3-D SIMULATION OF INTERPENETRATING PHASE
COMPOSITES USING FEM/EFGM

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree
of
MASTER OF TECHNOLOGY
n
MECHANICAL ENGINEERING
(With Specialization in CAD/CAM & Robotics)

By
PRAMOD KUMAR

DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE-247 667 (INDIA)

JUNE, 2013



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE

CANDIDATE’S DECLARATION

[ hereby declare that the work carried out in this dissertation titled “3-D SIMULATION
OF INTERPENETRATING PHASE COMPOSITES BY FEM/EFGM?” is presented on
behalf of partial fulfilment of the requirement for the award of the degree of Master of
Technology with specialization in CAD, CAM & Robotics submitted to the department of
Mechanical & Industrial Engineering, Indian Institute of Technology Roorkee, India,
under the supervision and guidance of Dr. B. K. Mishra, Professor and Dr. 1. V. Singh,
Associate Professor MIED, IIT Roorkee. India.

I have not submitted the matter embodied in this report for the award of any other

degree or diploma.

Date: |4 .06 2013 M

Place: Roorkee (PRAMOD KUMAR)

CERTIFICATION

This is to certify that the above statement made by the candidate is correct to the best

of our knowledge and belief.

ﬁ,,:(ﬂ”o =

( Dr. B\ K. Mishra) (Dr. L ingh)
Professor Associate Professor
MIED MIED

1IT Roorkee, India [IT Roorkee, India



ACKNOWLEDGEMENT

R ———————————

Various persons at various stages and in varied ways have played a key role in enabling me
lo give a final shape to my M. Tech. Dissertation work. No matter how small or insignificant
form their point of view was the help rendered but for me it meant a lot. I owe to each and
every one of them my heartfelt and shall endeavour to record my feelings within the ambit

of this page.

I am deeply indebted to my guides Dr. B. K. Mishra, Professor and Dr. L V. Singh,
Associate Professor in the department of Mechanical & Industrial Engineering, Indian
Institute of Technology, Roorkee, whose help, stimulating suggestions, motivation and
encouragement helped me in all the time to make my effort successful. 1 really owe a lot to
all my [riends and batch-mates, especially to Mr. Azher Jameel, Mr. Vivek Kumar Sharma,
Mr. Himanshu Yaday who helped me directly or indirectly during the entire period of this
work.. Finally, I would like to thank my parents and family members whose constant support

and love throughout the work helped me realised the dissertation to complete.

=

Date: }4,06.20)% PRAMOD KUMAR

Place: Roorkee Enrl No.: 11538008



L SN

ABSTRACT

Interpenetrating Phase Composites (IPCs) are multiphase composites where each phases is
interconnected three- dimensionally. The lighter, stiffer stronger and tougher material is
called metal phase and the other as reinforcement. They have unique geometry which offers
improved mechanical and physical properties. According to the occurrence of the of the
interpenetration at different length scales, IPCs can be categorised as molecular, micro or
meso composites. This project provides a modelling and simulation of alumina- copper based
IPC. The computational used to model and simulate the IPC is based on Element Free

Galerkin Method ( EFGM) using MATLAB.

Owing to complexity in microstructure & randomness of 1PCs, the modelling of these
materials have not been effectively studied yet. Two models have been proposed by the
author one in two -dimension and another one in three- dimension. They are Unit- cell model
which is based on the geometry of the sub-cell. A sub-cell is a collection of randomly
generated quarter circle placed in the corner of a square in two- dimension and randomly
generated cuboids placed in the corners of a cube in three- dimension. Many sub-cells are
arranged together making a unit-cell. Degree of penetration is introduced which controls the
geometry of the models between interpenetrating and particulate. Other parameters such as

volume fraction, interpenetrating gcometry have been incorporated into the model.

In this thesis two types of analysis is carried out on both the models. The elastic analysis
includes finding out the equivalent elastic properties of the IPCs like Young’s modulus,
Shear modulus and Poisson’s ratio. For this effective medium approximation technique has
been used. In this technique the strain energy of the IPC is equated to that of the equivalent
homogeneous medium. The ¢lastic properties at certain volume [ractions are found out and
are validated with the experimental results and others available in the litcratures. The elasto-
plastic analysis for large values of starin is carried out to find the equivalent stress- strain
curve of the IPC. The results are found to be within the limits and comparable to the results

available in the literatures.
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CHAPTER 1
INTRODUCTION

1.1 COMPOSITE MATERIAL

Composite materials are the materials of modern era. The composites for the desired
purposes are made by mixing two or more different materials on a macroscopic scale. The
mechanical & physical properties of the resultant material are better than those of the
constituent materials. The one of constituent materials whose mechanical properties is stiffer
and stronger is said to be reinforcement and other as matrix phase. The reinforcement phase
is usually discontinuous. The matrix phase behaves as cementing to the reinforcement phase

and usually continuous.

The mechanical properties, geometry and phase distribution of the constituent materials
have bearing on the composite materials’ mechanical properties. The volume fraction which -
is ratio of the reinforcement to the matrix phase is one of the most important parameter that
governs the overall properties of the composite. ‘The homogeneity of the composite material
system is determined by the distribution of the reinforcement. The shape and direction of
reinforcement affects the anisotropy of the system. Out of constituents’ materials the matrix

is the main load bearing which provides protection for the sensitive reinforcement.

There is wide application of composite materials. Aerospace, aircrafl, marine,
automotive. sport, energy, and biomedical industries have used composites in various ways.
The advantageous properties of composites like high stiffness, high strength, and low density
make way to be used in both military and civilian aircraft widely. For prosthetic devices and
artificial limb parts various composites are used. In aerospace structures the light weight and
extremely stiff graphite composites are used. In Sporting goods such as tennis rackets, golf

clubs, fishing poles, skis and bicycles the composites got wider applications.



1.2 INTERPENETRATING PHASE COMPOSITES (IPC)

The matrix phase of conventional composites is usually continuous. It behaves as a binder to
the reinforcement phase which is discontinuous. The binding ability, the thermal capability to
the reinforcing phase and low cost are the basis on which matrix phase is chosen. Nowadays.
new variety of composites is being prepared with both the phases being continuous. They
have a network of interpenetration of reinforcement impregnated in molten metal. Therefore.

they are known as INTERPENETRATING PHASE COMPOSITES (1rcs)

[PC may be defined as multiphase materials. Where all phases are interconnected three
dimensionally throughout the structure. Interpenetrating Phase Composites may have two or
more than two phases which are interconnected in a way that it will be difticult to distinguish
between reinforcing and matrix phases based on states of continuity and isolation. The
previous problem of matrix dominating influence on the composites is removed by the dual
continuity of the phases. The reinforcement’s unique geometry offers superior mechanical
properties of the resultant composites. Owing to complete continuity each constituent phases
may contribute its properties to the macroscopic of the composites” properties. Many
fascinating properties of all the constituent phases are retained in the resultant composite
raising the hope of developing materials having actual composite behaviour. According to
interpenetration at various length scales, IPC can be divided into molecular, MiCro or meso

varieties.

Therefore . Interpenetrating Phase Composites offer the hope of actual composite, where

two usually incompatible properties of pure materials may co- exist in a composite.

Figure 1.1: 3D microstructure of an IPC Figure 1.2: 2D cross-section of a 2 phase
IPC



1.2.1 Applications and Advantages of IPCs

The near-net IPC’s shape capability, low production cost and good tribological
performance offers the IPC’s suitability for the applications like automotive disc brake rotors,
internal combustion (IC) engine piston crowns, connecting rods, cylinder liners, robot arms,
turbine compressors. callipers, ete. Further, the enhanced properties at high temperatures
offer them suitability for aecrospace usage. IPC has good bio- medical usage, too.

Varioius researchers have found that IPC has enhanced mechanical and physical
properties than other composites. The main advantage of the IPC is the interconnectivity of
both the phases that makes it possible for both the phases to impart their advantageous
properties to the composite in a better manner. The matrix phase still dominates the thermo-
mechanical behaviour while inter-metallic phase improves toughness by crack bridging
mechanism. Newer manufacturing methods have made [PC of lower thermal expansion, good
compression, higher stiffness, & bending strength.

The ceramic phase gives it high strength and high modulus while metallic phase gives
low density, good toughness. Moreover, presence of a continuous structure will provide
higher strength and enhanced high temperature properties & thermal stability. The IPC are
known for their improved wear resistance because of their complex and random
microstructure, with an added advantage of isotropic nature. Interpenetrating Phase

Composites are environment {riendly as they can be easily recycled.

1.3 OBJECTIVE

The fracture mechanics of these materials have not been sufficiently studied so far because of
complex and random behayiour of IPC. Agarwal et al (2012) have tried to simulate using two
dimensional model which is the simplest one and compared the model with the available
models so far. The main objective of the project is to simulate near net shape of the
composites that is three dimensional structures and to compare with the available models
including the two dimensional one proposed by Agarwal et a/ (2012,2013). Therefore, the
aim of the dissertation is to develop versatile computational algorithm that will model and
simulate the different dynamics of these materials so that we will be able to understand,

design and predict newer composites with shorter lead-time without much expense.



The main problems, which will be tackled in this project, are:
1. To study of the interpenetrating microstructure and its effects on the macro scale.
a. Three dimensional modelling and approximation of the effective medium in
the IPC (EMA).
b. To validate the model with the available literatures.
¢. Results of different IPCs (obtained by different combination of the phases) are
compared with particulate composites of similar nature.
2. To develop a micro-model (local model), which will approximate the randomness in
the geometry of the IPC.

To study of parameters influencing the strength of an IPC

|57

a. To calculate of strength of IPC with the appropriate use of EMA (global
model) and local model.

b. To validate the model developed with results available in literature and
experimentation.

4. To find the effective Mechanical properties of the IPC.



CHAPTER 2

LITERATURE REVIEW

2.1 ELEMENT FREE GALERKIN METHOD

A number of meshfree methods has been developed to analyse problems encountered by
FEM/EFGM) (Belytschko et al.. 1994; Lu et al., 1994) is the most frequently used method
for analysing solid mechanics problems. They used EFGM for arbitrary shape elasticity
problems as well as simple heat conduction problems, the rate of convergence in this
method is higher than the other method. They applied this method to analyse quasi static
crack growth problems.

Belytscko er al. (1995a,b: 1996a,b) used EFGM in static and dynamic crack growth
problems. Their results by the EFGM method were very close to analytical approach. The
problem of remeshing was removed. Howeyer, the computational time increased by 50%.

Krongauz (1996) in his doctoral thesis propesed a method for incorporating the
discontinuous derivatives in EFGM. His method was applicable for one and two-dimensional
problems only..

Dolbow and Belytschko (1999) proposed some modification in numerical integration of
Galerkin weak form for meshless method. A new structure of integration cells was suggested
which lessened the quadrature error.

Belytschko er al., (1999) suggested a technique for modelling discontinuities. Jump
function was used to model material discontinuity and for near crack tip enrichment
Westergard's solution was used. They proposed vector level set to model crack.

Pant et al., (2010) developed methods for modelling material discontinuities with the use
of level set functions. They suggested a signed distance function to enrich those nodes which

are close to the interface and provide a discontinuous strain function.

2.2 INTERPENETRATING PHASE COMPOSITE (1PCs)

2.2.1 Introduction
Liu and Koster (1995) were probably the earliest researchers who proposed the
manufacturing technique of Interpenetrating Phase Composites (IPCs). They made ALOs- Al

metal matrix(MM) composite by impregnating silica perform with molten Al



Zhou et al. (1998) suggested self-propagating high temperature synthesis reaction
technique to make porous matrix phase of ALOs-TiC. They infiltrated this with pure
aluminium (Al) in Nitrogen pressurized furnace at 750°C. Some volatile agents were used to
increase the porosity of the SHS products.

Horvitz et al. (2002) did some modification in the SHS reaction to incorporate wider
range of materials by introducing Reactive Thermal explosion and hot pressing technique.
Thus, after initial heating due to an increased exothermic release of energy the reaction
became self sufficient.

Yu and Xiao-lu (2006) made IPC using a vacuum assisted low negative pressure
moulding process. In this process, pure aluminium foams were infiltrated with different
polymers. Quasi-static compression tests were done at room temperature. The composites
show improved compressive behaviour and improved energy absorption capacity compared
with the pure aluminium foam. Experimental modulus data is well within H-S bounds,too.

Han et al. (2006) propose Al,Os- TisAl IPC by dry milling of the constituent powder by
high energy discuss milling device followed by pressure less sintering. XRD results
suggested reduction in particle size and enhanced homogeneity. Few other characteristics are
increased hardness, decreased porosity ¢tc. Due to debonding of alumina and aluminide
interface and crack bridging of ductile TisAl phase the fracture toughness improved
substantilly.

Jhaver and Tippur (2009) made 1PC using pressure less infiltration technique on
syntactic aluminium foam. A number of uni-axial compression test was carried out on
syntactic foam & 1PC foam and then results were compared. They used unit cell in the form
of Kelvin cell (tetrakaidecahedron) with using triangular aluminium ligaments and rest of the
space is filled by syntactic foam. FEM analysis was done in ABAQUS and was found to be
matching with experimental results.

Marchi er al. (2003) made Alumina—Al IPC with 3-D periodic structure. They used
Fused Deposition Method and Direct Write Method to produce sintered AlLOs tower in a
graphite block. Al rods are then placed on the top of graphite to produce random isotropic
IPC. Thermal expansions were measured using push rod dialometer. Aluminium bars carry
increased proportion of transverse tensile stress.

Vecchia et al. (2003) made Al,Os-Al IPC using Reactive Metal Penetration (RMP)
method. They studied various microscopic and mechanical characteristics of the IPC using
different experimental techniques. They found a strong variation in both the microstructure

and the orientation of the metallic phase channels in different cross sections of the composite.
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They extensively studied and reasoned the different microstructures at different cross
sections of the IPC. They also studied the mechanical behavior such as thermal expansion,
bending compression and tensile properties and fracture mechanics of the IPC.

Kouzeli and Dunand (2003) observed the results of the elasto-plastic behaviour of
reinforcement  Aluminium composite. The comparative higher stiffness owe to
interconnectivity is moderate (10% avg Al composite). For dominating interconnection of
reinforcement, the ratio of stiffness needs to be enhanced. Also, increase in volume fraction
of stiffer reinforcement would increase the compressive & stiffness flow stresses of MM-
i3] e
2.2.2 Modelling and Simulation
Wegner and Gibson (2000) used 3-D printing method to produce stainless steel — bronze IPC.
They used non-linear FEM model according to unit cell model having periodic boundary
conditions. Dimensions were based on volume fractions of respective phases. The elastic
modulus estimated by Finite Element analyses lie within the narrow band of Hashin-
Shtrikman bounds, confirming the suitability of the model. They concluded that there is a
purpose to examine the influence of contact region between sinlered particles on flow
ﬁropcn‘lies,

Agrawal et al. (2003) calculated the thermal residual stresses in 02 [PC (AVALO; & Cu/
AlO;3). They found that metallic phase contain tensile stresses and the ceramic phase has
compressive stresses. These stresses generate due to difference in volume fraction, melting
point, stiffness in the two phases. This creates residual stresses when cooled during
manufacturing. FEM modeling is done in ANSYS to find numerical results.

Tilbrook er al. (2005) modelled alumina epoxy IPC based on three techniques which
included Iso stress — Iso Strain Approximation Model, Effective Medium Approximation
(EMA) and Unit Cell Model. They also used Impulse Excitation Technique (IET) to
experimentally calculate the elastic moduli of IPC.

Feng et al. (2003) suggested an efficient method to predict elastic moduli. They used
two-step procedure to measure the moduli: The effective elastic modulus of cubic cell was
estimated using FEM or simple iso- stress and iso- strain model for the parallel and series
combination of unit cell.

Tohgo et al. (2006) developed a model for two phases IPC by introducing a matricity
into the constituent equations of particulate composites. The matricity can be thought of as a

representation of the true volume fractions. They considered the IPC as two particulate



composite with respective matrix and reinforcement interchanged. By this method, they
calculated the moduli of elasticity and poisson’s ratio of different phases. Thus, they applied
successfully to FGM using FEM techniques.

Poniznik et al. (2008) suggested a FEM which is based on approximation of IPC
structure. A cubical IPC is divided into numbers of cuboids (voxel). The number of voxels
selected based on the volume fraction of the phase. Also care must be taken to select voxels
so that cach is connected by at least an edge of another voxel. No voxel should be left out.
Then FEM modelling of this cube will give us the effective mechanical properties of the IPC.
2.2.3 Strength and Fracture analysis
Prielipp er al. (1995) observed the strength & fracture toughness of Al,Os-Aluminium IPC.
They found that Al infiltration increases the fracture strength.

Zhou et al. (1999) studied the IPC using XRD (X-Ray diffraction). They observed
plastic deformation at crack tip thus leading to uneven and torturous fracture surface. They
noted strong interfacial bond strength.

Pezzotti and Sbaizero (2001) experimentally substantiated relations between microscopic
stress fields and macroscopic = crack bridging. They used  fluorescence microprobe
spectroscopy technique to measure the microscopic residual and bridging stress fields
produced during cooling of Al,Os-Al IPC. A crack was introduced externally and its
propagation was studied. R curve was plotted which was compared with theoretical R-curve.
They found a relation between R-curve and bridging stresses, which could explain the
fracture characteristics of these complex materials.

Bin ef al. (2002) used squeeze casting to intrude the molten metal into the highly porous
SHS products. This method gave an increased strength regardless of increased porosity.

Agrawal and Sun (2004) studied fracture in metal-ceramic composites. They compared
two IPCs (Al/ALLO; & Cu/ Al;Os) and one particulate composite (Al/SiC). They found that
fracture toughness is proportional to the ductile particle size up to a critical limit and beyond
that thermal residual stress weakens the interface. The FEM modelling is done based on
global/local approach. The globally effective propertics were calculated with the help of
EMA. Then near the crack tip, a local region is taken into account and thus microstructure
properties are accounted for.

Etter et al. (2004) measured the fracture & strength of graphite-Al IPC made by

investment casting method. Flexural test using four point bending test was done. Fracture



toughness test was performed using modified SEVNB with notch tip radii of 30 pm. Thermal
fatigue testing was done between 30°C to 300°C.

Mayer and Papakyriacou (2006) observed the fatigue cracks generally initiate at
porosity by interface failure. Infiltration improves tensile and bending strength but cyclic
properties are less affected.

Moon et al. (2008) evaluated crack tip stress fields on a micro scale. They used Single
edge V notch bend(SEVNB) test with notch diameter of 25 um and measured the stress
distributions using Fluorescence spectroscope. Also crack growth was observed under four
point bend fixture loading (that promoted suberitical crack growth). They noted that the crack
moves 1o avoid reinforcement phase in low volume fraction of reinforcement. In high volume
fraction of reinforcement crack becomes discontinuous and reinitiates elsewhere. They also
proposed a FEM model in which they used the actual geometry near the crack region.

Dukhan er al. (2010) AFPC by immersing an aluminium foam matrix with an unfilled
polypropylene homo polymer. They measured the flexural properties of this material for 5
different specimens; these were found to be close to lower bounds the reason of which is yet

to be found out. However, there is a an increase by one and half in elastic moduli.
2.3 PROGRESSIVE DAMAGE MODELLING

Fao er al. (1993) studied the microscopic images of SiC interfaces. They characterised the
reason behind strong and weak interfaces. The faceted interface which form a chemical bond
have strong interface. The inter-metallic compounds found lodged at the interface makes the
interface weak.

Ravichandran, 1994 propoesed an iterative method to predict the deformation behaviour
of IPC using an unit cell model. Prielipp er al (1994) described the mechanical properties of
Al/ALLO; composite in terms of volume fraction and ligament diameter. They proposed a
mathematical model based on the two parameters to calculate fracture strength of the
composite.

Kapoor and Vecchio (1995) examined the deformation behaviour and failure mechanism
in 6061 Al MMC. Both tensile and compressive behaviour depend on T4 and T6 condition
and relative strength of particle and matrix. In compression the particle merely acts as
obstacles to the flow of matrix, while in tension the particles assist in the flow.

Doel and Bowen (1995) carried out uniaxial tensile testing on MMC. Low particle size

increases the 0.2% proof stress and ultimate strength and high particle size increases the



same. Ductility is reduced. Damage is initiated by void nucleation. they also found that small
particle reinforcement damage less casily and are more ductile.

Kashyap et al., (1999) postulated that the strengthening of MMC is associated with high
dislocation density and its work hardening effect. The role of work hardening parameters in
strengthening of MMC was investigated.

Fleming and Temis (2002) analysed the behaviour of AISiC MMC under cyclic loading
using models based on strain cyclic plasticity and strain accumulated damage. They
mathematically modelled elasto-plastic deformation process in MMC.

Pyo and Lee (2010) proposed a damage model considering imperfect interface to predict
effective clasto-plastic behaviour of MMC. They used modified Eshelby tensor with
weakened interfaces. They used a progressive damage model to numerically simulate the
multilevel interfacial damage model.

Reddy and Zitour (2010) determined the mechanical properties of different particle
reinforced MMC. The yield strength, ultimate strength and duetility depends not only on the
reinforcing agent but the type of matrix alloy also.

Hertele ef al..(2010) gave a method to combine different types of stress-strain models to
form a generic stress-strain model to represent the behaviour of any type of composite. They
used Ramberg-Osgood model as it is most versatile and valid over large strains.

Agarwal et al, (2012) presented two models namely Unit-Cell and Self-Consistent
Model the elastic properties of IPCs to find out elastics properties of them. They duly
incorporated all influencing parameters such as volume fraction, degree of penetration &
random geometry. These models were analysed by a meshless method known as EFGM.
They found that the unit-cell. model is easy to implement and less time consuming,.

Agarwal et al., (2013) used Ramberg-Osgood material model to model the elasto-plastic
behaviour of the composites. They proposed a progressive damage model based on the
treatment of the interface. They found that the ultimate strength and the yield strength of the
IPC depened mainly on the properties, volume fraction and interpenetration of the
constituent phases. Their result were found to be in good agreement with the experimental

Oncs.
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2.4 RESEARCH GAP

Due to complexity and randomness in microstructure, the mechanics of these materials have
not been sufficiently studied so far. The basic objective of this dissertation is to model and
simulate the failure phenomenon in IPC to understand, design and predict newer composites
with shorter lead-time without much expense since the experimentation is difficult, and time
consuming, therefore there is need to develop a versatile computational algorithm, which will

simulate the different dynamics of these materials.

11



CHAPTER 3

ELEMENT FREE GALERKIN METHOD

3.1 INTRODUCTION

The element free Galerkin method is quite different from FEM as no element and element
connectivity data is needed but only a set of nodes over the given domain along with

boundary description is required to construct the approximation function (shown in Fig. 3.1).

Triangular Elements

Fig. 3.1: Domain representation in FEM and EFGM

In EFGM, both trial and test functions are constructed from the same space using moving
least square (MLS) approximants.

The MLS approximants consists of three components:

e A compact support weight function associated with each node,

e A polynomial basis funetion and

* A set of coefficients that depends on node position.

4.2 WEIGHT FUNCTION

The support of the weight function defines the nodal domain of influence, over which a
particular node contributes to the approximation. The overlap of the node’s domain of
influence defines the nodal connectivity as shown in Fig.3.2. Circular or rectangular domain
of influence is used for 2-D problems but in case of 3-D, circular domain of influence
becomes spherical and rectangular domain of influence becomes cuboidal. One useful

property of MLS approximation is that their continuity is governed by the continuity of

12



weight functions. Therefore, a highly continuous approximation function can be generated by

an appropriate choice of weight function.

Domain of influence

Domain of influence
Node /

Domain
|, boundary

° X
A )

' \O_I’

Fig. 3.2: A computational model of rectangular and circular domain of influence

For the numerical simulation, different weight functions are used which illustrated here.

Cubic spline:

2 ; ; |
— =45+ 4, KE=
3 2
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3 3 2
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Quartic spline:
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r>1
Simple exponential:
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Guassinan exponential:

{2

—e

(3.4)

_[l

2k
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0,
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d.‘

radius is

w(r) =

l-e

where, ¢ is the dilation parameter and k is the number is terms in polynomial basis function.
Normalized radius for spherical domain of influence is given by

where, d,is the support domain of node /. For cuboidal domain of influence, normalized

r>1
(3.5)

(3.6)

BRI\ (PR T (R
dy 1" ds
where, d;, d}, d; is the support domain of node 7 in the x, y, zdirections. Cubic and quartic

weight function for eight nodded 10 unit length bar are plotted with d,,, =125 given in

Fig. 3.3
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Fig. 3.3: Cubic and quartic spline weight functions 1-D

Cubic and quartic weight function for single node of plate of 2x2 unit area are plotted with

d_. =1.25 given in Fig. 3.4

max
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Fig. 3.4: Cubic and quartic spline weight functions 2-D

3.3 MOVING LEAST SQUARE (MLS) APPROXIMATIONS

The MLS approximation has two major features that make it popular:
e The approximated field function is continuous and smooth in the entire problem

domain.
e It is capable of producing an approximation with the desired order of consistency.

In EFGM. the approximation of u(x) atany point x=9R"in the domain Qc R" , where
pp P

N =1.0r2.0r3 isdenoted as u” (x), given by MLS approximation

u"(x) = ip!(x)a{(x) =p’ (x)a(x) 3.7

i=l
where, p’ (%) =[p,(¥). p,(x),:-, p;(x)] is a basis of order k and p,(x) is a vector of

complete basis functions (usually polynomial). For three dimensions (N =3) and

x' =[x y zI.

p'(x)=[1 x y z] (linear basis) (3.8)
p/(x)=[1 x y z xyp yz zx x* y* z’] (quadratic basis) (3.9)
p (X)=[L x, y. z. xy, yz. zx,... x*, y¥. Z"]1 (k" order basis) (3.10)

and a’ (x) =[a,(x), a,(x), a;(x), ..,a,(x)] is a vector of unknown coefficients @ ,(x) which

depends on position i.e. X.

The unknown coefficients a(x) are obtained by minimizing a weighted least square

sum of the difference between local approximation, #"(x) and field function nodal parameter
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u,. The weighted least square sum denoted by L(x) can be written in following quadratic

form:

L(x)= iu-’(x—x‘,)[u’r’(x)—u{,]1 (3.11)

=]

On substitution of Eq. (4.7) into Eq. (4.11)
L(x) = Y wix=x,)[p" (x,)a(x) —u, | (3.12)
[

where, u, is the nodal parameter associated with node / at x= x, but u'(x = x,)is not the
nodal values of because #”(x) as an approximant not an interplant as shown in Fig. 3.5 and

n is the number of nodes for which w(x—x,) > 0.

u
[ |

o 2"

h

H u(x)

Fig. 3.5: Difference between u, and u" (x)

x5 X s \2L, S .
The minimization of L i.e. N =0, leads to following expression:
a

oL

=0= Zn-'(x—x,}Zpl(xf)[pr(x;)a(x)uui]: 0
I=l

1

al L -
a =0= Z w(x—x,)2 p,(x, )p' (x,)a(x)—u,;1=0
2 I=l
: - (3.13)
oL 2 ”
—=0= Z“’{x" X)2p,(x)p" (x))a(x)-u,|=0
da, =
In vector notation
iw(x—x,)zp(x,)[pf'(x,)a(x)—u; ]:0 (3.14)
I=1
2211J(xfx, ypix ) p’ (x,)a(x) —w(x—x,)px )u, =0 (3.15)
1=l
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After arranging Eq. (3.15)

a(x)= {i w(x—x,)p(x,)p’ (x, )J iw(x-x! x,)u,
/=1 /=

Substituting a(x) into Eq. (3.7), the MLS approximation is obtained as:

u"(x) = p"'(x){iw(x—xf)p(x!)p?'(x,)} iw(x—x;)p(xf)u,
i=l 1=l

This can be written as

W) =pl 0 AMx) B u
—— e e e
Ixk hkxk Koo
and a(x) = A (x) B(x)u

where, A(x) and B(x) are given as:

" - ‘_I X,
A(x) = Zw(x-— X, }p(x;)p; (x,)= w(x—x,){ 2}+ u-+w(x—x“){
i=1 X, xl

]
B(x) = [w(x —x)p(X,).- . w(x =X, )p(x, )] = {w(x —X, )L ]
1

Meshfree approximation can be given as
h -
u' (x) =Yy (x)u, =y(x)u
1=l

where,
w(x) = [, (%) (%) W (x) -, ()]

u' =(u, u, wyeeou,]

By comparing Egs. (3.18,3.22), the MLS shape functions are defined as:

y(x)=p’ (x)A™'(x)B(x)

b

‘The MLS shape function for node 7 y,(x) is defined as:

W, (x)= p' A7 w(x —x,)p(x, )= p'A7'B,

=
1=l

The derivatives of MLS shape function are computed as:

v, (x)=('A"B), =p . A"B, +p' (AT),B, +p'ATB, |

where,

d '
B, (x)= i(x —x,)p(x,)
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(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)



and A™'s is computed by

Al =-A"A A" (3.29)
where,
n o dw :
A, =Y —(x=x,)p(x,)p’ (x,) (3.30)
=1 dx

Here, comma designates a partial derivative with respect to the indicated spatial variable.
MLS shape functions and their derivatives are plotted for linear and quadratic polynomial
basis having cubic spline weight function for eight nodded 10 unit length bar with d;,, = 1.25

shown in Fig. 4.6-4.7.

ir 1
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/! 4 f | / |
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il 1 2 3 4 5 & 7 1 a 10 0 1 2 3 4 5 £ 7 ]

@
=2

Fig. 3.7: Derivative of MLS shape functions having linear and quadratic polynomial basis

For linear basis quartic spline weight function and shape function are shown in Fig. 3.8 for
2-D while the derivatives of shape function are plotted in Fig. 3.9, d,., = 1.25 is used for this

case.
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00

Fig. 3.9: Derivative of cubic spline MLS shape functions w.r.t. x and y

3.4 ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS

The proper imposition of essential boundary condition is quite difficult in EFGM since MLS
approximation does not satisfy the Kronecker delta function property i.e. y/,(x,) # d,, . Many
numerical techniques have been proposed to enforce the essential boundary conditions in

EFGM.

% Lagrange multiplier approach is quite accurate but its imposition loses the positive
definite and bandedness properties of the system matrix. It generates more number of

unknown in the solution.
< In coupling with FEM, EFGM domain is necklaced by FEM domain, and then

essential boundary conditions are applied in the same manner as in FEM.
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% Penalty approach is easy for the enforcement of the essential boundary conditions,
and it gives discrete equations in simple form similar to FEM. Although, system
matrix obtained by this method is positive and posses bandedness property but
improper selection of penalty parameter may lead to wrong results.

In this work, Lagrange multiplier approach is employed along with point collocation scheme.

3.5 EFGM FORMULATION BASED ON MINIMUM POTENTIAL ENERGY
APPROACH

In EFGM, an approximate solution for a node / having n number of nodes under its domain

of influence, is given as

ul (x) =y, (Xu, +p, (X, +- 4y, (X, (3.31)
Vi () =y, (v (X)v, +o by, (XY, - (3.32)
wi (X)) =y, (X)W, + oy (Xwy by, (X)w, (3.33)

where, y,.---.y, are the partition of unity MLS shape functions, #,,v,,w,,***.#,,V,, W, are the

unknown displacements at the nodes (1,++-,77)in the Cartesian coordinate-
- b;
-“.

equation can be written in matrix form as

w| [py(xy 0 0  wvow/(x) 0 0 1w
vie=| 0w, \ 0D 0 ¥, (X) 0 Ry (3.34)
w 0 0 2 uNx)- =¥ N 0w, (x)||u,

v

In vector form

u = [y] {u} ={u} [w] (3.35)
W
The strain at any point can be obtained as

¢ =[B,,]{U} (3.33)
o o3 e

i il nxl

where,
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cx Ox .
0o Ly ™ " 4
oy ay Y 2
0 0 M 0 0 8L:(x_) W, 5}
B |- |0z oz - _ )%
[ wl | 0 alﬂi(x) ‘79”1(7‘) s 0 awn(x‘) O'Wu(x) 7 {U} (o ® ) ‘}'m_
oz By oz dy Uy :/.
a'p!(x) 0 6%(3) P awn(x) 0 atﬁn(x) V" i
oz ox oz ox W, Vi)
atp1(x} 8WI(x) 0 . a!;/n(x) aw;:(x) U )
| o ox oy ox |
(3.36)
Total potential energy of the system is defined as
1= %J-(.‘:,o;, +€,0, +€,00% 130,75 VO + VO )= J.(uj;. +vf, +wf. )dQ
T & (3.37)
- j(ur‘_ +vt, +wi.)dl,
I—f
Eq. (3.37) can be written in matrix form as
[ O-.\'
o
. I £
| o, . '
11 = __[ [Sr g\ g: J/_I': :/:_\' y.(_l }( PdQ N j[” VoW .fr dQ - _[[H i W I\ a’r
25 j Gz a j‘-‘ r, t-
U;T ~
o,
(3.38)

where, f, f,. f.arc the body forces per unit volume and ¢, ¢, t.are the surface tractions at

node / in x, y, z-directions respectively. In concise form, it is given by

I :ljs?'adg—ju"'rdg— J’u""mr, (3.39)
2(1 Q r,

The essential boundary condition (Fig. 4.10) are defined as

1

u=1 on T (3.40)
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Fig. 3.10: Domain with applied boundary conditions
Here, the superposed bar denotes prescribed values, In this paper, Lagrange multiplier
method has been considered to enforce the essential boundary conditions. The Lagrange
multiplier 4 is expressed as
A(x) =N, (s)hk,. XEU (3.41)
A (X)=N,(8)H,. Xeu (3.42)
where, N,(s)is Lagrange interpolants and s is the arc length along the boundary for node /.

Incorporating the essential boundary condition.

[=01-[A (u-W) T, (3.43)
I-ln

IHence, Egs. (3.39, 3.43) yields

= 1% e . " B

n:—[gfmm—ju?fdﬂ-ju’tdr,—j,ﬂ(u-u)dl,, (3.44)
2 0 ¥ T r,

Minimizing the potential energy expression with respect to unknowns u,, v, W ..... i 5 Vs

w,, A leads to

jag"am-ja‘u"r dQ— [Su'tdl, - [62"(w-)ar, - [ou’2dr, =0 (3.45)
Q r, r, Iy

Q

Using following constitutive relations
c=D¢ (3.46)

By substituting Egs. (3.35, 3.46) into Eq. (3.45) yields
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au’ [B},DB,, dQU -w?‘[ j v/t dQ+ I\prtdf,}—c‘}f [-Nwdr, U
Q 1, B

Q
—_— -

—

K f
+64 [-N'dr, U’ [—w'Ndr, 2=0
2 o -
q ¥
It can be written as

SU'(KU —f+GA)+ 8" (G'U~-q)=0

In matrix form

stef

- _[B:MDB dQ

:—quJNdF

E, = J\p $fpdQ

- Nuadr,

[Ir
—
G"

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

where, D is the constitutive matrix for a three dimensional linear elastic material, which can

be written as

_(l—v) v v
v (1-v) v

E v v (l—v)
“hevx-2) 0 0 0
0 0 0
Lo o0 o0

E is the Young’s modulus and v is the Poisson’s ratio.

0
0
0
(0.5-v)
0
0
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(0.5-v)

0

0
0
0
0
0

(0s —v]_

(3.56)




N 0 0
N=[0 N 0 (3.57)
0 0 N

In this work, point collocation method has been used which assumes that the collocation
points are coincident to nodes of displacement boundary whose degree of freedoms are

restricted. Hence for 3-D case, N matrix becomes 3x 3 an identity matrix.
3.6 NUMERICAL INTEGRATION

The computation of stiffness matrix (K ). displacement matrix (G ) and force vector (f)
requires an integration over the domain. Integrating the stiffness matrix and force vector
requires a numerical integration scheme such as Gauss quadrature, which in turn, requires a

subdivision of the domain.

There are two approaches available in literature for this purpose: first one is element
quadrature in which the vertices of this background mesh are often used as the initial array of
nodes for the EFGM model. However, it needs 1o create cells/elements inside the domain,
and Guass points are generated inside these elements as shown in Fig. 3.11(a). The black
colour cross marks are the Guass points generated inside the elements. These Guass points

are used for the numerical integration over the domain.

x :ii_x'm:i_x'vx Kx xx x[x xfx x[x x
%“ DY ey xxx_:_r.’xi' 3 X XX XX X
/ O\ 15 x,\ xxx?xxxxxnquixxxx
A T el T xoxx KXok XX R XX KK XX X
K\x/x\:‘ "KK\/’ X x[¥/ x[x xx x[x XX X[x x[x\w[x x
xix x x Z ! ‘S\

% "xx/—i\.x XANK \ K ORA X R KK EATEX XX KK RQX X
x/x 7 \Ba/ ,5/’,‘, X K XX XKW XX KX WX XX X& X

x . y |
xN/ \x5ix x kx xx ¥x x[x x|x xM xx x|g x
"*Kn’ \"‘ \xK x e x[x k[x =[x x[x x[§ x[x x|d x

x % _ :

x X|XX| I‘i_x;—;  Wx xx kix x[x x/x x[§ x[x x[x x|
\) 5\:&/ xrxxnh\xxxxnx/kxxxzx

; ‘ ,
K . /n"'g-i\: X EX XX KA X[K KX KX XX XE X
\\ /N/*x xx§s\xs xx 'K x[x xxzxx

x
x xR xx xx xx x[x x/x xx/xx x
x (X K RN RIK KK K % 7 bl
/\'777 \x "L//x}"‘/ x x[x Wx KX xx xx x[x kK x[x x
\/\““ XN / x x| x}_&g_c_xx x:x_x;f!/{xxa x|
\ x X xX xX[x xFx[x xx®x x[x x[x x
T~&x x|X (% x|x XX %X x|x x|x x/x x|x x|x x
Fig. 3.11: (a) Element quadrature (b) Cell quadrature

The second integration technique, which is often called cell quadrature uses a background
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grid of cells independent of the problem domain. During numerical at each integration point,
it is necessary to find whether it lies inside the domain or not before integrating the Egs.
(3.50 - 3.54). This technique is not widely used as it does not yield good accuracy along
curved and angled boundaries. Fig. 3.11(b) illustrates that only black colour cross marks are
the Guass points which are used for integration as they lie inside the domain of interest.
However. the blue colour cross marks are the Guass points which are generated in the
background mesh but not used for integration hence this scheme becomes computationally

more expensive than element quadrature.

3.7 DOMAIN OF INFLUENCE

The domain of influence or nodal support is an important aspect of meshfree methods;
therefore its value must be chosen properly. The size of the support should be sufficiently
large so that the stiffness matrix remains regular and well conditioned. But too large domains
of influence lead to a great deal of computational expense in forming the approximations as
well as in the assembly of stiffness matrix. The scaling parameter, dm“ is typically taken as

1.25-3 for static analysis and 2 - 2.5 for dynamic analysis
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CHAPTER 4

MECHANICS OF COMPOSITE MATERIALS

Traditional monolithic materials may be broadly categorised as metals, polymers &
ceramics. Composites can be made by combining two or more materials from one or more of

these categories.

4.1 GEOMETRY

The geometry of the composite material exhibits a defining role in the mechanical properties
of composite materials. Based on the number of phases a material can be called single phase
(monolithic), two phase, three phase or multi- phase material.

In homogenous material propefties are same at every point. Homogeneity concept is
associated with a scale or characteristic volume. Based on the scale parameter material can
be homogenous or less homogenous. If the variability on a macroscopic scale is low the
material is said to be quasi-homogenous. A material is known as heterogeneous if its
properties vary from point to point at a particular scale. Depending on  the scale parameter
same material can be regarded as homogenous, quasi-homogenous, or heterogeneous.

Many material properties like stiffness, strength, thermal expansion, and permeability are
associated with a direction. In isotropic material the properties are same in all directions. A
material is known as an anisotropic when its properties at a point vary with direction or that
depend on the orientation of reference axes. Orthotropic materials are the materials having
at least three mutually perpendicular planes of symmetry, All these properties depend on the

scale or characteristic volume, too.

4.2 MICROMECHNICS OF COMPOSITES

One of the main objectives of micromechanics is to obtain functional relationships for

average elastic properties of the composite, such as stiffness in the form
C" =1(Cr,Cm, Vi, S, A)

where,
* . o gagn
C = average composite stiffness
C1.C,, = fibre and matrix stiffness respectively

V= fibre volume fraction
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S, A = geometric parameters describing the shape and array of the reinforcement

respectively.

A lots of methods have been found to get the properties of the composite materials like

e Mechanics of Materials approach

e Numerical Techniques approach

e Self- Consistent field approach

e Variational Approach

e Semi- Empirical Approach

e Experimental Approach

The mechanics of materials approach is depended upon simple assumptions of either
uniform strain or uniform stress in the constituents’ material. The properties which are not
sensitive to fibre shape and distribution such as Young's Modulus E; and major Poisson's
ratio vy are predicted accurately by this approach.

Numerical Technique approaches like Finite difference, FEM, Periodic cell, or BEM
give the best results. But these methods take more time and do not give closed form
expressions.

Sclf-Consistent field approach is based on a simplified composite model is considered
containing of a typical fibre confined by a cylindrical matrix phase. The properties
constituents are similar to the average properties of the composite material.

Variational methods are based on energy principles and it establishes bounds on effective
properties of the composite. Semi-Empirical relationship has been suggested to related with
the difficulties with the theoretical approaches described above. The micromechanics of load

transfer and the correlation between constituent properties must be experimentally verified
4.3 MACROMECHNICS OF COMPOSITES
The stress and strain relations for a body can be given in indicial notation as

o =>C, xg (i, j=1,2,3..6)

where, Cj; = Material stiffness constants

For orthotropic material, the number of independent elastic constants are reduced to nine,
as various stiffness and compliance terms are interrelated. The elastic constants include C;;
(i = 1,2,3), C4s . Cs5 , Cee. Here no coupling exists between normal stresses 6y, 62, 03 and

shear strains v4. vs. Yo. No coupling prevails between shear stresses Ty, Ts, To & normal strains
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£1, £2, £3. No coupling exists between shear stress acting on one plane and a shear strain on a

different plane.
An orthotropic material is called a transversely isotropic when one of its principle plancs
is a plane of isotropy. The stress - strain relations are simplified by noting that subscripts 2

and 3 in the material constants are interchangeable. Here Cyy = (Caz - C23)/2.
4.4 PLASTICITY IN COMFPOSITES

Since the plasticity is modelled using micro-mechanical model, the plasticity of the
individual constituents are modelled through conventional theories of plasticity. In order to

model elasto-plastic materials’ deformation, some conditions are to be fulfilled:

Just before the onset of plastic yield, the relationship between stress and strain is written by
standard linear clastic expression.

o, =Cu€u @.1)
The yield criterion may be given in general form

fla,)=K(k) (4.2)
where, / and k are a function and a hardening parameter respectively.

Two most important yield criterions are Tresca Yield criterion and Von Mises Yield
criterion.

Tresca criterion says that yielding begins at

o, —0, =Y (k) (4.3)

where, 0, > 0,2 0, are the principal stresses and 1 is'a material parameter to be found

experimentally and may be a function of hardening parameter k.

Von Mises yield criterion says that yielding occurs at J, reaches a critical value, or

/i =K(k) (4.4)

in which, K is a material parameter. The second deviatoric stress invariant./!, can be written

as
' ! vl & 42 2 2 3 _
Jy= 5 1% +o +o |+T +T,+T, (4.5)

Yield criterion may be further written as

7= (5)

where, & is termed as effective stress, generalized stress or equivalent stress.
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After starting yield the material behaviour will be partly elastic as well as plastic. During any
increment of stress, the change of strain are considered to be divisible into elastic & plastic
components, that is:

d, =(ds, Y +(de, ) (4.7)
The increment in elastic strain is related to the stress increment by Eq. (5.1). Decomposing
the stresses into their deviatoric and hydrostatic components

.

(de, ) = “;—? + (%2”—) 8,do, (4.8)
where, £ is an elastic modulus and v is the Poisson’s ratio.

To find the relationship between plastic strain components & stress increment, it can be
assumed that the plastic strain increment is proportional to the stress gradient of a quantity
known as plastic potential function @, so that
(de, ) = 4122 (4.9)

ooy

where d/ is a proportionality constant termed as the plastic multiplier.
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CHAPTER 5
MODELLING OF INTERPENETRATING PHASE COMPOSITES

5.1 UNIT CELL MODEL

The smallest structural block that defines the structure of a composite with all information is
called as a unit cell. It is also known as a representative volume element (RVE). The
composite structure is made by putting numbers of unit cells. The micro-structural

parameters such as volume fractions, distribution of phase and connectivity define a unit-cell.

5.1.1 Proposed Model

In Figs 5.1-5.3, the construction process of the unit cell is shown. A numbers of sub-cells
combined together form the unit cell. Eight cuboids are placed at the each corner of a cube as
shown in the Fig.5.1. The sum of the volumes that is, V| + Va+...+Vy of the cuboids bears a
constant proportion to the volume (a’) of the cube, where ‘a’ is the length of side of the cube.
The ratio. thus obtained called the volume fraction (Vy) of the phase. When the cuboid’s
length is fixed the breadth and height nceded to be calculated. The length of the cuboid is
chosen randomly ina way that its value is smaller than half of the length of a sub-cell. After

getting the length of the cuboid the breadth and height are evaluated.

J

/|
Bl

:M+%+%bg+ﬂ+%+ﬂ+ﬂ

v 3
a
Figure 5.1a: Description of a single sub-cell (3D model)
I a at }
i 1 4
y A+ Ay + A+ A, bl
i TG nir
axh .
4 \; {

Figure 5.1b: Description of a single sub-cell (2D model)
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Two types of suE-cell are developed to have interpenetrating nature, Fig 5.2 shows both
the sub-cells placed face by face. In type sub-cell the reinforcement is inside the cuboids and
the remaining portion is filled with matrix phase, however the case is just reversed in type 2
sub-cells. When type 1 and type 2 sub-cells are used alternately, an interpenetrating structure
of IPC is generated as shown in Fig 5.3. both the phases are interconnected and generated

geometry is random in nature.

Figure 5.2: Different types of Sub-Cells (3D)

Figure 5.3: Proposed Unit Cell Model (3D)
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Figure 5.4 : Unit Cell Model (2D)

5.4.2 Implementation

The proposed unit-cell model is evaluated by Element Free Galerkin Method (EFGM). This
model consists of cuboids, that don’t need number of nodes to define its geometry in accurate
sense, therefore the computational time reduced significantly. There are many techniques to
model the interfaces. Howeveer, two different approaches, namely, domain partitioning
technique & enrichment technique have been used in present work.

Enrichment technique has been used to model the interface. The normal distance from
the interface of all the nodes is called signed distance. Since each cuboids has a three
boundaries and hence. total 24 level set functions have been defined for each node. The split
nodes are found near the boundary and respective level set function has been used. Three
variables set are required for such level set function.

¢i,j.k = {xf_;.ff T Xjki» Vi T Vi Fiy _Zi;k_}

Where, i apd j is the number of nodes in the domain and kis the number of cuboids
representing a particular phase in a sub-cell (refer to Fig 5.2).

Besides the internal boundaries there are boundaries related to the interface of sub-cells.
Domain portioning method has been used for those boundaries. The presence of other
materials have been ignored to perform the integration. However, it is ensured that there must
be some nodes on the boundaries.

In unit cell model the cub-cells are put together to form the model. Each nodes is
assigned a property and data of each cellis reorganised to form a single structure. Thus, the
implementation of a randomness becomes very easy and the domain partitioning method

becomes simple to use.
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Unidirectional constraints may not be used as an essential boundary conditions in a unit
cell model. The periodic boundary conditions are relevant for the this model (Burla et al..
2009 and Qingsheng et al., 1994).

u, —uy =Const , up —uy =Const 4 Up —upg =Const

where, L, R T, B, I & BK stand for left, right, top ,bottom ,front and back face of the unit
cell respectively.
The relevant boundary conditions for the two dimensional unit cell model to find Young's

modulus and shear modulus are as shown in Figures 5.4-5.5.

u, =0 u, =0
u, =0 Unit Cell Model u, =C dy= 0 Unit Cell Model %, =C
Y
.1]
: U f=1 e
X ¥ , ¥ H‘, ={)
Figure 5.4: Periodic boundary condition 1o Figure 5.5: Periodic boundary condition to
find Young's modulus (21D model) tind Shear modulus (2D model)

5.4.3 Degree of Interpenetration
Both interpenctrating and dispersed phases are there in a real microstructure (Feng et al.
2003). The degree of interpenetration is a controlling parameter that affects the
interpenetration of the phases. Based on the interpenetration three types of interpenetrations
have been named such as high, low and medium. The particulate composite represents low
interpenetration. A true IPC can be said to have high interpenetration. In medium
interpenetration materials both interpenetrating and particulate phases exist.

Three types of composite behaviour can be found by just varying the geometry. The
presence of eight cuboids at the corners of the cube is the unique feature of the model.

All eight cuboids lie at the eight corners of the cube for a high degree of interpenetration.
In this way all reinforcement phase remain well connected the next sub-cell having
reinforcement at the centre facilitate interpenetration.

All cight cuboids must be positioned at the centre of the cube for low interpenetration in

type Isub- cell and with no change in the type 2 sub-cell
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some of the cuboids in Type-1 sub-cell are positioned to the centre, but others remain at

the corners for the medium interpenetration.. Again, there will be no change geometry of type

2 sub- cell. This way medium degree of penetrations are found.

The proper implementation of the unit cell model has been demonstrated by the stress plots
of the IPC as shown in Fig 5.6 - 5.7

EFG stress, o

zz

Figure 5.6: Shear stress plot of Unit cell model under shear stress

EFG stress, o, x 10°

25

-

0.5

Figure 5.7: Normal stress plot for Unit cell model under Tensile loading
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CHAPTER 6

EVALUATION OF ELASTIC PROPERTIES

6.1. EFFECTIVE MEDIUM APPROXIMATION

The composites are naturally homogeneous. Therefore, analysing the structure of composites
is difficult task. To analyse composite structures we replace the heterogeneous composites by
an cquivalent homogeneous composites. This process is called an effective medium
approximation. [t comprises to find the mechanical properties of the equivalent
homogeneous material. In modern time, researchers have used EMA approach to estimate the
nature of cracks under thermo-mechanical loading for economical time. Reinforcement &
matrix are interconnected throughout in IPC structure, this make EMA an effective tool to
find out the equivalent mechanical properties of a composite.

Here, The principle of energy equivalence has been applied to evaluate mechanical
properties of the equivalent material. Under the similar situation such as the load and
boundary conditions the strain energy density for heterogencous composites must be equal to
equivalent homogeneous medium.

To evaluate the strain encrgy density a composite which is heterogeneous in nature
numerical techniques approach has been used. However, in terms of unknown material
properties the equivalent medium can be calculated analytically. In this thesis, Element Free
Galerkin Method are used to evaluate strain energy density ( as mentioned in section 3) of
the composites which are heterogeneous in nature .

Therefore , the mechanical properties of the equivalent medium may be evaluated. The
algorithm to evaluate effective properties of IPC is shown below.

(i) Recognise the domain computation from the physical geometry.

(i)  Recognise the relevant sets of boundary conditions based on the unknowns.

(iii)  Numerically calculate strain energy density of the composite microstructure that

is heterogeneous in nature with the use of” following steps:
= To generate the microstructure composite model.
*  Using EFGM analyse the microstructure.
» To calculate strain energy of using EFGM for particular domain.
(iv) To evaluate analytically the strain energy density of the equivalent medium

which is homogeneous in nature as a function of unknown material.

35



(v)  The strain energy of a medium which is homogeneous in nature be equated to the
material properties of equivalent medium to evaluate an equation related it.
(vi)  Go to the step (ii) for various sets of boundary conditions.
(vii)  to find the equivalent properties of a medium a system of equation is calculated
As an example the whole calculation for an isotropic material is shown. Only two
material properties such as, £ and v are required to completely define the stress strain
relationship.

For two dimension problem

‘. o, l-v v 0 £
= ¥ =¥ 0 g, 6.1
T 0-2v) ¥ arapl” -
L(]'“ 0 0 > L’V"-"

The strain energy ¢/ per unit volume of a body is given by

U =0.5%(0,,6 /NG, RE, +0 €, + 0.1 i HO K T F ¥ ) (6.2)

To find the shéar modulus (G), a uniform shear strain is applied in the whole body then Eq.
(2) reduces Lo

U =0.5%(0u.,) (6.3)

By substituting the values of o, from Eg. (6.1) in Eq. (6.2). a relationship between the
material property G (G = E/(2x(1+v)) and U is obtained as

U =05x(GX7,,) (6.4)

The shear modulus G can be calculated in terms of total energy using Eq. (5.4) as:

G = Efo?erg\-'K(;/fl x Lx D) (6.5)
The total energy is calculated numerically using EFGM.

To find Young' modulus (£), a uniform tensile strain is applied in one direction (say x-
direction) then Eq. (5.2) reduces to

U=05x%(c,.£.) (6.6)
By substituting the values of o, from Eg. (5.1) in Eq. (5.6), a relationship between the
material property £ and total strain energy per unit thickness is obtained as

Ex(l-v)xgl xLxD 6.7)
(1+v)x(1-2v)

Energy =

v - (£/2G)—1 is used in Eq. (5.7) to obtain the expression for £ as
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£ Gx(4G-3C)

G-C (©8)

where, C is given by

O 2x Energy

"~ LxDxgl
I'inally, the effective Poisson's ratio is calculated using the following relation
Lv=(E/12G)-1 (6.9)
For three dimension problem

)r.l D 4 3
J’:O.Sxxi__mx[’"' 6.10

Where, L.,D and H are length, breadth and height of the cube in metre (m) and P is load in Pa

LxDxH 3
(= x P~
2U 6.11

Using Numerical method the total energy U (Eq. 6.2) has been caleulated and with shear load
P (tau) = 100 MPa and the Eq.6.11, the shear modulus has been calculated. Thus, using the

rest standard formulae Young’s modulus has been calculated.

6.2 EFGM Algorithm

The algorithm for evaluating strain energy density of a composite material structure is nearly
similar to the algorithm mentioned for the two —dimension problem,
Afier evaluating the values of stress and strains at each node, the strain energy density can be

calculated by the integration of stresses and strains at each point.

1« _
U==3 sj)g” g, dV (6.12)
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CHAPTER 7

ELASTO-PLASTIC ANALYSIS OF IPC

7.1. ELASTO-PLASTIC SIMULATION

To simulate the elasto-plastic behaviour of IPC, accurate modelling of the microstructure is
necessary. Different types of micro-mechanical models have been suggested in the literature.
A unit cell model for the IPCs has already been proposed in chapter 5. A random
microstructure  model has also been proposed in chapter 5. The modelling and
implementation of both the models has been explained. The elasto-plastic analysis has been
done using EFGM in the chapter.

Both the constituent phases are modelled individually using the Ramberg-Osgood

relation (Lq. 7.1).

O__
g, Gy \f J (7.1)

This requires the use of two additional material constants (& , ) for each of the phases. « ,
n are the Ramberg-Osgood material constants/parameters. In the present work, the constants
are calculated by curve fitting techniques so as to have the minimum error. The yield stress

o, is taken as the 2% proof stress. A line parallel to the elastic curve is drawn from 2%

5
strain on x-axis. The point where the two curyes meet denotes the yield stress of a material.
The yield strain &, is the strain corresponding to the yield stress.

For numerical simulation, a load is given iin small steps. In these load steps, the
incremental stress is related to that of strain by effective moduli which depend on the present
state of stress. A failure mechanism is intreduced to simulate the effects of local material
failure. The failure mechanism is same as that proposed by Yonggiang et al. (2007). A
damage initiation criterion is used to all the nodes. As soon as the stress at any node reaches
the ultimate strength corresponding to that node then it is treated as a failed node and a
suitable correction in the material properties at that node is applied.

The failure of individual materials of the composite has been considered rather than the
taking the failure criterion for the whole composite. The failure of each node inside the
micro-mechanical model is governed by assumptions which are conventional in nature. In

cach load step, all the nodes are checked for failure using their individual stresses and
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ultimate strength. Von-Mises failure criterion has been proposed for predicting local damage.
If the Von-Mises stress at a particular node reaches the corresponding ultimate strength, then
the stiffness of that node is reduced to a low value. In the next iteration, a analysis is
performed again without increasing the load as some of the adjoining nodes might fail due to
reduced stiffness of previously failed nodes. This is repeated until there is no further failure
of nodes in a particular load step. Once the failure of any new node ceases, a new load step is
applied in the usual manner. Thus, the composite is progressively damaged until no further
stresses can be transferred.

The Von-Mises failure criterion is given by Eq. 2 and Eq. 3.

o, = -(o,—0,) +(o,—a,) +(g, —o7)")

SV (7.3)
where, @, is the Von-Mises stress and o, are the principal stresses in three mutually
perpendicular directions. Figure 7.1 shows the stress-strain curve for a material using
Ramberg-Osgood model along with its failure mechanism. As soon as the stress reaches the
ultimate strength (200 MPa in the present example), the stress becomes zero instantly at the
node which results in the reduction of the overall stiffness of the composite due to the release

of stress at the node. This relieved stress will be shared by the surrounding nodes thus
increasing the stress in the surrounding region.
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Figure 7.1: The stress-strain curve plot for a general node with damage
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Figure 7.2: Interface representation in a particulate composite

The interface is defined as the transitional region between the matrix and the
reinforcement (Figure 7.2). This region is important because the strength of the composite is
largely affected by the type of bond between the two phases (Su et al, 1999). A strong
interface like a chemical bond enhances the strength of the composite. A weak interface may
decrease the overall strength of the composite. Foo er al. (1993) studied the microscopic
images of SiC interfaces. Pyo and Lee (2010) proposed a damage model considering the
imperfect interface to predict the elasto-plastic behaviour of MMC. They used modified
Eshelby tensor with weakened interfaces, and a progressive damage model to numerically
simulate the multilevel interfacial damage model. The damage model has not been analysed

because of the time constraints like getting the results in cach run.
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CHAPTER 8
RESULTS AND DISCUSSION

8.1 EFFECTIVE ELASTIC PROPERTILES
8.1.2 Unit Cell Model

In this work a composite material consisting of Alumina (Al,03) and Copper (Cu) has been
evaluated. The Young's moduli of ALO; and Cu are 390 GPa and 110 GPa , their shear
moduli are 162 GPa and 40 GPa and Poisson's ratio are 0.20 and 0.34 respectively. Because,
it is a random model, many runs have been taken to evaluate the statistical average. It is said
that the results of all the runs are within 8% of the average values. Each data plotted is the
statistical average of at least 5 runs of the same model for that particular data.

Fig 8.1 and Fig 8.2 show the convergence rate of a unit-cell model with respect to the
total number of nodes in a sub-cell. In both the figures the convergence is at node 7
neglecting the abrupt change plot at 10 and 1 1" node. Therefore, for all calculation purpose
the no. of nodes taken is 7.

There has not been significant difference of the results for the selection of number of
sub-cells. However, taking computational time into account the eight sub-cells has been
considered for the evaluation purpose.

Figs 8.3-8.5 provide the effective shear modulus, Young's modulus and Poisson's ratio of the
Interpenetrating Phase Composites w.ri. the volume fraction of the Cu phase. It is observed
that all the results fall within the theoretical bounds predicted by Voigt and Reuss. Figures
8.3-8.5 arc consistent with the experimental evidence that the material properties are largely
dependent on volume fraction of a particular phase. Figure 8.3 shows that the values of shear
modulus predicted by the unit-cell model is higher than the values predicted by Poniznik et
al.. 2008. the maximum difference being about 7%. It is on the higher side. It is approaching
to the upper limit Similarly, Figure 8.4 shows that the Young's modulii predicted by the unit-
cell model is higher than the values predicted by Poniznik es al, 2008, the maximum
difference being 8%. It is again nearer to the upper limit. Figure 8.5 shows that the values of
Poisson's ratio predicted by the unit-cell model is higher than the values predicted by
Poniznik et al, 2008. The Poisson's ratio has been calculated from the formula

v =(E/2G)—1 where the £ and G are the predicted values.
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Finally, the results of the proposed unit-cell model are compared with the experimental
results obtained by Poniznik ¢r a/, 2008, in Figs 8.3-8.5. It can be seen that the experimental
values lie between the predictions of the proposed unit-cell model in 2-D and 3-D model
given by Poniznik er al. 2008. Moreover, the difference between the prediction of the
proposed unit-cell model and the 3-D model of Poniznik is less than 8%. The proposed unit
cell model(2D) is easier to implement and computationally less expensive. However, taking
readings for the three dimensional problems was tedious job as it was time intensiveness

process.
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CHAPTER 9
CONCLUSION AND FUTURE SCOPE

In the present thesis, two models of IPCs have becn proposed one in two dimension and
another in three dimension. All dominating parameters like volume fraction & random
ocometry that may affect the properties of IPCs are considered in modelling to obtain an
accurate simulation. The model has been made preferably using EFGM than FEM taking
advantages of element free modelling. The effective medium enrichment technique has been
used to model the interface between two materials. Parameters controlling the degree of
penetration have been incorporated into the model. This way the composites can be modelled
with partial or no interpenetration to predict effectively the elastic properties of the materials
The proposed unit cell model (2D) is easier to implement and less expensive as far as
computation is concerned in comparison to earlier models. However, the 3D model emulates
the actual composite and said to be giving proper mechanical properties but time intensive.
Using basic geometry and probability the random microstructure model is generated. The
effective mechanical properties of 1PC can be predicted by the models for combination of

materials and volume fractions (0.3 to 0.7).

The future scope of the work is as follows

e The fracture mechanics concepts may be used to simulate crack propagation in IPCs.

The thermal analysis, crack propagation, interface analysis may be explored.

e The analysis of void nucleation and damage propagation needs to be explored in
detail.

o The parameters like dislocation density, crack bridging mechanisms, random

distribution of phases, etc have to be incorporated into the model as they greatly

affect the mechanical behaviour of these composites.

The structural analysis using the microstructure of IPC can be performed.

o The effect of imperfect interface can be modelled in IPC.
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