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ABSTRACT 

Interpenetrating Phase Composites (IPCs) are multiphase composites where each phases is 

interconnected three- dimensionally. The lighter, stilThr stronger and tougher material is 

called metal phase and the other as reinforcement. They have unique geometry which oftrs 

improved mechanical and physical properties. According to the occurrence of the of the 

interpenetration at dil'fercnt length scales, IPCs can be categorised as molecular, micro or 

meso composites. This project provides a modelling and simulation of alumina- copper based 

IPC. The computational used to model and simulate the IPC is based on Flement Free 

Galerkin Method ( FFGM) using MAFLAB. 

Oving to complexity in microstructure & randomness of IPCs. the modelling of these 

materials have not been etTectivelv studied yet. Two models have been proposed by the 

author one in two - dimension and another one in three- dimension. They are Unit- cell model 

vhicli is based on the geometry Of the sub-cell. A sub-cell is a collection of randomly 

generated quarter circle placed in the corner of' a square in two-  dimension and randomly 

generated cuboids placed in the corners of'  a cube in three- dimension. Many sub-cells are 

arranged together making a unit-cell. l)egree of penetration is introduced which controls the 

geometry of' the models between interpenetrating and particulate. Other parameters such as 

volume liaction. interpenetrating geometry have been incorporated into the model. 

In this thesis two types of analysis is carried out on both the models. The elastic analysis 

includes finding out the equivalent elastic properties of the IPCs like Young's modulus. 

Shear modulus and Poisson's ratio. For this effective medium approximation technique has 

been used. In this technique the strain energy of the IPC is equated to that of the equivalent 

homogeneous medium. The elastic properties at certain volume fractions are found out and 

are validated with the experimental results and others available in the literatures. The elasto-

plastic analysis for large values of' starin is carried out to lnd the equivalent stress- strain 

curve of the lPC. The results are found to be within the limits and comparable to the results 

avai fable in the literatures. 
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CHAPTER 1 

iNTRODUCTION 

1.1 COMPOSITE MATERIAL 

Composite materials are the materials of modern era. The composites for the desired 

purposes are made by mixing two or more different materials on a macroscopic scale. The 

mechanical & physical properties of the resultant material are better than those of the 

constituent materials. The one of constituent materials whose mechanical properties is stiller 

and stronger is said to be reinforcement and oilier as matrix phase. The reinforcement phase 

is usually discontinuous. The matrix phase behaves as cementing to the reinforcement phase 

and usually continuous. 

Flie mechanical properties, geometry and phase distribution of the constituent materials 

have bearing on the composite materials' mechanical properties. The volume fraction which 

is ratio of the reinforcement to the matrix phase is one of the most important parameter that 

governs the overall properties of' the composite. The homogeneity of the composite material 

system is determined by the distribution of the reinforcement. The shape and direction of 

reinlorcenient affects the anisotropy of the system. Out of constituents' materials the matrix 

is the main load bearing which provides protection for the sensitive reinforcement. 

l'hcre is wide application of composite materials. Aerospace, aircraft, marine, 

automotive, sport. energy, and biomedical industries have used composites in various ways. 

The advantageous properties of composites like high stifffiess, high strength, and low density 

make way to he used in both military and civilian aircralI widely. For prosthetic devices and 

artificial limb l)als various composites are used. In aerospace structures the light weight and 

extremely stiff graphite composites are used. In Sporting goods such as tennis tackets, golf' 

clubs, fishing poles. skis and bicycles the composites got wider applications. 
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1.2 INTERPENETRATING PHASE COMPOSITES (IPC) 

The matrix phase of conventional composites is usually continuoUS. It behaves as a binder to 

the reinfircement phase which is discontinuous. The binding ability, the theimal capability to 

the reinforcing phase and low cost are the basis on which matrix phase is chosen. Nowadays. 

new variety of composites is being prepared with both the phases being continuous. They 

have a network of interpenetration of' reinforcement impregnated in molten metal. Therefore. 

they are known as INTERPENETRATING PHASE COMPOSITES (ii'cs) 

IPC may be defined as multiphase materials. Where all phases are interconnected three 

dimensionally throughout the structure. Interpenetrating Phase Composites may have two or 

more than two phases which are interconnected in a way that it will be difficult to distinguish 

between reinforcing and matrix phases based on states of continuity and isolation. The 

previous problen of' matrix dominating influence on the composites is removed by the dual 

continuity of the phases. The reinforcement's unique geometry offers superior mechanical 

properties of' the resultant composites. Owing to complete continuity each constituent phases 

may contribute its properties to the macroscopic of the composites properties. Many 

Fascinating properties of all the constituent phases are retained in the resultant composite 

raising the hope of developing materials having actual composite behaviour. According to 

interpenetration at various length scales. IPC can be divided into molecular% micro or meso 

\'arieties. 

Therefore . Interpenetrating Phase Composites offer the hope of actual composite, where 

two usually incompatible properties of pure materials may co- exist in a composite. 

Figure 1.1: 31) rnicrostructure otan ic Figure 1.2: 2D cross-section ofa 2 phase 
IPC 



1.2.1 Applications and Advantages of I PCs 

Flie near-net IPC's shape capability, low production cost and good tribological 

performance of lers the I PC's suitability for the applications like automotive disc brake rotors, 

internal combustion (IC) engine piston crowns. connecting rods, cylinder liners, robot arms, 

turbine compressors. callipers, etc. Further, the enhanced properties at high temperatures 

ofThr them suitability for aerospace usage. IPC has good hio- medical usage. too. 

Varioius researchers have found that IPC has enhanced mechanical and physical 

properties than other composites. The main advantage of the IPC is the interconneclivity of 

both the phases that makes it possible for both the phases to impart their advantageous 

properties to the composite in a better manner. The matrix phase still dominates the thermo-

mechanical behaviour while inter-metallic phase improves toughness by crack bridging 

mechanism. Newer manufacturing methods have made IPC of lower thermal expansion, good 

compression, higher stiffness, & bending strength. 

Ihe ceramic phase gives it high strength and 11 igh modulus while metallic phase gives 

low density, good toughness. Moreover. presence of' a continuous structure will provide 

higher strength and enhanced high temperature properties & thermal stability. The IPC are 

known for their improved wear resistance because of their complex and random 

microstructure, with an added advantage of iSOtrol)iC nature. Interpenetrating Phase 

Composites are enviromnent friendly as they can be easily recycled. 

1.3 OBJECTIVE 

The fracture mechanics of these materials have not been sufficiently studied so far because of' 

complex and random behaviour of I PC. Agarwal et a! (2012) have tried to simulate using two 

dimensional model which is the simplest one and compared the model with the available 

models SO far. The main objective of the project is to simulate near net shape of the 

composites that is three dimensional structures and to compare with the available models 

including the two dimensional one proposed by Agai'wal ci a! (2012,2013). Therefore. the 

aim of the dissertation is to develop versatile computational algorithm that will model and 

simulate the different dynamics of these materials so that we will be able to understand, 

design and predict newer composites with shortei' lead-time without much expense. 

4 
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The main problems, which will be tackled in this project, are: 

I. To study of the interpenetrating microstructure and its effects on the macro scale. 

Three dimensional modelling and approximation of the effective medium in 

the ll'C (EMA). 

To validate the model with the available literatures. 

Results of different lPCs (obtained by different combination of the phases) are 

compared with particulate composites of similar nature. 

2. To develop a micro-model (local model), which will approximate the randomness in 

the geometry of the IPC. 

3. To study of parameters influencing the strength of an IPC 

To calculate of strength of IPC with the appropriate use of EMA (global 

model) and local model. 

To validate the model developed with results available in literature and 

experimentation. 

4. To find the effective Mechanical properties of the IPC. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 ELEMENT FREE CALERKIN METHOD 

A number of nieshfree methods has been developed to analyse problems encountered b 

FEM/Ll:GM) (l3e1vtschko et al.. 1994, l.0 et al.. 1994) is the most frequently used method 

for analysing so! id mechanics problems. They used IIFGM for arbitrary shape elasticity 

problems as well as simple heat conduction problems, the rate of convergence in this 

method is higher than the other method. They applied this method to analyse quasi static 

crack growth problems. 

Bclytscko el al. (1 995a.h; 19)6a.b) used EFGM in static and dynamic crack growth 

problems. Their results by the EFGM method were very close to analytical approach. The 

problem of remeshing was removed. However, the computational time increased by 50%. 

Krongauz (1996) in his doctoral thesis proposed a method for incorporating the 

discontinuous derivatives in EFGM. Ilis method was applicable for one and two-dimensional 

problems only.. 

l)olbow and I3clytschko (1999) proposed some modilcation in numerical integration of 

Galerkin weak form for meshless method. A new structure of integration cells was suggested 

which lessened the quadrature error. 

l3clytschko et al.. (1999) suggested a technique lr modelling discontinuitics Jump 

function was used to model material discontinuity and for near crack tip enrichment 

Westergards solution was used. 'l'liev proposed vector level set to model crack. 

Pant ci al.. (2010) developed methods for modelling material discontinuities with the use 

of level set lunctions. They suggested a signed distance function to enrich those nodes which 

are close to the interface and provide a discontinuous strain function. 

2.2 INTERPENETRATING I'HASE COMPOSITE (IPCs) 

2.2.1 Introduction 

Liii and Koster 1995) were probably the earliest researchers who proposed the 

manu fOcturing technique of Interpenetrating Phase Composites (ll'Cs). They made A 1203- Al 

metal matrix(MM) composite by impregnating silica perform with molten Al. 

5 



Zhou et al. (1998) suggested self-propagating high temperature synthesis reaction 

technique to make porous niatrix phase of A1203-TiC. They infiltrated this with pure 

aluminium (Al) in Nitrogen pressurized furnace at 750°C. Some volatile agents were used to 

increase the porosity of the SI-Is products. 

I lorvitz et al. (2002) did some modiflcation in the SILS reaction to incorporate wider 

range of materials by introducing Reactive Thermal explosion and hot pressing technique. 

Ihus. after initial heating due to an increased exothermic release of energy the reaction 

became se If su flicient. 

Yu and Xiao-Iu (2006) made IPC using a vacuum assisted low negative pressure 

niou Iding process. In this process, pUre aluminium foams were inliltrated with different 

polymers. Quasi-static compression tests were done at room temperature. The composites 

show improved compressive behaviour and improved energy absorption capacity compared 

with the pure aluminium foam. Experimental modulus data is well within I-I-S bounds,too. 

llan Cl al. (2006) propose A1203- ThAI  IPC by dry milling of the constituent powder by 

high energy discuss milling device followed by pressure less sintering. XRI) results 

suggested reduction in particle size and enhanced homogeneity. Few other characteristics are 

increased hardness, decreased porosity etc. Due to debonding of alumina and aluminide 

interflice and crack bridging of ductile 1'i3Al phase the fracture toughness improved 

substanti fly. 

Jhaver and lippur (2009) made IPC using pressure less infiltration technique on 

syntactic aluminium foam. A number of uni-axial compression test was carried out on 

syntactic foam & IPC foam and then results were compared. They used unit cell in the form 

ot' Kelvin cell (tetrakaidecahedron) with using triangular aluminium ligaments and rest of the 

space is filled by syntactic foam. FEM analysis was done in ABAQUS and was found to be 

matching with experimental results. 

Marchi et al. (2003) made Alumina—Al IPC with 3-D periodic structure. They used 

I-used Deposition Method and Direct Write Method to produce sintered A1203  tower in a 

graphite block. Al rods are then placed on the top of graphite to produce random isotropic 

IPC. Thermal expansions were measured using push rod dialometer. Aluminium bars carry 

increased proportion of transverse tensile stress. 

Vecchia et al (2003) made Al203-AI IPC using Reactive Metal Penetration (RMP) 

method. They studied various microscopic and mechanical characteristics of the IPC using 

dii lerent experimental techniques. They found a strong variation in both the microstructure 

and the orientation of the metallic phase channels in different cross sections of the composite. 



l'hey extensively studied and reasoned the different microstructures at different cross 

sections of the IPC. They also studied the mechanical behavior such as thermal expansion, 

bending compression and tensile properties and fracture mechanics of the IPC. 

Kouzeli and l)unand (2003) observed the results of the elasto-plastic behaviour of 

reinlbrcenient Aluminium composite. The comparative higher stiffness owe to 

interconnectivity is moderate (10% avg Al composite). For dominating interconnection of 

reinforcement, the ratio of stiffness needs to be enhanced. Also, increase in volume fraction 

of stilThr reinfbrcement would increase the compressive & stilThess how stresses of MM-

IPC. 

2.2.2 Modelling and Simulation 

Wegner and Gibson (2000) used 3-I) printing method to produce stainless steel - bronze iPC. 

They used non-linear ELM model according to unit eell model having periodic boundary 

conditions. Dimensions were based on volume fractions of respective phases. The elastic 

modulus estimated by Finite Element analyses lie within the narrow band of Flashin-

Shirikman bounds, confirming the suitability of the model. They concluded that there is a 

ptIFPO5C to examine the influence of contact region between sintered particles on flow 

l)roPeIt ies. 

Agrawa) el al. (2003) calculated the thermal residual stresses in 02 IPC (A11A1203  & Cu/ 

A1203). They found that metallic phase contain tensile stresses and the ceramic phase has 

compressive stresses. These stresses generate due to difference in volume fraction, melting 

point, stifThess in the two phases. This creates residual stresses when cooled during 

manufacturing. FEM modeling is done in ANSYS to find numerical results. 

Tilhrook ci al. (2005) modelled alumina epoxy IPC based on three techniques which 

included Iso stress - iso Strain Approximation Model, Effective Medium Approximation 

(EMA) and Unit Cell Model. They also used Impulse Excitation 'l'echnique (lET) to 

experimentally calculate the elastic moduli of IPC. 

Feng ci al. (2003) suggested an efficient method to predict elastic moduli. They used 

two-step procedure to measure the moduli: The elThctive elastic modulus of cubic cell was 

estimated using FEM or simple iso- stress and iSO- strain model for the parallel and series 

combination of unit cell. 

'lohgo ci al. (2006) developed a model for two phases ll'C by introducing a matricity 

into the constituent equations of particulate composites. The matricity can be thought of as a 
4 

representation of the true volume fractions. They considered the IPC as two particulate 
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composite with respective matrix and reinforcement interchanged. By this method, they 

calculated the moduli of elasticity and poisson's ratio of different phases. Thus. they applied 

successfully to FGM using FEM techniques. 

Poniznik ci al. (2008) suggested a FEM which is based on approximation of IPC 

structure. A cubical IPC is divided into numbers of cuboids (voxel). The number of voxels 

selected based on the volume fraction of the phase. Also care must he taken to select voxels 

so that each is connected by at least an edge of another voxel. No voxel should be left out. 

Then FEM modelling of this cube will give us the effective mechanical properties of the IPC. 

2.2.3 Strength and Fracture analysis 

Prielipp ci al. (1995) observed the strength & fracture toughness of A1203-Aluminium IPC. 

They Ibund that Al infiltration increases the fracture strength. 

Zhou ci al. (1999) studied the IPC using XRD (X-Ray diffraction). They observed 

plastic deformation at crack lip thus leading to uneven and torturous fracture surface. They 

noted strong inieriuicial bond strength. 

Pezzotti and Sbaizero (2001) experimentally substantiated relations between microscopic 

stress fields and macroscopic crack bridging. They used fluorescence microprobe 

spectroscopy technique to measure the microscopic residual and bridging stress fields 

produced during cooling of Al203-Al IPC. A crack was introduced externally and its 

propagation was studied. R curve was plotted which was compared with theoretical R-curve. 

'l'liev Found a relation between R-curve and bridging stresses, which could explain the 

fracture characteristics of these complex materials. 

Bin ci al (2002) used squeeze casting to intrude the molten metal into the highly porous 

SlIS products. This method gave an increased strength regardless of increased porosity. 

Agrawal and Sun (2004) studied fracture in metal-ceramic composites. They compared 

two lPCs (Al/Al203 & Cu! A1203) and 011C particulate composite (Al/SiC). They build that 

fracture toughness is pi'oportioiil to the ductile particle size up to a critical limit and beyond 

that thermal residual stress weakens the interface. The FEM modelling is done based on 

global/local approach. The globally effective properties were calculated with the help of 

EMA. Then near the crack tip. a local region is taken into account and thus ill icrostructure 

properties are accounted For. 

Etter ci al (2004) measured the fracture & strength of' graphite—Al IPC made by 

investment casting method. Flexural test usiilg tour Point bending test was done. Fracture 
4 
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toughness test was perl'ormed using modified SEVNE3 with notch tip radii of30 Jim. Thermal 

fatigue testing was done between 30°C to 300°C. 

Mayer and Papakyriacou (2006) observed the fitigue cracks generally initiate at 

porosity by interface failure. Infiltration improves tensile and bcnding strength but cyclic 

properties are less affected. 

Moon et cii. (2008) evaluated crack tip stress fields on a micro scale. They used Single 

edge V notch bend(SEVNE3) test with notch diameter of' 25 tm and measured the stress 

distributions using Fluorescence spectroscope. Also crack growth was observed under four 

point bend fixture loading (that promoted subcritical crack growth). They noted that the crack 

moves to avoid reinforcement phase in low volume fraction of reinforcement. In high volume 

11ac1ion of reinforcement crack becomes discontinuous and reinitiates elsewhere. They also 

proposed a FEM iirndel in which they used the actual geometry near the crack region. 

[)ukhan el al. (2010) AFIC by immersing an aluminium loam matrix with an unfilled 

po1'propylene homo polymer. They measured the flexural properties of this material for 5 

different speciniens: these were found to be close to lower bounds the reason of which is yet 

to be found out. 1-lowever, there is a an increase by one and half in elastic moduli. 

2.3 PROGRESSIVE DAMAGE MODELLING 

Fao et al. (1993) studied the microscopic images of SiC interfaces. They characteiised the 

reason behind strong and weak interfaces. The faceted interface which form a chemical bond 

have strong interface. The inter-metallic compounds found lodged at the interface makes the 

interface weak. 

Ravichandran, 1994 proposed an iterative method to predict the deformation behaviour 

of IPC using an unit cell model. Prielipp et a! (1994) described the mechanical properties of 

Al/A1203  composite in terms of volume fraction and ligament diameter. They proposed a 

mathematical model based on the two parameters to calculate fracture strength of the 

composite. 

Kapoor and Vecchio (1995) examined the deformation behaviour and failure mechanism 

in 6061 Al MMC. [3oth tensile and compressive behaviour depend oil 'I'4 and l'6 condition 

and relative strength of particle and matrix. in compression tile particle merely acts as 

obstacles to the flow of matrix, while in tension the particles assist in the flow. 

l)oel and Bowen (1995) carried out uniaxial tensile testing on M MC. Low particle size 

increases the 0.2% proof' stress and ultimate strength and high particle size increases the 



same. l)uctility is reduced. Damage is initiated by void nucleation, they also found that small 

Particle reinforcement damage less easily and are iiiorc ductile. 

Kashyap ci al.. (1999) postulated that the strengthening of MMC is associated with high 

dislocation density' and its work hardening effect. The role of work hardening parameters in 

strengthening of MMC was investigated. 

Fleming and l'emis (2002) analysed the behaviour of AISiC MMC under cyclic loading 

using models based on strain cyclic plasticity and strain accumulated damage. They 

mathematically modelled elasto-plastic deformation process in MMC. 

Pyo and Lee (2010) proposed a damage model considering imperfect interface to predict 

effective elasto-plastic behaviour of MMC. They used modified Eshelby tensor with 

weakened interfaces. They used a progressive damage model to numerically simulate the 

multilevel interfacial damage model. 

Reddy and Zitour (2010) determined the mechanical properties of different particle 

reinforced MMC. The yield strength, ultimate strength and ductility depends not only on the 

reinforcing agent but the type of matrix alloy also. 

1 lertele ei al., (2010) gave a method to combine different types of stress-strain models to 

form it generic stress-strain model to represent the behaviour of any type of composite. They 

used Ramberg-Osgood model as it is most versatile and valid over large strains. 

Agarwal c/ al.. (2012) presented two models namely Unit-Cell and Self-Consistent 

Model the elastic properties of lPCs to lind out elastics properties of them. They duly 

incorporated all influencing parameters such as volume fraction, degree of penetration & 

random geometry. 1'hese models were analysed by a meshless method known as Fl-GM. 

Ihey found that the unit-cell model is easy to implement and less time consuming. 

Agarwal et al., (2013) used Ramberg-Osgood material model to model the elasto-plastic 

behaviour of the composites. They proposed a progressive damage model based on the 

treatnient of the interface. They found that the ultimate strength and the yield strength of the 

IPC depened mainly on the properties, volume traction and interpenetration of the 

constituent phases. Their result were found to he in good agreement with the experimental 

ones. 

10 



2.4 RESEARCH GAP 

Due to complexity and randomness in microstructure, the mechanics of these materials have 

not been sufficiently studied so far. The basic objective of this dissertation is to model and 

simulate the failure phenomenon in IPC to understand, design and predict newer composites 

with shorter lead-time without much expense since the experimentation is difficult, and time 

consuming, therefore there is need to develop a versatile computational algorithm, which will 

simulate the different dynamics of these materials. 

11 



CHAPTER 3 

ELEMENT FREE CALERKIN METHOD 

3.1 INTRO1)LJCTION 

The element free Galerkin method is quite different from FEM as no element and element 

connectivity data is needed but only a set of nodes over the given domain along with 

boundary description is required to construct the approximation function (shown in Fig. 3.1). 

Trianqulr Elements 
Nodes Nodes 

Fig. 3.1: Domain representation in FFM and FFGM 

In FFGM. both trial and test functions are constructed from the same space using moving 

least sq uarc (lvi LS) approximants. 

The Ml S approximants consists of three components: 

A compact support weight function associated with each node, 

A polynomial basis function and 

A set of coefficients that depends on node position. 

4.2 wEI(;1IT FUNCTION 

The support of the weight function defines the nodal domain of influence, over which a 

particular node contributes to the approximation. the overlap of the node's domain of 

influence defines the nodal connectivity as shown in F'ig.3.2. Circular or rectangular domain 

of influence is used for 2-I) problems but in case of 3-I), circular domain of iniluence 

becomes spherical and rectangular domain of influence becomes cuboidal. One useful 

property of M LS approximation is that their continuity is governed by the continuity of 

12 



weight functions. Therefore, a highly continuous approximation function can be generated by 

an appropriate choice of weight function. 

-V. [)omain of influence 

  

Domain of influence 

main 
indary 

Nc 

Fig. 3.2: A computational model of rectangular and circular domain of influence 

For the numerical simulation, different weight functions are used which illustrated here. 

Cubic spline: 

2 r<- 
3 2 

1

4  
•v(r)= —4r+4r I (3.1) 

Quartic spline: 

(1— 6r2 + 8r 3  - 3r4 , r <— I 
w(r) = (3.2) 

O. r>l 

Simple exponential: 

_(L)2h  

C' • ,'~l (3.3) 

0. r>l 
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1 

Guassinan exponential: 

1 ,,2L (I 2h 

w(r) = _(fl2k - 

e —e 

1—c 

,. <1 (3.4) 

0 

where, c is the dilation parameter and k is the number is terms in polynomial basis function. 

Normalized radius for spherical domain of influence is given by 

I. = 
- XII (3.5) 

where, d, is the support domain of node I. For cuboidal domain of influence, normalized 

radius is 

,. =llxi_xIYI.vi_.vlylzi_zI 
I d /v d1C 

) d 
(3.6) 

where, d, d, d is the support domain of node I in the x, y. z directions. Cubic and quartic 

weight function for eight nodded 10 unit length bar are plotted with d111 = 1.25 given in 

Fig. 3.3 
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Fig. 3.3: Cubic and quartic spline weight functions l-D 

Cubic and quartic weight function for single node of plate of 2x2 unit area are plotted with 

d11  = 1.25 given in Fig. 3.4 
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Fig. 3.4: Cubic and quartic spline weight functions 2-D 

3.3 MOVING LEAST SQUARE (MLS) APPROXIMATIONS 

The MLS approximation has two major features that make it popular: 

• The approximated field function is continuous and smooth in the entire problem 

domain. 

• It is capable of producing an approximation with the desired order of consistency. 

In EFGM. the approximation of ,i(x) at any point x = 9' in the domain 0 c where 

N = Lor2.or3 is denoted as z"(x). given by MLS approximation 

z,"(x) = p,(x)a(x) p'  (x)a(x) (3.7) 

where, p'(x)=[p,(x).p,(x), .. . ,p(x)] is a basis of order k and p,(x) is a vector of 

complete basis functions (usually polynomial). For three dimensions (N = 3) and 

x T =Fx y z]. 

p'  (x) = [I x y z] (linear basis) (3.8) 

•1• 
) 1 1 

p (x)=[l x V Z VZ zx x y z] (quadmtic basis) (3.9) 

p'(x) = [I, x, v. Z. .xy, yz. zv. .i ... ', yL. zk] ( kth order basis) (3.10) 

and a" (x) =[a1 (x), a,(x), aJx), ...,a(x)] is a vector of unknown coefficients a, (x)which 

depends on position i.e. x. 

The unknown coefficients a(x) are obtained by minimizing a weighted least square 

sum of the difference between local approximation, u' (x) and field function nodal parameter 
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u1. The weighted least square sum denoted by L(x) can be written in following quadratic 

form: 

L(x) = w(x - x1 )[11h  (x) -  III 

On substitution of Eq. (4.7) into Eq. (4.11) 

L(x) = w(x—x 1 )[p'(x 1 )a(x) —u1 1 2 (3.12) 

where, u 1  is the nodal parameterassociated with node I at x = x, but u"(x =x,)is not the 

nodal values of because u' (x) as an approximant not an interplant as shown in Fig. 3.5 and 

n is the number of nodes for which w(x - x, ) > 0. 

U 

(x) 

x 

Fig. 3.5: Difference between u1  and ul?(x) 

5L . 

I he miiiimization of L i.e. - = 0, leads to following expression: 
aa 

0 ii'(x—x1 )2p1 (x,)[p' (x 1 )a(x)—u1 ]= 0 
aul 1-1 

=0=1v(x—x1 )2p,(x,)[p'(x,)a(x)—u1]O 

(3.13) 

8C1A 1=1 

In vector notation 

w(x—x,)2ix I  )[p(x )a(x) ]=0 (3.14) 

11 
2w(x—x,)ix ,)p'(x,)a(x)—w(x—x1 )lx,)zI1  =0 (3.15) 
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After arranging Eq. (3.15) 

a(x)= w(x - x, )p(x, )p'  (x t )] w(x - x1 )p(x, it, (3.16) 

Substituting a(x) into Eq. (3.7), the MLS approximation is obtained as: 

H 
-I 

U"  (x) P1 (x)[ w(x - x, )x, )p' (xi )] w(x - x, )x,)u, (3.17) 

ihis can he written as 

u"(x) p' (x) A '(x) B(x) ii (3.18) 
--- -,-- ----- 

1xk k x k 

and a(x) = A'(x)H(x)u (3.19) 

where, A(x) and 8(x) are given as: 

1 x, I x 
A(x) = w(x - x, )p(x, )p '  (x,) = n'(x - x,) 2 + + w(x - x,,) 

" 2 
(3.20) 

x, x, x,, x,, 

ll 
= w(x— x,)p(x,).'...ii'(x - x,,)p(x,,)J = 1w(x - x,) 

j,....
w 

i 
(x - x,,) 

jJ 
(3.21) 

x l  

Meshfree approximation can be given as 

// (x)u, (x)u (3.22) 

where, 

p(x)r-4çti,(x) y,(x) çu3 (x) ',,(x)] (3.23) 

U1 [U, 112 113 U,, 1 (3.24) 

By comparing Eqs. (3.1 8. 3.22), the MLS shape functions are defined as: 

41(x)= p'(x)A'(x)B(x) (3.25) 

The MLS shape function for node / yi,(x) is defined as: 

= p'A w(x —x, )p(x,) = p'AB, 
1-1 

(3.26) 

The derivatives of MLS shape function are computed as: 

i/i, (x) (p' K'B,) = p'. K B, + p'  (A')B, -F p'  K' B, (3.27) 

where. 

B,(x) = -(x - x, )p(x,) (3.28) 
dx 
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and A', is computed by 

= —AAA (3.29) 

where. 

A., = (3.30) 
1=1 

Here, comma designates a partial derivative with respect to the indicated spatial variable. 

MLS shape functions and their derivatives are plotted for linear and quadratic polynomial 

basis having cubic spline weight function for eight nodded 10 unit length bar with = 1 .25 

shown in Fig. 4.6-4.7. 

0.4 :: 

 
0.2 N. 

0'• ••-•••-• .--•'o•. .°' S • • .o- . . 

0 I 23 4 5 67 8 9 10 I 2 345 6 7 8 310 

Fig. 3.6: MLS shape functions with linear and quadratic polynomial 

8 15 

10 

. . . .0 . . • \: \ . . • 

0 1 2 3 4 5 8 7 8 9 10 0 1 2 3 4 S 6 7 8 9 10 

Fig. 3.7: Derivative of MLS shape functions having linear and quadratic polynomial basis 

For linear basis quartic spline weight function and shape function are shown in Fig. 3.8 for 

2-D while the derivatives of shape function are plotted in Fig. 3.9. d,,, = 1 .25 is used for this 

case. 
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Fig. 3.8: Cubic and quartic spline MLS shape functions 
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Fig. 3.9: Derivative of cubic spline MLS shape functions w.r.t .x and v 

3.4 ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS 

The proper imposition of essential boundary condition is quite difficult in EFGM since MLS 

approximation does not satisfy the Kronecker delta function property i.e. ill,(x1 ) # 8,,. Many 

numerical techniques have been proposed to enforce the essential boundary conditions in 

EFGM. 

+ Lagrange multiplier approach is quite accurate but its imposition loses the positive 

definite and bandedness properties of the system matrix. It generates more number of 

unknown in the solution. 

+ In coupling with FEM, EFGM domain is necklaced by FEM domain, and then 

essential boundary conditions are applied in the same manner as in FEM. 
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•:• Penalty approach is easy for the enforcement of the essential boundary conditions, 

and it gives discrete equations in simple form similar to l'EM. Although, system 

matrix obtained by this method is positive and posses bandedness property but 

improper selection of penalty parameter may lead to wrong results. 

In this work, Lagrange multiplier approach is employed along with point collocation scheme. 

35 EFGM F'ORMULATJON BASEI) ON MINIMUM POTENTIAL ENERGY 

APPROACLI 

In EFGM, an approximate solution for a node I having n number of nodes under its domain 

of influence, is given as 

u(x) = (x)u + yi,(x)u, ± ± (3.31) 

(x) = y11  (x)v1  + , 
(x)v + ... + vi,, (x)v,, (3.32) 

(x) = i/i a  (x)11'1 i, (x)w. + + y (x)w (3.33) 

where, i . . . yi,, are the partition of unity M LS shape functions, u1 , v,. u,. v,, w,, are the 

unknown displacements at the nodes (I,•• .,n) in the Cartesian coordinam-.the above 
- R L 

equation can be written in matrix form as 

Date 

u ií1 (x) 0 0 •' yi(x) 0 0 w
Rojo 

V = 0 v11 (x) 0 .. 0 yi,,(x) 0 (3.34) 

w 
- 

0 0 yi1 (x) ... 0 0 yi(x) u, 

V,1  

In vector form 

u = M = {U}' ['vf (3.35) 

The strain at any point can be obtained as 

(3.35) 

where. 
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I = I 

o o •.. 0 0 
ax  
o a(x) 0 

ax 

0 
8y1,, (x) 0 

ay ay 

o 0 
ai1 (x) 0 0 aw,(x) 

o ai(x) 
ôz  

8çu1 (x) 
.,. 0 

5i,,(x) 
Cz 

ai,,(x) 

az ay &Z ay 

_ o au1 (x) 
__ 0 

ai,(x) 

ax az ax 
6i1 (x) aw(x) 0 

ati,,(x) 
•.. 

ai,,(x) 0 
ax 

U I  

V 1  

WI  
e. 

7 
U n  

V
YZV 

7x 

(3.36) 

lotal potential energy of the system is defined as 

n =if (c. +e.a. +y +ya +ya 1 )dQ-f(uJ. +v, +i)d 
(3.37) 

- J(ul, + vi, + 

Eq. (3.37) can be written in matrix form as 

0-v  

I1 =J[E. & 7,.. 7 
0-v  dc-J[u v v 

(3.38) 

where, f f,, fare the body forces per unit volume and 'v'  ç. 17  are the surface tractions at 

node I in x, y, z-directions respectively. In concise form, it is given by 

11 = .5c/ adc_5uTf dc_ Ju'td[ (3.39) 

The essential boundary condition (Fig. 4.10) are defined as 

u=ii on 1', (3.40) 
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Fig. 3.10: [)ornain with applied boundary conditions 

I lere, the superposed bar denotes prescribed values. In this paper, Lagrange multiplier 

method has been considered to enforce the essential boundary conditions. The Lagrange 

multiplier 2 is expressed as 

A(x)=N1 (s),. xu (3.41) 

x€u (3.42) 

where, N1  (s) is Lagrange interpolants and s is the arc length along the boundary for node 1. 

Incorporating the essential boundary condition. 

U=I1—jA(u—)dr'1. (3.43) 
11 

I lence. lLqs. (3.39, 3.43) yields 

nJc'GdQ_Juf(Ic_Jutdu1 _J2(u_u)dl If (3.44) 

Minimizing the potential energy expression with respect to unknowns 111 w.......... , v, 

w . 2 leads to 

f
C~ u,  (; CA2 - f .5 U,  f d f J u tdl, - f '5 

f S u'*  A dF., =0 (3.45) 

Using following constitutive relations 

= l)c (3.46) 

By substituting Eqs. (3.35, 3.46) into Eq. (3.45) yields 
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JrJBI; DBdQu_su1 jw1 f Sid d+J/'tdr1 ]_sA'c_N'wdFU 

K f C,  (347) 

+8%J_N'dF,,_u'f_W'Nd[1 2=0 

It can be written as 

6U'(KU _f+G2)+(G'U-q)=0 (3.48) 

In matrix form 

I 
rK cilul 11  

k 
(3.49) 

' 0]I2J qJ 

where, 

K = J13 ;iDB.,,dc) (3.50) 

c=-JWNdr,, 
r. 

(3.51) 

(3.52) 

L 
F,, =J'" J, dO (3.53) 

fz 
 

F, 
= fr (3.54) 

q=-JNiid[',, (3.55) 

where, D is the constitutive matrix for a three dimensional linear elastic material, which can 

be written as 

(I-v) v v 0 0 0 

v (1-v) 1 ,  o 0 0 

E v v (i - v) 0 0 0 (3.56) 

- (1-i-v)x(1-2i') 0 0 0 (0.5-v) 0 0 

0 0 0 0 (0.5-v) 0 

0 0 0 0 0 (0.5-v) 

E is the Young's modulus and v is the Poisson's ratio. 
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N 0 0 

N=O NO 

0 0 N 

(3.57) 

rd In this work, point collocation method has been used which assumes that the collocation 

points are coincident to nodes of displacement boundary whose degree of freedoms are 

restricted. Hence fhr 3-D case. N matrix becomes 3 x 3 an identity matrix. 

3.6 NUMERICAL INTEGRATION 

The computation of stiffness matrix ( K ). displacement matrix (C ) and force vector ( f 

requires an integration over the domain. Integrating the stiffness matrix and force vector 

requires a numerical integration scheme such as Gauss quadrature, which in turn, requires a 

subdivision of the domain. 

There are two approaches available in literature for this pulpose: lirst one is element 

quadrature in which the vertices of this background mesh are often used as the initial array of 

nodes for the EFGM model. 1-lowever. it needs to create cells/elements inside the domain. 

and Guass points are generated inside these elements as shown in Fig. 3.11(a). The black 

colour cross marks are the Guass points generated inside the elements. These Guass points 

are used for the numerical integration over the domain. 

lK  
yK I I K/' 
K\ KIK KIx /xN 

4 ;:—;: ;: 

K ' x jK 

lx K/K  
1K K\x  

K 

~K~~X \ 7K K\K 
K/KNK/ 

\( K,K  K ./ 
KJx KIK \/ K I I K 

K XK XX KK XX. KK KK XX. KX K 

XXX. XX K K)( XX K 
TX XX. X.KX XX. KK X. 

KX 
X.X 

K X.X KK K K KX KK 
X KI/XK XX X.K XX XX KK\(K K 

K K K \X K 
K .K XIX XiX. XX 'IC K KK K \ K 

K kK  KK X XX. KK X. X.K K K 
K ikX XX jX XX XiX. X. XX KIX\ K 

X. (K KK .X XX XXK KK K)J X.  

XX x X X.K K K 

K X.X\XK XX. XX KK XX XIK/XX. K 
'X.K K K KK KK KK KJ)( K K K 

IX XX. XK X.-.K KX.—K XX. X.EK K 

K XX XK XX. XX. KK XX. X.K KX K 

Fig. 3.11: (a) Element quadrature (b) Cell quadrature 

The second integration technique, which is often called cell quadrature uses a background 
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grid of cells independent of the problem domain. During numerical at each integration point, 

it is necessary to find whether it lies inside the domain or not before integrating the Eqs. 

(3.50 - 3.54). This technique is not widely used as it does not yield good accuracy along 

curved and angled boundaries. Fig. 3.11(b) illustrates that only black colour cross marks are 

the Guass points which are used for integration as they lie inside the domain of interest. 

I lowever. the blue colour cross marks are the Guass points which are generated in the 

background mesh but not used for integration hence this scheme becomes computationally 

more expensive than element quadrature. 

3.7 DOMAIN OF INFLUENCE 

The domain of influence or nodal support is an important aspect of meshfiee methods: 

thereibre its value must be chosen properly. The size of the support should be sufficiently 

large SO that the stillness matrix remains regular and well conditioned. But too large domains 

of influence lead to a great deal of computational CXPCflSC in forming the approximations as 

vell as in the assembly of stifficss matrix. The scaling parameter, is typically taken as 

1.25-3 for static analysis and 2 - 2.5 for dynamic analysis 

61 
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CIHIAPTER4 

MECHANICS OF COMPOSITE MATERIALS 

'l'radiiional monolithic materials may be broadly categorised as metals, polymers & 

cerani ics. Composites can be made by combining two or more materials from one or more of 

these categories. 

4.1 GEOMETRY 

The geometry of the composite material exhibits a defining role in the mechanical properties 

olcomposite materials. Based on the number of phases a material caii be called single phase 

(monolithic), two phase, three phase or multi- phase material. 

In homogenous material properties are same at every point. I lomogeneity concept is 

associated with a scale or characteristic volume. Based on the scale parameter material can 

be homogenous or less homogenous. II' the variability on a macroscopic scale is low the 

material is said to be quasi-homogenous. A material is known as heterogeneous if its 

properties vary from point to point at a paiicular scale. Depending on the scale parameter 

same material can be regarded as homogenous. quasi-homogenous, or heterogeneous. 

Many material properties like St iftiiess. strength, thermal expansion, and permeability are 

associated with a direction, In isotropic material the properties are same in all directions. A 

material is known as an anisotropic when its properties at a point vary with direction or that 

depend on the orientation of rclrence axes. Orthotropic materials are the materials having 

at least three mutually perpendicular planes of symmetry. All these properties depend on the 

scale or characteristic volume, too. 

4.2 MICROMECHNICS OF COMPOSiTES 

One of the main objectives of micromcchanics is to obtain functional relationships for 

average elastic properties of the composite, such as stiffness in the form 

C = f( C1, C, V1, S, A) 

where. 

C = average composite stilThess 

C.C, = fibre and matrix stiffness respectively 

libre volume fraction 
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S, A = geometric parameters describing the shape and array of the reinforcement 

respectively. 

A lots of methods have been found to get the properties of the composite materials like 

It • Mechanics of Materials approach 

• N umerical i'echniques approach 

• Self- Consistent held approach 

• Variational Approach 

• Semi- lmpirical Approach 

• lxperi mental Approach 

The mechanics of materials approach is depended upon simple assumptions of either 

uniform strain or uniform stress in the constituents' material. The properties which are not 

sensitive to fibre shape and distribution such as Young's Modulus Ei and major Poissons 

ratio c 2  are predicted accurately by this approach. 

Numerical l'echnique approaches like Finite difference, FEM, Periodic cell, or BEM 

give the best results. But these methods take more time and do not give closed form 

expressions. 

Self-Consistent held approach is based on a simplified composite model is considered 

containing of' a typical fibre confined by a cylindrical matrix phase. The properties 

constituents are similar to the average properties of the composite material. 

Variational methods are based on energy principles and it establishes bounds on effective 

properties of the composite. Semi-Empirical relationship has been suggested to related with 

the difficulties with the theoretical approaches described above. The micromechanics of load 

transl'er and the correlation between constituent properties must be experimentally verified 

4.3 MACROMECHNICS OF COMIOSITES 

ihe stress and strain relations hbr a body can be given in indicial notation as 

0',. ->C1jx.:j(i,j=l.2,3 ... 6) 

where, (.' -= Material stiffness constants 

For orthotropic material, the number of independent elastic constants are reduced to nine, 

as various stifhiiess and compliance terms are interrelated. The elastic constants include C 1  

(i.j - 1.2.3). C44  . C C. l-lere no coupling exists between normal stresses o. 2. os and 

4 shear strains y s ye,. No coupling prevails between shear stresses 14. t5. t( & normal strains 
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c, , 
No coupling exists between shear stress acting on one plane and a shear strain on a 

different plane. 

An orthotropic material is called a transversely isotropic when one of its principle planes 

is a plane of isotropy. The stress - strain relations are simplifled by noting that subscripts 2 

and 3 in the material constants are interchangeable. l-Iere C. = (C22 - C23)/2. 

4.4 i'LASTICITY IN COMPOSITES 

Since the plasticity is modelled using micro-mechanical model, the plasticity of the 

individual constituents are modelled through conventional theories of plasticity. in order to 

model elasto-plastic materials' deformation, some conditions are to be fulli I led: 

Just before the onset of plastic yield, the relationship between stress and strain is written by 

standard linear elastic expression. 

CT,, (4.1) 

Ihe yield criterion may be given in general form 

f((i,)=K(k) (4.2) 

where. I and k are a function and a hardening parameter respectively. 

Two most important yield criterions are Iresca Yield criterion and Von Mises Yield 

criterion. 

liesca criterion says that yielding begins at 

CT, —c, = Y(k) (4.3) 

where. CT1  CT:, -~ o are the principal stresses and )' is a material parameter to be found 

experimentally and may be a function of hardening parameter k. 

Von Mises yield criterion says 1iat yielding occurs at J reaches a critical value, or 

\UK(k) (4.4) 

in which. K is a material parameter. The second deviatoric stress invariant .J , can be written 

as 

1,: l2] f +r. -  pr:, (4.5) 

Yield criterion may be further written as 

(4.6) 

where, & is termed as effective stress, generalized stress or equivalent stress. 
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After starting yield the material behaviour will be partly elastic as well as plastic. During any 

increment of stress, the change of strain are considered to be divisible into elastic & plastic 

components, that is: 

10- 

c/c,, = (is )c  (c/c,, ) (4.7) 

ftc increment in elastic strain is related to the stress increment by Eq. (5.1). Decomposing 

the stresses into their deviatoric and hydrostatic components 

(dc,)' 117", + 
(i 61 (4,8) 

where, E is an elastic modulus and v is the Poisson's ratio. 

To find the relationship between plastic strain components & stress increment, it can be 

assumed that the plastic strain increment is proportional to the stress gradient of a quantity 

known as plastic potential function Q, so that 

U 
(4.9) 

where d2 is a proportionality constant termed as the plastic multiplier. 

Wz 
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CHAPTER 5 

MODELLING OF INTERPENETRATING PHASE COMPOSITES 

00 5.1 UNIT CELL MODEL 

ftc smallest structural block that defines the structure of a composite with all information is 

called as a unit cell. It is also kno'n as a representative volume clement (RyE). The 

composite structure is made by putting numbers of unit cells. The micro-structural 

parameters such as volume fractions, distribution oiphasc and connectivity define a unit-cell. 

5.1.1 lroposed Model 

In Figs 5.1-5.3, the construction process of the unit cell is shown. A numbers of sub-cells 

combined together forni the unit cell. Eight cuboids are placed at the each corner of a cube as 

shown in (lie Fig.5. 1. The sum of (lie volumes that is, V 1  + V2+.. .+V8  of the cuboids bears a 

constant proportion to the volume (a3) of the cube, where 'a' is the length of side of the cube. 

The ratio. thus obtained called the volume fraction (V1) of the phase. When the cuboid's 

length is lixed (lie breadth and height needed to be calculated. The length of the cuboid is 

chosen randomly in a way that its value is smaller than half of the length of a sub-cell. Afler 

getting (lie length of the cuhoid the breadth and height are evaluated. 

1' 
± V1  + I' 1/4  +V + + fr + 

- il •I-  /13 i 43 44  
aX!) 

Figure 5. Ia: t)escription ola single sub-cell (31) model) 

a 'I 

.1 

b 

1 
4

1 • 

Figure 5.Ib; Description ota single sub-cell (213 model) 
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Two types of sub-cell are developed to have interpenetrating nature. Fig 5.2 shows both 
the sub-cells placed face by face. In type sub-cell the reinforcement is inside the cuboids and 

10 the remaining portion is filled with matrix phase, however the case is just reversed in type 2 
sub-cells. When type I and type 2 sub-cells are used alternately, an interpenetrating structure 
of IPC is generated as shown in Fig 5.3. both the phases are interconnected and generated 

geometry is random in nature. 

S 

2. 

2 N'\ 

Figure 5.2: Different types of Sub-Cells (3D) 

4 

3 

2 

1 

0 
4 

0 0 

Figure 5.3: Proposed Unit Cell Model (3D) 
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so 

Figure 5.4 Unit Cell Model (21)) 

5.4.2 Implementation 

The proposed unit-cell model is evaluated by Element Free Galerkin Method (EFGM). This 

model consists of cuboids. that don't need number of nodes to define its geometry in accurate 

sense, therefore the computational time reduced significantly. There are many techniques to 

model the interfaces. Howeveer, two different approaches, namely, domain partitioning 

technique & enrichment technique have been used in present work. 

Enrichment teclrnique has been used to model the interface. The normal distance from 

• the interface of all the nodes is called signed distance. Since each cuboids has a three 

boundaries and hence, total 24 level set functions have been defined for each node. The split 

nodes are found near the boundary and respective level set function has been used. Three 

variables set are required for such level set function. 

= (x,,k XJk,.V,k) Yk,I k,, —  :) 

Where, / and j is the number of nodes in the domain and k is the number of cuboids 

representing a particular phase in a sub-cell (refer to Fig 5.2). 

Besides the internal boundaries there are boundaries related to the interface of sub-cells. 

Domain portioning method has been used for those boundaries. The presence of other 

materials have been ignored to perform the integration. However, it is ensured that there must 

be some nodes on the boundaries. 

In unit cell model the cub-cells are put together to form the model. Each nodes is 

assigned a property and data of each cellis reorganised to form a single structure. Thus, the 

implementation of a randomness becomes very easy and the domain partitioning method 

becomes simple to use. 
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Unidirectional constraints may not be used as an essential boundary conditions in a 111111 

cell model. The periodic boundary conditions are relevant for the this model (Burla et al.. 

2009 and Qingsheng ei al. 1994). 

a, - ii Co/is! .  III   - a,, (ansi and /• — UI/K Cons! 

where. L. 1?, T, B. P & 13K stand for left, right. top .bottom front and back face of the unit 

cell respectively. 

The relevant boundary conditions for the two dimensional unit cell model to find Young's 

Modulus and shear modulus are as shown in Figures 5.4-5.5. 

ii 0 

it, 0 Unit Cell Model it, C 

f .v 

11, .-0 

It, 0 Unit Cell Model li = C 

f 

hgure 5.4: PerR)dic boundary condition to Figure 5.5: I'eriodic boundary condition to 
find Young's modulus (21) model) find Shear modulus (21) model) 

5.4.3 1)egree of Interpenetration 

l3otli interpenetrating and dispersed phases are there in a real microstructure (Feng ei a/. 

2003). The degree of interpenetration is it controlling parameter that affects the 

interpenetration of the phases. Based on the interpenetration three types of interpenetrations 

have been named such as high, low and medium. The particulate composite represents low 

interpenetration. A true IPC can be said to have high interpenetration. In medium 

interpenetration materials both interpenetrating and particulate phases exist. 

l'hree types of composite behaviour can be Ibund by just varying the geometry. The 

presence of eight cuboids at the corners of the cube is the unique feature Of the model. 

All eight cuboids lie at the eight corners of the cube for a high degree of interpenetration. 

In this way all rcinlbrcement phase remain well connected the next sub-cell having 

reinlorcemeiit at the centre itcilitate interpenetration. 

All eight cuboids must be positioned at the centre of' the cube for low interpenetration in 

p type I sub- cell and with no change in the type 2 sub-cell 
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some of the cuhoids in Type- I sub-cell are positioned to the centre, but others remain at 

the corners for the medium interpenetration.. Again, there will be no change geometly of type 

2 sub- cell. This way medium degree of penetrations are found. 

The proper implementation of the unit cell model has been demonstrated by the stress plots 

of the IPC as shown in Fig 5.6 - 5.7 
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Figure 5.6: Shear stress plot of Uiiit cell model under shear stress 
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Figure 5.7: Normal stress plot for Unit cell model under Tensile loading 
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CHAPTER 6 

EVALUATION OF ELASTIC PROPERTIES 

6.1. I;FFF:Ci'ivE MEI)1UN1 APIROXIMA'11ON 

The colilpoSites are naturally homogeiieoiis. Iherelore, analysing the structure of composites 

is dilhcult task. To analyse composite structures we replace the heterogeneous composites by 

an equivalent homogeneous composites. This process is called all effective medium 

approximation. It comprises to rind the mechanical properties of the equivalent 

homogeneous material. In modern time, researchers have used EMA approach to estimate the 

nature of cracks Under thermo-mechanical loading for economical time. Reinforcement & 

matrix are interconnected throughout in IPC structure. this make EMA an effective tool to 

find out the equivalent mechanical properties of a composite. 

I lere. The principle of energy equivalence has been applied to evaluate mechanical 

properties of the equivalent material, tinder the similar situation such as the load and 

boundary conditions the strain energy density for heterogeneous composites must be equal to 

equivalent homogeneous mcdi um. 

To evaluate the strain energy density a composite which is heterogeneous in nature 

numerical techniques approach has been used. I lowcver, in terms of unknown material 

ProPerties the equivalent medium can be calculated analytically. In this thesis, Element Free 

Galcrkin Method are used to evaluate strain energy density ( as mentioned in section 3) of 

the composites which are heterogeneous in nature 

therefore . the mechanical properties of the equivalent medium may be evaluated. Ihe 

algoritlini to evaluate effective properties of IPC is shown below. 

Recognise the domain computation from the physical geometry. 

Recognise the relevant sets of boundary conditions based on the unknowns. 

Numerically calculate strain energy density of the composite microstructure that 

is heterogeneous in nature with the use of following steps: 

• To generate the microstructure composite model. 

• using EFGM analyse the microstructure. 

• 'to calculate strain energy of using EFGM for particular domain. 
4- 

(ii') To evaluate analytically the strain energy density of the equivalent medium 

which is homogeneous in nature as a function of unknown material. 
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The strain energy of a medium which is homogeneous in nature be equated to the 

material properties of equivalent medium to evaluate an equation related it. 

Go to the step (ii) for various sets of boundary conditions. 

to find the equivalent properties of a medium a system of equation is calculated 

As an example the whole calculation for an isotropic material is shown. Only two 

material properties such as, E and u are required to completely define the stress strain 

relationship. 

For two dimension problem 

1 1 - 

(T 
v)(l - 2') 

i' 1—i' 
I  0  2v 

Cm (6.1) 
(I ' -  

0 0 
2 

The strain energy (I per unit volume of a body is given by 

= 0.5 x(a.E ± + U...0 + + ' 
(6.2) 

lu find the shear modulus (G), a uniform shear strain is applied in the whole body then Eq. 

(2) reduces to 

(;' 0.5 x (o.y) (6.3) 

1v substituting the values of u,  from Eq. (6.1) in Eq. (6.2), a relationship between the 

material property G ( G = E 1(2 x (1 i u)) and U is obtained as 

11 0.5 x ((;x y) (6.4) 

!'he shear modulus G can be calculated in terms of total energy using Eq. (5.4) as: 

G= 2xEneigv/(y 2 xLxD) (6.5) VI 

l'he total energy is calculated numerically using EFGM. 

'lu lind Young modulus ( E  ). a uniform tensile strain is applied in one direction (say x- 

direction) then Eq. (5.2) reduces to 

(;' 0.5 x (a .$) (6.6) 

By substituting the values of o. from Eq. (5.1) in Eq. (5.6), a relationship between the 

material property E and total strain energy per unit thickness is obtained as 

Ix(l—u)xC.xLxD 
1ieigv (6.7) 

(ii t4x(l-2u) 

v (El 2(;) - I is used in Eq. (5.7) to obtain the expression for E as 



- 

G—C 

where. C is given by 

2xEnergy 
p 

L x 1) x L 
AA 

Finally, the cfThctive Poisson's ratio is calculated using the following relation 

1) (E/2G)—1 (6.9) 

For three dimension problem 

LxI)xl-I 
L —0.

- 
 x 

, 
xl' 

G 

Where, LI) and H are length, breadth and height of the cube in metre (m) and P is load in Pa 

LxJ)xll -' 

(i - - 
 

2(1 RM 

Using Numerical method the total energy U (Eq. 6.2) has been calculated and with shear load 

P (tau) = 100 MPa and the Eq.6. 11, the shear modulus has been calculated. Thus, using the 

I rest standard formulae Young's modulus has been calculated. 

6.2 EFCM Algorithm 

The algorithm for evaluating strain energy density of a composite material structure is nearly 

similar to the algorithm mentioned for the two - dimension problem, 

Aller evaluating the values of stress and strains at each node, the strain energy density can be 

calculated by the integration of stresses and strains at each point. 

- 

Ii = fa, .e dV (6.12) 
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CHAPTER 7 

ELASTO-PLASTIC ANALYSiS OF IPC 

7.1. FLAS'Ii)-PLASTIC SIMULATION 

Fo simulate the elasto-plastic behaviour of IPC, accurate modelling of the microstructure is 

necessar'. I)iffercnt types ol micro-mechanical models have been suggested in the literature. 

A unit cell model for the lPCs has already been proposed iii chapter 5. A random 

microstruclure model has also been proposed in chapter 5. The modelling and 

implementation of both the models has been explained. The elasto-plastic analysis has been 

done using F FG M in the chapter. 

l3olh the constituent phases are modelled individually using the Ramherg-Osgood 

relation (Fq. 7.1). 

: (7 (CT 
cxI - 

CT ) t\o-1  (7.1) 

lhis requires the use of two additional material constants (a , H) for each of the phases. a 

ii are the Ramberg-Osgood material constants/parameters. In the present work, the constants 

are calculated by curve fitting techniques so as to have the minimum error. The yield stress 

a is taken as the 2% proof stress. A line parallel to the elastic curve is drawii from 2% 

strain on v-axis. The point where the two curves meet denotes the yield stress of a material. 

li-ic yield strain , is the strain corresponding to the yield stress. 

For numerical simulation. a load is given in small steps. In these load steps, the 

incremental stress is melated to that of strain by effective moduli which depend on the present 

stale of stress. A failure mechanism is introduced to simulate the effects of local material 

tiiIure. The lLilure mechanism is same as that proposed by Yongqiang el al. (2007). A 

damage initiation criterion is used to all the nodes. As soon as the stress at any node reaches 

the ultimate strength corresponding to that node then it is treated as a failed node and a 

suitable correct ion in the material properties at that node is applied. 

the failure of individual materials of the composite has been considcrcd rather than the 

taking the lilure criterion for the whole composite. The failure of each node inside the 

10- iii icro-mechanical model is governed by assumptions which are conventional in nature. In 

each load step, all the nodes are checked for ltiltmre using their individual stresses and 



ultimate strength. Von-Mises failure criterion has been proposed for predicting local damage. 

II' the Von-Mises stress at a particular node reaches the corresponding ultimate strength, then 

the stilThess of that node is reduced to a low value. In the next iteration, a analysis is 

performed again without increasing the load as some of the adjoining nodes might fail due to 

reduced stiffness of previously tiIed nodes. This is repeated until there is no further failure 

ohiiodes in a particular load step. Once the failure of any new node ceases. a new load step is 

applied in the usual manner. Thus, the composite is progressively damaged until no further 

stresses can be transferred. 

The Von-Mises failure criterion is given by Eq. 2 and Eq. 3. 

CT >O (72) 

((a - a. ) + ((T, —a1 )2  (a - a )) 
- (7.3) 

where, (T is the Von-Mises stress and a, are the principal stresses in three mutually 

perpendicular directions. Figure 7.1 shows the stress-strain curve for a material using 

Raniberg-Osgood model along with its failure mechanism. As soon as the stress reaches the 

ultimate strength (201) MPa in the present example), the stress becomes zero instantly at the 

node which results in the reduction of the overall stifluiess of the composite due to the release 

of stress at the node. This relieved stress will he shared by the surrounding nodes thus 

increasing the stress in the surrounding region. 
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Figure 7.1: the stress-strain curve plot lbr it general node with damage 
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Figure 7.2: Inier!hce representation in a particulate composite 

I'he interface is deflned as the transitional region between the matrix and the 

reinlorcement (Figure 7.2). This region is important because the strength of the composite is 

largely allected by the type of bond between the two phases (So el al. 1999). A strong 

interface like a chemical bond enhances the strength of the composite. A weak interface may 
If 

decrease the overall strength of the composite, l'oo ci al. (1993) studied the microscopic 

images of SiC interfaces. Pyo and Lee (2010) proposed a damage model considering the 

imperfect interface to predict the elasto-plastic behaviour of MMC. They used modified 

Eshelby tensor with weakened interfaces, and a progressive damage model to numerically 

simulate the multilevel interfacial damage model. The damage model has not been analysed 

because of the time constraints like getting the results in each run. 

I 
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CHAP l'ER 8 

RESULTS AND DISCUSSION 

8.1 EFFECTIVE ELASTIC PRO1ERTIES 

8.1.2 Unit Cell Model 

In this work a composite material consisting of' Alumina (A1203) and Copper (Cu) has been 

evaluated. The Young's moduli of' A 1203  and Cu are 390 GPa and 110 GPa their shear 

moduli are 162 GPa and 40 GPa and Poisson's ratio are 0.20 and 0.34 respectively. 13ccause, 

it is a random model, many runs have been taken to evaluate the statistical average. It is said 

that the results of all the runs are within 8% of' the average values. Each data plotted is the 

statistical average of at least 5 runs of the same model for that particular data. 

Fig 8.1 and F'ig 8.2 show the convergence rate of a unit-cell model with respect to the 

total number of' nodes in a sub-cell. In both the Igures the convergence is at node 7 

neglecting the abrupt change plot at 10 and II th  node. Therefore. ['or all calculation pumose 

the no. 0! nodes taken is 7. 

'Ihere has not been significant di lThrence of' the results for the selection of' number of' 

sub-cells. However, taking conll)utalional time into account the eight sub-cells has been 

considered l'or the evaluation purpose. 

Figs 8.3-8.5 provide the el'iective shear modulus. Young's modulus and Poisson's ratio of' the 

Interpenetrating Phase Composites w.i'.t. the volume fraction of the Cu phase. It is observed 

that all the results fall within the theoretical bounds predicted by Voigi and Reuss. Figures 

8.3-8.5 are consistent with the experimental evidence that the material properties are lai'gely 

dependent on volume fraction of a particular phase. Figure 8.3 shows that the values of' shear 

modulus predicted by the unit-cell model is higher than the values predicted by Poniznik e/ 

al.. 2008. the maximum difference being about 7%. It is on the higher side. It is approaching 

to the upper limit Similarly, Figure 8.4 shows that the Young's modulii predicted by the unit-

cell model is higher than the values predicted by Poniznik el al., 2008, the maximum 

diI'lrence being 8%. It is again nearer to the upper limit. Figure 8.5 shows that the values of 

Poisson's ratio predicted by the unit-cell model is higher than the values predicted by 

Poniznik e/ a/.. 2008, The Poisson's ratio has been calculated I'roni the formula 

- I where the E and U are the predicted values. 

'U,  
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Figure 8.1: Convergence of unit cell model with respect to total number of nodes 
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Figure 8.3: Variation of shear modulus with volume fraction of Cii phase 
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Finally, the results of the proposed unit-cell model are compared with the experimental 

results obtained by Poniznik ci al. 2008. in Figs 8.3-8.5. It can be seen that the experimental 

values lie between the predictions of the proposed unit-cell model in 2-D and 3-D model 

given by Poniznik ci al. 2008. Moreover, the difference between the prediction of the 

proposed unit-cell model and the 3-1) model of Poniznik is less than 8%. The proposed unit 

cell model(213) is easier to implement and computationally less expensive. However, taking 

readings for the three dimensional problems was tedious job as it was time intensiveness 

process. 
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CHAP 1'ER 9 

CONCLUSION AND FUTURE SCOPE 

In the present thesis, two models of IPCs have been proposed one in two dimension and 

inothcr in three dimension. All dominating parameters like volume fraction & random 

geometry that may affect the properties of lPCs are considered in modelling to obtain an 

accurate simulation. The model has been made preferably using IiFGM than FFM taking 

advantages of element free modelling. The effective medium enrichment technique has been 

used to model the interface between two materials. Parameters controlling the degree of 

penetration have been incorporated into the model. This way the composites can be modelled 

with partial or no interpenetration to predict effectively the elastic properties of the materials 

The proposed unit cell model (21)) is easier to implement and less expensive as far as 

coml)Utation is concerned in comparison to earl icr models. 1-lowever. the 31) model emulates 

the actual composite and said to be giving proper mechanical properties but time intensive. 

Using basic geometry and probability the random rnicrostructurc model is generated. The 

etThctive mechanical properties of IPC can be predicted by the models for combination of 

materials and volume fractions (0.3 to 0.7). 

the future scope of the work is as IblIows 

• The fracture mechanics concepts may be used to simulate crack propagation in !PCs. 

• The thermal analysis, crack propagation. interface analysis may be explored. 

• The analysis of void nucleation and damage propagation needs to be explored in 

detail. 

• the parameters like dislocation density, crack bridging mechanisms, random 

distribution of phases, etc have to be incorporated into the model as they greatly 

affect the mechanical behaviour of these composites. 

• the structural analysis using the microstructure of IPC can be performed. 

• [he effect of imperfect interface can be modelled in lPC. 

45 

I 

I,  

p 



T 



REFERENCES 

Agarwal A., Singh. IN., Mishra I3.K.. Numerical prediction of elasto-plastic behaviour of' 
interpenetrating phase composites by EFGM. Composites: Part [3 51 page 327-336. 2013 

Agarwal A., Singh IV., Mishra 13.K., Evaluation of elastic properties of' interpenetrating 
phase composites by mesh-free method., Journal of Composite Maierials..0(0)pl - I 7,2012 

Ae.rawal J)  Sun CI'.. Fracture in metal-ceramic composites, (omposile.v Science and 
Iechnologv. Vol. 64. pp.  1167-1178,2004. 

Agraval P., ('onIon K.. Bowman K.J., Sun CT., JR Cichocki F.R.. irumble K.P.. Thermal 
residual stresses in co-continuous composites, Ada Materialia, Vol. 5 I, pp. 1143-1156. 
2003. 

13asista M and Wçglewski W, Modelling of 1)amage and Fracture in Ceramic Matrix 
Composites-An Overview. .Journal of theoretical and Applied Mechanics, Vol. 44, pp. 
455-184. 2006. 

Uelytschko 'I.. Fleming M., Smoothing, enrichment and contact in element free Galerkin 
method, Computers and Structures. Vol. 7 I. pp. 173-195, 1999. 

Bclvtschko I., Krongauz Y. Fleming M. Organ D.J. and Liti W.K. Smoothing and 
accelerated computations in the element free Galerkin method. .Journal of C'omputational 
and Applied Mathematics: Vol. 74. pp. I 11-126. 1996. 

Helytschko 1., Kroungauz Y., Organ I)., Fleming M., Krysl P.. Meshless methods: an 
overview and recent developments. Computer Methods in Applied Mechanics in 
kngineering, Vol. 139, pp. 3-47, 1996. 

l3elvtschko 1.. I .0 Y.Y.. Gu L. Crack propagation by element free Galerkin methods, 
Eugineeiin,t,' J'racture Mechanics, Vol. 51, pp. 295-315. I 995a. 

13e1\tschko 'I'.. l.0 Y.Y., Gu L.. Element-free Galerkin methods, International Journal for 
Aumerical Methods in Engineering. Vol. 37, pp. 229-256. 1994. 

l3elvischko 1'.. l.0 Y,Y.. Gu L. Numerical solutions of mixed mode dynamic fracture in 

concrete using element free Galerkin methods. ICES Conference  Proceedings. 1995b. 

l3elvtschko 1'.. Organ 1)., Krongauz Y.. A coupled linite element- element free Galerkin 

method, Computational Mechanics, Vol. 17, pp. 186-195, 1996a. 

Belvtschko 'I.. Organ D., Krongauz Y., Fleming M.. Smoothing and accelerated 

computations in element free Galerkin methods, .lourncel of C ofllfnita!iOncll and .'lpplied 
.lu1'liematics, Vol. 74, pp. I Il-I 26. 1 996h. 

Bin S. Wen-hin II.. 1.ei L., Wei Z., I)i Z.. Metal-matrix interpenetrating phase composites 
produced by squeeze casting, transactions / Nonferrous !tletals Society of China. Vol. 
12, pp. 26-29, 2002. 

13ur1a R.K.. Kumar A.V.. Sankar B.V.. Implicit boundary method for determination of 
eflctive properties of composite microstructures. International Joumnal ol Solids and 
.S'trucuires. Vol. 46. pp. 2514-2526. 2009. 

Chessa J. Smolinski P. l3elvtschko T. The extended finite element method (XFEM) for 
solid i cat ion problems. International Journal/or Nunzerical Methods in Engineering: Vol. 
53. pp. 1959-1977. 2002. 

Chinh N .Q.. I lorvath G.. I Iorita Z.. Langdon T. G., A new constitutive relationship for the 
homogeneous deformation of metals over a wide range of strain, Acta Materialia. Vol. 
52. pp. 3555-3563, 2004. 

h)oe I. J. A.. l3owen P.. Tensi he properties of particulate-reinforced metal matrix composites. 
C oniposites Part A, Vol. 27A, pp. 655-665. 1995. 

46 



1)olbow J.. l3elytschko 'I'., Numerical integration of Galerkin weak form in meshl'ree 
methods. (o/nputai'iona/ Mechanics, Vol. 23, PP  219-230. 1999. 

l)ukhan N.. Rayess N., Hadlev J.. Characterization of aluminum foam-polvpropylene 
interpenetrating phase composites: l"lexural test results, Mechanics of Materials. Vol. 42. 
p. 134-141.2010. 

l:tter 'I'.. Kuebler J.. Frey 1'.. Schulz P.. l.offler ii".. Uggowilzer P.J., Strength and fracture 
toughness of interpenetrating graphite/aluminium composites produced by the indirect 
squeeze casting process. Materials Science and Engineering: A, Vol. 386, pp. 61-67. 
2004. 

l:ei  X.Q., Tian Z., Liu Y. Yu S. Effective elastic and plastic properties of interpenetrating 
multiphase composites, Applied Composite Materials, Vol. II, pp.  33-55. 2004. 

I:eng  Xi-Qiao. Mai Yiu-Wing, Qin Qing-1 lua. A micromechanical model f'or interpenetrating 
mu Itiphase composites. Computational Materials Science, Vol. 28, pp.  486-493. 2003. 

Fleming W..I .. lemis J.M.. Numerical simulation of' cyclic plasticity and damage of' ,in 
aluminium metal matrix composite with particulate SIC inclusions. International Journal 
o/ lot (gue, Vol. 24, pp. 1079-1088, 2002. 

lou KS., Banks W.M.. Craven A.J., I lcndi'y A. Inlerlitce characterization of an SiC 
parlicukitei606 I aluminium alloy composite. Composites, Vol. 25, No. 7, pp. 677-683. 
1993. 

Gonziilez C., Llorca J., Prediction of' the tensile stress-strain curve and ductility in Al/SiC 
composites, Scripta Materialia, Vol. 35, No. I. pp. 91-97, 1996 

Gravouil A. Moes N. 13e1ytschko T. Non-planar 31) crack growth by the extended finite 
element and level sets part II: Level set update, International .Journal /ir iVwnerical 
Methods in Engineering: Vol. 53. pp.  2659-2586, 2002. 

I lertele S.. Wade W. 1)., Denys R., A generic stress-strain model For metallic materials with 
two-stage strain hardening behaviour. International ,Jou,'nal of iVon-Lineai' Mechank'.v 
Vol. .16. PP  519-531.2011. 

I lorvitz 1).. Gotman L. Gutmanas E.Y.. Claussen N., in situ processing of dense A1203-'l'i 
aluminide interpenetrating phase composites. Journal o/ the European Ceramic Socie!i'. 
Vol. 22. pp. 947-954. 2002. 

I isu l'.R.. The finite element method in thermodynamics. Allen and Llnwin Inc., London, 
U.K.. 1986. 

Jhaver R. and lippur i-I.. Processing, Compression response and finite element modeling of' 
syntactic foam based interpenetrating phase composite (iPC). Materials Science and 
Lngoieei'ing: .1. \'ol. 499. pp. 507-5 1 7. 2009. 

KaminsLi M. and Kleiber M.. Numerical homogenization of N-component composites 
including stochastic interface defects, International Journal br Nuineuical Methods in 
Engineering. Vol. 47. pp. 1001-1027. 2000. 

Kapoor. R.. Vecchio KS.. l)eh'ormation behavior and failure mechanisms in particulate 
reinforced 6061 A I metal-matrix composites. Materials Science and Engineering 4, Vol. 
202. pp. 63-75, 1995. 

Kashyap K.'l'.. Ramachandra C.. i)utta C.. Chatterji B., Role of work hardening 
characteristics of matrix alloys in the strengthening of metal matrix composites, /3u11ein 
u/ Material Science, Vol. 23, No. 1. pp. 47-49. 2000. 

Kouzeli M.. 1)unand I).C.. Lf'fect of reinf'orcement connectivity on the elasto-plastic behavior 
of' aluminum composites containing sub-ni icron alumina l)articleS, Acta Materialici, Vol. 
SI, pp. 6105-6121. 2003. 

Krangauz Y.. Belvtschko 'F.. Enforcement of essential boundai'v conditions in meshless 
appt'ox imat ions using finite elements. Computer Methods in Applied Mechanics and 
Engineering, Vol.131. pp. 133-145, 1996. 

47 



Krontauz Y. and Belvtschko I.. LEG approximation with discontinuous derivative. 
Iniernaflona/ Journal fr Numerical Methods in Engineering, Vol. 41. pp. 121 5-1233. 
1998. 

I .apczvk 1., llurtado J A., Progressive damage modeling in fiber-reinforced materials. 
Composites: Part .'l, Vol. 38, pp. 2333-2341. 2007. 

I .iu W., Koster U.. Microstructures and properties of interpenetrating alumina/aluminium 
composites made by reaction of Si02 glass prefbrms with molten aluminium, Materials 
Science arid Engineering: .1, Vol. 2 10. pp. 1-7. 1996. 

I iu Y, (;ong X.. Compressive behavior and energy absorption of metal porous polymer 
composite with interpenetrating network structure, Iransactions of Nonferrous  Metals 
Societ 

 ' 

v vi ('hina. Vol. 16. pp. 439-443. 2006. 
Lu Y. Y. I3elytschko 1.. Gu L and labbara M, Element free Galerkin method for wave 

propagation and dynamic fracture. Computer Methods in .'lpplied Mechanics and 
Engineering. Vol. 126, pp.  131-153, 1995 

lu Y. Y. l3elvtschko T., Gu L. labbara M.. A new implementation of element free Galerkin 
method. C Ivinputer Methods in Applied Mechanics and Engineering, Vol. 113. pp. .397-
.114. 1994. 

Marchi C. San. Kouzeli M.. Rao R.. Lewis J A., Dunand D.C.. Alumina-aluminum 
interpenetrating-phase composites with three-dimensional periodic architecture, Scripui 
,t'Jateria/ia. Vol. 49 . pp. 86 1-866. 2003. 

Mayer II.. Papakvriacou M.. Fatigue behaviour of graphite and interpenetrating graphite-
aluminium composite up to 109 load cycles, (.'a,hon, Vol. 44. pp. 1 801-1 807. 2006. 

Moes N. Dolbow J. Belvtschko I.. A linite element method for crack growth without 
remeshing, International Journal/br Numerical Methods in Engineering Vol. 46, pp. 3 I - 
150. 1999. 

Moon R. J.. I loffman M.. Rödel J., Tochino S.. Pezzotti G.. Evaluation of crack-tip stress 
telds on microstructural-scale fracture in Al-A 1203 interpenetrating network composites, 
.1 eta Materialia. Vol. 57. pp. 570-581. 2009. 

Periasainv C.. lippur 1 l.V., Experimental measurements and numerical modelling of 
dynamic compression of interpenetrating phase composite foam, Mechanics Research 
Communications.. 43 page 57-65. 2012 

Periasaiii (. ...Jhaver R.. lippur l-l.V.. Quasi-static and dynamic compression response of a 
I ight eight interpenetrating phase composite foam. Mate,'ials Science and Engineering; 
A. Vol. 527. PP 2845-2856, 2010. 

Pezzotti G., Sbaizero 0.. Residual and bridging microstress fields in A1203/Al 
interpenetrating network composite evaluated by fluorescence spectroscopy. Materials 
.Science and Engineering A. Vol. 303, pp. 267-272. 2001. 

Poniznik 1.., Salit V., Basista M., Gross D., Efftctive elastic properties of' interpenetrating 
phase composites, ('O/lif)iilati011cil Materials Science. Vol. 44, pp. 813-820, 2008. 

Prielipp If., Knechtel M., Claussen N., Streiffer S. K., Mulejans If., Ruhle M., Rodel J.. 
Strength and llacture toughness of aluminum/alumina composites with interpenetrating 
networks. Materials Science and hngineei'ing A, Vol. 197, pp. 19-30, 1995. 

l'yo S.l I., lee I 1K.. An clastoplastic damage model for metal matrix composites considering 
progressive imperfect interface under transverse loading, International Journal vi 
l'lasticiii. Vol. 26. lP  25-41. 2010. 

Qingsheng Y., Limin I.. I laoran C.. Self-consistent finite element method: A new method of 
predicting etThctive properties of inclusion media, I'inule Elements in Analysis and Design, 
Vol. 17. pp. 247-257. 1994. 

48 



Quano II. L.. lie Q.C.. A one-parameter generalized sd i-consistent model for isotropic 
nuiltiphase composites. International Journal v/Solids and Structures, Vol. 44. pp. 6805-
6825. 2007. 

Rao B.N. and Rahman S., An efficient meshless niethocl For Fracture analysis of cracks, 
Computational Mechanics, Vol. 26, pp. 398-408. 2000. 

Ravichandran K.S., 1)eformation behaviour of interpenetrating phase composites. Composites 
.ScW/Ic? and /echnologv. Vol. 52. pp.  541-549. 1994. 

Rcddv AC.. Zitoun F.. Matrix A 1-allo s for silicon carbide particle reinforced metal matrix 
composites. Inc/ian .Journa/ of .Science and Technology, Vol. 3, pp. 12. 2010. 

Rossoll A.. Moser 13., Mortensen A.. Tensile strength of axially loaded unidirectional Nexiel 
I 0IM  reinForced aluminium: A case study in local load sharing between randomly 

distributed tibres. Composites: I'art /1. Vol. 43. PP 129-1 37. 2012 
Seherm I.. Volkl R., Neubrand A., Bosbach F, Glatzel U., Mechanical characterisation of 

interpenetrating network metal-ceramic composites. Maleiia/s Science and Enc.,'ineering 
A. Vol. 527, pp. 1260-1265. 2010. 

Shen W.. 'Fang C.Y.. 'l'sui C.P., Peng LI-I., Ellécts of two damage mechanisms on cffictive 
elastic properties of pailiculate composites, Composites Science and Technology, Vol. 62. 
pp. 1397-1406, 2002. 

Sosa .1. I.. C.. Petrinic N.. Wieand J., A three-dimensional progressive damage model For 
fibre-composite materials. Mechanics i?esearch Co,nmunwations, Vol.35. pp. 219-221, 
2008. 

Sn XE.. Chen II. R... Kennedy I)., Williams F. W.. Effects of interphase strength on the 
damage modes and mechanical behaviour of metal-matrix composites. Coinpo,vites: Pa,'! 
.4. Vol. 30. pp. 257-266. 1999. 

l'eoh S. II.. Slvaramakrishnan M. R.. 'l'hampuran R., 'lensile and fracture properties of 
titanium-polymer interpenetrating network composites, Journal of Materials Science 
i.eiters, Vol. 15, pp. 1478-1480. 1996. 

l'ilbrook M.'l'.. Moon Ri., I-loffman M.. On the mechanical properties of alumina-epoxy 
composites with an interpenetrating network structure. Materials Science and Engineering 
.1. Vol. 393. pp.  170-1 78. 2005. 

lohgo K.. Masunari A., Yoshida M., Iwo-phase composite model taking into account the 
matricitv of iii icrostructure and its application to limclionally graded materials, 
( 'vinposites: Port .l. Vol. 37, pp. 1688-1695. 2006. 

I orquato S.. Modeling of physical properties of composite materials, international Journal ol 
Solids and Structures. Vol. 37. pp. 41 l22. 2000. 

Vecchia G. NI. L. I3adini C., Puppo D., 1)'errico F., Co-continuous Al/A1203 composite 
produced by liquid displacement reaction: Relationship between microstructure and 
mechanical behavior, .Journa/ (?f Materials Science, Vol. 38, pp. 3567-3577. 2003. 

Wang lvi. Pan N. Elastic property of multiphase composites with random microstructures, 
Journal o/( omputational P/id'sics. Vol. 228. i,).  5978-5988, 2009. 

Wegner F. I). Gibson L.J. 'Ihe fracture toughness behaviour of interpenetrating phase 
composites. International .Journal of IvIechanical Sciences, Vol. 43. pp. 1 771-I 791 
2001 b. 

Wegner F. 1).. Gibson I ..J.. The mechanical behaviour of interpenetrating phase composites - 
it case stud of it three-dimensionally printed material. International Journal of 

.Wechanica/ Sciences. Vol. 42, pp. 943-964, 2000. 
Wegner I.. 1)., Gibson 1..J., The mechanical behaviour of' interpenetrating phase composites- 

resin-impregnated porous stainless steel. international Journal of Mechanical 
Sciences. Vol. 43. pp. 1061-1072, 2001  a. 

49 



Xii Xi:..  Graham Brady L., A stochastic computational method for evaluation of global and 
local behavior of random elastic media, Conputaiional Methods Applied Mechanical 
Enggiheering, Vol. 194, pp. 4362385, 2005. 

Yongqiang C., ShuN S., Yi L. Numerical Simulation of the Mechanical Properties and 
l:ail iirc of Fleterogencous Elasto-Plaslic Materials, Tvinghua Science and 7'echnology, 
ISSN 1007-02 14 04/19, Vol. 12, Number 5. pp.  527-532, 2007, 

Zen Ching han. Brown Ian W.M., Zhang D.L., Microstructure development and properties of 
alumina—Ti aluminide interpenetrating composites, Current Applied 1'hysics, Vol. 6, pp. 
444-I47, 2006. 

thou W.. flu \V.. Zhang D.. Metal-matrix interpenetrating phase composite and its in situ 
fracture observation. Materials Letters. Vol. 40, pp. 1 56-160, 1999. 

thou W.. Hu W.. Zhang D.. Study on the making of metal-matrix interpenetrating phase 
composites. Scripla Materialia, Vol. 39, pp. 1743-1748. 1998. 

thou Y.. I luang W.. Xia Y., A microscopic dynamic Monte Carlo simulation Ibr 
unidirectional fiber reinforced metal matrix composites, Composites Science and 
icchnologv, Vol. 62. pp. 1935-1946, 2002 

50 


	TITEL
	ABSTRACT
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 5
	CHAPTER 6
	CHAPTER

