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Abstract 

 

This work addresses the problem of anomaly detection in surveillance videos. To 

understand the challenges in this field, a comprehensive review of literature in the 

field was carried out. A suitable base system was selected from literature and 

analysed in depth. Then an approach utilizing the Histogram of Optical Flow (HOF) 

and Support Vector Data Description (SVDD) was proposed to overcome the 

shortcomings of the base system and improve its performance.  

In the pre-processing stage, HOF was used to extract motion information (“events”) 

from video data. These events were then described using a compact feature vector, 

which encoded both spatial and temporal information. An SVDD, with a non-linear 

kernel for increased flexibility, then learnt a spherically shaped boundary around the 

dataset, which was then used to identify anomalous behaviour.  

The performance of the proposed approach was evaluated on a publicly available 

benchmark dataset. The strengths of the approach are its flexibility in detecting a 

broad range of anomalies, its unsupervised learning method and its ability to learn 

complex non-linear motion patterns. 
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Chapter 1 Introduction 

 

1.1 Motivation 

Nowadays, the need for automated anomaly detection systems is growing due to 

increased security concerns. Improvements in technology and reduction in costs have 

led to a rapid deployment of Closed-Circuit Television (CCTV) cameras. Earlier, the 

job of video surveillance was performed manually by humans who had to visually 

analyse video feeds from multiple cameras simultaneously. However, research shows 

that even professionals in this field suffer from a reduction in visual attention after 

analysing the same video monitors for long periods of time [1]. This can easily hinder 

their capability to spot and appropriately counter threats in real-time [2], turning 

existing surveillance systems into mere storage devices that can only be used for 

video analysis and evidence gathering after an event has occurred [3]. These reasons 

have motivated research into the field of anomaly detection in video surveillance over 

the last decade. Autonomous surveillance of videos can help human operators to 

efficiently counter possible threats in real-time. 

To enhance the security and performance of surveillance systems, it is required to 

develop algorithms which can enable human operators to work more efficiently or 

even take over the task altogether. Such algorithms will allow monitoring systems to 

operate in real-time, and to analyse and interact with their surroundings, instead of 

just being used as forensic tools after the occurrence of an event. These algorithms 

will also increase the probability of detection as they can process hundreds of 

movement patterns in crowded scenes, a feat that cannot possibly be matched by 

humans. However, in order for these algorithms to be useful in the real-world, it is 

critical that they have a high probability of detection and a low probability of false 

alarm. Reliability and robustness are the two key metrics for evaluating the 

performance of such algorithms. 

 

1.2 Comparison with Traditional Video Surveillance 

In traditional techniques for video anomaly detection, modelling of anomalous events 

from training data that contains both normal and abnormal events is quite often the 

desired approach to detect anomalies and learn behaviour. Detection is then 

performed by finding and analysing new observations and testing whether they match 
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the behaviour model learned from the dataset in the training stage. In contrast, 

modern anomaly detection approaches attempt to learn only normal behaviour from 

datasets (“one-class datasets”). This learning is typically statistical. To detect 

anomalies, these algorithms then test whether the new data conforms to the normal 

behaviour learned earlier.  

By aiming at interesting events directly, traditional methods for video surveillance 

typically learn very specific “high-level descriptors” that represent the events 

occurring in a video sequence. These methods then build models from training video 

sequences that contain the anomalies of interest together with normal data. They then 

classify the events that have not been seen before as anomalies. These approaches 

however have a lot of drawbacks. They are unable to cope with unknown behaviour, 

yielding unpredictable results in such scenarios. They can, in general, only be used 

on certain controlled video sequences.  

Video anomaly detection techniques, on the other hand, are capable of detecting 

random and “undefined” anomalies as they only attempt to test whether the new 

events are different from some previously obtained model of normal behaviour. 

These approaches widen the number and types of anomalies that can be detected, but 

they pose some difficult challenges depending on the definition of normal behaviour. 

In addition, these methods cannot sufficiently explain "what" is occurring in the 

scene, as they never learn anything about anomalous behaviour in the training stage. 

To address this, additional high-level algorithms can then be used, building a system 

which can utilize the best of both worlds. 

 

1.3 Defining an Anomaly 

Despite the plethora of algorithms and their applications in anomaly detection 

literature, there is no consensus on how anomalous behaviour is defined. Approaches 

in the literature refer to anomalies as unusual events, abnormalities, suspicious or 

irregular events, etc. 

On a broad level, an anomaly can be defined as “an observation that does not follow 

expected normal behaviour” [4]. For the purpose of anomaly detection in surveillance 

videos, anomalies can be considered “as sequences of motions that do not confer or 

stand out with their surroundings”. This allows statistical approaches to be used for 

anomaly detection. By this definition, events that have a low probability of 
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occurrence according to a pre-learnt “probabilistic model of normal behaviour” are 

referred to as anomalous. 

This definition of anomaly detection suffers from certain drawbacks due to which 

anomalies that can found become limited. Firstly, this definition forces anomaly 

detection to inferred from a certain context. It is quite possible that an event that is 

normal at one time, may be anomalous at a different time. For example, in a video 

sequence containing traffic interactions, certain events like a U-turn or road crossing 

are dependent on the state of traffic lights. Secondly, in this definition, the features 

and the level (“scale”) at which normal behaviour is defined [5] limits the anomalous 

events that can be detected. For example, an event that would be considered as an 

anomaly at one level can be normal when considered at a different level. Because of 

the different methods of defining and categorizing anomalous behaviour, a lot of 

varied approaches that utilize different techniques can be found in the literature. 

 

1.4 Challenges 

Probabilistic definitions of anomalies are quite simple to understand and define 

intuitively, but numerous factors add significant technical hurdles in the field of 

anomaly detection. 

Firstly, the very definition of an anomalous event is quite heavily dependent on how 

normal behaviour is modelled and which features are obtained from a training 

sequence. To be more specific, video context, extracted features and the scale of 

operation ultimately determine what types of anomalies can be detected. 

Secondly, non-stationary contexts change what is “normal” at different moments in 

any particular scene. A robust and efficient system should be able to grasp the 

dynamics of a such a scenario and detect anomalies taking these into account.  

Lastly, anomalies are generally “very infrequent, sparse, and hard to predict” [5]. The 

examples of anomalous behaviour found in training sequences are thus very limited, 

and quite often, not present at all. This makes validation of techniques for anomaly 

detection much harder. 
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1.5 Document Structure 

Section 2 of this document provides a thorough literature review in the field of 

anomaly detection in surveillance videos. It first describes the types of approaches 

found in the literature and briefly introduces some of the most common techniques 

and compares them. 

Section 3 gives a description of the base system that was chosen for implementation, 

providing an in-depth analysis of its working.  

Section 4 analyses the performance of this system on standard datasets in anomaly 

detection literature. 

Sections 5 proposes some enhancements to this base system to address its 

shortcomings and improve its performance.  

Section 6 evaluates the efficacy of the proposed system and analyses its performance. 

Section 7 provides a summary of this work and provides some scope for future 

research. 

. 
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Chapter 2 Review of Literature 
 

2.1 Overview of Approaches to Anomaly Detection 

Among the different techniques found in the anomaly detection literature, “a 

distinction can be made between those approaches that rely on extraction of object 

trajectories, and those that do not” [6]. The former approaches use pre-processing 

techniques for object segmentation and tracking, while the latter work with different 

object and/or pixel properties. Different object-based techniques use features that are 

derived from objects present in a scene, while pixel techniques use features that are 

extracted on the pixel level. 

Object-based techniques use features that are extracted from looks (“appearances”) 

or object motion. Among appearance based features, blob size and blob texture are 

frequently used. Motion features that are typically extracted via object tracking and 

are also quite popular in literature. These object-based techniques use object tracking 

which yields trajectories as series of object positions over a certain period of time. 

Using these trajectories, different features such as speed, direction of movement and 

orientation can be extracted and further utilized. 

Pixel-based techniques include methods that extract “spatio-temporal features”, e.g., 

“pixel change frequency”, “histogram of optical flow”, “histogram of oriented 

gradients”, “filling ratio of foreground pixels”, “magnitude and orientation of 

gradients”, “accumulation of differences” etc.  

 

2.2 Types of Anomalies 

Depending on the context anomalous events can be classified in the following 

different types [4]: 

Point anomalies, which test whether the computed (“extracted”) features at any 

particular place are different from normal behaviour. These anomalies take into 

account the current behaviour but do not depend on past behaviour. They also do not 

depend on the behaviour of nearby objects or points. As an example, if the velocities 

of moving objects at multiple locations are used to model normal behaviour, a vehicle 

in the testing sequence that is moving at a speed or direction that is not present in this 

model would be classified as anomalous. Applications of this technique include 

detecting and analysing movement of objects at different positions in a scene. 
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Contextual anomalies on the other hand take into account some sort of the temporal 

context, i.e., the past behaviour, or the spatial context, i.e., the behaviour of nearby 

objects. A particular class of contextual anomalies called “sequential anomalies” 

takes into account the both of these contexts while analysing anomalies in the data 

obtained from the extracted features. For example, in traffic surveillance data, a 

vehicle that makes a wrong turn at a crossing may be moving at a "normal" velocity 

as it passes, but it’s path of motion (“trajectory”) will not be present in “normal” 

traffic paths. As the path itself is anomalous, the motion pattern of this vehicle can 

be considered to deviate from normalcy and is considered to be anomalous.  

These definitions bring to light the fact that the definition of anomalous behaviour is 

quite heavily dependent on context, and the complexity of anomaly detection depends 

on the kind of features being extracted and amount of information being obtained 

from a video sequence. 

 

2.3 Common Features 

Before a detailed review state-of-the-art video anomaly detection techniques found 

in the literature, a summary of common features that are used by these techniques is 

discussed. 

Kernel Density Estimation (KDE) is “a method to non-parametrically estimate the 

probability density function of a random variable” [7]. To build a kernel density 

estimate, interpretations are found in fields that are not inside of a “density estimate”. 

KDEs are typically used to for accurately modelling path and motion data, and they 

yield superior results compared to fitting some classical parametric probability 

function to such data. 

Hidden Markov Model (HMM) [8] are finite state machines (FSMs) that are quite 

commonly utilized to model sequences of data. An HMM is “a statistical model 

which considers a system to be a Markov process with some unobserved or hidden 

states”. An HMM abstracts the state of the system, while allowing the output of the 

system to be observed. 

A Gaussian Mixture Model (GMM) is “a probabilistic model which assumes that all 

data points are generated from a mixture of a finite number of gaussian distributions 

with unknown parameters” [9]. GMMs can be thought of as generalizations of k-

means clustering to include information about the “covariance structure” of the data, 
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together with some gaussian centres that are present in the data. Approaches can then 

employ a “likelihood strategy” to produce an anomaly likelihood map. 

Optical Flow (OF) is “the pattern of apparent motion of objects in the image between 

two consecutive frames caused by motion of an object or the turning of the camera” 

[10]. It is two-dimensional vector field where each vector shows the motion of points 

of interest from the first image to the next. Quite often, optical flow is further 

quantized in orientation or magnitude or both to yield the Histogram of Optical Flow 

(HOF), or the Histogram of Optical Flow Orientation and Magnitude (HOFM). 

 

2.2 Object Trajectory Based Techniques 

Approaches that rely primarily on information extracted from object trajectories for 

anomaly detection purposes in surveillance videos typically fall under this category. 

These techniques require a pre-processing stage where motion detection is performed 

to track object movement in a video sequence. Background subtraction is quite often 

employed for the purpose of moving object detection. After that existing object-

tracking techniques available in the literature can be utilized to find object 

trajectories. 

The key benefit of these object trajectory based methods is that they allow building 

behavioural models in a fully unsupervised manner, i.e., labelled video sequences are 

not required. Bearing in mind that anomalies are “events that have a low probability 

of occurrence” [4], clustering methods can be applied to find anomalous events. This 

is achieved by clustering paths (“trajectories”) to find normal behaviour in the data. 

Anomalies can then be found by finding the relative distance of new unobserved 

“test” trajectories and comparing them to known “normal” trajectories. Those test 

trajectories that are sufficiently dissimilar from all known trajectories (clusters) can 

then be labelled as anomalies. 

In [11], Claudio Piciarelli et al. describe a trajectory based approach that utilizes 

Support Vector Machines (SVMs) to identify anomalous behaviour. They consider 

trajectories as “variable-length sequences of two dimensional coordinates”. 

However, to work with kernels in SVM they require fixed dimensional feature 

vectors, which they extract using “trajectory subsampling”. These are then further 

classified by them using an SVM classifier with a gaussian kernel utilizing a 

Euclidian distance metric: 
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𝑘(𝑥1, 𝑥2) = exp(−
||𝑥1 − 𝑥2||

2

2𝜎2
)  (2. 1) 

where 𝑥1, 𝑥2 are the extracted fixed-dimension feature vectors. 

In [12], F. Jiang et al. describe another trajectory based approach to detect different 

type of anomalies. The authors classify anomalies into three types: point anomalies, 

sequential anomalies and co-occurrence anomalies (also described in Section 2.2). 

For point anomalies, the authors observed that the “instantaneous motion of a single 

object follows certain rules”. For example, road traffic on one side of the road has to 

move in fixed paths, or the traffic at a red light has to stop at certain spots. As many 

of these events “follow some regular motion rules”, [12] detect normal and abnormal 

behaviour depending on the probability of occurrence (they refer to it as “frequency 

of appearance”, a similar metric). However, a video anomaly may often contain other 

behaviour that cannot be characterized by the above method. For example, in the 

same example, consider these two actions: a) entering an intersection from a road and 

b) making a left turn at that intersection; they constitute normal behaviour 

individually. But if they occur together, they are anomalous. This anomaly is a typical 

example of a sequential anomaly. To detect such anomalies, similar to point anomaly 

detection, the authors find sequences that have a “low probability of occurrences”, 

e.g., taking a right on a road without a turn will be rarer than most other paths in that 

area. A key difference between point and sequential anomalies is that the length of 

the latter can be random (possibly only a part of such an event may be observed in 

the complete sequence). 

In [13], a method has been proposed by F. Jiang et al. in which object trajectories are 

extracted and modelled as Hidden Markov Models (HMM), which are then clubbed 

in groups via “hierarchical clustering”. Object trajectories are found from the video 

and then represented as a time-sequence containing various features like speed, 

direction, etc for the objects. In a lot of cases, no prior information is available, so all 

the trajectories that have been extracted from available videos are analysed, and those 

trajectories that do not conform to normal behaviour, i.e. anomalous trajectories are 

then differentiated from normal trajectories. This approach utilizes the fact that 

“normal events demonstrate a commonality of behaviour while anomalous events 

indicate rareness”. 

In [14] W. Hu et al. extend the above to two levels of hierarchical clustering that 

utilizes different object properties like object position, speed, direction and size. The 
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authors put forward two metrics to find a) “point anomalies,” by calculating the 

likelihood of an anomaly occurring when a subject arrives or leaves a certain location 

and b) “contextual anomalies”, by calculating the likelihood of abnormal behaviour 

in a complete trajectory of motion. 

However, in [15], T. Zhang et al. note that the methods proposed in [12] and [14] 

have several drawbacks: both of them lack “any probabilistic explanation for 

anomalous event detection”, and both of them “require the number of clusters in 

advance”. In [15], the authors then propose a novel approach to overcome these 

drawbacks. For each foreground object extracted from the training data, a “co-

training classifier” is built to classify objects as vehicle or pedestrian (dataset specific 

classes in their work). Then, two labelled datasets are prepared from the original 

dataset, one for each of the classifiers. A graph is the then built to “cluster motion 

events” of each class based on trajectory. Clustering is achieved using a graph-cut 

algorithm. From the results which yield the corresponding motion sequences for both 

classes, trajectories are then grouped into clusters again. From every new cluster of 

trajectories, “entry points”, “exit points” and “primary trajectories” are found. 

Object based techniques available in the literature are often affected by challenging 

scenarios in which basic feature extraction methods like background subtraction and 

object tracking are not suitable. Background subtraction performs abysmally in dense 

(crowded) scenes or scenes with changing (non-stationary) backgrounds and lighting 

changes. Object-based techniques also struggle in crowded scenarios where 

occlusions are very frequent, resulting in incorrect tracking that adversely affects the 

any further stages of an anomaly detection system. Computation complexity of 

tracking also increases exponentially with the number of objects, thus making it 

unsuitable for real-time applications. 

 

2.3 Pixel Based Techniques 

To address the drawbacks of object-trajectory based techniques that find movement 

information from object tracking, many recent approaches have been proposed that 

do not try to track objects but rather extract pixel-level or block-level features (by 

considering the image to be made up of overlapping or non-overlapping blocks). 

Some of these techniques utilize information from subjects that move across 

particular areas in a video frame, so they still have to apply some sort of object 

segmentation technique to extract these features. 
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In [16], H. Zhong et al. propose a very primitive approach to video anomaly 

detection. They describe a completely unsupervised technique for finding anomalous 

behaviour in video datasets set using multiple basic attributes. Their approach doesn’t 

require any complex activity model or supervised feature selection technique. They 

simply split the training sequence into fixed time-length subsequences to extract 

features, then convert them into “prototypes” to compute a “prototype–segment co-

occurrence matrix”. They found the motivation for this from a matching problem in 

“document keyword analysis”, which sought a “correspondence relationship” 

between these extracted features (“prototypes”) and video subsequences that can 

satisfy a “transitive closure constraint”. 

They argued that this object model-based technique is very useful in scenarios where 

“normal behaviour” is well-understood and limited. However, in common real-life 

training sequences, the number of “normal behaviour” event categories that are 

observed can easily be surpassed by the number of “unusual behaviour” event 

categories. Hence, defining and modelling normal behaviour in an unlimited 

(unconstrained) environment is much more difficult than defining what is anomalous. 

For this, they propose an approach to exploit the “hard to describe” but “easy to 

verify” property of anomalous behaviour without attempting to construct any 

particular models of “normal behaviour”. They argue that “a comparison of each 

event with all other events that have been observed can be used to determine how 

many similar events are present”. If an event is to be classified as normal, many such 

related events should be present in the larger data set. Otherwise, the event is 

considered to be anomalous, as even though the nature and type of the events are 

unknown, they do not constitute normal behaviour. Thus, detecting anomalous events 

in video sequences does not require any modelling of normal behaviour, but rather 

requires the ability to compare two events with a good and computationally fast 

metric. 

To demonstrate this approach, they slice the video into fixed-time duration segments 

for simplicity (with overlapping windows). This slicing is quite often not perfect, but 

they argue that these video slices contain enough information in them to suitably 

determine the nature of activity present, e.g. in a nursing home video in their dataset, 

in a few seconds of video, events can be either people taking a walk for a few steps 

or lifting an object. Then, a “document clustering algorithm” is utilized by them to 

classify the segments. To extract motion information, they then apply the following 

spatial and temporal “motion thresholding filters”: 
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𝐹𝑡(𝑥, 𝑦, 𝑡) = 𝐹(𝑥, 𝑦, 𝑡) ∗ 𝑋𝑡 ∗ 𝑋𝑥,𝑦 (2. 2) 

𝑋𝑡 = 𝑡𝑒
−(

𝑡
𝜎𝑡

)
2

, 𝑋𝑥,𝑦 = 𝑒
−{(

𝑥
𝜎𝑥

)
2
+ (

𝑦
𝜎𝑦

)
2

}
 (2. 3) 

 

Figure 2.1 Illustration of Boiman and Irani’s approach, source [17] 

In another seminal paper [17], O. Boiman and M. Irani propose an approach that 

composes a test image or video sequence (“the query”) by utilizing blobs of data 

(“pieces of puzzle”) that were learned from the training data (“the database”). Those 

parts of the testing video sequences that can be built or composed from the database 

are considered likely to correspond to normal behaviour, whereas parts of the testing 

video sequences which cannot be built from the training sequence (or which can be 

built, but only by using small “fragmented” slices of data) are considered as 

anomalous. They describe their approach as “an inference process in a general 

probabilistic graphical model”.  

Their approach thus learns normal behaviour from very little data, and can be used to 

test much larger video sequence datasets, even if those particular video sequences are 

not present in the training sequences. “Local feature descriptors” extracted by them 

from small video sequences (that are them mixed together to form large video 

sequences) allow their approach to detect small nuances in normal behaviour, e.g., 
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pedestrian walking vs. pedestrian walking while armed with a gun. Moreover, their 

method is capable of simultaneously identifying normal behaviour in one part of an 

input frame while detecting anomalous activity in a different part of the frame, 

achieving “localized detection”. An example of their approach is provided in Figure 

2.1. 

In [18], P. Cui et al. describe a very different pixel based approach compared to the 

ones mentioned above. To reduce noise, they then down sampled features into a 

“super-pixel”. The authors then calculate the likelihood for a video sequence to be 

anomalous given past events. They achieve this via a Sequential Monte Carlo (MC) 

framework that models events as Hidden Markov Models (HMMs). Apart from point 

anomalies, there are also able to find “contextual anomalies”. For this however, 

supervised training data (i.e., labelled instances of normal behaviour) is required. The 

two major features pixel level features that they use are a) “Pixel Change Frequency” 

(PCF), which calculates the “changing times” of a pixel over a certain period, and b) 

“Pixel Change Retainment” (PCR), the amount of time when a pixel has had a 

different value from its background. 

 

2.4 Anomaly Detection in Crowded Scenes 

In contrast to sparse or traffic scenes, crowded scenes require very different 

approaches. This is because the approaches described above mainly rely on the 

presence of a static background, which is generally not available in crowded scenes. 

A technique to detect anomalies in crowded scenes is proposed in [19] by F. Jiang et 

al. First, the authors extract motion information from input video sequences in the 

form of “spatio-temporal patches”, characterized by dynamic texture. Next, they 

extract texture information from these patches in moving parts of the video sequence. 

They further cluster these patches into “behaviour categories” A and B. They note 

that these patches roughly correspond to motion patterns in the video sequence data. 

Contextual information for each motion blob is then extracted by analysing the 

“behaviour categories” of its neighbours.  
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Figure 2.2 Example of contextual anomaly detection, source [19] 

 

Then, based on the “spatial layout” of people walking in the frame, they can 

automatically gather important contextual information and find the motion patterns 

that are contextually anomalous. Their key contribution through their work is the 

introduction of the concept of a “contextual anomaly “into the field of anomaly 

detection in crowded scenes, as well as proposing a method to find those “contextual 

anomalies”. An example from their work is illustrated in Figure 2.2. 
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Chapter 3 Description of Base System 
 

3.1 Introduction 

From the discussion in previous sections, it can be seen that a lot of authors approach 

the problem of anomaly detection using object-trajectory based techniques. These 

techniques typically analyse the scene by making abstractions at the object level, i.e. 

their basic features involve the extraction of object trajectories in some manner. 

Using such features in anomaly detection approaches yields several advantages; a) 

they allow training to be done in an unsupervised manner b) allow for statistical 

analysis c) ground truth is easier to generate as trajectories can be labelled manually 

d) these approaches are more intuitive in nature and can be visualized quite easily. 

However, object-tracking based approaches have some serious disadvantages as well. 

They are computationally very expensive, and in general, computation complexity 

increases exponentially with the number of objects present in the scene. They also 

perform very poorly in crowded scenes, or even scenes with a large number of 

objects. In fact, inaccurate tracking can even confuse anomaly detection classifiers 

causing them to consider behaviour not present in training data as normal. Moreover, 

these inaccuracies typically accumulate over multiple steps in the training and 

detection framework. 

From the recent trends in anomaly detection literature, it is quite easy to see that many 

state-of-the-art approaches rely on pixel-level features rather than object trajectories 

to exploit these advantages. Pixel-based approaches also work much better on 

crowded scenes as they do not attempt to track individual objects but rather analyse 

motion patterns as a whole.  

For this work, a state-of-the-art (at the time) system that relies on pixel-level features 

was chosen for implementation and further analysis, and its performance was 

analysed and benchmarked in detail.  

In the following section, the key objectives for this work are summarized, followed 

by a thorough review of the base system, including the feature extraction, training 

and detection processes. 
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3.2 Objectives 

Before describing the anomaly detection system in detail, the planned technical 

objectives for anomaly detection are summarized in this section: 

1. Detect suitably rare anomalies 

2. Speed of anomaly detection (real time detection) 

3. Type of scene: 

i. Basic surveillance (sparse object density) 

ii. Traffic Surveillance / Pedestrian Surveillance (medium object density) 

iii. Crowd Surveillance (high object density) 

Point 1 describes the ability of the system to detect suitable rarely anomalies, i.e., the 

system should be able to learn and correctly predict statistical anomalies up to a 

predefined probability of occurrence (performance criterion). 

Point 2 refers to the speed of anomaly detection i.e., how fast the system can process 

surveillance videos. A system that works in real time, e.g. a traffic surveillance 

system for law enforcement, must be able to detect erratic behaviour in live video. 

However, a system that is analysing past surveillance videos for rare anomalies 

doesn’t need to work as fast. 

Point 3, type of scene, refers to the scene depicted in the video. Techniques like 

background subtraction, object tracking, etc that are suitable for traffic and pedestrian 

surveillance (medium object density), are not suitable for crowd surveillance (high 

object density) and vice versa. Both traffic / pedestrian surveillance and crowd 

surveillance are active fields of research. For this study, the domain of traffic / 

pedestrian surveillance (medium object density) was chosen. 

From literature review (Section 2), it was observed that while a lot of techniques for 

traffic surveillance are available, those that utilize object trajectories are not very 

efficient in speed (point 2), and in general, yield poorer performance compared to 

pixel-based techniques, as described in Section 3.1. So this work focuses on utilizing 

pixel-level features. 

The rest of this section first describes the work of Hanlin Tan et al. [20], which 

utilizes the Lucas-Kanade’s Sparse Optical Flow [21] to detect anomalies. 
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3.3 Overview of the Base System 

In [20] the authors describe a framework for fast detection of abnormal events in a 

video sequence based on sparse optical flow. For this purpose, the low-level feature 

that they use is optical flow, which computes the speed and direction of movement 

of different pixels in the image. For feature extraction, they quantize this optical flow 

by direction and aggregate it at a block level. For training, they compute this feature 

vector for all input sequences and find the maximum optical flow per block of the 

image. For testing, they again compute this feature vector for the testing data and 

apply a simple max criterion filter to detect anomalies. 

For this approach, they limit themselves to traffic surveillance videos. In addition, 

they consider anomalies to be defined only in probabilistic terms, i.e., training data is 

only assumed to contain the normal class. They also assume the input data, i.e., 

normal behaviour, to have “temporal stationarity”, which includes certain behaviour 

such as fluttering leaves in the background, regular motion patterns of people, a fixed 

time of day etc. 

 

 

Figure 3.1 Overview of Base System 
 

An overview of the base system is shown in Figure 3.1. The first step is to capture 

frames from a static camera and build a background model. Then the foreground is 

extracted. Here, the purpose of foreground extraction in simply to aid in the process 

of computation of optical flow. No effort is made to track objects in the foreground.  

Then corner points are obtained using the “Good Features to Track” algorithm [22]. 

These corner points are essential to the computation of optical flow. These points 

yield all corners of an object needed to track it, thus allowing fast and efficient motion 

tracking (different from object tracking). Its alternative, the dense optical flow, which 

works on all pixels rather than corners could also have been used. However, as it 
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added significant computational complexity without any appreciable performance 

improvements, it was not considered.  

The next step is to compute the “forward” optical flow between the current frame and 

the next frame utilizing the corner points, as well as a “reverse optical flow” between 

the next frame and the current frame. Then, a “similarity of flows” (and flow error) 

is computed, and the worst half of the flow is discarded. This flow is then converted 

to magnitude and angle. Finally, to extract the low-level optical flow feature, this 

flow is quantized into a fixed number of angular orientation bins (10 in their work). 

This results in a pixel level feature called the Histogram of Optical Flow (HOF).  

 

Figure 3.2 Illustration of the Feature Extraction Process 

 

The input image is then divided into fixed size blocks. For each block, firstly, the 

flow is aggregated spatially for each angle bin separately. Then the flow is aggregated 

temporally for the previous few frames. After this spatio-temporal aggregation, the 

last step is to apply a Gaussian Blur to make the computed feature vector more robust. 

For training, the authors use a max criterion to find the maximum optical flow per 

quantized direction per block in the form of a training matrix. For testing, the same 

feature is computed for the test videos, and the flows that exceed the trained max 

criterion matrix are considered to be anomalous. 

The base system, described in detail below, was implemented using OpenCV [23] 

and MATLAB [24] and tested on the UCSD Anomaly Detection Dataset (Ped 1) [25]. 
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The following sections describe each step of the base system along with experimental 

results and screenshots. Note that this section only describes the algorithm used by 

the base system and the experimental results obtained from intermediate steps. An 

analysis of the final performance of this system can be found in Section 4. 

 

3.4 Feature Extraction 

The first step in the base system is to extract features from the input dataset. An 

overview of this process is illustrated in Figure 3.2, with each sub-step described in 

the following sections. 

 

3.4.1 Foreground Extraction 

The standard approach described in [26] was used for background subtraction and 

foreground extraction. The following steps (Figure 3.3) detail this procedure:  

 

1. Build the histogram for every pixel (64 bins x 3 colours) and calculate the 

background image. 

2. Calculate the first difference image from the current frame and the background.  

3. Calculate the second difference image between the current frame and the first 

video frame (“pre-image”). 

4. Threshold both difference images and combine the results. 

Figure 3.3 Foreground Extraction Process for the Base System 
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The experimental results obtained for this step are shown in Figure 3.4. For building 

this background model experimentally, approximately 150-300 frames were used. 

 

3.4.2 Corner Points 

The “Good Features to Track” algorithm [22] by C. Tomasi and J. Shi is an optimal 

feature selection criterion for tracking objects. The algorithm works by sweeping a 

window 𝑤(𝑥, 𝑦) and scoring pixels to find corners. 

Specifically, we need to maximize: 

𝐸(𝑢, 𝑣) =  ∑ 𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2𝑥,𝑦 (3. 1)  

which can also be expressed as: 

𝐸(𝑢, 𝑣) ≈ [𝑢 𝑣] 𝑀 [
𝑢
𝑣
] (3. 2) 

𝑀 = ∑𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦 

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

  (3. 3) 

This maximization was shown to be analogous to the optimization of Shi-Thomasi’ 

metric: 

𝑅 = min(𝜆1, 𝜆2) (3. 4) 

The points that have this metric 𝑅 above a certain threshold are considered to be good 

feature points. OpenCV [23] has library functions that automatically return N good 

points to track in an image, which was used in this work. 

 

Figure 3.4 Foreground Extraction Process 
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3.4.3 Optical Flow 

Optical Flow (OF) is “the pattern of apparent motion of objects in the image between 

two consecutive frames caused by motion of object or turning of the camera” [10]. It 

is two-dimensional vector field where each vector shows the motion of points of 

interest from first image to the next. Quite often, optical flow is further quantized in 

orientation or magnitude or both to yield the Histogram of Optical Flow (HOF). 

Several assumptions are made before Optical Flow is calculated: 

i. Pixel values are constant between consecutive frames 

ii. All pixels in a neighbourhood have same motion 

 

  

Considering a pixel 𝐼(𝑥, 𝑦, 𝑡) in first frame, which moves by distance (𝑑𝑥, 𝑑𝑦) after 

𝑑𝑡 time, we can say: 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) (3. 5) 

(intensity is assumed not to vary between consecutive images). By taking a Taylor 

series approximation and cancelling common terms: 

𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑡 = 0 (3. 6) 

𝑓𝑥 = 
𝜕𝑓

𝜕𝑥
; 𝑓𝑦 = 

𝜕𝑓

𝜕𝑦

𝑢 =  
𝑑𝑥

𝑑𝑡
;  𝑣 =  

𝜕𝑦

𝜕𝑡
(3. 7)

 

Equation 3.6 is the Optical Flow equation. Here, 𝑓𝑥, 𝑓𝑦 and 𝑓𝑡 are gradients in the 

spatio-temporal domains. (𝑢, 𝑣) are the unknowns. So, this is a single equation with 

two unknowns, and thus cannot be solved directly.  

Various techniques are available to that address this problem. One such solution was 

given by Lucas-Kanade [21]. 

Figure 3.5 Illustration of Optical Flow 
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Lucas-Kanade’s algorithm calculates the above flow equation for a 9-point (8 around 

the point of interest and the point itself) sub-matrix. Because we assumed that 

neighbouring pixels have similar motion, these 9 points have the same displacement 

values. Now equation 3.6 is “over-determined”, so the best solution, i.e., the least-

mean square solution, is chosen. This gives the values for 𝑢 and 𝑣: 

[
𝑢
𝑣
] =

[
 
 
 
 ∑𝑓𝑥𝑖

2

𝑖

         ∑𝑓𝑥𝑖
𝑓𝑦𝑖

𝑖

∑𝑓𝑥𝑖
𝑓𝑦𝑖

𝑖

         ∑𝑓𝑦
2

𝑖 ]
 
 
 
 
−1

[
 
 
 
 ∑𝑓𝑥𝑖

𝑓𝑡𝑖
𝑖

∑𝑓𝑦𝑖
𝑓𝑡𝑖

𝑖 ]
 
 
 
 

(3. 8) 

 

3.4.4 Forward-Backward Filtering 

The optical flow algorithm provides only a least mean squared error solution. Quite 

often, this error is not acceptable limits needs to be discarded. For this, a forward-

backward tracking filter [27] is used. This process is illustrated explained by in Figure 

3.7 where: 

 

 

 

  

• Points1: these are the points that we wish to calculate the optical flow of 

• Points2: these are the resultant flow points returned by optical flow  

Compute 
optical flow 

between img1 
(points1) and 

img2 to obtain 
points2

Compute the 
reverse optical 
flow between 

img2 and 
img1 to obtain 

points1' 

Compute the 
similarity 
between 

points1 and 
points1'

Compute the 
error returned 
from fowward 
and  reverse 

flow

Filter out 
flows by 

similarity and 
error criterion

Figure 3.6 Computation of Optical Flow 

Figure 3.7 Flowchart Depicting Forward-Backward Filtering 
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• Points1’: these are the estimated original flow points returned by the “reverse 

flow” 

• Mean filter: Simple filter out the worst 50% flows for robustness 

 

The optical flow results obtained experimentally are shown in Figure 3.6. 

 

3.4.5 Histogram of Optical Flow 

 

After the optical flow has been computed, the next step is to quantize it. For this, the 

optical flow is mapped onto a predetermined number of directions to find the 

Histogram of Optical Flow (HOF). In their work, [20] quantize the optical flow into 

10 bins (Figure 3.8). 

 

3.4.6 Integral Images 

Integral images (Figure 3.9) are the quickest way to calculate the summation over 

any sub regions of the image. They can be built simply by computing the sum of all 

pixels below and the left of the current pixel. 

Mathematically, this can be written as: 

𝑠𝑢𝑚(𝑋, 𝑌) =  ∑ 𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦)
𝑥<𝑋,𝑦<𝑌

(3. 9) 

Now the summation for any region of the image can be computed in constant time 

complexity as: 

HOF 1

HOF 2

HOF 3

HOF 4

HOF 5

HOF 6

HOF 7

HOF 8

HOF 9

HOF 10

Figure 3.8 Directions for Quantization of Optical Flow 
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∑
𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦) = 𝑠𝑢𝑚(𝑥2,𝑦2

) −  𝑠𝑢𝑚(𝑥1,𝑦2
) − 

𝑠𝑢𝑚(𝑥2,𝑦1
) +  𝑠𝑢𝑚(𝑥1,𝑦1

)
𝑥1≤𝑥<𝑥2,,𝑦1≤𝑦<𝑦2,

(3. 10) 

 

3.5.7 Final Feature Vector 

The final steps in the feature extraction first aggregate the Optical Flow (OF) feature: 

i. Spatial Aggregation: Using the integral images built in the previous step, the 

quantized flow components are aggregated inside each block 

ii. Temporal Aggregation: The optical flow is summed up per block per 

orientation for the past few frames 

Next, [20] apply a Gaussian blur filter on the “aggregated feature”, making the feature 

smoother and more stable. 

Their experimental results show that this blurring of the aggregated feature not only 

reduces false alarm rate, but also increases the detection rate. 

 

3.6 Training and Detection Framework 

After extracting the final feature vector from the data, the next step is to train a model 

from a given input dataset. 

For this, the authors in [20] propose a simple max criterion as follows that calculates 

the maximum value per feature channel per block. They note that even though the 

feature values vary dramatically, this method can extract the features. 

To detect anomalies, they follow a very simple criterion: 

Figure 3.9 Generation of Integral Image 
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1. HOF magnitudes that are found in training video sequences are normal 

2. HOF magnitudes that exceed than the maximum value in the training video 

sequences are deemed anomalous. 

Mathematically, if 𝐹(𝑏, 𝑡) denotes the extracted feature from a block 𝑏 at time 𝑡, then 

the classifier would find a max boundary 𝐵(𝑏) for each HOF component: 

𝐵(𝑏)  = max𝐹(𝑏, 𝑡)  (3. 11) 

where 𝑡 is considered over all training frames in the input data.  

For testing, suppose 𝑓(𝑏, 𝑡) is a feature vector extracted from the input data. Then, a 

“distance vector” 𝑥(𝑏, 𝑡) is be computed as: 

𝑥(𝑏, 𝑡) = 𝑓(𝑏, 𝑡) − 𝐵(𝑏) (3. 12) 

For deciding if a block is anomalous, thresholding can be applied on each HOF 

component of 𝑥(𝑏, 𝑡): 

𝑦(𝑏, 𝑡) =  {
0, 𝑖𝑓 𝑥(𝑏, 𝑡) > 𝜃

 1, 𝑖𝑓 𝑥(𝑏, 𝑡) < 𝜃 
} (3. 13) 

where 𝜃 is a predefined threshold vector, and 𝑦(𝑏, 𝑡) is the classifier output (0 a 

normal block and 1 for an anomalous block). 
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Chapter 4 Performance of Base System 
 

4.1 Benchmarking Dataset 

A number of video sequences were selected from the UCSD Anomaly Detection 

Dataset (Ped 1) [25]. This is one of the standard benchmark datasets in the anomaly 

detection in video literature and nearly every work tests their performance on this 

dataset. This dataset contains numerous instances of anomalous behaviour specific to 

the field of anomaly detection in videos, and is available publicly. 

This dataset was acquired with a stationary camera that is overlooking a pedestrian 

walkway. It is divided into training and testing data, where the training data includes 

different video sequences containing different types of normal behaviour while the 

testing data contains abnormal behaviour or anomalies. In the “normal” data, the 

video contains only pedestrians. Abnormal events occur due to: 

• movement of non-pedestrians on walkways 

• abnormal movement trajectories of pedestrians 

Anomalies that typically occur are bikers, skaters, small carts, and people walking 

across walkways or in the grass nearby. Some examples of people travelling in 

wheelchair are also present. All anomalous events in this dataset are natural, i.e. they 

were not staged for creating this dataset. The video footage recorded was then split 

into various clips of around 200 frames. 

A disadvantage of this dataset however is its low quality. The resolution of this 

dataset is only 253x168, which makes detection of smaller anomalies like bikers and 

skaters among pedestrians much harder. 

 

4.1.1 Normal Behaviour 

All of the training data, and parts of the testing data contain only normal behaviour. 

Thus, only algorithms that are capable of learning from only one class of data can 

operate on this dataset. The most commonly occurring subjects in the dataset are 

pedestrians. Most of the time, pedestrians exhibit “normal” behaviour which includes 

movement along the walkway, stationary people, movement in groups, mixed 

movement in multiple directions. While this behaviour is common, there are 

significant challenges involved in developing a system that analyses this behaviour. 

The biggest difficulty arises due to the variable density of people along the walkways, 
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which can easily confuse classifiers. Another difficulty arises due to movement of 

people in close groups, making individual tracking very hard. 

An example of pedestrians in the UCSD dataset is shown in Figure 4.1. 

 

Figure 4.1 Example of Pedestrians in the UCSD dataset 
 

4.1.2 Abnormal Behaviour 

In the testing dataset, both normal and abnormal behaviour is present, and the 

challenge is to identify abnormal behaviour. Different types of anomalies that are 

present in the dataset generally offer different levels of difficulties as discussed. 

Trucks, People in Wheelchairs 

Examples of these anomalies are shown in Figure 4.2. These kinds of anomaly can 

be detected either via tracking individual people, or by analysing their motion pattern. 

They pose a challenge however, when individual objects are not tracked or analysed. 

 

Figure 4.2 Examples of Vehicle anomalies 
 

Bikers, Skaters 
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Examples of these are shown in Figure 4.3. These anomalies are similar in nature to 

the above, but due to them looking visibly similar to pedestrians and having much 

similar motion patterns, these anomalies are much harder to detect. 

 

Figure 4.3 Example of a hard anomaly: Biker 
 

As mentioned earlier, the major difficulty is faced in detecting bikers and skaters is 

due to the poor resolution of this dataset. 

 

4.2 Benchmarks 

 

4.2.1 Implementation 

As mentioned earlier in Section 3, the base system was implemented using OpenCV 

[23] and MATLAB [24]. This section discusses the experimental performance of the 

implemented base system. 

 

4.2.2 Procedure 

For testing the implemented system, a training sequence of 300 frames was chosen 

to build a background model. Then multiple training sequences of minimum 1000 

frames was chosen at random (the training dataset contains only normal behaviour) 

to train the classifier. 

For testing, a subset of 5-10 training sequences was chosen from the available testing 

sequences. 
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4.2.3 Results 

A few frames from the results from obtained from a particular set of training and 

testing sequences is shown in Fig 4.4. 

 

 

Figure 4.4 Detection of Anomalies in the Implemented Base System 
 

The implemented system uses a Histogram of Optical Flow (HOF) based model, and 

excels at detecting anomalies in scenes with lots of motion. It doesn’t attempt to 

identify individual objects or any object-level features. This makes the detection of 

stationary anomalies that can only be classified by their type much harder. The base 

system also only employs a max criterion, which doesn’t account for slow moving 

objects and is very susceptible to noise. The following sections discuss the successful 

and unsuccessful detections by the base system. 
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4.2.4 Anomalies Found 

As the implemented base system utilizes Histogram of Optical Flow (HOF) at a block 

level, it was capable of detecting anomalies that were caused by subjects that: 

i. were moving very fast 

ii. had unusually large size 

iii. were moving in anomalous directions 

The first category of anomalies that were successfully detected, i.e. objects that were 

moving very fast, were very easily were efficiently picked up by the base system. 

This is because the base system is employing a max criterion on the HOF feature 

vector, which increases rapidly in response to fast moving objects. 

The second category of anomalies, i.e., objects which had unusually large size, like 

trucks, were also detected. This was because of optical flow aggregation at the block 

level. Due to the unusually large size of these objects (compared to other pedestrians 

in the dataset), they had many more Optical Flow vectors which, when summed up, 

exceeded normal optical flow feature values. 

The last category of anomalies that involved subjects moving in random directions 

were also efficiently detected by the base system. This was because of the quantized 

nature of the optical flow. For most blocks, optical flow is quite often close to null in 

random directions in the trained model. This allows even slightly anomalous 

behaviour in random directions to be easily detected.  

 

4.2.5 Anomalies Missed 

While the base system worked efficiently in certain scenarios, it failed to detect some 

anomalies present in the dataset, as discussed below. Most of these arise due to 

limitations of the Histogram of Optical Flow (HOF) feature vector and the somewhat 

simple training and detection framework. These typically include: 

i. Anomalous objects exhibiting “normal” motion 

ii. Partial or full eclipsing of anomalous objects by normal objects 

iii. Detection in the presence of noisy behaviour 

iv. Slow moving objects 

v. Spatial learning 
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The base system is unable to detect those anomalous subjects that exhibit similar size 

and motion to “normal” subjects like pedestrians but are different visually 

(“appearance”). An example of such unsuccessful detections is skaters. As seen from 

Figure 4.5 when the skater is present in the group of people and moving at a similar 

velocity, he is very hard to detect via his motion pattern. 

  

Figure 4.5 Example of an Anomalous Subject Depicting "Normal" Motion 
 

The second type of unsuccessful detection cases occur when the test subject 

(anomaly) is eclipsed by other pedestrians in the dataset. In this scenario, the optical 

flow algorithm is only able to compute the optical flow of the pedestrians and the 

anomalous object is missed. 

The third category of unsuccessful detections occur when there is noise present in the 

dataset. This is because the max criterion used by the base system of [20] is very 

susceptible to noise and any “incorrect” optical flow computation during the training 

or testing stage can lead to very significant drops in performance. 

Another category of subjects not detected by the base system includes slow moving 

objects. As the base system only includes a max criterion, it is unable to find 

anomalous behaviour in slow moving objects. This choice by the authors of the base 

system is understandable as the types of anomalies in slow moving objects is typically 

complex and cannot be learnt by a max feature criterion.  

Another key disadvantage of the base system is its inability to learn spatial 

information from one part of the input frame or region and apply it to other parts. In 

fact, it can be seen that the base system effectively learns different models for 

different parts of the image. This means that examples of normal behaviour learnt 

from one part of the image will be considered anomalous in nearby regions as the 
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models limit their learning within their own block. This is in fact a fundamental 

limitation of the base system. 
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Chapter 5 Proposed Enhancements 
 

5.1 Introduction 

The implemented system is not capable of detecting anomalies that arise from slow 

moving objects or complex motion patterns. In addition, the base system is not 

capable of spatial learning, which can allow the system to learn more information 

from the input videos to improve performance (See Section 4). 

To solve these problems, this work proposes a modified feature vector that employs 

the same basic low-level feature i.e., Histogram of Optical Flow (HOF), but encodes 

additional spatial and net flow information. In addition, to take advantage of this 

modified feature vector, this work proposes the use of a support-vector based 

machine learning technique called Support Vector Data Description (SVDD) [28]. 

The remainder of this section gives a description of the proposed feature vector and 

the SVDD method. 

 

5.2 Proposed Feature Vector 

As detailed in Section 3.4, the feature descriptor of the base system only employs the 

components obtained from Histogram of Optical Flow (HOF). To compute this 

Lucas-Kanade’s algorithm [21] is used on good feature points to compute the optical 

flow.  This feature vector, however, limits the amount of spatial information that can 

be learnt. Also, this feature vector is only suitable for classifiers that require all 

features to be of similar type. By making improvements to this feature vector, more 

powerful classifiers can be use that are capable of exploiting this additional 

information. 

The first proposed improvement is the addition of the spatial 𝑥 and 𝑦 coordinates to 

each block to the feature vector. Many algorithms like nearest neighbour search, One-

Class SVM and SVDD can utilize these to learn additional behaviour from nearby 

blocks in addition to the block itself.  Also, the addition of these coordinates within 

the feature vector itself will allow a single classifier model to be trained over all 

blocks of the image. If this were not the case then multiple models would be needed, 

which is the approach that the base system uses. 
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This work also proposes the addition of Net Optical Flow (NOF) magnitude and 

direction to the feature vector as well. This is because in some cases the individual 

quantized flow components may be small but when added they might yield a net 

optical flow which can be used for detection. The justification for this addition can 

be verified by experiments only as the relationships between NOF and anomalies is 

expected to be non-linear, and may not be intuitively obvious. 

The next section introduces the problem of outlier detection and gives a brief 

overview of available techniques. 

 

5.3 Outlier Detection (One-class datasets) 

This section gives a brief description of the problem of outlier detection and data 

descriptions. Outlier detection simply refers to the identification of objects, events or 

observations which do not conform (cannot be explained) to an expected pattern or 

other known objects in a dataset. A data description then, as its name suggests, is 

simply a model that is capable of learning these expected patterns and rejecting 

unknown patterns. 

The use of a data description arises when the input data has only one class, or when 

the other classes are too sparse (“undersampled”) for other multi-class methods to 

learn from. But learning from only one class of data poses unique challenges that are 

not faced by other machine learning techniques. For example, when only one class is 

present, it’s not clear what shape the data description must take, as only the “normal” 

behaviour is defined. 

A simple approach is to simply generate outliers around a given dataset and then train 

a binary or multi-class classifier to build the data description. This doesn’t work 

however when a set of “near-target” observations cannot be generated (highly-

dimensional or complex data). More often than not, this problem is solved by the use 

of a probabilistic density model. There, methods attempt to estimate the probability 

density of the normal data (and sometimes the outlier data). Such an example specific 

to anomaly detection in videos can be found in [9]. But these typically require a lot 

of data and fail to work when the input data does not sufficiently represent the entirety 

of “normal” behaviour. 

To overcome these drawbacks, Vapnik [29] argued that it is not necessary to solve a 

more general problem as a sub-problem for outlier detection, and attempts to estimate 
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complete densities instead of boundaries might require too much data and even then, 

yield poor results.  

For learning boundaries, Sch¨olkopf [30] proposed a support vector based technique 

(known in the literature as One-Class SVM) that attempts to learn a hyperplane that 

separates the data from the origin. Another support-vector based method called 

Support-Vector Data Description (SVDD) by Tax and Duin [28] obtains a spherically 

based boundary around an input dataset with minimal volume. In this work, their 

description was used to learn from extracted features because of its robustness and 

efficiency compared to some of the methods mentioned above. 

The following section briefly outlines their approach, and the subsequent sections 

describe its usage in this work. 

 

5.4 Support Vector Data Description (SVDD) 

The method of Support Vector Data Description by Tax and Duin (SVDD) [28] uses 

a spherical approach build a data description for a dataset. The algorithm “obtains a 

hyper-spherical boundary around the data in its feature space. The volume of this 

hypersphere is then minimized to reduce the effect of outliers” 

Mathematically, consider a sphere with a centre 𝒂 and a radius 𝑅 which gives a closed 

boundary around a dataset in its feature space. Then the task is to minimize an error 

function: 

𝐹(𝑅, 𝒂) =  𝑅2  (5. 1) 

with the constraints: 

‖𝑥𝑖 − 𝒂‖2 ≤ 𝑅2, ∀𝑖 (5. 2) 

To allow outliers, a soft-margin SVM like penalty is introduced on distances greater 

than 𝑅2: 

𝐹(𝑅, 𝒂) =  𝑅2 + 𝐶 ∑𝜉𝑖

𝑖

 (5. 3) 

‖𝑥𝑖 − 𝒂‖2 ≤ 𝑅2 + 𝜉𝑖 , ∀𝑖  (5. 4) 

where 𝜉𝑖 ≥ 0 are the slack variables. These constraints can then be applied together 

using and solved to find Lagrange Multipliers 𝛼𝑖, which then yield the centre 𝑎 and 

radius 𝑅 as:  
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𝑎 =  ∑𝛼𝑖𝑥𝑖

𝑖

(5. 5) 

𝑅 = (𝑥𝑘 ∙ 𝑥𝑘) − 2∑𝛼𝑖(𝑥𝑖 ∙ 𝑥𝑘) 

𝑖

+ ∑𝛼𝑖𝛼𝑗(𝑥𝑖 ∙ 𝑥𝑗) 

𝑖,𝑗

(5. 6) 

where 𝑥𝑘 is any support vector. Flexibility in SVM can be introduced by using non-

linear kernels as inner products with a simple substitution: 

𝐾(𝑥𝑖 , 𝑥𝑗) = Φ(𝑥𝑖)  ∙ Φ(𝑥𝑗)  (5. 7) 

A few examples of common kernels are shown below. 

Polynomial kernel (degree 𝑑) 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖, 𝑥𝑗)
𝑑
  (5. 8) 

Gaussian Kernel (kernel parameter 𝑠) 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−
‖𝑥𝑖 − 𝑥𝑗‖

2

𝑠2
)  (5. 9) 

Exponential kernel (kernel parameter 𝛾) 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑖 − 𝑥𝑗‖), 𝛾 > 0  (5. 10) 

To test whether a data-point is in-class or outlier, the distance to the centre of the 

hypersphere can be compared to its radius. Examples of these kernels are given in 

Figure 5.1. 

 

Figure 5.1 Examples of Different Kernels in SVDD 

(a) Linear, (b)-(c) Exponential 

 

5.5 Proposed Framework 

A block diagram of the proposed training system is shown if Figure 5.2.  
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Figure 5.2 Proposed Model Training Framework 

 

Starting with a given input video, first the Optical Flow (OF) is computed on good 

feature points [22] using Lucas-Kanade’s algorithm [21] and quantized to obtain a 

Histogram of Optical Flow (HOF). Then the proposed spatio-temporal feature vector 

(Section 5.2), which encodes 𝑥, 𝑦 block coordinates, net optical flow and magnitude 

and HOF components is computed. The final step is to train a Support Vector Data 

Description (SVDD), which learns a spherical boundary around an input dataset. 

For testing the same spatio-temporal feature vector is computed for the test data 

(Figure 5.3). Then the trained SVDD model outputs the likelihood of a testing 

sequence being anomalous by computing the distance between the testing sequence 

and the centre of the hyper-sphere. By comparing this distance to the hyper-sphere’s 

radius (see the above section) a likelihood of anomalous behaviour is calculated. 

 

Figure 5.3 Proposed Testing Framework 
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Chapter 6 Experimental Work 
 

6.1 Introduction 

For testing the efficacy of the new system, its performance was evaluated on the same 

video sequences used for benchmarking the base system (see Section 4.1). In the 

subsequent section, the experimental work conducted to analyse and improve the base 

feature vector is documented. Then the procedure used to find optimum parameters 

for training Support Vector Data Description (SVDD) models has been described. 

Finally, the results that were obtained using the proposed method have been shown, 

along with a comparison to the state-of-the-art. 

 

6.2 Analysis of the Feature Vector 

To analyse the final feature vector, first an analysis of the Histogram of Optical Flow 

(HOF) feature is conducted, which was used by the base system. Then the 

experimental results from spatial feature coordinates are shown. Finally, the nature 

of the Net Optical Flow (NOF) features (magnitude and direction) are shown, along 

with their experimental performance. The theoretical descriptions and justifications 

for these features are described in Section 5.  

Note that all of the following features are calculated per block per frame. 

 

6.2.1 HOF Feature 

The HOF feature was computed by quantizing the Optical Flow outputs into 10 

channels.  

To visualize this feature, a block was chosen at random from the dataset and the flow 

feature vector were plotted. Examples of this feature are plotted in Figure 6.1. As 

observable from this figure, these features have significant variations among 

themselves. A non-linear classifier is thus needed to fully learn the nuances of the 

training dataset video sequences from these features. 
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Figure 6.1 Plots of HOF feature channels 

 

6.2.2 Spatial Coordinate Feature 

In addition to the HOF components, the proposed feature vector also contains two 

spatial coordinates 𝑥 and 𝑦. The max training criterion of the base system required 

each feature channel to be similar, but with SVDD, that restriction doesn’t exit. The 

inherent linearity in the base system would not have allowed it to learn and utilize 

these features, but SVDD with non-linear kernels can exploit this additional 

information. 

Table 6.1 Comparison of Different Feature Vectors 

 

Feature Dataset 1 (AUC) Dataset 2 (AUC) 

HOF 78.1 77.5 

HOF + SC 80.2 81.4 

HOF + NF 79.3 78.2 

 

The motivation behind including spatial coordinates in the proposed feature vector 

stems from their ability to allow a classifier to learn spatial information from the 

video sequences directly, without having to train a separate classifier for different 

regions of the image. 
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Table 6.1 depicts the performance of spatial coordinate features when compared to a 

pure HOF based feature vector. 

  

6.2.3 Net Optical Flow (NOF) Feature 

The NOF features refer to the magnitude and orientation of the net optical flow in 

each block of the image.  The performance of the NOF feature (magnitude and angle) 

is shown in Figure 6.2 

 

Figure 6.2 NOF Feature Plots (Magnitude and Angle) 

 

 

6.3 Kernel Selection 

In a manner similar to SVM, SVDD is flexible in the choice of kernel, allowing it to 

model complex non-linear boundaries around a training dataset. A non-linear kernel 

effectively changes the “similarity measure” between input points, and allows SVDD 

to learn highly non-linear boundaries.  Some common kernels usable in SVDD are 
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listed in Section 5.4. The choice of the best kernel in this work was found 

experimentally, as shown below (Table 6.2). Based on these results, an exponential 

kernel was chosen.  

Table 6.2 Results for Kernel Selection 

 

Kernel AUC 

lin 53.14 

pol (deg 2) 76.23 

pol (deg 3) 81.58 

exp (par 10) 85.06 

exp (par 15) 83.87 

 

6.4 Experimental Results 

The most common metric in the video anomaly detection literature is the Receiver 

Operating Characteristic (ROC) curve. For training around 2500 input frames were 

used. For testing a subset of video sequences were chosen from the UCSD Anomaly 

Detection Dataset (Ped 1) [25]. More details on the benchmarking technique are 

present in Section 4. The ROC curve obtained is shown in Figure 6.3. 

 

Figure 6.3 Receiver Operating Characteristic (ROC) Curve  
 

To compare our work with the state-of-the-art, the following other approaches were 

considered: Mixture of Dynamic Texture (MDT) [31], Chong et al [32], Gaussian 

Process Regression (GPR) [33], Social Force (SF) [34], and Adam et al [35]. The 

results obtained by the proposed approach are illustrated in the following table.  
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As can be seen from Table 6.3, on UCSD Ped1, the proposed method performs 

comparable to state of-the-art in the frame level AUC metric. The detection part of 

this method runs in real time on the benchmark dataset. A comparison of absolute 

frames-per-second speeds to other methods in literature was not possible due to 

differences in available hardware and implementation platforms. 

Table 6.3 Performance of Proposed Method 

 

Method AUC (Frame) 

Proposed Method 86.9% 

Implemented System 82.4% 

MDT [31] 81.8% 

Chong et al [32] 89.9% 

GPR [33] 83.8% 

SF [34] 67.5% 

Adam et al [35] 65% 

 

6.5 Improvements to Base System 

In Section 4.2.5, may drawbacks of the base system were noted. Most of these have 

been improved upon by the proposed system, resulting in an AUC improvement of 

4.5%, as discussed in the following paragraphs. 

A key class of unsuccessful detections by the base system was those of anomalous 

objects that exhibited “normal” motion. This was because of the max criterion used 

by the base system. But due to the non-linear nature of learning by SVDD, complex 

motion patterns like this class can be differentiated from normal behaviour and such 

anomalies can be suitably detected. 

Another disadvantage of the base system was its susceptibility to noise. The 

maximum threshold values in the max-criterion could easily be corrupted by noisy 

data. In SVDD however, a certain class of input is treated as erroneous (similar to 

soft-margin SVM), which easily gets rid of such noisy data. 

The base system, however, still faced difficulty in processing scenes where the object 

motion is too slow; this is due to an inherent limitation of optical flow as a feature 

vector. A simple solution to this can be found in Zhang’s work [36], where they model 

objects separately to detect “appearance anomalies”. For this they learn object 

appearance features via a separate classifier and then combine the results from a 

motion classifier and appearance classifier to improve performance on such test 

cases.
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Chapter 7 Summary and Future Work 
 

7.1 Summary of this Work 

The field of video anomaly detection has gained considerable attention due to the 

large number of surveillance cameras installed and the enormous computing 

resources available today. 

In this work, an extensive study of literature on anomaly detection in surveillance 

videos was carried out, and a method was proposed for the purpose of anomaly 

detection in surveillance videos. The major contributions of this work have been 

summarized in the following paragraphs. 

Firstly, the key challenges in the field of anomaly detection were identified by a 

thorough literature survey of existing works. These were found to be probabilistic 

definition of anomalies (as compared to pre-defined anomalies), one-class training 

datasets and a need for real time algorithms. 

An existing framework that attempted to addressed these challenges was then chosen 

from literature and implemented. This framework modelled behaviour using pixel 

level abstractions by employing Histogram of Optical Flow (HOF) as a low-level 

feature. Then a set of video sequences were chosen from a publicly available dataset 

to benchmark this framework and find its merits and demerits. 

After a thorough analysis of this chosen framework, enhancements were proposed to 

address its shortcomings. Enhancements to the feature vector included the addition 

of block coordinates and Net Optical Flow (NOF) magnitude and direction. The 

spatial coordinates encoded spatial information about blocks into the feature vector, 

while the NOF features added additional information that a classifier might not have 

inferred directly from HOF components. Then a support-vector based training 

(modelling) algorithm was also proposed exploit the non-linearity in the data. 

Then the proposed method was benchmarked and it was found to improve upon many 

shortcomings of the base system like the ability to learn complex non-linear motion 

patterns. The proposed method also found to work well on crowded scenes where 

some other methods in the literature faced difficulty partly because this method only 

attempts to identify motion patterns in the foreground (pixel based abstractions), 

rather than individual objects (object based abstractions). A comparison to other 
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approaches in the literature showed the proposed system performing comparably to 

the state-of-the-art. 

 

7.2 Future Work 

A number of different areas and video sequences have been identified where further 

lines of research can be considered. 

• Fixed spatio-temporal volumes. The temporal the duration of an event was fixed 

when extracting the Histogram of Optical Flow (HOF) feature, in both the base 

and the proposed system. Research can be conducted into extending this 

approach to learn variable time-length anomalies 

• Detecting stationary anomalies. HOF is unable to detect objects that are moving 

too slow or are stationary. A lot of pixel-abstraction based techniques similar to 

HOF also require some sort of motion to work properly. To address these, other 

low-level features that can address both stationary and moving objects should be 

investigated. 
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