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ABSTRACT 

Sustainable natural resources management at local and regional scale is a prime concern for 

growth, development, conservation, and protection of the environment, and prosperity of the 

nation. To mitigate the present and future anthropogenic activities and climatic change, field-

based investigations of land and water resources are time-consuming and challenging to 

manage and sustain the agriculture food production in developing countries like India. Indian 

River basins are one of the most influencing natural systems owing to land dynamics and the 

uncertain climatic events, such as cloud bursting and heavy rainfall occurred in Uttarakhand 

during the year 2013, then in Chennai (2015), and the recently in Kerala (2018). The present 

study has been focused to model the complex hydrological process of the Betwa River basin, 

part of the lower Yamuna River basin located in central India, for sustainable management of 

land and water resources considering future climate change and land use change. In this 

context, hydrological modelling can be considered as a valuable technique for the simulation of 

basin-wide various hydrologic components i.e. stream flow (FLOW), sediment yield (SYLD), 

evapotranspiration (ET) and water yield (WYLD) etc.  

In this study, various satellite imageries have been utilized to prepare the historical land 

use/land cover (LU/LC) maps for the years 1972, 1976, 1991, 2001, 2007, 2010 and 2013 using 

a maximum likelihood supervised classification method. Further, an integrated Cellular 

Automata-Markov Chain (CA-MC) model based on Geographical Information System (GIS)-

based Multi-Criteria Evaluation (MCE) and the Multi-Objective Land Allocation (MOLA) 

methods has been employed to predict the future LU/LC maps for the years 2020, 2040, 2060, 

2080 and 2100. Future problems such as food security and surface water resources availability 

are successfully discovered through CA-MC model.  

To study the relationships between land cover dynamics and hydro-climatic variables, the 

MODIS NDVI (MOD13Q1) and land cover (MCD12Q1) time-series datasets have been used 

for correlation analysis, and then Multiple Linear Regression (MLR) models were prepared at 

monthly, seasonal and annual time-scale over the period of 2001-2013. The Savitzky-Golay 

filtering method was employed to de-noise and smoothing of the NDVI time-series data using 

TIMESAT software. The land greening and land degradation under dry spell, wet spell and 

combined dry and wet spells were analyzed employing a conceptual framework, representing 

four concepts of climatic greening, climatic degradation, non-climatic greening and non-

climatic degradation etc. The developed conceptual framework approach can be applied 

effectively in other river basins having different land cover and hydro-climatic conditions.  

Further, hydrological modelling considering numerous medium to large sized water storages (7 

reservoirs and 2 weirs) located on main channel as well as tributary channel of the Betwa river 

has been carried out using the Soil and Water Assessment Tool (SWAT). With the required 

spatial, storage and outflow information, these water storages were successfully implemented 

and managed for reliable hydrological simulation using the SWAT model. Monthly calibration, 

validation, sensitivity and uncertainty analyses have been carried out using the SWAT- 

Calibration and Uncertainty Programs (CUP) Sequential Uncertainty Fitting version-2 (SUFI-

2) algorithm for the years 2003-2013. The observed and simulated hydrographs for both the 

streamflow and sediment indicates a good performance of the SWAT model. The model 
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performance was high for the Garrauli gauging site without any upstream water storage 

structure, as compared to the gauging sites with upstream water storage structures. This 

analysis shows that better information of the water storage structures promises a significantly 

improved hydrological simulation using the SWAT model. 

The India Meteorological Department (IMD) data benchmarked in calibrated and validated 

SWAT model was replaced by the downscaled and bias-corrected (quantile mapping method) 

Global Climate Model (GCM) data of the Max-Planck-Institute-Earth System Model-Medium 

Resolution (MPI-ESM-MR) model. In this study, the MPI-ESM-MR model data of RCP 8.5, a 

worst-case climate scenario, has been considered for hydrologic simulation at the severe 

climate condition in future. Land use data of the years 2013 and 2040, and the GCM-derived 

climate variables were categorized into five periods i.e. baseline 1986 (1986-2005), horizon 

2020 (2020-2039), horizon 2040 (2040-2059), horizon 2060 (2060-2079), and horizon 2080 

(2080-2099) and used to assess the land use and climate change impact on hydrological 

simulation of streamflow (FLOW), sediment yield (SYLD), Evapotranspiration (ET) and water 

yield (WYLD). It was found that climate change impact is dominant over the impact of land 

use change in future. Further, a conceptual framework has been developed to assess the 

individual as well as combined impacts of land use and climate change. The proposed 

conceptual framework can be used effectively for watershed analysis with given limitations.    

Furthermore, based on the future simulations, critical sub-watersheds of the study area were 

identified and then prioritized for effective implementation of Best Management Practices 

(BMPs). In this study, the over-land as well as in-stream BMPs has been implemented to 

reduce the streamflow and sediment yield in future. Four over-land BMPs namely tillage 

management, contour farming, residue management and strip cropping for agriculture land, and 

five in-stream BMPs namely grassed waterways, streambank stabilization, grade stabilization 

structures, porous gully plugs and recharge structures for main and tributary river channels 

have been considered in this study. Sensitivity and uncertainty analysis of BMPs parameters 

were also carried out for an effective management and implementation of BMPs in the river 

basin. The effectiveness of BMPs implementation was estimated by percent reduction and 

sensitivity index of the model parameters. It was found that strip cropping is the most effective 

agriculture land operation which reduces streamflow in the range of 11.07% to 13.97% and 

sediment yield in the range of 21.04% to 37.28% for soil and water conservation of the river 

basin in future. Furthermore, the in-stream BMPs namely grassed waterways and streambank 

stabilization can be an effective intervention for sediment yield reduction (about 20% to 60%), 

and grade stabilization structures for streamflow reduction (about 6% to 10%) within the main 

river channel.  

Overall, this study provides connectivity of land use change, climate change, and hydrological 

modelling for the research communities focusing sustainable river basin management, and may 

also provide valuable guidelines to the users interested in water resources development, 

planning and management in agriculture dominant large river basin.  
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL BACKGROUND OF THE STUDY 

Sustainable management of land and water resources in a river basin is vital for growth and 

development of the rural livelihood, conservation and protection of the environment, and 

prosperity of the Nation. Efficient management of natural resources in a large river basin is 

difficult and time-consuming (Griffin, 1999; Muro and Jeffrey, 2008); instead the GIS-based 

hydrological modelling can provide a framework to simulate the complex hydrological process 

and evaluate the management practices for decision and policy making (Abu‐Zreig et al., 2004; 

Newham et al., 2004; Oxley et al., 2004; Pandey et al., 2007; Christianson et al., 2008; Jackson 

et al., 2008; Pandey et al., 2009 & 2011; Sardar et al., 2012; Kumar et al., 2014). Precise 

simulation of hydrological components, such as streamflow and sediment, addresses the 

issues/problems in environmental management and socio-economic development. The 

progressively developed hydrological models, and the advanced freely-available global datasets 

such as digital elevation models (DEM), remote sensing imagery data, and spatial data of land 

use and soil, have been employed in the published literature (Tripathi et al., 2003, 2004 & 

2005; Karydas et al., 2014; Prabhanjan et al., 2014; Kumari et al., 2016; Golmohammadi et al., 

2017b).  

Hydrological models vary from a simple empirical equation to complex physically distributed 

models based on spatial and temporal scales, in-build process, and algorithm used (Borah and 

Bera, 2003; Naik et al., 2009; Ale et al., 2012; Devia et al., 2015). In this perspective, selection 

of an appropriate hydrological model is difficult and challenging for the potential users to 

simulate the complex hydrological process and resolve the land and water resources 

management problems. The vulnerability of extreme hydrological changes has already been 

exposed showing the pronounced impact on human life and natural system. The changes in 

availability of water resources are expected to be among the most significant consequences of 

climatic change (Kingston and Taylor, 2010; Cibin et al., 2017). Consequently, the spatial and 

temporal hydrological changes can significantly alter the ongoing management and 

development in agriculture, industry, and urban sectors (Frederick et al., 1997; Matsuno et al., 

2007; Hutchinson et al., 2011; Matsuno et al., 2013; Stang et al., 2016; Her et al., 2017; 

Mauget et al., 2017; McDonough et al., 2017). Thus, awareness of the environmental change 

due to anthropogenic activities has been presently accelerating, and could also be continued in 

future for sustainable planning, management and development of a watershed.  
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From last few decades, changes in land use and climate have been gradually studied world-

wide as they are expected to alter the hydrological cycle of a watershed, i.e. especially 

vulnerable to the available land and water resources (Vörösmarty, 2000; Bekker and Matsuno, 

2001; Mishra et al., 2007b; Gitau et al., 2010; Mango et al., 2011; Craine et al., 2012; 

Golmohammadi et al., 2013; Singh et al., 2014; Bhave et al., 2016; Dey and Mishra, 2017; 

Sinha and Eldho, 2018). Land use changes are attributed to the spatiotemporal changes in 

dominant area of the watershed such as agriculture, forest, settlement, and barren land (Fohrer 

et al., 2001; Weber et al. 2001; Chiang et al., 2010; Palmate et al., 2017). Climate change is 

attributed to long-term changes in the meteorological variables such as precipitation and 

temperature (Chien et al., 2013; Reddy et al., 2016). Effect of precipitation changes on 

hydrological response has been studied independently, as well as in combination with 

temperature change by Shen et al. (2009). In reality, both the precipitation and temperature 

variables are likely to vary spatially and temporally, and may have pronounced impact on 

components of the hydrological cycle. 

The scientific/research community has realized that the hydrological response of a 

watershed/catchment/river basin to the changes in land use and climate are more complex than 

it was originally believed. Hydrological response depends on the physical characteristics, 

climatic conditions, and sources of runoff of the river basin (Fontaine et al., 2001; 

Golmohammadi et al., 2017a; Park et al., 2017; Zhang et al., 2018). It is widely acknowledged 

that an empirical equation between hydrological response and changes in land use and climate 

derived by spatiotemporal analysis can be used as an alternative or complement to the physical 

hydrological modelling (Wagener, 2007; Bulygina et al., 2012). In some regions, the 

hydrological response has been affected by rapid land use changes, and the sources of 

hydrological alterations that may complicate the spatial generalization (Chiew et al., 2009; Peel 

and Blöschl, 2011). Furthermore, climate change forms interactive system by linking a human 

action, viz. settlement and industrialization inducing the land use change, which in turn renders 

the complex hydrological process (Schulze, 2000). These changes have significant impact on 

hydrological components such as frequency and distribution pattern of precipitation, surface-

runoff, groundwater, sediment, evapotranspiration, soil moisture etc., and thus, affect the 

available land and water resources. Therefore, the study on hydrological response of a river 

basin under the consideration of changes in land use and climate is pre-requisite for sustainable 

planning and management in present and future years.  

Physically based hydrological modelling has always been the primary choice of the researchers 

while dealing with complex hydrological process and the simulation problems. In general, GIS 
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provides a framework to different hydrologic models globally developed for environmental 

application and evolution (Chowdary et al., 2009 & 2013). Thus, the GIS-based hydrologic 

models are being used to assess the effect of land use and climate changes for a watershed. 

Hydrological models are broadly classified into several categories, i.e. empirical (black-box / 

metric) model, conceptual (grey-box / parametric) model, and physically based distributed 

(white-box / mechanistic) model. Empirical models, such as ANN (Artificial neural network) 

and unit hydrograph, can only relate the input to output through some transform function, but 

not explicitly consider the governing physically based hydrological processes involved (Gupta 

et al., 1980; Jakeman et al., 1990; Minns and Hall, 1996; Dawson and Wilby, 2001). 

Conceptual models, such as SWM (Stanford Watershed Model IV) and HBV (Hydrologiska 

Byrans Vattenavdelning Model), represent the effective measurement of an entire catchment, 

without attempting to characterize the spatial variability (Bergström and Forsman, 1973; 

Harlin, 1991; Crawford and Linsley, 1996; Kumar and Warsi, 1998). Lumped models, such as 

MIKE 11, are defective to represent the spatial variability of hydrologic processes and 

catchment parameters (Refsgaard, 1987; Moore et al., 1991). The physically based distributed 

models, such as SHE (Systeme Hydrologique European)/MIKESHE and SWAT (Soil and 

Water Assessment Tool), are those which are able to explicitly represent spatial variability of 

the important land surface characteristics such as topographic elevation, land slope, aspect 

ratio, vegetation cover, soil type, as well as the climatic parameters including precipitation, and 

temperature (Refsgaard et la., 1992; Havnø et al., 1995; Refsgaard, 1995; Arnold et al., 2012b). 

Nowadays, the SWAT model is being widely acknowledged and used to simulate the quantity 

and quality of water-flow and sediment, and to evaluate the land management practices for a 

watershed (Arnold and Fohrer, 2005; Moriasi et al., 2013; Daggupati et al., 2015; Chen et al., 

2017; Mishra et al., 2007a). Therefore, in this study the SWAT model has been used to 

simulate the complex hydrological process for sustainable management of an Indian River 

basin.  

1.2 NEED OF HYDROLOGICAL MODELLING STUDY IN INDIAN RIVER BASINS 

The vulnerability of land use and climate change in Indian subcontinent is vital to study their 

impacts on hydrology, natural resources, agricultural productivity, and the economy of India. 

Due to the poor capacity to cope up with and adapt changes, these impacts in the developing 

countries like India are going to be most severe again (Kulkarni and Karyakarte, 2014). Among 

major rivers of the Indian subcontinent, the Ganga, Brahmaputra and Indus Rivers, originates 

from the Himalayas, and substantially contribute the flow from snow and glaciers, are expected 

to be more vulnerable due to the anthropogenic activities and the land use and climatic changes 
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(Tiwari et al., 2000; Bookhagen and Burbank, 2010; Immerzeel et al., 2010; Nepal and 

Shrestha, 2015). For in these river basins, little emphasis has been given on the study of 

possible future impacts of land use and climate changes employing hydrological modelling 

approach (Miller et al., 2012; Nepal and Shrestha, 2015). Mehrotra and Mehrotra (1995) 

studied the impact of climate change on hydrology of the Indian River basin, considering 

substantial changes in precipitation at spatial and temporal scales. The frequency of heavy 

precipitation events showed increasing trends over the central part of India (Goswami et al., 

2006). Thus, it is necessary to study the possible changes in available land and water resources 

employing hydrological modelling approach. 

1.3 MOTIVATION AND STATEMENT OF THE PROBLEMS 

In the present study, an attempt has been made to investigate the impacts of land use and 

climate changes on hydrology of the Betwa River basin located in central India which is a part 

of the Yamuna River, a tributary of Ganga River system. The Betwa River basin has dominant 

agriculture land which plays important role in rural livelihood. Forest is thick in hillier South-

East region and covers about one-fourth area of the total basin. Betwa basin falls under semi-

arid to dry sub-humid climate region of the India. The air of the Betwa basin is being mostly 

dry with exception of south-west monsoon season. It has generally mild winter and hot summer 

climate. Increase in winter temperature may adversely affect the growth of Rabi crops (wheat 

and mustard) in the Betwa basin (Suryavanshi et al., 2014). Thus, it is essential to study the 

impacts of land use and climate changes for present and future years employing hydrological 

modelling approach for the Betwa basin. This study can be helpful for the sustainable land and 

water resources management and development of the Betwa River basin. 

The Betwa basin is classified as an agricultural river basin in the central part of India. The 

runoff/streamflow and sediment in the Betwa basin is strongly influenced by changes in land 

use and climate. Hydrological modelling of a river basin can render better land and water 

resources in agriculture and river channels for sustainable management of available resources. 

Besides, the application of feasible management practices can protect the degradation of the 

critical areas due to flooding situation and unconventional field treatments. Intensive use of 

unconventional agricultural practices is one of the main reasons for increasing land and water 

resources problems in the Betwa river basin. The excessive change in vegetation cover may 

cause looseness in the soil which may further washed off by surface runoff. In addition, 

improper management of dominant agriculture area and river channel network can negatively 

affect surface water flow and sediment in the Betwa River basin.   
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1.4 OBJECTIVES OF THE STUDY 

Keeping the aforementioned, the present study has been planned with the following specific 

objectives:  

1. To study the spatiotemporal land use/land cover (LU/LC) changes of the Betwa River 

basin and its modelling for future analysis. 

2. To study the relationship between hydro-climatic variables and land cover dynamics 

under dry and wet spells over Betwa Basin. 

3. Hydrological modelling of water storages in the Betwa River basin using Soil and 

Water Assessment Tool (SWAT). 

4. Development and application of a conceptual framework to study the individual as well 

as combined impact of land use and climate change on hydrology of the Betwa River 

basin.  

5. Evaluation of the over-land and in-stream best management practices (BMPs) for 

sustainable development of the Betwa River basin. 

1.5 ORGANIZATION OF THESIS 

The thesis has been organized in nine chapters as follows: 

Chapter 1: This chapter briefly describes the general background of the study and the present 

state-of-the-art knowledge of land use change, climate change, and hydrological modelling.  

Furthermore, the motivation of study, need of hydrological modelling study in the Betwa River 

basin, and specific research objectives are provided.  

Chapter 2: This chapter deals with the literature reviews on land use change, climate change, 

their impact on river basin hydrology, use of hydrological models, and the BMP application for 

sustainable management. Critics in the literature review have been also included in this chapter. 

Chapter 3: This chapter includes details of the study area characteristics, acquisition of hydro-

meteorological data, remote sensing data, generation of thematic maps, ground truth 

verification, field visits, present land management practices, and water resources in the Betwa 

River basin.   

Chapter 4: This chapter deals with the spatiotemporal land use/land cover (LU/LC) analysis 

for historical and future years. An integrated Cellular Automata and Markov Chain (CA-MC) 

model has been used for future LU/LC prediction. Furthermore, the LU/LC change analysis has 

been carried out for two inter-state regions, i.e. Madhya Pradesh (MP) and Uttar Pradesh (UP), 

covered within the Betwa basin. 
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Chapter 5: This chapter deals with the relationship analysis between hydro-climatic variables 

and land cover dynamics at monthly, seasonal and annual time-scale. The time-series MODIS 

data of NDVI and land cover has been employed to study climatic greening, non-climatic 

greening, climatic degradation and non-climatic degradation employing a conceptual 

framework, and spatial change analysis.  

Chapter 6: This chapter emphasizes description of the SWAT model, input and output files, 

model set-up and run, water storages (7 reservoirs and 2 weirs) management, sensitivity and 

uncertainty analysis, model calibration and validation, model evaluation for the simulation of 

streamflow and sediment at four gauging sites, i.e. Basoda, Garrauli, Mohana, and Shahijina, of 

the Betwa river basin.   

Chapter 7: This chapter deals with the comprehensive analysis of individual land use change 

impact, individual climate change impact, and combined land use and climate change impact 

on streamflow, sediment yield, evapotranspiration and water yield in future. Further, the 

conceptual framework has been developed and employed for individual as well as combined 

impact assessment.  

Chapter 8: This chapter deals with the identification and prioritization of critical areas based 

on future hydrological simulation, implementation of over-land as well as in-stream BMPs, 

sensitivity and uncertainty analysis of BMP parameters in SWAT, and percent reduction in 

streamflow and sediment yield. Based on pre-BMP and post-BMP simulations, the optimal 

BMP has been recommended for sustainable management of agriculture land and river channel.  

Chapter 9: This chapter discusses the summary and conclusions of the study. The major 

research contributions and future research scope has been also discussed at the end of this 

chapter.  

Furthermore, few appendices which includes (A) field visit photographs, (B) LU/LC modelling 

statistical (confusion matrix) tables, (C) relationship equations, (D) hydrological response unit 

(HRU) distribution table of the SWAT model, and (E) the sub-watershed wise model 

simulation tables under land use and climate change, have been provided for more detailed 

information of the analyses carried out in the present research study.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter encompasses review of the relevant literatures on hydrological modelling and land 

use change modelling, and their application studies. Further, the application of SWAT model in 

land use change and climate change impact assessment, critical area identification and 

prioritization, best management practices application and evaluation has been also discussed. 

The last section deals with the sustainable river basin management and development employing 

hydrological modelling approach, and the critiques in literature review.   

2.1 NECESSITY AND CONSTRAINTS OF MODELLING APPROACH 

Limited field measurements create difficulty to understand the hydrological processes of a 

watershed/river basin. Long term remote sensing datasets of land use/land cover (LU/LC) and 

climate are required as inputs to the Geographical Information System (GIS) for investigation 

of spatiotemporal changes. GIS-based models use the field measurements of soil, topography 

and management practices to build and study the complex hydrological process. It is very 

important to ensure the accuracy of such remotely sensed data products and field measurements 

for feasible application and simulation using the modelling approach. Numerous models are 

progressively developed to account such difficulties in modelling approach (Singh, 1996, 

2002). It includes the land use change models, the climate change models, the conceptual 

models, and the hydrological models etc. These models vary with their input data requirement, 

in-build process algorithm, spatiotemporal accountability, practical application, types of output, 

capability and complexity of the model simulation (Pandey et al., 2016b). To ensures the 

validity and applicability of a model in the same/other study area having similar environmental 

conditions, these models can be calibrated and validated using the field measurements/data 

(Govers, 2011). Thus, selection of a model should include minimum data inputs, ability to 

account the changes in land use, climate and management practices, model reliability, 

acceptability, and robustness in nature.  

Progressive development in the remote sensing and GIS promises the potential applicability of 

hydrological modelling approach employing various datasets including land use, climate, soil, 

slope, and management practices at spatiotemporal scales. Remotely sensed satellite data is 

used for land use classification and their change detection. GIS facilitate an environment for 

data collection, analysis, mapping, and scaling. The Digital Elevation Model (DEM) data is 

used to extract topographic variables such as slope, aspect, stream-network, and basin 

geometry.  
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2.2 LAND USE/LAND COVER (LU/LC) CHANGE MODELLING 

The LU/LC plays an important role in global environmental changes. It is most important 

linkage between socio-economic processes associated with land development, agricultural 

activities, natural resource management strategies, and the ways that these changes affect the 

structure and function of ecosystems (Roy and Tomar, 2001). In the mid 1930’s, the LU/LC 

mapping began using the available aerial Gemini and Apollo space photographs and the photo-

interpretation techniques, and continued to use until early 1970’s (MacPhail and Campbell, 

1970). Operational use of space-borne multispectral data began only after the launch of the 

Earth Resources Technology Satellite (ERTS-I), later renamed as Landsat-1, in July-1972. The 

Landsat Multispectral Scanner (MSS) imagery provides synoptic view of a fairly large area at 

regular intervals which was exploited for LU/LC change mapping and monitoring by the 

United States Geological Survey (USGS) (Anderson, 1971).  

Various change detection techniques have been developed and utilized, i.e. (i) based on spectral 

classification of input data (categorical method), post-classification comparison (Mas, 1999) 

and direct two-date classification (Yeh and Li, 1997), and (ii) based on radiometric change 

between acquisition dates, including (a) image algebra method, such as band differencing 

(Weismiller et al., 1977), rationing (Howarth and Wickware, 1981) and vegetation indices 

(Nelson, 1983), (b) regression analysis (Singh, 1986), (c) principal component analysis (Byrne 

et al., 1980; Gong, 1993), and (d) change-vector analysis (CVA; Malila, 1980). In addition, 

hybrid approaches involving a mixture of categorical and radiometric change information have 

also been proposed and evaluated (Colwell and Weber, 1981). Future, LU/LC prediction is also 

required to emulate the implications of human activity for sustainability of natural system 

(Turner II et al., 1995). Several LU/LC models are available to reflect the current and future 

trends that can serve as the benchmarks against process-oriented models. These models involve 

historical pattern of LU/LC change, and then extending these patterns for future prediction. 

Best LU/LC prediction model represents: (a) amount of future LU/LC changes, (b) location of 

changes, and (c) spatial pattern of changes. Although some existing models address the first 

two of these conditions (Veldkamp and Fresco, 1996a; Landis and Zhang, 1998), there are few 

models which are specifically aimed to reproduce the spatial patterns of LU/LC changes. 

Mainly, there are two types of LU/LC prediction models i.e. regression type models and spatial 

transition-based models (Theobald and Hobbs, 1998).  

Agarwal et al. (2002) reported 19 LU/LC change models for spatial, temporal and human 

decision-making characteristics for reviewing and comparing LU/LC models (Table 2.1a). 

Furthermore, recently developed LU/LC models are summarized in Table 2.1b. 
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Table 2.1a: Land use change models 

Sr. 

No. 

Model Name Author(s) [Year] 

1.  GEM (General Ecosystem Model) Fitz et al. (1996) 

2.  PLM (Patuxent Landscape Model) Voinov et al. (1999) 

3.  CLUE model 

(Conversion of Land Use and its Effects)  

Veldkamp and Fresco (1996a) 

4.  CLUE-CR (Conversion of Land Use and its Effects – Costa 

Rica) 

Veldkamp and Fresco (1996b) 

5.  Area base model Hardie and Parks (1997) 

6.  Univariate spatial models Mertens and Lambin (1997) 

7.  Econometric (multinomial logit) model Chomitz and Gray (1996) 

8.  Spatial dynamic model Gilruth et al. (1995) 

9.  Spatial Markov model Roy et al. (2001) 

10.  CUF (California Urban Futures) Landis (1994); Landis and 

Zhang (1998) 

11.  LUCAS (Land Use Change Analysis System) Berry et al. (1996) 

12.  Simple log weights Wear et al. (1998) 

13.  Logit model Wear et al. (1996) 

14.  Dynamic model Swallow et al. (1997) 

15.  NELUP (Natural Environment Research Council (NERC)–

Economic and Social Research Council (ESRC): 

NERC/ESRC Land Use Programme (NELUP)) 

O’Callaghan (1995) 

16.  NELUP - Extension Oglethorpe (1995); O’Callaghan 

(1995) 

17.  FASOM (Forest and Agriculture Sector Optimization 

Model) 

Adams et al. (1996) 

18.  CURBA (California Urban and Biodiversity Analysis 

Model) 

Landis et al. (1998) 

19.  CA (Cellular Automata) model Clarke et al. (1997); Kirtland et 

al. (2000) 

 

Table 2.1b: Recently developed land use change models 

Sr. 

No. 

Model Name Author(s) [Year] 

1.  GEOMOD & GEOMOD 2 Pontius et al. (2001) 

2.  LTM (Land Transformation Model) Pijanowski et al. (2002) 

3.  SELUTH (Slope, Land use, Exclusion, Urban extent, 

Transportation, Hill shade) 

Clarke et al. (1997) 

4.  Environment Explorer de Nijs et al. (2004) 
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5.  CLUE-S (2005) Verburg and Veldkamp (2004) 

6.  Land Use Scanner Koomen et al. (2005) 

7.  SAMBA Castella et al. (2005a) 

8.  Land Change Modeler – for Ecological Sustainability Clark Labs (2006) 

9.  Earth Trends Modeler Clark Labs (2007) 

10.  MABEL (Multi Agent-Based Economic Landscape) Model Konstantinos et al. (2008) 

  

2.3 HYDROLOGICAL MODELLING  

Hydrological models are diverse in data handling and computational requirements. Several 

watershed models have drawbacks due to the requirement of large datasets, lack of user-

friendliness, conditions of their applicability and improper measure of reliability. Spatial scale 

play important role in the selection of the models, and to study the complex processes of river 

basin. Based on the degree to which spatial parameters affect the modelling process, the 

watershed models are categorized as lumped, semi-distributed and distributed model.  

1. In lumped models, spatial variability of processes, input data, watershed characteristics, 

and boundary conditions are not taken into account.  

2. However, the distributed models accounts the spatial variability of processes and 

outputs (Zhang et al., 1996).  

3. The semi-distributed models lies in between lumped and distributed models by dividing 

river basin into sub-watersheds and reasonably homogeneous regions employing 

hydrological response units (HRUs) or quasi-statistical approach, or combination of 

both (Schumann, 1993).  

Furthermore, the temporal scale of model is also important due to variation in hydrological 

processes at different time periods. Based on the temporal scale, the models are categorized as 

event based (single or multi-event), or continuous. Both the spatial and temporal scales are 

important in the modelling approach, thus, the models are classified as field-scale or 

watershed-scale models (Singh, 1989).  

1. Generally, the field-scale models have spatially uniform rainfall, single land use, 

homogeneous slope and soil, and single management practice.  

2. On other hand, the watershed-scale models are reasonably advanced, and they can have 

non-uniform rainfall distribution, different land use, slope, soil and management 

practices.  
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Further, based on the area of the watershed, the models are again re-classified into small- (<100 

km
2
), medium- (100-1000 km

2
), and large- (>1000 km

2
) watershed scale models. The small 

area scale studies focus on on-site impacts, whereas larger area scale studies focus on off-site 

impacts of surface flow.  

Hydrological models are mainly grouped into three categories i.e. empirical, conceptual, and 

physical based (Singh, 1995; Singh and Woolhiser, 2002; Singh and Frevert, 2006).  

1. Empirical models require less data, as compared to the conceptual and physically-based 

models, and capable of working with coarser and limited measurements/data (Wheater 

et al., 1993; Jakeman et al., 1999). Further, empirical models can be reclassified as 

stochastic, deterministic or mixed type models (Singh, 1988). These models ignore the 

heterogeneity of watershed characteristics, and involve the unrealistic assumptions for 

physical process of watershed (Wheater et al., 1993).     

2. Conceptual models represent the watershed as a series of internal storages with the 

parameters having limited physical interpretability. It includes only general description 

of watershed processes, but not the specific details of process interactions and detailed 

watershed information. Thus, conceptual model plays an intermediate role between 

empirical and physically based models (Beck, 1987). 

3. Physical models include fundamental physical equations accounting hydrology of a 

watershed. These models represent the water flow by the conservation of mass and 

momentum equations and the sediment by the conservation of mass equation (Kandel et 

al., 2004). In physical models, the inputs data of land use, soil, climate, topography, 

geology, vegetation, and river flow characteristics uses to represent and simulate the 

complex hydrological processes. Limitation of such models is that such models require 

more number of input datasets and parameters for hydrological simulation (Jetten et al., 

2003). Generally, use of more number of data/parameters provides better simulation 

results, but not always in case models with limited number of parameters (Perrin et al., 

2001). Some most popular physically-based hydrological models are listed in Table 2.2. 
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Table 2.2: List of physically-based hydrological model (Pandey et al., 2016b) 

Sr. 

No. 

Model Name Author(s) 

[Year] 

Remarks 

 

1. ACTMO 

(Agricultural Chemical Transport Model) 

Frere et al. 

(1975) 

Lumped, event based, farm scale 

model 

2. AGNPS 

(Agricultural Non-point Source model) 

Young et al. 

(1989) 

Distributed, event based, 

watershed scale model 

3. AnnAGNPS 

(Annualized Agricultural Non-point Source 

model) 

Bingner et al. 

(2011) 

Continuous simulation, 

watershed scale model 

4. ANSWERS 

(Areal Nonpoint Source Watershed 

Environment Response Simulation) 

Beasley et al. 

(1980) 

Distributed, deterministic, 

event based, watershed scale  

simulation model 

5. ANSWERS-continuous 

(Areal Nonpoint Source Watershed 

Environment 

Response Simulation-Continuous) 

Bouraoui and 

Dillaha (1996) 

Continuous, process-oriented,  

distributed, simulation model 

6. APEX 

(Agricultural Policy/Environmental 

eXtender) 

[EPIC model extension] 

Williams and 

Izaurralde 

(2006) 

Continuous simulation, farm 

scale or small watershed model 

7. CASC2D 

(CASCade of planes in 2-Dimensions) 

Julien and 

Saghafian 

(1991) 

Unsteady, distributed, event  

based Hortonian simulation  

model 

8. CREAMS 

(Chemicals, Runoff and Erosion from 

Agricultural Management Systems) 

Knisel (1980) Lumped, process-oriented, field-

scale model 

9. DWSM 

(Dynamic Watershed Simulation Model) 

Borah et al. 

(1999) 

Process-oriented, single storm 

event based, distributed 

simulation model 

10. EPIC 

(Erosion Productivity Impact Calculator) 

William et al. 

(1984) 

Process-oriented, lumped, field 

scale  continuous simulation 

model 

11. EROSION-2D/3D 

 

Schmidt (1991) Single storm event based, 

simulation model 

12. EUROSEM 

(European Soil Erosion Model) 

Morgan et al. 

(1993) 

Process-oriented, single event, 

dynamic distributed model 

13. GLEAMS 

(Groundwater Loading Effects of Agricultural 

Management Systems) 

Leonard et al. 

(1987), Knisel 

et al. (1993) 

Lumped, process-oriented, event 

based, Field-scale model 

14. GSSHA 

(Gridded Surface Subsurface hydrologic 

Analysis) 

Downer and 

Ogden (2004) 

Process-oriented, distributed 

simulation model 

15. GUEST 

(Griffith University Erosion System 

Misra and Rose 

(1996) 

Process-oriented, steady state, 

event based, soil erosion model 
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Template) 

16. HYPE 

(Hydrological Predictions for the 

environment) 

Lindstrom et al. 

(2010) 

Process-oriented, semi-

distributed, continuous 

simulation model 

17. IDEAL 

(Integrated Design and Evaluation of loading 

Models) 

Barfield et al. 

(2006b) 

Process-oriented, simulation 

model 

18 IQQM 

(Integrated Water quality and quantity model) 

Simons et al. 

(1996) 

Event based, watershed scale 

model. 

19. KINEROS (KINematic runoff and EROSion 

model) 

Woolhiser et al. 

(1990) 

Process-oriented, single storm 

event based, distributed 

simulation model 

20. LASCAM 

(Large Scale Catchment Model) 

Viney and 

Sivapalan 

(1999) 

Distributed, continuous model 

21. MEDALUS 

(Mediterranean Desertification and Land Use 

research programme Model) 

Kirkby et al. 

(1993); Kirkby 

(1998) 

Process-oriented, event based, 

hillslope field-scale model 

22. MEFIDIS 

(Modelo de ErosaoFIsico e DIStribuido) 

Nunes et al. 

(2005) 

Deterministic, spatially 

distributed, time dynamic model 

23. MIKE 11 MIKE (1995) Watershed scale, dynamic 

computer model 

24. MULTSED 

(MULTiple watershed storm water and 

SEDiment runoff Simulation model) 

Melching and 

Wenzel (1985) 

Distributed, deterministic, single 

event based simulation model 

25. OPUS Smith (1992) Continuous field-scale, 

simulation model 

26. PALMS  (Precision Agricultural Landscape 

Modeling System) 

Bonilla et al. 

(2008) 

Process-oriented, event based, 

distributed, landscape model 

27. PERFECT 

(Productivity, Erosion and Runoff, Functions 

to 

Evaluate Conservation Techniques) 

Littleboy et al. 

(1992) 

Mix of empirical, conceptual and 

physics based field scale model 

28. PESERA 

(Pan-European Soil Erosion Risk Assessment) 

Kirkby et al. 

(2004) 

Process-oriented, spatially 

distributed, single storm event 

based model 

29. PRMS 

(Precipitation Runoff Modelling System) 

Leavesley et al. 

(1983) 

Modular design, single storm 

event based, distributed 

simulation model 

 

30. RHEM 

(Rangeland Hydrology and Erosion Model) 

Nearing et al. 

(2011) 

Process-oriented, event based, 

rangeland management model 

31. RillGrow 

 

Favis-Mortlock 

(1996) 

Distributed, process-oriented, 

single event based, hillslope rill 

erosion model 

32. RUNOFF 

 

Borah (1989) Event based, distributed, 

deterministic model 
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33. SEDIMOT 

(Sedimentology by Distributed Modelling 

Technique-Version III) 

Barfield et al. 

(2006a) 

Single event based, field scale 

model 

 

34. SHE/SHESED 

(SystemeHydrologiqueEuropian/ 

SystemeHydrologiqueEuropian Sediment) 

Abbott et al. 

(1986a, b) 

Distributed, continuous 

basinscale, simulation model 

35. SHETRAN 

(SystemeHydrologiqueEuropian-TRANsport) 

Ewen et al. 

(2000) 

Spatially-distributed, basin-scale, 

simulation model 

36. SMODERP 

(Simulation Model of OverlanD Flow and 

ERosion Process) 

Holy et al. 

(1988) 

Single storm event based, 

simulation model 

37. SPUR 

(Simulating Production and Utilization of 

Rangeland) 

Carlson et al. 

(1995);  Teague 

and Foy (2002) 

Lumped, continuous, field scale, 

rangeland simulation model 

38 SWAT 

(Soil and Water Assessment Tool) 

Arnold et al. 

(1998) 

Semi-distributed, physically-

based, continuous simulation 

model 

39. SWIM 

(Soil and Water Integrated Model) 

Krysanova et al. 

(1998) 

Spatially distributed watershed 

model 

40. SWM 

[Stanford Watershed Model/ Hydrological 

Simulation Program-Fortran (HSPF)] 

Bicknell et al. 

(1993) 

Process-oriented,  lumped 

parameter, continuous 

simulation model 

41. SWRRB 

(Simulator for Water Resources in Rural 

Basins) 

Williams et al. 

(1985) 

Semi-distributed, process-

oriented simulation model 

42. TOPMODEL 

(TOPography based hydrological MODEL) 

Beven and 

Kirkby (1979) 

Distributed, continuous 

hydrologic, watershed scale 

simulation model 

43. TOPOG 

 

Vertessy et 

al.(1990) 

Deterministic, distributed, event 

based catchment model 

44. WEPP 

(Water Erosion Prediction Project) 

Laflen et al. 

(1991) 

Process-oriented, distributed, 

continuous simulation model 

45. WESP 

(Watershed erosion simulation program) 

Lopes (1987) Distributed, event based, 

nonlinear, numerical model 

 

2.4 DESCRIPTION OF THE SWAT MODEL  

Physically-based models have mathematical expressions for individual hydrological process. 

Practically, none physical model is fully physically-based because it includes many 

assumptions and considerations of empirical/conceptual approaches. But, physically based 

models can help to study complex hydrological processes in a short time and with limited 

investments. Mainly physically-based models provide accurate representation of different land 

use, erosion processes, and complex conditions under varying soil properties (Lane et al., 

2001). Among different physically-based models given in Table 2.2, the SWAT model is a 
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physically-based, continuous-time, long-term, distributed river basin or watershed scale 

hydrologic model (Arnold et al., 1998; Arnold and Fohrer, 2005) developed by USDA’s 

Agricultural Research Service (ARS) to predict the impact of land management practices on 

water, sediment and contaminant in complex and large river basin with varying land use, soil 

and management practices over long periods of time.  

The SWAT model, developed in the early 1990s, is an outgrowth of the SWRRB model. It has 

features of CREAMS, GLEAMS and EPIC models that contributed initial development. It has 

undergone continued review and expansion of capabilities. The most significant improvements 

of the SWAT model are as follows: 

 SWAT94.2: In this version multiple hydrologic response units (HRUs) were incorporated. 

 SWAT96.2: In this version, auto-fertilization and auto-irrigation were added as 

management options. Further, canopy storage of water and, a CO2 component was also 

added to crop growth model for climatic change studies. Penman-Monteith potential 

evapotranspiration equation was also added. Lateral flow of water in the soil based on 

kinematic storages model was incorporated. In-stream nutrient water quality equations from 

QUAL2E and in-stream pesticide routing were included in the model.  

 SWAT98.1: In this version, snow melt routines and in-stream water quality module was 

improved. Nutrient cycling routines were expanded. Grazing, manure applications, and tile 

flow drainage were added as management options. Also, the model was modified for use in 

Southern Hemisphere.  

 SWAT99.2: In this version, nutrient cycling routines and rice/wetland routines were 

improved. Reservoir/pond/wetland nutrient removal by settling, bank storage of water in 

reach and routing of metals through reach were added in the model. All year references in 

model were changed from last 2 digits of year to 4-digit year. Urban build up/wash off 

equations from SWMM were added along with regression equations from USGS.  

 SWAT2000: In this version, bacteria transport routines and Green & Ampt infiltration were 

added. The weather generator was improved by allowing to be read or generated the daily 

solar radiation, relative humidity, and wind speed. Also, allowed the potential ET values for 

watershed to be read in or calculated. All potential ET methods were reviewed. Elevation 

band processes were improved. Simulation of unlimited number of reservoirs was enabled. 

Muskingum routing method was added. Also, the dormancy calculations for proper 

simulation in tropical areas were modified. 

 SWAT2005: In this version, the bacteria transport routines were improved. Weather 

forecast scenarios and sub-daily precipitation generator were added. The retention 
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parameter was used in the daily CN calculation, which may be a function of soil water 

content or plant evapotranspiration.  

 SWAT2009: In this version, vegetative filter strip model was updated. Wet and dry 

deposition of nitrate and ammonium was improved. Also, modelling of on-site wastewater 

systems was added. 

 SWAT2012: In this version, the CROP table to include several new crops in the 

SWAT2012 database was updated. The writing of atmo.atm file was modified to only write 

the file if an average annual value option is chosen. Also, an option to provide own 

atmo.atm monthly values by choosing an IATMO value of “1” was added. The same 

deposition values specified in the .BSN file were written as one line for every sub-

watershed. The DEM, land use, and soils raster datasets were allowed to read from a file 

geo-database. The header line in the .RES files was modified to be compatible with SWAT-

CUP. The handling of split sub-landuses during HRU delineation has been modified for the 

case exempt land uses are specified (if a parent land use is specified as being “exempt” 

from the land use threshold, then all sub-land uses will also be exempt). New parameters in 

the HRU table and .hru files were added to the interface. New parameters in the BSN table 

and .bsn file were added to the interface. And, the SWAT executable was updated to 

version 627. 

In addition to the changes listed above, interfaces for the model have been developed in 

Windows (Visual Basic), GRASS, and ArcView. The SWAT model has also undergone 

extensive validation.  

The SWAT-CUP (SWAT-Calibration and Uncertainty Programs) a decision-making 

framework was developed for calibration of the SWAT model which also enables sensitivity 

and uncertainty analysis (Abbaspour, 2007; Arnold et al., 2012b). For evaluation of the SWAT 

model simulation, different statistical tools, guidelines and recommendations have been 

provided by Moriasi et al. (2007).  Abbaspour et al. (2015) modelled the hydrology of entire 

European continent with SWAT and improved SWAT-CUP to include parallel processing and 

visualization. Fu et al. (2014) revised and tested the SWAT model to generate SWAT-CS a 

version representing hydrological processes dominating forested Canadian Shield catchments. 

A version SWAT-G was also developed for application to low mountain range catchments of 

Germany (Eckhardt and Arnold, 2001; Eckhardt et al., 2002). In order to identify potential 

model application problems SWAT-Check was developed to make modelling applications 

more reliable and user friendly (White et al., 2014). Although, storm event based high and peak 

flows are not well simulated by the SWAT model, which needs improvement.  
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Global applications of SWAT model over the past 20 years have revealed limitations, and 

identified model development needs. Water resources modelling using the SWAT code have 

undergone numerous additions and modifications of the model components which made the 

code increasingly difficult to manage and maintain, resulting in SWAT+, a completely revised 

version of the model (Arnold et al., 2018). Keeping the basic processing algorithms same, the 

code (object based) and the input files (rational based) are considerably modified in terms of its 

structure and organization (Bieger et al., 2017). This is expected to facilitate model 

maintenance, future code modifications, and foster collaboration with other researchers to 

integrate new science into SWAT modules. The SWAT+ provides a more flexible spatial 

representation of interactions and processes within a watershed.  

2.5 APPLICATION OF THE SWAT MODEL 

With the enhanced features and in-build several hydrological processes, the SWAT has been 

widely employed for different applications such as calibration, sensitivity, and/or uncertainty 

analysis (Arnold et al., 2012b; Abbaspour et al., 2015), land use change impact assessment 

(Dixon and Earls, 2012), climate change impact assessment (Raneesh and Thampi Santosh, 

2011; Records et al., 2014), non-point source pollutant cycling/loss and transport study 

(Niraula et al., 2012; Moriasi et al., 2013; Malagó et al., 2017), BMP evaluation (Pandey et al., 

2009a; Betrie et al., 2011; Lampurlanés et al., 2016), snowmelt and/or glacier melt processes 

(Stehr et al., 2009; Rahman et al., 2013; Omani et al., 2017), hydropower projects (Piman et al., 

2012; Pandey et al., 2015), groundwater and/or soil water impacts (Mishra et al., 2007; Sultan 

et al., 2011; Sun et al., 2016), plant parameters or crop growth/yield (Barron et al., 2010; 

Iizumi et al., 2013; Sinnathamby et al., 2017),  evapotranspiration assessment (Immerzeel and 

Droogers, 2008; Licciardello et al., 2011; Aouissi et al., 2016) etc.  

Bingner (1996) simulated runoff of the Goodwin Creek watershed in Northern Mississippi 

using the SWAT model. Results revealed that SWAT can simulate the relative trends of runoff 

on a daily and annual basis from multiple sub-watersheds. Analysis showed that SWAT model 

has capability to adequately simulate the effects on runoff from the temporal and spatial 

variability of watershed characteristics. 

Van Liew and Garbrecht (2003) applied the SWAT model to predict streamflow under varying 

climatic conditions for three nested sub-watersheds in the Little Washita River Experimental 

Watershed in South-Western Oklahoma. Results showed that the model can adequately 

simulate runoff for dry, average, and wet climatic conditions at a sub-watershed level, 

following calibration for relatively wet years in two sub-watersheds. 
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Tripathi et al. (2004) performed the SWAT-based hydrological modelling for runoff and 

sediment yield estimation of a small agricultural watershed in Eastern India using generated 

precipitation. Results showed that the model can satisfactorily employ the generated monthly 

average rainfall values to simulate the monthly surface runoff and sediment yield close to the 

observed data. This study was found suitable to develop a multi-year management plans for the 

critical soil erosion prone areas of a watershed. 

Schuol et al. (2008) employed the SWAT model to quantify freshwater availability of 4 million 

km
2
 area covering 18 countries in West Africa. This study demonstrated that modelling 

uncertainties were generally within reasonable ranges, but in sub-watersheds containing 

features such as dams and wetlands or sub-watersheds with inadequate climate or land use 

information, the modelling uncertainties became higher. 

Vazquez-Amabile and Engel (2008) applied the SWAT model to generate long time-series data 

to forecast short-term monthly groundwater depth and streamflow. The SWAT with the fitted 

time-series model performed good for groundwater depth simulation and forecasting. However, 

time-series fitted to the SWAT model data and the historical data resulted similar performance, 

but monthly streamflow forecast was poor. 

Dhar and Mazumdar (2009) evaluated the projected parameters for agricultural activities using 

the SWAT model over the Kangsabati river watershed of West Bengal, India. Parameters such 

as ET, transmission losses, potential ET and lateral flow to reach were evaluated for the years 

2041-2050 in order to render a picture for sustainable management and development of the 

river basin and its inhabitants. 

Golmohammadi et al. (2017) employed the SWATDRAIN model to evaluate the impacts of tile 

drainage on alterations in discharge, sediment and water balance components of an agricultural 

watershed of Ontario, Canada. The results showed that discharge was not significantly affected 

by tile drainage, while removing the tile drain resulted in 55% increase in sediment load, and 

37.1% increase in surface runoff from the watershed.  

Application of the SWAT model in different hydrological applications is presented in Table 

2.3. 
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Table 2.3: Application of the SWAT model in different hydrological studies 

Researcher(s) 

and Year  

Study  

Region(s)  

Area 

(ha) 

approx. 

Broad  

Application  

Category  

Major Findings/Remarks  

Chu and  

Shirmohammadi  

(2004)  

Maryland  340  Surface and 

sub-surface 

flow 

prediction  

The study revealed that SWAT 

underestimated total stream flow and 

sub-surface flow, especially during wet 

periods. During wet season, 

considerable groundwater contribution 

from outside the watershed was 

reported. Even after adjustments to 

measured data, SWAT model was found 

unable to simulate the extremely wet 

hydrologic conditions.   

Mendas et al. 

(2008)  

Macta 

watershed, 

NW region of 

Algeria  

1423500  Water balance  The study showed that SWAT 

reproduces the parameters of 

streamflow, climate and water balance. 

A good correlation was observed 

between observed and simulated 

variables for the adopted model. 

Simulation results may help in decision-

making and water resources 

management at watershed scale.   

Rostamian et al. 

(2008)  

Beheshtaba d 

and Vanak 
watersheds,  

Iran  

386000 

and 

319800  

Runoff and 

sediment 

simulation  

The study indicates accounting of 

uncertainties and a fair model 

performance; P factor (0.31-0.86 and 

0.71-0.80); D factor (0.3-1.1 and 

0.771.16) for Beheshtabad and Vanak 

watersheds, respectively.  

Schmalz et al. 

(2008)  

Mesoscale 

lowland river 

basins  

5000 to  

51700  

Water balance  Some groundwater parameters were 

found to be highly sensitive and they 

turned out to be the most influential 

factors for improving simulated water 

discharge. The dominating hydrological 

processes were found to be mainly 

controlled by groundwater dynamics 

and storage, drainage, wetlands and 

ponds.   

Ficklin et al. 

(2009)  

San Joaquin 

watershed, 

California  

1498300  Variations of 

atmospheric 

CO2, Temp 

and Rainfall  

The study revealed that rainfall, 

temperature and atmospheric CO2 

change have major influence on ET, 

water yield, streamflow and irrigation 

water use. Finally, the selected 

watershed was found more sensitive to 

potential future climate change.   
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Pisinaras et al. 

(2010)  

Kosynthos 

River 

watershed, NE 

Greece  

44000  Hydrological 

and water 

quality 

modelling  

A good correlation was observed 

between observed and simulated data 

for the adopted model. The study 

suggested that the SWAT model can be 

used effectively in testing management 

scenarios in Mediterranean watersheds, 

if properly validated.  

Wang et al. 

(2010)  

Cowhouse 

Creek 
watershed,  

Texas  

117845  land use–soil 

interactive 

effects on 

water and 

sediment 

yields  

Annual sediment and water yield 

increase in all soils with conversion of 

range brush to range grass. For the 

removal of range brush on a soil that is 

adjacent to the stream channels, the 

increase in water yield was found larger.  

Oeurng et al. 

(2011)  

Save 

catchment, 
South-west  

France  

111000  Hydrologic & 

pollutant 

simulation  

An empirical correlation was developed 

between annual water yield, annual 

sediment and organic carbon yield. The 

value of annual soil loss was found to 

vary spatially from 0.1 to 6 t ha
-1

 

according to the agricultural practices 

and slope at the catchment scale. Critical 

source areas of erosion were also 

identified using the model.   

Garg et al. 

(2012)  

Upper  

Bhima river 

basin,  

southern India  

4606600  Crop water 

productivity 

assessment  

Different cropping patterns scenarios 

were tested with the goal of increasing 

economic water productivity values in 

the Ujjani Irrigation Scheme. The study 

suggested that maximization of the area 

by provision of supplemental irrigation 

to rain-fed areas as well as better on-

farm water management practices can 

provide opportunities for improving 

water productivity.  

Himanshu et al. 

(2017c)  

Ken River 

basin, India  

2867200  

  

Runoff, 

sediment and 

water balance 

simulation  

Satisfactory model performance for both 

runoff and sediment yield. The water 

balance study of the basin showed that 

evapotranspiration is more predominant 

accounting for about 44.6% of the 

average annual precipitation falling over 

the area. The average annual sediment 

yield of the basin was found to be 15.41 

t/ha/year.  

Suryavanshi et 

al. (2017)  

Betwa  

River basin,  

India  

4350000  Runoff and 

water balance 

simulation  

Satisfactory model performance was 

observed for both runoff and seasonal 

water balance simulation. The seasonal 

water balance study of the basin showed 

that about 90% of annual rainfall and 

97% of annual runoff occurred in the 

monsoon season.  
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2.5.1 Assessment of land use change impact using SWAT 

Ghaffari et al. (2010) investigated the hydrological effects of land use changes over 1967, 1994 

and 2007 in Zanjanrood basin, Iran using the SWAT model. In this study, the SWAT model 

was applied to simulate the main components of the hydrological cycle. Results revealed that 

hydrological response to the overgrazing and replacement of the rangelands with rain-fed 

agriculture and bare ground is nonlinear and exhibits a threshold effect. 

Cai et al. (2012) assessed the impacts of land-use change on sediment yield of Upper Huaihe 

River basin, China. Results revealed that under the same condition of terrain slope and soil 

texture, the sensitivity of rainfall–sediment yield relationship to rainfall and the advantage for 

sediment yield descended by paddy field, woodland and farmland. The outcome of the 

research can provide references for river health protection, and soil and water conservation.  

Du et al. (2013) quantified the hydrological processes in a rapid urbanization region of the 

Qinhuai River basin using SWAT model. They used regression equations to develop 

parameterization strategy with SWAT parameters as dependent variables and catchment 

impermeable area as independent variable. They concluded that, this modeling approach could 

provide an essential reference for the study of assessing the impact of LU/LC changes on 

hydrology in other regions. 

Zhang et al. (2014) investigated an effect of land use change on sediment yield in Lixici 

watershed, China. The rate of soil erosion was found to be most severe in areas with slopes 

>25°. Use of grassland or forestland has been recommended rather than farmland in the areas 

with slopes >25°. This study revealed that SWAT model is suitable for developing sustainable 

soil conservation actions to reduce soil erosion. 

Wei et al. (2016) analyzed the effects of four different land use scenarios changes on runoff of 

the Qiaoyu River Basin, China employing the SWAT model. Land use scenario-1 had the 

greatest impact on the annual runoff and the runoff reduction, while scenario 3 was the worst. 

At sub-watershed level, the water yield has greater impact of scenario-1 and scenario-2 in the 

upper and middle part of the basin. Scenario-3 and scenario-4 have a greater impact on the 

water yield in the middle and lower part of the basin. Thus, land use change has significant 

control on the downstream water yield. The effect of four land use scenarios was found to be in 

the order of Scenario1 > Scenario 2 > Scenario 4 > Scenario 3.  

Kundu et al. (2017b) assessed the impact of land use change on the water balance of the past, 

present and future years in the part of Narmada River basin, India using the SWAT model. 
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Result showed that a water yield increases by 6.98% in past and 17.5% in future, while actual 

ET decreases by 3.37% in past and 8.40% in future due to impacts of land use change. 

Napoli et al. (2017) quantified hydrological responses of land use and climate in a rural hilly 

basin, Italy using the SWAT model. Results showed that under a given same climatic 

conditions, the land use change affects both peak and total runoff. SWAT model can effectively 

simulate the basin response to climate and land use changes.  

Setyorini et al. (2017) assessed the impact of LU/LC change and climate variability on 

hydrological processes in Upper Brantas River basin, Indonesia using SWAT model. Result 

showed that deforestation and expansion of agricultural area can lead to increase in annual 

surface runoff, evapotranspiration, streamflow, and the decrease in groundwater and lateral 

flow. Surface runoff is the more sensitive to LU/LC changes than other hydrological 

components. 

Sun et al. (2017) evaluated hydrological relationships with the land use change in the Lake 

Dongting watershed, China using SWAT model. The evaluation of hydrological components in 

response to changing land use scenarios indicates that the water yield, as well as the 

distribution of runoff components associated with surface runoff, interflow, and groundwater 

flow, exhibit considerable changes under varying land use patterns. Results revealed that, in the 

forest-prone scenario, both water yield and surface runoff decreased simultaneously. 

Table 2.4: Application of the SWAT model for land use change impact assessment 

Researcher(s) 

and Year  

Study  

Region(s)  

Area 

(ha) 

approx. 

Broad  

Application  

Category  

Major Findings/Remarks  

Chen et al. 

(2017) 

Double 

Mountain Fork 

Brazos 

watershed, 

USA 

600000 Impact of land 

use change on 

hydrology and 

water quality 

Integrated APEX-SWAT model to 

evaluate an average annual surface 

runoff from the baseline cotton areas 

decreased significantly by 88%, and 

percolation increased by 28%. Due to 

perennial grass, the Nitrate-Nitrogen 

(NO3-N) and Organic-N loads in surface 

runoff and NO3-N leaching to 

groundwater reduced significantly by 

86%, 98%, and 100%, respectively. 

Boongaling et 

al. (2018) 

Calumpang 

watershed, 

Philippines 

35400 Impact of land 

use change on 

hydrological 

processes 

Investigated solid connection between 

land use change and hydrological 

processes. Surface runoff increases by 

5% and sediment yield (by 6%), and the 

base-flow reduces by −11% due to land 

use change.  

da Silva et al. Lower-Middle 

São Francisco 

11045 Hydrological 

response to land 

Surface runoff and sediment yield 

increases under the scenario of 
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(2018) River sub-

basin 

(LMSFR), 

Brazil 

use changes devastation (scenario III) of land use. 

Sustainable land use practices such as 

pasture land is replaced by natural 

vegetation should be applied in the study 

area. 

Gashaw et al. 

(2018) 

Andassa 

watershed, 

Ethiopia  

58760 Land use/land 

cover change 

impacts on 

hydrology 

Changes in cultivated land, forest, 

shrub-land, grassland and built-up area 

contributed changes in annual and wet 

season flow, dry season flow, and to the 

different water balance components 

Guzha et al. 

(2018) 

Catchments 

from East 

Africa 

500 to 

3100000 

Impacts of land 

use/land cover 

change on 

surface runoff 

and low flows 

Examined the effects of wood cover 

misfortune on hydrological transitions, 

particularly release and surface 

overflow. Deforestation results in 

increased surface runoff, mean annual, 

and peak river discharges. 

Molina-

Navarro et al. 

(2018) 

Odense Fjord 

catchment, 

Denmark 

106100 Effects of 

agriculture 

scenarios and 

climate change 

on hydrology 

Changes in land use alone affected total 

catchment runoff in small extent. 

Combined land use and climate change 

showed impact on the river discharge 

(and its individual flow components), 

and the loads of organic nutrients and 

inorganic-P. The discharge variations 

mainly being influenced by the climate 

impacts. 

Prasanchum 

and Kangrang 

(2018) 

Upper Lampao 

Reservoir, 

Thailand 

328200 Land use and 

climate change 

impact on 

reservoir 

operation 

Average of the annual future inflows 

decreased under land use expansion of 

rubber trees area, evergreen forest and 

pasture, and the A2 and B2 climate 

scenarios of PRECIS model. 

Zhang et al. 

(2018b) 

Upper Heihe 

river basin in 

North-West 

China 

1000000 Separating land 

use and climate 

change impacts 

on hydrology 

Land use change slightly affected the 

water yield and ET at the same 

magnitude, while the climate change 

substantially affects at different 

magnitudes. This study revealed that 

influence of baseline period choices on 

the partitioning of hydrological impacts 

vary significantly between different 

hydrological models.  

 

2.5.2 Assessment of climate change impact using SWAT 

Gosain et al. (2006) simulated the impacts of climate change scenarios (A2 and B2) on the 

streamflow of twelve major river basins of India using SWAT model. Results showed that 

surface runoff was generally decreased, and the severity of both floods and droughts has been 

increased in response to the climate change. 

Abbaspour et al. (2009) studied an impact of future climate change on the Iranian water 

resources using the hydrological model SWAT. Effect of future climate on precipitation, blue 
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water, green water, and yield of wheat crop across the country were analyzed. Results showed 

increase in the crop yield is small but statistically insignificant in winter wheat. The irrigated 

wheat production in the southern and eastern regions of Iran has significant negative impact of 

climate change as groundwater recharge decreases in future. 

Carvalho-Santos et al. (2010) studied the construction of a new reservoir (two-reservoir 

system) of Alto Sabor watershed, Portugal by considering future climate projections. The 

SWAT model simulation resulted that the volume of water stored in the reservoirs will 

decrease, especially during spring and summer. In future, the reliability of existing water 

supply from two reservoirs will decrease under scenario RCP 8.5 during the years 2041–2060. 

Lakshmanan et al. (2011) assessed the impacts of climate change on hydrology and rice yield 

in Bhavani basin of India. The SWAT model was applied as a decision support tool under a 

changing climate scenario to frame the adaptation strategies, such as fertilizer management and 

change in cultivation method. 

Zhang et al. (2012a) investigated the impact of climate change and human activates on the 

runoff of the Huifa River Basin, Northeast China using the SWAT model. Results revealed that 

both climate change and human activities are responsible for the decrease in runoff. Climate 

change could result in decrease or increase of runoff depending on the changes in precipitation, 

temperature, radiation variation etc. Further, the human activities such as regulation and 

storage of the water projects also contributed significant decrease in the runoff during wet 

years. 

Golmohammadi et al. (2013) used SWAT-DRAIN model to evaluate climate change impact on 

hydrology of Canagagigue watershed, located in Canada. The climate scenario under 

consideration in this study (2016-2044) was based on projections from SDSM downscaling 

based on historical weather data. With downscaling of the regional model results for the 

specified watershed, the future weather scenarios were the input for calibrated and validated 

hydrologic model, SWAT-DRAIN, for stream flow. 

Zabaleta et al. (2014)  assessed an impact of climate change on runoff and sediment yield of the 

Aixola watershed, Spain.  The SWAT model performance was found to be satisfactory but 

underestimated the runoff and sediment yield when used CGCM2 and ECHAM4 climate 

models. Analysis under different climate model combinations suggested that runoff and 

sediments would decrease by 0.13 to 0.45 m
3
 s

−1
 and 0.11 to 0.43 tonne, respectively every 

year from 2011 to 2100.   
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Xu and Luo (2015) evaluated the spatiotemporal heterogeneity of climate change impacts on 

hydrological processes, mainly river discharge, for River Huangfuchuan in semi-arid regions of 

Northern China and River Xiangxi in humid Southern China. In this study, uncertainty in 

projected discharge for three time periods (2020s, 2050s and 2080s) was assessed using seven 

equally weighted GCMs (global climate models) for the SRES (special reports on emissions 

scenarios) A1B scenario. 

Table 2.5: Application of the SWAT model for climate change impact assessment 

Researcher(s) 

and Year  

Study  

Region(s)  

Area 

(ha) 

approx. 

Broad  

Application  

Category  

Major Findings/Remarks  

Cibin et al. 

(2017) 

Two agricultural 

dominant 

(Wildcat Creek 

and St. Joseph) 

watersheds of 

Indiana, USA 

204500 

and  

280000  

Climate and 

land use change 

impact on 

ecosystems 

services 

Quantified ecosystem services of bio-

energy based on land use and 

potential climatic changes. Results 

revealed that the impacts of land use 

change on ecosystem services are 

expected to be greater than the climate 

change and variability impacts. 

Climate change had more impact on 

food and fuel provisioning compared 

to other ecosystem services.  

Duan et al. 

(2017) 

Upper Ishikari 

River basin, 

Japan 

345000 Future climate 

change impact 

on streamflow 

Annual mean streamflow may 

increase in the future periods except 

the 2090s under the A2a scenario. 

Largest increase about 7.56% is 

possibly observed in the 2030s for 

A2a scenario. Uncertainties within the 
GCM, the downscaling method, and 

the hydrological model were probably 

enlarged because only one single 

GCM (HaDCM3) used. 

Golmohammadi 

et al. (2017) 

Canagagigue 

Creek watershed 

of Ontario, 

Canada 

14300 Current and 

future climate 

impact on 

model 

simulation 

The annual flow is expected to 

decrease due to increased temperature 

in the future, which will lead to a 

decrease in the sediment loads in the 

river. 

Hammouri et al. 

(2017) 

Yarmouk River 

basin in Jordan 

679000 Impacts of 

climate change 

on water 

resources 

Climate change impact was assessed 

on surface flow using three GCM 

models (CSIROMK3, ECHAM5OM 

and HADGEM1) as climatic input 

data in the SWAT. An average drop in 

future flow rates could be about 22% 

which would increase the stress on the 
already highly stressed water 

resources in Jordan. 
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Islam et al. 

(2017) 

Brahmaputra 

River basin 

53000000 Climate change 

impact on 

glacier melt 

The pre-monsoon flow exhibits an 

increase at the end of the century, and 

results revealed major uncertainty of 

the changes in future flow during 

March, April, and May. The 

uncertainty probability in pre-

monsoon flow will be more dominant 

than the uncertainty probability of in 

monsoon flow. 

Ponce et al. 

(2017) 

Vergara river 

basin, Chile 

426000 Impacts of 

climate change 

on water 

resources 

Assessed the distributional climate 

change impact on considering the 

geographical location of each farmer’s 

community and the spatial allocation 

of water resources. Results revealed 
that rain-fed agriculture produces 

facing largest burden of climate 

change and the substantial land 

allocation activities. 

Thai et al. 

(2017) 

Upper Cau River 

basin, Thailand 

283500 Impacts of 

climate change 

on erosion and 

water flow 

Presented inflow variation in flood 

and dry season in future periods. 

Climate trends are leading to severe 

conditions for runoff generation as 

well as erosion status due to increase 

in evaporation and rainfall during the 

period of 2020-2099. 

Wu et al. (2017) Yanhe River 

basin, China 

748500 Hydrological 

response to 

climate change 

and human 

activities 

Quantified dominant role of climate 

change on the total runoff decrease 

accounted by 46-68%. And, 39-54% 

decrease was attributed to the human 

activities. The study revealed that 
climate change impact assessment 

obtained by hydrological modelling 

was substantially different from those 

obtained by empirical statistics.   

Čerkasova et al. 

(2018) 

Neris River 

basin, Europe 

1090888 Impact of 

climate change 

on trans-

boundary 

hydrology and 

water quality  

Demonstrated the model performance 

with enhanced HRU definition to 

assess the trans-boundary hydrology 

and water quality. This study assessed 

the possible future nutrient loads that 

could be transported from Belarus to 

Lithuania under two climate change 

scenarios (RCP 4.5 and 8.5). 
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Leta et al. 

(2018) 

Kalihi and 

Nuuanu 

watersheds, 

Oahu, Hawaii 

51300 Impact of 

Climate Change 

on Daily 

Streamflow and 

Its Extreme 

Values 

The extreme peak flows are expected 

to increase by 22% especially under 

the RCP 8.5 scenario, however, a 

consistent decrease in extreme low 

flows by 60%. The extreme values are 

more sensitive to rainfall change in 

comparison to temperature and solar 

radiation changes. Amplified climate 

change impacts by the end of this 

century and may cause earlier 

occurrence of hydrological droughts 

suggesting implementation of 

mitigation measures to climate 

change. 

 

2.5.3 Identification of critical area and prioritization of watershed 

In order to reduce the losses from the critical areas of the watersheds, effective watershed 

management practices are being implemented and evaluated employing the SWAT model. 

Critical areas have high rate of soil erosion and nutrient losses with the exceeded 

runoff/streamflow affecting natural resources of a watershed. It is required to know a priority 

order of critical areas to implement the targeted management practices.  

Tripathi et al. (2003) identified and prioritized the critical sub-watersheds of Nagwan 

watershed of Jharkhand, India on the basis of average annual sediment yield and nutrient 

losses. The SWAT model was used to obtain sediment and nutrient loads to develop an 

effective management plan at sub-watershed level.  

Behera and Panda (2006) identified critical sub-watersheds of the Kapgari watershed, India on 

the basis of sediment yield and nutrient load and then prioritized according the critical losses. 

Further, the SWAT model was used for development of best management practices in the 

critical areas of Kapgari watershed.  

Agrawal et al. (2009) used the SWAT model for identification and prioritization of critical sub-

watersheds of a small watershed. The critical sub-watersheds were identified and prioritized on 

the basis of annual average sediment yield and nutrient losses.   

Besalatpour et al. (2012) employed the SWAT model to identify and prioritize the critical sub-

basins in a highly mountainous Bazoft watershed of Iran, using imprecise and uncertain data. 

Critical areas were assigned to develop management plans to control erosion from critical 

areas.   
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Giri et al. (2012) prioritized three types of critical areas (high, medium, and low) on the basis 

of different factors such as pollutant concentration, load and yield. In this study, the SWAT 

model performance was evaluated using different targeting methods for identification of 

priority areas. Then, ten BMPs were implemented and evaluated using SWAT model.  

Rocha et al. (2012) identified critical areas of runoff, sediment and nutrient losses, and then 

implemented the conservation practices for reducing these losses using the SWAT model in the 

São Bartolomeu stream watershed, Brazil. Results showed that an increase in water infiltration 

can reduces the average annual runoff, annual sediment yield, total nitrogen and total 

phosphorus.   

Sardar et al. (2012) identified critical soil erosion areas of the Barakar Basin, India using the 

SWAT model for adaptation of the suitable soil conservation measures, and improvement in 

reservoir life. The study revealed that the SWAT model can be effectively used to identify 

critical sub-watersheds and to develop watershed management plans to control soil erosion by 

reducing the reservoir sedimentation rate.  

Niraula et al. (2013) identified critical non-point source pollution areas using SWAT 

simulation, and generalized watershed loading function (GWLF) in the Saugahatchee Creek 

watershed of east central Alabama. This study revealed that use of different models will affect 

the identification of critical source areas of a watershed. 

Previous studies carried out by the various researchers on the critical area identification and 

prioritization for watershed management are presented in Table 2.6.  

Table 2.6: Identification and prioritization of critical areas for watershed management 

Researcher(s) 

and Year  

Study  

Region(s)  

Area 

(ha)  

Major Findings/Remarks  

Jain and Goel 

(2002)  

Ukai 

reservoir, 

Tapi river, 

Gujarat,  

India  

6222500  Investigated vulnerability of watersheds to erosion for 

planning and management of soil conservation measures. A 

priority rating of the watersheds was recommended for soil 

conservation planning based on an integrated index.  

Pandey et al. 

(2007)  

Karso 

watershed, 

Jharkhand,  

India  

2793  Average annual sediment yield on grid basis was carried out 

using USLE, GIS and remote sensing. Watershed was 

divided into 200×200 grid cells, and average annual 

sediment yields were estimated for each grid cell of the 

watershed to identify the critical erosion prone areas of 

watershed for prioritization purpose.  

Dabral et al. 

(2008)   

Dikrong river 

basin,  

Arunachal  

Pradesh, India  

155600  Soil erosion assessment was carried out using USLE 

method. USLE parameters for soil erosion assessment were 

generated using GIS and remote sensing techniques.  
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Chen et al. 

(2011b)  

Xiangxi 

watershed, 

China  

309900  Identified critical soil erosion prone areas for land use 

prioritization and soil conservation. The watershed was 

distributed to critical and sub-critical areas, and erosion 

hazard maps were generated.  

Pandey et al. 

(2011)  

Karso 

watershed, 

Jharkhand,  

India  

2793  GIS and remote sensing along with other datasets (existing 

maps and field observation data) were used for 

identification of suitable sites for soil and water 

conservation structures. They suggested construction of 

check dams across 2
nd

 and 3
rd

 order streams, and conversion 

of waste-land into crop-land for soil conservation measures.   

Da Silva et al. 

(2012)  

Tapacura´ 

catchment,  

Brazil  

47000  Identification and prioritization of the critical sub-

watersheds were carried out on the basis of average annual 

soil loss employing USLE. A total of 14 sub-watersheds 

were delineated, and erosion hazard maps were generated.   

Chowdary et 

al. (2013)  

Mayurakshi 

watershed 

Jharkhand,  

India  

186000  Prioritization of micro-watersheds was carried out using 

AHP based SYI model (AHP-SYI) within GIS environment. 

The information of sediment delivery ratio, potential erosion 

index (PEI) and indicative of transport capacity were used 

by this method.   

Malekian et 

al. (2016)  

Shemshak 

watershed, 

Tehran  

8177  Integrated Shannon’s Entropy and VIKOR techniques were 

applied for prioritization of flood risk areas. The proposed 

methodology included two different types of sensitivity 

analysis for investigating the impacts of criteria weights 

modifications on the final ranking.  

Rahmati et al.  

(2016)  

  

Gorganrood  

river basin,  

Iran  

1188815  Assessed the accuracy of GIS-based AHP method for 

watershed prioritization to locate the critical areas of flood 

hazard. The results of this study provide guidelines for 

planners and managers to determine priority of sub-

watersheds based on both anthropogenic and natural 

components.  

Sabbaghian et 

al. (2016)  

Honeyoey  

Creek-Pine 

Creek  

watershed,  

USA  

106131  MCDA was applied for selection of the best agricultural 

scenario for effective watershed management. The proposed 

methodology was successfully employed to evaluate 

various BMP scenarios, and to determine the best solution 

for both the stakeholders and the overall stream health.  

 

2.5.4 Best Management Practices (BMP) using SWAT  

The Best Management Practices (BMPs) have gained focus of concern with the enhanced 

awareness of soil and water conservation, and natural drainage system protection and 

restoration. BMP can be evaluated for identified and prioritized critical areas, and 

recommended for conservation and protection treatments (Srinivasan et al., 1998). The SWAT 

model is used to analyze future BMP scenarios for critical sub-watersheds of the study area 

(Daggupati et al., 2015). BMP interventions may be structural and non-structural without 

affecting available natural resources in a watershed. The watershed management implies the 
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wise use of soil and water resources within the study area which enables sustainable 

production, and minimizes floods, sediment yields and nutrient loads.  

Pandey et al. (2005) employed the SWAT model for the prioritization of sub-watersheds and 

development of management scenarios in the Banikdih agricultural watershed in Jharkhand, 

India. Implementation of zero tillage and conservation tillage treatments effectively reduced the 

sediment yield by 11% and 5%, respectively, as compared to the conventional tillage. Rice 

crop cannot be replaced by other crops in order to minimize the sediment and nutrient losses.  

Arabi et al. (2006) evaluated different BMPs using the SWAT model to examine their 

effectiveness at field and watershed scales in Maumee River Basin, Indiana. Sediment and 

nutrient outputs at pre- and post-BMP conditions were compared for effectiveness 

measurement at various watershed subdivision levels. This study concluded that subdivision of 

watershed helps in modelling, and to represent the influence of BMP effectiveness in 

watershed. 

Zhang and Zhang (2011) evaluated effectiveness of agricultural BMPs including vegetated 

ditches,  sediment ponds, buffer strips and their combinations in Orestimba Creek watershed to 

reduce organophosphate pesticides in surface runoff and sediment load. The study revealed that 

the SWAT hydrologic model is capable of predicting BMP effectiveness at the watershed scale.  

Bossa et al. (2012) evaluated the impacts of crop patterns and management scenarios on 

nitrogen and phosphorous loads to groundwater and surface water using the SWAT model in 

the Donga-Pont river catchment, West Africa. Results revealed that management practices such 

as fertilizer inputs are main principal factors controlling on nitrogen and phosphorous loads 

dynamic.   

Lam et al. (2011) assessed the long-term impact of agricultural BMPs on sediment and nutrient 

loads in the North German lowland catchment using the SWAT model. Results revealed that 

BMPs would reduce fairly the average annual loads of nitrate and total nitrogen. However, 

implementation of the BMPs does not have significant impact on reduction in the average 

annual loads of sediment and total phosphorus. 

Maharjan et al. (2013) predicted the runoff flow from agricultural watershed using SWAT 

model. They used Green-Ampt infiltration method to carried out sub-daily simulation, and 

proven to be efficient for runoff estimation at field sized watershed with higher accuracies, that 

could be efficiently used to develop site specific Best Management Practices (BMPs) 

considering rainfall intensity, rather than simply using daily rainfall data.   
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Woznicki and Nejadhashemi (2014) quantified the level of uncertainty in performance of seven 

agricultural BMPs due to climate change in reducing sediment, total nitrogen and total 

phosphorus loads. The SWAT model was coupled with mid-21
st
 century climate data to 

develop climate change scenarios for the Tuttle Creek Lake Watershed of Kansas and 

Nebraska. Results demonstrated that uncertainty in BMP performance was amplified in the 

extreme climate scenario. 

Udias et al. (2016) employed a multi-objective, spatially explicit analysis tool, the R-SWAT-

DM framework, to investigate an efficient, spatially-targeted solution of nitrate abatement in 

the Upper Danube Basin. Result of optimal spatial conservation strategies indicated that it 

could be possible to reduce Nitrate loads by more than 50%, while providing a higher income.  

Christopher et al. (2017) evaluated an effectiveness of the two-stage ditch in improving water 

quality in the River Raisin watershed using SWAT model. Nutrient reduction efficiency for the 

two-stage ditch was found well as compared to the other conservation practices; both in terms 

of percent load reduction and cost.  

Noor et al. (2017) evaluated the cost-effectiveness of different BMP scenarios on sediment 

yield simulation using the SWAT model. Analysis was carried out using different watershed 

management scenarios developed with non-dominated Sorting Genetic Algorithm. The study 

recommended implementation of optimal type of land uses and locations of BMPs in the 

watershed. 

Seo et al. (2017) applied Low Impact Development (LID) practices using SWAT model. 

Results of the study demonstrated a decrease in surface runoff and pollutant loadings for all 

land uses. 

Other literatures studies on application of the SWAT model for BMP implementation and 

evaluation are presented in Table 2.7. 
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Table 2.7: Application of the SWAT model for BMP evaluation 

Researcher(s) 

and Year  

Region(s)  Area 

(ha)  

Management 

Practices Used  

Results/Remarks/ Conclusion  

Tripathi et al. 

(2005)  

Nagwan  

watershed,  

India  

9023  Tillage treatments, 
fertilizer treatments  

and crops 

treatments  

The field cultivator was 

recommended to replace 

conventional tillage treatment. 

Rice crop cannot be replaced by 

other crops in order to minimize 

the sediment and nutrient losses  

Behera and 

Panda (2006)  

Kapgari 
watershed,  

India  

973  Tillage treatments, 
fertilizer treatments  

and crops 

treatments  

Conservation tillage was found to 

be more effective than the 

existing conventional tillage in 

controlling sediment yield and 

nutrient losses. Rice crop cannot 

be replaced by other crops in 

order to minimize the sediment 

and nutrient losses  

Bracmort et al. 

(2006)  

Black Creek 
watershed, USA  

5000  Grassed waterways, 
parallel terrace, field 
border, and grade 
stabilization structure.  

Evaluated the impacts of 

structural BMPs on long-term 

water quality using SWAT 

model. The current condition of 

the BMPs was determined using 

field evaluation results obtained 

from a previously developed 

BMP condition evaluation tool.  

Arabi et al. 

(2008)  

Smith Fry 
watershed, USA  

730  Agricultural 
conservation practices 
and the river channel 
protection practices.  

Identified hydrologic and water 

quality processes that are affected 

by practice implementation, 

parameter selection, parameter 

sensitivity, function of 

conservation practices, and 

reasonableness of the SWAT.  

Ullrich and 

Volk (2009)  

Parthe watershed, 
Saxony,  

Germany  

31500  Management  

practices, crops 
treatments and 

varying operation  

dates  

Model was found very sensitive 

to applied crop rotations and in 

some cases even to small 

variations of management 

practices. Soil cover over time 

and duration of vegetation period 

followed by soil cover 

characteristics of applied crops 

were found most sensitive.   

Lee et al. 

(2010)  

Gyeongancheon 

watershed, South 

Korea  

25540  Vegetation filter 
strip, riparian buffer  

system, USLE P 

factor, and the 

fertilizing control 

amount for crops  

Sediment reduced by 30% with 
the installation of a 60 m buffer 
zone. The best nutrients removal 
efficiency results were found in 
the land use change from a bare 
field to grassland.   
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Tuppad et al. 

(2010)  

Bosque River 

Watershed, 

Texas, USA  

428200  Porous gully plugs, 
recharge structures, 
conservation tillage, 
terrace, contour 
farming, and filter 
strip.  

Several BMPs were proposed to 
simulate and assess their long-
term impacts on sediment and 
nutrient loads at different spatial 
levels for pollution reduction and 
watershed protection using the 
hydrological SWAT model.  

Phomcha et 

al. (2012)  

Lam Sonthi  

River  

Watershed,  

Thailand  

35700  Different 

combinations of 

reforestation, 

mulching, strip 

cropping  

Sediment yields reduction under 

the combination of reforestation 

and mulching was found to be 

most effective. The study 

indicates that the SWAT model is 

capable of predicting monthly 

stream flow and sediment load.   

Rocha et al. 

(2015)  

Vouga catchment, 

Portugal  

368500  N-application 

methods (single, 

split and 

slowrelease)  

Results revealed that NO3 

exportation rates and crop yields 

decrease with reductions in N-

application rates. Lower Single 

N-fertilizer application lead to 

higher NO3 exportation rates and 

lower crop yields as compared to 

split and slow-release.  

Lemann et al. 

(2016)  

Gerda catchment, 
Upper Blue  

Nile basin,  

Ethiopia  

4818  Terracing  It was found that discharge did 

not change significantly with 

implementation of soil and water 

conservation measures; however 

sediment yield was reduced 

substantially. The sediment yield 

from the study area was reduced 

to 17 t/ha from 37 t/ha after 

implementation of soil and water 

conservation measures.   

Maharjan et 

al. (2016)  

Haean 

catchment, South 

Korea  

6270  Split fertilizer 

application (SF), 

winter cover crop 

cultivation (CC)   

Cultivation of cover crops 

showed significant reductions of 

sediment and nitrate load while 

crop yields increased. Although 

split fertilizer application resulted 

in reduction of nitrate pollution 

while sediment and crop yield 

were found unchanged relative to 

the baseline scenario.  

Strehmel et al. 

(2016)  

Xiangxi 

catchment,  

China  

310500  Changes in fertilizer 

amounts and the 

conditions of bench 

terraces  

They found that reduction of 

fertilizer amounts did not reduced 

the phosphorus loads 

considerably without hindering 

crop productivity. The soil 

erosion and phosphorus releases 

from agricultural areas affected 

by the condition of terraces in the 

catchment.   
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Her et al.  

(2017)  

St. Joseph River 
watershed,  

USA  

280900  Conservation cover, 
conservation crop 
rotation, no-till, 
mulch till, cover 

crops, filter strips, 
nutrient 
management, water 
and sediment 
control basin, split 
nitrogen application  

Conservation practices were 
found effective in reduction of 
sediment and total phosphorous 
load. Effectiveness of 

conservation practices for 
sediment and total phosphorous 
was found strongly correlated to 
the field slopes; however, load 
reductions were not associated 
with other features of fields such 
as curve number, saturated 
hydraulic conductivity, and soil 
erodibility.  

Jang et al. 

(2017)  

Haean 

catchment, South 

Korea  

6270  Vegetation filter 

strip installation, 

fertilizer control, 

and rice straw 

mulching   

Evaluated reduction of non-point 

source (NPS) pollution discharges 

applying BMPs of rice straw 

mulching (RSM), fertilizer 

control (FC) and vegetation filter 

strip installation (VFS), 

employing the SWAT model. The 

BMP using VFS demonstrated 

the best performance to reduce 

the sediment from highland crop 

areas.  

Kalcic et al. 

(2018) 

Upper 

Mississippi 

River Basin, 

USA 

49200000  Agricultural ditches 

and wetlands for 

improving water 

quality 

Developed the model to evaluate 

combinations of practices from 

the farm scale to the watershed 

scale. The study revealed 

characteristics, benefits, and 

drawbacks of agricultural ditches 

and wetlands, as well as strategies 

for applying agricultural best 

management practices (BMPs) 

Mtibaa et al. 

(2018) 

Joumine 

watershed, 

Northern Tunisia 

41800 Contour ridges in 

critical source areas 

(CSAs) for reduction 

of soil erosion 

Determined the most cost 

effective management scenario 

for controlling sediment yield. 

Results revealed that Contour 

ridges were the most effective 

individual BMP in terms of 

sediment yield reduction (reduced 

by 61.84% with a benefit/cost 

ratio).  
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2.6 CRITIQUES ON LITERATURE REVIEW 

The relevant literature review reveals importance of hydrological modelling for sustainable 

management of a river basin considering changes in the land use and climate. Most of the 

hydrological models were originally developed and tested using the local data and field 

measurements, mainly in developed countries. However, before application these hydrological 

models need to be tested and employed in the developing countries like India, where the 

topography, soil, rainfall pattern and cultivation practices are prevalent and entirely different 

from those in other parts of the world. In India, the present inter-state disputes are raising land 

and water resources problems, and may be more in future years. The LU/LC patterns rapidly 

changes historically, due to human activities and climatic variability/changes, and have 

significant impact on the hydrological processes of a river basin. The above shortcomings can 

be overcome by using hydrological modelling approach, as it is crucial to quantify their 

applicability and feasibility in Indian River basins, where ongoing land use and climatic 

changes have pronounced impacts.  

Literature perceives an importance of application of remote sensing data products and GIS 

techniques for river basin management. It is mostly devoted to monitor and predict the site 

specific LU/LC changes using satellite data and land use change models. The present study is 

the first of its kind for application of an integrated Cellular Automata−Markov Chain 

(CA−MC) model for prediction of the future LU/LC dynamics in an Indian River basin. The 

CA-MC model has been evaluated widely for land use change studies. However, no such study 

has been reported in literature for inter-state river basin in which future LU/LC changes are 

studied. Furthermore, the relationship between changes in LU/LC and hydro-climatic variables 

needs to be studied for their spatial and temporal interactions historically. Thus, the study on 

response of hydro-climatic changes to the land degradation and land greening/browning is 

essential for sustainable land resource management.  

Literature reveals that each hydrological model has its own performance capabilities, and its 

application depends upon the study objectives and accuracy desired (Pandey et al., 2016b). 

Physically based hydrological modelling has always been the primary choice of the researchers 

while dealing with complex problems of streamflow and sediment, and their sustainable 

management. In India, human activity, such as dam/barrage construction, disturbs the virgin (or 

naturalized) flow of a river which is essential for agriculture and urban sectors. Hence, such 

influence is imperative in hydrological modelling study to incorporate the flow regulation and 

water utilization from small-sized ponds to large-sized reservoirs of a river basin. To test the 

suitability of hydrological (SWAT) model in a river basin under Indian conditions, 



36 

management of various water storages (like reservoirs or weirs), sensitivity/uncertainty 

analysis of various model parameters and field measurement/data is crucial before its useful 

implementation. Furthermore, the literature manifested that both the land use and climate have 

pronounced impacts on hydrology of a river basin. Very limited studies are carried out in which 

individual and combined impacts of land use and climate changes are explored. Therefore, new 

approach/method/framework needs to be developed to separate such impacts on river basin 

hydrology. Also, it is essential to assess these possible impacts on future river basin hydrology 

to deal with the sustainable management issues.  

Although, the SWAT model has been successfully tested in various countries and proved its 

applicability on global scale; no such study has been reported in literature which focuses 

identification of critical soil erosion prone areas for prioritization and evaluation of BMPs to 

restrain sediment yield of the Betwa River basin. Further, no such study has been reported in 

literature in which SWAT model has been employed to evaluate both the over-land as well as 

in-stream BMPs for an Indian River basin. Therefore, this study will provide valuable 

guidelines not only to implement water storage structure information in hydrological model 

SWAT, but also to develop soil and water conservation practices in agriculture field, and to 

restore and protect the river channels for its sustainable river basin management. The present 

study will bridge the gap between the hydrologic prediction community and the remote sensing 

and GIS technologies development community, and the users interested in land and water 

resources planning, management and development. The review of literature presented in this 

chapter have facilitated comprehensive insights on the prime research issues of LU/LC, climate 

and hydrology interactions for investigation in this study.  
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CHAPTER 3 

STUDY AREA AND DATA DESCRIPTION 

This chapter encompasses description of the study area and data acquisitions of different 

hydro-meteorological variables used in this study. Further, generation of the various thematic 

maps (i.e. elevation map, slope map, soil map etc.), remote sensing datasets (i.e. Landsat, IRS, 

MODIS etc.) and the GCM (MPI-ESM-MR) data used in the study has been also discussed 

briefly. The details of the water resources/storages structures available in the study area also 

included in this chapter.  

3.1 THE STUDY AREA 

Betwa River basin is the study area selected in the present research work. Details of location, 

climate, major crops and the existing practices in the study area are discussed as follows: 

3.1.1 Location of the Betwa basin 

Betwa River is tributary of the Yamuna River (which is mainly a tributary of Ganga River) 

located in the Central India. It flows from South-Western to North-Eastern direction. The total 

length of the river, from its origin to its confluence with the Yamuna River, is 590 km, out of 

which 232 km lies in Madhya Pradesh (MP) and the rest 358 km in Uttar Pradesh (UP). It is an 

interstate river between MP and UP. It originates from the Barkhera in Raisen district of MP 

and then joins with the Yamuna River near Hamirpur in UP. Before the confluence with the 

Yamuna, the Betwa River is joined by a number of tributaries and sub-tributaries.  

The Betwa River basin extends from 77º 05' 38" E to 80º 13' 48" E longitude and 22º 51' 51" N 

to 26º 3' 5" N latitude, and in the geo-graphical context of MP (68.90%) and UP States 

(31.10%) covering large geo-graphical area approximately 43900 km
2 

as shown in Figures 3.1a 

and 3.1b. The elevation of the Betwa basin varies from 61 m to 715 m above mean sea level 

(m.s.l.). It has undulating topography with the land slope varying from 0 to 67%. The study 

area is dominated by black cotton soil, and bounded by Southern Vindhyan plateau and 

Northern alluvial plains. Betwa basin has flat wheat-growing agriculture to steep forest hilly 

area with varying vegetation and topography in complex pattern. Forest is dense in South-East, 

apart from the clay plains. Also, some Northern part of the Betwa basin covers partially 

distributed degraded or open forest area. 

3.1.2 Climate of the Betwa Basin 

The climate of Betwa basin is semi-humid to dry sub-humid (Suryavanshi et al., 2014). The 

climate of the Betwa basin is moderate, mostly dry except during the southwest monsoons. The 
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average annual rainfall of the study area varies from 700 to 1,200 mm with an average annual 

rainfall of 1,138 mm. The daily mean temperature ranges from a minimum of 8.1°C to a 

maximum of 42.3°C. The daily mean relative humidity varies from a minimum of 18 % (April 

and May) to a maximum of 90 % (August). The average annual evaporation losses are about 

1,830 mm, and the average annual runoff is about 13,430 million cubic meters (MCM), out of 

which nearly 80 % occurs in monsoon season (Chaube 1988).  

 

Figure 3.1a: Location map of the study area (Betwa river basin) 

http://link.springer.com/article/10.1007/s00704-013-1013-y#CR7
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Figure 3.1b: Toposheet of the study area (Betwa river basin)  

To understand the rainfall distribution pattern, spatial change analysis has been carried out for 

rainfall, minimum and maximum temperature (Figure 3.2). Also, the information of seasonal 

variation in these variables has been presented in Figure 3.3. It shows that most of the rainfall 

(about 87-93%) occurs during rainy (monsoon) season and mainly contribute to the total annual 

rainfall of the Betwa basin. Both minimum and maximum temperature has large variation in 

pre-monsoon, as compared to other seasons. Average maximum temperature decreases 

seasonally from pre-monsoon to winter. Average minimum temperature also decreases in the 

similar way, except in the monsoon season where it is higher than other seasonal mean values.  
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Figure 3.2: Spatial distribution of rainfall, maximum temperature, and minimum temperature 

over the Betwa River basin 

 

 

Figure 3.3: Seasonal variation of rainfall, maximum temperature and minimum temperature in 

the Betwa River basin 
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3.1.3 Major crops grown in Betwa basin 

The major crops grown in the Betwa basin are cereals, pulses, oil seed, food grain vegetables 

and fodder. It includes cultivation of paddy, jowar, maize, groundnut, soyabean, tur (red gram), 

urad (black gram) and moong (green gram) as Kharif crops, and the wheat, gram, peas, lentil as 

Rabi crops. The agriculture informatics Division of National Informatics Centre, Ministry of 

Communication & Information Technology, Government of India (http://dacnet.nic.in, 

presently http://www.nic.in/) has suggested wheat, paddy, maize and sorghum as the most 

suitable crop rotation in this region.  

3.2 DATA ACQUISITION 

Followings are the details of several types of datasets, such as meteorological, hydrological, 

DEM, soil, remote sensing, and GCM, which have been used for the hydrological modelling.  

3.2.1 Meteorological data 

Daily observed data of precipitation (P), minimum and maximum temperature (Tmin and 

Tmax) and relative humidity (RH) were obtained from the India Meteorological Department 

(IMD) Pune for the period of January-2001 to December-2013. The Betwa basin area has 18 

gauging stations located in and near the basin area (Figure 3.4). Prior to the analysis, 

meteorological data was firstly checked, and then few missing data were filled by employing 

Inverse Distance Weighted (IDW) interpolation method (Spadavecchia & Williams, 2009; Di 

Piazza et al., 2011; Wagner et al., 2012).  

3.2.2 Hydrological data 

Further, daily discharge (Q) and sediment data of the Betwa basin gauges, i.e. Basoda, 

Garrauli, Mohana and Shahijina gauging station was procured from the Yamuna Basin 

Organization (YBO), Central Water Commission (CWC), New Delhi. However, sediment data 

was available only for Garrauli and Shahijina stations only. The location of CWC gauges is 

presented in Figure 3.4. 

 

http://dacnet.nic.in/
http://www.nic.in/
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Figure 3.4: Gauging stations of IMD and CWC in the Betwa basin 

3.2.3 DEM data 

An immensely upgraded and freely available Shuttle Radar Topography Mission (SRTM) data 

of 30 m spatial resolution were processed for generation of the DEM, and then utilized for 

delineation of the study area. This SRTM data (Figure 3.5a) was downloaded from the Earth 

Explorer user interface available on public domain (https://earthexplorer.usgs.gov/) of the 

United States Geological Survey (USGS). The study area was delineated by using spatial 

analyst tools of the ArcGIS 10.2.2 version software package. Then, the basin boundary was 

used to extract and analyze MODIS land cover data of the study area. Furthermore, the DEM 

data was used to prepare and study the land slope variations (Figure 3.5b). This data was also 

used as an input to the SWAT model.  

https://earthexplorer.usgs.gov/
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Figure 3.5: (a) DEM elevation (m), and (b) slope (%) map of the study area 

Table 3.1: Detailed information of satellite imagery data 

Year Data type Path - Row Date of imagery 
Spatial 

resolution (m) 
Data source 

1972 Landsat-1 

Multispectral Scanner 

(MSS) 

155 - 42, 43, 44 30-Nov-1972 60 m 

USGS GloVis website 

(http://glovis.usgs.gov/) 

156 - 42, 43, 44 01-Dec-1972 

1976 Landsat-2 MSS 155 - 42, 43, 44 13-Oct-1976 60 m 

156 - 42, 43, 44 01-Nov-1976 

1991 Landsat-5 

Thematic Mapper (TM) 

144 - 42, 43, 44 13-Dec-1991 30 m 

145 – 42, 43 03-Feb-1991 

145 - 44 19-Feb-1991 

2001 Landsat-7 Enhanced 

Thematic 

Mapper Plus (ETM+) 

144 - 42, 43 27-Sep-2001 30 m 

144 - 44 29-Oct-2001 

145 - 42, 43, 44 21-Nov-2001 

2007 Indian Remote-sensing 

Satellite (IRS-P6) Linear 

Imaging and 

Self Scanning (LISS) III 

97 - 54, 55, 56 27-Nov-2007 23.5 m NRSC Hyderabad 

98 - 53, 54, 55, 

56 

08-Nov-2007 

99 - 53, 54, 55, 

56 

13-Nov-2007 

100 - 53 18-Nov-2007 

2010 Landsat-5 TM 144 - 42, 43, 44 15-Nov-2010 30 m 

USGS GloVis website 

(http://glovis.usgs.gov/) 

145 - 42, 43, 44 21-Oct-2010 

2013 Landsat-8 

Operational Land Imager 

(OLI) 

144 - 42, 43, 44 22-Oct-2013 30 m 

145 - 42, 43, 44 29-Oct-2013 

 

 

 

(a) (b) 

http://glovis.usgs.gov/
http://glovis.usgs.gov/
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3.2.4 Remote sensing data 

3.2.4.1 Satellite imagery data 

In this study, historical LU/LC change analysis has been carried out using spatiotemporal 

satellite imagery data of the post-monsoon season (Table 3.1). These imageries were obtained 

from the United States Geological Survey (USGS) Global Visualization Viewer (GloVis) 

website (http://glovis.usgs.gov/) for the years 1972, 1976, 1991, 2001, 2010, and 2013. In 

addition, the IRS-P6 imagery of LISS-III sensor was procured from National Remote Sensing 

Centre (NRSC) Hyderabad for the year 2007. The problem of different spatial resolution has 

been removed by scaling IRS-P6 (LISS-II) imagery data from high (23.5 m) to coarse (30 m) 

resolution. Then, these scaled images were utilized for LU/LC change analysis to avoid errors 

while predicting consistent LU/LC maps.  

3.2.4.2 MODIS datasets 

In this study, remotely sensed time-series MODIS NDVI data sets of (collection 5) Terra 

(MOD13Q1) and MODIS Land Cover Type (MCD12Q1) products have been used to assess 

the relationship with hydro-climatic variables. The MOD13Q1 Terra NDVI data is available 

from February-2000 to present on 16-days temporal resolution and 250 m spatial resolution. In 

this study, NDVI data sets were retrieved for the period of January 2001 to December, 2013. 

The MCD12Q1 land cover data products are available on annual scale and at a spatial 

resolution of 500 m. These data sets were retrieved from the online Reverb tool 

(http://reverb.echo.nasa.gov/reverb/, presently https://search.earthdata.nasa.gov/search) of the 

NASA’s Earth Observing System (EOS) Clearing House (ECHO), courtesy of the NASA 

EOSDIS Land Processes Distributed Active Archive Center (LP DAAC). The present study 

area is covered within one MODIS tile (number h25v06). 

This study uses the MODIS C5 datasets, which has improved quality and accuracy, for land 

monitoring studies. The accuracy of the MODIS land cover data (MCD12Q1) product is 

significant about 74.8% globally, with a 95% confidence interval of 72.3 to 77.4%. The 

validation and accuracies of MCD12Q1 data is already examined by the developers (Friedl et 

al., 2010; Sulla-Menashe et al., 2011). Further, the MODIS data product has been extensively 

used for spatiotemporal land cover analysis in last decade (Zeng et al., 2010; Broxton et al., 

2014; Liang et al., 2015; Pandey & Palmate, 2018). Information regarding the data accuracy is 

available on the website (https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD12). 

Also, the accuracy of MOD13Q1 data is available on the NASA website 

(https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13). 

http://glovis.usgs.gov/
http://reverb.echo.nasa.gov/reverb/
https://search.earthdata.nasa.gov/search
https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD12
https://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD13
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3.2.5 CMIP5 GCM data 

In this study, climate scenarios used are obtained from the NASA Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP) dataset, prepared by the Climate Analytics Group and 

NASA Ames Research Center using the NASA Earth Exchange, and distributed by the NASA 

Center for Climate Simulation (NCCS). In this study, the Max-Planck-Institute-Earth System 

Model-Medium Resolution (MPI-ESM-MR) model has been employed. From the recent 

literature, the MPI-ESM-MR model the best performing Coupled Model Intercomparison 

Project Phase 5 (CMIP5) GCM data was selected for the present study based on the model 

performance and climate change impacts study over Indian regions (Sharmila et al., 2015; Guo 

et al., 2016; Roxy et la., 2016; Das et al., 2018). Therefore, the CMIP5 datasets of the MPI-

ESM-MR model has been used in this study. Future daily precipitation, minimum temperature 

and maximum temperature data of the MPI-ESM-MR model was obtained from the Centre for 

Climate Change Research, Indian Institute of Tropical Meteorology, Pune 

(http://cccr.tropmet.res.in/).  

The MPI-ESM-MR dataset at 0.25°×0.25° spatial resolution was used to prepare climate 

change data for simulation of the SWAT model. In this study, RCP 8.5 scenario has been used 

for future hydrological modelling, because it is considered as the worst-case scenario and 

represents the most severe conditions, i.e. this scenario would be the upper limit for potential 

climate change impacts and responses. Firstly, future data was extracted for each station, and 

then bias-corrected by quantile mapping method (Thrasher et al., 2012). Based on empirical 

relationships between observed and simulated discharge and sediment datasets, the downscaled 

and bias-corrected MPI-ESM-MR dataset were further divided into five different time-periods. 

One historical period was used as baseline 1986 (1986-2005), and four future periods, i.e. 

horizon 2020 (2020-2039), horizon 2040 (2040-2059), horizon 2060 (2060-2079) and horizon 

2080 (2080-2099) were used for future climate change impact studies. 

3.2.6 Soil data 

The Betwa basin area is dominated by black cotton soil, and bounded by southern Vindhyan 

plateau and Northern alluvial plains. The Betwa basin falls under the Vindhyan sandstone, 

Deccan traps and Bundelkhand granite. Soils survey of the region has been carried out by the 

National Bureau of Soil Survey and Land Use Planning (NBSS&LUP), Nagpur. Based on the 

NBSS&LUP data, soils of the basin are classified as clay, silty clay, clay loam and sandy loam. 

 

 

http://cccr.tropmet.res.in/home/index.jsp
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Table 3.2: Physical and chemical properties of the soils in Betwa basin 

Soil properties 
Depth 

 (mm) 

MBD  

(Mg/m
3
) 

OCC 

 (%) 

Clay  

(%) 

Silt  

(%) 

Sand  

(%) 

SHC  

(mm/hr) 

USLE K  

factor 

HYDGRP 

Clay 

Layer 1 140 1.32 0.7 52.1 32.3 15.6 11.45 0.2 D 

Layer 2 280 1.43 0.6 55.3 27.3 17 11.45 0.17 

Layer 3 280 1.48 0.5 64.2 27.1 8.7 11.45 0.12 

Layer 4 600 1.53 0.2 65.1 19.8 15.1 5.6 0.12 

Clay  

Loam 

Layer 1 60 1.47 1.65 34.2 38.1 22.7 29.5 0.28 C / D 

Layer 2 80 1.71 1.56 37.1 22.4 40.5 29.5 0.26 

Sandy  

Loam 

Layer 1 100 1.7 1.42 14.2 22.3 63.5 10.4 0.55 A / C 

Layer 2 120 1.7 1.36 35.7 20.7 43.6 10.4 0.3 

Silty  

Clay 

Layer 1 110 1.35 0.48 46.4 43.2 10.4 12.1 0.25 B / D 

Layer 2 290 1.43 0.36 48.6 44.8 6.66 12.1 0.24 

Layer 3 300 1.53 0.3 49.8 45.8 4.2 12.1 0.23 

Layer 4 350 1.57 0.24 48.3 44.3 7.4 4.3 0.24 

Layer 5 300 1.58 0.24 43.1 50.2 6.7 4.3 0.29 

Layer 6 350 1.58 0.21 38.5 48.1 13.4 4.3 0.34 

Note: MBD = Moist Bulk Density, OCC = Organic Carbon Content, SHC = Soil Hydraulic Conductivity, 

HYDGRP = Soil Hydrologic Group 

 

Figure 3.6: Soil map of the Betwa basin 

Soil data in the form of maps (Madhya Pradesh: 9 sheets and Uttar Pradesh: 6 sheets), soil 

series booklet and bulletin format were procured from the National Bureau of Soil Survey & 

Land Use Planning (NBSS&LUP) Nagpur. These soil maps were scanned first and then 

geometrically rectified to generate thematic layer for the Betwa River basin (Figure 3.6). Based 

on the NBSS&LUP data, soils of the basin are classified as clay (40.89 %), Silty Clay (15.89 
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%), Clay Loam (16.25 %) and Sandy loam (26.97 %) with an area of 17782.8 km
2
, 6912.15 

km
2
, 7068.75 km

2
, 11727.6 km

2
 respectively (Figure 3.6). The physical and chemical 

properties of the soils are taken from Soils of MP (NBSS, 1996) and are presented in Table 3.2. 

Also, the soil hydrologic groups used for runoff calculations are provided in Table 3.2.    

3.2.7 Ground truth verification and field visits 

In this study, several field visits were carried out to collect the ground truth points for accuracy 

assessment of LU/LC maps, and to collect the existing practices used in the agriculture area of 

the Betwa basin. Accuracy assessment of the LU/LC map is essential to understand the 

accurate and valid results of the classified imagery, without which the LU/LC map is a simply 

an untested hypothesis. In this study, ground truth verification of the LU/LC maps was carried 

out using Global Positioning System (GPS). These field visits were performed during August-

2013, May-2014, November-2014 and November-2016 (Figure 3.7). The locations of the study 

area visited and their photos are given in Annexure-A. 

 

Figure 3.7: GPS locations during ground truth verification 
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3.2.8 Details of present operations/practices in Betwa basin 

During field visits, the detail of operations in the agriculture area including ploughing, planting, 

irrigation, manure and fertilizer application, inter-culture operations, and harvesting were 

obtained and collected for hydrological modelling (Table 3.3). 

Table 3.3: Schedule of field operations for the major crops in the Betwa basin 

Sr.  

No. 
Particulars 

Crops 

Wheat Rice Maize Sorghum 

A Crop field management 

1 1st ploughing 1st week of Oct. 25 April-15 may Up to 15 may Up to 15 may 

2 
2nd ploughing 

(Cultivator twice) 
15 Oct 

After 1 week of 1st 

Ploughing 

After 1 week of 

1st Ploughing 

After 1 week of 

1st Ploughing 

3 
First Planking (Cloud 

Breaking) 

Just after 2nd 

Ploughing 
Just after 2nd Ploughing 

Just after 2nd 

Ploughing 

Just after 2nd 

Ploughing 

4 

3rd ploughing 

(Cultivator twice  in 

cross direction) 

At sowing Time Two days before planting At sowing Time At sowing Time 

5 Final Planking After sowing At the time of planting After sowing After sowing 

6 Puddling*  1st week of July   

7 Sowing Time 
First fortnight of 

November 
Nursery 15-25 June 

Kharif-15 June- 

15 July 

First fortnight of 

July 

8 Transplanting  1st week of July   

B Irrigation DAS Qty. DAP Qty. DAS Qty. DAS Qty. 

1 1st irrigation 21 5 cm 
Each 15 days 

interval as per 

need and 

rainfall 

distribution 

2 30 5 30 5 

2 2nd  irrigation 45-50 5 cm 5 50-55 5 50 5 

3 3rd irrigation 65-70 5 cm 5 70 5   

4 4th irrigation 85-90 5 cm 5     

5 5th irrigation 105-120 5 cm 5     

6 6th irrigation 130 3 cm 5     

C Manures and Fertilizer application 

1 
FYM/Compost (At the 

time of 2nd Ploughing) 
10-15 ton 10-15 ton 10-15 ton 10-15 ton 

2 
Basal dressing N:P:K 

(at the time of sowing) 

60:60:40 

 
60:60:40 

Hybrid-

60:60:40 

Composite-

40:30:20 

60:50:40 

3 
1st top dressing (After 

1st Irrigation) 
30 kg N 30 kg N 

Hybrid-30 kg N 

Composite- 20 

kg N 

(30-35 DAS) 

30 kg N 

4 2nd top dressing 30 kg N 30 kg N 

Hybrid-30 kg N 

Composite- 20 

kg N 

(65 DAS) 

30 kg N 

5 Others 5 kg Zn 25 kg Zn 
20-25  kg Zn 

(30-35 DAS) 
--- 

D Intercultural Operations 

1 1st weeding 25 DAS 25-30 DAS 30 DAS 30 DAS 

2 2nd weeding 40-45 DAS 45-50 DAS 40-45 DAS  

E Harvesting 110-140 DAS 110-130 DAS 80-110 DAS 90-120 DAS 

All the information given here on hectare (10000M2) basis; *Only in Rice, ** Only in Maize 

DAS- Days after sowing, DAP- Days after planting 
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3.3 WATER RESOURCES OF THE BETWA BASIN 

3.3.1 Rivers  

The Betwa River basin joins a number of tributaries and sub-tributaries, among them the most 

important rivers are Bina, Jamini, Dhasan, and Birma on the right bank, and Kaliasote, Halali, 

Bah, Sagar, Narain, and Kaithan on the left Bank of the Betwa river. The rivers in the 

Bundelkhand swell up with floods during rainy season, and dry up in the summers. Even in the 

Betwa River basin which is the mightiest river of the region, discharge remains only a few 

cusecs during the summer months. Therefore, if the water is not stored during the monsoon 

months, water shortage conditions are created during the remaining time of the year. Even 

drinking water becomes scarcely available. Due to this, about 600 small tanks were constructed 

in this area during the time of Chandelas (9
th

 century CE to 13
th

 Century CE). Some of these 

tanks are still useful.  

3.3.2 Reservoirs and weirs 

Parichha dam was originally constructed in 1881 for 48.14 MCM and Betwa canal opened for 

irrigation in the year 1886. The storage fell short of the demand and, therefore, 6 ft high 

shutters were provided on the spillway weir in the year 1898 to increase its capacity to 68.64 

MCM which was further increased. The supplies did not prove sufficient for the demand, and 

were augmented by another dam on Betwa River at Dhukwan in 1909. Originally the storage 

capacity of Dhukwan dam was 68.93 MCM after installation of 8 ft high shutters on the crest. 

The present storage capacities of the Parichha and Dhukwan, dams are 78.75 MCM and 64.67 

MCM, respectively. In order to supplement Dhukwan reservoir, the Matatila dam (a major 

project in UP) was constructed in 1958. 

In the present condition the role of Parricha weir and Dhukwan dam is more or less limited to 

diversion only whereas Rajghat and Matatila dam in the basin acts as major storage reservoirs 

for irrigation, power production, municipal and industrial water supply and to feed water 

through water through Dhukwan and Parricha weir for irrigation releases. 

In addition, nine minor to major water storage structures are also available in the study area, i.e. 

lakes, ponds, reservoirs, weirs etc. (Figure 3.8). These structures have direct impact on 

hydrology of the Betwa basin, thus considered in the study. In the SWAT model, the required 

informations of these water storages were obtained from India-WRIS (Water Resources 

Information System) website (http://india-wris.nrsc.gov.in/) for precise hydrological 

simulation.  

http://india-wris.nrsc.gov.in/
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Figure 3.8: Water storage structures and CWC gauges in the Betwa river basin 
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CHAPTER 4 

SPATIOTEMPORAL LAND USE/LAND COVER CHANGES AND ITS 

MODELLING FOR FUTURE ANALYSIS 

In this chapter, spatiotemporal land use/land cover (LU/LC) change analysis has been carried 

out to address changes in land resources of the Betwa river basin, central India using various 

satellite data sets. The Supervised classification method has been used to prepare the LU/LC 

maps for historical years 1972, 1976, 1991, 2001, 2007, 2010 and 2013. Further, an integrated 

Cellular Automata (CA) - Markov Chain (MC) model has been employed to simulate the future 

LU/LC maps of the years 2020, 2040, 2060, 2080 and 2100. The integrated CA-MC modelling 

approach can interactively predict the future LU/LC maps, and provide solutions to the current 

land resources problems.   

4.1 BACKGROUND OF THE STUDY 

The trans-boundary river basins have major disputes of natural resources management (Wolf 

and Hamner, 2000; Dhliwayo, 2002) due to political and legislations issues (Kindt, 1986; 

Dedina, 1995; Singh and Gosain, 2004) that can potentially affects agrarian livelihood 

(Wolmer, 2003; Makalle et al., 2008). The Indian territory constitutes of major and medium 

trans-boundary rivers, and therefore adaptive land management strategies and environmental 

cooperation between countries/states are necessary for conservation of natural resources 

(Agrawal, 2000). Nowadays, changes in the land resources have been investigated using 

advanced remote sensing and GIS techniques. The land use/land cover (LU/LC) change 

analysis has been extensively carried out to understand spatiotemporal land dynamics for the 

studies on climate, ecology and food security (Vitousek, 1994; Fuchs et al., 2015). This 

information reveals ongoing process of deforestation (Geoghegan et al., 2001), biodiversity 

(Falcucci et al., 2007) and urbanization (Dewan and Yamaguchi, 2009). Also, LU/LC change 

has significant impact on hydrologic response (Shaw et al., 2014), stream-flow (Zheng et al., 

2012), water quality (Goldshleger et al., 2014; Wang et al., 2014) and snow cover (Szczypta et 

al., 2015). It can significantly affect hydrology of the trans-boundary river basin (Mati et al., 

2008). Therefore, spatiotemporal LU/LC maps are vital to monitor LU/LC changes (Herold et 

al., 2008), addresses climate change mitigation and adaptation (Turner and Annamalai, 2012), 

ecosystem evaluation (Nelson et al., 2009) and natural resources management (Tallis and 

Polasky, 2009; Bagan & Yamagata, 2012).  

Previous research studies have used different datasets                                          
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al., 2001; Petit and Lambin, 2002; Kuemmerle et al., 2006). These datasets are pre-requisite to 

prioritize and evaluate spatially explicit future LU/LC (Torrens, 2006). Nowadays, advanced 

geo-spatial data sets have been extensively used for monitoring important LU/LC features to 

explore human-environment interaction (Hoalst‐Pullen and Patterson, 2010). Moreover, several 

advanced geospatial and statistical LU/LC models such as Markov Chain (MC) (Kamusoko et 

al., 2009), Cellular Automata (CA) (Han et al., 2009; Mitsova et al., 2011), logistic regression 

model (Hu and Lo, 2007) and machine learning algorithms (Huang et al., 2010) are currently 

being used to understand and, to predict possible LU/LC pattern (Costanza and Ruth, 1998). 

Kamusoko et al. (2009) predicted future LU/LC for Zimbabwe, and reported increase in barren 

land area as potential threat to rural sustainability up to 2030. Guan et al. (2011) studied 

decrease in agriculture and forest area with increase in settlement area for the period of 2015 to 

2042 in Saga, Japan. He et al. (2013) assessed impact of farmland preservation policies on 

urban sprawl and food security in China. They concluded that urban land could increase in the 

future, and have susceptible impact on future land resources. Moreover, future LU/LC maps 

were predicted by Paegelow and Olmedo (2005) for the Garrotxes (France) and Alta Alpujarra 

Granadina (Spain). Huang et al. (2012) studied LU/LC transition intensity effect on the 

regional economic and ecological health in Southeast China. Thus, it is observed that LU/LC 

modelling can significantly use to find out land resources problems.  

Many researchers suggested that integration of two or more models will be useful to improve 

reliability of LU/LC prediction (Myint and Wang, 2006; Qiu and Chen, 2008; Kamusoko et al., 

2009; Liu et al., 2010; Mondal and Southworth, 2010; Guan et al., 2011; Sang e al., 2011; 

Arsanjani et al., 2011). This approach has been employed effectively for LU/LC simulation 

using an integrated Cellular Automata (CA)-Markov Chain (MC) model (Myint and Wang, 

2006; Kamusoko et al., 2009; Mondal and Southworth, 2010). The CA-MC model has been 

widely used for spatial analysis, due to remote sensing and GIS ability to efficiently use 

temporal datasets in the model (Kamusoko et al., 2009). It has a more significant effect on the 

transition maps, which determine the quantity and location of the LU/LC changes. This model 

integrates Markovian transition probabilities and CA spatial filter which facilitate to 

significantly simulate future LU/LC maps based on historical LU/LC changes (Kamusoko et 

al., 2009). It addresses improved CA-MC model functions i.e. MC model reveals transition 

rules of CA model for future simulation (Liu et al., 2008). Hence, CA-MC modelling is a 

robust approach in which, MC computes transition matrices based on amount of temporal 

changes among different LU/LC classes (López et al., 2001), and CA controls spatial change 

pattern through local-raster based contiguity filter or transitional maps (Clarke et al., 1994; Li 
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and Yeh, 2004) to predict future LU/LC at discrete time steps (Guan et al., 2011). Thus, CA-

MC model employed in the present study has capability to simulate future LU/LC pattern. 

In this study, historical and future LU/LC change analysis has been carried out for a trans-

boundary/interstate river basin i.e. Betwa River Basin (BRB) of Central India. The study area 

has agriculture and water resources management problems due to disputes in the two territories 

of Madhya Pradesh and Uttar Pradesh States. Therefore, this chapter has been planned with the 

specific objective of spatiotemporal analysis of historical LU/LC dynamics, and use of 

integrated CA-MC model for future simulation to identify possible land resources problems in 

the Betwa River Basin. This study also emphasized the need of understanding changes in 

agriculture area corresponds to water resources availability in Central India. 

4.2 MATERIALS AND METHODS 

4.2.1 Study area and data acquisition 

The detailed description of the study area and the satellite data pertaining to this study are 

briefly given in Chapter-3. The detailed methodology flowchart adopted in the present study is 

provided in Figure 4.1. 

4.2.2 Historical LU/LC classification 

The supervised classification algorithm is usually appropriate when relatively few classes are to 

be identified, or when training sites have been selected. It is the most common and easy image 

classification method, compared to other methods, uses spectral signatures in the training site. 

Therefore, in this study supervised classification method has been employed to prepare the 

LU/LC maps of the study area. Processing of satellite imagery data and their interpretation 

were carried out using ERDAS Imagine-2014 and ArcGIS 10.2.2 version software packages, 

respectively. The BRB area was classified into six LU/LC classes, i.e. dense forest, 

degraded/open forest, agriculture area, barren land, waterbody and settlement. The dense and 

degraded forest types were classified based on their canopy density. According to Forest 

Survey of India (FSI), land with canopy density more than 40% and less than 40% are termed 

as dense forest and degraded/open forest respectively. Difference in spectral resolution of forest 

canopy facilitated to distinguish these classes in the present study. Furthermore, agriculture 

class has been classified including both cultivated and non-cultivated crop land area.  
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Figure 4.1: Flowchart of methodology used in the present study 

For accuracy assessment, five hundred random points were generated across each LU/LC map. 

These points were then cross-checked with the reference data. In this study, Google Earth 

integrated in ERDAS Imagine software package has been used as reference data for accuracy 

assessment. In addition to this, ground truth verification was carried out through field visit of 

the study area using Global Positioning System (GPS) during August 2-3, 2013. These GPS 

points were also utilized for classification accuracy assessment. In this analysis, matching 
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points in both satellite-derived LU/LC map and reference map were denoted by the same class 

number; otherwise it was replaced with corrected class number. Then, accuracy assessment 

statistics were generated from the population error matrix of these maps. Table 4.1 shows the 

population error matrix which can be prepared when all the classes available on satellite-

derived LU/LC map and reference image are same. The error matrix represents map accuracy, 

and allows to calculate specific accuracy measures such as user's accuracy (Au), producer's 

accuracy (Ap), overall accuracy (Ao) and Kappa coefficient (Kc) as follows:  

Table 4.1: Population error matrix with pij representing the proportion of area in the mapped 

land cover category i and the reference land cover category j 

Classification 
Reference 

Class 1 Class 2 ... Class m Row proportion 

Class 1 p11 p12 ... p1m p1+ 

Class 2 p21 p22 ... p2m p2+ 

. . . ... . . 

. . . ... . . 

. . . ... . . 

Class m pm1 pm2 ... pmm pm+ 

Column proportion p+1 p+2 ... p+m  

 

User's accuracy:  iiiu ppA /        … 4.1) 

 

Producer's accuracy: iiip ppA  /        … 4 2  

Overall accuracy: 1001 
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where, 1) iip  is the LU/LC area proportion of classified class and reference class; 2) 




 
m

j

iiii ppp
1

is the LU/LC area proportion of classified classes and true reference classes. 

In this study, overall classification accuracy varies from 77% to 87% and, Kappa coefficient 

varies from 0.709 to 0.836 as shown in Table 4.2. The accuracy assessment results were 

affirmed the use of satellite-derived LU/LC maps for future analysis. Due to multi-spatial 
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resolution, small difference in the total area may cause an error and uncertainty in CA-MC 

model simulation. Therefore, datasets of the years 2001, 2007 and 2010 were brought into the 

same spatial resolution, i.e. 30 m, for future analysis.  

Table 4.2: Accuracy assessment results of historical land use/land cover classification 

LU/LC class Accuracy type 

Classification Accuracy Assessment (%) 

1972 1976 1991 2001 2007 2010 2013 

Dense forest 
Producers Accuracy 94.44 88.24 92.31 93.33 93.33 100.00 93.75 

Users Accuracy 85.00 75.00 60.00 70.00 70.00 90.00 75.00 

Degraded forest 
Producers Accuracy 73.91 88.89 71.43 83.33 83.33 77.27 77.27 

Users Accuracy 85.00 80.00 75.00 75.00 75.00 85.00 85.00 

Agriculture area 
Producers Accuracy 78.79 71.79 68.42 65.79 79.41 81.82 80.65 

Users Accuracy 86.67 93.33 86.67 83.33 90.00 90.00 83.33 

Barren land 
Producers Accuracy 100.00 88.89 63.64 66.67 53.85 77.78 58.33 

Users Accuracy 80.00 80.00 70.00 80.00 70.00 70.00 70.00 

Waterbody 
Producers Accuracy 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Users Accuracy 100.00 100.00 90.00 90.00 100.00 100.00 90.00 

Settlement 
Producers Accuracy 100.00 100.00 100.00 90.00 90.00 100.00 100.00 

Users Accuracy 80.00 70.00 80.00 70.00 90.00 80.00 90.00 

Overall Classification Accuracy (%) 86.00 84.00 77.00 78.00 82.00 87.00 82.00 

Kappa coefficient 0.824 0.797 0.709 0.723 0.775 0.836 0.775 

 

4.2.3 Future prediction using integrated CA-MC model  

This study employed an integrated CA-MC model that uses satellite-derived LU/LC maps to 

predict spatial distribution of future LU/LC pattern. The CA-MC model is inbuilt module of the 

IDRISI Selva, a raster-based spatial analysis software package, developed by Clark Labs at 

Clark University. The methodology flowchart is presented in Figure 4.1.  

For the future analysis, satellite-derived LU/LC maps of the years 2001, 2007 and 2010 were 

used to generate transition area matrix (TAM) and transition probability matrix (TPM), and 

then multi-criteria evaluation (MCE) procedure was followed to generate transition suitability 

maps (TSM) using MC model (Appendix-A). The TAM and TSM change dynamics were 

recalled and processed in the CA-MC model with 10 CA iterations and standard 5×5 contiguity 

filter. Iterations establishes the time steps in which, each LU/LC classes becomes host category 

and all other classes act as claimant classes to compete for future class using the multi-

objective land allocation (MOLA) method. Finally, MOLA outputs were overlaid to produce 

future LU/LC map. In this study, future LU/LC maps were predicted for the years 2020, 2040, 
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2060, 2080 and 2100 employing integrated CA-MC model. Future LU/LC maps were 

simulated up to year 2100 for understanding possible trend of LU/LC dynamics. Due to 

uncertainty in LU/LC modelling, it is impossible to use these maps in policy planning. 

However, this can be used as an input data in hydrological modelling studies, or/and it could be 

an early-warning information for land planners, managers and developers.  

The CA-MC model was validated twice for the years 2010 using input LU/LC data of the years 

2001 and 2007, and for the year 2013 using input LU/LC data of the years 2007 and 2010 to 

provide confidence in future LU/LC modelling. The VALIDATE module of IDRISI Selva has 

been used to assess the level of agreement between simulated map and reference map (Mitsova 

et al., 2011). Furthermore, it is important to carry out visual inspection of the LU/LC to 

understand spatial pattern in the predicted maps. In visual inspection, satellite-derived and 

simulated LU/LC maps were compared graphically in clustered columns. The similar relative 

comparison method was also employed by the previous researchers for model validation (e.g. 

Kamusoko et al., 2009; Guan et al., 2011).         

4.3 RESULTS  

The results obtained from the spatiotemporal analysis of historical LU/LC pattern and future 

LU/LC prediction employing an integrated CA-MC model are presented in this section. Due to 

interstate river basin, results of LU/LC change analysis have been also discriminated for the 

Madhya Pradesh and Uttar Pradesh states. 

4.3.1 Historical LU/LC change analysis 

Area statistics of different LU/LC classes for the years 1972, 1976, 1991, 2001, 2007, 2010 and 

2013 are presented in Tables 4.3a&b. In the study area, dense forest area has declined from 

23.39% to 14.31% during the years 1972 to 2013 respectively, and resulted 9.08% decrease in 

the last four decades. However, the area under degraded forest has increased from 8.54% to 

13.37%. Moreover, agriculture area has increased from 63.75% to 67.91%, barren land has 

decreased from 2.98% to 1.27%, waterbody surface area has increased from 1.22% to 2.84% 

and settlement area has increased from 0.12% to 0.31%. It is observed that dominant vegetation 

area, agriculture land, and waterbody were significantly changed during historical time-periods 

(Table 4.3b). These results of historical LU/LC analysis have been illustrated in the Figures 4.2 

and 4.3.  
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Table 4.3a: Area (%) under historical land use/land cover classification 

LU/LC class 
Area (%) under land use/land cover classification  

1972 1976 1991 2001 2007 2010 2013 

Dense forest 23.39 21.16 18.02 14.84 11.97 12.91 14.31 

Degraded/Open forest 8.54 9.68 9.15 12.65 14.46 13.91 13.37 

Agriculture area 63.75 65.22 69.26 69.20 66.16 67.33 67.91 

Barren land 2.98 2.42 2.55 1.31 5.96 4.45 1.27 

Waterbody 1.22 1.40 0.84 1.78 1.17 1.11 2.84 

Settlement 0.12 0.13 0.19 0.22 0.28 0.30 0.31 

Total area (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

Table 4.3: Percent change between historical time-periods 

LU/LC class 

Change (%) under land use/land cover classification  

1972-1976 1976-1991 1991-2001 2001-2007 20072010 2010-2013 

Dense forest -2.23 -3.14 -3.18 -2.87 0.94 1.40 

Degraded/Open forest 1.14 -0.53 3.50 1.81 -0.55 -0.54 

Agriculture area 1.47 4.04 -0.06 -3.04 1.17 0.58 

Barren land -0.56 0.13 -1.24 4.65 -1.51 -3.18 

Waterbody 0.18 -0.56 0.94 -0.61 -0.06 1.73 

Settlement 0.01 0.06 0.03 0.06 0.02 0.01 

 

 

Figure 4.2: Graphical representation of historical land use/land cover 



59 

 

Figure 4.3: Satellite-derived LU/LC maps for the historical years 1972, 1976, 1991, 2001, 

2007, 2010 and 2013 

Furthermore, results of historical LU/LC change analysis have been discriminated into two 

geographical areas as shown in Figures 4.3 and 4.4. For Madhya Pradesh, decrease in dense 

forest and barren land by 7.67 % and 1.17 %, respectively have been found during 1972 to 

2013. However, degraded forest, agriculture, waterbody and settlement were increased by 

4.1%, 3.37 %, 0.85% and 0.16% respectively. Similarly, decrease in dense forest (1.41%) and 

barren land (0.54%), and increase in degraded forest (0.73%), agriculture area (0.43%), 

waterbody (0.77%) and settlement (0.03%) were also occurred in the Uttar Pradesh covered 

within the BRB area (Figure 4.4).  
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Figure 4.4: Area (%) wise distribution of historical LU/LC in Madhya Pradesh and Uttar Pradesh  

From the year 2007, increase in the agriculture area by 0.62% and 1.13% was observed for 

Madhya Pradesh and Uttar Pradesh, respectively (Figure 4.4). Also, waterbody area was 

increased by 0.90% and 0.77% for the both trans-boundary States during 2007 to 2013 (Figure 

4.4). Enhanced surface waterbody availability from 2007 has ensued to increase total 

agriculture area by 1.75% in the BRB.  

4.3.2 Future LU/LC modelling 

In this study, integrated CA-MC model and satellite-derived LU/LC maps have been employed 

to predict spatial distribution of future LU/LC for the BRB. On the basis of recent changes, the 

model can create simulations; therefore recent LU/LC maps of the years 2001, 2007, 2010 and 

2013 are used for model validation and future prediction.  

4.3.2.1 Validation of CA-MC model  

In this analysis, simulated LU/LC maps have been compared with the satellite-derived maps 

which are attributed as reference map representing actual ground condition of the study area. 

The automated map comparison method was utilized to estimate the Kappa Index of 

Agreement (KIA) in terms of some unbiased summary statistics such as Kno values 0.850 and 

0.867, Klocation values 0.788 and 0.812, KlocationStrata values 0.788 and 0.812 and 

Kstandard values 0.768 and 0.793 for the simulation years 2010 and 2013, respectively. The 

validation analysis reveals satisfactory Kappa indices, and verified CA-MC model simulation 

process which can be executed for future periods (Landis and Koch, 1977). 
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Moreover, as suggested (Kamusoko et al., 2009; Guan et al., 2011), area under simulated and 

satellite-derived LU/LC were compared by visual inspection analysis prior to check the model 

simulation results (Table 4.4). This method is simple and easy to interpret the comparison of 

LU/LC classes. Figure 4.5 depicts that the degraded forest, agriculture, waterbody and 

settlement in the simulated LU/LC map are comparatively similar to the corresponding classes 

in the satellite-derived LU/LC maps for the years 2010, while the dense forest and barren land 

classes are simulated poorly. However, Figure 4.5 shows that dense forest, degraded forest, 

agriculture area and settlement classes in the simulated LU/LC map are relatively close to 

corresponding classes in satellite-derived LU/LC map, while the waterbody and barren land 

classes are poorly simulated for the year 2013. This analysis also shows strong agreement 

between simulated and satellite-derived maps. Thus, CA-MC model has been found suitable for 

future prediction of satellite-derived LU/LC map of the BRB.   

Table 4.4: Area (%) under satellite-derived and simulated LU/LC for 2010 and 2013 

LU/LC class 
2010 2013 

Satellite-derived Simulated Satellite-derived Simulated 

Dense forest 12.91 11.27 14.31 13.28 

Degraded/open forest 13.91 14.52 13.37 13.66 

Agriculture area 67.33 65.58 67.91 67.53 

Barren land 4.45 7.40 1.27 4.24 

Waterbody 1.11 0.96 2.84 1.03 

Settlement  0.30 0.26 0.31 0.25 

Total area (%) 100.00 100.00 100.00 100.00 

 

Figure 4.5: Comparison of satellite-derived and simulated LU/LC for the years 2010 and 2013 
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4.3.2.2 Future LU/LC prediction 

After successful validation, the CA-MC model was further employed to simulate future LU/LC 

pattern. In this study, satellite-derived LU/LC maps of last decade (2001 and 2010) were used 

to simulate the LU/LC for the years 2020, 2040, 2060, 2080 and 2100. Tables 4.5a&b show 

percent area and changes of future LU/LC classes for the years 2020 to 2100. It shows that 

future agriculture and waterbody would have significant changes, compared to other LU/LC 

classes (Table 4.5b) Future analysis shows that, increase in the area of degraded forest from 

14.82% to 18.82%, barren land from 5.80% to 10.03% and settlement from 0.36% to 0.64% 

could takes place in the BRB. However, decrease in dense forest from 12.16% to 10.77%, 

agriculture from 66.15% to 59.64% and waterbody from 0.72 to 0.01% could also takes place 

from the years 2020 to 2100 as shown in Figures 4.6 and 4.7.  

Table 4.5a: Area (%) under predicted future land use/land cover  

LU/LC class 
Area (%) under future land use/land cover  

2020 2040 2060 2080 2100 

Dense forest 12.16 11.26 11.01 10.59 10.77 

Degraded/Open forest  14.82 16.26 17.35 18.62 18.82 

Agriculture area 66.15 64.12 61.96 60.30 59.74 

Barren land 5.80 7.65 9.14 9.86 10.03 

Waterbody 0.72 0.25 0.06 0.01 0.01 

Settlement  0.36 0.47 0.49 0.62 0.64 

Total area (%) 100.00 100.00 100.00 100.00 100.00 

 

Table 4.5b: Percent change between future time-periods 

LU/LC class 

Area (%) under future land use/land cover  

2020-2040 2040-2080 2060-2080 2080-20100 

Dense forest -0.90 -0.25 -0.42 0.18 

Degraded/Open forest  1.44 1.09 1.27 0.20 

Agriculture area -2.03 -2.16 -1.66 -0.56 

Barren land 1.85 1.49 0.72 0.17 

Waterbody -0.47 -0.19 -0.05 0.00 

Settlement  0.11 0.02 0.13 0.02 
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Figure 4.6: Graphical representation of future land use/land cover 

 

Figure 4.7: Future LU/LC maps for the years 2020, 2040, 2060, 2080 and 2100 

In this analysis, future LU/LC pattern has been also discriminated for two geographical 

contexts covered within the BRB area (Figures 4.7 and 4.8). Analysis show that dense forest, 

agriculture area and waterbody could decrease by 1.13%, 3.36% and 0.28% for Madhya 
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Pradesh, and 0.26%, 3.05% and 0.43% for Uttar Pradesh. However, increase in degraded forest, 

barren land and settlement area by 2.97%, 1.72% and 0.08% for Madhya Pradesh, and 1.02%, 

2.51% and 0.20% for Uttar Pradesh could take place during the years 2020 to 2100 (Figures 4.7 

and 4.8). Result depicts that, future LU/LC may also change similarly in both the States 

covered within the study area. This simulation demonstrated that total decrease in waterbody 

(0.71%) could decline agriculture area by 6.41%, hence may affect food production in the 

future scenario. Therefore, sustainable development of water resources is necessitated to 

maintain agriculture productivity in the BRB. This would be possible when both states can 

jointly work for trans-boundary management and development of land resources at basin level.  

Figure 4.8: Area (%) wise distribution of future LU/LC in Madhya Pradesh and Uttar Pradesh  

4.4 DISCUSSION  

In the present study, different spatiotemporal resolution of satellite data has been used, and 

therefore, it may cause uncertainty and errors in the LU/LC modelling. These errors were 

somewhat removed by rescaling satellite-derived LU/LC maps into same spatial resolution, and 

then utilized for future simulation. The historical LU/LC analysis showed increase in 

agriculture area by 4.16% due to increased irrigation water availability from waterbody area 

(1.62%). However, decrease in dense forest area (9.08%) cease to increase in degraded forest 

area by 4.83%. This change in forest area was occurred due to increased anthropogenic 

activities, such as deforestation. Therefore, vegetation cover in BRB has been reduced during 

the years 1972 to 2013. Further, analysis showed that similar variations in the LU/LC classes 

for the two geographical areas. Thus, understanding of these historical changes may be helpful 

for integrated planning and management of natural resources, and policy interventions in a 

trans-boundary region. [better u check land use statics of MP/UP for population scenario] 
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Spatiotemporal analysis shows that, agriculture area was altered with respect to changes in 

waterbody area. In the BRB, surface waterbody is the main source of irrigation which depends 

on monsoon rainfall, and therefore changes in monsoonal rainfall could have significant impact 

on irrigation water availability, thus on agriculture production (Singh et al., 2014). For initial 

years (1972 and 1976), analysis showed less agriculture area due to drought effect (Pandey et 

al., 2008). However, surface water availability from reservoir, lake and pond is mainly 

responsible for positive changes in the agriculture area. After 2007, accrued in agriculture area 

(1.75%) has been observed due to increase in irrigation water availability mainly from Rajghat 

reservoir (Chaube et al., 2011). This reservoir is newly accomplished in the middle part of 

BRB, and was put in operation from 2006. It has a large water storage capacity (Trivedi et al., 

2006) which facilitated more irrigation water supply to the agriculture area. Moreover, this 

inter-state project provides irrigation to both Madhya Pradesh (1210 km
2
) and Uttar Pradesh 

(1380 km
2
) States. Rajghat reservoir is used not only for irrigation but also for drinking 

purpose. Therefore, it serves great significance to supply not only irrigation water but also 

drinking water in the trans-boundary region of the BRB. Hence, the trans-boundary projects are 

helpful in rural development and to improve socio-economic status of the peoples. Therefore, 

this study demonstrated that sustainable agriculture productivity can be further continued with 

integrated planning, management and development of water resources (Singh et al., 2014) in 

trans-boundary river basin.  

For future LU/LC prediction, the CA-MC model has been previously implemented, and 

accomplished by Arsanjani et al. (2011 and 2013), and their results were satisfactorily 

validated. Thus, this model helps to interactively predict different LU/LC scenarios by 

furnishing some solutions to the land resource problems such as food security (Santé et al., 

2010). From future analysis, it has been observed that small amount of increase in dense forest 

could facilitate to maintain vegetation cover in the BRB, but this increase is negligible. 

Moreover, future agriculture area could reduce and exert pressure on food supply. Therefore, 

surface water resources such as reservoirs, lakes and ponds need to be developed for irrigation 

water availability. For Madhya Pradesh and Uttar Pradesh, present study reveals that dense 

forest and degraded forest area may also alter in the future decades. Decline in dense forest 

(1.39%) and agriculture area (6.41%) could significantly affect vegetation cover. This depicts 

that conservation measures are essential to preserve the vegetative area of the BRB.   

The results of future LU/LC pattern are significantly related to environmental and 

socioeconomic implications for sustainable planning and management in two geographical 

contexts of the BRB. Both Madhya Pradesh and Uttar Pradesh could face same problem of 
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increasing pressure on food productivity area due to decline in agriculture while increase in 

barren land and settlement area. For instance, the continuing decline in agriculture area on one 

hand and increase in barren land and settlement areas on the other hand imply severe decrease 

in cultivable area, which could potentially threaten rural livelihoods of the BRB area. 

Therefore, this study discovered these future hot-spots, which would be useful to prioritize the 

BRB area and to implement the immediate policy interventions for sustainable development of 

land resources. This study will be devoted to evaluate planning and management scenarios for 

present land resources.  

The focal objective of spatiotemporal LU/LC modeling is to understand possible land resources 

problems in a trans-boundary river basin. The simulated maps can serve as an early-warning 

information to the land resource planners, managers and policy makers. Therefore, integrated 

CA-MC modeling approach is capable to interactively predict future paths as well as allocating 

quantity of change in the most probable LU/LC area such as agriculture and waterbody.  

4.5 CONCLUSIONS 

The present study significantly identified trans-boundary issues and problems of land for the 

Betwa river basin. This study represents an important contribution to spatiotemporal LU/LC 

modelling by an integrated CA-MC model for a trans-boundary region. The model applied in 

this study has been successfully incorporated satellite-derived LU/LC maps through GIS-based 

MCE and MOLA methods. The CA-MC model was validated twice using automated map 

comparison method and visual inspection analysis. In this study, Kappa statistics shows strong 

agreement between satellite-derived and simulated LU/LC maps. Followings are some general 

conclusions of the present study: 

1. Two States, namely Madhya Pradesh and Uttar Pradesh, have undergone similar 

historical LU/LC changes, and could have parallel changing pattern in the future years.  

2. From the year 2007, newly accomplished Rajghat reservoir has played an important 

role to provide sufficient water for irrigation and drinking purpose. Therefore, this study 

revealed that inter-state water resource projects are necessitated for a trans-boundary 

development.  

3. Future problems such as food security and surface water resources availability are 

successfully discovered by employing CA-MC model.  

4. The model validation revealed that degraded forest, agriculture and settlement are 

relatively well simulated and the barren land class was poorly simulated due to less 
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classification accuracy. Th       ’  v          provides confidence in the future 

LU/LC modelling employing satellite-derived LU/LC maps.  

5. Future LU/LC simulation up to 2100 indicated that if, current trends continue without 

development policies for the trans-boundary region then severe land degradation in 

agriculture and waterbody area threatens rural livelihood. 

6. Different spatiotemporal satellite images have been used and rescaled for LU/LC 

modelling. Thus, as part of future research it is suggested to use high spatial resolution 

and same temporal resolution satellite data in the forthcoming studies.  

The approach used in this study will also encourage research community to predict future 

LU/LC for food security problems of trans-boundary basins. Moreover, further comparative 

studies are required to clarify whether the predicted LU/LC patterns are particular and 

empirically replicated in trans-boundary area. Thus, the present study demonstrated CA-MC 

modelling approach that interactively offered an enhanced understanding of future LU/LC 

trends which is essential to discover natural resource problems of river basin area. 
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CHAPTER 5 

RELATIONSHIP BETWEEN HYDRO-CLIMATIC VARIABLES AND 

LAND COVER DYNAMICS UNDER DRY AND WET SPELLS  

In this chapter, the MODIS NDVI and land cover time-series datasets have been used for 

assessing the hydro-climatic greening and degradation response under the effect of dry and wet 

spells over the Betwa River Basin (BRB), Central India. A conceptual framework representing 

climatic greening, climatic degradation, non-climatic greening and non-climatic degradation 

has been employed to provide the results on monthly, seasonal and annual time-scale for the 

years 2001 to 2013. Further, effect of the dry and wet spells have been significantly studied 

using the MODIS time-series datasets for sustainable planning and management of land 

resources over the Betwa River Basin.  

5.1 BACKGROUND OF THE STUDY 

Land degradation is related to changes in the vegetation cover due to the key role of plants in 

the Earth system to control the hydrological, erosional and biological cycles (Bodí et al., 2011; 

Cassinari et al., 2015; Keesstra et al., 2017; Muñoz-Rojas et al., 2016). Therefore, it is 

necessary to carry out scientific studies to assess the changes in land cover to determine the 

impacts of human cause in the Earth system (Abbasi et al., 2015; Beyene, 2015; Caúla et al., 

2016). Regional variation in vegetation and land cover dynamics shows climate change impact 

on ecosystems with time and space (Jacob et al., 2015). Thus, changing vegetation response as 

a consequence of climate is relevant to understand the Earth Surface processes, such as changes 

in discharge, forest fires or biota (Keesstra et al., 2007; Pereira et al., 2016; Russell & Ward, 

2016). Vegetation is an important component of the land cover, and has a response to climate 

variables (Kiunsi & Meadows, 2006; Chen et al., 2014). Vegetation determines the infiltration 

capacity of soils, runoff generation, soil erosion, and fauna and flora recovery after 

disturbances as fires, grazing, tillage, or agriculture land abandonment (Cerdà and Doerr, 2005; 

Zucca et al., 2016; Keesstra et al., 2017). Changes in land cover and vegetation succession have 

a significant impact on soil quality (van Hall et al., 2016), mainly on organic carbon and 

nitrogen capacities for re-vegetation (Yu & Jia, 2014). Therefore, it has become imperative to 

explore land components to analyze land greening and degradation response with different 

climatic and hydrologic variables using remotely sensed time series data sets (Funk & Brown, 

2006; Tadesse et al., 2010; Symeonakis et al., 2014). 

It is also important to assess the linkage between land surface and hydro-climatic variables to 

achieve the sustainability (Pilgrim et al., 1988). Dry and wet spells are relevant for the 
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sustainability of agriculture (Kessler & Stroosnijder, 2006; Lobell et al., 2011) and water 

resources (Singh & Ranade, 2010; Ouedraogo et al., 2015). Improvement in the regional 

environment is possible only when national policy would be used to combat land degradation 

issues (Akhtar‐Schuster et al., 2011). Land degradation would not only be controlled by 

addressing climate and bio-diversity but also requires financial support to tackle the issues of 

poverty and food security (Gisladottir & Stocking, 2005). 

In previous studies, the Normalized Difference Vegetation Index (NDVI) has been widely used 

as an effective indicator to perceive the information of vegetation response at a global and 

regional scale (Tucker, 1979; Li et al., 2013; Jiang et al., 2013; Gong et al., 2015; Aly et al., 

2016; Van Eck et al., 2016). Nowadays, many NDVI data sets are available from remote 

sensors using spectral reflectance of near infrared (NIR) and red (RED) bands (Zhou et al., 

2001; Piao et al., 2011; Wang et al., 2011; Chen et al., 2014). The Moderate Resolution 

Imaging Spectro-radiometer (MODIS) has an improved sensors NDVI and land cover data for 

vegetation monitoring. The MODIS NDVI spectral band includes an improvement in 

atmospheric, geometric and radiometric corrections (Huete et al., 2002). Therefore, it is used as 

an improvement over the previous NDVI data sets. The MODIS NDVI data without smoothing 

shows incorrect interpretation of result, therefore, quality assessment and noise removal has 

been carried out to smooth NDVI data for land greening and degradation response analysis. In 

a recent study, Zhang et al. (2017) detected sensor degradation for the MODIS Collection 5 

(C5) data when compare to the newly released MODIS Collection 6 (C6) MOD13C2 NDVI 

data. But, the MOD13C2 NDVI data has very coarse spatial resolution (about 5600 m), and can 

be effective for global scale studies. For the regional scale study, high spatial resolution (about 

250 m) MOD13Q1 NDVI data is required for precise vegetation change monitoring. Moreover, 

the global land cover products MCD12Q1 and MCD12Q2 have been improved from MODIS 

(Friedl et al., 2002; Hansen et al., 2002). The supervised classification method was employed 

to generate MODIS land cover products (Friedl et al., 2010). Also, more accurate land cover 

information can be obtained from this data for a large river basin area.  

Dry and wet spells (Varikoden & Preethi, 2013) can influence vegetation growth and food 

production (Milesi et al., 2010), and thus the Indian economy (Webster et al., 1998). Hence, 

early-warning system is prerequisite to improve the sustainable management and development 

plans for current land dynamics. Further, river basins are most sensitive natural systems to the 

changes in land cover and hydrology (Mutiibwa et al., 2014). Indian River basins are the most 

sensitive environmental natural systems to the short and long-term changes in hydro-climate 

variables. Due to this, land characteristics of the Indian river basin can be gradually affected. 
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For large river basins, field-based investigations on land greening and/or degradation change 

are time-consuming and challenging, however its rate and extent of change can be significantly 

assessed using various remotely sensed data sets (Omuto et al., 2014; Belay et al., 2015; 

Mahyou et al., 2016). The literature suggests that both climatic and hydrologic (i.e. hydro-

climatic) variables have been rarely used to investigate the response of land cover for the 

Indian River Basin in general and Betwa River Basin (BRB) in particular.  

Looking to the aforementioned, this chapter was planned with the specific objective to study 

the hydro-climatic greening and degradation responses under dry and wet spells employing 

MODIS NDVI and land cover data sets over the BRB area of Central India.  

5.2 MATERIALS AND METHODS 

The detailed description of the study area and the satellite data pertaining to this study are 

briefly given in Chapter-3. The detailed methodology flowchart adopted in the present study is 

provided in Figure 5.1. 

 

Figure 5.1: Methodology used in the present study 
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5.2.1 Inverse Distance Weighted (IDW) interpolation method 

Inverse distance weighted (IDW) interpolation method uses the data of close stations which is 

more alike than those apart from each other. Thus, this method assumes that the measured data 

has local influence, and can diminish with an increase in the distance. It gives more weights to 

the stations closest to the prediction station, and weights diminish with increase in station 

distance, hence the name inverse distance weighted. Thus, in this study the missing values of 

climatic data were estimated by employing IDW interpolation method using the following 

equation: 
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        …(5.1) 

where, Pi is the interpolated value at a rain-gauge station, Pn is the measured value of the n
th

 

nearest neighbor, and Dn is the distance to the n
th

 nearest neighbor. When D = 0.0 for a 

particular Pn, then Pi is assigned the value of Pn, making IDW an exact interpolator. 

In this study, pre-monsoon (March to May), SW-monsoon (June to September), post-monsoon 

(October and November) and winter (December to February) seasons (Kumar & Hingane, 

1988) are considered to categorize hydro-climatic variables and MODIS data sets for the 

present study. In addition to this, monthly and annual analyses were also carried out. During a 

normal year, non-clear sky days were discovered in the July and August (SW-monsoon) and 

December (Winter Season).  

5.2.2 Blaney-Criddle method  

The potential evapo-transpiration (PET) is generally calculated by using the Penman–Monteith 

method which requires several meteorological parameters like mean temperature, wind speed, 

relative humidity and solar radiation etc. Due to unavailability of these meteorological 

parameters, this study uses the Blaney-Criddle method (Blaney and Criddle 1962), which 

requires only mean temperature parameter, for estimation of the PET employing the following 

equation: 

)13.846.0(  meanTpKPET       …(5.2)  

where, PET is the daily potential evapotranspiration (mm/day); K is the monthly consumptive 

use coefficient which depends upon the vegetation type, location and season (Vangelis et al., 

2013); p is the mean daily percentage of maximum possible annual day light hours; and Tmean is 

the calculated mean temperature (°C), based on the daily maximum and minimum temperature 

using the equation:  
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         …(5.3)  

Using hydro-climatic variables, few variables have been developed for relationship analysis, 

i.e. P/PET (aridity index) and Tdiff (i.e. Tmax-Tmin). Depending on the temporal scale of 

satellite data, these hydro-climatic variables were calculated on monthly, seasonal and annual 

basis to study dry and wet spell effects over the BRB area.  

5.2.3 Dry and wet spells 

In this study, dry and wet spell effects are mainly focused on land greening and degradation 

response analysis. The 13 years of time-series data were categorized into dry and wet years 

employing standardized anomalies of the annual rainfall time-series (Figure 5.2). Negative and 

positive anomaly values were categorized as dry and wet years respectively. Thus, the total 

analysis period was categorized into nine dry years (2001, 2002, 2005, 2006, 2007, 2008, 2009, 

2010 and 2012) and four wet years (2003, 2004, 2011 and 2013). It is inferred that annual 

rainfall is skewed towards dry years. However, based on standard deviations the 2007 and 2013 

were found to be an extreme dry and wet years respectively.  

 

Figure 5.2: Standardized annual rainfall anomalies over the years 2001 to 2013   

5.2.4 MODIS data products  

In this study, remotely sensed time-series data sets of MODIS NDVI (collection 5) Terra 

(MOD13Q1) and MODIS Land Cover Type (MCD12Q1) products have been used to assess 

the relationship with hydro-climatic variables. These data sets were retrieved from the online 

Reverb tool (http://reverb.echo.nasa.gov/reverb/), courtesy of the NASA EOSDIS Land 

Processes Distributed Active Archive Center (LP DAAC). The present study area is covered 

within one MODIS tile of h25v06. 

 

http://reverb.echo.nasa.gov/reverb/
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5.2.4.1 MODIS NDVI data  

The MOD13Q1 Terra NDVI data is available from February-2000 to present on 16-days 

temporal resolution and 250 m spatial resolution. In this study, NDVI data sets were retrieved 

from January 2001 to December, 2013. Based on maximum number of days during start and 

end time of Terra spacecraft, one satellite imagery was selected for each month, and then the 

monthly NDVI values were obtained for relationship analysis. The MODIS NDVI composite 

products are developed by selecting the higher quality pixels of atmospherically corrected bi-

directional surface reflectance (Huete et al., 2002). All NDVI tiles were re-projected from 

Sinusoidal to a standard World Geodetic System (WGS) 1984 Universal Transverse Mercator 

(UTM) coordinate system (Zone 44N) using batch processing utility of MODIS Reprojection 

Tool (MRT). Then, NDVI values were extracted for the study area within ArcGIS 

environment. The NDVI time-series for the BRB were calculated as mean value for 6×6 pixel 

(1.5 km ×1.5 km) area centered on each of the 18 IMD stations to avoid the land heterogeneity 

effect (Karlsen et al., 2008; Gong et al., 2015).    

The NDVI data quality was also assessed using corresponding quality assessment (QA) 

information that describes the utility of NDVI values. Invalid data were eliminated and 

interpolated linearly. The Savitzky-Golay filtering method was employed to de-noise and to 

smooth the NDVI time-series data (Chen et al., 2004) as shown in Figure 5.3. This method uses 

local polynomial regression to determine the smoothed data values at each data point. 

Therefore, it performed best to de-noise the temporal NDVI data (Geng et al., 2014). The 

reliability band of MOD13Q1 data composite has been used to weight each data point in the 

NDVI time-series. For this, good data (value 0) had full weight (1), marginal data (values 1-2) 

had half weight (0.5), and cloudy data (value 3) had minimum weight (0.1). The function-

fitting was carried out using TIMESAT software (Jönsson & Eklundh, 2004). For instance, the 

resultant smoothed NDVI value (Y*) from the original NDVI value (Y) and the coefficient for 

the i
th

 NDVI is computed using the following formula: 

N

YC

Y

mi

mi

iji

j








*         …(5.4)  

      

where, j is running index of the ordinate data in the original data table, m is the half width of 

the smoothing window, and N represents the number of convoluting integers which is equal to 

the smoothing window size 2m+1 (Savitzky and Golay, 1964).  
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Figure 5.3: Smoothed NDVI time-series of the years 2001-2013 illustrating original MODIS 

NDVI values and de-noised temporally interpolated NDVI values  

Further, phenological parameters were extracted for the Crop Land (CL) area of BRB (Table 

5.1). Highest peak of the NDVI has been found for the 7
th

 season, and maximum length of the 

season was found to be 8.71 months for the 4
th

 season. The smoothed NDVI time-series data 

were then used to analyze land greening and degradation response and to develop linear 

regression models.  

Table 5.1: Phenological parameters for the crop land area of the BRB during 2001-2013 

Season 
Start (in 

Month) 

End (in 

Month) 

Length (in 

Month) 

Base value 

(NDVI) 

Peak time 

(in Month) 

Peak value 

(Maximum NDVI) 

Amplitude 

(NDVI) 

1 6.12 14.61 8.49 0.23 10.29 0.38 0.15 

2 18.16 26.51 8.35 0.18 22.10 0.40 0.22 

3 30.34 37.96 7.62 0.19 32.70 0.44 0.25 

4 41.88 50.60 8.71 0.19 46.00 0.42 0.23 

5 54.39 62.37 7.98 0.21 57.69 0.39 0.18 

6 66.28 74.68 8.39 0.23 70.73 0.38 0.15 

7 78.07 82.81 4.74 0.22 80.00 0.46 0.24 

8 90.06 98.16 8.10 0.21 92.20 0.41 0.21 

9 102.00 110.50 8.50 0.19 106.10 0.41 0.23 

10 114.10 122.40 8.26 0.21 116.70 0.43 0.21 

11 126.10 133.60 7.42 0.24 128.00 0.42 0.18 

12 138.10 146.50 8.36 0.23 142.00 0.42 0.19 

 

5.2.4.2 MODIS land cover data  

The MCD12Q1 land cover data products are available on yearly time scale at a spatial 

resolution of 500 m. The MCD12Q1 (Friedl et al., 2002) product describes land cover 
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properties derived from input observation of MODIS NDVI data. The International Geosphere 

Biosphere Program (IGBP) defined MCD12Q1 land cover data into mainly 17 classes. Among 

these, 11 classes are of natural vegetation, 3 classes are of developed and mosaicked land, and 

3 classes are non-vegetated land (Friedl et al., 2010). Among these classes, increase in the CL 

(81.32% to 87.54%) was the major contributor to the total area of the BRB. In the BRB, snow 

and ice (S&I) land cover is not available. Further, evergreen needle leaf forest (ENF), 

evergreen broadleaf forest (EBF) and deciduous needle leaf forest (DNF) were infrequently 

grown in the study area. Thus, these classes were excluded from the relationship analysis.  

5.2.5 Multiple Linear Regression (MLR) analysis 

In the present study, the MLR method was employed to establish the relationship of MODIS 

NDVI and land cover data to hydro-climatic variables. The MLR equation is expressed as:  

)(.....)()( 2211 nn xmxmxmcy      …(5.5) 

where, y is the NDVI or land cover class; c is the intercept; and m1, m2 ….. mn are the 

coefficients of the variables x1, x2 ….. xn.  

To understand the relative importance of each variable in MLR analysis, the standardized 

coefficient (β, beta coefficient) was estimated to measure the change in standard deviations of 

the dependent variables (NDVI and land cover) per changes in standard deviation of the 

predictor (hydro-climatic) variables. This coefficient standardizes all variables to have a 

variance equal to 1. It is very helpful to know the effect of independent variables on the 

dependent variables in a MLR analysis.  

5.2.6 Conceptual framework  

A conceptual framework proposed by Hoscilo et al. (2014) has been used to attribute the 

relationship among the hydro-climatic variables and MODIS (NDVI and land cover) data sets. 

The framework was attributed by four concepts of climatic greening, climatic degradation, non-

climatic greening and non-climatic degradation for spatiotemporal relationship analysis 

between annual NDVI and rainfall (Figure 5.4). For instance, the relationship between rainfall 

and vegetation is attributed as: i) Climatic greening: area where green vegetation cover 

increases under increased rainfall over a time and space; ii) Climatic degradation: area having 

reduced green vegetation cover under decreased rainfall; iii) Non-climatic greening: area shows 

increase in green vegetation cover under low rainfall, which suggests that greening was caused 

by water availability from pond, lake, river or reservoir, i.e. hydrologic greening response; iv) 
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Non-climatic degradation: area shows a decrease in green vegetation cover despite the 

occurrence of more rainfall, and it may be caused due to anthropogenic activity or fire. 

 

Figure 5.4: Interpretation of conceptual framework for relationship analysis  

(Hoscilo et al., 2014) 

5.3 RESULTS AND DISCUSSION 

5.3.1 Pattern analysis 

Initially, the time-series pattern of hydro-climatic parameters and MODIS NDVI of the years 

2001 to 2013 was analyzed on monthly, seasonal (winter, pre-monsoon, SW-monsoon and 

post-monsoon) and annual basis to understand their trend over the BRB (Figures 5.5a to 5.5d). 

Due to annual data scale, the MODIS land cover data was analyzed on annual basis only.  
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Figure 5.5a: Monthly time series graphs of hydro-climatic variables and MODIS NDVI values 

 

Figure 5.5b: Seasonal time series graphs of hydro-climatic variables and MODIS NDVI values 
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Figure 5.5c: Annual time series graphs of hydro-climatic variables and MODIS NDVI values 

 

Figure 5.5d: Annual time series graphs of MODIS land cover classes 
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5.3.1.1 Pattern of hydro-climatic variables 

The pattern of Hydro-climatic variables was studied, and is presented in Figures 5.5a, 5.5b and 

5.5c. The highest annual rainfall of 1718 mm was recorded for the year 2013 (Figure 5.5c). It is 

observed that, precipitation has been increased for SW-monsoon, post-monsoon, winter 

seasons, and on annual basis by 699 mm, 42 mm, 45 mm and 762 mm respectively, over the 

years 2001-2013. Due to increase in precipitation, discharge was also increased by 252 mm, 64 

mm, 17 mm and 99 mm for the SW-monsoon, post monsoon, winter and annual basis, 

respectively (Figures 5.5b and 5.5c). Similarly, sediment yield was also increased by 3.79 g/l, 

0.83 g/l, 0.17 g/l and 1.41 g/l (Figure 5.5b). In the SW-monsoon season, changes in 

precipitation brought a significant rise in RH and P/PET by 7.64% and 0.77, respectively 

(Figure 5.5b). These variations in the hydro-climatic variable can have strong association with 

changes in the vegetation and the land cover of the BRB area. 

In this study, three temperature parameters, i.e. Tmax, Tmin and Tdiff, were used to understand 

their response with NDVI and land cover. Among these, Tmax and Tmin showed decreasing 

(1.16°C) and increasing (0.61°C) annual trends, respectively (Figures 5.5b and 5.5c). This 

opposite pattern has manifested to decrease the trend of temperature difference (Tdiff) over the 

BRB (Figure 5.5b). This may turn out to be an inadequate seasonal temperature condition for 

proper plant growth.  

Further, the RH parameter has significant increase in the SW-monsoon season (by 7.64%) and 

the value of RH was decreased significantly in the pre-monsoon season (by 7.64%) during the 

years 2001-2013. The result shows that RH has a complete reverse pattern for pre-monsoon 

(decreased by -7.64%) and SW-monsoon season (increased by +7.64%) as shown in Figure 

5.5b. This RH pattern may be induced due to opposite rainfall and temperature pattern in both 

the seasons. Furthermore, more PET losses were also found in pre-monsoon and SW-monsoon 

seasons as shown in Figure 5.5b. The slight increasing trend of PET (4 mm) has been observed 

in the pre-monsoon season due to increase in Tmin (1.30°C). However, due to varying 

vegetation pattern and temperature condition, the PET losses were decreased by 5.4 mm and 

6.8 mm in the post-monsoon (Figure 5.5b) and monthly scale, respectively (Figures 5.5a & 

5.5b). Further, the aridity index pattern showed slight decrease (0.03) in pre-monsoon season 

and increase (0.77) in the SW-monsoon season. Overall, the annual aridity index pattern was 

found to be increased by 0.30 (Figure 5.5c). As per the aridity index classification given by 

Kukal and Irmak (2016), the present analysis reveals that the BRB area had experienced semi-

arid to dry sub-humid climatic condition over the recent years 2001-2013. 
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5.3.1.2 Pattern of MODIS NDVI and land cover 

The significant positive trend of NDVI time-series were observed for pre-monsoon and winter 

seasons (Figure 5.5b). The BRB area has many small to large capacity water storage structures 

i.e. lakes and reservoirs. This might be a reason to show the non-climatic or hydrologic 

greening response during non-monsoon season. During SW-monsoon season, NDVI has 

slightly decreasing trend under the increase in SW-monsoon rainfall as shown in Figure 5.5b. 

This climatic degradation response might be due to wetland condition or flooding condition in 

the study area.  

Further, different MODIS land cover (MCD12Q1) classes showed a significant trend during 

the years 2001 to 2013 (Figure 5.5d). Among them, significant increase in the areas of WSV 

(1342.50 km
2
) and CL (2731.75 km

2
) were observed. However, a large amount of land 

degradation of about 3652.25 km
2
 was found for the NV. Also, slight decrease in the area of 

OSL (6.25 km
2
) and slight increase in the area of CSL (19.50 km

2
) were also detected in the 

present study. These changes in shrub land were took place due to the varying hydro-climatic 

response in the sub-tropical region. The area under ENF and EBF were changed during 2001 to 

2013 (Figure 5.5d). These classes have limited data points, therefore, not considered in the 

present study. Further, the result shows that the increase in the area of WTR from 0.42% to 

0.58% indicates increase in surface water availability in the BRB. In the last decade, a newly 

constructed interstate project Rajghat reservoir had the major contribution to increase WTR 

area and to provide water for irrigation, drinking and rehabilitation purpose. Figure 5.5d also 

shows a greening response to the areas of CSL, WSV, GL, PWL and CL and degradation 

response for the areas of DBF, OSL, SV, NV and BSV in the BRB. 

5.3.2 Relationship analysis 

In this study, the relationship of MODIS NDVI and land cover with the hydro-climatic 

variables has been analyzed at monthly, seasonal and annual time-scale. The climatic and non-

climatic greening and degradation responses are also categorized based on the results of 

relationship analysis employing a conceptual framework. Furthermore, the MLR model 

development and the spatial change analysis has been carried out in this study. 

5.3.2.1 Relationship with MODIS NDVI 

From hydro-climatic variables, monthly rainfall exhibited moderate positive correlations with 

NDVI i.e. a climatic greening response for vegetation in dry, wet and all year analysis (Table 

5.2). Moreover, annual rainfall has good correlation with the NDVI in wet year as compare to 

dry year. Among temperature parameters, monthly Tmax exhibited a moderate negative 



82 

correlations with NDVI i.e. a climatic degradation response in dry (r = -0.676), wet (r = -0.649) 

and all year (r = -0.669) analysis (Table 5.2). Similarly, the difference between maximum and 

minimum temperature (Tdiff) has moderate negative correlations to the monthly NDVI in dry 

(r = -0.653), wet (r = -0.642) and all year (r = -0.651) analysis (Table 5.2). This analysis also 

shows a climatic degradation response to the monthly NDVI. The result shows that, inadequate 

Tmax and Tdiff may be caused to have a climatic degradation response for monthly vegetative 

growth in the BRB. From Table 5.2, the Tmax parameter also exhibited significant negative 

correlation with dry year NDVI in post-monsoon season (r = -0.838) and on annual basis (r = -

0.732), and with wet year NDVI in pre-monsoon season (r = -0.983). In wet year, Tmin also 

exhibited a significant negative correlation (r = -0.776) with NDVI in SW-monsoon season. 

These results show that increase in the value of Tmax and Tmin could degrade the wet year 

vegetation cover. The present analysis demonstrated the effect of dry and wet spells to have 

climatic greening response due to rainfall and a climatic degradation response due to 

temperature in the BRB. 

In addition to this, monthly RH has a significant positive correlation to the NDVI in dry (r = 

0.864), wet (r = 0.854) and all year (r = 0.861) analysis (Table 5.2). Result depicts that, effect 

of dry and wet spells had not altered the positive response between RH and vegetation cover. 

The PET parameter has few moderate negative correlations to the NDVI. Annual NDVI (r = -

0.668) in dry year analysis, pre-monsoon NDVI (r = -0.704) in wet year analysis and SW-

monsoon NDVI (-0.621) in all year analysis showed degradation response to the vegetation 

cover. During wet years, a positive moderate response (r = 0.653) was also exhibited during 

post-monsoon season. Thus, PET parameter has been undergone different responses to the 

vegetation under dry and wet spells effect.  

According to the rainfall pattern analysis, the runoff (Q) and the sediment parameters also 

showed similar responses in the wet years (Table 5.2). On monthly basis, the vegetation cover 

showed a moderate positive response to both Q and sediment in dry, wet and all year analyses. 

However, a small negative correlation in pre-monsoon season had not changed under dry and 

wet spells. The result reveals that, small increase in the vegetation cover could decreases runoff 

and sediment losses, i.e. a negative response. It is also observed that, both Q and sediment have 

similar response to the vegetation under dry and wet spells (Table 5.2).  
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Table 5.2: Correlation between hydro-climatic parameters and MODIS NDVI for dry, wet and 

all (dry+wet) years 

Spells Analysis P  Tmax Tmin RH PET Q P/PET Tdiff Sediment  

Dry 

Monthly 0.544 -0.676 -0.232 0.864 -0.316 0.388 0.561 -0.653 0.382 

Pre-monsoon -0.090 -0.330 0.023 -0.256 -0.167 -0.120 -0.120 -0.529 -0.192 

SW-monsoon -0.063 -0.493 -0.237 0.282 -0.441 0.158 -0.087 -0.387 0.077 

Post-monsoon 0.368 -0.838 -0.096 0.244 -0.529 0.173 0.383 -0.424 0.252 

Winter 0.263 -0.333 0.081 0.507 -0.245 -0.123 0.225 -0.547 0.434 

Annual 0.259 -0.732 -0.633 0.332 -0.668 0.228 0.221 0.033 0.288 

Wet 

Monthly 0.459 -0.649 -0.208 0.854 -0.317 0.304 0.464 -0.642 0.277 

Pre-monsoon 0.130 -0.983 -0.188 -0.118 -0.704 -0.285 0.283 -0.454 -0.078 

SW-monsoon 0.115 -0.082 -0.776 -0.134 -0.285 0.186 0.117 0.066 0.214 

Post-monsoon -0.712 0.262 0.557 -0.220 0.653 0.161 -0.712 -0.044 0.180 

Winter -0.802 0.651 -0.173 -0.278 0.443 -0.112 -0.806 0.316 -0.079 

Annual 0.411 -0.264 0.658 -0.720 0.281 0.300 0.407 -0.424 0.336 

Combined 

Dry+Wet 

Monthly 0.510 -0.669 -0.226 0.861 -0.317 0.294 0.520 -0.651 0.243 

Pre-monsoon -0.024 -0.446 -0.041 -0.173 -0.259 -0.206 -0.034 -0.464 -0.177 

SW-monsoon 0.490 -0.585 -0.511 0.447 -0.621 0.450 0.498 -0.350 0.459 

Post-monsoon -0.023 -0.494 -0.096 0.240 -0.388 0.334 -0.012 -0.278 0.344 

Winter 0.125 -0.458 -0.165 0.469 -0.383 0.371 0.116 -0.448 0.455 

Annual -0.054 -0.203 -0.144 -0.332 -0.150 0.017 -0.082 -0.078 0.028 

 

During wet years, the aridity index, i.e. P/PET, parameter has significant correlation to the 

NDVI in post-monsoon (r = -0.712) and winter seasons (r = -0.806) as shown in Table 5.2. It 

means, the vegetation greening may be responded to deflect the aridity due to wet spell effect. 

The combined dry and wet spells showed none significant relationship between aridity index 

and vegetation cover of the BRB (Table 5.2). 

In the present study, the most satisfactory correlation results are obtained on the monthly 

analyses. This study demonstrated that NDVI has a more significant relationship in wet years 

as compared to dry year analysis (Table 5.2). However, the combined dry and wet spells effect 

showed a moderate response between hydro-climatic variables and vegetation (Table 5.2). But, 

the RH parameter is an exceptional parameter possesses significant positive correlations to the 

monthly NDVI in all year analysis. Under dry spell effect, three temperature parameters were 

negatively correlated to the NDVI, and hence strongly affected the vegetation cover. However, 

due to wet spell, the effect of temperature on vegetation cover was found to be moderate 

positive response in the BRB.  
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5.3.2.2 Relationship with MODIS land cover 

In this study, annual MODIS land cover (MCD12Q1) time-series data set has been also 

correlated with hydro-climatic variables as shown in Table 5.3. The low annual rainfall in dry 

years showed none significant response to the vegetation. But in wet years, more annual 

rainfall showed many significant correlations with all MODIS land cover classes. Due to wet 

spell, the rainfall resulted to increase surface water availability, i.e. WTR area (r = 0.823). 

Thus, it induces a climatic greening response to OSL, GL and CL with correlation (r) value of 

0.648, 0.812 and 0.730, respectively (Table 5.3). Further, the climatic degradation response 

was observed for the DBF, MXF and SV with correlation (r) value of -0.623, -0.569 and -0.842 

respectively. The combined effect of dry and wet spells resulted a moderate rainfall response 

only with WTR (0.525) area as shown in Table 5.3. The result demonstrated that, the prolonged 

dry spell might suppress the effect of wet year rainfall on the land cover area. 

In dry year analysis, the Tmax and Tmin parameters have none significant effect on land cover 

area (Table 5.3). Nevertheless, the difference between maximum and minimum temperature 

(Tdiff) showed several moderate relationships with DBF (0.602), MXF (0.704), WSV (-0.634), 

GL (-0.602), PWL (-0.677) and NV (0.606). But, in the wet years, the Tmax significantly 

affected the WTR and GL area with correlation values of r = -0.885 and -0.894, respectively. 

However, the SV area (r = 0.849) responded positively by the Tmax parameter as shown in 

Table 5.3. The Tmin parameter also showed few significant correlations with OSL, SV and CL 

under correlation (r) value of 0.815, -0.838 and 0.801 respectively. The result shows that, crop 

growth is very sensitive to the changes in the Tmin under the wet spell effect. Moreover, the 

developed temperature parameter Tdiff showed a significant positive correlation with SV (r = 

0.870), i.e. climatic greening response. The Tdiff parameter also showed climatic degradation 

response to WTR, GL and CL under correlation (r) value of -0.852, -0.837 and -0.762, 

respectively. The result shows that the rise in temperature difference may induce climatic 

degradation response to the crop land. Hence, it could affect agriculture production in the BRB. 

From Table 5.3, the combined effect of dry and wet spells shows only moderate responses in 

the present study.  

Among other hydro-climatic parameters, RH has a moderate response to the MODIS land cover 

in dry and wet year analysis (Table 5.3). However, in all year analysis, RH has none good 

response to land cover. During a wet spell, the PET parameter exhibited significant negative 

response with the areas of WTR (r = -0.790) and GL (r = -0.867). From Table 5.3, the PET and 

the aridity index have some moderate correlations with the land cover in the wet year analysis.   
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Table 5.3: Correlation between hydro-climatic parameters and MODIS land cover for dry, wet 

and all (dry+wet) years 

Spells LC class P  Tmax Tmin RH PET Q P/PET Tdiff Sediment  

Dry 

WTR 0.008 -0.163 -0.096 -0.144 -0.126 0.609 -0.046 -0.055 0.656 

DBF 0.040 0.201 -0.264 -0.148 -0.097 -0.172 0.027 0.602 -0.373 

MXF -0.316 0.315 -0.242 -0.518 -0.005 0.085 -0.317 0.704 -0.056 

CSL -0.037 -0.365 -0.168 -0.002 -0.241 0.038 -0.096 -0.190 0.030 

OSL 0.046 -0.159 -0.181 -0.538 -0.207 0.220 -0.031 0.068 0.124 

WSV -0.054 -0.111 0.362 0.391 0.210 -0.109 0.013 -0.634 0.056 

SV 0.420 0.416 0.155 0.595 0.230 0.167 0.362 0.267 0.043 

GL -0.340 -0.243 0.229 -0.262 0.053 0.379 -0.455 -0.602 0.515 

PWL -0.171 -0.106 0.397 0.382 0.285 0.033 -0.171 -0.677 0.268 

CL -0.156 0.007 0.330 -0.025 0.240 0.148 -0.153 -0.454 0.339 

U&B -0.249 0.065 0.160 0.225 0.198 -0.267 -0.252 -0.147 -0.241 

NV 0.208 0.009 -0.426 -0.086 -0.307 -0.088 0.179 0.606 -0.306 

BSV -0.157 0.384 -0.067 -0.635 0.113 -0.024 -0.140 0.539 -0.161 

Wet 

WTR 0.823 -0.885 0.733 0.406 -0.790 0.939 0.736 -0.852 0.945 

DBF -0.623 0.659 -0.624 -0.076 0.496 -0.753 -0.514 0.665 -0.774 

MXF -0.569 0.652 -0.501 -0.286 0.627 -0.748 -0.447 0.612 -0.761 

CSL 0.480 -0.602 0.352 0.464 -0.711 0.696 0.354 -0.523 0.701 

OSL 0.648 -0.484 0.815 -0.416 0.054 0.432 0.715 -0.627 0.446 

WSV 0.386 -0.503 0.285 0.359 -0.604 0.610 0.253 -0.433 0.620 

SV -0.842 0.849 -0.838 -0.135 0.600 -0.907 -0.765 0.870 -0.922 

GL 0.812 -0.894 0.682 0.532 -0.867 0.940 0.726 -0.837 0.940 

PWL 0.349 -0.498 0.187 0.549 -0.709 0.591 0.220 -0.392 0.592 

CL 0.730 -0.704 0.801 -0.118 -0.374 0.776 0.654 -0.762 0.801 

U&B 0.290 -0.262 0.430 -0.418 0.017 0.374 0.193 -0.335 0.410 

NV -0.490 0.585 -0.415 -0.297 0.605 -0.688 -0.363 0.536 -0.701 

BSV -0.431 0.564 -0.290 -0.495 0.711 -0.658 -0.303 0.474 -0.662 

Dry+Wet 

WTR 0.525 -0.516 -0.042 0.295 -0.357 0.728 0.488 -0.489 0.707 

DBF -0.211 0.300 -0.307 -0.089 0.007 -0.416 -0.173 0.584 -0.450 

MXF -0.046 0.163 -0.344 -0.053 -0.075 -0.203 0.016 0.478 -0.240 

CSL 0.254 -0.449 -0.141 0.226 -0.343 0.357 0.211 -0.332 0.362 

OSL 0.341 -0.294 0.025 -0.247 -0.173 0.338 0.344 -0.323 0.326 

WSV 0.230 -0.285 0.251 0.327 -0.037 0.405 0.188 -0.518 0.446 

SV -0.336 0.598 0.181 -0.063 0.426 -0.384 -0.36 0.448 -0.428 

GL -0.363 0.052 0.358 -0.421 0.244 -0.008 -0.408 -0.271 -0.02 

PWL 0.114 -0.228 0.304 0.341 0.066 0.326 0.073 -0.507 0.363 

CL -0.004 -0.035 0.352 -0.050 0.200 0.136 -0.009 -0.354 0.161 

U&B 0.223 -0.188 0.103 0.224 -0.009 0.235 0.209 -0.285 0.280 

NV -0.140 0.190 -0.373 -0.164 -0.111 -0.340 -0.118 0.531 -0.378 

BSV -0.072 0.273 -0.142 -0.292 0.089 -0.231 -0.017 0.408 -0.256 
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Moreover, two hydrologic parameters, Q and sediment, exhibited a moderate positive 

correlation to the WTR area in dry years as shown in Table 5.3. With respect to the rainfall, 

more Q and sediment losses were produced under the wet spell. In the present study, the Q 

parameter shows the significant positive response with WTR, GL and CL with a correlation (r) 

value of 0.939, 0.940 and 0.776, respectively. It means, these land cover classes helps to induce 

more runoff during wet years. Also, the Q parameter shows the negative response with DBF, 

MXF and SV areas with correlation (r) values of -0.753, -0.748 and -0.907, respectively (Table 

5.3). The result reveals that the DBF, MXF and SV area have significant impact on minimizing 

surface runoff. Furthermore, the sediment parameter has a positive correlation to the increased 

areas of WTR, GL and CL with correlation (r) values of 0.945, 0.940 and 0.801, respectively 

(Table 5.3). Also, sediment was negatively correlated to decrease in the areas of DBF, MXF 

and SV with correlation (r) values of -0.774, -0.761 and -0.922, respectively. This shows that 

both Q and sediment parameters were responded similarly to all land cover classes. Among 

them, the DBF, MXF and SV classes helps to reduce Q and sediment losses during the wet 

years. On an annual basis, the combined dry and wet spell effect shows only moderate positive 

response of Q and sediment parameters to WTR area with correlation (r) values of 0.728 and 

0.707 respectively (Table 5.3). 

This study also reveals the more significant correlations in the wet year analysis as compare to 

the dry year analysis. It is observed that, the WTR class was the most sensitive land cover class 

to the hydro-climatic variables in dry, wet and all year analysis. In wet years, other land cover 

classes also well responded to the hydro-climatic variables due to the effect of wet spells. 

5.3.3 Development of MLR models for land greening and degradation 

In this study, MLR models were developed between hydro-climatic variables and MODIS 

(NDVI and land cover) datasets (2001-2008), and then validated for the years 2009 to 2013. 

Each MLR model was evaluated using coefficient of correlation (r) value and enables to be 

utilized for better prediction. Tables 5.4a & 5.4b shows satisfactory model performance in the 

validation.  

Table 5.4a: Validation of MLR model for MODIS NDVI  

NDVI analysis Correlation coefficient (r)  

Monthly 0.832 

Pre-monsoon 0.508 

SW-monsoon 0.728 

Post-monsoon 0.375 

Winter 0.550 

Annual 0.828 
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Table 5.4b: Validation of MLR model for MODIS land cover  

Land cover class Correlation coefficient (r)  

WTR 0.752 

DBF 0.958 

MXF 0.807 

CSL 0.517 

OSL 0.939 

WSV 0.857 

SV 0.608 

GL 0.645 

PWL 0.642 

CL 0.705 

U&B 0.833 

NV 0.656 

BSV 0.651 

 

Furthermore, the relative dependency of different hydro-climatic variables was evaluated using 

standardized coefficient. The analysis shows that the rainfall (β = 0.62) and RH (β = 0.32) have 

the most relative dependency to the vegetation area on monthly scale. In this study, seasonal 

and annual scale analysis showed multi-collinearity in the variables (Table 5.5a & 5.5b). 

Therefore, their relative dependency for MLR analysis cannot be easily interpreted due to 

multi-collinearity. The MLR models for the land greening and degradation response with 

hydro-climatic variables are given in the Appendix B. 

Table 5.5a: Standardized coefficients between hydro-climatic variables and NDVI 

Variable 
Standardized coefficient 

Monthly Pre-monsoon SW-monsoon Post-monsoon Winter Annual 

Rainfall 0.62 -23.32 -84.67 0.10 0.00 -9.69 

Tmax 0.00 -3.92 -8.38 -15.42 0.00 -1.82 

Tmin -0.44 2.30 -3.21 0.00 1.14 0.00 

RH 0.32 -1.47 -1.71 -0.54 0.05 -2.33 

PET -0.08 0.00 0.00 18.40 -1.24 0.00 

Discharge -0.07 1.47 14.72 0.74 0.46 4.85 

AI -0.74 22.72 75.52 0.00 -0.90 10.69 

Tdiff -0.74 0.00 0.00 11.84 -0.50 -1.36 

Sediment 0.10 -1.12 -8.72 0.19 0.29 -3.97 
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Table 5.5b: Standardized coefficients between hydro-climatic variables and land cover 

Variable 
Standardized coefficient  

WTR DBF MXF CSL OSL WSV SV GL PWL CL U&B NV BSV 

Rainfall -11.90 6.54 -8.94 9.91 10.13 -1.41 5.06 -4.86 3.79 -6.22 8.16 7.17 0.44 

Tmax -1.91 1.44 -0.63 1.23 1.71 -0.74 0.49 -0.93 0.55 -0.90 1.33 1.02 1.25 

Tmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RH -2.87 2.30 -0.94 1.68 1.13 -1.65 0.63 -1.31 0.72 -1.43 0.80 1.80 0.79 

PET 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Discharge 6.82 -0.89 3.28 0.34 -1.56 2.54 3.57 3.72 -5.11 -1.57 -1.70 0.39 -2.72 

AI 12.42 -6.86 9.35 -9.92 -9.29 1.70 -5.20 4.39 -4.30 6.30 -7.29 -7.36 -0.01 

Tdiff -0.85 0.60 -0.11 0.25 0.11 -0.48 -0.30 -0.98 0.28 -0.35 0.40 0.47 0.47 

Sediment -4.77 -0.35 -2.57 -1.75 -0.09 -1.75 -3.71 -2.51 5.33 2.66 -0.03 -1.69 2.09 

5.3.4 Spatial interpretation of changes in NDVI and land cover 

Figures 5.6a to 5.6c illustrates the spatial land greening and degradation during the years 2001-

2013. The maximum land greening has been produced for the CL class (2731.75 km
2
). 

However, maximum land degradation was resulted for the NV class (3652.25 km
2
). In BRB, 

the CL class is a dominant land cover of the BRB area. Some inter-transitions between CL and 

NV were also took place during the years 2001 to 2013. Hence, the NV-CL legend shows 

degradation of NV class into greening of CL area. The unchanged CL and NV area has been 

also shown by CL-CL (greening) and NV-NV (degradation) category in Figures 5.6b & 5.6c. 

These classes showed more land cover dynamics in the upper-most and the middle part of BRB 

area.  

 

Figure 5.6a:  Spatial representation of land greening and degradation using NDVI change 

analysis during 2001 to 2013  
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Figure 5.6b:  Spatial representation of land greening for Crop Land (CL) during 2001-2013 [In 

legend, Land Cover class− CL: Represents greening of a land cover class into CL, and CL−CL 

represents no change in CL area] 

 

Figure 5.6c:  Spatial representation of land degradation for Natural Vegetation (NV) during 

2001-2013 [In legend, NV−Land Cover class: Represents degradation of NV into a land cover 

class, and NV-NV represents no change in NV area] 
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Moreover, four different patterns of the conceptual framework have been spatially represented 

in Figure 5.7. It helps to address the driving forces behind the climatic and non-climatic effects 

on land greening and degradation. The greening and degradation areas are variedly distributed 

from upper to lower part of the BRB. Figure 5.7 shows that most of the upper basin had 

experienced climatic greening response due to high rainfall; however, the lower basin had 

experienced non-climatic greening i.e. hydrologic response during the years 2001 to 2013. The 

non-climatic greening area is distributed on the downstream river network, where most of the 

large reservoirs, mainly Rajghat and Matatila reservoirs, provide water for rehabilitation and 

irrigation purpose in monsoon and non-monsoon seasons.  

 

Figure 5.7:  Spatial representation of climatic greening, climatic degradation, non-climatic 

greening and non-climatic degradation in Betwa River basin 

The land degradation due to the climatic and non-climatic response has been also illustrated in 

Figure 5.7. The spatial analysis represents that the upper-most, middle and middle-East, and 

lower-East basin areas had experienced the land degradation during 2001-2013. The results 

show that more climatic degradation has been also observed for upper basin area, where 

maximum rainfall induces flooding during the monsoon season. However, the non-climatic 

degradation might be caused due to anthropogenic disturbances. In this spatial change analysis, 

the hydro-climatic impact on land greening and degradation is detected for the upper BRB area. 

Therefore, sustainable planning and management are required to be implemented for 

conservation and protection of land resources.  
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5.3.5 Effects of dry, wet and all year analysis  

The effect of dry and wet spells on hydro-climatic greening and degradation response has been 

also observed in the present study.  

5.3.5.1 Dry spell effects 

In dry years, vegetation has different responses (i.e. positive or negative) to the monthly hydro-

climatic variables (Table 5.2). Mainly, the Tmax and Tdiff parameters have a climatic 

degradation response to the monthly and seasonal NDVI that declines the vegetation cover 

under prolonged dry spell effect. However, on annual scale Tmax and Tmin have significantly 

degraded vegetation cover. The aridity index has a moderate response to the monthly NDVI 

which shows the inadequate soil moisture condition under dry spells. It might be caused due to 

deficient and uneven distribution of rainfall in the Madhya Pradesh (Duhan & Pandey, 2013) 

which is adversely affecting the crop growth (Lal et al., 1999). In BRB, forest growth was 

limited by low SW-monsoon rainfall (Shah et al., 2007) and less moist climate condition 

(Chauhan & Quamar, 2010). Overall, study depicted that Tmax and Tdiff are the most affecting 

climate variables in dry years.  

The effect of dry spell also showed degradation and greening response to different land cover 

areas. The WSV, GL and PWL classes have experienced the land degradation due to the Tdiff. 

Also, the Tdiff parameter has a climatic greening response for DBF, MXF and NV in dry years 

(Table 5.3). This might be due to adequate temperature for the growth of these vegetative areas. 

Thus, the Tdiff parameter is the most responsive parameter in dry years. Two hydrologic 

parameters, Q and sediment showed a moderate positive response to the WTR class. It 

demonstrated that changes in the surface discharge can have direct effect on WTR area of the 

BRB.  

5.3.5.2 Wet spell effects 

In wet years, monthly correlation analysis between NDVI and few hydro-climatic variables 

(Tmax, RH and Tdiff) showed the similar response with the vegetation cover as compare to the 

dry year analysis (Table 5.2). The increase in the wet year rainfall has resulted a significant 

climatic degradation response to the vegetation during post-monsoon and winter seasons. This 

may be due to the degradation of saturated cereal-based agriculture land (Chauhan & Quamar, 

2012; Quamar & Chauhan, 2014). Similar results were observed by Chauhan & Quamar (2012) 

for the South-West forest area of Madhya Pradesh with respect to the increase of rainfall. The 

vegetative land shows a significant climatic greening response to the monthly RH (r = 0.854), 

and a climatic degradation response to the annual RH (r = -0.720). This analysis also depicts 
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that the significant land degradation response of Tmax in the pre-monsoon season was 

decreased from SW-monsoon to winter season. Hence, the effect of wet spell helps to reduce 

land degradation and raised climatic-greening response to vegetation of the BRB.  

In wet year analysis, nearly all land cover classes showed good correlations to the hydro-

climatic variables (Table 5.3). Here, the DBF and MXF showed similar positive response for 

Tmax, PET and Tdiff parameters; however the negative response to rainfall, Q and sediment 

(Table 5.3). The prominent CL area has been significantly degraded due to Tmax and Tdiff; as 

well as positively responded to rainfall, Tmin, Q, aridity index and sediment during wet years 

(Table 5.3). The result shows that WTR, DBF, MXF, SV, GL and CL were the most influenced 

land cover areas under wet spell effect.  

5.3.5.3 Combined dry and wet spell effects 

In this study, the combined dry and wet spells effect has been analyzed for the full analysis 

period, i.e. dry plus wet years (2001 to 2013). Very few good correlations were observed 

between hydro-climatic variables and NDVI as shown in Table 5.2. It is clearly observed that 

vegetation have well responded to the hydro-climatic variables in monthly and SW-monsoon 

season analysis. It is observed that, monthly and SW-monsoon rainfall showed moderate 

climatic greening response to vegetation. The vegetation has degradation response with the 

Tmax and Tdiff parameters. It means, these temperature parameters have unaltered response 

with the NDVI. In this analysis, good correlation results were estimated in the monthly and 

SW-monsoon season analysis; however, other scale analysis showed very less response. This 

analysis demonstrated that the combined effects of dry and wet spells have induced variation in 

vegetation response over the BRB area.   

In all year analysis, MODIS land cover classes have moderate correlations with hydro-climatic 

variables as shown in Table 5.3. The WTR class shows more and better response with hydro-

climatic variables. The degradation response of Tmax and Tdiff to the land cover has been 

lowered in all year analysis. The result also shows that positive response of Q and sediment 

were not altered for the WTR area during 2001 to 2013.  On annual basis, the ENF, CSL, 

WSV, GL, PWL and CL land cover had experienced climatic greening response due to 

increased annual rainfall (762 mm) and WTR area of the BRB. However, the non-climatic 

degradation response for DBF, CSL, SV, GL, NV and BSV area were mainly caused owing to 

increased anthropogenic activities within the study area. 

Further, the unequal data set values used for dry and wet year analysis is one of the major 

limitation of the present study. Principally, the occurrence of dry and wet spells never equal in 
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numbers during the analysis period. Thus, the unequal data points exhibited somewhat differed 

relationship and response analysis. However, the study on the combined effect of dry and wet 

spells may be helpful to implement sustainable development plans under hydro-climatic land 

greening and degradation response in the BRB area and the river basins with similar land 

use/cover areas.  

5.4 CONCLUSIONS 

In the present study, effect of dry and wet spells over large BRB area has been successfully 

analyzed employing the MODIS time-series data sets. The conceptual framework immensely 

helps to furnish the climatic and non-climatic greening and degradation response over the BRB 

area. The statistical MLR models have been developed for each multi-temporal analysis of 

hydro-climatic variables with NDVI and land cover areas. The relative dependency of all the 

hydro-climatic variables in the MLR model was tested by using the standardized coefficient 

value. Result showed that rainfall (β = 0.62) and RH (β = 0.32) are the most relative dependent 

variables to the vegetation cover. Following conclusions are drawn from this study:   

1. In this study, the aridity index analysis shows that the BRB area had experienced semi-

arid to dry-sub humid climatic condition during the years 2001 to 2013.  

2. In this study, discharge and sediment of the outlet of the Betwa basin has been used. 

Therefore, correlation between these two variables and NDVI has not been focused 

particularly on water area or non-water area of the basin. Overall basin response for 

NDVI change has been studied. However, in non-water area the monsoon rainfall could 

have significant impact on NDVI variations.   

3. The spatial analysis of land greening and degradation showed that the changes are 

variedly distributed from upper to lower part of the BRB area. Due to high rainfall 

region, the upper basin area had experienced climatic greening; however, the lower 

basin had experienced non-climatic greening owing to the less rainfall.  

4. In the lower basin, the non-climatic or hydrologic land greening was happened due to 

water availability from the Rajghat and Matatila reservoirs, for rehabilitation and 

irrigation purpose.  

5. The climatic and non-climatic land degradation were observed for the upper-most, the 

middle and middle-East, and the lower-East region. The non-climatic land degradation 

has been encountered due to the anthropogenic disturbances in these regions.  

6. In case of the upper BRB part, the climatic land degradation was observed because of 

the maximum rainfall region which induces flood during the monsoon season. The 
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prolonged dry spells effect may also accelerates climatic degradation due to the changes 

in temperature parameters on monthly, seasonal and annual scale.  

7. Therefore, the study depicted that the impact of hydro-climatic variables on land cover 

has been mostly encountered in the upper basin area. Therefore, sustainable 

management and development plans are crucial to conserve and protect land resources 

of the BRB.  
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CHAPTER 6 

HYDROLOGICAL MODELLING OF WATER STORAGES USING SOIL 

AND WATER ASSESSMENT TOOL (SWAT)  

This chapter encompasses description of the Soil and Water Assessment Tool (SWAT) model, 

basin attributes, model setup, sensitivity and uncertainty analysis, calibration, validation, and 

the model performance evaluation. This chapter also includes the modelling of different water 

storages (7 reservoirs and 2 weirs) located on main channel as well as tributary channel of the 

Betwa River Basin. Required spatial information of these water storages has been extracted 

from remote sensing data, and information on storage volume and outflow have been estimated 

using gauge data obtained from the authorities. Further, these water storages are successfully 

implemented and managed for reliable hydrological simulation using the SWAT model.   

6.1 BACKGROUND OF THE STUDY 

Several types of water storage structures are being constructed for rain water storage, and to 

fulfill the water requirement for agriculture and urban sectors in present and future scenarios. 

Different types of water storages, including small-sized ponds to large-sized reservoirs, are 

used for flow regulation and water utilization (Gross & Moglen, 2007; Lopez-Moreno et al., 

2009). These water storages are also the main human interference in a natural system affecting 

hydrological processes. Hydrological modelling in a region having human interferences can 

affect the results of a model simulation; therefore, the interference is required for 

implementation of a reliable hydrological simulation. To account water storage interference, 

several approaches have been developed to optimize the limited water resources in small-sized 

river basin (Jayatilaka et al., 2003). For a large river basin, the effect of water storages on 

hydrological process has not been well addressed due to insufficient data and information of 

water storages required for hydrological modelling purpose. Thus, the study has been planned 

to model the numerous water storages by employing the remote sensing data, empirical 

methods, and estimation of water storage and outflows.  

The Soil and Water Assessment Tool (SWAT) can be explicitly used to model the water 

storages by approximate parameterization of the pond or reservoir modules (Wagner et al., 

2011; Zhang et al., 2012b). Payan et al. (2008) proposed an approach to implement the 

reservoir in a lumped hydrological model using measured volume variations which may not 

reflect the various reservoir processes in France, the United States and Brazil. Güntner et al. 

(2004) used a deterministic water balance scheme to represent thousands of reservoirs in a 

distributed model in Brazil. The scheme includes water storages classification into 6 categories 
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based on storage capacity of the reservoirs. This scheme also followed one assumption that the 

small-sized reservoirs located upstream of large-sized reservoirs contribute all flows into the 

large-sized reservoirs located downstream. Wang & Xia (2010) modelled 61 water storages to 

assess their impact on streamflow using SWAT2000 in China. Due to lack of sufficient 

information for numerous water storages, the model was turn out to be less feasible to account 

their impacts. Moreover, Zhang et al. (2012b) modelled the small- to medium-sized water 

storages for Fengman reservoir located in the Second Songhua River basin, China using 

SWAT2005. Their analysis was enhanced by incorporating the water balance and transport 

network combining both sequential and parallel streams and storage links. Hence, these studies 

show that basin hydrology can be accurately simulated using available water storages 

information in the SWAT model. Therefore, in this study an improved version of SWAT2012 

has been used for water storages modelling in a large agricultural river basin of central India, 

which has not been reported yet in the literature.   

Indian River basins need to be well developed and managed for the scarce water resources in 

an integrated and environmentally sound basis. The Betwa River Basin, with number of small- 

to large-sized water storages, is least discovered region. Various water storages either on the 

main channel or tributary channel are crucial to manage for sustainable agriculture production 

in the Central India. In this context, the main water storages regulating river flows in the Betwa 

River Basin have been studied with certain degree of reliability by a hydrological modelling 

approach using SWAT.   

6.2 MATERIALS AND METHODS 

6.2.1 Data acquisition  

The details of the study area, hydro-meteorological data, and spatial datasets are provided in 

Chapter-3. The input information needs to provide in ArcGIS compatible raster datasets 

(GRIDS), vector datasets (shapefiles), and SWAT database formats. After all data formatting, 

the model setup was carried out for hydrologic simulation.  

6.2.2 Assumptions and limitations 

In India, the Central Water Commission (CWC) presently regulates hydrologic measurement in 

river basins. Change in magnitude and frequency of stream flow could affect target water 

storages. Also, presently available reservoir could change in future due to ongoing litigation 

and boundary conditions which may possibly affect SWAT simulation.  

In this study, water storages of the Betwa river basin have been modeled using the SWAT 

model. The curve number approach and Modified Universal Soil Loss Equation (MUSLE) are 
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particular weaknesses of the SWAT model (Benaman et al., 2005). Thus, the watershed model 

selection could be a limitation of this study. The elevation levels and soil zones are assumed to 

be remained constant during analysis period.  

The water storages of the Betwa River basin are implemented in the SWAT model for reliable 

hydrological simulation. Reservoir module of the SWAT model has been used to implement 

the weirs located on main river channel, considering weir parameter has same functionality as 

the reservoir parameter. This study assumes that the effect of upstream small water storages, 

such as ponds and lakes, is minimal at the downstream of reservoir. Also, these small water 

storages are also not interconnected between the reservoirs considered in this study and the 

gauges. Hence, outflow of small water storages is contributed into the reservoirs located within 

a sub-watershed. Therefore, the small water storages having negligible effect on the streamflow 

are excluded in this study.  

6.2.3 SWAT model 

The SWAT is a physically based semi-distributed hydrologic model that operates at different 

time-steps, daily or sub-daily (Arnold et al., 1998; Arnold and Fohrer, 2005; Arnold et al., 

2012a). Daily, monthly, and annual model outputs can be obtained at sub-watershed or 

hydrologic response unit (HRU) level. USDA’s Agricultural Research Service (ARS) 

developed the SWAT model to predict the impact of land management practices on water 

balance, sediment loads and water contaminant in complex and large watersheds (Borah and 

Bera, 2003; Arnold and Fohrer, 2005; Neitsch et al., 2005; Miller et al., 2007). The SWAT 

model underlies the ArcSWAT and QSWAT interface, where GIS software is used to provide 

geographic analyses for data preparation and model simulation. In this study, the ArcSWAT 

interface for the modelling purpose has been applied. Bian et al. (1996) described that SWAT 

model is a semi-empirical and semi-physically based model. For the representation of physical 

mechanism of hydrologic system, mathematical equations are used in the SWAT model. The 

model also uses discrete area units for the analysis, hence it is feasible to use the SWAT with 

the integration of GIS. The detailed documentation about the SWAT model and the related 

software or interface can be found at SWAT website (http://swat.tamu.edu). Several statistical 

tools have been also developed and employed for evaluation of the SWAT simulation.  

Following major steps are generally used for the model setup and run:  

1. Data preparation 

2. Watershed delineation 

3. HRU definition 

http://swat.tamu.edu/
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4. Sensitivity and uncertainty analysis 

5. Model calibration and validation 

SWAT model setup includes elevation data (DEM), land use map, soil map, slope information 

and climatic parameters (rainfall, minimum and maximum temperature, radiation, wind speed, 

relative humidity). From literature, it is observed that feeble outputs may cause due to 

insufficient rainfall representation in the model. This might be due to inadequate rain-gauge 

network or watershed configuration covering spatial details of precipitation (Cao et al., 2006). 

In addition, an imprecise model simulation (Harmel et al., 2006) and the relatively short 

periods of calibration and validation (Chanasyk et al., 2003) are some reasons that affect 

SWAT model performance evaluation. Empirical and semi-empirical models, MUSLE and 

SCS-CN, adopted in SWAT model simulate less accurate stream-flow and sediment loads (Qiu 

et al., 2012). Therefore, in this study reasonable monthly stream-flow values and monthly 

sediment values, majorly peak simulations, were underestimated.  

The study area can be divided into several sub-watersheds preserving natural channel and flow 

paths in the river basin. Each sub-watershed consists of Hydrological Response Units (HRU’s) 

based on land use, soil and elevation data is defined to have a regulated flow in a more or less 

homogenous way. The final results of all the HRUs are aggregated per sub-watershed and 

averaged at the basin outlet. 

From the relevant review literature, it is observed that SWAT model can be used as a robust 

and flexible tool for management of land and conservation interventions. Limited studies have 

been carried out on the model suitability for mixed vegetated and large agricultural Indian 

River basins in general, and Betwa River basin in particular. River channel having 

erosion/degradation problem needs adequate protection and conservation measures. Thus, there 

is a scope for water resources planning and management employing SWAT model in the Betwa 

river basin, as there are many water resources structure that have controlled and/or uncontrolled 

influence on river flows.  

Detailed methodology used for SWAT model set-up and run is presented in Figure 6.1. 
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Figure 6.1: Methodology flowchart used for SWAT model simulation  

6.2.3.1 Model setup 

(a) Data preparation 

Spatial datasets (DEM, land use map, soil map etc.) required for the SWAT model were 

projected into the same co-ordinate system (WGS 1984) using the ArcGIS interface. Satellite 
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imagery derived land use maps were reclassified into the SWAT land use data type. User look-

up table was provided to identify the SWAT code for all land use classes. The soil map of the 

study area was prepared and enlisted in the look-up table, which is not available in the U.S. soil 

database.  

(b) Watershed delineation 

Delineation of the study area comprises the entire boundary of Betwa river basin. Shuttle Radar 

Topography Mission (SRTM) DEM was used to delineate the study watershed, and to prepare 

the river drainage network. Confluence of the Betwa river with the Yamuna River near 

Hamirpur gives geographical coverage of about 43936.59 km
2
. This area fairly matches with 

the area reported in National Water Development Agency (NWDA, 1993) technical report of 

the Betwa basin (43895 km
2
). The marginal variation in the drainage area of the Betwa River 

Basin used in this study and reported by NWDA may be due to fixing of the outlet point or 

confluence point in the watershed delineation process.  

In this study, Betwa river basin was further divided into 57 sub-watersheds based on the 

defined threshold value (50000 ha) by trial and error, the four hydrologic gauging sites 

(Basoda, Garrauli, Mohana and Shahijina), and the outlet points provided for nine reservoir 

outlets to facilitate precise hydrologic simulation of the model (Figure 3.8, Chapter 3). The 

selection of threshold value was based on the desired stream network density and connectivity 

of the drainage network with reservoirs, available in the study area. Furthermore, each sub-

watershed should be smaller than the area of precipitation recording to minimize the 

uncertainty in capturing spatial information in the watershed. 

(c) HRU definition 

The SWAT model uses other physical layers to determine unique hydrological response units 

(HRUs). The Betwa basin was divided into many HRUs (3874) representing homogenous 

hydrological regions defined with unique land use (threshold value = 0), soil type (threshold 

value = 1) and slope (threshold value = 0). Sub-watershed wise HRU distribution and land use 

and soil characteristics are presented in Appendix D.  

Further, the sub-watersheds generated by points given for reservoirs were selected to 

demonstrate the reservoir outlets (Figure 6.2). In this study, nine water storage structures, 

including 7 reservoirs and 2 weirs, located on the main and tributary river channel were used in 

the SWAT modelling. The details of reservoir management in the SWAT are provided in 

Section 6.2.3.6.   
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Figure 6.2: Sub-watershed division map with IMD and CWC gauges in the Betwa river basin 

 

6.2.3.2 Basin attributes  

The attributes of sub-watersheds, tributary channels and main channels are determined in the 

ArcSWAT interface as follows (Neitsch et al., 2004): 

(a) Sub-watershed 

The first level of basin/catchment division is the sub-watershed. Sub-watersheds possess a 

geographic position, and spatially connected to each other. Its delineation can be defined by 

surface topography so that the entire area accumulates flow to the sub-watershed outlet. 

(b) Hydrologic Response Units (HRU) 

Area in a sub-watershed may be divided into Hydrologic Response Units (HRUs). HRU 

possess unique land use/ slope/ soil attributes. 
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(c) Main channels / reach 

Main channel is associated with each sub-watershed and carries flow loadings in the channel 

segment. Outflow from the upstream channel segment(s) enters in the main segment. 

(d) Tributary channels  

Tributary channel differentiates surface runoff input for channelized flow in a sub-watershed. 

This channel can be used to estimate the time of concentration of runoff generated, and 

transmission losses from runoff, as it flows to the main channel. 

(e) Reservoirs / ponds / wetlands  

In SWAT model, surface water bodies within a study area can be modeled as ponds, wetlands 

or reservoirs.  

6.2.3.3 Theoretical considerations in SWAT  

SWAT is a theoretical continuous model operates on daily time steps. This study uses monthly 

simulation outputs for the analysis purpose. The hydrologic components simulated on a HRU 

level is routed from HRU to sub-watershed, and then subsequently to the whole study basin 

outlet. Two hydrology component systems, namely land hydrology and channel hydrology, 

controls the movement of water, sediment fluxes and nutrient loads from overland to watershed 

outlet through the river channel network.   

Water balance is the driving basis of watershed simulation using SWAT model (Neitsch et al., 

2005; 2011) and is given by the equation 6.1.  

 


n

it QRPETQRSWSW
1

)(                                         … (6.1) 

where, SWt is the final soil water content (mm), SW is the initial soil water content (mm), t is 

the time (days), R is the amount of precipitation (mm), Q is the amount of surface runoff (mm), 

ET is the amount of evapotranspiration (mm), P is percolation  (mm), and QR is the amount of 

return flow (mm) on i
th

 day. 

(a) Surface runoff  

Surface runoff can be estimated using one of the available option, which includes the modified 

SCS curve number method (USDA Soil Conservation Service, 1972) and the Green & Ampt 

infiltration method (Green and Ampt, 1911).  

In the present study, the SCS curve number method has been used for estimation of runoff. It is 

an empirical model that estimates the amounts of runoff depth under varying land use and soil 

types. Curve number varies non-linearly with the moisture content in soil. Curve number drops 
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when soil approaches to wilting point, and increases up to 100 when approaches to saturation. 

The SCS curve number equation (6.2) used in the model is as follows (USDA Soil 

Conservation Service, 1972): 
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 , for R>0.2s                … (6.2)        

 Q = 0.0,               for R≤ 0.2s        … (6.3)        

where, Q is the daily runoff (mm), R is the daily rainfall (mm), and s is a retention parameter 

(mm). The retention parameter, s, varies (a) among sub-basins because of the variation in soils, 

land use, management and slope with time because of changes in soil water content. The 

parameter s is related to curve number (CN) by the SCS equation 6.4 (USDA Soil Conservation 

Service, 1972): 

 







 1

100
254

CN
s         … (6.4)        

The constant, 254, in the above equation gives s in mm. Thus, R and Q are also expressed in 

mm. CN is the curve number for antecedent moisture condition (AMC) II, i.e. for average 

condition, under different land use and hydrologic soil groups.  

Modified rational method is used to estimate peak runoff rate. It is based on an assumption that 

if rainfall intensity falls for long period more than the time of concentration, then runoff will 

increase until tc. When maximum runoff occurs, all sub-watersheds contribute to peak flow at 

the watershed outlet. It is expressed by following equation (6.5): 
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6.3


        ... (6.5) 

where, qpeak is the peak runoff rate (m
3
/s), αtc is the fraction of daily rainfall occurs during the 

time of concentration, A is the sub-watershed area (km
2
) and tc is the time of concentration for a 

sub-watershed (hr).  

The sub-watershed time of concentration is generally a sum of two types of concentrations 

(Equation 6.6).  

 chovc ttt           … (6.6) 

where, tov is the time of concentration for overland flow (hr), and tch is the time of concentration 

for channel flow (hr). These can be expressed as follows (Equations 6.7 and 6.8):  
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         … (6.8) 

where, Lslp is the sub-watershed slope length (m), n is the manning’s roughness coefficient, 

slpov is the average slope in the sub-watershed, L is the channel length from the most distant 

point to the sub-watershed outlet (km), slpch is the average slope for river channel.  

(b) Evapotranspiration 

Evapotranspiration (ET) is one of the most basic components of the hydrologic cycle. It is a 

combination of evaporation (from open water surface body) and transpiration (from vegetation) 

processes that converts Earth’s surface water into water vapour. In the SWAT model, three 

methods are incorporated for estimation of potential evapotranspiration (PET), namely (1) 

Penman-Monteith method (Monteith, 1965; Allen, 1986; Allen et al., 1989), (2) Priestley-

Taylor method (Priestley and Taylor, 1972), and (3) Hargreaves method (Hargreaves et al., 

1985).  The Penman-Monteith method requires several meteorological parameters such as solar 

radiation, air temperature, relative humidity and wind speed. Moreover, the Priestley-Taylor 

method also requires solar radiation, air temperature and relative humidity for estimation of 

evapotranspiration. If wind speed, relative humidity, and solar radiation data are not available, 

the Hargreaves methods provide options that give realistic results in most cases (Arnold et al., 

1998; Williams et al., 2008). Due to non-availability of the other data set, Hargreaves method 

that requires air temperature only has been used in this study. 

Based on extraterrestrial radiation and air temperature, the Hargreaves method estimates 

potential evapotranspiration using following modified equation (6.9): 

)8.17()(0023.0 5.0

minmax  avgoo TTTHE     … (6.9) 

where, oE  is the potential evapotranspiration (mm/day); oH  is the extraterrestrial radiation 

(MJ/m
2
/day); and maxT , minT  and avgT  are the maximum, minimum and average air 

temperatures (°C)  

The actual evapotranspiration can be calculated by using values obtained by Hargreaves 

method. In the process, rainfall intercepted by the plant canopy is initially evaporated. Then, 

actual amount of sublimation and evaporation are calculated after computation of 

corresponding maximum values. After rainfall, the canopy storage is filled before any water 
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allowed to reach the ground. When evaporation is computed, then firstly water is removed from 

canopy storage.  

Canopy storage is directly considered when the curve number method is used to compute 

surface runoff. Otherwise, if Green-Ampt method is used for runoff computation, SWAT 

models the canopy storage separately using maximum amount of water that can be stored at 

maximum leaf area index. It can be presented by equation (6.10) as follows: 

 
max

max
LAI

LAI
CanCanday         … (6.10) 

where, dayCan  is the maximum amount of water trapped in the canopy on a particular day 

(mm); maxCan  is the maximum amount of water trapped in the canopy when canopy is at fully 

developed stage (mm); LAI  is the leaf area index for a given day; and maxLAI  is the maximum 

leaf area index for the plant.  

(c) Percolation 

Percolation can be calculated for each soil layer, as it occurs when water content in the soil 

exceeds the field capacity. The water percolated below root zone becomes lost from the 

watershed, due to groundwater contribution or as a return flow at the downstream. In SWAT 

model, the flow through each soil layer uses storage routing technique combined with a 

crack-flow. The storage routing technique is based on the following equation (6.11): 
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where, SWi is the soil water contents at the beginning of day (mm); SWoi is the soil water 

contents at the end of day (mm); t is the time interval (24 h); and TTi is the travel time 

through layer i. Thus, subtracting SWoi from SWi can compute the percolation (Equation 6.12): 
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where, Oi is the percolation rate in mm/day. 

The travel time for soil layer i (TTi) can be computed following linear storage equation (6.13): 
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where, Hi is the hydraulic conductivity (mm/hr); and FCi is the field capacity minus wilting 

point water content for layer i in mm. The hydraulic conductivity value varies from the 

saturation capacity to field capacity as presented in Equation (6.14). 
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         … (6.14) 

where, SCi is the saturated conductivity for layer i (mm/hr); ULi is the soil water content at 

saturation in (mm/mm); βi is the parameter that causes Hi to approach zero as SWi approaches 

FCi. The  can be estimated using equation (6.15) as below:  
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         … (6.15)        

The constant (-2.655) in the above equation was set to assure Hi = 0.002SCi at field capacity. 

Flow may occur upward when a lower layer exceeds its field capacity. The ratio of two layers, 

soil water to field capacity, regulates water movement from one lower layer to another upper 

layer. Soil temperature can affect the percolation, as temperature in a particular soil layer goes 

at 0C or below, no percolation is allowed.   

(d) Lateral subsurface flow 

For soil profile up to 2 m depth, the lateral subsurface flow is also calculated with percolation. 

In the SWAT model, the kinematic storage model developed by Sloan and Moore (1984) is 

used to calculate lateral flow movement in each soil layer. It is expressed as below (Equation 

6.16): 
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024.0         ... (6.16) 

where, qlat is lateral flow (mm/day), S is drainable volume of soil water (m/hr), α is slope 

(m/m), ѳd is drainable porosity (per mm), and L is flow length (m).  

(e) Ground water flow 

SWAT model differentiate groundwater into two aquifer systems which contribute return flow 

to streams, i.e. a shallow unconfined aquifer (within the watershed), and a deep confined 

aquifer (outside the watershed). Ground water flow contribution to total stream flow is 

simulated by creating shallow aquifer storage. The water balance equation (6.17) for the 

shallow aquifer is as follows:  
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 shgwishish WUpercrfrevapRcVsVs  1,,       ... (6.17) 

where, ishVs ,  is the shallow aquifer storage on day i (mm); 1, ishVs  is the shallow aquifer storage 

on day i-1 (mm); Rc is the recharge percolates from bottom of the soil profile (mm); revap is 

the root uptake from the shallow aquifer (mm); rf is the return flow (mm); percgw is the 

percolation to the deep aquifer (mm); and WUsh is the water use (withdrawal) from the shallow 

aquifer (mm). 

The water balance equation (6.18) for the deep aquifer is as follows: 

 dpdpidpidp WUpercVsVs  1,,       … (6.18) 

where, idpVs ,  is the amount of water stored in deep aquifer on i
th

 day (mm); 1, idpVs  is the 

amount of water stored in deep aquifer on day i-1 (mm); dpper  is the amount of water 

percolating from shallow aquifer into deep aquifer (mm); and dpWU  is the amount of water 

removed from deep aquifer by pumping (mm).   

(f) Routing method 

River channel flow can be routed by using variable storage coefficient method or Muskingum 

routing method, developed by Williams (1969). User can define width and depth of the channel 

when it fills up to the top of the river bank. Also, channel length and channel slope with its 

roughness coefficient (Manning’s ‘n’) values are required in the model. It is used to calculate 

the rate and velocity of flow in a given time. Following continuity equation (6.19) can be used 

to represent the routing method: 

 storedoutin VVV          … (6.19) 

where, inV  is the volume of inflow (m
3
); outV  is the volume of outflow (m

3
); and storedV  is the 

change in volume of storage (m
3
) during the time step.  

This equation (6.20) can also be expressed as: 
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    … (6.20) 

where, t  is the length of the time step (s); 1,inq  and 2,inq  are the inflow rates at the beginning 

and end of the time step (m
3
/s); 1,outq  and 2,outq  are the outflow rates at the beginning and end 
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of the time step (m
3
/s); 1,storedV  and 2,storedV  are the storage volumes at the beginning and end 

of the time step (m
3
/s), respectively. 

The travel time (TT) is the ratio of volume of water stored in channel and outflow rate and is 

given as equation 6.21. 
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Equation (6.22) representing relationship between travel time and storage coefficient is as 

follows: 
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The storage coefficient (SC) can be calculated as equation (6.23): 

tTT
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2
        … (6.23) 

The volume of outflow is calculated by using the following equation (6.24): 

 1,2, storedinout VVSCV         … (6.24) 

In main channel, the bank storage, channel water balance, transpiration and evaporation losses 

at the end of time step are estimated using suitable equations.  

(g) Other processes 

 Erosion 

In the SWAT model, the Modified Universal Soil Loss Equation (MUSLE) is used to estimate 

the soil erosion and the sediment yield at HRU level. MUSLE represented as follows (Equation 

6.25): 

   RKLSCPqQaY b

p  ])([       … (6.25) 

where, Y is the sediment yield (tones); Q is the streamflow rate (m
3
/s); qp is the peak flow rate 

(m
3
/s); R is the rainfall erosivity factor (MJ mm/ha/hr/year); K is the soil erodibility factor (t ha 

hr /ha/Mj/mm); LS is the topographic factor (dimensionless); C is the crp management factor 

(dimensionless); P is the conservation practice factor (dimensionless); and a, b are the 

coefficients.  
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 Management practices 

Ongoing land and water management practices in the study area have incorporated in the 

SWAT model. This model facilitates the user defined land management practices, such as 

begin and end of the growing season, timing and amounts of fertilizer, pesticides and irrigation 

applications, tillage operations, crop rotation and multiple cropping practices. These land 

management practices can be defined at HRU level in each sub-watershed. Further, water 

management option includes irrigation water, tile drainage, depression areas, water transfer, 

consumptive use and loading from point sources. Moreover, available water resources 

structures such as reservoir, lake, weir, can be managed well within the SWAT model.  

6.2.3.4 Model input files 

The SWAT model incorporates various input files/information at watershed level, sub-

watershed level and HRU level. In case of point source or reservoirs, the input data is provided 

for each feature. Watershed/ river basin level inputs are provided to model the same process for 

all sub-watersheds of the study area. Sub-watershed/ sub-basin level input provides the same 

value to all HRUs covered within a sub-watershed. To set a unique value for each HRU, the 

HRU level inputs must be provided.       

(a) Watershed level inputs 

 Master watershed file (file.cio) 

This file is assessed by the model to perform database management for the inputs of 

sub-basin, climate, watershed level inputs and outputs. 

 Watershed configuration file (.fig) 

Data of this file is used to simulate process within sub-watershed or to route in drainage 

network of watershed.  

 Basin input file (.bsn) 

This file is used to define general basin attributes such as drainage area, base flow and 

initial soil water content, which control physical processes in entire watershed.  

 Precipitation input file (.pcp) 

This is an optional file and contains daily measured precipitation data, which can be 

generated or can read from the observed data. This file can hold precipitation data of up 

to 300 gauging stations. 
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 Temperature input file (.tmp) 

This is also an optional file contains daily measured minimum and maximum 

temperature data. This file can hold data records up to 150 gauging stations. 

 Solar radiation input file (.slr) 

This optional file contains daily solar radiation data. This file can hold data of up to 300 

stations.   

 Wind Speed input file (.wnd) 

This optional file contains daily average wind speed, and holds data record up to 300 

stations. 

 Relative humidity input file (.hmd) 

This optional file contains daily relative humidity values, and holds data record up to 

300 stations. 

 Potential evapotranspiration input file (.pet) 

This optional file contains daily potential evapotranspiration values for watershed. 

 Land cover/plant growth database file (crop.dat) 

This database file contains information of specific parameters required to simulate plant 

growth by the plant species. Parameters for the crop specified in management file 

(.mgt) taken from crop.dat file.  

 Tillage database file (till.dat) 

This file contains tillage mixing efficiency, reference number and name of the 

operation. Traditional tillage operations having mixing efficiencies of over 70% are 

selected in the management file (Arnold et al., 1998).  

 Fertilizer database file (fert.dat) 

This file summarizes the fertilizer fractions in terms of nitrogen (N) and phosphorous 

(P). It can also store the information of bacteria levels in the manure.  

 Pesticide database file (pest.dat) 

This database file contains information of degradation and mobility of pesticides in 

watershed. 
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 Urban database file (urban.dat) 

This file contains information of urban/built-up/wash-off areas in the watershed.  

 Septic database file (septic.dat) 

This database file contains information about septic systems. 

(b) Sub-watershed level inputs 

 Sub-basin level file (.sub) 

This input file contains sub-basin information related to a diversity of features.  It 

includes properties of tributary channels, amount of topographic relief, and variables 

related to number/name of HRUs. 

 Weather generator file (.wgn) 

This file contains sub-basin wise statistical information of climate variables. 

 Main channel file (.rte) 

This file contains physical properties of main channel, as well as transport of sediments, 

nutrients and pesticides with the main channel flow. 

(c) HRU level inputs 

 Hydrologic response unit file (.hru) 

This input file contains HRU level data, which represents unique combination of land 

use, soil and slope.  

 Management file (.mgt) 

Management file contains details of land and water management practices used in the 

watershed, such as planting, harvesting, and tillage operations; and fertilizer, pesticide 

and irrigation application.  

 Soil file (.sol) 

This input file contains soil texture and its physicochemical properties. Also, 

information about available soil water content, hydraulic conductivity, bulk density and 

organic carbon content in different soil layers are included in the soil file.  

 Groundwater file (.gw) 

The groundwater file contains sub-basin wise information about deep and shallow 

aquifers in the watershed.  



112 

6.2.3.5 Model output files 

The SWAT model can provide the outputs for reaches (output.rch), sub-basins (output.sub), 

HRUs (output.hru) and reservoirs (output.res). While running the model, output information 

stores in these files which can be later used for analysis purpose. Two types of SWAT model 

results can be obtained. (1) Outputs with the information collected and formatted to use in 

SWAT model, as well as the additional data representing background information. (2) Other 

type of results obtained by calibration, validation and sensitivity analysis of the SWAT model 

for simulation of runoff and sediment loads.  

6.2.3.6 Reservoir management in SWAT 

Distributed extensive water storages within a large river basin can significantly impact the 

basin hydrologic processes. The impacts may be further integrated in the parameterization and 

calibration process of a large-scale hydrological model such as SWAT. In addition, it is not 

feasible to individually evaluate the number of water storages available in the Betwa basin. 

Thus, this study has planned to implement and manage water storages located on river channel 

using SWAT model. This may facilitate the reasonable behavior and simulation of water 

storage system in the study area.  

Detailed information of water storage design and operation is unknown for all reservoirs 

located in the Betwa River basin. For Indian water storages, limited information is available on 

the India-WRIS (Water Resources Information System) website (http://india-wris.nrsc.gov.in/), 

and the WRIS publications (http://www.india-

wris.nrsc.gov.in/wrpinfo/index.php?title=WRIS_Publications). The total drainage area and 

storage volumes of reservoirs and weirs can be obtained at the sub-watershed level. During 

watershed delineation, the outlet locations of these reservoirs are given on drainage network so 

that sub-watersheds could be separated for the model simulation (Figure 6.2). Therefore, the 

water storages located on main channel and tributary channel are considered for adequate water 

system management in the SWAT model.  

The SWAT model includes a reservoir module that can simulate water storages with detailed 

design and running information. Thus, it can be used to assess the impact of water storage at 

the basin level. In this study, seven reservoirs and two weirs are added to SWAT2012, and then 

simulated by the reservoir module. It is assumed that the effect of small water storages, such as 

small ponds and lakes, is minimal in such a large river basin. This accounts that the upstream 

small water storages have none effect on the downstream of the reservoir. Also, small water 

storages are not interconnected between the downstream of reservoir and the gauging station. 

http://india-wris.nrsc.gov.in/
http://www.india-wris.nrsc.gov.in/wrpinfo/index.php?title=WRIS_Publications
http://www.india-wris.nrsc.gov.in/wrpinfo/index.php?title=WRIS_Publications
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Hence, outflow of small water storage is attributed to the reservoirs located within a sub-

watershed. Therefore, these small water storages are excluded in this study. The similar 

approach was also adopted by Güntner et al. (2004). The water storages available in the Betwa 

River Basin are provided in Table 6.1.  

Table 6.1: Water storages located in main and tributary channels of the Betwa basin  

Water storages 
India-WRIS 

number 
River 

Years of  

commencement 

to completion 

Bah Dam D01630 Bah - 

Devri Dam* - Dhasan - 

Dhukwan Weir W00106 Betwa 1900-1905 

Lachura Dam D00525 Dhasan 1910** 

Matatila Dam D00590 Betwa 1958** 

Maudaha (Swami Brahmanand) Dam D00127 Virma 2003** 

Pariccha Weir W00267 Betwa 1881-1886 

Rajghat (Rani Laxmi Bai Sagar) Dam D02674 Betwa 1977-2000 

Samrat Ashok Sagar (Halali) Dam D04471 Halali 1997** 

*Information about the Devri dam is not available from India-WRIS website. This information was acquired 

during the field visit.  

**Only the year of completion.  

All these nine water storage structures are implemented in the reservoir module of SWAT2012, 

given that (1) they largely affect the hydrology of the study area, (2) they represent the most 

important water supplies in the study area, and (3) detailed information of these reservoirs is 

available for modelling purpose. Available information of water storages is limited to the year 

of completion, maximum target storage and storage volume. Nevertheless, remotely sensed 

surface area, and outflow regulations were obtained for successful reservoir management in the 

SWAT model. In the literature, Wagner et al. (2011) derived these parameters for six reservoirs 

located in the Western Ghats of India. Also, Zhang et al. (2012b) estimated reservoir 

parameters for small to large water storages of China. The same methodology has been adopted 

in this study for estimation of the surface area, and outflow regulations. On this basis, the 

reservoir management can be successfully incorporated.  

(a) Surface area estimation 

In SWAT model, surface area of water storage is essential to estimate the amount of 

precipitation falling, and the amount of losses (evaporation and seepage) with respect to the 
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water storages in the SWAT model. In general, water surface area varies with the storage 

volume. As the water surface area and the storage volume depends on drainage area and 

available storage, their relationship varies with different types of water storages. Thus, it is not 

feasible to use explicit relationship for the estimation of surface area and storage volume as 

done previously in the literature. Güntner et al. (2004) estimated surface area as a function of 

the actual storage volume using following equation (6.26): 

 resD

resresres VCA )(         … (6.26) 

where, resA  is the surface area of reservoir (m
2
); resV  is the volume of water storage (m

3
); and 

resC  and resD  are the reservoir specific constants depending on the geometry. 

Liebe et al. (2005) calculated storage volume as a function of the surface area using following 

equation (6.27):    

 
4367.1)(00857.0 resres AV         … (6.27) 

Recently, Zhang et al. (2012b) proposed routing scheme, combining both sequential and 

parallel streams and storages links, to describe the position of upstream-downstream water 

storages. The sequential and parallel routing scheme is based on the inflow and outflow from 

the water storage. Also, they presented calibration steps to include both physical and human 

interferences such as water storages and water consumption. SWAT model allows the input of 

water withdrawn within any sub-watersheds, which can be modelled as a water loss from the 

system. The water consumption information varies for each month, different years and different 

locations. However, it is difficult to measure and collect the water-use data in such a large river 

basin.  

Several literature studies have estimated the surface area of reservoir using satellite imagery 

data (Frazier & Page, 2000; Pandey et al., 2016a). In India, the water storage volumes of 

reservoirs were calculated using Landsat images (Mialhe et al., 2008), which are presently 

available at spatial resolution of 30 m and 15 m. Numerous remote sensing based 

methodologies/approaches, the single band threshold method, the difference of spectrum 

relationship method, the Normalized Difference Vegetation Index (NDVI) method and the 

Normalized Difference Water Index (NDWI) method, are available for the extraction of water 

surface area.  
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In this study, the NDWI method developed by McFeeters (1996) to estimate the reservoir 

surface area extracted from Landsat 8 OLI (Operational Land Imager) imagery data (22
nd

 and 

29
th

 Oct, 2013) has been used. The equation (6.28) of NDWI method is as follow: 
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         … (6.28) 

where, NIR is the near-infrared band, and G is the green band of Landsat 8 OLI. 

The Landsat 8 OLI data is available for every 16 days temporal resolution and at 30 m high 

spatial resolution. Imagery data of late flooding period in a wet year (2013) has been used to 

extract the surface area of the reservoirs, when all reservoirs within the study area are 

completely filled with water. Here, it is assumed that, the extracted surface area is valid and 

accurately estimated along with the regular storage volumes collected from the India-WRIS.   

(b) Target storage and outflow regulations 

Due to lack of information regarding the reservoir outflows, the outflow simulation code 

number 2 which represents the simulated controlled outflow-target release in the SWAT model 

has been used. This SWAT option needs minimal inputs of the monthly target reservoir storage 

(STARG), beginning month of non-flood season (IFLOD1R), ending month of non-flood 

season (IFLOD2R), and number of days required to achieve a target storage from the current 

reservoir storage (NDTARGR). In India, different outflow regulations are used along with 

seasonal changes, i.e. monsoon (June to October) and non-monsoon (November to May) with 

respect to Indian water-year from June to May. Also, measurements of outflow release and 

target storages are unavailable from the available sources. Therefore, the monthly storage 

volume and regulated outflows for feasible implementation of reservoirs in the SWAT model 

was fixed.  

In this study, a methodology proposed by Wagner et al. (2011) for the Indian River basin has 

been adopted to manage the monthly target storage volume and the required days to reach 

target storage during monsoon and non-monsoon periods. The parameters derived for each 

reservoir is presented in Table 6.2. The monthly target storage of the reservoir is kept equal to 

the maximum target storage obtained from India-WRIS, during June to October. From 

November onwards, the target storages are set as decreased for every month. During this 

period, water is released at a linear rate, and is limited by the maximum flow rate in dry season 

(Table 6.2). This reservoir management can secure the water supply until a possible late 

monsoon in mid-June.   
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Also, the same input of minimum water flow rate is specified for monsoon season as given in 

Table 6.2. This allows the reservoir filling up to the maximum target storage with the mean 

annual precipitation. If the water goes beyond the target storage, it is assumed as flood storage. 

This study accounted that 10% of the maximum target storage is the flood storage. Hence, the 

flood storage varies with the dam-specific maximum outflow rate. The storage information, 

available online at the India-WRIS, provides evidence of the adequate reservoir management in 

this study.  

In addition, the average daily principle spillway release rate (RES_RR) for all the water 

storages, based on the respective downstream gauge measurements were also estimated and 

incorporated, and is presented in Table 6.2. For instance, the CWC gauging station Basoda is 

located at the downstream of the Bah dam and Halali dam in upper Betwa basin. Therefore, 

average daily principle spillway outflows for these two reservoirs are estimated based on the 

daily observed data of the Basoda station. This allows the daily outflow regulation from the 

reservoir to match the measurements at Basoda station. Similarly, the measured data of 

Mohana, Garruli and Shahijina station were also used to estimate the average daily principle 

spillway outflows for the upstream water storages or the nearby downstream water storages.   

Table 6.2: Characteristics of reservoirs estimated by general management rules using measured 

river discharge at the downstream gauges 

Reservoir name 

Surface 

area 

(ha) 

Maximum 

target 

storage 

(MCM) 

Number 

of days 

to reach 

target 

storage 

Average daily 

principle 

spillway 

outflow (m
3
/s) 

Monsoon 

minimum 

outflow 

(m
3
/s) 

Non-

monsoon 

maximum 

outflow 

(m
3
/s) 

Bah Dam 195.6 76.5 2 41 12.2 24.3 

Devri Dam 266.7 21.0 3 40 4.6 26.6 

Dhukwan Weir 1396.9 95.0 1 118 30.8 118.4 

Halali Dam 6240.0 226.1 3 41 12.2 24.3 

Lachura Dam 116.0 20.6 2 40 4.6 26.6 

Matatila Dam 13885.0 1019.4 2 118 30.8 118.4 

Maudaha Dam 5939.0 179.0 3 75 48.6 220.0 

Pariccha Weir 802.0 77.2 2 118 30.8 118.4 

Rajghat  Dam 24210.0 1975.0 3 118 30.8 118.4 

 

6.2.4 SWAT model calibration and validation 

The successful application of the hydrologic model depends on how well a model is 

performing. For calibration, few parameters are considered based on the literature studies 

carried out for the Betwa river basin, the regions located nearby the study area as well as in 
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India (Narsimlu et al., 2013; Kumar et al., 2017; Anand et al., 2018). The range of parameters 

was also chosen from the studies carried out by Murty et al. (2014) and Suryavanshi et al. 

(2017). The identified sensitive parameters were further used as an input to the initial 

simulation of streamflow and sediment loads. Model calibration was carried out at the four 

Central Water Commission (CWC) gauging stations located in the Betwa basin, i.e. Basoda 

(HO 676), Garrauli (HO 693), Mohana (HO 714) and Shahijina (HO 737). The sub-watershed 

outlets at SW-45, SW-27, SW-6 and SW-2 represent the Basoda, Garrauli, Mohana and 

Shahijina gauges, respectively (Table 6.3). Therefore, the simulations of these outlets were 

used for calibration and validation of the SWAT model during the years 2001 to 2013. First 

two years (2001 and 2002) of the simulation were reserved as “warm-up period” in order to 

realistically setup the states of its internal hydrological components, e.g. groundwater store, soil 

moisture content etc. The measured streamflow and sediment data of initial seven years (2003-

2009) and last four years (2010-2013) were taken into consideration respectively for calibration 

and validation of the SWAT model by comparing its outputs.  

Table 6.3: Details of the gauging sites in the Betwa basin 

 

Note: G = gauge; D = discharge; S = sediment load 

In this study, the SWAT- Calibration and Uncertainty Programs (CUP) Sequential Uncertainty 

Fitting version 2 (SUFI-2) algorithm (Abbaspour et al., 2007; 2015) has been used for 

calibration, and validation of the model on monthly time scale. In addition, the SWAT-CUP 

has been used for sensitivity and uncertainty analysis. The calibration parameters are 

regionalized as per the guidelines provided by Abbaspour et al., (2015). The main benefit of 

SUFI-2 application over other algorithms is that the SUFI-2 accounts for all sources of 

uncertainty such as model input uncertainty, model conception uncertainty, model parameter 

uncertainty, and uncertainty in the measured data. Also, SUFI-2 was found quite efficient 

algorithm for time-consuming large-scale models (Yang et al., 2008). In this study, five 

iterations each with 1000 simulations were performed with multiple set of parameters.  

Name of  

CWC gauge 

India-WRIS 

number 

Hydrologic 

Observation (HO) 

Sub-watershed 

outlet 

Basoda HO 676 GD SW-45 

Garrauli HO 693 GDS SW-27 

Mohana HO 714 GD SW-6 

Shahijina HO 737 GDS SW-2 
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In hydrological model, the over-parameterization is often reported the simulation problem 

(Beven, 1989). More number of parameters in the SWAT model can cause difficulty in the 

selection of parameter as well as the model response. Sensitivity analysis is used to identify the 

order of parameters having a significant influence on model simulations for a specific 

watershed (van Griensven et al., 2006). During calibration process, the sensitive parameters are 

significantly used to reduce the model calibration uncertainty and the run time to match the 

measured values of streamflow and sediment load.  

6.2.4.1 Sensitivity analysis  

The parameter sensitivity was assessed initially for streamflow, and then for sediment. 

(a) One-At-a-Time (OAT) sensitivity analysis 

In this method, sensitivity of a variable (streamflow and sediment) to the change in a parameter 

is analyzed while keeping other parameters constant at some specified value. Change in 

objective function (statistical parameter) represents OAT sensitivity of a parameter to the 

hydrological simulation. The OAT sensitive parameters were further selected as inputs in 

calibration process. 

(b) Global sensitivity analysis 

After selection of sensitive parameters, a global sensitivity analysis was performed to identify 

the relative sensitivity, following multiple linear approximations, of all parameters. It regress 

the Latin hypercube generated parameters against the objective function values (Khalid et al., 

2016). This method estimates the change in objective function resulting from change in each 

parameter while all other parameters are changing. Hence, global sensitivity analysis provides 

some information about sensitivity between objective function and model parameters.  

6.2.4.2 Uncertainty analysis 

SWAT-CUP estimates degree of uncertainties in terms of two statistical measures referred to as 

p-factor and the r-factor. The p-factor measures the 95 percentile prediction uncertainty 

(95PPU) calculated at the 2.5% and 97.5% levels of cumulative distribution of the output, 

which can be obtained through Latin-Hypercube sampling. The r-factor shows the average 

thickness of ratio between the 95PPU band and the standard deviation of measured data. The 

SUFI-2 algorithm seeks to categories the measured data with the large p-factor (100%) and the 

small r-factor (minimum 0).   

In this study, total 23 sensitive parameters were considered for streamflow (9 parameters) and 

sediment (14 parameters) based on sensitivity order obtained in SWAT-CUP. The 
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regionalization of the parameters has done by replacement (v__), by addition (a__) and by 

multiplication (r__) of a relative change depending on the nature of parameter. However, a 

parameter has never been allowed to go beyond the predefined absolute parameter range during 

the calibration process.  

Further, the model performance was evaluated by statistical parameters and the hydrographs 

between measured data and simulated outputs.  

6.2.4.3 Model evaluation criteria 

After successful model run, the output variable needs to be evaluate by comparing the 

measured/observed variable. The continuous time series of the observed data and the simulated 

outputs were used for evaluation of streamflow and sediment loads. Moriasi et al. (2007) 

provided the model performance evaluation guidelines for monthly simulations based on 

quantitative statistics of coefficient of determination (R
2
), Nash-Sutcliffe efficiency (NSE), 

percent bias (PBIAS), and ratio of the root mean square error to the standard deviation of 

measured data (RSR). In this study, following statistical parameters are used for the model 

evaluation. 

(a) Coefficient of determination (R
2
)  

Coefficient of determination generally used to describe the proportion of total variance in the 

measured data that can be simulated by the model. It is given by following equation (6.29): 
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where, Xi
obs 

 is the i
th

 measured data; x   is mean of measured data; Xi
sim

 is the i
th

 simulated 

value; y   is the mean of model simulated value; and n is the total number of events.  

The correlation or correlation based measurement (R
2
) has been widely used to evaluate the 

goodness of fit of hydrologic models. The value of coefficient of determination varies from 0 to 

1, with higher values indicating better agreement, while lower values indicating more error 

variance. These measures are over sensitive to extreme values, and are insensitive to additive 

and proportional difference between the model simulations and observations (Willmott, 1984; 

Legates & McCabe, 1999).  
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(b) Nash-Sutcliffe Efficiency (NSE) 

The NSE is the normalized statistic, used to provide relative magnitude of the residual variance 

compared to measured data variance (Nash and Sutcliffe, 1970). This also indicates the fit of 

plot between measured and simulated data with respect to the 1:1 line. Thus, the NSE has been 

widely used to evaluate the performance of hydrologic models (Wilcox et al., 1990). It can be 

calculated using the following equation (6.30): 
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where, Xi
obs

 is the i
th

 measurement for the constituent being evaluated, Xi
sim

 is the i
th

 simulated 

value for the constituent being evaluated, x  is the mean of measured data for the constituent 

being evaluated, and n is the total number of measurements. 

In general, the NSE value varies from 0 to 1, where 1 indicating a perfect fit. If the daily 

measured data approaches an average value, the denominator of the NSE equation goes to zero. 

If the NSE approaches minus infinity, then it indicates that the model has some minor miss 

predictions. The NSE statistics represents an improvement over R
2
 for model evaluation, as it is 

sensitive to the difference in measured and simulated means and variance.  

(c) Percent bias (PBIAS) 

Percent bias (PBIAS) statistics is mainly used to measure the average tendency of simulated 

data with respect to the measured data (Gupta et al., 1999). The value of PBIAS is acceptable 

when it closes to zero, indicating accurate model simulation. A positive PBIAS indicates 

underestimation, while a negative PBIAS value indicates overestimation of the model (Gupta et 

al., 1999). It is calculated using the following equation (6.31): 
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where, PBIAS is the expressed as a percentage. 

According to Luo et al. (2008), NSE values between 0.0 and 1.0 are generally accepted based 

on the model performance, whereas a NSE value less than 0.0 indicates that the mean measured 

value is a better predictor than the simulated value, which indicates unacceptable performance. 
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(d) RMSE-Observations Standard Deviation Ratio (RSR) 

The RSR statistics is a ratio of the RMSE value and the standard deviation (STDEV) of 

measured data. It used to combine both error (RMSE) index and standardized RMSE value 

(Legates & McCabe, 1999; Singh et al., 2005). RMSE is commonly accepted error statistics 

with lower value (Chu and Shirmohammadi, 2004; Singh et al., 2005; Vasquez-Amábile and 

Engel, 2005). The RSR statistics is calculated as follows (Equation 6.32): 
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Optimal RSR value is zero, indicates perfect model simulation. It varies from the lowest zero 

value to a large positive value. Hence, the lower RSR, due to low RMSE, shows better model 

performance (Moriasi et al., 2007).  

In this study, model evaluation criteria suggested by Moriasi et al. (2007) has been used to 

quantify the accuracy in SWAT simulation (Table 6.4). 

 

Table 6.4: Model evaluation criteria for monthly SWAT simulation  

Performance 

rating 
NSE 

PBIAS (%) 
RSR 

Streamflow Sediment 

Very good 0.75 <  NSE < 1.00 PBIAS < ± 10 PBIAS < ± 15 0.00 < RSR < 0.50 

Good 0.65 < NSE < 0.75 ± 10 < PBIAS < ± 15 ± 15 < PBIAS < ± 30 0.50 < RSR < 0.60 

Satisfactory 0.50 < NSE < 0.65 ± 15 < PBIAS < ± 25 ± 30 < PBIAS < ± 55 0.60 < RSR < 0.70 

Unsatisfactory NSE < 0.50 PBIAS > ± 25 PBIAS > ± 55 RSR > 0.70 

Source: Moriasi et al. (2007) 

6.3 RESULTS AND DISCUSSION 

6.3.1 Sensitivity and uncertainty analysis 

A set of model parameters have been selected for sensitivity and uncertainty analysis by 

referring the SWAT and SWAT-CUP documentation (Arnold et al., 2012a; Abbaspour et al., 

2013), as well as relevant literatures (Narsimlu  et al., 2013; Murty et al., 2014; Kumar et al., 

2017; Suryavanshi et al., 2017; Anand et al., 2018). The parameters with high sensitivity value 

have been used for calibration and validation of the model. The selected parameters with their 

fitted values and sensitivity order for streamflow and sediment loads are presented in Table 6.5. 

Sensitivity analysis shows that streamflow is most sensitive to the curve number (CN2) 

followed by SURLAG (surface runoff lag coefficient) to SOL_AWC (available water capacity 
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of the soil layer) as shown in Table 6.5. Among sediment parameters, the channel erodibility 

factor (CH_ERODMO) is the most sensitive parameter followed by USLE_K (soil erodibility 

factor for USLE equation) to USLE_C (minimum value of USLE_C factor applicable to the 

forest area) as shown in Table 6.5. The sensitivity analysis results were considered for the 

model calibration process employing the SWAT-CUP. 

Uncertainty analysis has been used to determine the reliability of model simulations, 

considering various sources of uncertainty. For selective sensitive parameters, the uncertainty 

analysis and calibration of the streamflow and sediment load were performed at monthly time-

step using SUFI-2 algorithm. In this study, the measured data and the simulation outputs were 

analysed for the river gauges given in Table 6.3. The optimal value of p-factor is equal to one 

(100%), and r-factor equal to zero (0.0) for an ideal condition. This is because of the stochastic 

procedure of SUFI-2 algorithm, it provides range of parameter value rather than a single value 

after the calibration (Khalid et al., 2016). Results show the percent observations bracketed by 

the 95% prediction uncertainty (95PPU) were more than 70% (p-factor). The r-factor values, 

the average thickness of 95 PPU band divided by standard deviation of measure data, were also 

satisfactory for all the gauges in Betwa basin. The fitted values of the selected parameters 

found by SUFI-2 uncertainty algorithm were considered as final calibration values in the 

SWAT model. The calibrated parameter values were further used in the model validation 

process.   
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Table 6.5: Calibrated parameters with their fitted values and sensitivity order for streamflow 

and sediment 

Sensitivity 

order 
Parameters Calibration range 

Fitted 

value 

Streamflow 

1 CN2.mgt -0.2 to 0.2 -0.17 

2 SURLAG.bsn 0.05 to 10 1.64 

3 ALPHA_BF.gw 0.3 to 0.9 0.41 

4 GDRAIN.mgt 0 to 1 0.63 

5 RCHRG_DP.gw 0 to 0.8 0.36 

6 ESCO.hru 0.01 to 1 0.58 

7 GWQMN.gw 0 to 30 0.07 

8 GW_DELAY.gw 0 to 150 31.70 

9 SOL_AWC().sol 0 to 0.5 0.08 

Sediment load 

1 CH_ERODMO().rte 0 to 0.5 0.03 

2 USLE_K().sol 0 to 0.5 0.13 

3 RES_STLR_CO.bsn 0.2 to 0.9 0.76 

4 PRF.bsn 0.5 to 2 1.90 

5 CH_COV1.rte 0.01 to 0.3 0.08 

6 ADJ_PKR.bsn 0.8 to 1.5 0.85 

7 RES_SED.res 400 to 1600  1133.79 

8 CH_COV2.rte 0.1 to 0.8 0.50 

9 USLE_P.mgt 0.3 to 0.8 0.65 

10 LAT_SED.hru 0 to 100 7.54 

11 USLE_C{1}.plant.dat______AGRL 0.05 to 0.2 0.15 

12 RES_NSED.res 10 to 200 19.48 

13 SPEXP.bsn 0.5 to 1.5 0.76 

14 USLE_C{7,8}.plant.dat______FRSD,FRSE 0.1 to 0.4 0.23 

Streamflow parameter description: CN2.mgt = Initial SCS runoff curve number for moisture condition II; 

GDRAIN.mgt = Drain tile lag time (hr); ALPHA_BF.gw = Baseflow alpha factor (1/days); GW_DELAY.gw = 

Groundwater delay time (days); GWQMN.gw = Threshold depth of water in the shallow aquifer required for 

return flow to occur (mm H2O); RCHRG_DP.gw = Deep aquifer percolation fraction; SOL_AWC().sol = 

Available water capacity of the soil layer (mm H2O/ mm soil); SURLAG.bsn = Surface runoff lag coefficient; 

ESCO.hru = Soil evaporation compensation factor. 

Sediment load parameter description: USLE_P.mgt = USLE equation support practice factor; USLE_K().sol = 

USLE equation soil erodibility (K) factor; USLE_C{1}.plant.dat______AGRL = Minimum value of USLE C factor 

applicable to the agriculture land; USLE_C{7,8}.plant.dat______FRSD,FRSE = Minimum value of USLE C 

factor applicable to the forest area; PRF.bsn = Peak rate adjustment factor for sediment routing in the main 

channel; SPEXP.bsn = Exponent parameter for calculating sediment re-entrained in channel sediment routing; 

ADJ_PKR.bsn = Peak rate adjustment factor for sediment routing in the sub-watershed (tributary channels); 

RES_STLR_CO.bsn = Reservoir sediment settling coefficient; CH_ERODMO().rte = Jan. channel erodability 

factor; CH_COV1.rte = Channel erodibility factor; CH_COV2.rte = Channel cover factor; LAT_SED.hru = 

Sediment concentration in lateral flow and groundwater flow (mg/l); RES_SED.res = Initial sediment 

concentration in the reservoir (mg/l); RES_NSED.res = Equilibrium sediment concentration in the reservoir 

(mg/l). 
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6.3.2 Model calibration and validation  

In order to utilize the calibrated model for estimating the effect of different scenarios on water 

balancing of the Betwa River basin, the model was tested against an independent set of 

measured data. Calibration and validation of streamflow and sediment were performed using 

the SUFI-2 algorithm in the SWAT-CUP. The NSE with threshold value of 0.5 was used as the 

objective function for calibration using SWAT-CUP. The model performance was assessed at 

four CWC gauging stations, namely Basoda, Garrauli, Mohana and Shahijina. The goodness-

of-fit of the monthly SWAT simulation was evaluated by comparison with the measured 

monthly data using visual interpretation of time-series plots, and statistical measures discussed 

in methodology section. The model was calibrated for the years 2003-2013, and then validated 

for independent validation period (2010-2013). Ideally, for a large river basin, the validation 

process has to be multi-gauge and based on sensitivity analyses performed in advance. This is 

especially important when the model has to be further applied at the regional scale analysis.  

6.3.2.1 Streamflow  

Initially, the SWAT model was calibrated and validated for streamflow simulation. Results 

show the satisfactory to good performance of the SWAT model during calibration and 

validation on the monthly time scale (Table 6.6) at all four gauging sites (Figure 6.3). Also, 

time-series of the monthly streamflow were plotted to visualize and to check the model 

simulation accuracy (Figure 6.4). In calibration, the high values of the R
2
 (0.90, 0.94, 0.91 and 

0.92), NSE (0.88, 0.91, 0.91 and 0.92), the low values of PBIAS (-14.20, -11.10, -7.70 and -

16.30) and RSR (0.34, 0.30, 0.31 and 0.29) indicates satisfactory to very good model 

performance for streamflow simulation at Basoda, Garrauli, Mohana and Shahijina gauges, 

respectively (Moriasi et al., 2007). For validation, the model performance also indicates 

satisfactory to very good simulation of the streamflow, with the high values of the R
2
 (0.90, 

0.92, 0.90 and 0.88), NSE (0.84, 0.91, 0.89 and 0.86), the low values of PBIAS (-13.60, -16.50, 

-3.90 and -7.50) and RSR (0.41, 0.30, 0.33 and 0.38) at Basoda, Garrauli, Mohana and 

Shahijina gauges, respectively (Moriasi et al., 2007). Result reveals that SWAT model can be 

used satisfactorily to simulate the streamflow on monthly time-scale.  

In this study, the graphical and statistical evaluation showed satisfactory streamflow 

simulation. However, the SWAT model results were underestimated during high-flow periods 

(Figures 6.3 and 6.4). It may be partly due to the curve number method, which is not able to 

generate accurate streamflow prediction for the storm periods (Kim and Lee, 2008). This 

method defines rainfall event is the sum of all rainfall occurred during a day, and this might 

lead to underestimation of the surface runoff (Choi et al., 2002). 
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Calibration Validation 

  
(a) Basoda 

  
(b) Garrauli 

  

(c) Mohana 
 

  
(d) Shahijina 

Figure 6.3: Linear regression between measured and simulated streamflow during calibration 

(2003-2009) and validation (2010-2013) for comparison with 1:1 trendline 
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Figure 6.4: Comparison of measured and SWAT simulated streamflow at (a) Basoda, (b) 

Garrauli, (c) Mohana, and (d) Shahijina for monthly calibration (2003-2009) and validation 

(2010-2013)  
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Table 6.6: Performance evaluation of the SWAT model for monthly streamflow simulation 

Gauging station 

Calibration 
 

Validation 

R
2
 NSE PBIAS RSR 

 
R

2
 NSE PBIAS RSR 

Basoda 0.90 0.88 -14.20 0.34 
 

0.90 0.84 -13.60 0.41 

Garrauli 0.94 0.91 -11.10 0.30 
 

0.92 0.91 -16.50 0.30 

Mohana 0.91 0.91 -7.70 0.31 
 

0.90 0.89 -3.90 0.33 

Shahijina 0.92 0.92 -16.30 0.29 
 

0.88 0.86 -7.50 0.38 

Table 6.7: Statistical analysis of streamflow during calibration (2003-2009) and validation 

(2010-2013) 

Statistic 
Basoda  Garrauli   Mohana  Shahijina 

Measured Simulated  Measured Simulated   Measured Simulated  Measured Simulated 

Calibration 

Max 1135.28 1128.00  953.86 711.20   2225.34 2154.00  3561.53 3630.00 

Avg 105.78 120.81  59.89 66.52   188.09 202.51  296.12 344.30 

SD 213.85 185.09  145.55 114.38   434.39 421.94  661.82 638.59 

Count 84 84  84 84   84 84  84 84 

Validation 

Max 1864.97 1256.00  1029.66 917.00   5395.39 4026.00  5737.65 5899.00 

Avg 137.61 156.32  117.60 136.97   397.19 452.39  681.88 733.02 

SD 364.40 255.67  254.42 221.59   980.63 918.74  1240.84 1354.94 

Count 48 48  48 48   48 48  48 48 

Note: Max = maximum value; Avg = average value; SD = standard deviation; and Count = number of samples    

In this analysis, the peak flows for the year 2013 do not match due to the weakness of curve 

number methodology used in the SWAT model. Moreover, during calibration and validation 

the peaks for the Basoda, Garrauli, and Mohana sites have under-simulation as compared to the 

measured peak streamflow value (Figure 6.4). Only the Shahijina site has overestimated the 

streamflow simulation for maximum values (Figure 6.4 and Table 6.7). Also, the statistical 

analysis for monthly streamflow simulation shows satisfactory performance for maximum, 

average and standard deviation values (Table 6.7).  

6.3.2.2 Sediment load 

The calibration and validation of the SWAT model was further carried out for simulation of 

monthly sediment load of the Betwa River basin. During calibration, the high values of R
2
 

(0.89 and 0.78), NSE (0.89 and 0.77), the low values of PBIAS (-9.30 and -4.10) and RSR 

(0.33 and 0.48) indicates satisfactory to very good simulation of sediment load at the Garrauli 

and Shahijina gauges, respectively (Moriasi et al., 2007). During validation, the SWAT model 

performance also shows satisfactory to good simulation of the sediment load, with the high 

values of R
2
 (0.90 and 0.81), NSE (0.90 and 0.81), the low values of PBIAS (0.70 and 1.60) 

and RSR (0.32 and 0.44) at the Garrauli and Shahijina gauges, respectively (Table 6.8 and 



128 

Figure 6.5). Simulated hydrographs are more or less following the measured hydrographs 

pattern. Result shows that this model is satisfactorily performing the sediment load simulation 

on monthly time-scale.  

Calibration Validation 

  
(a) Garrauli 

  
(b) Shahijina 

Figure 6.5: Linear regression between measured and simulated sediment load during calibration 

(2003-2009) and validation (2010-2013) for comparison with 1:1 trendline 

Table 6.8: Performance evaluation of SWAT model for monthly sediment simulation 

Gauging station 

Calibration 
 

Validation 

R
2
 NSE PBIAS RSR 

 
R

2
 NSE PBIAS RSR 

Garrauli 0.89 0.89 -9.30 0.33 
 

0.90 0.90 0.70 0.32 

Shahijina 0.78 0.77 -4.10 0.48 
 

0.81 0.81 1.60 0.44 

 

In this analysis also, the peak sediment loads for the year 2013 do not perfectly match due to 

the weakness of MUSLE methodology used for simulation of the sediment in the SWAT 

model. Moreover, during calibration and validation the peaks for the Garrauli and Shahijina 

sites have low sediment simulation as compared to the measured values (Figure 6.6). Also, the 

monthly statistical analysis for sediment simulation shows satisfactory performance for 

maximum, average and standard deviation values (Table 6.9).  
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Figure 6.6: Comparison of measured and the SWAT simulated sediment load at (a) Garrauli 

and (b) Shahijina for monthly calibration (2003-2009) and validation (2010-2013)  

Table 6.9: Statistical analysis of sediment during calibration (2003-2009) and validation (2010-

2013) 

Statistic 
Garrauli  Shahijina 

Measured Simulated  Measured Simulated 

Calibration 

Max 60322.51 54450.00  1096018.50 1200000.00 

Avg 1620.63 1771.12  43420.49 45221.55 

SD 7154.96 6753.48  161270.16 159157.50 

Count 84 84  84 84 

Validation 

Max 86243.33 63170.00  3532665.25 3057000.00 

Avg 5745.49 5702.41  213838.41 210392.64 

SD 15865.13 14704.85  650904.10 629690.76 

Count 48 48  48 48 

Note: Max = maximum value; Avg = average value; SD = standard deviation; and Count = number of samples 

The high R
2
 value of streamflow at the Garrauli gauge (Tables 6.6 and 6.7) show that the 

model simulation performance is very good. Other gauging sites have the low R
2
 values, which 
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might be due to the effect of water storage (reservoirs and weirs) structures in the SWAT 

model. In case of simulation of the sediment load also, the analysis shows the high R
2 

value 

(0.89) at the Garrauli site as compared to the Shahijina (R
2 

= 0.78) site. Similar model 

performance was also observed during the validation period (Tables 6.8 and 6.9). In addition, 

the low PBIAS values (about -8% to -4%) for the Mohana gauge (Table 6.6) indicate that the 

streamflow is well controlled and regulated owing to upstream water storage implementation 

and their management in the SWAT. Because of this, the sediment load is well simulated with 

low PBIAS values at the downstream Shahijina site (about -4% to 1.6%) as shown in Table 6.8. 

Overall, the model performance shows satisfactorily simulations of the streamflow and 

sediment load on monthly time-scale, and can be further used for water balance study, water 

resources assessment, and land use and climate change impact analysis. 

The graphical results of the simulated streamflow and sediment load with measured data are 

presented in Figures 6.3, 6.4, 6.5 and 6.6. Analysis shows that model simulation is closely 

matching at the most of part, except during the year 2013 with high flow events which are 

underestimated by the model. The decrease in the model performance for simulation of the 

sediment may be attributed to the weakness of the SWAT, i.e. high-flow event simulation is 

based on many empirical and semi-empirical models, such as SCS-CN and MUSLE, which 

may be the cause for less accurate simulation of the streamflow and sediment load (Qiu et al., 

2012).  

The calibrated SWAT model is conditioned at various steps of the analysis, which includes the 

procedure, boundary conditions, objective function, and on the type and length of measured 

data used in the calibration, etc. (Abbaspour, 2011). SWAT model always performs better for a 

long term simulation as compared to the short term or single storm simulation (Borah et al., 

2007). Also, the range of calibrated parameters for the streamflow and sediment load will not 

be identical, i.e. within the possible physically meaningful range of parameters, at different 

time-scale. Furthermore, if the model set-up changes because of the inputs obtained from 

different sources, then the calibration parameters can be different for each model set-up 

producing significant simulation results.  

6.4 CONCLUSIONS  

This study integrates satellite-derived products, gauge measurements, field based data and 

water storage information in the hydrological modelling of the BRB employing the ArcSWAT 

model. It is built-up in the ArcGIS modelling environment for simulation of the streamflow and 

sediment load in a large agricultural Betwa river basin of central India. The basin area was 

divided into 57 sub-watersheds comprising 3874 HRUs on the basis of unique soil, land use 
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and slope classes used in the modelling. Different water storage structures were implemented 

and managed for reliable hydrologic simulation. It is recommended to use spatial information 

obtained from remote sensing data for data scare regions of India. Initially, the SUFI-2 

algorithm in the SWAT-CUP was used for sensitivity and uncertainty analysis. Then, based on 

sensitivity order, total 23 sensitive parameters were used for calibration and validation of the 

SWAT model for simulation of the streamflow and sediment load. In this study, the monthly 

calibration (2003-2009) and validation (2010-2013) of the SWAT model was carried out. 

Based on the SWAT modeling, following conclusions are drawn from this study: 

1. Nine water storages of the Betwa basin, including 7 reservoirs and 2 weirs, located in 

main channel as well as tributary channel having significant effect on the river channel 

flow were successfully implemented and managed for reliable hydrological prediction 

using the SWAT model.  

2. Sensitivity analysis reveals that the curve number (CN2) is the most sensitive parameter 

for streamflow, followed by SURLAG (surface runoff lag coefficient) to SOL_AWC 

(available water capacity of the soil layer). Whereas, the channel erodibility factor 

(CH_ERODMO) is the most sensitive parameter for sediment load, followed by 

USLE_K (soil erodibility factor for USLE equation) to USLE_C (minimum value of 

USLE C factor applicable to the forest area).  

3. For calibration of the SWAT model, high value of R
2
 in the range of 0.90 to 0.94; NSE 

of 0.88 to 0.92; PBIAS of -16.3 to -7.7; and RSR of 0.29 to 0.34, whereas for 

validation, high R
2
 value in the range of 0.88 to 0.92; NSE of 0.84 to 0.91; PBIAS of -

16.50 to -3.9; and RSR of 0.30 to 0.41 indicate accurate simulation of the monthly 

streamflow for the Betwa River basin. 

4. The model performance for the monthly sediment load simulation at Garrauli and 

Shahijana gauges was also good during calibration with R
2
 value ranges from 0.78 to 

0.89; NSE value ranges from 0.77 to 0.89; PBIAS value ranges from -9.3 to -4.1; and 

RSR value ranges from 0.33 to 0.48, whereas validation with R
2
 value ranges from 0.81 

to 0.90; NSE value ranges from 0.81 to 0.90; PBIAS value ranges from 0.7 to 1.6; and 

RSR value ranges from 0.32 to 0.44.  

5. The model simulation at Garrauli gauging site without any upstream water storage 

structure (no structure is available), showed high model performance as compare to the 

model simulation with upstream water storage (reservoirs and weirs) structure using 

SWAT. 
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6. This study reveals that the better information of the water storage structures promise a 

significantly improved hydrological simulation using the SWAT model.  
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CHAPTER 7 

INDIVIDUAL AND COMBINED IMPACT OF LAND USE AND 

CLIMATE CHANGES ON HYDROLOGY OF BETWA BASIN 

In this chapter, previously calibrated and validated Soil and Water Assessment Tool (SWAT) 

model has been used to simulate the water balance and sediment yield components under 

consideration of land use and climate change in the Betwa River basin. The model simulation 

has been initially used to assess the individual as well as combined impact of both land use 

change and climate change. For model simulation, the bias-corrected and downscaled CMIP5 

GCM data has been utilized for the baseline 1986 period (1986-2005), and for four future 

climate periods, i.e. horizon 2020 (2020-2039), horizon 2040 (2040-2059), horizon 2060 

(2060-2079), and horizon 2080 (2080-2099).  

7.1 BACKGROUND OF THE STUDY 

Land use and climate are the intrinsic drivers of hydrological processes (Blöschl et al., 2007; 

Juckem et al., 2008; Li et al., 2009). Human activities (such as reservoir construction, 

urbanization, and natural resource utilization) as well as climate change (mainly in temperature 

and precipitation variables) are widely acknowledged to be the main reasons of change in 

hydrological response of a river basin (Gao et al., 2010; Hovenga et al., 2016; Grum et al., 

2017). Recent studies have demonstrated that land use and climate changes have significant 

impacts on water balance (Morán-Tejeda et al., 2010; Mango et al., 2011; Cornelissen et al., 

2013) and sediment (Gebremicael et al., 2013; Khoi and Suetsugi, 2014; Julian and Ward, 

2014). Thus, the surface water and sediment loads have significantly affected due to the World-

wide land use and climate changes from last few decades (Gao et al., 2010; Miao et al., 2010; 

Zhao et al., 2014).  

Land use change is observed progressively and abruptly by human-environment interaction, 

and due to the result of socio-economic and biophysical drivers (Lambin et al., 2001). The 

deforestation, urbanization and agricultural changes have pronounced their impact on soil 

erosion, flooding, drought and agricultural productivity which may cause the land degradation 

problems (Lørup et al., 1998). In addition to land use change, the climate change is generally 

characterized by shift in temperature and precipitation parameters. Temperature change induces 

more evapotranspiration, and affects the regional weather circulation pattern. This can leads to 

alter frequency and intensity of precipitation occurrence in the hydrological system which in 

turn can increase the frequency of flash flooding and potential risk to the environment. Soil 

erosion, a process of detachment, transportation and deposition of soil particles, is primarily the 
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result of extreme precipitation events. Climate change has an influence on soil erosion 

processes in terms of amount, concentration and distribution of the fluvial sediments in 

watersheds (Lal and Pimentel, 2008; Routschek et al., 2014). Thus, it is important to 

investigate to what extent climate change would impair the current conditions and hinder the 

future management.  

In the past, various researchers have investigated the individual or combined impact of land use 

and climate change on hydrology (Niehoff et al., 2002; Juckem et al., 2008; Li et al., 2009; 

Setegn et al., 2011; Santos et al., 2014) and sediment or nutrients (Huang et al., 2009; Tu, 

2009; Li et al., 2011; Bieger et al., 2015) in dissimilar watersheds under considerably different 

conditions (Gassman et al., 2007). Generally, a simple statistical method or the process-based 

models were used to study the runoff and sediment fluxes (including soil erosion and sediment 

transport). However, the process-based models are reliable for precise simulations under 

changing land use/climate conditions. Statistical or the non-modelling methods lack a physical 

mechanism which brings attention towards the use of physically based models for hydrological 

simulation at different scales. Among available hydrologic models, the Soil and Water 

Assessment Tool (SWAT) has been widely used across the globe to assess the land use and 

climate change impacts on water resources (Conradt et al., 2012; Kim et al., 2013; Khoi and 

Suetsugi, 2014; Hyandye et al., 2018). The SWAT model can incorporate climate projections 

from downscaled global climate models (GCMs) and regional climate models (RCMs) (Phan et 

al., 2011; Narsimlu et al., 2013; Shrestha et al., 2013; Jha and Gassman, 2014). In addition, 

some hydrological modelling studies have coupled land use and climate change using SWAT 

(Chen et al., 2005; Schilling et al., 2008; Semadeni-Davies et al., 2008; Park et al., 2011; Yan 

et al., 2013).  Effect of land use and climate change is complex phenomenon, and can be 

disentangled by using the modelling framework with several scenarios. The scenario based 

simulations can provide potential effects of future changes which can be a basis for 

sustainability of available natural resources. Therefore, assessment of land use and climate 

change impacts on hydrological processes and sediment loads has great importance for 

sustainable management of water resources and land use planning. Thus, this study employed a 

modelling framework to investigate consecutive impacts of land use and climate change on 

water balance and sediment loads. 

In this context, this study has been planned to investigate the isolated and coupled land use and 

climate change impacts on water balance and associated sediment loads in a large river basin, 

Betwa River basin, located in Central part of India. Apparently, maximum potential climate 

change can be used to inform and guide future management strategies based on water balance 
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and sediment yield response. This combined as well as individual study on land use and climate 

change shall be valuable for policymakers and Government agencies for efficient natural 

resources management.  

7.2 MATERIALS AND METHODS 

7.2.1 Data acquisition  

Details of the study area, hydro-meteorological data, GCM data and spatial datasets (DEM, 

land use and soil data) used in the SWAT model set-up and run are provided in Chapters 3 and 

6. The downscaled and bias-corrected CMIP5 MPI-ESM-MR model datasets have been used to 

prepare the future climate inputs. Calibrated and validated SWAT model with different land 

use maps and climate variables has been used to simulate the water balance and sediment yield 

components. All the required input information were provided in ArcGIS compatible raster 

datasets (GRIDS), vector datasets (shapefiles), and SWAT database formats. After all data 

formatting, the model inputs were used to assess individual as well as combined impacts of 

land use and climate change in future horizons.  

In this study, land use data of the years 2013 and 2040 has been used for land use change 

analysis. Furthermore, numerous climate scenarios have been considered for the SWAT 

simulation based on GCM-derived climate inputs: baseline 1986: historical time-period 1986-

2005; horizon 2020: future time-period 2020-2039; horizon 2040: future time-period 2040-

2059; horizon 2060: future time-period 2060-2079; and horizon 2080: future time-period 2080-

2099. 

7.2.2 Assumptions and limitations 

In this study, the individual as well as combined impacts of land use change and climate 

change on hydrological simulation has been assessed using the SWAT model. The curve 

number approach and the MUSLE are particular weaknesses of the SWAT model (Benaman et 

al., 2005). Thus, the selection of watershed model for hydrological simulation could be 

limitation of this study. The elevation levels and soil zones are assumed to be remained 

constant during analysis period.  

To assess an individual impact of land use and climate change, the SWAT model is simulated 

by assuming one data type (land use or climate) changing while another data type is constant. 

For instance, the climate data was kept constant while assessing land use change impact, and 

the land use data was also kept constant while assessing climate change impact on water 

balance and sediment yield. The land use and climate change can produce individual as well as 

combined impacts on hydrologic simulations (Bronstert et al., 2002; Pervez and Henebry, 
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2015; Feng et al., 2016; Zuo et al., 2016). Therefore, this study assesses the individual as well 

as combined impacts of land use and climate changes on hydrology of a river basin employing 

a conceptual framework.  

Present climate model dataset includes different CO2 concentrations (such as RCP2.6, RCP4.5, 

RCP6 and RCP8.5). In this study, the use of such different RCPs can produce variation in the 

SWAT model simulation. Therefore, to avoid the effect of several RCPs on the model outputs, 

study is limited to use only one climate scenario (RCP8.5) which can induce maximum 

possible impact of CO2 concentration in future. This may help in sustainable water resources 

planning and management considering maximum possible climate change impact. 

7.2.3 Methodology  

In this study, land use data of the year 2013 and 2040 has been used for land use change impact 

analysis. In addition, the station-wise observed historical climate data and the future climate 

data derived from CMIP5 GCM (MPI-ESM-MR model) datasets of RCP8.5 scenario were 

initially compared by some statistical measures (maximum, minimum, average values, standard 

deviation and root-mean-square error). After satisfactory evaluation, the GCM-derived climate 

data from historical to future periods has been used as an input to the calibrated and validated 

SWAT model. Detailed methodology flowchart used in this study is provided in Figure 7.1.  

This study accomplishes analysis of individual as well as combined impact of land use and 

climate change on the hydrologic simulation, with respect to the baseline simulations obtained 

from the SWAT model. In baseline simulation, the land use map of the year 2013 and climate 

data of the years 1986-2005 were used as an input to the SWAT model. To study an individual 

land use change impact, the land use map of the year 2040 has been used while climate data 

(1986-2005) was same. To study individual climate change impact, the climate data of the 

future years 2020-2099 has been used with the same land use map (2013) of the baseline 

simulation. In the combined impact assessment study, the land use map of year 2040 and the 

climate data of years 2020-2099 have been utilized as changed inputs to the SWAT model. In 

this study, the model simulation was obtained using climate data of the years 2020-2099 which 

is divided into four future climate horizons (horizon 2020, horizon 2040, horizon 2060 and 

horizon 2080). Further, a conceptual framework has been employed to provide the model 

results on individual as well as combined impact study of the land use change and climate 

change on the basin hydrology.   



137 

 

Figure 7.1: Methodology flowchart used for assessment of individual and combined impacts of 

land use and climate change  

7.2.4 Scenarios for land use and climate change impact assessment 

As discussed earlier, the present study aims to assess individual as well as combined impacts of 

land use and climate change on the model simulation. For this purpose, study considers four 

scenarios based on the input(s) used for model simulation (Table 7.1).   
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Table 7.1: Model simulation scenarios considered in the present study 

Scenario 
Land use  

data year 

Climate  

data period 
Remark 

Scenario-1 (S1) 2013 1986-2005 Baseline 

Scenario-2 (S2) 2040 1986-2005 Change in land use data  

Scenario-3 (S3) 2013 2020-2099 Change in climate data  

Scenario-4 (S4) 2040 2020-2099 Change in both land use and climate data 

The SWAT model results for scenarios S1 and S4 represents actual simulation conditions 

during historical period and future period, respectively. Here, S1 indicates baseline simulation 

of the present study. The analysis of S2-S1 represents individual land use change impact, and 

the analysis of S3-S1 represents individual climate change impact on the model simulation. For 

combined impact assessment, the analysis of S4-S1 has been performed in the study. Based on 

the analyses, a conceptual framework has been further employed to furnish the model 

simulation results.      

7.2.5 Conceptual framework  

The conceptual framework represents an individual as well as the combined impacts of land 

use change and climate change (RCP8.5 scenario) with respect to the baseline simulation 

(Figure 7.2).  

 

Figure 7.2: A conceptual framework to compare the individual as well as combined impacts of 

land use and climate change on hydrology  

In this conceptual framework, two-dimensional Cartesian system has been used to divide it into 

four regions, known as quadrants, each limited by two half-axes of land use and climate. Here, 

the first quadrant represents the result of baseline simulation, second quadrant represents the 

results of individual land use change impact, third quadrant represents the result of combined 

land use and climate change, and fourth quadrant represents the result of individual climate 
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change impact. Within each quadrant, the four hydrology components streamflow (FLOW), 

sediment yield (SYLD), evapotranspiration (ET), and water yield (WYLD) are represented to 

study the impacts analysis. For the first time, this conceptual framework has been developed to 

study an individual as well as the combined impact of land use and climate change on the 

SWAT model simulation.  

7.3 RESULTS AND DISCUSSION 

7.3.1 Evaluation of GCM-derived climate data 

In this study, the GCM-derived climate variables have been evaluated prior to use in the future 

simulation employing the SWAT model. This study uses numerous statistical measures, such as 

maximum, minimum, average, standard deviation and root-mean-square-error values, to 

compare the observed and the GCM-derived precipitation and temperature variables on daily, 

monthly and annual time-scales (Table 7.2).  

Table 7.2: Statistical evaluation of observed and GCM-derived climate data  

Statistic 
Daily   Monthly   Annual 

Observed Downscaled   Observed Downscaled   Observed Downscaled 

Precipitation (mm) 

Max 103 159 
 

560 707 
 

1718 1757 

Min 0 0 
 

0 0 
 

658 688 

Avg 3 3 
 

80 91 
 

962 980 

SD 7 10 
 

125 151 
 

267 286 

RMSE 0.432 
 

0.315 
 

0.295 

Maximum temperature (°C) 

Max 46.27 45.86 
 

43.39 43.15 
 

33.54 33.52 

Min 13.48 17.44 
 

21.33 22.96 
 

31.44 31.52 

Avg 32.71 32.40 
 

32.70 32.39 
 

32.71 32.40 

SD 5.85 5.69 
 

5.38 5.34 
 

0.58 0.52 

RMSE 0.091 
 

0.088 
 

0.087 

Minimum temperature (°C) 

Max 31.07 32.42 
 

28.62 29.24 
 

20.18 20.30 

Min 3.33 2.78 
 

7.41 7.34 
 

18.31 19.03 

Avg 19.36 19.44 
 

19.33 19.41 
 

19.36 19.44 

SD 6.32 6.56 
 

6.07 6.30 
 

0.52 0.39 

RMSE 0.027   0.023   0.022 

Note: Max = maximum value; Min = minimum value; Avg = average value; SD = standard deviation; and RMSE 

= root-mean-square-error. 

Result shows that minimum and maximum temperature variables have acceptable range of 

statistical measures. Average value of the observed and GCM-derived precipitation data has 

acceptable difference in maximum, minimum and mean value. However, the range of standard 
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deviation and RMSE values of GCM-derived precipitation differs little bit higher than the 

observed precipitation, but in acceptable range for RCP8.5 climate outputs. This may be due to 

the influence of downscaling and bias-correction methods used in the GCM-derived 

precipitation (Teutschbein & Seibert, 2012; Shrestha et al., 2016). Thus, the evaluation of 

downscaled and bias-corrected climate variables showed suitability of climate model outputs 

for the application in hydrological modelling. In this study, the GCM-derived climate variables 

(precipitation and temperature) have been further utilized as an input to the SWAT model for 

future hydrological simulation.  

7.3.2 Changes in GCM-derived climatic variables  

The climatic variables were categorized into the baseline period and four future climate 

horizons have been studied to understand the effect of future climatic variability with respect to 

the historic climate. This would also help to discuss the result of climate change impact 

analysis. 

 

Figure 7.3: Monthly variations in GCM-derived climate variables  

7.3.2.1 Precipitation 

Figure 7.3 shows the monthly precipitation variations in four future horizons (i.e. horizon 2020, 

horizon 2040, horizon 2060 and horizon 2080) with respect to the baseline 1986 (1986-2005). 

Monthly plots show that the monsoon precipitation gradually increases from June to August, 
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and then decreases up to October month. However, in non-monsoon period the precipitation 

changes are non-significant as compared to the monsoon changes. 

Amount of precipitation change in future has been estimated by calculating the difference 

between future horizon precipitation and baseline precipitation (Table 7.3). In horizon 2020, 

maximum decrease (17 mm) and increase (69 mm) in precipitation was obtained for July and 

September months, respectively. Similarly, during horizon 2040, maximum decrease (55 mm) 

and maximum increase (60 mm) in precipitation was obtained for July and September months, 

respectively. In horizon 2060, the highest decrease (82 mm) and maximum increase (124 mm) 

in precipitation was observed for July and September, respectively. Subsequently, in horizon 

2080, maximum reduction (45 mm) and maximum increase (80 mm) in precipitation was 

observed in the months of June and September, respectively. Furthermore, maximum average 

annual precipitation change was observed for the horizon 2060, i.e. 140 mm, followed by 

horizon 2080 (69 mm), horizon 2020 (61 mm) and horizon 2040 (28 mm) (Table 7.3). 

The result shows that horizon 2060 has a great monsoon precipitation variation, followed by 

horizon 2080, horizon 2020 and horizon 2040 as compared to the precipitation in baseline 1986 

period. During monsoon period, more amount of precipitation decrease is observed in June and 

July; however substantial precipitation increase is observed in August and September. Similar 

findings were also observed in the literature studies by Guhathakurta and Rajeevan (2008), and 

Jayshankar et al. (2015) for Indian regions.  

Table 7.3: Change in future precipitation (mm) with respect to baseline period 

Month Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Jan 0.55 -0.36 -2.84 -1.48 

Feb 0.59 -0.12 -2.29 -1.29 

Mar 0.88 -0.20 -1.28 -1.21 

Apr 0.06 0.22 -0.04 0.11 

May -1.32 -2.02 -1.33 -3.70 

Jun -10.24 -27.60 -29.56 -45.35 

Jul -17.18 -54.61 -81.94 -26.36 

Aug 3.28 19.88 103.40 44.00 

Sep 68.93 60.07 123.99 80.52 

Oct 13.88 29.51 30.65 22.45 

Nov 0.60 1.99 0.34 0.56 

Dec 0.62 1.49 0.57 0.54 

Annual change 60.64 28.26 139.67 68.78 
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7.3.2.2 Maximum temperature 

Figure 7.3 presents the variation of maximum temperature during four future climate horizons 

with respect to the baseline period (1986-2005). Analysis shows a clear distinct variation of 

maximum temperature from baseline 1986 to the future horizon 2080. 

From Table 7.4, the maximum temperature of horizon 2020 increases from 0.19 °C 

(September, and March) to 1.57 °C (June). During horizon 2040, maximum temperature 

increase of 1.51°C to 2.97 °C was observed in September and July, respectively. Furthermore, 

in horizon 2060 the maximum temperature increases from 2.79 °C to 4.63 °C was observed in 

September and July, respectively. Also, the maximum temperature increase of 3.99 °C 

(September) to 5.47 °C (June) was observed in future horizon 2080. It is clearly observed that 

there is a gradual rise of maximum temperature in each future climate horizon with respect to 

the baseline. Thus, highest rise in maximum temperature (3.99 °C to 5.47 °C) was observed in 

the last future horizon 2080. The average annual maximum temperature also increases from 

0.92 °C to 4.87 °C in future horizons (Table 7.4).  

This analysis shows that increase in maximum temperature may be possible at the beginning 

month of monsoon season (June and July), and lowered at the end of monsoon season 

(September month). Similar results were obtained in the previous studies carried out by 

Revadekar et al. (2012), and Das et al. (2018) for India and the Western Himalayan region.  

Table 7.4: Change in future maximum temperature (°C) with respect to baseline period 

Month Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Jan 0.32 1.90 3.56 5.45 

Feb 1.12 1.75 4.37 5.17 

Mar 0.19 1.54 3.92 4.55 

Apr 1.21 2.00 4.10 4.75 

May 1.36 2.15 3.74 5.06 

Jun 1.57 2.70 3.45 5.47 

Jul 1.54 2.97 4.63 5.23 

Aug 1.05 2.31 3.36 4.67 

Sep 0.19 1.51 2.79 3.99 

Oct 0.48 1.95 3.08 4.41 

Nov 0.97 2.08 3.51 4.69 

Dec 1.05 2.11 3.40 5.05 

Annual change 0.92 2.08 3.66 4.87 

7.3.2.3 Minimum temperature 

Changes in minimum temperature in future horizon with respect to the baseline are illustrated 

in Figure 7.3. It shows that changes in the minimum temperature are nearly similar to the 
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changes observed for maximum temperature, i.e. significantly rises from baseline 1986 to the 

last future horizon 2080.  

The minimum temperature in horizon 2020 increases from 0.54 °C  to 1.99 °C in January and 

November, respectively (Table 7.5). During horizon 2040, change in minimum temperature 

varies from 1.82°C to 3.44°C in February and October, respectively. In horizon 2060, this 

change again increases from 3.27 °C to 4.77 C in August and October, respectively. Highest 

rise in minimum temperature is observed for horizon 2080, i.e. increases from 4.62 °C (August) 

to 6.53 °C (November). Furthermore, annual change in minimum temperature may gradually 

increases from horizon 2020 (1.22 °C) to horizon 2080 (5.34 °C) as shown in Table 7.5.  

The results of present analysis show that minimum temperature increases significantly in future 

period (2020-2099). In this analysis also, increase in minimum temperature (from 4.62°C to 

6.53°C) has been observed for the last horizon 2080. High changes in minimum temperature 

are mainly observed for post-monsoon months (October and November) in all future horizons. 

However, low changes vary with climate horizons, i.e. for first two horizons 2020 and 2040 the 

low changes are observed for winter months (January and February), and for last two horizons 

2060 and 2080 the low change has been observed for monsoon month (August). Thus, the 

pattern of change in annual minimum temperature varies seasonally in future horizons. Similar 

results were also reported in the studies carried out by Revadekar et al. (2012), and Das et al. 

(2018) for India and the Western Himalayan region.  

Table 7.5: Change in future minimum temperature (°C) with respect to baseline period 

Month Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Jan 0.54 2.23 3.93 5.81 

Feb 1.09 1.82 4.19 5.28 

Mar 0.84 1.98 3.95 4.67 

Apr 1.08 1.96 3.91 4.90 

May 1.11 2.17 3.96 5.19 

Jun 1.37 2.52 3.47 5.22 

Jul 1.32 2.57 4.22 4.93 

Aug 1.07 2.18 3.27 4.62 

Sep 0.95 2.11 3.31 4.68 

Oct 1.61 3.44 4.77 6.31 

Nov 1.99 3.10 4.62 6.53 

Dec 1.71 2.73 4.01 5.92 

Annual change 1.22 2.40 3.97 5.34 

7.3.2.4 Overview of GCM-derived climate variables  

Based on the standardized annual rainfall anomaly, the dry and wet years have been 

categorized for baseline and four future climate horizon periods (Figure 7.4). It is observed 
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that, horizon 2060 has more effects of dry and wet spells. During horizon 2060 period (2060-

2079), the year 2075 and 2078 would be the wettest and driest year, respectively, in future. 

Simultaneous occurrence of frequent dry and wet years in the same climate horizon (2060) 

reflects requisite of proper planning and management under changing climatic condition (Singh 

et al., 2014; Vinnarasi & Dhanya, 2016). The analysis of dry and wet year categorization has 

been further used to discuss the simulation results. 

 

Figure 7.4: Standardized annual rainfall anomaly for categorization of dry and wet years during baseline 

1986 (1986-2005), horizon 2020 (2020-2039), horizon 2040 (2050-2059), horizon 2060 (2060-2079), 

and horizon 2080 (2080-2099)  

Table 7.6: Statistical summary of GCM-derived annual climate variables for baseline (1986-2005) and 

four future horizons (2020-2099) 

Statistic 
GCM-derived annual climate variables 

Baseline 1986 Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Precipitation (mm) 

Max 1657 1494 1449 1964 2097 

Min 548 673 492 424 476 

Avg 1013 1074 1041 1152 1082 

SD 299 271 293 294 416 

Maximum temperature (°C) 

Max 32.93 33.97 35.92 36.87 39.12 

Min 30.99 32.19 33.10 34.52 35.68 

Avg 32.22 33.14 34.30 35.88 37.10 

SD 0.42 0.63 0.76 0.61 0.78 

Minimum temperature (°C) 

Max 19.67 20.98 22.71 24.05 26.16 

Min 18.35 19.56 20.57 21.70 23.20 

Avg 19.04 20.27 21.45 23.01 24.38 

SD 0.42 0.42 0.63 0.63 0.76 

Note: Max = maximum annual value; Min = minimum annual value; Avg = average annual value; and SD = 

standard deviation of annual climate data. 
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After analysis of changes in the GCM-derived climate variables, their statistical summary was 

also studied for the baseline and future climate horizons. Table 7.6 shows maximum, 

minimum, average and standard deviations values for precipitation, and maximum and 

minimum temperature variables. Results show that the low precipitation about 424 mm and the 

high precipitation about 1964 mm have been observed for horizon 2060. Hence, during this 

period (2060-2079) pronounced effect of extreme dry and wet spells may induce hydrologic 

changes. Also, both maximum and minimum temperature variables are significantly increases 

in the future years (Revadekar et al., 2012). These changes need to be account for climate 

change impact study.  

7.3.3 SWAT simulations using land use maps and GCM-derived climate data 

After evaluation, the GCM-derived climate variables have been used as an input to the SWAT 

model to simulate streamflow, sediment yield (SYLD), evapotranspiration (ET) and water yield 

(WYLD). In this study, sub-watershed level analysis has been performed for each climate 

period, i.e. from baseline 1986 to horizon 2080, under varying land use maps of the years 2013 

and 2040. 

7.3.3.1 Streamflow (FLOW) 

The sub-watershed outputs using land use map of the year 2013 show that baseline streamflow 

is high (>250 cumec) in sub-watersheds SW-1, SW-2, SW-4 and SW-5 located near to the 

outlet of the study area (Figure 7.5a). Furthermore, few sub-watersheds namely SW-6, SW-11, 

SW-17 and SW-32 have streamflow variation from 151 cumec to 250 cumec. These sub-

watersheds can be considered as critical areas under high streamflow (more than 150 cumec). 

Furthermore, the SW-34 in horizon 2020 (Figure 7.5c); the SW-19, SW-20, SW-34 and SW-37 

in horizon 2040 (Figure 7.5e); the SW-19, SW-20, SW-25, SW-34 and SW-37 in horizon 2060 

(Figure 7.5g); and the SW-19, SW-20, SW-34 and SW-37 in horizon 2080 (Figure 7.5i) could 

produce more than 150 cumec streamflow. Thus, these sub-watersheds would be critical areas 

in upcoming decades. Due to high precipitation events in horizon 2060, the critical sub-

watershed especially SW-6, SW-11 and SW-17 may have more than 250 cumec streamflow 

(Figure 7.5g). Also, during this period a high streamflow (201-250 cumec) may also be 

possible in SW-19, SW-20, SW-32 and SW-34 under changing climate. Thus, precipitation 

change can significantly affect the sub-watershed level future streamflow contribution in Betwa 

River basin area. 

Similarly, the model simulation using land use map of the year 2040 show that the sub-

watershed wise future streamflow is nearly similar to the outputs obtained under historical land 
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use map of the year 2013 in all climate periods. Only for the SW-6, the streamflow may 

increase in future horizons 2020 (Figure 7.5c&d) and 2040 (Figure 7.5e&f) under varying land 

use. It may be due to the decreased forest area which consequently increase non-vegetative 

land use, and generates more water flows in the SW-6. Bonell et al. (2010) observed such 

impacts of change in forest area on surface and sub-surface water flows in Western Ghats of 

India.  

    

    

(a) Baseline 1986 

      Land use 2013 

(c) Horizon 2020 

      Land use 2013 

(b) Baseline 1986 

      Land use 2040 

(d) Horizon 2020 

      Land use 2040 
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Figure 7.5: Streamflow (mm) variation under future land use and climate change 

(e) Horizon 2040 

      Land use 2013 

(g) Horizon 2060 

      Land use 2013 

(i) Horizon 2080 

     Land use 2013 

(f) Horizon 2040 

      Land use 2040 

(h) Horizon 2060 

      Land use 2040 

(j) Horizon 2080 

     Land use 2040 
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7.3.3.2 Sediment yield (SYLD) 

During baseline 1986, the model simulation under land use map of the year 2013 shows that 

few sub-watersheds, namely SW-1, SW-4, SW-14 and SW-16, located near the outlet of the 

study area have high (about >150 t ha
-1

) sediment yield (Figure 7.6a). These sub-watersheds 

can be considered as very severe soil erosion prone areas of the Betwa river basin. In these sub-

watersheds, more soil erosion may be due to loose and fine soil surface with unfeasible field 

practices and less vegetation cover which eroded easily due to high velocity of upstream flows, 

and resulted more sediment loads (Maina et al., 2013). Furthermore, two sub-watersheds SW-2 

and SW-17 having sediment yield between 40-80 t ha
-1

, five sub-watersheds SW-5, SW-11, 

SW-12, SW-18 and SW-20 having sediment yield between 20-40 t ha
-1

, the SW-7 has sediment 

yield between 10-20 t ha
-1

 can also be considered as the very high to medium class soil erosion 

areas. These sub-watersheds can be treated as critical areas under large amount of sediment 

yields (more than 10 t ha
-1

). In future, the SW-34 may have more sediment yield, and thus can 

be considered as critical area for the treatment of management practices in the Betwa basin. It 

is observed that, the rate of sediment yield for these critical sub-watersheds varies under 

changing future climate condition from horizon 2020 to horizon 2080 (Figures 7.6c,e,g&i).  

Similarly, the SWAT simulation using land use map of the year 2040 show that in all climate 

periods the sub-watershed wise sediment yield could be very similar to the sediment yield 

obtained under historical land use map 2013. Here also, only the SW-6 has increased sediment 

yield in future horizon 2040 under varying land use, i.e. decrease in vegetative cover (Figures 

7.6e&f).  

    

(a) Baseline 1986 

      Land use 2013 

(b) Baseline 1986 

      Land use 2040 
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(c) Horizon 2020 

      Land use 2013 

(e) Horizon 2040 

      Land use 2013 

(g) Horizon 2060 

      Land use 2013 

(d) Horizon 2020 

      Land use 2040 

(f) Horizon 2040 

      Land use 2040 

(h) Horizon 2060 

      Land use 2040 
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Figure 7.6: Sediment yield (t ha
-1

) variation under future land use and climate change 

7.3.3.3 Evapotranspiration (ET) 

Results of ET simulation under land use map of the year 2013 show that the sub-watersheds 

namely SW-18, SW-19, SW-32 and SW-51 located in the middle and upper part of the study 

basin have more ET losses, i.e. more than 560 mm, during baseline period (Figure 7.7a). In 

these sub-watersheds, evaporation losses are mainly contributed from open surface of the large 

water storages (like reservoirs/weirs/lakes), mainly Rajghat and Matatila reservoirs. Several 

sub-watersheds are having ET loss in the range of 501 mm to 560 mm which is also 

contributed from surface evaporation of small to medium sized open water storages. Here, the 

rate of ET change varies with the future climatic condition from the horizon 2020 to horizon 

2080. The sub-watersheds having more ET values can be considered as water loosing areas 

under vaporization (more than 500 mm). Also, it is observed that more ET losses could be 

possible in future horizons 2020 and 2040, because of rise in temperature during these 

horizons.  

Nevertheless, the ET simulation has a significant changing pattern under land use of the year 

2040. During baseline as well as future horizons, only SW-32 has high ET losses, i.e. more 

than 560 mm. Very few sub-watersheds have ET value in the range of 500-560 mm in baseline 

period (1986-2005) as shown in Figure 7.7b. But, in several sub-watersheds the ET value could 

be decreased due to changes in land use pattern in the future years (Figures 7.7d,f,h&j). Also, 

some sub-watersheds have increased ET losses. Especially, the SW-34, SW-39, SW-40, SW-41 

and SW-49 may have high water losses during horizon 2020 and horizon 2040 under varying 

land use and a rise in temperature.   

(i) Horizon 2080 

     Land use 2013 

(j) Horizon 2080 

     Land use 2040 
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(a) Baseline 1986 

      Land use 2013 

(c) Horizon 2020 

      Land use 2013 

(e) Horizon 2040 

      Land use 2013 

(b) Baseline 1986 

      Land use 2040 

(d) Horizon 2020 

      Land use 2040 

(f) Horizon 2040 

      Land use 2040 
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Figure 7.7: Evapotranspiration (mm) variation under future land use and climate change 

7.3.3.4 Water yield (WYLD) 

Water yield simulation using land use map of the year 2013 shows that sub-watersheds namely 

SW-35, SW-37, SW-38, SW-43, SW-44, SW-45, SW-47, SW-48, SW-50, SW-52, SW-54 and 

SW-57 located in the middle and upper part of the study basin have more water yields, i.e. 

more than 600 mm, during baseline period (Figure 7.8a). Result demonstrates that, in these 

sub-watersheds, the net amount of water contributed to reach is more than the other sub-

watersheds of the Betwa basin. It may be because of high water utility for agriculture purpose 

in these areas. Also, dense (forest) vegetation cover is more in upper basin area which tends to 

store more amount of water in the field than losing it (Bosch & Hewlett, 1982). Furthermore, 

the sub-watersheds located in middle and lower basin area have a large amount of water yield 

(more than 600 mm). Rate of change in water yield varies with the future climatic variation 

(g) Horizon 2060 

      Land use 2013 

(i) Horizon 2080 

     Land use 2013 

(h) Horizon 2060 

      Land use 2040 

(j) Horizon 2080 

     Land use 2040 
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from horizon 2020 to horizon 2080. In horizon 2060, having high precipitation events, a 

significant amount of water yield (more than 550 mm) induces in all sub-watersheds, except for 

few sub-watersheds of the lower basin (Figure 7.8g). These sub-watersheds can be considered 

as more water affording areas of the Betwa basin. However, during horizon 2040, water yield 

contributing in lower basin area is less due to the effects of frequent dry spells. Similarly, the 

future water yield simulated using land use map of the year 2040 shows that the sub-watershed 

wise water yield would be similar to the water yield obtained under historical land use map of 

the year 2013 (Figures 7.8).  

  

  

(a) Baseline 1986 

      Land use 2013 

(c) Horizon 2020 

      Land use 2013 

(b) Baseline 1986 

      Land use 2040 

(d) Horizon 2020 

      Land use 2040 
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Figure 7.8: Water yield (mm) variation under future land use and climate change 

(e) Horizon 2040 

      Land use 2013 

(g) Horizon 2060 

      Land use 2013 

(i) Horizon 2080 

     Land use 2013 

(f) Horizon 2040 

      Land use 2040 

(h) Horizon 2060 

      Land use 2040 

(j) Horizon 2080 

     Land use 2040 
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7.3.4 Land use change impact assessment  

As discussed earlier, the land use change impact has been assessed by subtracting scenario-2 

and scenario-1 (S2-S1). In this study, scenario-1 is for a baseline simulation, and scenario-2 is 

for a simulation under change in land use map of the year 2013 by 2040, while keeping the 

same climate data (1986-2005) of the baseline.   

7.3.4.1 Land use changes during 2013-2040 

Initially, the study on land use changes has been carried out for the six historical land use 

classes, i.e. dense forest, degraded forest, agriculture, barren land, waterbody and settlement.  

Results show that area under the dense forest rapidly changes in the range of 10-18% in SW-

11, SW-13, SW-14, SW-19, SW-20, SW-23 and SW-27 (Figure 7.9a). Mostly, all the sub-

watersheds have 1-9% changes or none significant change in dense forest area. Further, 

numerous sub-watersheds have increased the degraded forest area in future. Also, few sub-

watersheds have decrease in degraded forest area, especially the SW-25, SW-33 and SW-40 

have decrease of about 10-18%, and the SW-28, SW-28, SW-32, SW-34, SW-35, SW-41, SW-

44 and SW-52 have decrease of about 1-9% (Figure 7.9b). The sub-watersheds with decrease in 

degraded area also have increase in agriculture area. It means several sub-watersheds of the 

Betwa basin may undergo inter-transitions between degraded forest and agriculture area. 

Among them, the SW-25, SW-32, SW-33 and SW-40 have 10-18% increase, and the SW-28, 

SW-35 and SW-41 have 1-9% increase in agriculture area (Figure 7.9c). Moreover, the SW-1, 

SW-2, SW-4, SW-22 and SW-24 also have decrease in agriculture area from the years 2013 to 

2040. Overall, the upper-West, middle and lower parts of the Betwa basin would undergo 

decrease in agriculture area; hence the less food productivity problem may rise in future.  

Furthermore, among non-vegetative area the barren land in SW-10, SW-21, SW-56 and SW-57 

by 1-9% may decreases; however in other sub-watersheds the barren land may increases by 1-

29% (Figure 7.9d). In most of the sub-watersheds, waterbody may decrease by 1-9%; except 

the SW-18 and SW-32 where siltation in reservoirs may result in low storage capacity, hence 

low water availability (Figure 7.9d). The settlement area in future may alter in numerous sub-

watersheds which includes the SW-1, SW-3, SW-7, SW-8, SW-11, SW-14, SW-15, SW-16, 

SW-20, SW-21, SW-26, SW-37, SW-38, SW-39, SW-50, SW-51 and SW-56 having increased 

settlement area by 1-9% during 2013-2040 (Figure 7.9f).  
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Figure 7.9: Spatial representation of percent land use (a) dense forest, (b) degraded forest, (c) 

agriculture, (d) barren land, (e) waterbody, and (f) settlement change during 2013-2040 

(a)  

Dense forest 

(b)  

Degraded forest 

(c)  

Agriculture 

(d)  

Barren land 

(e)  

Waterbody 

(f)  

Settlement  
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Overall, dense forest and agriculture are the most rapidly decreasing vegetative areas, and the 

settlement and waterbody are the rapidly changing non-vegetative areas of the Betwa River 

basin. 

7.3.4.2 Changes in SWAT simulation under varying land use 

The SWAT model simulation at sub-watershed level has been analyzed using varying land use 

maps for the historical year 2013 and the future year 2040. Difference between baseline 

simulation (S1) and land use change simulation (S2) has been estimated to analyze their 

impacts on changes in streamflow, sediment yield, ET and water yield.      

   

  

Figure 7.10: Spatial representation of individual land use change impact on SWAT simulations: 

(a) streamflow (cumec), (b) sediment yield (t ha
-1

), (c) evapotranspiration (mm), and (d) water 

yield (mm)  

(a)  

 

(b)  

 

(c)  

 

(d)  
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Land use change simulation result shows that streamflow has decreased in upper part of the 

study area. Mainly, the SW-32, SW-34, SW-37, SW-38, SW-43 and SW-45 have decreased 

streamflow in the range of 0.45-0.86 cumec, and other sub-watersheds have streamflow 

reduction in the range of 0 to 0.44 cumec (Figure 7.10a). In lower basin, several sub-

watersheds SW-4, SW-5, SW-6, SW-16, SW-18, SW-21, SW-27 and SW-28 have increased 

streamflow in the range of 0.51 to 1.20 cumec under land use change analysis. In these sub-

watersheds, change in vegetative area, as resulted in previous analysis, may induce streamflow 

variations. Results of sediment yield simulation show that all the sub-watersheds have reduced 

sediment yields with decrease in water flow. Nevertheless, very few areas have increase 

sediment yield with increasing streamflow as shown in Figure 7.10b. Among them, the SW-6, 

SW-19, SW-20 and SW-21 have increase in sediment yield of about 0-0.02 t ha
-1

; the SW-2, 

SW-5, SW-7, SW-11, SW-12, SW-17 and SW-25 have increase in sediment yield of about 

0.03-0.14 t ha
-1

; the SW-1, SW-4 and SW-18 have increase in sediment yield of about 0.15-

0.46 t ha
-1

; and the SW-14 and SW-16 have increase in sediment yield more than 1 t ha
-1

. These 

changes in sediment yield are associated with the streamflow changes generated under varying 

vegetation areas at sub-watershed level.  

Furthermore, the ET change is mostly negative in numerous sub-watersheds, where SW-18 and 

SW-32 have highest ET decrease of about 198-322 mm (Figure 7.10c). Increase in ET value of 

about 0.05-34 mm is observed for SW-3, SW-34 and SW-48 because of more evaporation 

under land use change. The water yield at sub-watershed level shows highest decrease of about 

31 to 39 mm in SW-8, SW-34 and SW-48, and highest increase of about 7 to 18 mm in SW-11, 

SW-19, SW-20, SW-28, SW-33 and SW-40 as shown in Figure 7.10d. These changes in water 

yield are associated with the changes in vegetation and waterbody area of the Betwa basin. 

7.3.4.3 Relationship between land use and the model outputs  

In this analysis, a correlation method has been used to investigate the significance impact (at p 

value < 0.0.5) of land use change on model simulation at sub-watershed level. In this analysis, 

percent change in model simulations and percent change in each land use class was used to 

correlate the value of coefficient of determination (R
2
).  

Results show that changes in streamflow and sediment yields exhibited none significant 

relationship with the changes in land use classes as shown in Figures 7.11 and 7.12. In this 

analysis, the ET change has significant positive relationship (R
2
 = 0.842, p<0.05) with the 

change in waterbody class (Figure 7.13). It demonstrates that ET is highly dependent on 

surface water evaporation than the vegetative water vaporization (transpiration). Figure 7.14 

shows that water yield exhibited significant relationships with the change in dense forest (R
2
 = 
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0.076, p<0.05), degraded forest (R
2
 = 0.2, p<0.05) and agriculture (R

2
 = 0.245, p<0.05). Here, 

the changes in both the forest areas are negatively correlated; however, the changes in 

agriculture are positively correlated to the changes in water yield of the Betwa basin. Thus, 

water yield is the most sensitive water balance component under land use change, mainly due 

to changes in dominant vegetation areas, i.e. dense forest, degraded forest and agriculture.  

   

   

Figure 7.11: Change in streamflow (%) and its relation to the percentage of changed land use at 

sub-watershed level 

   

   

Figure 7.12: Change in sediment yield (%) and its relation to the percentage of changed land 

use at sub-watershed level 
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Figure 7.13: Change in evapotranspiration (%) and its relation to the percentage of changed 

land use at sub-watershed level 

   

   

Figure 7.14: Change in water yield (%) and its relation to the percentage of changed land use at 

sub-watershed level 

Overall, analysis reveals that the two water balance components, ET and water yield, are 

significantly influencing under land use change during the years 2013-2040. Three vegetation 

areas namely dense forest, degraded forest and agriculture, and the waterbody could have 

possible impact on these water balance components. Thus, vegetation planting and water 

conservation practices are essential to reduce and avert these land use change impacts on 

hydrology of the Betwa basin.     
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7.3.5 Climate change impact assessment  

To assess the climate change impact on the model simulation, difference between scenario-3 

and scenario-1 simulation (S3-S1) has been analyzed in the present study. Here, scenario-1 is 

for a baseline simulation, and scenario-3 is for a simulation under change in climate data of the 

period 1986-2005 by 2020-2099, while keeping the same land use data of the year 2013. In this 

study, impact of precipitation change has been mainly assessed at sub-watershed level.   

7.3.5.1 Changes in future precipitation at sub-watershed level  

At sub-watershed level, the analysis was performed to estimate the precipitation variation with 

respect to the baseline precipitation which shows remarked changes in future horizons as 

shown in Figure 7.15. Mostly, the upper part of the study basin receives increased precipitation 

amount in the range of about 71 mm to 140 mm during horizons 2020, 141 mm to 280 mm 

during horizon 2040, 281 mm to 363 mm during horizon 2060, and 71 mm to 210 mm during 

horizon 2080. Nevertheless, in middle and lower parts of the basin, the precipitation amount 

decreases in all future horizons. During horizon 2040, precipitation decrease (127 mm) and 

increase (280 mm) were observed for lower and upper basin area, respectively (Figure 7.15). 

Furthermore, a large variation in precipitation distribution in horizon 2060 may induce dry and 

wet spells in the study area. Hence, the future precipitation changes can influence hydrology of 

the Betwa basin.   

Therefore, the future precipitation pattern with respect to the baseline precipitation shows 

significant changes, thus, their impact on the hydrologic components needs to be quantified for 

adaptation and mitigation strategies in the study area. 
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Figure 7.15: Spatial representation of change in average annual precipitation in horizon 2020, 

horizon 2040, horizon 2060, and horizon 2080 at sub-watershed level 

7.3.5.2 Changes in SWAT simulation under varying precipitation pattern 

In this study, impact of climate (here precipitation) change on the model simulation has been 

assessed at sub-watershed level, as well as on monthly time-scale. However, only sub-

watershed level analysis has been continued to study the significance level of climate change 

impact on the hydrology of Betwa basin.   

(a) Future simulation at sub-watershed level   

i. Streamflow 

Effect of future climate change on streamflow analysis is provided in Figure 7.16. Results show 

that in horizon 2020 most of the sub-watersheds have 1-20 cumec increment in streamflow, 

except the SW-9, SW-13, SW-30 and SW-36 where a low amount of streamflow reduction (0-8 

cumec) was observed (Figure 7.16). In horizon 2040, the area of streamflow reduction could be 

more with less precipitation occurrence in lower part of the Betwa basin. However, during 

horizon 2060, more precipitation change in several sub-watersheds induces an increased 

streamflow up to 109 cumec, because of accumulated river flow from upper to lower basin 

area. Thus, high streamflow change has been observed during horizon 2060 near the basin 

outlet (Figure 7.16). During horizon 2080, the SW-1, SW-2, SW-4, SW-5, SW-11 and SW-17 

have streamflow changes of about 41-60 cumec.  Similar streamflow changes in lower amount 

have been also observed for the horizon 2080 owing to similar high precipitation changes in 

future.  
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Figure 7.16: Spatial representation of individual climate change impact on streamflow in 

horizon 2020, horizon 2040, horizon 2060, and horizon 2080 at sub-watershed level 

ii. Sediment yield 

The sub-watershed level analysis shows that low changes in sediment yield has been induced 

under low precipitation, and hence with the low streamflow change. In most of the sub-

watersheds, sediment yield change of about 1-10 t ha
-1

 was observed; except the SW-25 in 

horizon 2020, and SW-1, SW-2, SW-7, SW-12, SW-14, SW-16, SW-18, SW-21, SW-22 and 

SW-24 in the horizon 2040 having sediment yield reduction of about 0-9 t ha
-1

. In horizon 

2060, high sediment yield (51-80 t ha
-1

) change has been observed in the SW-1, SW-4 and SW-

16; about 41-50 t ha
-1

in the SW-16 and SW-17; and about 11-30 t ha
-1

 in the SW-2, SW-5, SW-

11 and SW-20 (Figure 7.17). Very small amount of sediment yield reduction (0-9 t ha
-1

) could 

induce in SW-25, which may be due to sediment deposition in upstream water storage (Rajghat 
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reservoir located in SW-32) in future horizon 2020 and horizon 2080. Thus, high impact of 

climate change on sediment yield has been resulted from the analysis. The similar impact of 

climate change on sediment was found by Maina et al. (2013) for Madagascar’s major coral 

reef areas. 

  

  

Figure 7.17: Spatial representation of individual climate change impact on sediment yield in 

horizon 2020, horizon 2040, horizon 2060, and horizon 2080 at sub-watershed level 

iii. Evapotranspiration 

The change in ET at sub-watershed level has been also studied under future climatic changes. 

Results show an increase in ET loss of 0-35 mm during horizon 2020 for all the sub- 

watersheds of the study area. During horizon 2040, only two sub-watersheds (SW-6 and SW-9) 

located in lower basin area has decrease of ET (1-9 mm), whereas remaining area has an 
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increase in ET losses under future climate change. In horizon 2060, the future ET changes 

occurred mainly in the upper basin area where ET increases (10-18 mm), and in lower basin 

area the ET decreases (1-9 mm) (Figure 7.18). In horizon 2080, the ET loss may also lower (1-

27 mm) under future climatic changes. Although the precipitation is high during the horizon 

2080, the increased temperature in this horizon 2080 may induce more water vaporization with 

the increased precipitation, and hence high ET losses could be possible at the end of the 21
st
 

century. The result reveals that the impact of future climate change on ET is possible in the 

Betwa basin. Thus, there is need to assess the future climate change impact in the Betwa basin.     

  

  

Figure 7.18: Spatial representation of individual climate change impact on evapotranspiration 

in horizon 2020, horizon 2040, horizon 2060, and horizon 2080 at sub-watershed level 

iv. Water yield 

In this study, impact of climate change on water yield corresponds to baseline simulation has 

been analyzed at sub-watershed level. Result shows the maximum decrease in water yield 
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about 127 mm, and the maximum increase in water yield about 346 mm in future (Figure 7.19). 

Water yield has been majorly increases up to 346 mm during horizon 2060; due to more 

precipitation. However, decrease in water yield up to 127 mm has been observed for horizon 

2040 due to less precipitation. Few sub-watersheds namely SW-1, SW-2 and SW-4 have large 

reductions in water yield of about 71-127 mm in horizons 2060. Thus, effect of dry and wet 

spells during horizons 2060 could induces high impact on water yield. In horizon 2080, the 

effect of precipitation change also observed which is mainly in sub-watersheds of upper basin 

area (Figure 7.19). Overall, future precipitation change can significantly impact on water yield 

of the Betwa basin.  

  

  

Figure 7.19: Spatial representation of individual climate change impact on water yield in 

horizon 2020, horizon 2040, horizon 2060, and horizon 2080 at sub-watershed level 
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(b) Future simulation on monthly time-scale   

In addition, the monthly change analysis has been carried out to estimate the climate change 

impact on the monthly streamflow, sediment yield, ET and water yield of the Betwa basin. 

Monthly changes in hydrologic components during baseline and four future climate horizons 

are illustrated in Figure 7.20.  

 

Figure 7.20: Monthly variations in streamflow, sediment yield, ET and water yield   

i. Streamflow 

Based on the monthly model simulation, maximum and minimum streamflow during baseline 

year 1986 were 1409.39 cumec in August (monsoon season) and 15.78 cumec in June month, 

respectively (Figure 7.20a). In future, the peak streamflow increases with time in August 

month, i.e. 1303.69 cumec streamflow in horizon 2020, 1367.34 cumec streamflow in horizon 

2040, 2017.44 cumec streamflow in horizon 2060, and 1640.40 cumec streamflow in horizon 

2080 (Figure 7.20a). However, the reverse pattern of low streamflow, i.e. decrease in 

streamflow about 14.79 cumec in horizon 2020, 17.05 cumec in horizon 2040, 4.07 cumec in 

horizon 2060, and 6.56 cumec in horizon 2080 has been observed in June month. Results show 

that, the low and high streamflows may induce in horizon 2060 period (2060-2079) due to 

future precipitation variability. Results demonstrated that the streamflow has been significantly 

increases in August, and decreases in June. Thus, the monsoon streamflow, in June and August 

months, may alter largely in future due to the precipitation changes.  

(a) (c) 

(b) (d) 



168 

ii. Sediment yield 

Figure 7.20b represents monthly sediment yield in baseline 1986 and four future climatic 

horizons. Monthly sediment yield during baseline 1986 is high (80.65 t ha
-1

) in August. In 

future climate periods, sediment yield is high (70.05 t ha
-1

) during horizon 2020, 78.82 t ha
-1

 

during horizon 2040, 119.92 t ha
-1

 during horizon 2060, and 96.28 t ha
-1

 during horizon 2080 in 

August month. In this analysis also, future sediment yield is higher during monsoon months, 

especially in horizon 2060. The pattern of sediment yield change is very similar to the changes 

in streamflow. Thus, both streamflow and sediment yield may possibly have exhibited a 

significant relationship under monthly climatic changes. In this analysis, changes in monthly 

sediment yield are mainly observed for monsoon season, similar to the observed streamflow 

changes, in the Betwa basin.  

iii. Evapotranspiration 

In this analysis, high monthly ET losses have been observed in summer as well as monsoon 

season (Figure 7.20c). During baseline 1986, monthly maximum ET losses are estimated to be 

51 mm in April (summer), and 93 mm in August (monsoon). It is observed that the high ET 

induces during three months of monsoon season, i.e. July to September. In future, high ET 

losses, i.e. 98 mm in horizon 2020, 98 mm in horizon 2040, 95 mm in horizon 2060, and 91 

mm in horizon 2080 are observed for August month. Although the temperature is high in 

summer than other seasons, the less availability of water during summer may induce low ET 

losses, as compared to monsoon ET losses. Nevertheless, due to more surface water 

evaporation by increased monsoon temperature, high ET loss has been observed in monsoon 

season. Therefore, seasonal changes in future may have significant impact on water 

evaporation loss.    

iv. Water yield 

Results show that high amount of water yield has been obtained in monsoon season, and it will 

continue in future also. Monthly simulated water yield is high (123 mm) in baseline 1986, 

(August), 129 mm in horizon 2020 (September), 97 mm in horizon 2040 (August), 89 mm in 

horizon 2060 (August), and 109.07 in horizon 2080 (September). Thus, August and September 

months in monsoon season have high water yields as shown in Figure 7.20d. It is observed that, 

high water yield in monsoon season was further lowered in winter, and then in summer goes 

nearly zero. Thus, water yield also changes with the seasonal climatic changes in the Betwa 

basin.  
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7.3.5.3 Relationship between future precipitation and the model outputs  

In horizon 2020, the relationship analysis between changes in precipitation and the model 

simulation shows significant positive correlations for streamflow (R
2
 = 0.554, p<0.05), 

sediment yield (R
2
 = 0.074, p<0.05), ET (R

2
 = 0.207, p<0.05), and water yield (R

2
 = 0.985, 

p<0.05). In this analysis, all hydrology components exhibited the positive correlations as 

shown in Figure 7.21. Thus, the precipitation changes during horizon 2020 have significant 

impact on streamflow, sediment yield, ET and water yield of the Betwa basin.  

  

  

Figure 7.21: Change in future precipitation and its relation to the change in (a) streamflow, (b) 

sediment yield, (c) evapotranspiration, and (d) water yield during horizon 2020 (2020-2039) at 

sub-watershed level 

Similarly, in horizon 2040, the relationship analysis between precipitation change and the 

model simulation change shows significant positive correlations for streamflow (R
2
 = 0.156, 

p<0.05), sediment yield (R
2
 = 0.089, p<0.05), ET (R

2
 = 0.178, p<0.05), and water yield (R

2
 = 

0.946, p<0.05) as given in Figure 7.22. Thus, the precipitation changes in horizon 2040 also 

have significant impact on hydrology of the Betwa basin.  
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Figure 7.22: Change in future precipitation and its relation to the change in (a) streamflow, (b) 

sediment yield, (c) evapotranspiration, and (d) water yield during horizon 2040 (2040-2059) at 

sub-watershed level 

In horizon 2060, the relationship analysis between precipitation change and the model 

simulation change shows significant positive correlations for streamflow (R
2
 = 0.216, p<0.05), 

ET (R
2
 = 0.472, p<0.05), and water yield (R

2
 = 0.989, p<0.05). Here, the sediment yield 

analysis shows none response (p = 0.782) to the future precipitation changes (Figure 7.23b), 

might be due to an effect of frequent dry and wet spells or low intensity rainfall during horizon 

2060. Thus, the precipitation changes during horizon 2060 have significant impact only on 

three hydrology components (streamflow, ET and water yield) of the Betwa basin.  

  

  

Figure 7.23: Change in future precipitation and its relation to the change in (a) streamflow, (b) 

sediment yield, (c) evapotranspiration, and (d) water yield during horizon 2060 (2060-2079) at 

sub-watershed level 

Again, in horizon 2080, the relationship between precipitation change and the model simulation 

change shows significant positive correlations for streamflow (R
2
 = 0.157, p<0.05), ET (R

2
 = 

0.168, p<0.05), and water yield (R
2
 = 0.991, p<0.05). In this analysis also, sediment yield has 

none response (p = 0.766) to the future precipitation changes (Figure 7.24b). Thus, the 
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precipitation changes during horizon 2080 also have significant impact on three hydrologic 

components (streamflow, ET and water yield) of the Betwa river basin.  

  

  

Figure 7.24: Change in future precipitation and its relation to the change in (a) streamflow, (b) 

sediment yield, (c) evapotranspiration, and (d) water yield during horizon 2080 (2080-2099) at 

sub-watershed level 

7.3.6 Combined land use and climate change impact assessment 

The combined impact of land use and climate change on the hydrology of the Betwa basin has 

been assessed by estimating simulation difference between scenario-4 and scenario-1 (S4-S1). 

Scenario-1 is for a baseline simulation, and scenario-4 is for a model simulation under changes 

in land use data of the years 2013 by 2040, and changes in climate data of the years 1986-2005 

by four future horizons of the years 2020-2099. Furthermore, the relationship analysis has been 

performed to estimate the Pearson’s correlation coefficient (r) value and the significance level 

(p value < 0.05) of their impact on hydrology.  

7.3.6.1 Spatial analysis of change in future simulation at sub-watershed level 

In this study, sub-watershed wise changes in the model simulation have been analyzed spatially 

for future climate horizons 2020, 2040, 2060 and 2080. 

i. Streamflow 

The changes in future streamflow at sub-watershed level are presented in Figure 7.25. It is 

observed that, results of combined land use and climate change have very similar changing 

pattern to the results obtained in an individual climate change analysis. Due to combination of 

land use change impact, some aggregated changes are also induced in the present study. Results 
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show that in horizon 2020 nearly all the sub-watersheds have increase in streamflow (1-20 

cumec), except the SW-3, SW-9, SW-13, SW-15, SW-30 and SW-36 where a low amount of 

streamflow reduction (0-8 cumec) has been observed (Figure 7.25). This streamflow reduction 

could be more in horizon 2040 due to low precipitation in lower part of the study area. 

However, due to more precipitation during horizon 2060, the streamflow increases up to 110 

cumec in few sub-watersheds due to flow contribution from upper to lower basin area. Thus, 

high streamflow change during horizon 2060 has been observed near the basin outlet (Figure 

7.25). Similar type of streamflow changes in lower amount are also observed for horizon 2080 

owing to high precipitation changes in future. Result shows that the SW-1, SW-2, SW-4, SW-

5, SW-6, SW-11 and SW-17 have streamflow changes in the range of 41-60 cumec.   

Overall, the combined impact of both land use and climate change induces more significant 

changes in the model simulation. Especially, streamflow increases in the SW-3 and SW-15 

during horizon 2020 and in the SW-6 during horizon 2080 as compared to the results obtained 

from the individual climate change impact analysis. From this analysis, it is observed that 

impact of climate change is dominant over the impact of land use change in future years. 
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Figure 7.25: Spatial representation of combined land use and climate change impact on future 

streamflow at sub-watershed level 

ii. Sediment yield 

Similarly, the combined impact of land use and climate change also shows very similar effects 

on future sediment yield. Result shows that the small increase in sediment yield about 1-10 tha
-

1
 has been induced in most of the sub-watersheds of study area. Several sub-watersheds, 

namely SW-25 in horizon 2020 and 2080; and the SW-7, SW-12, SW-14, SW-16, SW-18, SW-

22 and SW-24 in horizon 2040 have sediment yield reduction of about 0-9 t ha
-1

. In horizon 

2060, sediment yield may increase (about 51-80 tha
-1

) in SW-1, SW-4 and SW-16; about 41-50 

t/ha in SW-16 and SW-17; and about 11-30 tha
-1

 in SW-2, SW-5, SW-11 and SW-20 (Figure 

7.26). Similarly, few sub-watersheds SW-1, SW-2, SW-4, SW-14 and SW-16 have increased 

sediment yield (11-50 t/ha) during horizon 2080. This analysis reveals that combined impact of 

land use and climate change increases sediment yield in SW-1, SW-2 and SW-21 as compared 

to the sediment yield obtained under individual climate change analysis.  
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Figure 7.26: Spatial representation of combined land use and climate change impact on future 

sediment yield at sub-watershed level 

iii. Evapotranspiration 

In this analysis, all the sub-watersheds located in the upper basin area have increased ET loss 

(69 mm) during horizon 2020, 2040 and 2060. Only two sub-watersheds (SW-34 and SW-48) 

located in upper basin area has increased ET loss (0-69 mm) during horizon 2080 (Figure 

7.27). Also, in this analysis, most of the ET group values indicate decrease in future ET under 

combined impact of land use and climate change. The SW-32 and SW-18 have decrease in ET 

values from 181 to 240 mm and from 301 to 329 mm, respectively in all future horizons. 

Although, the precipitation change is high during horizons 2060 and 2080, the increased 

temperature in horizon 2080 may induce more water evaporation, and hence high ET losses at 
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sub-watershed level. Thus, this combined impact analysis reveals that the impact of increased 

temperature on ET loss is dominant over the impact of increased precipitation in future.     

  

  

Figure 7.27: Spatial representation of combined land use and climate change impact on future 

evapotranspiration at sub-watershed level 

iv. Water yield 

The sub-watershed level analysis shows a decrease in future water yield under combined land 

use and climate change impact analysis (Figure 7.28). In upper basin area, the high water yield 

(71-140 mm) in few sub-watersheds (SW-43 to SW-48) has been decreased to 1-70 mm, under 

combined impact analysis during horizon 2020. Also, in horizon 2040, the SW-46, SW-47 and 

SW-48 have decreased water yield from 141-210 mm to 41-140 mm. The combined impact of 

land use and climate change decreases the water yields in SW-39 and SW-48 during horizon 
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2060; and in SW-46 and SW-47 during horizon 2080 (Figure 7.28). Furthermore, in the lower 

basin area few sub-watersheds show decrease in water yield under combined land use and 

climate change impact analysis as compare to the individual climate change analysis. Thus, the 

sub-watershed having decrease in water yield may have impacted due to dominant impact of 

land use change over climate change.  

  

  

Figure 7.28: Spatial representation of combined land use and climate change impact on future 

water yield at sub-watershed level 

7.3.6.2 Relationship analysis of combined land use and climate changes 

To assess the significance level of combined impact of land use and climate change, the 

Pearson’s correlation analysis has been carried out to correlate the change in model simulation 

to the changes in land use and climate (here precipitation) at sub-watershed level.  
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i. Streamflow 

Analysis shows that the effect of dense forest exhibited significant positive correlation to the 

future streamflow change in first two climate horizons 2020 (r = 0.327) and 2040 (r = 0.457). 

However, the degraded forest change has significant negative relationship in last two future 

climate horizons 2060 (r = -0.271) and 2080 (r = -0.275). The effect of barren land on 

streamflow also exhibited a negative correlation in horizon 2020 (r = -0.371) and horizon 2040 

(r = -0.342). Thus, decrease in dense forest and increase in degraded forest has varying 

response to the future streamflow. Bonell et al. (2010) observed similar impacts of change in 

forest area on surface and sub-surface water flows in Western Ghats of India. The agriculture 

area has significant positive response (r = 0.299) with streamflow increment during horizon 

2020 only, which further reduces under future land use change from horizon 2040 to horizon 

2080 (Table 7.7).  

The effect of climate change, precipitation only, shows significant positive impact on the future 

streamflow under combined impact of land use and climate change analysis. With an increase 

in future precipitation, the streamflow also increases significantly in future years. Thus, the 

results of streamflow revealed that climate change impact is dominant over the land use change 

in all future climate horizons.  

Table 7.7: Relationship of future land use and climate change to the change in future 

streamflow at sub-watershed level 

Pearson's 'r' value 
Streamflow 

Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Land use 

Dense forest 0.327 0.457 0.260 0.215 

Degraded forest -0.241 -0.248 -0.271 -0.275 

Agriculture 0.299 0.218 0.233 0.255 

Barren land -0.371 -0.342 -0.186 -0.176 

Waterbody -0.004 0.054 -0.027 -0.062 

Settlement -0.111 -0.181 -0.152 -0.129 

Climate Precipitation 0.727 0.760 0.456 0.387 

Note: Bold values (green colour for direct response, and red colour for indirect response) represents relationship 

at the 0.05 significance level  

ii. Sediment yield 

The results of combined impact analysis show a significant positive response of change in 

dense forest area to the change in sediment yield at sub-watershed level during horizon 2020 (r 

= 0.310) and horizon 2040 (r = 0.439). Barren land exhibited a significant negative relationship 

(r = -0.297) only in horizon 2040. Change in precipitation pattern also have significant impact 

on sediment yield in horizon 2020 (r = 0.290), and horizon 2060 (r = 0.526) at sub-watershed 
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level (Table 7.8). During horizon 2060 and horizon 2080, the precipitation change has non-

significant response to the sediment loss. It may be due to the wet weather condition causing 

prolonged soil moisture availability and results a less soil erodibility (Fitzjohn et al., 1998; 

Ziadat & Taimeh, 2013). Overall, the combined impact of land use and climate induces several 

significant changes in sediment yield of the Betwa basin.  

Table 7.8: Relationship of future land use and climate change to the change in future sediment 

yield at sub-watershed level 

Pearson's 'r' value 
Sediment yield 

Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Land use 

Dense forest 0.310 0.439 0.229 0.220 

Degraded forest 0.018 -0.085 0.046 0.113 

Agriculture -0.007 0.064 -0.098 -0.163 

Barren land -0.237 -0.297 -0.021 -0.014 

Waterbody 0.091 0.077 -0.046 -0.003 

Settlement -0.054 -0.117 0.020 0.048 

Climate Precipitation 0.290 0.526 0.056 -0.020 

Note: Bold values (green colour for direct response, and red colour for indirect response) represents relationship 

at the 0.05 significance level  

iii. Evapotranspiration 

In future, the combined impacts of land use and climate change on ET losses have significant 

relationships mainly with waterbody and precipitation. The waterbody class has positive 

significant correlations with ET in all future climate horizons (Table 7.9). Changes in 

precipitation also have significant correlation in horizon 2040 (r = 0.528), horizon 2060 (r = 

0.405), and horizon 2080 (r = 0.338). In horizon 2020, low temperature, as compared to other 

horizons, may induce insignificant relationship with precipitation change. Thus, results reveal 

that change in ET largely deals with the changes in waterbody vaporization. Thus, the future 

ET losses of the Betwa basin are considerably dependent on vaporization from the surface 

water, i.e. land use change impact is prominent here. Kundu et al. (2017a) reported that 

individual impact of land use change is prominent for more ET losses in Narmada river basin 

of central India.   
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Table 7.9: Relationship of future land use and climate change to the change in future 

evapotranspiration at sub-watershed level 

Pearson's 'r' value 
Evapotranspiration 

Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Land use 

Dense forest 0.032 0.139 0.116 -0.013 

Degraded forest -0.210 -0.221 -0.232 -0.235 

Agriculture -0.130 -0.050 -0.070 0.003 

Barren land -0.063 -0.197 -0.158 -0.182 

Waterbody 0.916 0.857 0.882 0.865 

Settlement -0.089 -0.172 -0.138 -0.135 

Climate Precipitation 0.247 0.528 0.405 0.338 

Note: Bold values (green colour for direct response, and red colour for indirect response) represents relationship 

at the 0.05 significance level  

iv. Water yield 

Furthermore, the water yield in the present study area has significant relationship with changes 

in the dense forest, agriculture, barren land and precipitation in future (Table 7.10). The 

relationship of dense forest, agriculture and precipitation changes with the water yield 

exhibited positive correlations; however, the barren land has negative correlation as shown in 

Table 7.10. It shows that, the effect of agriculture area change on water yield is only responsive 

during high precipitation periods (horizon 2060 and horizon 2080) when an intensive 

agriculture would be possible. High water utility for agriculture purpose may store more water 

in the watershed than losing it (Bosch & Hewlett, 1982). Nevertheless, barren land may lose 

the water yield due to changes in the barren land at sub-watershed level pronounce a negative 

impact on the future water yield. In this analysis, change in water yield is highly correlated to 

the precipitation changes (Table 7.10). Thus, climate change impact is major on water yield 

than the land use change impact. Kundu et al. (2017a) reported that individual impact of 

climate change is prominent on the water yield of the Narmada river basin of central India.  

Table 7.10: Relationship of future land use and climate change to the change in future water 

yield at sub-watershed level 

Pearson's 'r' value 
Water yield 

Horizon 2020 Horizon 2040 Horizon 2060 Horizon 2080 

Land use 

Dense forest 0.384 0.442 0.312 0.360 

Degraded forest -0.201 -0.158 -0.162 -0.192 

Agriculture 0.192 0.256 0.379 0.331 

Barren land -0.371 -0.555 -0.630 -0.551 

Waterbody 0.159 0.194 0.136 0.125 

Settlement -0.088 -0.213 -0.239 -0.232 

Climate Precipitation 0.939 0.990 0.988 0.980 

Note: Bold values (green colour for direct response, and red colour for indirect response) represents relationship 

at the 0.05 significance level  
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7.3.7 A conceptual framework for individual and combined impact assessment  

In this study, a conceptual framework representing four types of the model simulation results of 

baseline (no change), individual land use change, individual climate change, and combined 

land use and climate change analysis are limited by two half-axes of land use and climate 

change/constant for all quadrants. In each quadrant, four hydrology components (FLOW, 

SYLD, ET and WYLD) are considerably represented to compare the individual as well as 

combined impacts of land use and climate change on the future model simulations in 

comparison to the baseline simulation.  

The conceptual framework representing the impact of land use and climate change on 

hydrologic components of the Betwa basin is shown in Figure 7.29. Result shows that FLOW 

variable increases from 67.77 cumec to 67.86 cumec due to land use change, from 67.77 cumec 

to 80.46 cumec due to climate change, and from 67.77 cumec to 80.56 cumec due to combined 

impact of land use and climate changes (Figure 7.29). Similarly, the SYLD variable increases 

from 16.51 t ha
-1 

to 16.58 t ha
-1 

due to land use change, from 16.51 t ha
-1 

to 19.61 t ha
-1 

due to 

climate change, and from 16.51 t ha
-1 

to 16.69 t ha
-1 

combined impact of land use and climate 

changes. Thus, both the FLOW and SYLD have positive impact of individual as well as 

combined changes in land use and climate of the Betwa basin.  

 

Figure 7.29: Comparison of individual and combined impacts of land use and climate change 

using a conceptual framework  

[Blue colour value at right side represents streamflow (cumec), dark-red colour value at bottom side represents 

sediment yield (t/ha), green colour value at top side represents ET (mm), and purple colour value at left side 

represents water yield (mm)] 
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Furthermore, the results show that ET has negative impact of land use change (reduced from 

460 mm to 411 mm), climate change (reduced from 460 mm to 456 mm), and combined land 

use and climate changes (reduced from 460 mm to 405 mm) with respect to the baseline ET 

value 460 mm (Figure 7.29). Similarly, the WYLD also has negative impact of land use change 

(reduced 400 mm to 386 mm), climate change (reduced from 400 mm to 350 mm), and 

combined land use and climate changes (reduced from 400 mm to 337 mm) with respect to the 

baseline WYLD value 400 mm. Thus, both ET and WYLD have negative impacts of individual 

as well as combined changes in land use and climate of the Betwa basin.  

Overall, the climate change impact is higher than the land use change impact on the hydrology 

of the Betwa River basin. Kundu et al. (2017a) reported that an individual impact of climate 

change is prominent for water yield, and land use change impact is prominent for the more ET 

losses. Due to the land use and climate changes in Betwa basin, the FLOW and SYLD may 

increase, while the ET and WYLD may decrease in future. Thus, sustainable management 

practices are crucial to maintain the changes in hydrology components in future. In general, the 

proposed conceptual framework helps to interpret the results of model simulation under 

changing land use and climate conditions. Also, their individual as well as combined impact on 

hydrologic components can be easily analyzed, and substantially compared in the present 

study. It is recommended to adopt such methodology for future research studies not only in 

India, but also in other parts of the world facing rapid changes in regional land use and climate. 

7.3.7.1 Limitations of the conceptual framework 

 The conceptual framework proposed in this study is limited to few hydrology 

components only, i.e. FLOW, SYLD, ET and WYLD etc. 

 This conceptual framework can represent the impact of land use and climate change 

only on hydrology of a river basin. It does not represent the impact in each sub-

watershed of the study area. Separate analysis is required for each sub-watershed level 

impact assessment.  

 Also, the conceptual framework is limited to represent only the changes in hydrology, 

not the changes in land use classes or the changes in climate parameters.  

7.4 CONCLUSIONS 

The SWAT model was employed to simulate the impacts of individual land use change, and 

climate change, and the impacts of combined land use and climate changes on hydrology of the 

Betwa basin. Further, a conceptual framework has been developed and employed to compare 
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these impacts on streamflow, sediment yield, ET and water yield. Based on the results, 

following conclusions are drawn from the present research study:  

1. The GCM-derived future climate change analysis shows increase in precipitation (140 

mm) during horizon 2060.  

2. Analysis also shows significant increase in annual minimum temperature (from 1.22 °C 

to 5.34 °C) and annual maximum temperature (from 0.92 °C to 4.87 °C) during future 

years (2020-2099).  

3. Spatial analysis of SWAT simulations under varying land use maps and GCM-derived 

climate datasets show remarkable impact of climate change as compare to the land use 

change impact on streamflow, sediment yield, ET and water yield at sub-watershed 

level.  

4. Individual land use change impact assessment at sub-watershed level shows that ET 

change has significant positive response (R
2
 = 0.842, P<0.05) to the vaporization from 

waterbody. Furthermore, the water yield exhibited significant response to the dense 

forest (R
2
 = 0.076, P<0.05), degraded forest (R

2
 = 0.2, P<0.05) and agriculture (R

2
 = 

0.245, P<0.05). Thus, land use change impact is found to be prominent on water 

balance of the Betwa basin.  

5. Individual climate change impact assessment shows that precipitation has significant 

(p<0.05) positive impact on streamflow (R
2
 = 0.554 and 0.156), sediment yield (R

2
 = 

0.074 and 0.089), ET (R
2
 = 0.207 and 0.178), and water yield (R

2
 = 0.985 and 0.946) 

during horizon 2020 and horizon 2040, respectively. In the last two horizons 2060 and 

2080, only streamflow (R
2
 = 0.216 and 0.157), ET (R

2
 = 0.472 and 0.168), and water 

yield (R
2
 = 0.989 and 0.991) have positive response to the precipitation change. In this 

analysis, the sediment yield has none significant response (p = 0.782 and 0.766) to the 

precipitation changes during horizons 2060 and 2080. Thus, climate change impact is 

found to be prominent on water yield of the Betwa basin.  

6. In future, the impact of climate change is dominant over the land use change impact. 

Increase in precipitation under future climatic change may increases the losses of 

hydrologic components. Changes in dense forest, agriculture and waterbody induce 

positive impact; nevertheless the changes in degraded forest and barren land induce 

negative impact on hydrology of the Betwa basin.  

7. The developed conceptual framework can successfully separate the individual as well 

as combined impacts of land use change and climate change on hydrology components 

i.e. FLOW, SYLD, ET and WYLD, of a river basin.  
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CHAPTER 8 

EVALUATION OF BEST MANAGEMENT PRACTICES FOR 

SUSTAINABLE RIVER BASIN MANAGEMENT  

This chapter deals with the evaluation of Best Management Practices (BMPs) and their 

recommendations for sustainable management of a large river basin. For this, a calibrated and 

validated SWAT model has been used to simulate the effective BMP intervention. This study is 

focused on evaluation of the four over-land BMPs namely tillage management, contour 

farming, residue management and strip cropping; and five in-stream BMPs namely grassed 

waterways, streambank/channel stabilization, grade stabilization structures, porous gully plugs 

and recharge structures in the Betwa River basin.  

8.1 BACKGROUND OF THE STUDY 

Development and utilization of natural resources in a river basin has focused the application of 

hydrological models considering all physical processes. Many watershed management 

programs suggested modelling strategies to investigate effective management practices at the 

watershed level (Pandey et al., 2009b; Lam et al., 2011; Jang et al., 2017). Modelling strategies 

for a watershed includes intervention of suitable and practicable Best Management Practices 

(BMPs) in critical soil erosion prone areas (Tripathi et al., 2005). Therefore, BMPs are 

generally accepted as an effective measure to control and protect the non-point sources of 

streamflow and sediment. The Soil and Water Assessment Tool (SWAT) is a world-wide used 

hydrologic model to predict the impact of BMPs on streamflow and sediment yields in a 

complex watershed (Ullrich and Volk, 2009; Arnold and Fohrer, 2005, Murty et al., 2014). In a 

river basin, priority of sub-watersheds is mainly depends on intensity of sediment/ nutrient 

losses produce from various natural resources, and can be taken as a basis for prioritization of 

the critical areas (Tripathi et al., 2005; Niraula et al., 2013). Ranking needs to assign before 

prioritization of critical sub-watershed based on the susceptibility to erosion (Singh et al., 1992; 

Pandey et al., 2009a, 2011). The approach of sub-watershed prioritization based on sediment 

yield can be applied for the BMPs intervention.  

Soil, a productive component of land, is degrading under changing climate and land use; hence, 

land productivity reduces with soil erosion (Pender et al., 2004; Zhang et al., 2008, Gao et al., 

2013; Wu, et al., 2018). The erosion process includes detachment, transportation and 

deposition of soil particles from one location to another through the natural agents like water 

(Foster and Meyer, 1972). Soil erosion is affected by natural factors such as climate, soil, 

topography, vegetation and anthropogenic activities (Kuznetsov et al., 1998). Information of 
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erosion pattern and trend can be obtained by modelling the water-induced soil erosion in 

relation to current and potential future changes in climate and land use (Millington, 1986). 

Therefore, the erosion caused by water needs to be managed for conservation of soil, and 

sustain the land productivity.  

River channel is the primary element of a drainage basin carries flow and sediment load. 

Channel processes are quantitatively studied from last few decades, in terms of the impact of 

human activity and climate change on streamflow and sediment (Arnell, 1992; Rumsby and 

Macklin, 1994; Lake et al., 2000; Jiongxin, 2005; Zhang et al., 2018a; Gao et al., 2013; Wu et 

al., 2018). Channel segment reflects the interaction of streamflow and sediment loads with 

local factors including slope and cover (Froehlich et al., 1990; Bridge, 1993). The channel 

conveyance capacity can alter with time and magnitude of streamflow, and sediment loads by 

erosion and deposition. Thus, a river channel management requires understanding of channel 

process including streamflow and sediment transport. Moreover, an interaction between 

channel process and form of river channel should be known both physically and from 

management perspectives (Habersack et al., 2016; Narasimhan et al., 2017). For sustainability 

of river channel, feasible future management practices must be studied. The structural and non-

structural measures viable for potential management approach are usually made to maximize 

the advantage of natural resource conservation, and to reflect the environmental issues 

(Kundzewicz, 2002; Mishra et al., 2007). It should be well managed within the dynamic 

context and with an understanding of past channel changes under contemporary conditions. 

The legal and political context of a river channels may influence the environment management 

in a watershed, particularly in a trans-boundary river basin (Cheng et al., 2003; Armitage, 

2005; Giordano and Shah, 2014). Therefore, many countries have adopted legislation based 

river basin management plans for conservation and protection of channel segment.  

In this study, an effective management for land and river channel has been envisioned in the 

context of Betwa River basin, India. This is a trans-boundary/inter-state river basin between 

Madhya Pradesh and Uttar Pradesh State plays an important role in water supply for agriculture 

and urban sectors. Extreme climatic event, like heavy rainfall occurred in 2013, causes flood 

and rapid erosion processes in the Indian River basin (Joseph et al., 2015; Arora et al., 2016; 

Agnihotri et al., 2017). It may have great impact on river channel segment disturbing 

environmental flow and waterway. The Betwa River basin has undergone on channel geometry 

changes due to extreme rainfall events, like in the year 2013. The river bank and channel bed 

were eroded with large streamflow and overland flows. To reduce erosions within river 
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channel, channel protection plans and conservation measures are important to introduce in an 

effective way. 

Thus, this study is focused to evaluate the effective management practices for land, and 

protection of river channel by implementing over-land as well as in-stream BMPs at sub-

watershed level. In this study, firstly soil erosion status of the study area has been 

accomplished by identification and prioritization of the critical sub-watersheds. After the 

calibration and validation, the SWAT model has been used for evaluation of BMPs. Initial 

evaluation of the SWAT model has been already carried out in Chapter-6. In this chapter, 

identification of critical soil erosion prone areas and evaluation of best management practices 

has been carried out for recommendation of suitable management interventions using the 

SWAT model.   

8.2 MATERIALS AND METHODS 

8.2.1 Data acquisition  

The details of data pertaining to meteorological, hydrological, GCM and spatial data are briefly 

discussed in Chapter-3. All the required input information were provided in ArcGIS compatible 

raster (GRIDS), vector (shapefiles), and SWAT database formats. After data formatting, the 

SWAT model setup was carried out for hydrologic simulation. In this study, the calibrated and 

validated SWAT model was further used to evaluate the effectiveness of BMP implementation 

for sustainable river basin management. The methodology flowchart adopted in this study is 

provided in Figure 8.1. 

8.2.2 Baseline simulation 

The baseline values for the input parameters (pre-BMP) were selected by model calibration 

process, suggested values from the literature, and prior experience of the analyst. The baseline 

simulation was carried out for historical baseline period 1986 (1986-2005), and it was 

compared to the future climate horizon 2020 (2020-2039), horizon 2040 (2040-2059), horizon 

2060 (2060-2079) and horizon 2080 (2080-2099). In this analysis, the existing river basin 

management practices have been included for the baseline simulations. It includes existing 

conventional tillage practice, land cover practice, water storages located on main channel and 

tributary channel of the Betwa River Basin and their management. Thus, this study is focused 

mainly on the evaluation of BMPs and their implementation and effectiveness in the Betwa 

River basin. 
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Figure 8.1: Methodology flowchart for evaluation of over-land and in-stream BMPs for 

sustainable river basin management 

8.2.3 Assumptions and limitations  

Central Water Commission (CWC) regulates the hydrologic measurement in Indian River 

basins. Change in magnitude and frequency of stream flow could affect target water storages. 

Also, presently available water storages could change in future due to ongoing litigation and 

boundary conditions which may possibly affect the sediment loads in the study basin. Thus, it 
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is considered that future boundary conditions of streamflow and sediment loads will remain 

unchanged from baseline period to future period.  

From the literature, the land use and climate changes have individual and combined impacts on 

hydrologic simulations (Bronstert et al., 2002; Pervez and Henebry, 2015; Feng et al., 2016; 

Zuo et al., 2016). Thus, it is presumed that land use (of the year 2001) will remain constant 

from baseline period to future horizons, while assessing climate change impact. The climate 

models with several CO2 concentrations (such as RCP2.6, RCP4.5, RCP6 and RCP8.5) could 

produce varying climate change response in the analysis. To avoid the effect of CO2 

concentration, this study is limited to use only one climate scenario (RCP8.5) having maximum 

possible impact of the CO2 concentrations in future.  

While implementing BMPs, only parameter (s) representing a BMP has been adjusted keeping 

the constant calibrated/default SWAT values of other parameters. However, the changes in land 

as well as river channel could be possible in future due to human disturbances. This could be a 

limitation of the present study.  

8.2.4 Identification and prioritization of critical sub-watersheds 

This study uses average annual sediment simulation to identify and prioritize the critical sub-

watersheds of the Betwa River basin for future scenarios. Annual sediment yield was estimated 

for each sub-watershed of the study area using the SWAT model. The simulated sediment yield 

is in close agreement with the measured values, thus an average value of model outputs from 

different sub-watersheds can be quite appropriate to use for identification and prioritization of 

critical sub-watersheds. Initially, the sub-watershed wise average annual sediment yield was 

arranged in descending order, and then rank was assigned to each sub-watershed according to 

range of soil erosion classes (Table 8.1) adopted from Singh et al. (1992). Critical sub-

watersheds were further prioritized from very severe (priority class-I) to slight (priority class-

VI) erosion classes to apply BMPs as a soil and water conservation measure. In this study, 

over-land as well as in-stream BMPs implementations are focused for priority Class-I (very 

severe soil erosion class) to priority Class-V (moderate soil erosion class) under changing 

climate conditions. Impact of each BMP has been evaluated at both the sub-watershed and the 

river basin level, expressed by percent reduction and sensitivity index.  
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Table 8.1: Priority wise classification for sediment yield and soil erosion rates  

(Singh et al., 1992) 

Sediment yield (t ha−1 year−1) Soil erosion class Priority class 

0–5 Slight VI 

5–10 Moderate V 

10–20 High IV 

20–40 Very high III 

40–80 Severe II 

>80 Very severe I 

8.2.5 BMP representation in the SWAT model 

The impact of BMP implementation has been assessed to establish the soil and water 

conservation as well as river channel protection/restoration plans for the Betwa basin. The 

SWAT model has been used to represent and analyze the feasible BMPs in critical sub-

watersheds over historical baseline period (1986-2005) and future horizon period (2020-2099) 

under changing climate. The BMPs are considered based on the information available in the 

literature, and collected by the personal communication with the farmers, scientists and 

agricultural development officers. Based on the results of identification and prioritization of 

critical sub-watersheds, the watershed treatments are implemented in the study area.  

In order to evolve an appropriate conservation and protection strategy for land as well as 

main/tributary channel of the Betwa River basin, nine BMPs have been implemented and 

evaluated in the present study as given in Table 8.2.  

Table 8.2: Best management practices (BMPs) evaluated in the study 

     Over-land BMPs       In-stream-BMPs 

1. Tillage management 

2. Contour farming 

3. Residue management 

4. Strip cropping 

1. Grassed waterways 

2. Streambank stabilization 

3. Grade stabilization structures 

4. Porous gully plugs 

5. Recharge Structures 

These BMPs are implemented based on the function of a conservation practice suggested to 

represent a BMP in SWAT. Definition and purpose of BMPs were obtained from the Natural 

Resources Conservation Service (NRCS) standard practice code (USDA-NRCS, 2008). 

Considering hydrologic processes simulated by the SWAT model and watershed subdivision 

relevant to this study, BMP parameters and their values were chosen based on published 

literature and expert opinion. The model parameters and their values used to simulate pre-BMP 

and post-BMP conditions are presented in Tables 8.3a&b. 
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Table 8.3a: Parameters and their values used to represent pre-BMP and post-BMP conditions in 

the SWAT model (over-land BMP) 

BMP Function Selection 
Variable name 

(input file) 

Pre-BMP value  

(from calibration) 

Post-BMP 

value 
Reference 

Tillage 
management 

(Conservation 

tillage, field 
cultivator, and zero 

tillage) 

Reduce velocity 
of flow  

Facilitate 

sediment settling 
Reduce soil 

erosion 

Agriculture  
land 

DEPTIL (.til) 
EFFMIX (.til)*e 

CN2 (.mgt) 

150 
0.95 

varies 

100, 100, 25 
0.25, 0.30, 0.05 

CN2-2&3*a 

Tripathi et al. 
(2005), Pandey et al. 

(2009b) and Tuppad 

et al. (2010)  

Contour farming Reduce sheet 
erosion 

 

Agriculture  
land 

CN2 (.mgt) 
USLE_P (.mgt) 

varies 
0.65 

CN2-3*a 
slope dependent*b 

Arabi et al. (2008) 
and Tuppad et al. 

(2010) 

Residue 
management 

Reduce overland 
flow 

Increase 

infiltration 
Reduce sheet 

and rill erosion 

Agriculture  
land 

CN2 (.mgt) 
USLE_C 

(.plant.dat) 

OV_N (.hru) 

varies 
0.15 

 

0.14*d 

CN2-2*a 

 weighted*c 

   

0.3 

Arabi et al. (2008) 
and Jang et al. 

(2017) 

Strip cropping  Reduce flow in 
small 

depressions 

Increase surface 
roughness 

Reduce sheet 
and rill erosion 

Agriculture  
land 

CN2 (.mgt) 
USLE_C 

(.plant.dat) 

USLE_P (.mgt) 
OV_N (.hru) 

varies 
0.15 

 

0.65 
0.14*d 

CN2-3*a 
weighted*c 

 

slope dependent*b 

0.19 

Arabi et al. (2008) 

*
a
 CN2 reduced by 2 (CN2-2) and 3 (CN2-3) from the calibration values. 

*
b
 USLE support practice factor (value given in bracket) varies with the land slopes-  

      For contour farming: 1-2% (0.60), 3-5% (0.50), 6-8% (0.50), 9-12% (0.60), 13-16% (0.70), 17-20% (0.80), and 21-25% (0.90).  

      For strip cropping: 1-2% (0.30), 3-5% (0.25), 6-8% (0.25), 9-12% (0.30), 13-16% (0.35), 17-20% (0.40), and 21-25% (0.40).  

*
c 
Weighted average values for the residue management and strip cropping.   

*
d
 Value assigned by the SWAT model based on hydrologic condition.  

*
e 
Three post-BMP values are given for the three tillage treatments.   

Table 8.3b: Parameters and their values used to represent pre-BMP and post-BMP conditions in 

the SWAT model (in-stream BMP) 

BMP Function Selection 
Variable name 

(input file) 

Pre-BMP value  

(from calibration) 

Post-BMP 

value 
Reference 

Grassed 

waterways 

Increase channel cover 

Reduce channel erodibility 

Increasing channel 
roughness 

Main 

channel 

CH_COV (.rte) 

CH_EROD (.rte) 

CH_N2 (.rte) 

0.5 

0.03 

0.014*a 

0.001 

0.001 

0.03 

Bracmort et al. 

(2006) and 

Arabi et al. 
(2008) 

Streambank 

stabilization 

Reduce sediment load in 

main channel 
Maintain streamflow 

capacity 

Main 

channel 

CH_EROD (.rte) 

CH_N2 (.rte) 

0.03 

0.014*a 

0.001 

0.03 

Narasimhan et 

al. (2017), Chow 
(1959) and 

Tuppad et al. 

(2010) 
Grade 

stabilization 

structures 

Reduce gully erosion 

Reduce slope steepness 

Main 

channel 

CH_EROD (.rte) 

CH_S2 (.rte) 

0.03 

assigned by SWAT*b 

0.001 

estimated*c 

Bracmort et al. 

(2006) and 

Tuppad et al. 
(2010) 

Porous 

gully plugs 

Reduce gully erosion 

Reduce flow velocity 
Trap sediment 

Tributary 

channel 

CH_N1 (.sub) 0.014*a 0.05 Chow (1959), 

Srinivasan 
(2008) and 

Tuppad et al. 

(2010) 
Recharge 

Structures 

Increase ground water 

recharge 

Tributary 

channel 

CH_N1 (.sub) 

CH_K1 (.sub) 

0.014*a 

0.0 

0.08 

25 

Lane (1983) and 

Tuppad et al. 

(2010) 

*
a
 Assigned by SWAT model based on hydrologic condition. 

*
b
 Assigned by SWAT based on Digital Elevation Model (DEM) used in this study. 

*
c
 Estimated for grade stabilization structure as given in methodology section.  

Description of each BMP and its representation in the SWAT model at pre-BMP and post-BMP 

condition is given below:   
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8.2.5.1 Tillage management  

In this study, conservation tillage, field cultivator and zero tillage have been used to test against 

the existing/conventional tillage practice mould board plough (Table 8.4). Tillage management 

includes various practices that cause less soil disturbance than the conventional tillage. In 

SWAT, tillage practices are differing in terms of mixing efficiency, tillage depth, and the SCS 

runoff curve number (CN2). Mixing efficiency (EFFMIX) represents the fraction of materials 

(residue, nutrient and pesticides) on the soil surface that are mixed uniformly throughout the 

soil depth. The tillage depth (DEPTIL) represents the depth of mixing caused by tillage 

operation. Tillage treatments with their respective mixing efficiencies and tillage depth 

suggested by Tripathi et al. (2005), Neitsch et al. (2011) are provided in Table 8.4. 

Table 8.4: Tillage management considered in the study 

Tillage treatments Tillage code Tillage depth (DEPTIL) Mixing efficiency (EFFMIX) 

Mould board plough MLDBOARD 150 0.95 

Conservation tillage CONSTILL 100 0.25 

Field cultivator FLDCULT 100 0.30 

Zero tillage ZEROTILL 25 0.05 

In the study region, farmers do not use advanced tillage implements due to financial 

constraints, and poor knowledge towards improved agricultural implements. Thus, the 

conservation tillage treatment was selected based on the previous literature studies undertaken 

in different watersheds of India for evaluation of the tillage practices (Triphati et al., 2005; 

Behera and Panda, 2006; Pandey et al., 2009b).  

8.2.5.2 Contour farming (NRCS practice code-330) 

Contour farming consists of several field operations including plowing, planting, cultivating 

and harvesting the crops along the contour of the field. This practice is specially implemented 

to reduce surface runoff by impounding water in small depressions, to reduce sheet and rill 

erosion by reducing erosive power of surface runoff, and preventing or minimizing 

development of rills. The curve number (CN2) and USLE support practice factor (USLE_P) 

have been used to represent the contour farming practice in the SWAT model (Arabi et al., 

2008; Tuppad et al., 2010).  

8.2.5.3 Residue management (NRCS practice code-345) 

Implementation of residue management practice helps to lower the surface runoff and peak 

runoff, to increase infiltration, and to reduce sheet and rill erosion by reducing surface flow 

volume, overland flow rate, raindrop impact, providing more surface cover and preventing 
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development of rills. In this study, curve number (CN2), Manning’s roughness coefficient for 

overland flow (OV_N) and USLE cover factor (USLE_C) have been utilized for representation 

of the residue management practice in the SWAT model (Arabi et al., 2008; Jang et al., 2017).  

8.2.5.4 Strip Cropping (NRCS Practice Code-585) 

In strip cropping practice, crops are grown in a systematic arrangement of strips to reduce sheet 

and rill erosion as well as wind erosion from the field, reduce particulate emissions into the air 

and to improve the water quality. In this study, the curve number (CN2), the Manning’s 

roughness coefficient for overland flow (OV_N), the USLE cover factor (USLE_C), and the 

USLE support practice factor (USLE_P) have been used to represent the strip cropping practice 

in the SWAT model (Arabi et al., 2008). 

8.2.5.5 Grassed waterways (NRCS practice code-412) 

Grassed waterway treatment uses to reduce erosion in the channel segment by establishing 

suitable vegetation cover to convey streamflow at a non-erosive velocity. It helps to increase 

sediment trapping in the main channel segment by resisting streamflow velocity. Then, increase 

in flow roughness reduces peak streamflow in the channel segment.  

In the SWAT model, the channel cover factor (CH_COV), channel erodibility factor 

(CH_EROD), and Manning’s roughness coefficient ‘n’ (CH_N2) have been used for 

representation of grassed waterways. The default Manning’s ‘n’ value of 0.014 is increased to 

0.03 considering excavated channel with earthen bottom (Chow, 1959). Both calibrated 

channel cover factor value of 0.5 and channel erodibility value of 0.03 used in pre-BMP 

simulation are decreased to 0.001 (fully covered) in the post-BMP simulation. Here, the 

CH_COV value of 0.001 is used instead of zero to avert the use of default value. This study 

does not focus on changes in channel width and depth, which can be assigned by SWAT 

model, to maintain the streamflow capacity in the study area. The approach of grassed 

waterways representation in SWAT was adopted from the previous studies (Bracmort et al., 

2006; Arabi et al., 2008). 

8.2.5.6 Streambank stabilization/lined waterways (NRCS practice code-580) 

The main purpose of streambank stabilization is to prevent bank erosion or damage, occurring 

due to high streamflow, by maintaining streamflow capacity of river. This treatment uses 

vegetation or structural practices to stabilize and protect the banks of a natural river or the 

shoreline of constructed waterbodies against scour and erosion. Hence, it refers to lined 

waterways with erosion resistant material in channel segment.  
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In the SWAT model, the streambank stabilization can be represented by channel erodibility 

factor (CH_EROD) and channel roughness (CH_N2). The approach adopted by Narasimhan et 

al. (2007), Arabi et al. (2008) and Tuppad et al. (2010) has been used to implement the 

streambank stabilization in SWAT. The channel erodibility factor was adjusted to a value of 

0.001 (non-erodible). If the CH_EROD value is set to zero, the default value will be used in 

SWAT simulation. Moreover, the Manning’s ‘n’ value of 0.03 was replaced in post-BMP 

simulation instead of 0.014 (default SWAT value).  

8.2.5.7 Grade stabilization structures (NRCS practice code-410) 

This practice is used to stabilize the grades and the head cutting of natural or artificial channels 

in a watershed. This practice increases sediment trapping, decrease peak streamflow 

rate/velocity, and reduces channel erosion.  

The channel erodibility factor (CH_EROD) and slope of the channel segment (CH_S2) are 

adjusted to represent the grade stabilization structures. These parameters are adopted from the 

previous studies carried out by Santhi et al. (2003), Bracmort et al. (2006), Arabi et al. (2008) 

and Tuppad et al. (2010) to evaluate the grade stabilization structures using SWAT model. 

Again, in this analysis also the channel erodibility factor (CH_EROD) was adjusted to 0.001 to 

represent non-erodible channel condition in post-BMP simulation. In this study, the main 

channel slope and the channel length assigned by SWAT were used to estimate the slope of 

channel segment in post-BMP condition, as follows: 

 
edSWATassign

edSWATassign
LCH

h
SCHSCH

2_
2_2_      … (8.1) 

where, CH_S2 is the possible slope of main channel segment after implementation of grade 

stabilization structure; CH_S2SWATassigned is the slope of channel, and CH_L2SWATassigned is the 

length of channel before implementation of structure; and h is the height of structure, here 

considered as 1.2 m (Bracmort et al., 2006; Arabi et al., 2008).  

8.2.5.8 Porous gully plugs 

The porous gully plugs are used to reduce the erosive power as well as velocity of concentrated 

streamflow in a tributary channel. This treatment was generally implemented on the ephemeral 

gullies to facilitate the sediment settling. It can be represented by modifying Manning’s 

roughness coefficient (CH_N1) of tributary channel (Srinivasan, 2008). The default value of 

Manning’s ‘n’ (0.014) used for simulation at pre-BMP condition has been increased to 0.05 in 

post-BMP simulation assuming minor natural streams with more stones (Chow, 1959). 
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Previously, Tuppad et al. (2010) simulated porous gully plugs by modifying the CH_N1 

parameter in the SWAT model, and similar approach has been employed in the present study.  

8.2.5.9 Recharge Structures 

The recharge structures are small dams applied to lower the streamflow energy and to retain 

streamflow through a channel segment for facilitating infiltration and percolation to ground 

water. In turn, it minimizes the sediment carrying capacity of streamflow. In this study, this 

intervention was represented by changing hydraulic conductivity (CH_K1) and Manning’s 

roughness coefficient (CH_N1) of the tributary channels in all the critical sub-watersheds 

(Srinivasan, 2008). In this treatment, the CH_K1 controls infiltration and turn out to be a 

recharge function of the watershed. Increase in channel roughness reduces sediment transport 

by lowering the peak streamflow. The default Manning’s ‘n’ value of 0.014 used in the pre-

BMP simulation has been increased to 0.08 in the post-BMP simulation for a tributary channel 

assuming sluggish reaches with deep pools (Chow, 1959). Also, the default value of hydraulic 

conductivity (zero mm/hr) used in the pre-BMP simulation, represents insignificant to low loss 

rate, was increased to 25 mm/hr in the post-BMP simulation assuming increase in loss rate up 

to moderate level through tributary channel with sand and gravel mixture (Lane, 1983). An 

approach used by Tuppad et al. (2010) and Giri et al. (2012) has been adopted to implement 

recharge structures in the study area.  

8.2.6 Evaluation of BMP effectiveness 

8.2.6.1 Percent reduction 

The output of SWAT simulation for the pre-BMP and post-BMP conditions has been used to 

estimate the percent reduction in average sediment yield at each sub-watershed. Pre-BMP 

simulation represents the baseline condition, and the post-BMP simulation represents the effect 

of adjusted parameters representing a BMP. All the proposed BMPs are simulated individually 

for soil and water conservation as well as river channel protection using the SWAT model. The 

result of the model simulation comprises of the watershed as well as sub-watershed level 

analysis for the percent sediment yield reduction. It can be calculated as: 

  
 

BMPpre

BMPpostBMPpre
reduction




100
%      … (8.2) 

This analysis has been performed for the baseline simulation and the future climate horizons to 

evaluate the effect of BMPs implementation under changing climate. In addition, a paired t-test 

was conducted on simulation time series at the watershed outlet, before and after BMP 

realization to test the significance level of change. 



194 

8.2.6.2 Sensitivity analysis of BMP parameters 

Based on the SWAT simulation at watershed outlet, the sensitivity analysis of the BMP 

representative parameters has been carried out to understand the influence of change in BMP 

parameter values. This study uses a sensitivity index (SI) based on nominal/baseline range of a 

BMP parameter. This sensitivity analysis helps to evaluate the change in model outputs 

simulated by varying each BMP parameter across its specified range, and at the same 

simulation time and all other BMP parameters kept at their baseline values (Cullen and Frey, 

1999; Tuppad et al., 2010).    

 

preBMPX

XX
SI 12          … (8.3) 

where, X2 and X1 are the model output values corresponding to minimum and maximum values 

of a BMP parameter, and XpreBMP is the pre-BMP model output at nominal or baseline value.  

In this analysis, a positive SI value represents direct response of change in BMP parameter 

value to the model output, i.e. increase in the parameter value increases the model outputs, and 

vice versa.  However, a negative SI value indicates indirect response between change in 

parameter value and model outputs, i.e. increase in parameter value decreases the model 

outputs, and vice versa. Hence, a negative value of SI represents that the BMP parameter and 

the model output (here streamflow and/or sediment yield) are inversely related to each other.  

8.3 RESULTS AND DISCUSSION 

In this section, the effect of BMP implementation at pre- and post-BMP conditions, and the 

sensitivity and uncertainty analysis of BMP effectiveness on model simulations are analyzed 

and evaluated for streamflow and sediment yield in the critical sub-watersheds of the Betwa 

river basin.  

8.3.1 Critical sub-watersheds  

The average annual sediment yield of all fifty-seven sub-watersheds of the Betwa River basin 

has been simulated for baseline and the four future horizons, as presented in Table 8.5. Ranking 

is given to all sub-watersheds based on the sediment yield obtained for the baseline period 

(1986-2005) as well as for the future horizon period (2020-2099) as shown in Table 8.6. 

According to the guidelines provided by Singh (1995) for Indian conditions, the average annual 

sediment yield was further regrouped into six soil erosion classes as shown in Table 8.7. 
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Table 8.5: Average annual sediment yield for sub-watersheds of Betwa basin  

Sub- 

watershed 
Area (ha) 

Average annual Sediment yield (t ha
-1 

year
-1

) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 11253.78 182.03 186.01 181.79 262.26 223.51 

SW-2 43520.13 46.79 47.80 46.74 67.38 57.45 

SW-3 52576.11 0.00 0.00 0.00 0.00 0.00 

SW-4 19452.24 110.92 113.41 112.22 164.85 138.20 

SW-5 55177.92 39.00 39.86 39.46 57.97 48.60 

SW-6 176287.41 9.69 10.17 10.48 14.86 12.22 

SW-7 40620.06 18.37 19.03 17.14 24.53 21.76 

SW-8 76524.30 0.11 0.24 0.19 0.26 0.27 

SW-9 119800.98 0.00 0.00 0.00 0.00 0.00 

SW-10 179577.09 0.00 0.00 0.00 0.00 0.00 

SW-11 48750.66 33.01 34.86 36.53 51.65 42.24 

SW-12 33527.34 22.18 22.99 20.73 29.64 26.29 

SW-13 55269.09 0.00 0.00 0.00 0.00 0.00 

SW-14 4012.83 157.14 162.95 148.75 215.55 189.17 

SW-15 94267.53 0.00 0.00 0.00 0.00 0.00 

SW-16 4704.93 132.45 137.26 125.38 182.05 159.66 

SW-17 21368.52 78.95 84.73 87.93 122.07 100.09 

SW-18 2070.63 38.85 40.88 37.76 53.17 46.58 

SW-19 141855.21 0.88 0.95 0.97 1.32 0.91 

SW-20 43248.69 29.02 31.53 34.65 48.10 38.33 

SW-21 30941.64 1.70 1.79 1.67 2.36 2.06 

SW-22 64202.58 0.38 0.38 0.33 0.47 0.43 

SW-23 153413.46 0.00 0.00 0.00 0.00 0.00 

SW-24 16729.02 0.56 0.56 0.48 0.69 0.63 

SW-25 14033.16 5.28 5.78 5.50 7.35 4.41 

SW-26 109016.91 0.00 0.00 0.00 0.00 0.00 

SW-27 136146.33 0.26 0.28 0.26 0.36 0.31 

SW-28 159767.28 0.08 0.09 0.08 0.12 0.10 

SW-29 98769.60 0.00 0.00 0.00 0.00 0.00 

SW-30 197607.15 0.00 0.00 0.00 0.00 0.00 

SW-31 161891.37 0.00 0.00 0.00 0.00 0.00 

SW-32 90014.94 2.99 3.57 4.02 4.98 4.07 

SW-33 134213.76 0.00 0.00 0.00 0.00 0.00 

SW-34 47748.51 4.58 5.58 6.35 7.80 6.36 

SW-35 135564.39 0.00 0.00 0.00 0.00 0.00 

SW-36 135404.55 0.00 0.00 0.00 0.00 0.00 

SW-37 32159.52 5.52 6.90 7.87 9.59 7.83 

SW-38 68338.44 2.01 2.61 2.99 3.59 2.94 

SW-39 86532.03 0.12 0.13 0.14 0.18 0.15 

SW-40 196250.58 0.00 0.00 0.00 0.00 0.00 

SW-41 52138.35 0.00 0.00 0.00 0.00 0.00 
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SW-42 84435.48 0.00 0.00 0.00 0.00 0.00 

SW-43 43345.89 2.55 3.44 3.93 4.68 3.84 

SW-44 85231.17 0.00 0.00 0.00 0.01 0.00 

SW-45 10735.56 9.06 12.56 14.32 16.97 14.00 

SW-46 56537.46 0.00 0.00 0.00 0.00 0.00 

SW-47 59029.74 0.57 1.06 1.16 1.36 1.15 

SW-48 44285.76 1.02 1.17 1.38 1.63 1.32 

SW-49 143310.15 0.00 0.00 0.00 0.00 0.00 

SW-50 4810.50 6.05 6.97 8.28 9.67 7.82 

SW-51 73755.72 0.00 0.00 0.00 0.00 0.00 

SW-52 45707.85 0.15 0.18 0.20 0.24 0.19 

SW-53 110209.14 0.00 0.00 0.00 0.00 0.00 

SW-54 74063.25 0.16 0.18 0.22 0.25 0.20 

SW-55 54460.62 0.11 0.12 0.14 0.16 0.13 

SW-56 78435.63 0.00 0.00 0.00 0.00 0.00 

SW-57 63491.31 0.00 0.01 0.01 0.01 0.00 

Table 8.6: Ranking of critical sub-watersheds for baseline period and future horizon period 

Sub- 

watershed 
Area (ha) 

Average annual  

Sediment yield (t ha
-1 

year
-1

) 
Ranking 

for 

Baseline 

period 

Ranking 

for 

Future 

periods 

Average  

Slope Baseline  

(1986-2005) 

Horizon  

(2020-2099) 

SW-1 11253.78 182.03 213.39 1 1 3.08 

SW-2 43520.13 46.79 54.84 6 6 3.91 

SW-3 52576.11 0.00 0.00 56 56 3.89 

SW-4 19452.24 110.92 132.17 4 4 4.52 

SW-5 55177.92 39.00 46.47 7 7 4.62 

SW-6 176287.41 9.69 11.93 13 14 6.04 

SW-7 40620.06 18.37 20.61 12 12 5.05 

SW-8 76524.30 0.11 0.24 32 29 5.17 

SW-9 119800.98 0.00 0.00 55 55 5.38 

SW-10 179577.09 0.00 0.00 52 50 5.40 

SW-11 48750.66 33.01 41.32 9 9 5.89 

SW-12 33527.34 22.18 24.91 11 11 5.07 

SW-13 55269.09 0.00 0.00 57 57 4.89 

SW-14 4012.83 157.14 179.10 2 2 6.12 

SW-15 94267.53 0.00 0.00 46 48 5.53 

SW-16 4704.93 132.45 151.09 3 3 5.58 

SW-17 21368.52 78.95 98.70 5 5 5.37 

SW-18 2070.63 38.85 44.60 8 8 4.54 

SW-19 141855.21 0.88 1.04 24 25 4.96 

SW-20 43248.69 29.02 38.15 10 10 4.96 

SW-21 30941.64 1.70 1.97 22 22 5.99 

SW-22 64202.58 0.38 0.40 27 27 4.56 

SW-23 153413.46 0.00 0.00 45 47 5.93 

SW-24 16729.02 0.56 0.59 26 26 5.56 
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SW-25 14033.16 5.28 5.76 17 18 5.56 

SW-26 109016.91 0.00 0.00 51 52 4.41 

SW-27 136146.33 0.26 0.30 28 28 5.94 

SW-28 159767.28 0.08 0.10 34 34 5.24 

SW-29 98769.60 0.00 0.00 50 51 4.01 

SW-30 197607.15 0.00 0.00 54 54 5.07 

SW-31 161891.37 0.00 0.00 48 49 4.05 

SW-32 90014.94 2.99 4.16 19 19 4.73 

SW-33 134213.76 0.00 0.00 39 41 6.69 

SW-34 47748.51 4.58 6.52 18 17 3.99 

SW-35 135564.39 0.00 0.00 42 43 4.14 

SW-36 135404.55 0.00 0.00 53 53 4.35 

SW-37 32159.52 5.52 8.05 16 16 3.46 

SW-38 68338.44 2.01 3.03 21 21 3.52 

SW-39 86532.03 0.12 0.15 31 32 3.36 

SW-40 196250.58 0.00 0.00 44 44 5.47 

SW-41 52138.35 0.00 0.00 47 45 5.65 

SW-42 84435.48 0.00 0.00 41 40 4.23 

SW-43 43345.89 2.55 3.97 20 20 3.86 

SW-44 85231.17 0.00 0.00 36 36 4.45 

SW-45 10735.56 9.06 14.46 14 13 3.63 

SW-46 56537.46 0.00 0.00 37 37 4.07 

SW-47 59029.74 0.57 1.18 25 24 3.43 

SW-48 44285.76 1.02 1.38 23 23 3.36 

SW-49 143310.15 0.00 0.00 49 46 4.98 

SW-50 4810.50 6.05 8.19 15 15 3.15 

SW-51 73755.72 0.00 0.00 43 42 3.51 

SW-52 45707.85 0.15 0.20 30 31 5.34 

SW-53 110209.14 0.00 0.00 38 39 4.39 

SW-54 74063.25 0.16 0.21 29 30 6.30 

SW-55 54460.62 0.11 0.14 33 33 4.97 

SW-56 78435.63 0.00 0.00 40 38 4.74 

SW-57 63491.31 0.00 0.01 35 35 5.91 

Table 8.7: Prioritization of critical sub-watersheds under different soil erosion classes  

Sediment yield 

(t ha-1year-1) 
Sub-watershed 

Area 

(%) 

Soil erosion 

class 

Priority 

class 

0–5 

3,8,9,10,13,15,19,21,22,23,24,26,27,28,29, 

30,31,32,33,35,36,38,39,40,42,42,43,44, 

46,47,48,49,51,52,53,54,55,56,57 

80.63 Slight VI 

5–10 25,34,37,50 8.60 Moderate V 

10–20 6,45 3.15 High IV 

20–40 7,12,20 3.18 Very high III 

40–80 2,5,11,18 2.44 Severe II 

>80 1,4,14,16,17 2.00 Very severe I 
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Based on the SWAT model output, sediment yield in the few sub-watersheds has increased in 

the future horizon simulation as compared to the baseline simulation. For instance, the SW-34 

has low average sediment yield of 4.58 t ha
-1 

year
-1 

during baseline period which further 

increases to 6.52 t ha
-1 

year
-1

 in future horizon (Table 8.6). Hence, the sub-watershed (SW-34) 

changes from slight soil erosion class to moderate soil erosion class. Therefore, the SW-34 was 

considered for prioritization and BMP treatment under future climatic changes (Table 8.7).  

Table 8.7 shows that about 80.63% sub-watershed area of the Betwa River basin falls under the 

slight erosion class (0-5 t ha
-1

yr
-1

). About 8.60% of the sub-watershed area falls under the 

moderate soil erosion class (5 to 10 t ha
-1

y
-1

). Two sub-watersheds (SW-6 and SW-45), one 

individually from upper and lower basin part, falling under high soil erosion rate (10-20 t ha
-

1
yr

-1
) cover about 3.15% of the total basin area. Three sub-watersheds (SW-7, SW-12 and SW-

20) falling under very high soil erosion class (20-40 t ha
-1

yr
-1

) cover 3.18% area of the Betwa 

river basin. The sub-watersheds with severe soil erosion class (40-80 t ha
-1

yr
-1

) covers about 

2.44% of the total basin area, however only 2% of the total basin area comes under very severe 

soil erosion class (>80 t ha
-1

yr
-1

). In this class, more than 80 t ha
-1

year
-1 

sediment yields were 

obtained from the most critical sub-watersheds of the Betwa basin. Therefore, proper 

management practices are crucial to reduce sediment yield in future. The sub-watershed wise 

soil erosion map of the Betwa river basin is presented in Figure 8.2.  

 

Figure 8.2: Critical sub-watersheds under different soil erosion classes in the Betwa basin 
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Among the identified critical sub-watersheds, the SW-34, SW-37, SW-45 and SW-50 are 

located in upper part, whereas other critical sub-watersheds located in the lower part of the 

basin (Figure 8.2). The result shows that highest sediment yield of about 213.39 t ha
-1

year
-1

 was 

simulated at the basin outlet (SW-1). High sediment yield (very high to very severe) was 

obtained mostly in the sub-watersheds located at downstream of the Betwa river basin. Area 

under maximum runoff experiences high sediment yield generation at sub-watershed level. The 

area covered by agriculture and forest have least rate of soil loss apart from the more slope 

gradient. Moreover, the main channel erosion due to flooding in monsoon season causes 

significant detachment and transportation of sediment particles from channel segment. Thus, 

high rate of sediment yield may be attributed to the sub-watershed level land erosion as well as 

stream bank or river channel erosion. In addition, none or a faulty method/practice of over-land 

and/or in-stream contributing more sediment yield which is prevalent in a large river basin. The 

results of this analysis can be used as a framework to develop soil and water conservation 

programs, as well as to protect and restore the river channel segment by evaluating feasible 

management practices.  

Based on the average annual sediment yield, all sub-watersheds of the Betwa River basin were 

prioritized into six categories for conservation and protection treatments (Table 8.7). Five sub-

watersheds (SW-1, SW-4, SW-14, SW-16 and SW-17) having sediment yields more than 80 t 

ha
-1 

year
-1 

were assigned as first priority, four sub-watersheds (SW-2, SW-5, SW-11 and SW-

18) having sediment yield in a range of 40–80 t ha
-1 

year
-1  

were
 
assigned as second priority, 

three sub-watersheds (SW-7, SW-12 and SW-20) having sediment yield in a range of 20–40 t 

ha
-1 

year
-1 

were assigned as third priority, two sub-watersheds (SW-6 and SW-45) having 

sediment yield in a range of 10–20 t ha
-1 

year
-1 

were assigned as fourth priority, and four sub-

watersheds (SW-25, SW-34, SW-37 and SW-50) having sediment yield in the range of  5–10 t 

ha
-1 

year
-1

 was assigned as fifth priority. These priorities are further used for application and 

evaluation of the BMPs in the Bewta River basin. In the past, Tripathi et al. (2003), Behera and 

Panda (2006), Pandey et al. (2007), and Agrawal et al. (2009) employed average annual 

sediment yields for the identification of critical areas in Indian watersheds. Moreover, Giri et 

al. (2012) and Rocha et al. (2012) also utilized average annual estimates of the sediment, runoff 

and nutrient loads for BMP treatments in USA and Brazil.  

8.3.2 Effective management of BMPs  

This study evaluated the effect of over-land as well as in-stream BMP implementation on the 

streamflow and sediment yield reductions by comparing the pre-BMP and post-BMP 

simulations obtained from the SWAT model at sub-watershed level. BMP effectiveness has 
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been evaluated by the percent reduction of model outputs and the sensitivity index (SI) values 

of corresponding model parameters representing a BMP within a critical sub-watershed of the 

study area. 

8.3.2.1 Sensitivity of BMP parameters 

(a) Sensitivity analysis for streamflow 

The sensitivity of BMP parameters for streamflow in the critical sub-watersheds of the Betwa 

river basin is presented in Table 8.8. Among the over-land BMP parameters, the depth of 

tillage operation (DEPTIL), mixing efficiency of tillage operation (EFFMIX), curve number 

(CN2), USLE support practice factor (USLE_P) and cover factor (USLE_C) have positive SI 

values representing direct response to the streamflow. Only Manning’s roughness coefficient 

overland flow (OV_N) parameter has negative sensitivity to the streamflow. Furthermore, 

among the in-stream BMP parameters, the channel cover (CH_COV), channel erodibility 

(CH_EROD) and average slope of main channel (CH_S2) have positive SI values which shows 

direct response to the change in streamflow at sub-watershed level. Nevertheless, negative 

sensitivity of other three in-stream BMP parameters namely Manning’s roughness coefficients 

for main channel (CH_N2) as well as tributary channel (CH_N1) and the hydraulic 

conductivity in tributary channel (CH_K1) shows indirect response to the streamflow output in 

critical sub-watersheds of the Betwa basin.  
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Table 8.8: Sensitivity of BMP parameters for streamflow in critical sub-watersheds  

Sub- 

watershed 

Sensitivity index (SI) values for streamflow 

Over-land BMP parameters  In-stream BMP parameters 

DEPTIL EFFMIX CN2 USLE_P USLE_C OV_N  CH_COV CH_EROD CH_S2 CH_N2 CH_N1 CH_K1 

SW-1 0.01 0.00 0.15 0.05 0.03 -0.01  0.01 0.11 0.25 -0.08 -0.06 -0.03 

SW-2 0.01 0.00 0.16 0.05 0.03 -0.01  0.01 0.11 0.21 -0.13 -0.05 -0.02 

SW-4 0.01 0.00 0.17 0.05 0.03 -0.01  0.02 0.11 0.21 -0.12 -0.05 -0.03 

SW-5 0.01 0.00 0.17 0.05 0.03 -0.01  0.01 0.11 0.25 -0.08 -0.06 -0.02 

SW-6 0.02 0.01 0.18 0.06 0.03 -0.01  0.01 0.11 0.21 -0.10 -0.07 -0.04 

SW-7 0.00 0.00 0.17 0.00 0.02 -0.01  0.00 0.07 0.23 -0.06 0.00 0.00 

SW-11 0.02 0.01 0.17 0.06 0.04 -0.01  0.01 0.08 0.21 -0.10 -0.04 -0.04 

SW-12 0.00 0.00 0.18 0.03 0.02 -0.01  0.01 0.06 0.17 -0.04 0.00 0.00 

SW-14 0.00 0.00 0.15 0.02 0.02 -0.01  0.01 0.07 0.04 -0.05 0.00 0.00 

SW-16 0.00 0.00 0.15 0.04 0.03 -0.01  0.01 0.04 0.01 -0.02 -0.01 0.00 

SW-17 0.02 0.01 0.16 0.06 0.04 -0.01  0.01 0.11 0.11 -0.08 -0.03 -0.04 

SW-18 0.00 0.00 0.18 0.00 0.03 -0.01  0.00 0.09 0.07 -0.04 -0.01 0.00 

SW-20 0.03 0.01 0.17 0.07 0.05 0.00  0.02 0.08 0.10 -0.10 -0.02 -0.03 

SW-25 0.04 0.02 0.18 0.08 0.06 0.00  0.02 0.11 0.05 -0.11 -0.02 -0.04 

SW-34 0.03 0.01 0.15 0.06 0.05 -0.02  0.01 0.10 0.03 -0.05 -0.02 0.00 

SW-37 0.03 0.02 0.15 0.05 0.05 -0.02  0.01 0.04 0.02 -0.09 -0.03 0.00 

SW-45 0.03 0.02 0.16 0.04 0.06 -0.02  0.02 0.05 0.02 -0.07 -0.03 0.00 

SW-50 0.03 0.01 0.17 0.06 0.06 -0.02  0.02 0.07 0.00 -0.09 -0.02 0.00 

Note: DEPTIL = Depth of tillage operation; EFFMIX = Mixing efficiency of tillage operation; CN2 = SCS runoff 

curve number for moisture condition II; USLE_P = USLE support practice factor; USLE_C = USLE cover factor; 

OV_N = Manning’s roughness coefficient for overland flow; CH_COV = Channel cover factor; CH_EROD = 

Channel erodibility factor; CH_S2 = Average slope of the main channel calculated with respect to structural 

height (1.2 m); CH_N2 = Main channel roughness (Manning’s ‘n’) coefficient; CH_N1 = Tributary channel 

roughness (Manning’s ‘n’) coefficient; and CH_K1 = Hydraulic conductivity (mm/hr) in the tributary channel. 

(b) Sensitivity analysis for sediment yield 

The sensitivity of BMP parameters for sediment yield in critical sub-watersheds of the study 

area is presented in Table 8.9. Among the over-land BMP parameters, the depth of tillage 

operation (DEPTIL), mixing efficiency of tillage operation (EFFMIX), curve number (CN2), 

USLE support practice factor (USLE_P) and cover factor (USLE_C) have positive SI values 

representing direct response to the sediment yield. Only Manning’s roughness coefficient 

overland flow (OV_N) parameter has negative sensitivity to the sediment yield. Furthermore, 

among the in-stream BMP parameters, the channel cover (CH_COV), channel erodibility 

(CH_EROD) and average slope of main channel (CH_S2) have positive SI values which show 

the direct response to the change in sediment yield at sub-watershed level. Nevertheless, 

negative sensitivity of other three in-stream BMP parameters namely Manning’s roughness 

coefficients for main channel (CH_N2) as well as tributary channel (CH_N1) and the hydraulic 
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conductivity in tributary channel (CH_K1) shows indirect response to the sediment output in 

critical sub-watersheds of the study area.  

Table 8.9: Sensitivity of BMP parameters for sediment yield in critical sub-watersheds  

Sub- 

watershed 

Sensitivity index (SI) values for sediment yield 

Over-land BMP parameters  In-stream BMP parameters 

DEPTIL EFFMIX CN2 USLE_P USLE_C OV_N  CH_COV CH_EROD CH_S2 CH_N2 CH_N1 CH_K1 

SW-1 0.06 0.04 0.20 0.05 0.06 -0.01  0.12 0.24 0.13 -0.22 -0.07 -0.06 

SW-2 0.06 0.04 0.20 0.03 0.06 -0.01  0.15 0.30 0.13 -0.22 -0.07 -0.06 

SW-4 0.07 0.03 0.16 0.04 0.06 -0.01  0.15 0.27 0.17 -0.20 -0.07 -0.07 

SW-5 0.07 0.04 0.19 0.03 0.06 -0.01  0.12 0.30 0.17 -0.20 -0.08 -0.07 

SW-6 0.05 0.03 0.15 0.05 0.04 -0.01  0.10 0.30 0.25 -0.16 -0.02 -0.05 

SW-7 0.03 0.01 0.17 0.01 0.06 -0.02  0.15 0.27 0.35 -0.17 -0.05 -0.03 

SW-11 0.05 0.02 0.19 0.03 0.03 -0.01  0.11 0.30 0.29 -0.16 -0.03 -0.05 

SW-12 0.03 0.01 0.16 0.01 0.06 -0.02  0.07 0.30 0.35 -0.17 -0.02 -0.03 

SW-14 0.04 0.02 0.20 0.01 0.06 -0.02  0.06 0.18 0.34 -0.18 -0.01 -0.04 

SW-16 0.04 0.02 0.21 0.01 0.06 -0.02  0.07 0.30 0.34 -0.18 -0.01 -0.04 

SW-17 0.03 0.01 0.12 0.04 0.05 -0.01  0.15 0.30 0.33 -0.10 -0.03 -0.03 

SW-18 0.02 0.01 0.16 0.03 0.04 -0.02  0.09 0.43 0.18 -0.16 -0.01 -0.02 

SW-20 0.04 0.01 0.16 0.05 0.03 -0.02  0.11 0.29 0.32 -0.12 -0.04 -0.07 

SW-25 0.02 0.03 0.10 0.05 0.03 0.00  0.15 0.56 0.13 -0.10 -0.02 0.00 

SW-34 0.03 0.01 0.13 0.05 0.04 -0.01  0.23 0.55 0.21 -0.17 -0.03 -0.03 

SW-37 0.02 0.01 0.11 0.04 0.03 -0.01  0.22 0.58 0.19 -0.17 -0.03 -0.02 

SW-45 0.02 0.01 0.10 0.05 0.03 -0.01  0.18 0.55 0.20 -0.13 -0.01 0.00 

SW-50 0.03 0.01 0.14 0.01 0.03 -0.01  0.24 0.42 0.23 -0.18 -0.01 -0.03 

Note: DEPTIL = Depth of tillage operation; EFFMIX = Mixing efficiency of tillage operation; CN2 = SCS runoff 

curve number for moisture condition II; USLE_P = USLE support practice factor; USLE_C = USLE cover factor; 

OV_N = Manning’s roughness coefficient for overland flow; CH_COV = Channel cover factor; CH_EROD = 

Channel erodibility factor; CH_S2 = Average slope of the main channel calculated with respect to structural 

height (1.2 m); CH_N2 = Main channel roughness (Manning’s ‘n’) coefficient; CH_N1 = Tributary channel 

roughness (Manning’s ‘n’) coefficient; and CH_K1 = Hydraulic conductivity (mm/hr) in the tributary channel. 

Overall, the BMP parameters having positive SI value indicated that the increase in BMP 

parameter values can increase the model outputs; however, the negative SI value represents that 

an increase in the BMP parameter value can decrease the model outputs (Tuppad et al., 2010) 

in terms of streamflow and sediment yield outputs. It is observed that, the critical sub-

watersheds covers within the lower basin area have large negative SI values as compared to the 

critical sub-watersheds lies within the upper basin area.  

8.3.2.2 Evaluation of over-land BMPs 

In this study, the tillage management, contour farming, residue management and strip cropping 

practices are evaluated for soil and water conservation treatment in the Betwa river basin.  
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(a) Evaluation of tillage operation 

In the present analysis, effect of the three tillage operations, i.e. conservation tillage, field 

cultivator and zero tillage, in agriculture land has been evaluated for the critical sub-watersheds 

of the Betwa River basin. This practice include decrease in depth (DEPTIL) and mixing 

efficiency (EFFMIX) of the tillage operation as well as decrease in the curve number (CN2) to 

lower the surface flow and soil erosion, and reducing the sediment loads. Result of 

conservation tillage operation shows that reduction in the sediment yield (6.84% to 24.27%) is 

higher as compared to reduction in the streamflow (5.38% to 9.53%) for baseline as well as 

future horizons (Table 8.10a). Furthermore, the result of field cultivator operation shows high 

sediment yield reduction (4.15% to 22.73%) as compared to the streamflow reduction (6.30% 

to 11.20%) as shown in Table 8.10b. Also, the result of zero tillage operation shows high 

sediment yield reduction (12.66% to 31.46%) as compared to the streamflow reduction (1.05% 

to 5.08%) as shown in Table 8.10c. Although the streamflow reduction in the critical sub-

watersheds (SW-25, SW-34, SW-37, SW-45 and SW-50) located at upper basin part is high, 

the tillage operations employed in this study can effectively reduce the soil erosion to some 

extent by decreasing depth and mixing efficiency of tillage operation. Sensitivity of the tillage 

parameters, i.e. DEPTIL, EFFMIX and CN2, is low for streamflow (Table 8.8) and high for 

sediment yield (Table 8.9). The sub-watersheds located in lower basin part of the basin have 

high sensitivity of DEPTIL, EFFMIX and CN2 resulting high (about 10% to 31%) sediment 

yield reduction (Tables 8.9 & 8.10a,b,c). These BMP parameters also reduces the flow but in 

lower extent (about 1% to 11%). In this study, the zero tillage operation reduces sediment yield 

in larger amount (up to 31%); however the field cultivator operation reduces streamflow in 

larger amount (up to 11%). Thus, the field cultivator operation is an effective tillage 

management practice for streamflow reduction, and the zero tillage is an effective tillage 

management practice for sediment yield reduction in the Betwa river basin.  
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Table 8.10a: Percent reduction in post-BMP simulation after implementation of conservation tillage 

Sub- 

watershed 

Streamflow (% reduction) 

 

Sediment yield(% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon  

2080 

SW-1 6.07 5.38 6.07 5.91 6.59 
 

13.33 23.69 22.88 21.52 24.27 

SW-2 6.77 6.03 5.38 5.91 5.98 
 

13.32 23.74 22.92 22.32 23.44 

SW-4 5.38 6.08 6.11 5.94 6.67 
 

23.58 22.29 21.41 21.76 16.31 

SW-5 6.89 6.09 6.12 5.94 6.03 
 

23.60 23.29 22.42 21.78 17.13 

SW-6 7.68 6.45 6.46 6.20 6.35 
 

20.54 21.43 20.16 19.74 20.62 

SW-7 7.14 6.49 6.48 6.64 6.88 
 

20.02 20.33 19.64 18.94 18.01 

SW-11 6.60 6.52 6.51 7.09 7.42 
 

19.51 19.24 19.13 18.14 7.67 

SW-12 7.14 6.49 6.48 6.64 6.88 
 

16.94 22.56 21.52 20.63 22.44 

SW-14 6.14 6.09 6.12 5.94 6.35 
 

16.67 22.04 21.28 12.87 15.48 

SW-16 7.29 6.27 6.29 6.07 6.19 
 

19.01 20.77 20.27 19.95 18.46 

SW-17 6.65 6.56 6.54 6.26 6.43 
 

18.04 17.85 16.63 17.20 6.84 

SW-18 6.87 6.50 6.50 6.86 7.15 
 

15.48 15.48 15.48 15.48 15.48 

SW-20 7.06 6.91 6.82 6.47 6.72 
 

18.92 18.60 16.93 17.63 18.15 

SW-25 9.53 7.22 7.08 6.65 8.56 
 

18.41 16.00 12.03 7.87 19.29 

SW-34 6.71 6.18 6.20 6.01 6.27 
 

11.37 9.98 10.81 11.17 12.24 

SW-37 6.97 6.42 6.41 6.16 6.31 
 

13.79 7.33 7.37 7.87 10.03 

SW-45 6.76 6.53 6.52 6.56 6.79 
 

13.11 10.65 11.65 12.61 15.17 

SW-50 6.96 6.70 6.66 6.67 6.94 
 

16.75 16.00 14.33 16.00 16.60 

Table 8.10b: Percent reduction in post-BMP simulation after implementation of field cultivator tillage 

Sub- 

watershed 

Streamflow (% reduction) 

 

Sediment yield(% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 7.00 6.30 6.99 6.83 7.51 
 

11.79 22.15 21.34 19.98 22.73 

SW-2 7.94 7.21 6.55 7.08 7.16 
 

11.37 21.79 20.97 20.36 21.48 

SW-4 6.74 7.44 7.47 7.30 8.03 
 

21.32 20.03 19.15 19.50 14.05 

SW-5 8.28 7.48 7.51 7.33 7.42 
 

21.29 20.98 20.11 19.47 14.82 

SW-6 9.49 8.27 8.27 8.01 8.16 
 

17.52 18.41 17.14 16.72 17.60 

SW-7 8.66 8.00 8.00 8.16 8.40 
 

17.50 17.81 17.12 16.42 15.48 

SW-11 8.37 8.28 8.27 8.85 9.18 
 

16.56 16.30 16.18 15.20 4.73 

SW-12 8.66 8.01 8.00 8.16 8.40 
 

14.40 20.02 18.98 18.10 19.91 

SW-14 7.97 7.92 7.95 7.78 8.19 
 

13.61 18.98 18.22 9.81 12.42 

SW-16 8.96 7.95 7.96 7.74 7.87 
 

16.22 17.98 17.48 17.16 15.67 

SW-17 8.27 8.17 8.15 7.87 8.04 
 

15.36 15.16 13.95 14.51 4.15 

SW-18 8.23 7.86 7.86 8.23 8.51 
 

13.21 13.21 13.21 13.21 13.21 

SW-20 8.55 8.40 8.31 7.96 8.21 
 

16.44 16.12 14.45 15.15 15.67 

SW-25 11.20 8.88 8.74 8.32 10.23 
 

15.63 13.22 9.25 5.09 16.51 

SW-34 7.91 7.38 7.40 7.20 7.47 
 

9.38 7.99 8.81 9.18 10.25 

SW-37 8.01 7.45 7.45 7.20 7.35 
 

12.06 5.60 5.64 6.14 8.30 

SW-45 7.85 7.62 7.61 7.65 7.88 
 

11.29 8.83 9.83 10.80 13.36 

SW-50 7.91 7.65 7.60 7.61 7.88 
 

15.17 14.43 12.75 14.43 15.02 
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Table 8.10c: Percent reduction in post-BMP simulation after implementation of zero tillage 

Sub- 

watershed 

Streamflow (% reduction) 

 

Sediment yield(% reduction) 

Baseline 

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

SW-1 3.61 2.92 3.61 3.44 4.12 
 

18.08 28.44 27.62 26.26 29.01 

SW-2 3.64 2.90 2.25 2.78 2.86 
 

19.34 29.76 28.95 28.34 29.46 

SW-4 1.76 2.47 2.50 2.32 3.06 
 

30.54 29.25 28.37 28.72 23.27 

SW-5 3.20 2.40 2.42 2.25 2.34 
 

30.71 30.40 29.54 28.89 24.25 

SW-6 2.85 1.62 1.63 1.36 1.52 
 

29.84 30.73 29.46 29.04 29.92 

SW-7 3.10 2.45 2.44 2.60 2.84 
 

27.80 28.11 27.42 26.72 25.79 

SW-11 1.89 1.81 1.80 2.37 2.71 
 

28.58 28.31 28.20 27.21 16.74 

SW-12 3.09 2.43 2.43 2.59 2.83 
 

24.74 30.37 29.33 28.44 30.25 

SW-14 1.24 1.19 1.22 1.05 1.46 
 

26.10 31.46 30.71 22.29 24.90 

SW-16 2.82 1.81 1.83 1.61 1.73 
 

27.61 29.36 28.86 28.55 27.05 

SW-17 2.36 2.26 2.24 1.96 2.14 
 

26.31 26.12 24.90 25.47 15.10 

SW-18 3.24 2.87 2.86 3.23 3.52 
 

22.47 22.47 22.47 22.47 22.47 

SW-20 3.09 2.94 2.85 2.50 2.75 
 

26.56 26.23 24.57 25.27 25.79 

SW-25 5.08 2.77 2.63 2.20 4.11 
 

26.97 24.56 20.59 16.43 27.85 

SW-34 3.52 2.99 3.01 2.81 3.08 
 

17.52 16.13 16.95 17.32 18.39 

SW-37 4.20 3.65 3.65 3.40 3.54 
 

19.12 12.66 12.69 13.19 15.35 

SW-45 3.86 3.63 3.61 3.66 3.89 
 

18.70 16.24 17.24 18.20 20.77 

SW-50 4.44 4.18 4.14 4.15 4.42 
 

21.60 20.85 19.18 20.85 21.45 

 

In addition, the effect of future climate change has been also studied using post-BMP 

simulation compared to the pre-BMP simulation. Results show horizon 2080 has high 

reduction in streamflow as compare to the other climate horizons (Figures 8.3a, 8.3b and 8.3c). 

In case of the sediment yield reduction, few sub-watersheds followed the similar pattern of 

streamflow reduction at sub-watershed level, but in larger percentages. In this analysis, the 

streamflow has nearly similar response in all the critical sub-watersheds during future climate 

horizons, while the sediment yield has varying response, especially under conservation tillage 

and field cultivator operations. In this analysis, zero tillage operation resulted a high 

streamflow reduction in the critical sub-watersheds having low land slopes. Hence, the 

effectiveness of zero tillage operation reduces with an increase in agriculture land slope of the 

Betwa basin. Thus, the climate change impact induces some variations in the streamflow and 

sediment yield reduction under the similar tillage management practice. It may be due to 

varying soil erosivity under the future climatic changes.    
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Figure 8.3a: Effect of conservation tillage on future streamflow and sediment yield 

  

Figure 8.3b: Effect of field cultivator tillage on future streamflow and sediment yield 

  

Figure 8.3c: Effect of zero tillage on future streamflow and sediment yield 

The effective management of tillage operations was also analyzed for each priority class given 

to critical sub-watersheds. Result of conservation tillage shows the high percent of streamflow 

reduction in class-III followed by class V, class IV, class-II and class-I (Table 8.11a). 

Nevertheless, the high sediment yield reductions are observed for priority class-III, followed by 

class-I, class-II, class-IV and class-V. The result of field cultivator shows high streamflow 

reduction in order of class III, IV, V, II and I; and high sediment yield reduction in order of 
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class III, I, II, IV and V (Table 8.11b). Also, the result of zero tillage resulted high streamflow 

reduction in order of class V, III, IV, II and I; and high sediment yield reduction in order of 

class III, I, II, IV and V (Table 8.11c). It is because of varying sensitivity of BMP parameters 

in critical sub-watersheds of a priority class. Thus, priority class wise these tillage operations 

have varying response to the streamflow and sediment yield reduction.  

Table 8.11a: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective conservation tillage  

Priority 

class 

Streamflow (% reduction) 

 

Sediment yield (% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

I 6.31 6.08 6.23 6.02 6.45 
 

18.13 21.33 20.50 18.66 16.27 

II 6.78 6.29 6.13 6.45 6.65 
 

17.98 20.44 19.99 19.43 15.93 

III 7.11 6.63 6.60 6.58 6.83 
 

18.63 20.50 19.36 19.07 19.53 

IV 7.22 6.49 6.49 6.38 6.57 
 

16.82 16.04 15.90 16.18 17.90 

V 7.54 6.63 6.59 6.37 7.02 
 

15.08 12.33 11.13 10.73 14.54 

Table 8.11b: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective field cultivator tillage  

Priority  

class 

Streamflow (% reduction) 

 

Sediment yield (% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 7.79 7.56 7.71 7.50 7.93 
 

15.66 18.86 18.03 16.19 13.80 

II 8.21 7.71 7.55 7.87 8.07 
 

15.61 18.07 17.62 17.06 13.56 

III 8.62 8.13 8.10 8.09 8.34 
 

16.11 17.98 16.85 16.55 17.02 

IV 8.67 7.94 7.94 7.83 8.02 
 

14.40 13.62 13.48 13.76 15.48 

V 8.76 7.84 7.80 7.58 8.23 
 

13.06 10.31 9.11 8.71 12.52 

Table 8.11c: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective zero tillage  

Priority  

class 

Streamflow (% reduction) 

 

Sediment yield (% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 2.36 2.13 2.28 2.08 2.50 
 

25.73 28.93 28.09 26.26 23.87 

II 2.99 2.49 2.33 2.66 2.85 
 

25.28 27.74 27.29 26.73 23.23 

III 3.09 2.61 2.57 2.56 2.81 
 

26.37 28.24 27.10 26.81 27.27 

IV 3.35 2.62 2.62 2.51 2.70 
 

24.27 23.48 23.35 23.62 25.34 

V 4.31 3.40 3.36 3.14 3.79 
 

21.30 18.55 17.35 16.95 20.76 

 

(b) Evaluation of contour farming 

The contour farming practice has been implemented by adjusting curve number (CN2) and 

USLE support practice factor (USLE_P), and then evaluated for critical sub-watersheds of the 

Betwa river basin. In this practice, the USLE_P and CN2 values are decreased to reduce sheet 
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erosion from the agriculture land. Results show that reduction in sediment yield (6.38% to 

34.41%) is higher than the reduction in streamflow (9.78% to 13.25%) for baseline as well as 

future horizons (Table 8.12). It is observed that, percentage reduction in sediment yield has 

great variation due to varying response of BMP parameters as compare to the response of 

streamflow reduction. Although the streamflow reduction in critical sub-watersheds (SW-25, 

SW-34, SW-37, SW-45 and SW-50) located at upper basin part is high, the contour farming 

can effectively reduce the sheet erosion by decreasing flow velocity and support practice factor. 

In this analysis, the BMP parameters, i.e. the CN2 and the USLE_P, have low sensitivity for 

streamflow (Table 8.8) and high sensitivity for sediment yield (Table 8.9). The sub-watersheds 

located in the lower basin part have high sensitivity of CN2 and USLE_P resulting high (more 

than 25%) sediment yield reduction (Tables 8.9 & 8.12) than the upper basin part. Sensitivity 

of these BMP parameters also reduces the flow in some percent (about 10%), which is lesser 

than the sediment yield reduction. Result shows that the USLE_P parameter increases the effect 

of contour farming on streamflow and sediment yield reduction. Therefore, the contour farming 

is an effective management practice in the Betwa River basin.  

Table 8.12: Percent reduction in post-BMP simulation after implementation of contour farming 

Sub- 

watershed 

Streamflow (% reduction) 

 

Sediment yield(% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

SW-1 10.56 10.43 10.55 10.59 10.89 
 

23.59 32.68 31.99 31.68 34.41 

SW-2 10.56 9.78 10.55 10.59 10.89 
 

22.16 33.78 32.05 31.75 33.61 

SW-4 10.72 10.59 10.68 10.72 11.06 
 

32.14 32.04 31.23 30.83 26.14 

SW-5 10.75 9.90 9.96 10.74 11.09 
 

32.18 33.05 31.26 30.16 26.98 

SW-6 11.93 10.63 10.64 10.93 12.35 
 

30.11 29.87 28.55 27.18 29.60 

SW-7 11.02 10.36 10.64 10.86 11.62 
 

32.14 23.19 31.23 22.63 22.90 

SW-11 10.93 10.75 10.73 10.18 11.53 
 

26.71 26.64 25.23 24.80 23.52 

SW-12 10.77 10.89 10.54 11.09 10.74 
 

26.14 23.20 30.30 22.64 31.60 

SW-14 11.02 10.72 10.68 11.21 11.54 
 

32.14 27.61 23.98 26.73 24.52 

SW-16 10.93 10.60 10.50 11.20 11.58 
 

29.44 29.84 28.25 27.48 25.25 

SW-17 12.30 10.84 10.80 11.11 10.58 
 

23.84 23.92 22.68 22.94 6.38 

SW-18 11.26 10.80 10.85 11.25 10.66 
 

32.14 25.40 27.61 24.68 23.71 

SW-20 11.83 11.53 11.36 10.65 12.49 
 

25.15 25.04 24.71 24.67 27.03 

SW-25 12.63 12.15 11.87 11.02 13.25 
 

24.82 20.37 16.41 10.75 23.65 

SW-34 11.91 11.28 11.30 10.93 11.91 
 

14.06 14.37 14.98 15.66 18.01 

SW-37 11.57 11.15 10.94 11.56 11.29 
 

12.37 7.01 8.11 9.12 11.60 

SW-45 11.85 11.52 11.11 11.82 11.89 
 

23.42 19.30 20.56 20.85 27.06 

SW-50 11.92 11.66 11.30 11.59 12.57 
 

23.10 20.37 18.70 20.37 20.37 

 

Furthermore, the impact of future climate change on post-BMP simulation shows that the 

horizon 2080 has high reduction in streamflow and sediment yield as compare to the other 
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climate horizons (Figure 8.4). Similar to the previous analysis, the sediment yield reduction in 

few sub-watersheds followed the similar pattern of streamflow reduction in lower part of the 

study area. In this analysis, the streamflow has nearly similar response in all critical sub-

watersheds during future climate horizons, while the sediment yield has varying response to the 

contour farming practice. Thus, the climate change also has small impact on model simulation 

reductions under the same management practice.  

  

Figure 8.4: Effect of contour farming on future streamflow and sediment yield 

Effective management of contour farming was also analyzed for each priority class given to 

critical sub-watersheds (Table 8.13). Results show that the high percent of streamflow 

reduction in class-V followed by class IV, class III, class-I and class-II. Nevertheless, the high 

sediment yield reductions are observed for priority class-II, followed by class-I, class-III, class-

IV and class-V. Thus, the contour farming has varying response to the streamflow and 

sediment yield reduction for different priority classes.  

Table 8.13: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective contour farming  

Priority  

class 

Streamflow (% reduction) 

  

Sediment yield(% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 11.11 10.64 10.64 10.97 11.13 
 

28.23 29.22 27.62 27.93 23.34 

II 10.87 10.31 10.52 10.69 11.04 
 

28.30 29.72 29.04 27.85 26.95 

III 11.21 10.93 10.84 10.87 11.62 
 

27.81 23.81 28.75 23.31 27.18 

IV 11.89 11.07 10.87 11.37 12.12 
 

26.77 24.59 24.55 24.01 28.33 

V 12.01 11.56 11.35 11.27 12.25   18.59 15.53 14.55 13.97 18.41 

 

(c) Evaluation of residue management 

In this study, residue management has been implemented by considering changes in curve 

number (CN2), USLE cover factor (USLE_C), and Manning’s roughness coefficient for 
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overland flow (OV_N) in critical sub-watersheds of the Betwa river basin. In this analysis, the 

CN2 and USLE_C values were decreased to reduce overland flow, sheet and rill erosion, while 

the OV_N was increased to get more surface roughness. Results show that reduction in 

sediment yield (6.04% to 20.53%) is higher than the reduction in streamflow (6.44% to 9.08%) 

for baseline as well as future horizons (Table 8.14). Although the streamflow reduction in 

critical sub-watersheds (SW-25, SW-34, SW-37, SW-45 and SW-50) located at the upper basin 

part is high, the residue management practices can effectively reduce the sheet and rill erosion 

by decreasing flow velocity and land cover factor with more surface roughness. The BMP 

parameters, i.e. the CN2, USLE_C and OV_N, have low sensitivity for the streamflow (Table 

8.8) and high sensitivity for the sediment yield (Table 8.9). Thus, in the present analysis the 

sediment yield reduction is higher than the streamflow reduction. Mainly, the sub-watersheds 

located in lower basin area have high sensitivity of BMP parameters resulting high (about 18%) 

sediment yield reduction (Tables 8.9 & 8.14). Analysis shows that residue management 

practice has low effect on streamflow and sediment yield reduction, as compared to the contour 

farming.  

Table 8.14: Percent reduction in post-BMP simulation after implementation of residue 

management 

Sub- 

watershed 

Streamflow (% reduction) 

 

Sediment yield(% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 7.12 7.03 7.11 7.31 7.54 
 

8.93 18.21 19.50 18.30 20.53 

SW-2 7.12 7.03 7.11 7.31 7.54 
 

8.92 20.32 18.50 18.35 19.71 

SW-4 7.22 7.13 7.19 7.41 7.67 
 

19.10 18.75 17.90 17.67 18.24 

SW-5 7.24 6.44 6.47 7.42 7.69 
 

19.13 18.78 17.92 16.99 19.09 

SW-6 8.03 7.88 6.81 7.36 8.63 
 

16.32 15.94 15.84 14.25 16.15 

SW-7 7.49 7.37 6.83 7.40 8.20 
 

16.12 12.82 18.58 12.26 12.53 

SW-11 6.95 6.87 6.86 7.43 7.76 
 

14.03 15.01 13.64 13.55 19.40 

SW-12 7.12 8.14 7.21 7.42 7.60 
 

18.07 12.83 16.91 12.27 17.20 

SW-14 7.16 6.89 7.00 7.47 7.61 
 

17.06 15.81 16.92 15.14 15.81 

SW-16 7.23 7.16 7.14 7.49 8.15 
 

14.39 16.51 13.91 13.44 17.78 

SW-17 7.00 8.09 6.89 7.48 7.83 
 

12.56 12.36 11.15 11.71 14.86 

SW-18 7.45 7.19 7.02 7.66 8.20 
 

14.64 15.91 14.28 15.29 17.60 

SW-20 9.08 7.26 7.17 7.90 8.41 
 

15.15 13.11 12.90 13.22 13.99 

SW-25 7.80 7.56 7.42 8.27 8.91 
 

12.41 7.85 6.04 14.88 10.00 

SW-34 7.08 7.43 7.27 7.51 7.88 
 

13.80 14.53 13.30 14.53 17.69 

SW-37 7.11 7.37 7.12 7.70 7.72 
 

14.54 13.25 13.11 14.18 14.43 

SW-45 7.59 7.08 7.22 7.66 8.18 
 

13.39 12.22 11.18 14.72 13.80 

SW-50 7.76 7.45 7.24 7.86 8.12 
 

10.00 10.00 8.33 10.00 10.00 
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The analysis of future climate change impact on post-BMP simulation shows that horizon 2080 

has high reduction in streamflow and sediment yield (Figure 8.5). Sediment yield reduction in 

few critical sub-watersheds located at lower basin area is in similar pattern to the streamflow 

reduction. In this analysis, the streamflow has increased in all the critical sub-watersheds 

during future years, while the sediment yield has varying response to the residue management 

practice. Thus, the climate change also has an impact on future streamflow and sediment yield 

reduction in the present study.  

  

Figure 8.5: Effect of residue management on future streamflow and sediment yield 

The effective management of residue management was also analyzed for each priority class 

given to the critical sub-watersheds (Table 8.15). Results show that the high percent of 

streamflow reduction in class-V followed by class IV, class III, class-I and class-II. 

Nevertheless, the high sediment yield reductions are observed for priority class-II, followed by 

class-I, class-IV, class-III and class-V. Thus, the residue management has varying response to 

the streamflow and sediment yield reduction for the different priority classes.  

Table 8.15: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective residue management  

Priority  

class 

Streamflow (% reduction) 

  

Sediment yield(% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 7.15 7.26 7.07 7.43 7.76 
 

14.41 16.33 15.88 15.25 17.44 

II 7.19 6.88 6.86 7.46 7.80 
 

14.18 17.50 16.08 16.04 18.95 

III 7.90 7.59 7.07 7.57 8.07 
 

16.45 12.92 16.13 12.58 14.57 

IV 7.81 7.48 7.01 7.51 8.40 
 

14.85 14.08 13.51 14.49 14.98 

V 7.44 7.46 7.27 7.84 8.16   12.69 11.41 10.19 13.40 13.03 

 

(d) Evaluation of strip cropping  

In this study, strip cropping has been implemented by adjusting the curve number (CN2), 

USLE cover factor (USLE_C), USLE support practice factor (USLE_P) and Manning’s 
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roughness coefficient for overland flow (OV_N) in critical sub-watersheds of the Betwa basin. 

In this analysis, the CN2, USLE_C and USLE_P decreased to reduce flow in small 

depressions, sheet and rill erosion, while the OV_N increased to get more surface roughness. 

Results show that reduction in sediment yield (21.04% to 37.28%) is higher than the reduction 

in streamflow (11.07% to 13.97%) for baseline as well as future horizons (Table 8.16). 

Although, the streamflow reduction in critical sub-watersheds (SW-25, SW-34, SW-37, SW-45 

and SW-50) located at the upper basin part is high, the strip cropping practice can effectively 

reduce the sheet and rill erosion by decreasing flow velocity in depressions and cover factor, 

and more surface roughness. The BMP parameters, i.e. the CN2, USLE_P, USLE_C and 

OV_N, have low sensitivity for streamflow (Table 8.8) and high sensitivity for sediment yield 

(Table 8.9). Thus, in the present analysis also the sediment yield reduction is higher than the 

streamflow reduction. Mainly, the sub-watersheds located in the lower basin area have high 

sensitivity of the BMP parameters resulting high (more than 30%) sediment yield reduction 

(Tables 8.9 & 8.16). This analysis shows that residue management practice is highly effective 

on streamflow and sediment yield reduction, as compared to the previous over-land BMP 

treatments. Thus, the strip cropping is the most effective over-land management practice in the 

Betwa basin.  

Table 8.16: Percent reduction in post-BMP simulation after implementation of strip cropping  

Sub- 

watershed 

Streamflow (% reduction) 

 

Sediment yield(% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

SW-1 11.73 11.63 11.72 11.85 12.11 
 

26.07 35.26 35.56 34.80 37.28 

SW-2 11.74 11.30 11.73 11.85 12.11 
 

25.54 36.87 35.09 34.86 36.47 

SW-4 11.86 11.75 11.83 11.96 12.26 
 

35.62 35.21 34.38 34.06 32.00 

SW-5 11.89 11.07 11.11 11.97 12.28 
 

35.65 35.73 34.41 33.39 32.85 

SW-6 12.87 12.15 11.62 12.04 13.39 
 

33.22 32.72 32.01 30.53 32.69 

SW-7 11.63 11.70 11.80 11.97 12.18 
 

32.85 27.82 34.94 27.26 27.53 

SW-11 11.83 11.70 11.69 11.70 12.54 
 

30.37 30.64 29.25 28.99 34.66 

SW-12 11.93 12.41 11.81 12.09 11.13 
 

34.86 27.83 33.26 27.27 32.35 

SW-14 11.89 11.46 11.65 12.45 12.23 
 

33.74 31.85 26.81 31.11 30.19 

SW-16 12.14 11.88 11.76 11.98 12.97 
 

30.47 32.77 29.51 29.01 33.68 

SW-17 12.55 12.36 11.74 12.19 12.10 
 

28.20 27.95 26.73 27.14 29.94 

SW-18 12.05 11.66 11.81 11.76 12.39 
 

30.65 31.92 27.77 30.82 32.42 

SW-20 13.35 12.29 12.16 12.17 13.34 
 

30.15 28.89 28.62 28.76 30.33 

SW-25 13.11 12.75 12.54 12.54 13.97 
 

28.61 23.93 21.04 30.64 26.64 

SW-34 12.18 11.76 11.92 11.95 12.68 
 

29.69 30.47 28.14 29.92 33.05 

SW-37 12.52 12.15 11.88 12.25 12.72 
 

30.09 28.21 28.72 29.44 30.13 

SW-45 12.48 12.19 12.18 12.55 13.18 
 

29.38 28.15 25.86 30.60 29.53 

SW-50 12.76 12.20 12.21 12.70 13.01 
 

25.00 25.00 23.33 25.00 25.00 
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Future climate change impact analysis shows that the horizon 2080 has high reduction in 

streamflow and sediment yield (Figure 8.6). Sediment yield in critical sub-watersheds located 

at lower basin area reduces in similar pattern to the streamflow reduction. In this analysis also, 

streamflow response increases in all critical sub-watersheds during future horizons, while the 

sediment yield has varying response to the residue management practice. Thus, the climate 

change also has an impact on streamflow and sediment reduction under strip cropping 

treatment.  

  

Figure 8.6: Effect of strip cropping on future streamflow and sediment yield 

The effective management of strip cropping was also analyzed for the each priority class given 

to critical sub-watersheds (Table 8.17). Results show the high percent of streamflow reduction 

in class-V followed by class IV, class III, class-I and class-II. Nevertheless, the high sediment 

yield reductions are observed for priority class-II, followed by class-I, class-IV, class-III and 

class-V. Thus, the residue management has varying response to streamflow and sediment yield 

reduction for different priority classes.  

Table 8.17: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective strip cropping  

Priority 

class 

Streamflow (% reduction) 

 

Sediment yield(% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

I 12.03 11.82 11.74 12.08 12.33 
 

30.82 32.61 30.60 31.23 32.62 

II 11.88 11.43 11.58 11.82 12.33 
 

30.55 33.79 31.63 32.02 34.10 

III 12.31 12.13 11.92 12.08 12.22 
 

32.62 28.18 32.27 27.76 30.07 

IV 12.68 12.17 11.90 12.29 13.28 
 

31.30 30.44 28.93 30.56 31.11 

V 12.64 12.22 12.14 12.36 13.10 
 

28.35 26.90 25.31 28.75 28.71 

 

Sensitivity of the BMP parameters usually vary in each critical area, hence, the BMP 

effectiveness also varied in this study. Among the over-land BMP parameters, decrease in the 
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DEPTIL, EFFMIX, CN2, USLE_C and USLE_P values, due to positive sensitivity, can induce 

the low streamflow and sediment yield outputs. Only the OV_N parameter was increased to 

have more resistance to the overland flow, due to negative sensitivity. In agriculture area, the 

contour farming and the strip cropping can be used as the most effective over-land BMPs 

treatments. Both the agriculture treatments can significantly reduces streamflow and sediment 

yield in the Betwa basin. Effectiveness of the BMP treatments can vary under future climatic 

changes, and hence induces varying response for each priority class as well as the critical areas. 

In the past, Tripathi et al. (2005) employed these three tillage treatments for Nagwan 

watershed, and recommended that the field cultivator can replace conventional tillage 

treatment. Furthermore, in Indian regions, Behera and Panda (2006) recommended 

conservation tillage for Kapgari watershed, Pandey et al. (2005) recommended zero tillage and 

conservation tillage treatments for Banikdih watershed, and Pandey et al. (2009a) 

recommended field cultivator as tillage treatment for the Karso watershed over the 

conventional tillage practice.  

8.3.2.3 Evaluation of in-stream BMPs 

In this study, the grassed waterways, streambank stabilization, grade stabilization structures, 

porous gully plugs and recharge structures have been evaluated for protection and restoration 

of river channels of the Betwa river basin.  

(a) Evaluation of grassed waterways  

In this study, the grassed waterway has been implemented on main river channel, and then 

evaluated for critical sub-watersheds of the Betwa basin. This practice increases channel cover 

(CH_COV) and channel roughness (CH_N2), as well as reduces the main channel erodibility 

(CH_EROD) to facilitate low flow velocity for sediment settling. Result shows that sediment 

yields of SW-45 reduce in the range of 50.54% to 56.42% for baseline (1986-2005) and future 

climate horizons (2020-2099), respectively (Table 8.18). Although the low amount of 

streamflow (about 1.77%) reduces in SW-45, this protection practice effectively reduces the 

erosion in main channel due to high sensitivity of CH_COV, CH_EROD and CH_N2 (Tables 

8.8 & 8.9). Similarly, the SW-18 and SW-37 with high sensitivity of CH_COV, CH_EROD 

and CH_N2 resulting a large percent reduction in sediment yield (more than 45%). High 

sensitivity of CH_N2 at downstream river basin simulates more sediment yield reduction in 

SW-1, SW-2, SW-4 and SW-5 (Table 8.9). The sensitivity of main channel roughness also 

reduces small percentages of streamflow (more than 3%) in lower basin sub-watersheds as 

compared to the upper basin sub-watersheds.  
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Furthermore, the sediment yield reduction is less in SW-14 and SW-25 as compared to the 

sediment yields from other critical sub-watersheds. It may be due to low sensitivity of 

CH_COV (SI = 0.06) and CH_EROD (SI = 0.18) in SW-14, and low negative sensitivity of 

CH_N2 (SI = -0.10) in SW-25. Sensitivity of the BMP parameters in SW-25 may reduce in 

future and thus, resulting decrease in sediment yield from horizon 2020 to horizon 2080. For all 

critical sub-watersheds, present study shows high percent sediment reduction in the range of 

7.86% to 56.42%, and low streamflow reduction in the range of 1.62% to 3.62%. Thus, the 

grassed waterways in main channel can significantly reduce the sediment yield and protect the 

main river channel in the critical sub-watersheds located in upper as well as lower part of the 

Betwa River basin.  

Table 8.18: Percent reduction in post-BMP simulation after implementation of grassed 

waterways  

Sub- 

watershed 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 
 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 3.57 3.51 3.62 3.21 3.36  38.81 38.94 40.42 42.35 40.43 

SW-2 3.58 3.53 3.62 3.21 3.36  39.16 39.31 40.76 42.75 40.79 

SW-4 3.51 3.46 3.53 3.14 3.29  35.45 35.09 35.94 36.75 35.77 

SW-5 3.41 3.37 3.45 3.06 3.21  35.60 35.24 36.08 36.89 35.91 

SW-6 3.43 3.39 3.39 3.02 3.18  31.83 30.60 30.99 32.58 31.95 

SW-7 2.20 2.20 2.22 2.16 2.16  21.67 19.85 20.02 24.36 22.96 

SW-11 2.70 2.69 2.67 2.50 2.57  28.83 27.59 28.86 30.56 29.93 

SW-12 1.98 1.98 1.98 1.99 1.98  21.76 19.90 20.04 24.44 23.02 

SW-14 1.65 1.66 1.62 1.71 1.67  21.32 19.71 19.94 23.72 22.41 

SW-16 1.74 1.76 1.73 1.79 1.77  21.76 20.15 20.36 24.10 22.82 

SW-17 2.46 2.46 2.44 2.33 2.36  26.55 24.66 26.30 28.85 28.00 

SW-18 1.86 1.85 1.84 1.88 1.86  46.08 46.15 46.68 47.00 46.59 

SW-20 2.39 2.40 2.36 2.27 2.30  25.96 24.55 26.49 28.93 27.96 

SW-25 2.21 2.21 2.19 2.13 2.17  29.96 24.77 18.70 13.36 7.86 

SW-34 2.15 2.15 2.15 2.11 2.12  35.75 40.40 40.11 38.93 39.39 

SW-37 1.99 2.00 2.00 2.00 1.99  48.41 52.24 51.77 50.95 51.41 

SW-45 1.74 1.77 1.79 1.81 1.77  50.54 56.42 55.40 54.77 55.45 

SW-50 1.77 1.79 1.83 1.84 1.79  44.61 44.58 44.04 43.19 43.52 

 

In addition, the effect of future climate change on post-BMP simulation has also been analyzed 

in the study. Results show the SW-25 has sediment yield reduction variation from horizon 2020 

(about 24.77%) to horizon 2080 (about 7.86%) as shown in Figure 8.7. It means SW-25 is most 

affected critical sub-watershed under climatic changes. Figure 8.7 illustrates that the critical 

sub-watersheds located at downstream of the Betwa River basin have similar pattern between 

streamflow reduction and sediment yield reduction. However, four sub-watersheds (SW-34, 

SW-37, SW-45 and SW-50) located at upper part of the basin have high sensitivity to the 
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sediment yield reduction. Result demonstrated that sensitivity of grassed waterways parameter 

is not very effective to reduce the streamflow in a river channel.  

  

Figure 8.7: Effect of grassed waterways on future streamflow and sediment yield  

Effective management of grassed waterway was also analyzed for each priority class (Table 

8.19). Results show the high percent reductions of streamflow for class-II followed by class-I, 

class-IV, class-III and class-V. Nevertheless, the high sediment yield reductions are observed 

for priority class-IV, followed by class-V, class-II, class-I and class-III. Thus, in the present 

study the grassed waterway implementation has varied response to the streamflow and 

sediment yield under different priority classes.  

Table 8.19: Priority class wise average reduction (%) in the streamflow and sediment yield 

under effective grassed waterways  

Priority  

class 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

 Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 2.59 2.57 2.59 2.44 2.49  28.78 27.71 28.59 31.15 29.89 

II 2.89 2.86 2.89 2.66 2.75  37.42 37.07 38.10 39.30 38.31 

III 2.19 2.19 2.19 2.14 2.15  23.13 21.43 22.18 25.91 24.65 

IV 2.59 2.58 2.59 2.41 2.47  41.18 43.51 43.20 43.68 43.70 

V 2.03 2.04 2.04 2.02 2.02  39.69 40.50 38.65 36.61 35.55 

 

(b) Evaluation of streambank stabilization 

Streambank stabilization, also called lined waterways, is used to reduce sediment loads while 

maintaining streamflow capacity in the main channel segment. This practice was implemented 

by lowering channel erodibility (CH_EROD) and channel roughness (CH_N2) which shows a 

high percent reduction of sediment yield in the SW-12 and SW-14 during all periods, i.e. from 

historical baseline to future horizons (Table 8.20). Streambank stabilization practice responds 

well to the critical sub-watersheds located in upper and lower part of the study area. More 

sediment yield reductions with low streamflow changes are observed in upper basin sub-
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watersheds, mainly SW-37 and SW-45, where as a negative sensitivity of CH_N2 is dominant 

over the sensitivity of CH_EROD (Tables 8.8 & 8.9). Thus, streambank stabilization is an 

effective treatment to reduce large percent of sediment yields in the upper basin area. In case of 

lower basin, the SW-1, SW-2, SW-4 and SW-5 have high sediment yield reductions (more than 

35%) and small streamflow reductions (about 3%) as compared to the upper basin streamflow 

reductions. In lower basin area also, the sensitivity of CH_N2 is dominant over the low 

sensitivity of CH_EROD. Thus, in streambank stabilization practice, the lined channel reduces 

a significant amount of sediment yield in the critical sub-watersheds. Nevertheless, the lower 

sediment yield reduction in SW-12 (about 20%) and SW-14 (about 22%) shows that the 

negative sensitivity of CH_N2 in SW-12 (SI = -0.17) and SW-14 (SI = -0.18) is less effective 

in these critical areas (Table 8.9).  

In this analysis, the percent reductions in the sediment yield and streamflow by the streambank 

stabilization are nearly similar to the percent reductions obtained by the grassed waterways. 

The grassed waterway parameter (mainly CH_COV) reduces more streamflow as compare to 

the streamflow reductions obtained by streambank stabilization practice. Contrary, the 

sediment yield reductions are higher in case of the streambank stabilization treatment. It means 

the streambank stabilization is optimal in-stream BMP for river channel protection.  

Table 8.20: Percent reduction in post-BMP simulation after implementation of streambank 

stabilization  

Sub- 

watershed 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 
 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 3.37 3.31 3.42 3.01 3.16  41.08 41.51 42.55 44.12 42.49 

SW-2 3.38 3.33 3.42 3.01 3.16  40.79 41.18 42.32 44.03 42.30 

SW-4 3.31 3.26 3.33 2.94 3.09  36.36 36.14 36.82 37.46 36.62 

SW-5 3.21 3.17 3.25 2.86 3.01  36.09 35.80 36.56 37.27 36.36 

SW-6 3.23 3.19 3.19 2.82 2.98  31.83 30.60 30.99 32.58 31.95 

SW-7 2.00 2.00 2.02 1.96 1.96  21.98 20.12 20.25 24.60 23.20 

SW-11 2.50 2.49 2.47 2.30 2.37  28.92 27.69 28.93 30.62 30.00 

SW-12 1.78 1.78 1.78 1.79 1.78  21.76 19.90 20.04 24.44 23.02 

SW-14 1.45 1.46 1.42 1.51 1.47  21.60 19.96 20.18 23.98 22.69 

SW-16 1.54 1.56 1.53 1.59 1.57  21.76 20.15 20.36 24.10 22.82 

SW-17 2.26 2.26 2.24 2.13 2.16  26.55 24.66 26.30 28.85 28.00 

SW-18 1.66 1.65 1.64 1.68 1.66  57.34 56.54 57.10 59.11 58.21 

SW-20 2.19 2.20 2.16 2.07 2.10  25.96 24.55 26.49 28.93 27.96 

SW-25 2.01 2.01 1.99 1.93 1.97  54.83 52.15 49.60 48.21 37.94 

SW-34 1.95 1.95 1.95 1.91 1.92  54.30 56.06 56.71 57.08 56.91 

SW-37 1.79 1.80 1.80 1.80 1.79  61.54 63.04 63.44 63.84 63.63 

SW-45 1.54 1.57 1.59 1.61 1.57  60.06 63.36 63.41 63.74 63.70 

SW-50 1.57 1.59 1.63 1.64 1.59  56.65 56.41 57.03 57.23 56.94 
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In future, the streambank stabilization can significantly decrease sediment yield from the 

critical sub-watersheds with a lower amount of streamflow reductions (Figure 8.8). Based on 

the post-BMP simulation, the analysis reveals that the impacts of climate change on the percent 

reductions in sediment yield and streamflow under varying responses of BMP parameters in 

future. Mainly, in horizon 2060 the higher sediment yield reductions in all the sub-watersheds 

were observed with low changes in streamflow (Figure 8.8). Except in SW-25, where a low 

sediment yield reduction is observed for the horizon 2020 (about 52.15%) to horizon 2080 

(about 37.94%). The result reveals that in SW-25 the effect of streambank stabilization 

deceases in future under changing climate. Thus, the effect of streambank stabilization practice 

in main channel varies under changing future climate. 

  

Figure 8.8: Effect of streambank stabilization on future streamflow and sediment yield 

In this analysis, the streambank stabilization significantly reduces sediment yield in all the 

priority classes as compared to the streamflow (Table 8.21). Results show that the high 

streamflow reductions are observed for class-II followed by class-I, class-IV, class-III and 

class-V. However, the higher sediment yield reductions are observed for priority class-V, 

followed by class-IV, class-II, class-I and class-III. Thus, the streambank stabilization practice 

also has varying response in each priority classes. 

Table 8.21: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective streambank stabilization 

Priority  

class 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

 Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 2.39 2.37 2.39 2.24 2.29  29.47 28.48 29.24 31.70 30.52 

II 2.69 2.66 2.69 2.46 2.55  40.79 40.30 41.22 42.76 41.72 

III 1.99 1.99 1.99 1.94 1.95  23.23 21.52 22.26 25.99 24.73 

IV 2.39 2.38 2.39 2.21 2.27  45.94 46.98 47.20 48.16 47.83 

V 1.83 1.84 1.84 1.82 1.82  56.83 56.91 56.70 56.59 53.85 
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(c) Evaluation of grade stabilization structures 

In this study, grade stabilization structures have also been implemented and evaluated for the 

main channel protection employing the SWAT model. This structural practice lowered the 

main channel erosion by decreasing the main channel erodibility (CH_EROD) and slope 

steepness (CH_S2). The results show a high percent sediment yield reduction (about 36%) 

from SW-12 as compared to other critical sub-watersheds (Table 8.22). Due to structural 

intervention, the CH_S2 parameter in SW-12 has a large sensitivity to the high sediment yield 

reduction (35-37%) and low streamflow reductions (about 7-8%) as shown in Tables 8.8 & 8.9. 

In this analysis, low sediment reductions are observed for SW-37, located at downstream of the 

Basoda gauging site, where main CH_S2 has a low sensitivity index value (SI = 0.19) affecting 

the model outputs (Table 8.9). Further, the changes in streamflow increased from upper to 

lower basin (SW-50 to SW-1) due to varying CH_S2 sensitivity at sub-watershed level (Table 

8.8). Thus, the grade stabilization structure can be used as a sustainable management practice 

to protect the main channel segment by reducing streamflow velocity.  

Table 8.22: Percent reduction in post-BMP simulation after implementation of grade 

stabilization structures  

Sub- 

watershed 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 
 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 8.77 9.14 7.60 8.84 8.61  12.56 11.71 10.15 9.43 11.06 

SW-2 8.06 6.97 7.27 9.07 9.29  12.83 11.91 10.31 9.51 11.23 

SW-4 7.97 8.91 7.96 9.58 9.17  18.88 18.53 17.74 18.51 18.91 

SW-5 7.56 7.88 7.81 10.43 8.91  19.17 18.74 17.97 18.72 19.17 

SW-6 7.97 7.58 8.21 10.03 7.50  26.66 28.61 27.68 25.63 26.31 

SW-7 7.66 7.35 8.65 8.74 8.11  36.09 35.47 36.76 35.96 35.73 

SW-11 7.38 6.89 7.53 8.78 7.12  29.92 31.29 29.88 28.24 29.01 

SW-12 7.90 7.23 7.72 7.19 7.12  36.33 35.72 37.04 36.15 35.96 

SW-14 6.12 6.11 6.45 6.06 5.86  35.27 34.34 35.36 35.60 35.29 

SW-16 5.83 5.83 5.83 6.59 5.83  34.93 33.95 34.98 35.35 35.00 

SW-17 7.16 7.20 7.04 8.18 7.16  33.29 35.62 33.63 30.83 31.75 

SW-18 5.83 5.83 5.83 5.83 6.12  15.57 15.42 15.52 14.58 14.92 

SW-20 7.62 6.74 7.82 7.65 7.54  33.22 35.39 33.76 31.08 32.02 

SW-25 6.82 6.13 6.63 7.81 6.58  13.53 14.42 16.72 18.23 23.00 

SW-34 5.83 5.99 6.42 7.06 7.16  13.58 12.39 12.42 12.70 12.74 

SW-37 6.23 6.01 6.50 6.37 6.16  9.12 8.25 8.29 8.53 8.62 

SW-45 5.91 5.90 6.43 6.60 6.48  11.73 9.82 10.03 10.27 10.21 

SW-50 6.10 6.01 6.35 6.01 6.16  13.04 13.22 13.14 13.78 13.88 
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High sediment yield reduces in the SW-12 during horizon 2060 (about 36.15%), and in SW-45 

during horizon 2020 (about 8.25%) as illustrated in Figure 8.9. The SW-25 increases the 

sediment yield reduction under changing climate, i.e. from horizon 2020 (about 14.42%) to 

horizon 2080 (about 23%), because of the low sensitivity of CH_S2 (SI = 0.13) and high 

sensitivity of CH_EROD (SI = 0.56) in main river channel. Result shows that present sediment 

loads in the lower basin area can be minimized by implementation of the grade stabilization 

structures, especially in SW-7, SW-12, SW-14, SW-16, SW-17 and SW-20 where a high 

sensitivities of CH_S2 (SI value more than 0.32; Table 8.9) plays an important role to settling 

down the sediment flow in main river channel.  

Streamflow reductions are more in future horizon 2060, when a flooding may be possible 

owing to maximum rainfall events. Thus, this practice would be an optimal solution to 

minimize flooding impact on river channel segment. It is clearly observed that the grade 

stabilization structures are more sensitive to the sediment yield reduction mainly in critical sub-

watersheds located in the lower part of Betwa basin (Figure 8.9). In main channel, the 

CH_EROD parameter is less sensitive and the CH_S2 parameter is more sensitive for lower 

basin area (Table 8.8), which represents feasibility of structural practice to reduce the 

streamflow. Therefore, the present in-stream BMP intervention can be valuable for the 

reductions in sediment yield as well as streamflow of the Betwa basin in future years.  

  

Figure 8.9: Effect of grade stabilization structures on future streamflow and sediment yield 

As per the priority class, effect of grade stabilization structure is also analyzed in the present 

study. Table 8.23 shows the higher streamflow reductions for class-III followed by class-I, 

class-II, class IV and class-V. Similarly, the higher sediment yield reductions are observed for 

priority class-III, followed by class-I, class-II, class IV and class-V. Here, for all priority 

classes both streamflow and sediment yield reduces in same amount after intervention of the 

grade stabilization structures in main river channel. 
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Table 8.23: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective grade stabilization structures 

Priority  

class 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

 Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 7.17 7.44 6.98 7.85 7.33  26.99 26.83 26.37 25.94 26.40 

II 7.21 6.89 7.11 8.53 7.86  19.37 19.34 18.42 17.76 18.58 

III 7.73 7.11 8.06 7.86 7.59  35.21 35.53 35.85 34.40 34.57 

IV 6.94 6.74 7.32 8.32 6.99  19.19 19.22 18.85 17.95 18.26 

V 6.24 6.03 6.47 6.81 6.51  12.32 12.07 12.64 13.31 14.56 

 

(d) Evaluation of porous gully plugs  

Porous gully plugs has been implemented by increasing the tributary channel roughness 

(CH_N1) to reduce the gully erosion by lowering streamflow velocity, and for sediment 

trapping. Result shows a high sediment yield reductions (more than 10%) in SW-6 during all 

analysis periods (Table 8.24). Similarly, the streamflow reductions are also around 10% in all 

climate periods, where the CH_N1 parameter has main role to reduce the streamflow of 

tributary channel with a sensitivity SI = -0.07 (Table 8.8). Moreover, the critical sub-

watersheds SW-1, SW-2, SW-4 and SW-5 located at downstream of the SW-6 reduces large 

amount of sediment and streamflow with maximum sensitivity of CH_N1 (Tables 8.8 & 8.9). 

Thus, porous gully plugs in a tributary channel can reduce both streamflow as well as sediment 

yields in the similar way in critical sub-watersheds of the study area. Nevertheless, porous 

gully plugs has very low response in sub-watersheds located in the upper Betwa basin with 

lowered sensitivity of CH_N1. The study demonstrated that, the BMP effectiveness in tributary 

channels is very low as compared to the effect of BMPs implemented in main channel. It is 

because of large difference between Manning’s roughness coefficients (‘n’ value) in main 

channel and tributary channel of the Betwa basin.  

The porous gully plugs can significantly reduce sediment yields under varying climatic 

condition in all the critical sub-watersheds. Present BMP is observed to be more effective in 

horizon 2020, as compare to next future horizons (Figure 8.10). This practice performs 

gradually from upper to lower basin sub-watersheds of the Betwa River basin. This might be 

due to high negative sensitivity of CH_N1 from upper to lower basin area. In this analysis, both 

streamflow and sediment yields reduce in similar way in all future climate horizons. Therefore, 

an intervention of porous gully plugs could be an effective practice for protection of tributary 

channel segment.   
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Table 8.24: Percent reduction in post-BMP simulation after implementation of porous gully 

plugs  

Sub- 

watershed 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 
 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 9.05 8.44 7.34 7.68 7.72  10.88 10.75 9.33 9.17 9.89 

SW-2 9.06 8.45 7.35 7.69 7.73  10.88 10.74 9.33 9.19 9.89 

SW-4 9.18 8.55 7.47 7.86 7.82  11.20 10.82 9.26 9.40 10.10 

SW-5 9.23 8.57 7.50 7.90 7.84  11.19 10.81 9.26 9.42 10.11 

SW-6 12.31 11.33 9.66 10.21 10.41  13.82 13.15 10.96 11.20 11.68 

SW-7 1.84 1.72 1.78 1.74 1.40  0.82 0.71 1.08 1.08 0.60 

SW-11 6.87 6.46 5.97 6.38 6.18  7.79 7.58 6.76 7.02 6.95 

SW-12 0.33 0.25 0.56 0.69 0.18  0.72 0.63 0.97 1.04 0.52 

SW-14 1.00 1.06 0.49 0.23 0.82  0.83 0.88 0.34 0.08 0.58 

SW-16 0.81 0.83 0.39 0.16 0.61  0.82 0.87 0.33 0.08 0.58 

SW-17 5.64 5.39 5.14 5.50 5.25  6.11 5.89 5.51 5.83 5.62 

SW-18 0.71 0.71 0.46 0.35 0.57  0.28 0.29 0.17 0.12 0.22 

SW-20 6.90 6.56 6.04 6.41 6.31  7.13 6.94 6.23 6.60 6.57 

SW-25 6.26 5.99 5.75 6.04 5.88  5.43 19.24 5.79 5.41 5.80 

SW-34 4.71 4.52 4.52 5.03 4.77  1.98 1.68 1.94 2.20 1.89 

SW-37 2.37 2.37 2.83 3.06 2.65  0.84 0.66 1.06 1.22 0.89 

SW-45 0.31 0.39 1.20 1.31 0.74  0.01 0.03 0.32 0.42 0.17 

SW-50 0.61 0.50 0.22 0.30 0.19  0.24 0.23 0.09 0.22 0.06 

 

  

Figure 8.10: Effect of porous gully plugs on future streamflow and sediment yield 

From Table 8.25, results show the higher streamflow reductions for class-II followed by class-

IV, class-I, class V and class-III. Similarly, the higher sediment yield reductions are observed 

for priority class-II, followed by class-IV, class-I, class-III and class-V. Thus, the intervention 

of porous gully plugs in tributary channel can effectively reduce sediment yield and streamflow 

in the similar order of priority classes.   
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Table 8.25: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective porous gully plugs 

Priority 

class 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 
 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

I 5.13 4.85 4.17 4.29 4.44  5.97 5.84 4.95 4.91 5.35 

II 6.47 6.05 5.32 5.58 5.58  7.53 7.36 6.38 6.44 6.79 

III 3.02 2.84 2.79 2.94 2.63  2.89 2.76 2.76 2.91 2.57 

IV 6.31 5.86 5.43 5.76 5.58  6.91 6.59 5.64 5.81 5.92 

V 3.49 3.35 3.33 3.61 3.37  2.12 1.20 2.22 2.26 2.16 

 

(e) Evaluation of recharge structures  

The practice of recharge structure has been implemented to trap sediment and to increase the 

ground water recharge by adjusting channel roughness (CH_N1) and hydraulic conductivity 

(CH_K1) in the tributary channels. Results show a high sediment yield reduction in the sub-

watersheds near the outlet of basin. Mainly, the SW-6 has high reductions in the sediment yield 

(about 11% to 14%) and streamflow (about 10% to 12%) in future (Table 8.26). Also, the SW-

1, SW-2, SW-4 and SW-5 have high reductions in sediment yield (about 9% to 11%) and 

streamflow (about 7% to 10%) due to maximum negative sensitivity of the CH_N1 and CH_K1 

in tributary channel (Table 8.9). In this analysis, the sensitivity of CH_K1 induces a very small 

impact on sediment and streamflow. This is similar to the results obtained from the porous 

gully structure treatment in the tributary channels.  

In lower basin area, a large amount of sediment load reduction has been induced in horizon 

2020, followed by horizon 2080, horizon 2060 and horizon 2040 (Figure 8.11). It means that 

the effectiveness of BMP parameters (CH_N1 and CH_K1) varies with climatic changes. 

Increase in hydraulic conductivity, i.e. up to 25 mm/hr, has moderate loss rate, and resulting a 

very low impact on the model output as compared to the impact of channel roughness. From 

this analysis, it is observed that the recharge structures can effectively protect the tributary 

channel under changing future climate. 

Higher streamflow reductions are obtained for class-II followed by class-IV, class-I, class V 

and class-III. And, the higher sediment yield reductions are obtained for priority class-II, 

followed by class-IV, class-I, class-III and class-V (Table 8.27). Thus, the implementation of 

recharge structures can effectively reduces the sediment yield and streamflow in all the priority 

classes.   
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Table 8.26: Percent reduction in post-BMP simulation after implementation of recharge 

structures  

Sub- 

watershed 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 
 

Baseline 

1986 

Horizon 

2020 

Horizon 

2040 

Horizon 

2060 

Horizon 

2080 

SW-1 9.08 8.46 7.36 7.69 7.75  11.08 10.93 9.46 9.30 9.85 

SW-2 9.09 8.46 7.37 7.71 7.75  11.08 10.92 9.46 9.31 9.86 

SW-4 9.22 8.58 7.48 7.88 7.85  11.36 10.97 9.36 9.50 10.24 

SW-5 9.27 8.59 7.52 7.92 7.87  11.36 10.96 9.36 9.52 10.25 

SW-6 12.38 11.37 9.68 10.24 10.45  13.96 13.26 11.03 11.26 11.77 

SW-7 1.83 1.71 1.77 1.74 1.40  0.88 0.76 1.11 1.10 0.64 

SW-11 6.94 6.51 6.00 6.42 6.21  7.93 7.69 6.83 7.08 7.04 

SW-12 0.33 0.25 0.57 0.69 0.18  0.78 0.67 0.99 1.08 0.56 

SW-14 1.00 1.06 0.49 0.24 0.82  0.79 0.84 0.31 0.06 0.55 

SW-16 0.81 0.84 0.40 0.16 0.61  0.78 0.83 0.30 0.05 0.54 

SW-17 5.71 5.43 5.17 5.53 5.29  6.19 5.96 5.56 5.87 5.67 

SW-18 0.71 0.72 0.47 0.35 0.56  0.28 0.28 0.16 0.12 0.22 

SW-20 6.99 6.62 6.08 6.44 6.37  7.27 7.04 6.30 6.65 6.65 

SW-25 6.36 6.06 5.79 6.08 5.95  4.99 19.25 5.74 5.29 5.91 

SW-34 4.71 4.52 4.52 5.03 4.77  2.04 1.74 1.97 2.23 1.92 

SW-37 2.37 2.37 2.82 3.06 2.65  0.89 0.71 1.08 1.26 0.92 

SW-45 0.31 0.39 1.20 1.31 0.75  0.03 0.05 0.33 0.44 0.19 

SW-50 0.60 0.50 0.22 0.30 0.20  0.24 0.21 0.09 0.22 0.05 

 

  

Figure 8.11: Effect of recharge structures on future streamflow and sediment yield 

Table 8.27: Priority class wise average reduction (%) in streamflow and sediment yield under 

effective recharge structures 

Priority 

class 

Streamflow (% reduction)  Sediment yield (% reduction) 

Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

 Baseline  

1986 

Horizon  

2020 

Horizon  

2040 

Horizon  

2060 

Horizon  

2080 

I 5.16 4.87 4.18 4.30 4.46  6.04 5.91 5.00 4.95 5.37 

II 6.50 6.07 5.34 5.60 5.60  7.66 7.46 6.45 6.51 6.84 

III 3.05 2.86 2.81 2.96 2.65  2.97 2.83 2.80 2.94 2.62 

IV 6.34 5.88 5.44 5.78 5.60  6.99 6.65 5.68 5.85 5.98 

V 3.51 3.36 3.34 3.62 3.39  2.04 1.98 2.22 2.25 2.20 



225 

Based on sensitivity of the BMP parameters, an increase in the CH_N2 value and the decrease 

in CH_COV, CH_EROD and CH_S2 values induced low sediment flow in main channel. Thus, 

these BMP parameters (CH_N2, CH_COV, CH_EROD and CH_S2) can effectively reduce the 

model output, i.e. sediment yield, at sub-watershed level. In tributary channel, both CH_N1 and 

CH_K1 have negative sensitivity, which reveals that increase in their values can induce 

reduction in the model outputs for protection and restoration of tributary channels. Two main 

channel stabilization treatments, namely grassed waterways and streambank stabilization, are 

adequate interventions for protection of main river channel from eroding. Their effect on 

sediment yield reduction is quite higher than the effect of grade stabilization structures. In 

horizon 2060, possible flood situation due to high rainfall events can be minimized by 

treatment of grade stabilization structures. Thus, this can be an optimal solution to reduce 

streamflow in the Betwa River basin. In this study, both grassed waterways and streambank 

stabilization produces maximum reductions in the critical sub-watersheds of the upper basin 

(SW-34, SW-37, SW-45 and SW-50) and lower basin areas (SW-1, SW-2, SW-4, SW-5, SW-6, 

SW-11, SW-18 and SW-25). Grade stabilization structures are the most effective in critical 

sub-watersheds (SW-7, SW-12, SW-14, SW-16, SW-17 and SW-20) where first two treatments 

are less effective. Therefore, these BMPs can be individually implemented to the respective 

sensitive areas for their effectiveness in streamflow and sediment yield reduction. Thus, the 

present study demonstrates a guideline for effective management for protection and restoration 

of river channels under changing climate. Bracmort et al. (2006) evaluated the grassed 

waterways and grade stabilization structuress for the Black Creek watershed, USA, and found 

that these BMPs can be implemented under high sediment yield conditions. Arabi et al. (2008) 

evaluated the river channel BMPs for the Smith Fry watershed of USA, and recommended that 

the grassed waterways, lined waterways/streambank stabilization and grade stabilization 

structures for sediment reductions in different orders of the river channels. From the study, 

BMP implementation, parameter selection and parameter sensitivity have altogether effective 

functioning on the river channel treatments, and their reasonableness in the SWAT model. 

Overall, this study represents an effectiveness of over-land BMP treatments in agriculture land 

as well as in-stream BMP interventions in main and tributary channels of the Betwa River 

basin. Sub-watershed wise BMP effectiveness shows significant reduction in sediment yield; 

however, very low streamflow reductions are obtained. The sub-watersheds located in the 

upper and lower basin area have varied impact on hydrologic component due to different 

sensitivity of the BMP parameters for agriculture land and river channels. From over-land BMP 

analysis, the streamflow reductions has very similar effect in all the critical areas, while the 
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BMP effect on sediment reduction increases from upper to lower basin. From in-stream BMP 

analysis, the main channel interventions are highly effective in few sub-watersheds of the upper 

basin (SW34, SW-37, SW-45 and SW-50) and the lower basin (SW-1, SW-2, SW-4 and SW-

5), whereas only SW-6 is the most sensitive area under tributary channel intervention.  

8.3.3 Priority class wise BMP effectiveness 

In addition, the BMP effectiveness on streamflow and sediment yield reduction has been 

studied for each priority class (from class-I to class-V) considered to implement the feasible 

management practices for agriculture land and river channels.  

8.3.3.1 Over-land BMP effectiveness  

In this analysis, contour farming and strip cropping were effective in minimizing the 

streamflow (Table 8.28) due to high sensitivity of CN2 (Table 8.29) for streamflow. Moreover, 

the sensitive USLE_C and UCLE_P parameters can induce an impact on streamflow reductions 

contributed in each priority class. Highest streamflow reductions were observed for priority 

class-V where CN2 (SI = 0.16), USLE_C (SI = 0.06) and USLE_P (SI = 0.06) parameters 

pronounces dominant effect on streamflow (Table 8.29). Due to an over-land BMP treatment, 

sediment yield reduction is more than the streamflow reduction in all priority classes. In this 

analysis also, both contour farming and strip cropping contributes high reduction in sediment 

yield due to more SI values of BMP parameters. Highest reduction in the sediment yield was 

observed for priority class-II. Here, the sensitivity of CN2 (SI = 0.18), USLE_C (SI = 0.03) and 

USLE_P (SI = 0.06) facilitates flow resistant and erosion settling in agriculture land. Results 

revealed that the strip cropping is the most effective over-land BMP treatment for soil and 

water conservation in critical sub-watersheds of the Betwa basin. 
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Table 8.28: Priority class wise average reduction (%) under effective over-land BMP 

implementation   

Priority 

class 

Average reduction (%) in future 

Tillage 

management 
Contour 

farming 

Residue 

management 

Strip 

cropping 
CT FC ZT 

Streamflow reduction (%) 

I 6.19 7.67 2.25 10.84 7.38 11.99 

II 6.38 7.80 2.59 10.64 7.25 11.79 

III 6.66 8.17 2.64 11.06 7.58 12.09 

IV 6.48 7.93 2.61 11.36 7.60 12.41 

V 6.65 7.86 3.42 11.61 7.68 12.45 

Sediment reduction (%) 

I 19.19 16.72 26.79 27.03 16.23 31.76 

II 18.95 16.58 26.25 28.39 17.15 32.88 

III 19.62 17.10 27.36 25.76 14.05 29.57 

IV 16.50 14.08 23.95 25.37 14.26 30.26 

V 12.18 10.16 18.40 15.62 12.01 27.42 

Note: CT = Conservation tillage; FC = Field cultivator; ZT = Zero tillage 

Table 8.29: Priority class wise average sensitivity of over-land BMP parameters 

Priority 

class 

Sensitivity Index (SI) values 

DEPTIL EFFMIX CN2 USLE_C USLE_P OV_N 

Streamflow 

I 0.01 0.00 0.16 0.04 0.03 -0.01 

II 0.01 0.00 0.17 0.04 0.03 -0.01 

III 0.01 0.00 0.17 0.03 0.03 -0.01 

IV 0.02 0.02 0.17 0.05 0.04 -0.02 

V 0.03 0.01 0.16 0.06 0.06 -0.02 

Sediment yield 

I 0.02 0.02 0.18 0.03 0.05 -0.01 

II 0.01 0.03 0.18 0.03 0.06 -0.01 

III 0.03 0.01 0.16 0.02 0.05 -0.02 

IV 0.03 0.02 0.12 0.05 0.03 -0.01 

V 0.02 0.02 0.12 0.04 0.03 -0.01 

 

8.3.3.2 In-stream BMP effectiveness  

Results show that the in-stream BMP effect on streamflow is less as compare to the impact on 

sediment yield. The grade stabilization structures can reduce the streamflow in large amount 

(Table 8.30) due to high sensitivity of CH_S2 parameter for streamflow (Table 8.31).  Two 

main channel BMPs (grassed waterways and streambank stabilization) reduces a large amount 

of sediment yield in all the priority classes; except class-III where the grade stabilization 

structure is more effective due to high sensitivity of CH_S2 (SI = 0.34) for sediment yield 
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(Table 8.31). In tributary channel, priority class-IV has high streamflow reductions, and class-II 

has high sediment yield reductions in tributary channel. Both porous gully plugs and recharge 

structures have a similar effect on streamflow and sediment yield. However, a very small 

amount of additional percent reduction is observed by recharge structure over porous gully 

plugs, because of very low sensitivity of CH_K1 parameter in recharge structure treatment. The 

effect of hydraulic conductivity on model simulation is clearly visible when results were 

compared for the priority classes as shown in Table 8.30. The results of in-stream BMP 

analysis show that main channel BMP intervention is the most effective than the tributary 

channels for river channel protection from erodibility. 

Table 8.30: Priority class wise average reduction (%) under effective in-stream BMP 

implementation   

Priority 

class 

Average reduction (%) in future 

Grassed 

waterways 

Streambank 

stabilization 

Grade stabilization 

structures 

Porous 

gully plugs 

Recharge 

structures 

Streamflow reduction (%) 

I 2.52 2.32 7.40 4.44 4.45 

II 2.79 2.59 7.60 5.63 5.65 

III 2.17 1.97 7.65 2.80 2.82 

IV 2.51 2.31 7.34 5.66 5.67 

V 2.03 1.83 6.46 3.41 3.43 

Sediment yield reduction (%) 

I 29.33 29.99 26.39 5.27 5.31 

II 38.19 41.50 18.53 6.74 6.82 

III 23.54 23.62 35.09 2.75 2.80 

IV 43.52 47.54 18.57 5.99 6.04 

V 37.83 56.01 13.15 3.02 3.04 

Table 8.31: Priority class wise average sensitivity of in-stream BMP parameters 

Priority 

class 

Sensitivity Index (SI) values 

CH_COV CH_EROD CH_S2 CH_N2 CH_N1 CH_K1 

Streamflow 

I 0.01 0.09 0.13 -0.07 -0.03 -0.02 

II 0.01 0.07 0.17 -0.09 -0.04 -0.02 

III 0.01 0.10 0.18 -0.07 -0.01 -0.01 

IV 0.01 0.08 0.11 -0.08 -0.05 -0.02 

V 0.02 0.08 0.03 -0.08 -0.02 -0.01 

Sediment yield 

I 0.11 0.26 0.26 -0.18 -0.04 -0.05 

II 0.12 0.33 0.19 -0.18 -0.05 -0.05 

III 0.11 0.29 0.34 -0.16 -0.03 -0.05 

IV 0.21 0.42 0.23 -0.14 -0.01 -0.02 

V 0.14 0.53 0.19 -0.15 -0.02 -0.02 
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8.3.4 Uncertainty in BMP effectiveness  

Uncertainty associated with an effective BMP simulation is considerably lower than that 

associated with the absolute prediction (Arabi et al., 2007). In addition, response of each BMP 

parameter varies with their minimum and maximum values used for an effective BMP 

treatment. The minimum and maximum values that may be the calibration (pre-BMP) value 

and/or post-BMP value can influence evaluation of the BMP effectiveness. In this study, 

various SWAT model parameters were used to implement the over-land and in-stream BMPs 

for sustainable management of the Betwa river basin. Therefore, uncertainty associated with 

the changes in BMP parameter value is needed to evaluate for an effective BMP 

implementation.  

In the study, depth of tillage (DEPTIL), mixing efficiency of tillage operation (EFFMIX), 

curve number (CN2), USLE factors (USLE_C and USLE_P) and channel roughness coefficient 

for overland flow (OV_N) were adjusted to implement the over-land BMPs, namely 

conservation tillage, contour farming, residue management and strip cropping in the agriculture 

land. For tillage management, this study uses conservation tillage, field cultivator and zero-

tillage practice. Change in tillage operations having DEPTIL value up to 25 mm can reduce 

more sediment loads (Figure 8.12a) with changes in EFFMIX and CN2 values (Figure 8.12b). 

Thus, these changes can simulate different sediment reductions, and may result uncertainty in 

the tillage management. Any small change in two USLE factors can also have different 

response to the sediment reduction (Figures 8.12c&d), which may affect the output of the post-

BMP simulation. The OV_N has small impact on changes in model output (Figure 8.12f), thus 

it can lead to a small uncertainty in BMPs implementation. In this study, only agriculture land, 

a dominant area of the Betwa basin, was considered for the over-land BMPs evaluation. Thus, 

the USLE_C factor of agriculture was only considered for the BMP treatment. However, while 

considering the other vegetative area, such as forest land, the change in USLE_C factor may 

also affect the model outputs (Figure 8.12e).  

   

 

 

(a) (b) (c) 
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Figure 8.12: Variations in percent sediment load reduction at the watershed outlet with respect 

to changing BMP parameters  

(a) Depth of tillage operation, (b) Mixing efficiency of tillage operation, (c) SCS runoff curve number for moisture 

condition II, (d) USLE support practice factor, (e) USLE cover factor, (f) OV_N = Manning’s roughness 

coefficient for overland flow, (g) channel cover factor, (h) channel erodibility factor, (i) structure height used to 

estimate average slope of the main channel, (j) main channel roughness coefficient, (k) tributary channel 

roughness coefficient, and (l) hydraulic conductivity  

In case of in-stream BMPs, the channel cover factor (CH_COV), channel erodibility factor 

(CH_EROD), average channel slope (CH_S2) and channel roughness coefficient (CH_N2) 

were considered for implementation of the grassed waterways, streambank stabilization and 

grade stabilization structures in the main channel. The protection of tributary channel was also 

done by an implementation of porous gully plugs and recharge structures considering channel 

roughness (CH_N1) and hydraulic conductivity (CH_K1). Results of post-BMP simulation 

showed that sub-watershed wise sensitivity of these BMP parameters varied for streamflow and 

sediment (Tables 8.8 & 8.9). In Figure 8.12, effect of different parameter values on percent 

reduction in sediment yield has been assessed at the watershed outlet. It is observed that 

sediment load increases with decrease in parameter value of both CH_COV and CH_EROD 

with respect to the calibration value. This study uses nearly zero (0.001) value of these BMP 

(k) (l) 

(g) (h) (i) 

(j) 

(d) (e) (f) 
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parameters for the implementation of grassed waterways. The CH_COV and CH_EROD 

reduces sediment yield by 7% and 11.5%, respectively (Figure 8.12g&h). Implementation of 

grade stabilization structure with different height from 0.5 m to 3 m affects the sediment 

outputs as shown in Figure 8.12i. Thus, the CH_S2 value estimated using the user-defined 

structure height and the SWAT assigned channel dimensions may cause high uncertainties in 

in-stream BMP implementation, i.e. the effectiveness of grade stabilization structure treatment 

in particular. This study used 1.2 m height of the grade stabilization structure showing 

significant decrease in sediment load. The streambank stabilization provided with increase in 

CH_N2 value of 0.03, resulted more sediment load reduction (about 20%) in main channel 

(Figure 8.12j). Impact of CH_N1 parameter also showed significant sediment reduction, i.e. 

Manning’s ‘n’ value of 0.05 (for porous gully plugs) reduces sediment loads about 7% and a 

value of 0.08 (for recharge structures) reduces sediment loads about 12% (Figure 8.12k). From 

this analysis, the response of Manning’s ‘n’ vary spatially as well as type/order of river 

channel, i.e. main channel and tributary channel, considered for in-stream BMP intervention. 

Moreover, the changes in CH_K1, from insignificant loss rate (0 mm/hr) to moderate loss rate 

(25 mm/hr), were tested which simulated the maximum sediment load reduction of about 5% 

(Figure 8.12l). The analysis for recharge structure shows that the tributary channel roughness is 

more sensitive than the hydraulic conductivity. Thus, any change in the value of a BMP 

parameter can also induce uncertainty in in-stream BMP effectiveness.   

8.4 CONCLUSIONS 

Based on the SWAT simulation, critical areas were identified and prioritized for the BMP 

treatments at sub-watershed level. The post-BMP simulations and the pre-BMP simulation 

were used to estimate the percent yield reductions and the sensitivity index values. Change in 

the model outputs with respect to the BMP parameter (minimum and maximum value) range 

was also investigated to assess the uncertainties of BMP implementation and their evaluation 

for soil and water conservation and river channel protection/restoration interventions. Based on 

the results, following conclusions are drawn: 

1. The SWAT model was successfully utilized for identification and prioritization of the 

critical sub-watersheds of the Betwa river basin for effective BMP treatments in 

agriculture land and river channels.  

2. About 2% of the total basin area was categorized as priority class-I; followed by 2.44% 

area under priority class-II, 3.18% area under priority class-III, 3.15% are under priority 

class-IV and 8.60% area under priority class-V, i.e. from very severe (more than 80 t 

ha
-1

year
-1

) to moderate (5-10 t ha
-1 

year
-1

) soil erosion class.  
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3. Sensitivity of all BMP parameters varies across the study area from upper to lower 

basin, and thus BMP effectiveness varies for each critical sub-watershed and the 

prioritized classes.   

4. Over-land BMP analysis showed that strip cropping can be the most effective treatment 

of agriculture land reducing streamflow about 11.07% to 13.97% and sediment yield 

about 21.04% to 37.28% for soil and water conservation. However, among three tillage 

operations, the field cultivator can be the most effective treatment for streamflow 

reduction (up to 11%), and the zero tillage is the most effective treatment for sediment 

yield reduction (up to 31%) in the agriculture area of Betwa basin.  

5. Analysis of the in-stream BMPs shows that both grassed waterways and streambank 

stabilization practices can be an effective river channel treatments for sediment yield 

reduction (about 20% to 60%) in critical areas of the upper basin (SW-34, SW-37, SW-

45 and SW-50) and the lower basin (SW-1, SW-2, SW-4, SW-5, SW-6, SW-11, SW-18 

and SW-25). The grade stabilization structure can be the most effective treatments for 

streamflow reduction (about 6% to 10%) in critical areas of the lower basin (SW-7, 

SW-12, SW-14, SW-16, SW-17 and SW-20).  

6. The grade stabilization structures can effectively reduce the streamflow in main river 

channel during future horizon 2060, when flooding may occur due to large precipitation 

events in future.  

7. Uncertainty analysis reveals that the dependency of structure height may affect CH_S2, 

and hence induce high uncertainty in the model in-stream BMP simulation while 

employing grade stabilization structure.  

Overall, an approach used in this study can be useful to prioritize the critical areas for 

intervention of the effective BMPs for sustainable river basin management in future. It is 

recommended to employ feasible BMPs initially for over-land critical areas, and then for in-

stream areas. The sequence of such BMP implementation may help to lower the surface erosion 

as well as to maintain the natural flow in river. The approach used in this study can be adopted 

for the regions having not only the land erosion but also the river channel erosion problems due 

to excessive flooding.  
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

9.1 SUMMARY 

In order to manage the increasing pressure on the world’s natural resources, new planning 

methodologies/processes for sustainable development of river basin are evolved (Hedelin, 

2008). The efficient management and proper use of land resources is a prime concern to 

required development all over the world. In a river basin, development of agriculture food 

production and water resources requires comprehensive knowledge of numerous variables 

including climate, Land Use/Land Cover (LU/LC), water availability, water distribution 

networks and management practices (Todorovic and Steduto, 2003). Therefore, the judicious 

management and conservation of land and water resources is a prerequisite to secure future 

food productivity. 

India is one of the major agriculture food producing country in the world. The variations in 

topography, climate, land and soil of the India are entirely different from those in other parts of 

the world. There are many challenging issues in the agriculture and water resources due to 

meteorological reasons like different climatic variations (Kumar et al., 2005; Mall et al., 2006). 

The climatic variations caused dry and wet spells (Singh & Ranade, 2010; Varikoden & 

Preethi, 2013) that affects food production (Milesi et al., 2010), and thus the Indian economy 

(Webster et al., 1998). Nevertheless, climate change impact studies in small/large catchments 

using hydrological modelling can be help to the policy and decision makers to prevent the 

future food problems.  

For large river basins, field-based investigations are time-consuming and challenging. 

Nowadays, its rate and extent can be significantly assessed using remotely sensed data (Omuto 

et al., 2014; Belay et al., 2015; Mahyou et al., 2016). Therefore, advanced geo-spatial 

technologies have been widely used for agriculture and water resources management to explore 

human interactions and to illustrate the importance of natural resource development 

(Hoalst‐Pullen & Patterson, 2010). River basins are most sensitive to the changes in LU/LC 

and hydrology (Mutiibwa et al., 2014; Wagner et al., 2016). Indian River basins are also 

sensitive natural systems to the short and long-term changes in the climate that affects the land 

resources. Improvement in the local and regional resources is enabling when the national policy 

used to combat these issues (Akhtar‐Schuster et al., 2011). Natural resource problems can be 

controlled not only by addressing climate but financial support is also required to tackle the 
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issues of poverty and food security (Gisladottir & Stocking, 2005). Hence, early-warning 

system is the prerequisite to improve sustainable management and development plans.  

The spatial and temporal variability of hydrological responses to LU/LC changes are vital for 

land and water resources management (Fang et al., 2013; Wagner et al., 2013). LU/LC change 

can significantly influence the hydrological cycle by affecting surface runoff, sediment and 

water quality (Fohrer et al., 2001; Badar et al., 2013; Niu and Sivakumar, 2013), hence affect 

catchment water balance which in turn results in resource problems such as land degradation. 

Therefore, it is important to understand and predict the potential hydrological consequences of 

existing land use practices (Du et al., 2013). 

In the past decades, different hydrological models were used for evaluation and selection of 

alternative land use and management practices for sustainability productivity of agricultural 

land (Dixon et al., 1994; Rosenthal et al., 1995; Mummey et al., 1998; Hudak et al., 2004; 

Anand et al., 2007; Butler and Srivastava, 2007; Cau and Paniconi, 2007; Ullrich and Volk, 

2009; Meghdadi, 2013). Among them, Soil and Water Assessment Tool (SWAT) is one of the 

most popular model which is used to study of small and large catchments worldwide, and 

turned out to be an effective tool to predict the consequences of LU/LC change (Du et al., 

2013). In the past studies, calibration and validation was carried out using SWAT model 

(Ndomba et al., 2008; Pandey et al., 2009b; Dhar and Mazumdar, 2009; Lam et al., 2010; 

Kushwaha and Jain, 2013; Maharjan et al., 2013; Bieger et al., 2014). Recently, many 

researchers applied the SWAT model for runoff, sediment and water quality simulation 

(Bannwarth et al., 2014; Jajarmizadeh et al., 2014; Ji et al., 2014; Memarian et al., 2014; 

Rahman et al., 2014; Tessema et al., 2014; Murty et al., 2014). Some studies on Best 

Management Practices (BMP) were also carried out for the river basin development (Arabi et 

al., 2006; Chang et al., 2007; Lemke et al., 2011; Jia et al., 2013; Yu et al., 2013). SWAT 

model was employed to quantify the effectiveness of BMP applications under climate change 

scenario (Lam et al., 2011; Van Liew et al., 2012; Woznicki and Nejadhashemi, 2014). In these 

studies SWAT model performed satisfactorily in small and large catchments. Looking to the 

aforementioned, SWAT model has been selected as an effective and precise tool for the 

development of a river basin area. 

The advanced remote sensing and GIS techniques could enable to address water demand, and 

LU/LC change and climate change impacts. Climate change affects the availability of water 

resources, hence the agriculture food production (Arnell, 1999; Arnell, 2004, Krysanova et al., 

2005). Many studies evaluated local climate change impacts using different climate models, i.e. 

Global Climate Models (GCM) and Regional Climate Models (RCM). GCM data were mostly 
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used to downscale the global climate parameters at local scale (Wilby et al., 2002; Chu et al., 

2010; Weiland et al., 2010), and projected to predict the future climate scenarios using climate 

data (Immerzeel, 2008; Golmohammadi et al., 2013; Duhan and Pandey, 2014). The future 

climate outputs can be useful for hydrological modelling to underpin the hydrology of a river 

basin (Vaze and Teng, 2011; Wagner et al., 2015). Therefore, climate change consideration in 

SWAT model simulation may ensure the need of management and development for future 

agriculture water.  

Looking to the aforesaid, this research work has been planned with the following specific 

objectives:  

1. To study the spatiotemporal land use/land cover (LU/LC) changes of the Betwa river 

basin and its modelling for future analysis. 

2. To study the relationship between hydro-climatic variables and land cover dynamics 

under dry and wet spells over Betwa Basin. 

3. Hydrological modelling of water storages in the Betwa River basin using Soil and 

Water Assessment Tool (SWAT). 

4. To study the individual as well as combined impact of land use and climate change on 

hydrology of the Betwa river basin. 

5. Evaluation of the best management practices (BMPs) for sustainable development of 

the Betwa river basin 

9.1.1 Data acquisition and analysis  

The daily observed climate data and hydrologic (discharge and sediment) time-series data for 

the years 2001-2013 were used in this study. Observed climate data of 18 rain-gauges were 

obtained from India Meteorological Department (IMD), Pune. Hydrologic time-series data of 

four gauging sites were obtained from the Yamuna Basin Organization (YBO), Central Water 

Commission (CWC), New Delhi. Soil data was procured from the National Bureau of Soil 

Survey and Land Use Planning (NBSS&LUP), Nagpur. For elevation data, the DEM of Shuttle 

Radar Topography Mission (SRTM) data of 30 m spatial resolution were utilized for the study 

area delineation and slope map preparation. Various satellite imageries were obtained from the 

USGS GloVis and NRSC to prepare the LU/LC maps. The satellite-derived LU/LC maps were 

further utilized in future LU/LC prediction employing an integrated Cellular Automata (CA) – 

Markov Chain (MC) model. The remotely sensed MODIS (collection 5) time-series datasets of 

NDVI Terra (MOD13Q1) and Land Cover (MCD12Q1) products, obtained from the NASA’s 

Earth Observing System (EOS) Clearing House (ECHO), were used in relationship analysis 

with numerous hydro-climatic variables over the years 2001-2013. A conceptual framework 
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was developed and used to furnish the relationship analysis results, i.e. the change in response 

of NDVI and land cover to the changes in hydro-climatic variables of the Betwa river basin.  

In this study, the SWAT, a semi-distributed physical model was used to set-up and run the 

hydrological process of the Betwa river basin considering numerous water storages, i.e. 7 

reservoirs and 2 weirs. The land use of the years 2013 and 2040 were used to assess the land 

use change impact on hydrology of the Betwa river basin. Further, the downscaled and bias-

corrected CMIP5 GCM (MPI-ESM-MR model) dataset of RCP8.5 climate scenario was used 

as an input to the SWAT model for climate change impact assessment. A newly developed 

conceptual framework was further employed to assess the individual as well as combined 

impact of land use and climate changes on streamflow (FLOW), sediment yield (SYLD), 

evapotranspiration (ET) and water yield (WYLD). For identified and prioritized critical area of 

the Betwa river basin, the effective over-land as well as in-stream BMPs were implemented 

and evaluated in agriculture land and river channels for soil and water conservation and 

sustainable river basin management in future.  

9.1.2 Land use/land cover (LU/LC) changes and its future modelling 

In this analysis, remote sensing and GIS techniques were used to extract the spatial information 

of LU/LC changes using spatiotemporal satellite imageries. It includes the imageries of the 

Landsat-1 Multispectral Scanner (MSS), Landsat-2 MSS, Landsat-5 Thematic Mapper (TM), 

Landsat-7 Enhanced Thematic Mapper Plus (ETM+), Landsat-8 Operational Land Imager 

(OLI), and Indian Remote-sensing Satellite (IRS-P6) Linear Imaging and Self Scanning (LISS) 

III. Maximum likelihood supervised image classification was carried out to prepare the land 

use maps of the years 1972, 1976, 1991, 2001, 2007, 2010 and 2013. Image pre-processing, 

classification of satellite data, and accuracy assessment of satellite-derived LU/LC maps were 

carried out using ERDAS Imagine 2014 and ArcGIS 10.2.2 version software. The LU/LC 

change analysis was further distinguished into two areas i.e. Madhya Pradesh and Uttar 

Pradesh. Further, an integrated Cellular Automata (CA) – Markov Chain (MC) model was 

employed to predict the future LU/LC maps for the years 2020, 2040, 2060, 2080 and 2100.  

9.1.2.1 Historical LU/LC changes 

In the historical LU/LC classification, overall classification accuracy and Kappa coefficient 

varies from 77% to 87% and 0.709 to 0.836, respectively. Analysis showed that dense forest 

declined from 23.39% to 14.31% during the years 1972 to 2013, respectively. However, the 

area under degraded forest, agriculture area, barren land, waterbody and settlement has 

increased from 8.54% to 13.37%, 63.75% to 67.91%, 2.98% to 1.27%, 1.22% to 2.84%, 0.12% 
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to 0.39%, respectively. The LU/LC change analysis for Madhya Pradesh showed decrease in 

dense forest and barren land by 7.67 % and 1.17 % during 1972 to 2013. However, degraded 

forest, agriculture, waterbody and settlement were increased by 4.1%, 3.37 %, 0.85% and 

0.16%, respectively. Similarly, decrease in dense forest (1.41%) and barren land (0.54%), and 

increase in degraded forest (0.73%), agriculture area (0.43%), waterbody (0.77%) and 

settlement (0.03%) were also observed in the basin area covered under Uttar Pradesh.  

9.1.2.2 LU/LC modelling using CA-MC model 

In this study, the satellite-derived historical LU/LC maps of the years 2001 and 2007 were 

utilized as an input to the CA-MC model for prediction of future LU/LC. Initially, the model 

was validated for the predictions of LU/LC maps of the years 2010 and 2013. The LU/LC 

modelling resulted satisfactory unbiased summary statistics in terms of Kappa indices, i.e. Kno 

values 0.850 and 0.867, Klocation values 0.788 and 0.812, KlocationStrata values 0.788 and 

0.812 and Kstandard values 0.768 and 0.793 for the simulation years 2010 and 2013, 

respectively. Also, the visual inspection analysis showed strong agreement for the area of 

simulated and satellite-derived LU/LC maps.  

9.1.2.3 Future LU/LC changes 

Future analysis showed an increase in the area of degraded forest from 14.82% to 18.82%, 

barren land from 5.80% to 10.03% and settlement from 0.36% to 0.64%; the decrease in dense 

forest from 12.16% to 10.77%, agriculture from 66.15% to 59.64% and waterbody from 0.72 to 

0.01% could also takes place in Betwa basin during the years 2020 to 2100.  Analysis for 

interstate LU/LC change showed that dense forest, agriculture area and waterbody could 

decrease by 1.13%, 3.36% and 0.28% in Madhya Pradesh, and 0.26%, 3.05% and 0.43% in 

Uttar Pradesh. However, increase in degraded forest, barren land and settlement area by 2.97%, 

1.72% and 0.08% for Madhya Pradesh, and 1.02%, 2.51% and 0.20% for Uttar Pradesh could 

take place during the years 2020 to 2100.  

The methodology adopted in this study can be extended to the other parts of the world to 

predict future LU/LC pattern, and its usefulness for future water and food security purpose. The 

results obtained from this study will be helpful for inter-state planning and management of land 

resources in the Betwa basin.  

9.1.3 Relationship analysis using conceptual framework 

In this analysis, MODIS NDVI and Land Cover time-series datasets were used to establish a 

relationship with numerous hydro-climatic variables, namely precipitation, Tmin, Tmax, Tdiff, 

RH, PET, P/PET, discharge and sediment etc. Further, a conceptual framework was used to 
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furnish the results of relationship analysis for dry years, wet years, and combined dry and wet 

year analyses.  

9.1.3.1 Dry year analysis 

In dry year analysis, temperature parameters, especially Tmax and Tdiff, showed climatic 

degradation response (r > -0.6) to the monthly and seasonal NDVI that declined the vegetation 

cover under prolonged dry spell effect. On annual basis, the Tmax and Tmin parameters were 

significantly degraded the vegetation area (r > -0.6), hence climatic degradation response. 

Monthly RH shows a significant positive response to the vegetation (r = 0.864). Monthly 

relationship between aridity index and NDVI showed a moderate correlation value of r = 0.561, 

which indicate an inadequate soil moisture condition for crop growth and development. Thus, 

deficient and uneven rainfall distribution in dry year may adversely affect crop production in 

the Betwa river basin.  

Among the land cover classes, the forest growth was limited by the low monsoon rainfall and 

the less moist climate condition. The woody savannas, grass land and permanent wet land 

growth were affected due to the Tdiff variable having high negative correlation value (r > -0.6). 

The dry year analysis showed more number of responses to the numerous land cover classes, 

hence depicted that Tdiff is the most affecting climate variable for land cover area of the Betwa 

basin.    

9.1.3.2 Wet year analysis 

During wet years, the correlation analysis between NDVI and hydro-climatic variables 

(especially rainfall, Tmax, Tmin, RH, PET, aridity index and Tdiff) showed significant response 

(positive or negative) at monthly, seasonal and annual time-scale. Changes in the rainfall 

induces a significant climatic degradation response to the NDVI during post-monsoon (r = -

0.712) and winter (r = -0.802). The correlation analysis shows significant climatic greening 

response of the monthly RH (r = 0.854), however climatic degradation response of the annual 

RH (r = -0.332). In this analysis, the land degradation response of Tmax in the pre-monsoon 

season (r = -0.983) was further decreased in SW-monsoon, and later again upraised the 

significant climatic-greening response to NDVI in winter (r = 0.651).  

The wet year analysis showed large number of good correlations (r > ±0.5) between all the land 

cover classes and hydro-climatic variables at annual time-scale. Among them, the DBF and 

MXF showed positive response to the Tmax, PET and Tdiff parameters (r > 0.5); however, a 

negative response to the rainfall, Q and sediment (r = -0.6 to -0.8). The dominant crop land 

exhibited a significant negative correlation with Tmax and Tdiff (r > -0.7); as well as positive 
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correlation with rainfall, Tmin, Q, aridity index and sediment (r > 0.65) in wet years. This 

analysis revealed that the WTR, DBF, MXF, SV, GL and CL were the most influenced land 

cover areas under wet spell effects over the Betwa basin.  

9.1.3.3 Combined effects of dry and wet years  

The combined, dry and wet years, analysis showed very few good correlations between hydro-

climatic variables and vegetation. On monthly basis, NDVI exhibited significant response to 

few climate parameters Tmax (r = -0.669), RH (r = 0.861) and Tdiff (r = -0.651). The monthly 

rainfall showed moderate response (r = 0.51) i.e. climatic greening response to NDVI. Analysis 

showed more good correlations (r >= 0.5) for monthly and SW-monsoon analyses. Thus, the 

monthly and monsoon season rainfall has a very important role for vegetative growth in the 

Betwa river basin. This analysis demonstrated that the combined effect of dry and wet years 

reduces the NDVI response to the hydro-climatic variables. The MODIS land cover exhibited 

moderate correlations with hydro-climatic variables. The WTR class has significant positive 

response to Q (r = 0.728) and sediment (r = 0.707). Overall, this analysis showed reduced 

hydro-climatic response to the land cover area of the Betwa river basin. 

Thus, the land cover dynamics can be easily analyzed using remote sensing time-series datasets 

for large river basins. Analysis pertaining to the crop-land can be applied to secure the food 

productivity considering the climatic and non-climatic land greening and degradation 

responses.     

9.1.4 Hydrological modelling using SWAT 

In the study, different water storages (7 reservoirs and 2 weirs) located on main as well as 

tributary channels of the Betwa river basin were considered to successfully implement and 

manage the hydrological process of Betwa basin in the SWAT model. Sensitivity and 

uncertainty analysis were carried out to select the parameters for calibration and validation of 

the SWAT model.  

9.1.4.1 Water storages management in SWAT modelling 

The reservoir module in SWAT was used to adequately manage the water storages of Betwa 

basin. The surface area was extracted by Normalized Difference Water Index (NDWI) method 

using Landsat 8 OLI imagery of the flooding year 2013. Due to lack of water storage outflow 

data, the monthly target storage volume (STARG), beginning month of non-flood season 

(IFLOD1R), ending month of non-flood season (IFLOD2R), average daily principle spillway 

release rate (RES_RR) and the required days to reach target storage during monsoon and non-
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monsoon periods (NDTARGR) were managed in the study. This allows the daily outflow 

regulation from the reservoir to precisely simulate outflow using the SWAT model. 

9.1.4.2 Sensitivity and uncertainty analysis 

In this study, the sensitivity and uncertainty analysis were carried out using the SUFI-2 

algorithm in SWAT-CUP. Firstly, One-At-a-Time (OAT) sensitivity analysis was carried out to 

select the most sensitive parameters for calibration process. Then, global sensitivity analysis 

was performed to identify the relative sensitivity among the selected parameters for streamflow 

and sediment. Based on sensitivity analysis, total 23 sensitive parameters were considered for 

calibration of the streamflow (9 parameters) and sediment (14 parameters) using the SWAT 

model. Streamflow is the most sensitive to the curve number (CN2) followed by SURLAG 

(surface runoff lag coefficient) to SOL_AWC (available water capacity of the soil layer). 

Sediment is most sensitive to the channel erodibility factor (CH_ERODMO) followed by 

USLE_K (soil erodibility factor for USLE equation) to USLE_C (minimum value of USLE C 

factor applicable to the forest area). The uncertainty analysis was also carried out in terms of p-

factor and r-factor obtained through Latin-Hypercube sampling. The analysis shows that the 

percent observations bracketed by the 95% prediction uncertainty (95PPU) were more than 

70% (p-factor).  Also, the average thickness of 95PPU band divided by standard deviation of 

measure data, i.e. r-factor, were also satisfactory for all gauging sites of the Betwa basin. 

9.1.4.3 SWAT model calibration and validation 

The SUFI-2 algorithm of the SWAT-CUP was used to calibrate and validate the SWAT model 

for streamflow and sediment at four gauging stations, namely Basoda, Garrauli, Mohana and 

Shahijina. During calibration process, high values of the R
2
 (0.90, 0.94, 0.91 and 0.92), NSE 

(0.88, 0.91, 0.91 and 0.92), and the low values of PBIAS (-14.20, -11.10, -7.70 and -16.30) and 

RSR (0.34, 0.30, 0.31 and 0.29) indicates satisfactory model performance. In validation, the 

high values of R
2
 (0.90, 0.92, 0.90 and 0.88), NSE (0.84, 0.91, 0.89 and 0.86), and the low 

values of PBIAS (-13.60, -16.50, -3.90 and -7.50) and RSR (0.41, 0.30, 0.33 and 0.38) also 

showed satisfactory model performance for streamflow simulation at Basoda, Garrauli, 

Mohana and Shahijina sites, respectively.  

Furthermore, performance of the SWAT model was also evaluated for sediment yield. During 

calibration process, high values of the R
2
 (0.89 and 0.78), NSE (0.89 and 0.77), the low values 

of PBIAS (-9.30 and -4.10) and RSR (0.33 and 0.48) indicates satisfactory calibration 

performance. Also, in validation, the high values of R
2
 (0.90 and 0.81), NSE (0.90 and 0.81), 
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and the low values of PBIAS (0.70 and 1.60) and RSR (0.32 and 0.44) indicates satisfactory to 

good simulation of sediment at Garrauli and Shahijina sites, respectively.  

9.1.5 Modelling hydrological response under future changes  

In this study, future land use and climate change impact on hydrology of the Betwa basin was 

assessed using the output of SWAT model. Also, a conceptual framework was developed to 

assess the individual as well as the combined impacts considering the land use and climatic 

changes in the study area. 

9.1.5.1 Individual land use change impact 

This analysis showed that change in land use class exhibited none significant impact (p 

value<0.05) on two hydrologic components i.e. streamflow and sediment yield. Among water 

balance components, the ET has significant positive relationship (R
2
 = 0.842, p<0.05) with the 

changes in waterbody class. The water yield exhibited significant relationships with the 

changes in dense forest (R
2
 = 0.076, p<0.05), degraded forest (R

2
 = 0.2, p<0.05) and 

agriculture (R
2
 = 0.245, p<0.05).  

9.1.5.2 Individual climate change impact 

In this analysis, future precipitation change showed significant impact (at p value < 0.05) on 

streamflow (R
2
 = 0.554, 0.156, 0.216, 0.157), ET (R

2
 = 0.207, 0.178, 0.472, 0.168), and water 

yield (R
2
 = 0.985, 0.946, 0.989, 0.991) during horizon 2020, horizon 2040, horizon 2060 and 

horizon 2080, respectively. The sediment yield is the exceptional hydrologic component having 

significant impact of precipitation change during horizon 2020 (R
2
 = 0.074, p<0.05) and 

horizon 2040 (R
2
 = 0.089, p<0.05). However, the future climate change impact is insignificant 

in horizon 2060 (p value = 0.782) and in horizon 2080 (p value = 0.766).  

9.1.5.3 Combined impact of land use and climate changes  

The combined land use and climate change analysis showed significant impact on streamflow 

with the changes in land use classes, mainly dense forest (r = 0.327 in horizon 2020, r = 0.457 

in horizon 2040), degraded forest (r = -0.271 in horizon 2060, r = -0.275 in horizon 2080), 

agriculture (r = 0.299 in horizon 2020) and barren land (r = -0.371 in horizon 2020, r = -0.342 

in horizon 2040); and the changes in precipitation (r = 0.727, 0.760, 0.456 and 0.387) in future 

climate horizons 2020, 2040, 2060 and 2080, respectively. Sediment yield has significant 

impact of dense forest (r = 0.310 in horizon 2020, r = 0.439 in horizon 2040), barren land (r = -

0.297 in horizon 2040), and precipitation (r = 0.290 in horizon 2020, r = 0.526 in horizon 

2040).  
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Among the water balance components, the ET has significant positive impact of changes in the 

waterbody (r = 0.916, 0.857, 0.882, 0.865), and the precipitation (r = 0.247 at p value > 0.05, 

0.528, 0.405, 0.338) during horizons 2020, 2040, 2060 and 2080, respectively. Also, the water 

yield has significant positive impact (at p value < 0.05) for changes in the dense forest (r = 

0.384, 0.442, 0.312, 0.360) and the precipitation (r = 0.939, 0.990, 0.988, 0.980); and the 

negative impact of changes in the barren land (r = -0.371, -0.555,  -0.630, -0.551) during 

horizons 2020, 2040, 2060 and 2080, respectively.  

9.1.5.4 Development of conceptual framework for individual and combined impact 

assessment 

In this study, a conceptual framework has been developed. This framework has four quadrants 

representing baseline (no change), individual land use change, individual climate change, and 

combined land use and climate change impact. The framework quadrants are limited by two 

half-axes of land use and climate change/constant. In each quadrant, the model outputs in terms 

of four hydrology components (FLOW, SYLD, ET and WYLD) are considerably represented 

to assess the individual as well as the combined impacts of land use and climate changes.  

The analysis showed that FLOW variable increases from 67.77 cumec to 67.86 cumec due to 

land use change, from 67.77 cumec to 80.46 cumec due to climate change, and from 67.77 

cumec to 80.56 cumec due to combined impact of land use and climate changes. Similarly, the 

SYLD variable increases from 16.51 t ha
-1 

to 16.58 t ha
-1 

due to land use change, from 16.51 t 

ha
-1 

to 19.61 t ha
-1 

due to climate change, and from 16.51 t ha
-1 

to 16.69 t ha
-1 

due
 
to combined 

impact of land use and climate changes. Thus, both the FLOW and SYLD have positive impact 

of land use and climate changes in all quadrants of the conceptual framework.  

Further, the ET has negative impact of land use change (reduced from 460 mm to 411 mm), 

climate change (reduced from 460 mm to 456 mm), and combined land use and climate 

changes (reduced from 460 mm to 405 mm). Similarly, the WYLD also has negative impact of 

land use change (reduced 400 mm to 386 mm), climate change (reduced from 400 mm to 350 

mm), and combined land use and climate changes (reduced from 400 mm to 337 mm). Thus, 

both ET and WYLD have negative impact of land use and climate changes in the Betwa basin.  

9.1.6 Evaluation of the best management practices (BMP)  

In this study, the non-structural and structural BMPs including four over-land BMPs namely 

tillage management, contour farming, residue management and strip cropping for agriculture 

area; and the five in-stream BMPs namely grassed waterways, streambank/channel 

stabilization, grade stabilization structures, porous gully plugs and recharge structures for river 
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channel were implemented in the SWAT model, and then evaluated for soil and water 

conservation as well as river bank protection in future.  

9.1.6.1 Critical area identification and prioritization 

Initially, the SWAT simulation showed that most of the sub-watersheds (about 80.63% of the 

total Betwa basin area) falls under the slight erosion class (0-5 t ha
-1 

year
-1

). About 8.60% area 

has moderate soil erosion (5-10 t ha
-1 

year
-1

); about 3.15% area has high soil erosion (10-20 t 

ha
-1 

year
-1

); about 3.18% area has very high soil erosion (20-40 t ha
-1 

year
-1

); about 2.44% area 

has severe soil erosion (40-80 t ha
-1 

year
-1

); and about 2% area has very severe soil erosion (80 

t ha
-1 

year
-1

) in the Betwa river basin. These identified critical sub-watersheds were further 

prioritized to implement and evaluate the over-land as well as in-stream BMPs to reduce the 

soil erosion in future.  

9.1.6.2 Effectiveness of over-land BMP  

The analysis of tillage management showed that conservation tillage operation can effectively 

reduce the streamflow and sediment yield in the range of 5.38% to 9.53% and 6.84% to 

24.27%, respectively. The field cultivator operation reduces the streamflow and sediment yield 

in the range of 6.30% to 11.20% and 4.15% to 22.73%, respectively. The zero tillage operation 

reduces the streamflow and sediment yield in the range of 1.05% to 5.08% and 12.66% to 

31.46% respectively. The contour farming practice also effectively reduced the streamflow 

(9.78% to 13.25%) and sediment yield (6.38% to 34.41%). The residue management 

effectively reduces the streamflow and sediment yield in the range of 6.44% to 9.08% and 

6.04% to 20.53%, respectively. Also, strip cropping practice effectively reduced the streamflow 

(11.07% to 13.97%) and sediment yield (21.04% to 37.28%) for baseline and future horizons.  

9.1.6.3 Effectiveness of in-stream BMP  

In this analysis, the grassed waterways effectively reduced streamflow (1.62% to 3.62%) and 

sediment yield (7.86% to 56.42%), the streambank stabilization effectively reduced streamflow 

(1.42% to 3.42%) and sediment yield (19.90% to 63.84%), and the grade stabilization structure 

effectively reduced streamflow (5.83% to 10.43%) and sediment yield (8.25% to 37.04%) in 

the main channel of the Betwa river basin. Furthermore, the porous gully plugs effectively 

reduced streamflow (0.16% to 12.31%) and sediment yield (0.01% to 13.82%), and the 

recharge structures effectively reduced streamflow (0.16% to 12.38%) and sediment yield 

(0.03% to 13.96%) in tributary channel of the Betwa river basin. 

In-stream BMP analysis showed that both the grassed waterways and streambank stabilization 

can be the most effective treatments for sediment yield reduction (about 20% to 60%) in the 
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critical areas of the upper basin (SW-34, SW-37, SW-45 and SW-50) and the lower basin (SW-

1, SW-2, SW-4, SW-5, SW-6, SW-11, SW-18 and SW-25). The grade stabilization structure is 

the most effective treatment for streamflow reduction (about 6% to 10%) in lower sub-

watersheds (SW-7, SW-12, SW-14, SW-16, SW-17 and SW-20) of the Betwa basin.  

9.1.6.4 Sensitivity and uncertainty analysis of BMP parameters  

Among the over-land BMP parameters, the depth of tillage operation (DEPTIL), mixing 

efficiency of tillage operation (EFFMIX), curve number (CN2), USLE support practice factor 

(USLE_P) and cover factor (USLE_C) have positive sensitivity, while the Manning’s 

roughness coefficient overland flow (OV_N) has negative sensitivity to the change in 

streamflow and sediment yield. Furthermore, among the in-stream BMP parameters the 

channel cover (CH_COV), channel erodibility (CH_EROD) and average slope of main channel 

(CH_S2) have positive sensitivity, while the Manning’s roughness coefficients for main 

channel (CH_N2) as well as tributary channel (CH_N1) and the hydraulic conductivity in 

tributary channel (CH_K1) have negative sensitivity to the change in model outputs.  

The changes in BMP parameter across its minimum and maximum value showed uncertainty in 

the BMP implementation and their effectiveness on sediment load reduction. Change in tillage 

operations having DEPTIL values from 150 mm to 25 mm can reduce sediment loads up to 8 t 

ha
-1

. Any small change in two USLE factors can also have different response to the sediment 

reduction at post-BMP condition. In this study, the USLE_C factor has been only considered 

for agriculture dominant area of the Betwa basin. However, while considering the other 

vegetative area, such as forest land, the changes in USLE_C factor can uncertain the sediment 

reduction. Among in-stream BMP parameters, the CH_S2 value, estimated using the user-

defined structure height (1.2 m) and the SWAT assigned channel dimensions, may cause high 

uncertainty in BMP effectiveness, i.e. the implementation of grade stabilization structure in 

particular. Moreover, in the study the Manning’s roughness coefficient ‘n’ vary spatially as 

well as with the type/order of river channel, i.e. main channel and tributary channel, considered 

for in-stream BMP intervention. 

Mainly the over-land interventions will be useful for sustainability of the agriculture food 

productivity as well as the land productivity. In addition, in-stream interventions will be helpful 

to protect the eroding river channels in future flooding situation.   

9.2 GENERAL CONCLUSIONS  

1. Historical spatiotemporal LU/LC change analysis showed the accrued in agriculture 

area by 8.55% with increase in irrigation water availability from waterbody (1.62%) 
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during the year 1972-2013. In 20
th

 century, about 1.75% agriculture area has increased 

due to newly constructed Rajghat reservoir located at central part of the Betwa basin.  

2. Future analysis showed decline in the major dense forest (1.39%) and agriculture 

(6.41%) areas which can significantly affect the vegetation cover in Betwa basin.  

3. Monthly rainfall exhibited a climatic greening response to vegetation (NDVI) in dry, 

wet and all year analyses. However, Tmax and Tdiff exhibited a climatic degradation 

response to the NDVI. The positive response between monthly RH and vegetation were 

not altered under dry and wet spells. 

4. The dominant CL area showed significantly positive response with rainfall, Tmin, Q, 

aridity index and sediment by correlation (r) values 0.730, 0.801, 0.776, 0.654 and 

0.801, respectively. The crop land was affected by the Tmax (-0.704) and Tdiff (-0.762) 

in the wet year analysis. However, in dry and all year analysis, none good correlation 

has been observed for CL area during the years 2001-2013.  

5. In the SWAT model, nine water storages of the Betwa basin, including 7 reservoirs and 

2 weirs, located in main channel as well as tributary channel having significant effect 

on the river channel flow were successfully implemented and managed for reliable 

hydrological prediction. Garrauli gauging site with none upstream water storage 

structure showed better model simulations than other gauging sites (Basoda, Mohana, 

and Shihijina) having upstream water storage structures.  

6. In future, the impact of climate change is dominant over the land use change impact. 

Increase in precipitation under future climatic change showed major impact on 

hydrology. Changes in dense forest, agriculture and waterbody induce positive impact; 

nevertheless the changes in degraded forest and barren land induce negative impact on 

hydrology of the Betwa basin.  

7. The developed conceptual framework can considerably separate the individual as well 

as combined impacts of land use change and climate change on hydrology components 

i.e. FLOW, SYLD, ET and WYLD, of a river basin.  

8. In future, GCM-derived temperature parameters have annual increasing trend i.e. 

minimum temperature increases from 1.22 °C to 5.34 °C and maximum temperature 

increases from 0.92 °C to 4.87 °C during 2020-2099. However, the GCM-derived 

precipitation has decreasing trend in future except during the horizon 2060. In this 

horizon 2060, increase in precipitation (140 mm) was observed due to high average 

annual precipitation about 1153 mm during 2060-2079.  



246 

9. Strip cropping can be the most effective over-land BMP treatment for agriculture land 

reducing streamflow (11.07% to 13.97%) and sediment yield (21.04% to 37.28%) for 

soil and water conservation under changing future climate.. 

10. The grassed waterways and streambank stabilization practices can be the most effective 

in-stream BMP treatments reducing sediment yield (about 20% to 60%) for protection 

of river channel segment. Also, the grade stabilization structure can effectively reduce 

the streamflow in main river channel during future horizon 2060, when flooding would 

be possible due to large precipitation events under future climatic changes.  

11. Study demonstrates the application of remote sensing datasets in land use change 

modelling, land cover dynamics, and their response analysis to hydrologic and climatic 

variables for sustainable land and water resources management of a large river basin.  

12. Future policies should be formulated on the basis of climate change impact than the 

land use change impact. This may be helpful to secure the water and food productivity 

in an agricultural dominant river basin of central India. However, similar approach can 

be adopted in the other parts of the world for sustainable river basin management. 

13. Overall, it is advised to employ modelling approach for sustainable water management 

strategies, and to implement government policies especially in critical erosion prone 

areas of an inter-state river basin for soil and water conservation, and protection of 

existing natural resources.  

9.3 OVERALL CONCLUSIONS AND RECOMMENDATIONS 

1. Increasing trend in pre-monsoon season rainfall may affect the harvesting of Rabi 

season crops. Therefore, the early-growing crop variety should be introduced in the 

Betwa basin. 

2. Increase in the minimum and maximum temperature may lead to a significant change in 

the growing season, growth stages and crop water use that subsequently affects the 

yield. Therefore, the crop varieties, which can sustain the high temperature, should be 

introduced in future. 

3. Strip cropping is recommended as the most effective over-land BMP treatment in 

agriculture land for soil and water conservation under changing future climate. 

4. Both grassed waterways and streambank stabilization practices are recommended as the 

most effective in-stream BMP treatments protecting the river channels from future 

flood erosion. 
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5. The grade stabilization structure can effectively reduce the streamflow in main river 

channel during future horizon 2060, due to large precipitation events under future 

climatic changes.  

9.4 MAJOR RESEARCH CONTRIBUTIONS 

1. Integrated CA-MC model was employed to analyze the LU/LC changes for a trans-

boundary/inter-state river basin of central India. As per the land use model simulation, 

the future LU/LC change analysis has been carried out for the whole duration of 21
st
  

century.  

2. A conceptual framework was employed to study the dry and wet spells effect on NDVI 

and land cover changes in the Betwa river basin.  

3. The required data/information to implement and manage the reservoirs and weirs in the 

SWAT model was estimated using remote sensing and measured data for the Betwa 

river basin.  

4. A conceptual framework has been developed to assess the individual and combined 

impacts of land use and climatic changes on the hydrology of the Betwa river basin for 

future years.  

5. Effectiveness of over-land as well as in-stream best management practices (BMP) were 

evaluated for soil and water conservation, and for river channel protection and 

restoration in the Betwa river basin.  

9.5 LIMITATIONS AND FUTURE RESEARCH SCOPE  

 Remote sensing data used in this study has different spatial and temporal resolutions, 

which may affect the change analysis and modelling, and may be one of the limitation 

of the present research study. 

 In this study, monthly streamflow and sediment yield simulations were carried out at 

sub-watershed level analysis. However, the SWAT model simulation at daily time-scale 

and at HRU level can provide more detailed hydrologic study.  

 Small ponds and lakes have not been considered in hydrological modelling using the 

SWAT, due to non-availability of data, this could be the limitation of this study. For 

HRU level analysis, small water storages information will be help to adequately 

simulate and model the complex hydrological processes of a river basin.  

 The water quality modelling can be also carried out for environmental management in 

the Betwa basin. 
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 Cost-effectiveness of the combined (over-land plus in-stream) BMP implementation is 

needed to evaluate for recommendation of optimal sustainable solutions for a river 

basin.  

 In this study, only one GCM model (RCP 8.5 scenario) for future climate change 

analysis has been employed. However, use of different RCP scenarios (other than RCP 

8.5 such as RCP 2.6, RCP4.5, RCP6.0 etc.) for future climate change impact assessment 

can be a scope for future research work.  
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APPENDIX-A 
A1: Field Visit (August 2-3, 2013) 

 

 
Place: Basoda-Ganj Village- near Rapta pul at right bank of Betwa River 

Latitude: 23° 52' 41.0", Longitude: 77° 55' 05.6", Elevation: 400 m 

 
Place: Basoda-Ganj Village- Farm near Rapta pul at right bank of the Betwa River 

Latitude: 23° 52' 26.1", Longitude: 77° 55' 12.5", Elevation: 410 m 
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Place: Basoda-Ganj Village- river flow condition near Rapta pul, view from right bank of the 

Betwa River 

Latitude: 23° 52' 41.0", Longitude: 77° 55' 05.6", Elevation: 400 m 

 
Place: Basoda-Ganj Village- Sediment flow by Betwa River water near Rapta pul 

Latitude: 23° 52' 41.0", Longitude: 77° 55' 05.6", Elevation: 400 m 
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Place: Basoda-Ganj Village- cutting of river bank by Betwa River water flow near Rapta pul 

Latitude: 23° 52' 41.0", Longitude: 77° 55' 05.6", Elevation: 400 m 

 

 
Place: Basoda- near Ambanagar pul water flow condition, view from right bank of the Betwa 

River 

Latitude: 23° 53' 01.6", Longitude: 77° 55' 11.9", Elevation: 397 m 
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Place: Basoda- near Ambanagar pul, view from right bank of the Betwa River 

Latitude: 23° 53' 01.6", Longitude: 77° 55' 11.9", Elevation: 397 m 

 
Place: Basoda_Nandpura village- soyabeen farm at left bank of the Betwa River 

Latitude: 23° 51' 08.6", Longitude: 77° 52' 45.6", Elevation: 414 m 
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Place: Basoda_Nandpura village- soyabeen farm observation by Prof. S.K. Sharma with farmer 

(after crossing Barighat pul) at left bank of the Betwa River- Farmer: Kushal Singh 

Latitude: 23° 51' 08.6", Longitude: 77° 52' 45.6", Elevation: 414 m 

 
Place: Vidisha - right bank view of the Betwa River before crossing the pul, near Mela ground 

Latitude: 23° 32' 24.8", Longitude: 77° 48' 09.6", Elevation: 425 m 
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Place: Vidisha_ left bank view of the Betwa River after crossing the pul, near Mela ground 

Latitude: 23° 32' 24.8", Longitude: 77° 48' 09.6", Elevation: 425 m 

 

 
Place: Vidisha_ River divide in two way, view from right bank of the Betwa River, near Mela 

ground 

Latitude: 23° 32' 24.8", Longitude: 77° 48' 09.6", Elevation: 425 m 
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A2: Field Visit (May 7-8, 2014) 

 

 
Place: Nandpura Village near Basoda 

Latitude: 23° 51' 8.6" N, Longitude: 77° 56' 45.6" E, Elevation: 420 m 

 
Place: Ambanagar pul 

Latitude: 23° 52' 59.1", Longitude: 77° 55’12.4", Elevation 400 m 
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Place: Barrighat pul 

Latitude: 23° 51' 0.08", Longitude: 77° 53' 09.8", Elevation: 400 m 

 
Place: Field2 (Basoda)   

Latitude: 23° 52' 50.0", Longitude: 77° 55’10.0" 
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Place: Field 3 (Behind Manorma colony, Sagar) 

Latitude: 23° 49' 54.5", Longitude: 78° 45' 52.6" 

 

 
Place: Forest (Sagar)  

Latitude: 23° 49' 27.1", Longitude: 78° 45' 7.09" 
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Place: Forest2 (Sagar) 

Latitude: 23° 49' 37.6", Longitude: 78° 45' 6.25" 

 

 
Place: Water Body Sagar (Pond) 

Latitude: 23° 49' 59.0", Longitude: 78° 44' 48.5" 
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Place: Field (Sihora)  

Latitude 23° 47' 57.0", Longitude: 78° 35' 01.8" 

 

 
Place: Field (Rahatgadh) 

Latitude: 23° 47' 37.6", Longitude: 78° 24' 28.0" 
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Place: Field (Begamganj) 

Latitude: 23° 36' 13.0", Longitude: 78° 20' 53" 

 

 

 
Place: Barren Land (Geratganj)  

Latitude: 23° 25' 11.2", Longitude: 78° 14' 42.0" 
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Place: Field (Garhi)  

Latitude: 23° 23' 20.4", Longitude: 78° 08' 59.3" 

 

 
Place: Field (Dehgaon) 

Latitude: 23° 19' 32.0", Longitude: 78° 06' 05.4" 
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Place: Field (Narwar)  

Latitude: 23° 18' 30.4", Longitude: 77° 57' 58.0" 

 

 
Place: Field (Raisen)  

Latitude: 23° 19' 08.8", Longitude: 77° 47' 39.8" 
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Place: Field (Bhopal)  

Latitude: 23° 14' 52.6", Longitude: 77° 32' 56.3" 

 

 
Place: Field (Bhopal)  

Latitude: 23° 15' 27.4", Longitude: 77° 30' 29.8" 
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Place: Bhopal (Waterbody)  

Latitude: 23° 15' 12.3", Longitude: 77° 23' 26.8" 

 

 

 
Place: Begamganj (Barren Land) 

Latitude 23° 36' 38.2", longitude 77° 20' 58.0" 

 

 

 

 



307 

A3: Field Visit (November 19-22, 2014) 

 

 
Place: Rajghat dam 

Latitude: 24° 45.928' N, Longitude: 78° 14.264' E, Elevation: 345 m 

 
Place: Typical cross section board on Rajghat dam 

Latitude: 24° 45.720' N, Longitude: 78° 14.198' E, Elevation: 380 m 
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Place: Side view from top-right side of the Rajghat dam 

Latitude: 24° 45.720' N, Longitude: 78° 14.198' E, Elevation: 380 m 

 

 
Place: Rajghat dam open gate 

Latitude: 24° 45.720' N, Longitude: 78° 14.198' E, Elevation: 380 m 
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Place: Rajghat dam close gate 

Latitude: 24° 45.720' N, Longitude: 78° 14.198' E, Elevation: 380 m 

 

 
Place: Chanderi village view 

Latitude: 24° 43.159' N, Longitude: 78° 08.372' E, Elevation: 437 m 
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Place: Fort near Chanderi village 

Latitude: 24° 42.643' N, Longitude: 78° 08.417' E, Elevation: 501 m 

 

 
Place: Near Roda village 

Latitude: 24° 44.701' N, Longitude: 78° 25.807' E, Elevation: 349 m 
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Place: Near Maharra village 

Latitude: 24° 47.440' N, Longitude: 78° 26.843' E, Elevation: 340 m 

 

 
Place: Near Nadawara village 

Latitude: 24° 47.711' N, Longitude: 78° 27.160' E, Elevation: 338 m 



312 

 
Place: Near Nadawara village 

Latitude: 24° 48.322' N, Longitude: 78° 27.300' E, Elevation: 340 m 

 

 
Place: Near Lakhanpura village 

Latitude: 24° 50.360' N, Longitude: 78° 27.868' E, Elevation: 337 m 
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Place: Near Bansi village 

Latitude: 24° 54.498' N, Longitude: 78° 28.069' E, Elevation: 337 m 

 

 
Place: Shahjad reservoir 

Latitude: 24° 56.761' N, Longitude: 78° 28.099' E, Elevation: 330 m 
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Place: Near Shahjad reservoir 

Latitude: 24° 58.098' N, Longitude: 78° 27.987' E, Elevation: 329 m 

 

 
Place: Near Matatila dam 

Latitude: 25° 2.985' N, Longitude: 78° 23.040' E, Elevation: 306 m 
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Place: Matatila dam storage 

Latitude: 25° 4.012' N, Longitude: 78° 22.778' E, Elevation: 305 m 

 

 
Place: Downstream side of the Matatila dam 

Latitude: 25° 5.887'N, Longitude: 78° 22.955' E, Elevation: 292 m 
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Place: Matatila dam 

Latitude: 25° 5.887'N, Longitude: 78° 22.955' E, Elevation: 292 m 

 

 
Place: Measure scale over gate 

Latitude: 25° 5.705'N, Longitude: 78° 22.489' E, Elevation: 307 m 
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Place: Garden near Matatila dam 

Latitude: 25° 5.887'N; Longitude: 78° 22.955' E; Elevation: 292m 

 

 
Place: Near Khandi village 

Latitude: 25° 4.128' N, Longitude: 78° 27.838' E, Elevation: 329 m 
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Place: Near Khandi village 

Latitude: 25° 4.128' N, Longitude: 78° 27.838' E, Elevation: 329m 

 

 
Place: Near Birdha village 

Latitude: 25° 6.392' N, Longitude: 78° 31.395' E, Elevation: 302 m 

 

 



319 

A4: Field Visit (16-17 November 2016) 

 

 
Place: Ch. Charan Singh Lahchura Dam (Dhasan River) 

Latitude: 25°13’41.8597”N Longitude: 79°13’50”E  Elevation: 169 m 

 

 
Place: Energy dissipators in Lahchura Dam near Mau-Ranipur 

Latitude: 25°13’41.8597”N Longitude: 79°13’50”E  Elevation: 169 m 

 



320 

 

 
Place: Downstream view from Lahchura Dam in Dhasan river 

Latitude: 25°13’41.8597”N Longitude: 79°13’50”E  Elevation: 169 m 

 

 

 

 
Place: Canal diverted from Lahchura Dam in Dhasan river  

Latitude: 25°13’41.8597”N Longitude: 79°13’50”E  Elevation: 169 m 
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Place: Agricultural land near Ghat Lahchura  

Latitude: 25°15’39.0356”N Longitude: 79°14.37’ E  Elevation: 153 m 

 

 

 

 

 
Place: Forest near Lahchura Village 

Latitude: 25°18’6.8292”N Longitude: 79°13’10.1”E  Elevation: 366 m 
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Place: Saprar Dam near Mau-Ranipur  

Latitude: 25.14°56’69.71”N Longitude: 79.8° 14. Elevation: 826 m 

 

 

Place: Reservoir of Saprar Dam   

Latitude: 25.14°56’69.71”N Longitude: 79.8° 14. Elevation: 826 m 
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Place: Downstream view of Saprar Dam   

Latitude: 25.14°56’69.71”N Longitude: 79.8° 14. Elevation: 826 m 

 

 

 

Place: Downstream view of Saprar Dam   

Latitude: 25.14°56’69.71”N Longitude: 79.8° 14. Elevation: 826 m 
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Place: Shrub Land near Rath 

Latitude: 25.35°19.9836’N Longitude: 79°42’22”E. Elevation: 703m 

 

 

 

Place: Bramhanand Dam Near Rath 

Latitude: 25.35°20.1552’N Longitude: 79°42’25.1” E. Elevation: 202m 
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Place:  Downstream view of Bramhanand Dam Near Rath 

Latitude: 25.35°20.1552’N Longitude: 79°42’25.1” E. Elevation: 202m 

 

 

Place:  Downstream view of Bramhanand Dam Near Rath 

Latitude: 25.35°20.1552’N Longitude: 79°42’25.1” E. Elevation: 202m 
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Place:  Agricultural Land 

Latitude: 25.55° 4.4058’N Longitude: 79°47’29.0” E. Elevation: 843m 

 

 

Place:  Scrub Land 

Latitude: 25.55° 48.866’N Longitude: 79°47’57.2” E. Elevation: 369m 
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Place:  Scrub Land 

Latitude: 25.55° 48.866’N Longitude: 79°47’57.2” E. Elevation: 369m 

 

 

Place:  Agricultural Land 

Latitude: 25.58° 7.8570’N Longitude: 79°49’13.4” E. Elevation: 270m 
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Place:  Agricultural Land 

Latitude: 25°59’19.0920’N Longitude: 79°51’43.5” E. Elevation: 277m 

 

 

Place:  Agricultural Land 

Latitude: 25°59’19.0920’N Longitude: 79°52’54.8” E. Elevation: 216m 
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Place:  Scrub land 

Latitude: 25°57’20.2174’N Longitude: 80°5’52.7” E. Elevation: 984m 

 

 

 

Place:  Village Rameri Danda near Hamirpur 

Latitude: 25°92’39.09”’N Longitude: 80°18’94.9” E. Elevation: 490m 
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Place:  Agricultural land near confluence of Betwa and Yamuna River at Hamirpur  

Latitude: 25°91’99.40” N Longitude: 80°20’15” E. Elevation: 590m 
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APPENDIX-B 

The transition area matrix (TAM) and the transition probability matrix (TPM) generated in the 

CA-MC modelling are as follows:  

B1: Model validation analysis 

Table B1: Transition area matrix (TAM) among LU/LC categories in validation analysis 

LU/LC class 
Dense 

forest 

Degraded 

forest 

Agriculture 

area 

Barren 

land 
Waterbody Settlement 

Total area 

(km
2
) 

TAM for 2010 based on transition matrix of 2001-2007         

Dense forest 3160.69 793.22 1300.83 0.00 3.39 1.57 5259.70 

Degraded forest 1070.31 2882.44 2112.82 262.25 2.19 21.33 6351.34 

Agriculture area 701.49 2659.68 24171.26 1458.32 45.02 22.99 29058.76 

Barren land 0.00 15.97 1069.39 1518.44 5.91 8.92 2618.63 

Waterbody 16.37 11.49 112.73 7.20 367.86 0.00 515.65 

Settlement  0.44 1.85 39.74 0.00 0.02 82.20 124.25 

Total area (km
2
) 4949.30 6364.65 28806.77 3246.21 424.39 137.01 43928.33 

TAM for 2013 based on transition matrix of 2007-2010 

Dense forest 2954.27 848.98 1635.02 208.84 21.70 3.80 5672.61 

Degraded forest 1428.13 1648.92 2740.43 269.04 7.86 7.61 6101.99 

Agriculture area 1336.91 3007.38 24033.91 1043.78 98.50 54.60 29575.08 

Barren land 42.08 436.02 1143.70 336.58 2.41 0.80 1961.59 

Waterbody 58.16 35.95 44.82 9.96 336.82 0.21 485.92 

Settlement  16.28 24.70 18.98 2.62 0.21 68.37 131.16 

Total area (km
2
) 5835.83 6001.95 29616.86 1870.82 467.50 135.39 43928.35 

 

Table B2: Transition probability matrix (TPM) among LU/LC categories in validation analysis 

LU/LC class 
Dense 

forest 

Degraded 

forest 

Agriculture 

area 

Barren 

land 
Waterbody Settlement 

TPM for 2010 based on transition matrix of 2001-2007 

Dense forest 0.601 0.151 0.247 0.000 0.001 0.000 

Degraded forest 0.169 0.454 0.333 0.041 0.000 0.003 

Agriculture area 0.024 0.092 0.832 0.050 0.002 0.001 

Barren land 0.000 0.006 0.408 0.580 0.002 0.003 

Waterbody 0.032 0.022 0.219 0.014 0.713 0.000 

Settlement  0.004 0.015 0.320 0.000 0.000 0.662 

TPM for 2013 based on transition matrix of 2007-2010 

Dense forest 0.521 0.150 0.288 0.037 0.004 0.001 

Degraded forest 0.234 0.270 0.449 0.044 0.001 0.001 

Agriculture area 0.045 0.102 0.813 0.035 0.003 0.002 

Barren land 0.022 0.222 0.583 0.172 0.001 0.000 

Waterbody 0.120 0.074 0.092 0.021 0.693 0.000 

Settlement  0.124 0.188 0.145 0.020 0.002 0.521 
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B2: Future LU/LC prediction 

Table B3: Transition area matrix (TAM) among LU/LC categories in future prediction 

LU/LC class 
Dense 

forest 

Degraded 

forest 

Agriculture 

area 

Barren 

land 
Waterbody Settlement  

Total area 

(km
2
) 

TAM for 2020 

Dense forest 2053.41 700.77 2676.11 222.19 12.53 8.89 5673.9 

Degraded forest 1524.33 1328.63 2878.31 337.47 5.53 29.4 6103.67 

Agriculture area 1553.31 3833.26 22662.01 1400.89 72.62 57.84 29579.93 

Barren land 128.45 561.6 684.96 559.83 14.6 12.5 1961.94 

Waterbody 64.86 52.73 139.76 18.7 209.69 0.19 485.93 

Settlement  20.8 36.02 18.11 6.34 0.14 49.81 131.22 

Total area (km
2
) 5345.16 6513.01 29059.26 2545.42 315.11 158.63 43936.59 

TAM for 2040 

Dense forest 1833.54 583.12 2645.33 267.9 1.96 13.25 5345.1 

Degraded forest 1684.36 1328.99 3008.02 459.55 1.42 31.28 6513.62 

Agriculture area 1212.07 4334.45 21582.82 1839.29 15.45 75.28 29059.32 

Barren land 138.27 803.5 810.14 770.97 3.05 19.51 2545.44 

Waterbody 46.19 49.05 115.4 15.37 88.26 0.19 314.46 

Settlement  35.72 43.49 8.27 4.98 0.05 66.1 158.61 

Total area (km
2
) 4950.15 7142.6 28169.94 3358.06 110.19 205.61 43936.59 

TAM for 2060 

Dense forest 2481.97 213.16 2057.27 190.26 0.01 7.83 4950.5 

Degraded forest 2127.87 2427.33 2007.57 563.72 0.01 16.06 7142.56 

Agriculture area 174.46 3576.92 22745.92 1595.09 0.31 78.3 28171.02 

Barren land 0 1335.03 344.61 1657.1 0 21.42 3358.16 

Waterbody 13.18 27.17 37.66 5.36 25.57 0.01 108.95 

Settlement  45.17 42.37 0 0 0 117.88 205.42 

Total area (km
2
) 14742.95 7621.98 27193.05 4011.53 25.9 241.5 43936.59 

TAM for 2080 

Dense forest 1246.16 551.25 2804.57 331.93 0.03 16.55 4950.49 

Degraded forest 1717.94 1401.72 3326.81 667.67 0.03 28.39 7142.56 

Agriculture area 1309.84 4900.05 19422.21 2407.58 0.32 131.04 28171.02 

Barren land 287.44 1256.23 873.9 910.74 0 29.83 3358.14 

Waterbody 17.63 22.97 53.86 8.86 5.37 0.25 108.94 

Settlement  76.64 46.54 12.66 4.85 0 64.73 205.42 

Total area (km
2
) 4655.65 8178.76 26493.99 4331.63 5.75 270.79 43936.59 

TAM for 2100 

Dense forest 1011.54 671.36 2862.21 384.25 0.04 21.11 4950.51 

Degraded forest 1441.38 1369.37 3611.41 686.49 0.04 33.87 7142.56 

Agriculture area 1844.43 5088.08 18511.40 2577.52 0.3 149.27 28171.01 

Barren land 355.2 1073.04 1163.74 737.5 0.01 28.67 3358.16 

Waterbody 16.26 22.07 57.16 9.6 3.47 0.38 108.94 

Settlement  66.39 43.13 40.05 8.59 0 47.26 205.42 

Total area (km
2
) 4735.2 8267.05 26245.98 4403.95 3.86 280.56 43936.59 
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Table B4: Transition probability matrix (TPM) among LU/LC categories in future prediction 

LU/LC class 
Dense  

forest 

Degraded  

forest 

Agriculture  

area 

Barren  

land 
Waterbody Settlement 

TPM for 2020 

Dense forest 0.362 0.124 0.472 0.039 0.002 0.002 

Degraded forest 0.250 0.218 0.472 0.055 0.001 0.005 

Agriculture area 0.053 0.130 0.766 0.047 0.003 0.002 

Barren land 0.066 0.286 0.349 0.285 0.007 0.006 

Waterbody 0.134 0.109 0.288 0.039 0.432 0.000 

Settlement 0.159 0.275 0.138 0.048 0.001 0.380 

TPM for 2040 

Dense forest 0.343 0.109 0.495 0.050 0.000 0.003 

Degraded forest 0.259 0.204 0.462 0.071 0.000 0.005 

Agriculture area 0.042 0.149 0.743 0.063 0.001 0.003 

Barren land 0.054 0.316 0.318 0.303 0.001 0.008 

Waterbody 0.147 0.156 0.367 0.049 0.281 0.001 

Settlement 0.225 0.274 0.052 0.031 0.000 0.417 

TPM for 2060 

Dense forest 0.501 0.043 0.416 0.038 0.000 0.002 

Degraded forest 0.298 0.340 0.281 0.079 0.000 0.002 

Agriculture area 0.006 0.127 0.807 0.057 0.000 0.003 

Barren land 0.000 0.398 0.103 0.494 0.000 0.006 

Waterbody 0.121 0.249 0.346 0.049 0.235 0.000 

Settlement 0.220 0.206 0.000 0.000 0.000 0.574 

TPM for 2080 

Dense forest 0.252 0.111 0.567 0.067 0.000 0.003 

Degraded forest 0.241 0.196 0.466 0.094 0.000 0.004 

Agriculture area 0.047 0.174 0.689 0.086 0.000 0.005 

Barren land 0.086 0.374 0.260 0.271 0.000 0.009 

Waterbody 0.162 0.211 0.494 0.081 0.049 0.002 

Settlement 0.373 0.227 0.062 0.024 0.000 0.315 

TPM for 2100 

Dense forest 0.204 0.136 0.578 0.078 0.000 0.004 

Degraded forest 0.202 0.192 0.506 0.096 0.000 0.005 

Agriculture area 0.066 0.181 0.657 0.092 0.000 0.005 

Barren land 0.106 0.320 0.347 0.220 0.000 0.009 

Waterbody 0.149 0.203 0.525 0.088 0.032 0.004 

Settlement 0.323 0.210 0.195 0.042 0.000 0.230 
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APPENDIX-C 

Multiple Linear Regression (MLR) models developed between hydro-climatic variables and 

MODIS NDVI and land cover data products are as follows: 

C1: MLR models for NDVI 
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where, V1=P, V2=Tmax, V3=Tmin, V4=RH, V5=PET, V6=Q, V7=P/PET, V8= Tdiff, and V9=sediment 

C2: MLR models for land cover  
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where, V1=P, V2=Tmax, V3=Tmin, V4=RH, V5=PET, V6=Q, V7=P/PET, V8= Tdiff, and V9=sediment 
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APPENDIX-D 

Table D1: Sub-watershed wise number of HRUS, area, elevation and slope distributions 

Sub- 

watershed 

Number of  

HRUs 

Area of  

sub-watershed (ha) 

Mean  

elevation (m) 

Average  

slope (m/m) 

SW-1 17 11253.78 113.92 3.08 

SW-2 41 43520.13 122.17 3.91 

SW-3 33 52576.11 147.41 3.89 

SW-4 26 19452.24 122.25 4.52 

SW-5 39 55177.92 134.09 4.62 

SW-6 112 176287.41 188.77 6.04 

SW-7 44 40620.06 155.89 5.05 

SW-8 42 76524.30 139.09 5.17 

SW-9 81 119800.98 197.31 5.38 

SW-10 91 179577.09 194.51 5.4 

SW-11 80 48750.66 242.84 5.89 

SW-12 58 33527.34 170.01 5.07 

SW-13 68 55269.09 292.19 4.89 

SW-14 53 4012.83 198.81 6.12 

SW-15 124 94267.53 253.94 5.53 

SW-16 62 4704.93 203.90 5.58 

SW-17 37 21368.52 268.13 5.37 

SW-18 44 2070.63 199.73 4.54 

SW-19 87 141855.21 353.55 4.96 

SW-20 75 43248.69 296.60 4.96 

SW-21 73 30941.64 227.18 5.99 

SW-22 63 64202.58 307.03 4.56 

SW-23 96 153413.46 289.71 5.93 

SW-24 58 16729.02 318.70 5.56 

SW-25 68 14033.16 363.74 5.56 

SW-26 62 109016.91 360.67 4.41 

SW-27 120 136146.33 279.29 5.94 

SW-28 81 159767.28 368.00 5.24 

SW-29 57 98769.60 366.34 4.01 

SW-30 97 197607.15 456.75 5.07 

SW-31 58 161891.37 386.17 4.05 

SW-32 96 90014.94 398.44 4.73 

SW-33 88 134213.76 402.85 6.69 

SW-34 48 47748.51 403.31 3.99 

SW-35 78 135564.39 439.39 4.14 

SW-36 44 135404.55 455.96 4.35 

SW-37 35 32159.52 399.10 3.46 

SW-38 47 68338.44 422.51 3.52 

SW-39 72 86532.03 424.74 3.36 

SW-40 99 196250.58 504.96 5.47 

SW-41 48 52138.35 476.31 5.65 

SW-42 77 84435.48 429.70 4.23 
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SW-43 64 43345.89 413.98 3.86 

SW-44 57 85231.17 473.86 4.45 

SW-45 19 10735.56 415.13 3.63 

SW-46 73 56537.46 483.13 4.07 

SW-47 64 59029.74 443.65 3.43 

SW-48 37 44285.76 432.19 3.36 

SW-49 53 143310.15 526.05 4.98 

SW-50 19 4810.50 419.79 3.15 

SW-51 102 73755.72 489.86 3.51 

SW-52 103 45707.85 458.73 5.34 

SW-53 106 110209.14 451.01 4.39 

SW-54 108 74063.25 456.40 6.3 

SW-55 96 54460.62 467.11 4.97 

SW-56 113 78435.63 507.21 4.74 

SW-57 81 63491.31 475.91 5.91 
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APPENDIX-E 

E1: SWAT simulations using different land use maps and GCM-derived climate data 

Table E1: Streamflow simulation using land use 2013 

Sub- 

watershed 

Streamflow (cumec) using land use 2013 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 315.30 332.71 312.95 424.20 368.72 

SW-2 314.72 332.12 312.59 423.76 368.17 

SW-3 3.23 3.32 2.48 2.84 3.04 

SW-4 292.53 307.60 294.25 399.54 343.76 

SW-5 288.63 303.48 291.48 396.29 340.05 

SW-6 188.86 199.93 200.37 273.99 228.79 

SW-7 97.87 101.61 90.03 120.90 109.62 

SW-8 20.21 22.35 17.17 22.88 22.53 

SW-9 9.26 8.90 7.02 9.32 8.87 

SW-10 15.66 18.52 14.59 19.77 19.14 

SW-11 177.34 189.01 192.24 262.45 217.91 

SW-12 86.57 90.60 81.56 109.84 98.85 

SW-13 3.73 3.50 2.64 3.74 3.59 

SW-14 84.97 88.98 80.46 108.52 97.38 

SW-15 8.56 8.69 7.51 10.21 9.42 

SW-16 76.13 80.02 72.75 98.04 87.70 

SW-17 170.64 182.73 187.61 255.76 211.50 

SW-18 75.75 79.64 72.44 97.56 87.28 

SW-19 129.24 141.12 152.24 206.85 166.37 

SW-20 128.58 140.17 151.04 205.93 165.47 

SW-21 61.77 65.46 60.25 80.88 71.87 

SW-22 41.04 41.64 35.96 48.86 45.10 

SW-23 13.82 14.01 12.05 16.48 15.23 

SW-24 25.53 25.91 22.43 30.35 28.04 

SW-25 104.45 117.69 129.29 177.48 140.43 

SW-26 9.91 10.05 8.67 11.80 10.90 

SW-27 59.16 62.36 57.83 77.58 68.67 

SW-28 33.67 35.76 33.85 45.33 39.27 

SW-29 9.11 9.25 8.02 10.83 10.01 

SW-30 15.00 14.19 15.96 19.60 16.60 

SW-31 15.00 15.23 13.20 17.82 16.48 

SW-32 162.16 178.19 190.69 233.38 195.04 

SW-33 13.33 14.25 13.38 17.74 16.00 

SW-34 140.69 155.34 168.91 204.25 169.96 

SW-35 14.18 15.48 15.58 20.31 17.04 

SW-36 10.75 10.25 11.45 13.97 11.89 

SW-37 125.83 140.93 153.93 185.37 153.58 

SW-38 94.54 106.51 118.73 139.74 115.68 

SW-39 28.11 30.93 31.67 41.00 34.07 

SW-40 19.59 21.48 21.62 28.48 23.75 
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SW-41 5.04 5.64 6.21 7.53 6.21 

SW-42 8.56 9.52 10.49 12.60 10.45 

SW-43 79.14 89.36 99.84 117.05 96.91 

SW-44 8.75 9.76 10.72 12.86 10.72 

SW-45 66.13 74.86 83.89 97.89 81.00 

SW-46 5.79 6.45 7.09 8.51 7.09 

SW-47 11.97 13.31 14.65 17.54 14.61 

SW-48 53.05 60.32 67.89 78.74 65.06 

SW-49 14.02 15.40 15.50 20.51 17.03 

SW-50 37.18 42.69 48.49 55.47 45.72 

SW-51 6.53 7.50 8.54 9.72 7.85 

SW-52 10.12 11.62 13.30 15.67 12.54 

SW-53 11.28 12.54 13.79 16.56 13.77 

SW-54 26.60 30.55 34.61 39.11 32.61 

SW-55 19.12 21.93 24.96 27.60 23.00 

SW-56 7.26 8.32 9.42 10.69 8.70 

SW-57 7.01 8.04 9.22 9.72 8.47 

Table E2: Streamflow simulation using land use 2040 

Sub- 

watershed 

Streamflow (cumec) using land use 2040 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 315.78 333.31 313.52 424.66 369.18 

SW-2 315.21 332.68 313.16 424.26 368.62 

SW-3 3.15 3.22 2.39 2.75 2.95 

SW-4 293.54 308.77 295.39 400.55 344.70 

SW-5 289.65 304.79 292.69 397.40 341.08 

SW-6 189.50 200.78 201.12 274.73 229.50 

SW-7 98.23 101.99 90.45 121.21 109.90 

SW-8 19.73 21.77 16.61 22.35 22.05 

SW-9 9.23 8.87 6.98 9.28 8.83 

SW-10 15.56 18.39 14.46 19.63 19.00 

SW-11 177.85 189.73 192.85 263.07 218.51 

SW-12 86.93 90.99 81.99 110.18 99.15 

SW-13 3.78 3.56 2.69 3.79 3.63 

SW-14 85.35 89.37 80.90 108.87 97.69 

SW-15 8.32 8.43 7.21 9.94 9.16 

SW-16 76.76 80.69 73.49 98.65 88.27 

SW-17 171.02 183.30 188.08 256.28 212.02 

SW-18 76.38 80.31 73.18 98.17 87.85 

SW-19 129.41 141.43 152.49 207.14 166.69 

SW-20 128.84 140.59 151.38 206.33 165.88 

SW-21 62.44 66.17 61.05 81.56 72.52 

SW-22 41.20 41.82 36.13 49.00 45.23 

SW-23 13.78 13.97 11.99 16.41 15.15 

SW-24 25.61 26.01 22.53 30.43 28.11 

SW-25 104.37 117.74 129.26 177.52 140.53 

SW-26 10.03 10.18 8.80 11.92 11.00 
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SW-27 59.86 63.12 58.67 78.30 69.36 

SW-28 34.34 36.49 34.65 46.03 39.95 

SW-29 9.18 9.34 8.11 10.91 10.09 

SW-30 15.00 14.18 15.97 19.61 16.62 

SW-31 15.05 15.28 13.25 17.86 16.51 

SW-32 161.52 177.53 189.94 232.70 194.48 

SW-33 13.52 14.46 13.63 17.96 16.22 

SW-34 139.83 154.45 167.90 203.33 169.17 

SW-35 14.31 15.63 15.75 20.46 17.17 

SW-36 10.72 10.22 11.42 13.94 11.86 

SW-37 125.24 140.33 153.21 184.73 153.04 

SW-38 94.04 106.00 118.11 139.20 115.24 

SW-39 28.01 30.83 31.57 40.89 33.97 

SW-40 19.84 21.74 21.91 28.74 24.00 

SW-41 5.10 5.70 6.28 7.59 6.27 

SW-42 8.57 9.54 10.51 12.62 10.46 

SW-43 78.62 88.82 99.21 116.49 96.44 

SW-44 8.69 9.70 10.65 12.80 10.67 

SW-45 65.68 74.39 83.33 97.39 80.59 

SW-46 5.74 6.40 7.03 8.45 7.04 

SW-47 11.84 13.17 14.48 17.39 14.48 

SW-48 52.74 60.00 67.49 78.40 64.78 

SW-49 14.10 15.48 15.58 20.58 17.09 

SW-50 37.10 42.61 48.38 55.39 45.67 

SW-51 6.49 7.45 8.46 9.65 7.81 

SW-52 10.12 11.62 13.29 15.65 12.55 

SW-53 11.31 12.57 13.82 16.59 13.79 

SW-54 26.52 30.48 34.52 39.04 32.55 

SW-55 19.06 21.87 24.89 27.54 22.96 

SW-56 7.22 8.27 9.36 10.63 8.66 

SW-57 7.01 8.04 9.22 9.72 8.48 

 

Table E3: Sediment yield simulation using land use 2013 

Sub- 

watershed 

Sediment yield (t/ha) using land use 2013 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 181.87 185.96 181.73 261.62 223.49 

SW-2 46.75 47.78 46.73 67.21 57.44 

SW-3 0.00 0.00 0.00 0.00 0.00 

SW-4 110.80 113.33 112.12 164.88 138.12 

SW-5 38.95 39.84 39.42 57.97 48.56 

SW-6 9.70 10.19 10.50 14.88 12.24 

SW-7 18.25 18.90 17.00 24.39 21.67 

SW-8 0.11 0.25 0.20 0.27 0.28 

SW-9 0.00 0.00 0.00 0.00 0.00 

SW-10 0.00 0.00 0.00 0.00 0.00 

SW-11 33.07 34.94 36.60 51.73 42.31 
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SW-12 22.03 22.84 20.56 29.47 26.17 

SW-13 0.00 0.00 0.00 0.00 0.00 

SW-14 156.31 162.08 147.67 214.47 188.46 

SW-15 0.00 0.00 0.00 0.00 0.00 

SW-16 131.74 136.54 124.46 181.14 159.06 

SW-17 79.05 84.81 88.01 122.15 100.14 

SW-18 38.79 40.84 37.65 53.09 46.57 

SW-19 0.88 0.89 0.98 1.33 0.92 

SW-20 29.18 31.70 34.80 48.26 38.48 

SW-21 1.70 1.79 1.67 2.36 2.06 

SW-22 0.38 0.38 0.33 0.47 0.43 

SW-23 0.00 0.00 0.00 0.00 0.00 

SW-24 0.56 0.56 0.48 0.69 0.63 

SW-25 5.29 5.06 5.57 7.42 4.47 

SW-26 0.00 0.00 0.00 0.00 0.00 

SW-27 0.26 0.28 0.26 0.36 0.31 

SW-28 0.08 0.09 0.08 0.12 0.10 

SW-29 0.00 0.00 0.00 0.00 0.00 

SW-30 0.00 0.00 0.00 0.00 0.00 

SW-31 0.00 0.00 0.00 0.00 0.00 

SW-32 3.00 3.59 4.06 5.01 4.09 

SW-33 0.00 0.00 0.00 0.00 0.00 

SW-34 4.60 5.61 6.40 7.84 6.40 

SW-35 0.00 0.00 0.00 0.00 0.00 

SW-36 0.00 0.00 0.00 0.00 0.00 

SW-37 5.53 6.93 7.93 9.64 7.87 

SW-38 2.01 2.62 3.02 3.60 2.95 

SW-39 0.12 0.13 0.14 0.18 0.15 

SW-40 0.00 0.00 0.00 0.00 0.00 

SW-41 0.00 0.00 0.00 0.00 0.00 

SW-42 0.00 0.00 0.00 0.00 0.00 

SW-43 2.55 3.45 3.96 4.70 3.86 

SW-44 0.00 0.00 0.00 0.01 0.00 

SW-45 9.05 12.59 14.44 17.06 14.07 

SW-46 0.00 0.00 0.00 0.00 0.00 

SW-47 0.55 1.05 1.17 1.36 1.16 

SW-48 1.03 1.18 1.40 1.65 1.33 

SW-49 0.00 0.00 0.00 0.00 0.00 

SW-50 6.12 7.06 8.38 9.75 7.88 

SW-51 0.00 0.00 0.00 0.00 0.00 

SW-52 0.15 0.18 0.21 0.24 0.19 

SW-53 0.00 0.00 0.00 0.00 0.00 

SW-54 0.16 0.19 0.22 0.25 0.21 

SW-55 0.11 0.12 0.15 0.16 0.13 

SW-56 0.00 0.00 0.00 0.00 0.00 

SW-57 0.00 0.01 0.01 0.01 0.00 
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Table E4: Sediment yield simulation using land use 2040 

Sub- 

watershed 

Sediment yield (t/ha) using land use 2040 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 182.21 186.34 182.08 261.93 223.87 

SW-2 46.83 47.88 46.82 67.29 57.54 

SW-3 0.00 0.00 0.00 0.00 0.00 

SW-4 111.18 113.81 112.57 165.33 138.58 

SW-5 39.09 40.01 39.58 58.14 48.73 

SW-6 9.73 10.22 10.53 14.91 12.27 

SW-7 18.32 18.99 17.10 24.46 21.73 

SW-8 0.11 0.24 0.20 0.27 0.28 

SW-9 0.00 0.00 0.00 0.00 0.00 

SW-10 0.00 0.00 0.00 0.00 0.00 

SW-11 33.14 35.04 36.68 51.81 42.40 

SW-12 22.12 22.94 20.67 29.57 26.26 

SW-13 0.00 0.00 0.00 0.00 0.00 

SW-14 157.49 163.44 149.12 215.80 189.62 

SW-15 0.00 0.00 0.00 0.00 0.00 

SW-16 132.77 137.69 125.72 182.28 160.06 

SW-17 79.21 85.05 88.20 122.34 100.38 

SW-18 39.25 41.36 38.23 53.66 47.03 

SW-19 0.89 0.90 0.98 1.33 0.92 

SW-20 29.21 31.75 34.84 48.31 38.54 

SW-21 1.72 1.82 1.70 2.39 2.08 

SW-22 0.38 0.38 0.33 0.47 0.43 

SW-23 0.00 0.00 0.00 0.00 0.00 

SW-24 0.56 0.56 0.48 0.69 0.63 

SW-25 5.38 5.20 5.57 7.47 4.47 

SW-26 0.00 0.00 0.00 0.00 0.00 

SW-27 0.27 0.28 0.26 0.37 0.32 

SW-28 0.08 0.09 0.09 0.12 0.10 

SW-29 0.00 0.00 0.00 0.00 0.00 

SW-30 0.00 0.00 0.00 0.00 0.00 

SW-31 0.00 0.00 0.00 0.00 0.00 

SW-32 2.99 3.57 4.04 4.99 4.07 

SW-33 0.00 0.00 0.00 0.00 0.00 

SW-34 4.58 5.59 6.36 7.81 6.37 

SW-35 0.00 0.00 0.00 0.00 0.00 

SW-36 0.00 0.00 0.00 0.00 0.00 

SW-37 5.51 6.91 7.89 9.61 7.85 

SW-38 2.01 2.61 3.00 3.59 2.94 

SW-39 0.12 0.13 0.14 0.18 0.15 

SW-40 0.00 0.00 0.00 0.00 0.00 

SW-41 0.00 0.00 0.00 0.00 0.00 

SW-42 0.00 0.00 0.00 0.00 0.00 

SW-43 2.55 3.43 3.94 4.68 3.85 

SW-44 0.00 0.01 0.00 0.01 0.00 
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SW-45 9.03 12.55 14.35 17.00 14.02 

SW-46 0.00 0.00 0.00 0.00 0.00 

SW-47 0.55 1.05 1.16 1.36 1.15 

SW-48 1.02 1.18 1.39 1.64 1.33 

SW-49 0.00 0.00 0.00 0.00 0.00 

SW-50 6.12 7.06 8.37 9.77 7.90 

SW-51 0.00 0.00 0.00 0.00 0.00 

SW-52 0.15 0.18 0.21 0.24 0.19 

SW-53 0.00 0.00 0.00 0.00 0.00 

SW-54 0.16 0.19 0.22 0.25 0.21 

SW-55 0.11 0.12 0.15 0.16 0.13 

SW-56 0.00 0.00 0.00 0.01 0.00 

SW-57 0.00 0.01 0.01 0.01 0.00 

 

Table E5: Evapotranspiration simulation using land use 2013 

Sub- 

watershed 

Evapotranspiration (mm) using land use 2013 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 460.15 478.20 460.30 454.25 433.35 

SW-2 477.25 497.60 477.50 472.10 451.25 

SW-3 442.65 461.45 446.60 442.55 428.80 

SW-4 504.55 524.70 505.35 500.55 481.00 

SW-5 502.45 525.05 509.55 505.65 492.10 

SW-6 481.15 495.70 478.35 471.75 466.90 

SW-7 476.50 497.75 481.25 476.00 461.50 

SW-8 441.30 458.80 445.15 442.25 429.55 

SW-9 462.30 474.85 457.35 452.90 448.85 

SW-10 535.40 557.90 539.00 533.15 537.55 

SW-11 532.85 551.25 536.05 527.05 520.95 

SW-12 475.45 498.05 481.35 476.65 460.45 

SW-13 511.55 530.05 512.45 499.95 490.65 

SW-14 497.35 510.40 494.85 491.50 488.00 

SW-15 506.45 517.20 513.00 500.20 503.90 

SW-16 501.05 511.80 507.50 495.45 499.05 

SW-17 523.10 542.95 527.75 518.80 512.55 

SW-18 770.55 783.20 788.70 792.10 805.00 

SW-19 580.80 599.70 586.50 582.35 579.35 

SW-20 538.70 556.45 541.15 533.85 528.10 

SW-21 496.15 520.20 498.85 491.10 493.50 

SW-22 526.45 538.75 535.60 521.05 525.55 

SW-23 502.60 514.00 510.60 495.45 498.25 

SW-24 520.25 532.60 529.25 512.90 516.90 

SW-25 525.50 537.55 533.95 518.65 522.75 

SW-26 522.70 534.25 530.90 519.15 523.10 

SW-27 491.60 502.45 498.75 484.00 486.30 

SW-28 491.05 502.45 498.65 482.25 484.95 

SW-29 490.90 501.80 496.70 485.40 488.45 
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SW-30 479.05 500.90 495.45 496.35 482.80 

SW-31 487.15 498.00 492.95 481.50 484.45 

SW-32 780.25 795.25 801.90 797.85 811.50 

SW-33 504.65 513.10 519.50 499.65 496.90 

SW-34 499.00 510.30 508.45 493.65 497.80 

SW-35 496.55 511.85 516.70 497.05 490.25 

SW-36 458.45 477.50 472.80 473.95 460.50 

SW-37 502.10 517.15 521.45 504.45 500.60 

SW-38 486.55 503.90 516.25 499.55 483.20 

SW-39 499.95 514.30 518.60 502.00 497.70 

SW-40 526.65 541.55 546.60 525.95 519.20 

SW-41 501.40 518.75 533.45 512.70 492.20 

SW-42 477.85 495.75 507.50 489.00 470.60 

SW-43 467.05 486.10 496.90 480.10 463.00 

SW-44 489.30 506.30 517.45 499.15 480.40 

SW-45 437.75 456.50 465.45 448.40 430.30 

SW-46 519.10 536.60 548.65 531.65 514.55 

SW-47 450.00 467.30 476.30 459.05 441.00 

SW-48 445.60 464.60 474.50 457.05 438.95 

SW-49 539.30 554.05 559.50 538.85 533.05 

SW-50 441.80 460.40 468.85 452.30 434.85 

SW-51 566.20 590.15 601.05 590.00 569.55 

SW-52 449.75 467.25 478.75 459.55 439.15 

SW-53 466.35 484.60 495.90 476.75 457.10 

SW-54 472.25 490.90 505.65 485.05 463.00 

SW-55 453.25 477.00 487.45 470.55 441.35 

SW-56 480.65 502.75 513.05 498.90 474.40 

SW-57 491.25 504.25 520.55 503.25 483.15 

Table E6: Evapotranspiration simulation using land use 2040 

Sub- 

watershed 

Evapotranspiration (mm) using land use 2040 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 411.25 430.40 409.05 402.10 379.70 

SW-2 414.25 433.60 411.80 404.70 382.85 

SW-3 453.15 474.10 459.15 454.85 440.70 

SW-4 456.80 476.00 453.35 445.50 422.60 

SW-5 459.25 480.25 464.15 459.75 445.10 

SW-6 456.90 470.40 452.50 446.30 441.25 

SW-7 463.05 483.65 467.20 462.00 447.50 

SW-8 438.90 461.55 445.75 439.70 423.75 

SW-9 441.15 453.50 434.80 429.55 424.40 

SW-10 476.60 499.95 477.60 469.40 471.55 

SW-11 477.50 494.20 477.05 467.80 460.55 

SW-12 461.35 483.85 466.45 460.65 443.40 

SW-13 493.95 511.20 493.45 481.55 472.85 

SW-14 430.70 442.30 423.80 418.90 413.50 

SW-15 491.15 503.00 499.25 481.90 484.55 
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SW-16 467.35 478.05 473.15 458.85 461.15 

SW-17 487.60 508.30 491.35 480.00 470.90 

SW-18 448.15 458.35 453.05 440.30 441.40 

SW-19 459.25 475.60 457.20 449.95 443.45 

SW-20 478.00 493.80 475.60 467.85 460.35 

SW-21 482.50 508.35 485.00 476.80 478.50 

SW-22 489.20 501.25 497.35 480.25 483.35 

SW-23 477.65 488.55 484.85 468.60 470.75 

SW-24 511.05 523.90 521.55 501.45 504.75 

SW-25 476.10 486.35 479.75 466.65 469.30 

SW-26 463.35 474.15 468.20 455.40 457.40 

SW-27 476.50 487.65 484.55 467.95 470.15 

SW-28 460.20 469.90 463.40 449.85 451.65 

SW-29 461.20 470.90 464.25 452.65 455.00 

SW-30 467.70 489.30 483.40 483.70 469.30 

SW-31 454.65 465.15 459.05 446.45 448.40 

SW-32 581.70 594.65 593.70 579.85 586.05 

SW-33 477.30 485.00 489.05 469.85 466.05 

SW-34 510.85 525.15 523.30 503.10 506.30 

SW-35 487.40 502.15 506.30 486.80 480.45 

SW-36 448.60 467.55 462.30 463.15 448.65 

SW-37 479.20 494.15 497.65 479.70 474.75 

SW-38 466.90 484.30 496.10 478.30 460.90 

SW-39 500.45 515.05 520.60 501.45 495.05 

SW-40 512.20 527.05 531.05 511.05 504.40 

SW-41 494.90 511.65 525.50 505.35 485.65 

SW-42 468.30 486.20 497.45 478.60 459.65 

SW-43 455.80 474.70 485.65 467.75 449.50 

SW-44 462.95 479.65 491.15 470.60 449.05 

SW-45 432.20 451.25 460.20 442.50 423.80 

SW-46 469.80 487.60 499.50 479.05 457.45 

SW-47 446.35 464.40 474.35 455.45 435.55 

SW-48 479.70 499.80 515.00 492.85 469.30 

SW-49 530.15 545.20 550.25 529.55 523.75 

SW-50 424.05 442.40 450.75 432.90 413.35 

SW-51 453.30 478.75 489.35 472.30 442.25 

SW-52 443.45 460.85 471.50 452.30 431.85 

SW-53 459.00 477.35 488.40 469.05 449.25 

SW-54 462.50 481.15 495.85 474.55 451.65 

SW-55 438.15 461.40 471.65 453.50 422.55 

SW-56 424.85 447.10 456.85 440.05 410.40 

SW-57 465.45 477.90 494.10 475.60 454.20 
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Table E7: Water yield simulation using land use 2013 

Sub- 

watershed 

Water yield (mm) using land use 2013 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 399.67 427.00 276.67 310.46 387.60 

SW-2 386.41 411.70 264.16 296.71 374.02 

SW-3 389.14 399.64 299.73 343.11 367.03 

SW-4 377.28 402.50 255.87 287.75 365.14 

SW-5 364.57 371.63 273.42 317.38 343.79 

SW-6 465.57 444.40 345.05 467.58 444.59 

SW-7 366.44 374.89 276.75 320.77 346.88 

SW-8 402.46 414.63 313.45 357.00 380.06 

SW-9 490.96 471.72 373.01 494.34 470.40 

SW-10 555.60 656.50 518.41 700.55 678.40 

SW-11 442.47 417.07 317.08 441.73 422.88 

SW-12 374.02 381.17 282.79 328.15 355.53 

SW-13 427.80 401.74 302.54 428.83 411.51 

SW-14 498.68 479.88 380.93 502.86 480.08 

SW-15 575.55 584.65 505.15 686.03 633.82 

SW-16 586.75 595.70 516.05 696.96 644.68 

SW-17 452.93 426.14 325.69 450.95 431.81 

SW-18 612.80 622.80 544.25 722.71 671.33 

SW-19 459.64 434.96 335.46 459.57 438.96 

SW-20 445.11 420.62 321.11 445.02 425.24 

SW-21 554.55 654.20 516.06 698.40 677.05 

SW-22 565.65 572.90 492.85 674.91 622.18 

SW-23 574.50 582.70 502.25 684.22 633.25 

SW-24 554.45 561.60 481.05 664.03 610.89 

SW-25 555.20 562.30 482.40 665.60 612.29 

SW-26 579.65 587.80 507.95 689.37 637.32 

SW-27 579.55 588.30 507.55 688.94 637.78 

SW-28 573.55 581.40 500.85 683.59 631.94 

SW-29 587.75 596.75 517.95 697.67 645.21 

SW-30 485.80 459.98 516.75 633.04 537.34 

SW-31 592.95 602.10 522.95 703.55 651.49 

SW-32 550.53 556.49 475.05 659.89 606.74 

SW-33 631.60 675.25 634.90 839.07 757.95 

SW-34 570.90 578.80 497.10 679.21 625.78 

SW-35 665.15 726.00 730.95 951.80 798.29 

SW-36 507.12 484.10 540.38 658.10 560.45 

SW-37 678.75 738.80 746.35 964.20 809.74 

SW-38 644.70 718.10 790.40 946.70 784.60 

SW-39 675.25 736.70 743.75 961.65 806.64 

SW-40 637.85 698.40 703.10 923.91 772.15 

SW-41 611.25 684.05 752.50 914.15 753.20 

SW-42 643.20 715.45 787.80 945.95 784.55 

SW-43 658.85 730.05 803.05 959.55 797.60 

SW-44 652.25 727.35 798.75 956.80 799.30 
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SW-45 681.75 753.30 827.70 984.95 823.15 

SW-46 647.10 720.70 792.20 950.35 791.85 

SW-47 675.55 749.10 822.90 980.65 819.35 

SW-48 671.85 742.45 816.60 974.00 812.35 

SW-49 624.70 685.40 690.05 910.60 757.47 

SW-50 689.75 762.35 838.30 995.00 833.00 

SW-51 559.55 642.95 731.60 832.50 672.45 

SW-52 665.80 738.55 810.10 968.95 810.35 

SW-53 648.90 721.60 793.05 951.70 792.35 

SW-54 651.05 748.90 836.75 996.75 834.60 

SW-55 572.30 656.85 743.60 846.50 689.10 

SW-56 586.05 671.25 759.55 861.80 700.85 

SW-57 697.50 800.50 917.55 966.75 842.95 

Table E8: Water yield simulation using land use 2040 

Sub- 

watershed 

Water yield (mm) using land use 2040 

Baseline 1986 Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 386.09 410.40 263.44 297.31 375.86 

SW-2 376.59 400.70 255.12 288.38 366.93 

SW-3 379.82 388.09 287.94 331.48 355.80 

SW-4 374.50 400.18 253.88 286.40 364.11 

SW-5 368.89 376.93 278.14 321.33 346.72 

SW-6 469.87 448.90 349.44 471.44 447.78 

SW-7 370.10 378.97 280.43 323.77 348.93 

SW-8 370.64 376.04 276.46 323.05 349.91 

SW-9 489.44 470.34 371.14 492.48 468.72 

SW-10 551.65 651.80 513.63 695.25 673.45 

SW-11 450.87 426.33 326.53 450.41 429.16 

SW-12 371.65 378.75 280.24 325.77 353.20 

SW-13 433.07 408.26 309.02 434.59 416.03 

SW-14 500.06 481.20 382.10 503.10 479.55 

SW-15 559.60 566.35 485.55 668.71 616.47 

SW-16 582.50 591.05 511.15 691.94 639.66 

SW-17 444.40 416.13 315.17 440.85 422.80 

SW-18 601.45 610.65 531.10 710.35 659.26 

SW-19 469.90 446.20 346.96 469.60 447.90 

SW-20 453.51 430.31 330.82 453.34 432.94 

SW-21 546.55 644.25 506.96 688.60 667.65 

SW-22 561.69 568.15 487.65 670.51 617.61 

SW-23 572.90 581.25 499.70 681.79 629.97 

SW-24 540.16 546.00 463.60 648.35 595.84 

SW-25 573.75 582.45 504.50 684.54 631.11 

SW-26 585.90 594.80 515.60 695.70 642.60 

SW-27 571.50 579.70 497.95 680.07 627.72 

SW-28 589.65 599.70 521.05 701.30 649.09 

SW-29 592.40 602.05 524.00 703.09 650.80 

SW-30 485.56 459.87 516.92 633.20 537.76 
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SW-31 594.70 604.05 524.90 704.91 652.84 

SW-32 554.38 561.45 480.85 664.76 612.41 

SW-33 640.40 684.80 646.55 850.45 768.14 

SW-34 540.01 544.33 461.49 647.29 594.68 

SW-35 671.55 732.95 738.90 958.05 805.30 

SW-36 505.81 482.45 538.98 656.85 559.40 

SW-37 680.20 740.50 747.20 965.30 811.04 

SW-38 645.25 718.75 791.10 947.70 785.05 

SW-39 658.50 720.10 724.55 944.00 789.73 

SW-40 645.85 706.65 712.05 932.45 779.81 

SW-41 617.85 691.25 760.70 921.11 760.40 

SW-42 644.70 717.05 789.35 947.70 786.30 

SW-43 656.10 728.25 801.35 958.15 796.15 

SW-44 648.05 722.55 792.90 952.70 795.10 

SW-45 680.10 751.80 826.15 984.40 822.20 

SW-46 641.15 714.10 785.05 944.05 786.70 

SW-47 666.55 739.10 812.45 970.15 809.85 

SW-48 633.25 704.00 770.95 932.90 776.40 

SW-49 627.85 688.85 692.90 913.99 761.07 

SW-50 688.45 760.50 835.45 993.15 832.30 

SW-51 555.95 638.20 725.05 826.95 669.38 

SW-52 668.95 742.00 814.95 973.20 813.90 

SW-53 650.20 722.95 795.45 953.55 793.70 

SW-54 650.15 748.05 836.05 995.25 833.40 

SW-55 570.60 655.40 741.90 845.05 688.65 

SW-56 582.15 667.30 754.90 857.40 698.50 

SW-57 697.35 800.60 917.55 967.30 843.30 

 

E2: Land use change impact assessment  

Table E9: Changes in land use classes during 2013-2040  

Sub- 

watershed 

Percent changes in each land use class during 2013-2040 

Dense forest Degraded forest Agriculture Barren land Waterbody Settlement 

SW-1 0.02 16.14 -43.90 28.29 -2.60 2.05 

SW-2 5.83 6.07 -29.73 20.60 -2.97 0.20 

SW-3 -9.17 0.29 1.33 6.94 -0.10 0.71 

SW-4 2.95 -0.55 -39.21 41.34 -4.53 0.00 

SW-5 -7.66 1.52 -5.19 14.47 -3.15 0.00 

SW-6 -8.98 3.79 1.32 5.26 -1.55 0.17 

SW-7 -7.70 3.70 -5.00 8.27 -1.05 1.78 

SW-8 0.37 7.31 -17.94 10.87 -1.11 0.51 

SW-9 -2.92 2.85 -0.01 2.05 -2.10 0.13 

SW-10 -4.08 3.14 6.95 -0.75 -5.50 0.24 

SW-11 -9.63 0.52 6.86 5.67 -4.04 0.61 

SW-12 -2.38 2.86 -19.53 20.67 -1.62 0.00 

SW-13 -14.57 6.86 -3.50 12.19 -0.87 0.00 
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SW-14 -10.13 5.71 2.79 2.92 -5.64 4.35 

SW-15 -5.47 24.99 -25.17 7.86 -2.97 0.76 

SW-16 -3.68 9.47 -8.17 5.86 -3.48 0.00 

SW-17 -3.04 18.15 -24.69 13.65 -4.05 0.00 

SW-18 -3.35 26.06 6.46 -1.05 -28.13 0.00 

SW-19 -10.22 1.43 2.44 14.20 -7.88 0.02 

SW-20 -11.36 2.11 -5.44 18.75 -4.73 0.67 

SW-21 -4.74 14.28 -8.99 -0.66 -1.95 2.05 

SW-22 -8.16 15.05 -29.17 26.11 -3.83 0.00 

SW-23 -13.12 16.35 -14.31 13.62 -2.51 0.00 

SW-24 -9.05 27.84 -36.34 19.88 -2.34 0.00 

SW-25 -9.40 -11.07 18.36 5.01 -2.89 0.00 

SW-26 -8.58 1.27 -1.38 11.34 -4.62 1.98 

SW-27 -10.83 22.08 -13.29 4.01 -1.97 0.00 

SW-28 -6.00 -8.51 8.43 7.48 -1.41 0.00 

SW-29 -4.61 -0.65 -3.22 10.82 -2.34 0.00 

SW-30 3.84 3.95 -13.34 6.46 -1.01 0.09 

SW-31 -4.40 2.33 -2.42 7.27 -2.75 0.00 

SW-32 6.98 -4.94 9.58 6.14 -17.75 0.00 

SW-33 5.94 -17.04 11.19 1.38 -1.47 0.00 

SW-34 2.93 -2.42 -1.98 3.03 -1.93 0.36 

SW-35 1.19 -8.69 5.95 1.92 -0.45 0.07 

SW-36 1.94 0.50 -12.02 10.22 -1.07 0.43 

SW-37 -1.11 0.72 2.07 -0.21 -2.03 0.55 

SW-38 -1.27 0.41 -1.35 3.38 -1.71 0.54 

SW-39 -3.23 4.02 -0.80 0.52 -1.59 1.07 

SW-40 -0.58 -9.55 10.54 0.59 -0.61 0.00 

SW-41 -6.38 -2.72 7.19 2.07 -0.17 0.00 

SW-42 -1.56 2.03 -1.34 1.72 -0.86 0.00 

SW-43 -0.32 4.99 -3.56 -0.09 -1.21 0.18 

SW-44 -0.78 -1.26 -8.86 13.44 -2.53 0.00 

SW-45 -0.61 3.90 -2.87 0.26 -0.68 0.00 

SW-46 1.34 15.92 -16.25 3.62 -4.47 0.00 

SW-47 0.29 11.81 -12.24 1.30 -1.16 0.00 

SW-48 -1.62 1.17 -2.08 3.09 -0.54 0.00 

SW-49 -3.61 -0.11 4.17 0.11 -0.59 0.03 

SW-50 -0.13 5.86 -2.28 -0.97 -1.70 0.00 

SW-51 0.42 17.93 -9.28 0.34 -8.39 0.00 

SW-52 1.04 -3.00 -8.70 11.00 -0.37 0.02 

SW-53 -2.48 -0.21 0.78 2.30 -0.41 0.02 

SW-54 -2.19 3.08 -8.53 8.57 -0.97 0.03 

SW-55 3.84 4.20 -14.70 8.52 -1.39 0.00 

SW-56 6.84 12.03 -13.13 -1.30 -3.80 0.00 

SW-57 1.31 2.43 -1.02 -0.81 -1.85 0.00 
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Table E10: Changes in SWAT simulation under varying land use (2013-2040) 

Sub-watershed Streamflow (cumec) Sediment yield (t/ha) ET (mm) Water yield (mm) 

SW-1 0.48 0.34 -48.90 -13.59 

SW-2 0.49 0.08 -63.00 -9.82 

SW-3 -0.08 0.00 10.50 -9.32 

SW-4 1.00 0.38 -47.75 -2.78 

SW-5 1.02 0.14 -43.20 4.32 

SW-6 0.64 0.02 -24.25 4.30 

SW-7 0.36 0.08 -13.45 3.66 

SW-8 -0.48 0.00 -2.40 -31.82 

SW-9 -0.03 0.00 -21.15 -1.52 

SW-10 -0.10 0.00 -58.80 -3.95 

SW-11 0.51 0.07 -55.35 8.39 

SW-12 0.36 0.09 -14.10 -2.38 

SW-13 0.05 0.00 -17.60 5.27 

SW-14 0.38 1.18 -66.65 1.38 

SW-15 -0.24 0.00 -15.30 -15.95 

SW-16 0.63 1.03 -33.70 -4.25 

SW-17 0.39 0.15 -35.50 -8.54 

SW-18 0.63 0.47 -322.40 -11.35 

SW-19 0.17 0.01 -121.55 10.26 

SW-20 0.25 0.03 -60.70 8.40 

SW-21 0.67 0.02 -13.65 -8.00 

SW-22 0.16 0.00 -37.25 -3.96 

SW-23 -0.04 0.00 -24.95 -1.60 

SW-24 0.08 0.00 -9.20 -14.30 

SW-25 -0.08 0.09 -49.40 18.55 

SW-26 0.12 0.00 -59.35 6.25 

SW-27 0.70 0.00 -15.10 -8.05 

SW-28 0.67 0.00 -30.85 16.10 

SW-29 0.07 0.00 -29.70 4.65 

SW-30 -0.01 0.00 -11.35 -0.24 

SW-31 0.05 0.00 -32.50 1.75 

SW-32 -0.65 -0.01 -198.55 3.85 

SW-33 0.19 0.00 -27.35 8.80 

SW-34 -0.86 -0.02 11.85 -30.90 

SW-35 0.13 0.00 -9.15 6.40 

SW-36 -0.03 0.00 -9.85 -1.31 

SW-37 -0.59 -0.02 -22.90 1.45 

SW-38 -0.50 -0.01 -19.65 0.55 

SW-39 -0.10 0.00 0.50 -16.75 

SW-40 0.25 0.00 -14.45 8.00 

SW-41 0.06 0.00 -6.50 6.60 

SW-42 0.02 0.00 -9.55 1.50 

SW-43 -0.52 -0.01 -11.25 -2.75 

SW-44 -0.06 0.00 -26.35 -4.20 

SW-45 -0.45 -0.02 -5.55 -1.65 
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SW-46 -0.05 0.00 -49.30 -5.95 

SW-47 -0.13 0.00 -3.65 -9.00 

SW-48 -0.31 0.00 34.10 -38.60 

SW-49 0.08 0.00 -9.15 3.15 

SW-50 -0.08 -0.01 -17.75 -1.30 

SW-51 -0.04 0.00 -112.90 -3.60 

SW-52 0.00 0.00 -6.30 3.15 

SW-53 0.03 0.00 -7.35 1.30 

SW-54 -0.08 0.00 -9.75 -0.90 

SW-55 -0.06 0.00 -15.10 -1.70 

SW-56 -0.05 0.00 -55.80 -3.90 

SW-57 0.00 0.00 -25.80 -0.15 

 

E3: Climate change impact assessment  

Table E11: Changes in future precipitation at sub-watershed level 

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 43.60 -127.10 -93.15 -41.85 

SW-2 43.60 -127.10 -93.15 -41.85 

SW-3 28.35 -89.20 -40.45 -34.20 

SW-4 43.60 -127.10 -93.15 -41.85 

SW-5 28.35 -89.20 -40.45 -34.20 

SW-6 -7.60 -127.35 -5.20 -34.35 

SW-7 28.35 -89.20 -40.45 -34.20 

SW-8 28.35 -89.20 -40.45 -34.20 

SW-9 -7.60 -127.35 -5.20 -34.35 

SW-10 121.95 -38.85 140.25 117.65 

SW-11 -7.10 -126.80 -4.65 -34.30 

SW-12 28.35 -89.20 -40.45 -34.20 

SW-13 -7.10 -126.80 -4.65 -34.30 

SW-14 -7.65 -127.35 -5.20 -34.40 

SW-15 19.85 -66.90 107.00 52.90 

SW-16 19.85 -66.90 107.05 52.95 

SW-17 -7.65 -127.35 -5.20 -34.40 

SW-18 19.85 -66.90 107.05 52.95 

SW-19 -7.65 -127.35 -5.20 -34.40 

SW-20 -7.65 -127.35 -5.20 -34.40 

SW-21 121.90 -38.90 140.25 117.55 

SW-22 19.85 -66.90 107.05 52.95 

SW-23 19.85 -66.90 107.00 52.90 

SW-24 19.85 -66.90 107.05 52.95 

SW-25 19.85 -66.90 107.05 52.95 

SW-26 19.85 -66.90 107.05 52.95 

SW-27 19.85 -66.90 107.05 52.95 

SW-28 19.85 -66.90 107.00 52.90 

SW-29 19.85 -66.90 107.05 52.95 
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SW-30 -7.30 41.80 170.10 54.30 

SW-31 19.85 -66.90 107.05 52.95 

SW-32 19.85 -66.90 107.05 52.95 

SW-33 49.70 15.75 206.05 116.65 

SW-34 19.85 -66.90 107.05 52.95 

SW-35 74.05 85.15 290.40 128.15 

SW-36 -7.30 41.80 170.10 54.30 

SW-37 74.05 85.15 290.40 128.15 

SW-38 87.70 171.20 316.55 132.75 

SW-39 74.05 85.15 290.40 128.15 

SW-40 74.05 85.15 290.40 128.15 

SW-41 87.70 171.20 316.55 132.75 

SW-42 87.70 171.20 316.55 132.75 

SW-43 87.70 171.20 316.55 132.75 

SW-44 87.70 171.20 316.55 132.75 

SW-45 87.70 171.20 316.55 132.75 

SW-46 87.70 171.20 316.55 132.75 

SW-47 87.70 171.20 316.55 132.75 

SW-48 87.70 171.20 316.55 132.75 

SW-49 74.05 85.15 290.40 128.15 

SW-50 87.70 171.20 316.55 132.75 

SW-51 104.50 202.95 292.80 100.15 

SW-52 87.70 171.20 316.55 132.75 

SW-53 87.70 171.20 316.55 132.75 

SW-54 114.05 220.15 363.10 172.60 

SW-55 104.50 202.95 292.80 100.15 

SW-56 104.50 202.95 292.80 100.15 

SW-57 114.75 249.45 284.70 134.05 

 

Table E12: Changes in streamflow simulation under varying future precipitation 

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 17.42 -2.34 108.90 53.43 

SW-2 17.40 -2.13 109.03 53.45 

SW-3 0.09 -0.75 -0.39 -0.19 

SW-4 15.07 1.71 107.01 51.22 

SW-5 14.84 2.85 107.66 51.42 

SW-6 11.07 11.51 85.13 39.93 

SW-7 3.74 -7.84 23.03 11.75 

SW-8 2.14 -3.04 2.67 2.32 

SW-9 -0.36 -2.24 0.06 -0.39 

SW-10 2.86 -1.07 4.11 3.48 

SW-11 11.68 14.90 85.11 40.57 

SW-12 4.03 -5.01 23.28 12.28 

SW-13 -0.23 -1.10 0.01 -0.14 

SW-14 4.00 -4.51 23.54 12.41 

SW-15 0.13 -1.06 1.64 0.86 
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SW-16 3.89 -3.38 21.91 11.57 

SW-17 12.09 16.97 85.13 40.86 

SW-18 3.89 -3.31 21.81 11.53 

SW-19 11.88 23.00 77.61 37.13 

SW-20 11.59 22.46 77.35 36.89 

SW-21 3.69 -1.52 19.11 10.10 

SW-22 0.60 -5.08 7.82 4.07 

SW-23 0.20 -1.77 2.66 1.41 

SW-24 0.39 -3.10 4.83 2.51 

SW-25 13.24 24.84 73.03 35.98 

SW-26 0.14 -1.24 1.89 0.99 

SW-27 3.20 -1.33 18.42 9.51 

SW-28 2.09 0.18 11.65 5.60 

SW-29 0.14 -1.10 1.72 0.89 

SW-30 -0.82 0.96 4.60 1.60 

SW-31 0.23 -1.80 2.82 1.47 

SW-32 16.03 28.52 71.21 32.88 

SW-33 0.93 0.06 4.41 2.67 

SW-34 14.65 28.22 63.56 29.27 

SW-35 1.30 1.40 6.13 2.86 

SW-36 -0.50 0.70 3.22 1.14 

SW-37 15.10 28.10 59.54 27.75 

SW-38 11.97 24.19 45.20 21.14 

SW-39 2.82 3.57 12.89 5.96 

SW-40 1.89 2.03 8.89 4.16 

SW-41 0.60 1.17 2.49 1.17 

SW-42 0.97 1.93 4.04 1.89 

SW-43 10.22 20.70 37.91 17.76 

SW-44 1.00 1.97 4.10 1.97 

SW-45 8.73 17.76 31.76 14.87 

SW-46 0.66 1.30 2.72 1.30 

SW-47 1.34 2.68 5.56 2.63 

SW-48 7.27 14.84 25.68 12.00 

SW-49 1.38 1.48 6.49 3.01 

SW-50 5.51 11.31 18.30 8.54 

SW-51 0.97 2.01 3.19 1.32 

SW-52 1.51 3.19 5.55 2.43 

SW-53 1.26 2.51 5.28 2.49 

SW-54 3.95 8.01 12.51 6.01 

SW-55 2.81 5.84 8.48 3.88 

SW-56 1.06 2.16 3.42 1.43 

SW-57 1.03 2.21 2.70 1.46 
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Table E13: Changes in sediment yield simulation under varying future precipitation 

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 4.08 -0.14 79.75 41.62 

SW-2 1.03 -0.02 20.46 10.69 

SW-3 0.00 0.00 0.00 0.00 

SW-4 2.53 1.32 54.08 27.32 

SW-5 0.89 0.47 19.02 9.62 

SW-6 0.48 0.80 5.18 2.54 

SW-7 0.66 -1.24 6.14 3.42 

SW-8 0.14 0.09 0.16 0.17 

SW-9 0.00 0.00 0.00 0.00 

SW-10 0.00 0.00 0.00 0.00 

SW-11 1.87 3.53 18.65 9.23 

SW-12 0.81 -1.47 7.44 4.15 

SW-13 0.00 0.00 0.00 0.00 

SW-14 5.77 -8.64 58.16 32.14 

SW-15 0.00 0.00 0.00 0.00 

SW-16 4.79 -7.28 49.40 27.32 

SW-17 5.76 8.96 43.09 21.09 

SW-18 2.06 -1.13 14.30 7.78 

SW-19 0.01 0.10 0.45 0.04 

SW-20 2.51 5.62 19.08 9.29 

SW-21 0.09 -0.03 0.66 0.36 

SW-22 0.00 -0.05 0.09 0.05 

SW-23 0.00 0.00 0.00 0.00 

SW-24 0.00 -0.08 0.13 0.07 

SW-25 -0.22 0.28 2.14 -0.82 

SW-26 0.00 0.00 0.00 0.00 

SW-27 0.01 0.00 0.10 0.05 

SW-28 0.00 0.00 0.03 0.02 

SW-29 0.00 0.00 0.00 0.00 

SW-30 0.00 0.00 0.00 0.00 

SW-31 0.00 0.00 0.00 0.00 

SW-32 0.58 1.05 2.00 1.09 

SW-33 0.00 0.00 0.00 0.00 

SW-34 1.01 1.80 3.24 1.80 

SW-35 0.00 0.00 0.00 0.00 

SW-36 0.00 0.00 0.00 0.00 

SW-37 1.41 2.40 4.11 2.34 

SW-38 0.60 1.00 1.59 0.94 

SW-39 0.01 0.02 0.07 0.03 

SW-40 0.00 0.00 0.00 0.00 

SW-41 0.00 0.00 0.00 0.00 

SW-42 0.00 0.00 0.00 0.00 

SW-43 0.89 1.41 2.15 1.31 

SW-44 0.00 0.00 0.00 0.00 

SW-45 3.54 5.39 8.01 5.02 
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SW-46 0.00 0.00 0.00 0.00 

SW-47 0.50 0.61 0.81 0.60 

SW-48 0.15 0.37 0.62 0.31 

SW-49 0.00 0.00 0.00 0.00 

SW-50 0.94 2.26 3.63 1.76 

SW-51 0.00 0.00 0.00 0.00 

SW-52 0.02 0.05 0.09 0.04 

SW-53 0.00 0.00 0.00 0.00 

SW-54 0.02 0.06 0.09 0.04 

SW-55 0.02 0.04 0.06 0.03 

SW-56 0.00 0.00 0.00 0.00 

SW-57 0.00 0.00 0.00 0.00 

 

Table E14: Changes in evapotranspiration simulation under varying future precipitation 

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 18.05 0.15 -5.90 -26.80 

SW-2 20.35 0.25 -5.15 -26.00 

SW-3 18.80 3.95 -0.10 -13.85 

SW-4 20.15 0.80 -4.00 -23.55 

SW-5 22.60 7.10 3.20 -10.35 

SW-6 14.55 -2.80 -9.40 -14.25 

SW-7 21.25 4.75 -0.50 -15.00 

SW-8 17.50 3.85 0.95 -11.75 

SW-9 12.55 -4.95 -9.40 -13.45 

SW-10 22.50 3.60 -2.25 2.15 

SW-11 18.40 3.20 -5.80 -11.90 

SW-12 22.60 5.90 1.20 -15.00 

SW-13 18.50 0.90 -11.60 -20.90 

SW-14 13.05 -2.50 -5.85 -9.35 

SW-15 10.75 6.55 -6.25 -2.55 

SW-16 10.75 6.45 -5.60 -2.00 

SW-17 19.85 4.65 -4.30 -10.55 

SW-18 12.65 18.15 21.55 34.45 

SW-19 18.90 5.70 1.55 -1.45 

SW-20 17.75 2.45 -4.85 -10.60 

SW-21 24.05 2.70 -5.05 -2.65 

SW-22 12.30 9.15 -5.40 -0.90 

SW-23 11.40 8.00 -7.15 -4.35 

SW-24 12.35 9.00 -7.35 -3.35 

SW-25 12.05 8.45 -6.85 -2.75 

SW-26 11.55 8.20 -3.55 0.40 

SW-27 10.85 7.15 -7.60 -5.30 

SW-28 11.40 7.60 -8.80 -6.10 

SW-29 10.90 5.80 -5.50 -2.45 

SW-30 21.85 16.40 17.30 3.75 

SW-31 10.85 5.80 -5.65 -2.70 
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SW-32 15.00 21.65 17.60 31.25 

SW-33 8.45 14.85 -5.00 -7.75 

SW-34 11.30 9.45 -5.35 -1.20 

SW-35 15.30 20.15 0.50 -6.30 

SW-36 19.05 14.35 15.50 2.05 

SW-37 15.05 19.35 2.35 -1.50 

SW-38 17.35 29.70 13.00 -3.35 

SW-39 14.35 18.65 2.05 -2.25 

SW-40 14.90 19.95 -0.70 -7.45 

SW-41 17.35 32.05 11.30 -9.20 

SW-42 17.90 29.65 11.15 -7.25 

SW-43 19.05 29.85 13.05 -4.05 

SW-44 17.00 28.15 9.85 -8.90 

SW-45 18.75 27.70 10.65 -7.45 

SW-46 17.50 29.55 12.55 -4.55 

SW-47 17.30 26.30 9.05 -9.00 

SW-48 19.00 28.90 11.45 -6.65 

SW-49 14.75 20.20 -0.45 -6.25 

SW-50 18.60 27.05 10.50 -6.95 

SW-51 23.95 34.85 23.80 3.35 

SW-52 17.50 29.00 9.80 -10.60 

SW-53 18.25 29.55 10.40 -9.25 

SW-54 18.65 33.40 12.80 -9.25 

SW-55 23.75 34.20 17.30 -11.90 

SW-56 22.10 32.40 18.25 -6.25 

SW-57 13.00 29.30 12.00 -8.10 

 

Table E15: Changes in water yield simulation under varying future precipitation 

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 27.33 -123.00 -89.22 -12.08 

SW-2 25.29 -122.26 -89.70 -12.39 

SW-3 10.51 -89.41 -46.03 -22.11 

SW-4 25.23 -121.41 -89.53 -12.14 

SW-5 7.07 -91.15 -47.19 -20.78 

SW-6 -21.17 -120.52 2.02 -20.98 

SW-7 8.45 -89.69 -45.67 -19.56 

SW-8 12.17 -89.01 -45.46 -22.41 

SW-9 -19.24 -117.95 3.38 -20.56 

SW-10 100.90 -37.19 144.95 122.80 

SW-11 -25.40 -125.39 -0.74 -19.59 

SW-12 7.15 -91.23 -45.88 -18.50 

SW-13 -26.06 -125.26 1.03 -16.28 

SW-14 -18.81 -117.75 4.18 -18.60 

SW-15 9.10 -70.40 110.48 58.27 

SW-16 8.95 -70.70 110.21 57.93 

SW-17 -26.80 -127.25 -1.99 -21.12 



358 

SW-18 10.00 -68.55 109.91 58.53 

SW-19 -24.68 -124.18 -0.07 -20.68 

SW-20 -24.49 -124.00 -0.09 -19.87 

SW-21 99.65 -38.49 143.85 122.50 

SW-22 7.25 -72.80 109.26 56.53 

SW-23 8.20 -72.25 109.72 58.75 

SW-24 7.15 -73.40 109.58 56.44 

SW-25 7.10 -72.80 110.40 57.09 

SW-26 8.15 -71.70 109.72 57.67 

SW-27 8.75 -72.00 109.39 58.23 

SW-28 7.85 -72.70 110.04 58.39 

SW-29 9.00 -69.80 109.92 57.46 

SW-30 -25.82 30.95 147.24 51.54 

SW-31 9.15 -70.00 110.60 58.54 

SW-32 5.96 -75.48 109.36 56.21 

SW-33 43.65 3.30 207.47 126.35 

SW-34 7.90 -73.80 108.31 54.88 

SW-35 60.85 65.80 286.65 133.14 

SW-36 -23.02 33.26 150.98 53.33 

SW-37 60.05 67.60 285.45 130.99 

SW-38 73.40 145.70 302.00 139.90 

SW-39 61.45 68.50 286.40 131.39 

SW-40 60.55 65.25 286.06 134.30 

SW-41 72.80 141.25 302.90 141.95 

SW-42 72.25 144.60 302.75 141.35 

SW-43 71.20 144.20 300.70 138.75 

SW-44 75.10 146.50 304.55 147.05 

SW-45 71.55 145.95 303.20 141.40 

SW-46 73.60 145.10 303.25 144.75 

SW-47 73.55 147.35 305.10 143.80 

SW-48 70.60 144.75 302.15 140.50 

SW-49 60.70 65.35 285.90 132.77 

SW-50 72.60 148.55 305.25 143.25 

SW-51 83.40 172.05 272.95 112.90 

SW-52 72.75 144.30 303.15 144.55 

SW-53 72.70 144.15 302.80 143.45 

SW-54 97.85 185.70 345.70 183.55 

SW-55 84.55 171.30 274.20 116.80 

SW-56 85.20 173.50 275.75 114.80 

SW-57 103.00 220.05 269.25 145.45 
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E4: Combined land use and climate change impacts assessment on SWAT simulation  

Table E16: Changes in streamflow simulation under combined impact analysis  

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 18.02 -1.78 109.36 53.88 

SW-2 17.96 -1.56 109.54 53.90 

SW-3 -0.01 -0.85 -0.48 -0.28 

SW-4 16.23 2.86 108.02 52.16 

SW-5 16.16 4.06 108.77 52.45 

SW-6 11.92 12.26 85.87 40.65 

SW-7 4.12 -7.42 23.34 12.03 

SW-8 1.57 -3.59 2.14 1.84 

SW-9 -0.39 -2.28 0.02 -0.43 

SW-10 2.73 -1.20 3.96 3.34 

SW-11 12.39 15.52 85.73 41.18 

SW-12 4.42 -4.58 23.62 12.58 

SW-13 -0.17 -1.04 0.06 -0.10 

SW-14 4.40 -4.08 23.89 12.72 

SW-15 -0.14 -1.35 1.38 0.60 

SW-16 4.56 -2.64 22.52 12.14 

SW-17 12.66 17.44 85.64 41.38 

SW-18 4.55 -2.57 22.41 12.10 

SW-19 12.19 23.25 77.90 37.45 

SW-20 12.01 22.79 77.75 37.30 

SW-21 4.40 -0.72 19.79 10.74 

SW-22 0.78 -4.90 7.97 4.20 

SW-23 0.16 -1.82 2.60 1.33 

SW-24 0.49 -3.00 4.91 2.58 

SW-25 13.29 24.81 73.07 36.08 

SW-26 0.27 -1.10 2.01 1.10 

SW-27 3.95 -0.49 19.14 10.20 

SW-28 2.81 0.98 12.35 6.28 

SW-29 0.23 -1.00 1.80 0.97 

SW-30 -0.82 0.96 4.60 1.61 

SW-31 0.28 -1.75 2.86 1.50 

SW-32 15.37 27.78 70.53 32.32 

SW-33 1.13 0.30 4.63 2.89 

SW-34 13.76 27.21 62.64 28.48 

SW-35 1.45 1.57 6.28 2.99 

SW-36 -0.54 0.67 3.19 1.11 

SW-37 14.50 27.38 58.90 27.21 

SW-38 11.46 23.58 44.66 20.70 

SW-39 2.72 3.46 12.78 5.86 

SW-40 2.15 2.32 9.15 4.41 

SW-41 0.66 1.24 2.55 1.23 

SW-42 0.99 1.95 4.06 1.90 

SW-43 9.68 20.07 37.35 17.30 
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SW-44 0.94 1.90 4.04 1.92 

SW-45 8.26 17.20 31.27 14.47 

SW-46 0.60 1.23 2.66 1.25 

SW-47 1.20 2.51 5.41 2.50 

SW-48 6.95 14.44 25.34 11.73 

SW-49 1.45 1.56 6.56 3.07 

SW-50 5.43 11.20 18.21 8.49 

SW-51 0.92 1.93 3.12 1.28 

SW-52 1.50 3.17 5.54 2.43 

SW-53 1.29 2.54 5.31 2.52 

SW-54 3.88 7.92 12.44 5.96 

SW-55 2.75 5.77 8.42 3.84 

SW-56 1.01 2.10 3.37 1.40 

SW-57 1.03 2.21 2.71 1.46 

 

Table E17: Changes in sediment yield simulation under combined impact analysis  

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 4.47 0.20 80.06 42.00 

SW-2 1.13 0.07 20.54 10.79 

SW-3 0.00 0.00 0.00 0.00 

SW-4 3.01 1.77 54.53 27.78 

SW-5 1.06 0.63 19.19 9.78 

SW-6 0.52 0.82 5.21 2.57 

SW-7 0.74 -1.15 6.22 3.48 

SW-8 0.13 0.09 0.16 0.17 

SW-9 0.00 0.00 0.00 0.00 

SW-10 0.00 0.00 0.00 0.00 

SW-11 1.96 3.61 18.74 9.32 

SW-12 0.91 -1.35 7.54 4.23 

SW-13 0.00 0.00 0.00 0.00 

SW-14 7.13 -7.19 59.49 33.31 

SW-15 0.00 0.00 0.00 0.00 

SW-16 5.95 -6.03 50.54 28.32 

SW-17 5.99 9.15 43.29 21.32 

SW-18 2.57 -0.55 14.87 8.24 

SW-19 0.02 0.10 0.45 0.04 

SW-20 2.57 5.66 19.13 9.36 

SW-21 0.12 0.00 0.69 0.38 

SW-22 0.00 -0.05 0.09 0.05 

SW-23 0.00 0.00 0.00 0.00 

SW-24 0.00 -0.08 0.13 0.08 

SW-25 -0.09 0.28 2.18 -0.82 

SW-26 0.00 0.00 0.00 0.00 

SW-27 0.02 0.00 0.10 0.06 

SW-28 0.01 0.00 0.04 0.02 

SW-29 0.00 0.00 0.00 0.00 
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SW-30 0.00 0.00 0.00 0.00 

SW-31 0.00 0.00 0.00 0.00 

SW-32 0.57 1.03 1.99 1.07 

SW-33 0.00 0.00 0.00 0.00 

SW-34 0.99 1.77 3.22 1.78 

SW-35 0.00 0.00 0.00 0.00 

SW-36 0.00 0.00 0.00 0.00 

SW-37 1.38 2.36 4.08 2.32 

SW-38 0.59 0.99 1.58 0.93 

SW-39 0.01 0.02 0.07 0.03 

SW-40 0.00 0.00 0.00 0.00 

SW-41 0.00 0.00 0.00 0.00 

SW-42 0.00 0.00 0.00 0.00 

SW-43 0.88 1.38 2.13 1.29 

SW-44 0.00 0.00 0.00 0.00 

SW-45 3.50 5.30 7.95 4.97 

SW-46 0.00 0.00 0.00 0.00 

SW-47 0.50 0.60 0.80 0.59 

SW-48 0.15 0.37 0.62 0.31 

SW-49 0.00 0.00 0.00 0.00 

SW-50 0.94 2.25 3.65 1.78 

SW-51 0.00 0.00 0.00 0.00 

SW-52 0.03 0.05 0.09 0.04 

SW-53 0.00 0.00 0.00 0.00 

SW-54 0.02 0.06 0.09 0.04 

SW-55 0.02 0.04 0.06 0.03 

SW-56 0.00 0.00 0.00 0.00 

SW-57 0.00 0.00 0.00 0.00 

 

Table E18: Changes in evapotranspiration simulation under combined impact analysis  

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 -29.75 -51.10 -58.05 -80.45 

SW-2 -43.65 -65.45 -72.55 -94.40 

SW-3 31.45 16.50 12.20 -1.95 

SW-4 -28.55 -51.20 -59.05 -81.95 

SW-5 -22.20 -38.30 -42.70 -57.35 

SW-6 -10.75 -28.65 -34.85 -39.90 

SW-7 7.15 -9.30 -14.50 -29.00 

SW-8 20.25 4.45 -1.60 -17.55 

SW-9 -8.80 -27.50 -32.75 -37.90 

SW-10 -35.45 -57.80 -66.00 -63.85 

SW-11 -38.65 -55.80 -65.05 -72.30 

SW-12 8.40 -9.00 -14.80 -32.05 

SW-13 -0.35 -18.10 -30.00 -38.70 

SW-14 -55.05 -73.55 -78.45 -83.85 

SW-15 -3.45 -7.20 -24.55 -21.90 
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SW-16 -23.00 -27.90 -42.20 -39.90 

SW-17 -14.80 -31.75 -43.10 -52.20 

SW-18 -312.20 -317.50 -330.25 -329.15 

SW-19 -105.20 -123.60 -130.85 -137.35 

SW-20 -44.90 -63.10 -70.85 -78.35 

SW-21 12.20 -11.15 -19.35 -17.65 

SW-22 -25.20 -29.10 -46.20 -43.10 

SW-23 -14.05 -17.75 -34.00 -31.85 

SW-24 3.65 1.30 -18.80 -15.50 

SW-25 -39.15 -45.75 -58.85 -56.20 

SW-26 -48.55 -54.50 -67.30 -65.30 

SW-27 -3.95 -7.05 -23.65 -21.45 

SW-28 -21.15 -27.65 -41.20 -39.40 

SW-29 -20.00 -26.65 -38.25 -35.90 

SW-30 10.25 4.35 4.65 -9.75 

SW-31 -22.00 -28.10 -40.70 -38.75 

SW-32 -185.60 -186.55 -200.40 -194.20 

SW-33 -19.65 -15.60 -34.80 -38.60 

SW-34 26.15 24.30 4.10 7.30 

SW-35 5.60 9.75 -9.75 -16.10 

SW-36 9.10 3.85 4.70 -9.80 

SW-37 -7.95 -4.45 -22.40 -27.35 

SW-38 -2.25 9.55 -8.25 -25.65 

SW-39 15.10 20.65 1.50 -4.90 

SW-40 0.40 4.40 -15.60 -22.25 

SW-41 10.25 24.10 3.95 -15.75 

SW-42 8.35 19.60 0.75 -18.20 

SW-43 7.65 18.60 0.70 -17.55 

SW-44 -9.65 1.85 -18.70 -40.25 

SW-45 13.50 22.45 4.75 -13.95 

SW-46 -31.50 -19.60 -40.05 -61.65 

SW-47 14.40 24.35 5.45 -14.45 

SW-48 54.20 69.40 47.25 23.70 

SW-49 5.90 10.95 -9.75 -15.55 

SW-50 0.60 8.95 -8.90 -28.45 

SW-51 -87.45 -76.85 -93.90 -123.95 

SW-52 11.10 21.75 2.55 -17.90 

SW-53 11.00 22.05 2.70 -17.10 

SW-54 8.90 23.60 2.30 -20.60 

SW-55 8.15 18.40 0.25 -30.70 

SW-56 -33.55 -23.80 -40.60 -70.25 

SW-57 -13.35 2.85 -15.65 -37.05 
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Table E19: Changes in water yield simulation under combined impact analysis  

Sub-watershed Horizon  2020 Horizon  2040 Horizon  2060 Horizon  2080 

SW-1 10.73 -136.23 -102.37 -23.81 

SW-2 14.29 -131.29 -98.03 -19.48 

SW-3 -1.04 -101.20 -57.66 -33.34 

SW-4 22.90 -123.40 -90.88 -13.17 

SW-5 12.36 -86.43 -43.24 -17.85 

SW-6 -16.67 -116.13 5.88 -17.79 

SW-7 12.53 -86.01 -42.67 -17.51 

SW-8 -26.43 -126.01 -79.41 -52.55 

SW-9 -20.62 -119.82 1.52 -22.24 

SW-10 96.20 -41.98 139.65 117.85 

SW-11 -16.14 -115.94 7.94 -13.31 

SW-12 4.73 -93.79 -48.25 -20.83 

SW-13 -19.54 -118.78 6.80 -11.76 

SW-14 -17.48 -116.58 4.42 -19.13 

SW-15 -9.20 -90.00 93.16 40.92 

SW-16 4.30 -75.60 105.19 52.91 

SW-17 -36.81 -137.77 -12.09 -30.13 

SW-18 -2.15 -81.70 97.55 46.46 

SW-19 -13.44 -112.68 9.96 -11.74 

SW-20 -14.80 -114.29 8.23 -12.17 

SW-21 89.70 -47.59 134.05 113.10 

SW-22 2.50 -78.00 104.86 51.96 

SW-23 6.75 -74.80 107.29 55.47 

SW-24 -8.45 -90.85 93.90 41.39 

SW-25 27.25 -50.70 129.34 75.91 

SW-26 15.15 -64.05 116.05 62.95 

SW-27 0.15 -81.60 100.52 48.17 

SW-28 26.15 -52.50 127.75 75.54 

SW-29 14.30 -63.75 115.34 63.05 

SW-30 -25.94 31.12 147.40 51.96 

SW-31 11.10 -68.05 111.96 59.89 

SW-32 10.92 -69.68 114.23 61.88 

SW-33 53.20 14.95 218.85 136.54 

SW-34 -26.57 -109.42 76.39 23.78 

SW-35 67.80 73.75 292.90 140.15 

SW-36 -24.67 31.86 149.73 52.28 

SW-37 61.75 68.45 286.55 132.29 

SW-38 74.05 146.40 303.00 140.35 

SW-39 44.85 49.30 268.75 114.48 

SW-40 68.80 74.20 294.60 141.96 

SW-41 80.00 149.45 309.86 149.15 

SW-42 73.85 146.15 304.50 143.10 

SW-43 69.40 142.50 299.30 137.30 

SW-44 70.30 140.65 300.45 142.85 

SW-45 70.05 144.40 302.65 140.45 
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SW-46 67.00 137.95 296.95 139.60 

SW-47 63.55 136.90 294.60 134.30 

SW-48 32.15 99.10 261.05 104.55 

SW-49 64.15 68.20 289.29 136.37 

SW-50 70.75 145.70 303.40 142.55 

SW-51 78.65 165.50 267.40 109.83 

SW-52 76.20 149.15 307.40 148.10 

SW-53 74.05 146.55 304.65 144.80 

SW-54 97.00 185.00 344.20 182.35 

SW-55 83.10 169.60 272.75 116.35 

SW-56 81.25 168.85 271.35 112.45 

SW-57 103.10 220.05 269.80 145.80 
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