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ABSTRACT 

 

Runoff is one of the most important variables used in planning and design of hydraulic structures 

and assessing the water yield potential of a watershed. Runoff is a function of many variables 

such as rainfall duration and intensity, soil moisture, land use/land cover, soil infiltration 

capacity, watershed slope etc. There are a number of models available in literature considering 

different variables governing the surface runoff. Among them, the lumped conceptual models 

are quite useful for simple yet realistic analyses. The Natural Resources Conservation Service 

curve number (NRCS–CN) formerly known as the Soil Conservation Service curve number 

(SCS–CN) method is the most popular method to determine the storm event runoff from an 

ungauged small watershed for a given amount of rainfall. The SCS-CN method was developed 

in 1954. It is documented in Section 4 of the National Engineering Handbook (NEH-4) published 

by the Soil Conservation Service (now called the Natural Resources Conservation Service), 

United States. Department of Agriculture in 1956. The document has since been revised several 

times. The SCS-CN method is the result of exhaustive field investigations carried out during 

1930s and 1940s. The method has since then witnessed myriad applications world over. It is one 

of the most popular methods for computing the surface runoff for a given rainfall event from 

small agricultural, forest, and urban watersheds. It is simple, easy to understand and apply, 

stable, and useful for ungauged watersheds. Due to its low input data requirements and 

simplicity, many erosion, hydrologic, and water-quality models have employed this method for 

determination of runoff. The primary reason for its wide applicability and acceptability lies in 

the fact that it accounts for most runoff producing watershed characteristics: soil type, land 

use/treatment, surface condition, and antecedent moisture condition. The only parameter of this 

methodology, i.e. the Curve Number (CN), is crucial for accurate runoff prediction. Based on 

exhaustive field investigations carried out in the United States, curve numbers were derived for 

different land uses, soil types, hydrologic condition, and management practices and these are 

reported in NEH-4. These numbers have seldom been verified for Indian watersheds. 

Evidently, most studies have concentrated on the application of the existing SCS-CN 

method utilizing CN derived from NEH-4 tables. No systematic effort appears to have been 

made for evaluating the SCS-CN methodology experimentally, particularly for Indian 

watersheds, which invokes the need of the study. The aim of present research was to enhance 

the understanding of SCS-CN methodology by investigating its different parameters employing 

naturally observed P-Q datasets. This study covers relative accuracy of different CNs 
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determination methods and comparing them with NEH–4 tables CN values; evaluating the effect 

of initial abstraction coefficient and antecedent moisture on CN and runoff; evaluation of 

existing AMC–dependent CN formulae, which are otherwise developed using United States 

datasets. The AMC–dependent CN formulae incorporating initial abstraction coefficient effect 

is also tested for enhancing runoff estimation.  

The present study uses the rainfall (P)–runoff (Q) dataset of various climatic settings. 

Locally measured and published literature data have been used in the investigation of different 

parameters of SCS-CN methodology. For locally monitored data, the natural P–Q events were 

captured on 35 plots of 22m length and 5m width having different slope (5%, 3%, and 1%), land 

use (agricultural land use: Sugarcane, Maize, Black gram, Fallow land, Lentil, and Chana), and 

hydrologic soil group (HSG) during August 2012–April 2015 (or three crop growing seasons in 

study area) for the experimentation work carried out at Roorkee, India. The experimental field 

(Lat.: 29° 50′ 09″ N and Long.: 77° 55′ 21″ E) is situated at the right bank of Solani River, a 

tributary of Ganga River, the largest river basin in India. Precipitation was recorded with the 

help of Tipping Bucket rain gauge and a non-recording rain gauge installed within the 

experimental site. The surface runoff generated during rain storms was collected in separate 

chambers equipped with multi-slot divisor (5-slot) (1m × 1m × 1m) constructed at the 

downstream end of each plot and the variation in depth of water stored with respect to time was 

monitored regularly, but manually. Infiltration tests were conducted for each plot using the 

double ring infiltrometer. Soil water measurements were taken by time domain reflectometry 

(TDR) probe of the ‘Fieldscout TDR-300’. Besides, the published literature P-Q data were 

collected for 36 plots/watersheds having different size, land use, slope and soil consisting 

heterogeneous climatic conditions.   

The rainfall (P)runoff (Q) behaviour pattern was analysed using naturally observed PQ 

data from experimental study plots located at Roorkee site and it was found that nonlinear 

variation of runoff coefficient (Rc) with P is similar to the variation of Q with P, but the 

correlation between Rc and P is much lower than that between Q and P. As expected, the mean 

runoff coefficient (Rcm) was higher for the plots having HSGs C followed by B and A. The 

concept of runoff initiation threshold (I) also called rainfall threshold for runoff generation 

confirms the runoff generation phenomenon of generating low runoff from lighter soils as the 

values of I was highest for HSGs A followed by B and C. These finding indicates that HSG (or 

indirectly soils infiltration capacity, fc) seems to play a major role in controlling runoff in the 

plots. The KruskalWallis (KW) test analysis performed to analyse the effect of land use, soil 
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type, and plot slope on Q (or Rc) show that, Q is more significantly influenced by soil type rather 

than land uses or slopes as fc is the main explanatory variable for runoff (or CN) production in 

the study plots. In present study experimental plots, CN is inversely related to fc, which supports 

the applicability of NEH4 tables CNs declining with fc (or HSG). Further to check the 

dependency of observed CN on in-situ antecedent moisture content, CN (or, potential maximum 

retention, S) values showed a higher degree of dependence on the physically observed 1-day 

antecedent soil moisture (θo1) than other duration antecedent soil moisture values. 

The performance of eight different CN estimation methods, viz. storm event mean and 

median, rank-order mean and median, log-normal frequency, S-probability (SP), geometric 

mean and least square fit, was evaluated using P–Q data measured on small agricultural plots 

located in India. The KruskalWallis test multiple comparison analysis show that there was no 

single method which has produced significantly higher (or lower) CNs than other. The least 

square fit method was observed to estimate significantly lower CN than other methods except 

log-normal frequency method. Based on the overall score and ranking system calculated from 

different goodness of fit indices, the method performance in runoff estimation was as follows: 

S-probability > geometric mean > storm event mean > rank-order median > rank-order mean > 

least square fit > storm event median > log-normal frequency. The comparison of observed P-Q 

data based CNs with tabulated CNs show that, on the whole, the CN estimates from NEH-4 

tables do not match those derived from observed P–Q dataset. As a result, the runoff prediction 

using former CNs was poor for the data of experimental plots of Roorkee site. However, match 

was little better for higher CN values, consistent with general notion that the existing SCS-CN 

method performs better for high P–Q (or CN) events. The reason for tabulated CNs to have 

performed most poorly is that these are the generalized values derived from the watersheds of 

United States, consistent with the results of other studies. 

The plot-data optimization yielded initial abstraction coefficient (λ) values ranging from 

0 to 0.659 for ordered dataset and 0 to 0.208 for natural dataset (with 0 as the most frequent 

value for both datasets). Mean and median λ values were, respectively, 0.030 & 0 for natural P–

Q dataset and 0.108 & 0 for ordered P–Q dataset, quite different from standard λ =0.2, but 

consistent with the results of other studies carried out elsewhere. Notably, the existence of Ia-S 

relationship for different plots was also investigated; and in contrast to the existing notion, Ia 

when plotted against S exhibited no correlation for both natural and ordered datasets, consistent 

with the findings of Jiang (2001). Runoff estimation was very sensitive to λ and it improved 

consistently as  changed from 0.2 to 0.03. Compared to traditionally assumed λ=0.2, a refined 
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λ=0.03 is recommend for the use in regions of similar to study site. Further, a relationship 

between CN0.20 (λ = 0.20) and CN0.03 (λ = 0.03), useful for CN conversion for field application 

is established. 

It is well established phenomenon that accurate estimation of the surface runoff is one of 

the most important bases for planning and management of water resource systems and 

environmental quality assessment of water and soil. Therefore, in popular SCS–CN method, 

correct estimation of AMC–dependent CN values is always necessary. Since CNs varies with 

climatic condition of watersheds, there is need of using AMC-dependent CN-formulae 

developed utilizing data of watersheds having heterogeneous climatic conditions. The formulae 

developed from heterogeneous and large data sets will tend to have wider applicability. The 

present work evaluated the five existing (Arnold et al. 1990; Chow et al. 1988; Hawkins et al. 

1985; Mishra et al. 2008b; Sobhani 1975) and three proposed (MC6, MC7, MC8) CN-AMC 

formulae. For developing the proposed formulae, CNs were derived for datasets from a large 

number of naturally observed P–Q events for an agricultural field located at Roorkee, 

Uttarakhand, India and available published data around the globe using standard initial 

abstraction ratio (λ) values as 0.20 and 0.030. The analysis shows that the existing Hawkins et 

al. (1985) formulae performed the best for conversion of CN2 into CN1 and CN3, when tested on 

NEH–4 AMC defining Tabular CNs considered as targeted values. It might be because the 

existing formulae were derived from the same datasets used as targeted values (i.e. NEH–4 AMC 

defining tables). However, all the three proposed MC6, MC7, and MC8 were best of the existing 

formulae in their application to field data. MC8 incorporating the effect of λ = 0.030 performed 

the best of all, and MC7 and MC6 better than the other existing formulae. Among the existing 

formulae, Mishra et al. (2008b) was superior followed by Hawkins et al. (1985). A comparison 

of the results derived from the eight different methods concluded that the MC8 formula that 

incorporates the effect of λ into standard SCS–CN method showed a superior performance in 

runoff simulation than the others. Since the proposed formulae performed the best in field 

application, these are recommended for field use to improve the accuracy of SCS–CN model.  

Keywords: Agricultural field; Curve number; Antecedent moisture condition; Runoff; NEH-4 

Table; SCS-CN; NRCS-CN; Initial abstraction coefficient; Infiltration capacity. 
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CHAPTER 1 

 INTRODUCTION 

 

1.1 GENERAL  

Runoff is one of the most important variables used in planning and design of hydraulic 

structures and assessing the water yield potential of a watershed. The mechanism of surface 

runoff generation is a complex process as it relies on a number of variables including rainfall 

(amount and duration or intensity), soil moisture, land use/land cover, soil type, watershed 

slope, and so on (Gosain et al. 2005; Muttiah and Wurbs 2002). Consequently, a number of 

models have been developed and reported in literature for surface runoff analysis (Anderson et 

al. 2002; Mishra and Singh, 2003). Among them, the lumped conceptual models are quite 

useful for simple yet realistic analyses (Mishra and Singh 2003).  

The National Engineering Handbook (NEH-4) Soil Conservation Service-Curve 

Number (SCS-CN) method (SCS, 1964, 1972) also known as Natural Resources Conservation 

Service Curve Number (NRCS-CN) method is one of the most popular methods for computing 

the depth of direct surface runoff for a given rainfall event. The main reason that this method 

has been adopted by most hydrologists for predicting surface runoff from small agricultural, 

forest, and urban watersheds is due to its simplicity and applicability to ungauged watersheds 

with the use of only single parameter known as curve number (CN) which is derived from 

catchment features such as land use/cover, soil type, and 5–day antecedent rainfall (P5) (Mishra 

et al. 2008a). The SCS-CN method has also been criticized among researcher fraternity due to 

its inability to consider the important characteristics of rainfall like spatio-temporal distribution 

and intensity. Besides, slope of the watershed, another significant parameter in runoff 

generation processes was also not included in original developed method. Despite the 

shortcomings, as discussed abovementioned, the method has undergone a various amendment 

including extension from agricultural to forest and urban watersheds. In the course of 

continuous use of the SCS–CN model world–wide, several modifications have been proposed 

in literature (Hawkins et al. 1985; Jain et al. 2006a; Mishra and Singh 2003; Mishra et al. 

2006a; Sahu et al. 2010a, 2012; Suresh Babu and Mishra 2012; Woodward et al. 2002). Some 

other notable ones incorporate the effect of slope (Huang et al. 2006; Ajmal et al. 2015b; 

Sharpley and Williams 1990); the improvement in initial abstraction coefficient (λ) (Hawkins 

et al. 2002; Jain et al. 2006b; Mishra and Singh 2004a; Mishra et al. 2006b; Woodward et al. 
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2004; Yuan et al. 2014); the antecedent moisture on continuous basis (Ajmal et al. 2015d; 

Ajmal et al. 2016; Durbude et al. 2011; Michel et al. 2005; Sahu et al. 2007; Singh et al. 2015); 

and the antecedent moisture for estimation of initial abstraction, Ia (Mishra and Singh 2002; 

Mishra et al. 2006b; Sahu et al. 2012). It has also been widely used in a number of standard 

hydrologic models such as Areal Non-point Source Watershed Environment Response 

Simulation (ANSWERS) (Beasley et al. 1980), Soil and Water Assessment Tool (SWAT) 

(Arnold et al. 1990; Arnold et al. 1996; Neitsch et al. 2002), Agricultural Non-point Source 

Model (AGNPS) (Young et al. 1989), Erosion Productivity Impact Calculator (EPIC) 

(Sharpley and Williams 1990), Constrained Linear Simulation (CLS) (Natale and Todini 

1977), Storm Water Management (Krysanova et al. 1998), Hydrologic Engineering Center-1 

(HEC-1) (HEC 1981), Agricultural Policy/Environmental eXtender (APEX) (Williams et al. 

2012), Groundwater Loading Effect of Agricultural Management Systems (GLEAMS) 

(Leonard et al. 1986), and Chemicals, Runoff, and Erosion from Agricultural Management 

Systems (CREAMS) (Knisel 1980; Smith and Williams 1980). In addition, the SCS-CN 

method has also been coupled with a number of popular models like universal soil loss 

equation (USLE) (Gao et al. 2012; Karn et al. 2016; Lal et al. 2017a; Mishra et al. 2006c), 

Modified Linear Spectral Mixture Analysis (Xu et al. 2016), Xinanjiang runoff model (Lin et 

al. 2014), ModClark (Saghafian et al. 2016), and Muskingum Routing method (Bhadra et al. 

2010) for enhancing their ability to improve the runoff, sediment, and environmental river flow 

estimation. Recently, Ojha (2012) used SCS-CN method in water quality modelling to remove 

the turbidity at a river bank filtration site in India.  

1.2 DEVELOPMENT IN SCS-CN METHODOLOGY  

The SCS-CN method combines watershed parameters and climatic factors in one entity 

called the curve number (CN). It has been established that CN is not constant for a watershed, 

rather a variable identity which varies with rainfall (Hjelmfelt et al. 1982; McCuen 2002). In 

practice, for ungauged watersheds, CNs are derived from the well–known National 

Engineering Handbook chapter–4 (NEH–4) tables using watershed characteristics such as 

hydrologic soil group (HSG), land use and land condition, and antecedent moisture condition 

(AMC) (SCS, 1972). The empirical evidences however show that the use of NEH–4 tables CN 

values normally over-design the hydrological systems (Schneider and McCuen 2005), and 

therefore, use of CN values based on observed rainfall (P)–runoff (Q) data is recommended 

(Ajmal et al. 2015a; Hawkins 1993). The selection of correct value of CN is very essential 

because the direct runoff calculated by the method is highly sensitive to the selected CN 
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(Hawkins 1975). For a set of observed P–Q data, various approaches for determining 

watershed’s representative CN have been reported in literature (Bonta 1997; Hjelmfelt 1980; 

Hauser and Jones 1991; Hawkins 1993; Hawkins et al. 2002; Hawkins et al. 2009; Sneller 

1985; VanMullem et al. 2002; Woodward et al. 2006; Yuan 1933). The most common and 

widely used are NEH–4 method also known as storm event method in which mean or median 

of events wise CNs is considered as watershed representative CN; traditionally recommended 

by SCS (Hawkins et al. 2009; SCS 1972), geometric mean method (Tedla et al. 2012), least-

squares fit method (LSM) (Hawkins et al. 2002), asymptotic fitting method (AFM) (Hawkins 

1993), Log-normal frequency method (Schneider and McCuen 2005), Rank-order method 

(Hawkins et al. 2002) and S-probability method (Hjelmfelt 1991). Of late, several researchers 

have examined the relative accuracy of various methods of CN determination (Ali and Sharda 

2008; D’Asaro and Grillone 2012; D’Asaro et al. 2014; Feyereisen et al. 2008; Schneider and 

McCuen 2005; Stewart et al. 2012; Tedela et al. 2012), and compared them with those from 

NEH-4 tables (D’Asaro et al. 2014; Fennessey 2000; Feyereisen et al. 2008; Hawkins 1984; 

Hawkins and Ward 1998; Sartori et al. 2011; Stewart et al. 2012; Titmarsh et al. 1989, 1995, 

1996; Tedela et al. 2012; Taguas et al. 2015). However, in spite of wide-spread use of all 

approaches, there is no agreed procedure for estimating CN from observed P–Q data (Soulis 

and Valiantzas 2013) because each one is as good as another (Ali and Sharda 2008; Tedela et 

al. 2008). Therefore, there is need of regional studies for analyzing the accuracy of each 

method in runoff prediction using locally measured P–Q data. The accuracy of curve number 

method for Indian watersheds is rarely been examined due to lack of observed P–Q data from 

agricultural watershed (Ali and Sharda 2008). 

The initial abstraction coefficient (λ=Ia/S) is another important parameter which plays a 

significant role in the prediction of surface runoff depth using SCS-CN method.  It largely 

depends on regional (i.e. geologic and climatic factors) conditions of the watershed (Mishra 

and Singh 2003; Ponce and Hawkins 1996); and consists mainly of interception, infiltration, 

and surface depression storage during the early parts of a storm (Taguas et al. 2015). 

Traditionally (SCS, 1964, 1972)  is often set equal to 0.2 in SCS-CN equation. However, the 

standard assumption of  = 0.2 in original SCS–CN equation has been frequently questioned 

by various researchers since its inception (Aron et al. 1977; Baltas et al. 2007; Cazier and 

Hawkins 1984; D’Asaro and Grillone 2012; D’Asaro et al. 2014; Elhakeem and Papanicolaou 

2009; Fu et al. 2011; Hawkins and Khojeini 2000; Hawkins et al. 2002; Mishra and Singh 

2004a; Menberu et al. 2015; Shi et al. 2009; Woodward et al. 2002; Woodward et al. 2004; 

Yuan et al. 2014; Zhou and Lei 2011) for its validity and applicability, invoking its critical 
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examination for practical applications. Many studies have indicated λ to be variable from 

watershed to watershed and event to event. Its value of about 0.05 or less is said to be more 

practical for various other parts of the world including United States. Of late, nonlinear Ia-S 

relations have also been suggested (Elhakeem and Papanicolaou 2009; Jiang 2001; Jain et al. 

2006a; Mishra et al. 2004, 2006a, 2006b). It is however of common experience that the value 

of λ losses its significance as rainfall increases by a magnitude significantly higher than Ia, for 

which the existing SCS-CN method was developed. It is for the reason of generally high CN 

(and low S) values for high and low rain events, respectively. Alternatively, Ia is insignificant 

if P is high enough. 

The accuracy of runoff prediction, however, largely depends on accurate estimation of 

the lumped parameter CN (Ponce and Hawkins 1996), which varies with antecedent rainfall 

and associated soil moisture (Mishra et al. 2014). The watershed moisture condition prior to 

rainfall is commonly called as antecedent moisture condition (AMC), and P5 (SCS 1956, 1971) 

is often utilized as a predictor to categorize AMC into three levels, namely, AMC-1 (dry), 

AMC-2 (normal), and AMC-3 (wet) (Mishra et al. 2006b). In practice, CNs are first calculated 

for AMC-2, and then adjusted to AMC-3 or AMC-1 depending on P5 (Mays 2005). The 

findings of Hjelmfelt et al. (1981) showed that the AMC tables given by NEH (Table 10.1, 

SCS 1971) described the AMC into three classes, AMC-3, AMC-2, and AMC-1 (or CN3, CN2 

and CN1), which account statistically for 90%, 50%, and 10%, respectively, of the cumulative 

probability that a given rainfall will exceed the runoff depth. This notion is also well tested and 

supported by various researchers (Haan and Schulze 1987; Hauser and Jones 1991; Hjelmfelt 

1991). Of late, Grabau et al. (2009) and Hawkins et al. (2015) examined the same AMC tables 

(i.e. Table 10.1, SCS 1971) and found that the concept of AMC-3 and AMC-1 may be better 

described as 88th and 12th percentiles instead of 90th and 10th percentiles, respectively. The 

concept of Grabau et al. (2009) and Hawkins et al. (2015) has, however, not yet been tested 

using P–Q data around the globe. Notably, AMC-2 status is considered as the reference 

condition, for which CN values are derived from NEH–4 tables (SCS, 1971). 

In order to relate the three AMCs, a number of attempts have already been made for 

converting CNs of AMC-2 to AMC-1 or AMC-3 (Arnold et al. 1990; Chow et al. 1988; 

Hawkins et al. 1985; Mishra et al. 2008b; Sobhani 1975). Firstly, Sobhani (1975), Hawkins et 

al. (1985) and Chow et al. (1988) used the tabular NEH–4 (SCS 1956, 1971, 1972) AMC-

dependent CN–values for deriving mathematical expressions useful for converting the CN of 

one AMC to another. Later, Arnold et al. (1990) also developed CN–conversion formulae for 
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using in SWAT model developed by Agricultural Research Service of the United States 

Department of Agriculture (USDA–ARS). The form of Arnold et al. (1990) formulae is 

entirely different; the size of data used is however not known, except they are based on NEH–4 

table CNs. Of late, Mishra el al. (2008b) also used the same AMC table and provided a new set 

of mathematical expressions based on Fourier filtration smoothening procedure. Since AMC 

plays a significant role in runoff generation and the runoff calculated is highly sensitive to CN 

(Mishra and Singh 2006; Mishra et al. 2008b), a comprehensive comparative evaluation of the 

existing formulae and discussion on their validity is required. 

Antecedent soil moisture can be one of the most important factors controlling 

hydrologic processes (Ambast et al. 2002; Brocca et al. 2008; Menziani et al. 2001; Roberts 

and Crane 1997; Stephenson and Freeze 1974; Weiler et al. 2003). The SCS-CN method has 

been used worldwide for rainfall runoff modeling, but a common problem encountered is the 

absence of significant relationship between antecedent soil moisture and measured CN values. 

The existing SCS-CN method uses the P5 rainfall amount to select three AMC levels. 

However, the use of three discrete AMC levels implies a sudden jump in CN from one level to 

another (Hawkins, 1978). The measured values of CN however are not limited to the three 

AMC levels defined by P5 rainfall (Rallison and Cronshey 1979).  In literature, most of the 

investigators have used remotely sensed soil moisture (Berg and Mulroy 2006; Houser et al. 

1998; Jacobs et al. 2003; Pauwels et al. 2001; Scipal et al. 2005) along with a few in-situ soil 

moisture measurements (Aubert et al. 2003; Anctil et al. 2004; Brocca et al. 2009; Huang et al. 

2007) for rainfall runoff modeling. The findings of Beck et al. (2009); Hawkins and Cate 

(1998); Kottegoda et al. (2000); Melone et al. (2001); Pfister et al. (2003) show that P5 rainfall 

as antecedent wetness condition (AWC) estimated the significantly poor surface runoff volume 

Therefore, an alternative solution to characterize AWC should be investigated as the use of 

direct measurements of soil moisture prior to rainfall event, rather than the amount of rainfall 

only (Brocca et al. 2009; Huang et al. 2007; Young and Carleton 2006).  

1.3 MOTIVATION 

From the aforementioned discussion it was found that SCS-CN method is the result of 

exhaustive field investigations carried out during 1930s and 1940s. The method has since then 

witnessed myriad applications world over. Based on exhaustive field investigations carried out 

in the United States, curve numbers were derived for different land uses, soil types, hydrologic 

condition, and management practices and these are reported in NEH-4. These numbers have 

seldom been verified for Indian watersheds (Bhatt et al. 2011; Gosain and Rao 2004). 
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Utilizing the originally developed curve numbers, most studies have concentrated on 

the application of the existing SCS–CN method and no systematic effort appears to have been 

made for CN verification for Indian watersheds. Further, few efforts have been made for 

analyzing the relative accuracy of all CN determination methods and compared them with 

NEH–4 table CN values; evaluating the effect of λ and antecedent moisture on CN and, in turn, 

the runoff for a given soil and land use/cover, particularly for Indian watersheds and it invokes 

the need of the study. Secondly, since all the existing AMC-dependent formulae have been 

derived from the same dataset, their comparison and validity are required to be tested by 

deriving similar formulae and incorporating the effect of λ into it from new dataset 

representing different climatic conditions.  

1.4 OBJECTIVES OF THE STUDY 

In view of the above the present study has been conducted with the following objectives: 

1. To assess the rainfall−runoff behaviour in study plots; and to analyze the effect of soil 

type, land use and slope on runoff and curve number. 

2. To analyze the relative accuracy of different CNs determination methods and compare 

them with NEH-4 CN values for agricultural plots in Indian conditions. 

3. To determine the optimal λ and S (or CN) values and assess the performance of the 

traditional (λ=0.2) SCS–CN method. 

4. To explore the existence of a relationship between CN (or S) and AWC to improve the 

runoff prediction. 

5. To investigate the relative accuracy of existing AMC formulae, and proposing a new 

approach incorporating the effect of λ into AMC formulae. 
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CHAPTER 2 

 REVIEW OF LITERATURE 

 

A comprehensive review of literature is an essential aspect of any scientific investigation and 

to provide an insight into the theoretical framework as well as method and procedure for 

meaningful interpretation of the study. With this aim, an effort has been made to review some 

of the relevant studies conducted in the past, related to different curve number determination 

methods from observed P-Q data and their comparison with NEH-4 Table based CNs, effect of 

initial abstraction coefficient on curve number and runoff, relationship between initial 

abstraction and maximum potential retention, relationship between antecedent wetness 

condition and curve number, and AMC dependent curve number conversion formulae.  

2.1 SCS-CN METHOD  

The Soil Conservation Service Curve Number (SCS-CN) method was developed in 1954. It is 

documented in Section 4 of the National Engineering Handbook (NEH-4) published by the 

Soil Conservation Service (now called the Natural Resources Conservation Service), U.S. 

Department of Agriculture in 1956. The document has since been revised several times. The 

SCS-CN method is the result of exhaustive field investigations carried out during 1930s and 

1940s. The method has since then witnessed myriad applications world over. It is one of the 

most popular methods for computing the surface runoff for a given rainfall event from small 

agricultural, forest, and urban watersheds. It is simple, easy to understand and apply, stable, 

and useful for ungauged watersheds. The primary reason for its wide applicability and 

acceptability lies in the fact that it accounts for most runoff producing watershed 

characteristics: soil type, land use/treatment, surface condition, and antecedent moisture 

condition. The only parameter of this methodology, i.e. the Curve Number (CN), is crucial for 

accurate runoff prediction. Based on exhaustive field investigations carried out in the United 

States, curve numbers were derived for different land uses, soil types, hydrologic condition, 

and management practices and these are reported in NEH-4. The SCS-CN method in 

conjunction with different hydrological models is being used worldwide including India to 

estimate surface runoff satisfactorily (Pandey et al. 2005; Pandey et al. 2006) 

The SCS-CN method is based on the water balance equation and two fundamental 

hypotheses expressed, respectively, as: 
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Water balance equation  

P = Ia + F + Q                                                                  (2.1) 

Proportional equality (First hypothesis) 

  S

F

I aP

Q



                                                                             (2.2) 

Ia – S relationship (Second hypothesis) 

Ia =  λ S                                                       (2.3) 

where P = rainfall; Ia = initial abstraction; F = cumulative infiltration excluding Ia; Q = direct 

runoff; and S = potential maximum retention or infiltration. The current version of the SCS-CN 

method assumes λ equal to 0.2 for routine practical applications. As the initial abstraction 

component accounts for surface storage, interception, and infiltration before runoff begins, λ 

can take any value ranging from 0 to ∞. Combining Equations 2.1 and 2.2, Q can be expressed 

as follows: 

)SSP(

)SP(
Q

2








    

for P> S; Q = 0 otherwise            (2.4)                                           

Equation 2.4 is the general form of the popular SCS-CN method and is valid for P ≥ λS; Q = 0 

otherwise. For λ = 0.2, Equation 2.4 leads to 

 
 S8.0P

S2.0P
Q

2




                                                                     (2.5) 

Equation 2.5 is the popular form of the existing SCS-CN method. Thus, the existing SCS-CN 

method with λ = 0.2 is a one parameter model for computing surface runoff from daily storm 

rainfall. Since parameter S can vary in the range of 0 ≤ S ≤ ∞, it is mapped onto a 

dimensionless curve number CN, varying in a more appealing range 0 ≤ CN ≤ 100, as: 

254S

25400
CN




 
                     (2.6) 

where S is in mm. CN = 100 represents S = 0, an impermeable watershed. Conversely, CN = 0 

represents a theoretical upper bound of S = ∞, an infinitely abstracting watershed. However, 

the practical design values validated by experience lie in the range (40, 98). For a given set of 

rainfall and runoff data, S can be determined from Equation 2.6 as: 

S = 5[(P + 2Q)-(4Q2+5PQ)1/2]         (2.7) 
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Notably, the SCS-CN method does not consider the effect of slope on runoff yield and, in turn, 

on the resulting CN.  

2.1.1 Factors affecting curve number 

The curve number is basically affected by the watersheds characteristics that influences the 

runoff generation. These important characteristics are Hydrologic Soil Group (HSG), Land 

Use/ treatment, Land Cover, Hydrologic condition, Antecedent Moisture Condition (AMC), 

climate and initial abstraction, slope of watershed, season. 

2.1.1.1 Hydrologic soil group 

SCS described the hydrologic soil groups viz., A, B, C and D based on the infiltration rate of 

soil. Group A exhibit the low runoff producing soil having high infiltration rate. On the 

Contrary, group D exhibit the high runoff producing soil having low infiltration rate. Table 2.1 

show the different Hydrologic soil groups based on minimum infiltration rate (mm/hr) 

(Hawkins et al. 2009) 

Table 2.1 Hydrologic soil group (HSG) based on soil texture and minimum infiltration rate 

HSG Texture minimum infiltration rate (mm/hr) 

A Sand, Loamy Sand, Sandy Loam >7.62 

B Silt Loam or loam 3.81-7.62 

C Sandy clay loam 0.127-3.81 

D Clay loam, Silty clay loam, sandy clay, silty 

clay or clay 

0-0.127 

Of late, SCS adopted soil texture as other criteria for defining the HSGs following 

recommendation from Brakensiek and Rawls (1983) work (Table 2.1). In a study conducted by 

Romero et al. (2007) concluded that HSG must be defined based on infiltration rate rather than 

texture of soil as the determination of the hydrologic soil group on the basis of textural 

characteristics resulted in significantly worse predictions for both tabulated and P-Q data CN 

values. 

2.1.1.2 Land use/land cover 

The land use describes the surface condition of the watershed and is related with the degree of 

cover which ultimately connects with the rate of infiltration. The three major land use/land 

cover as classified by SCS are wood and forest, cultivated, and urban. These classes were 

further divided into Bare soil, Crop residue cover, Straight row and Contoured etc. treatments.  
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2.1.1.3 Hydrologic condition 

The hydrologic condition of an agricultural land is defined in terms of the percent of grass 

cover area. The SCS defined the hydrologic condition based on the combined factors that 

affect both infiltration and runoff generation. Based on the percentage area of vegetation cover 

a watershed can be categories as good, fair and poor hydrologic condition watershed. A 

watershed is in good hydrological condition if it is lightly grazed and more than 75% of the 

area is covered with vegetation. If a watershed is not heavily grazed and 50–75% of the area is 

covered with vegetation, it is referred to as being in “fair” hydrological condition, whereas 

“poor” hydrological condition of a watershed is considered if it is heavily grazed and there is 

vegetation cover on less than 50% of the area. 

2.1.1.4 Antecedent soil moisture conditions 

 Antecedent moisture condition refers to the wetness of the soil surface or amount of moisture 

available in the soil profile, or alternatively the degree of saturation before the start of the 

storm. If the soil is fully saturated, then the whole amount of rainfall will directly convert into 

runoff without infiltration loss. On the contrary, the situation of entirely different, when the 

soil is fully dry. The watershed moisture condition prior to rainfall is commonly called as 

antecedent moisture condition (AMC), and P5 (SCS 1956, 1971) is often utilized as a predictor 

to categorize AMC into three levels, namely, AMC-1 (dry), AMC-2 (normal), and AMC-3 

(wet) (Mishra et al. 2006b). Based on the P5 (mm), AMC can be calculated as follows (Ajmal 

et al. 2015a,b,c; Mays 2005): 

Table 2.2 AMC criteria based on the P5 (mm) amount 

AMC Growing season Dormant season 

1 P5 < 35.56 P5 < 12.7 

2 35.56 ≤ P5 ≤ 53.34 12.70 ≤ P5 ≤ 27.94 

3 P5 > 53.34 P5 > 27.94 

The CNs from one AMC into another can be converted using either formulae given in Table 

2.3 or AMC tables given by NEH (Table 10.1, SCS 1971). 

2.1.1.5 Effect of slope on runoff curve number 

For ungauged watersheds, CN-values are usually derived from NEH-4 tables using two static 

inputs, soil type and land use/land cover (LULC). However, the runoff-generation is also 

affected by, besides others, the watershed slope (Dodds 1997). The SCS-CN method however 
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does not account for its effect on runoff yield (Ebrahimian et al. 2012a; Ebrahimian et al. 

2012b; Garg et al. 2013; Huang et al. 2006, Shi et al. 2009). In an study conducted by El-

Hassanin et al. (1993) found that the increasing slope from 8 to 30% increased surface runoff 

by 160% for Burundi watersheds located in Iran.  

The main factors affecting increase in surface runoff due to steeper slope can also be 

the reduction of initial abstraction (Chaplot and Bissonnais 2003; Fox et al. 1997), decrease in 

infiltration, and reduction of the recession time of overland flow (Evett and Dutt 1985).  Only a 

few attempts have been made for incorporation of slope factor in the existing SCS-CN method. 

The Sharpley and Williams (1990) method is often cited for adjusting the CN-values using the 

following equation: 

CN2α = a(CN3 - CN2) (1 - b
��
) + CN2                                                                                                                        ( 2.8) 

where a, b, and c are the empirical parameters, which have the values of 1/3, 2, and 

13.86, respectively. Here CN2 and CN3 represent CN values for antecedent moisture condition 

AMC-II (average) and AMC-III (wet), respectively; and α (m m-1) is the land slope; and CN2α 

is the adjusted CN2 used in runoff calculations. In Equation 2.8, CN2 is assumed to correspond 

to a slope of 5%. The work of Van Mullem (1991) for rangeland and cropland in Montana and 

Wyoming, King et al. (1999) in Mississippi, Huang et al. (2006) in the Loess Plateau of China, 

Shi et al. (2009) in China, and Garg et al. (2013) in India concluded that the standard SCS-CN 

method underestimates large runoff events and over-estimates few small rainfall events; and 

therefore, the use of slope correction equation was recommended. 

2.1.1.6 Other parameters affecting curve number 

The other important parameters affecting CN are climate and initial abstraction, Rainfall 

duration and intensity, and turbidity. Ponce and Hawkins (1996) found that the CN is a 

variable identity which varies with rainfall and changes from watershed to watershed i.e. 

climatic condition. The NRCS-CN accounts for the climatic effect in terms of Ia. 

It is well established hydrologic phenomenon that a storm of shorter duration allows 

less time for rainwater to stay on the land surface, which leads to smaller infiltration and 

consequently greater surface runoff. Larger runoff means larger CN and vice versa.  

Turbidity refers to impurities of water that affect infiltration by the process of clogging 

of soil pores and consequently affecting the soil conductivity. Contaminated water with 

dissolved minerals, such as salts, affects the soil structures and infiltration rate is affected. 
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2.2 CURVE NUMBER DETERMINATION METHODS FROM OBSERVED P-Q DATA 

A number of approaches are available in the literature which can be employed to estimate the 

watershed’s representative curve number (CN) based on observed rainfall (P)–runoff (Q) data 

sets. The most common and widely used are NEH-4 storm event method in which median of 

the event-wise CN series considered as watershed representative CN (SCS 1972; Hawkins et 

al. 2009). The other methods include the S-probability method (Hjelmfelt 1991), storm event 

mean method (Bonta 1997), least-squares method (LSM) (Hawkins et al. 2002), Rank-order 

method (Hawkins et al. 2002), Log-normal frequency method (Schneider and McCuen 2005), 

asymptotic fitting method (AFM) (Hawkins et al. 2009, Hawkins 1993), and geometric mean 

method (Hawkins et al. 2009; Tedla et al. 2012). The NRCS (2001) has given that the 

geometric mean method can be used to determine a watershed curve number if the derived 

CNs values are lognormally distributed (Yuan 1933). But the log-normality of curve number 

distributions has not been carried out yet (Tedla et al. 2012). Bonta (1997) used the arithmetic 

mean curve number but did not justify this choice with evidence that watershed curve numbers 

are normally distributed. The asymptotic determination method developed by Hawkins (1993) 

tries to correct the problem arose to derive original equation of SCS-CN on the fundamental 

concept of hypotheses. Hawkins (1993) applied the frequency matching concept to treating the 

recorded rainfall and runoff data. The rainfall and runoff depths are sorted separately, and then 

realigned on a rank-ordered basis to form P-Q pairs of equal return periods. The individual 

runoffs are not necessarily associated with the original causative rainfalls. The maximum 

potential retention (S) followed by CN was calculated for each paired event employing 

standard SCS equation. The calculated CN for each paired event was the displayed on a scatter 

plot as a function of precipitation to find out the specific watershed response. Three categories 

were identified as standard, violent, and complacent. The standard is the most common 

behavior usually seen. The standard response illustrates a decreasing curve number as 

precipitation increases. The curve number decreases until an asymptotic behavior is observed 

for larger, more extreme precipitation events. The violent response was observed in a 

watershed with an increasing curve number as precipitation increases. In complacent behavior, 

the observed curve number declines steadily with increasing rainfall depth, and no asymptotic 

behavior was noted and it is said to be the most ambiguous among the three responses.  

Similar to Asymptotic Determination, Rank-Order Method is also a popular technique 

to find out the watersheds representative CN in which naturally occurred P and Q pair is sorted 

from largest to smallest. The smallest Q now is corresponding to the smallest P, and the new 
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series called as ordered data. This is done in an attempt to decrease the difference in rainfall 

frequency and runoff frequency. Hawkins et al. (2002) recommend this method because in 

design work the frequency of the rainfall is generally assumed to match the frequency of the 

runoff. The estimate of CN for the watershed is the mean or median of all the CNs computed 

with the ranked pairs of P and Q. In ordered data series, the observed P and Q values were first 

sorted separately and then realigned by common rank-order basis to form a new set of P–Q 

pairs of equal return period, in which runoff Q is not necessarily matched with that due to 

original rainfall P (Hawkins 1993; Hawkins et al. 2009; D’Asaro and Grillone 2012; Soulis and 

Valiantzas 2013; Ajmal et al. 2015a;  Lal et al. 2015).   

As an alternative to traditional methods, Schneider and McCuen (2005) have developed 

a method known as Log-normal frequency method by utilizing the concept of log-normal 

frequency analysis. In this method, the logarithms of each set of naturally observed P and Q 

pair were computed. The value of S was then calculated by employing standard SCS-CN 

equations using mean log P and log Q values (Schneider and McCuen 2005). The main 

advantage of this method is that it reduces the imbalance of the weights given to the larger P 

values since taking the logarithms of the rainfall depths reduces all of the values 

proportionally.  

2.3 COMPARISON OF DIFFERENT CN DETERMINATION METHODS 

A comprehensive review was conducted for finding the studies related to inter comparison of 

different CN determination methods. In this regard, the works of Lewis et al. (2000), McCuen 

(2002), Schneider and McCuen (2005), Ali and Sharda (2008), D’Asaro and Grillone (2012), 

Stewart et al. (2012), Telda et al. (2012) and D’Asaro et al. (2014) are worth to include.  

Lewis et al. (2000) had used 17 annual maximum P-Q events from California Oak 

woodland watershed in western regions of the United States for comparing the three CN 

determination methods viz. National Engineering Handbook (NEH-4) median, S-probability 

and asymptotic fit. They have found that estimated Curve numbers were highest using S 

probability, intermediate for the asymptotic method and lowest for the NEH-4 method. Based 

on the Kruskal-Wallis test, the means CNs estimated by the NEH-4 and S probability methods 

were significantly different (p=0.009). The runoff predicted by all the three methods were 

statistically insignificant with observed runoff. Further, the S-probability and NEH-4 methods 

respectively predicted the highest and lowest mean peak annual runoff. Lastly, authors 

concluded that The S probability method most frequently overestimated runoff and is, 

therefore, a more conservative predictor than the NEH-4 method. 
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Schneider and McCuen (2005) compared storm-event (mean and median) and rank-

order (mean and median) methods with Log-normal frequency and found that Log-normal 

frequency performed best of all, and storm event method superior to rank order method. 

Further they have suggested the use of mean CNs values rather than median for both natural 

and ordered datasets. 

Ali and Sharda (2008) used the P-Q data from semi-arid region of Kota and Bundi 

districts of south-eastern Rajasthan in India for comparison of different CN determination 

methods. They have collected data observed from three watersheds namely Badakhera, 

agricultural and Ravinous with P-Q events vary from 31 to 75. In this study, the performance 

of five different curve number determination methods, viz. rank order, s-probability, National 

Engineering Handbook (NEH-4), lognormal frequency and storm event were evaluated. These 

analyses show that S-probability and lognormal frequency methods estimated the larger and 

smaller, respectively, CN values for all the three watersheds. The lognormal frequency method 

found to perform superior followed by storm event, rank order, NEH-4, and s-probability in 

runoff estimation. In addition, the performance of the storm event, rank order, National 

Engineering Handbook (NEH-4), methods were found to be almost identical except for the S-

probability method. 

D’Asaro and Grillone (2012) compared the asymptotic fitting method, NEH4 method, 

and a least-squares methods utilizing the multiday P-Q events for observation period of 1940-

1947 in 61 Sicilian basins. The results indicate the CNs estimated by NEH4 method (both 

mean and median CN) are higher as compared to other methods. The high CN leads to convert 

most of the rainfall into runoff; and therefore, this method is unable to predicted realistic runoff 

for Sicilian watersheds. On the other hand, least square fit method found to estimate lowers CN 

as compared to other methods; and CNs estimated by asymptotic fitting method were in 

between other two methods. The study further showed that the CNs estimated by least-squares 

using ordered data set were higher compared to natural datasets. 

Stewart et al. (2012) evaluated the four CN determination approaches using the 1284 P-

Q events from 16 watersheds in the southwestern U.S. They have used the partial duration 

series with ordered P-Q pairs (method 1), annual series (based on flood peak) with ordered P-Q 

pairs (method 2), annual series (based on flood peak) with natural P-Q pairs (method 3), and 

annual series (based on flood peak) with natural P-Q pairs (Method 4: median CN). The study 

revealed that method 4 estimated the highest CNs for 14 out of the 16 tested watersheds. On 

the other hand, CNs estimated by method 3 were smaller, and CNs estimated by Method 1 and 
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Method 2 were almost similar. Overall, methods 3 and 4 CNs were significantly (at 5%) 

different to Method 1 and Method 2, latter one did not differ significantly.  

Telda et al. (2012) used the P-Q data from 10 small forested watersheds in the 

mountains of the eastern United States for evaluating the five different viz., storm event-, 

median and arithmetic mean, geometric mean, least squares fit and standard asymptotic fit CN 

estimation methods. They have found that CNs estimated by Geometric-mean method are 

generally larger (seven of 10 watersheds) than CNs estimated by the other methods. In the 

runoff estimation accuracy, the geometric mean was ranked either first or second for all the 

tested watersheds. The multiple comparison tests also reveal no significant difference (5% 

level of significance) in using the median, geometric mean, and arithmetic mean curve 

numbers to estimate runoff for all 10 watersheds. They have concluded that for some 

watersheds, the geometric mean CN derived from an annual maximum series of observed P-Q 

from gaged watersheds provides locally consistent estimates with a probabilistic basis. For 

some watersheds, each appropriate design storm required a different curve number. 

D’Asaro et al. (2014) used the Sicilian basins observed data to compare the NEH-4 

median, asymptotic, and least-squares methods being employed for estimating the data-based 

CN worldwide. For annual maximum multiday events, the NEH4 method estimate the highest 

CN than other methods. Notably, CN estimated by least square fit were lowest. The ordered 

data least fir CN were on average 10 units greater than the natural data CNs. 

2.4 P-Q DATA-BASED CN COMPARISON WITH TABULATED CN 

Hawkins (1984) used observed P-Q data from 110 watersheds located in USA for estimating 

mean and median CN and comparing them with tabulated CN. He found that comparison 

between these observed and tabulated CN is less than satisfactory as the there is no relationship 

exists overall. Further, he compared the tabulated CN landuse wise and found that rainfed 

agriculture and forested watersheds CNs were respectively fair and poorly matched with 

tabulated ones. Of late, study conducted by Titmarsh et al. (1989, 1995, 1996) utilizing the 

observed P-Q data from 105 small agricultural watersheds located in southeast Queensland, 

Australia found that the design runoff estimated by tabulated CN is highly unreliable as these 

are smaller than the observed CNs. The tabulated CNs matched poorly when plotted against 

observed ones. The similar results were also provided from the studies conducted by Hawkins 

and Ward (1998) and Fennessey (2000) at 21 plots (2m × 2m) at 5 different locations in 

southern New Mexico and sixty-five watersheds located in USA, respectively.  
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In a study conducted at Andalusia, southernmost region of Spain on Olive Orchards by 

Romero et al. (2007) found that tabulated CNs were the worst performer in runoff estimation.  

The runoff estimated by observed P-Q based CN values was significantly better than the CN 

values derived from the handbook tables. The RMSE of runoff estimation by observed and 

tabulated CN were varied respectively between 0.50 to 7.3 mm and 1.4 and 10.4 mm.  

Feyereisen et al. (2008) used P-Q data pairs measured on six plots in South Georgia for 

two tillage treatments under a cotton-peanut crop rotation on a Tifton series loamy sand. This 

study was conducted to estimate CNs for a cotton-peanut rotation under conventional and strip 

tillage (ST) methods for growing and dormant seasons. Data based CNs were estimated using 

three methods viz., averaging, lognormal, and data-censoring methods. The results showed that 

CNs estimated by averaging and log normal methods were comparatively higher than tabulated 

ones. For conventional and STs, CNs by the averaging method using year-round data were 89 

and 84, respectively, and by the lognormal method were 89 and 83, respectively. Results from 

the data-censoring method were 81 and 75, respectively, which matched standard table values 

developed from a long-term series of annual maximum runoff. 

Sartori et al. (2011) used the natural P-Q events monitored at three research plots at 

Instituto Agronômico de Campinas (IAC) at Experimental Center of Campinas located in 

Campinas City, São Paulo, Brazil for CN analysis. They have used three different land uses 

viz. bare, minimum tillage with sugarcane crop and Traditional Tillage with sugarcane crop 

(without burning). The tabulated CNs were compared with data based CNs estimated by both 

asymptotic and least square fir methods. This study found that runoff estimated by handbook 

table CNs are not reliable for study region. Instead they have suggested the locally measured 

CNs for further use. The CN values as 87 for bare, 82 for fallow, 75 for partial cover, 52 heavy 

cover, 45 full cover were suggested for use in areas with similar soils given in study area.  

Stewart et al. (2012) compared the tabulated CNs with data based CNs employing P-Q 

events from 16 watersheds in the southwestern U.S. using 1,284 events that satisfy rainfall and 

runoff criteria. The results showed that the tabulated CN values were lower than the CNs 

(NRCS median method) from the data for 21 of the 30 semiarid desert shrub and herbaceous 

watersheds and plots. 

Telda et al. (2012) used the P-Q data from 10 small forested watersheds in the 

Appalachian Mountains of the eastern United States for comparing the observed P-Q data and 

Handbook table based CNs. The observed CNs estimated by five different methods viz. storm 

event-, median and arithmetic mean, geometric mean, least squares fit and standard asymptotic 
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fit were compared with tabulated CNs. The tabulated curve numbers were ranged from 41 to 

70. The runoff estimated by tabulated CNs was modestly correlated with observed runoff for 

only one watershed. Further, the smaller Nash-Sutcliffe efficiencies showed that runoff 

estimation using tabulated CNs was biased for 6 out 10 watersheds.  The investigation 

concluded that for 9 out of 10 watersheds, tabulated curve numbers do not accurately estimate 

runoff, and therefore, use of locally measured geometric mean CNs are suggested.  

D’Asaro et al. (2014) used the observed P-Q data from 61 Sicilian basins to compare 

the tabulated CNs with observed ones. The CN estimated by NEH-4 median, asymptotic, and 

least-squares methods were compared with tabulated CNs individually. Overall, the general 

agreement between tabulated and data based CNs was poor. Compared to tabulated CN, NEH-

4 median methods estimated the larger CN for 32 out of 36 watersheds. Besides, the 

relationship between the CNs estimated by these two approaches was also not significant. 

However, the agreement between these two were good for higher CN values i.e. greater than 

80. Further, CNs estimated by asymptotic and least-squares methods also show poor agreement 

using both natural data and ordered data, and no significant relationships between tabulated 

and observed data-based CN (for both asymptotic and least-squares) were found. The tabulated 

CN is almost always greater than asymptotic and least-squares fit CN, and the differences are 

greater with the smaller CNs.  

Recently, Taguas et al. (2015) had conducted a study to check the suitability of 

reference CN values to simulated runoff effectively in three olive orchard catchments located 

in Andalusia, Spain. The area of catchments namely La Conchuela, Setenil and Puente Genil 

lies between 6 to 8 hectares having mean slope in the range of 9 to 15%, and fall in three 

different climatic conditions. This study shows that reference CNs were lower than the 

observed P-Q based CNs for all the three watersheds. The reference and estimated CNs were 

respectively 57 and 83 for Setenil; 73 and 84 for Puente Genil; 82 and 87 for La Conchuela. It 

will result underestimation of runoff if estimated using the reference CNs, and therefore, use of 

observed CNs were recommended. 

2.5 EFFECT OF INITIAL ABSTRACTION COEFFICIENT (λ) 

An accurate assessment of initial abstraction coefficient (λ) is essential as it is one of the 

crucial parameters used in watershed rainfall–runoff estimation. It largely depends on climatic 

conditions of the watershed (Ponce and Hawkins, 1996).  Traditionally (SCS, 1964, 1972),  is 

often set equal to 0.2 in standard SCS-CN equation. However, numerous researchers as given 

in Table 2.3 (Hawkins and Khojeini 2000; Hawkins et al. 2002; Baltas et al. 2007; Elhakeem et 
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al. 2009; Shi et al. 2009; Zhou and Lei 2011; D’Asaro and Grillone 2012; D’Asaro et al. 2014; 

Yuan et al. 2014) frequently questioned the validity and applicability of =0.2, invoking its 

critical examination for practical applications. Table 2.3 show the λ values estimated by 

different researchers in different parts of globe. There are only two methods viz., event 

analysis and model fitting, which can be used to estimate the λ value. In event analysis method, 

each naturally occurred P-Q event has been analyzed individually to calculate the λ value.  

In model fitting method, entire P-Q events have to be fitted by means of least square fit. 

Notably, both natural and ordered data series can be fitted; and it gives only one value of λ for 

all P-Q data set of watersheds. The details of these two methods can be found elsewhere (Jiang 

2001; Hawkins et al. 2002). 

As far as Indian condition concern, Central Unit of Soil Conservation Ministry of 

Agriculture, Government of India (1972), suggested relations between initial abstraction (Ia) 

and maximum possible abstraction (S): Ia = 0.1S for black soil region with AMC-2 and AMC-

3, Ia = 0.2S for black soil region with AMC-1 (watershed soils are dry), and Ia = 0.3S for all 

other soils. These λ values were used by Tripathi et al. (2003) and Tiwari et al. (2006) in 

Hazaribagh district of Bihar, India and forest micro-watersheds of Shiwaik region, India, 

respectively.   

Jiang (2001) used 307 watersheds or plots across 24 states in the United States to 

estimate λ values employing both event analysis and least square fit method. Both natural and 

ordered datasets were fitted in model fitting method. The results analysis shows that λ to vary 

from 0 to 0.996 for natural and 0 to 0.9793 for ordered datasets. Notably, 0 was the most 

frequent value in model fit analysis. On the other hand, event analysis method was applied to 

only 134 watersheds data and λ was found to vary from 0.0005 to 0.4910 with mean and 

median values as 0.0701 and 0.0476, respectively. The estimated λ values for ordered data 

were relatively higher than for natural datasets. The work of Hawkins et al. (2002), Shi et al. 

(2009) and Jiang (2001) suggested the use λ=0.05 for runoff modelling using SCS method. In 

order to use Ia = 0.05S, the standard SCS equation becomes as: 

 
 SP

SP
Q

95.0

05.0
2




  for P>0.05S                         (2.9)     

In Equation 2.9, S must be associated to λ=0.05. To this end, Jiang (2001) fitted the data of 307 

USA watersheds to give an empirical relationship between the CNs associated to 0.02 and 0.05 

as: 
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Table 2.3 Summary of recent studies on initial abstraction coefficient (λ) Value 

Authors Statistic λ Data type and method Location Remark 

 

Hawkins et al. 

(2002) 

0.1472 (range 0-0.9793) Mean Ordered data, Least square 

fitting 

 

 

United States 

A total of 28,301 events from 

307 watersheds and plots 

were used 
0.0618 Median 

0.0734 (range 0-0.996) Mean Natural data, Least square 

fitting 0 Median 

 

Baltas et al. 

(2007) 

0.014 (range 0.004-0.37) Mean Natural data, Event analysis  

Attica, Greece. 

18 events from watershed of 

area 15.18 km2 

0.037 (range 0.014-0.054) Mean Natural data, Event analysis 5 events from northern sub-

watershed 

 

D’Asaro and 

Grillone (2010) 

0.011 (range 0-0.11) Mean Natural data, 

Least square fitting 

 

Sicily (Italy) 

Daily runoff of 61 Sicilian 

watershed (area 10.26–

1782.15 km2) were used 
0 Median 

0.07 (range 0-0.33) Mean Ordered data, Least square 

fitting 0.035  Median 

Shi et al. 

(2009) 

0.053 (range 0.01-0.154) Mean Natural data, Event analysis Three Gorges 

Area, China 

29 events from a basin of 

area of 1670 ha 0.048 Median 

Elhakeem et al. 

(2009) 

0.142 Median Summer storm Simulated data Iowa (United 

States) 

Experimental plots of size 

2.5 m × 1.5 m were used 0.069 Median Winter storm Simulated data 

 

Fu et al. (2011) 

0.08 (range 0.01-0.46) Mean  

Natural data, Event analysis 

 

Loess Plateau of 

China 

1. 205 rainfall runoff events 

from 9 plots of size 10 m × 

5 m were used 0.05 Median 

 

Zhou and Lei 

(2011) 

0.22 (range 0.01-0.59) Mean Event analysis  

China 

14 rainfall runoff events 

from Qiaozi-West watershed 

of area 1.14 Km2 were used 

 

0.17 Median 

0.01 (range 0.05-0.16) Mean Back calculation 

0.09 Median 

Hawkins and 

Khojeini 

(2000) 

0.0499 Mean Natural data, 

Least square fitting 

 

 

United States 

 

Four different data set were 

used 0.1432 Mean Ordered data, 

Least square fitting 
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Table 2.3 (Continued) 

Authors Statistic λ Data type and method Location Remark 

 

D’Asaro and 

Grillone (2012) 

0.09 (range 0-0.48) Mean Ordered data, 

Least square fitting 

 

Sicily (Italy) 

Both ordered and natural 

dataset from 46 basins of 

area 10–1782 km2 were used 
0.05 Median 

0.02 (range 0-0.47) Mean Natural data, 

Least square fitting 0 Median 

Yuan et al. 

(2014) 

0.12 (range 0.01-0.53) Mean Natural data, 

Least square fitting 

Southeastern 

Arizona, United 

States 

11 gauging station data from 

watershed of area 148 km2 

used  

 

D’Asaro et al. 

(2014) 

0.02 (range 0-0.47) Mean Natural data, 

Least square fitting 

 

Sicily (Italy) 

Both ordered and natural 

dataset from 46 basins of 

area 10–1782 km2 were used 
0.0 Median 

0.09 (range 0-0.48) Mean Ordered data, 

Least square fitting 0.05 Median 

 

Jiang (2001) 

0-0.996 Range Natural data  

United States 

307 watersheds or plots 

across 24 states in the 

United States 
0-0.9793 Range Ordered data 

Menberu et al. 

(2015) 

0.036 (range 0.030-0.042) Mean HEC-HMS model calibration Finland and 

Norway 

59 events from three 

watersheds of Finland and 

Norway  
0.030 Median 

Ajmal et al. 

(2015c) 

0.01 Median Ordered data South Korea 15 watersheds data were 

used for least square fitting 
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 SS 02.0

15.1

05.0
33.1                                                                         (2.10) 

 

                                                                                   (2.11) 

 

where S0.05 and S0.2 are in inches. S0.05 and CN0.05 are the storage and CN values corresponding 

to λ=0.05, and S0.20 and CN0.20 are the values corresponding to λ= 0.2, respectively. The 

conversion of CN0.20 into CN0.05 (or other λ based CN) is known as “conjugate” CNs. 

Hawkins et al. (2002) used event analysis and model fitting methods to determine the 

initial abstraction coefficient (λ) from 28301 rainfall-runoff events data from 307 USDA-ARS 

watersheds and experimental plots located in USA, and found that the coefficient is not a 

constant from storm to storm, or watershed to watershed, and that the assumption of 0.2 is 

unusually high, therefore, suggest changing the initial abstraction coefficient (Ia/S) from 0.2 to 

0.05 for use in runoff calculations. As per event analysis method, the values of λ varied from 

0.0005 to 0.4910, with a median of 0.0476 and more than 90% of λ values were less than 0.2. 

However, results from model fitting were more varied than those from event analysis. The λ 

values for natural data ranged from 0 to 0.996, with a median of 0, and with a mean of 0.0734. 

On the other hand, λ values were varied from 0 to 0.9793 for ordered data set with a mean and 

median of 0.1472 and 0.0618, respectively. Here, it is to note that 0 was the most frequent 

values for both natural and ordered datasets fitted from 307 watersheds and experimental plots.  

Mishra and Singh (2004a) evaluated the impact of the initial abstraction ratio on the 

efficiency of a versatile SCS-CN model, and found that as the λ increases the efficiency of 

model decreases, and maximum efficiency was achieved when the λ was in the order of 0.01. 

Lim et al. (2006) explored the effects of initial abstraction and urbanization on 

estimated direct runoff, and found that that the use of a λ = 0.05 value with modified CN 

values for a λ = 0.05 value and hydrologic soil group D for urbanized areas can improve long 

term direct runoff estimation. 

Baltas et al. (2007) examined the eighteen naturally observed P-Q events from the 

experimental watershed is located on the eastern side of Penteli Mountain, in the prefecture of 

Attica, Greece. The analysis showed that average coefficient (Ia/S) was equal to 0.014 with 

maximum and minimum values were 0.037 and 0.004, respectively. They have also analyzed 

the five events from northern sub watershed and λ were found to varied from 0.014 to 0.054 

11
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with average value as 0.037. In the concluding remark they have recommended the use 0.05 for 

present study region in future use. 

Based on some recent studies, Shi el al. (2009) determined initial abstraction coefficient 

(λ) using event analysis method and found that λ values varied from 0.010 to 0.154, with a 

mean of 0.053 in an experimental watershed in Three Gorges Area, China. The median of λ 

was 0.048 from the analysis of 6 years P-Q data. They have also suggested the use of 0.05 in 

the Three Gorges Area of China area as compared to traditionally recommended 0.2.  

Fu et al. (2011) used the P-Q data from farmland plots in Shaanxi (205 rainfall events) 

and Gansu (552 rainfall events) provinces in the Loess Plateau of China, and found the initial λ 

to vary from 0.01 to 0.46, with an average value of 0.08 and a median of 0.05. Results showed 

about 95% of the values were less than 0.2. The difference in the event runoff predicted using 

λ = 0.05 versus λ = 0.2 was significant at a significance level of 0.01. 

D’Asaro and Grillone (2012) evaluated the CN methodology at the basin scale from 

rainfall-runoff multiday events, in the observation period 1940–1997 (recorded length mean 

equal to 20 years) for 61 Sicilian basins. They have λ to vary from 0 to 0.68 with mean and 

median as 0.04 and 0, respectively for natural annual maximum multiday event data set. In 

contrast, λ was varied from 0 to 0.46 with mean and median as 0.06 and 0, respectively for 

ordered annual maximum multiday event data set. The study concluded that for Sicilian 

watersheds, the median λ value is 0 for natural data and 0.05 for ordered data, pointing out the 

need to assume these λ values for application.  

Yuan et al. (2014) used 11 gauging station data from Walnut Gulch Experimental 

Watershed (WGEW) (South eastern Arizona) and its ten nested catchments of area 148 km2 

located in Southeastern Arizona, United States. They have fitted Natural data P-Q data by 

means of Least square fitting and found that λ to varies from 0.01 to 0.53 with 0.12 as mean 

value. The effect of initial abstraction ratio on runoff estimation increases with decreasing 

CNs. Further they have examined the sensitivity of runoff to the initial abstraction ratio and it 

was seen that for a given rainfall and CN values the estimated runoff was increased by 214% 

when the initial abstraction ratio was decreased 90% from 0.2 to 0.02. Similar to Jiang (2001), 

Yuan et al. (2014) also fitted Arizona’s watersheds data to present conjugate CNs of λ=0.02 

with 0.01, 0.05 and 0.10. Empirical relationships between different CNs was as follows: 

CN0.2=55.026 exp (0.0058CN0.01) R2 = 0.998                          (2.12) 

CN0.2=46.139 exp (0.0078CN0.05) R2 = 0.996               (2.13) 
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CN0.2=36.303 exp (0.0105CN0.10) R2 = 0.991               (2.14) 

Ajmal et al. (2015c) fitted the ordered P-Q data from 15 watersheds located in South 

Korea. The results showed λ to ranging from 0 to 0.2 with mean and median as 0.05 and 0.01, 

respectively.  Results confirms that λ value from 0.2 to 0 exhibits better runoff estimation for 

South Korean watersheds. 

Menberu et al. (2015) analysed 59 rainfall-runoff events from two peat-dominated 

watersheds in Finland (Marjasuo, Röyvänsuo) and one in Norway (Grualia). In their study they 

have used the HEC-HMS to calibrate CN and λ. The results showed λ to vary from 0.01 to 0.10 

for Röyvänsuo, 0.01 to 0.05 for Grualia and 0.01 to 0.09 for Marjasuo. The mean and median 

values were respectively 0.041 and 0.039 for Marjasuo, 0.027 and 0.026 for Grualia, and 0.027 

and 0.026 for Grualia. Overall, combined results from all three watersheds showed λ ranging 

0.030 to 0.042 with mean and median as 0.036 and 0.030, respectively. 

2.6 Ia–S RELATIONSHIP  

Originally, based on the P-Q data from various parts of USA (Rallison, 1980), SCS curve 

number method (SCS 1985) assumed a linear positive relationship between initial abstraction, 

Ia and maximum potential retention, S as Ia=0.2S. This relationship was justified on the basis of 

measurements in watersheds (of less than 10 acres) despite a considerable scatter in the 

resulting Ia–S plot (SCS 1985). NEH-4 (SCS 1985) reported 50% of data points to lie within 

0.095 ≤ λ ≤ 0.38, leading to a standard value of 0.2 (Ponce and Hawkins 1996). Since its 

inception, Ia and S relationship has been a topic of discussion and modification among research 

community for its practical utility (Springer et al. 1980; Jiang 2001). For example, Springer et 

al. (1980) found the λ varied from watershed to watershed and a standard relationship Ia=0.2S 

must be used carefully in arid or humid watersheds.  

Ponce and Hawkins (1996) suggest that the fixing of the initial abstraction ratio at 0.2 

may not be the most appropriate number, and that it should be interpreted as a regional 

parameter. Contrary to traditional assumed linear relationship between Initial abstraction Ia and 

potential maximum retention S. 

 Jiang (2001) studied the relationship between Ia and S across different watersheds 

using the entire data of 307 watersheds of United States. They found no correlation to exist 

between Initial abstraction Ia and potential maximum retention S for data analysed in United 

States. Jain et al. (2006a) reviewed the Ia – S relationship, and proposed a new non-linear 

relation incorporating storm rainfall (P) and S.  
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Mishra et al. (2006a), employed a large dataset of 84 small watersheds (area=0.17 to 

71.99 ha) of USA, and investigated a number of initial abstraction (Ia) – potential maximum 

retention (S) relations incorporating antecedent moisture as a function of antecedent 

precipitation.  

Elhakeem and Papanicolaou (2009) conducted an experiment using rainfall simulator 

on Four soybean fields and fourteen corn fields of sizes 1.5 m × 2.5 m located at different 

location in Lowa state USA to assess the SCS-CN method. They have found that Initial 

abstraction Ia was not linearly proportional to potential maximum retention S as reported by 

USDA and was also affected with residue cover. 

2.7 CN–AMC CONVERSION FORMULAE 

In SCS-CN method, AMC play a significant role in accurate estimation of runoff. CNs from 

average condition to dry or wet condition have to corrected depending upon the P5 value. 

Initially, NEH-4 had given a table for converting CNs from one AMC into another.  Of late 

several researchers have used these AMC based CN tables and represented them into 

mathematical formulae. In literature, five existing formulae are available to convert one AMC 

into another. 

2.7.1 Sobhani (1975) formulae 

The Sobhani (1975) formulae for converting the CNs from AMC-2 (CN2) to AMC-1 (CN1) or 

AMC-3 (CN3) are presented in Table 2.4. These were developed by analyzing the AMC–

dependent CN values as shown in Table 10.1 of NEH–4 (SCS 1971, 1972), in which linear 

relations were found to exist between the maximum potential retention (S) for AMC-2 and that 

for AMC-1 or AMC-3. Sobhani (1975) equations are applicable in CN–range (55, 95) as these 

were developed by considering every 5th CNs (or 9 data-points) in the range (55, 95). 

2.7.2 Hawkins et al. (1985) formulae 

Hawkins et al. (1985) also used the same above AMC based NEH-4 CN table and derived the 

following expressions using smoothened CN–data derived from straight line plot on normal 

probability paper (Mishra et al. 2008b; Ponce and Hawkins 1996): 

S3 = 0.427 S2  R2=0.994; Standard Error (SE) =2.2352 mm             (2.15) 

S1= 2.281S2  R2=0.999; Standard Error (SE) =5.2324 mm                        (2.16)  

Similar to the Sobhani (1975) expressions, Equations 2.15 and 2.16 are also valid in the CN 
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range (55, 95). Here, the number of data point used is 41. The substitution of equations 2.15 

and 2.16 into the definition of CN leads to simplified forms as shown in Table 2.4. 

2.7.3 Chow et al. (1988) formulae 

As shown in Table 2.4, Chow et al. (1988) formulae are based on the same data but the 

number of data points is 100. These are applicable in CN range (1, 100). 

2.7.4 Arnold et al. (1990) formulae 

Arnold et al. (1990) proposed entirely different forms of CN–conversion expressions, as shown 

in Table 2.4. This form was initially developed for use in SWAT model. Its documentation, 

however, does not provide clear guidelines for the applicability of the conversion formulae 

(Table 2.4), except CN1 and CN3 (Table 1) are further adjusted for actual moisture content. The 

full development details of the formulae and the size of the dataset used (N) are not available, 

except that the formulae are based on the NEH-4 CN table values. 

2.7.5 Mishra et al. (2008b) formulae 

Similar to Hawkins et al. (1985), Mishra et al. (2008b) derived a new set of expressions using 

AMC–dependent 41 number of CN data points (55, 95) based on Fourier filtration 

smoothening procedure as below: 

S3 = 0.430 S2   R2=0.9967; SE=1.8616 mm               (2.17) 

S1 = 2.2754 S2  R2=0.9992; SE=4.4373 mm               (2.18) 

The CN forms of above equations are given in Table 2.4.  

Mishra et al. (2008b) also compared the Hawkins et al. (1985), Chow et al. (1988), Sobhani 

(1975) and Arnold et al. (1990) formulae, and found that Sobhani formula performed best in 

CN1-conversion, and the Hawkins formula in CN3-conversion, when tested using NEH-4 CN 

as target values. Thus, the Sobhani and Hawkins formulae can be asserted to be closer to NEH-

4 values than any other formulae. Further all these five formulae were also compared using 

field data derived from the USDA-ARS Water Database, United State and it was found that 

Mishra et al. (2008b) formulae perform the best, and those due to Arnold the poorest in field 

application. Overall, all the five methods based on average RMSE (range of variation: 0.02–

0.38 mm) values derived from their application to P–Q data sets of 82 watersheds can be 

ranked as follows: 

Mishra > Hawkins > Sobhani > Chow > Arnold 
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Table 2.4 AMC dependent curve number conversion formulae 

Method AMC-3 AMC-1 

Sobhani (1975) 

CN0.0059640.4036

CN
CN

2

2
3


  

CN0.013342.334

CN
CN

2

2
1


  

Hawkins et al. (1985) 

CN0.005730.427

CN
CN

2

2
3


  

CN0.012812.281

CN
CN

2

2
1


  

Chow et al. (1988) 

CN0.1310

23CN
CN

2

2
3


  

CN0.05810

4.2CN
CN

2

2
1


  

 

Arnold et al. (1990) 

 

)]CN(10000673.0exp[CNCN 223  )}]CN0.0636(100exp{2.533CN[100

)CN20(100
CNCN

22

2
21






 

Mishra et al. (2008b) 

CN0.00570.430

CN
CN

2

2
3


  

CN0.0127542.2754

CN
CN

2

2
1


  
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2.8 EFFECT OF ANTECEDENT WETNESS CONDITION (AWC) ON CURVE NUMBER 

Soil moisture is the key state variable in hydrology, because it controls the proportion of 

rainfall that infiltrates, runoff, or evaporates from the land. In particular, the runoff depth was 

found to be influenced by total rainfall, rainfall intensity and the antecedent wetness condition 

(AWC); and of these three factors AWC is the most significant one (Brocca et al. 2008; Brocca 

et al. 2009). Determination of the antecedent moisture condition (AMC) plays an important 

role in selecting the appropriate CN value. Soil moisture appears to be a better criterion than 

the 5-day antecedent rainfall depth to select an appropriate AMC value (Huang et al. 2007). 

Montgomery and Clopper (1983) used a 15-day antecedent precipitation index (API) in place 

of NEH-4 recommended P5 rainfall and showed subsequent effect on runoff prediction in six 

agricultural watersheds. Melone et al. (2001) obtained poor results with errors in surface runoff 

volume up to 100% when used 5-day antecedent rainfall as antecedent wetness condition 

(AWC), and similar type of results were obtained by other investigators (Hawkins and Cate 

1998; Kottegoda et al. 2000; Pfister et al. 2003; Beck et al. 2009). Aubert et al. (2003) argued 

that assimilating locally measured soil moisture data in a continuous conceptual rainfall runoff 

modeling greatly improves the flood forecasting in an agricultural catchment of France. Jacobs 

et al. (2003) used remotely sensed soil moisture data of depth 5cm to adjust CN and a 

reduction of nearly 50% in RMSE was observed in runoff estimation for five watersheds 

located in southwestern Oklahoma, USA.  

Huang et al. (2007) conducted a study in a 4.7 km2 experimental watershed located in 

the Loess Plateau of China to measure the in-situ soil moisture by 10 cm increments from 

depths of 10 to 100 cm. The experiment was conducted for 10 years on four plots of different 

sizes, land uses and slopes. Results showed a non-linear relationship between the measured CN 

values and soil moisture in the 0–15 cm and the 0–30 cm soil depths. Brocca et al. (2009) 

tested the four indices viz., Two antecedent precipitation indices (API), Degree of saturation 

and one base flow index (BFI) in estimation of wetness conditions. They found that observed 

degree of saturation was reliable AWC of the five nested catchments in central Italy.  

On the contrary, several researchers have found AWC as insensitive to runoff 

generation, particularly in the case of large rainfall events (Kostka and Holko 2003; Scherrer et 

al. 2007; Nadal-Romero et al. 2008; Zhang et al. 2011; Rodríguez-Blanco et al. 2012). All 

these researchers found that the surface generated runoff is largely controlled by rainfall 

amount rather than AWC. 
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Romero et al. (2007) concluded that Soil moisture differs significantly among 

management systems and the standard 5-d antecedent rainfall (P5) procedure might not been 

able to fully consider those differences. Further studies should provide more detailed 

information to properly model those two issues. 

Fu et al (2011) argued that studies are needed to focus on the effect of variation of ʎ 

values with antecedent soil moisture on model performance of the SCS‐CN method. 

Tagaus et al. (2015) study demonstrated that CNs do not correlate well with cumulated 

precipitation of previous days. Future studies should investigate if an evaluation of antecedent 

hydrological conditions based on measured, or predicted, soil water content can link CN to a 

physically measurable parameter suitable to be incorporated into a mechanistic model. 

2.9 RESEARCH GAP 

1. As seen from the literature review that most studies have concentrated on the 

application of the existing SCS-CN method utilizing the originally developed curve 

numbers. Most approaches of CN estimation relied on standard tables of NEH-4 which 

might not be applicable to the climatic conditions in India. No systematic effort appears 

to have been made for their verification for Indian watersheds, and it forms the primary 

objectives of this study.  

2. As mention by Hawkins (1993) and Ajmal (2015b) that in hydrologic design work the λ 

and CN as the regional and climatic parameters should be calibrated from available 

rainfall and runoff data, first and then employed in the runoff estimation. As seen from 

the literature review no single study related to this using Indian watershed data was 

available where λ and CN were calibrated using measured data.  

3. All the existing AMC-dependent formulae have been derived from the same dataset 

(i.e. NEH-4 tables), their comparison and validity are required to be tested by deriving 

similar formulae and incorporating the effect of λ into it from new dataset representing 

different climatic conditions, particularly Indian.  

4. As pointed out by Fu et al (2011) and Tagaus et al. (2015), there is need of a 

relationship between CN (or S) and physically measured soil moisture be incorporated 

into a mechanistic model to improve runoff estimation. There is hardly any study 

related to this linkage using physically observed data, particularly for Indian climatic 

conditions.  
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CHAPTER 3 

 MATERIALS AND METHODS 

 

This chapter deals with the methods and experimental techniques followed to investigate the 

different parameters of SCS-CN methodology to fulfill the objectives of the study. 

3.1 STUDY AREA 

The present study uses the rainfall (P)–runoff (Q) data from various climatic settings. Locally 

monitored (i.e. Roorkee experimental site) and published literature P–Q data have been used in 

calibration and validation. The characteristics of experimental runoff plots (i.e. observation 

carries out locally at Roorkee) and watersheds/plots (i.e. published data) used in the study are 

given in Table 3.1.  

The detailed description about Roorkee experimental site is given below: 

The locally monitored P–Q observations were carried out at an experimental agricultural field 

located at 29° 50’ 09” N and 77° 55’ 21” E, in Roorkee, district Haridwar, Uttarakhand (India) 

(Figure 3.1). This field falls in River Solani watershed, which is a sub–watershed of River 

Ganga–the largest river basin in India. River Solani emerges from Shivalik range of great 

Himalayas having three main topographic zones, hills, piedmont, and flat terrain. The study 

site is located in flat terrain of Solani watershed at about 30–60 km south of the foothills of 

Himalayas and about 180 kilometres north of Indian capital New Delhi. The average elevation 

of site is about 266 m above mean sea level (amsl).  

3.1.1 Climate 

The climate at the experimental site is sub-tropical type characterized by hot summers and cold 

winters, along with three pronounced seasons; summer, monsoon and winter. Extreme 

variation in summer and winter temperatures can be seen in the study area. The period of 

summer season is late March to mid–June where the variation in maximum and minimum 

monthly temperatures is 45 °C and 20 °C, respectively. Similarly, the winter season starts from 

late November to February end where maximum and minimum monthly temperatures are 18 

°C and 10 °C, respectively. The monsoon season starts from mid–June and last to first week of 

September, during which about 75% of average annual rainfall is received (Yousuf et al. 

2015). The annual rainfall varies from 1120 to 1500 mm. The average humidity varies from 

30-100 % and potential evapotranspiration is of the order of 1300 mm. 
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Table 3.1 Characteristics of seventy-one watersheds/plots used in the Study  

Watershed/ 

Plot No. 

n Land use Slope 

(%) 

fc 

(mm/hr) 

HSG/soil type Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

1 15 Sugarcane 5 7.36 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

2 15 Sugarcane 3 8.77 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

3 15 Sugarcane 1 6.51 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

4 10 Fallow 5 12.1 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 
(India) 

Data 

monitored at 
present site 

5 10 Fallow 3 6.15 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 
(India) 

Data 

monitored at 
present site 

6 10 Fallow 1 10.28 A 110×  
10-6 

1120-
1500 

266 humid sub–
tropical 

Solani river 
catchment 

(India) 

Data 
monitored at 

present site 

7 10 Maize 5 4.24 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

8 10 Maize 3 5.52 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

9 10 Maize 1 2.82 C 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 
(India) 

Data 

monitored at 
present site 
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Table 3.1 (continued) 

Watershed/ 

Plot No. 
n Land use Slope 

(%) 
fc 

(mm/hr) 
HSG Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

10 10 Blackgram 5 15.22 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

11 10 Blackgram 3 13.82 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

12 10 Blackgram 1 5.66 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

13 13 Sugarcane 5 25.5 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

14 13 Sugarcane 3 10.18 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 
(India) 

Data 

monitored at 
present site 

15 13 Sugarcane 1 14.9 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

16 11 Maize 5 10.25 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

17 11 Maize 3 26.9 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

18 11 Maize 1 22.05 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

 

 



- 32 - 
 

Table 3.1 (continued) 

Watershed/ 

Plot No. 
n Land use Slope 

(%) 
fc 

(mm/hr) 
HSG Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

19 11 Blackgram 5 21.5 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

20 11 Blackgram 3 19.4 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

21 11 Blackgram 1 18.5 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

22 13 Fallow 5 22.92 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

23 11 Fallow 3 7.9 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 
(India) 

Data 

monitored at 
present site 

24 13 Fallow 1 19.8 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

25 10 Sugarcane 5 2.68 C 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

26 10 Sugarcane 3 3.5 C 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

27 10 Sugarcane 1 3.1 C 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 
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Table 3.1 (continued) 

Watershed/ 

Plot No. 
n Land use Slope 

(%) 
fc 

(mm/hr) 
HSG Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

28 4 Maize 5 2.67 C 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

29 4 Maize 3 3.96 C 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

30 4 Maize 1 3.45 C 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

31 5 Lentil 5 4.24 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

32 5 Lentil 3 5.52 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 
(India) 

Data 

monitored at 
present site 

33 5 Chana 5 15.22 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

34 5 Chana 3 13.82 A 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

35 5 Chana 1 5.66 B 110×  

10-6 

1120-

1500 

266 humid sub–

tropical 

Solani river 

catchment 

(India) 

Data 

monitored at 

present site 

36 40 Sorgham - - Light textured 

red soil 

765 × 

10-6 

746 515 Semi-arid 

tropical 

Experimental 

Plot in CRIDA, 

Hyderabad 

Mandal et al. 

(2012) 
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Table 3.1 (continued) 

Watershed/ 

Plot No. 

n Land use Slope 

(%) 

fc 

(mm/hr) 

HSG Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

37 10 Natural 

grassland 

- - D 18.7 1100 41.3  Humid 

subtropical 

Canada de Los 

Chanchos basin 

(Uruguay) 

Silveira et al. 

(2000) 

38 

21 Rangeland, 

dry farm land, 

forest 

- - Loamy, sandy 

clay loam 

448.2 296.4 1320-

2960 

Semi-arid Kardeh 

Watershed 

(Northeast Iran) 

Ebrahimian et 

al. (2012b) 

39 

24 Forests, field 

crop 

- - Clay, sandy 

loam, loamy 

sand, clay loam  

153 960 255-1330 Monsoon tropical 

climate with dry 

and wet seasons 

Upper Lam Ta 

Kong watershed 

(Thailand) 

Phetprayoon 

(2015) 

40 25 - - 713 

41 

18 Corn, 

soybeans crop 

- - B and C 69.10 990 175-235 Temperate 

climate 

Upper Little 

Vermilion River 

watershed (USA) 

Walker et al. 

(2005) 

42 

18 Wood, pasture 

and 
agriculture 

- - Sandy loam, 

silty loam 

12.90 940 312-798 Mediterranean 

semi-humid 

Colorso stream 

catchment 
(Central Italy) 

Brocca et al. 

(2008) 

43 

12 Agriculture, 

forest land, 

non cropped  

- - Clay, sandy 

loam, loamy 

sand, clay loam 

26.10 1087 - Temperate St. Esprit 

watershed 

located in 

Quebec 

(Canada ) 

Perrone and 

Madramooto 

(1997) 

44 

16 Forest, 

wetlands, 

agriculture 

- - D 114 1420 3.6 - 72 Mediterranean 

climate 

Simms Creek 

watershed 

(Florida, USA) 

Melesse and 

Graham  

(2004) 

45 

40 Alpine 

grassland, 

small shrubs 

- - Clay loam, silty 

clay loam 

1.90 1220 1835-

3152 

Alpine climate Rio Vauz Basin 

catchment 

(Italian 

Dolomites) 

Penna et al. 

(2011)  
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Table 3.1 (continued) 

Watershed/ 

Plot No. 

n Land use Slope 

(%) 

fc 

(mm/hr) 

HSG Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

46 

27 Forest, arable 

lands, 

grasslands 

- - alluvial soils, 

river sands and 

gravels 

237.80 850 859.50 Temperate Catchment area 

of the Kamienica 

river (Southern 

Poland) 

Walega et al. 

(2015) 

47 

10 Orchard, 

Forest , farm 

land 

- - Sandy soil, 

Sandy loam soil 

7.03 409 1080-

1270 

Semiarid 

continental 

monsoon climate 

Liudaogou 

watershed 

(Northern China) 

Xiao et al. 

(2011) 

48 
20 Open grazing - - Deep loamy 

sand soil 

05 1286 1800 Humid and cold Matash spring-

fall mountainous 

rangeland (Iran) 

Sadeghi et al. 

(2007) 

49 
20 Alfalfa 

cultivation 
- - 

50 

16 Cork oak 

forests and 
agriculture 

- - Marl and 

sandstone 

655 1100 1600  Mediterranean Mdouar 

catchment in 
northern 

Morocco 

(Africa) 

Tramblay et al. 

(2012) 

51 

15  

 

Wood land, 

Crop land, 

Range land, 

Pasture and 

Urban  

- -   

 

Layered 

sandstones, 

alluvial 

deposits 

constituted by 

gravel and sand 

137  

 

 

 

930 

 

 

 

 

249-887 

 

 

 

 

Mediterranean 

Niccone at 

Migianella 

(Italy) 

 

 

 

Brocca et al. 

(2009)  52 
15 - - 104 Niccone at 

Reschio 

53 
15 - - 57 Vallaccia at 

Molino 

54 
15 - - 35 Vallaccia at P. 

Marte 

55 
15 - - 13 Colorso at P. 

Marte 

56 

29 Agriculture - - Purple soil and 

paddy soil 

16.70 1016 184-1180 Subtropical Wangjiaqiao 

watershed 

(China) 

Shi et al. 

(2009) 
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Table 3.1 (continued) 

Watershed/ 

Plot No. 

n Land use Slope 

(%) 

fc 

(mm/hr) 

HSG Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

57 

14 Farm land, 

grass land  

- - Loamy black 

cinnamonic soil 

1.14 542 1330–

1707 

Dry and 

continental 

climates 

Qiaozi-West 

watershed 

(China) 

Zhou and Lei 

(2011) 

58 

16 Forests, arable 

soils and 

grasslands 

- - Alluvial 

deposits, 

conglomerates, 

sand, clayey  

109 400 0-909  Subtropical 

Mediterranean 

Rafina 

catchment in 

eastern Attica 

(Greece) 

Massari et al. 

(2014) 

59 

10 Corn and 

soybean 

- - Silt loams, with 

some sandy 

loams 

0.055 059 275-393 humid‐temperate 

continenta 

North 

Appalachian 

watershed (Ohio, 
USA) 

Wu et al. 

(1993) 

60 

31 Natural 
savannah  

- - Clayey soil 9.624 1371 1057-
1200 

Tropical savanna  Capetinga 
catchment 

(Brazil) 

Silva et al. 
(1999) 

61 

24 Pasture, road, 

buildings, rock 

- - Sandy Loam, 

Sandy Clay 

Loam 

7.84 595 280-950   Mediterranean 

semi-arid 

Upper 

Lykorrema,  

Penteli Mountain 
(Greece) 

Soulis et al. 

(2009) 

62 

23 Pasture, road, 

buildings, rock 

- - Sandy Loam, 

Sandy Clay 

Loam 

7.36 595 146-643  Mediterranean 

semi-arid 

Entire Penteli 

Mountain 

(Attica, Greece) 

Soulis et al. 

(2009) 

63 
13 - - - - 254 1500 575 Moist and 

temperate climate 

Amicalola Creek 

watershed (USA) 

Mishra and 

Singh (2004b) 

64 

30 Forest, arable 

lands, 

grasslands 

- - Alluvial soils, 

river sands and 

gravels 

237.8 850 859.5 Temperate Catchment area 

of the Kamienica 

river (Southern 

Poland) 

Wałęga and 

Rutkowska 

(2015) 
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Table 3.1 (continued) 

Watershed/ 

Plot No. 

n Land use Slope 

(%) 

fc 

(mm/hr) 

HSG Area 

(km2) 

Rainfall 

(mm) 

Altitude 

(m) 

Climate type Study location Reference 

65 

8 Forest, 

residential 

area, rice field 

- - Loam and 

sandy loam 

609.15  

 

1200 

 

 

26-911 

 

 

Continental 

monsoon climate 

Hoideok 

watershed (South 

Korea) 

Moon et al. 

(2014) 

66 

12 - - 208.4 Jungrangkyo 

watershed (South 

Korea) 

67 

48 Forest, 

Agriculture 

- - Silty loam 

(B) 

4661 1547 509-900 Sub-tropical and 

sub-humid 

Mohegaon 

catchment 

(India) 

Mishra et al. 

(2008a) 

68 

17 Wetlands - - Sandy loams 

with clayey sub 

soils 

1.6 1370 3.7 - 10 Humid 

subtropical 

Tributary of 

Huger Creek 

(South Carolina) 

Epps et al. 

(2013) 

69 15 Agriculture, 

Pasture, shrub 
land 

- - Loam, Clay 

loam, clay 

21 1000 2600-

3000 

semiarid Godigne 

catchment, 
Tekeze river 

basin (Ethiopia) 

Zelelew  

(2017) 

70 42 Natural 

vegetation 

groundcover= 

70% 

- - Silt and clay  

(D) 

0.02 867 217 Subtropical 

steppe as 

classified by 

Köppen 

classification; 

Semiarid as 

classified by 
Thornthwaite’s  

South central 

region of the 

state of Ceará 

(Brazil) 

Andrade et al. 

(2017) 

71 40 Thining 

vegetation 

groundcover = 

100% 

- - 0.015 

 

(n, number of rainfall events; fc, infiltration rate mm/hr; HSG, hydrologic soil group defined as per Table 2.1) 
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Figure 3.1 Location of the experimental farm                                                                                                                                              
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3.1.2 Soil type and Land use 

The type of soil in Solani watershed is mainly comprised of loam, loamy sand, sandy loams, 

and sandy clay (US Bureau of Soil and PRA Classification) with an average proportion of 50–

55 % of sand, 35–42 % silt and 8-15 % clay (Kumar et al. 2012). The upper hilly area mainly 

consists of sandy loam whereas lower flat terrain (where study site is located) is dominated by 

loam and loamy sand (Garg et al. 2013; Kumar et al. 2012). Forest land, bare soil, and 

vegetated land are the main classes of land cover in study area. Forest cover is around 30% of 

the total area especially in hilly part of the watershed, and more than 50% is agricultural land 

in lower flat terrain. A significant portion of the land lies in agricultural area with more than 

35% of vegetal cover. Forests cover around 30% of the total area especially in hilly part of the 

watershed and more than 17% of the total land belongs to fallow land. Sugarcane is cultivated 

as the perennial crop and wheat, maize, potato and pulses grow as seasonal crops (Garg et al. 

2013).  

3.2 EXPERIMENTAL SETUP AT ROORKEE SITE 

The experimental farm having total plot size of 70 m × 50 m with plain agricultural 

topography, was taken on lease in the year 2012. The design and layout plan of the 

experimental farm is shown in Figure 3.2. The selected agricultural field for experimental work 

was divided into plots of 22 m length and 5 m width with three independent variables: soils, 

land use, and slope/gradient. Four different land uses such as Sugarcane, Maize, Black gram 

and Fallow land were selected for monitoring rainfall and runoff. It is well known that Maize 

and Black Gram are seasonal (kharif season in India) crop. Therefore, the plots having Maize 

and Black Gram were replaced by Chana and Lentil in another season. The plots were 

constructed in such a way that each land use covered three different slopes (5%, 3% and 1%). 

The layout of the experimental plots is shown in Figure 3.3. The experimental work was 

conducted during August 2012 – April 2015 (or three crop growing year in study area) in 

which rainfall (P) and runoff (Q) was monitored for a total 35 experimental plots of various 

slopes, land use, and hydrologic soil group (HSG) (i.e. Infiltration capacity). During the first 

year of study (i.e. August 2012 – May 2013), P–Q data were measured for six plots with land 

use of sugarcane and Maize having slopes of 1%, 3%, and 5%. However, to change the soil 

property during the second year (i.e. June 2013 – May 2014) of experimental work, a sandy 

soil was added to the existing soil, and rainfall and runoff were monitored in twelve plots 

having four different land use covers: sugarcane, maize, blackgram, and fallow land with 

slopes of 1%, 3% and 5%. Similarly, for the third year (i.e. June 2014 – April 2015), sand was 



- 40 - 
 

again added to the previous year soil, and rainfall-runoff monitored on the twelve plots having 

three different land use covers: sugarcane, maize, and fallow land with slopes of 1%, 3% and 

5%. Here it is worth to note that during second year (i.e. June 2013 – May 2014), after kharif 

season completion, the plots having maize and blackgram were sown by Lentil and Chana, 

respectively. Along with sugarcane and fallow plots (note: these plots were kept for P-Q 

observation throughout the year), few winter rain P-Q events were also captured plots having 

Lentil and Chana land use. Here, it is worth to mention that the Lentil crop in one plot was 

damaged, so P-Q observation were not possible in that plots; therefore, the P-Q were 

monitored in only 5 (3 Chana + 2 lentil) out of 6 plots.  The Figure 3.4 shows the glimpses of 

mixing of sandy soil for preparation of field for crop sowing.  It is worth emphasizing that the 

normal agricultural practices of mixing of soil, seed selection etc. were followed for cultivation 

of crops throughout the study period.  

 

Figure 3.2 Design and layout plan of the experimental farm 
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Figure 3.3 Layout of the experimental plots near Roorkee, district Haridwar, Uttarakhand, 

India 

 

Figure 3.4 Addition of sandy soil to change the properties of parent soil 

 



- 42 - 
 

3.3 DATA COLLECTION AT EXPERIMENTAL SITE 

3.3.1 Rainfall measurement 

Rainfall was recorded with the help of both tipping bucket rain gauge and a non-recording 

raingauge installed at the study site (Figure 3.5a & b). The figure 3.5b shows the measuring of 

rainfall using measuring cylinder of non-recording type raingauge. The distribution of rainfall 

measured during study period is shown in Table 3.2. As seen from this table, a total number of 

101 rainfall events were captured with rainfall amount varying from 0.5 mm to 93.8 mm and 

only 42 events produced significant amount of runoff for measurement. A total of 11, 18, and 

13 runoff producing events were captured during the first, second, and third years, 

respectively. In this study, the lowest rainfall value was 5.6 mm which generated runoff in a 

year whereas the highest rainfall of 17.6 mm did not generate runoff in another year, during 

which the highest storm rainfall was 75.8 mm.  

Table 3.2 Rainfall characteristics during the study period (August 2012–April 2015) 

Rainfall depth (mm) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 >80  

No. of events 59 8 13 5 6 4 2 3 0  

No. of events 

generating runoff 

5 4 13 5 6 4 2 3 0  

 

Figure 3.5a Non Recording and Recording rain gauge installed at experimental site 

Non Recording type 

rain gauge 

Recording type rain 

gauge 



- 43 - 
 

 

Figure 3.5b Rainfall measurement using non recording rain gauge 

3.3.2 Runoff measurement 

Each experimental plot was border dyked and surface runoff generated during rain storms was 

collected in separate chambers of size 1 m × 1 m × 1 m constructed at the downstream end of 

each plot followed by a 3 m long conveyance channel intercepted by a multi–slot divisor 

having 5 slots; and the variation in depth of water stored with respect to time was monitored 

regularly, but manually. The multi-slot devisors were used to reduce the volume of runoff to be 

measured in the collection chamber. In other words, it reduces the frequency of chamber 

filling. The volume of flow collected in these tanks when multiplied by 5 yielded the plot 

runoff for a storm–event (during past 24 hours) (Figure 3.6a & b). Figure 3.6a shows the runoff 

generation from a fallow plot of 1% slope during an rainfall event. Similarly, figure 3.6b 

shows the measuring of runoff depth in the runoff collection chamber with the help of metallic 

scale after 24 hr of rainfall event. The rainfall runoff data observed at experimental plots are 

given in appendix A. 
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Figure 3.6a Photograph showing the runoff collection from fallow land plot 

 

 

Figure 3.6b Runoff depth measurement in the collection tank using metallic scale 

Fallow Plot 

Multi slot 

conveyance channel 

Runoff measuring Tank 
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3.3.3 Infiltration test  

Double ring infiltrometer is the most commonly used method for the measurement of the 

infiltration. Infiltration tests were conducted for each plot using the double ring infiltrometer 

(45/30) for identification of the hydrologic soil group (HSG) (SCS, 1972) (Figure 3.7 a & b). 

Two sets of concentrating rings having internal and external diameter as 30 cm and 45 cm 

respectively with height of 30 cm as shown in Figure 3.7a, were used to determine the 

minimum infiltration capacity of the soil. The figure 3.7a shows the penetrating of both the 

rings into soil with the help of hammer. The figure 3.7b, shows the rings filled with water 

along the plastic scale for marking and marking the water level. The infiltration experiment 

was continued for at least 6-7 hours until the rate of infiltration reached a constant reading.  

The resulting minimum infiltration capacity and corresponding HSGs for different plots are 

shown in Table 3.1.  As seen from this table, the hydrologic soil group (HSG) of experimental 

plots fall in groups A, B and C with infiltration capacity varying from 2.68 to 25.50 mm/hr, 

following Hawkins et al. (2009) and SCS (1985) criterion. The data of infiltration test for few 

selected plots are given in appendix B.  

 

Figure 3.7a Installation of double ring infiltrometer in the fallow plot 



- 46 - 
 

 

Figure 3.7b Measurement of water level in the double ring infiltrometer  

3.3.4 Soil water measurement 

Soil water measurements were monitored by a portable unit using a 2-wire connector type time 

domain reflectometry (TDR) probe of the 'Fieldscout TDR-300’. This instrument measures the 

percentage soil moisture directly in volumetric water content (VWC). The soil water was 

sampled every day (at around 9.00 am Indian Standard Time) throughout the study period from 

the soil surface down to a depth of 20 cm, and these were replicated at three (upstream, middle, 

and downstream) locations in each of the plots. Statistical comparisons of soil water contents 

from these three locations did not show significant difference at p > 0.05. For each 

measurement date, a single soil water content value was computed by averaging the three 

values. The antecedent one-day (θo1), three-day average (θo3), and five-day average moisture 

(θo5) contents for each plot prior to each rainfall event were used in examination of dependency 

of CN on antecedent soil moisture. Figure 3.8 shows the measurement of soil moisture with the 

help of TDR having probe length 20 cm in sugarcane plot at middle side. The observed 

previous day soil moisture for different plots are given in appendix A. 
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Figure 3.8 Measurement of soil moisture in sugarcane plot at middle side 

3.4 BASICS OF SCS-CN METHODOLOGY 

The SCS–CN method was developed based on the water balance equation (Equation 3.1) 

incorporating two fundamental hypotheses (Equations 3.2 and 3.3) (Mishra and Singh 2003).  

P = Q + F + Ia                                                                                                                                                                                       (3.1) 

In Equation 3.1, P (mm) is the rainfall, Q (mm) is the direct surface runoff, Ia is the 

initial abstraction (mm), and F is the cumulative infiltration (mm). 

The first hypothesis equates the ratio of actual amount of direct surface runoff (Q) to 

the total rainfall (P) (or maximum potential surface runoff) to the ratio of actual infiltration (F) 

to the amount of the potential maximum retention (S) (Figure 3.9) (Mishra and Singh 2003). 

  S

F

I aP

Q



                      (3.2) 

The second hypothesis relates the initial abstraction (Ia) to the potential maximum 

retention (S) (Mishra and Singh 2003). 

Ia = λS                                                                                                                                      (3.3) 
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In above Equation, S is the potential maximum retention (mm), and λ is known as the 

initial abstraction coefficient. 

The combination of Equations 3.1 and 3.2 leads to the general form of the SCS–CN method as 

given below (SCS, 1972): 
















IP0

IP,
)IS(P

)I(P

Q

a

a

a

a

2

                                                                                                      (3.4)

 

The existing version of the SCS–CN method recommended a standard value of λ=0.20 

in field applications (SCS 1972, 1985). The research community however pointed out that the 

standard value of λ = 0.20 is vague and a value of about 0.05 or less is more practical for 

various parts of world (Baltas et al. 2007; Shi et al. 2009; D’Asaro et al. 2014; Fu et al. 2011; 

Zhou and Lei 2011; Yuan et al. 2014; Lal et al. 2015; Menberu et al. 2015). 

The use of Ia = λS in Equation 3.4 amplifies it as:  

)SSP(

)SP(
Q

2






  for P > S; otherwise Q = 0                                                                    (3.5) 

For λ=0.2 (SCS 1972, 1985), Equation 3.5 reduces to  
 

 
 S8.0P

S2.0P
Q

2






  

for P > 0.2S; otherwise Q = 0                                                                      (3.6)           
 

For a given observed rainfall (P)–runoff (Q) data, S can be calculated by solving Equation 3.5, 

as follows (Hawkins 1973; Hawkins 1993): 

 

 

P - Ia 

S 

F 

Q 

Figure 3.9 Proportionality concept of the existing SCS-CN 

method
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2
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2

QP4)P(4Q)1(P2Q)1(P2

S for 0 < Q < P   (3.7) 

Further, for λ=0.2 (SCS 1985), Equation 3.6 reduces to  

S = 5[(P + 2Q)–(4Q2+5PQ)1/2]        (3.8) 

Here, S can vary in the range of 0 ≤ S ≤ ∞. Therefore, it can be transformed into CN varying in 

a more appealing range, 0 ≤ CN ≤ 100, and vice versa: 

   
254S

25400
CN




        
 (3.9) 

In Equation 3.9, S is in mm and CN is the dimensionless entity. 

3.5 MEAN RUNOFF COEFFICIENT DETERMINATION 

The mean runoff coefficient of plot was determined as given in Equation 3.10 (Lal et al. 2015):  

Mean runoff coefficient (Rcm) =
n

n

i i

i

P

Q


                                                                               (3.10)
 

where Qi is the direct surface runoff for event i, Pi is the rainfall amount for event i, and n is 

the total number of events. 

3.6 ESTIMATION OF CN FROM OBSERVED P–Q DATA 

In the present study, eight different CN estimation methods for available P–Q data have been 

used for comparison. The details of each one is as follows: 

3.6.1 Storm event method 

In this method, natural P-Q data set is used to derive event wise CN using standard Equations 

3.8 and 3.9. The mean of all event wise CNs was considered as representative CN correspond 

to the average antecedent moisture condition (AMC-2) of the plot (Bonta 1997). In present 

paper, representative mean CN method is designated as M1.   

3.6.2 Least square fit method 

Based on the observed P–Q data, the only parameter S (or CN) was estimated using least 

square fit minimizing the sum of squares of residuals (Equation 3.11) (Hawkins et al. 2002) 

employing Microsoft Excel (solver): 
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where Qci (mm) and Qi (mm) are the respectively predicted and observed runoff for rainfall 

event i, n is the total number of rainfall events. Here, the least square fit CN method is 

designated as M2.   

3.6.3 Geometric mean method 

The step wise procedure for deriving the CN (AMC-2) using Geometric mean method is given 

below (Hawkins et al. 2009; Tedla et al. 2012). 

i. Derive the event wise S using standard Equation 3.8.  

ii. Calculate the Logarithm of the events S (i.e. log S). 

iii. Calculate the arithmetic mean of the log S series.  

iv. Estimate the geometric mean (GM) of the S (SGM) by taking the antilogarithm of the 

mean of log S (i.e. SGM =10log S). 

v. Calculate the geometric mean CN as given below:  

CNGM= 25400/(254 + 10log S). 

The Geometric mean CN method is designated as M3.   

3.6.4 Log-normal frequency method 

In this method, the logarithms of each set of natural P and Q pair were computed individually. 

The value of S was then calculated by employing Equation 3.8 using mean log P and log Q 

values (Schneider and McCuen, 2005). Finally, the representative CN (AMC-2) value for plot 

was computed using Equation 3.9. Here, this method is designated as M4. 

3.6.5 NEH-4 median method 

This method is traditionally recommended by SCS (SCS 1972; NRCS 2001; Hawkins et al. 

2009), in which the median of event wise CN derived using standard Equations 3.8 and 3.9 

was considered as representative CN of plot. Here, the median CN method is designated as 

M5.   

3.6.6 Rank-Order method 

This method requires ordered series of P–Q pairs (Hawkins et al. 2009). The naturally 

measured P and Q values were sorted separately and then realigned by common rank order 
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basis to form a new set of P–Q pairs of the equal return period, in which runoff Q is not 

necessarily matched with the original rainfall P (Hawkins et al. 2009; D’Asaro and Grillone 

2012; Soulis and Valiantzas 2013). For each ordered P–Q pair, S and CN were determined 

employing Equations 3.8 and 3.9, respectively. The representative CN (AMC-2) of the plot is 

mean or median of the event wise CNs series computed with the ranked P–Q pairs. Here, mean 

and median are designated as method M6 and M7, respectively.  

In method M1 to M7, the AMC was decided based on the 5-day antecedent rainfall 

(P5). In order to determine AMC of a rainfall event used in runoff prediction, P5 was used as 

follows: AMC-1 if P5 < 35.56 mm in growing season or P5 < 12.7 mm in dormant season, 

AMC-2 if 35.56 ≤ P5 ≤ 53.34 mm in growing season or 12.70 ≤ P5 ≤ 27.94 mm in dormant 

season, and AMC-3 if P5 > 53.34 mm in growing season or P5 > 27.94 mm in dormant season 

(Ajmal et al. 2015a,b,c; Mays 2005). 

For wet (CN3) and dry (CN1) conditions curve number, the CN2 (AMC-2) values were adjusted 

using Equations 3.12 and 3.13, respectively, as given by Hawkins et al. (1985). 

CN0.005730.427

CN
CN

2

2
3


                     (3.12) 

CN0.012812.281

CN
CN

2

2
1


                   (3.13) 

3.6.7 S-probability method 

For each set of natural P–Q pair, the value of S (or CN) is determined using Equations 3.8 and 

3.9. The Weibull’s plotting position was then used to derive the lognormal probability 

distribution for the calculated values of S. The S values corresponding to 90, 50 and 10% 

probability levels were used to estimate the representative CN values for AMC-3, 2 and 1, 

respectively (Hjelmfelt 1980; Hjelmfelt 1991; Ali and Sharda 2008). Here, this method is 

designated as M8.  

3.7 COMPARISON BETWEEN NEH-4 TABLES AND OBSERVED P–Q DATA-BASED 

CURVE NUMBERS 

In order to check the suitability of NEH–4 tables CN (CNHT) for agricultural plots of study 

region, the P–Q data based CNs determined by NEH–4 median and least square fit methods 

were compared with CNHT. The NEH–4 median CNs (CNm) were estimated using the 

procedures given in section 3.6.5 for method M5. Further, the least square fit CNs were also 

estimated by two different approaches. In the first approach (i.e. single way fitting), the only 
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parameter S (or CN) was estimated using least square fit minimizing the sum of squares of 

residuals as given in Equation 3.11. Notably, each P-Q dataset yields only one value of S, i.e. 

only one representative value of S (or CN) for a plot. This CN value of a plot is designated as 

CNLSM. In the second approach (i.e. double way fitting), the parameter S is determined by 

iterative least squares fitting (or best fit) procedure for both λ and S of the SCS-CN equation 

(Equation 3.14), consistent with the work of Hawkins et al. (2002). The objective of the fitting 

is to find the values of λ and S such that the following is a minimum: 

 
  

Minimum
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λSP
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                                                (3.14) 

where Yi (mm) and Xi (mm) are respectively the predicted and observed runoff for storm event 

i, and n is the total number of storm events. Here also, each P-Q dataset yields only one value 

of S, i.e. only one representative value of S (or CN) for a plot. This CN value of a plot is 

designated as CNLS.   

In two of the above least square fit approaches, both natural and ordered data series 

were used to fit the CNs. For approach first (i.e. single way fitting), these CN values of a plot 

are designated as CNLSMn and CNLSMo for natural and ordered datasets, respectively. On the 

other hand, CN values of a plot are designated as CNLSn and CNLSo for natural and ordered 

datasets, respectively, for approach two (i.e. double way fitting). The natural P–Q data consists 

of the actually observed dataset. In ordered data series, the observed P and Q values were first 

sorted separately and then realigned by common rank-order basis to form a new set of P–Q 

pairs of equal return period, in which runoff Q is not necessarily matched with that due to 

original rainfall P (Hawkins 1993; Hawkins et al. 2009; D’Asaro and Grillone 2012; Soulis and 

Valiantzas 2013; Ajmal et al. 2015a; Lal et al. 2015). Here, it is noted that only large storm 

events with P >10 mm were used to avoid the biasing effects of small storms towards high 

CNs. For statistical analysis, only plots having more than 10 rainfall–runoff events were 

considered for  and CN calculation.  

The CN values (CNHT, CNm, CNLSMn, CNLSMo, CNLSn, and CNLSo) thus estimated are taken to 

correspond to the average antecedent moisture condition (AMC-2) of the plot. For wet (CN3) 

and dry (CN1) conditions curve number, the CN2 (AMC-2) values were adjusted using 

Equations 3.12 and 3.13, respectively. 
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3.8 DERIVATION OF λ VALUES FROM OBSERVED P-Q DATA 

To derive λ values, both S and λ were optimized by iterative least squares fitting (or best fit) 

procedure of the general SCS-CN Equation 3.14, consistent with the work of Hawkins et al. 

(2002). Similar to the CNs, model fitting yields only one value of λ from all P–Q events of 

plot, i.e. only one representative value of λ for a plot. Also, the both natural as well as ordered 

dataset consisting of only large storm events with (arbitrary) P >15 mm criterion to avoid 

biasing effect, but to retain sufficient number of P–Q data for analysis were used. Only plots 

having at least 10 observed rainfall–runoff events were considered for optimization study.  

3.9 PROPOSED MODEL BASED ON OPTIMIZED λ VALUES 

Performance of the existing SCS-CN model (Equation 3.5) with traditional  = 0.2 was 

compared with that employing an average = 0.03 value derived from 27 natural P–Q plot-

dataset. The average is considered instead of median as the former yielded the smallest 

standard error (Fu et al. 2011). Here, it is notable that all runoff producing rainfall events only 

were used in this analysis.  

3.10 SENSITIVITY OF  TO CN AND RUNOFF 

The effect of variation in λ on CNs (or runoff) has been evaluated using the randomly selected 

5 plot-data. In addition, the relative change in estimated runoff with progressive changes in -

value was also analysed as follows (Yuan et al. 2014):  

 
100




Q

QQ
Q

a

ai

i
                                                                                                   (3.15) 

Where ΔQi is the relative change of runoff at step i, and Qci and Qca are respectively the 

estimated runoff at step i and step a. Initially, λ = 0.2 was fixed for step a and then reduced by 

10 % at each step down to 0.02, and runoff was estimated at each step using Equation 3.5 

consistent with the work of Yuan et al. (2014). The average CNLSo (=78.92) was estimated 

from event-based CNs of the 27-plotdata and was used for the S computation in Equation 3.9. 

P = 30 mm was used in Equation 3.5 due to its having the highest frequency of occurrence.  

3.11 EMPIRICAL CONVERSION EQUATION FOR CONVERSION OF CN0.2 INTO CN0.03 

Similar to Hawkins et al. (2002), Jiang (2001) and Yuan et al. (2014), an conjugate CN 

empirical conversion equation for converting CNs associated with λ = 0.2 (CN0.2) to λ = 0.03 
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(CN0.03) is proposed based on direct least squares fitting of Equation 3.14 using 27 plots 

natural P-Q data sets.  

3.12 RELATIONSHIP BETWEEN CN AND ANTECEDENT WETNESS CONDITION 

(AWC)  

It is of common experience that CN is a function of AWC of the watershed, which may refer to 

the soil moisture prior to rainfall event. Expressed mathematically,  

 CN = f (AWC)                                                              (3.16) 

where AWC is a soil moisture index which can be described as 1–day antecedent soil moisture 

(θo1), 3–day average antecedent soil moisture (θo3), 5–day average antecedent soil moisture 

(θo5), 5–day antecedent rainfall (P5), and so on. To evaluate the effect of AWC on CN (or S), 

regressions between CN derived from P–Q dataset and corresponding observed antecedent soil 

moisture indices such as θo1, θo3, θo5, and P5 were developed, and their dependency on 

predicted runoff analyzed. The regression analysis used three forms, viz. linear, exponential, 

and logarithmic to fit the experimental data as follows: 

CN= x + yθ                                                                                                                  (3.17) 

CN= x expyθ                                                                                                          (3.18) 

CN= x + y ln(θ)                                                                                                                                                                                (3.19) 

where θ is the antecedent soil moisture index, CN is the curve number, ln is the natural 

logarithm operator, x and y are two regression coefficients to be estimated. The Equations 3.8 

and 3.9 were employed for estimating the even wise CNs. The above relations lead to infer that 

as antecedent soil moisture increases, CN increases or S decreases, and vice versa. To validate 

the existence of such a relation, the randomized series of the total collected events were 

generated to represent fair coverage of all wetness situations. Thus, the 60% percent of events 

were used for calibration, and the remaining 40% percent for validation. 

3.13 PERFORMANCE EVALUATION OF CN–AMC CONVERSION FORMULAE 

3.13.1 Comparison of existing AMC based formulae 

The five existing formulae developed by Sobhani (1975), Hawkins et al. (1985), Chow et al. 

(1988), Arnold et al. (1990) and Mishra et al. (2008b) for converting the CNs from AMC-2 

(CN2) to AMC-1 (CN1) or AMC-3 (CN3) are presented in Table 3.3.  
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Here, Hawkins et al. (1985), Mishra et al. (2008b), Chow et al. (1988), Sobhani (1975), 

and Arnold et al. (1990) formulae were designated with their respective IDs as given in Table 

3.3. The performance of these existing formulae is analyzed numerically as well using field 

data observed naturally at experimental plots and collected from published literature. 

3.13.2 Proposed AMC based formulae 

As seen from Table 3.3, the existing formulae can generally (except for Arnold et al. 1990) be 

recast in a general form given below: 

CN ba

CN
CN

2

2
x




                               (3.20)

 

where 
100

)a1(
b


 , and CNx will be as CN3 or CN1 depending on the values of a and b. 

In the present study, Equation 3.20 was optimized using least square fit minimizing the 

sum of squares of residuals for CN2 and CN1 or CN3 utilizing the large P–Q dataset from 62 

plots/watersheds monitored at the study site as well as data collected from published literature 

(excluding plot nos. 28-35 due to n < 10). The respectively 39 and 24 plots/watershed P-Q data 

were used in derivation and validation of formulae.  

The derived three models, viz., MC6, MC7, and MC8, are also presented in Table 3.3. 

In model MC6, natural P–Q data series were used for calculating the event–wise values of S 

using Equation 3.8, and event–wise CN values derived using Equation 3.9. The Equation 3.20 

was then fitted for CN3 and CN1 (Table 3.3) by utilizing CN-values for various AMC 

conditions established using 10% (CN1) and 90% (CN3) probability of exceedance (POE) 

(Hjelmfelt et al. 1981). These derivations used 39 study plot/watershed datasets, and derived 

CN values of the different AMC condition (i.e. CN1, CN2 and CN3) are given in Table 3.4. 

Figure 3.10 shows probability distributions for CN1 and CN3. 

Similarly, MC7 was developed using same criteria as MC6, except CN-values for 

various AMC conditions were derived following Grabau et al. (2009) and Hawkins et al. 

(2015) (i.e. CN1 and CN3 with 12% and 88% POE, respectively). For MC7, the derived values 

of CN1, CN2, and CN3 are given in Table 3.3, and their distributions in Figure 3.11. 
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Table 3.3 List of existing and proposed AMC dependent curve number conversion formulae 

Model ID Method AMC-3 AMC-1 

MC1 Hawkins et al. (1985) 

CN0.005730.427

CN
CN

2

2
3


  

CN0.012812.281

CN
CN

2

2
1


  

MC2 Mishra et al. (2008b) 

CN0.00570.430

CN
CN

2

2
3


  

CN0.0127542.2754

CN
CN

2

2
1


  

MC3 Chow et al. (1988) 

CN0.1310

23CN
CN

2

2
3


  

CN0.05810

4.2CN
CN

2

2
1


  

MC4 Sobhani (1975) 

CN0.0059640.4036

CN
CN

2

2
3


  

CN0.013342.334

CN
CN

2

2
1


  

 

MC5 

 

Arnold et al. (1990) 

 
)]CN(10000673.0exp[CNCN 223 

 

)}]CN0.0636(100exp{2.533CN[100

)CN20(100
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MC6 Equation 3.20 fitted 

for CN1 and CN3 

(λ=0.2) with 10% and 

90% POE, 

respectively 

CN0.004950.50503

CN
CN

2

2
3




 

R2 = 0.640

 CN0.009221.92192

CN
CN

2

2
1




 

R2 = 0.472

 

MC7 Equation 3.20 fitted 

for CN1 and CN3 

(λ=0.2) with 12% and 

88% POE, 

respectively 

CN0.004690.53072

CN
CN

2

2
3




 

R2 = 0.641

 CN0.008421.84153

CN
CN

2

2
1




 

R2 = 0.512

 

MC8 Equation 3.20 fitted 

for CN1 and CN3 

(λ=0.03) with 12% 

and 88% POE, 

respectively 

CN0.005760.42405

CN
CN

2

2
3




 

R2 = 0.715

 

CN0.014212.42081

CN
CN

2

2
1




 

R2 = 0.760
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Table 3.4 Curve Number values for different AMC’s for the 39 plots datasets used in 

development of proposed formulae 

Plot/Watershed 

 No. 

MC6  MC7  MC8 

CN2 CN3 CN1  CN2 CN3 CN1  CN2 CN3 CN1 

1 81.24 88.83 70.01  81.24 88.73 71.29  63.06 83.80 43.26 

2 79.88 91.35 65.29  79.88 91.14 66.23  61.73 86.31 37.19 

3 81.09 92.12 67.41  81.09 91.95 68.22  63.93 88.74 37.32 

4 78.08 88.28 66.03  78.08 87.73 67.61  51.52 79.86 44.86 

5 79.21 90.08 63.15  79.21 89.78 66.18  66.36 84.34 39.02 

6 77.75 81.78 63.67  77.75 81.59 63.72  46.85 70.18 32.95 

7 80.88 90.36 74.68  80.88 90.01 75.35  66.12 85.03 39.13 

8 79.78 85.58 73.36  79.78 85.54 74.22  66.17 76.56 39.36 

9 81.49 92.08 77.67  81.49 91.43 77.80  70.42 88.44 41.58 

10 79.79 90.76 72.98  79.79 90.74 73.59  63.36 87.78 42.87 

11 79.17 89.92 67.13  79.17 88.81 68.89  54.84 84.25 38.85 

12 80.30 91.60 62.30  80.30 90.58 64.99  56.74 86.82 30.91 

13 92.35 97.73 81.47  92.35 97.58 82.55  89.74 97.00 74.83 

14 88.10 95.35 80.89  88.10 94.70 80.93  82.66 93.02 71.47 

15 86.29 94.35 76.82  86.29 93.71 76.98  80.11 91.53 63.57 

16 73.90 78.60 70.30  73.90 76.89 71.86  53.41 63.12 44.32 

17 81.94 94.13 70.61  81.94 93.52 72.91  77.26 91.79 62.30 

18 90.00 96.08 83.86  90.00 95.84 84.20  84.18 94.14 70.66 

19 87.71 94.04 67.39  87.71 93.53 68.51  77.02 90.19 47.07 

20 78.71 88.21 60.11  78.71 88.01 60.71  54.08 76.05 28.79 

21 82.65 89.31 63.28  82.65 88.81 66.35  69.59 78.97 42.78 

22 83.65 88.40 71.88  83.65 87.72 73.41  63.30 76.71 45.40 

23 69.66 87.10 58.86  69.66 86.86 59.38  49.85 74.62 30.41 

24 73.71 86.52 52.91  73.71 86.21 53.20  46.58 70.92 24.32 

25 86.52 92.08 78.63  86.52 91.43 79.81  70.37 84.78 56.02 

26 87.92 92.08 86.11  87.92 91.98 86.40  83.89 88.76 82.40 

27 86.63 91.50 59.25  86.63 91.20 65.03  58.55 68.23 28.17 

28 82.60 89.02 78.41  82.60 89.00 78.91  55.68 66.70 48.61 

29 80.17 88.06 73.83  80.17 87.56 74.70  47.68 59.43 34.00 

30 87.52 97.60 68.52  87.52 97.45 67.22  81.52 96.95 55.94 
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Table 3.4 (continued) 

Plot/Watershed 

 No. 

MC6  MC7  MC8 

CN2 CN3 CN1  CN2 CN3 CN1  CN2 CN3 CN1 

31 89.52 93.42 77.69  89.52 93.16 78.85  81.46 89.80 59.40 

32 90.19 93.14 77.17  90.19 92.49 78.42  81.13 88.32 58.25 

33 87.29 91.04 76.36  87.29 90.52 76.95  75.50 82.45 54.25 

34 87.97 91.59 73.89  87.97 91.29 74.98  75.39 87.91 48.80 

35 83.92 91.86 75.50  83.92 91.15 75.88  69.52 84.99 52.07 

36 73.09 82.75 61.84  73.09 81.14 62.52  42.84 58.37 31.08 

37 74.77 79.89 68.96  74.77 79.47 69.26  53.22 60.82 36.88 

38 76.91 86.08 56.60  76.91 85.55 58.31  49.89 63.01 36.75 

39 81.81 90.42 67.48  81.81 90.40 67.63  71.70 86.25 37.76 

 

 

Figure 3.10 Distribution of CN1 and CN3 with different POE for model MC6 

Further, MC8 was developed incorporating the effect of λ into standard SCS-CN 

Equation 3.4. Here, natural P–Q data series was used for calculating the event-specific S-

values for λ=0.03 employing Equation 3.7, and corresponding CNs from Equation 3.9. The CN 

values for various AMC’s were again derived following Grabau et al. (2009) and Hawkins et 

al. (2015) (i.e. CN1 and CN3 (λ=0.03) with 12% and 88% POE, respectively). The distributions 
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of CN1 and CN3 with different POEs are shown in Figure 3.12, similar to Figures 3.10 and 

3.11. Notably, the choice of using λ=0.03, which is the mean value, resulting from the 

optimized λ yielded from the entire 63 plots/watersheds P–Q data sets used in the present 

study. 

 

Figure 3.11 Distribution of CN1 and CN3 with different POE for model MC7 

 

Figure 3.12 Distribution of CN1 and CN3 with different POE for model MC8 
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3.14 STATISTICAL ANALYSIS FOR GOODNESS OF FIT 

The goodness of fit between observed and predicted variables was evaluated using coefficient 

of determination (R2), Nash-Sutcliffe efficiency coefficient (E) (Nash and Sutcliffe 1970), 

index of agreement (d) (Legates and McCabe 1999) and root mean square error (RMSE), 

number of times nt that the observed variability is greater than the mean error (Ritter and 

Mu˜noz-Carpena 2013), Percent bias (PBIAS), Relative error (Re), and the Bias (e).  

The R2 expressed as: 
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    (3.21) 

where X (mm) is the average of observed runoff for all storm events Xi, Y (mm) is the 

average of predicted runoff for all storm events Yi, and n is the total number of storm events. 

The R2 ranges from 0 to 1 and a value close to 1 signify the better degree of association 

between the observed and estimated runoff. R2 > 0.6 is considered as acceptable for 

satisfactory agreement between observed and predicted variables (Moriasi et al. 2007; Santhi et 

al. 2001; Van Liew et al. 2003).  

The Nash-Sutcliffe efficiency (E) has been widely used to evaluation of hydrological 

model (Delleur et al. 1976; EI-Sadek et al. 2001; Fentie et al. 2002; Sahu 2007; Sahu et al. 

2007, 2010b; Yuan et al. 2014; Ajmal et al. 2015a,b,c). It is expressed as follows:
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                                                                                                     (3.22)

 
The E ranges from -∞ to 1 and a value close to 1 indicate the perfect agreement between the 

observed and estimated runoff. Its decreasing values indicate poor agreement. The negative 

value of E can also occur for biased estimate indicating that the mean observed runoff is a 

better estimate than predicted. According to Motovilov et al. (1999), Moriasi et al. (2007), Lim 

et al. (2006), Parajuli et al. (2007, 2009), Santhi et al. (2001), 0.75 ˂ E ≤ 1.0, Very good; 0.65 

˂ E ≤ 0.75, Good; 0.50 ˂ E ≤ 0.65, Satisfactory; E ≤ 0.50 indicates an unsatisfactory fit. 

The root mean square error (RMSE) (Jain et al. 2006b; Mishra et al. 2004, 2006a; Sahu 

et al. 2007, 2010b; Deshmukh et al. 2013; Ajmal et al. 2015c) is defined as: 
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The RMSE ranges from 0 to ∞ and a value close to zero indicate perfect fit.  

The index of agreement (d) is expressed as: 

 
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                                                                                     (3.24)

 

Similar to the interpretation of R2, the d also varies from 0 to 1, with higher values indicating 

better agreement. 

nt is expressed as (Ritter and Mu˜noz-Carpena 2013): 

  1
RMSE

SD
n t                                                                                                                      (3.25)

                                     

where SD is the standard deviation. nt ≥ 2.2 indicates Very Good agreement; 1.2 ≤ nt < 2.2 

implies Good; 0.7 ≤ nt < 1.2 shows Satisfactory; and nt < 0.7 indicates an unsatisfactory fit. 

PBIAS measures average tendency of the estimated data to be larger or smaller than 

their observed data (Ajmal et al. 2015c; Gupta et al. 1999; Moriasi et al. 2007). It is expressed 

as: 
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                                                                                      (3.26) 

PBIAS indicates the method to be consistently over-predicting or under-predicting. Its positive 

values indicate model underestimation, and negative values overestimation (Gupta et al. 1999; 

Moriasi et al. 2007; Yuan et al. 2014). For perfect agreement, PBIAS = 0. According to 

Archibald et al. 2014; Donigian et al. 1983; Moriasi et al. 2007; Singh et al. 2004; Van Liew et 

al. 2003, PBIAS < ±10% indicates Very Good fit; ±10% ≤ PBIAS < ±15%, Good; ±15% ≤ 

PBIAS < ±25%, Satisfactory; and PBIAS ≥ ±25%, unsatisfactory. 

Re, is used to measure the average difference between observations and model 

simulations of variable Q. 

R=
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1                                                                                                                 (3.27)

               e is a measure of the systematic error and is calculated as the average difference 

between the predicted and measured values of a random variable as follows: 
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e = 
 
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                                                                                                               (3.28)
 

The bias indicates the amount that a method consistently over predicts or under predicts the Q-

value. In Equation 3.28, positive values indicate model overestimation, and negative values 

underestimation. 

                                                   

 

This study compares various versions of the same kind of formulae, and therefore, to 

evaluate the improvement in performance efficiency of the modified model (or best model) 

over the other one, the r2–statistic as given in Equation 3.29 is used. It was recommended by 

Nash and Sutcliffe (1970) and used by Senbeta et al. (1999), Ajmal et al. (2015d), Ajmal et al. 

(2016) and Lal et al. (2017) and in their researches.  

010
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
                           (3.29)

 

where E1 and E2 are respectively the efficiencies due to the existing and the proposed formulae. 

r2 > 10% indicates the significant improvement of the proposed relations over the existing one 

(Senbeta et al. 1999).  

In this study, performance evaluation is primarily based on R2, E, nt, RMSE, PBIAS, 

Re, and e for individual plotdata and then their arithmetic mean values are taken as yardstick 

for overall performance evaluation. KolmogorovSmirnov test was used to assess the 

normality of data, and the non-parametric KruskalWallis (K-W) test to test significance level. 

Further, the MC1-MC8 models’ performance in runoff estimation was compared using K-W 

test for checking whether the results are significantly different from each other.  The K-W test, 

also known as the one-way analysis of variance (ANOVA) on ranks is a popular technique 

used to compare the two or more groups of an independent variable for statistically significant 

difference in results. It is a nonparametric test based on ranks, is very less sensitive to outliers, 

and does not requires a dataset to be normally distributed (Kruskal and Wallis, 1952). A 

significant K-W test result indicates that among methods MC1-MC8, the runoff estimated by 

at least one method differs from another. If the significant difference at P < 0.05 level of K-W 

test is identified, the pairwise differences between all methods (i.e. which method differ from 

others) can be performed by post-hoc analysis. In the present study, post hoc least significant 

difference (LSD) multiple comparison analysis is used to determine which methods were 

different at a significance level of 0.05. To this end, Statistical Package for the Social Sciences 

(SPSS) version 20.0 (IBM Corp. 2011) software was used to perform K-W analysis.  
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CHAPTER 4 

 RESULTS AND DISCUSSION 

 

The present chapter describe the results of data collected experimentally at Roorkee site and 

published around the globe. The results were analyzed and presented in five different sections. 

The first section deals with study of interaction among different hydrological parameters like 

rainfall, runoff, runoff coefficient and soil moisture; and effect of experimental plots 

characteristics such as soil type, land use and slope on runoff and curve number monitored 

during August, 2012 to April, 2015. In the second section, different curve number methods 

were employed to estimate and compare the observed P-Q based CNs with NEH-4 CN values 

for agricultural plots in Indian conditions. The initial abstraction coefficient () calculation 

along with the performance evaluation of the  based proposed model, sensitivity of  on CN 

and runoff, conversion of CNs associated with one  into another  were carried out in third 

section. The existence of a relationship between CN (or S) and antecedent wetness condition 

were explored in the fourth section using in-situ observed soil moisture. The last section deals 

with reverification of antecedent moisture condition dependent runoff curve number formulae 

using both experimental data of Indian watersheds and published data around the globe. 

4.1 HYDROLOGICAL ASSESSMENT OF EXPERIMENTAL PLOTS 

4.1.1 Relationship among observed runoff (Q), runoff coefficient (Rc), Rainfall (P) and 

previous day soil moisture () 

Regression analysis were performed to investigate relationships of Q-depth and Rc with P-

depth and previous day soil moisture () (%) for each plot separately and the results are shown 

in Table 4.1. In these analyses, all the runoff producing rainfall events, at least 10 in number, 

monitored at 27 runoff plots (plots 1-27 of Table 3.1) have been used. As seen, nonlinear 

variation of Rc with P is similar to the variation of Q with P, but the correlation between Rc 

and P is much lower than that between Q and P. An example of nonlinear relation between Q 

and P for plot nos. 1, 8, and 11 are shown in Figures 4.14.3 respectively. Similarly, examples 

of nonlinear relation between Rc and P for plot nos. 1, 8, and 11 are shown in Figures 4.44.6 

respectively. As can be seen from Table 4.1, P–Q relationship was statistically significant 

(p<0.05) for all the tested runoff plots. The highest correlation was observed in plot 8 (maize 

land use), with a coefficient of determination (R2) of 0.980; the poorest (R2 = 0.411) was in 
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plot 23 (fallow land use). In contrast,  did not correlate well with Q as well as Rc in study 

plots. The graphical representation of correlation of Q and Rc with  is shown in Figures 4.7 

and 4.8 & 4.9 respectively. Table 4.1 shows that the R2 ranged from 0.028 to 0.391 for the 

relationship of  with Q and Rc. Theoretically, higher  means higher Q (or Rc), but this was 

not seen in the dataset. However, in the present study, Q is largely controlled by P, consistent 

with the findings of Nadal-Romero et al. (2008), Rodríguez-Blanco et al. (2012), Scherrer et al. 

(2007), Kostka and Holko (2003), and Zhang et al. (2011), rather than . 

 

Figure 4.1 Relationship of runoff depth (Q) with rainfall (P) for plot no. 1 

4.1.2 Variation of rainfall threshold (I) among experimental study plots 

The runoff initiation threshold (I) also known as rainfall threshold for runoff generation was 

determined for each plot from daily observed P–Q data. Here notable point is that all observed 

rainfall events have been included in the analysis of I. Table 4.2 gives an overview of rainfall 

threshold (I) values, and slope (m/m) and intercept of P–Q curves for all plots. The graphical 

representation for calculation of I for the randomly chosen plot nos. 1, 8, 11 and 15 are shown 

in Figures 4.10–4.13 respectively. As seen, both vary considerably among plots. The highest I 

was observed for the plots having HSGs A. In contrast, the lowest I was observed for the plots 

having HSGs C whereas I for HSG B was in between HSGs A and C. Thus, HSG (or indirectly 

soils infiltration capacity) seems to play a major role in controlling I in the plots.  
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Table 4.1 Coefficients of determination (R2) of daily runoff (Q) (mm) and runoff coefficients 

(Rc) with daily rainfall (P) (mm) and previous day soil moisture (θ) (%), along with mean 

runoff coefficient (Rcm) for each plot 

Plot No. n Runoff (Q) depth  Runoff coefficient (Rc) Rcm 

P θ P θ 

1 18 0.722* 0.075  0.415* 0.066 0.177 

2 18 0.680* 0.056  0.431* 0.057 0.161 

3 18 0.727* 0.048  0.438* 0.056 0.197 

4 12 0.729* 0.028  0.552* 0.097 0.120 

5 12 0.692* 0.187  0.409** 0.120 0.159 

6 12 0.719* 0.188  0.483** 0.031 0.093 

7 13 0.940* 0.152  0.519* 0.029 0.202 

8 13 0.980* 0.115  0.742* 0.035 0.157 

9 13 0.922* 0.208  0.606* 0.218 0.220 

10 13 0.805* 0.035  0.646* 0.064 0.166 

11 13 0.843* 0.070  0.593* 0.055 0.135 

12 13 0.786* 0.153  0.375** 0.078 0.169 

13 13 0.814* 0.034  0.140 0.346 0.191 

14 13 0.558* 0.219  0.185 0.167 0.282 

15 13 0.600* 0.080  0.148 0.228 0.232 

16 11 0.737* 0.090  0.460** 0.344 0.203 

17 11 0.820* 0.055  0.342 0.295 0.170 

18 11 0.769* 0.093  0.451** 0.322 0.252 

19 11 0.621* 0.079  0.313 0.284 0.132 

20 11 0.639* 0.113  0.261 0.458 0.194 

21 11 0.641* 0.037  0.359 0.231 0.229 

22 13 0.435** 0.061  0.079 0.136 0.173 

23 11 0.411** 0.124  0.364** 0.365 0.176 

24 13 0.516* 0.391  0.381** 0.395 0.184 

25 11 0.828* 0.071  0.605* 0.318 0.473 

26 11 0.812* 0.053  0.688* 0.219 0.335 

27 11 0.722* 0.387  0.616* 0.518 0.284 

                            (* significant at 0.01 level; ** significant at 0.05 level) 
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Figure 4.2 Relationship of runoff depth (Q) with rainfall (P) for plot no. 8 

 

Figure 4.3 Relationship of runoff depth (Q) with rainfall (P) for plot no. 11 
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Figure 4.4 Relationship of runoff coefficient (Rc) with rainfall (P) for plot nos. 1 

 

Figure 4.5 Relationship of runoff coefficient (Rc) with rainfall (P) for plot no. 8 
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Figure 4.6 Relationship of runoff coefficient (Rc) with rainfall (P) for plot no. 11 

 

 

 

Figure 4.7 Plot showing relationship of runoff depth (Q) with previous day soil moisture () 

for plot nos. 1, 8 and 11 
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Figure 4.8 Plot showing relationship of runoff coefficient (Rc) with previous day soil moisture 

() for plot nos. 1 and 8 

 

 

 

Figure 4.9 Plot showing relationship of runoff coefficient (Rc) with previous day soil moisture 

() for plot no. 11 
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Table 4.2 Rainfall threshold for runoff initiation (I, mm) and coefficients i.e. slope (x) and 

intercept (y) of linear regression (Q=xP+y) of the rainfall (P)–runoff (Q) curve.  

Plot No. n R2 x (m/m) (-) y (mm) I (mm) 

1 38 0.728 0.375 2.798 7.50 

2 38 0.661 0.383 3.051 7.90 

3 38 0.755 0.406 2.849 6.80 

4 33 0.735 0.319 2.183 6.70 

5 33 0.730 0.327 1.925 6.00 

6 33 0.692 0.250 1.181 7.60 

7 33 0.904 0.450 2.968 6.60 

8 33 0.864 0.413 3.009 7.20 

9 33 0.891 0.515 3.457 6.20 

10 33 0.790 0.449 3.174 6.80 

11 33 0.801 0.372 2.677 7.20 

12 33 0.784 0.380 2.563 6.60 

13 26 0.883 0.259 2.239 9.00 

14 26 0.747 0.317 2.002 6.60 

15 26 0.791 0.279 1.994 7.40 

16 24 0.767 0.323 3.032 9.60 

17 24 0.852 0.281 2.751 10.00 

18 24 0.777 0.420 4.056 9.50 

19 24 0.666 0.148 0.913 6.20 

20 24 0.769 0.245 1.833 7.60 

21 24 0.708 0.313 2.512 8.10 

22 26 0.716 0.186 1.084 6.00 

23 24 0.476 0.187 1.036 5.60 

24 26 0.593 0.197 1.088 5.60 

25 11 0.739 0.492 0.442 1.80 

26 11 0.783 0.458 2.412 5.00 

27 11 0.687 0.396 2.200 5.20 
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Figure 4.10 Plot showing value of I (mm) from the relationship of runoff depth (Q) with 

rainfall (P) for plot no. 1

 

Figure 4.11 Plot showing value of I (mm) from the relationship of runoff depth (Q) with 

rainfall (P) for plot no. 8 
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Figure 4.12 Plot showing value of I (mm) from the relationship of runoff depth (Q) with 

rainfall (P) for plot no. 11 

 

Figure 4.13 Plot showing value of I (mm) from the relationship of runoff depth (Q) with 

rainfall (P) for plot no. 15 
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4.1.3 Variation of mean runoff coefficient (Rcm) 

As seen from the above, the concept of I is also supported by response of runoff to rainfall, i.e. 

runoff coefficient which followed the similar pattern as does I. As can be seen from Table 4.1, 

the mean runoff coefficient (Rcm) as calculated by Equation 3.10 was higher for the plots 

having HSGs C followed by B and A. This pattern for Rcm was followed by nearly all the plots 

with few exceptions (i.e. plots 12 and 21). Rcm of the plots ranged from 0.093 to 0.473.  

 Runoff coefficients (Rc) for individual rainfall events also varied considerably from 

less than 0.005 to over 0.60, depending on the nature of the event and plot type. The 

KolmogorovSmirnov test revealed event wise Rc for all the individual plots not to be 

normally distributed. The non-parametric KruskalWallis test revealed statistical significance 

difference between events Rc of all 27 study plots.  

4.1.4 Effect of land use, infiltration capacity, and plot slope on Q and CN 

The effect of land use, infiltration capacity, and slope on Q (or Rc) was also tested individually 

for their significance. To this end, plots located in the same land use, HSG, and slope were 

grouped separately for checking their significance among studied variables. Since the data 

distribution fails to pass the normality test for the entire three individual groups (i.e. land use, 

HSG, and slope), non-parametric KruskalWallis test was used to test significance level and 

the results are shown in Table 4.3. The test revealed that land uses did not show any significant 

difference in Rc except sugarcane which produced significantly (p < 0.05) higher Rc than 

blackgram and fallow land uses. In case of HSGs, however, HSG C had significantly higher Rc 

than did B and A, but the last ones did not differ from each other. In addition, slope did not 

show any effect on Rc as all three groups of slopes were insignificantly different from each 

other. Thus, Rc (or Q) is more significantly influenced by infiltration capacity (fc) of soil rather 

than land uses or slopes. The graphical representation of relationship between mean runoff 

(Qm) of the plot against corresponding fc is shown in Figure 4.14. As seen from this figure, Qm 

produced at the study plots significantly (R2=0.269; p < 0.01) influenced by soil permeability 

described by plots soil fc. With an increase in fc, Qm decreased logarithmically, and vice versa. 

Similarly, graphical representation of relationship between mean runoff coefficient (Rcm) of 

the plot against corresponding fc is shown in Figure 4.15. Similar to the Figure 4.14, the 

correlation (R2=0.214; p < 0.05) between Rcm and fc is also significant; and with an increase in 

fc, Rcm also decreased logarithmically, and vice versa 
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Figure 4.14 Relationship of mean runoff depth (Qm) with Infiltration capacity (fc) of soil for all 

27 agricultural plots data. 

 

Figure 4.15 Relationship of mean runoff coefficient (Rcm) with Infiltration capacity (fc) of soil 

for all 27 agricultural plots data. 
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The effect of land use, fc, and slope on event-wise CNs was also studied using similar 

analysis (or tests) as discussed above for Rc. Here, standard SCS Equations 3.8 and 3.9 were 

employed for estimating the event wise CNs from observed P-Q event. As seen from Table 

4.3, land uses did not show any significant difference in CNs except sugarcane which produced 

significantly (p < 0.05) higher CNs than blackgram and fallow land uses. Furthermore, slope 

also did not show any effect on CNs as all three groups (i.e. 5, 3, and 1%) of slope were 

statistically insignificant. In the present study, CNs are seen to be influenced by fc of soil 

because all three groups of soil (i.e. A, B and C) exhibited significantly different CNs.  

  As already analyzed that fc is the main explanatory variable for Q-production in 

the study plots. The graphical representation of relationship of plot representative CN (at 

AMC-2) with fc is shown in Figure 4.16. In this Figure, the plots representative CN (AMC-2) 

was calculated employing least square fit technique i.e. Equation 3.11. As seen, an inverse 

relationship between CN and fc for all 27 study plots was detected with significant correlation 

(R2 = 0.461, p<0.01). The results from this analysis support the applicability of NEH-4 tables 

where CNs decline with fc (or HSG). 

 

 

Figure 4.16 Relationship of Curve Number (CN) with Infiltration capacity (fc) of soil for all 27 

agricultural plots data 

CN = -5.57ln (fc) + 90.49

R² = 0.461

N=27

p = 0.0001

60

65

70

75

80

85

90

95

0 5 10 15 20 25 30

C
N

 (
A

M
C

-2
) 

Infiltration capacity  (fc) (mm/hr)



- 76 - 

 

Table 4.3 Mean event runoff coefficient (Rc) and CNs for the groups of different land uses, HSGs and slopes 

Land uses group HSG group Slope group 

Land use type Rc CN  n HSG* Rc CN n Slope (%) Rc CN n 

Sugarcane 0.245 a 83.66 a 126 A 0.178 a 80.26 a 210 5 0.200 a 81.99 a 115 

Black gram 0.170 bc 80.99 bc 72 B 0.179 a 82.99 b 87 3 0.194 a 81.88 a 113 

Maize 0.200 bca 82.40 bca 72 C 0.323 b 88.00 c 46 1 0.195 a 82.09 a 115 

Fallow 0.151c 79.67 c 73         

Within one group, variables with no letter (alphabet, a, b, c) in common have significantly different Rc or CN at the 0.05 significance level (based on 

the KruskalWallis test). 

*   HSGs are mainly determined by infiltration capacity: A > 7.26 mm/hr; 3.81 mm/hr < B < 7.26 mm/hr; 1.27 mm/hr < C < 3.81 mm/hr; D < 1.27 

mm/hr. 
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4.2 OBSERVED P-Q DATA-BASED CN AND THEIR COMPARISON WITH 

TABULATED CN 

4.2.1 Observed P-Q data-based CN estimation 

In the present study, eight different CNs estimation methods from observed P-Q data have used 

for analysis, and the results of estimated CNs are shown in Table 4.4. Here notable point is that 

the observed P–Q data of 36 plots have been used for comparing the CNs estimated by 

methods M1 through M8. As seen, the CNs estimated by least squares fit (M2) method range 

from 45.12 (plot 35) to 95.30 (plot 28). The CNs estimated by traditionally recommended 

NEH-4 median (M5) method range from 72.26 (plot 34) to 95.55 (plot 28).  In general, the 

CNs estimated by Geometric-mean (M3) method are usually larger (17 of 36 plots) followed 

by S-probability (M8) (15 of 36 plots). Based on overall mean (mean of representative CNs of 

36 plot), M2 was found to estimate the lowest CNs among all methods. In contract, M8 method 

found to estimate the larger CNs. The multiple comparison results of CNs estimated by all the 

eight methods is shown in Table 4.5. Based on the KruskalWallis test analysis, mix results 

were obtained. There was no single method which has produced significantly higher (or lower) 

CNs than other. Method M3 produced significantly (p < 0.05) higher CNs than M2 and M4, 

but it was statistically insignificant with others (i.e. M1, M5, M6, M7, M8). Similarly, M2 

produced significantly lower CNs than other methods except M4. The CNs estimated by M1, 

M3, M5, M6, M7 and M8 were statistically insignificant among each other. 

 

Figure 4.17 Box plot showing the CN estimated by methods M1-M8. 
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Table 4.4 Estimated curve numbers using the eight different methods for the 36 agricultural 

plots of various characteristics. 

Plot 

No. 

n Curve Number (AMC-2) estimation method 

M1 M2 M3 M4 M5 M6 M7 M8 

1 15 80.61 79.93 81.42 77.77 81.24 80.79 81.24 81.24 

2 15 79.47 80.09 80.75 76.00 79.88 79.74 79.71 79.88 

3 15 81.27 81.51 82.69 76.39 81.09 81.60 81.37 81.09 

4 10 78.49 75.05 79.15 75.97 78.08 78.58 79.06 78.08 

5 10 80.10 75.52 81.13 75.24 79.21 80.19 79.07 79.21 

6 10 74.64 70.87 75.22 72.24 77.75 74.64 73.60 77.75 

7 10 82.10 82.19 82.73 76.10 80.88 82.18 81.86 80.88 

8 10 80.31 80.24 80.61 75.62 79.77 80.33 79.22 79.77 

9 10 83.46 84.81 84.14 77.95 81.49 82.44 84.13 81.49 

10 10 81.12 82.06 81.92 76.65 79.77 81.30 81.65 79.77 

11 10 78.87 78.38 79.59 75.23 79.16 79.02 79.72 79.16 

12 10 79.26 78.95 80.49 75.36 80.28 79.47 80.28 80.28 

13 13 79.38 74.49 80.18 79.05 79.83 79.46 80.10 79.83 

14 13 82.71 78.50 84.27 82.13 83.65 82.96 83.76 83.65 

15 13 81.10 76.05 82.21 80.88 84.48 81.25 80.88 84.48 

16 11 80.17 77.97 81.14 78.01 81.52 80.21 79.88 81.52 

17 11 78.79 75.49 79.53 76.35 80.02 78.87 78.47 80.02 

18 11 81.92 82.26 83.34 79.00 82.47 82.04 81.50 82.47 

19 11 76.53 64.73 77.59 76.15 79.44 80.98 79.65 79.44 

20 11 80.06 73.07 81.17 79.44 81.72 80.20 80.94 81.72 

21 11 80.78 77.88 82.41 78.76 79.65 80.98 79.65 79.65 

22 13 77.89 69.61 79.15 77.76 83.07 78.01 80.01 83.07 

23 11 77.94 68.90 79.64 74.19 81.66 73.81 72.75 81.66 

24 13 78.34 70.59 79.62 78.10 81.42 78.45 78.64 81.42 

25 10 91.36 90.33 92.60 91.92 92.35 91.55 91.02 92.35 

26 10 87.99 86.84 88.75 88.11 88.10 88.17 87.97 88.10 

27 10 85.95 84.62 86.83 85.97 86.29 86.20 86.00 86.29 

28 4 95.55 95.30 95.81 95.76 95.95 95.55 95.96 95.95 
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Table 4.4 (Continued) 

Plot 

No. 

n Curve Number (AMC-2) estimation method 

M1 M2 M3 M4 M5 M6 M7 M8 

29 4 93.60 93.49 93.81 93.56 93.95 93.59 93.95 93.95 

30 4 88.63 88.89 89.01 88.23 87.44 88.63 87.44 87.44 

31 5 77.96 66.70 79.11 76.61 79.80 78.12 77.22 79.80 

32 5 74.25 73.57 75.37 69.62 75.28 74.38 73.82 75.28 

33 5 74.44 47.61 75.41 74.05 75.00 74.48 75.00 75.00 

34 5 69.79 54.35 70.70 67.58 72.26 69.46 69.91 72.26 

35 5 73.68 45.13 75.04 70.11 80.55 73.55 72.23 80.55 

36 40 74.05 72.87 75.09 72.23 73.69 74.15 73.90 73.90 

 

Table 4.5 Comparison of CN determination methods based on the KruskalWallis test  

Method CN n 

M1 80.63 a 36 

M2 76.08 b 36 

M3 81.60 a 36 

M4 78.45 c, b 36 

M5 81.62 a 36 

M6 80.70 a 36 

M7 80.60 a 36 

M8 81.62 a 36 

Note: variables with no letter (alphabet, a, b, c) in common have significantly different CN at 

the 0.05 significance level (based on the KruskalWallis test), (n is the number of rainfall 

events). 

4.2.2 Performance evaluation of M1-M8 method in runoff estimation 

In order to judge the runoff estimation accuracy of CNs estimated by various methods used in 

this study, the runoff was estimated for the 1-24 plots datasets. The plots 25-36 were excluded 

from the analysis due unavailability of P5 data. The standard SCS-CN procedure was followed 

to estimate the runoff. The box and whisker plots for plot wise E, RMSE, e and d are shown in 

Figures 4.18-4.21 respectively.  
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Figure 4.18 Box and whisker plot showing the RMSE obtained by methods M1-M8 

 

 

Figure 4.19 Box and whisker plot showing the bias (e) obtained by methods M1-M8 
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Figure 4.20 Box and whisker plot showing the d obtained by methods M1-M8 

 

 

Figure 4.21 Box and whisker plot showing the E obtained by methods M1-M8 
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Table 4.6 shows the mean values of E, RMSE, e and d from all the 24 plots for the runoff 

estimation using the CNs estimated by M1-M8 methods. Considering the cumulative mean 

value of RMSE as a yardstick of evaluation, the performance of eight method was as follows: 

 M8 > M3 > M1 > M7 > M6 > M2 > M5 > M4.  

For further analyses based on the mean values of d, the M3 was found to perform 

superior followed by M8. Similarly, based on mean values of E, M8 performance was good 

whereas M5 performed poorest.  The model performance based on E was as follows: 

M8 > M2 > M1 > M3 > M7 > M6 > M4 > M5.  

 

Table 4.6. Comparison of runoff estimation using eight different curve number determination 

methods for 24 plots datasets. 

 
M1 M2 M3 M4 M5 M6 M7 M8 

 
RMSE (mm) 

Maximum 10.303 10.211 9.746 13.429 11.106 10.189 10.200 10.631 

Mean 7.834 7.915 7.716 8.953 8.247 7.909 7.895 7.307 

Minimum 5.545 5.377 4.911 6.269 5.276 5.483 5.759 2.880 

 
Index of agreement (d) 

Maximum 0.923 0.929 0.944 0.860 0.932 0.925 0.916 0.986 

Mean 0.764 0.703 0.784 0.667 0.761 0.762 0.761 0.779 

Minimum 0.626 0.387 0.623 0.512 0.606 0.582 0.603 0.635 

 
Bias (mm) 

Maximum 5.186 4.733 4.713 7.727 6.333 5.813 4.897 5.130 

Mean 1.896 3.043 1.041 2.873 1.328 1.856 1.783 1.617 

Minimum -1.162 0.666 -3.674 -1.021 -4.643 -3.387 -2.606 -0.779 

 
E 

Maximum 0.724 0.741 0.784 0.545 0.750 0.730 0.703 0.950 

Mean -0.068 -0.024 -0.111 -0.195 -0.324 -0.159 -0.158 0.052 

Minimum -2.705 -1.791 -3.094 -2.671 -5.319 -4.628 -3.726 -1.791 

 

As shown in Table 4.6, the variation in the mean bias values by different methods was varies 

from 1.041 mm (for M3) to 3.043 (for M2). The performance of different methods based on 

Bias criteria can be described as: 
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M3 > M5 > M8 > M7 > M6 > M1 > M4 > M2.  

The results from present analysis show that there are no single methods which do have 

performed good based on all the four goodness of fit criteria. However, either M3 or M8 can 

be considered as good among all based on individual goodness of fit criteria. 

For evaluating the overall performance, the methods were ranked based on the mean 

statistics viz. d, RMSE, Bias and E. To this end, a rank of 1-8 was assigned to show the RMSE, 

Bias from lowest to highest, and d and E from highest to lowest. After assigning of ranks, 

corresponding marks of 8 to 1 are given to each index. For example, a method having the 

minimum RMSE, Bias, and maximum d, E will be ranked 1. The method corresponding to 

rank 1 will be achieved to score 8 marks. Similarly, the method corresponding to rank 2 will be 

achieved to score 7 marks and so on. The overall performance of method was judged based on 

the total marks gained by method using all four statistics. The first rank will be given to the 

method scoring highest marks whereas last rank (i.e. eight) will be given to method scoring 

lowest marks. Table 4.7 shows the ranks and marks achieved by all methods for their 

respective performance indices. As seen from this table, M8 performed best followed by M3. 

Based on overall score the methods performance can be described as follows:  

M8 > M3 > M1 > M7 > M6 > M2 > M5 > M4   

As can be seen from above analysis that either M8 or M3 can be considered as best performing 

methods in the study region. The results from present study contradicts with the results of 

Sharda and Ali (2008) who have found respectively log normal frequency (M4) and S-

probability (M8) methods as best and least performing ones in Rajasthan, India. Contrary to 

Ali and Sharda (2008) findings, log normal frequency method performance was least among 

all methods tested in the present study. On the other hand, the present study results could be 

comparable with Tedla et al. (2012) as geometric mean (M3) method was the best performing 

method in the study conducted by these researches.  

4.2.3 Comparison between Handbook table and observed P-Q data-based Curve number 

One of the aims of the present study was to investigate the applicability of NEH-4 CN values 

to Indian watersheds, which are otherwise based on a large P-Q dataset of a number of small 

US watersheds. In this study, P-Q data are derived from 27 plots of the same size and situated 

at one location (Roorkee experimental site), i.e. the same climatic condition. The NEH-4 curve 

numbers (CNHT) are compared with those due to both natural and ordered P–Q datasets 

observed on 27 plots. The CNHT and P-Q based CNs i.e. CNm, CNLSn, CNLSo, CNLSMn, CNLSMo 
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            Table 4.7 Performance evaluation of models based on ranks (scores) 

Performance indices and their ranks (scores) 

Method RMSE (mm) Rank (score) d Rank (score) Bias (mm) Rank (score) NSE Rank (score) Total 

score 

Overall 

Rank 

M1 7.834 3 (6) 0.764 3 (6) 1.896 6 (3) -0.068 3 (6) 21 3 

M2 7.915 6 (3) 0.702 7 (2) 3.043 8 (1) -0.024 2 (7) 13 6 

M3 7.716 2 (7) 0.784 1(8) 1.041 1 (8) -0.111 4 (5) 28 2 

M4 8.953 8 (1) 0.667 8 (1) 2.873 7 (2) -0.195 7 (2) 6 8 

M5 8.247 7 (2) 0.761 6 (3) 1.328 2 (7) -0.324 8 (1) 13 7 

M6 7.909 5 (4) 0.761 4 (5) 1.856 5 (4) -0.159 6 (3) 16 5 

M7 7.895 4 (5) 0.761 5 (4) 1.783 4 (5) -0.158 5 (4) 18 4 

M8 7.307 1 (8) 0.779 2 (7) 1.617 3 (6) 0.052 1 (8) 29 1 
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estimated for 27 plots are shown in Table 4.8. As seen, CNHT ranged from 58 (plots 19, 20, and  

21) to 88 (plots 25, 26, and 27). The optimized values of CNLSMn ranged respectively from 

64.73 (plot 19) to 90.33 (plot 25), and CNLSMo from 67.47 to 90.59 for ordered dataset. 

Whereas the optimized values of CNLSn ranged respectively from 38.72 (plot 19) to 85.36 (plot 

25), and CNLSo from 42.16 to 87.12 (plot 10) for ordered dataset. Similarly, CNm were ranged 

from 77.75 to 92.35. The box plot of these CNs is shown in Figure 4.22. As seen from this 

figure, the CNLSMn, CNLSMo and CNm values were higher than CNHT, consistent with that 

reported by Stewart et al. (2012).  

The Comparison of CNHT with CNm, CNLSn, CNLSo, CNLSMn, CNLSMo are shown in 

Figures 4.23-4.27 respectively. From Figure 4.23, it is seen that the comparison between CNHT 

and CNm is less than satisfactory. Furthermore, CNm obtained by traditional median method 

assume high values compared to CNHT and the discrepancy increases for CNs below 75. Most 

of the CNm values (24 out of 27) were greater than the CNHT values, consistent with those 

reported in literature (D’Asaro et al. 2014; Hawkins and Ward 1998). The group of CNHT 

lower than 80 was found to observed high amount of bias (e = -11.38 CN) as compare to (e 

=0.89 CN) group of CNHT higher than 80. 

 

Figure 4.22 Box and whisker plot showing the comparison among tabulated and observed P-Q 

data based CNs 
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Table 4.8 Summary of runoff plot characteristics and CN values derived using NEH-4 median, Least-Squares fit method (LSM) and Handbook tables 

(Used partial dataset excluding P<15 mm) 

Plot 

No. 

 

Land use n NEH-4 

Table 

NEH-4 method 

(natural data, λ=0.20) 

LSM (λ=0.20)  LSM (Optimized ) 

Natural Ordered  Natural data  Ordered data 

CNHT CNm CNLSMn CNLSMo  CNLSn   CNLSo  

1 Sugarcane 15 81 81.24 79.93 81.01  70.79 0.0334  81.87 0.2276 

2 Sugarcane 15 72 79.88 80.09 81.41  77.00 0.1244  89.17 0.6590 

3 Sugarcane 15 81 81.09 81.51 82.75  70.30 0.0002  80.23 0.1267 

4 Fallow 10 76 78.08 75.05 76.16  62.61 0.0204  80.74 0.3513 

5 Fallow 10 85 79.21 75.52 76.99  59.91 0.000  66.61 0.0245 

6 Fallow 10 76 77.75 70.87 71.94  60.86 0.0631  76.63 0.3174 

7 Maize 10 78 80.88 82.19 82.46  74.91 0.0314  76.17 0.0455 

8 Maize 10 78 79.77 80.24 80.39  80.49 0.2079  80.98 0.2192 

9 Maize 10 85 81.49 84.81 85.04  81.89 0.0999  83.60 0.1443 

10 Blackgram 10 66 79.77 82.06 82.83  79.07 0.1141  87.13 0.4213 

11 Blackgram 10 66 79.16 78.38 79.16  73.13 0.0879  79.09 0.1966 

12 Blackgram 10 77 80.28 78.95 80.01  69.93 0.0328  77.81 0.1412 
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Table 4.8 (Continued) 

Plot 

No. 

 

Land use 

 

n NEH-4 

Table 

NEH-4 method 

(natural data, λ=0.20) 

LSM (λ=0.20)  LSM (Optimized ) 

Natural Ordered  Natural data  Ordered data 

CNHT CNm CNLSMn CNLSMo  CNLSn   CNLSo  

13 Sugarcane 13 67 79.83 74.49 74.74  56.94 0.0003  57.21 0.0000 

14 Sugarcane 13 67 83.65 78.5 79.72  64.47 0.0000  67.69 0.0000 

15 Sugarcane 13 67 84.48 76.05 77.10  61.23 0.0002  62.22 0.0000 

16 Maize 11 67 81.52 77.97 78.59  62.39 0.0000  64.06 0.0000 

17 Maize 11 67 80.02 75.49 75.94  58.13 0.0001  58.65 0.0001 

18 Maize 11 67 82.47 82.26 82.92  70.93 0.0000  75.77 0.0415 

19 Blackgram 11 58 79.44 64.73 67.47  38.72 0.0000  42.16 0.0000 

20 Blackgram 11 58 81.72 73.07 74.79  55.95 0.0000  56.11 0.0000 

21 Blackgram 11 58 79.65 77.88 78.96  61.92 0.0000  64.30 0.0000 

22 Fallow 13 74 83.07 69.61 71.43  46.21 0.0000  51.12 0.0001 

23 Fallow 11 74 81.66 68.90 72.23  45.80 0.0000  55.11 0.0001 

24 Fallow 13 74 81.42 70.59 73.76  51.79 0.0000  54.66 0.0001 

25 Sugarcane 10 88 92.35 90.33 90.59  85.36 0.0000  85.97 0.0000 

26 Sugarcane 10 88 88.10 86.84 87.19  79.03 0.0000  79.88 0.0000 
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Table 4.8 (Continued) 

Plot 

No. 

 

Land use 

 

n NEH-4 

Table 

NEH-4 method 

(natural data, λ=0.20) 

LSM (λ=0.20)  LSM (Optimized ) 

Natural Ordered  Natural data  Ordered data 

CNHT CNm CNLSMn CNLSMo  CNLSn   CNLSo  

27 Sugarcane 10 88 86.29 84.62 85.27  74.56 0.0000  76.17 0.0000 

Statistics           

Mean 73.44 81.64 77.83 78.92  65.72 0.0302  70.78 0.1080 

Median 74.00 81.09 78.38 79.16  64.47 0.0001  76.17 0.0001 

Standard deviation 9.12 3.17 5.85 5.27  11.93 0.0527  12.68 0.1665 

Maximum 88.00 92.35 90.33 90.59  85.39 0.2079  89.17 0.6590 

Minimum 58.00 77.75 64.73 67.47  38.72 0.0000  42.16 0.0000 

Skewness 0.00 1.90 -0.15 0.00  -0.41 2.0189  -0.51 1.8609 
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Figure 4.23 CN Plot for comparison between CNm and CNHT 

As shown in Figures 4.24 and 4.25, the comparison between CNHT and CNLS is also 

poor for both natural and ordered datasets. In general, CNHT values are higher than CNLS and 

the difference is larger for CN values varying from 68-78.  

 

Figure 4.24 CN Plot for comparison between CNLSn and CNHT 
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Figure 4.25 CN Plot for comparison between CNLSo and CNHT 

The comparison of CNHT with CNLSMn and CNLSMo are given in Figures 4.26 and 4.27 

respectively. As in Figure 4.26, CNHT and CNLSMn do not compare well, for 17 out of 27 

CNLSMn–values are higher than CNHT; both exhibiting greater difference for values lower than 

75, consistent with that reported by Stewart et al. (2012). However, the difference diminishes 

with increasing values. The group of CNHT lower than 75 shows a higher PBIAS (=-12.84%) 

than the group of CNHT higher than 75 (=1.03%). Overall, pair–wise comparison showed a 

significant difference (p<0.05) to exist between CNHT and CNLSMn means. Such an inference is 

consistent with the general notion that the existing SCS–CN method performs better for high 

P–Q (or CN) events. 

From Figure 4.27, CNHT with CNLSMo compare similarly as in Figure 4.26. However, 

PBIAS of the group of CNHT lower than 75 is -14.87% compared to 0.12% for the group 

higher than 75.  

Figures 4.28 and 4.29a & 4.29b show a plot of CNm with CNLS and CNLSM for both 

natural and ordered P-Q datasets. The difference is noticeable between CNm and CNLSM (or 

CNLS) for lower CN values. As shown in Table 4.8 and Figures 4.28 and 4.29, CNm are higher 

than that of both CNLSM and CNLS, consistent with those reported in literature (D’Asaro and 

Grillone 2012; D’Asaro et al. 2014; Stewart et al. 2012). 
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Figure 4.26 CN comparison plot for CNLSMn vs CNHT 

 

 

Figure 4.27 CN comparison plot for CNLSMo vs CNHT 
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Figure 4.28 CN comparison plot for CNLS vs CNm 

 

 

Figure 4.29a CN comparison plot of CNLSM vs CNm for natural datasets 
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Figure 4.29b CN comparison plot of CNLSM vs CNm for ordered datasets 

To check the accuracy of CNs in estimation of runoff from the studied agricultural 

plots, runoff was estimated by using all the four sets of CNs, viz., CNHT, CNm, CNLSMn and 

CNLSMo for the data of 24 plots (plots 1–24 of Table 4.8). In order to estimate the runoff, it is 

required to correct the AMC of CNs based on P5 values. Therefore, plot nos. 25–27 were 

excluded from comparison due to unavailability of their corresponding P5 data. The AMC 

correction formulae as given in Equations 3.12 & 3.13 have been used for estimating the CN1 

and CN3 from CNHT, CNm, CNLSMn and CNLSMo. Here notable point is that CNLSn and CNLSo 

were excluded from this analysis because there are no formulae available for estimating the 

CN1 and CN3 from CN2 for λ value other than 0.2. 

 Table 4.9a and 4.9b shows the performance statistic along with the resulting RMSE, R2 

and E values, used to test the accuracy of all four sets of CNs in runoff estimation. As seen 

from this table, CNHT values derived from plot characteristics do not estimate the runoff from 

these plots as accurately as do the other CNs. As seen from these tables, both E and R2 show 

the estimated runoff based on all four CNs to be poorly matching (except for a few plots) the 

observed runoff. In general, CNLSMo performed the best of all, and CNm better than CNHT.  
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Table 4.9a Performance statistic for runoff estimation using CNHT and CNm 

Plot 

No. 

NEH-4 Table (λ=0.20)  NEH-4 method (natural data, λ=0.20) 

CNHT R2 E RMSE (mm)  CNm  E RMSE (mm) 

1 81 0.543 0.451 8.631  79.93  0.465 8.518 

2 72 0.154 -0.042 13.029  80.09  0.371 10.126 

3 81 0.505 0.365 9.708  81.51  0.373 9.649 

4 76 0.597 0.357 8.875  75.05  0.439 8.290 

5 85 0.601 0.551 7.429  75.52  0.387 8.679 

6 76 0.641 0.496 6.454  70.87  0.596 5.780 

7 78 0.805 0.321 10.935  82.19  0.544 8.966 

8 78 0.921 0.474 9.307  80.24  0.606 8.062 

9 85 0.884 0.751 7.680  84.81  0.499 10.909 

10 66 0.025 -0.264 16.483  82.06  0.426 11.106 

11 66 0.013 -0.231 13.397  78.38  0.530 8.276 

12 77 0.660 0.305 10.284  78.95  0.526 8.499 

13 67 0.001 -1.296 8.240  74.49  -1.047 7.779 

14 67 0.092 -1.120 9.828  78.5  -0.195 7.377 

15 67 0.030 -1.157 8.710  76.05  -1.193 8.784 

16 67 0.056 -0.349 9.536  77.97  0.421 6.157 

17 67 0.023 -0.504 8.204  75.49  0.011 6.553 

18 67 0.134 -0.263 12.027  82.26  0.750 5.276 

19 58 0.040 -1.376 5.484  64.73  -3.604 7.448 

20 58 0.001 -1.160 8.189  73.07  -1.054 7.802 

21 58 0.000 -0.752 10.503  77.88  0.015 7.740 

22 74 0.135 -2.033 6.990  69.61  -3.319 10.089 

23 74 0.290 -0.146 6.340  68.9  -0.929 8.100 

24 74 0.390 -0.305 5.879  70.59  -1.390 7.956 

Mean 0.314 -0.289 9.256    -0.241 8.247 
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Table 4.9b Performance statistic for runoff estimation using CNLSMn and CNLSMo 

Plot 

No. 

LSM (Natural data, λ=0.20)  LSM (Ordered data, λ=0.20) 

CNLSMn R2 E RMSE (mm)  CNLSMo R2 E RMSE (mm) 

1 79.93 0.514 0.387 9.123  81.01 0.543 0.452 8.625 

2 80.09 0.470 0.382 10.035  81.41 0.518 0.451 9.456 

3 81.51 0.520 0.400 9.442  82.75 0.550 0.474 8.837 

4 75.05 0.564 0.296 9.283  76.16 0.602 0.367 8.805 

5 75.52 0.414 0.172 10.081  76.99 0.638 0.560 7.355 

6 70.87 0.313 0.152 8.372  71.94 0.437 0.226 7.999 

7 82.19 0.868 0.643 7.925  82.46 0.872 0.663 7.700 

8 80.24 0.943 0.640 7.706  80.39 0.943 0.651 7.589 

9 84.81 0.883 0.739 7.869  85.04 0.884 0.754 7.637 

10 82.06 0.759 0.573 9.578  82.83 0.766 0.622 9.040 

11 78.38 0.767 0.477 8.728  79.16 0.778 0.530 8.275 

12 78.95 0.701 0.437 9.256  80.01 0.718 0.508 8.658 

13 74.49 0.141 -0.984 7.659  74.74 0.316 -0.577 6.829 

14 78.5 0.451 -0.181 7.336  79.72 0.481 -0.121 7.145 

15 76.05 0.274 -0.598 7.498  77.10 0.304 -0.557 7.401 

16 77.97 0.490 0.336 6.688  78.59 0.612 0.598 4.252 

17 75.49 0.313 -0.038 6.816  75.94 0.331 -0.019 6.754 

18 82.26 0.779 0.748 5.377  82.92 0.795 0.775 5.077 

19 64.73 0.000 -1.548 5.680  67.47 0.060 -1.356 5.461 

20 73.07 0.110 -0.813 7.503  74.79 0.165 -0.743 7.357 

21 77.88 0.310 -0.032 8.061  78.96 0.346 0.021 7.851 

22 69.61 0.047 -1.791 6.705  71.43 0.081 -1.848 6.773 

23 68.9 0.154 -0.224 6.553  72.23 0.177 -0.378 6.953 

24 70.59 0.315 -0.288 5.839  73.76 0.386 -0.386 5.860 

mean 0.463 -0.005 7.880  - 0.513 0.069 7.404 
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The reason for CNHT to have performed most poorly is that these are the generalized values 

derived from small watersheds of United States for high magnitude P-Q events (or high CN 

values). As seen from Tables 4.9a and 4.9b, for 15 out of 24 plots, a simple mean of the 

observed runoff was a better estimate (due to negative E values) than that due to CNHT. CNHT 

estimates reasonably correlated (E > 0.50) with observed runoff for only two plots. Similarly, 

the mean of observed runoff series was a better estimate for 8 out of 24 plots than that due to 

CNLSn or CNLSMo. The runoff estimated by CNLSMn and CNLSMo was reasonably close (E > 

0.50) to the observed for 5 and 9 plots, respectively. 

From Figures 4.23 & 4.26–4.27, and Tables 4.9a & 4.9b, it is evident that the general 

agreement between CNHT and CNm, CNLSMn or CNLSMo is poor, consistent with that reported 

elsewhere (D’Asaro et al. 2014; Fennessey 2000; Feyereisen et al. 2008; Hawkins 1984; 

Hawkins and Ward 1998; Sartori et al. 2011; Stewart et al. 2012; Titmarsh et al. 1989, 1995, 

1996; Tedela et al. 2012; Taguas et al. 2015). As an alternative to CNHT, the best CN-values 

based on the highest R2, E (or lowest RMSE) as given in Tables 4.9a & 4.9b are suggested for 

each of 24 plots. As seen, CNLSMo ranked first for 20 out of 24 plots whereas each of CNHT and 

CNLSMn ranked first on only 2 plots. Therefore, CNLSMo are suggested as a preference over 

CNHT for use in areas with similar plot characteristics and climatic conditions. 

4.2.4 Relationship between ordered (i.e. CNLSMo) and natural (i.e. CNLSMn) data CNs 

The graphical representation between ordered CNs (i.e. CNLSMo) and natural data CNs (i.e. 

CNLSMn) is given in Figure 4.30.  As expected, CN values derived from ordered data (CNLSMo) 

are higher than CN values derived from natural data (CNLSMn). From this figure, CNLSMo 

values are seen to be higher than CNLSMn, consistent with that reported elsewhere (Ajmal et al. 

2015a; D’Asaro and Grillone 2012; D’Asaro et al. 2014; Hawkins et al. 2009; Stewart et al. 

2012). It is for obvious reasons that the former CN values derived from frequency matched P 

and Q data will always be higher than the latter ones derived from natural data as Q 

corresponding to a P of certain frequency will always be higher than or equal to the observed 

Q. CN values derived for individual plots using ordered dataset differ from 0.15 to 3.22 CN 

compared with those derived from natural data. The trend between CNLSMo and CNLSMn allow a 

conversion as given in Equation 4.1: 

CNLSMo = 0.005 (CNLSMn)2 + 0.182 CNLSMn + 36.83; R2 =0.990; SE=0.552 CN                  (4.1) 
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Figure 4.30 CN plot for CNLSMo vs CNLSMn 

 

Figure 4.31 Cumulative frequency distribution of model fitted -values for 27 plot-datasets 
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4.3 DERIVATION OF INITIAL ABSTRACTION RATIO () VALUES 

The optimized λ-values derived for different P-Q (both ordered and natural) data sets observed 

at 27 runoff plots are shown in Table 4.8. As seen, the optimized λ–values derived for both 

natural (ranging from 0 to 0.208) and ordered (ranging from 0 to 0.659) P–Q datasets are seen 

to vary widely from plot to plot with 0 as the most frequent value. The cumulative frequency 

distribution of λ-values for both datasets given in Figure 4.31 shows that λ values are larger for 

ordered data, the distribution is skewed, and most λ-values (out of 27, 26 for natural and 21 for 

ordered P–Q datasets) are less than the standard λ=0.2 value. 

The mean and median λ-values are 0.030 & 0 for natural, and 0.108 & 0 for ordered 

data, quite different from standard λ = 0.20, but consistent with the results of other studies 

carried out elsewhere (Ajmal et al. 2015a; Baltas et al. 2007; D’Asaro and Grillone 2012; 

D’Asaro et al. 2014; Elhakeem and Papanicolaou 2009; Fu et al. 2011; Hawkins and Khojeini 

2000; Hawkins et al. 2002; Menberu et al. 2015; Shi et al. 2009; Yuan et al. 2014; Zhou and 

Lei 2011). 

 

 

Figure 4.32 Relationship between Ia and S for 27 plots natural occurred P-Q datasets 
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In addition, the existence of Ia-S relationship for different plots was also investigated 

using the whole data of 27 plots. In contrast to the existing notion, Ia when plotted against S 

(Figures 4.32 and 4.33) exhibited no correlation for both natural and ordered datasets, 

consistent with the findings of Jiang (2001).  

 

Figure 4.33 Relationship between Ia and S for 27 plots ordered P-Q datasets 
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Table 4.10 Performance statistic for runoff estimation using Equation 3.5 with  = 0.2 (model M0.2) and  = 0.03 (model M0.03) (Used all runoff 

producing   events) 

Plot 

No. 

n Existing SCS-CN method (=0.20) (model M0.2) Proposed method (=0.03) (model M0.03)  

r2 

(%) 

CN R2 E nt PBIAS 

(%) 

RMSE 

(mm) 

 CN R2 E nt PBIAS 

(%) 

RMSE 

(mm) 

1 18 76.16 0.701 0.626 0.69 20.04 4.71  63.65 0.739 0.726 0.03 10.22 4.04 26.74 

2 18 75.24 0.695 0.657 0.76 17.17 4.62  62.29 0.721 0.718 0.97 6.16 4.19 17.78 

3 18 78.91 0.634 0.556 0.55 18.78 6.05  68.03 0.666 0.648 0.94 10.68 5.38 20.72 

4 12 68.01 0.899 0.875 1.97 -0.78 2.00  51.67 0.985 0.979 0.74 11.52 0.83 83.20 

5 12 67.09 0.507 0.341 0.29 23.46 4.44  51.13 0.731 0.627 6.16 33.18 3.34 43.40 

6 12 65.25 0.941 0.890 2.17 -41.82 1.59  45.58 0.966 0.966 0.72 2.11 0.89 69.09 

7 13 82.84 0.925 0.918 2.65 7.48 3.52  75.46 0.928 0.928 4.69 -1.47 3.29 12.20 

8 13 80.84 0.969 0.969 4.97 1.20 2.10  72.66 0.960 0.952 2.91 -10.80 2.64 -54.84 

9 13 82.80 0.936 0.928 2.88 8.55 3.27  75.41 0.941 0.941 3.76 -0.33 2.93 18.06 

10 13 77.11 0.890 0.875 1.95 11.59 3.33  66.42 0.909 0.910 3.33 1.65 2.83 28.00 

11 13 74.93 0.856 0.849 1.69 8.64 3.43  62.95 0.873 0.873 2.48 -0.73 3.14 15.89 

12 13 74.91 0.766 0.738 1.04 17.17 4.48  63.00 0.792 0.788 1.93 8.37 4.03 19.08 

13 13 74.49 0.808 0.509 0.49 21.91 3.81  60.85 0.810 0.724 1.27 11.09 2.86 43.79 

14 13 78.50 0.407 -0.217 -0.06 23.26 7.45  67.44 0.419 0.096 0.98 17.33 6.42 25.72 
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Table 4.10 (continued) 

Plot 

No. 

n Existing SCS-CN method (=0.20) (model M0.2) Proposed method (=0.03) (model M0.03)  

r2 

(%) 

CN R2 E nt PBIAS 

(%) 

RMSE 

(mm) 

 CN R2 E nt PBIAS 

(%) 

RMSE 

(mm) 

15 13 76.05 0.518 -0.015 0.03 24.58 5.98  63.41 0.532 0.299 0.09 16.08 4.97 30.94 

16 11 77.97 0.612 0.468 0.46 16.72 5.80  66.46 0.624 0.598 0.24 7.63 5.13 24.44 

17 11 75.49 0.804 0.679 0.85 18.97 3.73  62.45 0.812 0.796 0.65 6.47 2.98 36.45 

18 11 82.26 0.657 0.608 0.68 8.48 6.61  73.69 0.661 0.655 1.32 2.93 6.20 11.99 

19 11 67.48 0.415 -0.390 -0.11 45.43 4.44  50.26 0.480 0.136 0.79 25.33 3.50 37.84 

20 11 73.70 0.489 -0.089 0.00 33.27 5.68  59.67 0.517 0.282 0.13 20.13 4.61 34.07 

21 11 77.80 0.440 0.152 0.14 23.24 7.18  66.13 0.456 0.347 0.24 14.85 6.30 23.00 

22 13 69.61 0.330 -0.718 -0.21 39.32 5.26  53.13 0.362 -0.151 0.30 24.22 4.31 33.00 

23 11 69.63 0.127 -0.554 -0.16 46.94 7.11  53.76 0.161 -0.178 -0.03 29.67 6.19 24.20 

24 13 70.59 0.155 -0.676 -0.20 38.47 6.66  54.49 0.189 -0.228 -0.03 25.20 5.70 26.73 

25 11 90.36 0.675 0.484 0.46 7.84 6.57  86.50 0.678 0.554 -0.06 7.41 6.11 13.57 

26 11 86.84 0.716 0.622 0.71 7.38 5.08  80.88 0.731 0.690 0.57 5.54 4.61 17.99 

27 11 84.62 0.606 0.499 0.48 8.98 5.42  77.05 0.628 0.584 0.88 6.54 4.94 16.97 

Mean 76.28 0.647 0.392 0.93 16.90 4.83  64.24 0.677 0.565 1.36 10.78 4.16 28.45 
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M0.03 were much lower than those due to M0.2, indicating an improvement in model 

performance. M=0.2 performance was unsatisfactory, satisfactory, good, and very good on the 

data of 6, 10, 1, and 9 plots out of 27 plots, respectively. On the other hand, M0.03 performance 

was unsatisfactory, satisfactory, good, and very good on 4, 4, 6 and 13 plots out of 27 plots, 

respectively.  

Thus, based on the mean PBIAS values, M0.03 performed good (=10.78) whereas M1 

performed satisfactorily (=16.90). For further analysis based on nt, M0.2 exhibited satisfactory 

or good performance on 11 plots out of 27 plots. The performance improved to 16 plots when 

used M0.03. The improved M0.03 model performance is also supported by the higher r2-value. As 

shown in Figure 4.34, the significant improvement in E (or r2) using M0.03 model was observed 

in 26 out of the 27 study plots. On the contrary, the runoff predictions by M0.03 model were 

debased (r2 ≤ 0) in only one plot. Overall, as seen from Table 4.10 and Figure 4.36, M0.03 

performed better than M=0.2. 

 

Figure 4.34 The cumulative frequency distribution of improvement in E using r2 criteria 
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3.5. As seen, the rising trends are similar to each plot. In general, CN is seen to increase with λ. 

It is for the reason that for a given P-Q data, an increase in λ would require an increase in CN 

(or decrease in S) to obtain the same Q-value for a given P. Furthermore, variation in CN 

narrows down with increasing λ-values. 

 To indicate the most appropriate λ-value, variation of E with λ was plotted as shown in 

Figure 4.36. In general, E showed a decreasing trend with λ for all 5 plots, consistent with the 

findings of Woodward et al. (2004) and Yuan et al. (2014). It implies that low λ-value provides 

a better prediction of runoff, and vice versa. To show the sensitivity of λ to runoff (employing 

Equation 3.15), for a given CN=78.92 and P=30 mm, the estimated runoff increased by 165% 

when  decreased (by 90%) from 0.2 to 0.02 consistent with the findings of Yuan et al. (2014) 

(Figure 4.37). 

 

 

Figure 4.35 Variation in CNs (AMC-II) with λ for 5 plot-data 
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            Figure 4.36 Variation in E with λ 

 

 

 

 
Figure 4.37 Relationship between relative increase in estimated runoff (%) vs relative decrease 

in  (%) 
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4.3.3 Conjugate CN conversion from CN0.2 to CN0.03 

It's commonly known that existing NEH-4 CNs are based on λ value equal to 0.2. Therefore, a 

transformation of CNs from λ = 0.2 to λ = 0.03 is imperative before using λ = 0.03 in runoff 

modeling. To this end, an empirical conversion equation based on direct least squares fitting of 

27 plots natural data sets for converting CNs associated with λ = 0.2 (CN0.2) to λ = 0.03 

(CN0.03) is proposed as follows (Figure 4.38):  

S0.03 = 0.614 (S0.2)1.248; R2 = 0.9948; SE = 0.035 mm                                                            (4.2) 

In Equation 4.2, maximum potential retention (S) is in mm and S0.03 = S0.2 at 7.148 mm or CN0.2 

= 97.268. The plot of graphical representation of ratio of S0.03 to S0.2 (i.e. S0.03/S0.2) with mean 

ratio of Q to P (i.e. Rcm) is given in Figure 4.39. From this figure, the S0.03/S0.2 ratio was seen 

to be inversely related to Rcm.  

 

Figure 4.38 Plot of fitting between S0.2 and S0.03 for 27 agricultural plots data 
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Figure 4.39 plot of ratio of S0.03 to S0.2 (i.e. S0.03/S0.2) vs Rcm 
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Figure 4.40 Rainfall and runoff for three pair of CNs associated with  = 0.2 (CN0.2) to  = 

0.03 (CN0.03) 
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Table 4.11 Performance statistic for runoff estimation using CNHT associated to λ=0.20 (CNHT0.20) and λ=0.03 (CNHT0.03)   

Plot 

No. 

CNHT associated to λ=0.20  CNHT associated to λ=0.03 r2 

(%) CNHT0.20 R2 E RMSE (mm)  CNHT0.03 R2 E RMSE (mm) 

1 81 0.543 0.451 8.631  71.59 0.602 0.514 8.121 11.48 

2 72 0.154 -0.042 13.029  57.28 0.465 0.143 11.187 17.75 

3 81 0.505 0.365 9.708  71.59 0.579 0.448 9.054 13.07 

4 76 0.597 0.357 8.875  63.48 0.706 0.476 8.010 18.51 

5 85 0.601 0.551 7.429  78.23 0.623 0.615 6.880 14.25 

6 76 0.641 0.496 6.454  63.48 0.710 0.595 5.783 19.64 

7 78 0.805 0.321 10.935  66.69 0.895 0.424 10.075 15.17 

8 78 0.921 0.474 9.307  66.69 0.958 0.545 8.663 13.50 

9 85 0.884 0.751 7.680  78.23 0.902 0.759 7.569 3.21 

10 66 0.025 -0.264 16.483  48.56 0.730 -0.041 14.957 17.64 

11 66 0.013 -0.231 13.397  48.56 0.785 0.043 11.812 22.26 

12 77 0.660 0.305 10.284  65.08 0.758 0.419 9.408 16.40 

13 67 0.001 -1.296 8.240  49.96 0.207 -0.497 6.653 34.80 

14 67 0.092 -1.120 9.828  49.96 0.413 -0.747 8.922 17.59 

15 67 0.030 -1.157 8.710  49.96 0.304 -0.589 7.476 26.33 

16 67 0.056 -0.349 9.536  49.96 0.441 0.034 8.071 28.39 
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Table 4.11 (continued) 

Plot 

No. 

CNHT associated to λ=0.20  CNHT associated to λ=0.03 r2 

(%) CNHT0.20 R2 E RMSE (mm)  CNHT0.03 R2 E RMSE (mm) 

17 67 0.023 -0.504 8.204  49.96 0.351 0.030 6.588 35.51 

18 67 0.134 -0.263 12.027  49.96 0.591 -0.023 10.822 19.00 

19 58 0.040 -1.376 5.484  38.16 0.300 -0.513 4.377 36.32 

20 58 0.001 -1.160 8.189  38.16 0.135 -0.932 7.743 10.56 

21 58 0.000 -0.752 10.503  38.16 0.170 -0.699 10.343 3.03 

22 74 0.135 -2.033 6.990  60.35 0.256 -0.905 5.539 37.19 

23 74 0.290 -0.146 6.340  60.35 0.367 0.158 5.434 26.53 

24 74 0.390 -0.305 5.879  60.35 0.447 0.156 4.729 35.33 

Mean 0.314 -0.289 9.256  - 0.529 0.017 8.259 23.74 
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Figure 4.41 The cumulative frequency distribution of improvement in NSE using r2 criteria 
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from Table 4.13, the CN=69.905exp0.0077θo1 was found to produce better runoff estimates as 

compare to CN=79.82exp0.0011P5. The use of CN=69.905exp0.0077θo1 relationship found to 

improve mean R2 and E from 0.738 and 0.342 to 0.801 and 0.715, respectively as compared to 

CN=79.82exp0.0011P5.  Similarly, the mean RMSE was also improved from 4.738 mm to 3.650 

mm upon employment of moisture-CN relationship. 
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Table 4.12 Performance of various relations between CN and AWC indices  

 1-day antecedent soil moisture 

(θo1) 

3-day average antecedent soil 

moisture (θo3) 

5-day average antecedent soil 

moisture (θo5) 

5-day antecedent rainfall (P5) 

 Re (%) R2 E Bias 

(e) 

Re 

 (%) 

R2 E Bias 

(e) 

Re (%) R2 E Bias 

(e) 

Re 

(%) 

R2 E Bias 

(e) 

Linear regression model (Equation 3.17) 

Calibration 8.58 0.737 0.610 0.51 14.68 0.722 0.493 0.87 14.34 0.704 0.460 0.85 9.51 0.708 0.511 0.56 

Validation 16.15 0.835 0.726 0.96 21.31 0.830 0.676 1.26 23.13 0.829 0.649 1.37 17.90 0.816 0.699 1.06 

Exponential regression model (Equation 3.18) 

 CN=69.905exp0.0077θo1 CN=73.284exp0.0058θo3 CN=74.617exp0.005θo5 CN=79.82exp0.0011P5 

Calibration 6.71 0.736 0.620 0.39 11.93 0.730 0.512 0.71 12.02 0.709 0.476 0.71 6.06 0.709 0.532 0.36 

Validation 13.91 0.837 0.737 0.83 18.43 0.829 0.693 1.09 19.00 0.829 0.674 1.13 14.23 0.817 0.716 0.84 

Logarithmic regression model (Equation 3.19) 

Calibration 12.48 0.730 0.560 0.74 15.74 0.718 0.473 0.93 15.28 0.703 0.451 0.90 14.01 0.708 0.441 0.83 

Validation 21.21 0.830 0.686 1.26 23.43 0.830 0.652 1.39 23.26 0.829 0.640 1.38 25.94 0.816 0.632 1.54 
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Table 4.13 Performance statistic for runoff estimation using CN relationship with θo1 and P5 

Plot No. 
CN=69.905exp0.0077θo1 

 
CN=79.82exp0.0011P5 

R2 E RMSE (mm)  R2 E RMSE (mm) 

1 0.812 0.796 5.373  0.710 0.699 6.517 

3 0.807 0.702 6.739  0.694 0.677 7.016 

7 0.964 0.952 2.693  0.914 0.896 3.968 

8 0.945 0.935 3.071  0.971 0.969 2.111 

9 0.933 0.920 3.447  0.923 0.904 3.775 

10 0.921 0.898 3.010  0.898 0.827 3.921 

11 0.864 0.744 4.470  0.864 0.711 4.748 

14 0.642 0.508 5.013  0.631 0.449 5.306 

15 0.813 0.760 2.932  0.668 0.385 4.691 

16 0.914 0.912 1.838  0.872 0.714 3.313 

17 0.804 0.587 2.576  0.834 -0.765 5.324 

18 0.962 0.861 3.194  0.973 0.969 1.498 

20 0.584 0.466 3.364  0.393 -0.925 6.390 

21 0.605 0.602 4.429  0.428 0.193 6.308 

22 0.545 0.145 3.740  0.427 -1.403 6.268 

23 0.779 0.758 2.637  0.619 0.085 5.124 

24 0.724 0.612 3.516  0.732 0.428 4.271 

Mean 0.801 0.715 3.650  0.738 0.342 4.738 

4.5 EVALUATION OF AMC BASED CN–CONVERSION FORMULAE 

The five existing (MC1-MC5) and three (MC6-MC8) developed CN–Conversion formulae are 

shown in Table 3.2. Here, it is to note that P-Q data from locally monitored (i.e. Roorkee 

experimental site) and published literature have been used in calibration and validation of these 

existing and developed formulae. Out of 63 (1-27 and 36-71 of Table 3.1), P–Q data from 39 

plots/watersheds were used in development of MC1-MC8. The remaining 24 plot/watershed 

datasets were used in validation. The plots nos. 28-35 were excluded from this analysis due to 

unavailability of sufficient number of P-Q events and P5 values.  

4.5.1 Comparison using NEH-4 CN Tables 

Considering the NEH–4 CN-values for AMC-1 and AMC-3 as target values, the comparative 

performance evaluation of the proposed formulae with the existing one is accomplished in two 
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steps. First, the representative CN2 values for AMC–2 condition for the plot/watershed 40–63 

used in validation were derived from NEH–4 tables using HSG, land use, and land condition, 

as shown in Table 4.14. Secondly, the derived CN2 values were converted into CN1 or CN3 

using the existing as well as proposed formulae (MC1 to MC7) (Table 4.14). Here, it is notable 

that MC8 was excluded from the analysis, for the reason it employs λ=0.03 whereas MC1-

MC7 and NEH–4 CNs employ λ =0.20.  

Considering the above NEH–4 CNs as target, the performance of the existing (MC1 to 

MC5) and proposed (MC6, MC7) formulae is evaluated as shown in Figures 42–55. As seen, 

the existing formulae outperform the proposed ones based on E and RMSE criteria. In Figures 

47–48, the 1:1 plots show that the CN1 estimated by MC6 and MC7 clearly over-estimate CN1 

values as compared to the CN1 estimated by other methods (Figures 42–46). Similarly, Figures 

54–55 shows that CN3 estimated by M6 and MC7 are under-estimated as compared to CN3 

estimated by other methods (Figures 49–53). The proposed relations, however, performed 

equally well as did the other existing ones, as seen from R2 values. Based on E- and RMSE-

dependent performance, the models can be ranked as follows: 

MC1 ˃ MC2 ˃ MC5 > MC4 > MC3 > MC6 > MC7  (for CN2 to CN1) 

MC1 ˃ MC2 ˃ MC4 > MC3 > MC5 > MC6 > MC7  (for CN2 to CN3) 

Here, MC1–MC5 formulae have outperformed because these were developed from the 

same CN-dataset used here as targeted values, i.e. the same NEH–4 AMC defining tabular CN 

values. Therefore, the degree of agreement between computed and targeted CNs for MC1–

MC5 shall be high compared to MC6 or MC7. Moreover, the CNs given in NEH–4 AMC 

defining tables are the generalized values derived from the annual maximum P–Q datasets 

monitored at USA watersheds; and a mathematical linear relationship between these CNs will 

always show a higher R2 as it was obtained in the development of Equations 2.15 & 2.16. 

Further, the Hawkins et al. (1985) (i.e. MC1) and Mishra et al. (2008b) (i.e. MC2) had also 

used the data smoothening technique that further improves the agreement fit between the 

mathematical linear relationships of generalized values. In contrast, the fitting R2-values as 

shown in Table 3.2 for MC6, MC7 and MC8 widely vary from 0.640 to 0.715 for CN3, and 

0.472 to 0.760 for CN1. The reason for having these slightly lower fitting R2 might be least 

square fit of Equation 3.20 using by the un smoothen CNs series derived directly from the 

observed P–Q of heterogeneous characteristics watersheds. 
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Table 4.14 Curve number (CN2) conversion to CN1 and CN3 using various criterion 

Plot 

No. 

CN2 NEH-4 table MC1 MC2 MC3 MC4 MC5 MC6 MC7 

CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 

40 72 53 86 52.99 85.76 53.05 85.67 51.92 85.54 52.42 86.43 53.41 86.93 57.23 83.58 58.29 82.89 

41 72 53 86 52.99 85.76 53.05 85.67 51.92 85.54 52.42 86.43 53.41 86.93 57.23 83.58 58.29 82.89 

42 72 53 86 52.99 85.76 53.05 85.67 51.92 85.54 52.42 86.43 53.41 86.93 57.23 83.58 58.29 82.89 

43 72 53 86 52.99 85.76 53.05 85.67 51.92 85.54 52.42 86.43 53.41 86.93 57.23 83.58 58.29 82.89 

44 72 53 86 52.99 85.76 53.05 85.67 51.92 85.54 52.42 86.43 53.41 86.93 57.23 83.58 58.29 82.89 

45 72 53 86 52.99 85.76 53.05 85.67 51.92 85.54 52.42 86.43 53.41 86.93 57.23 83.58 58.29 82.89 

46 62 42 79 41.70 79.26 41.76 79.14 40.66 78.96 41.14 80.17 42.57 80.07 45.92 76.36 46.99 75.45 

47 62 42 79 41.70 79.26 41.76 79.14 40.66 78.96 41.14 80.17 42.57 80.07 45.92 76.36 46.99 75.45 

48 62 42 79 41.70 79.26 41.76 79.14 40.66 78.96 41.14 80.17 42.57 80.07 45.92 76.36 46.99 75.45 

49 74 55 88 55.51 86.95 55.57 86.87 54.45 86.75 54.94 87.58 55.70 88.15 59.69 84.93 60.73 84.28 

50 74 55 88 55.51 86.95 55.57 86.87 54.45 86.75 54.94 87.58 55.70 88.15 59.69 84.93 60.73 84.28 

51 74 55 88 55.51 86.95 55.57 86.87 54.45 86.75 54.94 87.58 55.70 88.15 59.69 84.93 60.73 84.28 

52 71 52 86 51.77 85.15 51.83 85.06 50.70 84.92 51.19 85.85 52.28 86.30 56.02 82.90 57.09 82.18 

53 51 31 70 31.33 70.91 31.39 70.76 30.42 70.54 30.84 72.06 31.23 70.92 35.13 67.33 36.12 66.23 

54 55 35 74 34.89 74.11 34.94 73.97 33.92 73.76 34.37 75.18 35.31 74.45 38.87 70.76 39.90 69.72 

55 65 45 82 44.88 81.31 44.94 81.20 43.82 81.03 44.31 82.15 45.75 82.26 49.14 78.62 50.22 77.77 

 

 



- 115 - 

 

Table 4.14 (continued) 

Plot 

No. 

CN2 NEH-4 table MC1 MC2 MC3 MC4 MC5 MC6 MC7 

CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 CN1 CN3 

56 76 58 89 58.13 88.12 58.19 88.04 57.08 87.93 57.57 88.70 58.05 89.32 62.23 86.24 63.25 85.64 

57 70 51 85 50.57 84.53 50.63 84.44 49.50 84.29 49.99 85.25 51.17 85.66 54.84 82.20 55.90 81.47 

58 67 47 83 47.09 82.62 47.15 82.52 46.03 82.36 46.52 83.42 47.89 83.66 51.37 80.08 52.45 79.28 

59 66 46 82 45.98 81.97 46.04 81.87 44.91 81.70 45.41 82.79 46.82 82.97 50.25 79.35 51.33 78.53 

60 75 57 88 56.81 87.54 56.87 87.46 55.75 87.34 56.24 88.14 56.86 88.74 60.95 85.59 61.98 84.97 

61 71 52 86 51.77 85.15 51.83 85.06 50.70 84.92 51.19 85.85 52.28 86.30 56.02 82.90 57.09 82.18 

62 77 59 89 59.48 88.69 59.54 88.62 58.44 88.51 58.92 89.24 59.25 89.89 63.53 86.89 64.53 86.32 

63 73 54 87 54.24 86.36 54.30 86.28 53.17 86.15 53.67 87.01 54.55 87.55 58.45 84.26 59.50 83.59 
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Figure 4.42 Performance of AMC based CN1 conversion employing MC1. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

 

Figure 4.43 Performance of AMC based CN1 conversion employing MC2. The plots include 1-

to-1 lines and goodness-of-fit statistics. 
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Figure 4.44 Performance of AMC based CN1 conversion employing MC3. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

 

Figure 4.45 Performance of AMC based CN1 conversion employing MC4. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

20

30

40

50

60

70

20 30 40 50 60 70

M
C

3
 C

N
1

NEH-4 CN1

E = 0.9767

RMSE = 1.0672 CN

R2 = 0.9985

20

30

40

50

60

70

20 30 40 50 60 70

M
C

4
 C

N
1

NEH-4 CN1

E = 0.9924

RMSE = 0.6072 CN

R2 = 0.9985



- 118 - 

 

 

Figure 4.46 Performance of AMC based CN1 conversion employing MC5. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

 

Figure 4.47 Performance of AMC based CN1 conversion employing MC6. The plots include 1-

to-1 lines and goodness-of-fit statistics. 
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Figure 4.48 Performance of AMC based CN1 conversion employing MC7. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

 

Figure 4.49 Performance of AMC based CN3 conversion employing MC1. The plots include 1-

to-1 lines and goodness-of-fit statistics. 
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Figure 4.50 Performance of AMC based CN3 conversion employing MC2. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

 

Figure 4.51 Performance of AMC based CN3 conversion employing MC3. The plots include 1-

to-1 lines and goodness-of-fit statistics. 
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Figure 4.52 Performance of AMC based CN3 conversion employing MC4. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

 

Figure 4.53 Performance of AMC based CN3 conversion employing MC5. The plots include 1-

to-1 lines and goodness-of-fit statistics. 
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Figure 4.54 Performance of AMC based CN3 conversion employing MC6. The plots include 1-

to-1 lines and goodness-of-fit statistics. 

 

Figure 4.55 Performance of AMC based CN3 conversion employing MC7. The plots include 1-

to-1 lines and goodness-of-fit statistics. 
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4.5.2 Performance evaluation of AMC conversion formulae using field data 

As shown in section 4.5.1, MC1–MC5 excelled because they were applied to the same AMC-

conversion NEH-4 dataset from which they were originally developed whereas the proposed 

ones did not, and therefore, performed relatively much poorly. To make the evaluation more 

realistic, there is a need of testing these formulae on the real field data employing P–Q datasets 

observed from watersheds of heterogeneous characteristics and climatic conditions. Despite the 

use of different datasets, CN1 and CN3 values derived for MC6 or MC7 were well correlated 

with the original AMC Table based CNs, justifying the pragmatic applicability of the proposed 

formulae. Since the generated surface runoff heavily depends on AMC (Mishra et al. 2008b), 

the derived CN2 for watersheds 40–63 be corrected for the desired AMC level (i.e. CN1 or 

CN3) before using it further in runoff estimation. To this end, three AMC’s were calculated 

using P5 as per the criteria given in section 3.6.6. 

The derived CN2 were converted into CN1 or CN3 using the existing (MC1–MC5) as 

well as proposed (MC6–MC8) formulae, and runoff was estimated employing the standard 

NEH–4 procedure (SCS, 1972, 1985). In this procedure, the AMC corrected CNs were first 

converted into S using Equation 3.9, and then Equation 3.5 was utilized for runoff estimation.  

The MC8 uses the λ value as 0.03 in place of traditionally recommend value of λ = 0.2. 

Here it is worth to note that, in the model MC8, the choice of using λ=0.03, which is the mean 

value, resulting from the optimized λ yielded from the entire 63 plots/watersheds P–Q data 

sets. The λ for the entire 63 plots/watersheds were optimized employing the Equation 3.14. 

The results of optimized λ values from 63 watersheds natural P–Q datasets are given in 

Appendix C. As seen from this appendix, λ values vary from 0 to 0.3310 with 0.0312 and 

0.0002 as mean and median values, respectively. The figure C2 given in Appendix C shows 

the frequency histogram of optimized λ values (estimated from entire 63 plots datasets), where 

the frequency of occurrence of zero is 30. 61 out of 63 λ-values were below the standard value 

of 0.20, consistent with the results of studies carried out elsewhere (Fu et al. 2011; Shi et al. 

2009; Yuan et al. 2014; Zhou and Lei 2011). The examination of appendices B1 & B2 

reasonably justified the use of mean value λ = 0.030 in the present study. Notably, for MC8, a 

transformation of CN2 from λ = 0.2 to λ = 0.03 is mandatory before using it further in runoff 

estimation. To this end, the empirical Equation 4.3 for converting CNs from λ = 0.2 (CN0.2) to 

λ = 0.03 (CN0.03) was used. The converted CN0.03 were then corrected for the desired AMC, 

and Equation 3.5 with λ = 0.03 was utilized for runoff estimation. Similarly, for formulae 

MC1–MC7, the runoff was estimated using Equation 3.5 with standard λ = 0.20.  
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The results for runoff estimation for the watersheds 40–63 are given in appendix Tables 

D1 to D4 (appendix D) along with the resulting R2, E, d and RMSE. Moreover, the cumulative 

frequency distribution of all the four statistics R2, E, d and RMSE used for quantifying the 

performance are also shown in Figures 4.56–4.59 As seen, MC8, MC7 and MC6 found to 

show relatively high R2, E and d, and low RMSE compared to those due to existing formulae.  

Table 4.15 compares all 8 formulae based on the mean values of RMSE, E, d and R2 

derived from the analysis of 24 watershed P–Q datasets. In general, the methods can be ranked 

as follows: 

MC8 ˃ MC7 ˃ MC6 > MC2 > MC1 > MC3 > MC5 > MC4  (based on RMSE and R2) 

MC8 ˃ MC7 ˃ MC6 > MC2 > MC1 > MC5 > MC4 > MC3  (based on d and E) 

As seen from this table, compared to the best existing method MC2, the MC8 improved the 

mean R2 and d from 0.329 to 0.501 and 0.630 to 0.758, respectively. Similarly, the E and 

RMSE were also improved from -1.049 to 0.120 and 12.001 mm to 9.303 mm, respectively.   

Further to evaluating the overall performance, the MC1–MC8 methods were ranked 

based on the mean statistics viz. d, RMSE, R2 and E. To this end, a rank of 1–8 was assigned to 

show the RMSE from lowest to highest, and d, R2 and E from highest to lowest. After 

assigning of ranks, corresponding marks of 8 to 1 are given to each index. For example, a 

method having the minimum RMSE, and maximum d, R2 and E will be ranked 1. The method 

corresponding to rank 1 will be achieved to score 8 marks. Similarly, the method 

corresponding to rank 2 will be achieved to score 7 marks and so on. The overall performance 

of method was judged based on the total marks gained by method using all four statistics. The 

first rank will be given to the method scoring highest marks whereas last rank (i.e. eight) will 

be given to method scoring lowest marks. Table 4.16 shows the ranks and marks achieved by 

all methods for their respective performance indices. As seen from this table, MC8 performed 

best followed by MC7. Among existing formulae, MC2 found to perform best followed by 

MC1. Notably the performance of MC4 was least good. These results of existing formulae 

performance are consistent with Mishra et al (2008b) work.  

Based on overall score the methods performance can be described as follows:  

MC8 > MC7 > MC6 > MC2 > MC1 > MC3 > MC5 > MC4   
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Figure 4.56 The cumulative frequency distribution of improvement in R2 

 

 

Figure 4.57 The cumulative frequency distribution of improvement in E 
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Figure 4.58 The cumulative frequency distribution of improvement in d 

 

Figure 4.59 The cumulative frequency distribution of improvement in RMSE 
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Table 4.15 Mean and Standard deviation (SD) values of performance statistic for runoff 

estimation using field data 

Model 

ID 

R2  RMSE (mm)  d  E 

Mean SD  Mean SD  Mean SD  Mean SD 

MC1 0.329 0.237  12.017 8.602  0.630 0.225  -1.062 1.598 

MC2 0.329 0.238  12.001 8.569  0.630 0.225  -1.049 1.544 

MC3 0.325 0.234  12.166 8.721  0.618 0.235  -1.122 1.649 

MC4 0.322 0.237  12.344 8.713  0.620 0.228  -1.222 1.733 

MC5 0.324 0.242  12.325 8.691  0.629 0.216  -1.205 1.651 

MC6 0.373 0.251  10.724 7.769  0.678 0.197  -0.466 0.972 

MC7 0.385 0.252  10.468 7.720  0.689 0.189  -0.371 0.881 

MC8 0.501 0.198  9.303 6.787  0.758 0.135  0.120 0.373 

From Tables 4.15–4.16 and Figures 4.56–4.59, it can be inferred that MC8 performed the best 

of all, and MC7 and MC6 were better than all other existing formulae. Notably, MC2 followed 

by MC1 performed the best of all existing formulae. The results also indicate that CN 

methodology has an improved runoff simulation capability, if λ =0.03 and AMC corrected CNs 

are used in MC8. Here, it is noted that the RMSE variation (9.303–12.017 mm) might appear 

to be insignificant, it is however significant in volumetric terms, when the depth is multiplied 

by a large value of catchment area. 

The K-W test was used for multiple comparison of runoff estimated by MC1-MC8, and 

the results are shown in Table 4.17. As seen, the runoff due to existing formulae (i.e. MC1–

MC5) is not significantly different at 0.05 significance level for all 24 watersheds. Similar 

results were also obtained when all eight (i.e. MC1–MC8) formulae were compared together. 

As seen from the Table 4.17 with different grouping patterns, the runoff estimated by the 

MC1–MC8 is not significantly different for 22 out of 24 watersheds. The runoff due to MC8 

was significantly different in only 2 watersheds (i.e. 53, 54) when compared with the existing 

formulae (i.e. MC1–MC5). However, the runoff due to MC8 was insignificantly different in all 

24 watersheds when compared with MC6 or MC7. Further, the runoff estimated by MC8 was 

significantly (p <0.05) different from the observed runoff in 3 (i.e. 47, 48, 56) out of 24 

watersheds. Similarly, the runoff estimated by existing formulae was significantly (p <0.05) 

different from the observed runoff in 3 (i.e. 53, 56, 62) out of 24 watersheds. 
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Table 4.16 Performance evaluation of AMC-conversion models based on ranks (scores) 

Performance indices (mean values) and their ranks (scores) 

Model ID R2 Rank  

 (Score) 

 RMSE 
 

Rank 

 (Score) 

 d Rank 

(Score) 

 E Rank 

 (Score) 

Total Score Overall Rank 

MC1 0.329 5 (4)  12.017 5 (4)  0.630 4 (5)  -1.062 5 (4) 17 5 

MC2 0.329 4 (5)  12.001 4 (5)  0.630 5 (4)  -1.049 4 (5) 19 4 

MC3 0.325 6 (3)  12.166 6 (3)  0.618 8 (1)  -1.122 6 (3) 10 6 

MC4 0.322 8 (1)  12.344 8 (1)  0.620 7 (2)  -1.222 8 (1) 05 8 

MC5 0.324 7 (2)  12.325 7 (2)  0.629 6 (3)  -1.205 7 (2) 09 7 

MC6 0.373 3 (6)  10.724 3 (6)  0.678 3 (6)  -0.466 3 (6) 24 3 

MC7 0.385 2 (7)  10.468 2 (7)  0.689 2 (7)  -0.371 2 (7) 28 2 

MC8 0.501 1 (8)  9.303 1 (8)  0.758 1 (8)  0.120 1 (8) 32 1 
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Table 4.17 Multiple comparisons using Least Significant Difference (LSD) grouping of runoff 

Watershed Least Significant Difference (LSD) Grouping 

Observed MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 

40 A A A A A A A A A 

Mean 8.19 6.83 6.80 6.83 7.09 7.20 6.06 5.88 6.32 

n 13 13 13 13 13 13 13 13 13 

41 A A A A A A A A A 

Mean 11.47 6.83 6.80 6.83 7.09 7.20 6.06 5.88 6.32 

n 13 13 13 13 13 13 13 13 13 

42 A A A A A A A A A 

Mean 9.63 6.83 6.80 6.83 7.09 7.20 6.06 5.88 6.32 

n 13 13 13 13 13 13 13 13 13 

43 A A A A A A A A A 

Mean 8.86 6.39 6.36 6.44 6.63 6.68 5.57 5.38 5.69 

n 11 11 11 11 11 11 11 11 11 

44 A A A A A A A A A 

Mean 7.44 6.39 6.36 6.44 6.63 6.68 5.57 5.38 5.69 

n 11 11 11 11 11 11 11 11 11 

45 A A A A A A A A A 

Mean 11.25 6.39 6.36 6.44 6.63 6.68 5.57 5.38 5.69 

n 11 11 11 11 11 11 11 11 11 

46 A A A A A A A A A 

Mean 5.09 5.88 5.84 6.13 6.21 5.79 4.41 4.08 3.13 

n 11 11 11 11 11 11 11 11 11 

47 A A, B A, B A, B A, B A, B A, B A, B B 

Mean 7.76 5.88 5.84 6.13 6.21 5.79 4.41 4.08 3.13 

n 11 11 11 11 11 11 11 11 11 

48 A A, C A, C A, C A, C A, C B, C B, C B, C 

Mean 9.49 5.88 5.84 6.13 6.21 5.79 4.41 4.08 3.13 

n 11 11 11 11 11 11 11 11 11 

49 A A A A A A A A A 

Mean 6.90 7.39 7.36 7.35 7.62 7.82 6.75 6.60 7.11 

n 13 13 13 13 13 13 13 13 13 
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Table 4.17 (continued) 

Watershed Least Significant Difference (LSD) Grouping 

Observed MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 

50 A A A A A A A A A 

Mean 6.69 6.83 6.80 6.84 7.05 7.18 6.14 5.98 6.39 

n 11 11 11 11 11 11 11 11 11 

51 A A A A A A A A A 

Mean 7.43 7.39 7.36 7.35 7.62 7.82 6.75 6.60 7.11 

n 13 13 13 13 13 13 13 13 13 

52 A A A A A A A A A 

Mean 1.65 2.77 3.17 3.27 3.40 3.39 2.07 1.91 2.55 

n 31 31 31 31 31 31 31 31 31 

53 A B, C B, C B, C B, C B, C A, C A, C A 

Mean 2.79 8.85 8.79 9.31 9.34 8.91 6.52 6.01 3.03 

n 24 24 24 24 24 24 24 24 24 

54 A, C A, C A, C B, C B, C A, C A, C A, C A 

Mean 4.34 6.88 6.83 7.16 7.29 6.80 5.16 4.80 3.25 

n 23 23 23 23 23 23 23 23 23 

55 A A A A A A A A A 

Mean 36.62 37.87 37.78 37.10 38.51 39.29 37.23 36.97 33.25 

n 13 13 13 13 13 13 13 13 13 

56 A B B B B B B B B 

Mean 29.43 6.52 6.53 6.23 6.45 6.66 7.58 7.89 8.17 

n 30 30 30 30 30 30 30 30 30 

57 A A A A A A A A A 

Mean 35.29 40.32 40.24 40.01 40.93 41.42 38.76 38.28 35.71 

n 8 8 8 8 8 8 8 8 8 

58 A A A A A A A A A 

Mean 57.78 50.46 50.39 49.73 50.97 51.83 50.13 49.96 50.80 

n 12 12 12 12 12 12 12 12 12 
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Table 4.17 (continued) 

Watershed Least Significant Difference (LSD) Grouping 

Observed MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 

59 A A A A A A A A A 

Mean 37.26 38.18 38.24 37.10 37.60 39.05 41.51 42.80 31.30 

n 48 48 48 48 48 48 48 48 48 

60 A A A A A A A A A 

Mean 15.12 13.75 13.59 13.26 13.58 13.93 14.51 14.76 16.07 

n 17 17 17 17 17 17 17 17 17 

61 A A A A A A A A A 

Mean 2.88 2.39 2.37 2.41 2.57 2.61 1.78 1.62 2.04 

n 15 15 15 15 15 15 15 15 15 

62 A B, C B, C B, C B, C B, C A, C A, C A, C 

Mean 7.52 12.61 12.56 12.48 13.04 13.56 11.33 10.95 11.59 

n 42 42 42 42 42 42 42 42 42 

63 A A, C A, C A, C A, C B, C A, C A, C A, C 

Mean 4.83 8.56 8.51 8.44 8.92 9.24 7.48 7.17 7.77 

n 40 40 40 40 40 40 40 40 40 

Note: The mean runoff (mm) with no letter (alphabet A, B, C) in common is significantly 

different at the 0.05 significance level (based on the KW test); n= number of P-Q events. 

As shown above, the analysis of KW test revealed that both the existing and proposed 

formulae behave statistically similar as estimated runoff in 22 out of 24 watersheds is not 

significantly different. However, Tables 4.15–4.16 and Figures 4.56–4.59 clearly show that the 

proposed formulae improved the results in all 24 watersheds. To analyze the improvement due 

to application of the proposed formulae over the existing ones, r2–statistic (Equation 3.29) was 

employed for assessment of relative percentage improvement in runoff estimation efficiency. 

To this end, MC8 was compared with the best existing MC2 and the second best proposed 

MC7, and the results are shown in Figure 4.60. As seen, MC8 significantly (r2 >10%) 

improved the runoff prediction efficiency (E) in all 24 watersheds when it compared with 

MC2. On the other hand, MC8 improved E in 23 out of 24 watersheds when compared with 

MC7. This improvement was, however, significant (r2 > 10%) in 20 watersheds. Compared to 

MC7, MC8 could not perform well in watershed no. 52. It might be due to employment of 

Equation 4.3 purely developed from experimental plot-data of humid sub–tropical climate with 
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agricultural land uses. Therefore, this equation may not be valid for Tropical savanna climate 

with Natural savannah land use of Brazil. Further research is needed for developing and testing 

the regional λ-based equation for broader applicability. 

 

Figure 4.60 The cumulative frequency distribution of improvement using the r2criterion 
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CHAPTER 5 

 SUMMARY AND CONCLUSIONS  

 

5.1 SUMMARY 

The present research has been carried out with an objective to investigate the SCS-CN 

methodology on experimental plot and catchment scales, particularly for the Indian climatic 

condition. The Soil Conservation Service curve number (SCS-CN) presently known as Natural 

Resources Conservation Service curve number (NRCS–CN) is widely used for predicting 

surface runoff from small agricultural watersheds, primarily because of its simplicity and the 

requirement of only two parameters for runoff prediction, which are the initial abstraction ratio 

() and the potential maximum retention (S) expressed in terms of curve number (CN). In 

practice, for ungauged watersheds, CNs are derived from the well–known National 

Engineering Handbook chapter–4 (NEH–4) tables using watershed characteristics. The 

empirical evidences however show that the use of NEH–4 tables CN values normally over-

design the hydrological systems, and therefore, use of CN values based on observed rainfall 

(P)–runoff (Q) data is recommended. Thus, there is need of such regional studies for analyzing 

the accuracy of various parameters like CN determination methods, initial abstraction 

coefficient, relative accuracy of existing AMC formulae, and relationship between CN (or S) 

and AWC etc. in runoff prediction using locally measured P–Q data. The accuracy of curve 

number method for Indian watersheds is rarely been examined due to lack of observed P–Q 

data from agricultural watershed. 

In this study, locally monitored (i.e. Roorkee experimental site falls in River Solani 

watershed) and published literature rainfall (P) and runoff (Q) data have been used. The 

experimental work was conducted during August 2012 – April 2015 (or three crop growing 

years in study area) in which P–Q data was monitored for a total 35 experimental plots of 

various slopes, land use, and hydrologic soil group (HSG) (i.e. Infiltration capacity). For local 

data collection, the plots of size 22 m length and 5 m width having four land uses: sugarcane, 

maize, black gram and fallow land and three slopes (5%, 3% and 1%) were developed. The 

surface runoff generated during rain storms was collected in separate chambers (1m × 1m × 

1m) constructed at the downstream end of each plot and the variation in depth of water stored 

with respect to time was monitored regularly, but manually. Precipitation was recorded with 

the help of Tipping Bucket rain gauge and a non-recording rain gauge installed within the 
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experimental site. Infiltration tests were conducted for each plot using the double ring 

infiltrometer (45/30) for identification of the hydrologic soil group (HSG). In addition to 

locally monitored, the P–Q data of 36 watersheds/plots having at least 10 natural events per 

watershed and cover the various climatic regions around the globe were collected from 

published literature.  

1.  Initially, rainfall−runoff behaviour pattern was analysed in study plots. Regression analysis 

were performed to investigate relationships of runoff (Q)–depth and runoff coefficient (Rc) 

with P-depth and previous day soil moisture () (%) for each plot separately. The 

summarized results of rainfall−runoff behaviour, rainfall threshold (I), and effect of soil 

type, land use and slope on runoff and Curve number are as follows: 

a)  The nonlinear variation of Rc with P is similar to the variation of Q with P, but the 

correlation between Rc and P is much lower than that between Q and P. The P–Q 

relationship was statistically significant (p<0.05) for all the tested runoff plots.  did not 

correlate well with Q as well as Rc in study plots. Theoretically, higher  means higher Q 

(or Rc), but this was not observed in the dataset. However, in the present study, Q is largely 

controlled by P, consistent with the findings of other researchers, rather than . 

b)  The rainfall threshold (I) for runoff generation was determined for each plot including all 

daily observed P–Q data and results show that highest I was observed for the plots having 

HSGs A. In contrast, the lowest I was observed for the plots having HSGs C whereas I for 

HSG B was in between HSGs A and C. The concept of I is also supported by response of 

runoff to rainfall, i.e. runoff coefficient which followed the similar pattern as does I.  

c)  The non-parametric KruskalWallis test revealed that land uses did not show any 

significant difference in Rc except sugarcane which produced significantly (p < 0.05) 

higher Rc than blackgram and fallow land uses. The HSG C had significantly higher Rc 

than did B and A, but the last ones did not differ from each other. Notably, slope did not 

show any effect on Rc as all three groups of slopes were insignificantly different from each 

other. An inverse relationship between CN and fc for all 27 study plots was detected with 

significant correlation (R2 = 0.461, p<0.01). Compared to land use and slope, fc is the main 

explanatory variable for runoff (or CN) production in the study plots. The results from this 

analysis support the applicability of NEH-4 tables where CNs decline with fc (or HSG). 

2.  The relative accuracy of different CNs determination methods was analyzed to find the best 

method for study region.  In order to check the suitability of Handbook table CNs for study 
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region, comparison of observed P-Q data-based Curve number with Handbook table CNs 

are made for which results given as follows: 

a)  P-Q data-based curve number estimation analysis show that, in general, the CNs estimated 

by Geometric-mean method are usually larger (17 of 36 plots) followed by S-probability 

(15 of 36 plots). The KW test analysis revealed that there was no single method which has 

produced significantly higher (or lower) CNs than other. Geometric-mean produced 

significantly (p < 0.05) higher CNs than M2 and M4, but it was statistically insignificant 

with others. The S-probability method proves to be best among all methods followed by 

geometric mean method. Based on overall score the methods performance can be described 

as follows: S-probability > geometric mean > storm event mean > rank order median > 

rank order mean > least square fit > storm event median > log normal frequency.  

b) The observed P–Q data CNs were considerably different from the conventional NEH-4 table 

values. P–Q derived CNs are higher than those from NEH-4 tables. However, these are 

closer for higher CN values, consistent with the general notion that the existing SCS-CN 

method performs better for high P-Q (or CN) events. The group of CNHT lower than 75 

shows a higher PBIAS (=-12.84%) than the group of CNHT higher than 75 (=1.03%).  

3. In order to find the suitable initial abstraction coefficient () value for study region, λ–

values were derived for both natural and ordered P-Q data sets of 27 plots employing least 

square fit method. The summarized results are as follows: 

a) The optimized λ–values derived for both natural (ranging from 0 to 0.208) and ordered 

(ranging from 0 to 0.659) P–Q datasets are seen to vary widely from plot to plot with 0 as 

the most frequent value. The cumulative frequency distribution of λ-values for both 

datasets shows that λ values are larger for ordered data, the distribution is skewed, and 

most λ-values (out of 27, 26 for natural and 21 for ordered P–Q datasets) are less than the 

standard λ=0.2 value. The mean and median λ-values are 0.030 & 0 for natural, and 0.108 

& 0 for ordered data, quite different from standard λ = 0.20, but consistent with the results 

of other studies carried out elsewhere 

b) In contrast to the existing notion, Ia when plotted against S exhibited no correlation for both 

natural and ordered datasets, consistent with the findings of Jiang (2001). 

c) Runoff estimation improves as λ decreases; for 26 out of 27 plots by changing -value 

from 0.2 to 0.03. A relationship between CN0.20 (λ = 0.20) and CN0.03 (λ = 0.03), useful for 

CN conversion for field application is developed. 
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4. The existence of a relationship between CN (or S) and AWC was explored to improve the 

runoff prediction using regression models between CN derived from P-Q dataset and 

corresponding observed antecedent soil moisture indices such as θo1, θo3, θo5, and P5. The 

exponential regression of CN with θo1 performed the best of all in both calibration and 

validation. However, the existing index based on 5-day antecedent rainfall (P5) exhibited a 

poor performance in comparison to one day antecedent moisture (θo1), consistent with the 

results reported elsewhere. 

5. The performance of five existing viz., Hawkins et al. (1985), Mishra et al. (2008b), Chow 

et al. (1988), Sobhani (1975), and Arnold et al. (1990) and three proposed (MC6, MC7 and 

MC8) antecedent moisture condition (AMC)-based runoff curve number (CN) conversion 

formulae was evaluated utilizing the data of a large number of naturally observed rainfall 

(P)–runoff (Q) for an experimental agricultural plots and available published data around 

the globe. For developing the MC6 and MC7 formulae, CNs were derived for P–Q datasets 

from 39 watersheds/plots using standard initial abstraction ratio (λ) values as 0.20. On the 

other hand, MC8 was developed incorporating the λ effect as 0.03. The summarized results 

from these analyses are as follows: 

a) The existing formulae outperformed the proposed formulae when tested numerically using 

the available National Engineering Handbook chapter–4 (NEH–4) tabular AMC-dependent 

CNs as target values. It might be because the existing formulae were derived from the same 

datasets used as targeted values (i.e. NEH–4 AMC defining tables).  

b) The three proposed formulae perform best followed by Mishra et al. (2008) and Hawkins et 

al. (1985) in their application to field data. Among existing formulae, Chow et al. (1988) 

and Sobhani (1975) formulae are the poorest when tested for field data.  

c)  A comparison of the results derived from the eight different methods concluded that the 

M8 formula that incorporates the effect of λ into standard SCS–CN method showed a 

superior performance in runoff simulation than the others.  

5.2 CONCLUSIONS  

The following major conclusions can be drawn from the study: 

1. Compared to land use and slope, soil type is the main explanatory variable for runoff (or 

CN) production in the study plots. CN is inversely related to infiltration capacity, which 

supports the applicability of NEH-4 tables CNs declining with infiltration capacity (or 

HSG). 
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2. The performance of the storm event mean, least square fit, log normal frequency, NEH-4 

median, and Rank order methods was found to be almost identical except for the S-

probability and geometric mean methods, which exhibited the closest agreement with 

observed runoff. 

3. CNs estimated from the handbook tables do not compare well with those derived from 

experimentation. Runoff estimates using tabulated curve numbers are unreliable to estimate 

runoff for 22 of the 24 agricultural plots investigated. Therefore, P-Q data based CNs are 

suggested as a preference over tabulated ones for use in the study area. 

4. λ is of the order of 0.03, rather than the traditional 0.20. Mean and median λ-values are 

respectively 0.030 & 0 for natural and 0.108 & 0 for ordered P–Q data. λ was greater than 

0.2 for only 1 natural plot-data and 6 ordered plot-data. Runoff estimation improves as λ 

decreases; for 26 out of 27 plots by changing -value from 0.2 to 0.03. Contrary to 

traditionally assumed Ia–S linear relationship, the present study exhibits no correlation 

between Ia and S. 

5. CNs do not correlate well with the cumulative precipitation of previous five days. CN 

showed greater dependence on the physically measured 1-day antecedent soil moisture (θo) 

rather than the other soil moisture indices considered in this study. 

6. The performance of the existing AMC-conversion formulae, viz., Sobhani (1975), Hawkins 

et al. (1985), Chow et al. (1988), Arnold et al. (1990) and Mishra et al. (2008b) was found 

to be almost identical. The proposed formula MC8 that incorporates the effect of λ=0.03 

into standard SCS–CN method performed better than the others existing and proposed 

formulae in runoff simulation. 

5.3 RESEARCH CONTRIBUTIONS 

The following research contributions can be drawn from the study: 

1. CN has a physical significance as it is correlated with the soil’s physical retention and 

transmission characteristics. 

2. Soil type plays a more dominating role in runoff generation than slope and land use. 

3. CN correlates well with physically measured soil water content.  

4. S-probability method among other 8 CN determination methods is the best in runoff 

estimation.  

5. NEH-4 CNs be used in field with caution and CNs should be derived for each watershed 

using observed data to the extent possible.  
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6. CN is inversely related with infiltration capacity (fc), supporting CNs declining with fc (or 

HSG). 

7. λ=0.03 is more appropriate than the existing λ=0.2. 

8. A new formula incorporating λ in AMC formulae is proposed and recommended for field 

use. 

9. The empirical equation was developed for converting CN0.20 into CN0.03 which can be very 

useful in field application. 

5.4 LIMITATIONS OF THE STUDY  

There are few limitations in the study which can be overcome in the near future listed as: 

1. The results of this study are limited to the experimental boundaries such as plot size, 

slopes, soils, agricultural land uses, and climatic conditions.  

2. Replication of such a study for a wider range of physical and climatic settings is imperative 

for indicating its broader applicability.  

3. An automation of measurement of data may further help refine the results of the present 

study which based on manual data collection. The automation of data measurement may 

help in investigating the development runoff hydrograph with the help of SCS method. 

5.5 SCOPE FOR FURTHER STUDY 

This research provided useful insight into the runoff estimation by SCS-CN method in the 

Solani watershed region. The present study opens scope for further research in the area of 

modelling runoff, and some of the recommendations for future works are listed below: 

1. Rainfall intensity and duration are excluded in SCS-CN method which affect Ia and λ.  

2. CN model can be further extended for the development of runoff hydrograph using λ as 

0.03.  

3. The effect of land use and land cover (i.e. seasonal effect) on CN can be investigated. 

4. Additional parameters such as soil wetness index, climate variability like 

evapotranspiration and groundwater variables (infiltration rate, water table, hydraulic 

conductivity, field capacity etc.) can be incorporated in in SCS-CN methodology.  

5. Testing the SCS-CN methodology using the data of plots having slopes greater than 5%. 

6. Use of improved RS & GIS can be made in for improving the simulation capability of the 

SCS method. 
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APPENDIX A 

Table A1 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 1, 2 and 3 

Event No. Date Rainfall(P) mm 
Runoff (Q) mm Previous day soil moisture (%) 

Plot 1 Plot 2 Plot 3 Plot 1 Plot 2 Plot 3 

1 16-Jun-13 73.00 44.77 49.84 43.76 22.70 24.27 30.87 

2 28-Jun-13 32.00 11.61 11.47 15.18 26.57 23.87 29.33 

3 20-Jul-13 88.50 28.14 29.42 31.51 17.70 21.77 25.33 

4 29-Jul-13 46.50 18.93 20.02 20.70 22.50 21.70 23.33 

5 05-Aug-13 16.80 0.37 0.04 0.38 25.73 20.93 26.57 

6 13-Aug-13 17.00 1.95 4.37 2.16 21.30 23.50 24.07 

7 22-Aug-13 42.00 3.90 1.85 7.85 17.43 18.47 19.80 

8 28-Aug-13 16.00 0.08 0.15 0.15 20.73 22.07 22.70 

9 30-Aug-13 27.40 3.74 2.19 12.28 23.97 24.47 24.17 

10 11-Oct-13 18.40 0.68 0.50 0.70 11.80 8.40 5.40 

11 18-Jan-14 53.9 5.72 3.57 4.78 19.50 21.20 22.60 

12 23-Jan-14 35.2 5.42 4.94 4.52 21.50 26.20 26.50 

13 14-Feb-14 24.8 0.64 0.45 0.02 19.10 20.50 22.50 

14 15-Feb-14 39 14.32 8.20 18.02 27.30 30.90 30.40 

15 12-03-2014 22 1.849 1.728 0.228 19.3 23.7 30.1 
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Table A2 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 4, 5 and 6 

Event No. 

  

Date 

  

Rainfall (mm) 

  

Runoff (Q) mm Previous day soil moisture (%) 

Plot 4 Plot 5 Plot 6 Plot 4 Plot 5 Plot 6  

1 16-Jun-13 73.00 38.20 39.59 30.61 27.3 22.3 19.7 

2 28-Jun-13 32.00 3.43 5.05 0.49 18.77 25.40 21.37 

3 20-Jul-13 88.50 20.14 16.73 17.32 17.60 19.53 16.23 

4 29-Jul-13 46.50 6.65 11.02 1.97 19.73 19.83 19.73 

5 05-Aug-13 16.80 0.37 0.09 0.48 21.10 22.23 22.20 

6 13-Aug-13 17.00 2.39 2.47 0.35 22.60 23.33 24.93 

7 22-Aug-13 42.00 N.A. N.A. N.A. 18.60 18.53 18.43 

8 28-Aug-13 16.00 0.23 0.04 0.08 20.37 19.63 21.30 

9 30-Aug-13 27.40 1.33 9.56 1.53 24.10 23.73 23.27 

10 11-Oct-13 18.40 0.23 0.12 0.20 8.3 7.7 5.7 
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Table A3 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 7, 8 and 9 

Event No. Date Rainfall (mm) 
Runoff (Q) mm Previous day soil moisture (%) 

Plot 7 Plot 8 Plot 9 Plot 7 Plot 8 Plot 9 

1 16-Jun-13 73.00 30.29 27.53 45.56 20.67 28.30 26.80 

2 28-Jun-13 32.00 11.43 8.31 15.84 28.47 24.07 22.13 

3 20-Jul-13 88.50 43.37 44.51 43.87 17.10 13.73 22.97 

4 29-Jul-13 46.50 20.34 10.97 13.24 22.53 24.10 26.57 

5 05-Aug-13 16.80 0.18 0.06 0.10 20.47 26.13 27.40 

6 13-Aug-13 17.00 0.68 1.12 0.92 22.17 24.07 25.87 

7 22-Aug-13 42.00 5.35 4.58 9.72 17.70 18.77 19.33 

8 28-Aug-13 16.00 0.02 0.20 0.24 22.67 23.33 24.67 

9 30-Aug-13 27.40 10.01 5.65 8.60 23.73 23.90 26.67 

10 11-Oct-13 18.40 0.30 0.11 0.18 10.30 11.20 11.60 
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Table A4 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 10, 11 and 12 

Event No. Date Rainfall (mm) 
Runoff (Q) mm Previous day soil moisture (%) 

Plot 10 Plot 11 Plot 12 Plot 10 Plot 11 Plot 12 

1 16-Jun-13 73.00 48.95 37.09 39.17 25.40 25.25 26.05 

2 28-Jun-13 32.00 13.67 13.20 15.35 20.67 23.17 21.37 

3 20-Jul-13 88.50 33.46 31.19 29.23 14.33 14.90 19.73 

4 29-Jul-13 46.50 10.56 7.74 12.84 20.27 22.97 22.07 

5 05-Aug-13 16.80 0.10 0.26 0.19 18.30 23.13 26.03 

6 13-Aug-13 17.00 0.83 0.28 1.77 24.10 23.70 25.00 

7 22-Aug-13 42.00 4.44 1.81 0.53 15.77 20.20 18.80 

8 28-Aug-13 16.00 0.24 0.38 0.31 21.50 23.07 24.73 

9 30-Aug-13 27.40 3.56 2.10 0.87 23.37 24.77 26.43 

10 11-Oct-13 18.40 0.30 0.20 0.28 8.90 12.50 12.70 
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Table A5 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 13, 14 and 15 

Event No. 

  

Date 

  

Rainfall (mm) 

  

Runoff (Q) mm Previous day soil moisture (%) 

Plot 13 Plot 14 Plot 15 Plot 13 Plot 14 Plot 15 

1 01-Jul-14 71.50 19.66 21.19 16.61 12.30 16.10 13.45 

2 02-Jul-14 29.40 8.95 14.90 8.33 28.70 31.53 31.88 

3 14-Jul-14 20.20 1.80 1.72 2.05 10.83 10.57 12.70 

4 15-Jul-14 24.20 6.44 6.08 4.18 29.07 31.67 29.83 

5 16-Jul-14 38.80 7.48 19.18 17.41 24.90 23.93 28.90 

6 18-Jul-14 54.20 10.96 20.87 17.55 20.60 21.17 22.00 

7 29-Jul-14 24.20 3.35 5.26 5.82 16.73 18.93 19.40 

8 05-Aug-14 27.00 3.90 12.47 8.14 14.37 14.70 17.37 

9 29-Aug-14 29.10 0.57 0.55 0.78 15.70 17.20 16.77 

10 06-Sep-14 68.60 17.88 16.18 19.41 19.00 20.77 21.10 

11 08-Sep-14 28.20 6.50 6.69 7.77 28.83 29.07 29.03 

12 02-Mar-15 62.40 9.83 9.80 8.26 20.00 19.30 20.53 

13 04-Apr-15 45.40 9.12 14.22 8.85 21.73 25.33 23.77 
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Table A6 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 16, 17 and 18 

Event No. 
 

Date 
 

Rainfall (mm) 
 

Runoff (Q) mm Previous day soil moisture (%) 

Plot 16 Plot 17 Plot 18 Plot 16 Plot 17 Plot 18 

1 01-Jul-14 71.50 12.20 16.04 18.79 9.00 14.00 14.00 

2 02-Jul-14 29.40 11.25 9.63 18.40 26.40 31.33 29.70 

3 14-Jul-14 20.20 1.16 0.80 0.30 9.70 10.20 9.73 

4 15-Jul-14 24.20 2.99 1.90 1.82 26.55 22.97 26.50 

5 16-Jul-14 38.80 12.51 4.86 10.94 19.90 21.77 23.60 

6 18-Jul-14 54.20 18.17 13.16 27.03 20.67 17.17 21.33 

7 29-Jul-14 24.20 0.91 2.06 0.84 15.53 15.67 19.57 

8 05-Aug-14 27.00 2.09 4.76 3.74 16.43 14.27 24.37 

9 29-Aug-14 29.10 0.24 0.05 0.78 16.73 16.57 15.80 

10 06-Sep-14 68.60 26.94 21.38 30.88 21.83 20.20 23.27 

11 08-Sep-14 28.20 9.03 7.19 10.19 29.80 29.83 28.83 
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Table A7 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 19, 20 and 21 

Event No. Date Rainfall (mm) 
Runoff (Q) mm Previous day soil moisture (%) 

Plot 19 Plot 20 Plot 21 Plot 19 Plot 20 Plot 21 

1 01-Jul-14 71.5 6.20 15.96 18.64 9.30 15.10 12.45 

2 02-Jul-14 29.4 8.86 12.13 16.67 25.47 32.13 28.13 

3 14-Jul-14 20.2 1.28 1.19 0.36 10.43 10.90 14.77 

4 15-Jul-14 24.2 2.88 3.03 1.68 26.23 24.73 27.80 

5 16-Jul-14 38.8 10.33 15.16 21.50 17.40 23.43 24.07 

6 18-Jul-14 54.2 8.24 9.39 12.64 18.33 17.20 19.06 

7 29-Jul-14 24.2 1.08 2.08 1.65 18.47 15.57 22.67 

8 05-Aug-14 27 2.41 5.79 4.09 15.27 14.17 13.37 

9 29-Aug-14 29.1 0.43 0.69 0.57 15.10 17.63 15.43 

10 06-Sep-14 68.6 9.01 13.18 17.54 19.07 19.00 22.37 

11 08-Sep-14 28.2 5.22 6.74 9.00 29.73 26.83 28.57 
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Table A8 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 22, 23 and 24 

Event No. 
 

Date 
 

Rainfall (mm) 
 

Runoff (Q) mm Previous day soil moisture (%) 

Plot 22 Plot 23 Plot 24 Plot 22 Plot 23 Plot 24 

1 01-Jul-14 71.5 14.99 15.37 13.86 11.75 14.00 15.70 

2 02-Jul-14 29.4 7.87 11.27 4.89 33.67 34.27 28.00 

3 14-Jul-14 20.2 2.67 1.17 1.11 10.27 10.93 8.70 

4 15-Jul-14 24.2 3.82 2.17 4.68 26.13 23.43 21.23 

5 16-Jul-14 38.8 13.24 15.75 15.47 23.53 23.70 17.23 

6 18-Jul-14 54.2 10.26 13.58 16.87 18.83 17.37 18.47 

7 29-Jul-14 24.2 3.08 3.06 4.08 17.47 15.53 19.70 

8 05-Aug-14 27 7.61 5.23 6.65 13.50 13.23 14.70 

9 29-Aug-14 29.1 0.34 0.58 1.04 10.07 10.27 9.43 

10 06-Sep-14 68.6 6.60 0.15 2.38 18.60 17.60 14.10 

11 08-Sep-14 28.2 4.57 5.25 5.69 29.70 29.13 29.33 

12 02-Mar-15 62.40 7.63 N.A. 9.03 20.13 N.A. 19.47 

13 04-Apr-15 45.40 7.03 N.A. 10.83 22.8 N.A. 21.73 
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Table A9 Observed rainfall, runoff and previous day soil moisture data for experimental plot nos. 25, 26 and 27 

 Date 

  

Rainfall (mm) 

  

Previous day soil moisture (%) Runoff (mm) 

Event No. Plot 25 Plot 26 Plot 27 Plot 25 Plot 26 Plot 27 

1 13-Sep-12 22.2 32.7 30.7 30.1 14.73 6.69 5.35 

2 14-Sep-12 30.2 32.5 27.4 27.6 14.74 11.49 9.18 

3 17-Sep-12 42.1 34.5 32 31 24.38 22.30 21.17 

4 18-Sep-12 29.1 34.8 32.1 31.84 23.05 18.18 16.45 

5 18-Jan-13 56.2 28.4 27.6 26.8 19.46 18.75 15.05 

6 05-Feb-13 48.2 29.8 27.9 26.6 20.14 13.82 9.87 

7 06-Feb-13 22.4 29.3 29.1 26.9 8.25 4.84 3.51 

8 16-Feb-13 43.2 28.6 25.6 24.4 25.32 17.68 16.35 

9 17-Feb-13 53.8 32.4 29.8 27.6 30.85 25.83 23.09 

10 23-Feb-13 10.2 31.15 31.43 30.93 2.85 0.68 0.35 
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Table A10 Observed rainfall and runoff data for experimental plot nos. 28, 29 and 30 

Event No. 
Date Rainfall (mm) 

Runoff (Q) mm 

Plot 28 Plot 29 Plot 30 

1 13-Sep-12 22.20 15.46 8.73 3.64 

2 14-Sep-12 30.20 19.00 18.79 15.88 

3 17-Sep-12 42.10 25.56 22.30 16.16 

4 18-Sep-12 29.10 20.65 18.18 8.75 

 

Table A11 Observed rainfall and runoff data for experimental plot nos. 31 and 32 

Event No. 
Date Rainfall (mm) 

Runoff (Q) mm 

Plot 31 Plot 32 

1 18-01-2014 53.90 3.04 2.75 
 

2 23-01-2014 35.20 12.34 5.06 
 

3 14-02-2014 24.80 0.79 0.02 
 

4 15-02-2014 39.00 11.44 14.58 
 

5 12-03-2014 22.00 1.14 0.32 
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Table A12 Observed rainfall and runoff data for experimental plot nos. 33, 34 and 35 

Event No. 
Date Rainfall (mm) 

Runoff (Q) mm 

Plot 33 Plot 34 Plot 35 

1 18-01-2014 53.90 1.54 0.02 0.27 

2 23-01-2014 35.20 5.63 1.45 8.10 

3 14-02-2014 24.80 0.49 0.27 0.06 

4 15-02-2014 39.00 4.56 4.80 9.80 

5 12-03-2014 22.00 3.152 1.652 1.334 
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APPENDIX B 

Table B1 Infiltration test data for experimental plot no. 1  

Plot 1 (Date of test: 04/02/2014) 

Time 

Time 

Interval 

(min.) 

Cumulative 

Time (min.) 

Volume of 

Water 

Added ml 

(cm3) 

Infiltration 

Depth (mm) 

Infiltration 

Capacity 

(mm/hr.) 

12:25 PM 0 Start = 0       

12:26 PM 1 1 250 3.54 212.21 

12:27 PM 1 2 110 1.56 93.37 

12:28 PM 1 3 100 1.41 84.88 

12:30 PM 2 5 135 1.91 57.30 

12:32 PM 2 7 115 1.63 48.81 

12:34 PM 2 9 110 1.56 46.69 

12:40 PM 6 15 310 4.39 43.86 

12:45 PM 5 20 225 3.18 38.20 

12:50 PM 5 25 220 3.11 37.35 

1::00 PM 10 35 400 5.66 33.95 

1:10 PM 10 45 380 5.38 32.26 

1:25 PM 15 60 540 7.64 30.56 

1:40 PM 15 75 500 7.07 28.29 

2:00 PM 20 95 650 9.20 27.59 

2:20 PM 20 115 550 7.78 23.34 

2:40 PM 20 135 550 7.78 23.34 

3:05 PM 25 160 650 9.20 22.07 

3:30 PM 25 185 450 6.37 15.28 

4:00 PM 30 215 500 7.07 14.15 

4:30 PM 30 245 400 5.66 11.32 

5:00 PM 30 275 345 4.88 9.76 

5:30 PM 30 305 260 3.68 7.36 

6:00 PM 30 335 260 3.68 7.36 
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Table B2 Infiltration test data for experimental plot no. 2  

Plot 2 (Date of test: 04/02/2014) 

Time (Hr: Min) 

Time interval 

(min) 

Cumulative 

time (min) 

Volume of 

water 

added (ml) 

Infiltration 

depth 

(mm) 

Infiltration 

Capacity 

(mm/hr) 

12:32 Start 0 0 0 0 

12:33 1 1 250 3.54 212.21 

12:34 1 2 190 2.69 161.28 

12:37 3 5 35 0.50 9.90 

12:40 3 8 50 0.71 14.15 

12:45 5 13 125 1.77 21.22 

12:50 5 18 130 1.84 22.07 

12:55 5 23 140 1.98 11.88 

1:05 10 33 115 1.63 9.76 

1:15 10 43 180 2.55 15.28 

1:25 10 53 170 2.41 9.62 

1:40 15 68 225 3.18 12.73 

1:55 15 83 210 2.97 11.88 

2:10 15 98 155 2.19 6.58 

2:30 20 118 190 2.69 8.06 

2:50 20 138 220 3.11 9.34 

3:10 20 158 170 2.41 4.81 

3:40 30 188 275 3.89 7.78 

4:10 30 218 310 4.39 8.77 

4:40 30 248 310 4.39 8.77 
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Table B3 Infiltration test data for experimental plot no. 3 

Plot 3 (Date of test: 03/02/2014) 

Time 

Time 

Interval 

(min.) 

Cumulative 

Time (min.) 

Volume of 

Water 

Added ml 

(cm3) 

Infiltration 

Depth (mm) 

Infiltration 

Capacity 

(mm/hr.) 

12:14 PM 0 Start = 0       

12:15 PM 1 1 90 1.27 76.39 

12:16 PM 1 2 80 1.13 67.91 

12:18 PM 2 4 95 1.34 40.32 

12:20 PM 2 6 50 0.71 21.22 

12:22 PM 2 8 60 0.85 25.46 

12:27 PM 5 13 50 0.71 8.49 

12:32 PM 5 18 130 1.84 22.07 

12:37 PM 5 23 140 1.98 23.77 

12:42 PM 5 28 125 1.77 21.22 

12:52 PM 10 38 135 1.91 11.46 

1:02 PM 10 48 275 3.89 23.34 

1:12 PM 10 58 180 2.55 15.28 

1:27 PM 15 73 220 3.11 12.45 

1:42 PM 15 88 320 4.53 18.11 

1:57 PM 15 103 290 4.10 16.41 

2:17 PM 20 123 290 4.10 12.31 

2:37 PM 20 143 400 5.66 16.98 

2:57 PM 20 163 400 5.66 16.98 

3:27 PM 30 193 340 4.81 9.62 

3:57 PM 30 223 250 3.54 7.07 

4:27 PM 30 253 250 3.54 7.07 

4:57 PM 30 283 240 3.40 6.79 

5:27 PM 30 313 230 3.25 6.51 

5:57 PM 30 343 230 3.25 6.51 
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Table B4 Infiltration test data for experimental plot no. 4 

Plot 4 (Date of test: 05/09/2013) 

Watch 

time 

Time 

Elapsed (t) 

min. 

Cumulative 

time (min) 

Reading on 

Scale (cm) 

Real 

Dropdown, d 

(cm) 

Rate of 

infiltration 

(cm/hr) 

11:00 0 0 5.6 0 0 

11:01 1 1 5.8 0.2 12 

11:02 1 2 5.9 0.1 6 

11:05 3 5 6 0.1 2 

11:10 5 10 6.2 0.2 2.4 

11:15 5 15 6.4 0.2 2.4 

11:20 5 20 6.5 0.1 1.2 

11:25 5 25 6.7 0.2 2.4 

11:30 5 30 6.8 0.1 1.2 

11:35 5 35 7 0.2 2.4 

11:40 5 40 7.2 0.2 2.4 

11:45 5 45 7.4 0.2 2.4 

11:50 5 50 7.6 0.2 2.4 

11:55 5 55 7.8 0.2 2.4 

12:00 5 60 8 0.2 2.4 

12:10 10 70 8.2 0.2 1.2 

12:20 10 80 8.5 0.3 1.8 

12:30 10 90 8.7 0.2 1.2 

12:40 10 100 9 0.3 1.8 

12:50 10 110 9.2 0.2 1.2 

13:00 10 120 9.6 0.4 2.4 

13:10 10 130 9.8 0.2 1.2 

13:20 10 140 10 0.2 1.2 

13:35 15 155 10.2 0.2 0.8 

13:50 15 170 10.5 0.3 1.2 

14:05 15 185 10.8 0.3 1.2 

14:20 15 200 11.1 0.3 1.2 

14:35 15 215 11.4 0.3 1.2 

14:50 15 230 11.7 0.3 1.2 

15:05 15 245 12 0.3 1.2 

15:20 15 260 12.3 0.3 1.2 

15:40 20 280 12.8 0.5 1.5 

16:00 20 300 13.2 0.4 1.2 

16:20 20 320 13.5 0.3 0.9 

16:40 20 340 13.9 0.4 1.21 
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Table B5 Infiltration test data for experimental plot no. 5  

Plot 5 (Date of test: 07/09/2013) 

Watch time 
Time Elapsed 

(t) min. 

Cumulative 

time (min) 

Reading on 

Scale (cm) 

Real Dropdown 

(cm) 

Rate of 

infiltration 

(cm/hr) 

10:06 0 0 19.2 0 0 

10:07 1 1 19 0.2 12 

10:08 1 2 18.8 0.2 12 

10:13 5 7 18.7 0.1 1.2 

10:18 5 12 18.5 0.2 2.4 

10:23 5 17 18.4 0.1 1.2 

10:33 5 22 18.3 0.1 1.2 

10:43 10 32 18.2 0.1 0.6 

10:53 10 42 18.1 0.1 0.6 

11:03 10 52 17.9 0.2 1.2 

11:13 10 62 17.7 0.2 1.2 

11:23 10 72 17.6 0.1 0.6 

11:38 15 87 17.4 0.2 0.8 

11:53 15 102 17.3 0.1 0.4 

12:08 15 117 17.2 0.1 0.4 

12:23 15 132 17 0.2 0.8 

12:38 15 147 16.9 0.1 0.4 

12:58 20 167 16.8 0.1 0.3 

13:18 20 187 16.6 0.2 0.6 

13:38 20 207 16.4 0.2 0.6 

13:58 20 227 16.3 0.1 0.3 

14:28 30 257 16 0.3 0.6 

14:58 30 287 15.7 0.3 0.6 

15:28 30 317 15.4 0.3 0.6 

15:58 30 347 15.1 0.3 0.615 
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Table B6 Infiltration test data for experimental plot no. 6  

Plot 6 Date of test: 07/09/2013 

Watch 

time 

Time Elapsed 

(t) min. 

Cumulative 

time (min) 

Reading on 

Scale (cm) 

Real 

Dropdown 

(cm) 

Rate of 

infiltration 

(cm/hr) 

10:22 0 0 9.4 0 0 

10:23 1 1 9.5 0.1 6 

10:24 1 2 9.6 0.1 6 

10:25 1 3 9.7 0.1 6 

10:26 1 4 9.8 0.1 6 

10:27 1 5 9.9 0.1 6 

10:32 5 10 10.0 0.1 1.2 

10:37 5 15 10.1 0.1 1.2 

10:42 5 20 10.3 0.2 2.4 

10:47 5 25 10.5 0.2 2.4 

10:52 5 30 10.6 0.1 1.2 

10:57 5 35 10.7 0.1 1.2 

11:02 5 40 10.8 0.1 1.2 

11:07 5 45 10.9 0.1 1.2 

11:17 10 55 11.3 0.4 2.4 

11:27 10 65 11.5 0.2 1.2 

11:37 10 75 11.7 0.2 1.2 

11:47 10 85 11.9 0.2 1.2 

11:57 10 95 12.2 0.3 1.8 

12:07 10 105 12.4 0.2 1.2 

12:22 15 120 12.7 0.3 1.2 

12:37 15 135 12.9 0.2 0.8 

12:52 15 150 13.1 0.2 0.8 

13:07 15 165 13.3 0.2 0.8 

13:22 15 180 13.5 0.2 0.8 

13:42 20 200 13.8 0.3 0.9 

14:02 20 220 14.0 0.2 0.6 

14:32 30 250 14.5 0.5 1.22 

15:02 30 280 15.0 0.5 1.22 

15:32 30 310 15.5 0.5 1.21 

16:02 30 340 16.0 0.5 1.21 
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Table B7 Infiltration test data for experimental plot no. 7 

Plot 7 (Date of test: 01/02/2014) 

Time (Hr:Min) 

Time interval 

(min) 

Cumulative 

time (min) 

Volume of 

water 

added (ml) 

Infiltration 

depth (mm) 

Infiltration 

Capacity (mm/hr) 

12:15 start 0 0 0 0 

12:16 1 1 150 2.12 127.33 

12:17 1 2 100 1.41 84.88 

12:18 1 3 50 0.71 42.44 

12:20 2 5 50 0.71 21.22 

12:22 2 7 50 0.71 21.22 

12:24 2 9 55 0.78 9.34 

12:29 5 14 25 0.35 4.24 

12:34 5 19 35 0.50 2.97 

12:44 10 29 100 1.41 8.49 

12:54 10 39 55 0.78 4.67 

1:04 10 49 125 1.77 10.61 

1:14 10 59 120 1.70 5.09 

1:34 20 79 60 0.85 2.55 

1:54 20 99 65 0.92 2.76 

2:14 20 119 100 1.41 4.24 

2:34 20 139 100 1.41 2.83 

3:04 30 169 135 1.91 3.82 

3:34 30 199 140 1.98 3.96 

4:04 30 229 150 2.12 4.24 

4:34 30 259 150 2.12 4.24 
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Table B8 Infiltration test data for experimental plot no. 8 

Plot 8 (Date of test: 01/02/2014) 

Time (Hr:Min) 

Time interval 

(min) 

Cumulative 

time (min) 

Volume of 

water 

added (ml) 

Infiltration 

depth 

(mm) 

Infiltration 

Capacity (mm/hr) 

12:33 Start 0 0 0 0 

12:34 1 1 80 1.13 67.91 

12:36 2 3 35 0.50 14.85 

12:48 12 15 120 1.70 8.49 

12:53 5 20 70 0.99 11.88 

12:58 5 25 35 0.50 5.94 

1:08 10 35 305 4.31 25.89 

1:18 10 45 50 0.71 4.24 

1:28 10 55 60 0.85 5.09 

1:38 10 65 165 2.33 9.34 

1:53 15 80 90 1.27 3.82 

2:13 20 100 190 2.69 8.06 

2:33 20 120 95 1.34 4.03 

2:53 20 140 230 3.25 6.51 

3:23 30 170 205 2.90 5.80 

3:53 30 200 195 2.76 5.52 

4:23 30 230 195 2.76 5.52 
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Table B9 Infiltration test data for experimental plot no. 9  

Plot 12 (Date of test: 31/12/2014) 

Time (Hr:Min) 

Time interval 

(min) 

Cumulative 

time (min) 

Volume of 

water 

added (ml) 

Infiltration 

depth 

(mm) 

Infiltration 

Capacity (mm/hr) 

12:37 start 0 0 0 0 

12:39 2 2 255 3.61 108.23 

12:41 2 4 85 1.20 36.08 

12:43 2 6 55 0.78 23.34 

12:48 5 11 195 2.76 33.10 

12:53 5 16 25 0.35 4.24 

1:03 5 21 150 2.12 12.73 

1:13 10 31 140 1.98 11.88 

1:23 10 41 145 2.05 12.31 

1:33 10 51 60 0.85 5.09 

1:43 10 61 130 1.84 7.36 

1:58 15 76 155 2.19 8.77 

2:13 15 91 170 2.41 9.62 

2:28 15 106 65 0.92 2.76 

2:48 20 126 225 3.18 9.55 

3:08 20 146 185 2.62 7.85 

3:28 20 166 160 2.26 4.53 

3:58 30 196 200 2.83 5.66 

4:28 30 226 200 2.83 5.66 
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APPENDIX C 

Table C1 Optimized λ values yielded from 63 watershed natural P-Q datasets 

Watershed/Plot No.  λ 

1 0.0204 

2 0.0000 

3 0.0631 

4 0.0314 

5 0.2079 

6 0.0999 

7 0.1141 

8 0.0879 

9 0.0328 

10 0.0003 

11 0.0000 

12 0.0002 

13 0.0000 

14 0.0001 

15 0.0000 

16 0.0000 

17 0.0000 

18 0.0000 

19 0.0000 

20 0.0000 

21 0.0000 

22 0.0000 

23 0.0000 

24 0.0000 

25 0.0375 

26 0.0334 

27 0.1244 

28 0.0002 

29 0.0000 

30 0.0319 

31 0.0020 

32 0.0000 

33 0.0000 

34 0.0000 

35 0.0002 

36 0.0003 

37 0.0310 

38 0.3310 

39 0.0005 

40 0.0000 
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    Table C1 (continued) 

Watershed/Plot No.  λ 

41 0.0000 

42 0.0000 

43 0.0000 

44 0.0002 

45 0.1301 

46 0.0000 

47 0.0116 

48 0.0003 

49 0.0004 

50 0.0000 

51 0.0000 

52 0.0002 

53 0.0000 

54 0.0000 

55 0.0000 

56 0.0819 

57 0.0885 

58 0.0000 

59 0.0000 

60 0.1862 

61 0.0000 

62 0.1706 

63 0.0449 

Maximum 0.3310 

Minimum 0.0000 

Mean 0.0312 

Median 0.0002 

Standard deviation 0.0630 

Skewness 2.7213 

Kurtosis 8.4921 
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Figure C1 Frequency distribution of optimized λ values yielded from 63 watershed/plots 

natural P-Q data set 
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APPENDIX D 

Table D1 Comparison of methods using RMSE (mm) criterion 

Plot No. MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 

40 6.821 6.789 6.841 7.085 7.188 5.850 5.593 5.370 

41 7.678 7.674 7.714 7.722 7.716 7.529 7.519 6.957 

42 7.481 7.461 7.507 7.649 7.705 6.882 6.741 6.284 

43 8.505 8.495 8.621 8.600 8.519 7.969 7.847 7.192 

44 6.818 6.796 6.895 7.004 7.008 6.029 5.831 5.458 

45 9.791 9.797 9.946 9.760 9.576 9.626 9.611 8.920 

46 6.218 6.197 6.457 6.420 6.088 5.323 5.172 4.152 

47 8.010 8.000 8.171 8.114 7.906 7.557 7.497 6.519 

48 10.648 10.645 10.808 10.687 10.504 10.363 10.334 9.064 

49 6.720 6.681 6.643 7.040 7.330 5.814 5.579 5.456 

50 5.671 5.652 5.576 5.837 6.057 5.485 5.479 5.069 

51 5.703 5.673 5.629 5.954 6.207 5.129 5.018 4.746 

52 3.549 3.972 4.065 4.268 4.297 2.667 2.448 2.532 

53 11.691 11.613 11.994 12.315 11.739 9.109 8.470 6.348 

54 8.324 8.271 8.572 8.792 8.283 6.361 5.882 4.945 

55 30.199 30.055 31.520 31.351 30.963 25.671 24.378 22.683 

56 27.814 27.793 28.120 28.000 27.878 26.354 25.944 25.669 

57 21.450 21.340 21.210 22.334 22.791 18.676 17.871 15.713 

58 23.505 23.432 24.008 24.155 23.520 20.490 19.851 16.644 

59 31.556 31.569 31.363 31.440 31.779 29.267 30.271 23.973 

60 19.758 19.721 19.994 20.279 20.436 17.558 16.964 14.216 

61 3.120 3.128 3.273 3.082 2.902 3.164 3.239 2.244 

62 9.679 9.616 9.518 10.184 10.810 8.185 7.763 7.648 

63 7.698 7.641 7.548 8.179 8.597 6.309 5.920 5.463 
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Table D2 Comparison of methods using R2 criterion 

Plot No. MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 

40 0.236 0.239 0.219 0.215 0.224 0.376 0.421 0.449 

41 0.392 0.394 0.375 0.375 0.385 0.484 0.508 0.574 

42 0.221 0.223 0.205 0.205 0.216 0.325 0.356 0.413 

43 0.188 0.189 0.165 0.179 0.201 0.283 0.310 0.403 

44 0.270 0.272 0.247 0.254 0.273 0.394 0.430 0.484 

45 0.357 0.358 0.328 0.347 0.375 0.459 0.485 0.581 

46 0.085 0.086 0.135 0.081 0.042 0.023 0.015 0.305 

47 0.088 0.087 0.133 0.093 0.051 0.011 0.004 0.328 

48 0.114 0.114 0.168 0.117 0.067 0.025 0.014 0.314 

49 0.330 0.332 0.324 0.311 0.305 0.408 0.429 0.444 

50 0.496 0.496 0.498 0.493 0.487 0.483 0.474 0.535 

51 0.518 0.519 0.515 0.508 0.503 0.541 0.542 0.573 

52 0.191 0.190 0.167 0.182 0.204 0.301 0.340 0.440 

53 0.015 0.015 0.010 0.017 0.017 0.025 0.028 0.252 

54 0.000 0.000 0.000 0.000 0.001 0.024 0.041 0.247 

55 0.248 0.248 0.244 0.244 0.250 0.272 0.279 0.272 

56 0.050 0.051 0.042 0.045 0.047 0.096 0.111 0.221 

57 0.850 0.850 0.851 0.847 0.845 0.854 0.855 0.881 

58 0.815 0.817 0.811 0.805 0.811 0.858 0.867 0.916 

59 0.569 0.570 0.561 0.565 0.575 0.666 0.659 0.684 

60 0.283 0.285 0.267 0.266 0.270 0.381 0.409 0.609 

61 0.395 0.392 0.345 0.410 0.469 0.434 0.436 0.804 

62 0.545 0.547 0.549 0.535 0.523 0.578 0.589 0.604 

63 0.633 0.633 0.634 0.629 0.626 0.644 0.647 0.679 
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Table D3 Comparison of methods using d criterion 

Plot No. MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 

40 0.681 0.683 0.674 0.663 0.663 0.753 0.770 0.785 

41 0.737 0.737 0.731 0.736 0.742 0.745 0.744 0.776 

42 0.685 0.686 0.678 0.677 0.680 0.723 0.731 0.760 

43 0.680 0.680 0.666 0.676 0.689 0.711 0.717 0.760 

44 0.728 0.729 0.718 0.718 0.725 0.780 0.791 0.815 

45 0.727 0.727 0.715 0.731 0.745 0.735 0.734 0.769 

46 0.256 0.256 0.237 0.260 0.279 0.334 0.368 0.713 

47 0.212 0.214 0.159 0.188 0.253 0.384 0.414 0.662 

48 0.280 0.281 0.227 0.260 0.322 0.405 0.425 0.630 

49 0.649 0.651 0.649 0.629 0.616 0.715 0.731 0.732 

50 0.814 0.814 0.817 0.808 0.800 0.814 0.812 0.832 

51 0.803 0.804 0.804 0.793 0.784 0.825 0.827 0.840 

52 0.624 0.586 0.571 0.565 0.571 0.726 0.756 0.755 

53 0.203 0.204 0.194 0.195 0.202 0.256 0.273 0.421 

54 0.316 0.318 0.301 0.302 0.321 0.411 0.451 0.634 

55 0.549 0.551 0.548 0.538 0.542 0.601 0.617 0.633 

56 0.428 0.429 0.423 0.426 0.429 0.450 0.455 0.451 

57 0.894 0.894 0.895 0.887 0.884 0.912 0.917 0.928 

58 0.945 0.945 0.943 0.942 0.945 0.957 0.959 0.973 

59 0.864 0.864 0.863 0.864 0.865 0.890 0.885 0.895 

60 0.722 0.722 0.709 0.708 0.710 0.785 0.800 0.877 

61 0.774 0.771 0.752 0.791 0.818 0.718 0.689 0.869 

62 0.783 0.785 0.787 0.769 0.752 0.825 0.827 0.839 

63 0.777 0.779 0.782 0.761 0.748 0.822 0.835 0.846 
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Table D4 Comparison of methods using E criterion 

Plot No. MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 

40 -0.574 -0.559 -0.583 -0.698 -0.748 -0.157 -0.058 0.025 

41 -0.294 -0.293 -0.306 -0.309 -0.307 -0.244 -0.241 -0.063 

42 -0.591 -0.582 -0.602 -0.663 -0.688 -0.346 -0.292 -0.113 

43 -0.104 -0.101 -0.134 -0.129 -0.107 0.031 0.060 0.211 

44 -0.070 -0.063 -0.094 -0.129 -0.131 0.163 0.217 0.314 

45 0.141 0.139 0.113 0.146 0.178 0.169 0.172 0.286 

46 -2.209 -2.187 -2.461 -2.421 -2.077 -1.352 -1.220 0.138 

47 -1.166 -1.160 -1.254 -1.222 -1.110 -0.927 -0.897 -0.435 

48 -0.864 -0.863 -0.920 -0.878 -0.814 -0.766 -0.756 -0.351 

49 -1.804 -1.771 -1.740 -2.077 -2.336 -1.098 -0.933 -0.848 

50 0.054 0.061 0.086 -0.002 -0.079 0.115 0.117 0.245 

51 -0.228 -0.215 -0.197 -0.339 -0.455 0.006 0.049 0.149 

52 -1.042 -1.558 -1.678 -1.953 -1.993 -0.153 0.029 -0.201 

53 -4.469 -3.957 -4.487 -4.683 -4.782 -0.353 -0.191 0.192 

54 -4.620 -4.548 -4.959 -5.269 -4.564 -2.282 -1.806 0.201 

55 -4.765 -4.710 -4.797 -5.213 -5.060 -3.166 -2.757 0.124 

56 -2.738 -2.733 -2.821 -2.789 -2.756 -2.356 -2.253 -0.144 

57 -0.790 -0.772 -0.750 -0.940 -1.021 -0.357 -0.242 0.040 

58 0.775 0.776 0.765 0.762 0.775 0.829 0.839 0.887 

59 0.407 0.407 0.414 0.412 0.399 0.490 0.455 0.658 

60 0.055 0.058 0.032 0.004 -0.011 0.253 0.303 0.531 

61 0.366 0.363 0.303 0.382 0.452 0.348 0.317 0.672 

62 -0.256 -0.240 -0.215 -0.391 -0.567 0.102 0.192 0.216 

63 -0.699 -0.674 -0.633 -0.918 -1.119 -0.141 -0.004 0.145 
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