancement problem for English and major Indian languages considering many noise types. 

The performance of these developed methods is compared with existing speech enhancement 

methods. Various quality and intelligibility measure parameters are considered for the 

evaluation of these methods. 

In this research work, four different methods have been proposed which are WPT based 

modified Wiener gain method, WPT based Fuzzy mask method, reverberant mask based 

method and signal phase ratio based speech enhancement method. On the basis of the 

obtained results conclusions drawn are summarized in following subsections. 

6.1.1 WPT based modified Wiener gain method 

Various methods like Wiener, spectral subtraction, KLT, PKLT and MMSE based algorithms 

have been reported for enhancement of noisy speech having single noise in the case of single-

channel speech. But no work has been reported in speech enhancement for mixed noise case. 

To consider the mixed noise case for single-channel speech enhancement, WPT based 

modified Wiener gain based method has been proposed here. The performance of modified 

gain function based method is compared with other existing gain function based methods. The 

performance is evaluated in terms of quality and intelligibility parameters such as Sli, CD, 
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PESQ, fw-SSNR and SNR. The results obtained show that the proposed method is effective 

for all noise types and for varied SNR levels for English and Indian languages like Hindi, 

Kannada, Bengali and Malayalam. 

The proposed WPT based modified Wiener gain based method give 7.4173 dB output 

SNR at 5 dB input SNR in (f16+babble+NOIZEUS speech+ Hindi speech) mixed noise 

signals while other existing speech enhancement methods gave output SNR in the range from 

0.9135 dB to 6.0987 dB. The maximum improvement in PESQ parameter is 3.7283 at 5 dB 

SNR for the proposed method while other methods give PESQ values in the range of 1.8887 

to 3.4010. The proposed method shows the best performance in other speech patterns having 

mixed noise cases (such as machinegun+ pink+ NOIZEUS speech+ Hindi and factory floor+ 

white+ NOIZEUS+ Hindi speech) also. The other existing speech enhancement methods 

show poor performance and which result in lower speech quality and intelligibility. 

6.1.2 WPT based Fuzzy mask method 

A WPT Fuzzy mask based method has been proposed here for suppression of highly 

non-stationary noise in noisy speech of low SNR. This fuzzy mask replaces the need of true 

speech and/or information about noise signal for determination of WP soft and hard threshold. 

The noisy dataset of SNR ranging from -15 dB to 15 dB are generated for comparative 

analysis. In this approach, the noisy input speech dataset are applied to WPT for decomposing 

the input noisy speech signal into eight energy bands which are later converted into signals of 

different energy bands. A modified gain function is applied for denoising of these separate 

bands of speech signals. The output speech is then given to fuzzy mask function for 

suppression of gain induced speech distortions. The performance parameters such as output 

SNR, PESQ, MOS, and STOI for the noise suppressed speech signal are evaluated to compare 

the performance of this method with the other speech enhancement methods. 

The above given parameters are evaluated for babble, pink, f-16 and white noise case. 

The performance of the existing speech enhancement methods increases with increasing input 

SNR levels except for MMSE-SPU speech enhancement method, where the performance 

decreases with increasing input SNR levels from -15 dB to 15 dB (i.e. -0.9161 dB and -7.1942 

dB output SNR at -15 dB and 15 dB, respectively). The fuzzy mask and spectral subtraction 

methods give better performance among other existing speech enhancement methods such as 

p-MMSE, log-MMSE and Wiener but the performance of proposed WPT Fuzzy mask method 

is much better than other existing speech enhancement methods and is increasing with 

increasing input SNR levels. The output SNR values given by proposed methods are 1.2876 
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dB and 21.1661 dB at -15 dB and 15 dB input SNR, respectively. In case of proposed method, 

the maximum values of STOI, PESQ and MOS parameters at 15 dB input are given as 

0.9472, 3.5268 and 0.7182, respectively. The all evaluated performance measure parameters 

of the processed speech signals (also in other noise cases such as pink, f-16 and white) 

indicate an almost noise free speech signal having been generated by proposed method. The 

WPT Fuzzy mask based proposed speech enhancement method gives maximum quality and 

intelligibility improvement when compared to other speech enhancement methods at all levels 

of input SNRs. 

6.1.3 Reverberant mask based method 

Here, a reverberant mask based speech enhancement method is proposed for combined 

suppression of reverberation and noise. In this method signal-to-reverberant ratio (SRR) is 

calculated as a limit. The amplitudes with SRR greater than a preset threshold (i.e. -5dB) are 

used for reconstruction of denoised speech, while amplitudes with SRR values smaller than 

the threshold are eliminated. The SRR reflects implicitly the ratio of the energies of the signal 

originating from the early (and direct) reflections and the signal originating from the late 

reflections. The construction of the SRR criterion assumes a priori knowledge of the input 

reverberant and target signal. Threshold values varying from 0dB to -90dB are analyzed for 

selection of ideal reverberant mask (IRM) limit T. Enhanced speech signal is constructed by 

multiplying noisy speech with reverberant mask. 

For the performance analysis, the babble, pop music, restaurant and exhibition noise are 

added individually with the reverberated speech. The combined reverberated speech with 

noise is used for testing the effectiveness of the speech enhancement methods. The proposed 

reverberant mask based speech enhancement method is compared with other existing speech 

enhancement methods in terms of speech quality and intelligibility measure parameters such 

as PESQ, CD, SNR and MSE. 

Among the existing speech enhancement methods, Wiener gives the maximum 

improvement and p-MMSE gives minimum improvement in all reverberated noisy speech 

conditions. The proposed speech enhancement method performs even better than Wiener 

method for combined suppression of reverberation and noise. The proposed method gives 

PESQ score of 3.0659 in comparison to 2.4156 by Wiener method at -5 dB input SNR in 

reverberation speech with pop music signal. The minimum values of CD and MSE parameters 

are obtained by proposed method and hence maximum improvement is obtained in speech 

quality and intelligibility at all noisy speech conditions. 
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6.1.4 Signal phase ratio based method 

In the last part of the work, another speech enhancement method, which uses signal phase 

ratio in place of the amplitude if input speech signal, has been proposed for suppression of 

noise from low and high SNR noisy speech signals. In this method, phase ratio is calculated 

from noise and noisy speech. The values of all constants are determined in such a way that it 

maximizes the speech intelligibility. The two gain functions G1  and G2  are calculated for 

suppressing noise derived from angles 0 to ±ir/2 and ±ir/2 to ±ir, respectively. The calculation 

of G1  and G2  parameters used in this method is based on phase information of speech signal 

which does not require signal amplitude which is used in other existing speech enhancement 

method. 

The performance of this method is compared with other existing speech enhancement 

methods such as phase spectrum compensation (PSC), exploiting conjugate symmetry of the 

short-time Fourier spectrum and STFT-phase for the MMSE-optimal spectral amplitude 

estimation KLT, PKLT etc. The performance is measured in terms of quality and 

intelligibility measure parameters namely, the PESQ, fW-SSNR, WSS and OVL. The babble, 

tank, buccaneer and leopard noise are added to speech signals to generate the noisy speech 

patterns having SNR levels between -25dB to 5dB. 

Among the existing speech enhancement methods MMSE phase based method gives the 

maximum improvement while PKLT method gives minimum improvement for all input SNR 

levels. The MMSE phase based method gives maximum PESQ score of 2.3824 in comparison 

to 0.9204 by PKLT method at -25 dB input SNR. The maximum value of PESQ given by 

proposed method is 2.9880 at -25 dB input SNR which is better than Wiener method. The all 

other evaluated performance measure parameters (such as fw-SSNR, WSS OVL) of the 

processed speech signals (in other noise cases such as M109, Buccaneer and leopard) also 

indicate an almost noise free speech signal having been generated by proposed method. It is 

analyzed here that the phase is also as important as is amplitude for speech enhancement. The 

proposed method shows better performance than existing speech enhancement methods for all 

noise types and input noisy speech SNR levels. 

By using the Wiener gain method to enhance the speech quality and intelligibility 

parameters for a mixed noise of low SNR speech signals selection of threshold and gain is 

very crucial. It required prior knowledge of SNR range and type of noises present in speech 

signal. Therefore the heuristic knowledge is one of the key factor in designing such algorithm. 

The same challenge was attempt by an intelligent method called WPT Fuzzy which is better 

as compared to modified Wiener gain method and used for suppression of highly non- 
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stationary noise sources of low SNR input noisy speech. Another challenge for improvement 

of speech quality and intelligibility is reverberation as a noise which was suppressed by ideal 

reverberant mask based method. The main hurdle to handle this challenge is threshold 

selection which is taken as a trade of value for this method. Signal phase ratio based method 

is also used for noisy speech enhancement which provides two gain functions for noise 

suppression. This method use phases of noisy speech and noise for gain calculation. It shows 

better results as compare to the other reported methods which are using amplitude. All these 

proposed algorithms are effective for any type of noise source and language. 

In nutshell, on the basis of experimental results, it is concluded that better performance is 

exhibited by above proposed methods and they significantly contribute towards the state of 

the art in single-channel speech enhancement. 

6.2 Scope for Future Work 

The current research work has also an open space to be carried out by the future 

researchers. Few of them are suggested as below: 

This research work has been focused on low level input SNR, reverberations, highly 

non-stationary noise and their various combinations in case of single-channel speech 

applications. Based on the achievements here, the suggestions for future work are given 

as below: 

For WPT-fuzzy mask based single-channel speech enhancement method, the fuzzy 

mask parameters used in this method can be calculated using intelligente approaches 

(such as ANN, DNN etc.) in place of experimental approach. 

In case of combined suppression of noise and reverberation from reverberated noisy 

speech the intelligent approaches may also be used for selection of adaptive threshold. 

> Further improvement in quality with intelligibility is possible by adding additional 

features such as magnitude and phase components of LP residual signal separately for 

capturing the language-specific phonotactic information present in excitation source. 
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> In phase based speech enhancement method, only phase of the noise and noisy speech 

are used for gain calculation. Results can further be improved by considering the 

magnitude also for gain calculations in addition to phase. 
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APPENDIX - A 

Table Al: Analysis for English language 
Non-stationary     Highly_non-statinnary  Mixed noise Combined 

White Volvo- Machine- Leopard H f- Factory Buccaneer F-16 Destroyer F16+Babble+ Reverberation 
Methods Measures 

car 
Pink 

__ 
gun 

Tank 
 vehicle channel Floorl 2 

Babble 
 plane operation NOIZEUS +Babble 

SNR 6.3346 7.6280 4.5242 7.2886 4.6569 8.6454 -2.0859 3.6562 1.4230 4.1732 1.9769 2.5944 8.5560 9.4964 
Wiener SSNR -4.9067 -7.2589 -6.3218 -3.9448 -8.5721 -8.3849 -9.5711 -7.5951 -8.8284 -7.8298 -8.1383 -8.8677 -3.8526 -2.5453 
filtering 

PSNR 85.5355 85.6810 84.2530 86.3820 84.2853 87.3358 80.5299 83.4229 82.2118 83.9322 82.6131 83.0013 86.1234 85.0718 
method 

MSE 1.8177 1 1.7578 2.4422 1.4958 2.4241 1.2009 5.7557 2.9566 3.9076 2.6288 3.5626 3.2580 0.00015 0.00021 
SNR 7.2809 1.9303 7.8899 5.8584 8.8554 5.2860 4.8226 7.8434 7.0166 8.2884 7.1 828 7.5236 8.1731 9.2633 

Spectral 
SSNR -2.3878 -1.5745 -2.9814 -.0629 -7.7386 -7.8766 -8.3859 -5.6054 -7.8384 -6.2833 -6.3310 -7.7812 -3.2253 -2.1634 

sub. 
PSNR 90.9144 75.1588 86.1414 94.5427 86.1864 92.8582 82.6358 84.8365 84.6452 85.5890 84.6851 84.9359 85.5038 84.7171 
MSE 5.5268  .0020 1.5810 0.22846 1.5647 0.33671 3.5441 2.1352 2.2313 1.7955 2.2109 2.0868 0.00018 0.00022 
SNR 6.3306 7.4675 4.6899 7.4272 4.7653 8.5404 -1.8121 3.8078 1.6084 4.2507 2.1948 2.7773 1.1846 5.24899 

SSNR -4.8362 -7.2791 -6.2302 -3.8620 -8.5228 -8.3564 -9.5363 -7.7189 -8.7605 -7.7829 -8.0596 -8.8239 -6.2149 -3.21494 
MMSE- 

PSNR 85.4396 85.4635 84.2680 86.3934 84.2566 87.1513 80.5827 83.4226 82.1983 83.9025 82.6548 83.0213 81.2658 80.2684 SPU MSE 1.8583 1.8481 2.4338 1.4919 2.4402 1.2530 5.6861 2.9568 3.9197 2.6475 3.5286 3.2430 1 2.3194 3.20152 
SNR 5.3135 7.1101 3.5465 6.2619 3.7721 7.6330 -3.5685 2.5144 .3672 3.2808 .9718 1.5100 5.4752 8.4045 

SSNR -5.3328 -7.5971 -6.6629 -4.4457 -8.6928 -8.4766 -9.6914 -8.0597 -8.9951 -7.9960 -8.3496 -9.0118 -6.0390 -4.8453 p-lIMSE 
PSNR 84.8328 86.6482 83.6967 85.6281 83.7582 86.5870 80.1041 82.8569 81.7011 83.4825 82.1669 82.4715 84.4488 84.8998 

2.1370 1.4069 2.7759 1.7794 2.7369 1.4268 6.3485 3.3681 4.3952 2.9163 3.9481 3.6807 0.00023 0.00021 
SNR 6.3346 7.6280 4.5242 7.2886 4.6569 8.6454 -2.0859 3.6562 1.4230 4.1732 1.9769 2.5944 6.6395 8.9506 

SSNR 4.9067 -7.2589 -6.3218 -3.9448 -8.5721 -8.3849 -9.5711 -7.595 1 -8.8284 -7.8298 -8.1383 -8.8677 -5.3974 4.2037 
109-  PSNR 85.5355 85.6810 84.2530 86.3820 84.2853 87.3358 80.5299 83.4229 82.2118 83.9332 82.6131 83.0013 85.1900 85.1736 

MMSE MSE 1.8177 1.7578 2.4422 1.4958 2.4241 1.0273 5.7557 2.9566 3.9.76 2.6288 3.5626 3.2580 0.000197 0.000198 
SNR 7.2591 4.8380 5.9335 11.288 4.5367 7.8703 0.2791 3.7566 4.1103 2.9.79 3.0038 3.2502 2.2341 1.2166 

Binary SSNR 4.3263 -6.1638 -5.5886 -1.8041 -8.7061 -8.3763 9.3547 -7.5746 -8.5180 -7.8050 -7.8102 -8.7689 -3.4562 -3.5891 
Mask PSNR 86.1930 81.3173 84.9055 89.6213 84.0332 86.5294 81.3334 83.2894 83.5880 82.6432 82.9201 83.1332 67.5112 61.1176 

(IDBM) MSE 1.5624 4.8012 2.1015 0.70950 2.5690 1.4459 4.7834 3.0489 2.8463 3.5380 3.3195 3.1605 0.0115 0.0503 
WV!'- SNR 10.7124 11.1585 8.6652 7.4051 12.3968 14.5360 9.6353 9.8644 10.4070 11.0051 9.6133 13.0812 10.9032 11.3553 
IDBM SSNR 1.2310 0.3706 1.9203 5.3203 0.1349 1.8938 0.4202 1.0900 1.1626 0.2608 0.1617 2.3087 0.3242 1.0472 

(Modified PSNR 88.5757 88.9142 86.2090 84.6174 90.2407 92.4732 87.4883 87.5846 88.2567 88.8355 87.4499 91.0483 88.7522 86.9888 
Wiener) MSE 0.00009 0.00084 0.00016 0.00023 0.00062 0.00037 0.00001 0.0001 0.00097 0.00085 0.00012 0.00005 0.000087 0.00013 

SNR 12.0609 8.1131 10.5220 6.4400 13.8772 11.1565 11.5604 13.7225 12.3953 6.7466 9.0982 11.7353 6.5880 11.9868 
WPT SSNR 7.1176 6.8408 7.0513 6.8156 6.9460 7.1497 6.9129 7.0892 7.2276 6,9441 7.0235 7.0733 4.5374 6.4384 
Fuzzy PSNR 93.8915 89.4624 92.1943 87.4041 95.7838 92.8939 93.3929 95.5252 94.2484 87.8312 90.6729 93.4915 96.6661 91.8013 

MSE 0.00027 0.00074 0.000039 0.00012 0.00001 0.000034 0.000029 0.000018 0.000024 0.00012 1  0.00056 0.00003 0.00014 0.000043 
SNR 13.1873 30.0835 13.1392 22.3228 16.0288 23.4410 11.7532 13.9077 13.2971 14.5451 12.4817 15.6564 12.5489 11.92846 

Phase 
SSNR 8.7125 9.492 9.5530 2.5802 7.252525 8.3728 7.6455 7.6326 8.6984 7.262321 8.534 9.4522 10.59874 7.2681 

ratio 
PSNR 90.6236 107.526 90.5151 99.8057 93.4975 100.876 89.2951 91.2450 90.7079 92.0469 89.9802 93.0996 95.2614 96.2651 

method MSE 1 0.00027 0.00005 0.00002 0.000010 0.00003 0.000004 1  0.00004 1  0.00008 0.00005 0.00008 0.00003 0.00001 1  0.00002 1  0.000001 

Results for English language speech signals are analyzed in Table Al. in this table last three methods give better performance in comparison to existing speech enhancement 
methods. Since minimum error is obtained by WPT Fuzzy and phase ratio based methods hence these methods give good quality and intelligibility speech signal. 
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Table A2: Performance analysis for Hindi language 

Non-stationary     Highly_non-stationary  Mixed noise Combined 

Machine- Leopard Hf- Factory F-16 Destroyer F16+Babble Reverberation+ 
Methods Measures White Volvo-car Pink 

gun 
Tank 

_________ 
vehicle channel 11oor1 

Buccaneer Babble 
 plane operations +NOlLEtIS Babble 

SNR 7.5294 4.2057 7.8933 7.7158 4.4559 6.4924 3.9079 6.3352 4.4923 5.00 5.53 3.4461 9.3245 10.5585 
Wiener 

SSNR -4.0826 -6.4439 -5.2249 -2.8421 -8.7064 -8.4229 -9.0971 -6.6962 -8.533 -6.8861 -7.4932 -8.6008 -4.7016 -3.7610 
filtering PSNR 85.1100 81.5482 87.3334 87.6955 84.1123 85.8632 84.0945 85.6434 83.83 84.37 84.96 83.1399 88.4356 88.0334 
met o MSE 0.634 0.553 0.202 0.105 0.523 0.686 0.5 0.773 0.69 0.38 0.1 0.156 0.00009 0.0001 

SNR 6.2021 1.6788 7.3765 8.7929 4.3004 6.8597 5.0438 6.0702 4.7718 5.2211 5.6177 4.1075 9.6695 10.5495 
Spectral SSNR -3.6007 -2.7192 -4.1359 -1.2131 -8.5368 -8.3104 -8.8860 -6.0537 -8.2997 -6.4008 -7.0117 -8.3968 -4.1883 -3.4027 

sub. PSNR 81.0824 76.0443 86.0940 89.1990 83.1124 85.9178 84.2356 84.5022 83.3487 83.8309 84.1609 82.8624 88.4399 87.8426 

MSE 0.068 0.0016 0.599 0.820 0.176 1 0.665 0.452 0.306 1 0.01 0.692 0.495 1 0.364 0.00009 0.00011 

SNR 8.1594 7.1712 5.2378 3.2576 0.6251 3.6146 -0.9314 3.1145 1.1015 2.6363 2.5941 0.0273 4.0124 4.3816 

SSNR -5.1748 -7.7221 -6.5502 -5.6631 -9.3604 -8.9389 -9.5795 -8.0420 -9.2585 -8.2419 -8.5189 -9.3581 -5.2761 -4.2681 
MME

- PSNR 87.3995 86.0951 85.8273 84.549 83.0226 84.5038 82.2636 84.0923 82.7232 83.7877 83.7508 82.4353 79.2641 80.5492 
SPU 

 

MSE 1.184 1.599 1.6996 2.281 0.242 0.305 0.861 0.534 0.474 0.719 0.742 0.7115 0.9125 0.2005 

SNR 7.9184 8.1144 4.1124 1.7639 -1.0591 1.9760 -2.7702 1.9048 -0.5084 1.1871 1.2994 -1.8551 5.9054 8.6376 

SSNR -5.6390 -8.0672 -7.1104 -6.4912 -9.4791 -9.1076 -9.712 -8.3936 -9.4357 -8.7146 -8.8382 -9.5764 -6.43 19 -5.4398 

p-MMSE PSNR 86.8119 87.6343 85.2644 83.7319 82.3786 83.7495 81.7202 83.5509 82.2223 83.3436 83.2422 82.4511 86.1896 87.0508 

NISE 1.3549 1.211 1.9348 0.7535 0.7603 1 0.743 0.3758 0.8707 1 0.8981 0.012 0.082 1 0.2143 0.00016 0.00013 

SNR 8.8741 7.1865 5.1508 3.0807 0.5283 3.5837 -1.0396 3.2116 1.0943 2.6625 2.5144 -0.0774 6.9233 9.2578 

SSNR -5.2455 -7.7531 -6.6371 -5.6733 -9.3867 -8.9658 -9.6058 -8.0630 -9.2906 -8.2502 -8.5724 -9.386 -5.9083 -4.9558 

10
9-  PSNR 87.4336 86.2445 85.8647 84.5037 83.0542 84.5699 82.3256 84.2611 82.8471 83.9132 83.7983 81.8835 86.8301 87.3594 

MMSE 
MSE 1 1.1741 1.5439 1.685 2.3052 0.2185 0.2703 0.8065 0.4376 0.3757 0.641 2.7117 0.6981 0.00013 0.00012 

SNR 5.4539 3.1652 2.5948 7.62 1.6363 2.3219 1.5672 1.7176 0.8920 0.3989 1.4361 0.4371 2.1412 1.3016 

Binary SSNR -5.151 -6.7116 -6.5898 -3.03 -9.1123 -8.94 -9.404 -7.832 -9.2056 -8.1902 -8.4015 -9.252 4.0967 -3.4831 

Mask PSNR 85.186 80.8695 83.749 87.7694 82.7294 83.56 83.1284 83.0586 82.4048 82.2113 82.8694 82.2378 68.5513 63.2892 

(IDBM) MSE 1.97 0.3227 0.743 1.0868 0.4685 0.8646 1 0.164 0.2153 0.7377 1 0.9079 0.3585 0.8842 1 0.0091 0.0305 

WP'i- SNR 9.2872 10.9254 9.5745 9.0629 8.3289 7.5698 6.7924 6.8978 7.5340 11.5764 7.3500 6.6364 9.7918 11.0772 

IDBM SSNR 4.7200 4.0496 4.4544 6.6610 4.1598 4.3175 4.7156 4.1846 4.4811 3.6021 4.5513 4.5943 13.7704 2.1089 

(Modified PSNR 87.985 85.1788 84.2235 83.0334 85.2038 85.9984 84.7579 87.7964 88.8260 90.9430 88.9001 89.4527 91.8140 80.6470 

Wiener) MSE 0.0103 0.00006 1 0.0049 0.00032 0.0020 0.0016 0.0014 0.0011 0.0017 0.00052 0.0084 0.00037 0.00004 0.00056 

SNR 10.6235 9.1792 9.9869 10.8274 9.8917 10.1734 8.7272 7.5090 8.1377 7.0628 9.1778 8.1635 9.9948 11.6105 
WPT SSNR 2.4167 2.7660 2.6928 2.6618 2.8362 3.2879 1.2127 -0.9134 1.7756 0.3904 2.4875 -3.4373 11.5689 1.8780 
Fuuy PSNR 89.9188 86.6272 86.8226 82.7472 87.5105 87.7404 86.0095 89.6008 88.9032 91.1215 88.3995 92.6774 90.1364 83.0954 

NISE 0.00013 0.00014 0.00001 0.00035 0.0001 1 0.00011 1 0.00017 0.00023 1 0.00019 0.00025 0.00015 1 0.00018 1 0.0002 0.00032 

SNR 13.6734 11.9547 11.4491 14.2141 10.1347 11.9463 10.3263 10.2331 12.0136 12.7543 11.6926 10.3215 11.2613 11.9536 
Phase SSNR 4.7806 3.73158 4.6125 3.1058 4.4725 4.0452 4.6125 4.4952 4.7125 4.7523 4.6422 4.7652 6.2354 7.5246 
ratio 

PSNR 95.1163 90.5779 90.3838 93.1371 91.3464 86.3235 91.4206 97.5137 90.8526 91.9056 90.4513 95.8790 94.2165 90.5842 
method MSE 1 0.0019 0.00001 1 0.00025 0.0007 0.0006 0.0001 0.0003 0.0012 0.0004 0.0002 0.00007 0.00201 0.00003 1 0.00001 

Results for Hindi language speech signals are analyzed in Table A2. Tabulated last three methods give better performance in comparison to existing speech enhancement methods. 
The phase ratio, WPT fuzzy and WPT modified Wiener method give better performance in all noise types. The minimum error and maximum SNR is obtained by these methods. 
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Table A3: Analysis for Kannada language 

Non-stationary     Highly_non-stationary Mixed noise Combined 

Methods 4easurcs White Volvo-car Pink Machine- Tank Leopard Hf- Factory Buccaneer2 Babble F-16 Destroyer 16+Babble+ Reverberatio 
gun vehicle channel Floorl plane operations NOIZEUS +Babble 

Wiener SNR 7.6017 3.5582 7.6576 7.6622 3.7207 5.9474 2.5359 5.7299 4.8220 3.7551 5.0498 3.4910 8.1956 9.5624 
filtering SSNR -3.5397 -5.5023 4.5446 -2.2741 -8.7985 -8.7054 -9.3119 -6.3873 -8.3361 -7.5606 -7.2340 -8.4978 -3.2489 -2.3937 
method PSNR 92.2779 80.7037 87.2625 87.8498 83.8220 85.9774 82.9528 85.3731 85.0380 83.2968 84.7012 83.2398 87.3231 87.0917 

MSE 0.38485 5.5298 1.2213 1.0669 2.6970 1.6419 3.2946 1.8870 2.0384 3.0437 2.2027 3.0839 1 0.00012 0.00013 
Spectral SNR 6.2556 1.5567 6.8950 8.9412 3.7333 6.1608 3.3367 5.3217 5.3005 3.8123 4.9478 3.7601 8.4248 9.4716 

sub. SSNR -3.3423 -1.8671 -3.7156 -1.3608 -8.5950 -8.6361 -9.1357 -5.8031 -7.9776 -7.4597 -6.7371 -8.3921 -2.9517 -2.1880 
PSNR 92.7650 75.9668 85.7935 88.7581 82.9866 85.8404 82.9634 84.0790 84.5719 82.9892 83.7039 82.8544 87.1937 86.7558 
MSE 0.34401 .0016 1.7129 0.86552 3.2691 1.6945 3.2866 2.5420 2.2693 3.2671 2.7713 3.3701 0.00013 0.00014 
SNR 6.7167 7.2953 5.5244 4.5052 0.2638 3.0362 -2.88.47 2.4548 0.6740 1.3149 1.9604 0.8017 1.0264 4.02647 

MMSE- SSNR 4.1486 -72391 -6.1169 4.3747 -9.4416 -9.2076 -9.8242 -8.0730 -9.2351 -8.6270 -8.4698 -9.3221 -2.1284 -1.25471 
SPU PSNR 89.7986 86.4134 86.4361 85.4911 83.0486 84.4787 81.6990 84.2971 83.4242 82.8166 83.8600 83.0283 81.5524 80.5894 

MSE 0.68112 1.4851 1.4773 1.8364 3.2227 2.3185 4.3973 2.4175 2.9557 3.3995 2.6735 3.2378 1.6548 0.02584 
SNR 3.8459 8.5848 4.2253 3.4900 -1.2864 1.8426 -5.5951 1.0315 -1.0225 0.1364 0.5335 -0.6523 4.6857 7.8178 

p- SSNR -4.4832 -7.6229 -6.7727 -5.3279 -9.5828 -9.3802 -9.9002 -8.5046 -9.4467 -8.9986 -8.8132 -9.5003 -5.5187 4.2061 
MMSE PSNR 89.2921 88.3171 85.8015 84.9571 82.5828 84.0807 81.2339 83.7667 82.7996 82.6714 83.4128 82.7112 85.4535 86.5357 

MSE 0.76536 0.95802 1.7098 2.0767 3.5876 2.5410 4.8943 2.7316 3.4129 3.5151 2.9635 3.4831 0.00019 0.00014 
SNR 4.6569 7.3857 5.4695 4.4795 0.2253 3.1194 -2.8426 2.5106 0.6179 1.4515 1.9876 0.7807 5.9256 8.4662 

log- SSNR 4.2115 -7.2970 -6.1590 4.2846 -9.4587 -9.2260 -9.8240 -8.0759 -9.2728 -8.6207 -8.4999 -9.3395 4.6648 -3.5417 
MMSE PSNR 89.8575 86.6451 86.4910 85.5617 83.1091 84.6659 81.8068 84.4219 83.5054 82.9856 83.9707 83.0739 86.1397 86.7712 

MSE 6.7194 1.4079 1.4588 1.8068 3.1781 2.2207 4.2895 2.3491 2.9009 3.2698 2.6062 3.2040 0.00016 0.00014 
SNR 3.0841 1.5097 2.8283 3.3274 2.6367 2.7691 2.5399 2.6822 2.6616 2.4880 2.6119 2.4248 2.0154 1.3566 

Binary SSNR 1.0522 0.4220 1.7874 1.8841 1.2618 1.9280 1.6606 3.1854 1.0906 1.6014 1.7804 1.2665 3.8815 2.6281 
Mask PSNR 73.5976 69.6894 73.8160 73.9660 74.4778 73.7856 75.1243 73.7635 73.7463 75.5090 74.0131 74.8076 68.6602 64.3106 

(IDBM) MSE 0.0028 0.0070 0.0027 0.0026 0.0023 0.0027 0.0020 0.0027 0.0027 0.0018 0.0026 0.0021 0.0089 0.0241 
WPTIDB SNR 4.6687 1.7570 3.9168 4.6953 8.3292 3.1542 9.2608 5.8040 6.7281 4.3584 11.0907 9.5649 7.6888 3.5625 

M SSNR 3.9564 3.2950 3.5566 4.5560 3.4717 3.4227 3.4667 3.2439 3.6438 2.9957 3.5192 3.2642 2.8015 4.4039 
(Modificd PSNR 82.3113 76.3803 81.1375 82.3353 87.1359 79.7432 88.1600 83.8828 85.1592 81.8111 90.1764 88.5960 85.9215 79.3749 
Wiener) MSE 0.00004 0.0015 0.00005 0.00038 0.000126 0.00069 0.000099 0.00027 0.0002 0.00043 0.00063 0.00009 0.00017 0.0010 

SNR 9.0267 10.1691 8.3870 6.5743 9.0643 9.4675 7.6100 6.4066 7.0897 6.7260 11.3260 10.0058 7.3448 8.3019 
VPT SSNR 3.2892 3.1145 3.5144 3.0471 3.7451 3.9438 2.1116 2.0467 2.5803 0.4068 3.0762 4.1573 3.2002 5.1651 

Fuzzy PSNR 87.6504 88.6492 87.1092 82.5158 88.0233 88.4981 86.0830 84.7418 85.4955 84.9510 86.8346 85.9967 85.5591 84.0702 
MSE 0.00012 0.000089 0.00013 0.00036 0.00011 0.000092 0.00016 0.00022 0.00018 0.00021 0.00013 0.00016 0.00018 0.00026 

Phase SNR 9.8742 12.1852 12.4792 12.1752 12.8676 13.5163 9.8346 12.0837 8.5279 11.8455 12.593 11.5371 9.87461 10.54926 
ratio SSNR 4.3155 3.28721 4.1658 6.2414 4.0156 3.9454 4.2625 4.0824 4.3045 3.6847 4.2647 4.1924 5.21064 5.94152 

method PSNR 88.0207 97.5283 91.9634 94.6687 92.1754 92.9957 89.0516 91.4565 78.6791 91.2506 91.881 91.1173 90.54123 85.04697 
MSE 1  0.0007 1  0.00008 0.00005 0.0003 0.00004 0.00002 1  0.0005 0.00007 0.0002 0.00005 0.0007 0.00004 0.00001 1  0.000214 

Table A3 shows the results for Kannada language speech. All the given speech enhancement methods are analyzed in above given noise types. The phase ratio based method gives 
better performance in mixed and reverberated noise also. The maximum quality and intelligibility of speech signal is obtained by last three speech enhancement methods. 
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Table A4: Analysis for Bengali language 

Non-stationary   Highly_non-stationary Mixed noise Combined 

Volvo Leopard Hf- Factory F16 Destroyer F16+Babble Reverberation 
Methods Measures White 

car 
Pink Machinegun Tank 

vehicle channel Floorl 
Buccaneer2 Babble 

plane operation +NOIZEUS +Babble 

SNR 9.7341 8.4188 7.8274 8.4748 4.6130 3.9684 4.0583 3.8061 4.7679 1.9819 3.6708 2.6353 2.0547 0.9762 

Wiener SSNR 1.9598 3.3679 3.5685 2.0218 6.6965 6.6676 7.1603 5.3175 6.4313 6.5931 5.7850 6.8042 5.2215 4.1215 
filtering PSNR 80.0612 78.2964 78.4951 79.4160 75.9674 75.5827 75.7770 75.5336 76.2563 74.3354 75.4199 74.7088 59.0757 51.4213 

MSE 6.4116 9.6258 9.1954 8.1082 .0016 .0018 .0017 .0017 .0015 .0024 .0019 .0022 0.0804 0.4688 

SNR 7.44551 8.3623 6.8580 2.3727 7.8273 6.1189 5.8123 5.0427 5.4394 4.6330 6.2720 5.0987 5.3044 6.7434 
Spectral SSNR 4.9629 4.9172 5.3151 4.7374 5.4912 5.8794 3.7527 3.3987 3.9547 1.7579 4.8912 5.8831 2.7263 1.8538 

sub. PSNR 78.1326 78.9104 77.6812 73.1291 78.9769 77.5363 76.4736 75.1817 75.8308 74.5617 77.0122 76.4407 75.4190 72.5242 

MSE 0.00099 0.00084 0.0011 0.0032 0.00082 0.0011 0.0015 0.0020 0.0017 0.0023 0.0013 0.0015 0.0019 0.0036 

SNR 12.7022 12.0503 9.7935 8.0874 6.2262 6.5570 5.7363 8.6154 7.6350 7.1692 7.6502 4.9919 6.25849 5.29712 
SSNR 1.6627 4.3531 2.7753 3.0886 6.6188 6.2260 6.7537 4.3427 5.7593 4.6654 5.0310 6.6686 5.04691 4.68452 

Mt PSNR 82.8180 82.0668 81.0626 78.6336 77.3567 77.4294 76.9380 79.1817 78.3469 77.6973 78.3967 76.3284 79.0541 80.2791 
SPU MSE 3.3985 4.0402 5.0913 8.9068 0.0090 0.0012 0.0013 0.0013 9.5146 0.0011 9.4062 0.0015 1 0.00481 0.00561 

SNR 11.7313 11.7236 9.8611 7.1107 4.8546 5.6459 4.6536 7.4847 6.6592 6.2960 6.6497 3.8000 5.3869 8.3227 

p- SSNR 2.0948 4.8675 3.3619 3.9812 7.1398 6.6370 7.1403 5.0209 6.1725 5.3846 5.5763 7.1593 6.7063 4.5253 

MMSE PSNR 82.1312 82.0749 80.4619 77.9623 76.5364 76.9374 76.3735 78.4828 77.8284 77.3511 77.7946 75.6644 76.6621 75.2851 
MSE 3.987 4.0326 5.8464 .0010 .0014 .0013 .0015 .0015 1 .0011 .0012 .0011 .0018 0.0014 0.0019 

SNR 12.6737 12.1029 9.7501 8.0042 6.1772 6.5111 5.6043 8.5388 7.5599 7.1062 7.5834 4.8756 6.4236 8.3449 

SSNR 1.5991 4.4005 2.7020 2.8932 6.6465 6.2355 6.7993 4.3056 58063 4.6545 5.0315 6.6903 6.2155 4.1378 
log- 

PSNR 82.9003 82.2371 81.1354 78.6043 77.4170 77.4962 76.9242 79.2206 78.4008 77.7414 78.4347 76.3255 77.2707 75.0799 
MMSE 

MSE 3.3347 1 3.8848 5.0066 8.9671 1 .0012 .0012 .0013 .0013 9.3972 .0011 9.3243 1 .0015 0.0012 0.0020 

SNR 10.4650 13.6724 3.2584 7.5248 5.7311 1.4186 5.0586 7.6572 7.6724 6.3833 10.7094 7.1235 6.8069 4.2099 

Binary SSNR 5.1410 4.3587 4.5534 4.4899 4.2819 4.3638 4.7878 4.3468 4.3587 3.8701 4.5521 4.2496 4.4816 0.3313 
Mask PSNR 79.7225 83.1439 70.1273 76.4174 74.0503 65.7799 73.1795 79.9922 83.1439 74.9434 80.0734 78.3366 80.1240 77.7378 

(IDBM) MSE 0.00069 0.00032 0.0063 0.0015 0.0026 0.0172 0.0031 0.00065 1 0.00032 0.0021 0.000064 0.000954 1 0.00063 0.0109 

SNR 13.0217 10.8079 13.992 11.2802 9.7994 9.0419 9.1173 10.4611 8.4486 9.4090 10.7019 8.2558 8.5681 8.3790 
PT IDBM 

SSNR 0.3080 2.7085 1.0576 0.9435 5.3564 5.1690 5.8790 2.7444 4.7711 3.1505 3.3124 4.8539 5.0798 3.5439 
(Modified 

PSNR 86.9002 80.3661 83.8767 81.3579 79.8370 79.2191 79.3463 81.4422 80.4089 79.1612 80.6744 78.4115 78.4290 79.6531 
Wiener) 

MSE 0.0084 1 0.0064 0.0084 0.0087 1 0.0097 0.0079 0.0057 0.0067 0.0067 0.0057 0.00584 0.0068 0.00094 0.0022 

SNR 15.7162 15.3500 12.848 12.0569 11.951 10.8690 9.6597 11.2030 9.2335 11.2308 12.2646 11.3238 9.214854 9.15489 
WPT SSNR 5.4588 4.4222 5.4325 4.48236 5.3915 5.05562 5.40125 5.25525 5.4445 5.20532 5.3955 5.38287 6.1542 4.58136 

Fuzzy PSNR 85.3509 84.8811 82.5017 77.1334 82.5979 80.5967 80.1769 81.8385 82.9560 80.7697 81.8966 81.1197 86.2843 85.2641 
MSE 0.00045 0.0045 0.0005 0.0013 0.0006 0.0008 0.0002 0.00006 0.00005 0.00009 0.00005 0.0004 0.0001 0.0021 

SNR 19.5622 17.9352 14.327 12.4930 12.273 11.3285 10.879 11.8780 10.8993 12.5141 10.9248 13.7366 10.8601 10.3655 
Phase ratio SSNR 6.01847 5.08051 6.0506 .1476 5.0142 5.0486 5.6381 2.0327 4.491 2.6183 2.7650 4.5139 7.7347 3.4120 

method PSNR 89.3933 75.8323 84.0339 82.3401 79.8844 79.2745 80.0348 81.5503 80.5324 79.0098 80.5671 78.4049 88.3859 89.5645 
MSE 1 0.00008 1 0.0001 1 0.0005 1 0.00004 1 0.0004 1 0.00001 1 0.0004 0.0001 0.00004 1 0.000561 1 0.00025 0.00001 0.00094 1 0.0023 

Results for Bengali language speech signals are analyzed in Table A4. In this table last three methods give better performance in comparison to existing speech enhancement 
methods in all noise conditions. Since minimum error is obtained by WPT Fuzzy and phase ratio based methods hence these methods give good quality and intelligibility of speech 
signal 
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Table A5. Analysis for Malayalam language 

Non-stationary     Highly_non-stationary  1ixed noise Combined 

Methods Measures White Volvo car Pink Machinegun lank 
Leopard HF Factory 

Buccaneer,  Babble 
F16 Destroyer F16+Babble+ Reverberation 

vehicle channel Floorl  plane operation NOIZEUS +Babble 
SNR 8.3386 3.2876 7.2644 7.8039 4.0973 6.7857 3.3499 5.0439 4.8080 4.2180 4.5010 3.8734 7.7053 9.0658 

Wiener SSNR 4.6769 6.2425 5.7720 3.9451 9.0807 8.9841 9.2874 7.3608 8.7840 8.0084 7.8877 8.9312 4.5498 3.8215 
filtering PSNR 91.6207 81.0026 87.4165 88.3581 84.4301 87.1963 84.1213 85.3067 85.4129 84.5175 84.8072 84.1318 87.4803 87.3904 

MSE 0.44772 5.1625 1.1788 0.94901 2.3446 1.2401 2.5174 1.9161 1.8698 2.2979 2.1496 2.5113 0.00012 0.00012 

SNR 7.7486 1.3680 6.2793 8.4605 3.9340 7.0537 3.7774 4.5131 4.8290 4.2112 4.2203 3.7824 7.8240 9.0700 Spectr4l 
SSNR 4.3007 2.3181 4.7470 3.3257 9.0150 8.9744 9.2200 6.9154 8.6776 7.8795 7.6468 8.8755 4.2138 3.6692 

sub. PSNR 91.8701 76.0964 85.8430 88.9363 83.7766 87.3698 84.2692 84.0852 85.0149 84.1180 83.8672 83.6190 87.4120 87.3162 
MSE 0.42274 1 .0016 1.6935 0.83071 2.7253 1 1.1915 2.5411 2.5384 2.0492 1 2.5193 2.6691 2.8260 0.00012 0.00012 
SNR 8.6398 6.6394 5.5160 6.3220 2.3786 5.1980 0.4021 3.4174 2.9535 2.4505 2.2716 2.4264 1.26714 3.28947 

SSNR 5.8290 8.1695 7.4255 5.1739 9.3648 9.1193 9.5583 8.4954 9.1926 8.7731 8.9426 9.2985 3.02385 3.4569 
MMSE- 

PSNR 89.3776 86.5319 86.7033 87.1791 84.1693 86.0848 83.2458 85.0379 84.6837 83.9507 84.3670 84.1316 80.2.184 81.6412 SPU MSE 0.75045 1.4451 1.3892 1.2450 2.4897 1.6018 3.0797 2.0384 2.2116 2.6183 2.3789 2.5114 2.62554 1.02641 
SNR 7.5711 7.5424 4.4702 5.7538 1.3242 4.7252 0.8780 2.5042 2.0444 1.7397 1.0425 1.6149 5.0644 7.2603 

SSNR 6.3172 8.6295 7.8535 5.9717 9.4890 9.2440 9.6286 8.7644 9.3045 9.0084 9.1682 9.4003 6.8158 6.0793 
p-MMSE 

PSNR 88.6707 88.1090 86.1926 86.9980 83.9946 86.1716 82.9375 84.7784 84.4532 84.0065 83.9764 84.1129 86.0549 86.5449 
NISE 0.88311 1.0050 1  1.5625 1.2980 2.5919 1.5701 1 3.4796 2.1639 2.3322 1 2.5848 2.6028 2.5223 0.00016 0.00014 
SNR 8.5809 6.7332 5.4442 6.3351 2.2902 5.3373 0.2653 3.3448 2.8612 2.5132 2.1305 2.3371 6.0248 7.9459 

SSNR 5.8920 8.1852 7.4692 5.1548 9.3851 9.1443 9.5735 8.5205 9.2215 8.7968 8.9694 9.3205 6.2115 5.4154 
log-MMSE PSNR 89.4319 86.7463 86.7601 87.3240 84.2194 86.3925 83.3104 85.0757 84.7497 84.1466 84.3718 84.1911 86.6071 86.9083 

MSE 0.74112 1.3755 1.3711 1.2042 2.4619 1.4922 3.0342 2.0207 2.1783 2.5028 2.3763 2.4773 0.00014 0.00013 
SNR 9.1882 7.6922 7.1543 4.8812 0.3543 3.0906 4.2987 3.0804 5.0803 5.0683 7.5815 6.9937 2.012647 3.2167 

Binary 
SSNR 8.4565 7.5755 8.8555 6.3189 4.67845 4.47423 4.94521 8.70548 9.99552 8.5845 8.8358 9.84545 6.5987 6.2159 Mask 
PSNR 88.7957 101.674 92.2607 83.3720 69.5661 80.6121 89.0594 92.1407 63.0437 82.5171 81.1379 82.0707 80.5791 80.5492 

(JDBM) 
MSE 0.85804 0.044228 0.38638 2.9915 0.0072 5.6477 0.80749 0.39720 0.0323 0.0364 0.2569 0.40365 0.138425 0.0541 
SNR 9.7046 7.5657 7.8276 6.0655 7.5683 7.1296 6.5329 4.9588 8.9836 5.8393 8.0033 7.4408 2.1555 6.4124 WV! IDBM 

SSNR 12.9368 10.0749 8.1453 6.4178 6.2014 7.0760 7.7107 8.8178 10.7923 9.8429 9.2661 9.1695 7.8682 6.3302 
(Modified 

PSNR 76.8685 71.010 76.3485 80.8055 80.6173 76.6941 75.9748 76.2272 76.0937 85.4066 87.0553 86.0568 89.7872 85.2939 
Wiener) 

MSE 0.0013 0.0052 0.0015 0.0027 0.0018 0.0014 0.0016 0.0016 0.0016 0.0019 0.0013 0.0016 0.0068 0.0192 
SNR 10.3962 8.6010 9.1027 7.9547 7.9385 8.5263 6.8505 5.0663 10.0125 8.2008 8.2886 7.7024 8.6353 7.2343 

WPT SSNR 11.4036 11.5683 10.8277 8.7720 8.8114 9.8257 9.9731 9.6539 10.0624 10.2539 9.8434 90.0154 7.4011 7.7125 
Fuzzy PSNR 82.4479 85.5104 88.5480 81.0608 81.4980 81.2010 85.2336 61.9647 84.6414 86.9602 82.3431 76.9894 87.7181 88.3249 

MSE 0.0004 0.00018 0.00091 0.0509 0.0730 0.0049 0.000195 0.0414 0.2233 0.0131 0.00038 0.0013 0.00011 0.0191 
SNR 11.9755 9.2960 10.3089 10.1921 8.8545 9.3128 7.8605 6.2820 10.4491 9.2709 10.0469 94.5501 10.7794 9.9710 

Phaseratio SSNR 14.8700 14.8870 13.5666 4.6198 12.8472 10.8129 10.5201 11.8945 11.4382 11.8345 9.0205 9.8514 8.6432 8.6603 
method PSNR 88.4414 88.6441 90.8932 83.4884 88.8264 89.1323 87.1748 85.4759 86.019 90.4264 87.6660 87.2031 96.0606 94.8282 

MSE 0.00009 0.000089 0.00011 0.00029 0.00008 0.000079 0.000013 0.00018 0.00017 0.00019 0.00011 0.00013 0.00016 1  0.00022 

Table A5 shows the results obtained by single-channel speech enhancement methods for Malayalam language. These results are obtained in various noise types and results are 
obtained in quality and intelligibility measure parameters. The last three speech enhancement methods give better quality and intelligibility of the speech signal in all noise 
conditions. 
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APPENDIX - B 

Table B 1: Speech Intelligibility Evaluation for Hindi Language 

Methods Measures Babble Airport Car Exhibi- 
tion 

Resta- 
urant 

White Pink Railway 
 Platform 

SS Boll MOS 0.3350 0.3260 0.3498 0.3964 0.3290 0.3444 0.3342 0.3901 
SI! 0.2248 0.1982 0.1870 0.4894 0.2286 0.3169 0.1926 0.3519 
STOI 0.8234 0.7796 0.8024 0.8436 0.7922 0.8181 0.7948 0.7961 

MULTI- MOS 0.2669 0.2883 0.3142 0.2674 0.2596 0.2943 0.2989 0.3670 
BAND 
SS 

SII 0.4135 0.3529 0.3583 0.3524 0.3257 0.2087 0.2427 0.3581 
510! 0.7474 0.7269 0.7475 0.6935 0.7141 0.7185 0.7457 0.8053 

Berouti MOS 0.2621 0.2809 0.2909 0.2606 0.2566 0.2897 0.2894 0.3614 
SS SII 0.4184 0.3577 0.3644 0.3923 0.3523 0.2499 0.2687 0.3692 

STOI 0.7571 0.7459 0.7668 0.7327 0.7392 0.7600 0.7716 0.8284 

Parametric MOS 0.2688 0.2892 0.3260 0.2807 0.2594 0.3175 0.3201 0.3686 
SS SI! 0.4289 0.3733 0.3350 0.3881 0.3735 0.3173 0.2857 0.3568 

STOI 0.7348 0.7035 0.7049 0.6897 0.6669 0.7096 0.7092 0.7668 

Scalart MOS 0.2667 0.2893 0.3152 0.2845 0.2699 0.3444 0.3428 0.3780 
SS SI! 0.4381 0.3792 0.3636 0.4873 0.4214 0.4131 0.3311 0.3895 

STOI 0.7630 0.7486 0.7629 0.7553 0.7400 0.7961 0.7884 0.8363 

WIENER MOS 0.3784 0.3459 0.3477 0.3683 0.3338 0.3490 0.3663 0.3711 
SII 0.1595 0.1620 0.1721 0.3487 0.1810 0.2483 0.1753 0.1793 
STOI 0.8390 0.8393 0.8408 0.8496 0.8185 0.8484 0.8480 0.8548 

MMSE MOS 0.3958 0.3716 0.3831 0.4198 0.3450 0.3541 0.3746 0.4270 
SI! 0.1945 0.1694 0.1603 0.3934 0.1960 0.2775 0.1858 0.1861 
STOI 0.8515 0.8397 0.8540 0.8773 0.8232 0.8414 0.8500 0.8670 

ICS MOS 0.2195 0.2191 0.2157 0.2232 0.2257 0.2159 0.2188 0.2153 
SII 0.0251 0.0370 0.0276 0.0308 0.0399 0.0249 0.0264 0.0587 
STOI 0.4639 0.4447 0.4926 0.4888 0.4633 0.4446 0.4844 0.4521 

IdBM MOS 0.6082 I 0.6082 0.5875 0.6035 0.6123 0.6013 0.6046 0.6539 
SII 0.4538 I 0.3867 0.3909 0.7030 0.4819 0.5244 0.4027 0.4034 
STOI 0.9605 I 0.9456 0.9418 0.9641 0.9602 0.9655 0.9539 0.9545 

WPT MOS 0.5016 0.5165 0.4910 0.6161 0.5512 0.5966 0.5209 0.5330 
Modified SI! 0.4385 0.3811 0.3761 0.6990 0.4808 0.5155 0.3937 0.3927 
Wiener STOI 0.9600 0.9487 0.9345 0.9701 0.9590 0.9625 0.9491 0.9391 

WPT MOS 0.2901 0.3152 0.3152 0.3144 0.2900 0.3946 0.3891 0.3618 
FUZZY SI! 0.3882 0.3593 0.3593 0.5705 0.4286 0.4844 0.3675 0.3566 

STOI 0.7474 0.7482 0.7482 0.7952 0.7680 0.8331 0.8228 0.8152 

WPT MOS 0.2686 0.2877 0.2973 0.3012 0.2662 0.3842 0.3401 0.3588 
FUZZY SI! 0.3191 0.2673 0.2667 0.5589 0.3809 0.4449 0.2804 0.2556 
modified STOI 0.7750 0.7588 0.8156 0.8181 0.7831 0.8742 0.8372 0.8529 
Wiener  

Phase ratio MOS 0.2594 0.2795 0.2916 0.3064 0.2646 0.3262 0.2915 0.2996 
based 
method 

SI! 0.3615 0.3080 0.3095 0.5731 0.4085 0.4876 0.3256 0.2925 
STOI 0.7926 0.7731 0.7970 0.7994 0.7855 0.8263 0.8169 0.8122 
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Pd  

Table 132: Speech Intelligibility Evaluation for Kannada Lanuae 

Methods Measures Babble Airport Car 
Exhibi- 
tion 

I  Resta- 
urant White 

______ 

Pink Railway 
 Platform 

SSBoll MOS 0.2923 0.2509 0.2621 0.2431 0.2792 0.2627 0.2728 0.3668 
SII 0.2256 0.1323 0.0684 0.1641 0.3752 0.0888 0.0666 0.2399 
STOI 0.6589 0.6331 0.6350 0.6781 0.7129 0.6871 0.7291 0.7777 

MULTI- 
BAND 

MOS 0.3233 0.3256 0.3371 0.3013 0.3178 0.3448 0.3666 0.4000 
SII 0.2090 0.2104 0.1759 0.2866 0.2280 0.2017 0.1892 0.2066 

SS STOI 0.6579 0.6716 0.6540 0.6573 0.6355 0.6788 0.6880 0.7268 

MOS 0.3169 0.3320 0.3438 0.3038 0.3206 0.3422 0.3754 0.4214 
Berouti SI! 0.2554 0.2559 0.2180 0.3530 0.2764 0.2626 0.2494 0.2505 
SS STOI 0.6838 0.7016 0.6944 0.6934 0.6746 0.7119 0.7138 0.7806 

Parametric 
MOS 0.3016 0.2917 0.3067 0.2784 0.2985 0.2993 0.3216 0.4005 
sii 0.1576 0.1672 0.1189 0.2071 0.4114 0.1254 0.1029 0.2965 

SS STOI 0.5988 0.6578 0.6562 0.7004 0.7031 0.7119 0.7412 0.7694 

MOS 0.3034 0.3260 0.3390 0.3118 0.3265 0.3306 0.3500 0.4419 
Scalart 

_
Sil 
__________ 

0.2796 0.3327 0.2867 0.4449 0.4515  0.3685 0.3278 0.3744 
SS STOI 0.6585 0.7353 0.7369 0.7338 0.7354 0.7541 0.7665 0.8327 

WIENER MOS 0.4051 0.3863 0.3992 0.4092 0.3854 0.4111 0.4148 0.4485 
SI! 0.2064 0.1709 0.1565 0.3544 0.1912 0.2264 0.2090 0.2054 
STOI 0.8705 0.8578 0.8452 0.8604 0.8429 0.8537 0.8606 0.8760 

MMSE MOS 0.4432 0.4027 0.4629 0.4591 0.4236 0.4715 0.4612 0.5052 
SII 0.2179 0.1952 0.1755 0.3618 0.2116 0.2986 0.2224 0.2144 
STOI 0.8679 0.8547 0.8597 0.8823 0.8612 0.8669 0.8705 0.8757 

ics MOS 0.2288 0.2189 0.2241 0.2198 0.2185 0.2188 0.2175 0.2139 
SII 0.0189 0.0422 0.0407 0.0379 0.0315 0.0217 0.0416 0.0311 
STOI 0.5337 0.5300 0.5768 0.4677 0.5122 0.4835 0.5314 0.5291 

IdBM MOS 0.6450 0.6650 0.6438 0.6284 0.6507 0.6566 0.6448 0.7072 
SII 0.4448 0.4293 0.3803 0.8058 0.4806 0.5423 0.4626 0.4107 
STOI 0.9519 0.9490 0.9439 0.9569 0.9550 0.9471 0.9460 0.9554 

WPT MOS 0.5215 0.5625 0.5550 0.6410 0.5558 0.6702 0.5958 0.5848 
IdBM SII 0.4244 0.4097 0.3628 0.7766 0.4631  0.5266 0.4422 0.3934 

STOI 0.9568 0.9430 0.9398 0.9659 0.9546 0.9590 0.9486 0.9480 

WPT 
FUZZY 

MOS 0.3442 0.3577 0.3879 0.3335 0.3358 0.3670 0.4307 0.4449 
SI! 0.3983 0.3912 0.3389 0.5590 0.4384 0.5124 0.4203 0.3654 
STOI 0.7444 0.7618 0.7665 0.7798 0.7456 0.8027 0.8061 0.8117 

WPT MOS 0.3329 0.3561 0.3814 0.3539 0.2973 0.4567 0.4411 0.4344 
FUZZY SI! 0.2937 0.2996 0.2733 0.5133 0.3982 0.4742 0.3244 0.2743 
modified STOI 0.7685 0.7771 0.8012 0.8005 0.7509 0.8467 0.8377 0.8444 
Wiener 
Phaseratio MOS 0.3108 0.3469 0.3416 0.3609 0.2928 0.4115 0.3774 0.3506 
based 
method 

S!I 0.3657 0.3662 0.3224 0.5271 0.4367 0.5027 0.3881 0.3215 
STOI 0.8149 0.8081 0.8165 0.8215 0.7803 0.8570 0.8424 0.8399 
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Table 133: Speech Intelligibility Evaluation for Bengali Language 

Methods Measures Babble Airport Car Exhibi- 
tion 

Resta- 
urant 

White Pink Railway 
 Platform 

SS Boll MOS 0.3052 0.2710 0.2653 0.2607 0.2753 0.2741 0.2738 0.2981 
SII 0.3781 0.1562 0.1044 0.2339 0.2194 0.0495 0.0479 0.1396 
STOI 0.8024 0.7134 0.7996 0.6867 0.6663 0.8342 0.8328 0.7498 

MULTI- MOS 0.3174 0.3383 0.3540 0.3316 0.3101 0.3440 0.3875 0.4254 
BAND SII 0.2787 0.2040 0.1887 0.2994 0.2042 0.1945 0.1980 0.2057 
SS STOI 0.7558 0.7406 0.7929 1 0.7462 0.7016 0.7586 0.7922 0.8253 

Berouti MOS 0.3046 0.3223 0.3374 0.3104 0.3022 0.3427 0.3730 0.4171 
SS SII 0.2944 0.2194 0.2081 0.2311 0.2250 

t  
0.2258 0.2196 

STOI 0.7790 0.7671 0.8210 
+~)

q 0.7386 0.7968 0.8301 0.8598 

Parametric MOS 0.3083 0.2998 0.3248 0.3033 0.2743 0.3311 0.3405 0.3761 
SS SII 0.3960 0.1689 0.1063 0.2976 0.2664 0.0596 0.0548 0.1477 

STOI 0.7644 0.7083 0.8126 0.7098 0.6303 0.8151 0.8232 0.7555 

Scalart 
SS 

MOS 0.3161 0.3008 0.3087 [ 0.2966 0.2795 0.2970 0.3220 0.3894 
SII 0.4020 0,2465 0.2207 J 0.4040 0.3425 0.2748 0.2345 0.2384 
STOI 0.7951 0.7673 0.8246 J 0.7873 0.7481 0.8275 0.8541 0.8504 

WIENER MOS 0.3751 0.4006 0.4140 0.4277 0.4162 0.4106 0.3722 0.4260 
SII 0.1704 0.1224 0.1234 0.2509 0.1664 0.1747 0.1239 0.1277 
STOI 0.8793 0.8781 0.8791 0.8599 0.8718 0.8675 0.8759 0.8871 

MMSE MOS 0.4380 0.4493 0.4395 0.4937 0.4431 0.4550 0.4218 0.4840 
SII 0.1867 0.1371 0.1219 0.3290 0.1929 0.2335 0.1524 0.1369 
STOI 0.8838 0.8819 0.8706 0.9106 0.8733 0.8920 0.8878 0.8849 

ICS MOS 0.2214 0.2177 0.2197 0.2206 0.2201 0.2176 0.2241 0.2141 
SII 0.0200 0.0157 0.0132 0.0378 0.0254 0.0098 0.0118 0.0137 
STOI 0.4483 0.5075 0.5115 0.4360 0.4703 0.4426 0.5142 0.5187 

IdBM MOS 0.4613 0.4637 0.4577 0.4636 0.4699 0.4705 [0.4637 0.4671 
SII 0.4112 0.3197 0.3046 0.6472 0.4244 0.4444 [0.3511 0.3055 
STOI 0.9757 0.9686 0.9665 0.9705 0.9732 0.9714 [0.9705 0.9660 

WPT 
IdBM 

MOS 0.6742 0.6994 0.6749 0.7818 0.7012 0.7758 0.7170 0.6859 
SII 0.3975 0.3024 0.2920 0.6262 0.4079 0.4309 0.3367 0.2930 
STOI 0.9745 0.9685 0.9648 0.9793 0.9740 0.9809 0.9733 0.9595 

WPT MOS 0.3046 0.3170 0.3300 0.3034 0.2798 0.3184 0.3539 0.3791 
FUZZY SII 0.3780 0.2819 0.2666 0.4660 0.3780 0.4084 0.3136 0.2655 

STOI 0.7935 0.7944 0.8440 0.8115 0.7893 0.8680 0.8818 0.8644 

WPT MOS 0.3043 0.3238 0.3468 0.3414 0.2577 0.4367 0.4360 0.4451 
FUZZY SI! 0.2835 0.2370 0.2477 0.4392 0.3277 0.3795 0.2633 0.2351 
modified STOI 0.8171 0.8068 0.8663 0.8281 0.8114 0.8823 0.8880 0.8977 
Wiener  

Phase ratio 
based 

MOS 0.3031 0.3160 0.3397 0.3403 0.2505 0.4316 0.3590 0.3371 
SII 0.3294 0.2688 0.2714 0.4575 0.3685 0.4205 0.3046 0.2589 

method STOI 0.8282 0.8192 0.8568 0.8252 0.8156 0.8741 0.8678 0.8585 
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Table 134: Speech Intelligibility Evaluation for Malavalam Lanuae 
Methods Measures Babble Airport Car Exhibi- 

tion 
Resta- 
urant 

White Pink Railway 
 Platform 

SS Boll MOS 0.3020 0.2771 0.2656 0.2743 0.2903 0.2765 0.2693 0.3325 
SII 0.3626 0.2585 0.1167 0.2628 0.3029 0.0289 0.1119 0.2639 
STOI 0.7122 0.6964 0.7169 0.7409 0.6877 0.8042 0.7598 0.7263 

MULTI- MOS 0.3137 0.3134 0.3401 0.2951 0.3129 0.3185 0.3383 0.3941 
BAND 
SS 

Sil 0.2441 0.1714 0.1681 0.2509 0.2144 0.2024 0.1608 0.2300 
STOI 0.6216 0.5941 0.6490 0.6366 0.6254 0.6755 0.6578 0.6964 

Berouti MOS 0.3127 0.3215 0.3364 0.3044 0.3106 0.3326 0.3596 0.3966 
SS SII 0.2852 0.2255 0.2066 0.3213 0.2689 0.2639 0.2092 0.2785 

STOI 0.6633 0.6486 0.6997 0.6840 0.6768 0.7320 0.7168 0.7503 

Parametric 
SS 

MOS 0.3035 0.2964 0.3042 0.2968 0.2871 0.3071 0.3133 0.3745 
SlI 0.3548 0.2707 0.1176 0.2621 0.3297 0.0272 0.1223 0.2742 
STOI 0.6312 0.6884 0.7185 0.6897 0.6687 0.8117 0.7585 0.7389 

Scalart MOS 0.3178 0.3242 0.3335 0.2973 0.3106 0.3039 0.3566 0.4170 
SS SII 0.4189 0.3597 0.2723 0.4982 0.4280 0.3505 0.3086 0.3708 

STOI 0.7113 0.7234 0.7521 0.7647 0.7182  0.8088 0.7954 0.7809 

WIENER MOS 0.3834 0.4146 0.4149 0.4273 0.4471 0.4331 0.3832 0.4356 
SII 0.1919 0.1808 0.1676 0.3077 0.2163 0.2598 0.1519 0.2180 
STOI 0.8587 0.8591 0.8621 0.8519 0.8602 0.8611 0.8486 0.8647 

MMSE MOS 0.4292 0.4441 0.4846 0.4784 0.4514 0.4814 0.4490 0.4824 
SII 0.1829 0.1799 0.1821 0.3596 0.2158 0.2885 0.1878 0.2240 
STOI 0.8637 0.8545 0.8409 0.8817 0.8564 0.8682 0.8481 0.8533 

ICS MOS 0.2203 0.2157 0.2237 0.2216 0.2212 0.2183 0.2166 0.2161 
SI! 0.0268 0.0300 0.0341 0.0232 0.0349 0.0388 0.0259 0.0228 
STOI 0.4665 0.4787 0.5322 0.4051 0.4620 0.4412 0_. 4-9-0  _37 0.4556 

IdBM MOS 0.6746 0.7095 0.6857 0.7416 0.7258 0.7454 0.7174 10.7434 
SII 0.4527 0.4274 0.3655 0.7189 0.5124 0.5665 0.4055 0.4386 
STOI 0.9461 0.9369 0.9215 0.9650 0.9456 0.9543 0.9375 0.9359 

WPT 
IdBM 

MOS 0.5878 0.6292 0.5972 0.7468 0.6472 0.7363 0.6402 0.6689 
SI! 0.4280 0.4075 0.3502 0.6954 0.4876 0.5675 0.4103 0.4158 
STOI 0.9376 0.9227 0.9107 0.9696 0.9416 0.9546 0.9281 0.9233 

WPT MOS 0.3217 0.3378 0.3480 0.3480 0.3077 0.3396 0.3896 0.4236 
FUZZY SII 0.3828 0.3805 0.3229 0.3229 0.4385 0.5064 0.3647 0.3821 

STOI 0.7336 0.7430 0.7519 0.7519 0.7508 0.8386 0.8203 0.7923 

WPT MOS 0.3085 0.3571 0.3537 0.3493 0.2896 0.4512 0.4530 0.4735 
FUZZY SI! 0.2433 0.2685 0.2625 0.4887 0.3049 0.4174 0.2761 0.2820 
modified 
Wiener 

STOI 0.7589 0.7464 0.7737 0.8333 0.7654 0.8746 0.8242 0.8117 

Phase ratio 
based 

MOS 0.3190 0.3744 0.3599 0.3943 0.3017 10.4821 0.4135 0.3871 
51! 0.2700 0.3062 0.2910 0.5571 0.3602 f 0.4866 0.3103 0.2919 

method STOI 0.7895 0.7726 0.7825 0.8444 0.7832 1 0.8732 0.8281 0.8016 

t 

163 



Table B5: Speech Intelligibility Evaluation for Telgu Language 

Methods Measures Babble Airport Car 

_______ 

Exhibi- 
tion 

Resta- 
urant 

White Pink Railway 
 Platform 

SS Boll MOS 0.2635 0.2615 0.2531 0.2425 0.2270 0.2600 0.3293 0.2828 
SII 0.2936 0.1779 0.0358 0.1827 0.1170 0.0315 0.0007 0.0746 
STOI 0.5415 0.5299 0.4963 0.4870 0.4261 0.6129 0.6202 0.6234 

MULTI- MOS 0.2949 0.2797 0.3096 0.2641 0.2854 0.3103 0.3308 0.3948 
BAND SI! 0.3351 0.0979 0.1015 0.2606 0.1584 0.1369 0.0988 0.1321 
SS STOI 0.5280 0.4539 0.4920 0.4800 0.4619 0.5353 0.5248 0.5738 

Berouti MOS 0.3005 0.2801 0.3112 0.2663 0.2854 0.2982 0.3256 0.3911 
SS SII 0.3726 0.1340 0.1385 0.3122 0.1984 0.1827 0.1410 0.1668 

STOI 0.5545 0.4658 0.5120 0.5015 0.4738 0.5427 0.5439 0.5963 

Parametric MOS 0.2661 0.2695 0.2676 0.2698 0.2458 0.2663 0.3461 0.3215 
SS SI! 0.2200 0.1891 0.0264 0.2338 0.1112 0.0445 0.0025 0.0812 

STOI 0.4736 0.4966 0.5382 0.5105 0.4429 0.6146 0.6170 0.6034 

Scalart MOS 0.2904 0.2997 0.2877 0.2748 0.2704 0.2881 0.3030 0.3472 
SS SlI 0.4166 0.2692 0.1911 0.3944 0.2939 0.2806 0.2119 0.2253 

STOI 0.5537 0.5377 0.5453 0.5789 0.5076 0.5900 0.5726 0.6069 

WIENER MOS 0.4352 0.4362 0.4234 0.4459 0.4510 0.4207 0.4186 0.4907 
511 0.2176 0.1204 0.1056 0.3337 0.2291 0.2151 0.1786 0.1219 
STOI 0.7326 0.7487 0.7388 0.7327 0.7522 0.7151 0.7083 0.7779 

MMSE MOS 0.4287 0.4721 0.4608 0.4757 0.4581 0.4738 0.4556 0.4942 
SI! 0.2526 0.1232 0.1199 0.3757 0.2340 0.2782 0.1546 0.1401 
STOI 0.7589 0.7589 0.7531 0.7687 0.7517 0.7325 0.7215 0.7749 

ICS MOS 0.2227 0.2243 0.2208 0.2236 0.2275 0.2187 0.2186 0.2189 
SII 0.0307 0.0244 0.0230 0.0316 0.0337 0.0111 0.0529 0.0219 
STOI 0.3743 0.4262 0.4280 0.3365 0.4071 0.3014 0.3860 0.4261 

IdBM MOS 0.6398 0.6686 0.6466 0.6747 0.6688 0.7245 0.6738 0.6997 
SI! 0.5390 0.3364 0.3132 0.8754 0.5534 0.5758 0.4149 0.3137 
STOI 0.8893 0.8848 0.8691 0.8936 0.8962 0.8821 0.8650 0.8918 

WPT MOS 0.7128 0.7314 0.7228 0.7818 0.7208 0.7852 0.7474 0.7353 
IdBM SII 0.5189 0.3169 0.2991 0.8436 0.5281 0.5550 0.3877 0.3032 

STOI 0.9169 0.9097 0.8973 0.9299 0.9183 0.9232 0.9121 0.8981 

WPT MOS 0.3029 0.3156 0.3370 0.2908 0.2965 0,3317 0.3823 0.3979 
FUZZY SI! 0.4759 0.2957 0.2766 0.5840 0.4829 0.5338 0.3473 0.2688 

STOI 0.5907 0.5732 0.5956 0.6091 0.5796 0.6515 0.6334 0.6338 

WPT 
FUZZY 

MOS 0.3120 0.3487 0.3605 0.3287 0.2923 0.4750 0.4983 0.5029 
SII 0.3820 0.2385 0.2532 0.5832 0.4511 0.5253 0.2682 0.2212 

modified STOI 0.6197 0.5924 0.6382 0.6404 0.5967 0.7062 0.7000 0.7137 
Wiener  

Phaseratio MOS 0.3286 0.3632 0.3816 0.3680 0.2950 0.4968 0.4532 0.4113 
based 
method 

SI! 0.4667 0.2937 0.2913 0.6002 0.5153 0.5609 0.3437 0.2655 
STOI 0.6626 0.6542 0.6912 0.6576 0.6234 0.7330 0.7315 0.7209 
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Table 136: Speech Intelligibility Evaluation for Tamil Lanuae 
Methods Measures Babble Airport Car Exhibi- 

tion 
Resta- 
urant 

White Pink Railway 
 Platform 

SS Boll MOS 0.3 175 0.3274 0.3275 0.2490 0.2883 0.2529 0.2713 0.4282 
SII 0.5834 0.3536 0.3221 0.2993 0.6181 0.1520 0.1797 0.3446 
STOI 0.7754 0.8135 0.8261 0.6585 0.7993 0.7096 0.7194 0.8704 

MULTI- MOS 0.3085 0.3046 0.2964 0.2840 0.2742 0.3066 0.3316 0.4158 
BAND 
SS 

SI! 0,5094 0.2918 0.1695 0.2433 0.3930 0.1793 0.1652 0.3675 
STOI 0.7499 0.7241 0.6643 0.6593 0.7112 0.7143 0.7288 0.8665 

Berouti MOS 0.3065 0.3040 0.3034 0.2916 0.2778 0.3215 0.3362 0.3960 
SS SII 0.5236 0.3082 0.1996 0.2865 0.4217 0.2210 0.2014 0.3727 

STOI 0.7616 0.7623 0.7256 0.7045 0.7394 0.7582 0.7704 0.8667 

Parametric MOS 0.3052 0.2992 0.3155 0.2705 0.2707 0.2893 0.2949 0.3876 
SS SII 0.5882 0.3667 0.3263 0.2968 0.6373 0.1741 0.2083 0.3374 

STOI 0.7413 0.7563 0.7610 0.6471 0.7637 0.7178 0.7194 0.8163 

Scalart MOS 0.3188 0.3224 0.3362 0.3071 0.2950 0.3478 0.3599 0.4020 
SS SIL 0.5950 0.3820 0.3580 0.4913 0.6438 0.3870 0.3210 0.3675 

STOI 0.7747 0.7901 0.8092 0.7537 0.7947 0.8085 0.8127 0.8585 

WIENER MOS 0.4003 0.4367 0.4380 0.4052 0.4344 0.4131 0.4481 0.4539 
SII 0.2357 0.1557 0.1531 0.2932 0.2508 0.2393 0.1911 0.1408 
STOI 0.8551 0.8588 0.8558 0.8249 0.8555 0.8463 0.8642 0.8752 

MMSE MOS 0.4104 0.4402 0.4587 0.4296 0.4083 0.4395 0.4550 0.4559 
SII 0.2837 0.1477 0.1496 0.4290 0.2729 0.3028 0.1780 0.1166 
STOI 0.8688 0.8643 0.8635 0.8708 0.8578 0.8591 0.8710 0.8468 

ICS MOS 0.2159 0.2126 0.2140 0.2220 0.2177 0.2183 0.2141 0.2096 
SII 0.0312 0.0357 0.0355 0.0175 0.0264 0.0222 0.0382 0.0424 
STOI 0.4310 0.4023 0.4520 0.3985 0.3783 0.3734 0.4227 0.3852 

IdBM MOS 0.6271 0.6280 0.6113 0.6173 0.6313 0.6446 0.6266 0.6645 
SII 0.6012 0.3925 0.3828 0.7673 0.6526 0.6845 0.4419 0.3811 
STOI 0.9590 0.9493 0.9404 0.9673 0.9597 0.9672 0.9530 0.9548 

WPT 
IdBM 

MOS 0.5871 0.5689 0.5313 0.6794 0.5976 0.7248 0.5782 0.5728 
SII 0.5796 0.3721 0.3602 0.7504 0.6278 0.6581 0.4157 0.3655 
STOI 0.9586 0.9487 0.9353 0.9737 0.9647 0.9685 0.9524 0.9397 

WPT MOS 0.3069 0.3194 0.3245 0.3164 0.2883 0.3658 0.3883 0.3709 
FUZZY Sf1 0.5478 0.3393 0.3182 0.6750 0.5875 0.6411 0.3670 0.2996 

STOI 0.7553 0.7837 0.7942 0.7946 0.7820 0.8511 0.8492 0.8253 

WPT MOS 0.3355 0.3527 0.3576 0.3697 0.2990 0.5150 0.4730 0.4230 
FUZZY SI! 0.4137 0.2623 0.2648 0.6837 0.5732 0.6202 0.2751 0.2334 
modified STOI 0.8102 0.8301 0.8525 0.8445 0.8280 0.9156 0.8999 0.8832 
Wiener 
Phase ratio MOS 0.3457 0.3540 0.3549 0.3798 0.3040 0.4860 0.4276 0.3972 
based SII 0.5121 0.3283 0.3282 0.6905 0.6134 0.6649 

1  

0.3628 0.2761 
method STOI 0.8158 0.8229 0.8413 0.8149 0.8209 0.8863 0.8754 0.8701 
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Table B7: Speech Intelligibility Evaluation for Marathi Language 

Methods Measures Babble Airport Car Exhibi- 
tion 

Resta- 
urant 

White Pink Railway 
Platform 

SSBo1l MOS 0.3435 0.3554 0.3552 0.3115 0.3439 0.3528 0.3842 0.5097 
SlI 0.3918 0.2216 0.1653 0.2308 0.3457 0.1683 0.1686 0.2278 
STOI 0.6665 0.6604 0.6794 0.7160 0.6963 0.6693 0.7009 0.7645 

MULTI- MOS 0.3836 0.4254 0.4350 0.4026 0.3720 0.4166 0.4576 0.5019 
BAND SII 0.2803 0.2061 0.1762 0.2921 0.3168 0.1976 0.1897 0.2013 
SS STOI 0.6354 0.6446 0.6513 0.6601 0.6766 0.6722 0.6655 0.7026 

Berouti MOS 0.3615 0.3965 0.4143 0.3810 0.3583 0.3967 0.4336 0.4965 
SS SII 0.3029 0.2160 0.1972 0.3464 0.3288 0.2270 0.2111 0.2113 

[STOI 0.6390 0.6565 0.6558 0.6715 0.6877 0.6863 0.6836 0.7099 

Parametric MOS 0.3646 0.3774 0.3882 0.3632 0.3519 0.3997 0.4209 0.5409 
SS SIt 0.4004 0.2304 0.1722 0.2609 0.3505 0.2064 0.1887 0.2300 

STOI 0.6611 0.6593 0.6690 0.7180 0.6750 0.6837 0.6939 0.7323 

Scalart MOS 0.3654 0.3846 0.4356 0.3544 0.3625 0.3922 0.4464 0.4883 
SS SII 0.4082 0.2434 0.2242 0.3793 0.3752 0.3204 0.2615 0.2364 

STOI 0.6681 0.6700 0.6846 0.7093 0.6899 0.7104 0.7142 0.7176 

WIENER MOS 0.5135 0.5314 0.5138 0.5406 0.5189 0.5276 0.4832 0.5050 

SI! 0.1617 0.1125 0.1058 0.3176 0.1584 0.1861 0.1203 0.1029 

STOI 0.7822 0.7935 0.7945 0.7996 0.7915 0.7987 0.7740 0.7959 

MMSE MOS 0.5726 0.5839 0.6065 0.5715 0.5512 0.5808 0.5219 0.5813 

SI! 0.2010 0.1215 0.1143 0.3204 0.1704 0.2279 0.1299 0.1277 

STOI 0.8022 0.7998 0.7803 0.8242 0.7956 0.8300 0.7727 0.7987 

ICS MOS 0.2291 0.2244 0.2230 0.2328 0.2302 0.2204 0.2189 0.2190 

SII 0.0235 0.0190 0.0172 0.0322 0.0133 0.0159 0.0223 0.0140 

STOI 0.4736 0.4808 0.4899 0.4040 0.4231 0.3694 0.4777 0.4358 

IdBM MOS 0.7203 0.7133 0.7210 0.6921 0.7191 0.7211 0.7212 0.7524 

SIT 0.4206 0.2577 0.2800 0.8159 0.3915 0.4366 0.3061 0.2438 

STOI 0.8796 0.8560 0.8631 0.9019 0.8866 0.8892 0.8650 0.8783 

WPT MOS 0.7099 0.7194 0.7174 0.7951 0.7370 0.7893 0.7444 0.7374 

1dBM SIT 0.4012 0.2461 0.2661 0.7871 0.3763 0.4190 0.2907 02360 

STOI 0.9054 0.8880 0.8922 0.9191 0.9010 0.9167 0.8972 0.8923 

WPT MOS 0.3343 0.4112 0.4199 0.3946 0.3718 0.4046 0.4640 0.4903 
FUZZY SII 0.3613 0.2292 0.2328 0.4590 0.3513 0.3955 0.2649 0.2158 

STOI 0.6515 0.6586 0.6720 0.7071 0.6811 0.7433 0.7202 0.6816 

WPT MOS 0.3484 0.4129 0.4188 0.4392 0.3456 0.5058 0.5165 0.5262 

FUZZY SI! 0.2722 0.1910 0.2005 0.4171 0.3254 0.3658 0.2138 0.1985 
modified STOI 0.7027 0.6980 0.7235 0.7640 0.7342 0.7738 0.7748 0.7403 
Wiener  

Phase ratio MOS 0.3738 0.3735 0.3773 0.4538 0.3581 0.5097 0.4676 0.4389 
based SIT 0.3376 0.2180 0.2261 0.4505 0.3613 0.4148 0.2532 0.2066 
method STOI 0.7339 0.7344 0.7503 0.7853 0.7464 0.8020 0.7995 0.7605 
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Appendix B shows the intelligibility scores obtained by different speech enhancement 

methods for seven major Indian languages. The commonly used intelligibility measure 

parameters such as MOS, Sil and STOI are taken for intelligibility scores calculation. The 

intelligibility scores are measured in the range of 0 to 1. The higher value (near to 1) shows 

speech signal of good intelligibility and vice versa. 

The seven major Indian languages are taken for intelligibility analysis. The results of 

intelligibility measure parameters are given in Tables from Bi to B7. WPT modified Wiener 

and Phase ratio based speech enhancement methods show the better intelligibility 

improvement in all Indian languages. 
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