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Abstract

The historic discovery of fascinating phenomenon of superconductivity by H. Kamer-

lingh Onnes promptly creates a striking impression among the Physics community.

The two most important turning points of theoretical understanding of superconduc-

tivity are (i) phenomenological theory of superconductivity developed by Ginzburg

and Landau known as Ginzburg-Landau (GL) theory and (ii) microscopic theory of

superconductivity developed by J. Bardeen, L. N. Cooper, and J. R. Schrieffer known

as BCS theory. Another breakthrough appears as a milestone when G. Bednorz and

K. A. Müller discover the high-temperature superconductor (HTS) La2−xSrxCuO4

with transition temperature (Tc) up to 30 K. In the subsequent year the supercon-

ductor YBa2Cu3O7−δ is discovered with critical temperature Tc = 93 K. Of many

models proposed after the discovery of HTS, some of the worth mentioning are: RVB

theory of HTS by P. W. Anderson and gauge theory of HTS for strongly correlated

Fermi system by P. W. Anderson and G. Baskaran. It is identified that in cuprate

HTS the charge carriers are holes and located in the same copper-oxide plane and

it increases with the increasing number of copper-oxide layers. The role of the ex-

change of antiferromagnetic spin fluctuations in high-temperature superconductivity

(HTSC) worked out by Moriya et al. and C. M. Varma.

The understanding of several unusual properties of HTS, namely; anisotropy of su-

perconducting gap (SG), the high value of 2∆/kBTc (5 to 8), dx2−y2 pairing symme-

try, co-existence of superconducting and antiferromagnetic (AF) phases, etc. become
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a challenge for theorists. None of these unusual properties could be explained by

the BCS theory, and this enforced the researchers to think beyond the BCS model.

To understand the mechanism of HTSC in cuprate superconductors Fujita et al.

used the idea of attractive potential between two electrons from the BCS theory

and showed the formation of d-wave Cooper-pair (pairon) in the copper-oxide plane.

William et al. recently revealed that the holes in the cuprate superconductor get

coupled to its local AF environment and creates the pairons. It is shown that pa-

iron formation in cuprate superconductor is direction dependent due to anisotropic

phonon exchange attraction which leads to anisotropic SG formation. Though the

mechanism of HTSC is not fully understood, it appears that the understanding of

pairons can provide some insight into the strange behaviour of HTS.

The electron-phonon interaction emerged as a key factor in the theoretical devel-

opment of conventional superconductivity as well as HTSC. The effects of doping

(impurity/defect)and that of anharmonicity, also has been noticed to be significant

in the superconducting phenomenon. In the present work using a generalized (non-

BCS) Hamiltonian, the contribution due to electrons, phonons, electron-phonon

interactions, anharmonicity, and defects is taken care. The HTS has a very com-

plex structure e.g., La2−xSrxCuO4 and YBa2Cu3O7−δ, which have layered structure

with the different layer of copper-oxide planes that introduced a complex network

interactions channels and are precisely taken care of by the modified form of Born-

Mayer-Huggins potential (MBMHP). The Green’s functions method based on many

body quantum dynamics of electrons and phonons, has been adopted to investigate

the properties of the SG.

Using the generalized EDOS of HTS followed by BCS formalism the two SG equa-

tions have been obtained which shows dependence on temperature, Fermi energy

and renormalized electron, and phonon energies. The effect of AF spin fluctuations

on the SG and pairing symmetry also seen. The expressions for pairing potential are
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also obtained by utilizing the SG equations. Using Green’s functions technique the

renormalized electron-phonon dispersion is obtained from which the behaviour of

SG, nodal and antinodal gap with doping are studied. The renormalized electron-

phonon dispersion further used to analyze the anisotropy of the SG and pairing

symmetry as well as a theory of renormalized phonon group velocity for HTS has

been formulated using phonon Green’s functions.
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Chapter 1

Introduction: Prospects and

Retrospects

“The most beautiful thing we can experience is the mysterious. It is the source of all

true art and science.”

- - - Albert Einstein

1.1 The Discovery of Superconductivity

Before the discovery of superconductivity, people were attempting to study the

temperature-dependent electrical conductivity of metals [1] and after three years

of liquefaction of Helium (1908) [2] by H. Kamerlingh Onnes, he measures the elec-

trical resistivity of Mercury (1911) at the extremely low temperature (∼ 4.2 K) and

surprisingly observed an unusual phenomenon - the ability to conduct electricity

without any resistance [3] - known as superconductivity. In the beginning, the name

“supraconduction” was given by Kamerlingh Onnes to this strange phenomenon

which later on called as superconductivity [4] was reckoned as a landmark discovery

in the history of low-temperature physics. In 1933, Meissner experimented with

studying the behaviour of the superconductor in the magnetic field and found that

1
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the magnetic field was expelled from the interior of superconductor when cooled be-

low the critical temperature [5]. This experimental observation added a new feather

to the phenomenon of superconductivity.

1.2 The Conventional Superconductivity

Even after the identification of a series of conventional superconductors [6], the the-

oretical understanding of superconductivity remained a puzzle for a long time and

thus phenomenon of superconductivity appeared as a most mysterious and fascinat-

ing problem of the 20th century with several theoretical failures [7]. The discovery

of Meissner effect projected the demarcation line between a perfect conductor and

a superconductor with the inference that the superconductor behaves as a perfect

conductor and as well as a perfect diamagnet which expels the magnetic field from

inside of it [8]. The Gorter and Casimir’s two fluid model [9] was an attempt

to understand the phenomenon of superconductivity. The first and foremost phe-

nomenological model of superconductivity based on two fluid model was presented

by F. London and H. London [10] in 1935 which could explain the Meissner effect

and introduced the concept of a parameter, known as London penetration depth,

after which the magnetic field completely expelled by the superconductor. The con-

ventional superconductor is categorized as type I and type II superconductor. The

type I superconductor has only one critical magnetic field - the value of the magnetic

field above which the superconductivity is destroyed. The type II superconductor

has two critical magnetic fields and state of the superconductor between in these

two fields known as vortex state (or Shubnikov phase). Such behaviour first exper-

imentally discovered by Shubnikov et al. in 1937 [11]. To explain the Shubnikov

phase, A. A. Abrikosov [12] used the Ginzburg-Landau theory [13] and proposed the

concept of vortices. He showed that the Shubnikov phase is a state with vortices in

a periodic fashion (triangular lattice). The idea of vertices accepted after the exper-

imental confirmation by Hess et al. [14, 15]. In 1950, Fröhlich [16, 17] proposed a
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theory of phonon mediated interaction in superconductivity. Since the vibrational

frequency of lattice varies as M1/2, this laid down the foundation of the isotopic

effect in superconductivity. In the same year the isotopic effect was confirmed by

Maxwell [18] and Reynolds et al. [19] and a relation between critical temperature Tc

and isotopic mass M established as TcM
1/2=constant. Among the several developed

theoretical models there are two most important milestones in the field of conceptual

understanding of superconductivity (i) phenomenological theory of superconductiv-

ity developed by Ginzburg and Landau known as Ginzburg-Landau theory (1950)

[13] and (ii) microscopic theory of superconductivity developed by J. Bardeen, L. N.

Cooper, and J. R. Schrieffer known as BCS theory (1957) [20].

Ginzburg and Landau (GL) Theory

Based on the Landau theory [21, 22] of second-order phase transition, Ginzburg and

Landau (GL) proposed that the free energy of a superconductor near the super-

conducting transition can be expressed in terms of a complex order parameter. By

minimizing the free energy, two equations pop-out which are known as GL equations

and used to study the thermodynamic behaviour of superconductors [8]. The GL

equations predict two characteristic lengths in a superconductor, namely; penetra-

tion depth (λ) which was initially introduced by the London brothers and coherence

length (ξ). The ratio of these two parameters known as Ginzburg–Landau param-

eter κ = λ/ξ and used to categorize the type of superconductors. For the limit,

0 < κ < 1/
√

2 the superconductor falls under type I, and for κ > 1/
√

2 it falls under

type II.

BCS ( Bardeen–Cooper–Schrieffer) Theory

In 1957 J. Bardeen, L. N. Cooper, and J. R. Schrieffer formulated the first successful

microscopic theory of superconductivity by introducing the concept of a phonon-

mediated weak attractive electron-electron interaction that forms a bound pair of
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electrons, known as Cooper pairs. [20]. The visualization of the Cooper pair forma-

tion involves electron-lattice-electron interaction. Surprisingly the electrons which

obey the Fermi-Dirac statistics, after the formation of Cooper pairs behave like

bosons. The BCS theory is based on the assumption that the phenomenon of su-

perconductivity occurs when the attractive Cooper pair interaction dominates over

the repulsive Coulombic force. Prior to the development BCS theory, L. N. Cooper

earlier showed that due to the attractive interaction the electron-electron pair state

can have energy less than that of the Fermi-energy of the material [23]. Though the

first hint of the superconducting gap was observed by Corak et al. [24], but the BCS

theory successfully explained the formation of the superconducting gap occurring

due to electron-lattice-electron interaction [20].

There are several other important developments after the advent of BCS theory and

much progress has been made in understanding the role of the electron-phonon in-

teraction in the normal and superconducting state. Though the GL theory and BCS

theory were developed separately but L. Gor’kov was able to derive GL theory from

the BCS theory under some limits and related the Cooper pairs to the twice of the

electronic charge which was appeared in the GL equations [25]. In 1958 P. W. Ander-

son used the random-phase approximation (RPA) in the theory of superconductivity

and found that most of the elementary excitations in the superconducting state have

the BCS type energy gap spectrum [26]. Further a new theoretical approach in su-

perconductivity was carried out by N. N. Bogoliubov et al. [27, 28]. In 1958 Gor’kov

[29] developed the Green’s functions method which has been later applied to the su-

perconductors by many authors [30–35]. Earlier, only weak electron-phonon coupling

was considered, but Migdal [36] showed the possible strong electron-phonon inter-

action in normal metals. The concept of strong electron-phonon coupling extended

to the superconducting state by Eliashberg [37] and Nambu [38] using Green’s func-

tions technique of Gor’kov [29]. In 1967 W. L. McMillian [39] applied the idea of

strong-coupling theory to superconducting state and obtained the superconducting
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transition temperature as a function of electron-phonon and electron-electron cou-

pling constants which was further reanalyzed by Allen et al. [40]. Another significant

development took place when B. D. Josephson [41] theoretically predicted an entirely

new kind of behaviour of superconductor-the tunneling of current through an insu-

lating barrier between two superconductors which later experimentally verified by P.

W. Anderson and John Rowell [42], now known as the Josephson effect. Several new

superconductors were discovered with increasing critical temperature such as Nb3Sn

(Tc=18 K) [43] in 1954, Li1+xTi2−xO4 (Tc=7 to 13 K) [44] in 1973, BaPb1−xBixO3

(Tc=13 K) in 1975 [45], Nb3Ge (Tc=23 K) [46] in 1978 and so on. Despite of much

progress in the theory as well as in the experiments, many believed that the field

was faded out until the high-temperature superconductor (HTS) is discovered [47].

1.3 The High-Temperature Superconductivity

Experimental Development

In 1986 G. Bednorz and K. A. Müller discovered a new class of superconduc-

tors heralding the possibility of high-temperature superconductivity (HTSC) in

La2−xSrxCuO4(LaBaCuO) with transition temperature to 30 K [47]. The research in

superconductivity opened new windows after this startling discovery and soon many

HTS discovered. In the subsequent year the superconductivity in YBa2Cu3O7−δ

discovered with transition temperature 93 K [48], well above the boiling point of liq-

uid nitrogen (77 K). This was a very significant development from the experimental

point of view because it reduced the cost of the refrigeration system as well as it

attracted the technological applications. Further the superconductivity discovered

in BiSrCaCuO systems and it is found that the oxide BiSrCaCu2Ox has Tc about

105 K [49]. In the same group Bismuth can be replaced with Mercury and resulting

compound HgBa2Ca2Cu3Ox has highest known Tc (∼135 K) [50] at normal pressure

condition. The same compound HgBa2Ca2Cu3Ox exhibited superconductivity up to
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150 K under high pressure (150 kbar) [51]. In all these HTS, CuO2 being common

component, therefore they are referred to as the cuprate HTS. In 2002 non-copper-

oxide bulk superconductor MgB2 was discovered by Akimitsu et al. with Tc=39 K

[52]. In 2008, a new class of superconductor was discovered based on the iron com-

pound by Hosono et al. [53] in La[O1−xFx]FeAs with Tc=26 K. Further development

took place in the field of iron-based superconductivity with increasing Tc up to 40

K [54–57]. The highest Tc in bulk iron-based superconductors reported is 55 K in

SmO1−xFxFeAs [57].

Models of High-Temperature Superconductivity

Condensed matter theorists developed a rich heritage [58–66] to understand the

mechanism of HTSC but the field is still lacking of mature understanding and

thus the success is still awaited. Just after the discovery of superconductivity in

La2−xSrxCuO4, in 1987 P. W. Anderson proposed resonating-valence-bond (RVB)

theory [67] with the conclusion that the phenomenon of HTSC is predominantly

electronic and magnetic. The idea of RVB further extended by P. W. Anderson et

al. to study the phase transition phenomenon in La2CuO4 based compound [68].

Later P. W. Anderson and G. Baskaran developed the gauge theory of HTS for

strongly correlated Fermi systems using RVB theory [69]. Emery [70] attempted to

understand the mechanism of HTSC and identified that the charge carriers are holes

and located in the same copper-oxide plane and it increases with increasing number

of copper-oxide layers [71, 72]. An effective Hamiltonian was derived for high-Tc

copper-oxide superconductor by Zhang et al. [73]. Varma et al. [74] worked out

that the exchange of antiferromagnetic spin fluctuations mechanism is responsible

for the HTSC in heavy fermion systems and the work of Moriya et al. [75–77] is

worth mentioning in this regard. There are many properties of HTS found which

are entirely different from the conventional superconductors and their explanation

is still challenging problem. The experiments carried by D. A. Wollman et al. [78]

using two superconducting-normal-superconducting (S-N-S) arrangements together,
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reveals a new type of pairing symmetry in cuprate superconductors called dx2−y2

wave pairing which was confirmed via flux quantization in a tri-crystal YBCO junc-

tion by Tsuei et al. [79]. It is now general agreement that a gap is formed in the close

vicinity of Fermi level, but unlike the simple symmetric s-wave gap which is found in

conventional superconductors, the gap is due to dx2−y2 wave in HTS. The first dx2−y2

wave pairing symmetry was theoretically predicted by D. J. Scalapino et al. [80] and

later on by P. Monthoux et al. [81]. Masahiko et al. [82] investigated the mean-

field theory of the Hubbard model and found the dx2−y2 wave possibility in high Tc

superconductors. Using the Heisenberg model G. Kotliar et al. [83] formulated an

auxiliary-boson mean-field theory and observed the dx2−y2 wave superconductivity

and further investigation done by Zhang et al. [84] show the superconductivity with

an order parameter which has dx2−y2 wave symmetry. Structure of single vortex

and vortex lattice in a superconductor with dx2−y2 wave pairing symmetry has been

analyzed by Ting et al. [85]. The superconducting properties of cuprates strongly

depend on the doping level of impurity [86–98]. Overdoped cuprate behaves like

conventional metal with Fermi surface, but underdoped cuprates act like supercon-

ductor and show disconnected Fermi arc [99]. The ratio of the superconducting gap

(SG) to the critical temperature (2∆/kBTc) for conventional superconductor was

found below 3.5 which is well taken care of by BCS theory, but in HTS this gap

ratio was seen between 5 and 8 [100–102] and also showed a strong dependence on

doping [93–98, 103]. The SG in HTS was found highly anisotropic [103–106] as

well as the different magnitude of gap observed in nodal and antinodal direction

[107]. Along with electron-phonon interaction [108–112], the anharmonicity also

plays role in superconductivity [113–118]. In addition to SG, the HTS also exhibit

pseudogap - an energy gap much larger than SG and persist above the Tc [119].

The experimental observations [120–122] on antiferromagnetic (AF) phase along

with superconductivity was a surprising phenomenon since the magnetism tends to

destroy the superconductivity as Abrikosov and Gor’kov showed that magnetic im-

purities disrupt superconductivity and suppress Tc. [123]. The co-existence of AF

phase with superconductivity suggest that the pairing symmetry also influences by
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AF spin fluctuations, though such scenario observed only at low temperature in a

lightly doped superconductors, e.g., La2−xSrxCuO4 [120–122, 124].

Owing to BCS theory, the idea of the attractive potential between two electrons,

Fujita et al. [125] further used it to the high-Tc cuprate and showed the formation

of d-wave Cooper-pair (pairon) due to the longitudinal optical-phonon exchange in

the copper-oxide plane. It is also demonstrated that the phonon mediated attraction

and hence the pairon formation in cuprate superconductors is direction dependent

leading to anisotropic SG formation [125]. Using GL theory Fujita and Godoy

[126, 127] observed that below Tc the GL wave function yields the condensed pairon

density and is proportional to the pairon energy gap. William et al. [128, 129]

recently revealed that the holes in the cuprate superconductors coupled to its local

AF environment and form the pairon. The understanding of pairon formation and

its implication to HTSC is crucial and several efforts have been made in this regard

[130–134]. The proposed mechanism of pairon formation in cuprates is shown in

Fig. (1.1).

In transport problems of cuprate HTS, it is noted that the in-plane electronic trans-

port is primarily affected by phonons [135] and lattice thermal conductivity depends

on phonon velocity (sound velocity) along with various other parameters [136–142].

In 2008 Alexandrov [143] showed the role of anisotropic sound velocity in unconven-

tional pairing in cuprate HTS. These results show that phonon is quite an essential

component in the mechanism of HTSC and need further investigation in these com-

plex structured HTS [86, 144, 145].

1.4 Motivation and State of the Art

In searching the fundamental principle behind the mysterious mechanism of HTSC

extensive efforts has been made in the last 20 years yet an acceptable theory is still
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Figure 1.1: The two dimensional Fermi surface of a cuprate model has a small
circle (electron) at the center and and four small pockets (holes) at the Brillouin
corners. In the proposed mechanism of pairon formation, an exchange of a phonon

can create the - pairon at (B,B′) and + pairon at (A,A′).

to come. The SG properties, e.g., its high value, anisotropy, and doping depen-

dence remained a puzzle for a long time. The concrete role of the phonons in the

superconducting mechanism of cuprate HTS is yet to be explored. Though there are

theoretical achievements as specific scenario, but it’s hard to find a well-developed

model that successfully explains the strange behaviors with sound justification which

motivate us to reinvestigate these problems in depth with a hope to add a further

step to resolve the mystery of HTSC.

The HTS cuprates have a very complex structure (Figs. (1.2, 1.3)) that adds vari-

ous difficulties for theoretical studies. In the present study two model cuprate HTS

YBa2Cu3O7−δ and La2−xSrxCuO4 have been taken for the study. Both the HTS

have perovskite structure. In the crystal YBa2Cu3O7−δ the oxidation states of Y,

Ba, and O are +3, +2 and -2, respectively. The oxidation states of Cu are +3

and +2 due to different layers in the system, namely; CuO2 and CuO. Similarly in

superconductor La2−xSrxCuO4, the oxidation states of La (Sr), Cu and O are +3,
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+2 and -2, respectively. The stability of a crystal depends on the equity of repulsive

and attractive interaction. Among several interaction potentials, namely; Morse

potential, Lennard-Jones potential, Buckingham potential, Born Mayer Potential,

Born-Mayer-Huggins potential etc., the most appropriate potential for cuprates HTS

appears to be Born-Mayer-Huggins potential (Vij(r) = aije
−bijr +

qiqj
r

) since it con-

tains both, the long-range Coulombic interactions (repulsive for like changes, at-

tractive for unlike charges) and short-range repulsive interactions, where i, j labels

the ions of charges qi and qj separated by the distance rij ≡ r; aij and bij are the

range and softening parameters, respectively. In the present work, the modified

Born-Mayer-Huggins potential (MBMHP) has been used. The Green’s functions

method has been proven its importance in quantum field theory and widely used

to explore the properties of HTS. The double-time temperature dependent Green’s

functions method has been taken as the state of the art - methodology. A gener-

alized HTS (non-BCS) Hamiltonian used that take care contributions of electrons,

phonons, electron-phonon interactions, anharmonicity, and defects. The electron

Green’s functions enable to obtain the electron density of states (EDOS) which fur-

ther utilized to derive the SG equations following the BCS formalism. The phonon

Green’s functions permit to obtained the renormalized electron-phonon dispersion

which is used to study the SG properties of La2−xSrxCuO4 and YBa2Cu3O7−δ. Fur-

ther, the renormalized phonon dispersion enables to develop the theory of renormal-

ized phonon group velocity for HTS.

1.5 Brief Outlay of All Chapters

This work reports the SG properties, pairing symmetry and theory of renormalized

phonon group velocity for HTS whose organization consists of six chapters.

Chapter I contains a brief history of the origin of conventional and high temper-

ature superconductivity. The systematic theoretical and experimental development
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of conventional superconductors is presented with a concise discussion of GL and

BCS theory along with other few models. A summary of HTSC given with vari-

ous significant achievement in the experiment as well as in theory. In the end, a

short note is provided about the motive of the present work and state of the art -

“methodology”.

Chapter II is devoted to discuss the methodology. The development of phonon

and electron Green’s functions is given with the help of quantum dynamical many-

body problem. Further, the electron density of states is obtained using electron

Green’s functions in the Lehmann’s representation and ended with the discussion

and application of MBMHP.

Chapter III is devoted to study the SG properties. The SG equations are de-

rived and successfully analyzed for representative HTS YBa2Cu3O7−δ. The effect

of AF spin fluctuations on the SG worked out for La2−xSrxCuO4. The renormal-

ized electron-phonon dispersion plot obtained for La2−xSrxCuO4 and YBa2Cu3O7−δ

which is further used to study the doping dependence of SG. The nodal and antin-

odal gap also studied for La2−xSrxCuO4 followed by the derivation of an expression

of pairing potential and numerical analysis for YBa2Cu3O7−δ.

Chapter IV is dedicated to studying the anisotropy of SG and pairing symmetry.

Using the renormalized electron-phonon dispersion plot anisotropy of SG and pairing

symmetry is reported for La2−xSrxCuO4 and YBa2Cu3O7−δ. Effect of doping and

AF spin fluctuations on pairing symmetry is also discussed.

Chapter V furnishes the development of renormalized phonon group velocity (RPGV)

using the renormalized phonon dispersion. An expression of RPGV is derived and

obtained result applied to La2−xSrxCuO4 system. The variation of RPGV with

phonon frequency and doping is reported.

Chapter VI summaries all the results and conclusions obtained in this dissertation

and at the end, a prototype of future work has been listed.



Chapter 2

Quantum Dynamics of

Many-Particle System

“God used beautiful mathematics in creating the world.”

- - - Paul Dirac

2.1 Introduction

The theoretical development of the condensed matter physics is devoted to establish

the method to calculate the measurable physical quantities of an interacting system.

The Green’s functions [146] method has emerged as a powerful tool that deals with

the problem of interacting particles. J. Schwinger [147, 148] developed an impor-

tant concept of propagators or Greens’s functions using quantum field theory which

becomes very convenient to interpret the interaction problem of the particles with

a quantized field, e.g., electron-phonon interaction or interaction problem of quan-

tized fields, e.g., phonon-phonon interactions. In 1954 H. Lehmann used Green’s

functions to derive spectral representation that are useful in evaluating the energy

spectrum of crystalline solids [149]. Matsubara defined Green’s functions assum-

ing time as complex quantity generally known as ‘imaginary time Green’s function’.

One of the most useful form of Green’s functions was introduced by Bogolyubov and

13
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Tyablikov in statistical physics in the form of double-time thermodynamic retarded

and advanced Green’s functions and found extremely useful in investigating quasi-

particle spectra of the many-body system and superconductors [150–152]. Gorkov

[29] introduced the pair correlation Green’s functions in the context of Cooper pair

formalism of superconductivity meanwhile, the same problem has been taken care

by Eliashberg [37] via casual Green’s functions and by Zubarev [153] vai retarded

and advanced Green’s functions. Using the Gorkov [29] pair correlation Green’s

functions, Nambu [38] has studied the strong electron-phonon coupling in the su-

perconducting state. Freeman Dyson [154] introduced a very precise and accurate

method to get the ‘one-particle Green’s functions’ by summing up the Feynman

diagrams following the perturbative approach. The Green’s functions can also be

defined as one-particle Green’s functions, two-particle Green’s functions or many-

particle Green’s functions and it describes the prorogation of the disturbance of a

many-particle equilibrium system in which one, two or many particles are added or

removed, respectively. Green’s functions formalism is very important in the study

of the many-body problem notably in the theoretical investigations in conventional

and HTSC [152, 155–158] where the electron-phonon interaction plays an important

role [108–112].

This chapter includes the development of electron and phonon Green’s functions

with the help of generalized (non-BCS) Hamiltonian followed by Dyson’s equation.

A short note is presented for the different type of Green’s functions and a discussion

of interacting potential is given in the end.

2.2 Double-Time Temperature Dependent Green’s

Functions

The external forces to an equilibrium system create a disturbance in the system,

known as the ‘response’ and being examined by the response function, e.g., the
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magnetic susceptibility and electrical conductivity is a response of applied magnetic

and electric field, respectively. A smooth perturbation (applying a small external

field an equilibrium system) corresponds to the linear response and well described

by retarded Green’s functions [159].

2.2.1 Retarded, Advanced, Causal and Matsubara Green’s

Functions

Green’s functions are the thermodynamic expectation value of a product of operators

evaluated at different times t and t′ and depends only through the time difference

(t − t′) [153, 157, 160]. Green’s functions can be defined in the form of retarded

(Gr(t, t
′)), advanced (Ga(t, t

′)), causal (Gc(t, t
′)), and Matsubara (Gm(τ, τ ′), τ = it)

Green’s functions as follows:

Gr(t, t
′) = −iθ(t− t′) < [A(t), B(t′)]η >

= −iθ(t− t′){< A(t), B(t′)− η < B(t′), A(t) >} (2.1)

Ga(t, t
′) = iθ(t′ − t) < [A(t), B(t′)]η >

= −iθ(t′ − t){< A(t), B(t′)− η < B(t′), A(t) >} (2.2)

Gc(t, t
′) = −i < TA(t), B(t′) >

= −iθ(t− t′) < A(t), B(t′) > +iηθ(t′ − t) < B(t′), A(t) > (2.3)

Gm(τ, τ ′) = − < TA(τ), B(τ ′) >

= −θ(τ − τ ′) < A(τ), B(τ ′) > +ηθ(τ ′ − τ) < B(τ ′), A(τ) > (2.4)

where θ(t− t′) is the Heaviside unit step function with the property

θ(t− t′) =

1 for t > t′

0 for t < t′
(2.5)
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and T is a time-ordering operator which arrange the operators in chronological order

with the earliest time appearing on the right and latest on right, known as Wick’s

theorem and defined as:

TA(t)B(t′) = θ(t− t′)A(t)B(t′) + ηθ(t′ − t)B(t′)A(t) (2.6)

where η = ±1, for Bosons the η take plus sign and for Fermions it takes the minus

sign.

2.2.2 Time Correlation Functions and Spectral Representa-

tion

The average over the statistical ensemble of the product of the operators A(t) and

B(t′) in the Heisenberg representation known as the time correlation function and

can be written as:

FAB(t, t′) =< A(t)B(t′) >; FBA(t, t′) =< B(t′)A(t) > (2.7)

Which can be expressed in terms of spectral representation J(ω) as [31, 153, 161]:

FAB(t− t′) =

∫ ∞
−∞

eβ~ωJ(ω)e−iω(t−t′)dω (2.8)

FBA(t− t′) =

∫ ∞
−∞

e−iω(t−t′)J(ω)dω (2.9)

and is related to the one-particle Green’s functions by the relation [32].

J(ω) = lim
ε→̄0

−2

[exp(β~ω)− 1]
Im G[ω + iε] (2.10)
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2.3 The Hamiltonian

The Hamiltonian (H) of a system is written as a sum of kinetic energy (T ) and total

potential energy (V ) [32, 162–167]: H = T + V where

T =
1

2
M
∑
ll′

∑
i

(u̇ll
′

xi
)2 (2.11)

V =
∑
ll′

∑
x1,x2

(
1

2!

)
φ(2)
x1,x2

(ll′)ull
′

x1
ull
′

x2
+
∑
ll′

∑
x1,x2,x3

(
1

3!

)
φ(3)
x1,x2,x3

(ll′)ull
′

x1
ull
′

x2
ull
′

x3

+
∑
ll′

∑
x1,x2,x3,x4

(
1

4!

)
φ(4)
x1,x2,x3,x4

(ll′)ull
′

x1
ull
′

x2
ull
′

x3
ull
′

x4
+ · · · (2.12)

where

φ(n)
x1,x2,···xn(ll′) =

∂V (n)

∂x1∂x2 · · · ∂xn

∣∣∣∣
r=r0

(2.13)

are the atomic force constant of various order n. In writing the total potential energy,

the potential energy term (V0) corresponding to the equilibrium configuration is

left out and consequently the first order atomic force constant (φ
(1)
x1 (ll′) = ∂V

∂x1
) at

equilibrium condition (r = r0) must vanish i.e., φ
(1)
x1 (ll′) = 0. In the above equations,

ull
′
xi

= ulxi − u
l′
xi

, ulxi is the atomic displacement of the xth coordinate of the atom at

ith site from the equilibrium position can be expressed in terms of phonon creation

(a∗kj) and annihilation (akj) operators as:

ulxi =

(
~

2MN

)1/2∑
kj

ex(kj)

(ωkj)
1/2

(akj + a∗−kj)e
2πik.Ri (2.14)

where M is the atomic mass, N is the total number of the atoms in the crystal,

ex(kj) is the xth component of the eigenvector of dynamical matrix of the lattice

with jth branch index of the frequency spectrum, ωkj is the normal mode frequency

with wave vector k and polarization index j.
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An exact eigenstate of the crystal Hamiltonian can be established from the har-

monic (quadratic) approximation in Eq. (2.12) which capably describes the infinitely

long-lasting, non-interacting normal modes of vibration. Although the harmonic ap-

proximation successfully explains the dispersion relations, frequency spectra, some

thermal and elastic properties with some drawbacks of fitting parameters, but un-

fortunately many physical properties of the crystals, for example, the thermal ex-

pansion, thermal conductivity, temperature dependence of infrared absorption and

Raman scattering, etc. could not be explained and this enforces the inclusion of

the higher order namely; cubic, quartic, etc. terms to investigate these features of a

crystals.

In a real situation, it is hard to find a system with perfection. The presence of

impurities like isotopic point impurities, vacancies, faults, dislocations, etc. changes

the structure of the lattice and consequently the associated dynamical properties

and energy scenario of the crystal changed [168, 169]. In the context of quantum

mechanics, the Hamiltonian is written in the form of field operator. The model

generalized Hamiltonian (H) which have contribution due to electrons (He), phonons

(Hp), electron-phonon interactions (Hep), anharmonicities (HA) and defects (HD)

can be conveniently expressed as:

H = He +Hp +Hep +HA +HD (2.15)
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where

He =
∑
q

~(ωq↑b
∗
q↑bq↑ + ωq↓b

∗
q↓bq↓ + ω−q↑b

∗
−q↑b−q↑ + ω−q↓b

∗
−q↓b−q↓) (2.16a)

Hp =
∑
k

~ωk
4

(A∗kAk +B∗kBk) (2.16b)

Hep =
∑
qk

(gkb
∗
Q↑bq↑ + g∗kb

∗
q↑bQ↑ + gkb

∗
Q↓bq↓ + g∗kb

∗
q↓bQ↓)Bk (2.16c)

HA =
∑
s≥3

∑
k1···ks

~Vs(k1, k2 · · · ks)Ak1Ak2 · · ·Aks (2.16d)

HD =
∑
k1,k2

~[−C(k1, k2)Bk1Bk2 +D(k1, k2)Ak1Ak2 ] (2.16e)

The anharmonicity impacts the electron-phonon interactions [115] and the well-

known fact that doping has a decisive role in HTSC, the corresponding Hamiltonian

HA and HD have been scrutinized, respectively. The notation Ak = ak + a∗−k repre-

sents the phonon field operator and Bk = ak − a∗−k = −B∗−k represents phonon mo-

mentum operator with phonon annihilation (ak) and creation (a∗−k) operators where

k is phonon wave vector. The operator Ak and Bk satisfy the commutation relations

as [Bk, Ak′ ] = 2δk−k′ and [Ak, Ak′ ] = [Bk, Bk′ ] = 0. Also, bk(b
∗
−k) ≡ [bqσ(t)(b∗q′σ′)(t

′)]

are electron annihilation (creation) operators with wave vector q, Q = k + q for

electrons with spin σ(↑↓). The coefficients Vs(k1, k2 · · · ks) are the Fourier transform

of sth order force constants. For the brevity, the index kj is denoted by k, where

j is the the polarization branch of phonon wave vector k. The other terms in Eq.

(2.16) are given as:

V3(k1, k2, k3) =
1

3!

(
~

8N

)1/2
∆(k1, k2, k3)φ3(k1, k2, k3)

(ωk1ωk2ωk3)
1/2

(2.17)

φ3(k1, k2, k3) =
1

M3/2

′∑
l,l′

∑
x1,x2,x3

φ(3)
x1,x2,x3

(l, l′)e(k1)e(k2)e(k3)

× e2πi(k1,k2,k3)·r0(l,l′)
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and

V4(k1, k2, k3, k4) =
1

4!

(
~

4N

)
∆(k1, k2, k3, k4)φ4(k1, k2, k3, k4)

(ωk1ωk2ωk3ωk4)
1/2

(2.18)

φ4(k1, k2, k3, k4) =
1

M2

′∑
l,l′

∑
x1,x2,x3,x4

φ(4)
x1,x2,x3,x4

(l, l′)e(k1)e(k2)e(k3)e(k4)

× e2πi(k1,k2,k3,k4)·r0(l,l′)

where,

∆k =

1 if k = 0 or a reciprocal lattice vector,

0 otherwise.

(2.19)

In the above equations, φ
(s)
x1,x2,...xs(l, l

′) are the expansion coefficients [170, 171] and

the prime over summation show the exclusion of the terms with l = l′ from the

expressions. The parameters C(k1, k2) and D(k1, k2) are mass change parameter

and force constant change parameter, respectively and given as:

C(k1, k2) =

(
M0

4Nµ

)
(ωk1ωk2)

1/2[e(k1).e(k2)]

[ N∑
l

cei(k1+k2).Rl −
n∑
i

ei(k1+k2).Ri

]
(2.20)

D(k1, k2) = (4N)−1(ωk1ωk2)
−1/2

∑
l,l′

(
φl,l′

M0

)
[e(k1).e(k2)]ei(k1·Rl+k2·R′l) (2.21)

where µ = MM ′/(M ′ −M) and c = n/N . Here M−1
0 (= c/M ′ + (1 − c)/M) is the

effective atomic mass, the change in the harmonic force constant due to defect is

given by φl,l′ , ωk is the angular frequency of the normal mode of the wave vector k,

e(k) is the polarization vector and equilibrium position of the lth atom in the crystal

is given by Rl. In the model study, crystal consisting of N atom hypothesized such

that impurities of equal mass M ′ are randomly scattered at n lattice sites and rest

sites (N −n) are occupied by atoms of mass M . Since it is well known that physical
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properties change dramatically on impurity concentration (doping) therefore n taken

as variable to regulate the doping.

2.4 Phonon Green’s Functions

To achieve the phonon energy spectrum, consider the double-time temperature de-

pendent retarded one phonon Green’s functions [153]

Gk,k′(t− t′) = � Ak(t);A
∗
k′(t
′)� (2.22)

= −iθ(t− t′)〈[Ak(t), A∗k′(t′)]

Using the quantum dynamical equation of motion approach i~dAk(t)
dt

= [Ak(t), H] via

Hamiltonian (2.15) one can obtain:

i~
∂Gk,k′(t− t′)

∂t
= ~δ(t− t′)〈[Ak(t), A∗k′(t′)]〉 − iθ(t− t′)〈[i~

∂Ak(t)

∂t
, A∗k′(t

′)]〉(2.23)

Taking differentiation of Eq. (2.23) with respect to t once again and following the

Fourier transformation one can have

(ω2 − ω2
k)Gk,k′(ω) =

ωk
π

(
ηk,k′+� Fk(t);A

∗
k′(t
′)�

)
(2.24)

where

ηk,k′ = δk,k′ + 4ω−1
k

∑
k1

C(k1,−k)δk1,k′ (2.25)

A hierarchy of higher order Green’s functions appears in the second term of Eq.

(2.24). To simplify it further we write the equation of motion with respect to t′

for the Green’s functions � Fk(t);A
∗
k′(t
′) � and using the resulting expression in

Eq. (2.24) the equation of motion for Gk,k′ can be worked out in terms of Dyson’s
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equation as:

Gk,k′(ω) = G0
k(ω)δk,k′ +G0

k(ω)P̃ (k, k′, ω)G0
k′(ω) (2.26)

= G0
k(ω)δk,k′ +G0

k(ω)π(k, k′, ω)Gk′(ω) (2.27)

Here G0
k(ω) = ωk/π(ω2−ω2

k), π(k, k′, ω) and P̃ (k, k′, ω) are the unperturbed Green’s

functions, self-energy function and response function, respectively and are associated

as:

π(k, k′, ω) =
P̃ (k, k′, ω)

[1 +G0
k(ω)P̃ (k, k′, ω)]

(2.28)

We can expend the denominator of Eq. (2.28) in the form of power series if frequency

is far from zeroes. In the first order approximation π(k, k′, ω) ∼= P̃ (k, k′, ω) as this

term gives the maximum contribution and the contribution from the rest term is

negligibly small. This leads to the new form of the Green’s functions as [170, 172]

Gk,k′(ω) =
ωkηk,k′

π[ω2 − ω̃2
k − 2ωkP̃ (k, k′, ω)]

(2.29)

In order to carefully investigate the response function

P̃ (k, k′, ω) =
1

2π
� Fk(t);F

∗
k′(t
′)�ω (2.30)

we write

Fk(t) = F
(1)
k (t) + F

(2)
k (t) + F

(3)
k (t) + F

(4)
k (t) + F

(5)
k (t) (2.31)
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where

F
(1)
k (t) = 4π

[∑
k1

D(k1,−k) +
∑
k1

C(k1,−k) + 4ω−1
k

∑
k1

C(k1,−k)

×D(k1,−k1)

]
Ak1 (2.32)

F
(2)
k (t) = 6π

[∑
k1,k2

V3(k1, k2,−k) + 4ω−1
k

∑
k1

C(k1,−k)

×
∑
k1,k2

V3(k1, k2,−k1)

]
Ak1Ak2 (2.33)

F
(3)
k (t) = 8π

[ ∑
k1,k2,k3

V4(k1, k2, k3,−k) + 4ω−1
k

∑
k1

C(k1,−k)

×
∑

k1,k2,k3

V4(k1, k2, k3,−k1)

]
Ak1Ak2Ak3 (2.34)

F
(4)
k (t) = −2πω−1

k

∑
q

[
gk(3ωq↑ + ωcq↑ + 3ωQ↑ + ωcQ↑)b

∗
Q↑bq↑

+ g∗k(3ωQ↑ + ωcQ↑ + 3ωq↑ + ωcq↑)b
∗
q↑bQ↑

+ gk(3ωq↓ + ωcq↓ + 3ωQ↓ + ωcQ↓)b
∗
Q↓bq↓

+ g∗k(4ωq↓ + ωcq↓ + 2ωQ↓ + ωcQ↓)b
∗
q↓bQ↓

]
(2.35)

F
(5)
k (t) = −2πω−1

k Bk

∑
k,q

[
4|gk|2(b∗Q↑bQ↑ + b∗q↑bq↑ + b∗Q↓bQ↓ + b∗q↓bq↓)

+ |gk|2(2b∗Q↑bq↑δq↑,Q↓ + 2b∗Q↓bq↑δQ↑,q↓ + 2b∗Q↑bQ↓δq↑,q↓

+ 2b∗q↓bq↑δQ↑,Q↓ + 2b∗q↑bq↓δQ↑,Q↓ + 2b∗Q↓bQ↑δq↑,q↓

+ 2b∗q↑bQ↓δQ↑,q↓ + 2b∗q↓bQ↑δq↑,Q↓)

]
(2.36)

and

F ∗k′(t
′) = F

∗(1)
k′ (t′) + F

∗(2)
k′ (t′) + F

∗(3)
k′ (t′) + F

∗(4)
k′ (t′) + F

∗(5)
k′ (t′) (2.37)
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with

F
∗(1)
k′ (t′) = 4π

[∑
k′1

D(k′1,−k′) +
∑
k′1

C(k′1,−k′) + 4ω−1
k

∑
k′1

C(k′1,−k′)

×D(k′1,−k′1)

]
Ak′1 (2.38)

F
∗(2)
k′ (t′) = 6π

[∑
k′1,k

′
2

V3(k′1, k
′
2,−k′) + 4ω−1

k′

∑
k′1

C(k′1,−k′)

×
∑
k′1,k

′
2

V3(k′1, k
′
2,−k′1)

]
Ak′1Ak′2 (2.39)

F
∗(3)
k′ (t′) = 8π

[ ∑
k′1,k

′
2,k
′
3

V4(k′1, k
′
2, k
′
3,−k′) + 4ω−1

k′

∑
k′1

C(k′1,−k′)

×
∑

k′1,k
′
2,k
′
3

V4(k′1, k
′
2, k
′
3,−k′1)

]
Ak′1Ak′2Ak′3 (2.40)

F
∗(4)
k′ (t′) = −2πω−1

k′

∑
q′

[
gk′(3ωq′↑ + ωcq′↑ + 3ωQ′↑ + ωcQ′↑)b

∗
Q′↑bq′↑

+ g∗k′(3ωQ′↑ + ωcQ′↑ + 3ωq′↑ + ωcq′↑)b
∗
q′↑bQ′↑

+ gk′(3ωq′↓ + ωcq′↓ + 3ωQ′↓ + ωcQ′↓)b
∗
Q′↓bq′↓

+ g∗k′(4ωq′↓ + ωcq′↓ + 2ωQ′↓ + ωcQ′↓)b
∗
q′↓bQ′↓

]
(2.41)

F
∗(5)
k′ (t′) = −2πω−1

k′ Bk′

∑
k′,q′

[
4|gk′ |2(b∗Q′↑bQ′↑ + b∗q′↑bq′↑ + b∗Q′↓bQ′↓ + b∗q′↓bq′↓)

+ |gk′ |2(2b∗Q′↑bq′↑δq′↑,Q′↓ + 2b∗Q′↓bq′↑δQ′↑,q′↓ + 2b∗Q′↑bQ′↓δq′↑,q′↓

+ 2b∗q′↓bq′↑δQ′↑,Q′↓ + 2b∗q′↑bq′↓δQ′↑,Q′↓ + 2b∗Q′↓bQ′↑δq′↑,q′↓

+ 2b∗q′↑bQ′↓δQ′↑,q′↓ + 2b∗q′↓bQ′↑δq′↑,Q′↓)

]
(2.42)

While calculating the response function (P̃ (k, k′, ω)), a total 268 Green’s functions

are encountered. The higher order Green’s functions are decoupled using proper

decoupling scheme [32, 153].

� abcd�=< ab >� cd� + < ac >� bd� + < ad >� ab� (2.43)
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Here a, b, c, d represent the operators Bk or Ak. Only 39 Green’s functions are left

after the simplification and rest give either a very small contribution or vanish. Using

a renormalized phonon and electron Hamiltonian the remaining Green’s functions

are calculated:

He
Ren =

∑
q

~(ω̃q↑b
∗
q↑bq↑ + ω̃q↓b

∗
q↓bq↓ + ω̃−q↑b

∗
−q↑b−q↑ + ω̃−q↓b

∗
−q↓b−q↓) (2.44)

Hp
Ren =

~
4

∑
k

[
ω̃2
k

ωk
A∗kAk + ωkB

∗
kBk] (2.45)

The excitation spectrum, i.e., a response function (P (k, k′, ω)) can be written in a

universally accepted form as

P̃ (k, k′, ω + iε) = lim
ε→0+

∆k(ω)− iΓk(ω) (2.46)

where Γk(ω) is the imaginary part of P̃ (k, k′, ω + iε) known as phonon frequency

linewidth at the half maximum of the phonon frequency peak and ∆k(ω) is the real

part known as the shift in the phonon frequency line of the perturbed mode. After

relevant algebraic simplifications, the Green’s functions takes the form as:

Gk,k′(ω + iε) =
ωkηk,k′

π(ω2 − ω̄2
kq + 2iωkΓkq(ω))

(2.47)

The perturbed mode frequency (ω̄kq) and renormalized frequency (ω̃kq) are accom-

plished in the following form:

ω̄2
kq = ω̃2

kq + 2ωk∆k(ω); ω̃2
kq = ω̃2

k + ω̃2
q (2.48)

ω̃2
k = ω2

k − ωk[ωDk + ωAk + ωADk ]; ω̃2
q = ωkωep (2.49)
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ωep =− 8ω−1
k |gk|

2N + 32ω−2
k

∑
q

|gk|2[(2ωcqQ + 6ωcq)nc(Q) + (2ωcqQ + 3ωcq)nc(q)

+ 3ωQ↑N(Q ↑) + 3ωQ↓N(Q ↓) + 3ωQ↑N(q ↑) + (4ωq↓ + 2ωQ↓)N(q ↓)]
(2.50)

ωDk =8D(k1,−k) + 8C(k1,−k) + 32ω−1
k C(k1,−k)D(k1,−k1)

+ 32ω−1
k

∑
k1

C(k1,−k1)D(k1,−k) + 32ω−1
k

∑
k1

C(k1,−k1)C(k1,−k)

+ 128ω−2
k

∑
k1

C(k1,−k1)C(k1,−k)D(k1,−k1)

(2.51)

ωAk = 48
∑
k1,k2

V4(k1, k2, k1,−k)nk1 (2.52)

ωADk =192ω−1
k

∑
k1,k2

C(k1,−k1)V4(k1, k2, k1,−k1)nk1

+ 64ω−1
k

∑
k1,k2

C(k1,−k1)V4(k1, k2, k1,−k1)

+ 256ω2
k

∑
k1,k2

C(k1,−k1)C(k1,−k)V4(k1, k2,−k1,−k1)

(2.53)

The some of the symbols appearing in above expressions may be expressed as follows:

N = N(Q↑)+N(q ↑)+N(Q ↓)+N(q ↓); ωcqQ = ωcq+ω
c
Q; nk1 =

ωk1
ω̃k1

coth (β~ωk1/2)

(2.54)

Where N(γσ) represent Fermi functions and nc(γ) Bose functions with γ = (q,Q);

σ = (↑, ↓), ωcq and ωcQ are the pairon frequencies before and after scattering with

phonons respectively.
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2.4.1 Phonon Frequency (Energy) Line Widths

The phonon line width Γk(ω) can be obtained in the following form:

Γk(ω) = ΓDk (ω) + ΓAk (ω) + ΓADk (ω) + Γepk (ω) (2.55)

where

ΓDk (ω) =
∑
k1

πε(ω)RD(k, k1)ωk1δ(ω
2 − ω̃2

k1
) + 8πω−1

k NRDep(k, k1)

[
δ(ω − ω̃k1)

+ δ(ω + ω̃k1)

]
(2.56)

ΓAk (ω) = Γ3A
k (ω) + Γ4A

k (ω) (2.57)

Γ3A
k (ω) = 18πε(ω)

∑
k1,k2

|V3(k1, k2,−k)|2η1

[
S+αω+αδ(ω

2 − ω̃2
+α)

+ S−αω−αδ(ω
2 − ω̃2

−α)

]
(2.58)

Γ4A
k (ω) = 48πε(ω)

∑
k1,k2,k3

|V4(k1, k2, k3,−k)|2η2

[
S+βω+βδ(ω

2 − ω̃2
+β)

+ 3S−βω−βδ(ω
2 − ω̃2

−β)

]
(2.59)

ΓADk (ω) = Γ3D
k (ω) + Γ4D

k (ω) (2.60)

Γ3D
k (ω) = 144πε(ω)

∑
k1,k2

|V3(k1, k2,−k)|2Rc(k, k1)ω−1
k η1

[
S+αω+α

× δ(ω2 − ω̃2
+α) + S−αω−αδ(ω

2 − ω̃2
−α)

]
(2.61)
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Γ4D
k (ω) = πε(ω)

∑
k1,k2,k3

|V4(k1, k2, k3,−k)|
[
R̃(k, k1)nk2

ωk1ωk2
ω̃k2

δ(ω2 − ω̃2
k1

)

+ R̃∗(k, k1)nk1
ωk1ωk3
ω̃k1

δ(ω2 − ω̃2
k3

)

]
+384πε(ω)

∑
k1,k2,k3

|V4(k1, k2, k3,−k)|2

×Rc(k, k1)ω−1η2

[
S+βω+βδ(ω

2 − ω̃2
+β) + S−βω−βδ(ω

2 − ω̃2
−β)

]
(2.62)

Γepk (ω) = πω−2
k |gk|

2
∑
q

[
N̄qQ↑(3ωqQ↑ + ωcqQ)ωc1q↑δ(ω − 4ω̃qQ↑) + N̄qQ↑

× (3ωqQ↑ + ωcqQ)ωc2Q↑δ(ω − 3ω̃qQ↑ − ω̃cqQ) + 3N̄qQ↓(3ωqQ↓ + ωcqQ)

× ωc3q↓δ(ω − 3ω̃qQ↓ − ω̃cqQ) + N̄qQ↓(4ωq↓ + 2ωQ↓ + ωcqQ)ωc4Q↓

× δ(ω − 3ω̃qQ↓ − ω̃cqQ)

]
+ 128π

∑
k,q

ω−2
k |gk|

4

[
ñkN(Q↑)δ(ω − 7ω̃Q↑ − ω̃cQ)

+ ñkN(q↑)δ(ω − 7ω̃q↑ − ω̃cq) + ñkN(Q↓)δ(ω − 6ω̃Q↓ − 2ω̃cQ)

+ ñkN(q↓)δ(ω − 6ω̃Q↓ − 2ω̃cq)− 2ω−1
k ω̃2

kN̂
2ε(ω)δ(ω2 − ω̃2

k)

]
(2.63)
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In the above equations the various symbols are identify as:

RDep(k, k1) = |gk|2[D(k1,−k) + C(k1,−k)(1 + 4ω−1
k D(k1,−k1))] (2.64)

RD(k, k1) = |D(k1,−k)|2 + 8|C(k1,−k)|2[1 + 16ω−2
k |D(k1,−k1)|2

+ 8ω−1
k D(k1,−k1)] + 16C(k1, k)[D(k1,−k)

+ 4ω−1
k |D(k1,−k)|2] (2.65)

R̃∗(k, k1) = 16D(k1, k) + 16C(k1, k)[1 + 8ω−1
k D(k1,−k1)]

+ 16ω−1
k |C(k1,−k)|2[1 + 4ω−1

k D(k1,−k1)] (2.66)

R̃(k, k1) = 16D(k1,−k) + 16C(k1,−k)[1 + 8ω−1
k D(k1,−k1)]

+ 16ω−1
k |C(k1,−k)|2[1 + 4ω−1

k D(k1,−k1)] (2.67)

Rc(k, k1) = C(k1, k) + 2ω−1
k |C(k1,−k)|2 (2.68)

S±α = nk2 ± nk1 (2.69)

S±β = 1± nk1nk2 ± nk2nk3 ± nk3nk1 (2.70)

ω±α = ω̃k1 ± ω̃k2 ; ω±β = ω̃k1 ± ω̃k2 ± ω̃k3 (2.71)

ηi−1 =
ωk1ωk2 . . . ωki
ω̃k1ω̃k2 . . . ω̃ki

; ñki =
ω̃ki
ωki

coth
β~ω̃ki

2
(2.72)

nki = coth(β~ωki/2) i = 1, 2, · · · , n (2.73)

ωqQ(↑↓)
= ωq(↑↓)

+ ωQ(↑↓)
; ω̃qQ(↑↓)

= ω̃q(↑↓)
+ ω̃Q(↑↓)

; ωcqQ = ωcq + ωcQ(2.74)

N = N(Q↑) +N(q↑) +N(Q↓) +N(q↓) (2.75)

N̂2 = N2(Q↑) +N2(q↑) +N2(Q↓) +N2(q↓) (2.76)

N̄qQ(↑↓)
= Nq(↑↓)

+NQ(↑↓)
(2.77)

ωc(1q↑
2Q↑)

= 13ω( q↑
Q↑)

+ 11ω(Q↑
q↑)

+ 4ωcqQ (2.78)

ωc(3q↓
4Q↓)

= 7ω( q↓
Q↓)

+ 5ω(Q↓
q↓)

+ 4ωcqQ (2.79)



30 Chapter 2. Quantum Dynamics of Many-Particle System

2.4.2 Phonon Frequency (Energy) Line Shifts

The Phonon spectrum frequency shift is given as:

∆k(ω) = ∆D
k (ω) + ∆A

k (ω) + ∆AD
k (ω) + ∆ep

k (ω) (2.80)

∆D
k (ω) =

∑
k1

RD(k, k1)ωk1
(ω2 − ω̃2

k1
)

+ 16ω−1
k N

(
1

(ω − ω̃k1)
− ω̃k1

(ω2 − ω̃2
k1

)

)
×RDep(k, k1) (2.81)

∆A
k (ω) = ∆3A

k (ω) + ∆4A
k (ω) (2.82)

∆3A
k (ω) = 18

∑
k1,k2

|V3(k1, k2,−k)|2η1

(
S+αω+α

(ω2 − ω̃2
+α)

+
S−αω−α

(ω2 − ω̃2
−α)

)
(2.83)

∆4A
k (ω) = 48

∑
k1,k2,k3

|V4(k1, k2, k3,−k)|2η2

(
S+βω+β

(ω2 − ω̃2
+β)

+
3S−βω−β

(ω2 − ω̃2
−β)

)
(2.84)

∆AD
k (ω) = ∆3D

k (ω) + ∆4D
k (ω) (2.85)

∆3D
k (ω) = 144

∑
k1,k2

|V3(k1, k2,−k)|2ω−1
k η1

(
S+αω+α

(ω2 − ω2
+α)

+
S−αω−α

(ω2 − ω2
−α)

)
×Rc(k, k1) (2.86)

∆4D
k (ω) =

∑
k1,k2,k3

|V4(k1, k2, k3, k)|
(
R̃(k, k1)nk2ωk1ωk2
ω̃k2(ω

2 − ω̃2
k1

)
+
R̃∗(k, k1)nk1ωk1ωk3
ω̃k1(ω

2 − ω̃2
k3

)

)
+ 384

∑
k1,k2,k3

|V4(k1, k2, k3,−k)|2Rc(k, k1)
η2

ωk

(
S+βω+β

(ω2 − ω̃2
+β)

+
3S−βω−β

(ω2 − ω̃2
−β)

)
(2.87)
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∆ep
k (ω) = ω−2

k |gk|
2
∑
q

[
N̄qQ↑(3ωqQ↑ + ωcqQ)

(
ωc1q↑

(ω − 4ω̃qQ↑)
+

ωc2Q↑
(ω − 3ω̃qQ↑ − ω̃cqQ)

)
+ N̄qQ↓

(
3(3ωqQ↓ + ωcqQ)ωc3q↓
(ω − 3ω̃qQ↓ − ω̃cqQ)

+
(4ωq↓ + 2ωQ↓ + ωcqQ)ωc4Q↓

(ω − 3ω̃qQ↓ − ω̃cqQ)

)]
+ 128

∑
k,q

ω−2
k |gk|

4

[
ñkN(Q↑)

(ω − 7ω̃Q↑ − ω̃cQ)
+

ñkN(q↑)

(ω − 7ω̃q↑ − ω̃cq)

+
ñkN(Q↓)

(ω − 6ω̃Q↓ − 2ω̃cQ)
+

ñkN(q↓)

(ω − 6ω̃Q↓ − 2ω̃cq)
− 2ω̃2

kN̂
2

ωk(ω2 − ω̃2
k)

]
(2.88)

2.5 Electron Green’s Functions

The double-time thermodynamic electron Green’s functions can be written as [153]:

Gq,q′(t− t′) = � b∗qσ(t); bq′σ′(t
′)�

= −iθ(t− t′)〈[b∗qσ(t), bq′σ′(t
′)]〉 (2.89)

Using quantum dynamical equation of motion to the Eq. (2.89) via Hamiltonian

(2.15) one can obtain

i~
∂Gq,q′(t− t′)

∂t
= ~δ(t−t′)〈[b∗qσ(t), bq′σ′(t

′)]〉− iθ(t−t′)〈[[b∗qσ(t), H], bq′σ′(t
′)]〉 (2.90)

Differentiating Eq. (2.90) with respect to t and following the fourier transformation

we get

Gq,q′(ω) = G0
q,q′(ω){δqq′δσσ′ + [ω + (3ωq + ωcq)]

−1 � F ∗q (t); bq′σ′(t
′)�} (2.91)

G0
q,q′(ω) is the unperturbed Green’s functions which can be written as

G0
q,q′(ω) =

1

2π[ω − (3ωq + ωcq)]
(2.92)
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and

F ∗q (t) = 4π
∑
k

(gk + g∗k)

[
{(3ωqσ + ωcq) + (3ωQσ + ωcq)}b∗QσBk + 2

∑
k

gkb
∗
QσBkBk

+2
∑
k,q

g∗kb
∗
qσBkBk + ωkb

∗
QσAk + 6

∑
k1,k2

V3(k1, k2,−k)b∗QσAk1Ak2

+ 8
∑

k1,k2,k3

V4(k1, k2, k3,−k)b∗QσAk1Ak2Ak3 +
∑
k1

D(k1,−k)b∗QσAk

]
(2.93)

To avoid the tedious expressions of higher order Green’s functions� F ∗q (t); bq′σ′(t
′)�

the Dyson’s equation approach used to get

Gq,q′(ω) = G0
q(ω)δqq′δσσ′ +G0

q(ω)P̃ (q, q′, ω)G0
q′(ω) (2.94)

= G0
q(ω)δqq′δσσ′ +G0

q(ω)π(q, q′, ω)Gq′(ω) (2.95)

which lead to the following form of configuration

Gq,q′(ω) =
(3ωq + ωcq)δqq′δσσ′

2π[ω2 − ω̃2
q + (3ωq + ωcq)P̃ (q, q′, ω)]

(2.96)

Here ωq and ωcq are the electron and pairon frequencies. The response function

(P̃ (q, q′, ω)) for electron can be written as

P̃ (q, q′, ω + iε) =
1

2π(3ωq + ωcq)
2
� F ∗q,σ(t);Fq′,σ′(t)� (2.97)

= lim
ε→0+

∆q(ω)− iΓq(ω)

The final form of the electron Green’s functions can be obtained as

Gq,q′(ω) =
(3ωq + ωcq)δqq′δσσ′

2π[ω2 − ω̄2
q + i(3ωq + ωcq)Γq(ω))]

(2.98)
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with electron perturbed mode (ω̄q) and renormalized electron mode (ω̃q) frequencies

are given by

ω̄2
q = ω̃2

q + (3ωq + ωcq)∆q(ω) (2.99)

ω̃2
q = (3ωq + ωcq)

2 −
∑
k

16|gk|2ñk1 −
∑
k,k1

24|gk|V3(k1, k1,−k)nk1

−
∑
k

16|gk|2[2(3ωq + ωcq)ñk1 + 2ωkñk1 +
∑
k1

48V4(k1, k1, k,−k)

× nk1ñk1 + 8D(k,−k)ñk1 ](3ωq + ωcq)
−1 (2.100)

2.5.1 Electron Frequency (Energy) Line Widths

The electron frequency line width can be achieved in the form

Γq(ω) = ΓDq (ω) + ΓAq (ω) + Γepq (ω) (2.101)

where

ΓDq (ω) = 512
∑
k,k1

π|gk|2|D(k1, k)|2
[
ε(ω)ωk1N(ωkc)δ(ω

2 − ω̃2
k1

)

+ nk1δ(ω − (3ω̃q + ω̃cq))

]
(3ωq + ωcq)

−2 (2.102)

ΓAq (ω) = Γ3A
q (ω) + Γ4A

q (ω) (2.103)

Γ3A
q (ω) = 1152

∑
k,k1,k2

π|gk|2|V3(k1, k2, k)|2
[
ε(ω)η1N(ωkc)

× (S+αω̃+αδ(ω
2 − ω̃2

+α) + S−αω̃−αδ(ω
2 − ω̃2

−α))

+ nk1nk2δ(ω − (3ω̃q + ω̃cq))

]
(3ωq + ωcq)

−2 (2.104)
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Γ4A
q (ω) = 6144

∑
k,k1,k2,k3

π|gk|2|V4(k1, k2, k3, k)|2
[
ε(ω)η2N(ωkc)

+ (S+βω̃+βδ(ω
2 − ω̃2

+β) + 3S−βω̃−βδ(ω
2 − ω̃2

−β))

+ 3nk1nk2nk3δ(ω − (3ω̃q + ω̃cq))

]
(3ωq + ωcq)

−2 (2.105)

Γepk (ω) = 16
∑
k

π|gk|2
[
ε(ω)(

−8ω̃2
k

ωk
+

2ω3
k

(3ωq + ωcq)
2
)N(ωkc)δ(ω

2 − ω̃2
k)

+ (
ω2
knk

(3ωq + ωcq)
2

+
4ωkñk

(3ωq + ωcq)
+ ñk)δ(ω − (3ω̃q + ω̃cq))

]
(2.106)

2.5.2 Electron Frequency (Energy) Line Shifts

The electron line shift for impurity induced anharmonic crystal can be expressed as

∆q(ω) = ∆D
q (ω) + ∆A

q (ω) + ∆ep
q (ω) (2.107)

where

∆D
q (ω) = 512

∑
k,k1

|gk|2|D(k1, k)|2
[
ωk1N(ωkc)

(ω2 − ω̃2
k1

)
+

nk1
(ω − (3ω̃q + ω̃cq))

]
× (3ωq + ωcq)

−2 (2.108)

∆A
q (ω) = ∆3A

q (ω) + ∆4A
q (ω) (2.109)

∆3A
q (ω) = 1152

∑
k,k1,k2

|gk|2|V3(k1, k2, k)|2
[
η1N(ωkc)(

S+αω̃+α

(ω2 − ω̃2
+α)

+
S−αω̃−α

(ω2 − ω̃2
−α)

) +
nk1nk2

(ω − (3ω̃q + ω̃cq))

]
(3ωq + ωcq)

−2 (2.110)

∆4A
q (ω) = 6144

∑
k,k1,k2,k3

|gk|2|V4(k1, k2, k3, k)|2
[
η2N(ωkc)(

S+βω̃+β

(ω2 − ω̃2
+β)

+
3S−βω̃−β

(ω2 − ω̃2
−β)

) +
3nk1nk2nk3

(ω − (3ω̃q + ω̃cq))

]
(3ωq + ωcq)

−2 (2.111)

∆ep
k (ω) = 16

∑
k

|gk|2
[
(
−8ω̃2

k

ωk
+

2ω3
k

(3ωq + ωcq)
2
)
N(ωkc)

(ω2 − ω̃2
k)

+ (
ω2
knk

(3ωq + ωcq)
2

+
4ωkñk

(3ωq + ωcq)
+ ñk)(ω − (3ω̃q + ω̃cq))

−1

]
(2.112)
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2.5.3 Electron Density of States

Using the Lehmann’s representation [149] the electron density of states (EDOS)

Nel(ω) can be expressed as:

Nel(ω) = −
∑
q

Im Gq,q′(ω) (2.113)

The imaginary part of Gq,q′(ω) is given by

Gq,q′(ω) = −
(3ωq + ωcq)

2δqq′δσσ′Γq(ω)

2π[(ω2 − ω̄2
q )

2 + (3ωq + ωcq)
2Γ2

q(ω)]
(2.114)

Using the imaginary part of electron Green’s functions from Eq. (2.114) to Eq.

(2.113) gives

Nel(ω) =
∑
q

(3ωq + ωcq)
2δqq′δσσ′Γq(ω)

2π[(ω2 − ω̄2
q )

2 + (3ωq + ωcq)
2Γ2

q(ω)]
(2.115)

For smaller values of Γq(ω) the Breit-Wigner approximation [32] can be used to get

simplified form of EDOS as:

Nel(ω) =
∑
q

(3ωq + ωcq)
2Γiq(ω)

[2π(ω2 − ω̄2
q )

2]
; i = D, 3A, 4A, ep (2.116)

The EDOS used to calculate the superconducting gap (SG) equation in chapter (3)

following the fact that the electron-phonon has an inevitable role in the phenomenon

of superconductivity. Therefore considering only electron-phonon interaction, i.e.,

taking only Γepq (ω) the simplified EDOS (D(ω)) can be written as:

D(ω) =
∑
q

ω2
qcΓ

ep
q (ω)

[2π(ω2 − ω̄2
q )

2]
(2.117)

where ωqc = 3ωq + ωcq.
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2.6 Interaction Potential

The model cuprate HTS YBa2Cu3O7−δ and La2−xSrxCuO4 have been taken for the

study. Both the HTS have perovskite structure. The superconductor, YBa2Cu3O7−δ

consist different layer of CuO, CuO2, and BaO. Considering Y at the center of

the unit cell of YBa2Cu3O7−δ there emerges a network of Y-Cu, Y-Ba, and Y-O.

Similarly, in La2−xSrxCuO4, having different layers of LaO and CuO2 with Cu at

the center of the unit cell, there are a complex interactions network of Cu-O, Cu-La,

and Cu-Sr. A precise potential function is essential to understand the behaviour of

complex structured HTS. This problem is carefully addressed by choosing the most

suited form of modified Born-Mayer-Huggins potential (MBMHP) [173]:

Vij(r) = aije
−bijr +

qiqj
r

(2.118)

where i, j labels the ions of charges qi and qj separated by the distance rij ≡ r;

aij and bij are the range and softening parameters, respectively. The MBMHP have

been plotted in Fig. (2.1) for La2−xSrxCuO4 and YBa2Cu3O7−δ to check the stability

of crystal. The MBMHP has been used to calculate the harmonic and anharmonic

interacting force constant for YBa2Cu3O7−δ and La2−xSrxCuO4 which is further

utilized in the calculation of renormalized electron-phonon dispersion relation via

dynamical matrix.
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Figure 2.1: Potential plots for La2−xSrxCuO4(blue) and YBa2Cu3O7−δ (red).





Chapter 3

The Superconducting Gap

“We have no right to assume that any physical laws exist, or if they have existed up

until now, that they will continue to exist in a similar manner in the future.”

- - - Max Planck
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3.1 Introduction

Superconducting gap (SG) - the energy difference between the ground state and

lowest quasiparticle excitation of superconductor, is an inherent and temperature

dependent property of superconductor which appears below critical temperature

(Tc) of superconductor [174]. Historically, the first experimental evidence of SG

observed by Corak et al. [24] while measuring the temperature dependent specific

heat below Tc and by the Biondi et al. [175] as first spectroscopic measurement but

there was no theoretical justification of these results. The SG successfully explained

by the first microscopic theory of superconductivity known as the Bardeen-Cooper-

Schrieffer (BCS) theory [20], which emerges due to the formation of Cooper pairs via

phonon-mediated electron-electron interaction in the close vicinity of the Fermi sur-

face [119, 176–178] as the superconductor cooled down below Tc. The temperature

dependence of SG in aluminum was measured which followed exactly the predicted

results of BCS theory [179]. The BCS theory predicted the reduced SG limit, R

(≡ 2∆/kBTc) ' 3.5, which is a fairly good justification for the conventional super-

conductors. After the discovery of HTS, various experimental techniques, namely,

angle-resolved photoemission spectroscopy (ARPES), Andreev reflection, scanning

tunneling spectroscopy (STS), etc. have been used to measure the SG in HTS and

the increased reduced gap ratio emerged in the range R = 5− 8 [47, 100–102]. The

https://doi.org/10.1063/1.5033085
https://doi.org/10.1063/1.5029106
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large reduced gap ratio observed in HTS which is beyond the BCS predictions and

opened new challenges for researchers to understand the pairing mechanism in new

perspective. Along with the larger value of SG, the other surprising property of

SG found in HTS was its doping dependence [93, 94] and highly anisotropic na-

ture [103–106]. Many authors attempted to justify the anomaly of SG with various

methodologies [37, 180–188]. These anomalies could not be explained by BCS the-

ory and this was sufficient to motivate to consider the reformulation of the problem.

In this chapter the problem of anomaly in the SG has been dealt via two different

approaches namely; (i) the derivation of SG equation with new approach and (ii)

use of renormalized electron-phonon dispersion.

In the first approach, the expression of SG derived following the BCS formalism

but using generalized electron density of states (EDOS) which was considered as a

constant quantity in the BCS theory as oversimplification. Since the EDOS plays

a crucial role in the investigation of physical properties of superconductors, there-

fore it should be treated very carefully as EDOS depends on various quantities

such as electron-phonon interaction, doping, anharmonicity, and temperature [189–

191]. Therefore, treating the generalized EDOS offers the possibility to explore a

detailed study of the pairing mechanism. The fact that the electron distribution

functions change drastically below Tc as the phenomenon of pair formation occurs

that prompts the new type of distribution functions; namely, the pairon distribu-

tion functions [192], which should be taken care of in the SG formulation. In the

present formulation, such a diverse situation has been undertaken via generalized

EDOS [189] which provides a tool to get significant information about the SG. The

simultaneous presence of antiferromagnetic (AF) and superconducting phases being

a mysterious phenomenon has also currently become an interesting topic of debate.

The coexistence of AF and superconductivity is observed against the generalized

behaviour of superconductors, since it is thought that the AF phase and supercon-

ducting phase can’t coexist; for, the magnetism has the tendency to destroy the

superconductivity. The experimental observations [120–122] of the AF phase along
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with superconductivity certainly trigger to study this strange behaviour. Although

the effect of AF spin fluctuations is either absent or minimal in some cuprate su-

perconductor, e.g., YBa2Cu3O7−δ [193], the pairing mechanism also influenced by

antiferromagnetic spin fluctuations in some cuprate superconductors at low tem-

peratures and low doping concentration, e.g., La2−xSrxCuO4 [120–122, 194, 195].

Without going into the details of the analysis of spin-Green’s functions, the model

of SG formulation further extended with the consideration of AF spin fluctuations

and some effect has been encountered on SG of La2−xSrxCuO4 [196].

The second approach corresponds to the evaluation of SG in momentum space using

the renormalized electron-phonon dispersion because the electron-phonon interac-

tions play a deterministic role in the phenomenon of HTSC [115, 134, 192, 197–200]

and in doping dependent SG [93–98, 103]. The renormalized electron-phonon disper-

sion used to calculate the SG. The renormalized electron-phonon dispersion opens

the window to study the anisotropic nature of SG and pairing symmetry.

3.2 The High-Temperature Superconducting Gap

Equation

3.2.1 Formulation of the Problem

The Interaction Energy

Since the reduced gap limit for the HTS is found to R ' 5− 8 [100, 101, 103], infer-

ring that the BCS gap equation become less significant where as the EDOS have a

sophisticated form, depending on temperature [189–191] and doping concentration

[201–203]. The marginal Fermi liquid theory of Varma et al. [204] considers two

different cases of electron density of states in which for one case it is taken as a

function of temperature at low electron frequency, and is constant otherwise. EDOS
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[189] being a very sensitive quantity and depend on temperature along with other

parameters namely; renormalized electron and phonon energies, etc. Consequently,

a much generalized EDOS has become inevitable to incorporate these effects. There-

fore the development of the SG equation for the HTS using a simple Copper pair

formalism [205] needs to be investigated more attentively with

V −1 =

∫ 2(εF +~ωD)

2εF

(ε− 2εF + 2∆)−1D(ε)dε (3.1)

where V , εF , ωD and ∆ stand for the effective (positive) averaged attractive po-

tential, Fermi energy, Debye frequency and binding energy of pair (SG) [206], re-

spectively. However, V has been oversimplified in the BCS problem, but here the

appearance of EDOS→ D(ε) leaves ample scope to deal with the problem to extract

much of the additional physics.

The Electron Density of States

Using electron Green’s functions (Gq,q′(ε))

Gq,q′(ε) = {2π[ε2 − ε̄2
q + iεqcΓq(ε)]}−1εqcδqq′δσσ′ (3.2)

and following the Lehmann representation the intact form of the EDOS has been

obtained [189] as:

Nel(ε) =
∑
q

Γq(ε)ε
2
qcδq,q′δσ,σ′

2π[(ε2 − ε̄2
q)

2 + ε2
qcΓ

2
q(ε)]

(3.3)

Here Γq(ε) (= ΓDq (ε) + ΓAq (ε) + Γepq (ε)) is total line width where ΓDq (ε), ΓAq (ε) and

Γepq (ε) stand for defects, anharmonicites and electron-phonon line width, respectively.

It is an established fact that the electron-phonon interaction has an inevitable role
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in the phenomenon of superconductivity. In order to make the theory simpler, the

main contribution of Γepq (ε) has been taken up in the EDOS [189], namely:

D(ε) =
∑
q

ε2
qcΓ

ep
q (ε)

2π(ε2 − ε̄2
q)

2
(3.4)

with

Γepq (ε) = 16π
∑
k

|gk|2
[
ξ(ε)

(
−8ε̃2

k

εk
+

2ε3
k

ε2
qc

)
N(εkc)δ(ε

2−ε̃2
k)+

(
ε2
knk
ε2
qc

+
4εñk
εqc

+ñk

)
δ(ε−ε̃qc)

]
(3.5)

where

N(εkc) =
1

2

[
(e3βεF +1)−1 +(eβεqc−1)−1

]
;nk = coth

(
1

2
βεk

)
; ñk =

ε̃k
εk

coth

(
1

2
βεk

)
(3.6)

In the above equations the numerous symbols are described at the appropriate place.

3.2.2 The Superconducting Gap Equation

The use of Eq. (3.4) in gap Eq. (3.1) followed by some algebraic simplification one

obtains
α(ε̃k, ε̄q)

(ε̃k − 2εF + 2∆)
+

γ(ε̃qc, ε̄q)

(ε̃qc − 2εF + 2∆)
+ V −1 = 0 (3.7)

where

α(ε̃k, ε̄q) =
ε̃2
qc|gk|2(2ε4

k − 8ε̃2
kε

2
qc)N(εkc)

4πεkε̃k(ε̃2
k − ε̄2

q)
2

(3.8)

and

γ(ε̃qc, ε̄q) =
ε̃2
qc|gk|2(ε2

knk + 4εkεqcñk + ε2
qcñk)

4π(ε̃2
qc − ε̄2

q)
2

(3.9)

Further simplification of Eq. (3.7) yields the two expressions for SG as:

∆ 1
2
(T ) =

1

4
{(4εF − ε̃k − ε̃qc)− V [α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)]± f)} (3.10)



3.2. The High-Temperature Superconducting Gap Equation 45

where subscript ‘1’ and ‘2’ stand for ‘+’ and ‘-’ sign, respectively with

f = [{V [α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)]− (ε̃k − ε̃qc)}2 + 4α(ε̃k, ε̄q)V (ε̃k − ε̃qc)]
1
2 (3.11)

which can be rearranged as

f = V [α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)]− (ε̃k − ε̃qc) + 2ε1 (3.12)

where

ε1 =
α(ε̃k, ε̄q)V (ε̃k − ε̃qc)

V [α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)]− (ε̃k − ε̃qc)
(3.13)

Using Eq. (3.12), the SG equations (Eq. (3.10)), ∆1(T ) and ∆2(T ) can be written,

respectively as:

∆1(T ) = εF −
1

2
[ε̃k − ε1] (3.14)

∆2(T ) = εF −
1

2
{ε̃qc + V [α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)] + ε1} (3.15)

3.2.3 Analysis of Superconducting Gap Equations

Present formulation describes the two possible gap equations (Eq. (3.14) and (3.15))

with complex dependence on various terms, namely; Fermi energy and dimension-

less temperature dependent quantities α(ε̃k, ε̄q) and γ(ε̃qc, ε̄q). α(ε̃k, ε̄q) and γ(ε̃qc, ε̄q)

both incorporate the effects of anharmonicities and defects in terms of renormalized

phonon and electron energies, and subsequently, the obtained SG equations evidently

portray that in gap formation (and hence pair formation) the anharmonicity and de-

fect play a decisive role. These effects of anharmonicity on electron-phonon coupling

leading to gap formation have also been discussed by Amy et al. [115]. However, the

conventional and HTS usually exhibit a single-gap structure, but there is evidence

that many superconductors depict two or multiple gap structure [207–210]. The two

gap phenomenon has been theoretically studied by the two-band model based on

work of Suhl et al. [211] using σ and π band structures.
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Figure 3.1: Variation of computed SG 2∆1(T ) and 2∆2(T ) with temperature for
YBa2Cu3O7−δ. Both the SG approach towards the same Tc = 93.8K at gk = 0.3.

Inset exhibits the variation of Tc with gk.

In order to numerically analyze the new results and to evaluate the temperature

dependence of the SG for YBa2Cu3O7−δ the following physical constant [173, 189,

192, 212] have been used:

εk = 8.7490 × 10−14 erg, ε̃k = 1.0321 × 10−14 erg, εcq = 2.9278 × 10−14 erg,

ε̄q = 2.3702× 10−14 erg, εF = 6.5690× 10−14 erg and using (Born-Mayer-Huggins

potential) VBMH = 1.0410× 10−12 erg.

The temperature variant plots for gaps ∆1(T ) and ∆2(T ) for gk = 0.3, 0.4, 0.5 and

0.7 are shown in Fig. (3.1) for YBa2Cu3O7−δ. The temperature variation of the SG

calculated by Monthoux et al. [81, 213] and Pao et al. [214] show the saturation

of the SG in the low-temperature region. The present result also shows the satura-

tion of the SG in the low-temperature region in agreement with the previous work

[81, 213]. For different coupling constants gk = 0.3, 0.5 and 0.7; zeros of ∆1(T )

reveal Tc = 93.8K, 94K and 95.4K, respectively. The reduced gap ratio obtained as

(2∆1(0)/kBTc)gk=0.3, 0.5, 0.7 = 7.5, 7.4, 7.2 appear within the limit, i.e., 5− 8 of HTS
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Figure 3.2: At gk = 0.3, normalized SG plot ∆1(T )/∆1(0) and ∆2(T )/∆2(0)
along with the normalized BCS gap curve. Both SGs are in agreement with the

BCS gap curve in the low-temperature regime.

[100, 101, 103]. The inset of Fig. (3.1) show the variation of Tc with gk obtained from

zeros of ∆1(T ) for different electron-phonon coupling constant gk, which indicates

slight non-linearity with rising Tc, which is consistent with the work of Monthoux

et al. [213]. The experiments [215] reveal that with the change in doping profile

from underdoped to overdoped there appears an increase in Tc of HTS. Therefore,

it can be inferred that with increasing doping (within superconducting limits) the

electron-phonon coupling constant increases [216] leading to a higher critical tem-

perature, indicating that the mechanisms of HTSC are highly influenced by the

strength of the electron-phonon interactions. For gk = 0.3, the gap equation ∆2(T )

computes a small reduced gap ratio 2∆2(0)/kBTc = 0.6 for YBa2Cu3O7−δ. Such a

low value of reduced gap ratio could not be observed experimentally, manifesting

that YBa2Cu3O7−δ is the strongly correlated system. For gk = 0.4 and above, ∆2(T )

tends to disappear (red dashed line of Fig. (3.1)) or becomes physically insignificant

negative. However, Souma et al. [209] remarked that with reference to multi-gap

superconductor such as MgB2, the electrons in the σ bands are strongly coupled
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with phonons responsible for the large gap, while in π band small gap appears due

to weak electron-phonon coupling. The small gap for weak electron-phonon cou-

pling (gk � 1) provides the possible background for the formation of a smaller SG

in two-gap superconductor. Hence, the present theory can be utilized to explain the

two-gap superconductivity via variable strength of electron-phonon coupling. Both

SG equations ∆1(T ) and ∆2(T ) are normalized at gk = 0.3 to their maximum gap

values ∆1(0) and ∆2(0), respectively; where ∆(0) represents the gap at T = 0K and

is plotted in Fig. (3.2) along with BCS results. The temperature dependence of the

computed SG obeys the BCS gap curve in the low-temperature region and deviates

near Tc.

However, both the temperature-dependent SG equations give different values of SG,

but both approach the same Tc, for gk = 0.3 as observed for YBa2Cu3O7−δ in

Fig. (3.1) and predicts Tc ' 93.8K, slightly above the experimental gap value of

YBa2Cu3O7−δ (Tc ' 92K). It is well established that gap and pair formation depend

on temperature and start showing their presence below Tc and increased as T → 0.

The present work achieved similar temperature dependence (Fig. (3.1)) via various

occupancies. The dependence of the SG equations ∆1(T ) and ∆2(T ) on Fermi energy

also supports the fact that the SG and pair formation takes place in the vicinity of

the Fermi level [20]. In support of the work of Amy et al. [115], present investigations

establish that the anharmonic effects through renormalized electron and phonon fre-

quencies do significantly contribute to the SG and pair formation [192, 217]. As the

BCS gap equation is relevant to the isotropic gap superconductor ( or conventional

superconductor) having s-wave pairing, the computed gap show deviation from BCS

gap curve and reduced gap ratio ( for YBa2Cu3O7−δ, 2∆1(0)/kBTc ' 7.2 − 7.5) is

found to be larger than the BCS gap limit (2∆/kBTc ' 3.5). The symmetry of the

SG is attributed to renormalized energy (frequency). In chapter (4), it is shown

that the renormalized electron-phonon energies produces dx2−y2-wave gap symme-

try along with a small component (< 3%) of s (or dxy)-wave [218]. Also, the gap

Eq. (3.14) and (3.15) depend on the renormalized phonon and electron energies.
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Therefore, apparently it can be inferred that the new results for the SG are more

appropriate for HTS which has an anisotropic gap and dominating dx2−y2 pairing

along with small a component of s-wave pairing.

3.3 The Effect of Antiferromagnetic Spin fluctu-

ations on Superconducting Gap

In addition to the basic requirement of electron-phonon interaction for superconduc-

tivity, sufficient pieces of evidence reveal substantial effects of AF spin fluctuations

in the pairon formation and co-existence of the magnetic order with superconduc-

tivity at low temperatures in the weak doping or near to the optimal doping(≤ 0.15)

[120–122, 194, 195, 219]. Since, SG is observed as a function of energy line width of

interacting particles and/or quasi-particles[220], taking the advantage of additivity

of line widths, the effect of AF spin fluctuations has been included in it and the

effect of antiferromagnetism is explicitly explored on SG as follows:

Let us consider the total line width as:

Γtotal = Γep + Γm (3.16)

where Γm stands for the magnon line width. Using Γtotal in EDOS, the effect of

electron-phonon and AF spin fluctuations cab be analysed, simultaneously. The

magnetic order being effective in the low-temperature regime, the SG equation can

be derived as a function of Γm (in terms of energy) for AF spin fluctuations [221]

and the electron-phonon line width[189] Γep, where:

Γm = 2~ωES−2ε2
m(2π)−3(a|lnτ |+ a′) (3.17)
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Γepq (ε) =16π
∑
k

|gk|2
[
ξ(ε)

(
−8ε̃2

k

εk
+

2ε3
k

ε2
qc

)
N(εkc)×

δ(ε2 − ε̃2
k) +

(
ε2
knk
ε2
qc

+
4εñk
εqc

+ ñk

)
δ(ε− ε̃qc)

] (3.18)

where

ξ(ε) =

1 for ε > 0

−1 for ε < 0

(3.19)

The modified form of the EDOS (DAF (ε)) which is also influenced by the AF spin

fluctuations can be managed in the form:

DAF (ε) =
∑
q

ε2
qcΓ

total
q (ε)

2π(ε2 − ε̄2
q)

2
(3.20)

Therefore using simple Copper pair formalism [205] one can obtain SG equation

from:

V −1 =

∫ 2(εF +~ωD)

2εF

(ε− 2εF + 2∆)−1DAF (ε)dε (3.21)

Using Eq. (3.20) in Eq. (3.21) and followed by some algebraic simplification one

obtains:

α(ε̃k, ε̄q)

(ε̃k − 2εF + 2∆)
+

γ(ε̃qc, ε̄q)

(ε̃qc − 2εF + 2∆)
− Am

∆
+ V −1 = 0 (3.22)

where

α(ε̃k, ε̄q) ≡ α =
ε̃2
qc|gk|2(2ε4

k − 8ε̃2
kε

2
qc)N(εkc)

4πεkε̃k(ε̃2
k − ε̄2

q)
2

(3.23)

γ(ε̃qc, ε̄q) ≡ γ =
ε̃2
qc|gk|2(ε2

knk + 4εkεqcñk + ε2
qcñk)

4π(ε̃2
qc − ε̄2

q)
2

(3.24)
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and

Am =
~ωE2ε2

kmτ
3(a|lnτ |+ a′)~ωDε2

qc

S2(2π)4(4ε2
F − ε̄2

q)
2

(3.25)

where ωE is exchange frequency, S is spin quantum number, τ = 2kBT/~ωE, εkm is

reduced spin wave energy, ωD is Debye frequency, a and a′ are numerical constant.

Since the value of ∆ for HTSC is large therefore the gap Eq. (3.22) can be further

simplified as:

4∆2 + 2V (α + γ − 2Am)∆− V [α(ε̃k − 2εF ) + γ(ε̃qc − 2εF )] = 0 (3.26)

Solving the Eq. (3.26) two expression of SG obtained as:

∆ 1m
2m

(T ) =
V

4
(2Am − α− γ)± V

4
{(α + γ − 2Am)2

− 4V −1[α(ε̃k − 2εF ) + γ(ε̃qc − 2εF )]}1/2

(3.27)

where subscript ‘1m’ and ‘2m’ stand for ‘+’ and ‘-’ sign, respectively. The first term

of square root is greater than second term (numerically compared for La2−xSrxCuO4),

therefore the obtained SG Eq. (3.27) cab be further simplified as:

∆1m(T ) =
α(ε̃k − 2εF ) + γ(ε̃qc − 2εF )

2(2Am − α− γ)
(3.28)

∆2m(T ) =
V

2
(2Am − α− γ)− α(ε̃k − 2εF ) + γ(ε̃qc − 2εF )

2(2Am − α− γ)
(3.29)

Obviously, the SG equations (Eq. (3.28) and (3.29)) is affected by AF spin fluctua-

tions and depend on the function Am. The two SG equations may be useful in the

study of multi-gap superconductors but in the present case of La2−xSrxCuO4 the

SG Eq.(3.28) is found suitable. The temperature dependence of the ∆1m(T ) and

∆1(T ) for La2−xSrxCuO4 at the optimal doping x = 0.15 is depicted in Fig. (3.3).
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Figure 3.3: Variation of SG with temperature for La2−xSrxCuO4. ∆1(T ) (blue
curve)-in absence of AF spin fluctuations and ∆1m(T ) (red curve)-in presence of

AF spin fluctuations.

A reduction in the SG is observed due to the influence of AF spin fluctuations by

9% at 0K, supporting the fact that the superconductivity is educed/destroyed due

to the magnetic effect which is a consequence of pairing and depairing effect of AF

spin fluctuations [222]. With the rising temperature, the difference between ∆1m(T )

and ∆1(T ) reduces continuously and near the transition temperature both the gap

curves overlap at 39K. Presumably, the superconductivity and magnetism cannot

coexist but exceptionally this convention weakens in the case of La2−xSrxCuO4 and

the experiment exhibit the co-existence of AF spin fluctuations and superconductiv-

ity at low concentration (doping) in low-temperature regime. The present analysis

thus supports the possible effects of the AF spin fluctuations on the SG. The change

in the SG due to the AF spin fluctuations can also lead to the pairing symmetry up

to some degree. However, the change in the SG observed maximum by 9% (at 0K)

at the optimum doping, therefore the change in pairing symmetry should be minimal

which is discussed in chapter (4). The reduced gap ratio at 0K for La2−xSrxCuO4 is

found as: 2∆1/kBTc = 8.44 which is a little bit higher than reduced gap ratio of HTS
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and 2∆1m/kBTc = 7.76 and is close to the experimental value [219] (2∆/kBTc = 7.7)

making the present formulation more and more reliable.

3.4 The Effect of Doping on Superconducting Gap

3.4.1 Lattice Dynamics of YBa2Cu3O7−δ and La2−xSrxCuO4

The lattice dynamical calculations of the YBa2Cu3O7−δ and La2−xSrxCuO4 is given

using the MBMHP since it provides a significant insight into underlying physics of

the phenomenon of superconductivity [173, 223]. The development of the lattice

dynamics carried out in a very generalized way instead of numerically equal force

constant environment. After a very precise calculation we observe that the inter-

atomic force constant from the different layers of YBa2Cu3O7−δ to the central atom

Y and different layers of La2−xSrxCuO4 to the central atom Cu is not equal and

therefore different set of force constants are calculated (in the subsequent sections).

These calculated force constants further utilized to get the phonon dispersion rela-

tion (ωk) via the dynamical matrix. The usual equation of motion of the lattice can

be written as [164]

Müα(l) = −
∑
α,β

Vαβ(l, l′)uβ(l′) (3.30)

this equation of motion yields the secular determinant for dynamical matrix Dαβ(k)

in the form

|Dαβ(k)− ω2δαβ| = 0 (3.31)

The Eq. (3.31) provides 3r branches (for r atom per unit cell), 3 of which are acousti-

cal and 3r−3 optical. The secular determinant for YBa2Cu3O7−δ and La2−xSrxCuO4

crystal becomes
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∣∣∣∣∣∣∣∣∣
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

∣∣∣∣∣∣∣∣∣ = 0

The each element of above matrix is given as [224]:

Dxx =
1√
M

N−1∑
l=1

αlxlxl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.32)

Dxy =
1√
M

N−1∑
l=1

αlxlyl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.33)

Dxz =
1√
M

N−1∑
l=1

αlxlzl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.34)

Dyx =
1√
M

N−1∑
l=1

αlylxl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.35)

Dyy =
1√
M

N−1∑
l=1

αlylyl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.36)

Dyz =
1√
M

N−1∑
l=1

αlylzl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.37)

Dzx =
1√
M

N−1∑
l=1

αlzlxl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.38)

Dzy =
1√
M

N−1∑
l=1

αlzlyl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.39)

Dzz =
1√
M

N−1∑
l=1

αlzlzl√
Mlr2

l

(1− exp(2πi~k.~rl)) (3.40)

where ~k = kxx̂+kyŷ+kz ẑ, αl is force constant between lth atom to central atom, M
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is the mass of central atom of unit cell, Ml is the mass of lth atom, ~rl is position vec-

tor of lth atom from central atom, xl, yl and zl are x, y and z component of position

vector of lth atom, respectively. The upper limit of summation N − 1 is due to the

fact that the central atom should not interact with itself. The computation of matrix

element and consequently the eigenvalue (dispersion relation) of the determinant of

a real system with a large number of the atom is a very tedious job and we have used

modern technical computing system (Wolfram Mathematica). In chapter (2), using

many-body quantum dynamics and Dyson’s equation formalism the phonon Green’s

functions is developed by utilizing a generalized Hamiltonian that include the con-

tribution of harmonic electron and phonon field and their interactions, phonon field

anharmonicities and defects. Using the phonon dispersion relation (ωk) in phonon’s

Green’s functions [192] the renormalized electron-phonon dispersions (ω̃kq) are ob-

tained in the representative HTS La2−xSrxCuO4 and YBa2Cu3O7−δ that are further

used to analyze the SG properties in the following sections.

3.4.2 Superconducting Gap Analysis in La2−xSrxCuO4

The model cuprate HTS La2−xSrxCuO4 has perovskite structure with different lay-

ers of LaO and CuO2. To investigate the different interactions in unit cell of

La2−xSrxCuO4, we have considered the Cu at the center of the unit cell which consist

a mesh of 41 atoms. Using the MBMHP the second order force constant has been

calculated from central Cu to different layers of unit cell namley; LaO and CuO2.

The third and fourth order average force constants have been calculated from Cu

as central atom to entire mesh. Various physical constants of La2−xSrxCuO4 crystal

used in the computation for the renormalized electron-phonon energy spectrum, are:

lattice constants a = 3.778 Å, b = 3.778 Å and c = 13.266 Å [225], electron-phonon

coupling constant gk = 0.7, transition temperature Tc = 37.5K, phonon velocity

vp = 5× 105 cm s−1, ωQ = 3.0343× 1013 s−1, ωcQ = 1.1783× 1014 s−1. The second or-

der force constant from central atom Cu to the different layers can be summarized as:
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Figure 3.4: Renormalized electron-phonon dispersion plot for La2−xSrxCuO4 at
different doping.

Cu−CuO2(0): 2.027×103 dyn cm−2 (force constant between central atom and other

oxygen atom in central layer), Cu − LaO(I): 2.017 × 103 dyn cm−2 (between central

atom and first layer), Cu−LaO(II): 1.943×103 dyn cm−2 (between central atom and

second layer), Cu−CuO2(III): 1.779×103 dyn cm−2 (between central atom and third

layer). Third and fourth order interaction force constant are −5.360×1011 dyn cm−3

and 5.223× 1019 dyn cm−4.

The renormalized electron-phonon dispersion (ω̃kq) plot of La2−xSrxCuO4 is shown in

Fig. (3.4) at different doping level for x = 0.07 to 0.15 (optimal doping) at T = 12K

are not simple but show their dependence on several quantities such as electron-

phonon interaction, doping, anharmonicities, and defects. The renormalized (quasi-

particle) dispersion plots furnish the information of SG in momentum space through
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quasi-particle Fermi surface. The Fermi surface (FS) angle (θ) has been specified

via a traditional scheme in Fig. (3.4a) and the corresponding SG is measured as ∆k

in the momentum space. Employing the relation ∆ = ~vp∆k, the equivalent the SG

has been calculated, where vp is quasiparticle velocity. It is quite obvious from these

plots that the SG is highly anisotropic.

Doping Dependence of Nodal and Antinodal Superconducting Gap in

La2−xSrxCuO4

Although the BCS theory has well explained the reduced gap of conventional su-

perconductors (R = 3.5), the higher reduced gap value (R = 5 − 8) and doping

dependence of gap in HTS [93–98, 103] may question the mechanism of supercon-

ductivity based on the BCS theory. There are theoretical attempts [226] to justify

higher reduced gap ratio value using Bolgiubov de Greens (BdG) equation by eight

band model [227, 228]. In the present work, we have measured the average SG with

the help of the renormalized electron-phonon dispersion plot. The mass change pa-

rameter depends on doping (Sr in La2−xSrxCuO4) which leads to the drastic changes

in renormalized dispersion. The estimated SG plot in Fig. (3.5) shows that SG in-

creases with a decrease in doping and the SG decreases rapidly up to optimal doping

and afterwards it decreases slowly with the increase in doping.

Apart from the SG, the appearance of the nodal and antinodal gap in HTS has been

observed as a very complex and have distinct property [107]. Much theoretical work

is available [229–231] but there is no comprehensive mechanism found which can

interpret this energy scale scenario. The gap for nodal direction (FS angle θ = 45◦)

and antinodal direction (FS angle θ = 0◦ or 90◦) is calculated in momentum space at

different doping and plotted in Fig. (3.5). It is observed that the nodal gap remains

zero up to doping for x = 0.104 and opens in underdoped regime (x < 0.104) which

monotonically increases with the decrement of the doping in agreement with similar

variation of Y. Peng et al. [232]. The antinodal gap also found increasing with
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Figure 3.5: Variation of the nodal, antinodal and superconducting gap with the
doping for La2−xSrxCuO4.

decreasing doping is in agreement with the theoretical study of M. Aichhorn et al.

[233]. Although there are different methods to study this strange behaviour, the

renormalized frequency produces similar results. Therefore it can be concluded that

the anharmonicity and defect both play important role in this phenomenon.

3.4.3 Superconducting Gap Analysis in YBa2Cu3O7−δ

Similar to the analysis of SG in the previous section, the renormalized electron-

phonon dispersion (ω̃kq) of YBa2Cu3O7−δ are furnished in Fig. (3.6) at the optimum

doping (δ0 = 0.16) in the momentum space. The quasiparticle dispersion curves

give SG in momentum space (i.e. ∆k) and using relation ∆ = ~vp∆k the corre-

sponding SG has been calculated, where vp is quasiparticle velocity. Various physi-

cal constants used for Y Ba2Cu3O7−δ crystal are given as follows: lattice constants

a = 3.8227Å, b = 3.8872Å and c = 11.6802Å, electron-phonon coupling constant

gk = 0.7, transition temperature Tc = 92K, phonon velocity vp = 5.5×105 cm sec−1,
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Figure 3.6: Renormalized electron-phonon dispersion plot for YBa2Cu3O7−δ at
optimum doping (δ = 0.16).

ωQ = 3.0343 × 1013 sec−1, ωcQ = 1.1783 × 1014 sec−1. The second order force con-

stants of cental atom Y with different layers are: Y −CuO2 (1.633× 103 dyn cm−2),

Y − BaO (4.614 × 103 dyn cm−2) and Y − CuO (1.268 × 103 dyn cm−2), third and

fourth order force constants are −3.688× 1010 dyn cm−3 and 2.528× 1017 dyn cm−4,

respectively.

Doping Dependence of Superconducting Gap in YBa2Cu3O7−δ

Using the renormalized electron-phonon dispersion plot of YBa2Cu3O7−δ, the HTS-

reduced gap ratio ∆R (= 2∆/kBTc) with reduced doping δR (= δ/δ0) has been plot-

ted in the Fig. (3.7) along with experimental data of Deutscher[93]. The obtained

results are very close to the experimental results. However, Deustscher reports that

∆c is associated with the coherence energy range of superconducting state whereas

Szotek et al. [226] confirm that ∆c is SG. Since we have taken the various inter-

action terms to investigate the superconducting gap which is in agreement to the

experimental results. Therefore, we conclude that the pairing mechanism is a very
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Figure 3.7: Variation of reduced superconducting gap with doping for
Y Ba2Cu3O7−δ.

complex phenomenon in HTSC and the effect of the electron-phonon, anharmonicity

and defects are essential in the pairon formation.

It should be noted that the SG in YBa2Cu3O7−δ and La2−xSrxCuO4 have opposite

nature of variation with doping. In the case of YBa2Cu3O7−δ, the SG shows incre-

ment the increasing doping, but in La2−xSrxCuO4 the SG decreases with increasing

doping. The different behaviour of these two superconductor due to doping can be

understand from the crystal structure. In the case of La2−xSrxCuO4, Sr act as a im-

purity atom which have Sr2+ state in compound form, but in YBa2Cu3O7−δ, O act as

impurity atom which O2− state in compound form. The oxidation state of impurity

atoms in La2−xSrxCuO4 and YBa2Cu3O7−δ are opposite, therefore their interaction

with central atom of respective unit cell will be different duo to Coulombic term in

the Born-Mayer-Huggins potential. In the case of La2−xSrxCuO4, the Coulombic in-

teraction of impurity atom with central atom is Cu2+− Sr2+ while in YBa2Cu3O7−δ

the interaction of impurity atom with central atom is Y3+ − O2−. These two dif-

ferent interaction change the phonon spectrum in different way with variation in
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doping concentration, which consequently change the renormalized electron-phonon

dispersion. This is the possible reason why the SG show opposite behaviour in

YBa2Cu3O7−δ and La2−xSrxCuO4 with change in doping.

3.5 The Pairing Potential

With the pairing potential being the prime requirement for pairon formation, the

matrix elements for electron-phonon interaction are replaced by an averaged pairing

(attractive) potential to simply the problem the in BCS theory. Qualitative analysis

of the pairing potential for the HTS [234, 235] shows that the pairing potential leads

to SG formation, but these results could not provide appropriate justification for

the pairing potential. We take the advantage of the fact that the SG disappears just

above Tc and the pairing potential can be obtained using the equations ∆1(T ) =

εF − 1
2
[ε̃k − ε1] (Eq. (3.14)) and ∆2(T ) = εF − 1

2
{ε̃qc + V [α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)] + ε1}

(Eq. (3.15)). This leads to the condition just above critical temperature ( at Tc+)

when both the SG gaps are vanished;

∆1(Tc+) = ∆2(Tc+) = 0 (3.41)

Using the Eqs. (3.14), (3.15) and (3.41) the following equation of V is obtained

V [α(ε̃k, ε̄q)+γ(ε̃qc, ε̄q)]+
2α(ε̃k, ε̄q)V (ε̃k − ε̃qc)

V [α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)]− (ε̃k − ε̃qc)
−(ε̃k−ε̃qc) = 0 (3.42)

The solution of Eq. (3.42) gives the pairing potential in the form:

V± =
(ε̃k − ε̃qc)γ(ε̃qc, ε̄q)± (ε̃k − ε̃qc)

√
−α(ε̃k, ε̄q)[α(ε̃k, ε̄q) + 2γ(ε̃qc, ε̄q)]

[α(ε̃k, ε̄q) + γ(ε̃qc, ε̄q)]2
(3.43)
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using

α(ε̃k, ε̄q)

γ(ε̃qc, ε̄q)
= R (3.44)

where

R =
(ε̃2
qc − ε̄2

q)
2(ε4

k − 4ε̃2
kε

2
qc)N(εkc)

εkε̃k(ε̃2
k − ε̄2

q)
2(ε2

k + 4ε̃kεqc + ε2
qcε̃k/εk)nk

(3.45)

Eq. (3.43) can be further simplified as:

V± =
(ε̃k − ε̃qc)(1±

√
−R(2 +R))

γ(ε̃qc, ε̄q)(1 +R)2
(3.46)

Eq. (3.46) is the general form of the pairing potential, which has complicated depen-

dence on renormalized phonon and electron energy. For YBa2Cu3O7−δ we obtained

R = −6.46 × 10−9 at Tc = 92K and hence
√
−R(2 +R) = 1.13 × 10−4 which is

much less than unity. Therefore, the approximated form of the pairing potential (for

YBa2Cu3O7−δ) can be written as V = (ε̃k − ε̃qc)/γ(ε̃qc, ε̄q). Using this expression,

the pairing potential (Vcal) has been calculated for weak (gk � 1), intermediate

(gk ∼ 1) and strong (gk > 1) coupling [236] for YBa2Cu3O7−δ and summarized in

Tab. (3.1). Using the EDOS of YBa2Cu3O7−δ at the Fermi level [237], the pairing

(attractive) potential (VBCS) per unit cell has been calculated following the BCS

approximation ( D(εF )VBCS ' gk ) at different gk and the results are further sum-

marized in Tab. (3.1). The obtained pairing potential (Vcal) is close to the BCS

values for intermediate coupling, but slightly differs for weak and strong coupling.

The temperature-dependent behavior of ∆1(T ) is shown in Fig. (3.8) at gk = 0.3

using Vcal and VBMH which predicts a slightly different value of Tc.

It is obvious from Fig. (3.8) that for Vcal = 0.3655 × 10−13 erg a lower Tc (91.6K)

is obtained, which is close to the experimental results as compared to VBMH =
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gk 0.3 0.5 0.7 1.0 1.5
Vcal(×10−13 erg) 0.3655 1.0154 1.9902 4.0615 9.1385
VBCS(×10−13 erg) 1.3348 2.3081 3.2312 4.6162 6.9244

Table 3.1: Comparison of the pairing potential for YBa2Cu3O7−δ at different
coupling constant gk.

Figure 3.8: At gk = 0.3, the SG ∆1(T ) plotted using BMH and calculated
potential. Inset shows the normalized SG curve. Both SGs are in agreement with

the BCS gap curve in the low temperature regime.

1.0410×10−12 erg, which gives the higher Tc (93.8K). This suggests that the higher

pairing potential is responsible for higher Tc from which it can be inferred that higher

pairing potential strongly bound the pairons (Cooper-pair for the electronic system)

and hence higher Tc. The dependence of Tc on the pairing potential ensures that by

choosing a proper potential, there emerges the possibility of increasing the critical

temperature Tc.
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3.6 Conclusions

From the SG equation formulation and renormalized electron-phonon dispersion, the

following conclusions are obtained. Based on many-body quantum dynamics of elec-

trons and phonons the two SG equations have been successfully obtained via EDOS.

Both ∆1(T ) and ∆2(T ) depend on temperature, Fermi energy and renormalized

electron and phonon energies heralding the signatures of anharmonic effect on SG

structure. Both SG equations predict the same Tc = 93.8K (for YBa2Cu3O7−δ) from

MBMHP, but Tc = 91.6K from the calculated potential. At gk = 0.3, the normalized

gaps ∆1(T )/∆1(0) and ∆2(T )/∆2(0) are compared with the normalized BCS gap

curve, which demonstrate the same variation in low-temperature region, but deviate

near Tc. The reduced gap ratio (for YBa2Cu3O7−δ 2∆1(0)/kBTc = 7.2−7.5) is found

in the upper limit of gap ratio of HTS and the SG equations infer the anisotropic

gap structure. General expressions for pairing potential are also obtained and nu-

merically calculated for YBa2Cu3O7−δ, which is found close to the calculated pairing

potential via BCS approach in intermediate coupling range, while it slightly deviates

in the weak and strong coupling range. The results that the higher pairing potential

responsible for higher Tc, opens a new window to explore the possibility to fabricate

the new HTS with an elevated transition temperature. The SG gap equation derived

including the effects of AF spin fluctuations along with electron-phonon interaction

and analysed for La2−xSrxCuO4. It is found that that the SG is reduced by 9%

at 0K and at the optimum doping. The addition of AF spin fluctuations in the

SG formulation provides the reduced gap ratio (2∆1m/kBTc = 7.76), which is much

closer to experimental value (2∆/kBTc = 7.7).

Using Green’s functions technique the renormalized electron-phonon dispersion is

analysed for the La2−xSrxCuO4 and YBa2Cu3O7−δ. The SG analysis show that for

the La2−xSrxCuO4, the SG found increasing with decreasing doping. The nodal and

antinodal gap in La2−xSrxCuO4 also found increasing with decreasing doping but

the nodal gap vanishes at the doping x = 0.104. In the case of YBa2Cu3O7−δ, the
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SG found increasing with increasing doping. The different behaviour of SG with the

doping in the La2−xSrxCuO4 and YBa2Cu3O7−δ is due to their dopant atom.





Chapter 4

Anisotropic Superconducting Gap

and Pairing Symmetry

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.”

- - - Richard Feynman
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4.1 Introduction

The superconducting gap (SG) which defined as the energy separation between

ground state and lowest excited state of the superconductor [174] formed in the close

vicinity of the FS [119, 176–178] exhibit many interesting and mysterious properties.

In a conventional superconductor the SG is symmetric around the FS, i.e., the SG

is isotropic. The doping dependent SG was observed in HTS by several authors

[93–98, 103] with highly anisotropic characteristics [103–106]. The anisotropy of SG

is related to the pairing symmetry [196, 218, 238, 239]. In a conventional supercon-

ductor, the isotropic SG leads to the s- wave pairing symmetry while in cuprate HTS

the anisotropic SG leads to dominant dx2−y2 pairing states [196, 218, 238, 239]. The

https://doi.org/10.1007/s10909-019-02199-2
https://doi.org/10.1063/1.5033085
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4.1. Introduction 69

above facts emphasize that the pairing symmetry of a superconductor is a kind of

anisotropic assessment of the SG and consequently, from the study of SG the pair-

ing symmetry of superconductor can be understood. The BCS theory successfully

explains the formation of the s-wave pairing symmetry in the conventional super-

conductor. After the discovery of HTS, the elevated reduced SG ratio (2∆/kBTc)

emerges in the range of 5-8 [47, 100–102]. Along with the high value of reduced SG

ratio, the experimental observation strongly supports the dominant dx2−y2 pairing

symmetry in HTS [102–106, 240, 241] in contrast to the isotropic gap and s-wave

pairing symmetry in the conventional superconductors. It is also observed that

the pairing symmetry of HTS primarily exhibits a mixture of dx2−y2 and s or dxy

(< 5%) component [105, 242] along with the effect of doping which is worked out in

underdoped and overdoped regimes [105]. The phase of the SG for bound pairs is

measured using two superconducting-normal-superconducting (S-N-S) sandwich by

Wallman et al. [78] and nearly π phase shift is observed in YBa2Cu3O7−δ while in

conventional superconductors no such phase shift is observed. The phase sensitive

technique settled the controversy of pairing symmetry in the favour of predominant

dx2−y2-wave pairing symmetry for a number of optimal hole and electron-doped

cuprate [238, 239]. The existence of dx2−y2 pairing symmetry in HTS cuprate have

many implications on its physical properties. The SG along θ = 0◦ (or 90◦), i.e.,

along [100] (or [010]) direction is maximum, while along θ = 45◦, i.e., along [110]

direction is minimum (not necessarily zero), where θ being the FS angle.

The nodal and antinodal SG have been evidenced by a large number of experimen-

tal out come that describe the fundamental characteristics of the SG structure in

cuprate HTS [232, 243–245]. The electronic Raman spectroscopy (ERS) is a pow-

erful tool to probe quasiparticle study in the superconducting state in the nodal

and antinodal region where the amplitude of SG reaches its maximum (antinodal

gap)value and vanishes (nodal gap) otherwise, respectively [239, 246]. Various ex-

periments on antinodal gap studies using ARPES [247] and ERS [246, 248–251] show

that it monotonically increases as one goes deeply into the underdoped regime. The
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behaviour of the nodal SG with doping shows very ambiguous nature. There are

experimental results showing monotonic increment in the nodal gap with decreased

doping and become zero for optimum doping case [232] while other evidence shows

a non-monotonic variation in the nodal gap with doping [251]. It is also believed

that nodal and antinodal gaps are correlated [252]. The appearance of the nodal

and antinodal SG in HTS makes it more difficult to understand the mechanism of

HTSC and these anomalies could not be resolved by BCS theory. Several efforts

[213, 218, 253–257] have been made to interpret this mechanism of HTSC but the

success is still awaited. Further, the experimental evidence shows that the nodal

SG becomes non-zero with small in magnitude if superconductor is in the sate other

than optimal doping, e.g., in YBa2Cu3O7−δ the nodal SG becomes non-zero in the

underdoped and overdoped regime [106] while in La2−xSrxCuO4 the nodal SG be-

comes zero in the overdoped region [241]. It is observed that the nodal SG emerges

as a key point to decide the presence of other components of pairing symmetry (s or

dxy) [238, 239]. For pure dx2−y2 pairing symmetry the SG along the nodal direction

is zero for optimal doping, which makes the thermodynamics properties thoroughly

distinct [107, 258] from those of conventional superconductors. The presence of non-

zero SG along nodal direction prove that there are other components (s or dxy) along

with the pure dx2−y2 pairing symmetry and the general state of the superconduc-

tor are in the mixed state [239]. It is generally defines as ∆mix = ∆dx2−y2
+ is or

∆mix = ∆dx2−y2
+ idxy, in the form of order parameter [239]. There are theoretical

approaches to explain this unique character of high Tc cuprate superconductor, the

famous one is Hubbard model [258] which describes electron hoping on a lattice

parameterized in terms of the bandwidth W = 8t (where t is the measure of hoping

energy) and on-site electron-electron repulsion U . In the copper oxide, U and W

are compared and the approximate solution of the doped Hubbard model invariably

point to a dx2−y2-pairing state.

The pairing mechanism is also influenced by antiferromagnetic (AF) spin fluctuations

in some cuprate superconductors at low temperature and low doping concentrations,



4.2. Angular Superconducting Gap 71

e.g., in La2−xSrxCuO4 [120–122, 194, 195]. The presence of antiferromagnetic phase

with the superconducting phase in low temperature and low doping regime is a

mysterious phenomenon. The experimental observations [120–122] of the AF phase

along with superconductivity certainly motivate to study this strange behaviour. In

chapter (3), the effect of AF spin fluctuations have been described on the SG. As

discussed above that the study of SG leads to the understanding of pairing symmetry,

therefore, the effect of AF spin fluctuations on pairing symmetry is analyzed via the

effect of AF spin fluctuations on the SG. The detailed study of the impact of AF

spin fluctuations on the SG which is already available in the chapter (3), the effect of

AF spin fluctuations on pairing symmetry is further studied in the present chapter.

The study of pairing symmetry and anisotropy of the SG in the present chapter

is based on the renormalized electron-phonon dispersion for the model cuprates,

namely, YBa2Cu3O7−δ, and La2−xSrxCuO4 HTS. The anisotropy in the SG has

been directly observed from the renormalized electron-phonon dispersion itself. Fur-

ther, the pairing symmetry studied via angular parametric plot the SG obtained

from the renormalized electron-phonon dispersion. The doping dependent renor-

malized electron-phonon dispersion leads to the doping dependent anisotropy in

the SG and consequently doping dependent pairing symmetry in YBa2Cu3O7−δ

and La2−xSrxCuO4. The effect of AF spin fluctuations on pairing symmetry in

La2−xSrxCuO4 has been analyzed via the effect of AF spin fluctuations on the SG

in La2−xSrxCuO4. In YBa2Cu3O7−δ such effect are either minimal or absent [193],

therefore the effect of AF spin fluctuation on pairing symmetry is not considered for

YBa2Cu3O7−δ.

4.2 Angular Superconducting Gap

Various experiments [103–106] reveal the strong anisotropic nature of SG in HTS.

In the momentum space for the FS angle θ, it is spotted that gap magnitude is
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maximal along θ = 0◦ (and θ = 90◦) referred to as antinodal gap and minimal (not

consistently zero) along θ = 45◦ known as the nodal gap. Here the angular nature of

SG has been investigated with the help of renormalized electron-phonon dispersion

of La2−xSrxCuO4 and YBa2Cu3O7−δ and are given in the subsequent sections.

4.2.1 Angular Superconducting Gap in La2−xSrxCuO4

By measuring the gap (∆k) in momentum space (in kxky plane) with respect to

FS angle from the renormalized electron-phonon dispersion plot of La2−xSrxCuO4

and using relation ∆ = ~vp∆k, the SG been converted into energy scale. The ∆k

drops to zero along kx = ±ky direction at doping x = 0.104 and in overdoped

regime (Fig. (3.4)), which is fundamental characteristic of dx2−y2 symmetry gap

function. However in underdoped regime ∆k becomes non zero along kx = ±ky
and forms a nodeless gap which indicates the presence of s or dxy type of pairing

state. The angular gap plotted in Fig. (4.1) as a function of FS angle (θ) for the

doping x = 0.08, 0.09, 0.10, 0.105 and has been observed a v- shaped gap which is in

agreement with experimental results of Shi et al. [240] (for x = 0.105) and Razzoli

et al. [241] (for x = 0.08). The experimental measurement of SG with FS angle

shows that it also depends on doping [240] introducing even further complexity. The

change in doping leads to change in renormalized electron-phonon dispersion plot

via mass change parameter and change in the SG observed accordingly. Further, the

angular gap plotted in Fig. (4.2) as a function of d-wave order parameter |cos(kxa)−

cos(kya)|/2 which are in well agreement with experimental results of Yoshida et al.

[102] for x = 0.10, 0.15.

4.2.2 Angular Superconducting Gap in YBa2Cu3O7−δ

Utilizing the same method as in case of La2−xSrxCuO4, the anisotropy in the SG

studied from the renormalized electron-phonon dispersion plot of YBa2Cu3O7−δ (Fig.
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Figure 4.1: Angular gap for La2−xSrxCuO4 as function of FS angle (θ◦).

Figure 4.2: Angular gap for La2−xSrxCuO4 as function of d-wave order param-
eter |cos(kxa)− cos(kya)|/2.
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(3.6)). The ∆k drops to zero along kx = ±ky direction at optimum doping (δ0 =

0.16), but in underdoped and overdoped regime ∆k becomes non zero along kx =

±ky and forms a nodeless gap which indicates the presence of s or dxy type of

pairing state. Energy gap or superconducting order parameter being fundamental

characteristics of HTS duly figure out its highly anisotropic behaviour [79, 259, 260].

The present investigations based on quasiparticle renormalized frequency contours

(Fig. (3.6)) exhibit substantial variation in energy gap in different directions confers

the signature of anisotropic behaviour of superconducting energy gap. The variation

of gap with FS angle (θ◦) as evidenced from the contour plot of YBa2Cu3O7−δ that

enables to plot the calculated the SG values with two different experimental methods

[106], namely, superconducting peak (SCP) and leading - edge midpoint (LEM). A

v-shape of gap has been observed (Fig. (4.3)) with a node (zero gap) in [110] (at

θ = 45◦) direction for optimum doping (δ = 0.16) and maximum gap at antinode

in [100] and [010] directions which is consistent with the experimental observations

[106]. A careful study of angular gap with different doping concentrations shows

that there emerges a small opening of gap at nodal point where the gap assumes

to be zero making a nodeless SG and this possibility has also been emphasized by

Ming-Qiang Ren et al. [261]. As discussed earlier, the small gap at nodal point can

be attributed to the presence of s or dxy type of gap mixed with pure dx2−y2 gap

and varies with doping concentration. It is clear from Fig. (4.3) that the nodal gap

increases in underdoped and overdoped regime which infers that the presence of s or

dxy type of gap tend to increase away from optimum doping. The angular gap plotted

in Fig. (4.4) as a function of d-wave order parameter |cos(kxa)− cos(kya)|/2 along

with the experimental results of Schabel et al. [103]which are in good agreement.

In both cuprates, YBa2Cu3O7−δ and La2−xSrxCuO4, the plot of SG with the FS

angle gives a v- shape of SG with the resemblance of experimental data. It should

be noted that the anisotropy depend on doping differently in YBa2Cu3O7−δ and

La2−xSrxCuO4. In the case of La2−xSrxCuO4 it is found that the along nodal direc-

tion (θ = 45) the SG increases with decreasing doping while in YBa2Cu3O7−δ the
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Figure 4.3: Variation of superconducting gap with the FS angle (θ◦) for
YBa2Cu3O7−δ at 20K (at δ = 0.14, 0.16, 0.18) along with experimental gap ob-

served for two different method SCP and LEM.

SG increases with increasing doping. This is because of the different ionizing state

of dopant as discussed in the chapter (3).

4.3 Pairing Symmetry in High Temperature Su-

perconductor

Pairing symmetry of superconductor is a measure of anisotropy in the SG. The

dx2−y2-wave pairing symmetry is the reflection of a highly anisotropic nature of SG.

We use graphical method [196, 218] to examine the pairing symmetry in La2−xSrxCuO4

and YBa2Cu3O7−δ. A parameter d = f(∆θ, θ) is plotted at different doping level

in angular coordinate system where ∆θ is the magnitude of SG at FS angle θ (in

degree) which give a dominated dx2−y2 type of pairing symmetry along with the s

(or dxy) pairing state.
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Figure 4.4: Angular gap for YBa2Cu3O7−δ as function of d-wave order param-
eter |cos(kxa)− cos(kya)|/2.

4.3.1 Pairing Symmetry in La2−xSrxCuO4

The experimental analysis of La2−xSrxCuO4 show that at x = 0.105 nodal gap is

zero [240] but it become non zero at x = 0.08 [241] implying the presence of s

or dxy pairing state along with pure dx2−y2 pairing symmetry and superconductor

are in mixed state. The parameter d = f(∆θ, θ) is plotted at different doping for

La2−xSrxCuO4: the inset (a) to (e) of Fig. (4.5). The inset (a) to (e) of Fig. (4.5)

represents the evolution of d-wave pairing as function of doping. At doping level

x = 0.104 the nodal gap become zero and a pure dx2−y2 type of symmetry observed.

In underdoped region the nodal gap increasing with decrease in doping consequently

the presence of s or dxy component increases. The numerical estimation (with the

help of graphical method) of component of s or dxy (Υ in %) is done at different

doping levels without considering AF spin fluctuations, which are listed in Tab.

(4.1) and plotted in Fig. (4.5). It is observed that variation of Υ component with

doping is non-linear which shows that doping has non-linear effect on dx2−y2 pairing

symmetry. Since above x = 0.104 the nodal gap is always zero and therefore we
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Figure 4.5: Variation of s or dxy-wave component for La2−xSrxCuO4 with doping
in the absence of AF spin fluctuations (blue curve) and in the presence of AF spin
fluctuations (red curve). The insets, (a) to (e) represent pairing symmetries at

different doping without AF spin fluctuations.

conclude that above x = 0.104 a pure dx2−y2 pairing state exists. The effect of AF

spin fluctuations on component s or dxy is discussed in section (4.4).

x 0.07 0.08 0.09 0.10 0.104
Υ(without AF) 6.9958 6.1784 4.90815 1.4956 0
Υ(with AF) 5.8688 5.0021 3.7362 1.2417 0

Table 4.1: Percentage of Υ ( s or dxy ) at different doping (x) for La2−xSrxCuO4.

4.3.2 Pairing Symmetry in YBa2Cu3O7−δ

However, the poorly understood pairing symmetry in HTS opened the debate [78,

104, 238, 239, 262, 263] that it is mainly dominated by dx2−y2 in HTS cuprate,

e.g., YBa2Cu3O7−δ. Various experimental results [104, 105, 239, 242, 264, 265]

which implicated the presence of very small component (< 5%) of s or dxy pairing

symmetry along with dx2−y2 and its doping dependence [262]. A deeper insight
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on the pairing symmetry (including deviations) in the underdoped and overdoped

regions for different levels of doping is achieved by plotting the anisotropic SG in the

angular coordinate system; the inset (a) and (c) of Fig. (4.6). An ideal dx2−y2 type

gap obtained for optimum doping δ0 = 0.16; the inset b of Fig. (4.6). These results

address the presence of extended s-wave in the underdoped region while dx2−y2 +iΥ (

Υ may be s or dxy) in overdoped regime. Percentage of extended s-wave components

in the underdoped (0.11 < δ < δ0) and imaginary component Υ in overdoped

(δ0 < δ < 0.21) regime for different doping level has been calculated and summarized

in the Tab. (4.2). The Fig. (4.6) depicts present results of variation of percentage of

extended s and Υ-wave component with doping which figure out that these variations

are not monotonic. The superconducting state drived from one phase (underdoped

regime) enters the other phase (overdoped regime) for doping variation of δ = 0.12

to 0.20. Such phase transition of HTS near optimum doping confirms the existence

of quantum critical point (QCP) in YBa2Cu3O7−δ [266, 267]. For 0.11 < δ < 0.21

theory provides maximum 2.5% s-wave component in underdoped and 2.7% s or dxy

in overdoped scenario which is within the limit (< 3%) of experimental observations

[105, 242].

The study of pairing symmetry in La2−xSrxCuO4 and YBa2Cu3O7−δ show that the

pairing symmetry in both cuprate HTS have dominating dx2−y2 pairing state with

the presence of component of s (or dxy). In both cuprates HTS, the pairing symmetry

depends on doping. In the case of YBa2Cu3O7−δ, an ideal dx2−y2 pairing state found

at the optimum doping but as one move from the optimum doping the presence

of s (or dxy) component increases. In case of La2−xSrxCuO4, as one move towards

the underdoped regime the presence of s (or dxy) component increases while in the

overdoped regime an ideal dx2−y2 pairing state remains.
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δ(< δ0, underdoped) % of extended s δ(> δ0, overdoped) % of Υ
0.12 2.56 0.17 0.08
0.13 1.36 0.18 0.44
0.14 0.52 0.19 1.73
0.15 0.09 0.20 2.79

Table 4.2: Percentage of extended s and Υ at different doping for YBa2Cu3O7−δ.

Figure 4.6: Variation of extended s-wave and s ( or dxy)-wave component for
YBa2Cu3O7−δ with doping. The inset (b) represent ideal dx2−y2 type of gap at
δ = 0.16 while (a) and (c) represents dx2−y2 type of gap with some deviation at

δ = 0.14, 0.18 respectively.

4.4 Effect of Antiferromagnetic Spin Fluctuations

on Pairing Symmetry

The co-existence of magnetic order with superconductivity is a surprising phe-

nomenon since magnetism has a natural tendency to destroy the superconductiv-

ity. However, there are plenty of experimental facts available that confess the co-

existence of AF spin fluctuations and superconductivity. Such phenomenon found

in the low temperature and weak doping or near to optimum doping [120–122, 194,

195, 219]. The pairing symmetry studied in the previous section only considered the



80 Chapter 4. Anisotropic Superconducting Gap and Pairing Symmetry

electron-phonon interaction, anharmonicity, and defect via renormalized electron-

phonon dispersion. In chapter (3), the effect of AF spin fluctuations on the SG has

been studied with the newly derived SG equations. The presence of Am in the SG

equation is the direct link to the fact that the SG and consequently, pairing sym-

metry is directly affected by the AF spin fluctuations. Since our pairing symmetry

study based on the information of SG, therefore, the effect of AF spin fluctuation

on pairing symmetry worked out using the fact that the AF spin fluctuations have

effects on the SG. The detailed treatment of AF spin fluctuation is given in the

chapter (3). There are some cuprate HTS that have characteristics of AF spin fluc-

tuation with superconductivity like La2−xSrxCuO4 and in some cuprate such effect

are either minimum or absent like in YBa2Cu3O7−δ. In the present case the effect of

AF spin fluctuations worked out for La2−xSrxCuO4. The temperature dependence

of ∆1m(T ) and ∆1(T ) for La2−xSrxCuO4 at optimal doping x = 0.15 is depicted in

the chapter (3) (Fig. (3.3)). A reduction in SG is observed due to the influence of

AF spin fluctuations by 9% at 0K, supporting the fact that the superconductivity is

educed/destroyed due to the magnetic effect which is a consequence of pairing and

depairing effect of AF spin fluctuations [222]. With rising temperature difference be-

tween ∆1m(T ) and ∆1(T ) reduces continuously and near transition temperature both

the gap curves overlap at 39K. Presumably, the superconductivity and magnetism

cannot coexist but exceptionally this convention weakens in case of La2−xSrxCuO4

and experimental exhibit the co-existence of AF spin fluctuations and superconduc-

tivity at low concentration (doping) in low-temperature regime. The present analysis

thus supports the possible effects of AF spin fluctuations on SG. The change in SG

due to AF spin fluctuations leads to the change in pairing symmetry up to some

degree. However, the change in SG observed maximum by 9% (at 0K) at optimum

doping, therefore the change in pairing symmetry should be minimal. The reduction

in SG due to AF spin fluctuations leads to change in the component of s or dxy, i.e.,

it affects the pairing symmetry. The percentage of s or dxy component calculated

considering the reduction in SG due to AF spin fluctuations at the different doping

level which is given in Tab. (4.2) and plotted in Fig. (4.5). It should be noted
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that the presence of AF suppresses the s or dxy component. Therefore it can be

concluded that the AF spin fluctuations endorse the dx2−y2 pairing symmetry.

4.5 Conclusions

From the study of anisotropic SG and pairing symmetry in HTS cuprates La2−xSrxCuO4

and YBa2Cu3O7−δ via renormalized electron-phonon dispersion the following con-

clusion has been pointed out. The plot of SG as a function of FS angle (θ) gives a v-

shape confessing the anisotropicity of the SG in La2−xSrxCuO4 and YBa2Cu3O7−δ.

The plot of SG as a function order parameter |cos(kxa)−cos(kyb)| confirms the highly

anisotropic nature of SG in both the cuprate HTS. It is found that the anisotropy

also affected by the doping.

In the case of La2−xSrxCuO4 a dominating dx2−y2 pairing symmetry observed along

with the existence of Υ (s or dxy component) in the underdoped regime which also

affected by doping in the non-linear fashion. The maximum magnitude of component

Υ (s or dxy component) found as 6% and 7% in the presence and absence of AF

spin fluctuation, respectively. It is observed that from doping x = 0.104 towards

the optimum and overdoped regime, the pairing symmetry follows pure dx2−y2 . In

chapter (3), it is seen that the nodal and antinodal SG change rapidly from the

doping level x = 0.09 to 0.11 and the pairing symmetry also change rapidly in

the same doping range. Therefore, it is apparent that there exists a rapid phase

transition in the La2−xSrxCuO4 in the doping range of x = 0.09 to 0.11.

Further, in the case of YBa2Cu3O7−δ a dominant dx2−y2 type of pairing symmetry is

observed at optimum doping with node in kx = ±ky direction. The node disappears

in the underdoped and overdoped regime confirming the possibility of nodeless SG.

An ideal dx2−y2 pairing symmetry observed at optimum doping with the presence

of a very small component of extended s-type pairing symmetry in the underdoped

regime which signified increases up to 2.5% with the decrease in doping. On the
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other hand in the overdoped regime presence of s (or dxy) pairing symmetry is

established and its weight also increases up to 2.7% as doping is increased. It emerges

from the present formulation that the study of superconducting gap, anisotropy and

pairing symmetry can be successfully made for a wide spectrum of underdoped and

overdoped regions with a sound inference about the existence of QCP at optimum

doping δ = 0.16 for YBa2Cu3O7−δ.

The renormalized electron-phonon dispersion which is heavily influenced by anhar-

monicities, impurities (defects) and their interference leads to the successful expla-

nation of pairing symmetry therefore, it can be pointed out that electron-phonon

interaction, anharmonicity, and defects are essential for pair formation in HTS in

YBa2Cu3O7−δ while in the case of La2−xSrxCuO4 an additional quantity, the AF

spin fluctuations also participate in the pair formation.



Chapter 5

Theory of Renormalized Phonon

Group Velocity in High

Temperature Superconductors

“Natural science, does not simply describe and explain nature; it is part of the in-

terplay between nature and ourselves.”
- - - Werner Heisenberg

Work presented in this chapter is partially published as follows:

1. Theory of renormalized phonon group velocity in high temperature supercon-

ductors.

S. K. Verma, A. Gupta, A. Kumari, B. D. Indu.

Mod. Phys. Lett. B, 1950337, (2019).

DOI: https://doi.org/10.1142/S0217984919503378.

5.1 Introduction

The interaction of electrons and phonons is the key to understand the mechanism of

both the conventional and high temperature superconductivity. Unlike conventional

83
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superconductors the HTS exhibit strange behavior like antiferromagnetic state [120–

122, 195, 268] and doping dependent superconducting state [93, 94, 96, 262, 269, 270].

It is experimentally observed that the coupling of an electron with phonon change

the electron velocity as well as scattering rate when the electron energy is close

to the phonon energy [109]. Gadermaier et al. [110] figure out the importance

of electron-phonon interaction in superconductivity pairing mechanism based on

the determination of electron-relaxation time via pump-prob optical spectroscopy.

Therefore, it is fair to say that even the BCS theory can’t explain these features of

HTS, the role of electron-phonon interactions [109–112] still remain important factor

in the understanding of HTSC. The effect of anharmonic phonons on superconduct-

ing phenomenon evaluated by Vincent et al. [114] while examining the anharmonic

effects on reduced gap ratio 2∆/kBTc with the conclusion that the reduced gap ratio

was increased by 5 -10 % due to anharmonicity. In the case of multi-gap supercon-

ductivity in MgB2 the electron-phonon coupling was determined with the conclusion

that the phonon are strongly anharmonic in pairing phenomenon [115]. The anhar-

monic effects on superconductivity has also been confirmed by several experiments

in cuprate HTS[116]. The various studies of anharmonic effects [113–118] in super-

conductivity show that the anharmonicity plays an important role in determining

the dynamical as well as superconducting properties of cuprate HTS and therefore

the contribution of anharmonicity must be taken into account in any theoretical

formalism. The importance of phonon is further seen in terms of change in Tc in

various cuprate HTS as one substitute 18O with 16O implying the contribution of

phonon in pairing mechanism [271–277].

It is observed that the in-plane electronic transport of bipolarons is largely affected

by the acoustic phonon due to scattering [135]. Alexandrov [143] show that the

anisotropic sound velocity in crystal are responsible for phonon mediated attraction

of electron that provides unconventional Cooper pair as well as for the d- wave pair-

ing symmetry in cuprate superconductor. Experiments also reveal that the lattice

thermal conductivity of HTS depends on doping concentration [94, 278]. Among
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the many properties of cuprate HTS like large value to superconducting gap (SG)

[47, 100–102], anisotropy in SG [103–106], doping dependent SG [93, 94] the trans-

port property is an important problem to be understand. The transport property

of superconductors like lattice thermal conductivity depends on phonon velocity

(sound velocity) along with various other parameters [136–138, 140, 141]. The lat-

tice thermal conductivity which is one of the most important dynamical property of

solids depends on the phonon group velocity (vg) in the form [279]

κ =
kB(β~)2

2π2vg

∫ ωD

0

τ(ω)ω4eβ~ω(eβ~ω − 1)−2dω (5.1)

where τ(ω) is the total relaxation time for all scattering processes [136, 280, 281].

Due to additive nature of line width (inverse of relaxation time), the total (inverse)

relaxation time is given as [170, 172] τ−1(ω) = τ−1
CB+τ−1

R +ΓDk (ω)+Γ3A
k (ω)+Γ3D

k (ω)+

Γephq (ω) where the notations τ−1
CB, τ

−1
R , ΓDk (ω), Γ3A

k (ω), Γ3D
k (ω) and Γephq (ω) stands for

combined boundary relaxation time, resonance scattering relaxation time, line width

due to impurity scattering, phonon-phonon scattering, impurity-anharmonicity in-

terference scattering and electron-phonon scattering, respectively. The study of

thermal conductivity requires the detailed knowledge of these parameters which is

out of the scope of the present work. In the transport problems, obviously, the

phonon group velocity emerges as a very important entity and needs the in depth

consideration which has yet not been studied rigorously. Present work leads to

the detailed study of renormalized phonon group velocity (RPGV) evaluated from

the phonon Green’s functions [192] which have been obtained via many-body quan-

tum dynamics using a general HTSC Hamiltonian. The expression for RPGV thus

obtained show dependence on phonon frequency, doping (impurity concentration),

anharmonicity and temperature.



86

Chapter 5. Theory of Renormalized Phonon Group Velocity in High
Temperature Superconductors

5.2 Formulation of the Problem

The importance of phonon in cuprate HTS motivate to study the properties of the

phonon in detail. The phonon group velocity is defined as vg = ∂ω/∂k where ω is

phonon dispersion relation. In order to study the phonon group velocity, a dispersion

relation is needed that should take care of defect as well as anharmonicity. Using the

renormalized phonon dispersion relation such effect can be taken into account in the

RPGV. Using the many-body quantum dynamical formulation followed by Dyson’s

equation formalism the systemic development of renormalized phonon dispersion is

given in chapter (2). The term mass change parameter C(k1, k2) and force constant

change parameter D(k1, k2) take care of doping/impurity. The renormalized phonon

dispersion which is given as; ω̃2
k = ω2

k − ωk[ωDk + ωAk + ωADk ], contains the terms ωDk ,

ωAk , ωADk in which the term ωADk can be dropped since its effect is appear only at

very large temperature. Therefore the used renormalized dispersion in the present

case is given as: ω̃2
k = ω2

k − ωk[ωDk + ωAk ] where ωDk and ωAk is given as [192]:

ωDk =8D(k1,−k) + 8C(k1,−k) + 32ω−1
k C(k1,−k)D(k1,−k1)

+ 32ω−1
k

∑
k1

C(k1,−k1)D(k1,−k) + 32ω−1
k

∑
k1

C(k1,−k1)C(k1,−k)

+ 128ω−2
k

∑
k1

C(k1,−k1)C(k1,−k)D(k1,−k1)

(5.2)

ωAk = 48
∑
k1,k2

V4(k1, k2, k1,−k)nk1 (5.3)
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5.3 Derivation of Renormalized Phonon Group

Velocity

Considering the fact that the impurity anharmonicity interaction effects are sub-

stantial in the classical hydrodynamic regime, the renormalized phonon dispersion,

ω̃ (≡ ω̃k) can be reasonably simplified to the form

ω̃ = [ω2 − ω(ωD + ωA)]1/2 (5.4)

which leads to the evaluation of renormalized group velocity (ṽg) as:

ṽg =
∂ω̃

∂k
=

∂

∂k
[ω2 − ω(ωD + ωA)]1/2 =

∂

∂ω
[ω2 − ω(ωD + ωA)]1/2vg (5.5)

This can be simplified to the form

ṽg =
2ω − ζ(ω)

2ω̃
vg (5.6)

where

ζ(ω) = ωD + ωA + ω
∂ωD

∂ω
+ ω

∂ωA

∂ω
(5.7)

The terms ζ(ω) and ω̃ take care of the effects of doping and anharmonicity on

phonon group velocity and in the absence of these two effects the renormalized group

velocity becomes usual group velocity, i.e., ṽg = vg. Since the effects of doping and

anharmonicity on superconductivity is well established fact and hence the need of

considering ṽg appears well justified.
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The mass change parameter [282] (C(k1, k2)), force constant change parameter [282]

(D(k1, k2)) and anharmonic fourth order potential [32] (V4(k1, k2, k1,−k)) are given

by

C(k1, k2) =

(
M0

4Nµ

)
(ωk1ωk2)

1/2[e(k1).e(k2)]

[ N∑
l

cei(k1+k2).Rl−
n∑
i

ei(k1+k2).Ri

]
(5.8)

D(k1, k2) = (4N)−1(ωk1ωk2)
−1/2

∑
l,l′

(
φl,l′

M0

)
[e(k1).e(k2)]ei(k1·Rl+k2·Rl′ ) (5.9)

V4(k1, k2, k3, k4) =
1

4!

(
~

4N

)
∆(k1, k2, k3, k4)φ4(k1, k2, k3, k4)

(ωk1ωk2ωk3ωk4)
1/2

(5.10)

To examine the effects of mass change and force constant parameters on RPGV

due to substitutional point impurities; let us consider a crystal consisting of N

atom hypothesized such that impurities of equal mass M ′ are randomly scattered

at n lattice sites and rest sites (N − n) are occupied by atoms of mass M . In the

present case n is taken as a variable while considering the impurity concentration

c = n/N which appears as a very important parameter [192]. Under a reasonable

approximation, taking ωk1 = ωk2 = ωk3 = ωk4 = ω and the Debye relation ω = vk;

Eqs. (5.8), (5.9) and (5.10), after some algebriac simplifications one can obtain

C(ω) =

(
M0

4Nµ

)
ω

[ N∑
l

cei
2ω
v
.Rl −

n∑
i

ei
2ω
v
.Ri

]
(5.11)

D(ω) =
(4N)−1

ω

∑
l,l′

(
φl,l′

M0

)
ei

ω
v

(Rl+Rl′ ) (5.12)

V4(ω) =
~φ4

96Nω2
(5.13)
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Using Eqs. (5.11), (5.12) and (5.13), Eqs. (5.2) and (5.3) can be simplified to the

following form:

ωD = 8D(ω) + 8C(ω) + 32ω−1C(ω)D(ω) + 32ω−1C(ω)D(ω)

+ 32ω−1C(ω)C∗(ω) + 128ω−2C(ω)C∗(ω)D(ω) (5.14)

ωA =
~φ4

2N

coth(β~ω/2)

ω2
(5.15)

where C∗(ω) is complex conjugate of C(ω).

The derivatives of C(ω) and D(ω) can be obtained as

∂C(ω)

∂ω
=
C(ω)

ω
+ i

(
M0

4Nµ

)(
2ω

v

)
S1 (5.16)

∂D(ω)

∂ω
= −D(ω)

ω
+ i

(4N)−1

ωv
S2 (5.17)

where

S1 =

[ N∑
l

cRle
i 2ω

v
.Rl −

n∑
i

Rie
i 2ω

v
.Ri

]
(5.18)

S2 =
∑
l,l′

(
φl,l′

M0

)
(Rl +Rl′)e

iω
v

(Rl+Rl′ ) (5.19)
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Using Eqs. (5.11), (5.12), (5.16) and (5.17) in Eq. (5.14) the term ω ∂ωD

∂ω
can be

evaluated in the form

ω
∂ωD

∂ω
= −8D(ω) + 8C(ω) + i

(4N)−1

ωv
+ i(

M0

4Nµ
)(

2ω

v
)S1 − i32D(ω)(

M0

4Nµ
)(

2ω

v
)S1

− 32

ω
C(ω)D(ω) + i32C(ω)

(4N)−1

ωv
S2 + i32C∗(ω)(

M0

4Nµ
)(

2ω

v
)S1

+
32

ω
C(ω)C∗(ω)− i32(

M0

4Nµ
)(

2ω

v
)C(ω)S∗1 + i

128

ω
C∗(ω)D(ω)(

M0

4Nµ
)(

2ω

v
)S1

− i128

ω
C(ω)D(ω)(

M0

4Nµ
)(

2ω

v
)S∗1 −

128

ω2
C(ω)C∗(ω)D(ω)

+ i
128

ω
C(ω)C∗(ω)

(4N)−1

ωv
S2 (5.20)

Where, S∗1 being the complex conjugate of S1. Similarly use of Eq. (5.15) yields the

term ω ∂ωA

∂ω
as

ω
∂ωA

∂ω
= −96 coth(β~ω/2)V4(ω)− 48(β~ω/2) csch2(β~ω/2)V4(ω) (5.21)

Using Eqs. (5.14), (5.15), (5.20), and (5.21), the ζ(ω) takes the form

ζ(ω) = 16C(ω) +
32

ω
C(ω)D(ω) +

64

ω
|C(ω)|2 − 96 coth(β~ω/2)V4(ω)

− 48(β~ω/2) csch2(β~ω/2)V4(ω) + i

[
(4N)−1

ωv
+ ω

(
M0

4Nµ

)(
2ω

v

)
S1

−32D(ω)

(
M0

4Nµ

)(
2ω

v

)
S1 + 32C(ω)

(4N)−1

ωv
S2

+
128

ω
|C(ω)|2 (4N)−1

ωv
S2

]
(5.22)
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The fourth order anharmonic term (V4(ω)) contributes at high temperatures and

therefore in the interest of low temperature region these terms can be dropped.

ζ(ω) being complex function and in order to derive the expression for RPGV the

following equations are used to resolve the real part of ζ(ω), i. e., Re[ζ(ω)] ≡ ξ(ω):

Re[C(ω)] =

(
M0

4Nµ

)
ω

[ N∑
l

cC l −
n∑
i

C i

]
; Im[C(ω)] =

(
M0

4Nµ

)
ω

[ N∑
l

cSl −
n∑
i

Si

]
(5.23)

Re[D(ω)] =
(4N)−1

ω

∑
l,l′

(
φl,l′

M0

)
C ll′ ; Im[D(ω)] =

(4N)−1

ω

∑
l,l′

(
φl,l′

M0

)
Sll
′

(5.24)

Re[S1] =
N∑
l

cRlC
l −

n∑
i

RiC
i; Im[S1] =

N∑
l

cRlS
l −

n∑
i

RiS
i (5.25)

Re[S2] =
∑
l,l′

(
φl,l′

M0

)
(Rl +Rl′)C

ll′ ; Im[S2] =
∑
l,l′

(
φl,l′

M0

)
(Rl +Rl′)S

ll′ (5.26)

Using Eqs. (5.23) to (5.26) in Eq. (5.22) and after a tedious algebraic and trigono-

metric simplifications, the ξ(ω) can be obtained as
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ξ(ω) =

(
4M0

Nµ

)
ω

[ N∑
l

cC l −
n∑
i

C i

]
+

(
2M0

N2µ

)
1

ω

∑
l1,l′

(
φl1,l′

M0

)[ N∑
l

cC ll1l′ −
n∑
i

C il1l′
]

+

(
2M0

Nµ

)2

ω

[∑
l,l1

c2(C ll1 + Sll1) +
∑
i,i1

(C ii1 + Sii1)− 2
∑
l,i

cC li

]

−
(

M0

2Nµv

)
ω2

[ N∑
l

cRlS
l −

n∑
i

RiS
i

]
−
(

2M0

N2µv

)∑
l1,l′

(
φl1,l′

M0

)[ N∑
l

cSll1l
′ −

n∑
i

Sil1l′
]

+

(
4M0

N2µv

)∑
l1,l′

(
φl1,l′

M0

)[ N∑
l

cRlS
ll1l′ −

n∑
i

RiS
il1l′
]

(5.27)

where

C l = cos Ωl; C i = cos Ωi; Sl = sin Ωl; Si = sin Ωi; C li = cos Ωli(5.28)

C ll1 = cos Ω+
ll1

; C ii1 = cos Ω+
ii1

; Sll1 = sin Ω−ll1 ; Sii1 = sin Ω−ii1 (5.29)

C ll1l′ = cos Ωll1l′ ; C il1l′ = cos Ωil1l′ ; Sll1l
′
= sin Ωll1l′ ; Sil1l′ = sin Ωil1l′(5.30)

C ll′ = cos Ωll′ ; Sll
′
= sin Ωll′ (5.31)

and

Ωl =
2ω

v
Rl; Ωi =

2ω

v
Ri; Ωli =

2ω

v
(Rl +Ri) (5.32)
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Ω±ll1 =
2ω

v
(Rl ±Rl1); Ω±ii1 =

2ω

v
(Ri ±Ri1); Ωll′ =

ω

v
(Rl +Rl′) (5.33)

Ωll1l′ =
ω

v
(2Rl +Rl1 +Rl′); Ωil1l′ =

ω

v
(2Ri +Rl1 +Rl′); (5.34)

Therefore, the final form of RPGV can be written as

ṽg =
2ω − ξ(ω)

2ω̃
vg (5.35)

In the above equations the summation index l, l1, l
′ stands for total atoms in the

system and index i, i1 stands for impurity atoms.

5.4 Renormalized Phonon Group Velocity in

La2−xSrxCuO4

The expression obtained for RPGV (ṽg) includes the effects of phonon frequency,

doping concentration, temperature, and anharmonicity. However, the anharmonicity

appears in the form of fourth order anharmonic terms which is not much significant in

the low temperature regime for superconducting materials. For the purpose of analy-

sis of ṽg the model high temperature superconducting cuprate crystal La2−xSrxCuO4

has been taken. The Cu atom has been taken at the center of a system consisting of

41 atoms surrounded by other atoms of La2−xSrxCuO4 with impurity atom Sr taken

at random lattice site replacing the La atom. To this configuration of the system,

Eq. (5.35) is analyzed and the behavior of ṽg with phonon frequency is depicted in

Fig. (5.1) at different doping concentrations. A similar variation in phonon group
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Figure 5.1: Variation of RPGV (ṽg) with the frequency (ω) for La2−xSrxCuO4

at different doping.

Figure 5.2: Variation of RPGV (ṽg) with the doping (x) for La2−xSrxCuO4 at
different frequency.
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Figure 5.3: Contour plot of RPGV (ṽg) for La2−xSrxCuO4.

velocity with frequency has also been found in the available literature for some other

materials [283]. In superconductors RPGV shows readily decreasing trend with dop-

ing concentration which has been furnished in Fig. (5.2). This change occurs as a

result of changes in the interacting force constants among atoms due to the differ-

ence in mass of dopant/impurity atoms. Such behavior of decrease in phonon group

velocity with increasing doping in La2−xSrxCuO4 superconductor also confirmed by

other authors [284]. The RPGV contours depicted in Fig. (5.3) also confirm its

non-linear behavior with simultaneous variation in frequency and doping concentra-

tion. Obviously, this sensitive nature of RPGV adds a feather to the very complex

phenomenon of energy transport. The advantage of present formulation of RPGV

is that it includes the crystal/system details to depict the phonon energy transport

therefore for the different system it can provide RPGV according to the system, i.e.,

the obtained result is system oriented, hence it is closer to the real situation.
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5.5 Conclusions

Using the renormalized phonon dispersion obtained via phonon Green’s functions,

the results for RPGV are developed. It appears from the current investigation that

the RPGV depends on doping concentration, phonon frequency, anharmonicity, and

temperature. The anharmonicity and temperature dependence has not been taken

into account in the interest of the low-temperature regime.

The RPGV plots for La2−xSrxCuO4 superconductor reveal a complicated variation

with doping concentration and frequency. Since, the present formulation being sys-

tem oriented appears more close to the real situations.



Chapter 6

Summary and Futuristic Scenario

“Our virtues and our failings are inseparable, like force and matter. When they

separate, man is no more.”

- - - Nikola Tesla

6.1 Summary of Present Work

Using the electron and phonon Green’s functions followed by the MBMHP, the

following properties of cuprate superconductor La2−xSrxCuO4 and YBa2Cu3O7−δ

are summarized as below.

6.1.1 The Superconducting Gap

Using the generalized EDOS of HTS followed by BCS formalism the two SG equa-

tions have been successfully obtained which shows dependence on temperature,

Fermi energy and renormalized electron and phonon energies. Both SG equations

∆1(T ) and ∆2(T ), predict the Tc = 93.8K for YBa2Cu3O7−δ. The normalized

gaps ∆1(T )/∆1(0) and ∆2(T )/∆2(0) show the similar variation to the BCS gap

curve in low-temperature region, but deviate near Tc. The reduced gap ratio of

97
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YBa2Cu3O7−δ is observed as 2∆1(0)/kBTc=7.2 to 7.5. The effect of AF spin fluctu-

ations on the SG also seen in La2−xSrxCuO4 and it is found that the SG is reduced

by 9% at 0K and at the optimum doping. General expressions for pairing po-

tential are obtained and numerically calculated for YBa2Cu3O7−δ, which is found

close to the calculated pairing potential via BCS approach in intermediate cou-

pling range, while it slightly deviates in the weak and strong coupling range. Using

Green’s functions technique the renormalized electron-phonon dispersion is anal-

ysed for the La2−xSrxCuO4 and YBa2Cu3O7−δ. The SG, nodal and antinodal gap

in La2−xSrxCuO4 are found increasing with decrement in doping but the nodal gap

vanished at the doping x = 0.104. In the case of YBa2Cu3O7−δ, the SG increases

with increment in doping.

6.1.2 Anisotropic Superconducting Gap and Pairing Sym-

metry

The plot of SG as a function of FS angle (θ) gives a v- shape gap confessing the

anisotropicity of the SG in La2−xSrxCuO4 and YBa2Cu3O7−δ. The plot of SG as

a function order parameter |cos(kxa) − cos(kyb)| confirms the highly anisotropic

nature of SG in both the cuprate HTS with doping dependence. A dominating

dx2−y2 pairing symmetry are observed in La2−xSrxCuO4 and YBa2Cu3O7−δ. In the

both superconductors the pairing symmetry are affected by the doping in non-linear

way and the existence of s or dxy component is seen in the underdoped regime. In the

overdoped regime a pure dx2−y2 pairing symmetry is observed in La2−xSrxCuO4 while

in YBa2Cu3O7−δ s or dxy component is observed. The effect of AF spin fluctuations

on pairing symmetry is observed in La2−xSrxCuO4.
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6.1.3 Theory of Renormalized Phonon Group Velocity in

High Temperature Superconductors

A theory of RPGV is developed using the renormalized phonon dispersion obtained

via phonon Green’s functions. It emerges from the present study that the RPGV de-

pends on doping concentration, phonon frequency, anharmonicity, and temperature.

The RPGV plots for La2−xSrxCuO4 superconductor reveal a complicated variation

with doping concentration and frequency.

6.2 Future aspects

6.2.1 Study of Penetration Depth

The experimental fact that the energy gap has effects on the penetration depth of

superconductor which can be studied with the help of the newly formulated SG

equations.

6.2.2 Thermal Conductivity

The developed model of RPGV (ṽg) can be further utilized in the study of phonon

thermal conductivity of HTS with the following equation.

κ =
kB(β~)2

2π2vg

∫ ωD

0

τ(ω)ω4eβ~ω(eβ~ω − 1)−2dω (6.1)



100 Chapter 6. Summary and Futuristic Scenario

6.2.3 Doping Dependent Debye Temperature

The dependence of Debye temperature on sound (group) velocity (θD = ~vg
kB
.(6π2N

V
)1/3)

can utilized to study the doping dependent Debye temperature in HTS via developed

model of RPGV (ṽg).
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